
Enabling Con�gurable, Extensible, and Modular Network Stacks
by

Akshay Krishna Narayan
B.S., University of California, Berkeley (2015)

S.M., Massachusetts Institute of Technology (2019)

Submitted to the Department of Electrical Engineering and Computer Science in
Partial Ful�llment of the Requirements for the Degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022
© 2022 Massachusetts Institute of Technology. All rights reserved.

Author: .
Department of Electrical Engineering and Computer Science

May 13, 2022

Certi�ed by: .
Hari Balakrishnan

Fujitsu Chair Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by: .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Enabling Con�gurable, Extensible, and Modular Network Stacks
by

Akshay Krishna Narayan
Submi�ed to the Department of Electrical Engineering and Computer

Science on May 13, 2022 in Partial Ful�llment of the Requirements for the
Degree of Doctor of Philosophy in Electrical Engineering and Computer

Science

Abstract

Modern networks and the applications that use them are increasingly specialized; each
application increasingly uses a bespoke network stack which integrates desired
protocols, services, and APIs. �is thesis will describe two systems, Bertha and
Congestion Control Plane (CCP), which incorporate new abstractions to navigate this
new se�ing from the perspective of congestion control algorithm and the application’s
network API, respectively. Bertha uses a new abstraction called a Chunnel to represent
network services, e.g., hardware o�oads of application functionality, publish-subscribe
communication services, or encryption. CCP decouples congestion control algorithm
implementations from network datapaths by designing an abstract datapath which
supports collecting custom measurements and subsequently applying rate or window
enforcement.

�esis Supervisor: Hari Balakrishnan
Title: Fujitsu Chair Professor of Electrical Engineering and Computer Science, MIT
�esis Commi�ee Member: Mohammad Alizadeh
Title: Associate Professor of Electrical Engineering and Computer Science, MIT
�esis Commi�ee Member: Aurojit Panda
Title: Assistant Professor of Computer Science, NYU
�esis Commi�ee Member: Sco� Shenker
Title: Professor in the Graduate School, UC Berkeley

3

4

Acknowledgments

It is almost unfair that this thesis must list a single name – i.e., mine –
as its author. The ideas I describe here are the result of both formal and
informal collaboration among friends and colleagues. Any line of work will
have its ups and downs; it is one’s collaborators, labmates, advisors, men-
tors, friends, and family who provide the external context, encouragement,
advice, technical support, and cheerleading that pursuing research requires.
If anyone has come to read this looking for advice, mine is simply this: with
a supportive community at your back, you can’t really fail.
With this in mind, I first thank my advisors, Hari Balakrishnan and

Mohammad Alizadeh, for guiding me throughout my time at MIT. Both
Hari and Mohammad have a special talent for finding the core of a research
project and highlighting it for everyone to see. One thing I have tried to
learn from Hari is prioritization: the art of working on the core of a problem
rather than its window dressing. His insistence that research communication
should be about teaching the concepts of the work has greatly improved my
communication skills. Mohammad, meanwhile, has taught me to explain
not just the easy parts of a concept, but the messy edge cases too.
I have had, and continue to have, numerous mentors other than Hari and

Mohammad. First among these are Scott Shenker and Sylvia Ratnasamy,
who originally encouraged me to pursue research as an undergraduate stu-
dent. Scott and Sylvia, along with other members of the NetSys lab includ-
ing Gautam, Justine Sherry, Aurojit Panda, Peter Gao, Rachit Agarwal,
Radhika Mittal1, and Sangjin Han showed me the joy of research and the
value of collaboration. Additionally, after I came to MIT, Srinivas Narayana
was (and, of course, remains) a valuable source of research and life advice in
my first two years. I have been fortunate to work on research projects with
multiple of these mentors during both my time at Berkeley and at MIT;
Panda and Scott, of course, are even on this thesis’s committee. Among
these mentors, Panda deserves a special mention; he is equally comfortable
discussing low-level DPDK configuration parameters as he is where to take

1Radhika later came to MIT as a postdoc, where we worked on Bundler (§4.7.6) to-
gether.

5

the project next, how the operating system’s bootloader works, or where
the best bakeries and coffeeshops in Boston are. Panda has been incredibly
generous with his time during our time working together on Bertha (§3),
despite having numerous other projects and students of his own. Finally,
last and far from least is Arvind Krishnamurthy, who despite also having
students of his own and a full schedule while on industrial leave has made
the time over the past year to work with me on Bertha. I have especially
appreciated Arvind’s ability to identify new ways of applying a project’s
ideas.
Of course, I have learned not just from my mentors, but from my peers

as well. In my first week at MIT I began working with Frank Cangialosi
and Prateesh Goyal, and we continued this collaboration across multiple
projects: Nimbus [51]2, CCP (§4), and Bundler. I had a wonderful time
working with Hongzi Mao and Parimarjan Negi3 on the Park project. Out-
side the work this thesis describes, I enjoyed my collaborations with Sak-
sham Agarwal, Lloyd Brown, and Margarida Ferreira, from whom I learned
about diverse topics from linear programming to program synthesis.
Outside of my own research, I have benefited enormously from the ad-

vice and feedback of the NMS and PDOS research groups in CSAIL at
MIT. While Hari, Mohammad, and more recently Manya Ghobadi’s NMS
research group has been my official home, Frans Kaashoek, Nickolai Zel-
dovich, and Robert Morris4 welcomed me into PDOS as well. Some of the
many supportive and friendly members of NMS and PDOS (who I have not
already mentioned) have vastly enriched my time at MIT include: Sheila,
Anirudh, Ravi, Frank W., Malte, Amy5, Jon6, Tej, Vikram, Mehrdad, Song-

2At the time of this thesis’s publication, Nimbus has just been conditionally accepted for
publication at SIGCOMM 2022, its 11th submission. I thank and applaud Prateesh,
the lead author, for his continued persistence and refusal to give up on this paper.

3(as well as the quasi-village of authors Hongzi marshalled for the Park project)
4(and more recently, Adam Belay and Henry Corrigan-Gibbs)
5Amy Ousterhout provided feedback and comments on Chapter 2 of this thesis, in
addition to numerous other instances of feedback.

6My desk was next to Jon Gjengset’s in my first year at MIT, and I attribute this as
the reason both CCP and Bertha are written in Rust.

6

tao, Jonathan, Derek7, Ahmed, Anish, Vibhaa, Venkat, Arjun, Inho, Lily,
Josh, Arash, Pouya, Lei, Seo Jin, Ralf, Ariel, Upamanyu, Alex, Pantea,
Will, and many others.
Outside of research, my family – Amma, Appa, Rohan, and Madhuri –

have always been uniquely able to contextualize my work and remind me
of what is truly important, and my friends Sagar Karandikar, Sheevangi
Pathak, Shoumik Palkar, and Paroma Varma have entertained me with
topics from Formula One to whether checking bags on an airplane is a good
idea8.
My partner Deepti, who I met at MIT while we worked on CCP together9,

has supported me on everything from baking me cookies before a paper
deadline to helping me debug my DPDK code. While some have commented
that it might be hard to spend so much time with someone who not only
shares a career but also is in a closely related research area, I have found
that this has only helped us empathize with each other more. I especially
admire Deepti’s ability to rapidly fill our social schedule with meetups as
well as her technical ability to dive deep into a performance optimization.
Finally, thanks to you, for reading this thesis!

7Jonathan and Derek warrant additional recognition as my roommates through most
of my time at MIT.

8It’s not.
9Another thing I thank Hari for: introducing me and Deepti!

7

8

Prior Publication

Parts of this thesis were previously published in part in workshop papers [93,
94] and in conference papers [19,81,93].

9

10

Contents

1 Introduction 13
1.1 Bertha: A Runtime Re-configurable Network Stack 16
1.2 CCP: Restructuring Endpoint Congestion Control 17

2 Background 19
2.1 Evolution of Kernel-Bypass Network Stacks 21

3 Bertha 27
3.1 Introduction . 27
3.2 Related Work . 30
3.3 Programming Model . 32

3.3.1 The Chunnel Abstraction 32
3.3.2 Bertha Programming Model 36
3.3.3 Optimizations . 38

3.4 Runtime Reconfigurability 40
3.4.1 Deciding the Datapath Stack 42

3.5 Implementation . 46
3.5.1 Optimizations . 47
3.5.2 Bertha Structure . 48

3.6 Evaluation . 49
3.6.1 Bertha Overheads . 51
3.6.2 Microservice Communication 52
3.6.3 Publish-Subscribe Message Queues 54
3.6.4 Sharding and Load Balancing 61

3.7 Conclusion . 66

11

Contents

4 CCP 67
4.1 Introduction . 67
4.2 Related Work . 70
4.3 CCP Design Principles . 72

4.3.1 Isolating Algorithms from the Datapath 73
4.3.2 Decoupling Congestion Control from the ACK Clock 74
4.3.3 Supporting per-ACK Logic Within the Datapath . . 76

4.4 Writing Algorithms in CCP 76
4.4.1 Datapath Program Abstractions 78
4.4.2 CCP Algorithm Logic 79
4.4.3 Example: BBR . 81
4.4.4 Case Study: Slow Start 83

4.5 CCP Implementation . 86
4.5.1 Datapath Requirements 86
4.5.2 Safe Execution of Datapath Programs 87
4.5.3 libccp: CCP’s Datapath Component 88
4.5.4 Datapath Implementation 89

4.6 Evaluation . 90
4.6.1 Fidelity . 91
4.6.2 Performance . 95
4.6.3 Low-RTT and High Bandwidth Paths 98

4.7 New Capabilities . 100
4.7.1 Sophisticated Congestion Control Algorithms 101
4.7.2 Velocity of Development 101
4.7.3 Flow Aggregation . 102
4.7.4 Write-Once, Run-Anywhere 104
4.7.5 Park . 105
4.7.6 Bundler . 107

4.8 Conclusion . 121

5 Conclusion 123

12

1 Introduction

At that time it was also hoped that a clarification of humanity’s basic
mysteries – the origin of the Library and of time – might be found. It
is verisimilar that these grave mysteries could be explained in words:
if the language of philosophers is not sufficient, the multiform Library
will have produced the unprecedented language required, with its
vocabularies and grammars. For four centuries now men have
exhausted the hexagons. . . There are official searchers, inquisitors. I
have seen them in the performance of their function: they always
arrive extremely tired from their journeys; they speak of a stairway
without steps which almost killed them; they talk with the librarian
of galleries and stairs; sometimes, they pick up the nearest book and
leaf through it, looking for infamous words. Obviously, no one expects
to discover anything.

Jorge Luis Borges—The Library of Babel

Computing has evolved over the past several decades from a centralized,
monolithic model to the contemporary notion of ubiquitous computing.
From the initial network support for the transfer of scientific data between
large research institutions to the later rise of cloud computing and mobile
computing, the network has become increasingly crucial for the operation
of modern computer applications. Indeed, today’s networked applications
dominate users’ experience of using computers, and the near-ubiquitious
availability of the network has enabled a large-scale shift towards the use of
applications for not only data transfer and messaging, but also conferencing,
entertainment, transportation, productivity, finance, and more.

13

1 Introduction

These modern applications must scale to serve not only a large number of
users, but also users spanning a vast variety of network envrionments. Ap-
plications can communicate with hosts 10µs away (i.e., within a datacenter),
or 600ms away (i.e., via a satellite in geostationary orbit). The available
bandwidth might be tens or hundreds of gigabits per second in a carrier
network or a legacy copper line supporting less than a megabit per second.
Thus, building modern networked applications as well as the infrastructure
that powers them would not be possible without layering, which is closely
related to modularity in software engineering. With layering, each compo-
nent of the broader system is independent and has standardized interfaces
to other components; it should thus be possible to swap in alternate imple-
mentations of a component without changing other modules or relying on
any particular underlying hardware or network environment. Perhaps the
most well known example of layering in practice is the use of various physical
media in the Internet, which spans WiFi, cellular, copper, and fiber links.
Despite the differences in how these technologies achieve their shared core
goal of packet delivery, the layered abstractions the Internet has adopted
enable applications to use the network without special consideration for
each underlying transmission media.
The way this type of layering manifests in networked applications is in the

network stack, the software component that exposes the network’s hardware
resources to the application. Traditionally, this network stack has been
a component of the operating system. While this traditional networking
stack has remained stable for three decades—thanks in part to its use of
layering—a recent trend toward more in-network services and supporting set
of new network hardware has transformed networking stacks. These network
services provide a rich set of features such as load balancers to support
scalability or hardware acceleration of encryption. Unfortunately, the trend

14

toward more featureful networks has not preserved layering, resulting in
increased complexity and unstructured extensions. For example, individual
libraries are tied to certain environments (such as a specific cloud provider’s
network), and incorporating new hardware can involve reimplementing large
parts of the code. Especially today, with applications relying on third-
party libraries and network features, changing an application’s extended
network stack–including not only the operating system’s traditional packet
transport functionality but also modern libraries which facilitate the use
of network services and hardware–is considered daunting enough to cause
“lock-in” to cloud networks and libraries. Indeed, losing modularity means
that work on powerful network services (e.g., in-network hardware offloads
of application features) risks not seeing deployment if using those features
would complicate an application’s development or deployment.
This thesis thus explores the following question:

How should the adoption of modern networking features affect
the way we build networked applications as well as network dat-
apaths?

Ideally, we would re-design the networking stack to regain modularity and
extensibility, so that developers can build correct, efficient, and portable
applications. This thesis thus addresses this need in two ways:

• Bertha (§3) is a new runtime re-configurable way of building network-
ing stacks that allows applications to decide at runtime which imple-
mentations of their desired network features to use.

• Congestion Control Plane (CCP) (§4) is a new way to implement con-
gestion control algorithms, a key datapath component, in a modular
and portable way across different network stacks.

15

1 Introduction

1.1 Bertha: A Runtime Re-configurable

Network Stack

Applications today must use “communication libraries” to bridge the gap
between their code and network services, but this approach has led to both
environment lock-in and low expressivity. Because application developers
must commit to a single library’s implementation of each feature, they can-
not easily move their application to a different environment (say, a dif-
ferent cloud provider’s network) if the library is tied to a runtime envi-
ronment. Further, with libraries that support only a specific set of other
libraries (e.g., an RPC library supporting only certain TLS “backends”), de-
velopers are limited in their choice of implementation for the feature their
application needs. Imagine instead that applications could provide spec-
ifications of network functionality they wanted without committing to a
specific implementation, and then selected at runtime the best implemen-
tation that fit the available network envrionment. Just as compilers today
apply environment-specific optimizations when deciding which instructions
to include, the network stack could select network feature implementations
best for the network environment. In this case, applications would be both
portable and efficient: their high level feature specifications could apply to
any network, but they would still use optimized feature implementations
and thus get good performance.

Bertha, a runtime re-configurable network stack, provides this capability.
Bertha’s core abstraction, called the Chunnel, specifies the use of a network
feature such as load balancing without committing to a specific implemen-
tation. Application developers can easily compose Chunnels into Chunnel
stacks that specify the network functionality they need. Bertha then de-

16

1.2 CCP: Restructuring Endpoint Congestion Control

cides when establishing connections at runtime which implementations of
each network feature to use. This “runtime re-configuration” enables opti-
mizations that are not possible otherwise; e.g., a multicast application can
switch Chunnel implementations depending on the number of connection
participants to provide better performance.
Further, because Bertha makes the Chunnel stack explicit and type-

checkable, domain experts can publish common optimizing transformations
over Chunnel stacks which application developers can then import and use.
For example, a domain expert might have the insight that a microservice
application that uses a container networking interface (CNI) that encrypts
inter-container network traffic by default does not require the additional use
of an application-level encryption library. This domain expert could then
publish a rule-based transformation that developers could apply to their
Chunnel stacks to remove the redundant library.
This thesis demonstrates three applications built with Bertha which demon-

strate its usefulness in making network features and services more accessible:
a microservice application with a virtual network bypass for machine-local
connections, a publish-subscribe queue that dynamically transitions imple-
mentations depending on the number of participants, and a sharded key-
value store that moves the sharding functionality between the client and
server at runtime.

1.2 CCP: Restructuring Endpoint Congestion

Control

Application developers must target a wide range of network environments.
As networks have grown more dynamic, developers have changed their net-

17

1 Introduction

work stacks in two ways. First, they have adopted special-purpose network
stacks based on QUIC, kernel-bypass, or hardware processing. Addition-
ally, developers increasingly employ new congestion control algorithms to
more efficiently and fairly utilize available network bandwidth. Many such
proposals use sophisticated techniques including machine learning or signal
processing that are difficult, if not impossible, to implement in a tightly-
constrained datapath environment where performance is crucial. These
two trends combine to create a problem for both datapath developers and
congestion control researchers: on one hand, incorporating new congestion
control algorithms into a datapath requires knowledge and effort per each
congestion control algorithm, and on the other hand congestion control re-
searchers must expend per-datapath effort to implement their algorithms
so applications can use them.
To address this challenge, Congestion Control Plane (CCP), a system

in which the datapath can measure common congestion signals for ongo-
ing connections and periodically provide this to an off-datapath module
that encapsulates the congestion control algorithm’s implementation. With
CCP, both datapath support for arbitrary congestion control algorithms and
implementing new congestion control algorithms become one-time efforts.
A core component of CCP is its datapath language with which conges-
tion control algorithms can safely specify per-packet logic (e.g., calculating
measurements or triggering state transitions) atop the datapath’s base mea-
surements.

18

2 Background

The adoption of modern networking features, including hardware and new
applications, has caused a divergence in network datapaths that applica-
tions use. The network datapath is the set of libraries and hardware the
application uses to transfer data from its internal logic to and from the net-
work. This chapter discusses the divergence of modern datapaths over time
away from shared functionality provided by the operating system towards
application-specific libraries that bypass the operating system altogether.
Traditionally, access to the network has been mediated by the operating

system. Just as the operating system mediated access to other hardware re-
sources such as memory, storage, and input before the adoption of computer
networks, once computers gained networking features the natural place to
provide access to them was in the operating system. Over time, the oper-
ating system’s network stack evolved to gain more features and support a
wider range of applications. While the abstractions the operating system
has provided have been useful, they have come at high cost: the operating
system’s interrupt-driven structure optimizes for better multiplexing and
efficiency, and sacrifices latency to do so. However, a positive aspect of
the operating system’s network stack has been its standardized API and
structure. For example, when network line rates first began increasing dra-
matically, the Linux kernel was able to make widely-adopted changes to
support a wide range of applications, such as the shift to an initial con-

19

2 Background

gestion window of 10 packets [34]. Once this change was made, a wide
variety of applications could benefit from it, since almost all applications
used Linux as their datapath.
In the past decade, network line rates have continued to scale while the

amount of available compute has stagnated. Further, the servers on which
applications run are more often highly loaded, so the traditional interrupt-
driven approach has not saved much energy. Finally, as applications scaled
to run across many machines, the end-to-end response time to a request
could depend on many component requests internally, and the slowest of
these requests would dominate the end-to-end response time. This problem
was described as the “Attack of the Killer Microseconds” [9]. As a result,
there has been a trend towards a new way of building and running network
applications: running servers “hot” (i.e., at high CPU load), bypassing the
operating system’s network stack in favor of accessing network hardware di-
rectly from user-space, and using spin-polling instead of interrupts to access
hardware. This trend began with proposals such as Netmap [114] and Pack-
etShader [56], and gained broader adoption with Intel’s DPDK [32]. Since
then, a number of research systems have leveraged DPDK, or other kernel-
bypass networking technologies such as RDMA, to provide low-latency net-
work stacks to applications. A few initial efforts specialized to key-value
store applications were MICA [78], FaRM [33], Pilaf [91] and HERD [68].
Beyond these, eRPC [69] showed that these optimizations can generalize
to other RPC-structured applications, and mTCP [63] proposed a scalable
TCP implementation for such applications to use. While high-performance
computing environments have long proposed even more specialized systems
and programming environments which rely even more on hardware sup-
port [27, 59, 119], this thesis instead focuses on how applications running
on general purpose computing hardware can access the network. Therefore,

20

2.1 Evolution of Kernel-Bypass Network Stacks

while recent efforts such as:

• Tonic [6] proposes offloading TCP functions to the NIC.

• TAS [71] streamlines applications’ TCP processing on a dedicated set
of cores.

• Floem [108] provides an API to more easily offload application com-
ponents to SmartNICs.

• NanoPU [61] moves the entire datapath into hardware.

have demonstrated performance benefits, this thesis focuses instead on soft-
ware datapaths.

2.1 Evolution of Kernel-Bypass Network

Stacks

While these new high-performance datapaths were at first tightly integrated
with the application, over time, they gained features to support multiple
applications together, since it is important for deployment that applications
are able to multiplex onto machines. To achieve this goal, it is important to
understand why traditional datapaths could not support the performance
applications have demanded. At a high level, sharing data across cores re-
mains expensive, and it is important for performance to avoid it. At the
same time, scaling datapaths and applications horizontally to use many
cores is important to make use of available resources, so it is often neces-
sary to support cross-core data sharing. For example, Cai et al. [16] explore
potential changes to the Linux kernel network stack to scale it to 100 Gbit/s

21

2 Background

access link bandwidth. They observe that a single core cannot saturate 100
Gbit/s links and suggest scaling certain elements of the stack, including
data copies, to multiple cores. There are three challenges the kernel’s net-
work stack has faced in offering high throughput and low latency for short
message-oriented connections to applications:

• Flow steering. While packets arrive from the network in a sin-
gle place (the NIC), to be accessible to application logic they must1

then move to the CPU. The datapath must therefore make a decision:
which core should it send the packet to? As MegaPipe [57] observed,
this is a significant source of inefficiency in the Linux networking stack.
Ideally, packets corresponding to the same flow would go to the same
core, since it is often possible to isolate memory per-flow to avoid shar-
ing. In this case, flows can be partitioned across cores, and the only
remaining cross-core accesses would be on application state. How-
ever, Linux’s networking stack often cannot perfectly partition flows
across cores, especically struggling with cross-core contention on the
accept() queue of new connections, and requiring cross-core accesses
when send-side and receive-side operations are split across cores.

• User-space to kernel-space transitions. While useful, system
calls (“syscalls”) and the need to transition between kernel and user
address spaces are expensive, and any networking stack the operating
system provides must use syscalls. More recently, efforts in Linux such
as io_uring have attempted to address this by introducing batching
and other optimizations. However, removing syscall overheads has
been a key concern for many new datapaths.

1As above, while some proposals question this necessity by moving parts of the appli-
cation to the NIC, here we consider software datapaths only.

22

2.1 Evolution of Kernel-Bypass Network Stacks

• Extensibility. While having a common operating system datapath
was useful for extensibility (e.g., the change in initial window discussed
above), it was hard to make the datapath more featureful. Modern
application datapaths such as QUIC [76] rely less on features the op-
erating system datapath offers, choosing instead to use userspace im-
plementations of modern networking features like encryption.

Over the past decade, various new proposed datapaths have attempted
to address each of these three concerns. Arrakis explores the implications
to the operating system once the primary datapath for applications moves
into user-space. It argues that the operating system is still valuable as a
control plane to mediate access to network resources. Rather than using
DPDK, it implements a custom network datapath called “Extaris” which
communicates with the device driver directly. It uses interrupts triggered by
hardware doorbells to deliver data to applications, and integrates this with
the scheduler to wake the application if it is not running. Arrakis’s primary
concern is to absolutely minimize the amount of shared state required in
the datapath, and it takes this design decision to an extreme: the datapath
statically partitions the network address space among its applications. This
way, it can take advantage of SR-IOV, which supports mapping NIC queues
to different data structures. With SR-IOV and address space partitioning,
Arrakis can ensure that no datapath state is shared across cores.
More recently, other systems (summarized in Table 2.1) have focused on

minimizing user-space to kernel-space context switches while still allowing
some cross-core data sharing. IX [10], ZygOS [110], Shenango [102], and
Demikernel [141] fall into this category. Where these systems differ is their
approach to horizontal scaling:

• IX focuses on the idea of run-to-completion on batches of packets.

23

2 Background

Datapath Approach
IX Batching, run-to-completion
ZygOS Work stealing via IPI, intermediate queues
Shenango Integrated scheduling for core allocation
Demikernel API design for multiple hardware backends

Table 2.1: Summary of the characteristics of several recently-proposed high-
performance network datapaths.

• ZygOS uses work stealing via inter-processor interrupts (“IPI”) to
distribute requests across cores. ZygOS uses insights from queueing
theory to distribute requests among cores, no matter which core they
originally arrived on. This limits the tail latency that applications
using ZygOS observe.

• Shenango introduced the idea of “CPU efficiency” and datapath-
integrated core allocation. Shenango uses an “iokernel” to distribute
packets to application threads, and manages applications’ core allo-
cation to ensure that applications which need to process packets have
enough cores allocated to do so. If an application is falling behind on
its packet queue, the Shenango/Caladan scheduler will allocate more
cores for that application to prevent the queues from growing. Unlike
ZygOS, which dedicates a fixed number of cores to each application,
Shenango and Caladan vary each application’s core allocation dynam-
ically. Thus, Shenango and Caladan are able to (unlike ZygOS) allo-
cate compute to bulk processing applications when latency-sensitive
applications offer little load, but then quickly reclaim those resources
to maintain low latencies when offered load increases. Caladan [44]
extends this idea of scheduling to other hardware resources (not only
the network).

24

2.1 Evolution of Kernel-Bypass Network Stacks

• Demikernel [141] offers a “library operating system” approach so
that applications can be configured at compile-time to work across
multiple different kernel-bypass network technologies, such as DPDK
or RDMA.

The final category of systems focuses on improving extensibility. For ex-
ample, Snap [83] and its component network stack “Pony Express” focus on
enabling rapid development and deployment of networking features on high-
performance network stacks. Snap scales out individual packet processing
“engines” which encapsulate dataplane operations.
The systems this thesis describes target extensibility and ease of pro-

gramming in a different sense. Modern applications are now faced with a
wide range of datapaths to choose from, each of which provides different
performance characteristics for different application workloads. As a re-
sult, it is unlikely that we will see a re-convergence of applications toward
a standardized API and structure. CCP brings extensibility to a type of
datapath functionality that is useful to have across datapaths, while Bertha
can bridge different datapaths’ APIs and programming models to support
portability, as well as the new capability of runtime reconfigurability.

25

26

3 Bertha

3.1 Introduction

Today’s networked applications rely on a variety of communication libraries,
including fast network I/O libraries (e.g., DPDK, IB verbs, and Shenango),
RPC libraries (e.g., gRPC, Thrift, and Cap’n Proto), TLS and other en-
crypted communication libraries (e.g., OpenSSL, BoringSSL, and nqsb-
TLS [70]), libraries implementing publish-subscribe and other group com-
munication patterns (e.g., ZeroMQ and Gloo), and libraries that use cloud-
provider communication services (e.g., Boto or AzureSDK). Communication
libraries have played a key role in allowing users to benefit from new and
emerging network functionality (enabled by trends including growing net-
work capacity, deployment of programmable network hardware, and com-
plex network software) and in ensuring that new network services can be
deployed and used without requiring changes to the OS kernel or the net-
work stack. However, there is no agreed-upon convention or specification for
the interface (API) a communication library should provide, and in prac-
tice, APIs differ widely between libraries. Even libraries that implement
seemingly similar functionality (e.g., OpenSSL and nqsb-TLS or gRPC and
Thrift) often have very different APIs. These interface differences pose an
impediment to application portability, limit the amount of runtime recon-

27

3 Bertha

figurability an application can offer, and limit composability.

Application portability.. Application developers use accelerated network
I/O libraries, e.g., DPDK, Shenango or IBVerbs, to decrease communica-
tion latency and increase throughput. However, these libraries impose con-
straints on what hardware and network an application can be deployed on
(e.g., requiring a DPDK-compatible NIC or RDMA network). As a result,
applications that use these libraries only work on specific servers and in-
stance types, and must be rewritten (to use a different network I/O library)
to be deployed in other locations. For example, when deploying a Shenango
application on AWS EC2, the user must choose an “Enhanced Network
Adapter”-enabled instance, and the application cannot be deployed on many
popular instance types, including all “T2” instances. As a result, the lack of
common interfaces between these libraries impedes application portability,
requiring the application to be rewritten rather than merely recompiled or
even simply re-run when deployment scenarios change.

Runtime Reconfigurability.. When deciding how and where communi-
cation functionality should be implemented, application developers often
need to trade off functionality, performance, scalability, and efficiency. For
instance, consider a client-server application that requires sharding to serve
all clients. Alice, the application developer, can choose to implement shard-
ing on the client (i.e., the client directly sends requests to the correct shard)
or in a middlebox. These choices provide different benefits and impose dif-
ferent limits: while the client implementation is the most scalable option,
it increases the client’s processing burden with potentially impacts battery
life. Similarly, while the middlebox implementation is less scalable and
potentially adds to Alice’s cost, it minimizes client requirements. The rel-
ative utility of these choices varies with the client and scenario: while the

28

3.1 Introduction

middlebox-based approach is ideal when the client is energy-constrained,
(i.e., running on a cellphone or on a battery-powered laptop), the client
approach is ideal for energy-unconstrained devices (e.g., desktops or wall-
powered laptops). Application developers today must either (i) choose an
option when writing their application, or (b) maintain two mostly indepen-
dent code paths to switch dynamically. In the latter case, the non-uniform
interfaces communication libraries provide limit the ability to share code
between the configurations and enable runtime reconfigurability.

Composable functionality.. Finally, many communication libraries im-
plement their functionality using other libraries. For example, RPC li-
braries, including gRPC and Thrift, use BoringSSL or OpenSSL to open
TLS connections. However, because current libraries offer non-uniform in-
terfaces, the application developer (as opposed to the library developer) has
little or no control over the full set of communication libraries their appli-
cation uses. For example, consider Alice, an application developer who is
worried about bugs in TLS libraries and thus wants to make sure that all
TLS connections established by her application use nqsb-TLS [70], a verified
TLS library. While Alice can easily enforce this constraint for any connec-
tions her application opens directly, she cannot easily reconfigure gRPC
to use nqsb-TLS. Furthermore, because OpenSSL and nqsb-TLS implement
different interfaces, changing gRPC to use this library would require that
Alice rewrite it, a significant endeavour for an application developer. A
common interface would significantly simplify this problem, allowing Alice
to easily swap out OpenSSL and replace it with nqsb-TLS.

In this chapter, we propose Chunnels, a new abstraction that provides
a common interface for accessing communication functionality. We show,
using a variety of examples, that this abstraction addresses the three chal-

29

3 Bertha

lenges we highlighted above without limiting the types of communication
functionality they can offer. Our evaluation (§3.6) shows that the Chunnel
abstraction does not significantly harm application performance. Further-
more, we show that the Chunnel abstraction enables reasoning about the
communication functionality a connection uses and that this information
can be used to automatically optimize application performance.

We have implemented the Chunnel abstraction in a framework called
Bertha. In addition to implementing the Chunnel abstraction, and sev-
eral Chunnels, Bertha also implements a negotiation protocol that enables
runtime reconfigurability. Bertha’s negotiation protocol not only enables
runtime reconfigurability but also allows Bertha applications to detect and
avoid bugs resulting from incompatibility between two communicating end-
points. We have implemented several applications using Bertha, and in this
chapter, we use these applications to evaluate the performance overheads of
Chunnels and to demonstrate the benefits of the Chunnel abstraction.

We begin by reviewing related work before providing details about Chun-
nels and Bertha’s programming model.

3.2 Related Work

Bertha is related to and inspired by prior work in implementing extensibility
and optimization.

Extensibility.. The motivation for Chunnels is similar to those for tech-
niques in operating systems to support the development of new types of
hardware. The Linux kernel’s device driver model [92], syscalls [47], and
networking stack [129,130] have all been targets for proposals targeting ex-
tensibility. Similarly, Click [73] and OVS [131] describe extensible designs

30

3.2 Related Work

for software routers. Unlike these systems, Bertha picks between feature
implementations at runtime. The x-Kernel Protocol Framework [60] previ-
ously proposed an architecture for an extensible network stack. Similar to
Bertha, the x-Kernel stack supported extensions, but these modules imple-
mented protocols (e.g., variants of TCP) rather than Chunnels’ communica-
tion functions. While both systems are extensible, the type of extensibility
differs. Finally, the Microsoft IIS web server library [90] expresses applica-
tions as a combination of high-level application logic and semantic modules.
In databases, Volcano [52] and EXODUS [21] proposed an architecture for
an extensible query execution system to support new functionality such as
query optimizers.

Several efforts have also discussed network APIs and extensions that can
better support complex network devices, including from active network-
ing [125] to Netcalls [120], DOA [133], and Serval [98]. While these ap-
proaches allow users to explicitly run code in network devices, Bertha ex-
poses slices of network functionality that applications are already using in a
structured way. In this vein, Freimuth et al. [43], Eran et al. [37], and Pis-
menny et al. [109] proposed modifications to network stacks which enable
them to take advantage of offloads. While these approaches show promise
and are compatible with Bertha, Bertha’s goal is different: to allow safe
composition of mutually-unaware communication libraries.

Optimization.. The idea of implementing optimization passes as struc-
tured translations is widespread. LLVM optimization passes [79] are im-
plemented as IR-to-IR translations. Kohler et al. [72] adopted a simi-
lar approach to optimizing Click router configurations. OPT++ [67] and
EROC [86] express database optimizations as SQL rewrites. In machine
learning, Tensorflow [49], ONNX [100], TVM [23], and FlexFlow [64] rep-

31

3 Bertha

Chunnel A specific piece of network functionality.
Chunnel stack An application’s specification of the set of Chun-

nels it wants to use.
Datapath stack The set of Chunnels Bertha chooses among those

in the Chunnel stack.
Optimization Pass Rule-based compile-time modification to the

Chunnel stack.

Table 3.1: Glossary of terms used in this chapter.

resent models as semantic DAGs and apply optimizations before mapping
them to available hardware. Finally, in data analytics, Weld [104] enables
cross-library optimizations by representing programs in a common IR.

3.3 Programming Model

We next detail our programming model. First, we describe the Chunnel
abstraction and the programming interface that library developers (repre-
sented by “Chani Chunnelbuild” below) use to implement communication
functionality. We then describe the Bertha programming interface that ap-
plication developers (“Alice Appwright”) use to create connections that use
these Chunnels. Finally, we describe Bertha’s optimization interface that
developers (“Ophelia Optimizestack”) use to develop reusable optimization
passes that allow developers such as Alice to quickly and safely optimize
their applications.

3.3.1 The Chunnel Abstraction

The Chunnel is the core abstraction we propose: it represents a single com-
munication function, i.e., logic that can transform data (e.g., serializing, en-

32

3.3 Programming Model

1 // The Chunnel control path.
2 pub struct AChunnel { /*...*/ }
3 // The ChunnelTransformer<R> trait implements connection

establishment logic.↪→

4 impl<R> ChunnelTransformer<R> for AChunnel
5 where R: ChunnelDatapath</*...*/>> {
6 // Specify that AChunnelDP is the datapath used
7 type Connection = AChunnelDP<R>;
8 // Chunnel composition interface: compose AChunnel with inner.
9 fn connect_wrap(&mut self, inner: R) ->

10 Self::Connection {/*...*/}
11 // Specify relative compat. for runtime reconfig.
12 type Capability = /*..*/;
13 fn capabilities() -> Self::Capability { /*...*/ }
14 }
15 impl AChunnel {
16 // Create a new AChunnel
17 pub fn new(/*...*/) -> AChunnel { /* ... */}
18 }
19 // The AChunnel datapath
20 pub struct AChunnelDP<R>{/*...*/}
21 impl<R> ChunnelDatapath for AChunnelDP<R>
22 where R: /* input data type requirements */ {
23 type Data = /*..*/;
24 fn send(&self, msg: Self::Data) { /*..*/ }
25 fn recv(&self) -> Self::Data { /*..*/ }
26 }

Listing 3.1: The Chunnel interface.

crypting, or compressing data), can decide where to send data (e.g., which
shard or DHT node should receive a request), or replicate data to multiple
endpoints (e.g., to implement publish-subscribe functionality). Application

33

3 Bertha

developers, e.g., Alice, do not directly call into Chunnel code. Instead, as
we explain in §3.3.2, they create connections using a stack of Chunnels, and
send and receive data over these connections. This stack of Chunnels deter-
mines how the application’s data is routed and processed. While we do not
limit the functionality a Chunnel can implement, we assume that Chunnels
are atomic specifiers of functionality. This is in contrast to how applications
use communication libraries such as OpenSSL, where the library offers hun-
dreds of available features; in our model, such a library would offer several
distinct Chunnels.
We had three goals when designing the Chunnel abstraction: (a) A uni-

fied interface: as we argued in §3.1, the lack of unified interfaces is an
impediment to portability, runtime reconfigurability, and composition; (b)
Generality, i.e., capturing most communication functions, including ones
that modify, route or replicate data; and (c) Safe composition, i.e., prevent-
ing application developers from composing incompatible Chunnels. As we
describe next, we meet these goals by carefully designing Bertha’s Chun-
nel programming interface. We implemented Bertha in Rust (§3.5), and
describe our interfaces using Rust code. However, the core ideas and ab-
stractions we describe here are general and can be implemented in other
languages.
Bertha’s Chunnel programming interface (Listing 3.1) requires Chunnel

developers, e.g., Chani, to implement a control interface (ChunnelTransformer,
line 4) and a data interface (ChunnelDatapath, line 20). Bertha uses the
connect_wrap function (line 9) to compose Chunnels in a connection. If
Chunnel A appears above (i.e., is pushed after) Chunnel B in a connection’s
stack, Bertha calls Chunnel A’s connect_wrap function with an inner ar-
gument that is a connection including Chunnel B’s functionality. Chunnel
A’s connect_wrap function will then return a new connection whose data is

34

3.3 Programming Model

first processed with Chunnel A’s functionality and then passed to Chunnel
B. By recursively calling connect_wrap on the Chunnels in the connection’s
Chunnel stack, Bertha creates a connection that incorporates all of the ap-
plication’s required functionality. As we describe below in §3.3.2, the first
inner argument Bertha uses for the Chunnel at the bottom of the stack is a
base connection that provides basic connectivity and is implemented using
an underlying network datapath, e.g., the socket library or Shenango [102].
The control interface’s capabilities aids runtime reconfigurability, and we
thus discuss it in §3.4.
The data interface provides functions that Bertha applications use to

send or receive data over a connection that uses the Chunnel. Along with
specifying how data is processed and routed, this interface is also responsible
(line 22 and 23) for specifying the Chunnel’s input and output data types.
We use this type information to check composition safety at compile time
(by specifying constraints on R on line 22). For example, a Chunnel that
implements sharding needs access to a key that it can use to identify the
correct shard. Such a tunnel can specify an input type such as (String,

Vec<u8>) to indicate that it requires a string key to be passed along with
the data. Bertha and the Rust compiler use this information to ensure that
if an application developer composes another Chunnel (e.g., a serialization
Chunnel) with the sharding Chunnel, then the first Chunnel preserves the
key.
Thus, the Chunnel control and data interfaces enable safe composability.

Further, as we demonstrate later in §3.6, we have successfully implemented
a variety of different communication functions using this interface, thus
demonstrating its generality. We next discuss the Bertha application pro-
gramming model, which provides application programmers with a common
interface for using Chunnels.

35

3 Bertha

RPCChunnel

TLSChunnel

Specified by Alice. Sent during negotiation.

ServerShard

co
nn
ec
t_
wr
ap send

Instantiated when connected

Chunnel Stack Negotiation Information Datapath Stack

Optimization

RPCwithTLSChunnel

RPCwithTLSChunnel

Produced at compile time

Base Connection

ClientShard ServerShard ClientShard

ServerShard Establishedconnect

RPCwithTLSChunnel

ClientShard(c1)

ServerShard(c2)

Figure 3.1: An overview of Bertha’s compile and runtime processing steps.

1 // Alice provides application code.
2 let shrd = ClientShard::new(cfg);
3 let ser = SerializeChunnel::new(idl);
4 let conn = tbm::make_stack!(shrd, ser)
5 .connect(kernel::socket(), addr);

Listing 3.2: The code used by an application developer to create and use a
connection.

3.3.2 Bertha Programming Model

As we described above, application developers like Alice specify a Chunnel
stack when creating a connection, and the behavior of the connection is
determined by that stack’s composition and ordering. We show the code
that Alice writes to construct a connection in Listing 3.2. On lines 2—4
she creates a connection that composes a client sharding and serialization
Chunnel. Observe that Chunnel developers can require users to specify
additional configuration information when creating a Chunnel; in this case,
Alice specifies the sharding configuration (cfg) and how data should be
serialized and deserialized (idl). Next, on line 3, Alice composes these two
Chunnels into a connection with the make_stack! macro. Here, the call
specifies that any data sent using this connection should be first processed
by the sharding Chunnel (shrd) – which can determine where data should be
routed – and then serialized Chunnel (ser). Next, on line 4, Alice connects

36

3.3 Programming Model

to the server (at addr). As a part of this call, Alice specifies that she wants
to use the kernel network stack (kernel::socket) as the base connection;
to use a different networking stack, Alice would simply pass a different base
connection. Beyond the code that we show, Bertha’s application interface
also allows Alice to specify a set of optimization passes (§3.3.3) that she
wants to apply to her connections.

Given this code, Bertha performs the following compile- and run- time
operations to establish a connection (Figure 4.1): First, at compile time,
Bertha tries to apply each of Alice’s specified optimizations to the connec-
tion’s Chunnel stack. As we explain next, optimizations can output new
Chunnel stacks that should be used instead of the stack the application de-
veloper specifies. Subsequently, the compiler generates a binary where all
connections use these optimized Chunnel stacks. At runtime, when the pro-
gram opens a connection (by calling connect), Bertha first uses the specified
network I/O library (the socket API in Listing 3.2) to establish a base con-
nection. Next, the Bertha runtime executes its negotiation protocol (§3.4)
to perform any runtime configuration and to check that both endpoints are
using a compatible set of Chunnels. Next, Bertha makes recursive calls to
ser and shrd’s connect_wrap functions, and passes in the base connection
as input. The application sends and receives data using the connection
returned by this recursive call.

Summary.. The Bertha API and runtime allow us to achieve our compos-
ability, portability, and runtime reconfigurability requirements. Our API
achieves composability by allowing programmers to specify a Chunnel stack
and thus composing functionality from different Chunnels. Chunnel devel-
opers can use a Chunnel’s input and output data types to constrain some
compositions; these constraints are necessary to ensure correctness. To

37

3 Bertha

1 let conn1 = tbm::make_stack!(
2 RpcChunnel::new(/*...*/),
3 TLSChunnel::new(/*...*/));
4 let conn2 = tbm::make_stack!(
5 RpcWithTLSChunnel::new(/*...*/));
6 // Replace occurrences of RpcChunnel with TLSChunnel,
7 // with a better performing RpcWithTLSChunnel
8 #[tbm::Subst(if [*, RpcChunnel, TLSChunnel, *]
9 then [*, RpcWithTLSChunel, *])]

10 pub trait FuseSerializeAndTLS {
11 type Opt;
12 fn fuse_tls_serialize_opt(self) -> Self::Opt;
13 }

Listing 3.3: A Bertha optimization pass.

achieve portability, our API requires programmers to specify the network
I/O library to use to create a base connection, and switching I/O libraries
requires only changing this parameter. In practice, we expect that the code
itself will use conditional compilation to allow users to easily decide which
network I/O library should be used when building an application, and thus
porting applications across deployments would merely require rebuilding
them. Finally, Bertha’s negotiation protocol, which we explain in §3.4,
provides runtime reconfigurability.

3.3.3 Optimizations

Similar to applications built using communication libraries, the perfor-
mance and resource requirements of a Bertha connection depends on its
Chunnel stack. In some cases, two Chunnel stacks that provide identical

38

3.3 Programming Model

features might provide very different performance. For example, consider a
case where Chani, a Chunnel developer, creates a set of Chunnels that ex-
pose functionality from the gRPC library. In this case, Chani might imple-
ment two Chunnels: an RpcChunnel that uses unencrypted connections and
a RpcWithTLSChunnel that leverages gRPC’s built-in TLS support to pro-
vide encrypted connections. Given these Chunnels, imagine our application
developer Alice wants a connection that sends encrypted RPC traffic. Alice
could either use the method conn1 of Listing 3.3 (Line 1) shows (compos-
ing the unencrypted RpcChunnel with a TLSChunnel), or she could use the
method conn2 (Line 4) shows, using a single RpcWithTLSChunnel Chunnel.
While both provide equivalent functionality, conn2 has better performance
because it allows Chani and the gRPC developers to perform cross-layer
optimizations. As a result, application developers like Alice should usu-
ally (though, as we explain below, not always) prefer the approach used by
conn2.
When Alice learns about this optimization, perhaps by reading a blog

post from Ophelia (a Chunnel developer or domain expert), she might want
to apply it to her application. A naive approach for doing so would be
for her to audit her application code, find all instances of Chunnel stacks
composing an RPC Chunnel and a TLS Chunnel, and replace them with the
combined Chunnel. This is a tedious process, and Alice must correctly make
this change for each connection that uses this Chunnel stack. We observe
that Bertha’s interface, which makes a connection’s entire Chunnel stack
explicit and well-structured, provides us with an opportunity to automate
this process.
We show Bertha’s approach to automating optimizations on Listing 3.3,

Line 8. In this case, along with her blog post, Ophelia can publish an
optimization pass. The optimization pass specifies (via the Subst macro,

39

3 Bertha

described in §3.5) that a sequence of Chunnels (in this case RPC followed by
TLS) should be replaced by another sequence (in this case RPC-with-TLS).
In our implementation, optimization passes are Rust procedural macros
and are applied at compile time. These optimizations analyze all Chunnel
stacks in the application, and make substitutions when appropriate. In the
example above, this allows Alice to adopt Ophelia’s optimization by linking
against Ophelia’s optimization pass.

Bertha assumes that optimization are correct; as long as this is the case,
the interface we have described preserves application safety properties. For
example, Alice might require all encrypted connections to use nqsb-TLS.
In our programming model, doing so would require Alice to use a different
Chunnel (e.g., NqsbTLSChunnel) to which the optimization in Listing 3.3
would not apply, thus guaranteeing safety.

However, Bertha cannot guarantee that optimizations improve perfor-
mance, e.g., an application developer might have finer grained control when
using separate RPC and TLS Chunnels (as is done in conn1), and thus in
some cases separate Chunnels might result in better performance than using
a single fused Chunnel. Thus, we can see that while Bertha’s optimization
framework provides an automatic way to correctly apply optimizations to
an application, it requires that application developers analyze the impact
of the optimization on application performance before applying them to the
program.

3.4 Runtime Reconfigurability

Thus far, we have described how Bertha enables portable applications
and allows developers to easily compose different Chunnels. We now look at

40

3.4 Runtime Reconfigurability

1 // Server code to accept connections from clients who can shard
2 // and ones where sharding is implemented in the middlebox.
3 let ser = SerializeChunnel::new(/*...*/);
4 let shrd = select!(MboxShard::new(/*..*/),
5 ClientShard::new(/*..*/));
6 let conn = tbm::make_stack!(ser, shrd).listen(addr);
7 // A client that implements client sharding.
8 let ser = SerializeChunnel::new(/*...*/);
9 let shrd = ClientShard::new(/*...*/);

10 let conn = tbm::make_stack!(ser, shrd).connect(server);

Listing 3.4: Bertha applications use select! to specify options for runtime
reconfigurability.

how Bertha applications can provide runtime reconfigurability. A runtime-
reconfigurable connection in Bertha is one for which the programmer spec-
ifies multiple possible Chunnel stacks, and Bertha chooses between these
Chunnel stacks at runtime. As we explained in §3.1, choosing Chunnel
stacks at runtime allows developers to create connections whose behavior
can vary across clients. Adding support for runtime reconfigurability re-
quires extending the interface described above and adding runtime logic.

Interface Changes.. The interface in §3.3.2 limits programmers to spec-
ifying a single Chunnel-stack per connection. We extend this interface by
providing a select! (Listing 3.4 line 4) macro that the application pro-
grammer can use to specify a choice between Chunnels. On lines 1–5, Alice
creates a connection that can perform shard selection either at a middlebox
(MboxShard) or at the client (ClientShard). The connection conn (line 5)
is thus associated with two different Chunnel stacks, and the runtime nego-
tiation protocol we describe next chooses between them. We also show the

41

3 Bertha

code for a client that uses client sharding on lines 7 – 10; this client’s stack
is identical to that of one without runtime reconfigurability. In general,
Bertha allows all endpoints in a connection (e.g., both the client and the
server in this case) to use select!. In this case, the negotiation protocol
selects a Chunnel stack that all endpoints can use. We refer to the resulting
stack as the datapath stack.

3.4.1 Deciding the Datapath Stack

Bertha’s negotiation protocol aims to select compatible Chunnel stacks
when creating a connection. We say two Chunnels are compatible if data
sent through one can be successfully received by the other and vice-versa.
For example, two serialization Chunnels are compatible if data serialized
by one can be deserialized by the other. Naturally, to check compatibility,
Bertha needs to first collect (in a single endpoint) the set of Chunnel stacks
specified by all endpoints. Thus, negotiating the datapath stack requires
at least some communication. In what follows, we begin by describing how
negotiation works for point-to-point connections that have two endpoints.
We discuss how negotiation works when connecting among multiple end-
points (e.g., when using publish-subscribe Chunnels) after explaining our
point-to-point mechanism.
As Figure 3.2 shows, this communication occurs in three phases. First,

when an endpoint calls connect (in this section, we refer to this endpoint
as the client), Bertha uses the specified network I/O library (§3.3.2) to es-
tablish a base connection to the other endpoint (which we refer to as the
server). Our implementation supports a variety of network I/O libraries,
including the sockets API and Shenango [102]. Note that while Bertha’s ne-
gotiation protocol assumes reliability and ordering, we implement a simple

42

3.4 Runtime Reconfigurability

NegotiationChunnel
capabilites

Collect
implementation
semantics

Selected
connect_wrap
Create
chunnel datapath

Connection
send/send_batch
recv/recv_batch

Send or receive
data.

connect

Select im
plementat

ion.

Negotiation Interface Control Interface Data Interface

Figure 3.2: The Chunnel-implementation state machine: shows the se-
quence in which Bertha calls the interface functions for a single
Chunnel-implementation.

reliability and ordering protocol as part of the negotiation logic. As a result,
we do not require the network I/O library to implement TCP or other re-
liable transport protocols. Once the base connection has been established,
the client uses this connection to send the server a message describing its
Chunnel-stack. On receiving this message, the server checks whether the
client has specified a compatible Chunnel stack to its own. If this check
fails, the server returns an error to the client. Otherwise, the server se-
lects a compatible Chunnel stack and sends the selected Chunnel stack to
the client. The client and server then use this information to initialize a
datapath stack by recursively calling connect_wrap as described in §3.3.1.
The protocol described requires that Bertha be able to check compatibil-

ity between pairs of Chunnels. A tempting approach to doing so would be

43

3 Bertha

to use static analysis to check compatibility between Chunnel implementa-
tions. However, Bertha does not constrain how developers write Chunnels,
and checking compatibility is at least as hard as checking equivalence, and
well known results in logic show that checking equivalence between programs
is undecidable [122]. Therefore, in Bertha, we adopt a simpler approach
where Chunnel developers describe the relative compatibility by providing
an (opaque to Bertha) capability that implements a comparison function
Bertha can use to check compatibility. To implement this mechanism, we
require Chunnel developers to define a new capability type (or reuse one
another Chunnel defines, to indicate compatibility with that Chunnel), and
return an instance of this type when the Chunnel’s capability function
is called. A capability type must be serializable and must implement the
Capability interface, which provides a function Bertha uses to check com-
patibility with another Capability instance. In practice, we found that
in most cases, Chunnel capabilities can be encoded as a set of labels and
that checking compatibility between them requires either checking that the
sets are equal – we refer to this as exact-match below – or that there is a
non-empty intersection between sets – we refer to this as composition.

Our design does not assume that capabilities are standardized. Instead,
we only require that developers writing networked programs that commu-
nicate with each other (e.g., a client and a server) use the same capability
types. This is similar to the current situation, where client developers must
use the same RPC library as used by the server. Furthermore, the objective
of Bertha capabilities is to offer an indication of relative compatibility: if
OpenSSL provides an implementation of a TLS Chunnel, a later implemen-
tation based on nqsb-TLS would reuse the same capability types to indicate
compatibility, and any future implementations could do the same.

44

3.4 Runtime Reconfigurability

Multi-Endpoint Connections.. Bertha supports connections with an
arbitrarily large number of endpoints communicating over a single connec-
tion (e.g., multicast or publish-subscribe). Before designing a negotiation
protocol for this scenario, we need to first determine how runtime recon-
figurability works in a multi-endpoint setting. A point-to-point connection
only exists for as long as the client and server are communicating and does
not need to consider cases where endpoints join after the negotiation step
has finished. However, this is not the case for connections with multiple
endpoints. We can neither assume that all endpoints are known when a
connection is first established nor can we require that all endpoints connect
at the same time. As a result, we cannot use a mechanism where negotiation
runs once when the connection is established and must provide mechanisms
that allow (a) endpoints to recover a connection’s datapath stack even if
they did not participate in the negotiation round, and (b) when necessary,
allow endpoints to trigger another round of negotiation and transition to a
different datapath stack.
We implement a “rendezvous-based” negotiation protocol for the multi-

endpoint case. We implement negotiation using a key-value store that can
be accessed by all endpoints. The key-value store is also responsible for
recording the negotiated datapath stack, thus allowing endpoints to recover
the connection’s datapath stack even when they do not participate in the
negotiation. We require that the key-value store support serializable multi-
key transactions. However, we do not impose other requirements, and we
allow the use of both single-node key-value store (e.g., Redis) and replicated
consensus based store (e.g., etcd) to be used for multi-endpoint negotiation.
While the failure of this key-value store prevents new endpoints from join-
ing a multi-endpoint connection, it has no impact on any endpoint that
has already joined. Furthermore, the negotiation state is not shared across

45

3 Bertha

connections, and thus the key-value store can be easily sharded for scala-
bility. While our use of an external-key value store has an impact on the
time taken to establish a multi-endpoint connection, it is easy to see that
any algorithm for multi-endpoint negotiation requires agreement and would
thus impose similar performance costs.
A peer starts multi-party negotiation by connecting to the key-value store

and proposing a Chunnel implementation stack, using compare-and-swap
(e.g., via a transaction) to check for an existing stack. If this compare-and-
swap operation succeeds, the peer can safely use the Chunnel implementa-
tion stack it proposed. Otherwise, the key-value store returns the Chunnel
implementation stack already in place amongst the existing connection par-
ticipants along with the number of participants in the connection. The
peer then has two choices: use the existing semantics, or attempt to up-
grade them. If the peer chooses to upgrade, it starts a two-phase commit
process to transition its peers to its new preferred stack. Once the two-phase
commit completes, all peers begin using the new stack. If peers refuse the
new semantics, the new peer returns an error.1 If a new endpoint arrives
while an upgrade is in progress, it uses the new semantics and waits for
the upgrade to commit before attempting to commit any upgrades. We
demonstrate this process in §3.6.3.

3.5 Implementation

Next, we describe Bertha’s implementation, starting with some optimiza-
tions that improve application performance. We evaluate our implementa-
tion’s overheads and the impact of these optimizations in §3.6.1.

1Because all peers must accept the transition for it to commit, a faulty peer cannot
force all connection participants to switch stacks.

46

3.5 Implementation

3.5.1 Optimizations

Zero-RTT Negotiation. As we note in §3.4, runtime-reconfigurability
requires agreement, and hence endpoints must communicate before they
can transfer data. The point-to-point protocol described in §3.4 completes
in one RTT. While this RTT can also be simultaneously used by other
protocols, e.g., TLS, that need a setup phase, it does lead to a modest
increase in connection establishment time. To address this, the Bertha
implements includes an additional optimization that allows connections to
be reestablished without additional negotiation, thus reducing overheads for
applications that use many short-lived connections. Our approach to doing
so is inspired by QUIC’s zero-RTT [76] connection establishment.

Zero-RTT negotiation requires the client to remember the datapath stack
used by previous connections and re-use it when reconnecting. We modify
the connect call to do so by having the client send the server a zero-RTT
negotiation message when it knows of a previously negotiated stack and then
instantiating that stack. The client can send data once the stack has been
instantiated. When the server receives a zero-RTT negotiation message, it
checks if the previously negotiated stack can still be used. If so, the server
re-initiates the stack and uses it to process all subsequent data. If, however,
the server cannot use the stack for some reason, it sends the client a message
indicating that negotiation has failed and proposing a new stack. If Bertha
on the client receives such a message indicating negotiation failure, it tears
down the existing stack and instantiates the stack included in the failure
message.

Datapath Batching.. Bertha allows Chunnel writers to optionally pro-
vide functions for sending and receiving batches of data. To do so, Chunnel
writers define send_batch and recv_batch functions as a part of the Chun-

47

3 Bertha

nel datapath. The default implementations of these functions, used when a
Chunnel-implementation does not provide an implementation, simply calls
send (or recv) for each message in the batch. Bertha also provides an ad-
ditional connection type, nagling_connection, that automatically batches
send and recv calls using Nagle’s algorithm. This makes it easier for appli-
cation to benefit from batching, and we evaluate this approach in §3.6.3.

3.5.2 Bertha Structure

As we stated previously, we have implemented Bertha in Rust. While our
design uses several Rust features, including traits and procedural macros,
we believe our ideas are more general and can be implemented using similar
features and metaprogramming support in other languages. For example, we
believe C++ templates, Racket macros, and Go’s generate tool would allow
us to implement all of the features we have described in those languages.
We implement Chunnel stacks with a structure similar to Lisp’s cons,

and we represent choices between Chunnel implementations using a Select

struct that contains both branches. Since it represents multiple options, the
Select type does not implement connect_wrap; instead, Bertha picks one
of the Select’s options (using the negotiation process) and replaces it in
the Chunnel stack with an enum variant representing the choice. The enum
delegates the connect_wrap implementation to the choice it represents.
To expose negotiation functionality to applications, Bertha needs only

a method call for the two-endpoint case. Because multi-endpoint negoti-
ation requires maintaining agreement, Bertha provides a datapath agent
that listens for updates concurrently with any calls to send and recv on the
application’s connection and dynamically transitions the connection stack
appropriately.

48

3.6 Evaluation

Bertha provides a Subst procedural macro that helps developers imple-
ment stack passes using a mini-DSL. To use this macro, developers define
a Rust trait with a generic output type. Then, developers specify a substi-
tution over arbitrary Chunnel stacks. Bertha interprets this mini-DSL to
generate code that implements the trait for various Chunnel stack types.
Application developers can then use the optimizations by calling the trait
method on their Chunnel stack. If the stack doesn’t match the optimization
pattern, the optimization method will be a no-op. Using the Subst macro
is optional; developers can implement their stack pass trait manually over
Chunnel stack types.

We implement Bertha’s core libraries (and tests) in ~5, 300 lines of Rust,
including the three interfaces described above (together ~1, 300 lines) and
the negotiation protocol (~4, 000 lines). We further implemented Chun-
nels for the applications described in §3.6 in ~3, 000 lines of code, includ-
ing serialization, reliability, and ordering and compatibility wrappers that
allow Bertha applications to use UDP sockets, Unix-domain sockets, and
Shenango [102] as base connections. Finally, we implement Chunnels spe-
cific to our application case studies, which we describe in §3.6.

3.6 Evaluation

Next, we evaluate the performance, generality, and utility of Bertha. We
first show that Bertha is not a throughput bottleneck and measure the
time Bertha takes to establish a connection. We then demonstrate both
the generality of the Chunnel abstraction and Bertha’s utility by discussing
three applications we have implemented using Bertha. We implemented a
variety of Chunnels to enable these applications, including a microservice

49

3 Bertha

Figure 3.3: Bertha achieves the performance the underlying datapath pro-
vides. This microbenchmark used a 10Gbit/s NIC. “Raw” rep-
resents that datapath’s performance without Bertha. Columns
show p50 and errorbars show p25 and p75.

Chunnel that allows colocated microservices to communicate using a fast
path (§3.6.2), several publish-subscribe Chunnels that expose third-party
publish-subscribe services (§3.6.3), and several Chunnels that implement
sharding and load-balancing across applications. With these examples, we
show that Bertha enables portability, simplifies composition, and enables
runtime reconfigurability.

Unless otherwise stated, we ran all evaluation on servers running Linux
kernel 5.4.0. All servers were on the same rack and used 4-core 2.80GHz
Intel Xeon E5-1410 CPUs and Mellanox CX-3 Pro NICs with OFED driver
version 5.0.1, and were connected with 10 Gbit/s links.

50

3.6 Evaluation

3.6.1 Bertha Overheads

Throughput.. We measure Bertha’s impact on network throughput us-
ing a file transfer application. In this application, the client establishes a
connection to the server and sends the server a short request. The server
sends a 50MB file in response, and we measure “goodput:” the time taken
to receive this file. We implement this application using a custom DPDK
datapath (“Raw DPDK”), Shenango (“Raw Shenango”)2, and Bertha. We
run the Bertha version of the application with three network I/O libraries:
Shenango, DPDK, and the Linux’s socket interface (“Kernel”). The Bertha
application transfers data over a connection whose Chunnel stack is com-
prised of a single no-op Chunnel. Our no-op Chunnel neither changes the
data being sent (or received) nor alters routing, thus allowing us to directly
measure Bertha’s overheads.
We show the throughput achieved across these configurations in Fig-

ure 3.3. Bertha has negligible impact on throughput, and this overhead
does not increase as a function of the number of concurrent connections.
This benchmark also demonstrates Bertha’s support for application porta-
bility: changing the Bertha application to use Linux sockets instead of
DPDK required changing a single line of code. Adopting Shenango for this
benchmark required more extensive changes, because Shenango’s runtime
must be aware of any blocking calls applications make. These changes lie
outside of the communication features that we consider in our work.

Connection Establishment.. Next, we evaluate how long it takes for
Bertha to establish a connection. We use a point-to-point echo application
and measure time taken to create a connection, send a short 8-Byte message,
and receive the echoed response. In Figure 3.4 we show the distribution of

2We used Caladan [44], an updated version of Shenango.

51

3 Bertha

Figure 3.4: Time to establish a connection and send and receive one mes-
sage. “Baseline” uses Linux UDP. Boxplots in this paper show
(p5, p25, p50, p75, p95).

response times across 1, 000 trials when using the full negotiation protocol
(1-RTT) and when using the 0-RTT negotiation protocol described in §3.5.
We compare this to a “Baseline” implementation using UDP sockets. While
both negotiation protocols increase the time taken to establish a connection,
the increase with 0-RTT negotiation is modest. Finally, we also measure
the cost of our rendezvous-based multi-endpoint negotiation protocol (“Ren-
dezvous”). While it adds significantly to connection establishment time, as
we show later it is a small fraction of pub-sub services’ latency (§3.6.3).

3.6.2 Microservice Communication

Slim [144] and similar efforts have shown that there are significant per-
formance benefits to using a network overlay that handles traffic between
microservices co-located on the same server different than it does for traf-
fic going between servers. Slim showed that traffic between colocated mi-
croservices can be isolated without the cost of the network stack and vir-
tual switch. We implemented a MaybeLocalChunnel that provides Slim-
like functionality in Bertha. When establishing a connection, this Chun-

52

3.6 Evaluation

nel consults a machine-local directory to check if the other endpoint is co-
located on the same server. If so, MaybeLocalChunnel uses a Unix-domain
socket (and otherwise a normal connection). Our implementation of the
MaybeLocalChunnel comprises ~500 lines of Rust code, and the machine-
local directory is another ~300 lines.
We also implemented a TLS Chunnel to support microservices, because

most microservice applications use TLS to authenticate endpoints and en-
crypt traffic. Our TLSChunnel uses Ghostunnel [123], a TLS proxy, for
this purpose, and is written in ~700 lines. Note that Ghostunnel runs as
an external process, which is spawned when the first connection using this
Chunnel is created, adding to connection establishment latency for this con-
nection. Subsequent connections reuse this process, and as a result those
connections do not incur additional latency.
Finally, we observe that applications use TLS to protect against net-

work attacks. However, these attacks are not a concern when sending
data between microservices colocated on the same server. We thus im-
plement a FusedTLSMaybeLocalChunnel that uses TLS when sending data
between microservices on different servers, and uses MaybeLocalChunnel’s
shared-memory channel without encryption for colocated microservice. This
Chunnel comprises of 250 lines of Rust code, and simply calls into the
above Chunnels. We also wrote an optimization pass (§3.3.3) in 2 lines in
the Subst mini-DSL to replace occurrences of TLSChunnel composed with
MaybeLocalChunnel with this fused Chunnel.
We used the three Chunnels and optimization pass to implement a sim-

ple echo application. Both the client and the server in this case are colo-
cated on the same server and run in Docker containers. In Figure 3.5, we
show request latency by issuing 20, 000 requests across 200 connections.
We show latency figures for three cases: (a) “Bertha,” where we compose

53

3 Bertha

Figure 3.5: When a microservice is local, we can avoid the overhead of TLS
using the fastpath Chunnel (10 requests per connection).

a MaybeLocalChunnel with a TLSChunnel and use an optimization pass to
replace these with a FusedTLSMaybeLocalChunnel; (b) “UDP,” where we
use neither a MaybeLocalChunnel nor a TLSChunnel; and (c) “TLS,” where
we compose a MaybeLocalChunnel with a TLSChunnel, but do not use the
optimization pass. The ‘TBM’ case, which uses both Chunnels and the op-
timization pass, shows the lowest request latency. ‘TLS,’ which also uses
both Chunnels but omits the optimization, shows the worst, demonstrating
the benefit of Bertha’s optimization passes. ‘TLS”s high tail latency is due
to it spawning Ghostunnel when establishing a connection. Finally, the dif-
ference in request latency between ‘UDP’ and ‘TBM’ shows the benefit of
a Slim-like approach. Switching between these two settings requires chang-
ing a single line of code, thus demonstrating the benefit of Bertha’s unified
interfaces.

3.6.3 Publish-Subscribe Message Queues

Many cloud applications use message queues and publish-subscribe services
for elastic scaling. These services allow replicated servers to pull messages
when they have available processing capacity3, simplifying load-balancing

3Implementations can also support ‘push-based’ delivery, where servers are notified
when messages are available.

54

3.6 Evaluation

Provider Ordering Multicast
AWS SQS Set at queue cre-

ation
Compose with
SNS

GCP PubSub Set at subscrip-
tion creation

Per-
Subscription

Azure Queues Unsupported Unsupported
Kafka Always ordered Per-

Subscription

Table 3.2: Example of semantic possibilities with message queues. We de-
scribe the change required to transition from a connection with
best effort ordering and message-spraying delivery to one with
ordering or multicast semantics.

and task distribution.

Publish-subscribe services are available from most cloud providers, in-
cluding Amazon (AWS SQS [4]), Google (GCP PubSub [48]), and Azure
(Azure Storage Queues [88] and Service Bus [89]4). Kafka [75] and other
open source projects also implement these services. However, as we show in
Table 3.2, each implementation offers different ordering and delivery seman-
tics. In terms of ordering, AWS SQS and GCP PubSub support in-order
message delivery, Azure Storage Queues does not guarantee any message or-
dering, and Kafka always guarantees message ordering. Similarly, in terms
of delivery semantics (the Multicast column in Table 3.2) GCP PubSub and
Kafka allow application developers to create topics or subscriptions where
multiple receivers can receive the same message, but AWS SQS requires
the use of a separate service (AWS SNS [3]), and Azure Queues does not
natively support multicast. Overall, when using these services application

4At present, Azure Service Bus does not provide a Rust API, and thus we do not
consider further it in this section.

55

3 Bertha

developers need to both use provider specific APIs and account for these se-
mantic differences. These API and semantic differences impede portability
across cloud providers.
Furthermore, prices and pricing schemes for these services can vary sig-

nificantly. For example, as of early 2022 AWS SQS provides 1 million free
64KB messages per month and charges $0.40 per million ($0.50 per mil-
lion) for subsequent unordered (ordered) messages. Google’s GCP PubSub
provides up to 10GB of free messages per month with a minimum message
billing size of 1, 000 bytes, and then $40/TB. Azure Storage Queues [88]
charges $0.004/10, 000 messages. Thus, deployment costs can vary depend-
ing on the service and workload. The lack of portability can thus result in
higher application deployment costs.
To demonstrate that the Chunnel abstraction can improve application

portability, we created a Chunnel for each of the four services (AWS SQS,
GCP PubSub, Azure Storage Queues and Kafka) listed above. These Chun-
nels took between 250 and 400 lines of code each. Of course, in the general
case, Chunnels (whose logic runs on a single machine) cannot abstract away
semantic differences between services. However, in the special case where
there is a single receiver, we can have the receiver implement ordering se-
mantics. To demonstrate this we also implemented an ordering Chunnel in
~400 lines of Rust, and an at-most-once delivery Chunnel in ~200 lines of
Rust.
We evaluated the Chunnels described above by creating an application

that composes them with a simple serialization Chunnel implemented in
200 lines using Bincode [103] and a Base64 encoder. We use this appli-
cation to measure message latencies across these services in 13 scenarios
(Figure 3.6). In these evaluations, we configured both a virtual machine
and the cloud provider’s message service in one of the cloud provider’s dat-

56

3.6 Evaluation

Figure 3.6: Message queue providers have different performance character-
istics and semantics. “Ordered:n” means ordering among n
groups.

57

3 Bertha

1 tbm::make_stack!(SerializeBase64,
2 tbm::select!(HostOrderedSqs, ServiceOrderedSqs,
3 tbm::policy::NumPeersLessThanEq(2) => Left)))
4 .connect(topic);

Listing 3.5: A multi-endpoint Chunnel stack that specifies when to switch
between two Chunnel options.

acenters. We installed Kafka on a local server, and ran the client on another
server in the same rack. We measured latency by configuring the applica-
tion to send and receive 100 messages using the publish-subscribe service
with message interarrival time of 75ms, and split messages evenly across
ordering groups when using multiple groups. Figure 3.6 shows latencies
for AWS SQS, Azure Storage Queues and Kafka. We do not show GCP
PubSub latencies, because we ran into a known issue where GCP has high
latencies when using a small number of messages [15]. We similarly believe
that Kafka’s high-tail latencies are due to our use of its default configura-
tion. The latencies we measured for the Bertha application were identical
to what we measured when using an application that directly called into
the cloud provider libraries. Furthermore, changing between these 14 sce-
narios required changes to a single line of code: we merely had to change
Chunnel types or configuration. This experiment demonstrates two things:
first, using Bertha to access cloud services does not carry a latency penalty,
and second, Bertha’s unified interface improves application portability.

Multi-Endpoint Runtime Re-configuration.. While developing these
Chunnels, we observed that Bertha’s ordering Chunnel provides lower la-
tency than AWS SQS and GCP PubSub’s ordered subscriptions. However,
as we mentioned previously, Bertha’s ordering Chunnel can only be used

58

3.6 Evaluation

Figure 3.7: Runtime reconfiguration allows switching datapath stacks. Note
that the first few requests after the second receiver arrives still
use the original stack while the transition commits.

safely when a single receiver is active. We took advantage of Bertha’s run-
time reconfigurability (§3.4) to implement an application that can switch be-
tween receiver-side ordering and service ordering depending on the number
of receivers. We show a snippet of this application in Listing 3.5. Note that
this snippet uses a more general version of the select! macro we described
in §3.4: it accepts a predicate (tbm::policy::NumPeersLessThanEq(2))
that breaks ties between compatible Chunnel stacks, and (in this case)
prefers receiver-side ordering. In Figure 3.7, we send 100 messages with
an inter-arrival time of 25ms, then start a second receiver and send another
100 messages. We use 5 ordering groups and AWS SQS. We can see that
the application uses receive-side ordering and observes lower message la-
tencies when a single receiver is present, and then safely transitions to the
higher-latency but safer service ordering when the second receiver arrives.

Batching.. Many cloud-provider publish-subscribe services allow develop-

59

3 Bertha

(a) Message latency.

(b) Costs.

Figure 3.8: Automatic batching optimization (“Opt.”) can reduce API costs
with comparable latency. The Opt. configuration Nagles mes-
sages, so shorter message interarrivals allow more cost savings
for sends.

ers to send batches of messages using a single call, but charge per-request.
As a result, batching can significantly reduce the cost of using these ser-
vices; e.g., AWS SQS allows up to 10 messages per call, so batching SQS
API calls can reduce costs up to 10x.

As we described in §3.5.1, Bertha provides a nagling_connection that
automatically batches an application’s send and receive calls. We evaluate
this in Figure 3.8 by measuring (across 10 runs) the number of API calls
needed to transmit and receive 100 unordered SQS messages and the corre-

60

3.6 Evaluation

Figure 3.9: Client sharding scales better with lower latency, and can take
advantage of more concurrency at the client without burdening
the server implementation with more connections.

sponding message latencies. “None” shows the baseline no-batching version:
it achieves the lowest latency, but issues one send, one receive, and one
delete API call per message. On the other extreme, “App Modification”
uses the fewest requests because the application developer groups messages
into batches and the application uses exactly 11 send API calls. The “Opti-
mization” configuration, uses a nagling_connection and achieves the same
receive-side API cost as the “App Modification” configuration, but because
it relies on “Nagling” it has a larger number of send batches. The number of
batches used in this case depends on the workload: with 10ms interarrival
times, nagling uses 82 calls, but uses 92 when the interarrival time increases
to 20ms. Both “App Modification” and “Optimization” achieve latencies
within 2x of the baseline case: 77 % and 52 % higher, respectively.

3.6.4 Sharding and Load Balancing

Another common component of modern applications is application-aware,
or “L7” load balancing, e.g., Amazon’s “Application Load Balancing” (ALB),

61

3 Bertha

Figure 3.10: Here, shards are on separate machines and the sharder forwards
requests over the network. Applying an optimization that skips
serialization and deserialization helps server-sharding to scale
better.

Figure 3.11: Performance across Bertha datapaths with and without nego-
tiation and Chunnels. “Shenango-A” runs Shenango’s runtime
in a thread and communicates with it via a memory channel,
while “Shenango-R” re-implements Bertha’s features within the
Shenango runtime. “Baseline,” also implemented inside the
Shenango runtime, removes Chunnels in addition to negoti-
ation.

62

3.6 Evaluation

Azure’s “Application Gateway”, or GCP’s “Internal HTTP(S) Load Balanc-
ing.” These services can shard HTTP(s) requests based on pre-configured
rules on URL parameters, and can auto-scale services. Other application
aware load balancers can read more complex formats, including specialized
formats used by key-value stores like Memcached and Redis.
To show how load balancing and sharding work with Bertha, we imple-

mented a server and client sharding Chunnel designed for use with a key-
value store. Both Chunnels determine the shard where a request should
be routed by hashing the first 4 bytes of the key (using the FNV algo-
rithm [42]) and modding it by the number of shards. The server sharding
Chunnel, which is implemented in ~450 lines of Rust, reads the request and
determines the shard on the server side. Once it has determined the shard
it forwards the request to a backend either using a channel (if the backend
is on the same server) or via UDP if the shard is remote. The client shard-
ing Chunnel determines the shard before forwarding the request, and then
sends the request to the appropriate shard.
We evaluate the Chunnels in this section using a simple key-value store

that we built using a publicly available concurrent hashmap implementation
that uses binned locking (dashmap [1]). Our evaluations are run on a cluster
with 6 shards, all of which run as threads on the same server. We evaluate
performance using the YCSB benchmark: we first run a warm up phase and
loading phase that issues 12, 000 PUT requests, then we use 5 clients (each
running on its own server) to issue requests according to the “Workload B”
request distribution. Note that YCSB messages are 132B in size. Each
client issues 277, 000 requests. We control the request rate to meet our
offered load, and each client splits requests across 4 connections. To ensure
that the offered load remains consistent, we terminate the experiment after
any connection sends its last request.

63

3 Bertha

Runtime Reconfiguration for Client Sharding. As we discussed pre-
viously in §3.4, Bertha’s runtime reconfiguarability lets applications choose
between client side and server side sharding when establishing a connection.
In Figure 3.9 we show that client sharding: (a) reduces server overheads and
thus achieves higher throughput: when using server side sharding, the key-
value store cannot keep up with request rates of 75 or 100 kOps/second,
but can do so with client side sharding; (b) lowers response latency; and (c)
allows clients to scale to more connections. Additionally, the negotiation
process ensures that client sharding is safe, because the sharding capabil-
ities used encode the policy, and thus we know that the client and server
agree on the sharding policy.

Optimizations Bertha Enables. We observe that a connection’s datap-
ath stack specifies the wire format of the data both the client is sending and
that the shard is expecting to receive, and we know these will match be-
cause of negotiation. Therefore, we implement an optimization that replaces
ShardChunnel with ShardChunnelRaw, which takes a generic parameter cor-
responding to the key’s byte offset in the packet buffer, evaluates the shard
function at that offset, and forwards to the correct shard without need-
ing to deserialize the buffer. Importantly, without Bertha this stack pass
would be unsafe; using negotiation ties ShardChunnelRaw’s byte offset to
SerializeChunnel’s implementation and so ensures that using a fixed byte
offset is correct. We can see the impact in Figure 3.10. Here, we use 2 re-
mote machines in the same rack as shards and disable client-side sharding.
This configuration is similar to that of Amazon ALB, Azure Application
Gateway, or GCP HTTP Load Balancing, though the approach we describe
can generalize to any wire format with fixed, deterministic byte offsets for
fields. For example, rather than specializing to an individual protocol (as

64

3.6 Evaluation

is common [46,65,74,127]), implementations on accelerator hardware could
use this approach for generality.

Portability and Bertha Overheads.. Finally, we use the key-value store
to demonstrate Bertha’s ability to switch between network I/O libraries and
to evaluate the cost of Bertha’s abstractions. In Figure 3.11, we show the
application’s performance with and without Bertha’s features on four under-
lying datapath configurations. Overall, Bertha achieves comparable perfor-
mance as the underlying datapath it uses. Note, that each of the datapath
offers different features, and imposes different deployment requirements. In
all cases, Bertha inherits these features and requirements. Importantly,
switching between these datapaths requires changing only a single-line of
code, making it easier for developers and users to switch between these
approaches.

As we discussed earlier, porting an application to Shenango can require
extensive changes in the runtime API. We explored two approaches to port-
ing the key-value store to Shenango: (a) “Shenango-A”, where the applica-
tion communicates with the Shenango runtime over a memory channel, and
thus switching to the Shenango-A datapath remains a one-line change, sim-
ilar to Linux or DPDK; and (b) “Shenango-R”, where we re-implemented
name’s features and all Chunnels needed for this application within the
Shenango runtime, using its concurrency APIs. We can see from Fig-
ure 3.11 that the “Shenango-R” application can achieve lower latencies than
Shenango-A or DPDK, but at the cost of portability.

We also re-implemented the same application in two configurations with-
out Bertha’s features. “No Negotiation” configurations remove negotiation
from the application (thus removing the ability for runtime reconfiguration),
and “Baseline” further removes Chunnels, in-lining the entire application.

65

3 Bertha

In all these cases, removing Bertha features resulted in only minor perfor-
mance gains; i.e., Bertha applications achieve performance determined by
their underlying datapath rather than Bertha itself.

3.7 Conclusion

We have described Bertha, a runtime-reconfigurable networking stack that
allows developers to compose libraries implementing connection function-
ality into individual connections their applications can use. Bertha’s key
features are the Chunnel abstraction, which enables composability, porta-
bility, and optimizations, and negotiation, which further enables runtime
reconfiguration.

66

4 CCP

4.1 Introduction

At its core, a congestion control protocol determines when each segment of
data must be sent. Because a natural place to make this decision is within
the transport layer, congestion control today is tightly woven into kernel
TCP software and runs independently for each TCP connection.

This design has three shortcomings. First, many modern proposals use
techniques such as Bayesian forecasts (Sprout [136]), offline or online learn-
ing (Remy [135], PCC [30], PCC-Vivace [31], Indigo [139]), or signal pro-
cessing with Fourier transforms (Nimbus [51]) that are difficult, if not im-
possible, to implement in a kernel lacking useful libraries for the required
calculations. For example, computing the cube root function in Linux’s Cu-
bic implementation requires using a table lookup and a Newton-Raphson
iteration instead of a simple function call. Moreover, to meet tight perfor-
mance constraints, in-kernel congestion control methods have largely been
restricted to simple window or rate arithmetic.

Second, the kernel TCP stack is but one example of a datapath, the
term we use for any module that provides data transmission and recep-
tion interfaces between higher-layer applications and lower-layer network
hardware. Recently, new datapaths have emerged, including user-space

67

4 CCP

protocols atop UDP (e.g., QUIC [76], WebRTC [66], Mosh [134]), kernel-
bypass methods (e.g., mTCP/DPDK [32,63,114]), RDMA [143], multi-path
TCP (MPTCP) [137], and specialized Network Interface Cards (“Smart-
NICs” [96]). This trend suggests that future applications will use datapaths
different from traditional kernel-supported TCP connections.

New datapaths offer limited choices for congestion control because imple-
menting these algorithms correctly takes considerable time and effort. We
believe this significantly hinders experimentation and innovation both in the
datapaths and the congestion control algorithms running over them. For
instance, the set of available algorithms in mTCP [63], a TCP implemen-
tation on DPDK, is limited to a variant of Reno. QUIC, despite Google’s
imposing engineering resources, does not have implementations of several
algorithms that have existed in the Linux kernel for many years. We expect
this situation to worsen with the emergence of new hardware accelerators
and programmable network interface cards (NICs) because high-speed hard-
ware designers tend to forego programming convenience for performance.

Third, tying congestion control tightly to the datapath makes it hard to
provide new capabilities, such as aggregating congestion information across
flows that share common bottlenecks, as proposed in the Congestion Man-
ager project [8].

If, instead, the datapath encapsulated the information available to it
about congestion signals like packet round-trip times (RTT), receptions,
losses, ECN, etc., and periodically provided this information to an off-
datapath module, then congestion control algorithms could run in the con-
text of that module. By exposing an analogous interface to control trans-
mission parameters such as the window size, pacing rate, and transmission
pattern, the datapath could transmit data according to the policies specified

68

4.1 Introduction

by the off-datapath congestion control algorithm. Of course, the datapath
must be modified to expose such an interface, but this effort needs to be
undertaken only once for each datapath.
We use the term Congestion Control Plane (CCP) to refer to this off-

datapath module. Running congestion control in the CCP offers the follow-
ing benefits:

1. Write-once, run-anywhere: One can write a congestion control al-
gorithm once and run it on any datapath that supports the specified
interface. We describe several algorithms running on three datap-
aths: the Linux kernel, mTCP/DPDK, and QUIC, and show algo-
rithms running for the first time on certain datapaths (e.g., Cubic on
mTCP/DPDK and Copa on QUIC).

2. Higher pace of development: With good abstractions, a conges-
tion control designer can focus on the algorithmic essentials without
worrying about the details and data structures of the datapath. The
resulting code is easier to read and maintain. In our implementation,
congestion control algorithms in CCP are written in Rust or Python
and run in user space.

3. New capabilities: CCP makes it easier to provide new capabilities,
such as aggregate control of multiple flows [8], and algorithms that
require sophisticated computation (e.g., signal processing, machine
learning, etc.) running in user-space programming environments.

This paper’s contributions include:

• An event-driven language to specify congestion control algorithms.
Algorithm developers specify congestion control behavior using com-
binations of events and conditions, such as the receipt of an ACK

69

4 CCP

or a loss event, along with corresponding handlers to perform simple
computations directly in the datapath (e.g., increment the window)
or defer complex logic to a user-space component. We show how to
implement several recently proposed algorithms and also congestion-
manager aggregation.

• A specification of datapath responsibilities. These include congestion
signals that a datapath should maintain (Table 4.2), as well as a simple
framework to execute directives from a CCP program. This design
enables “write-once, run-anywhere” protocols.

• An evaluation of the fidelity of CCP relative to in-kernel implemen-
tations under a variety of link conditions. Our CCP implementation
matches the performance of Linux kernel implementations at only a
small overhead (5% higher CPU utilization in the worst case).

4.2 Related Work

The Congestion Manager (CM [8]) proposed a kernel module to separate
congestion control from individual flows. CM provides an API for flows to
govern their transmissions and a plan to aggregate congestion information
across flows believed to share a bottleneck. The CM API requires a flow to
inform the CM whenever it wanted to send data; at some point in the fu-
ture, the CM will issue a callback to the flow granting it permission to send
a specified amount of data. Unlike CCP, the CM architecture does not sup-
port non-kernel datapaths or allow custom congestion control algorithms.
Further, the performance of CM is sub-optimal if the CM and the datapath
are in different address spaces, since each permission grant (typically on

70

4.2 Related Work

each new ACK) requires a context switch which reduces throughput and
increases latency. We show in §4.7.3 that CCP can support the aggregate
congestion control capabilities of the CM architecture.
eBPF [35] allows developers to define programs that can be safely exe-

cuted in the Linux kernel. These programs can be compiled just-in-time
(JIT) and attached to kernel functions for debugging. TCP BPF [13] is an
extension to eBPF that allows matching on flow metadata (i.e., 4-tuple) to
customize TCP connection settings, such as the TCP buffer size or SYN
RTO. In the kernel datapath, it may be possible for CCP to use the JIT
features of eBPF to gather measurements, but not (yet) to set rates and
congestion windows. Exploring the possibility of TCP control entrypoints
for eBPF, and an implementation of a Linux kernel datapath for CCP based
on such control, is left for future work.
Linux includes a pluggable TCP API [25], which exposes various statistics

for every connection, including delay, rates averaged over the past RTT,
ECN information, timeouts, and packet loss. icTCP [53] is a modified
TCP stack in the Linux kernel that allows user-space programs to modify
specific TCP-related variables, such as the congestion window, slow start
threshold, receive window size, and retransmission timeout. QUIC [76]
also offers pluggable congestion control. We use these Linux and QUIC
pluggable APIs to implement datapath support for CCP. CCP’s API draws
from them, but emphasizes asynchronous control over datapaths.
HotCocoa [5] introduces a domain specific language to allow developers

to compile congestion control algorithms directly into programmable NICs
to increase efficiency in packet processing. In contrast, CCP allows devel-
opers to write algorithms in user-space with the full benefit of libraries and
conveniences such as floating point operations (e.g., for Fourier transforms).
Structured Streams (SST [41]) proposed a datapath that prevents head-

71

4 CCP

of-line blocking among packets of applications by managing the transport
streams between a given pair of hosts and applying a hereditary structure on
the streams. Unlike SST, CCP does not manage the contents of the under-
lying transport stream: CCP enables deciding when a packet is transmitted,
not which packet. We view SST and CCP as complementary architectures
which can be combined to provide composable benefits.

Finally, there is a wide range of previous literature on moving kernel
functionality into user-space. Arrakis [107] is system that facilitates kernel-
bypass networking for applications via SR-IOV. IX [10] is a dataplane op-
erating system that separates the management functionality of the kernel
from packet processing. Alpine [36] moves all of TCP and IP into user-space.
Whereas these systems use hardware virtualization to allow applications to
have finer grained control over their networking resources, CCP exposes
only congestion control information to user-space. Moreover, CCP is also
agnostic to the datapath; datapaths for library operating systems could be
CCP datapaths.

4.3 CCP Design Principles

To enable rich new congestion control algorithms on datapaths, CCP must
provide a low-barrier programming environment and access to libraries (e.g.,
for optimization, machine learning, etc.). Further, new algorithms should
also achieve high performance running at tens of Gbit/s per connection with
small packet delays in the datapath.

72

4.3 CCP Design Principles

4.3.1 Isolating Algorithms from the Datapath

Should congestion control algorithms run in the same address space as the
datapath? There are conflicting factors to consider:

Safety. Supporting experimentation with algorithms and the possibility
of including user-space code means that programs implementing congestion
control algorithms should be considered untrusted. If algorithms and the
datapath are in the same address space, bugs in algorithm or library code
could cause datapath crashes or create vulnerabilities leading to privilege
escalations in the kernel datapath.

Flexibility. Placing congestion control functionality outside the datapath
provides more flexibility. For example, we anticipate future use cases of
the CCP architecture where a congestion control algorithm may run on a
machine different from the sender, enabling control policies across groups
of hosts.

Performance. On the other hand, congestion control algorithms can access
the datapath’s congestion measurements with low delays and high through-
put if the two reside in the same address space.

Our design restructures congestion control algorithms into two compo-
nents in separate address spaces: an off-datapath CCP agent and a compo-
nent that executes in the datapath itself. The CCP agent provides a flexi-
ble execution environment in user space for congestion control algorithms,
by receiving congestion signals from the datapath and invoking the algo-
rithm code on these signals. Algorithm developers have full access to the
user-space programming environment, including tools and libraries. The
datapath component is responsible for processing feedback (e.g., TCP or
QUIC ACKs, packet delays, etc.) from the network and the receiver, and

73

4 CCP

Implementation Reporting Interval Mean Throughput
Kernel - 43 Gbit/s
CCP Per ACK 29 Gbit/s
CCP Per 10 ms 41 Gbit/s

Table 4.1: Single-flow throughput for different reporting intervals between
the Linux kernel and CCP user-space, compared to kernel TCP
throughput. Per-ACK feedback (0 µs interval) reduces through-
put by 32% while using a 10 ms reporting interval achieves almost
identical throughput to the kernel. Results as the number of flows
increases are in §4.6.2.

providing congestion signals to the algorithms. Further, the datapath com-
ponent provides interfaces for algorithms to set congestion windows and
pacing rates.
An alternative design would be to run both the algorithm and the dat-

apath in the same address space, but with fault isolation techniques [22,
38, 82, 111, 126, 132, 140]. However, this approach comes with significantly
increased CPU utilization (e.g., 2× [22, 82, 111, 126, 132], resulting from
tracing and run-time checks), a restrictive development environment [140],
or changes to development tools such as the compiler [38, 132]. These per-
formance and usability impediments, in our view, significantly diminish the
benefits of running congestion control algorithms and the datapath in one
address space.

4.3.2 Decoupling Congestion Control from the ACK

Clock

Typical congestion control implementations in the Linux kernel are cou-
pled to the so-called “ACK-clock,” i.e., algorithm functionality is invoked

74

4.3 CCP Design Principles

upon receiving a packet acknowledgment in the networking stack. In con-
trast, with CCP, algorithms operate on summaries of network observations
obtained over multiple measurements gathered in the datapath. Users pro-
gram the datapath to gather these summaries using a safe domain-specific
language (§4.3.3).

This decoupling of algorithm logic from the ACK clock provides two ben-
efits.

First, users can develop congestion control algorithms free from the strict
time restrictions rooted in the inter-arrival time of packet acknowledgments—
a useful feature, especially at high link rates. Hence, it is possible to build al-
gorithms that perform complex computations and yet achieve high through-
put.

Second, the ability to provide congestion feedback less frequently than
per-ACK can significantly reduce the overhead of datapath-CCP commu-
nication. Table 4.1 shows that for a single saturating iperf connection
over a loopback interface, Linux kernel TCP on a server machine with four
2.8-Ghz cores achieves 45 Gbit/s running Reno. In comparison, per-ACK
reporting from the kernel to the CCP agent achieves only 68% of the ker-
nel’s throughput. By increasing the time between reports sent to the slow
path to 10 ms (see the “per 10 ms” row), our implementation of Reno in
CCP achieves close to the kernel’s throughput.

Given that CCP algorithms operate over measurements supplied only
infrequently, a key question is how best to summarize congestion signals
within the datapath so algorithms can achieve high fidelity compared to
a traditional in-datapath implementation. Indeed, in §4.6.1 we show that
reporting on an RTT time-scale does not affect the fidelity of CCP algorithm
implementations relative to traditional in-kernel implementations.

75

4 CCP

4.3.3 Supporting per-ACK Logic Within the Datapath

How must the datapath provide congestion feedback to algorithms running
in the CCP agent? Ideally, a datapath should supply congestion signals
to algorithms with suitable granularity (e.g., averaged over an RTT, rather
than per ACK), at configurable time intervals (e.g., a few times every RTT)
and during critical events (e.g., packet losses). With CCP, users can specify
such datapath behavior using a domain-specific language (§4.4). At a high
level, CCP-compatible datapaths expose a number of congestion signals,
over which users can write fold functions to summarize network observa-
tions for algorithms. It is also possible to perform control actions such as
reporting summarized measurements to CCP or setting a flow’s pacing rate.
Datapath programs can trigger fold functions and control actions when cer-
tain conditions hold, e.g., an ACK is received or a timer elapses. Users
can thus control how to partition the logic of the algorithm between these
two components according to their performance and flexibility requirements
(§4.4.4).

4.4 Writing Algorithms in CCP

Figure 4.1 shows the control loop of a congestion control algorithm in CCP.
Users implement two callback handlers (onCreate() and onReport()) in
the CCP agent and one or more datapath programs. When a new flow is
created, CCP’s datapath component invokes the onCreate() handler. The
implementation of onCreate() must install an initial datapath program for
that flow. Datapath programs could compute summaries over per-packet
congestion signals (such as a minimum packet delay or a moving average
of packet delivery rate) and report summaries or high priority conditions

76

4.4 Writing Algorithms in CCP

NIC

Application

TX RX

Datapath

C
W

N
D

R

ATE

Feedback
Control

Algorithms

CWND
RATE

All Pkts

CCP Agent

OnReport()

libccp

Fold
Function

Control
Pattern

Datapath Program

OnCreate()

1

2

3

4

5

Figure 4.1: Congestion control algorithms in CCP are distinct from the ap-
plication and datapath. Users specify an onCreate() handler
which CCP calls when a new flow begins. In this handler, al-
gorithms install (1) a datapath program. This datapath pro-
gram aggregates incoming measurements (2) using user-defined
fold functions and occasionally sends reports (3) to CCP, which
calls the onReport() handler. The onReport() handler can up-
date (4) the datapath program, which uses its defined control
patterns to enforce (5) a congestion window or pacing rate.

77

4 CCP

1 (def (Report (volatile acked 0) (volatile lost 0)))
2 (when true
3 (:= Report.acked (+ Report.acked Ack.bytes_acked))
4 (:= Report.lost (+ Report.lost Ack.lost_pkts_sample))
5 (fallthrough))
6 (when (> Report.lost 0) (report))

Listing 4.1: A simple datapath program to count bytes acked and report on
losses.

(such as loss) to the CCP agent. On a report, the CCP agent invokes
the onReport() handler which contains the bulk of the logic of the conges-
tion control algorithm. The onReport() function computes and installs the
flow’s congestion window or sending rate using the signals from the datap-
ath report. It may also replace the datapath program entirely with different
logic.

4.4.1 Datapath Program Abstractions

CCP’s datapath programs are written in a simple domain specific language.
These programs exist in order to provide a per ACK execution environment,
where algorithms can define and update variables per ACK and perform
control actions, in response to the values of these variables.

Listing 4.1 shows a program that counts the cumulative number of packets
acknowledged and lost and reports these counters immediately upon a loss.
The first statement of the program allows users to define custom variables.
The “Report” block signifies that these variables should be included in the
report message sent to the CCP agent. The volatile marker means that
these variables should be reset to their initial values, 0, after every report
to the CCP agent.

78

4.4 Writing Algorithms in CCP

Following the def block, fold functions provide custom summaries over
primitive congestion signals. Datapath programs have read access to these
primitive congestion signals (prefixed with “Ack.” or “Flow.” to specify
their measurement period), which are exposed by the datapath on every
incoming packet. Such signals include the round trip delay sample, the
number of bytes the datapath believes have been dropped by the network,
and the delivery rates of packets. Table 4.2 enumerates the primitive con-
gestion signals we support. Users can write simple mathematical summaries
over these primitive signals, as shown in Lines 3-4 of Listing 4.1.
Finally, algorithms can perform control actions in response to conditions

defined by the fold function variables, e.g., updating a rate or cwnd or
reporting the user defined variables to the CCP agent. As shown in List-
ing 4.1, the program defines a series of when clauses, and performs the
following block only if the condition was evaluated to true.
CCP’s datapath program language provides an event driven programming

model. The condition (when true...) signifies that the body should be
evaluated on every packet. This is where the program might calculate fold
function summaries. The when clauses have access to all the fold function
variables, as well as timing related counters. The report instruction causes
the datapath to transmit the acked and lost counters to the CCP agent.
By default, the program evaluates until one when clause evaluates to true;
the (fallthrough) instruction at the end of the first when indicates that
subsequent when clauses should also be evaluated.

4.4.2 CCP Algorithm Logic

The onReport() handler provides a way to implement congestion control
actions in user-space in reaction to reports from the datapath. For example,

79

4 CCP

Primitive congestion signals
Signal Definition
Ack.bytes_acked,
Ack.packets_acked

In-order acknowledged

Ack.bytes_misordered,
Ack.packets_misordered

Out-of-order acknowledged

Ack.ecn_bytes, Ack.ecn_-
packets

ECN-marked

Ack.lost_pkts_sample Number of lost packets
Ack.now Datapath time (e.g., Linux jiffies)
Flow.was_timeout Did a timeout occur?
Flow.rtt_sample_us A recent sample RTT
Flow.rate_outgoing Outgoing sending rate
Flow.rate_incoming Receiver-side receiving rate
Flow.bytes_in_flight,
Flow.packets_in_flight

Sent but not yet acknowledged

Operators
Class Operations
Arithmetic +, -, *, /
Assignment :=
Comparison ==, <, >, or, and
Conditionals If (branching)

Variable Scopes
Scope Description
Ack Signals measured per packet
Flow Signals measured per connection
Timer Multi-resolution timer that can be zeroed by

a call to reset

Table 4.2: Datapath language: congestion signals, operators, and scopes.

80

4.4 Writing Algorithms in CCP

a simple additive-increase multiplicative-decrease (AIMD) algorithm could
be implemented in Python1 using the acked and lost bytes reported every
round-trip time from the datapath:

def onReport(self, report):

if report["lost"] > 0:

self.cwnd = self.cwnd / 2

else:

acked = report["acked"]

self.cwnd = self.cwnd + acked*MSS/self.cwnd

self.update("cwnd", self.cwnd/MSS)

We have implemented complex functionality within congestion control
algorithms by leveraging slow-path logic, for example, a congestion control
algorithm that uses Fast Fourier Transform (FFT) operations [51].
If the round-trip time of the network is a few milliseconds or more, it is

possible to locate congestion control algorithm logic entirely within CCP
with high fidelity relative to a per-packet update algorithm, as we show in
§4.6.1.

4.4.3 Example: BBR

As a more involved example, we show below how various components of TCP
BBR [20] are implemented using the CCP API. A BBR sender estimates
the rate of packets delivered to the receiver, and sets its sending rate to the
maximum delivered rate (over a sliding time window), which is believed to
be the rate of the bottleneck link between the sender and the receiver.
This filter over the received rate is expressed simply in a fold function:

(when true

(:= minrtt (min minrtt Ack.rtt_sample_us))

1Our CCP implementation is in Rust and exposes Python bindings (§4.5).

81

4 CCP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60
 0

 5

 10

 15

 20

 25

 30

 35

T
h

ro
u

g
h

p
u

t
(M

b
it
/s

)

P
e

r-
P

k
t

Q
u

e
u

e
in

g
 D

e
la

y
 (

m
s
)

Time (seconds)

Figure 4.2: Our CCP implementation of BBR used for a bulk transfer over
a 48 Mbit/s link with a 20 ms RTT and 2 BDPs of buffering.
The bandwidth probe phase can be seen in the oscillation of the
queueing delay, and the RTT probe phase can be seen in the
periodic dips in throughput.

(:= curr_btl_est (max curr_btl_est Flow.rate_incoming))

(fallthrough))

To determine whether a connection can send more than its current send-
ing rate, BBR probes for additional available bandwidth by temporarily
increasing its sending rate by a factor (1.25×) of its current sending rate.
To drain a queue that may have been created in the process, it also reduces
its rate by a reciprocal factor (0.75×) before starting to send at the new
estimated bottleneck link rate.
The following excerpt expresses this sending pattern (for simplicity, we

show only 2 transitions):

(when (== pulseState 0)

(:= Rate (* 1.25 curr_btl_est))

(:= pulseState 1))

(when (&& (== pulseState 1)

(> Timer.micros Flow.rtt_sample_us))

(:= Rate (* 0.75 curr_btl_est))

82

4.4 Writing Algorithms in CCP

(:= pulseState 2))

Here, the variable pulseState denotes the state of the sender’s bandwidth
probing: probing with high sending rate (0) and draining queues with low
sending rate (1). Each when clause represents a pulse state transition and
is conditioned on the resettable timer Timer.micros. Upon the transition,
the handler sets the Rate and advances pulseState. After the last phase
of the pulse, the handler would reset the timer and pulseState to restart
the sending pattern (not shown).
Figure 4.2 shows the impact of BBR’s bandwidth probing2 on the achieved

goodput and queueing delays when a single flow runs over a 48 Mbit/s
bottleneck link with a 20 ms round trip propagation delay. BBR’s windowed
min/max operations and the RTT probing phase (showing steep rate dips
every 10 seconds) are implemented in the slow path’s onReport() handler
by installing a new fold function. CCP’s split programming model enables
this flexible partitioning of functionality.

4.4.4 Case Study: Slow Start

Because algorithms no longer make decisions upon every ACK, CCP changes
the way in which developers should think about congestion control, and
correspondingly provides multiple implementation choices. As a result, new
issues arise about where to place algorithm functionality. We discuss the
involved trade-offs with an illustrative example: slow start.
Slow start is a widely used congestion control module in which a con-

nection probes for bandwidth by multiplicatively increasing its congestion
window (cwnd) every RTT. Most implementations increment cwnd per ACK,

2We only implement BBR’s PROBE_BW and PROBE_RTT. Our implementation is
here: github.com/ccp-project/bbr.

83

github.com/ccp-project/bbr

4 CCP

fn create(...) {
datapath.install("
(def (Report (volatile acked 0) (volatile loss 0)))
(when true
(:= Report.acked (+ Report.acked Ack.bytes_acked)))

(when (> Micros Flow.rtt_sample_us) (report) (reset))");
}
fn onReport(...) {
if report.get_field("Report.loss") == 0 {
let acked = report.get_field("Report.acked");
self.cwnd += acked;
datapath.update_field(&[("Cwnd", self.cwnd)]);

} else { /* exit slow start */ }
}

Listing 4.2: A CCP implementation of slow start.

either by the number of bytes acknowledged in the ACK, or by 1 MSS. One
way to implement slow start is to retain the logic entirely in CCP, and
measure the size of the required window update from datapath reports. We
show an example in Listing 4.2. This implementation strategy is semanti-
cally closest in behavior to native datapath implementations.

For some workloads this approach may prove problematic, depending on
the parameters of the algorithm. If the reporting period defined is large,
then infrequent slow start updates can cause connections to lose throughput.
Figure 4.3 demonstrates that, on a 48 Mbps, 100 ms RTT link, different
implementations of slow start exhibit differing window updates relative to
the Linux kernel baseline. A version with a 1-RTT reporting period lags
behind the native datapath implementation. It is also possible to implement
slow start within the datapath either by using congestion window increase
(Listing 4.3), or by using rate based control:

(when (> Timer.Micros Flow.rtt_sample_us)

84

4.4 Writing Algorithms in CCP

0

200

400

600

0.0 0.2 0.4 0.6

Time (s)

C
on

ge
st

io
n

W
in

do
w

 (
P

kt
s)

CCP, 100ms Report

CCP, In−Fold

CCP, Rate−Based

In−Datapath

Figure 4.3: Different implementations of slow start have different window
update characteristics. The control pattern implementation is
rate-based, so we show the congestion window corresponding to
the achieved throughput over each RTT.

(:= Rate (* Rate 2))

(:= Timer.Micros 0))

Take-away. As outlined in §4.3, the programming model of datapath pro-
grams is deliberately limited. First, we envision that in the future, CCP will
support low-level hardware datapaths—the simpler the fold function exe-
cution environment is, the easier these hardware implementations will be.
Second, algorithms able to make complex decisions on longer time-scales
will naturally do so to preserve cycles for the application and datapath; as
a result, complex logic inside the fold function may not be desirable.
More broadly, developers may choose among various points in the al-

gorithm design space. On one extreme, algorithms may be implemented
almost entirely in CCP, using the fold function as a simple measurement
query language. On the other extreme, CCP algorithms may merely spec-
ify transitions between in-datapath fold functions implementing the primary

85

4 CCP

fn create(...) {
datapath.install("
(def (volatile Report.loss 0))
(when true (:= Cwnd (+ Cwnd Ack.bytes_acked)))
(when (> Ack.lost_pkts_sample 0) (report))");

}
fn onReport(...) { /* exit slow start */ }

Listing 4.3: A within-fold implementation of slow start. Note that CCP
algorithm code is not invoked at all until the connection expe-
riences its first loss.

control logic of the algorithm. Ultimately, users are able to choose the al-
gorithm implementation best suited to their congestion control logic and
application needs.

4.5 CCP Implementation

We implement a user-space CCP agent in Rust, called Portus3, which im-
plements functionality common across independent congestion control al-
gorithm implementations, including a compiler for the datapath language
and a serialization library for IPC communication. CCP congestion control
algorithms are hence implemented in Rust; we additionally expose bindings
in Python. The remainder of this section will discuss datapath support for
CCP.

4.5.1 Datapath Requirements

A CCP-compatible datapath must accurately enforce the congestion control
algorithm specified by the user-space CCP module. Once a datapath imple-

3github.com/ccp-project/portus

86

4.5 CCP Implementation

ments support for CCP, it automatically enables all CCP algorithms. An
implementation of the CCP datapath must perform the following functions:

• The datapath should communicate with a user-space CCP agent using
an IPC mechanism. The datapath multiplexes reports from multiple
connections onto the single persistent IPC connection to the slow path.
It must also perform the proper serialization for all messages received
and sent.

• The datapath should execute the user-provided domain-specific pro-
gram on the arrival of every acknowledgment or a timeout in a safe
manner. Datapath programs (§4.4) may include simple computations
to summarize per-packet congestion signals (Table 4.2) and enforce
congestion windows and rates.

4.5.2 Safe Execution of Datapath Programs

Datapaths are responsible for safely executing the program sent from the
user-space CCP module. While CCP will compile the instructions and
check for mundane errors (e.g., use of undefined variables) before installa-
tion, it is the datapath’s responsibility to ensure safe interpretation of the
instructions. For example, datapaths should prevent divide by zero errors
when calculating user defined variables and guarantee that programs cannot
overwrite the congestion primitives. However, algorithms are allowed to set
arbitrary congestion windows or rates, in the same way that any application
can congest the network using UDP sockets.
Thankfully, this task is straightforward as datapath programs are limited

in functionality: programs may not enter loops, perform floating point oper-
ations, define functions or data structures, allocate memory, or use pointers.

87

4 CCP

Rather, programs are strictly a way to express arithmetic computations over
a limited set of primitives, define when and how to set congestion windows
and pacing rates, and report measurements.

4.5.3 libccp: CCP’s Datapath Component

We have implemented a library, libccp4, that provides a reference imple-
mentation of CCP’s datapath component, in order to simplify CCP data-
path development. libccp is lightweight execution loop for datapath pro-
grams and message serialization. While we considered using eBPF [35]
or TCP BPF [13] as the execution loop, including our own makes libccp

portable to datapaths outside the Linux kernel; the execution loop runs the
same code in all three datapaths we implemented.
To use libccp, the datapath must provide callbacks to functions that:

(1) set the window and rate, (2) provide a notion of time, and (3) send
an IPC message to CCP. Upon reading a message from CCP, the datapath
calls ccp_recv_msg(), which automatically de-multiplexes the message for
the correct flow. After updating congestion signals, the datapath can call
ccp_invoke() to run the datapath program, which may update variable
calculations, set windows or rates, and send report summaries to CCP. It is
the responsibility of the datapath to ensure that it correctly computes and
provides the congestion signals in Table 4.2.
The more signals a datapath can measure, the more algorithms that dat-

apath can support. For example, CCP can only support DCTCP [2] or
ABC [50] on datapaths that provide ECN support; CCP will not run al-
gorithms on datapaths lacking support for that algorithm’s requisite prim-
itives.

4github.com/ccp-project/libccp

88

github.com/ccp-project/libccp

4.5 CCP Implementation

4.5.4 Datapath Implementation

We use libccp to implement CCP support in three software datapaths: the
Linux kernel5; mTCP, a DPDK-based datapath; and Google’s QUIC. For
both the Linux kernel and QUIC datapaths, we leveraged their respective
pluggable congestion control interfaces, which provide callbacks upon packet
acknowledgements and timeouts, where the libccp program interpreter
can be invoked. The kernel module implements the communication channel
to CCP using either Netlink sockets or a custom character device, while
mTCP and QUIC use Unix domain sockets. We additionally modified the
QUIC source code to support multiplexing CCP flows on one persistent IPC
connection and to expose the function callbacks required by the libccp API.

Unlike QUIC and the Linux kernel, mTCP only implements Reno and
does not explicitly expose a congestion control interface for new algorithms.
In order to achieve behavior consistent with other datapaths, we also imple-
mented SACK and packet pacing; these features were previously lacking.

The definition of congestion signal primitives, IPC, and window and rate
enforcement mechanisms is the only datapath-specific work needed to sup-
port CCP. As an example, Table 4.3 details the mapping of kernel variables
to CCP primitives. Most of these definitions are straightforward; the CCP
API merely requires datapaths to expose variables they are already mea-
suring. All other necessary functionality, most notably interpreting and
running the datapath programs, is shared amongst software datapaths via
libccp (§4.5.3).

5Our kernel module is built on Linux 4.14: github.com/ccp-project/ccp-kernel

89

4 CCP

Signal Definition
Ack.bytes_acked,
Ack.packets_acked

Delta(tcp_sock.bytes_acked)

Ack.bytes_misordered,
Ack.packets_misordered

Delta(tcp_sock.sacked_out)

Ack.ecn_bytes, Ack.ecn_-
packets

in_ack_event: CA_ACK_ECE

Ack.lost_pkts_sample rate_sample.losses
Ack.now getnstimeofday()
Flow.was_timeout set_state: TCP_CA_Loss
Flow.rtt_sample_us rate_sample.rtt_us
Flow.rate_outgoing rate_sample.delivered / Delta(tcp_-

sock.first_tx_mstamp)
Flow.rate_incoming rate_sample.delivered / Delta(tcp_-

sock.tcp_mstamp)
Flow.bytes_in_flight,
Flow.packets_in_flight

tcp_packets_in_flight(tcp_sock)

Table 4.3: Definition of CCP primitives in terms of the tcp_sock and
rate_sample structures, for the Linux kernel datapath.

4.6 Evaluation

We evaluated the following aspects of CCP:

Fidelity (§4.6.1). Do algorithms implemented in CCP behave similarly
to algorithms implemented within the datapath? Using the Linux kernel
datapath as a case study, we explore both achieved throughput and delay
for persistently backlogged connections as well as achieved flow completion
time for dynamic workloads.

Overhead of datapath communication (§4.6.2). How expensive is
communication between CCP and the datapath?

High bandwidth, low RTT (§4.6.3). We use ns-2 simulations to demon-
strate that CCP’s method of taking congestion control actions periodically
can perform well even in ultra-low RTT environments.

90

4.6 Evaluation

Unless otherwise specified, we evaluated our implementation of CCP using
Linux 4.14.0 on a machine with four 2.8 Ghz cores and 64 GB memory.

4.6.1 Fidelity

The Linux kernel is the most mature datapath we consider. Therefore, we
present an in-depth exploration of congestion control outcomes comparing
CCP and native-kernel implementations of two widely used congestion con-
trol algorithms: NewReno [58] and Cubic [54]. As an illustrative example,
Figure 4.4 shows one such comparison of congestion window update deci-
sions over time on an emulated 96 Mbit/s fixed-rate Mahimahi [95] link
with a 20 ms RTT. We expect and indeed observe minor deviations as the
connection progresses and small timing differences between the two imple-
mentations cause the window to differ, but overall, not only does CCP’s
implementation of Cubic exhibit a window update consistent with a cubic
increase function, but its updates closely match the kernel implementation.
For the remainder of this subsection, we compare the performance of

CCP and kernel implementations of NewReno and Cubic on three metrics
(throughput and delay in §4.6.1, and FCT in §4.6.1) and three scenarios,
all using Mahimahi.

Throughput and Delay.

We study the following scenarios:

Fixed-rate link (“fixed”). A 20 ms RTT link with a fixed 96 Mbit/s rate
and 1 BDP of buffering.

Cellular link (“cell”). A 20 ms RTT variable-rate link with a 100-packet
buffer based on a Verizon LTE bandwidth trace [95].

91

4 CCP

200

400

600

0 20 40 60

Time (s)

C
on

ge
st

io
n

W
in

do
w

 (
P

kt
s)

CCP Kernel

Figure 4.4: Cubic in CCP matches Cubic in Linux TCP.

Stochastic drops (“drop”). A 20 ms RTT link with a fixed 96 Mbit/s
rate, but with 0.01% stochastic loss and an unlimited buffer. To ensure
that both tested algorithms encountered exactly the same conditions, we
modified Mahimahi to use a fixed random seed when deciding whether to
drop a packet.

These three scenarios represent a variety of environments congestion con-
trol algorithms encounter in practice, from predictable to mobile to bufferbloated
paths. We calculate, per-RTT over twenty 1-minute experiments, the achieved
throughput (4.5a) and delay (4.5b), and show the ensuing distributions in
Figure 4.5.

Overall, both distributions are close, suggesting that CCP’s implementa-
tions make the same congestion control decisions as the kernel.

Flow Completion Time.

To measure flow completion times (FCT), we use a flow size distribution
compiled from CAIDA Internet traces [17] in a similar setting to the “fixed”

92

4.6 Evaluation

cell drop fixed

cubic
reno

0 50 100 150 200 0 50 100 150 2000 10 20 30

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Throughput (Mbps)

C
D

F
CCP Kernel

fixed drop

(a) Achieved throughput over 1 RTT periods. Note the different scales on the x-axes
for the three scenarios.

cell drop fixed

cubic
reno

0 2500 5000 7500 10000 0 20 40 60 0 500 1000 1500

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Delay (ms)

C
D

F

dropfixed

(b) Achieved queueing delay over 1 RTT periods. Note the varying scales on the
x-axes for the three scenarios.

Figure 4.5: Comparison of achieved throughput over 20 ms periods. The
achieved throughput distributions are nearly identical across the
three scenarios and two congestion control algorithms evaluated.

scenario above; we use a 100 ms RTT and a 192 Mbit/s link. To generate
traffic, we use a traffic generator to sample flow sizes from the distribution
and send flows of that size according to a Poisson arrival process to a single
client behind the emulated Mahimahi link. We generate flows with 50%
average link load, and generate 100, 000 flows to the client from 50 sending
servers using persistent connections to the client. We used Reno as the con-
gestion control algorithm in both cases. To ensure that the kernel-native
congestion control ran under the same conditions as the CCP implementa-

93

4 CCP

0.00

0.25

0.50

0.75

1.00

0 250000 500000 750000 1000000

Flow Completion Time (us)

C
D

F

CCP

Kernel

(a) 0-10KB Flows

0.00

0.25

0.50

0.75

1.00

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

Flow Completion Time (us)

C
D

F

CCP

Kernel

(b) 10KB-1MB Flows

0.00

0.25

0.50

0.75

1.00

0e+00 1e+07 2e+07 3e+07 4e+07 5e+07

Flow Completion Time (us)

C
D

F

CCP

Kernel

(c) 1MB+ Flows

Figure 4.6: CDF comparisons of flow completion times. Note the differing
x-axes.

94

4.6 Evaluation

tion, we disabled the slow-start-after-idle option.
Of the 100, 000 flows we sampled from the CAIDA workload, 97, 606 were

10 KB or less, comprising 487 MB, while the 95 flows greater than 1 MB in
size accounted for 907 MB out of the workload’s total of 1.7 GB.
Across all flow sizes, CCP achieves FCTs 0.02% lower than the kernel in

the median, 3% higher in the 75th percentile, and 30% higher in the 95th

percentile.

Small flows. Flows less than 10 KB in size, shown in Figure 4.6a, are
essentially unaffected by congestion control. These flows, the vast majority
of flows in the system, complete before either CCP algorithms or kernel-
native algorithms make any significant decisions about them.

Medium flows. Flows between 10 KB and 1 MB in size, in Figure 4.6b
achieve 7% lower FCT in the median with CCP because CCP slightly penal-
izes long flows due to its slightly longer update period, freeing up bandwidth
for medium size flows to complete.

Large flows. CCP penalizes some flows larger than 1 MB in size compared
to the native-kernel implementation: 22%worse in the median (Figure 4.6c).

4.6.2 Performance

Measurement Staleness.

Because our CCP implementation, Portus, runs in a different address space
than datapath code, there is some delay between the datapath gathering
a report and algorithm code acting upon the report. In the worst case, a
severely delayed measurement could cause an algorithm to make an erro-
neous window update.
Fortunately, as Figure 4.7 shows, this overhead is small. We calculate

95

4 CCP

0.00

0.25

0.50

0.75

1.00

0 10 20 30

RTT (us)

C
D

F

Chardev

Netlink

Unix

Blocking

Nonblocking

Figure 4.7: Minimum time required to send information to the datapath
and receive a response using different IPC mechanisms.

an IPC RTT by sending a time-stamped message to a kernel module (or
user-space process in the case of a Unix-domain socket). The receiver then
immediately echoes the message, and we measure the elapsed time at the
originating process.

We test three IPC mechanisms: Unix-domain sockets [113], a convenient
and popular IPC mechanism used for communication between user-space
processes; Netlink sockets [117], a Linux-specific IPC socket used for com-
munication between the kernel and user-space; and a custom kernel module,
which implements a message queue that can be accessed (in both user-space
and kernel-space) via a character device.

In all cases, the 95th percentile latency is less than 30 µs.

96

4.6 Evaluation

cubic reno

1 2 4 8 16 32 64 1 2 4 8 16 32 64
0

25

50

75

100

Flows

T
hr

ou
gh

pu
t (

G
bp

s)

CCP (10ms)

CCP (Ack)

Kernel

(a) Achieved localhost throughput as the number of flows increases

cubic reno

1 2 4 8 16 32 64 1 2 4 8 16 32 64
0.0

2.5

5.0

7.5

Flows

C
P

U
 U

til
iz

at
io

n
(%

)

ccp

kernel

(b) CPU Utilization when saturating a 10 Gbit/s link.

Figure 4.8: CCP can handle many concurrent flows without significant CPU
overhead. Error bars show standard deviation.

Scalability.

CCP naturally has nonzero overhead since more context switches must occur
to make congestion control decisions in user-space. We test two scenarios as
the number of flows in the system increases exponentially from 1 to 64. In
both scenarios, we test CCP’s implementation of Reno and Cubic against
the Linux kernel’s. We measure average throughput and CPU utilization
in 1 second intervals over the course of 10 30-second experiments using
iperf [128]. We evaluate CCP with two fold functions: one which implements
a reporting interval of 10 ms, and another which reports on every packet.

97

4 CCP

We omit mTCP and QUIC from these scalability micro-benchmarks and
focus on the kernel datapath. The QUIC toy server is mainly used for inte-
gration testing and does not perform well as the number of flows increase;
we confirmed this behavior with Google’s QUIC team. Similarly, after dis-
cussion with the mTCP authors, we were unable to run mTCP at sufficient
speeds to saturate a localhost or 10 Gbit/sec connection.

Localhost microbenchmark. We measure achieved throughput on a
loopback interface as the number of flows increases. As the CPU becomes
fully utilized, the achieved throughput will plateau. Indeed, in Figure 4.8a,
CCP matches the kernel’s throughput up to the maximum number of flows
tested, 64.

CPU Utilization. To demonstrate the overhead of CCP in a realistic
scenario, we scale the number of flows over a single 10 Gbit/s link between
two physical servers and measure the resulting CPU utilization. Figure 4.8b
shows that as the number of flows increases, the CPU utilization in the CCP
case rises steadily. The difference between CCP and the kernel is most
pronounced in the region between 16 and 64 flows, where CCP uses 2.0×
as much CPU than the kernel on average; the CPU utilization nevertheless
remains under 8% in all cases.
In both the CPU utilization and the throughput micro-benchmarks, the

differences in CPU utilization stem from the necessarily greater number of
context switches as more flows send measurements to CCP. Furthermore,
the congestion control algorithm used does not affect performance.

4.6.3 Low-RTT and High Bandwidth Paths

To demonstrate it is feasible to separate congestion control from the data-
path even in low-RTT and high bandwidth situations, we simulate a dat-

98

4.6 Evaluation

0.00

0.25

0.50

0.75

1.00

1.25

20us
2RTT

50us
5RTT

100us
10RTT

200us
20RTT

300us
30RTT

400us
40RTT

500us
50RTT

Reporting Interval

R
C

T
/B

as
el

in
e

10Pkts

100Pkts

1000Pkts

(a) Tail flow completion time at 10 Gbit/s

0.0

0.5

1.0

1.5

2.0

2.5

20us
2RTT

50us
5RTT

100us
10RTT

200us
20RTT

300us
30RTT

400us
40RTT

500us
50RTT

Reporting Interval

R
C

T
/B

as
el

in
e

10Pkts

100Pkts

1000Pkts

(b) Tail flow completion time at 40 Gbit/s

Figure 4.9: Mean tail completion across 50 simulations. While at 10 Gbit/s
even rare reporting (every 50 RTTs) has limited overhead (at
most 20%), at 40 Gbit/s, a 1 ms reporting period is necessary
to avoid performance degradation.

acenter incast scenario using ns-2 [99]. We model CCP by imposing both
forms of delays due to CCP: (i) the period with which actions can be taken
(the reporting period) and, (ii) the staleness after which sent messages ar-
rive in CCP. We used our microbenchmarks in §4.6.2 to set the staleness
to 20 µs, and vary the reporting interval since it is controlled by algorithm
implementations. We used a 20 µs RTT with a 50-to-1 incast traffic pattern
across 50 flows with link speeds of 10 and 40 Gbit/s. To increase the statis-
tical significance of our results, we introduce a small random jitter to flow

99

4 CCP

start times (<10µs with 10 Gbit/s bandwidth and <2.5 µs with 40 Gbit/s
bandwidth) and run each point 50 times with a different simulator random
seed value and report the mean.

Figure 4.9 compares the results with the baseline set to in-datapath win-
dow update. We find that at 10 Gbit/s, CCP performance stays within
15% of the baseline across different flow sizes and reporting intervals rang-
ing from 10 µs to 500 µs. Recall that 500 µs is 50× the RTT; even this
infrequent reporting period yields only minor degradation.

Meanwhile, at 40 Gbit/s the slowdown over the baseline increases with
the reporting interval in the case of 100 packet flows, but not with 10 or
1000 packet flows. Similar to the results in §4.6.1, the short flows and long
flows are both unaffected by the reporting period because the short flows
complete too quickly and the long flows spend much of their time with
large congestion windows regardless of the window update. Indeed, at 100
µs (10 RTTs), the tail completion time is within 10% of the baseline; as
the reporting increases, the tail completion time increases to over 2× the
baseline. This nevertheless suggests that when reporting intervals are kept
to small multiples of the RTT, tail completion time does not suffer.

4.7 New Capabilities

We present four new capabilities enabled by CCP: new congestion control
algorithms that use sophisticated user-space programming libraries, rapid
development and testing of algorithms, congestion control for flow aggre-
gates, and the ability to write an algorithm once and run it on multiple
datapaths.

100

4.7 New Capabilities

4.7.1 Sophisticated Congestion Control Algorithms

CCP makes it possible to use sophisticated user-space libraries, such as li-
braries for signal processing, machine learning, etc. to implement congestion
control algorithms.
One example is Nimbus [51], a new congestion control algorithm that

detects whether the cross traffic at a bottleneck link is elastic (buffer-filling)
or not, and uses different control rules depending on the outcome. The
Nimbus algorithm involves sending traffic in an asymmetric sinusoidal pulse
pattern and using the sending and receiving rates measured over an RTT
to produce a time-series of cross-traffic rates. The method then computes
the FFT of this time-series and infers elasticity if the FFT at particular
frequencies is large.
The implementation of Nimbus uses CCP to configure the datapath to

report the sending and receiving rates periodically (e.g., every 10 ms), main-
tains a time-series of the measurements in user-space, and performs FFT
calculations using a FFT library in Rust [115].
Although it is possible to implement such algorithms directly in the dat-

apath, it would be significantly more difficult. For instance, one would need
to implement the FFT operations with fixed-point arithmetic. Moreover,
implementing the algorithm outside the datapath using CCP allows for a
tighter development-testing loop than writing kernel code.
We anticipate that in the future, CCP will enable the use of other similarly

powerful but computationally-intensive methods such as neural networks.

4.7.2 Velocity of Development

Copa [7] is a recently proposed model-based congestion control algorithm
that seeks to maintain a target rate that is inversely proportional to the

101

4 CCP

queuing delay, estimated as the difference of the current RTT and the min-
imum RTT. It is robust to non-congestive loss, buffer-bloat, and unequal
propagation delays. It includes mechanisms to provide TCP competitive-
ness, accurate minimum RTT estimation, and imperfect pacing.
The authors of Copa used CCP to implement Copa recently, and in the

process discovered a small bug that produced an erroneous minimum RTT
estimate due to ACK compression. They solved this problem with a small
modification to the Copa datapath program, and in a few hours were able
to improve the performance of their earlier user-space implementation. The
improvement is summarized here:

Algorithm Throughput Mean queue delay
Copa (UDP) 1.3 Mbit/s 9 ms

Copa (CCP-Kernel) 8.2 Mbit/s 11 ms

After the ACK compression bug was fixed in the CCP version, Copa
achieves higher throughput on a Mahimahi link with 25 ms RTT and 12
Mbit/s rate while maintaining low mean queueing delay. Because of ACK
compression, the UDP version over-estimates the minimum RTT by 5×.

4.7.3 Flow Aggregation

Congestion control on the Internet is performed by individual TCP connec-
tions. Each connection independently probes for bandwidth, detects con-
gestion on its path, and reacts to it. Congestion Manager [8] proposed the
idea of performing congestion control for aggregates of flows at end-hosts.
Flow aggregation allows different flows to share congestion information and
achieve the correct rate more quickly.
We describe how to use CCP to implement a host-level aggregate con-

troller that maintains a single aggregate window or rate for a group of flows

102

4.7 New Capabilities

Aggregation Reno

10 20 30 10 20 30

0

1000

2000

3000

Time (s)

C
on

ge
st

io
n

W
in

do
w

 (
P

kt
s)

Figure 4.10: 5 20-second iperf flows with 10 second staggered starts. While
Reno (right) must individually probe for bandwidth for each
new connection, an aggregating congestion controller is able to
immediately set the connection’s congestion window to the fair
share value.

and allocates that to individual flows—all with no changes to the non-CCP
parts of the datapath.

Interface. In addition to the create() and onReport() event handlers,
we introduce two new APIs for aggregate congestion controllers: create_-
subflow() and aggregateBy(). CCP uses aggregateBy() to classify new
connections into aggregates. Then, it calls either the existing create()

handler in the case of a new aggregate, or the create_subflow() handler
in the case of an already active one.

These handlers are natural extensions of the existing per-flow API; we
implemented API support for aggregation in 80 lines of code in our Rust
CCP implementation (§4.6). Algorithms can aggregate flows using the con-
nection 5-tuple, passed as an argument to aggregateBy().

As a proof of concept, we implement an algorithm which simply aggre-

103

4 CCP

0 10 20 30 0 10 20 30 0 10 20 30

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

0

50

100

150

200

250

0

50

100

150

200

250

Time (s)

C
o

n
g

es
ti

o
n

 W
in

d
o

w
 (

P
kt

s)
 C

u
b

ic

 C
o

p
a

Kernel QUIC mTCP

Figure 4.11: Comparison of the same CCP implementation of Cubic and
Copa run on three different datapaths. Copa is run on a fixed
12 Mbps link with a 20 ms RTT; Cubic is run on a fixed 24
Mbps link with a 20 ms RTT.

gates all flows on each of the hosts’s interfaces into one aggregate and as-
signs the window in equal portions to each sub-flow. Figure 4.10 shows the
aggregator instantaneously apportioning equal windows to each flow in its
domain.

4.7.4 Write-Once, Run-Anywhere

Implementing a new congestion control algorithm is difficult because of
the subtle correctness and performance issues that require expertise to un-
derstand and resolve. New algorithms are often implemented in a single
datapath and new datapaths have very few algorithms implemented. CCP
enables algorithm designers to focus on building and testing a single solid
implementation of their algorithm that users can then run on any (sup-

104

4.7 New Capabilities

ported) datapath.
To exhibit this capability, we ran the same implementation of both Cubic

(not previously implemented in mTCP) and Copa (§4.7.2, not previously
implemented in any widely-used datapath6) on the three datapaths and plot
the congestion window evolution over time in Figure 4.11.
As expected, the congestion window naturally evolves differently on each

datapath, but the characteristic shapes of both algorithms are clearly visi-
ble. Copa uses triangular oscillations around an equilibrium of 1 BDP worth
of packets (22 in this case), periodically draining the queue in an attempt
to estimate the minimum RTT.

4.7.5 Park

We used CCP to implement congestion control support in Park [81], an
open, extensible platform that presents a common RL interface to connect
to a suite of computer system environments. These representative environ-
ments span a wide variety of problems across networking, databases, and
distributed systems, and range from centralized planning problems to dis-
tributed fast reactive control tasks. In the backend, the environments are
powered by both real systems (in 7 environments) and high fidelity simu-
lators (in 5 environments). For each environment, Park defines the MDP
formulation, e.g., events that triggers an MDP step, the state and action
spaces and the reward function. This allows researchers to focus on the core
algorithmic and learning challenges, without having to deal with low-level
system implementation issues. At the same time, Park makes it easy to
compare different proposed learning agents on a common benchmark, simi-

6In the time since we implemented Copa on CCP, a Copa implementation on mvfst, a
QUIC datapath, has become available.

105

4 CCP

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Number of actions 1e5

8

10

12

14

16
To

ta
l r

ew
ar

d

Network congestion control

TCP-vegas
A2C
A2C (confined search space)

Figure 4.12: We used CCP to study the applicability of reinforcement learn-
ing to congestion control.

lar to how OpenAI Gym [101] has standardized RL benchmarks for robotics
control tasks. Finally, Park defines a RPC interface between the RL agent
and the backend system, making it easy to extend to more environments in
the future.

We used CCP to implement Park’s congestion control environment. We
train and test the A2C agent in the centralized control setting (a single TCP
connection) on a simple single-hop topology. We used a 48Mbps fixed-
bandwidth bottleneck link with 50ms round-trip latency and a drop-tail
buffer of 400 packets (2 bandwidth-delay products of maximum size pack-

106

4.7 New Capabilities

ets) in each direction. For comparison, we run TCP Vegas [14]. Vegas
attempts to maintain a small number of packets (by default, around 3) in
the bottleneck queue, which results in an optimal outcome (minimal delay
and packet loss, maximal throughput) for a single-hop topology without
any competing traffic. “Confined search space” means we confine the action
space of A2C agent to be only within 0.2 and 2× of the average action
output from Vegas.
We find that in this environment, random exploration is inefficient to

search the large state space that provides little reward gradient. This is be-
cause unstable control policies (which widely spans the policy space) can-
not drain the network queue fast enough and results in indistinguishable
(e.g., delay matches max queuing delay) poor rewards. Confining the search
space with domain knowledge significantly improves learning efficiency in
Figure 4.12.

4.7.6 Bundler

We demonstrate CCP’s flexibility by applying it as a core component of
Bundler. Bundler [19] introduces the idea of site-to-site Internet traffic con-
trol. By “site”, we mean a single physical location with tens to many thou-
sands of endpoints sharing access links to the rest of the Internet. Examples
of sites include a company office, a coworking office building, a university
campus, a single datacenter, and a point-of-presence (PoP) of a regional
Internet Service Provider (ISP).
Consider a company site with employees running thousands of concurrent

applications. The administrator may wish to enforce certain traffic control
policies for the company; for example, ensuring rates and priorities for Zoom
sessions, de-prioritizing bulk backup traffic, prioritizing interactive web ses-

107

4 CCP

sions, and so on. There are two issues that stand in the way: first, the
bottleneck for these traffic flows may not be in the company’s network, and
second, the applications could all be transiting different bottlenecks. So
what is the company to do?
Cloud computing has made the second issue manageable. Because the

cloud has become the prevalent method to deploy applications today, ap-
plications from different vendors often run from a small number of cloud
sites (e.g., Amazon, Azure, etc.). This means that the network path used
by these multiple applications serving the company’s users are likely to
share a common bottleneck; for example, all the applications running from
Amazon’s US-West datacenter, all the video sessions from a given Zoom
datacenter, and so on. In this setting, by treating the traffic between the
datacenter site and the company site as a single aggregate, the company’s
network administrator may be able to achieve their traffic control objectives.
But what about the first issue? The bottleneck for all the traffic between

Amazon US-West and the company may not be the site’s access link or at
Amazon, but elsewhere, e.g., within the company’s ISP; indeed, that may
be the common case [26, 29, 77, 112]. Unfortunately, the company cannot
control traffic when the queues build inside its ISP. And the ISP can’t help
because it does not know what the company’s objectives are.7

Bundler solves this problem by enabling flexible control of a traffic bun-
dle between a source site and a destination site by shifting the queues
that would otherwise have accumulated elsewhere to the source’s site (Fig-
ure 4.14). It then schedules packets from this shifted queue using standard
techniques [24, 28, 39, 40, 87, 97, 105, 116, 121, 124, 142] to reduce mean flow-
completion times, ensure low packet delays, isolate classes of traffic from

7Interdomain QoS mechanisms [12,138] have not succeeded in the Internet despite years
of effort.

108

4.7 New Capabilities

Carrier 2

Public Internet

Site B
(e.g., a company office network)

Site A
(e.g., AWS US-West datacenter)

Bundler

Carrier 1

Bottleneck Link

Bundler

send-boxreceive-box

send-box receive-box

A →B Bundle B →A Bundle

Figure 4.13: An example deployment scenario for Bundler in sites A and B.
Traffic between the two boxes is aggregated into a single bun-
dle, shown as shaded boxes. The sendbox schedules the traffic
within the bundle according to the policy the administrator
specifies (§4.7.6).

each other, etc.

The key idea in Bundler is a control loop between the source and des-
tination sites to calculate the dynamic rate for the bundle. Rather than
terminate end-to-end connections at the sites, we leave them intact and de-
velop an “inner loop” control method between the two sites that computes
this rate. The inner control loop uses a delay-based congestion control al-
gorithm that ensures high throughput, but controls self-inflicted queueing
delays at the actual bottleneck. By avoiding queues at the bottleneck, the
source site can prioritize latency-sensitive applications and allocate rates
according to its objectives.

By not terminating the end-to-end connections at the sites, Bundler
achieves a key benefit: if the bottleneck congestion is due to other traffic not
from the bundle, end-to-end algorithms naturally find their fair-share. It
also simplifies the implementation because Bundler does not have to proxy
TCP, QUIC, and other end-to-end protocols.

109

4 CCP

Internet

Edge Router Bottleneck

… …
Internet

Send-Box Bottleneck

… …

(a) Status Quo (b) With Bundler

Figure 4.14: This illustrative example with a single flow shows how Bundler
can take control of queues in the network. The plots, from
measurements on an emulated path (as in §4.7.6), show the
trend in queueing delays at each queue over time. The queue
where delays build up is best for scheduling decisions, since it
has the most choice between packets to send next. Therefore,
the sendbox shifts the queues to itself.

Design

Recall that in order to do scheduling, we need to move the queues from
the network to the Bundler. In this section, we first describe our key in-
sight for moving the in-network queues, and then explain our specific de-
sign choices. Recall that each site deploys one Bundler middlebox which we
logically partition into sender-side (sendbox) and receiver-side (receivebox)
functionality.

We induce queuing at the sendbox by rate limiting the outgoing traffic. If
this rate limit is made smaller than the bundle’s fair share of bandwidth at
the bottleneck link in the network, it will decrease throughput. Conversely,
if the rate is too high, packets will pass through the sendbox without queue-
ing. Instead, the rate needs to be set such that the bottleneck link sees a
small queue while remaining fully utilized (and the bundled traffic competes
fairly in the presence of cross traffic). We make a simple, but powerful,
observation: existing congestion control algorithms calculate exactly this

110

4.7 New Capabilities

Measurement

Datapath

Cross-Traffic
Detec4on

Conges4on ACKs

Delay Control Sendbox
Receivebox
SharedConges4on Control

Figure 4.15: Bundler comprises of six sub-systems: four (in green) imple-
ment sendbox functionality, one (in blue) implements receive-
box functionality, and the datapath (orange) is shared between
the two.

rate [62]. Therefore, running such an algorithm to set a bundle’s rate would
reduce its self-inflicted queue at the bottleneck, causing packets to queue at
the sendbox instead, without reducing the bundle’s throughput. Note that
end hosts would continue running a traditional congestion control algorithm
as before (e.g., Cubic [54], BBR [20]) which is unaware of Bundler. Rather,
the sendbox’s congestion control algorithm acts on the traffic bundle as a
single unit.

Figure 4.14 illustrates this concept for a single flow traversing a bottleneck
link in the network. Without Bundler, packets from the end hosts are
queued in the network, while the queue at the edge is unoccupied. In
contrast, a Bundler deployed at the edge is able to shift the queue to its
sendbox.

Figure 4.15 shows Bundler’s sub-systems: (1) A congestion control mod-

111

4 CCP

ule at the sendbox which implements the rate control logic and cross-traffic
detection. (2) A mechanism for sending congestion feedback (ACKs) in the
receivebox, and (3) a measurement module in the sendbox that computes
congestion signals (RTT and receive rate) from the received feedback. We
discuss options for implementing congestion feedback mechanism in §4.7.6
and how to use that feedback in the measurement module in §4.7.6. (4) A
datapath for packet processing (which includes rate enforcement and packet
scheduling). Any modern middlebox datapath, e.g., BESS [55], P4 [11], or
Linux qdiscs, is suitable.

A congestion control algorithm at the sendbox, running atop CCP, would
require network feedback from the receivers to measure congestion and ad-
just the sending rates accordingly. We discuss multiple options for obtaining
this.

Passively observe in-band TCP acknowledgements. Conventional
endhost-based implementations have used TCP acknowledgements to gather
congestion control measurements. A simple strategy for Bundler is to pas-
sively observe the receiver generated TCP acknowledgements at the send-
box. However, we discard this option as it is specific to TCP and thus
incompatible with alternate protocols, i.e., UDP for video streaming or
QUIC’s encrypted transport header [76].

Out-of-band feedback. Having eliminated the options for using in-band
feedback, we adopt an out-of-band feedback mechanism: the receivebox
sends out-of-band congestion ACKs to the sendbox. This decouples con-
gestion signalling from traditional ACKs used for reliability and is thus
indifferent to the underlying protocol (be it TCP, UDP, or QUIC).

112

4.7 New Capabilities

Recv
Epoch

sendbox receivebox

now

Send
Epoch

RTT

Traffic
Feedback

pi−1

pi

tsent(pi−1)

tsent(pi) trecv(pi−1)

trecv(pi)

Figure 4.16: Example of epoch-based measurement calculation. Time moves
from top to bottom. The sendbox records the packets that are
identified as epoch boundaries. The receivebox, up on iden-
tifying such packets, sends a feedback message back to the
sendbox, which allows it to calculate the RTT and epochs.

Measurement

Sending an out-of-band feedback message for every packet arriving at the
receivebox would result in high communication overhead. Furthermore, con-
ducting measurements on every outgoing packet at the sendbox would re-
quire maintaining state for each of them, which can be expensive, especially
at high bandwidth-delay products. This overhead is unnecessary; reacting
once per RTT is sufficient for congestion control algorithms [93]. The send-
box therefore samples a subset of the packets for which the receivebox sends
congestion ACKs. We refer to the period between two successively sampled
packets as an epoch, and each sampled packet as an epoch boundary packet.

113

4 CCP

The simplest way to sample an epoch boundary packet would be for the
sendbox to probabilistically modify a packet (i.e., set a flag bit in the packet
header) and the receivebox to match on this flag bit. However, where in the
header should this flag bit be? Evolving packet headers has proved imprac-
tical [85], so perhaps we could use an encapsulation mechanism. Protocols
at both L3 (e.g., NVGRE [45], IP-in-IP [106]) and L4 (e.g., VXLAN [80])
are broadly available and deployed in commodity routers today.

Happily, we observe that such packet modification is not inherently nec-
essary; since the same packets pass through the sendbox and receivebox,
uniquely identifying a given pattern of packets is sufficient to meet our re-
quirements. In this scheme, the sendbox and receivebox both hash a subset
of the header for every packet, and consider a packet as an epoch boundary
if its hash is a multiple of the desired sampling period.

Upon identifying a packet pi as an epoch boundary packet the sendbox
records: (i) its hash, h(pi), (ii) the time when it is sent out, tsent(pi), and
(iii) the total number of bytes sent thus far including this packet, bsent(pi).
When the receivebox sees pi, it also identifies it as an epoch boundary and
sends a congestion ACK back to the sendbox. The congestion ACK contains
h(pi) and the running count of the total number of bytes received for that
bundle. Upon receiving the congestion ACK for pi, the sendbox records the
received information, and using its previously recorded state, computes the
RTT and the rates at which packets are sent and received, as in Figure 4.16.

Epoch boundary identification. The packet header subset that is used
for identifying epoch boundaries must have the following properties: (i) It
must be the same at both the sendbox and the receivebox. (ii) Its values
must remain unchanged as a packet traverses the network from the send-

114

4.7 New Capabilities

Underestimate (10%) Overestimate (10%)

10% 50% 90%

0
12
24
36
48
60
72
84
96

108

0.0

0.2

0.4

0.6

20 21 22 23 24 25

−10 −8 −6 −4 −2 0 2 4 6 8 10

Time (seconds)

Difference Between Estimated and Actual Receive Rate (Mbps)

R
ec

ei
ve

 R
at

e
(M

bp
s)

P
D

F

Actual Estimated

Figure 4.17: Bertha’s estimate of the receive rate.

box to the receivebox (so, for example, the TTL field must be excluded).8

(iii) It differentiates individual packets (and not just flows), to allow suf-
ficient entropy in the computed hash values. (iv) It also differentiates a
retransmitted packet from the original one, to prevent spurious samples
from disrupting the measurements (this precludes, for example, the use of

8Certain fields, that are otherwise unchanged within the network, can be changed by
NATs deployed within a site. Ensuring that the Bundler boxes sit outside the NAT
would allow them to make use of those fields.

115

4 CCP

TCP sequence number). We expect that the precise set of fields used will
depend on specific deployment considerations. For example, in our proto-
type implementation we use a header subset of the IPv4 IP ID field and
destination IP and port. We make this choice for simplicity; it does not
require tunnelling mechanisms and is thus easily deployable, and if Bundler
fails, connections are unaffected. We note that previous proposals [118] have
used IP ID for unique packet identification. The drawback of this approach
is that it cannot be extended to IPv6. To support a wider set of scenarios,
Bundler could use dedicated fields in an encapsulating header (as in [84]).

To visualize how these measurements impact the behavior of the signals
over time we pick an experiment for which the median difference matches
that of the entire distribution and plot a five second segment of our estimates
compared to the actual values in Figure 4.17.

Choosing the epoch size. In order to balance reaction speed and over-
head, epoch packets should be spaced such that measurements are collected
approximately once per RTT [93]. Therefore, for each bundle, we track the
minimum observed RTT (minRTT) at the sendbox and set the epoch size
N = (0.25×minRTT × send_rate), where the send_rate is computed as
described above. The measurements passed to the congestion control algo-
rithms at the sendbox are then computed over a sliding window of epochs
that corresponds to one RTT. Averaging over a window of multiple epochs
also increases resilience to possible re-ordering of packets between the send-
box and the receivebox, which can result in them seeing different number
of packets between two epochs.

When the sendbox updates the epoch size N for a bundle, it needs to send
an out-of-band message to the receivebox communicating the new value. To
keep our measurement technique resilient to potential delay and loss of this

116

4.7 New Capabilities

Underestimate (10%) Overestimate (10%)

10% 50% 90%

0
12
24
36
48
60
72
84

0.0

0.2

0.4

0.6

0.8

20 21 22 23 24 25 26 27 28 29 30

−5 −4 −3 −2 −1 0 1 2 3 4 5

Time (seconds)

Difference Between Estimated And Actual RTT (ms)

R
T

T
 (

m
s)

P
D

F

Estimated Actual

Figure 4.18: Bertha’s estimate of the delay

message, the epoch size N is always rounded down to the nearest power of
two. Doing this ensures that the epoch boundary packets sampled by the
receivebox are either a strict superset or a strict subset of those sampled by
the sendbox. The sendbox simply ignores the additional feedback messages
in former case, and the recorded epoch boundaries for which no feedback
has arrived in the latter.

Robust to packet loss. Note that our congestion measurement technique

117

4 CCP

is robust to a boundary packet being lost between the sendbox and the
receivebox. In this case, the sendbox would not get feedback for the lost
boundary packet, and it would simply compute rates for the next boundary
packet over a longer epoch once the next congestion ACK arrives.

Microbenchmarks. To evaluate the accuracy and robustness of this mea-
surement technique, we picked 90 traces from our evaluation covering a
range of link delays (20ms, 50ms, 100ms) and bottleneck rates (24Mbps,
48Mbps, 96Mbps), and computed the difference, at each time step, between
Bundler’s measurements (estimate) and the corresponding values measured
at the bottleneck router (actual). In Figure 4.18 we focus on the RTT mea-
surements: the bottom plot shows the distribution of the differences, and
the top plot puts it into context by showing a five second segment from a
trace where the median difference matched that of the full distribution. In
Figure 4.17, we produce the same plots for the receive rate estimates. In
summary, 80% of our RTT estimates were within 1.2ms of the actual value,
and 80% of our receive rate estimates were within 4Mbps of the actual value.

Benefits

We use network emulation via mahimahi [95] to evaluate our implementa-
tion of Bundler in a controlled setting. There are three 8-core Ubuntu 18.04
machines in our emulated setup: (1) runs a sender, (2) runs a sendbox, and
(3) runs both a receivebox and a receiver. We disable both TCP segmenta-
tion offload (TSO) and generic receive offload (GRO) as they would change
the packet headers in between the sendbox and receivebox, which would
cause inconsistent epoch boundary identification between the two boxes.
Nevertheless, throughout our experiments CPU utilization on the machines
remained below 10%.

118

4.7 New Capabilities

Unless otherwise specified, we emulate the following scenario. A many-
threaded client generates requests from a request size CDF drawn from an
Internet core router [18] and assigns them to one of 200 server processes.
The workload is heavy-tailed: 97.6% of requests are 10KB or shorter, and
the largest 0.002% of requests are between 5MB and 100MB. Each server
then sends the requested amount of data to the client and we measure the
FCT of each such request. The link bandwidth at the mahimahi link is set
to 96Mbps, and the RTT is set to 50ms. The requests result in an offered
load of 84Mbps.
The endhost runs Cubic [54], and the sendbox runs Copa [7] with Nim-

bus [51] for cross traffic detection. The sendbox schedules traffic using the
Linux kernel implementation of Stochastic Fairness Queueing (SFQ) [87].
Each experiment is comprised of 1,000,000 requests sampled from this dis-
tribution, across 10 runs each with a different random seed. We use median
slowdown as our metric, where the “slowdown” of a request is its completion
time divided by what its completion time would have been in an unloaded
network. A slowdown of 1 is optimal, and lower numbers represent better
performance.
We evaluate three configurations: (i) The “Status Quo” configuration rep-

resents the status quo: the sendbox simply forwards packets as it receives
them, and the mahimahi bottleneck uses FIFO scheduling. (ii) The “In-
Network” configuration deploys fair queueing at the mahimahi bottleneck.9

Recall from §3.1 that this configuration is not deployable. (iii) The default
Bundler configuration, that uses stochastic fair queueing [87] scheduling pol-
icy at the sendbox, and (iv) Using Bundler with FIFO (without exploiting
scheduling opportunity).

9We implement this scheme by modifying mahimahi (our patch comprises 171 lines of
C++) to add a packet-level fair-queueing scheduler to the bottleneck link.

119

4 CCP

Figure 4.19: Bundler achieves 28% lower median slowdown. The three
graphs show FCT distributions for the indicated request sizes:
smaller than 10KB, between 10KB and 1MB, and greater than
1MB. Note the different y-axis scales for each group of re-
quest sizes. Whiskers show 1.25× the inter-quartile range.
For both Bundler and In-Network, performance benefits come
from preventing short flows from queueing behind long ones.
Thus, Bundler’s aggregate congestion control by itself is not
enough; if we configure Bertha to use FIFO scheduling, the
FCTs worsen compared to the status quo.

Figure 4.19 presents our results. The median slowdown (across all flow
sizes) decreases from 1.76 for Baseline to 1.26 with Bundler 28% lower.
In-Network’s median slowdown is a further 15% lower then Bundler: 1.07.
Meanwhile, in the tail, Bundler’s 99%ile slowdown is 41.38, which is 48%
lower than the Status Quo’s 79.37. In-Network’s 99%ile slowdown is 27.49.

120

4.8 Conclusion

4.8 Conclusion

We described the design, implementation, and evaluation of CCP, a sys-
tem that restructures congestion control at the sender. CCP defines better
abstractions for congestion control, specifying the responsibilities of the
datapath and showing a way to use fold functions and control patterns to
exercise control over datapath behavior. We showed how CCP (i) enables
the same algorithm code to run on a variety of datapaths, (ii) increases
the “velocity” of development and improves maintainability, and (iii) facili-
tates new capabilities such as the congestion manager-style aggregation and
sophisticated signal processing algorithms.
Our implementation achieves high fidelity compared to native datapath

implementations at low CPU overhead. The use of fold functions and sum-
marization reduces overhead, but not at the expense of correctness or accu-
racy. We additionally showed multiple use cases of CCP, including in Park
(§4.7.5) and Bundler (§4.7.6).

121

122

5 Conclusion

The systems, techniques, and abstractions this thesis has presented are gen-
erally not necessary for any individual application or network environment.
It is entirely possible to engineer functional applications using traditional
network stacks and ad-hoc communication libraries, just as it is entirely
possible to re-implement congestion control algorithms for each datapath of
interest. However, just as layered abstractions have helped us build these
traditional tools to start with, this thesis has argued that new abstractions,
techniques, and systems can help us scale our networked applications to
meet ever-evolving demands of functionality, performance, and stability.
The fundamental reason new abstractions are necessary is the increasing

amount of heterogeneity in our networks. Rather than provide one-size-
fits-all networking abstractions, modern networks continue to adopt spe-
cialization as a means to provide greater efficiency and functionality. While
traditional abstractions such as IP continue to be valuable, new abstractions
such as the Chunnel as well as CCP’s measurement and control primitives
will allow applications and datapaths to embrace this increasing amount of
heterogeneity. Bertha helps applications express the network features they
want, which enables applications to decouple the specification of those fea-
tures from their implementation. As a result, Bertha applications can defer
implementation decisions to runtime, when information about the network
runtime environment becomes available. Further, Bertha can provide stabil-

123

5 Conclusion

ity and eliminate a class of bugs by checking implementations’ compatibil-
ity during connection establishment. Meanwhile, CCP decouples congestion
control algorithm implementations from the complexity of datapath runtime
environments, and allows them to be re-used across datapaths.
Despite the progress Bertha and CCP offer, there remain opportunities

for future work. One such direction is in understanding how datapath struc-
tures can help or hinder the performance of individual applications through
the internal decisions they make. Given that Bertha can extend the tradi-
tional notion of the network stack upwards into what was earlier considered
a part of the application’s logic, how should we structure these stack compo-
nents to best support the application’s performance? Within the datapaths
themselves, how can we support modular structures that acknowledge the
new reality of datapath heterogeneity, and allow for component reuse while
preserving performance?
It will always remain possible to engineer our way around heterogeneity

with bespoke implementations and one-size-fits-all performance. Indeed,
this method of problem solving is agile; developers can quickly build struc-
tures that adapt to contemporary trends in hardware or user demands.
However, forever building ad-hoc structures eventually results in a loss of
both application as well as developer efficiency. It will thus remain impor-
tant to follow up with abstractions and structure that can provide all three
of functionality, performance, and stability. This thesis is one step along
this path.

124

Bibliography

[1] Acrimon. DashMap. https://github.com/xacrimon/dashmap. 3.6.4

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan. Data Center TCP (DCTCP).
In SIGCOMM, 2010. 4.5.3

[3] Amazon. Amazon SNS. https://aws.amazon.com/sns/. 3.6.3

[4] Amazon. Amazon SQS Pricing. https://aws.amazon.com/sqs/
pricing/. 3.6.3

[5] M. T. Arashloo, M. Ghobadi, J. Rexford, and D. Walker. HotCocoa:
Hardware Congestion Control Abstractions. In HotNets, 2017. 4.2

[6] M. T. Arashloo, A. Lavrov, M. Ghobadi, J. Rexford, D. Walker, and
D. Wentzlaff. Enabling Programmable Transport Protocols in High-
Speed NICs . In NSDI, 2020. 2

[7] V. Arun and H. Balakrishnan. Copa: Congestion Control Combining
Objective Optimization with Window Adjustments. In NSDI, 2018.
4.7.2, 4.7.6

[8] H. Balakrishnan, H. S. Rahul, and S. Seshan. An Integrated Con-
gestion Management Architecture for Internet Hosts. In SIGCOMM,
1999. 4.1, 3, 4.2, 4.7.3

[9] Barroso, Luiz and Marty, Mike and Patterson, David and Ran-
ganathan, Parthasarathy. Attack of the Killer Microseconds. CACM,
60(4):48–54, mar 2017. 2

125

https://github.com/xacrimon/dashmap
https://aws.amazon.com/sns/
https://aws.amazon.com/sqs/pricing/
https://aws.amazon.com/sqs/pricing/

Bibliography

[10] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion. IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In OSDI, 2014. 2.1, 4.2

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker.
P4: Programming Protocol-independent Packet Processors. SIG-
COMM CCR, 44(3):87–95, July 2014. 4.7.6

[12] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Re-
source ReSerVation Protocol:(RSVP); Version 1 Functional Specifi-
cation. 1997. 7

[13] L. Brakmo. TCP-BPF: Programmatically tuning TCP behav-
ior through BPF. https://www.netdevconf.org/2.2/papers/brakmo-
tcpbpf-talk.pdf. 4.2, 4.5.3

[14] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas: New
Techniques for Congestion Detection and Avoidance. In SIGCOMM,
1994. 4.7.5

[15] G. Cacheda. Google Pub/Sub performance (latency under low load)?
https://stackoverflow.com/a/53207646/1304393, 2018. 3.6.3

[16] Q. Cai, S. Chaudhary, M. Vuppalapati, J. Hwang, and R. Agarwal.
Understanding Host Network Stack Overheads. In SIGCOMM, 2021.
2.1

[17] CAIDA. The CAIDA Anonymized Internet Traces 2016 Dataset
- 2016-01-21. http://www.caida.org/data/passive/passive_2016_
dataset.xml, 2016. 4.6.1

[18] CAIDA. The CAIDA Anonymized Internet Traces 2016 Dataset
- 2016-01-21. http://www.caida.org/data/passive/passive_2016_
dataset.xml, 2016. 4.7.6

126

https://stackoverflow.com/a/53207646/1304393
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.caida.org/data/passive/passive_2016_dataset.xml

Bibliography

[19] F. Cangialosi*, A. Narayan*, P. Goyal, R. Mittal, M. Alizadeh, and
H. Balakrishnan. Site-to-Site Internet Traffic Control. EuroSys, 2021.
(document), 4.7.6

[20] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson.
BBR: Congestion-Based Congestion Control. ACM Queue, 14(5), Oct.
2016. 4.4.3, 4.7.6

[21] M. J. Carey, D. J. DeWitt, D. Frank, G. Graefe, J. E. Richardson, E. J.
Shekita, and M. Muralikrlshna. The Architecture of the EXODUS
Extensible DBMS. In On Object-Oriented Database Systems, pages
231–256. Springer, 1991. 3.2

[22] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis, A. Don-
nelly, P. Barham, and R. Black. Fast Byte-Granularity Software Fault
Isolation. In SOSP, 2009. 4.3.1

[23] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy. TVM:
An Automated End-to-End Optimizing Compiler for Deep Learning.
In OSDI, 2018. 3.2

[24] D. D. Clark, S. Shenker, and L. Zhang. Supporting Real-time Appli-
cations in an Integrated Services Packet Network: Architecture and
Mechanism. In SIGCOMM, 1992. 4.7.6

[25] J. Corbet. Pluggable congestion avoidance modules. https://lwn.
net/Articles/128681/, 2005. 4.2

[26] C. Craig. ISPs do throttle traffic – and the FCC can’t stop it.
https://www.infoworld.com/article/2940538/internet/isps-
do-throttle-traffic-and-the-fcc-cant-stop-it.html, 2015.
4.7.6

[27] J. Daily, A. Vishnu, B. Palmer, H. Van Dam, and D. Kerbyson. On
the suitability of MPI as a PGAS runtime. In 2014 21st Interna-
tional Conference on High Performance Computing (HiPC), pages
1–10. IEEE, 2014. 2

127

https://lwn.net/Articles/128681/
https://lwn.net/Articles/128681/
https://www.infoworld.com/article/2940538/internet/isps-do-throttle-traffic-and-the-fcc-cant-stop-it.html
https://www.infoworld.com/article/2940538/internet/isps-do-throttle-traffic-and-the-fcc-cant-stop-it.html

Bibliography

[28] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a
Fair Queueing Algorithm. In SIGCOMM, 1989. 4.7.6

[29] A. Dhamdhere, D. Clark, A. Gamero-Garrido, M. Luckie, R. Mok,
G. Akiwate, K. Gogia, V. Bajpai, A. Snoeren, and k. claffy. Inferring
Persistent Interdomain Congestion. In SIGCOMM, 2018. 4.7.6

[30] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira. PCC:
Re-architecting Congestion Control for Consistent High Performance.
In NSDI, 2015. 4.1

[31] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, and
M. Schapira. PCC Vivace: Online-Learning Congestion Control. In
NSDI, 2018. 4.1

[32] DPDK. http://dpdk.org/. 2, 4.1

[33] A. Dragojević, D. Narayanan, E. B. Nightingale, M. Renzelmann,
A. Shamis, A. Badam, and M. Castro. No compromises: Distributed
transactions with consistency, availability, and performance. SOSP,
2015. 2

[34] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal,
A. Jain, and N. Sutin. An Argument for Increasing TCP’s Initial
Congestion Window. SIGCOMM CCR, 40(3), 2010. 2

[35] Linux Socket Filtering aka Berkeley Packet Filter (BPF). https://
www.kernel.org/doc/Documentation/networking/filter.txt. 4.2,
4.5.3

[36] D. Ely, S. Savage, and D. Wetherall. Alpine: A user-level infrastruc-
ture for network protocol development. In USITS, volume 1, pages
15–15, 2001. 4.2

[37] H. Eran, L. Zeno, M. Tork, G. Malka, and M. Silberstein. NICA:
An Infrastructure for Inline Acceleration of Network Applications. In
USENIX ATC, 2019. 3.2

128

http://dpdk.org/
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt

Bibliography

[38] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula.
XFI: Software Guards for System Address Spaces. In OSDI, 2006.
4.3.1

[39] S. Floyd and V. Jacobson. Random Early Detection Gateways for
Congestion Avoidance. IEEE/ACM Trans. on Networking, 1(4), Aug.
1993. 4.7.6

[40] Floyd, Sally. TCP and Explicit Congestion Notification. CCR, 24(5),
Oct. 1994. 4.7.6

[41] B. Ford. Structured Streams: A New Transport Abstraction. In
SIGCOMM, 2007. 4.2

[42] G. Fowler, L. C. Noll, K.-P. Vo, D. Eastlake, and T. Hansen. The
FNV Non-Cryptographic Hash Algorithm. https://tools.ietf.
org/html/draft-eastlake-fnv-16, 2018. 3.6.4

[43] D. Freimuth, E. Hu, J. LaVoie, R. Mraz, E. Nahum, P. Pradhan, and
J. Tracey. Server Network Scalability and TCP Offload. In USENIX
ATC, 2005. 3.2

[44] J. Fried, Z. Ruan, A. Ousterhout, and A. Belay. Caladan: Mitigating
Interference at Microsecond Timescales. In OSDI, OSDI, 2020. 2.1, 2

[45] P. Garg and Y.-S. Wang. NVGRE: Network Virtualization Using
Generic Routing Encapsulation, 2015. RFC 7637, IETF. 4.7.6

[46] Y. Ghigoff, J. Sopena, K. Lazri, A. Blin, and G. Muller. BMC: Accel-
erating Memcached using Safe In-kernel Caching and Pre-stack Pro-
cessing. In NSDI, 2021. 3.6.4

[47] D. P. Ghormley, D. Petrou, S. H. Rodrigues, and T. E. Anderson.
SLIC: An Extensibility System for Commodity Operating Systems.
In USENIX ATC, 1998. 3.2

[48] Google. GCP PubSub Pricing. https://cloud.google.com/pubsub/
pricing. 3.6.3

129

https://tools.ietf.org/html/draft-eastlake-fnv-16
https://tools.ietf.org/html/draft-eastlake-fnv-16
https://cloud.google.com/pubsub/pricing
https://cloud.google.com/pubsub/pricing

Bibliography

[49] Google. XLA: Optimizing Compiler for Machine Learning. https:
//www.tensorflow.org/xla/. 3.2

[50] P. Goyal, M. Alizadeh, and H. Balakrishnan. Rethinking Congestion
Control for Cellular Networks. In HotNets, 2017. 4.5.3

[51] P. Goyal, A. Narayan, F. Cangialosi, D. Raghavan, S. Narayana,
M. Alizadeh, and H. Balakrishnan. Elasticity Detection: A Build-
ing Block for Delay-Sensitive Congestion Control. ArXiv e-prints,
Feb. 2018. (document), 4.1, 4.4.2, 4.7.1, 4.7.6

[52] G. Graefe. Volcano— An Extensible and Parallel Query Evaluation
System. IEEE Trans. on Knowl. and Data Eng., 6(1):120–135, Feb.
1994. 3.2

[53] H. S. Gunawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. De-
ploying Safe User-level Network Services with icTCP. In OSDI, 2004.
4.2

[54] S. Ha, I. Rhee, and L. Xu. CUBIC: A New TCP-Friendly High-Speed
TCP Variant. SIGOPS Operating System Review, July 2008. 4.6.1,
4.7.6, 4.7.6

[55] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy.
SoftNIC: A Software NIC to Augment Hardware. Technical Report
UCB/EECS-2015-155, EECS Department, University of California,
Berkeley, May 2015. 4.7.6

[56] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: A GPU-
Accelerated Software Router. In SIGCOMM, 2010. 2

[57] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy. MegaPipe: A
New Programming Interface for Scalable Network I/O. In OSDI, 2012.
2.1

[58] J. C. Hoe. Improving the Start-up Behavior of a Congestion Control
Scheme for TCP. In SIGCOMM, 1996. 4.6.1

130

https://www.tensorflow.org/xla/
https://www.tensorflow.org/xla/

Bibliography

[59] D. Hudak. Introduction to the Partitioned Global Address Space
(PGAS) Programming Model. https://www.osc.edu/sites/osc.
edu/files/staff_files/dhudak/pgas-tutorial.pdf. 2

[60] N. C. Hutchinson and L. L. Peterson. The x-kernel: An architecture
for implementing network protocols. IEEE Trans. Softw. Eng., 17(1),
1991. 3.2

[61] S. Ibanez, A. Mallery, S. Arslan, T. Jepsen, M. Shahbaz, C. Kim,
and N. McKeown. The nanoPU: A Nanosecond Network Stack for
Datacenters. In OSDI, 2021. 2

[62] V. Jacobson. Congestion Avoidance and Control. In SIGCOMM, 1988.
4.7.6

[63] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and
K. Park. mTCP: a Highly Scalable User-level TCP Stack for Multicore
Systems. In NSDI, 2014. 2, 4.1

[64] Z. Jia, M. Zaharia, and A. Aiken. Beyond Data and Model Parallelism
for Deep Neural Networks. In MLSys, 2019. 3.2

[65] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Sto-
ica. NetCache: Balancing Key-Value Stores with Fast In-Network
Caching. In SOSP, 2017. 3.6.4

[66] A. B. Johnston and D. C. Burnett. WebRTC: APIs and RTCWEB
Protocols of the HTML5 Real-time Web. Digital Codex LLC, 2012.
4.1

[67] N. Kabra and D. J. DeWitt. OPT++: An Object-Oriented Imple-
mentation for Extensible Database Query Optimization. The VLDB
Journal, 1999. 3.2

[68] A. Kalia, M. Kaminsky, and D. G. Andersen. Using RDMA Efficiently
for Key-Value Services. In SIGCOMM, 2014. 2

131

https://www.osc.edu/sites/osc.edu/files/staff_files/dhudak/pgas-tutorial.pdf
https://www.osc.edu/sites/osc.edu/files/staff_files/dhudak/pgas-tutorial.pdf

Bibliography

[69] A. Kalia, M. Kaminsky, and D. G. Andersen. Datacenter rpcs can be
general and fast. NSDI, 2019. 2

[70] D. Kaloper-Mersinjak, H. Mehnert, A. Madhavapeddy, and P. Sewell.
Not-quite-so-broken tls: Lessons in re-engineering a security protocol
specification and implementation. In USENIX Security, 2015. 3.1

[71] A. Kaufmann, T. Stamler, S. Peter, N. K. Sharma, A. Krishnamurthy,
and T. Anderson. TAS: TCP Acceleration as an OS Service. EuroSys,
2019. 2

[72] E. Kohler, R. Morris, and B. Chen. Programming Language Opti-
mizations for Modular Router Configurations. In ASPLOS, 2002. 3.2

[73] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.
The Click modular router. ACM Transactions on Computer Systems
(TOCS), 18(3):263–297, 2000. 3.2

[74] B. Kovalev and P. Rudenko. RDG: Accelerating Apache Spark
3.0 with RAPIDS Accelerator over RoCE network. https://docs.
mellanox.com/pages/releaseview.action?pageId=28938181, 2020.
3.6.4

[75] J. Kreps, N. Narkhede, J. Rao, et al. Kafka: A Distributed Messaging
System for Log Processing. In NetDB, volume 11, pages 1–7, 2011.
3.6.3

[76] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman,
J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W.-T. Chang, and Z. Shi. The QUIC Transport Protocol:
Design and Internet-Scale Deployment. In SIGCOMM, 2017. 2.1,
3.5.1, 4.1, 4.2, 4.7.6

[77] F. Li, A. A. Niaki, D. Choffnes, P. Gill, and A. Mislove. A Large-Scale
Analysis of Deployed Traffic Differentiation Practices. In SIGCOMM,
2019. 4.7.6

132

https://docs.mellanox.com/pages/releaseview.action?pageId=28938181
https://docs.mellanox.com/pages/releaseview.action?pageId=28938181

Bibliography

[78] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA: A Holistic
Approach to Fast in-Memory Key-Value Storage. In NSDI, 2014. 2

[79] LLVM Authors. LLVM. https://llvm.org/docs/LangRef.html. 3.2

[80] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Srid-
har, M. Bursell, and C. Wright. Virtual eXtensible Local Area Net-
work (VXLAN): A Framework for Overlaying Virtualized Layer 2 Net-
works over Layer 3 Networks, 2014. RFC 7648, IETF. 4.7.6

[81] H. Mao, P. Negi, A. Narayan, H. Wang, J. Yang, H. Wang, R. Mar-
cus, R. Addanki, M. K. Shirkoohi, S. He, V. Nathan, F. Cangialosi,
S. Venkatakrishnan, W.-H. Weng, S. Han, T. Kraska, and M. Al-
izadeh. Park: An Open Platform for Learning-Augmented Computer
Systems. In NeurIPS, 2019. (document), 4.7.5

[82] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. F.
Kaashoek. Software Fault Isolation with API Integrity and Multi-
Principal Modules. In SOSP, 2011. 4.3.1

[83] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer, C. Con-
tavalli, M. Dalton, N. Dukkipati, W. C. Evans, S. Gribble, N. Kidd,
R. Kononov, G. Kumar, C. Mauer, E. Musick, L. Olson, E. Rubow,
M. Ryan, K. Springborn, P. Turner, V. Valancius, X. Wang, and
A. Vahdat. Snap: A Microkernel Approach to Host Networking. In
SOSP, 2019. 2.1

[84] J. McCauley, M. Zhao, E. Jackson, B. Raghavan, S. Ratnasamy, and
S. Shenker. Taking an AXE to L2 Spanning Trees. In SIGCOMM,
2016. 4.7.6

[85] McCauley, James and Harchol, Yotam and Panda, Aurojit and Ragha-
van, Barath and Shenker, Scott. Enabling a Permanent Revolution in
Internet Architecture. In SIGCOMM, 2019. 4.7.6

[86] W. J. McKenna, L. Burger, C. Hoang, and M. Truong. EROC: a
toolkit for building NEATO query optimizers. In VLDB, 1996. 3.2

133

https://llvm.org/docs/LangRef.html

Bibliography

[87] McKenney, Paul E. Stochastic Fairness Queueing. In INFOCOM,
1990. 4.7.6, 4.7.6, 4.7.6

[88] Microsoft. Azure Queues Storage Pricing. https://azure.
microsoft.com/en-us/pricing/details/storage/queues/. 3.6.3

[89] Microsoft. Azure Service Bus Pricing. https://azure.microsoft.
com/en-us/pricing/details/service-bus/. 3.6.3

[90] Microsoft. The Official Microsoft IIS Site. https://www.iis.net/.
3.2

[91] C. Mitchell, Y. Geng, and J. Li. Using One-Sided RDMA Reads to
Build a Fast, CPU-Efficient Key-Value Store. In USENIX ATC, 2013.
2

[92] P. Mochel. The Linux Kernel Device Model. In Ottawa Linux Sym-
posium, page 368, 2002. 3.2

[93] A. Narayan, F. Cangialosi, D. Raghavan, P. Goyal, S. Narayana,
R. Mittal, M. Alizadeh, and H. Balakrishnan. Restructuring endpoint
congestion control. SIGCOMM, 2018. (document), 4.7.6, 4.7.6

[94] A. Narayan, A. Panda, M. Alizadeh, H. Balakrishnan, A. Krishna-
murthy, and S. Shenker. Bertha: Tunneling through the Network
API. HotNets, 2020. (document)

[95] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mick-
ens, and H. Balakrishnan. Mahimahi: Accurate Record-and-Replay
for HTTP. In USENIX ATC, 2015. 4.6.1, 4.6.1, 4.7.6

[96] Netronome. Agilio LX SmartNICs. https://www.netronome.com/
products/agilio-lx/. [Online, Retrieved July 28, 2017]. 4.1

[97] K. Nichols and V. Jacobson. Controlling Queue Delay. ACM Queue,
10(5), May 2012. 4.7.6

134

https://azure.microsoft.com/en-us/pricing/details/storage/queues/
https://azure.microsoft.com/en-us/pricing/details/storage/queues/
https://azure.microsoft.com/en-us/pricing/details/service-bus/
https://azure.microsoft.com/en-us/pricing/details/service-bus/
https://www.iis.net/
https://www.netronome.com/products/agilio-lx/
https://www.netronome.com/products/agilio-lx/

Bibliography

[98] E. Nordström, D. Shue, P. Gopalan, R. Kiefer, M. Arye, S. Y. Ko,
J. Rexford, and M. J. Freedman. Serval: An end-host stack for service-
centric networking. In NSDI, 2012. 3.2

[99] The Network Simulator. https://www.isi.edu/nsnam/ns/. 4.6.3

[100] ONNX. Open Neural Network Exchange. https://onnx.ai/. 3.2

[101] OpenAI Gym. https://gym.openai.com/. 4.7.5

[102] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan.
Shenango: Achieving High CPU Efficiency for Latency-sensitive Dat-
acenter Workloads. In NSDI, 2019. 2.1, 3.3.1, 3.4.1, 3.5.2

[103] T. Overby, F. Mazzoli, D. Tolnay, and Z. Riordan. Bincode. https:
//github.com/bincode-org/bincode. 3.6.3

[104] S. Palkar, J. Thomas, D. Narayanan, P. Thaker, R. Palamuttam,
P. Negi, A. Shanbhag, M. Schwarzkopf, H. Pirk, S. Amarasinghe,
S. Madden, and M. Zaharia. Evaluating End-to-End Optimization
for Data Analytics Applications in Weld. In VLDB, 2018. 3.2

[105] R. Pan, P. Natarajan, C. Piglione, M. Prabhu, V. Subramanian,
F. Baker, and B. VerSteeg. PIE: A lightweight control scheme to
address the bufferbloat problem. In HPSR, 2013. 4.7.6

[106] C. Perkins. IP Encapsulation within IP, 1996. RFC 2003, IETF. 4.7.6

[107] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe. Arrakis: The Operating System is the
Control Plane. In OSDI, 2014. 4.2

[108] P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter, R. Bodik, and
T. Anderson. Floem: A Programming System for NIC-Accelerated
Network Applications. In OSDI, 2018. 2

[109] B. Pismenny, H. Eran, A. Yehezkel, L. Liss, A. Morrison, and
D. Tsafrir. Autonomous NIC offloads. In ASPLOS, 2021. 3.2

135

https://www.isi.edu/nsnam/ns/
https://onnx.ai/
https://gym.openai.com/
https://github.com/bincode-org/bincode
https://github.com/bincode-org/bincode

Bibliography

[110] G. Prekas, M. Kogias, and E. Bugnion. Zygos: Achieving low tail
latency for microsecond-scale networked tasks. SOSP, 2017. 2.1

[111] N. Provos. Improving host security with system call policies. In
Proceedings of the 12th Usenix Security Symposium, 2002. 4.3.1

[112] PureVPN. ISP Bandwidth Throttling Explained. https://www.
purevpn.com/blog/isp-bandwidth-throttling-explained/, 2017.
4.7.6

[113] D. Ritchie. A Stream Input-Output System. AT&T Bell Laboratories
Technical Journal, 63, 1984. 4.6.2

[114] L. Rizzo. netmap: A Novel Framework for Fast Packet I/O. In
USENIX ATC, 2012. 2, 4.1

[115] rustfft. https://crates.io/crates/rustfft. 4.7.1

[116] S. Blake and D. Black and M. Carlson and E. Davies and Z. Wang
and W. Weiss. An Architecture for Differentiated Services. RFC 2475,
1998. 4.7.6

[117] J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov. Linux Netlink as
an IP Services Protocol, 2003. RFC 3819, IETF. 4.6.2

[118] Savage, Stefan and Wetherall, David and Karlin, Anna and Anderson,
Tom. Practical Network Support for IP Traceback. In SIGCOMM,
2000. 4.7.6

[119] H. Shan, N. J. Wright, J. Shalf, K. Yelick, M. Wagner, and N. Wich-
mann. A preliminary evaluation of the hardware acceleration of the
Cray Gemini interconnect for PGAS languages and comparison with
MPI. ACM SIGMETRICS Performance Evaluation Review, 40(2):92–
98, 2012. 2

[120] J. Sherry, D. Kim, S. Mahalingam, A. Tang, S. Wang, and
S. Ratnasamy. Netcalls: End Host Function Calls to Net-
work Traffic Processing Services. UC Berkeley Technical Report

136

https://www.purevpn.com/blog/isp-bandwidth-throttling-explained/
https://www.purevpn.com/blog/isp-bandwidth-throttling-explained/
https://crates.io/crates/rustfft

Bibliography

No. UCB/EECS-2012-175. http://www.eecs.berkeley.edu/Pubs/
TechRpts/2012/EECS-2012-175.html, 2012. 3.2

[121] M. Shreedhar and G. Varghese. Efficient fair queueing using deficit
round robin. In SIGCOMM, 1995. 4.7.6

[122] M. Sipser. Introduction to the Theory of Computation. Course Tech-
nology, third edition, 2013. 3.4.1

[123] C. Staub. Ghostunnel. https://github.com/ghostunnel/
ghostunnel. 3.6.2

[124] I. Stoica, S. Shenker, and H. Zhang. Core-stateless Fair Queueing: A
Scalable Architecture to Approximate Fair Bandwidth Allocations in
High-speed Networks. IEEE/ACM Trans. Netw., 2003. 4.7.6

[125] D. L. Tennenhouse and D. J. Wetherall. Towards an Active Network
Architecture. SIGCOMM CCR, October 2007. 3.2

[126] I. Thomas, I. Goldberg, D. Wagner, R. Thomas, and E. Brewer. A Se-
cure Environment for Untrusted Helper Applications (Confining the
Wily Hacker). In Proceedings of the 6th conference on USENIX Se-
curity Symposium, 2001. 4.3.1

[127] M. Tirmazi, R. Ben Basat, J. Gao, and M. Yu. Cheetah: Accelerating
Database Queries with Switch Pruning. In SIGMOD, 2020. 3.6.4

[128] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs.
Iperf: The TCP/UDP Bandwidth Measurement Tool.
http://dast.nlanr.net/Projects, 2005. 4.6.2

[129] V. Tran and O. Bonaventure. Beyond socket options: making the
Linux TCP stack truly extensible. CoRR, 2019. 3.2

[130] V.-H. Tran and O. Bonaventure. Making the Linux TCP Stack More
Extensible With eBPF. In Netdev 0x13, 2019. 3.2

137

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-175.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-175.html
https://github.com/ghostunnel/ghostunnel
https://github.com/ghostunnel/ghostunnel

Bibliography

[131] C.-C. Tu, J. Stringer, and J. Pettit. Building an Extensible Open
VSwitch Datapath. SIGOPS Oper. Syst. Rev., page 72–77, Sept. 2017.
3.2

[132] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
Software-based Fault Isolation. In SOSP, 1993. 4.3.1

[133] M. Walfish, J. Stribling, M. N. Krohn, H. Balakrishnan, R. T. Morris,
and S. Shenker. Middleboxes No Longer Considered Harmful. In
OSDI, 2004. 3.2

[134] K. Winstein and H. Balakrishnan. Mosh: An Interactive Remote Shell
for Mobile Clients. In USENIX Annual Technical Conference, 2012.
4.1

[135] K. Winstein and H. Balakrishnan. TCP ex Machina: Computer-
Generated Congestion Control. In SIGCOMM, 2013. 4.1

[136] K. Winstein, A. Sivaraman, and H. Balakrishnan. Stochastic Fore-
casts Achieve High Throughput and Low Delay over Cellular Net-
works. In NSDI, 2013. 4.1

[137] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design,
Implementation and Evaluation of Congestion Control for Multipath
TCP. In NSDI, 2011. 4.1

[138] J. Wroclawski et al. The Use of RSVP with IETF Integrated Services,
1997. 7

[139] F. Y. Yan, J. Ma, G. Hill, D. Raghavan, R. S. Wahby, P. Levis,
and K. Winstein. Pantheon: The Training Ground for Internet
Congestion-Control research. In USENIX ATC, 2018. 4.1

[140] B. Yee, D. Sehr, G. Dardyk, B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native Client: A Sand-
box for Portable, Untrusted x86 Native Code. In IEEE Symposium
on Security and Privacy, 2009. 4.3.1

138

Bibliography

[141] I. Zhang, J. Liu, A. Austin, M. L. Roberts, and A. Badam. I’m Not
Dead Yet! The Role of the Operating System in a Kernel-Bypass Era.
In HotOS, 2019. 2.1

[142] L. Zhang. Virtual Clock: A New Traffic Control Algorithm for Packet
Switching Networks. In SIGCOMM, 1990. 4.7.6

[143] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron,
J. Padhye, S. Raindel, M. H. Yahia, and M. Zhang. Congestion Con-
trol for Large-Scale RDMA Deployments. In SIGCOMM, 2015. 4.1

[144] D. Zhuo, K. Zhang, Y. Zhu, H. H. Liu, M. Rockett, A. Krishnamurthy,
and T. Anderson. Slim: OS Kernel Support for a Low-Overhead
Container Overlay Network. In NSDI, 2019. 3.6.2

139

	Introduction
	Bertha: A Runtime Re-configurable Network Stack
	CCP: Restructuring Endpoint Congestion Control

	Background
	Evolution of Kernel-Bypass Network Stacks

	Bertha
	Introduction
	Related Work
	Programming Model
	The Chunnel Abstraction
	Bertha Programming Model
	Optimizations

	Runtime Reconfigurability
	Deciding the Datapath Stack

	Implementation
	Optimizations
	Bertha Structure

	Evaluation
	Bertha Overheads
	Microservice Communication
	Publish-Subscribe Message Queues
	Sharding and Load Balancing

	Conclusion

	CCP
	Introduction
	Related Work
	CCP Design Principles
	Isolating Algorithms from the Datapath
	Decoupling Congestion Control from the ACK Clock
	Supporting per-ACK Logic Within the Datapath

	Writing Algorithms in CCP
	Datapath Program Abstractions
	CCP Algorithm Logic
	Example: BBR
	Case Study: Slow Start

	CCP Implementation
	Datapath Requirements
	Safe Execution of Datapath Programs
	libccp: CCP's Datapath Component
	Datapath Implementation

	Evaluation
	Fidelity
	Performance
	Low-RTT and High Bandwidth Paths

	New Capabilities
	Sophisticated Congestion Control Algorithms
	Velocity of Development
	Flow Aggregation
	Write-Once, Run-Anywhere
	Park
	Bundler

	Conclusion

	Conclusion

