
A Practical Approach to Federated Learning
by

Vaikkunth Mugunthan
B.Tech., Anna University (2017)

S.M., Massachusetts Institute of Technology (2019)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

© Massachusetts Institute of Technology 2022. All Rights Reserved.

The author here by grants to MIT the permission to reproduce and to
distribute publicly paper and electronic copies of the thesis document in

whole or in part in any medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

April 29, 2022

Certified by .
Lalana Kagal

Principal Research Scientist, MIT CSAIL
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

A Practical Approach to Federated Learning

by

Vaikkunth Mugunthan

Submitted to the Department of Electrical Engineering and Computer Science
on April 29, 2022, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in Electrical Engineering and Computer Science

Abstract
Machine learning models benefit from large and diverse training datasets. However, it is
difficult for an individual organization to collect sufficiently diverse data. Additionally,
the sensitivity of the data and government regulations such as GDPR, HIPPA, and CCPA
restrict how organizations can share data with other entities. This forces organizations with
sensitive datasets to develop models that are only locally optimal. Federated learning (FL)
facilitates robust machine learning by enabling the development of global models without
sharing sensitive data. However, there are two broad challenges associated with deploying FL
systems: privacy challenges and training/performance-related challenges. Privacy challenges
pertain to attacks that reveal sensitive information of local client data. Training/Performance-
related challenges include high communication costs, data heterogeneity across clients, and
lack of personalization techniques. All these concerns have to be addressed to make FL
practical, scalable, and useful. In this thesis, I discuss techniques I’ve designed for addressing
these challenges and describe two systems that I’ve developed to mitigate them - PrivacyFL,
a privacy-preserving simulator for FL, and DynamoFL, an easy-to-use production-level
system for FL.

Thesis Supervisor: Lalana Kagal
Title: Principal Research Scientist, MIT CSAIL

3

Dedicated to my parents

Acknowledgments

I would like to start by thanking my amazing advisor Lalana Kagal for her guidance, support,

and feedback over the past five years. I honestly could not have asked for a better advisor.

She provided me the freedom and flexibility to pursue research topics I found intriguing and

helped me identify impactful research questions.

I would next like to thank my committee members Polina Golland and Sam Madden for

helping me throughout the thesis submission process and for their insightful comments. I

would also like to thank all the mentors I’ve had during my internships at IBM, Microsoft,

JPMorgan, and Intech Investments. I would like to thank Christian Lau, Emile Indik, Eric

Lin, and the entire DynamoFL team who trusted my vision for DynamoFL and made my

dream come true.

To all my friends and collaborators, I want to thank you for making research at MIT

such a great experience. I would like to give special thanks to Doron Hazan, Wanyi Xiao,

Prabhakar Kafle, Anton Bueno, Nick Ulven, Pawan Goyal, and Lay Jain for being wonderful

UROPs. I would like to thank my other co-authors Antigoni Polychroniadou, Dave Byrd,

Vignesh Gokul, Ravi Rahman, Irene Tenison, and Andreas Haupt as well.

Outside of research, I would like to thank the MIT Cricket team for allowing me to play

my favorite sport at a professional level for the past 5 years. I want to thank Raj Agrawal,

Sarath Pattathil, and Siddhartha Jayanti for their continuous support, and for reminding me

that there is a life beyond the computer screen.

Finally, I want to thank my parents who have always been there for me as well as my

whole family.

Above all, I would like to thank Lord Ganesha and Lord Krishna for giving me this

wonderful opportunity in life.

5

6

Contents

1 Introduction 19

1.1 Federated Learning Challenges . 20

1.2 Thesis Contributions . 23

1.3 Thesis Overview . 24

2 Privacy-Preserving and Secure FL 25

2.1 Introduction . 25

2.2 Background . 26

2.2.1 Secure Multiparty Computation 26

2.2.2 Differential Privacy . 27

2.2.3 Federated Logistic Regression Classifiers 27

2.2.4 Network Topology & Threat Model 28

2.3 Approach . 28

2.3.1 Eliminating weight leakage . 29

2.3.2 Eliminating weighted average leakage 29

2.4 Secure Weighted Average Protocol . 31

2.4.1 Our Protocol . 31

2.4.2 Security of our Protocol . 32

2.5 Experiments . 34

2.5.1 Experimental Dataset and Method 34

2.5.2 Protocol Timing Results . 35

2.5.3 Protocol Accuracy Results . 36

2.5.4 Adversarial Data Recovery . 37

7

2.6 Summary . 39

3 Tackling Statistical Heterogeneity in FL 41

3.1 Introduction . 41

3.1.1 Related Work . 42

3.2 Connections of FL to OOD Generalization 43

3.3 Methods . 45

3.3.1 Federated Aggregation . 45

3.3.2 Gradient Masked Aggregation . 46

3.4 Method Analysis . 47

3.5 Experiments . 52

3.5.1 In-Distribution Evaluation . 54

3.5.2 Real-World Evaluation . 55

3.5.3 Out-of-Distribution Evaluation . 56

3.5.4 Convex Objective . 57

3.6 Summary . 58

4 Personalized and Communication-Efficient FL 59

4.1 Introduction . 59

4.1.1 Related Work . 61

4.2 FedLTN: Federated Learning for Sparse and Personalized Lottery Ticket

Networks . 64

4.2.1 Personalization . 66

4.2.2 Smaller memory footprint / Faster pruning 66

4.3 Experiments . 69

4.3.1 Experiment Setup . 69

4.3.2 Evaluation . 71

4.4 Summary . 76

5 PrivacyFL: A Simulator for Privacy-Preserving and Secure Federated Learning 77

5.1 Introduction . 78

8

5.1.1 Related Work . 79

5.2 Architecture . 79

5.2.1 Simulation Lifecycle . 80

5.2.2 Classes . 81

5.2.3 Configurations and Features . 84

5.3 Algorithms . 84

5.3.1 Differentially Private Federated Averaging 84

5.3.2 Secure Aggregation . 87

5.4 Experiments . 88

5.4.1 Experiment 1: Accuracy vs Privacy vs Number of Clients Trade-offs 88

5.4.2 Experiment 2: Privacy Constraints 89

5.4.3 Experiment 3: Decentralized (Serverless) Federated Learning . . . 90

5.4.4 Experiment 4: Real-World Latency Simulation 91

5.5 Availability . 92

5.6 Summary . 93

6 DynamoFL: A Production Level FL System 95

6.1 Introduction . 95

6.1.1 DynamoFL’s Decentralized Federated Learning Workflow 96

6.1.2 Challenges: Federated Learning Infrastructure 96

6.2 How DynamoFL plugs seamlessly into AI/ML pipelines 97

6.2.1 Docker-based Datapod Client . 98

6.2.2 Python Client Package . 98

6.2.3 HTTP API . 99

6.3 Use Cases of DynamoFL . 99

6.3.1 Health AI . 99

6.3.2 Insurtech . 100

6.3.3 Financial Fraud Detection . 100

6.3.4 Cohesive Interdepartmental data and ML pipelines 100

6.3.5 Manufacturing, Supply-Chain, and Logistics 101

9

6.3.6 Machine Learning on the Edge . 101

6.4 Summary . 101

7 Conclusion 103

A Appendix for "Collusion Resistant Federated Learning with Oblivious Dis-

tributed Differential Privacy" 105

A.1 Secure Multi-Party Computation . 105

A.2 Global Sensitivity . 106

A.3 Laplacian Mechanism . 107

A.4 Generating Laplace Random Variable from Gamma Random Variables . . . 107

A.5 Supplementary Material: Security Proof 108

A.6 Security Proofs . 108

A.7 Collusion Privacy . 111

A.8 Misbehaved Colluding Parties . 112

A.9 Security against Sybil Attacks . 113

A.10 Communication Protocol Diagrams . 114

A.11 Secure Aggregation for Multiple Iterations 115

A.12 Supplementary Material: Experiments . 115

A.12.1 Matthews Correlation Coefficient 115

A.12.2 Additional Timing Results . 116

A.13 Attacks against the protocol . 117

A.13.1 Snooping Server . 117

A.13.2 Collusion attack . 118

A.14 Diffie-Hellman Key Exchange Protocol 119

B Appendix for "Gradient Masked Averaging for Federated Learning" 121

B.1 GMA on SCAFFOLD . 121

B.2 Datasets and Models . 121

B.2.1 IID and Non-IID data distribution 121

B.2.2 Datasets . 123

10

B.3 Hyperparameters . 124

B.3.1 Effects of 𝜏 . 125

B.3.2 Effect of Client Momentum . 125

B.3.3 Effect of GroupNorm . 127

B.3.4 Grid Search Range . 128

B.3.5 Best Performing Learning Rates 129

B.3.6 Performance for same learning rates 130

B.3.7 Additional Hyperparameters . 131

B.4 Details of Experiments . 132

B.4.1 Increased Clients and Local Epochs 132

B.4.2 Convex Objective . 133

B.4.3 Membership Inference Attack . 133

11

12

List of Figures

2-1 Component timing on Graph 1. 32

2-2 Total protocol time for Graphs 1-3. 32

2-3 Error in attacker weight estimates. 32

2-4 Out of sample performance (Matthews Correlation Coefficient) for our

oblivious distributed differential privacy protocol. 32

2-5 Density plot of actual versus estimated honest party weight over 1,000

iterations of the 𝑛− 1 collusion attack. 35

2-6 Actual (black) versus estimated (color) honest party weight over 1,000

iterations of 𝑛− 1 collusion attack. 39

2-7 Violin plot showing distribution of difference between estimated and actual

honest party weight. 39

3-1 (a) Test accuracy vs. Number of selected clients in the federated network. (b)

Test accuracy vs. number of local epochs per client in each communication

round. The experiment was on non-iid distributed FMNIST using a LeNet

model. In all cases, GMA outperforms naive averaging. 53

3-2 FedAvg . 56

3-3 FedProx . 56

3-4 Scaffold . 56

3-5 Train accuracy and test accuracy vs. communication rounds of gradient

masked and naive averaging versions of the algorithms on FedCMNIST

distributed non-iid across clients. I observe that GMA versions generalize

better in all algorithms. 56

13

4-1 FedLTN . 65

4-2 FedLTN-JumpStart . 69

4-3 Left (a): Comparision of validation accuracies at each round. I observe that

our method converges faster than other baselines. Right (b): Comparison of

pruning rate at each round. our method prunes around 70% in 20 rounds

while baseline LotteryFL prunes around 10%. 74

5-1 System diagram containing relationships between the important classes in

PrivacyFL . 80

5-2 Mean client accuracy on test dataset versus federated model accuracy for

different 𝜖. Clients follow Algorithm 3. 89

5-3 Accuracy vs Iterations for different values of 𝜖 and number of parties 89

5-4 Simulation with Algorithm 3 but modified so that no server is required. . . 91

5-5 Steps to execute the code . 92

6-1 DynamoFL’s Decentralized Federated Learning Workflow 96

6-2 Client Package . 98

6-3 DynamoFL UI . 99

A-1 Toy example of 3-party secure weighted average protocol with server 𝑆. . . 114

B-1 (a) Test accuracy vs. 𝜏 (b) Test loss vs. 𝜏 . The experiment was on non-i.i.d

distributed CIFAR-10 using a ResNet model. 126

B-2 (a) Data split and creation for attacker model (b) Test loss vs. epochs of the

logistic regression attacker model. 134

14

List of Tables

3.1 Average in-distribution test performance(%) over the last 10 communica-

tion rounds of FedAVG, FedProx, SCAFFOLD, FedAdam, FedYogi and

their GMA versions on i.i.d and non-iid distributions of MNIST, FMNIST,

FEMNIST, and CIFAR-10. The best result among AVG and GMA versions

of each algorithm and dataset is shown in bold. 52

3.2 Real-World and Out-of-Distribution Evaluations. Average test performance(%)

over the last 10 communication rounds of FedAVG, FedProx, SCAFFOLD,

FedAdam, FedYogi and their GMA versions on real-world distribution of

FEMNIST and i.i.d and non-iid distributions of FedCMNIST and FedRotM-

NIST. The best result among AVG and GMA of each algorithm is shown in

bold. 55

4.1 Comparison of performance of FedLTN with all the baselines on the CIFAR-

10 and Tiny ImageNet datasets in the low-client setting with ResNet18.

FedLTN(0.9; jumpstart) refers to 90% target pruning with 25 rounds of

Jump-Start and 25 rounds of FedLTN. Rewinding resets model parameters

to randomly initialized model in round 0. Bolded numbers represent best

performance and underlined numbers represent the second best. 72

4.2 Memory footprint of 90% pruned model parameters. 74

4.3 Performance of FedLTN and other baselines on CIFAR-10 in the high-client

setting with 100 clients over 2000 rounds. 75

4.4 Performance on the CIFAR-10 dataset with dirichlet 𝛼 = {0.5, 0.7} 75

5.1 Configuration Parameters . 85

15

5.2 Each client’s accuracy using Algorithm 3 in the the different scenarios . . . 90

5.3 Simulated time to receive federated weights by iteration in an example

where Singapore, the farthest client, drops out after the second iteration. . . 92

A.1 Categorized protocol time in milliseconds. 116

B.1 This table shows the label distribution across clients for an IID setting.

Each client will have randomly chosen examples from all 10 classes. This

represent the 10 class setting in MNIST. I have considered 3 clients for the

table. The same pattern would be present across all clients. 123

B.2 This table shows the label distribution skew for experiments on the non-

IID data distribution across clients. This represents the 10 class setting in

MNIST. I have taken 3 clients. The same pattern would be present across

all clients. 123

B.3 Performance of the algorithms and their GMA versions with and without

momentum(𝜌) on non-i.i.d distributed FMNIST using an LeNet model.

Momentum improves performance of the algorithms. Irrespective of mo-

mentum, GMA outperforms AVG. 127

B.4 Average in-distribution test performance(%) over the last 10 communication

rounds of FedAVG, FedProx, SCAFFOLD, FedAdam, FedYogi and their

GMA versions on i.i.d and non-i.i.d distributions of CIFAR-10 on ResNet18

models using batch normalization and group normalization. The best result

among AVG and GMA versions of each algorithm is shown in bold. 128

B.5 The best learning rates corresponding to the performances of the algorithms

and datasets as reported in Table B.4 . 129

B.6 The best learning rates corresponding to the performances of the algorithms

and datasets as reported in Table 3.2 . 130

B.7 Performance of FedAVG across a range of global learning rate and client

rate on non-iid FMNIST. It can be observed that GMA outperforms AVG in

most of the cases where the algorithms learn and converge. 131

16

B.8 Average test performance values of non-i.i.d FMNIST on varying number

of clients . 132

B.9 Average test performance values of non-i.i.d FMNIST with varying number

of local client epochs per communication round 132

17

18

Chapter 1

Introduction

Deep Neural Networks can be used to train high-quality models with state-of-the-art perfor-

mance in a myriad of applications, including medical image analysis, health informatics,

language representation, and many more. However, building such models is not an easy task

as it requires access to a large amount of high-quality data. Modern practitioners of machine

learning often need to train models from large data sets distributed across many devices.

In the past, such data would be centralized for analysis, but that practice has given rise to

serious concerns around user privacy, lack of permission to transfer sensitive data, high data

transfer costs, and far-reaching consequences when centralized data stores are breached.

Federated learning (FL) is a recent technique that addresses these concerns by training

on each local data segment individually, then transmitting and combining only the resulting

model parameters [9, 42]. In essence, FL allows decentralized clients to collaboratively

learn a model without sharing their private data. It enables clients to coordinate with a

central server to train high-quality and robust models by exchanging model parameters and

hence keeping their local data private. Potential applications of FL include:

• Predictive Healthcare: Hospitals and healthcare centers contain sensitive patient data

for predictive healthcare. However, ethical constraints and privacy regulations like

HIPPA, CCPA, and GDPR, require data to remain local. FL is a useful solution as it

allows private learning between different healthcare units.

• Smartphones/ Edge Devices: Learning user behavior across numerous smartphones/edge

19

devices enables statistical models to power applications such as personalized health-

care recommendations, face detection, and next-word prediction, etc. The next

generation of intelligent edge devices will need to integrate on-device training as they

adapt to new environments and achieve maximum data security. However, individual

edge devices will not be able to capture enough data independently to train models

from scratch. Federated learning enables connected fleets of edge devices to collab-

oratively train models without needing to transfer raw sensory data across devices.

In addition, FL saves the limited bandwidth/battery power of mobile phones as they

don’t have to share large volumes of data.

• Financial Fraud Detection: Law enforcement currently catches less than 1% of

money laundered globally. Fraud detection methods could be meaningfully improved

if financial institutions could combine their financial records to trace fraudulent

transactions across institutions. However, data privacy and competitive interests have

precluded this possibility. Federated learning provides a non-aggregative approach to

developing fraud detection models trained across financial data silos by enabling fraud

detection modeling, while keeping financial records behind the firewalls of financial

institutions.

However, FL suffers from a myriad of privacy, performance and training, simulation and

infrastructure-related challenges.

1.1 Federated Learning Challenges

There are five main challenges associated with FL.

Privacy Concerns: Privacy concerns in FL pertain to attacks that reveal sensitive

information on local client data. Though FL seems to provide increased privacy as clients

share model updates and not training data, there has been a multitude of privacy attacks on

FL systems, including membership inference and model inversion [84, 70, 65, 33]. Recent

methods in FL provide privacy guarantees using techniques like differential privacy and

multi-party computation. However, these methods provide privacy at the cost of reduced

20

model performance or system efficacy. It is important to balance these trade-offs to provide

an optimal FL solution.

Statistical heterogeneity/Non-identically independently distributed (non-iid) data:

When different clients have different data distributions, the performance of vanilla FL

degrades and results in slower model convergence. In addition, heterogeneous settings

can result in information loss and lead to poor generalization due to the bias induced by

dominant clients. Hence, it is important to focus on learning the invariant mechanism that is

constant while ignoring spurious mechanisms that differ across clients.

Personalization: Vanilla FL constructs a server model for all clients by averaging their

local models, while postulating that all clients share a single common task. However, this

scheme does not adapt the model to each client. For example, platforms like Youtube and

Netflix require a unique personalized model for each of their clients. Most FL algorithms

focus on improving the average performance across clients, aiming to achieve high accuracy

for the global server model. However, certain clients might perform poorly while others

perform extremely well. This is not the ideal scenario for a fair and optimal FL algorithm.

When deployed on edge devices in the real world, local test accuracy is instead a more

important metric for success.

Communication Cost: Sending and receiving model parameters is a huge bottleneck

in FL protocols as it could be expensive for resource-constrained clients. It is important

to reduce the total number of communication rounds and the size of the packets that are

transmitted during every round. Unfortunately, there is usually a tradeoff between model

accuracy and communication cost accrued during the federation process. For instance,

techniques that speed up accuracy convergence or decrease the model size may result in a

small decrease in accuracy.

Simulations and Real-World/Production Deployment:

Setting up an easy-to-use federated learning environment, especially with security and

privacy guarantees, to evaluate novel approaches is a time-consuming process. In order to

help researchers ensure that FL is feasible and to validate if their approach improves model

performance, a real-world simulator for privacy-preserving federated learning is required.

Recently, there have been a few open source FL simulators such as TensorFlow-Federated

21

[40], PySyft [82], PrivacyFL [67], etc. These simulators allow system designers to have

complete customization control over experimenting novel FL and privacy algorithms without

having to focus on low-level communication or backend details for simulation purposes.

However, these simulators cannot be used for real-world and production level deployments

where clients are spread across different continents.

There are numerous challenges associated with coming up with an easy-to-use production-

level FL system:

1. Project Setup: A streamlined process for setting up a project in a couple of minutes is

required. This includes - adding collaborators, sharing the global model, configuring/-

customizing FL aggregation algorithms, secure integration with clients’ existing ML

pipelines, etc. A clean interface for setting up the project, monitoring the performance

of clients, and tracking their progress is important. This is needed to reduce the burden

on the project administrator.

2. Scalability: The system should be able to support millions of clients spread across

different continents, process requests at a high speed, and be platform agnostic. For

true scalability both I/O operations as well as computational load bearing must be

scaled as the platform grows, due to the distinct nature of federated learning (servicing

arbitrary number of client connections while performing heavy aggregation jobs on

their models). In addition, aggregation of an arbitrarily large number of models starts

to run up against memory constraints.

3. Robustness to Client Dropouts and Rejoining: It is important for the system/archi-

tecture to carry on and complete the FL process even when a client(s) dropout/rejoin

during FL rounds. All participants of a project have to stay in sync - know when to

be training, testing, or waiting for a new model to arrive, and preserving state after

dropout and reconnection.

4. Privacy-Preserving and Secure Communication: It is important for the system to make

models privacy-preserving and establish secure communication between the clients

and server during FL rounds.

22

1.2 Thesis Contributions

In this thesis, I provide solutions to the most pressing challenges in FL.

To address the privacy concerns, I came up with a novel privacy-preserving FL mech-

anism using oblivious distributed differential privacy and multi-party computation(MPC)

to protect against any attack based on client collusion, including those where a server

preferentially selects compromised clients or simulates fake clients in a so-called “Sybil”

attack. In addition, I also show that it is not possible to decipher the exact differentially

private result of any client under semi-honest settings.

I propose a gradient masked averaging approach as an alternative to naive averaging

of parameters in FL for improved generalization performance under non-iid settings. I

hypothesize that to generalize better across non-iid datasets, algorithms should focus on

learning the invariant mechanism that is constant while ignoring spurious mechanisms that

differ across clients.

For optimal personalization and communication-efficiency under non-IID data settings,

I came up with FedLTN - a novel approach motivated by the Lottery Ticket Hypothesis to

learn sparse and personalized Lottery Ticket Networks (LTNs).

For simulating FL experiments, I built PrivacyFL - an extensible, easily configurable,

and scalable simulator for FL environments. Its key features include latency simulation,

robustness to client departure/failure, support for both centralized (with one or more servers)

and decentralized (serverless) learning, and configurable privacy and security mechanisms

based on differential privacy and secure multiparty computation (MPC).

Finally, I introduce DynamoFL - an easy-to-use, plug-and-play infrastructure that enables

organizations to rapidly stand up federated learning across clients/devices in a matter of

minutes and can be plugged into existing data and modeling pipelines of ML teams smoothly.

It allows machine learning teams to build highly personalized (or) generalized ML solutions

that are trained in a federated manner to learn from both individual user data and the global

population characteristics in a privacy-preserving manner. In addition, DynamoFL addresses

all privacy and training/performance-related challenges associated with FL.

23

1.3 Thesis Overview

In Chapter 2, I propose an approach to address the privacy concerns. Chapter 3 and Chapter

4 propose novel solutions to address the generalization and personalization challenges

assoicated with FL under non-iid settings. Next, Chapter 4 provides a communication-

efficient method for personalizing models. In Chapter 5, I present PrivacyFL, an extensible,

easily configurable, and scalable simulator for federated learning environments. DyanmoFL,

an easy-to-use, plug-and-play FL infrastructure for real-world settings is presented in

Chapeter 6. Finally, I wrap-up the thesis with conclusion and future work in Section 7.

24

Chapter 2

Privacy-Preserving and Secure FL

Privacy-preserving federated learning enables a population of distributed clients to jointly

learn a shared model while keeping client training data private, even from an untrusted

server. Prior works do not provide efficient solutions that protect against collusion attacks

in which parties collaborate to expose an honest client’s model parameters. I present

an efficient mechanism based on oblivious distributed differential privacy that is the first

to protect against such client collusion, including the “Sybil” attack in which a server

preferentially selects compromised devices or simulates fake devices. I leverage the novel

privacy mechanism to construct a secure federated learning protocol and prove the security

of that protocol. I conclude with empirical analysis of the protocol’s execution speed,

learning accuracy, and privacy performance on two data sets within a realistic simulation of

5,000 distributed network clients.

2.1 Introduction

Individual user privacy can still be compromised under FL settings by using the trained

model to infer certain details of the training data set [84, 69]. Two key approaches have

been proposed to address this problem. The first is differential privacy, which perturbs

values to guarantee statistical indistinguishability for individual inputs [25]. This can be

applied to federated learning by having each client modify its local model weights by adding

randomly-generated values (potentially reducing model accuracy), with the result that a party

25

obtaining the transmitted weights will still have uncertainty over the original weights. The

second approach, which does not compromise accuracy, is secure multi-party computation

(MPC) [36]. An MPC protocol, which allows parties to collaboratively compute a common

function of interest without revealing their private inputs, is considered secure if the parties

learn the computational output and nothing else.

I build on a recent line of research that combines differential privacy and MPC to produce

a secure federated learning protocol. [9, 41]. These prior works provide strong protection

against undesired inference by the server, but the collusion of enough clients can reveal the

noisy weights of an honest client, and the scale of that noise is limited by the need for an

accurate model.

I propose a novel, efficient mechanism that protects against any attempt to undermine

differential privacy by collusion of 𝑛− 1 out of 𝑛 total clients. Unlike prior works, I offer a

protocol where the noise for each party is added in an oblivious way. Obliviousness can be

achieved by running the noise generation inside the MPC, but such solutions are based on

heavy cryptography machinery involving a significant amount of public key operations or

incur increased communication complexity [41, 16]. In this work I focus on the concretely

efficient aggregation protocol of Bonawitz et al. without drop-out parties which does not

involve any public key operations in the learning phase [9]. I, therefore, provide the first

practical protection against 𝑛− 1 attacks by constructing an efficient oblivious distributed

differentially private aggregation protocol.

2.2 Background

2.2.1 Secure Multiparty Computation

Consider 𝑛 parties 𝑃1, . . . , 𝑃𝑛 that hold private inputs 𝑥1, . . . , 𝑥𝑛 and wish to compute some

arbitrary function (𝑦1, . . . , 𝑦𝑛) = 𝑓(𝑥1, . . . , 𝑥𝑛), where the output of 𝑃𝑖 is 𝑦𝑖. Secure Multi-

Party Computation (MPC) enables the parties to compute the function using an interactive

protocol such that each party 𝑃𝑖 learns exactly 𝑦𝑖 and nothing else. [36] (See Appendix A.1

for further detail.)

26

2.2.2 Differential Privacy

Differential privacy states that if there are two databases that differ by only one element,

they are statistically indistinguishable from each other. In this work I use the Laplacian

mechanism which preserves 𝜖-differential privacy [25]. (See Appendices A.2, A.3, A.4 for

further detail.)

Definition 1. (𝜖-differential privacy [26]) A randomized mechanism𝒜 preserves 𝜖-differential

privacy (𝜖-DP) if for any two neighboring datasets 𝐷1, 𝐷2 that differ by one element, and for

all subsets of possible answers 𝒮 ⊆ 𝑅𝑎𝑛𝑔𝑒(𝒜), Pr [𝒜(𝐷1) ∈ 𝒮] ≤ 𝑒𝜖 Pr [𝒜(𝐷2) ∈ 𝒮].

2.2.3 Federated Logistic Regression Classifiers

Logistic regression is a machine learning algorithm used to solve the problem of binary

linear classification. Assume one of 𝑛 parties is called 𝑃𝑖 and has a local data set consist-

ing of instances 𝑥(𝑖) = (𝑥
(𝑖)
1 , 𝑥

(𝑖)
2 ,, 𝑥

(𝑖)
𝑚), where 𝑚 is the number of features, and their

corresponding labels 𝑦(𝑖).

Party 𝑃𝑖 uses its training examples (𝑥(𝑖), 𝑦(𝑖)) to learn a logistic classifier with weights 𝑤𝑖.

The weights are obtained by solving the following optimization problem where 𝑓(𝑥
(𝑖)
𝑘) =

𝑤𝑇𝑥
(𝑖)
𝑘 and 𝑡𝑖 is the number of training examples of 𝑃𝑖:

𝑤𝑖 = argmin
𝑤

1

𝑡𝑖

𝑡𝑖∑︁
𝑘=1

𝑙𝑜𝑔(1 + 𝑒−𝑦
(𝑖)
𝑘 𝑓(𝑥

(𝑖)
𝑘)) (2.1)

In order to minimize the loss function, I make use of gradient descent, an iterative optimiza-

tion algorithm, calculating the optimal 𝑤 iteratively as 𝑤𝑗+1 ← 𝑤𝑗 − 𝛼∇𝐿(𝑤𝑗), where 𝛼 is

the learning rate, 𝑗 is the iteration, 𝑤0 = 0, and ∇𝐿 is the gradient of the loss function. Our

local logistic regression is a vector-based re-implementation of Jayaraman et al. [41].

Privacy-preserving federated learning allows a large number of parties to learn a model

while keeping their local training data private. Parties first train local models on their local

data and coordinate with a server to obtain a global model. Given 𝑛 parties, let 𝑤𝑖, for 𝑖 ∈ 1

to 𝑛, represent the local model estimator after minimizing the objective function. Then

𝑊 = 1
𝑛

∑︀𝑛
𝑖=1 𝑤𝑖 + 𝜂, where 𝜂 is the differentially private noise added to the cumulative

27

model.

According to Jayaraman et al., for 1-𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 the global sensitivity for a multi-party

setting is 2
𝑛*𝑘*𝛼 , where k is the size of the smallest dataset amongst the 𝑛 parties, and 𝛼 is the

regularization parameter. [41] Hence, 𝜂 = ℒ(2
𝑛*𝑘*𝛼*𝜖), where 𝜖 is the privacy loss parameter.

In our protocol, each client will add noise to the weights of the trained local model.

2.2.4 Network Topology & Threat Model

As is common in the federated learning setting, I opt for a star network topology, where

there is one central party that is connected to all other parties. This central server can be

distinct from the 𝑛 original parties.

The protocols that I describe and compare against are secure in the semi-honest model.

A semi-honest adversary follows the protocol correctly but tries to learn as much as possible

about the inputs of the uncorrupted parties from the messages it receives. Furthermore,

if there are multiple semi-honest corruptions, I allow the adversary to combine the views

of the corrupted parties to potentially learn more information. See Appendix A.10 for

communication protocol diagrams.

2.3 Approach

Our approach combines secure multi-party aggregation with oblivious distributed differential

privacy to better secure federated learning against 𝑛− 1 collusion attacks. In this work, I

consider logistic regression as the local learning method, and each client update includes

the weights of that logistic regression. The server receives the weights from all clients at

each iteration and computes a new global model using the average of the client updates for

each weight. Recall from the Introduction the literature demonstrating that private client

data can be inferred from the trained model weights, which is clearly undesirable. The

general task, then, is to secure each client’s locally trained model weights against discovery

while still learning an accurate shared model. I note that the collusion problem can be

solved using generic MPC, but such generic solutions are impractical due to computational

28

inefficiency. Our contribution is a practical and efficient solution to this problem using

lightweight cryptographic tools.

2.3.1 Eliminating weight leakage

I use a secure weighted average protocol running across 𝑛 clients to hide each client’s model

weights from the server where each weight is sent to the server encrypted/masked. The

underlying secure aggregation protocol for online/non- drop-out clients I use appeared in

the work of Bonawitz et al. [9], in which clients send individual updates to the server in an

encrypted manner.

2.3.2 Eliminating weighted average leakage

Using the secure aggregation protocol of [9] hides all information about client weights from

the server, but the final shared model can still reveal information about individual client

weights and subsequently a client’s local data set. Given the output which is the average of

each model weight, 𝑛− 1 clients working together can remove their weights to discover the

exact model weights of the remaining “honest” client.

Previous approaches augment the secure aggregation protocol with differential privacy to

mitigate the impact of client data exposure. Under these protocols, each client independently

generates and adds random noise to each model weight prior to transmission, so even in

the case of 𝑛− 1 client collusion, only “noisy” weights can be recovered. This is a definite

improvement, but unlike MPC it is a lossy one, and the scale of the added noise is limited

by a trade-off against model accuracy.

I introduce a novel and efficient oblivious distributed differentially private mechanism.

In prior works, each client picks its own local noise. By contrast, I offer a protocol where

the noise for each party is added in an oblivious way. More specifically: For each weight,

each client receives a tuple of encrypted noise terms from each other client and adds only a

subset of them. Thus, a party 𝑃 does not know the cleartext noise added to its weight and

the other parties do not know which noise term is chosen by 𝑃 .

I show that the information leakage on the honest client’s weights after the collusion

29

Protocol 1 Privacy-Preserving Federated Logistic Regression Protocol ΠPPFL for a single
weight

The protocol ΠPPFL runs with parties 𝑃1, . . . , 𝑃𝑛 and a server 𝑆. It proceeds as follows:
Inputs: For 𝑖 ∈ [𝑛], party 𝑃𝑖 holds input dataset 𝐷𝑖.
ΠPPFL.Setup(1𝜆): Each party 𝑃𝑖 for 𝑖 ∈ [𝑛] proceeds as follows for all 𝑗 ∈ [𝑛] (𝑖 ̸= 𝑗):

• Generate random variables 𝛾𝑏
𝑖,𝑗 and 𝛾𝑏

𝑖,𝑗 for 𝑏 ∈ {0, 1} from the gamma 𝒢(1/𝑛, 𝑠𝑐𝑎𝑙𝑒)
distribution with 𝑠𝑐𝑎𝑙𝑒 = 2/(𝑛 * 𝑙𝑒𝑛(𝐷𝑖) * 𝛼 * 𝜖). See Section 2.2.3 for the details on
𝑠𝑐𝑎𝑙𝑒.

• Generate random masks 𝑠𝑖,𝑗 ∈ Z𝑞.

• Compute masked noises 𝜂0𝑖,𝑗 = 𝑠𝑖,𝑗 + 𝛾0
𝑖,𝑗 − 𝛾0

𝑖,𝑗 and 𝜂1𝑖,𝑗 = 𝑠𝑖,𝑗 + 𝛾1
𝑖,𝑗 − 𝛾1

𝑖,𝑗 .

• Run the Diffie-Hellman key Exchange protocol ΠDH to obtain a common shared key
𝑟𝑖,𝑗 with each party 𝑃𝑗 which is only known between parties 𝑃𝑖 and 𝑃𝑗 (𝑟𝑖,𝑗 is not
known to 𝑆).

• Each party 𝑃𝑖 sends 𝜂0𝑖,𝑗, 𝜂
1
𝑖,𝑗 to 𝑆 who permutes and randomizes them and forwards to

party 𝑃𝑗 .

Given the above setup, I can compute the federated logistic regression model as follows:
ΠPPFL.WeightedAverage(𝐷𝑖, {𝑟𝑖,𝑗}𝑗∈[𝑛]):

Round 1: Each party 𝑃𝑖 proceeds as follows:

• Compute the weights 𝑤𝑖, using Equation (1), of the local logistic classifier
obtained by implementing regularized logistic regression on input 𝐷𝑖.
I describe the algorithm for a single weight, denoted by 𝑤𝑖:

• Generate a random bit vector 𝑏 = (𝑏1, . . . , 𝑏𝑛) and send 𝑦𝑖 to the server 𝑆:
𝑦𝑖 := 𝑤𝑖 +

∑︀𝑛
𝑗=𝑖+1 𝑟𝑖,𝑗 −

∑︀𝑖−1
𝑘=1 𝑟𝑘,𝑖 +

∑︀𝑛
𝑗=1 𝜂

𝑏𝑗
𝑗,𝑖 −

∑︀𝑛
𝑗=1 𝑠𝑖,𝑗 mod 𝑝 .

Round 2: The server computes 𝑊 =
(︀∑︀𝑛

𝑖=1 𝑦𝑖 mod 𝑝
)︀
/𝑛 and sends W to all parties.

ΠPPFL.𝑂𝑢𝑡𝑝𝑢𝑡(1𝜆,𝑊): Each party 𝑃𝑖 upon receiving 𝑊 repeats WeightedAverage for
the next weight or iteration of the logistic regression with locally updated common keys 𝑟′𝑖,𝑗 .
(See Section A.11 in the Appendix for further discussion.)

attack is smaller than previous approaches. Our task is to enable the parties to calculate

the sum of their inputs (i.e., 𝑊 =
∑︀𝑛

𝑖=1𝑤𝑖), while ensuring privacy for an honest party in

30

the presence of a collusion attack given 𝑊 . In prior works if 𝑛 − 1 parties collude, they

subtract their weights and noise terms from 𝑊 and then the final noise remaining in the

transmitted weight of the honest party 𝑤ℎ is a single value chosen by the honest party. In

our case, if 𝑛− 1 parties collaborate then the final noise remaining in the transmitted weight

of the honest party 𝑤ℎ is 𝑛− 1 times larger, because the corrupted parties cannot subtract

their noise terms.

At a high level, in our scheme, each client sends two encrypted noisy terms (permuted

and randomized by the server) per model weight to the other clients, but each receiving

client chooses only one of the two to add to each weight. Thus even if parties collude they

cannot subtract a significant number of noise terms since they do not know which noise

terms the honest client chose.

2.4 Secure Weighted Average Protocol

2.4.1 Our Protocol

I formally describe our weighted average protocol ΠPPFL, depicted in Protocol 1, for secure

logistic regression performed by a set of clients (𝑃1, . . . , 𝑃𝑛) and a server 𝑆.

During setup, every pair of parties 𝑃𝑖 and 𝑃𝑗 will share some common randomness

𝑟𝑖,𝑗 = 𝑟𝑗,𝑖. In the online weighted average phase, client 𝑃𝑖 sends its weights masked with

these common random strings, adding all 𝑟𝑖,𝑗 for 𝑗 > 𝑖 and subtracting all 𝑟𝑖,𝑘 for 𝑘 < 𝑖.

That is, 𝑃𝑖 sends to server 𝑆 the following message for its data 𝑤𝑖: 𝑦𝑖 := (𝑤𝑖+
∑︀𝑛

𝑗=𝑖+1 𝑟𝑖𝑗−∑︀𝑖−1
𝑘=1 𝑟𝑘𝑖) mod 𝑝. Each weight received by the server is masked by 𝑛 − 1 large random

numbers 𝑟, so it cannot accurately reconstruct any client’s true model weight 𝑤𝑖. Because

the total randomness applied to the weights sums to zero once the server computes 𝑊 in

round 2 of ΠPPFL, the averaged final model 𝑊 will be identical to one calculated without

security.

To establish common randomness 𝑟, each pair of parties run the standard Diffie-Hellman

Key exchange protocol from the literature [23] communicating via the server. (See Appendix

A.15 for description and listing.)

31

The protocol is given for a single iteration of federated logistic regression. For a detailed

explanation of how the parties locally update their 𝑟 masks to be used in the next weight and

next iteration of the protocol, see Section A. of the Appendix. I generate the Laplacian noise

in a distributed way by the use of gamma distributions 𝒢 given that the Laplace distribution

ℒ can be constructed as the sum of differences of iid gamma distributions. To run machine

learning algorithms and the DP mechanism which computes on rational values, I use field

elements in a finite field Z𝑞 to represent the fixed-point values. Concretely, for a fixed-point

value 𝑥̄ with 𝑘 bits in the integer part and 𝑓 bits in the decimal part, we use the field element

𝑥 := 2𝑓 · 𝑥̄ mod 𝑞 in Z𝑞 to represent it.

Figure 2-1: Component timing
on Graph 1.

Figure 2-2: Total protocol time
for Graphs 1-3.

Figure 2-3: Error in attacker
weight estimates.

(a) Final shared model by 𝜖 privacy loss pa-
rameter.

(b) Per protocol iteration by 𝜖 and client
count.

Figure 2-4: Out of sample performance (Matthews Correlation Coefficient) for our oblivious dis-
tributed differential privacy protocol.

2.4.2 Security of our Protocol

I prove that our protocol protects the privacy of honest users in the semi-honest setting given

the topology in Section 2.2.4. In particular I show the following theorem.

32

Theorem 1. Suppose 𝑛 clients 𝑃1, . . . , 𝑃𝑛 each hold private input 𝑤𝑖, and they wish to rely

on a server 𝑆 to compute the sum 𝑓(𝑤1, . . . , 𝑤𝑛) =
∑︀

𝑖𝑤𝑖. There exists a protocol ΠPPFL,

returning the sum which does not leak any information about the other clients’ inputs except

what can be inferred from the sum and offers collusion-privacy against a coalition of up to

𝑡 ≤ 𝑛− 1 clients.

In Appendix A.8 and A.9, I further formalize and prove our theorem, and consider

security against 𝑡 ≤ 𝑛− 1 semi-honest clients and a curious server, and against 𝑡 malicious

users.

Next I argue that the error term on the honest client’s inputs after the collusion attack

of 𝑡 parties is larger than previous approaches. For this, I require the following additional

property. Consider the case of 𝑛− 1 collusion; I define collusion privacy as follows:

Collusion-Privacy: An 𝑛-party protocol provides Collusion-Privacy, for an aggregation

function 𝑓 and a probability distribution 𝒟, if any adversary, who controls all parties

except client 𝑃ℎ, learns no more than the honest party’s values 𝑤ℎ + 𝜂 where 𝜂 ← 𝒟 and

𝑓(𝑤1, . . . , 𝑤𝑛).

In prior works if 𝑛− 1 parties collude then the final noise left in the weight of the honest

party 𝑤ℎ is a single value from𝒟. In our case, if 𝑛−1 parties collaborate then the final noise

left in the weight of the honest party 𝑤ℎ is 𝑛 − 1 times larger than 𝒟 since the corrupted

parties cannot subtract their exact noise terms.

To measure the error, I quantify the difference between 𝑓(𝐷) and its perturbed value

𝑓(𝐷) which is the error introduced by the differential private mechanism of the secure

aggregation protocol.

Definition 2. (Error function) Let 𝐷 ∈ 𝒟, 𝑓 : 𝒟 → R, and let 𝛿 = |𝑓(𝐷)−𝑓(𝐷)|
|𝑓(𝐷)|+1

(i.e., the

value of the error). The error function is defined as 𝜇 = E(𝛿). The expectation is taken on

the randomness of 𝑓(𝐷). The standard deviation of the error is 𝜎 =
√︀

𝑉 𝑎𝑟(𝛿).

After the execution of Protocol 1, parties receive the noisy sum of their inputs, i.e.,

𝑊 =
∑︀𝑛

𝑖=1𝑤𝑖, In prior non-oblivious works if 𝑛− 1 parties collaborate and remove their

weights from 𝑤 then the final noise added to the weight of the honest party 𝑤ℎ is a value

from ℒ(𝜆), and hence, the error is 𝜇 = 1
|𝑊 |+1

E|ℒ(𝜆)| = 𝜆
|𝑊 |+1

.

33

In our oblivious case, if 𝑛 − 1 parties collaborate then the final noise added to the

weight of the honest party 𝑤ℎ is 𝑛 − 1 times larger than ℒ(𝜆), and hence, the error is

𝜇 = 1
|𝑊 |+1

E|
∑︀𝑛−1

𝑖=1 ℒ(𝜆)| =
(𝑛−1)·𝜆
|𝑊 |+1

.

However, in practice even if the parties cannot subtract their exact noise terms they can

still try to subtract the average of the noise terms, or one of the two noise terms, or use the

leakage 𝐿 to reduce the amount of error. In our protocol I consider the leakage 𝐿 learned

from the difference of the noise terms 𝜂0, 𝜂1. Note that this leakage does not affect the error

function given later in Definition 2. In Section 2.5.4 and Figure 2-5 I empirically show that

such an attack is little better than the attack of subtracting nothing.

Note that the output of the aggregation protocol, 𝑊 + 𝜂, is generated such that 𝜂 follows

exactly the same distribution in both non-oblivious and oblivious cases, but the noise left

after an 𝑛−1 attack against the oblivious case is higher. For further discussion, see Appendix

A.7 on collusion privacy.

2.5 Experiments

I empirically evaluated our protocol using ABIDES, an open source simulation platform

originally designed for financial markets [11] and later adapted for federated learning [12].

Following the agent-based approach of these prior works, I simulated our oblivious protocol

for 5,000 distributed clients and analyzed the timing, accuracy, and privacy of the empirical

results.

2.5.1 Experimental Dataset and Method

I evaluated our protocol’s performance using the Adult Census Income dataset [24], which

provides 14 input features such as age, marital status, and occupation, that can be used to

predict a categorical output variable identifying whether (True) or not (False) an individual

earns over USD $50K per year. I used a preprocessed version of the dataset from Jayaraman

et al. following the method of Chadhuri et al. which transformed each categorical variable

into a series of binary features, then normalized both features and examples, resulting in

104 features for consideration. [41, 17] I added a constant intercept feature to permit greater

34

flexibility in the regression. Of the 45,222 records in our cleaned data set, there were 11,208

positive examples (about 25%), representing a moderately unbalanced dataset.

The dataset was loaded only once per complete simulation of the protocol, after which a

randomized train-test split (75% vs 25%) was taken. Once per round of federated learning,

each client randomly selected 200 rows from the training data as its “local” data. The

holdout test data was the same for all clients, and no client ever trained on it. All clients

implemented Protocol 1 as previously described.

Figure 2-5: Density plot of actual versus estimated honest party weight over 1,000 iterations of the
𝑛− 1 collusion attack.

2.5.2 Protocol Timing Results

The ABIDES simulation permits construction of an arbitrary network graph with defined

pairwise connectivity, minimum latency, and parameters for randomly selected “jitter” with

nanosecond resolution. It captures the real elapsed runtime of each client activity and

appropriately delays both sent messages and the earliest time at which a client may act again.

Using these features, I have estimated the temporal load of Protocol 1. The mean time

required to run the protocol simulation on a single Intel Xeon X5650 CPU core (2.6GHz)

ranged from 32 seconds to 12 hours for 100 to 5,000 parties.

Figure 2-1 summarizes the time spent performing each section of our protocol on the

adult census income data set: Diffie-Hellman Setup one time per client, Encryption

of the weights and local model, Training per client per protocol iteration, and Server

aggregation time per protocol iteration. Figure 2-2 shows the estimated time required to run

the full protocol (not the simulation) for three different network graphs: Graph 1 places all

participants around New York City, Graph 2 places the server in New York City and clients

around London, Graph 3 places the server in New York City and clients all over the world.

35

Tabular data is presented in Appendix A.122.

All experiments comprised 20 rounds of secure federated learning, with each client

running 50 iterations of local regression training at each round. Latency is the most

significant time component for small participant networks, but as the population size grows,

computation effort surpasses it. Fortunately, the two largest components of computational

time growth represent work performed only once per client for the entire protocol, and work

performed only by the server.

2.5.3 Protocol Accuracy Results

The secure multi-party aggregation component of Protocol 1 is lossless, because the MPC

encryption elements sum to zero in each shared model. Differential privacy introduces

shared model accuracy loss inversely proportional to the 𝜖 privacy loss parameter. Smaller

selections of 𝜖 result in more uncertainty about a client’s local weights when other parties

collude to reveal them, but increasingly confound learning. For example, in our protocol

experiments with 200 clients, final model accuracy worsens dramatically once 𝜖 < 5𝑒− 5.

Matthews Correlation Coefficient: Because of the significant (3:1) class imbalance

in our data, I assess accuracy using the Matthews Correlation Coefficient (MCC) [63],

a contingency method of calculating the Pearson product-moment correlation coefficient

(with the same interpretation), that is appropriate for imbalanced classification problems.

[5, 75, 77, 28] (See Appendix A.12 for more detail.)

In Figure 2-4a I show the MCC of our protocol’s final shared model predictions against

the correct values for a range of 𝜖. As expected, smaller 𝜖 harms the accuracy of the

learned model. Thus there is a dynamic lower bound, varying with population size, on

useful values of 𝜖. For example when considering out of sample 𝑀𝐶𝐶(𝑛), with 𝑛 being

the client population size, in our experiments with 𝜖 = 1𝑒 − 5: 𝑀𝐶𝐶(100) = 0.005,

𝑀𝐶𝐶(200) = 0.254, and 𝑀𝐶𝐶(500) = 0.423. For all evaluated client population sizes

(50 to 5,000), models trained under Protocol 1 with 𝜖 ≥ 5𝑒 − 4 had similar accuracy to

unsecured federated learning. Figure 2-4b shows the impact 𝜖 can have on each round of

federated learning: with 𝜖 = 5𝑒− 4 or 𝜖 = 5𝑒− 7, population size does not matter because

36

either all sizes succeed at learning or none do; but with 𝜖 = 5𝑒− 6, varying client population

sizes learn at vastly different rates.

In our simulated network environment, with 1000 clients implementing the described

protocol for federated logistic regression using privacy loss parameter 𝜖 = 5𝑒− 4, I found

an out of sample final iteration relative accuracy loss (MSE versus learning in the clear) of

1.1𝑒− 6 and an out of sample final iteration relative MCC loss of 0.0018.

2.5.4 Adversarial Data Recovery

Prior works like Bonawitz et al. discuss attacks from a “snooping” server which attempts to

infer the unencrypted weights of a particular client. [9] The attacks fail since the server does

not have the common random values 𝑟.

Collusion attack: I consider the 𝑛 − 1 attack, in which all other clients conspire

to recover the unencrypted model weights of a single “honest” client. Let the honest

client be ℎ and the set of 𝑛 − 1 colluding clients be 𝐶. For a single model weight, let

𝐹 = 𝑤ℎ + 𝑊𝐶 + 𝑇ℎ + 𝑇𝐶 be the output of the aggregation protocol at the end of each

iteration, where 𝑤ℎ is the honest party’s original weight, 𝑇ℎ is the honest party’s noise sum,

𝑊𝐶 =
∑︀

𝑐∈𝐶 𝑤𝑐, 𝑇𝐶 =
∑︀

𝑐∈𝐶 𝑇𝑐. Note that the sum of the randomness 𝑟, 𝑠 is removed by

design from the output when the computation is performed, so MPC cannot defend against

this type of attack.

Under prior non-oblivious protocols in which each party generates and adds its own

noise locally, the colluding parties know 𝑊𝐶 and 𝑇𝐶 and can therefore recover the honest

party’s noisy weights 𝑊ℎ + 𝑇ℎ. Under our oblivious protocol, the noise which cannot be

subtracted in 𝐹 has a more dispersed distribution that cannot be much narrowed by the

colluding parties since ℎ will have received from each colluding party 𝑐 a choice of two

difference of gamma privacy noises 𝛾0
𝑐ℎ and 𝛾1

𝑐ℎ and 𝑐 will not know which was selected by

ℎ. Moreover, since the server permutes and randomizes the encrypted noise terms, 𝑇𝐶 is

also not precisely known to the colluding parties. For an extreme Sybil attack, the server

will have to run a secure shuffle protocol which I have not implemented in this version (see

discussion in Appendix A.9).

37

I empirically illustrate the dramatic improvement in privacy against an 𝑛− 1 distributed

attack by considering five cases. In each case, the colluding parties attempt to recover 𝑊ℎ

and always remove 𝑊𝐶 . In the Non-Oblivious case followed by prior works, the corrupted

parties can accurately remove 𝑇𝐶 . In the other four cases, Protocol 1 is attacked, and the

corrupted parties must decide how to deal with the unknown noise choices by other parties 𝑖:

under Naive they do nothing additional (i.e., they do not remove any noise terms); under

Random each corrupted party 𝑐 removes either 𝛾0
𝑐𝑖 or 𝛾1

𝑐𝑖 at random; and under Diff and

Mean each corrupted party 𝑐 removes the difference or mean of 𝛾0
𝑐𝑖 and 𝛾1

𝑐𝑖 respectively.

I consider the recovery attempt across 1,000 full iterations of Protocol 1 with 100 clients

participating. At the end of every iteration, 99 clients share information in an attempt to

recover the unencrypted model weights of the one honest client. Privacy loss parameter

𝜖 = 5𝑒− 4 was selected because it did not cause significant shared model accuracy loss for

any tested number of parties.

Figure 2-5 shows a density plot of the honest party’s actual model weight versus the

collaborators’ estimate of that weight. Figure 2-3 summarizes the distribution of the

difference between estimated and actual weights for each attack scenario. The 𝑛− 1 attack

is successful (𝑟2 = 0.894) against the prior non-oblivious protocol, but not successful

(𝑟2 = 0.164 or worse) against our new oblivious protocol. (For additional discussion of the

attacks, see Appendix A)

To further validate the new approach for oblivious distributed differential privacy, I also

ran Protocol 1 and a previous non-oblivious protocol against the Kaggle Credit Card Fraud

data set [22] and evaluated the success of the same cases of 𝑛 − 1 attacks. This data set

provides transformed features that represent the first 26 principal components of unknown

original features. Two original features are provided without transformation: the elapsed

time from the start time of the dataset and the amount of the transaction. I used the Amount

column without transformation, but excluded the Time column because our learning method

does not attempt to identify temporal clusters or patterns. The dataset provides a categorical

𝑦 variable identifying whether the transaction was judged fraudulent (True) or not (False).

Of the 284,807 records, only 492 (less than 0.2%) are labelled fraudulent, representing

an extremely unbalanced dataset. The data set was otherwise handled in exactly the same

38

manner as the adult census data set.

Figure 2-6: Actual (black) versus estimated (color) honest party weight over 1,000 iterations of 𝑛− 1
collusion attack.

Figure 2-7: Violin plot showing distribution of difference between estimated and actual honest party
weight.

In Figures 2-6 and 2-7, I show the result of 1,000 attempted 𝑛 − 1 attacks against an

arbitrarily-selected honest party weight, using the credit card fraud data set. Because of the

randomness involved, the magnitude of difference varies across the model weights.

2.6 Summary

In this chapter, I presented an efficient mechanism for oblivious distributed differential

privacy that is the first to secure against collusion attacks on the clients’ model parameters,

and leveraged that mechanism to construct a secure federated learning protocol. I also

detailed the protocol and proved its security.

39

To empirically evaluate the protocol in a practical setting, I implemented it for a common

data set with 5,000 parties in an open source simulation that has been adapted to the domain

of privacy-preserving federated learning, and estimated its accuracy and running time for

various client counts and values of the 𝜖 privacy loss parameter. I also conducted an 𝑛− 1

attack and showed that it is effective against prior non-oblivious protocols, but not against

our new protocol.

I have not considered the case where clients drop off during the protocol as future work.

Our mechanism is therefore well suited to cross-silo federated learning applications where

clients are different organizations (e.g. medical or financial) or geodistributed datacenters,

as opposed to mobile or IoT devices which can possibly go offline.

40

Chapter 3

Tackling Statistical Heterogeneity in FL

Standard FL algorithms involve averaging of model parameters or gradient updates to

approximate the global model at the server. However, in heterogeneous settings (different

clients have different data distributions) averaging can result in information loss and lead

to poor generalization due to the bias induced by dominant clients. I hypothesize that to

generalize better across non-iid datasets as in FL settings, the algorithms should focus on

learning the invariant mechanism that is constant while ignoring spurious mechanisms that

differ across clients. Inspired from recent work in the Out-of-Distribution (OOD) literature,

I propose a gradient masked averaging approach for federated learning as an alternative to

the standard averaging of client updates. This client update aggregation technique can be

adapted as a drop-in replacement in most existing federated algorithms. I perform extensive

experiments with gradient masked approach on multiple FL algorithms with in-distribution,

real-world, and OOD (as the worst case scenario) test dataset and show that it provides

consistent improvements, particularly in the case of heterogeneous clients.

3.1 Introduction

A challenge in FL is heterogeneity in the data distributed across clients. The non-iid data

distribution degrades the performance of federated learning models [58, 94, 106]. One of the

reasons for this is the loss of information regarding invariances across clients induced by the

averaging of model parameters or updates. This is further exacerbated by the multiple local

41

steps taken by each client with the aim of reducing communication rounds which results

in "client drift"[45]. Each client after multiple local steps can progress too far towards

minimizing their local objective which may deviate from that of the global objective.

Recently [74] proposed an approach for improving generalizing across "environments"

in OOD. In this work, I draw connections between the OOD setting and the federated

learning setting, proposing to adapt the approach of [74] to the FL. Specifically, I propose

a new aggregation method called gradient masked averaging with the goal of improving

generalization across clients and of the global model. The gradient masked averaging can

be plugged into any FL algorithm as an alternative to naive averaging of model parameters

at the server. Intuitively, gradient masking prioritizes gradient components that are aligned

with the overall dominant direction across clients while the inconsistent components of the

gradient are given lesser importance. The proposed gradient masking approach improves

the convergence of adaptive and non-adaptive FL algorithms.

3.1.1 Related Work

Federated Learning In FedAVG [64] for each communication round, all selected 𝐵

fraction of clients perform 𝐸 local steps of gradient descent with their local datasets. The

model parameters from participating clients are averaged at the server to obtain the global

model. It is equivalent to FedSGD [64] when 𝐸 = 1 and each client performs stochastic

gradient descent. Multiple local steps help minimize communication costs, which is a

major bottleneck in FL. Quantization methods [80] and gradient descent acceleration [103]

methods have been proposed to reduce communication overhead.

Convergence of FedAVG under i.i.d settings have been analyzed widely [86, 102, 91].

The convergence rate of FedAVG worsens with increasing heterogeneity among client

datasets and this has been analyzed by several works [58, 94, 58]. Multiple variations of

FedAVG have been proposed to improve convergence in non-iid data distribution settings,

including adding regularization to the client objective [58], normalized averaging of model

parameters [92], and introducing server momentum [38]. [45] uses control variates to reduce

client drift. Adaptive optimizers like Adam and Yogi have been introduced to the federated

42

setting by [79]. Algorithms like PerFedAVG [29], Ditto [57], FedBABU [72] focus on

personalization of clients. Differential privacy and blockchain have been used in FL to

enhance data privacy in federated learning [95, 68]. Probabilistic Federated Neural Matching

(PFNM) [105] and FedMA[90] addresses the problems due to permutation variances in

the neural networks. [104] studied new approaches for evaluation FL in more realistic

heterogeneous setting, proposing a notion of participation gap.

Out of Distribution Generalization In traditional machine learning, a model is

evaluated based on its test performance on an unseen dataset drawn i.i.d from the train

data distribution. However, this assumption may not hold true in real-world datasets and

many supervised learning models do not perform well on related but non-iid test datasets.

This problem is often referred to as the OOD generalization or the closely related domain

generalization problem [50, 1].

This problem has been addressed in several works like Invariant Risk Minimization(IRM)

[4], Risk Extrapolation(REx) [52], and Gradient Starvation [76]. These approaches typically

focus on introducing penalties that learn invariant representations in a setting with known

variations in the data (corresponding to environments). However, this idea cannot be

easily ported to a federated learning setting as the clients performing the optimization

steps would require access to the data of other clients. On the other hand [74] proposed a

gradient agreement method based on gradient directions to learn features that agree across

environments. This was extended by [83] to include gradient magnitude. In this chapter, I

focus on these methods that utilize gradients from environments to learn invariant features.

Distinct from the prior work, which considers the case of individual samples and single

global updates, I consider and adapt this approach to a federated setting, where each client

produces an aggregate update based on multiple gradient iterations.

3.2 Connections of FL to OOD Generalization

OOD generalization is often formalized using the notion of domains or environments. Under

the formalism of [4] an environment corresponds to a data generating distribution that

can be related through underlying (potentially unknown) causal variables to a set of other

43

environments. Different environments can arise during model training and testing, while

it is typically assumed all environments (train and test) share some invariant mechanisms.

They can however have spurious mechanisms that differ across environments [74, 13]. The

concept of environments can be related to the federated learning setting by considering

each client as producing a set of data generated from a different environment. All clients

however have underlying invariant mechanisms to be considered for training a global model.

Each client also has their specific spurious mechanisms or data distributions. For example

consider a scenario of different clients corresponding to smartphone users taking pictures

of fruit, to build a model that identifies fruit items. Each smartphone may have a different

camera and each user may take pictures of different subsets of fruit. Thus the clients may

differ in terms of the label distribution of their local data and the camera related image

characteristics, which can be a spurious mechanism while the overall set of food items is

invariant across clients.

The objective of OOD generalization is to improve the performance of a model on

data from distributions that are related yet different from the training data distribution. [3]

quantifies the following objective for 𝑅𝑂𝑂𝐷(𝑓) = max
𝑒∈𝜉𝑎𝑙𝑙

𝑅𝑒(𝑓) where 𝑅𝑒(𝑓) is the risk or

expected loss for data from environment 𝑒, which belongs to 𝜉𝑎𝑙𝑙, a large (often infinite)

family of distinct yet related environments 𝜉𝑡𝑟 ⊂ 𝜉𝑎𝑙𝑙. In practical federated learning, one of

the major objectives of the global model is to improve its performance on non-participating

clients (clients that do not contribute to global model training [43]) and on new train clients

(participating clients that are new to the federated network). The data at these clients will be

from related distributions having the same invariant mechanism but may differ from data

distributions at train clients. Hence, one way to frame the goal for FL global models is to

enhance the performance across a large set of related clients which may have different data

distributions. I can quantify this as min𝑅𝑔𝐹𝐿(𝑓) = max
𝑛∈𝑁𝑎𝑙𝑙

𝑅𝑛(𝑓) where 𝑅𝑛(𝑓) is the risk

at client 𝑛 ∈ 𝑁𝑎𝑙𝑙, and 𝑁𝑎𝑙𝑙 is a large set of distinct yet related clients which have different

data distributions.

44

3.3 Methods

In the following section I introduce the notations used, review standard federated aggregation,

and then introduce our gradient masked averaging for global model approximation.

3.3.1 Federated Aggregation

Consider a federated setting having 𝑁 clients where the data at each client, 𝑛 ∈ 𝑁 is 𝐷𝑛 =

(𝑥𝑛
𝑖 , 𝑦

𝑛
𝑖). The clients collectively learn a function, 𝑓 : 𝑋 → 𝑌 𝑓(𝑥 ∈ 𝑋;𝑤) that, in our case,

corresponds to a neural network model with parameters, 𝑤, and (𝑋, 𝑌) = {(𝑥𝑛, 𝑦𝑛) : ∀𝑛 ∈

𝑁} is the entire set of data distributed across clients. At each communication round, 𝑘, the

parameters of the global model, 𝑤𝑘, are sent to participating clients who perform multiple

local gradient steps to obtain an update, ∆𝑘
𝑛, corresponding to the difference between the

clients model after multiple updates and 𝑤𝑘. In most FL algorithms the global model update

at 𝑘𝑡ℎ communication round is then obtained as

𝑤𝑘+1 = 𝑤𝑘 − 𝜂𝑔∆
𝑘 (3.1)

Where, 𝜂𝑔 is the global learning rate. ∆𝑘 is the update or "pseudo-gradient" at the 𝑘𝑡ℎ global

communication round obtained by aggregating the updates from the participating clients

(∆𝑘
𝑛; 𝑛∀𝑁) as

∆𝑘 =
1

|𝑁 |
∑︁
𝑛∈𝑁

∆𝑘
𝑛; (3.2)

In the case of a single gradient step at each client the update, ∆𝑘, corresponds the gradient

of the global objective. Each client has a different data distribution and thus different loss

surface. [74] show that averaging of gradients across environments leads to poor consistency

of solutions, and reduced generalization, particularly to unseen environments. Indeed naive

averaging of parameters fails to capture the consistencies in the loss landscapes due to the

bias that may be induced by dominant features in the environments as explained by [83].

This is further exacerbated in real world federated settings as there are multiple possible

scenarios where some clients dominates over others. For example, some clients may have

better computational resources, connectivity, or more data and contribute disproportionately

45

to the global update.

3.3.2 Gradient Masked Aggregation

[74] highlights several issues associated with the standard arithmetic mean, which they

equate to a logical OR, used combine gradients. They propose to use an analog of the

logical AND operation resulting in taking geometric mean of sample gradients. The gradient

components that are "inconsistent" in sign across environments are set to 0. Specifically they

construct a binary vector, 𝑚𝜏 (𝛿) based on the agreement of gradient components among

environments. The components 𝑗 of the mask, 𝑚𝜏 is computed as

[𝑚𝜏]𝑗 = 1[1
|𝑁 |

∑︀
𝑒∈𝜂 sign([∇𝐿𝑒]𝑗) ≥ 𝜏].

Here ∇𝐿𝑒 is the gradient of the loss with respect to environment 𝑒, and 𝜏 ∈ [0, 1] is a

hyperparameter.

Direct application of this idea to FL setting is however challenging. [74] applies the

rule assuming each sample represents an environment, whereas each client more naturally

corresponds to the environment in FL. Furthermore, they show that this can lead to a slower

convergence rate in practice as too many components can be masked at each iteration. This

would be impractical in the federated setting as I would not want to sacrifice convergence

speed alone for generalization. In the federated setting I propose a variant of this mask that

doesn’t sacrifice convergence speed while retaining some of the improved generalization

properties. Specifically I propose to use masking at the aggregation stage of standard FL,

with a mask computed based on each client update (which arises from multiple local gradient

steps). The mask is calculated based on sign agreement among client updates ∆𝑛 and it

is applied on the global model update ∆𝑘
𝑛. This masking controls the parameter update

based on the agreement of direction among the gradients across clients or environments. To

provide rapid convergence I apply a soft masking procedure instead of the hard binary mask.

I define an agreement score, 𝐴 ∈ (0, 1], given as a function of all the client updates,

A = &

⃒⃒⃒⃒
⃒ 1

|𝑁 |
∑︁
𝑛∈𝑁

sign(∆𝑛)

⃒⃒⃒⃒
⃒

46

The mask 𝑚̃𝜏 is now defined element element-wise as

[𝑚̃𝜏]𝑗 = &1 if A𝑗 ≥ 𝜏 else A𝑗 (3.3)

The global model update is given by 𝑚̃𝜏 ⊙∆𝑡. This ensures that the updates to the global

model are with respect to their agreement across clients. When the agreement across clients

is greater than the hyperparameter 𝜏 , it would be assigned 1 and when the agreement is

lesser than 𝜏 , the mask value would be equivalent to the agreement score. This real mask

ensures that each parameter updates but the magnitude is adjusted to be proportional to the

agreement across clients.

This masking can be easily plugged in to any FL algorithm as part of the aggregation at

the server that involves gradient or parameter averaging. In Alg. 1 the full algorithm for

Gradient Masked Aggregation is given for the case of FedAVG, and for adaptive methods

FedADAM and FedYogi.

3.4 Method Analysis

I now analyze the convergence properties of the masking, focusing on the case of FedAVG

and gradient masked aggregation. In our setting, I define the global objective function in

terms of the local objective, 𝐹𝑛, of each client

min
𝑤

𝑓(𝑤) = min
𝑤

𝑁∑︁
𝑛=1

𝐹𝑛(𝑤)

and I assume that E[𝑓𝑛(𝑤)] = 𝐹𝑛(𝑤).

Following [79], I make the following standard assumptions. I write ℱ𝑡 the filtration

adapted over our stochastic process at time 𝑡.

Assumption 2 (Lipschitz gradient). I assume that each client objective has Lipschitz gradient

with constant 𝐿, meaning that there exists 𝐿 > 0, ∀𝑛,∀𝑤, 𝑣, ‖∇𝐹𝑛(𝑤) − ∇𝐹𝑛(𝑣)‖ ≤

𝐿‖𝑤 − 𝑣‖

47

Algorithm 1 Gradient Masked FedAVG [64], FedADAM , and FedYogi [79]

Initialize 𝑤0

for each server epoch, t = 1,2,3,... do
Choose C clients at random
for each client in C, n do
𝑤𝑛

𝑡 = ClientUpdate(𝑤𝑡−1)
∆𝑛

𝑡 = 𝑛𝑘∑︀𝑁
𝑛=1 𝑛𝑘

(𝑤𝑛
𝑡 − 𝑤𝑡−1)

end for
∆𝑡 =

∑︀𝑁
𝑛=1 ∆

𝑛
𝑡

𝑧𝑡 = 𝛽1𝑧𝑡−1 + (1− 𝛽1)∆𝑡

𝑣𝑡 = 𝑣𝑡−1 − (1− 𝛽2)∆
2
𝑡 sign(𝑣𝑡−1 −∆2

𝑡)

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1− 𝛽2)∆
2
𝑡

∆𝑡 =
𝑧𝑡√

𝑣𝑡+𝑒−3

𝑏 = 𝑚̃𝜏 ({∆𝑛
𝑡 }𝑛=1..𝐶)

𝑤𝑡 = 𝑤𝑡−1 − 𝜂𝑔 * 𝑏⊙∆𝑡

end for
ClientUpdate(w):

Initialize 𝑤0 = 𝑤
for each local client iteration, i=0,1,2,3,..,n do
𝑔𝑖 = ∇𝑤𝑖

𝐿(𝑤𝑖)
𝑤𝑖+1 = 𝑤𝑖 − 𝜂𝑐 𝑔𝑖

end for
return 𝑤𝑖+1 to server

48

Assumption 3 (Bounded gradients). I assume that each client has a bounded gradient by 𝐺,

leading to: ∃𝐺 > 0,∀𝑛,∀𝑤, ‖∇𝐹𝑛(𝑤)‖ ≤ 𝐺.

Assumption 4 (Finite variance). I assume a global bound on the variance of the gradient

estimate of each individual client, meaning that: ∃𝜎 > 0,∀𝑛,∀𝑤,E‖∇𝐹𝑛(𝑤)−∇𝑓𝑛(𝑤)‖2 ≤

𝜎2.

Lemma 1 (Bounded drift from client update, Appendix A, Lemma 3 of [79]). . Given

Assumptions 2, 3,4 there exists 𝐶 > 0 such that for any time step 𝑡 and 𝑥𝑡,∆𝑡 obtained from

Alg. 1, for any client 𝑛 ≤ 𝑁 :

E[‖∆𝑡 −∇𝐹𝑛(𝑤𝑡)‖2] ≤ 𝐶(𝜎2 + E[‖∇𝑓(𝑤𝑡)‖2])

This Lemma involves the aggregation at every step 𝑡 of the local client updates obtained

individually on each client. In particular, it does not depend on the server’s algorithm. Due

to this the proof from Appendix A, Lemma 3 of [79], which gives the explicit 𝐶, applies

directly.

The next proposition derives a rate of convergence on the masked gradient which is

similar to [79], and in the order of 𝒪(1
𝑇
).

Proposition 5 (Convergence analysis). Given Assumptions 2, 3,4. If 𝜂𝑔 ≤ 1
2𝐿

, then, one has

the following rate over the masked gradients given by the FedAVG algorithm in Alg. 1:

E[min
𝑡<𝑇
‖𝑏⊙∇𝑓(𝑤𝑡)‖2]

≤ 2𝐿

(︂
𝑓(𝑤0)− 𝑓(𝑤𝑇)

𝑇
+ 𝐶𝜂𝑔

(︀
𝜎2 +𝐺2

)︀)︂

Proof. I consider the optimization path given by Alg 1. Let us write ∆̃𝑡 = 𝑏𝑡 ⊙∆𝑡. First, I

note that given that 0 ≤ 𝑏𝑗𝑡 ≤ 1, I get ‖∆̃𝑡‖ ≤ ‖∆𝑡‖. Next I follow the approach of [10] for

49

obtaining optimal non-convex bounds. Each 𝑓𝑛 is 𝐿-smooth, thus:

𝐹𝑛(𝑤𝑡+1)

≤ 𝐹𝑛(𝑤𝑡) + ⟨∇𝐹𝑛(𝑤𝑡), 𝑤𝑡+1 − 𝑤𝑡⟩+
𝐿

2
‖𝑤𝑡+1 − 𝑤𝑡‖2

= 𝐹𝑛(𝑤𝑡)− 𝜂𝑔⟨∇𝐹𝑛(𝑤𝑡), 𝑏𝑡 ⊙∆𝑡⟩+
𝐿

2
‖𝑏𝑡 ⊙∆𝑡‖2

≤ 𝐹𝑛(𝑤𝑡)− 𝜂𝑔⟨∇𝐹𝑛(𝑤𝑡), 𝑏⊙∆𝑡⟩+
𝐿

2
𝜂2𝑔‖𝑏𝑡 ⊙∆𝑡‖2

Averaging over 1 ≤ 𝑛 ≤ 𝑁 and conditioning over ℱ𝑡 leads to:

E[𝑓(𝑤𝑡+1)|ℱ𝑡]

≤ 𝑓(𝑤𝑡)− 𝜂𝑔⟨∇𝑓(𝑤𝑡), 𝑏𝑡 ⊙∆𝑡⟩+
𝐿

2
𝜂2𝑔‖𝑏𝑡 ⊙∆𝑡‖2

= 𝑓(𝑤𝑡)− 𝜂𝑔⟨∇𝑓(𝑤𝑡), 𝑏𝑡 ⊙ (∇𝑓(𝑤𝑡)−∇𝑓(𝑤𝑡) + ∆𝑡)⟩

+
𝐿

2
𝜂2𝑔‖𝑏𝑡 ⊙∆𝑡‖2

Now, I use the inequality: ⟨𝑎, 𝑏⟩ ≤ ‖𝑎‖‖𝑏‖ ≤ 1
2
(‖𝑎‖2 + ‖𝑏‖2) and noting the masking can

be seen as multiplication by diagonal matrix, I obtain:

⟨∇𝑓(𝑤𝑡), 𝑏⊙ (∇𝑓(𝑤𝑡)−∆𝑡)⟩

=⟨𝑏⊙∇𝑓(𝑤𝑡),∇𝑓(𝑤𝑡)−∆𝑡⟩

≤ 1

2
‖𝑏⊙∇𝑓(𝑤𝑡)‖2 +

1

2
‖∇𝑓(𝑤𝑡)−∆𝑡‖2 .

From the Bounded gradients and Lemma 1, I get:

E[‖∇𝑓(𝑤𝑡)−∆𝑡‖] ≤ 𝐶(𝜎2 + E[‖∇𝑓(𝑤𝑡)‖2]

≤ 𝐶(𝜎2 +𝐺2)

50

Since 0 ≤ 𝑏𝑗 ≤ 1, I get:

−∇𝑓(𝑤𝑡)
𝑗 × 𝑏𝑗𝑡 ×∇𝑓(𝑤𝑡)

𝑗 ≤ −(𝑏𝑗)2(∇𝑓(𝑤𝑡)
𝑗)2 ,

which implies that:

−⟨∇𝑓(𝑤𝑡), 𝑏⊙∇𝑓(𝑤𝑡)⟩ ≤ −‖𝑏⊙∇𝑓(𝑤𝑡)‖2

Taking the expectation, and summing, I have:

1

2
(𝜂𝑔 − 𝐿𝜂2𝑔)

𝑇−1∑︁
𝑡=0

E[‖𝑏⊙∇𝑓(𝑤𝑡)‖2]

≤ 𝑓(𝑥0)− 𝑓(𝑥𝑇) + 𝜂𝑔𝑇𝐶(𝜎2 +𝐺2)

In particular, this implies for a learning rate 𝜂𝑔 = 1
2𝐿

small enough such that 𝜂𝑔 − 𝐿𝜂2𝑔 =

1
2𝐿

> 0

E[min
𝑡<𝑇
‖𝑏⊙∇𝑓(𝑤𝑡)‖2]

≤ 2𝐿

(︂
𝑓(𝑤0)− 𝑓(𝑤𝑇)

𝑇
+ 𝐶𝜂𝑔

(︀
𝜎2 +𝐺2

)︀)︂

I now observe that under assumptions similar to those proposed in [74], the distribution

of updates will match the true underlying distribution.

Proposition 6 (Mask stability). Denote 𝛿, 𝛿𝑛 the r.v. corresponding respectively to a coordi-

nate of ∆,∆𝑛. Furthermore consider 𝛿 the r.v. for each coordinate of ∆̃, where ∆̃ = 𝑏⊙∆.

Assume that 𝛿𝑛 is 𝜎-subGaussian, that the 𝛿𝑛 are mutually independent and write 𝜇𝑛 = E[𝛿𝑛].

If 1
𝑁
card({𝑛|𝜇𝑛 > 0}) > 𝜏 , then, with probability 1−𝒪

(︂
𝑒−

(inf𝜇𝑛>0 𝜇𝑛)2

𝜎2

)︂
, I obtain 𝛿 = 𝛿 .

Proof. I show a lower bound on 𝛿𝑛. With probability 1− 𝑒−
𝑡2

𝜎2 , I get:

|𝛿𝑛 − 𝜇𝑛| < 𝑡 (3.4)

51

Table 3.1: Average in-distribution test performance(%) over the last 10 communication rounds of
FedAVG, FedProx, SCAFFOLD, FedAdam, FedYogi and their GMA versions on i.i.d and non-iid
distributions of MNIST, FMNIST, FEMNIST, and CIFAR-10. The best result among AVG and GMA
versions of each algorithm and dataset is shown in bold.

Dataset
(Model)

FedAVG FedProx SCAFFOLD FedADAM FedYogi
AVG GMA AVG GMA AVG GMA AVG GMA AVG GMA

MNIST
(LeNet)

IID 99.1 99.16 99.13 99.17 99.13 99.21 98.71 98.88 98.71 98.88
Non-IID 98.9 98.87 98.78 98.88 99.01 98.96 98.48 98.6 98.54 98.9

FMNIST
(LeNet)

IID 89.14 90.52 90.07 91.39 90.04 90.77 88.62 90.41 88.58 90.02
Non-IID 88.1 88.38 87.61 87.7 87.67 88.31 86.8 87.28 86.61 87.5

FEMNIST
(LeNet)

IID 99.7 99.68 99.44 99.5 99.6 99.62 99.5 99.75 99.71 99.69
Non-IID 94.2 96.04 95.18 95.61 95.12 94.88 95.82 97.26 95.6 96.67

CIFAR-10
(ResNet)

IID 87.3 87.61 87.18 87.5 86.58 86.72 86.9 87.7 87.53 87.78
Non-IID 83.25 83.95 83.87 84.4 84.01 85.36 83.53 84.84 83.17 84.55

Let’s thus pick 𝑡 = inf{𝜇𝑛>0}
𝜇𝑛

2
. By considering the intersection of those events, it implies

that with probability at least 1− 𝑒−
𝑡2

𝜎2 , 𝛿𝑛 > 𝜇𝑛 − 𝜇𝑛

2
= 1

2
𝜇𝑛 > 0. Consequently, the mask

is equal to 1 and 𝛿𝑛 = 𝛿𝑛. Now, I can note that inf𝜇𝑛>0 𝜇𝑛 > inf𝜇𝑛 ̸=0 |𝜇𝑛|, which allows to

conclude the proof.

Informally I can see that if 𝑤𝑡 is far from a local minimum then the masked gradient

𝑏𝑡 ⊙∆𝑡 is likely to not be equal to 0 thanks to Prop 5.6. Thus, Prop 5.5 suggests that the

norm of the gradient is decreasing.

3.5 Experiments

In this section, I show empirically that the proposed GMA tends to outperform standard ag-

gregation (AVG), converging at similar or better than standard aggregation, while enhancing

the global model generalization. I observe this for multiple FL algorithms with respect to

multiple datasets and data distributions (i.i.d and non-iid). Evaluations were conducted on

in-distribution settings, real-world, and OOD test datasets.

52

(a) Final shared model by 𝜖 privacy loss pa-
rameter.

(b) Per protocol iteration by 𝜖 and client
count.

Figure 3-1: (a) Test accuracy vs. Number of selected clients in the federated network. (b) Test
accuracy vs. number of local epochs per client in each communication round. The experiment was on
non-iid distributed FMNIST using a LeNet model. In all cases, GMA outperforms naive averaging.

Implementation I conduct experiments on gradient masked and naive versions of non-

adaptive federated optimizers like FedAVG [64], FedProx [59], and SCAFFOLD [45] and

adaptive optimizers like FedADAM and FedYogi [79] across a variety of datasets. Experi-

ments involve both i.i.d and non-iid distributions of data. The heterogeneity simulated is

label distribution skew similar to that in [64]. All algorithms were trained until convergence

and the average test accuracies over the last 10 communication rounds are reported. All

algorithms were implemented on Pytorch.

Hyperparameters An SGD optimizer with a momentum (𝜌 = 0.9) and cross-entropy

loss was used to train each client for 𝐸 = 1, 3, 5, 10 or 20 client epochs before aggregation

at the server in all our experiments unless specified. For experiments with non-convex

objectives, LeNet architecture was employed at all clients and at the global model for all

datasets except CIFAR-10, which used a ResNet18 with group norm [79]. The momentum

parameters of adaptive federated optimizers are fixed at 𝛽1 = 0.9 and 𝛽2 = 0.99 as per [79].

For each of the considered algorithms I tune the local client model learning rates and global

model learning rates to consider the best performances of the algorithms. More details on

the hyperparameters used are given in Appendix B.3.7.

53

3.5.1 In-Distribution Evaluation

This is the most widely considered setting in the FL literature. The global model is evaluated

on a test dataset sampled from data at all clients irrespective of the data distribution across

clients. This test dataset is a representation of all participating clients. The datasets used

for in-distribution testing are MNIST [54], Fashion MNIST [97], FEMNIST (Federated

EMNIST) [15, 21], and CIFAR-10 [51], distributed i.i.d and non-iid across clients.

Table B.4 shows the test performance of the algorithms and their GMA versions for

the case 𝐸 = 1 and 𝑁 = 10. It was observed that in a majority of the cases across

algorithms and datasets, GMA outperforms naive averaging. The difference in improvement

is more significant when the data distribution is non-iid. The major reason for this is that

gradient masking is capable of focusing on learning the invariances even under increased

spuriousness of non-iid data distribution. Across datasets, I can observe that the improvement

with gradient masking is more prominant on CIFAR10 and FMNIST, which are relatively

complex datasets than other datasets considered. Furthermore, in Appendix B.3.6 I show an

ablation comparing GMA and AVG when the same client and global rates are used, showing

that for nearly any hyperparameter choice GMA outperforms AVG, suggesting it is highly

robust to the choice of hyperparameters.

Using the non-iid distributed FMNIST data I further study how the performance is

affected as the number of clients grows and the number of local epochs increases. The

results are shown in Figure 3-1a and Figure 3-1b. It can be observed that gradient masking

increasingly outperforms naive averaging in these more complex scenarios. In Figure 3-1a

I observe that with increasing number of clients, difference between the test accuracies

corresponding to GMA and naive averaging increases. This validates the enhanced invul-

nerability of gradient masking to the bias that could be induced by one or more clients in

the network. In Figure 3-1b I observe increasing local epochs beyond 3, the test accuracy

decreases due to client drift [45]. Gradient masking is however much more robust in this

(challenging) scenario.

54

Table 3.2: Real-World and Out-of-Distribution Evaluations. Average test performance(%) over
the last 10 communication rounds of FedAVG, FedProx, SCAFFOLD, FedAdam, FedYogi and
their GMA versions on real-world distribution of FEMNIST and i.i.d and non-iid distributions of
FedCMNIST and FedRotMNIST. The best result among AVG and GMA of each algorithm is shown
in bold.

Dataset
(Model)

FedAVG FedProx SCAFFOLD FedADAM FedYogi
AVG GMA AVG GMA AVG GMA AVG GMA AVG GMA

FEMNIST
(LeNet)

Real-World 99.34 99.4 99.23 99.31 98.88 99.3 99.12 99.16 99.17 99.18

FedCMNIST
(LeNet)

IID 89.73 90.07 90.15 90.12 90.06 90.93 89.88 90.22 89.91 90.03
Non-IID 85.92 88.59 85.62 90.02 83.22 85.57 87.06 88.93 85.33 88.04

FedRotMNIST
(LeNet)

IID 98.69 98.87 98.67 98.86 97.78 98.85 98.1 98.39 98.52 98.44
Non-IID 96.18 96.78 96.87 97.29 91.28 94.13 95.11 96.56 95.51 97.38

3.5.2 Real-World Evaluation

Though in-distribution evaluation is the most common global model evaluation in FL, it

does not capture some key aspects of practical settings. In the practical world, the data

across clients is heterogeneous and the clients which deploy the global model (including

test clients, non-participating clients, and new clients in the federated network) can have

data distribution different from that at any train clients. Hence, evaluating on samples from

data at train clients is less meaningful in a federated setting with these additional clients

containing OOD data. The practical setting can be simulated by using a realistic federated

data distribution provided by Federated EMNIST [15]. Specifically I use test data consisting

of data from the same domain as the train dataset across clients but from one user (or a set

of users) not included in the set of train clients. The test performance of the algorithms and

their gradient masked alternatives are given in Table 3.2. I observe that gradient masking

outperforms naive averaging. In the next section I consider another type of more systematic

OOD situation to further evaluate GMA.

55

Figure 3-2: FedAvg Figure 3-3: FedProx Figure 3-4: Scaffold

(a) FedAdam (b) FedYogi

Figure 3-5: Train accuracy and test accuracy vs. communication rounds of gradient masked and naive
averaging versions of the algorithms on FedCMNIST distributed non-iid across clients. I observe
that GMA versions generalize better in all algorithms.

3.5.3 Out-of-Distribution Evaluation

A more complex OOD test can be implemented to better understand the performance of

gradient masking in a worst case scenario. For this I induce a spurious mechanism in the

train clients and in the test besides the class label based heterogeneity for non-iid data

distribution. The global model would be tested on a dataset having a spurious mechanism

that was not present in any of the train clients.

I use FedCMNIST, a federated multiclass version of CMNIST [4]. The invariant

mechanism here is the digit. There also exists a spurious mechanism marked by a color

given to the numbers. The color is digit specific to induce correlation to the label. I also

use FedRotMNIST, inspired by [30], where an angle of rotation is the spurious mechanism.

A more detailed discussion on the datasets is given in Appendix B.2. The performance of

the various algorithms and their gradient masked averaging counterparts on these OOD test

56

datasets is given in Table 3.2. It is to be noted that across all datasets, data distribution, and

algorithms gradient masking outperforms naive averaging. Figure 2 shows train and test

curves of the algorithms and their gradient masked alternatives on non-iid distribution of

FedCMNIST. It is to be noted that although GMA train accuracies are less than or equal to

that of naive averaging, the GMA test accuracies are higher. This indicates that gradient

masked versions generalize better than the naive versions of the algorithms.

3.5.4 Convex Objective

To further understand the performance of gradient masking in the convex setting, I exper-

iment with MNIST and FedAVG on both i.i.d and non-iid data distributions and it was

observed that GMA outperforms naive averaging in the non-iid setting. A logistic regression

model with SGD with momentum optimizer was used at the clients for these experiments.

When data distribution was i.i.d, GMA was converging to an average (over last 10 communi-

cation rounds) of 92.5% test accuracy while naive averaging obtains to 92.4%. Furthermore,

when the data distribution across clients was non-iid, the enhancement in performance was

more significant with gradient masking. While naive averaging was converging to 87.0% test

and 92.0% train, while GMA reached 88.5% test and 92.2% train. Further demonstrating

GMA can generalized better in the non-iid case.

Applications to privacy [89] suggests that algorithms focusing on learning the causal

mechanisms provide stronger privacy guarantees in certain cases, for example they can

be more robust to membership inference attacks and model inversion attacks. I make

a preliminary assessment of the privacy benefits of the proposed GMA on membership

inference attacks. Specifically, I simulate the membership inference adversarial attacker

model on the naive averaging and gradient masked FedAVG models on Non-IID CIFAR-10

(ResNet) that reported the performances shown in Table B.4. I observe that the attack

accuracy with respect to the GMA model is 55% while that of naive averaging model is

57%. This suggests that gradient masking can potentially enhance robustness to membership

inference attacks. More details is given in Appendix B.4.3.

57

3.6 Summary

In this chapter, I proposed a new aggregation scheme applicable to a wide variety of feder-

ated learning algorithms. The proposed method, gradient masking enhances generalization

performance of the global model in FL by focusing on learning the invariances across

clients. The simple masking outperforms earlier naive averaging versions across a variety of

algorithms and datasets. The theoretical analysis shows the convergence of the proposed

masking algorithm and the stability of the proposed mask. Future directions include explo-

ration of masks incorporating magnitude and other methods to better capture the invariances,

thus leading to better generalization at the global model.

58

Chapter 4

Personalized and

Communication-Efficient FL

High communication costs, data heterogeneity across clients, and lack of personalization

techniques hinder the development of FL. In this chapter, I propose FedLTN, a novel

approach motivated by the well-known Lottery Ticket Hypothesis to learn sparse and

personalized lottery ticket networks (LTNs) for communication-efficient and personalized

FL under non-identically and independently distributed (non-IID) data settings. Preserving

batch-norm statistics of local clients, postpruning without rewinding, and aggregation of

LTNs using server momentum ensures that our approach significantly outperforms existing

state-of-the-art solutions. Experiments on CIFAR-10 and TinyImageNet datasets show

the efficacy of our approach in learning personalized models while significantly reducing

communication costs.

4.1 Introduction

Vanilla FL constructs a server model for all clients by averaging their local models, while

postulating that all clients share a single common task. However, this scheme does not adapt

the model to each client. For example, platforms like Youtube and Netflix require a unique

personalized model for each of their clients. Most FL algorithms focus on improving the

average performance across clients, aiming to achieve high accuracy for the global server

59

model. However, certain clients might perform poorly while others perform extremely well.

This is not the ideal scenario for a fair and optimal FL algorithm. When deployed on edge

devices in the real world, local test accuracy is instead a more important metric for success.

In addition to the above-mentioned personalization problem, sending and receiving

model parameters is a huge bottleneck in FL protocols as it could be expensive for resource-

constrained clients. It is important to reduce the total number of communication rounds

and the size of the packets that are transmitted during every round. Unfortunately, there

is usually a tradeoff between model accuracy and communication cost accrued during the

federation process. For instance, techniques that speed up accuracy convergence or decrease

the model size may result in a small decrease in accuracy.

While there have been numerous papers that address each of these challenges individually

(See Section 4.1.1 for related work), finding one approach that provides solutions for all of

them has proven to be difficult. LotteryFL [56] provided the first attempt at addressing these

issues in one protocol. It is motivated by the Lottery Ticket hypothesis (LTH), which states

that there exist subnetworks in an initialized model that provides the same performance as

an unpruned model. Finding these high-performing subnetworks are referred to as finding

winning lottery tickets. LotteryFL obtains personalized models by averaging the lottery

tickets at every federated round. This also improves the communication costs as only the

lottery tickets are communicated across the client and server instead of the whole model.

However, LotteryFL fails to achieve the same performance in terms of pruning as obtained

in Lottery Ticket Hypothesis (LTH). LotteryFL models are pruned only up to 50% compared

to 90% or more in the non-federated LTH setting. This is due to the fact that pruning in

LotteryFL takes a lot of time – the authors claim that it takes around 2000 federated rounds

to prune around 50% of the model.

The slow pruning process of LotteryFL presents major drawbacks. In many experimental

settings, local clients have difficulty reaching the necessary threshold for accuracy to prune

for most rounds. On more difficult tasks, some clients may never reach the threshold accuracy.

Consequently, they fail to find winning lottery tickets and do not reach personalized and

more cost-efficient models. To avoid this in the LotteryFL approach, the accuracy threshold

must be lowered, which subsequently lowers the efficacy of finding the right lottery ticket

60

networks for each client.

Moreover, LotteryFL uses evaluation measures such as average test accuracy to compare

their work with baselines. I argue that these measures can easily misrepresent the perfor-

mance of a federated training paradigm. In FL, it is also essential that each client achieves a

fair performance, an aspect that is not captured by the average test accuracy. I introduce an

evaluation metric based on the minimum client test accuracy to solve this problem. I find

that LotteryFL sometimes achieves a lower minimum client accuracy than FedAvg.

To address the above-mentioned challenges, I present FedLTN, a novel approach mo-

tivated by the Lottery Ticket Hypothesis to learn sparse and personalized Lottery Ticket

Networks (LTNs) for communication-efficient and personalized FL under non-IID data

settings.

4.1.1 Related Work

FedAvg is a simple and commonly used algorithm in federated learning proposed in the

seminal work of [64]. Most existing FL algorithms are derived from FedAvg where the

goal is to train a server model that tries to perform well on most FL clients. However,

FL still faces numerous challenges, among which convergence on heterogeneous data,

personalization, and communication cost are the most pressing problems.

Performance on heterogeneous (non-IID) data

FedAvg is successful when clients have independent and identically distributed data. How-

ever, in many real-world settings, data is distributed in a non-IID manner to edge clients

and hence leads to client drift [44]. That is, gradients computed by different clients are

skewed and consequently local models move away from globally optimal models. This

substantially affects the performance of FedAvg as simple averaging leads to conflicting

updates that hinder learning, especially in scenarios where clients have a large number of

local training steps and a high degree of variance in their data distributions. Under such

scenarios, introducing adaptive learning rates [78] and momentum [38, 99, 98, 73, 46] to the

server aggregation process are beneficial as they incorporate knowledge from prior iterations.

61

Gradient masking [88] and weighted averaging [81, 101] of models have also been shown

to be useful.

Personalization

Under the traditional FL setting, a ”one-fit-for-all" single server model is trained and updated

by all clients. However, this model may underperform for specific clients if their local

distribution differs drastically from the global distribution. For example, if there is extreme

non-IID data distribution skew amongst clients, the server model trained through FL may

only reach a mediocre performance for each local test set. Another failure scenario occurs

when there are uneven data distributions amongst clients. In these cases, the federated server

model may learn to perform well only on a subset of data. Clients with data distributions

that are different from this subset would then have subpar performance. Consequently, it is

important to evaluate FL frameworks not only for their global performance but also for their

average and worst-case (minimum) local performance.

A variety of papers have aimed to introduce personalized FL, where each client can

learn a model more properly finetuned based on their data distribution. In [29], the authors

apply the use of a model-agnostic meta-learning framework in the federated setting. In this

framework, clients first find an initial shared model and then update it in a decentralized

manner via gradient descent with different loss functions specific to their data. Other papers

have proposed similar finetuning approaches based on the use of transfer learning [93, 62].

Another category of personalization techniques relies on user clustering and multi-task

learning [85, 48]. These techniques cluster together clients with similar data distributions

and train personalized models for each cluster. Then, they use multi-task learning techniques

to arrive at one model that may perform well for all clients.

Lastly, preserving local batch normalization while averaging models have been used

to address the domain and feature shift non-IID problems [19, 60, 18, 39]. Since these

batch normalization layers are unique to each client, they help personalize each model to

the underlying local data distribution.

However, [53] mentions drawbacks to these various personalization approaches in the

FL setting. Namely, most of these approaches incur increased communication costs, such as

62

a greater number of federation rounds – both transfer learning and user clustering techniques

require clients to learn a shared base model first. Furthermore, many personalization

approaches result in greater model sizes, such as the addition of batch normalization layers.

In our work, clients can learn personalized lottery ticket networks (LTNs) similar to

user clustering techniques without the overhead of communication costs. I show in this

chapter that by preserving local batch norm properties while learning these LTNs, clients

can improve their accuracy (i.e. achieve better personalization) while compressing model

sizes.

Communication Cost

Communication cost is a huge problem for FL as clients frequently communicate with the

server. There are three major components of cost during federation – model size, gradient

compression (limiting the data needed to be transmitted between each local edge device

and the server), and an overall number of rounds of the federation. Model compression

techniques [6, 2, 37] like quantization, pruning, and sparsification are usually taken from

the classic single centralized setting and applied to FL. In particular, sparse models not only

lead to lower memory footprints but also result in faster training times.

For gradient compression, [47, 87, 2] have proposed various update methods to reduce

uplink communication costs. These include structured updates, which restrict the parameter

space used to learn an update, and sketched updates, which compress model updates through

a combination of quantization, rotations, subsampling, and other techniques.

Lottery Ticket Hypothesis

The Lottery Ticket Hypothesis (LTH) [31] states that there exists a subnetwork in a randomly

initialized network, such that the subnetwork when trained in isolation can equal the perfor-

mance of the original network in atmost the same number of iterations. The steps involved

in LTH usually include the following: First, the randomly initialized model is trained for a

few iterations. Second, the model is pruned based on the magnitude of its weights. Then,

the unpruned weights are reinitialized to the weights at the start of the training (rewinding to

round 0). This process continues iteratively until the target pruning is achieved.

63

Though LTH initially showed promising results only for small datasets and network

architectures, recent works have expanded LTH to more complex networks and datasets.

[32] notably demonstrates better results by rewinding weights to a previous iteration rather

than that of the initial iteration (round 0).

4.2 FedLTN: Federated Learning for Sparse and Personal-

ized Lottery Ticket Networks

In this section, I present the motivation and reasoning behind various components of our

FedLTN framework that achieve higher degrees of personalization, pruning, and commu-

nication efficiency in finding lottery ticket networks (LTNs). These components focus on

improving the averaged server LTN to inform better localized performance in terms of

accuracy and memory footprint. Along with FedLTN, I propose Jump-Start, a technique for

drastically reducing the number of federated communication rounds needed to learn LTNs:

Algorithm 4-2 (FedLTN): To learn complex image classification tasks with greater non-

IID feature skew, FedLTN utilizes batch-norm preserved LTN, postpruning, no rewinding,

and accelerated global momentum. This combination uses batch-norm preserved averaging

to find a server LTN that helps individual clients learn without imposing on their personalized

accuracy. Postpruning without rewinding parameters significantly increases the rate of

pruning and also helps networks find more personalized LTNs. Finally, our accelerated

aggregation of LTNs helps speed up convergence.

Algorithm 4-2 (FedLTN with Jump-Start): Jump-Start can be utilized to skip the com-

munication costs of the first few rounds of training by replacing them with local training,

without causing a loss in local test accuracy. This technique is especially useful for scenarios

where there are resource constraints on local client devices. One client can be first trained

and pruned, then all other clients transfer-learn off this smaller model.

64

Figure 4-1: FedLTN

65

4.2.1 Personalization

Batch normalization-preserved LTN:

In order to personalize LTNs, I introduce a batch normalization-preserved protocol. During

the federated aggregation process, batch normalization (BN) layers are not averaged while

computing the server model nor uploaded/downloaded by local clients. Since BN layers

have been commonly used for domain shift adaptation in single client settings, these layers

help personalize each client to its individual data distribution. Preserving BN layers during

aggregation leads to higher personalized accuracy by avoiding conflicting updates to clients’

individualized BN. It also decreases communication costs as batch normalization layers are

not transmitted to the server.

4.2.2 Smaller memory footprint / Faster pruning

Postpruning:

As reported in Section 4.1, one problem with the LotteryFL’s naive approach in applying

LTH to FL is that the server model sent back to clients each round suffers drastic losses

in accuracy before any local training. Moreover, each client decides to prune the model

immediately after receiving it from the server, prior to any local training. If the server

model reaches a certain threshold for the client’s local test accuracy, they prune 𝑟𝑝% of the

parameters that have the least L1-norm magnitude. For clients with relatively low levels of

pruning, this means that most of the parameters pruned will be the same amongst all the

clients that decide to prune that federated round. This approach hopes that only clients with

the same archetype (who have the same data distribution) will prune on the same round.

However, due to the above-stated challenges in slow prune rates, LotteryFL sets the accuracy

threshold to be 50% for clients trained on a binary classification problem. Consequently,

models merely need to be slightly better than random chance – which means that clients

of different archetypes pruning on the same round (on mostly the same parameters) are

a common occurrence. This process hinders the degree of personalization achieved via

LotteryFL.

66

Here, I present an alternative pruning protocol. Instead of pruning before any local

training, I prune the client model based on the magnitude of the weights after 𝑛 local_epochs

of training. This speeds up the pruning process since it is much more likely for the validation

accuracy threshold to be reached. Furthermore, postpruning actively encourages diversity in

pruned parameters, as each client’s parameters will be different after they locally train. Since

a freshly pruned model needs to be retrained, I stipulate that if a client prunes it retrains for

another 𝑛 epochs.

Rewinding:

Conventionally, pruned models rewind weights and learning rate to a previous round 𝑇 .

LotteryFL rewinds to 𝑇 = 0 (global initial model). Although in the Lottery Ticket Hy-

pothesis rewinding is needed to avoid convergence to a local minima in the loss function, I

hypothesize that this isn’t needed during federation, since averaging across multiple models

helps mitigate overfitting. That is, instead of resetting all parameters back to the global_init

model after pruning, the non-pruned weights stay the same.

Aggregation of LTNs using server momentum:

One of our main contributions is to fasten the convergence of each client model. This is

crucial to obtain a performance greater than the threshold so that the client model can prune

at a faster rate. This, in turn, reduces the number of communication rounds and hence the

overall communication cost, as fewer parameters have to be sent each round. In our problem

setting, our server ‘model’ is an aggregate of all the clients’ winning ticket networks. In

order to improve the convergence speed, the server sends an anticipatory update of the ticket

networks. I outline the steps Algorithm 4-2 follows to achieve faster convergence.

• At each round, the server sends an accelerated update (𝜃𝑡) to each of the clients. This

means that the clients receive an accelerated winning lottery ticket update at every

round. This initialization helps each client to train faster. More formally, I have in the

67

server, for round 𝑡:

𝜃𝑡+1
𝑔 = 𝜏

∑︁
𝑘

LTNs(𝜃𝑡𝑘) + (1− 𝜏)(𝜃𝑡𝑔 − 𝜆∆𝑡)

∆𝑡+1 = 𝜃𝑡+1
𝑔 − 𝜃𝑡𝑔

where 𝜏 is an hyperparameter.

• The server sends the corresponding parameters to each of the clients based on the

client mask, I have for client 𝑘 at iteration 0:

𝜃𝑡+1
𝑘0 = 𝑚𝑘.𝜃

𝑡+1
𝑔

• The initial weights of the client is used in the regularization term while training client

to align the local gradients with the accelerated global updates. For client 𝑘 at iteration

𝑖, I have

𝐿(𝜃𝑡+1
𝑘𝑖) = 𝑙(𝜃𝑡+1

𝑘𝑖) + 𝛽‖𝜃𝑡+1
𝑘𝑖 − 𝜃𝑡+1

𝑘0 ‖

FedLTN with Jump-Start

In real-world FL, conducting thousands of communication rounds may be infeasible due to

unreliable communication with edge clients. Furthermore, clients with resource-constrained

devices may only be able to locally store and train a model after a certain degree of

sparsification already takes place. I present FedLTN with Jump-Start in Algorithm 4-2 as an

extension of FedLTN to address these challenges

Before federated training, 𝑘 clients (usually, 𝑘 = 𝑁 all clients) locally train for 𝑇𝑗𝑢𝑚𝑝

rounds without communicating with the server nor with each other. During local training,

they prune to a small degree (e.g. 30%). Then, I choose the model with the highest validation

accuracy from the local training Jump-Start and send it to all clients as a model for transfer

learning. Then, FedLTN begins with much fewer communication rounds required. Jump-

Start is motivated by the work of [66], which found that an LTN trained on one image

68

Figure 4-2: FedLTN-JumpStart

classification dataset can be finetuned to other datasets without much loss in accuracy.

4.3 Experiments

I evaluate the performance of FedLTN against different baselines in several different types

of experiments, where I vary the task (image classification), environment setting (large

vs. small number of clients), heterogeneity settings (non-IID distributions), and client

participation rates.

4.3.1 Experiment Setup

Datasets

I use the CIFAR-10 and Tiny ImageNet datasets for our experiments. To simulate the

non-IID scenario, each client consists of 2 classes and 25 datapoints per class for training, 25

datapoints for validation, and 200 datapoints as the test set. For Tiny ImageNet, I randomly

sample 10 classes from the 200 classes as our dataset. To simulate a more challenging

scenario, I also consider the Dirichlet non-IID data skew. Each client consists of all 10

classes, with the proportions of data volume per class based on the Dirichlet distribution.

69

Compared Methods:

FedAvg: This baseline indicates performance of an unpruned federated model in our settings.

FedAvg computes the federated model by averaging the weights (including BN layers) of

all the participating clients’ models at every round.

FedBN: FedBN proposes an improvement over FedAvg to obtain better personalization for

clients. The server model in FedBN does not aggregate the batch-norm parameters of the

participating clients. I use this as a baseline to compare our personalization performance.

LotteryFL: LotteryFL presented the first attempt of using the Lottery Ticket Hypothesis

to achieve personalized submodels for each client. I use this as a baseline to analyze the

performance of a pruned federated model.

Model architecture

I utilize ResNet18 as the standard architecture for our experiments. Since LotteryFL does

not account for batch normalization (BN) layers, I also conduct experiments on a custom

CNN model without BN layers on CIFAR-10 for a baseline comparison. Results for the

high-client setting is shown below, whereas custom CNN results for the low-client setting

and other implementation details can be found in our supplementary material.

Hyperparameters

I set the hyperparameters local epochs (E) = 3, batch size (B) =8, 𝜏 = 0.5, accuracy threshold

(𝑎𝑐𝑐𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) = 0.6, prune step(𝑟𝑝) = 0.1 for FedLTN. For LotteryFL, I use the same

hyperparameters the authors mentioned in [56]. I fix the number of communication rounds

to 50 for the low-client (10) setting and 2000 rounds for the high-client (100) setting. I

denote the models with the target pruning rate within parenthesis. For example, FedLTN(0.9)

refers to FedLTN paradigm with 90% as the target pruning percent. For experiments using

FedLTN with Jump-Start, I use 25 Jump-Start and 25 FedLTN rounds with 𝐾 = 50%

participation and 10% 𝑟𝑝 prune step. I set a max prune of 30% for Jump-Start and 90% for

FedLTN.

70

Evaluation Metrics

To evaluate the personalization achieved by our models, I compute the average classification

accuracy achieved by each client model on its corresponding test set. Although average test

accuracy gives an indication of overall test performance across all clients, it is also important

to measure the minimum client test accuracy. This is to ensure that all clients participating

in the federated training paradigm learn a personalized LTN that performs well on their

local data distribution. Hence, I also use the minimum client test accuracy as an evaluative

measure. To compute communication costs, I sum the data volume communicated at every

round during the training process.

4.3.2 Evaluation

I demonstrate the success of FedLTN in learning personalized, sparse models in this section.

I analyze the test accuracy performance, maximum pruning achieved, communication costs,

and the convergence speed of FedLTN with baselines. I report the results of all the baselines

and our method in Table 4.1.

Pruning:

In our experiments, I evaluate FedLTN’s performance while using different target pruning

ranging from 10-90%. As shown in Table 4.1, I can see that our method improves average

test accuracy despite pruning 40% more parameters compared to baseline LotteryFL. Our

pruning achieves substantial reductions in memory footprint as seen in Table 4.2. This

degree of sparsity is important as it makes it feasible to train on even resource-constrained

edge devices. I also compare the rate of pruning between our method and the baselines. As

seen in figure 4-3, I observe that our method prunes around 70% in the first 20 rounds, while

LotteryFL(0.9) prunes around 10%. Our postpruning method can achieve larger pruning

rates quickly in a few rounds, even though I set a higher accuracy threshold than LotteryFL.

71

Dataset Algorithm
Avg Test Min Test Comm.
Acc (%) Acc (%) Cost (MB)

FedAvg 72.8 64.9 11,150.0

CIFAR-10

FedBN 78.72 65.75 11,137.5
LotteryFL(0.1) 72.0 56.3 10,613.95
LotteryFL(0.5) 75.8 52.5 8,675.7
FedLTN(0.1) 74.5 59.8 10,134.6
FedLTN(0.5) 81.1 61.5 6,563.3
FedLTN(0.9) 82.6 63.0 3,753.9

FedLTN(0.9; jumpstart) 82.2 64.8 1,846.0
FedLTN(0.9; rewind) 71.5 53.0 4,940.7

FedAvg 68.9 51.8 11,150.0
FedBN 73.0 55.5 11,137.5

TinyImageNet

LotteryFL(0.1) 72.6 41.3 10,370.7
LotteryFL(0.5) 71.3 50.8 6,885.5
FedLTN(0.1) 68.4 38.3 10,169.0
FedLTN(0.5) 73.3 50.0 6,885.5
FedLTN(0.9) 74.5 59.8 4,650.9

FedLTN(0.9; jumpstart) 83.1 61.8 1,778.4
FedLTN(0.9; rewind) 71.8 53.8 5,144.0

Table 4.1: Comparison of performance of FedLTN with all the baselines on the CIFAR-10 and Tiny
ImageNet datasets in the low-client setting with ResNet18. FedLTN(0.9; jumpstart) refers to 90%
target pruning with 25 rounds of Jump-Start and 25 rounds of FedLTN. Rewinding resets model
parameters to randomly initialized model in round 0. Bolded numbers represent best performance
and underlined numbers represent the second best.

72

Communication Costs:

Since our method prunes more than LotteryFL, the communication costs are 2.3x and

3x times lower than that of LotteryFL and FedAvg. As our method prunes faster than

LotteryFL, I send lower parameters during each communication round, reducing the overall

communication cost. I observe that the communication costs reduce even more when using

jumpstart. For example, with jumpstart, I obtain 4.7x and 6x lower communication costs

than LotteryFL(0.5) and FedAvg.

Personalization:

I analyze the level of personalization achieved by each client participating in FL. I consider

the average test accuracy across all clients, i.e the average of performance for each client

model on the test datasets. I find that our method achieves better accuracy than an unpruned

FedAvg baseline and 50% pruned LotteryFL baseline models. For example, in CIFAR-10,

FedLTN(0.9) achieves average test accuracy of 82.6% when compared to LotteryFL(0.5),

which achieves 75.8% and FedBN which achieves 78.72%. For both CIFAR-10 and TinyIm-

ageNet, FedLTN(0.9) with and without Jump-Start performs better than all the baselines,

even when pruning 40% more parameters.

I find that our method achieves the highest minimum test accuracy compared with all

the other baselines. In TinyImageNet, FedLTN(0.9) with 25 Jump-Start rounds achieves

59.8% minimum test accuracy compared to 50.8% in the same setting using LotteryFL(0.5).

I observe that while increasing the target pruning rate of the experiment, the overall test

accuracy increases. Our highest pruned models give the best overall test accuracy. This is

due to clients learning more personalized models as the pruning rate increases, which leads

to better test performance.

Convergence:

One of our objectives is to achieve faster convergence to facilitate faster pruning. Figure

4-3 shows the performance obtained by the clients on their validation set in each training

round. Our method converges faster than FedAvg and LotteryFL. This is due to the server

73

(a) (b)

Figure 4-3: Left (a): Comparision of validation accuracies at each round. I observe that our method
converges faster than other baselines. Right (b): Comparison of pruning rate at each round. our
method prunes around 70% in 20 rounds while baseline LotteryFL prunes around 10%.

Model Size of parameters at 90% prune (MB)

Custom CNN 0.031
ResNet18 4.46

Table 4.2: Memory footprint of 90% pruned model parameters.

broadcasting accelerated aggregated LTNs during each round. This anticipatory update and

the client initialization, along with the modified regularization term align the client gradients

to avoid any local minima. This boosts the convergence speed of our method compared to

the baselines.

Impact of number of clients on performance:

I run experiments to compare the performance of FedLTN in a high-client setting (100

clients) with low client participation of 5%. Table 4.3 shows the performance of FedLTN

compared with other baselines. I observe that FedLTN achieves the best average and

minimum local test accuracy. FedAvg performs the worst among all baselines. I also

note that FedLTN(0.9) achieves better performance than LotteryFL(0.5) even if FedLTN is

pruning 40% more parameters than the latter.

Impact of number of classes on performance:

I run experiments with each client consisting of all 10 classes in CIFAR-10. The data volume

of these classes is given by the Dirichlet distribution. The Dirichlet distribution is controlled

74

Setup Algorithm
Avg Test Min Test Comm.
Acc (%) Acc (%) Cost (MB)

CIFAR-10
FedAvg 50.6 42.0 2398.3

Custom CNN
LotteryFL(0.1) 75.1 47.5 2173.1

No BN Layers
LotteryFL(0.5) 74.9 51.3 1304.4

100 clients
FedLTN (0.1) 77.9 50.5 2166.1
FedLTN(0.5) 76.3 54.3 1254.7
FedLTN(0.9) 75.4 50.5 472.5

Table 4.3: Performance of FedLTN and other baselines on CIFAR-10 in the high-client setting with
100 clients over 2000 rounds.

Algorithm
𝛼 = 0.5 𝛼 = 0.7

Avg Test Min Avg Test Min
LotteryFL(0.5) 61.19 24.00 54.00 36.00
FedLTN(0.5) 67.20 40.00 56.00 40.00
FedLTN(0.9) 64.80 40.00 55.60 36.00

Table 4.4: Performance on the CIFAR-10 dataset with dirichlet 𝛼 = {0.5, 0.7}

by the parameter 𝛼. For low 𝛼 (close to 0) the data volume is heavily skewed towards one

particular class, while as 𝛼 increases (close to 1), the data volume is distributed in an iid

manner across all classes. Since our goal is to learn more personalized models, higher values

of 𝛼 pose a challenge. Table 4.4 shows the performance of FedLTN(0.9) and FedLTN(0.5)

compared with LotteryFL(0.5) for 𝛼 values of 0.5 and 0.7. As I can see, FedLTN(0.9) learns

better-personalized models for high values of 𝛼. For example, FedLTN(0.5) achieves 6%

more test accuracy than LotteryFL(0.5). I also observe that FedLTN(0.9) despite pruning

more parameters, is able to achieve better overall performance than LotteryFL(0.5). This

means that our method is capable of learning more personalized models for high values of 𝛼

when I have more number of classes.

Impact of rewinding on performance:

Table 4.1 shows that rewinding to round 0 after pruning leads to significant drops in

FedLTN’s accuracy to similar levels as LotteryFL. Moreover, rewinding leads to slower

pruning and thus convergence, as seen in our supplementary material.

75

Impact of Architecture on Performance:

When training on the custom CNN, our BN-preserved LTN aggregation cannot be applied

and leads to lower performance on sparser models in Table 4.3. Comparing the results

from Table 4.1 and the equivalent CIFAR-10 low-client experiment in the supplementary

material, BN-preserved LTN provides a major boost in our test accuracy (especially for

sparser models). Despite this, I see that FedLTN still performs better than LotteryFL in Table

4.3. On the other hand, I find that LotteryFL does not benefit from the additional BN layers

and greater model depth of ResNet18, which points to the efficacy of our BN-preserved

LTN aggregation.

Impact of Jump-Start on Performance and Communication Cost:

I observe that using Jump-Start drastically reduces the communication cost without any

compromise on the performance. For example, I see from Table 4.1 and the supplementary

material that FedLTN(0.9) achieves 74.5% on Tiny ImageNet, while FedLTN(0.9; jumpstart)

achieves 83.1% with up to 60% lower communication costs. This is due to the efficacy

of transfer learning from the best-performing model after local training. Consequently,

Jump-Start allows clients to skip the communication cost of the initial FL rounds.

4.4 Summary

The Lottery Ticket Hypothesis has shown promising results in reducing the model size

without loss of accuracy for models trained on a single client. In this chapter, I addressed

the most pressing challenges of applying LTH to the FL setting – slow model pruning and

convergence. I proposed a new framework, FedLTN, for learning Lottery Ticket Networks

via postpruning without rewinding, preserving batch normalization layers, and aggregation

using server momentum. FedLTN and FedLTN with Jump-Start achieve higher local test

accuracies, significantly accelerate model pruning, and reduce communication cost by 4.7x

compared to existing FL approaches.

76

Chapter 5

PrivacyFL: A Simulator for

Privacy-Preserving and Secure Federated

Learning

Setting up a federated learning environment, especially with security and privacy guarantees,

is a time-consuming process with numerous configurations and parameters that can be

manipulated. In order to help clients ensure that collaboration is feasible and to check that it

improves their model accuracy, a real-world simulator for privacy-preserving and secure

federated learning is required.

In this chapter, I introduce PrivacyFL, which is an extensible, easily configurable, and

scalable simulator for federated learning environments. Its key features include latency

simulation, robustness to client departure/failure, support for both centralized (with one or

more servers) and decentralized (serverless) learning, and configurable privacy and security

mechanisms based on differential privacy and secure multiparty computation (MPC).

I describe the architecture of the simulator and associated protocols, and discuss its

evaluation in numerous scenarios that highlight its wide range of functionality and its

advantages. This chapter addresses a significant real-world problem: checking the feasibility

of participating in a federated learning environment under a variety of circumstances.

77

5.1 Introduction

While designing a federated learning environment, it is important to understand the trade-

offs between privacy, efficiency, and accuracy. System designers should be able to choose

different parameters and compare multiple scenarios to find the right trade-offs for their

environment. Simulators are essential for federated learning environments for the following

reasons:

• To evaluate accuracy: It should be possible to simulate federated models and compare

their accuracy with local models.

• To evaluate total time taken: Communication between distant clients can become

expensive. Simulations are useful for evaluating if client-client and client-server

communications are beneficial.

• To evaluate approximate bounds on convergence and time take for convergence.

• To simulate real-time dropouts: Clients in a federated environment may drop out at

any time.

the simulator, PrivacyFL, is designed to specifically address these issues. It is efficient

in terms of speed and execution time as client and server operations happen in a parallelized

manner. It provides numerous differentially private mechanisms including the Laplacian

mechanism [26], the Gaussian mechanism [26], and the Staircase mechanism [34]. System

designers can choose from any of these mechanisms to ensure that the learning is privacy-

preserving. the system also provides the option for clients to use a Diffie-Hellman key

exchange for inbuilt security. The simulator can also easily support the addition of new

privacy-preserving algorithms. It is composed of generalized classes and functions that make

it easy for developers to add/modify new algorithms and protocols. Along with simulating

federated environments that use one or more central servers, the simulator is also able to

simulate a completely decentralized environment, i.e., a federated learning system without a

centralized server. In the real world, environments are dynamic with clients failing, dropping

off, or being added at run-time. Being able to model this is an important requirement of

78

a simulator for federated learning and PrivacyFL can handle such dynamic cases. It can

simulate computation and communication times to evaluate how long a client would have to

wait for each step of the protocol to complete in a real world setting. the system provides

necessary guarantees for the "honest-but-curious" threat model. In this threat model, all the

clients in the system follow the protocol but try their best to identify the data/model of other

clients.

5.1.1 Related Work

There have been a few open source and industry-based solutions for FL over the last

couple of years. Open source FL libraries such as LEAF [14] and TensorFlow-Federated

[40] support only horizontal topology-based FL algorithms. These libraries are unsuitable

for customized training procedures and protocols. In addition, TFF supports only one

specific implementation of differentially-private SGD. They do not provide customizable

privacy features. Though, PySyft [82] provides functions to implement FL clients, handle

client communications, secret sharing, homomorphic encryption, etc., it doesn’t provide

any documentation on its system architecture or interfaces. In addition, their code is not

generalized and their libraries are highly unstable. Industry-based real-world FL solutions

such as FATE [100] and PaddleFL [61] lack flexible frameworks (i.e.) developers have

to modify the source code in order to run new algorithms. They don’t support novel FL

algorithms which may require support from external libraries.

5.2 Architecture

The purpose of PrivacyFL is to provide a light-weight but efficient Python framework that

enables clients to simulate privacy-preserving secure federated learning. In a simulation,

a client corresponds to an instance of the ClientAgent class. Each client agent is capable

of interacting with the other client agents to establish common keys before the simulation.

Client agents also communicate with an instance of the ServerAgent class if configured

to be a centralized system. The server agent is an agent that is not training its models

but instead serves to run the federated learning algorithm. It is responsible for requesting

79

Figure 5-1: System diagram containing relationships between the important classes in PrivacyFL

weights from the clients, averaging the weights, and returning to the clients the federated

weights. Many applications will only require one server agent, but it is worth noting that

with some modifications the framework can handle any number of server agents.

To run the simulation, an instance of the Initializer class must be created. The initializer

will create the agents in the simulation and also invoke the client agents to perform any

offline-stage logic such as key exchanges. The initializer also gives each agent a directory,

which contains a mapping of agent names to agent instances so that agents can invoke each

other’s methods, thereby enabling all agents to communicate. The initializer also gives each

client agent an instance of the ModelEvaluator class, which it uses to evaluate the federated

learning on a test dataset.

5.2.1 Simulation Lifecycle

This section provides an overview of the steps carried out in a simulation.

1. System designer wishing to simulate a federated learning environment specifies

simulation parameters in config.py and runs run_simulation.py.

2. run_simulation.py creates an instance of Initializer, which instantiates the

client agents and server agent. It also creates a mapping of agent names to instances

and passes those to each client.

3. run_simulation.py invokes the initializer’s run_simulation(), which

subsequently calls the server agent’s

request_values() method.

80

4. Repeat for 𝑖 = 1, 2, 3, ...num_iterations :

4.1 Server agent requests weights from clients in parallel by invoking each client’s

produce_weights() method.

4.2 In produce_weights(), each client trains its machine learning model on

𝐷𝑖, the dataset for that iteration. Each client saves the weights locally and then

creates a copy of its weights to which it adds a security offset and differentially

private noise. It returns the modified weights to the server.

4.3 Upon receiving the weights from each client, the server averages the weights and

returns the federated weights to each client in parallel through their receive_

weights().

4.4 Upon receiving the federated weights for iteration 𝑖 from the server, each client

computes the accuracy of the federated model vs its local model on the test

set. Each client then computes whether its weights have converged and tells the

server whether it is dropping out after this iteration.

4.5 To conclude the iteration, the server tells all the clients which other clients have

dropped out of the simulation.

5.2.2 Classes

There are 6 main classes in the simulator namely Message, Agent, ClientAgent, ServerA-

gent, Initializer, and Directory.

The Message Class

All agent-agent communications occur by one agent invoking another agent’s method

with a message as the sole argument. The message class contains metadata about the

communication as well as a body attribute, which is a dictionary containing all the values

an agent is sending.

81

The Agent Class

The Agent class is not meant to be initialized directly. Rather, its intended usage is to

be sub-classed to create agents with more specific behavior. It is the base class for the

ClientAgent and ServerAgent classes I provide but can be sub-classed to create a different

kind of agent if ClientAgent and ServerAgent are not easily modified to fit the needs of ythe

simulation.

The ClientAgent Class

An instance of the ClientAgent class is an entity that is training a machine learning model

on the same task as the other client agents. Client agents are assigned an agent_number,

which is then appended to the string client_agent to create their name. For example, if

there are three clients they are named client_agent0, client_agent1, and client_agent2. There

are two important public methods of ClientAgent that are invoked by the ServerAgent in the

online portion of the simulation.

• produce_weights(self,message) is called every iteration and prompts the

client to train its machine learning model on its dataset for that iteration. The message

contains the iteration, a mutex lock used for multi-threading, and information about

the simulated time.

• receive_weights(self,message) is called every iteration when the server

has federated weights to return to the client. The message contains the iteration,

weights, and the simulated time this message is received. This method returns True

if the client agent’s weights have converged with the federated weights and False

otherwise.

• remove_active_clients(self,message) is called at the end of the itera-

tion. The message contains the iteration, list of clients that have dropped out, and the

simulated time the message is received. This method is only used if the simulation is

configured with client drop out.

82

In addition, client agents have some methods for the client-client communication that

are used to establish shared common keys with the other clients.

• The send_pubkeys(self) of each client is invoked by the initializer once all

client agents have been initialized. In this method, each client computes secrets

𝑎𝑖,1, . . . , 𝑎𝑖,𝑛 and sends 𝑎𝑖,𝑗 to client 𝑗 by invoking that client’s receive_pubkey()

method.

• In receive_pubkey(message), each client saves the public key sent to it by

the other clients.

• initialize_common_keys(self) is called once all clients have exchanged

public keys using the above two methods. In this method, the common key list is

initialized. This common key list will be used to produce security offsets for the

online portion of the simulation.

The ServerAgent Class

An instance of the ServerAgent class represents a third-party entity that coordinates the

online portion of the simulation. ServerAgent has one method:

• request_values(num_iterations) is called by an instance of Initializer to

signal the server agent to start requesting values from clients. request_values()

first requests weights in parallel from the clients by calling their produce_weights().

It then averages these weights and returns them to the clients in parallel by calling their

receive_weights() method. Finally, if the simulation is configured to allow

client dropout, the server invokes the clients’ remove_active_clients() to

indicate which clients have dropped out at the end of this iteration.

The Initializer Class

An instance of the Initializer class is used to initialize the agents and model evaluator.

In addition, any offline stage logic, such as prompting the clients to perform a Diffie-

Hellman key exchange, should occur in this class. In the example, it loads the MNIST

83

dataset [55], partitions it, and distributes the correct amount of data to each client. To

commence the simulation, one creates an instance of the Initializer class and invokes

its run_simulation() method, which then invokes the server agent’s request_

values() to commence the online portion of the simulation.

The Directory Class

An instance of the Directory class contains a mapping of agent names to agent instances

that allows agents to invoke other agents’ methods by only having their name. An instance

of Directory is created in the __init__ method of the Initializer class after all the agents

have been created. It is then passed on to all the agents using their set_directory()

method.

5.2.3 Configurations and Features

PrivacyFL can be configured to simulate a variety of scenarios with the configuration

parameters available in config.py. These configuration parameters are described in

Table 5.1.

In addition, config.py allows system designers to set several other parameters such as

the number of clients, custom 𝜖 and dataset sizes for each client, and thread-safe random

seed for reproducibility.

5.3 Algorithms

To evaluate PrivacyFL, I developed a secure and differentially private federated logistic

regression algorithm.

5.3.1 Differentially Private Federated Averaging

The federated averaging algorithm is one of the most popular approaches for federated

learning. It is a customized version of parallel Stochastic Gradient Descent. In the approach,

Algorithm 2, each client runs 𝑈 rounds of local SGD and returns the trained weights.

84

USE_SECURITY If True, the clients perform a Diffie-Hellman key
exchange in the offline portion of the simulation
to establish common keys for encryption. Has no
effect on federated accuracy.

USE_DP_PRIVACY If True, clients will add differentially private noise
with parameters specified in the config file.

SUBTRACT_DP_NOISE If True, clients will subtract the noise they added
to the federated model upon receiving it from
the server. When False, clients use the federated
model computed by the server.

CLIENT_DROPOUT If True, a client drops out of simulation when
each weight in the federated model is within con-
fig.tolerance of the client’s weight. The simulation
continues without that client.

SIMULATE_LATENCIES If True, the system simulates how long it would
take for each step in the protocol to complete using
the user-defined communication latencies in con-
fig.LATENCY_DICT. If False, this information is
not displayed.

USING_CUMULATIVE If using the data partitioning module, this flag is
useful for experimenting between dataset options.
If False, the dataset for each iteration includes only
the new data available that iteration. This makes
sense for Algorithm 2. If True, the size of the
dataset grows each iteration by the amount of new
data. This configuration makes more sense for
Algorithm 3, where the weights of the 𝑖th iteration
are not used in producing the weights of the 𝑖+1th
iteration.

Table 5.1: Configuration Parameters

85

Clients make use of new data every round. Here, each client adds the difference of gamma

random variables to their unperturbed weights. In the aggregation phase, the server adds the

perturbed weights it receives from all values. The server aggregates the weights into the

final model, which are differentially private because

𝐿(𝜇, 𝜆) = 𝜇
𝑛
+
∑︀𝑛

𝑘=1 𝛾𝑘 − 𝛾′
𝑘

𝛾𝑘 and 𝛾′
𝑘 are Gamma distributed random variables.

The client-server communication happens 𝑅 times unless a client drops out.

I propose Algorithm 3, where clients reuse old data used in previous rounds and also

make use of any new data available.

The main difference between Algorithm 2 and Algorithm 3 is that in Algorithm 3 clients

retrain their model from scratch on their entire local dataset, which may or may not get

updated every round, and don’t use the weights received from the server while running local

gradient descent. In Algorithm 2, clients compare their weights from the previous iteration

with that of the global weights they receive from the server. With all algorithms, if local

convergence is achieved then the client can drop out of the system.

In all the algorithms, when clients receive the federated weights from the server they are

able to subtract the differentially private noise that they contributed to the federated weights.

Algorithm 2 Differentially Private Federated Averaging - Each client contributes a portion
of the total differentially private noise
Server Implements:

Initialize 𝑤0

for 𝑟 ← 1 to 𝑅 do
for every client 𝑘 ∈ 𝑛 in parallel do
𝑤𝑘

𝑟+1 ← 𝐶𝑙𝑖𝑒𝑛𝑡𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒(𝑘, 𝑤𝑟)
end for
𝑤𝑟+1 ← 1

𝑛

∑︀𝑛
𝑖=1 𝑤

𝑖
𝑟+1

end for
ClientProcedure(k,w):

for local gradient update 𝑢← 1 to 𝑈 do
𝑤 ← 𝑤 − 𝜂∇𝑔(𝑤)

end for
Return 𝑤 + 𝛾 − 𝛾′

86

Algorithm 3 Differentially Private Weighted Averaging
Server Implements:

for 𝑟 ← 1 to 𝑅 do
for every client 𝑘 ∈ 𝑛 in parallel do
𝑤𝑘

𝑟+1 ← 𝐶𝑙𝑖𝑒𝑛𝑡𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒(𝑘, 𝑤𝑟)
end for
𝑤𝑟+1 ← 1

𝑛

∑︀𝑛
𝑖=1 𝑤

𝑖
𝑟+1

end for
ClientProcedure(𝑘, 𝑤𝑠):

if Round 1 then
Initialize 𝑤𝑑𝑝

𝑐 = 0
end if
if 𝑤𝑠 < 𝑤𝑑𝑝

𝑐 then
Initialize 𝑤
for local gradient update 𝑢← 1 to 𝑈 do
𝑤 ← 𝑤 − 𝜂∇𝑔(𝑤)

end for
𝑤𝑑𝑝

𝑐 ← 𝑤 + 𝛾 − 𝛾′

end if
Return 𝑤𝑑𝑝

𝑐

5.3.2 Secure Aggregation

To provide the necessary security guarantees, I use a combination Diffie-Hellman key

exchange and Pseudo-Random Generators to ensure a secure aggregation protocol. the

protocols ensure that clients only need to communicate with each other once at the start of the

simulation to ensure security for all iterations, thereby reducing the amount of client-client

communications and overall communication time.

In the offline phase, every pair of clients 𝑃𝑖 and 𝑃𝑗 share 𝑛 bit secret random values

𝑟𝑖,𝑗 = 𝑟𝑗,𝑖 which is known only to them. The clients generate the common random values by

running the Diffie-Hellman Key exchange protocol [23].

Every client splits their secret random values into a 𝑘 bit offset 𝑟′𝑖,𝑗 and a 𝑛− 𝑘 bit seed

𝑠𝑖,𝑗 . client 𝑃𝑖 sends its weight 𝑤𝑖 masked with the random offsets. For every 𝑗 > 𝑖, clients

add 𝑟′𝑖,𝑗 and for every 𝑗 < 𝑖 clients subtract 𝑟′𝑖,𝑗 . In order to generate new 𝑛 bit secret random

values for the next round, each client makes use of the 𝑛− 𝑘 bit seed of the current round.

This process of generating random offsets and seeds continue as long as clients are sending

weights to the server, i.e., until clients drop out. Hence, clients only need to communicate

87

with each other once at the start of the simulation to ensure security for all iterations, thereby

reducing the amount of client-client communications and overall communication time. If

desired, the clients can perform the Diffie-Helman key exchange again at any time in the

simulation.

5.4 Experiments

For the evaluation, I configured the clients to train on UCI’s Machine Learning MNIST

dataset [55] [71] for eight iterations. This dataset is easily loaded using scikit-learn’s

datasets.load_digits() module. I ran the experiments on a MacBook Pro 2.3 GHz

Intel Core i5, using Python’s multithreading module for parallelization. All experiments

were initialized with the same thread-safe random seeds, ensuring fair comparisons where

possible.

5.4.1 Experiment 1: Accuracy vs Privacy vs Number of Clients Trade-

offs

One of the principal uses of the simulator is to enable clients to assess whether the accuracy

of their model would increase if they participated in the federated learning. For that reason,

I compare the mean accuracy of the clients’ model with the accuracy of the federated global

model for each iteration. I used Algorithm 3. When computing a client’s accuracy on

iteration 𝑖, I consider its weights with no differential privacy since this scenario corresponds

to clients not participating in the federated learning, thus having no need to add differentially

private noise. Figure 5-2 compares the mean of three clients’ accuracy with the federated

accuracy for different values of 𝜖, where a smaller value of 𝜖 corresponds to less noise.

As expected, the federated model’s accuracy increases as 𝜖 increases, but there is not a

significant difference between 𝜖 = 1 and 𝜖 = 8. It is also important to note that the federated

accuracy for the 𝜖 = 0.1 line increases more rapidly than the mean client accuracy. This is

expected behavior since the amount of noise added per client is smaller as the size of each

client’s dataset increases by thirty samples each iteration.

88

Figure 5-2: Mean client accuracy on test dataset versus federated model accuracy for different 𝜖.
Clients follow Algorithm 3.

In the following example, I simulate a larger number of clients. I used the KDDCup99

dataset [7] and Algorithm 2. In Figure 5-3, one can also see the result of varying the number

of clients and 𝜖. As expected, the accuracy of the federated model increases with 𝜖 since less

noise is added. Also, accuracy increases as the number of clients increases. This behavior is

expected since more clients contributing to the federated model should increase the accuracy

of the federated model. I can also see that convergence happens at a faster rate when the

number of parties increases.

Figure 5-3: Accuracy vs Iterations for different values of 𝜖 and number of parties

5.4.2 Experiment 2: Privacy Constraints

This experiment illustrates a use case where each client can have different amounts of data

and privacy requirements. Suppose Clients 1 and 2 each have 150 data points and 𝜖 = 1.0.

However, Client 3 has 250 data points but also a more stringent privacy requirement, 𝜖 = 0.1.

Clients 1 and 2 may want to decide whether they should only collaborate among themselves,

include Client 3, or participate in federated learning at all.

89

Scenarios Client 1 Client 2 Client 3
Scenario 1 0.750 0.793 0.823
Scenario 2 0.806 0.810 -
Scenario 3 0.767 0.800 0.813
Scenario 4 0.827 0.830 0.850

Table 5.2: Each client’s accuracy using Algorithm 3 in the the different scenarios

• Scenario 1. No clients participate in federated learning so their accuracy is their own

model’s accuracy.

• Scenario 2. Clients 1 and 2 participate in the federated learning but do not include

Client 3 because Client 3 has 𝜖 = 0.1 while Clients 1 and 2 have 𝜖 = 1.0.

• Scenario 3. All three clients participate in the federated learning and use Client 3’s

privacy requirement, 𝜖 = 0.1.

• Scenario 4. All three clients participate in federated learning, but Clients 1 and 2 use

their privacy requirement 𝜖 = 1.0, and Client 3 uses its privacy requirement, 𝜖 = 0.1

Table 5.2 shows the clients’ accuracy in each scenario. These values are obtained by

using the configuration options that correspond to Algorithm 3. As is apparent from the table,

Clients 1 and 2 do not benefit from including Client 3 in the simulation unless each client

can use its own value of 𝜖. In that case (Scenario 4), each client benefits from participating

in federated learning.

5.4.3 Experiment 3: Decentralized (Serverless) Federated Learning

The simulation can also be easily modified beyond the configuration parameters. In the

following example, I sub-classed the Agent class to create a new kind of Agent that is able to

perform federated machine learning without a server. In this case, clients send their masked

weights directly to the other clients. Once a client has received the weights from all the other

clients, it is able to average them to create a federated model. Figure 5-4 shows the results

of three clients each training according to Algorithm 3, with thirty data points per iteration

for seven iterations. In this example, clients use the security protocol but no differential

privacy. This behavior is achieved by setting the USE_DP_PRIVACY flag to False and the

90

USE_SECURITY flag to True. As one can see from Figure 5-4, all clients clearly benefit

from participating in the federated learning in this situation.

Figure 5-4: Simulation with Algorithm 3 but modified so that no server is required.

5.4.4 Experiment 4: Real-World Latency Simulation

For this experiment, I simulated the situation where the clients are in different geographic

locations. I configured three clients as if they were in Boston, Singapore, NYC, with the

server located closest to the NYC client. As such, I designated the following communication

latencies: (i) Boston-Server: 0.3 seconds, (ii) Singapore-Server: 2.0 seconds, (iii) NYC-

Server: 0.1 seconds. One can also set client-client latencies. In this example, those only

come into effect for the offline portion of the simulation since there is no client-client

communication during the online portion of the simulation.

Table 5.3 shows the simulated time, which measures the time from the start of each

iteration to the time when clients would receive the federated weights from the server. The

simulated time is available for any step in the protocol since it is included in every message

between clients. Upon receiving a message, an agent computes how long its logic has

taken. The agent then adds the time that its logic with the simulated communication time for

91

Iteration

Simulated Time to Receive
Federated Weights (sec-
onds)

Boston Singapore NYC
Iteration 1 4.310 6.010 4.110
Iteration 2 4.306 6.006 4.106
Iteration 3 0.909 Dropped Out 0.709

Table 5.3: Simulated time to receive federated weights by iteration in an example where Singapore,
the farthest client, drops out after the second iteration.

whomever the client is sending the message to. This produces a new simulated time for the

receiving agent. In Table 5.3 one can also see that the simulated times for Boston and NYC

are significantly lower on the third iteration. This is because clients were permitted to drop

out since the CLIENT_DROPOUT flag was set to True. The Singapore-Server latency is

the highest, which means that once Singapore drops out at the end of the second simulation

the other clients receive the federated weights faster since the server does not need to wait

on the Singaporean client’s weights. Similarly, the time taken by each client to compute its

weights on each iteration is also displayed by the simulator.

5.5 Availability

PrivacyFL is available on GitHub at https://github.com/vaikkunth/PrivacyFL/ under the

MIT License. To run the simulator, the repository should be cloned locally and a conda

environment with the necessary dependencies should be created as shown in Figure 5-5.

The config.py file contains a variety of parameters as described in Section 5.2.3 that allow

the simulation to be customized. utils/data_formatting.py provides an example

of how to pre-process the dataset for the simulation using the MNIST dataset as an example.

Figure 5-5: Steps to execute the code

92

https://github.com/vaikkunth/PrivacyFL/

5.6 Summary

In this chapter, I presented PrivacyFL, a simulator for privacy-preserving, and secure

federated learning. The primary features of the system include latency simulation, robustness

to client departure/failure, support for both server-based and serverless federated learning,

and tunable parameters for differential privacy and MPC.

I evaluated PrivacyFL by running multiple experiments on federated logistic regression

to demonstrate the flexibility of the framework. PrivacyFL and its protocols can be easily

applied to other federated machine learning algorithms as well. PrivacyFL is highly cus-

tomizable and system designers can easily configure parameters such as setting different

latencies, choosing appropriate differential privacy mechanisms, and simulating clients

dropping out or being added dynamically.

93

94

Chapter 6

DynamoFL: A Production Level FL

System

DynamoFL 1 is an easy-to-use, plug-and-play infrastructure that enables organizations to

rapidly stand up federated learning across clients/devices in a matter of minutes and can

be plugged into existing data and modeling pipelines of ML teams smoothly. It allows

machine learning teams to build highly personalized (or) generalized ML solutions that

are federatively trained to learn from both individual user data and the global population

characteristics in a privacy-preserving manner. In addition, DynamoFL addresses all privacy

and training/performance related challenges associated with FL.

6.1 Introduction

DynamoFL supports both traditional federated learning (building a generalized machine

learning model trained across siloed datasets) and a powerful variation of federated learning

for personalized model development.

At its core, DynamoFL supports:

1. The algorithmic toolkit to build highly personalized models (or alternatively, highly

generalized models) that are federatively trained to learn from both individual user

1www.dynamofl.com - Work done at DynamoFL, Inc. and DynamoFL, Inc. holds all rights to the work in
this chapter

95

Figure 6-1: DynamoFL’s Decentralized Federated Learning Workflow

data and the global population characteristics.

2. The plug-and-play infrastructure that enables an organization to rapidly stand up

federated learning across their clients/devices in a matter of minutes.

6.1.1 DynamoFL’s Decentralized Federated Learning Workflow

DynamoFL supports traditional decentralized federated learning workloads where federated

models are trained across edge devices or data silos without centrally collecting data.

Federated learning participants locally train their models on their datasets and submit

models to DynamoFL’s Model Federation Server through our API interface / using an inbuilt

docker based solution (see next section for information on DynamoFL API integrations).

6.1.2 Challenges: Federated Learning Infrastructure

Building out a seamless federated learning infrastructure spanning multiple clients has been

extremely challenging in practice. DynamoFL was built to systematically address these

challenges so that any organization can deploy federated learning with ease.

Challenge 1: As federated learning projects scale, organizations need to coordinate

and synchronize many federating clients (often 100+ clients or 1M+ devices) that are each

running their own persistent training processes (federating runs can often last weeks). This is

96

even more challenging in cases where clients belong to different organizations with diverse

underlying IT infrastructures, varying administrative controls, and complex data pipelines.

Solution: DynamoFL provides a unified framework for efficiently coordinating actions

between federated learning participants. DynamoFL can rapidly scale to support 100+

to 1M+ federated clients whose actions need to be synchronized in lock-step to ensure a

successful federation. We’ve worked with our partners to build a solution that plugs readily

into a wide array of complex data pipelines.

Challenge 2: Federated learning requires building a cross-organizational or inter-

departmental data infrastructure that needs to be closely maintained to ensure federating

clients can seamlessly and cohesively collaborate.

Solution: DynamoFL was designed to be the simplest possible method for standing

up federated learning in any organization. With DynamoFL an IT professional with no

background in data science or machine learning can set up their organization’s federated

learning infrastructure in 3 minutes. Our solution was built to be easily portable to different

IT environments and users don’t have to worry about the interoperability of the federated

learning infrastructure.

Challenge 3: New security and privacy attacks emerge every week. Sustainable fed-

erated learning endeavors need to adopt the up-to-date data privacy postures to convince

data stakeholders why their federated learning infrastructure meets the rapidly evolving data

privacy and security challenges of tomorrow.

Solution: DynamoFL is continually updated with the latest privacy-preserving tech-

niques and algorithms for dealing with the newest wave of privacy and security threats.

6.2 How DynamoFL plugs seamlessly into AI/ML pipelines

DynamoFL supports three methods for standing up federated learning in an organization: a

Docker-based solution(Datapods), Python Client Package, and HTTP API. None of these

solutions require the client team to abandon or revamp their existing in-house ML or data

pipelines.

97

Figure 6-2: Client Package

6.2.1 Docker-based Datapod Client

DynamoFL’s Datapod solution automates the entire federated learning process in 3 simple

steps. It is the most hands-off way of interacting with the API. Simply provide the train and

test methods, as well as the data file (or logic to access data if hosted remotely) to stand up

federated learning on any client’s machine in three minutes 2. The Datapod was designed to

be the simplest solution that exists for setting up federated learning. The datapod can also

be easily customized to be flexible and extensible, offering optional callbacks where more

complex logic might be desired.

6.2.2 Python Client Package

The Python Client Package was created to streamline interfacing with the API. The goal

of the client package is to make the most common API interactions as simple as possible.

These common interactions include creating a DynamoFL project, initializing Datapods,

pulling and pushing models, as well as reporting validation scores.

2https://www.youtube.com/watch?v=XbOttWQ7Q_M&ab_channel=ChristianLau

98

https://www.youtube.com/watch?v=XbOttWQ7Q_M&ab_channel=ChristianLau

Figure 6-3: DynamoFL UI

6.2.3 HTTP API

The HTTP API was created to make DynamoFL federated learning capabilities accessible

using CURL or any other language’s built-in HTTP client.

In addition to these three integration methods, our users can deploy and monitor their

federated learning projects from our web-app user interface as shown in Figure 6-3.

6.3 Use Cases of DynamoFL

6.3.1 Health AI

Advances in AI for healthcare promise to improve and streamline clinical diagnosis by assist-

ing clinicians in identifying pathologies. Effective AI for healthcare needs to have access to

diverse and abundant training images held by different medical institutions. DynamoFL was

99

built by working closely with researchers at leading universities and healthcare institutions

to realize a federated learning solution that can be stood up in minutes rather than months.

6.3.2 Insurtech

The most advanced insurtech solutions draw from a diversity of data sources to perform risk

stratification and population health analytics. This requires access to claims data, EHRs, and

multivariate signals for social determinants of health (SDOH). Federated learning provides

a scalable solution for developing analytics on these privacy-critical data sources. Moreover,

DynamoFL’s personalized federated learning capabilities enable insurtech firms the ability

to provide powerful modeling solutions designed for independent patient cohorts, while

ensuring equitable model performance across various subgroups.

6.3.3 Financial Fraud Detection

Law enforcement currently catches less than 1% of money laundered globally. Fraud

detection methods could be meaningfully improved if financial institutions could combine

their financial records to trace fraudulent transactions across institutions. However, data

privacy and competitive interests have precluded this possibility. Federated learning provides

a non-aggregative approach to developing fraud detection models trained across financial

data silos by enabling fraud detection modeling, while keeping financial records behind the

firewalls of financial institutions.

6.3.4 Cohesive Interdepartmental data and ML pipelines

Large organizations developing advanced technologies and internal R&D often host heavily

siloed datasets within departments. DynamoFL federated learning offers these organizations

the critical capabilities to enable cross-departmental analytics across siloed data, without

ever needing to expose raw data between departments or groups.

100

6.3.5 Manufacturing, Supply-Chain, and Logistics

The global supply chain relies on an interconnected network of manufacturers, shippers,

ports, distributors, warehouses, etc. to operate. Efforts to consolidate critical tracking and

operations data generated at each of these nodes are impeded by the fact that operational

data is often highly protected by each involved party. Federated learning enables analytics

across the supply chain since it keeps data at the source it was generated.

6.3.6 Machine Learning on the Edge

The next generation of intelligent edge devices will need to integrate on-device training as

they adapt to new environments and achieve maximum data security. However, individual

edge devices will not be able to capture enough data independently to train models from

scratch. Federated learning enables connected fleets of edge devices to collaboratively train

models without needing to transfer raw sensory data across devices.

6.4 Summary

In this chapter, I discussed DynamoFL, an easy-to-use, plug-and-play infrastructure that

enables organizations to rapidly stand up federated learning across clients/devices in a matter

of minutes. DynamoFL can be plugged into existing data and modeling pipelines of ML

teams smoothly and can be used for generalized and personalized FL.

101

102

Chapter 7

Conclusion

Federated learning enables clients to collaboratively train a model, while keeping their local

training data decentralized. However, there are numerous privacy and training/performance

related challenges associated with FL. To address privacy concerns, I proposed a novel

privacy-preserving FL mechanism using oblivious distributed differential privacy and multi-

party computation to prevent model inversion and collusion based attacks. To overcome

issues under non-iid/heterogenous FL settings, I proposed a gradient masked averaging

approach as an alternative to naive averaging of parameters in FL for improved generalization

performance. To come up with optimal personalized and communication-efficient models for

clients (especially edge devices), I presented FedLTN, a personalization approach motivated

by the lottery ticket hypothesis.

I also presented two systems: PrivacyFL, an extensible, easily configurable, and scalable

simulator for federated learning environments and DyanmoFL, an easy-to-use, plug-and-play

FL infrastructure for real-world settings. DynamoFL enables organizations to rapidly stand

up federated learning across clients/devices in a matter of minutes and can be plugged into

existing data and modeling pipelines of ML teams smoothly.

I see tremendous potential for DynamoFL in the future as it can be used by leading

organizations such as Facebook, Samsung, Apple, Target, etc. to address their privacy

concerns while improving their recommendation models. In addition, as FL lies in the

intersection of AI and Web3, a platform like DynamoFL can address numerous problems

pertaining to training models in a decentralized manner. DynamoFL can be extended into

103

an accountable FL system that is fully decentralized and privacy-preserving. It can also be

extended to use Ethereum smart contracts to incentivize clients to contribute high-quality

models.

FL is an active and ongoing area of research. Although I addressed several challenges,

there are still some open problems yet to be explored. These include: (i) Concept Drift: This

occurs when the underlying data-generation model changes over time, (ii) Malicious Adver-

saries: Participating clients may not be honest and might feed bad models, (iii) Fairness: FL

algorithms should generate fair/unbiased models with respect to individual/group fairness

metrics, (iv) Incentivizing Clients: Clients participating in FL should be appropriately

incentivized according to the value of the models they provide, and (v) Vertical FL: In this

setting, participating clients have different feature spaces.

104

Appendix A

Appendix for "Collusion Resistant

Federated Learning with Oblivious

Distributed Differential Privacy"

A.1 Secure Multi-Party Computation

Consider a group of mutually distrustful parties who need to compute a function jointly over

their inputs, while maintaining the privacy of those inputs and ensuring the correctness of

the result. If there is some trusted third party, the other parties can simply send their inputs

to it for computation and communication of the results.

Secure Multi-Party Computation (MPC) eliminates the need for such a trusted party.

Seminal results established in the 1980s [36] show that any computation can be emulated by

a secure protocol, and the protocol effectively replaces the trusted party. More concretely,

consider 𝑛 parties 𝑃1, . . . , 𝑃𝑛 that hold private inputs 𝑥1, . . . , 𝑥𝑛 and wish to compute some

arbitrary function (𝑦1, . . . , 𝑦𝑛) = 𝑓(𝑥1, . . . , 𝑥𝑛), where the output of 𝑃𝑖 is 𝑦𝑖. MPC enables

the parties to compute the function using an interactive protocol, where each party 𝑃𝑖 learns

exactly 𝑦𝑖, and nothing else.

Security of MPC The security of the protocol should be preserved even in the presence

of some adversarial entity that corrupts some of the participating parties, combines their

105

transcripts and coordinates their behaviors.

Several different types of adversaries have been studied, where the complexity and the

efficiency of the protocols depend on the level of security:

A semi-honest adversary (also known as “honest-but-curious” or “passive”), follows

the protocol specification but may attempt to learn secret information about the private

information of the honest parties from the messages it receives. In this scenario, parties can

also collude with each other to learn the private information of the other parties.

A malicious adversary (also known as “active”) may, in addition, deviate from the

protocol specification and follow any arbitrary behavior. This is the strongest level of

security possible. Such protocols usually work by adding many checks throughout the

protocol execution that parties follow the protocol as specified.

In this work, I focus on semi-honest security (as in prior works in our setting) and leave

the malicious case as a future work. However, I provide a mechanism for misbehaved

colluding parties who may refuse to add the encrypted noise terms received from their peers

(see Section A.9). Note that the work of [9] does not provide malicious security for the case

where parties misbehave and do not follow the protocol instructions. They rather offer a

weaker form of malicious security. In particular, they only show input privacy for honest

users, they do not guarantee correctness.

A.2 Global Sensitivity

Definition 3. (Global Sensitivity [26]) For a real-valued query function 𝑓 : 𝒟 → R, where

𝒟 denotes the set of all possible datasets, the global sensitivity of 𝑞, denoted by ∆, is defined

as

∆ = max
𝐷1∼𝐷2

|𝑓(𝐷1)− 𝑓(𝐷2)|, (A.1)

for all 𝐷1 ∈ 𝒟 and 𝐷2 ∈ 𝒟 .

The sensitivity is defined as the maximum effect of any single input of the function on

the output.

106

A.3 Laplacian Mechanism

One of the most well-known techniques in differential privacy is the Laplacian mechanism,

which uses random noise 𝑋 drawn from the symmetric Laplacian distribution. The zero-

mean Laplacian distribution has a symmetric probability density function 𝑓(𝑥) with a scale

parameter 𝜆 defined as:

𝑓(𝑥, 𝜆) =
1

2𝜆
𝑒−

|𝑥|
𝜆 . (A.2)

Given the global sensitivity, ∆, of the query function 𝑓 , and the privacy parameter 𝜖, the

Laplacian mechanism uses random noise 𝑋 drawn from the Laplacian distribution with

scale 𝜆 = Δ
𝜖

. The Laplacian mechanism preserves 𝜖-differential privacy [25].

A.4 Generating Laplace Random Variable from Gamma

Random Variables

A Laplace random variable can be generated from the sum of 𝑛 random variables as follows:

Lemma 2. (Divisibility of Laplace distribution [49]) Let ℒ(𝜆) denote a random variable

which has a Laplace distribution with probability density function

𝑓(𝑥, 𝜆) =
1

2𝜆
𝑒

|𝑥|
𝜆 .

Then, for every integer 𝑛 ≥ 1,ℒ(𝜆) =
∑︀𝑛

𝑖=1(𝒢1(𝑛, 𝜆) − 𝒢2(𝑛, 𝜆)), where 𝒢1(𝑛, 𝜆) and

𝒢2(𝑛, 𝜆) are i.i.d. random variables having gamma distribution with probability density

function

𝑔(𝑥, 𝑛, 𝜆) =
(1/𝜆)1/𝑛

Γ(1/𝑛)
𝑥1/𝑛−1𝑒−𝑥/𝜆

where 𝑥 ≥ 0.

Moreover, the sum of i.i.d. gamma random variables follows gamma distribution (i.e.,∑︀𝑛
𝑖=1 𝒢(𝑘𝑖, 𝜆) = 𝒢(1/

∑︀𝑛
𝑖=1

1
𝑘𝑖
, 𝜆).

107

A.5 Supplementary Material: Security Proof

A.6 Security Proofs

Proof of Theorem 1 In the following I show security against a semi-honest adversary

who can corrupt 𝑡 = 𝑛− 1 parties. Following the standard idea-real paradigm, I show that

when executing the protocol with a set of parties 𝒰 of size 𝑛 with threshold 𝑡 < 𝑛, the joint

view of the server 𝑆 and any set of less than 𝑡 users does not leak any information about the

other users’ inputs except what can be inferred from the output of the computation.

The view of a party 𝑃𝑖 consists of its internal state (including its input 𝑤𝑖 and random-

ness) and all messages this party received from other parties. The messages sent by this

party do not need to be part of the view because they can be determined using the other

elements of its view. Given any subset 𝒞 of corrupted parties out of the 𝑛 parties in 𝒰 , let

REAL𝒰 ,𝑡,𝑘
𝒞 (𝑤1, . . . , 𝑤𝑛) be a random variable representing the combined views of all parties

in 𝒞 in the above protocol execution, where the randomness is over the internal randomness

of all parties. I am going to show that there exists an efficient simulator that, for every choice

of the honest clients’ inputs, outputs a simulation of the adversarial participants’ view of the

protocol run whose distribution is computationally indistinguishable from the distribution of

the adversaries’ view of the real protocol run.

The following theorem shows that the joint view of any subset of less than 𝑡 users and

the server can be simulated without knowing the secret input of any other users. In other

words, the adversary controlling less than 𝑡 users cannot learn anything other than the output

of the computation. In our protocol I consider the leakage 𝐿 learned from the difference of

the noise terms 𝜂0, 𝜂1. Note that this leakage does not affect the error function given later in

Definition 2.

Theorem 7 (Semi-honest security against 𝑡 clients). For security parameter 𝜆, an 𝑛-party

protocol for an aggregation function 𝑓 and all leakage 𝐿 of size 𝑂(𝑛), is 𝐿-secure if there

exists a PPT simulator SIM such that for all 𝑘, 𝑡,𝒰 where 𝑡 < |𝒰|, all corrupted parties

𝒞 ⊆ 𝒰 and all 𝑤𝒰 , which denote all secret inputs of all users in all iterations 𝑘, letting

𝑛 = |𝒰|, then the output of SIM is computationally indistinguishable from the output of

108

REAL𝒰 ,𝑡,𝑘:

REAL𝒰 ,𝑡,𝑘
𝒞 (𝜆,𝑤𝒰 , 𝐿) ≈𝑐 SIM

𝒰 ,𝑡,𝑘
𝒞 (𝜆,𝑤𝒞, 𝐿)

Proof. In this case since the server is honest, its view is omitted and the joint view of the

parties in 𝒞 does not depend on the inputs of the parties not in 𝒞. The simulator can therefore

produce a simulation by running the honest but curious users on their true inputs, and all

other honest parties not in 𝒞 on dummy values for the input, and output the simulated view

of the users in 𝒞. That said, the joint view of users in 𝒞 will be identical to that in REAL𝒰 ,𝑡,𝑘
𝒞 .

Note that the leakage 𝐿 which is the difference between 𝛼 − 𝛽 where 𝛼 = 𝛾0
𝑖,𝑗 − 𝛾0

𝑖,𝑗 and

𝛽 = 𝛾1
𝑖,𝑗 − 𝛾1

𝑖,𝑗 is given to the simulator to accordingly generate the messages 𝜂0, 𝜂1.

Security with a curious server Next I consider security against an honest-but-curious

server, who can additionally combine knowledge with some honest-but-curious clients. I

show that any such group of corrupted users can be simulated given the inputs of all users

in this group, and only the sum of the values of the honest users. That said, the corrupted

clients and the server learn nothing more than their own inputs and the sum of the inputs of

the honest users.

Theorem 8 (Semi-honest security with curious server). For security parameter 𝜆, an 𝑛-

party protocol for an aggregation function 𝑓 and all leakage 𝐿 of size 𝑂(𝑛), is 𝐿-secure if

there exists a PPT simulator SIM such that for all 𝑘, 𝑡,𝒰 where 𝑡 < |𝒰| and Server 𝒮, all

corrupted parties 𝒞 ⊆ 𝒰 ∪ 𝒮 and all 𝑤𝒰 , which denote all secret inputs of all users in all

iterations 𝑘, letting 𝑛 = |𝒰|, then the output of SIM is computationally indistinguishable

from the output of REAL𝒰 ,𝑡,𝑘:

REAL𝒰 ,𝑡,𝑘
𝒞 (𝜆,𝑤𝒰 , 𝐿) ≈𝑐 SIM

𝒰 ,𝑡,𝑘
𝒞 (𝜆,𝑤𝒞, 𝐿, 𝑧)

where 𝑧 =
∑︀

𝑤𝑢∈𝒰∖𝒞

Proof. To prove the theorem I follow a standard hybrid argument. In particular, I define the

simulator SIM through a series of modifications to the random variable REAL, so that any

two subsequent random variables are computationally indistinguishable.

109

Hyb0: In this hybrid I consider the joint view of the parties 𝒞 in a real execution of the

protocol.

Hyb1: In this hybrid, instead of running the Diffie-Hellman Key exchange protocol, the

simulated honest parties use a uniformly random value 𝑟 chosen by the simulator. The

Decisional Diffie-Hellman assumption guarantees that this hybrid is indistinguishable from

Hyb0.

Hyb2: In this hybrid, the simulated honest parties use a uniformly random value 𝑠 instead

of 𝑠 chosen by the simulator and given the knowledge of the leakage 𝐿, the messages 𝜂0, 𝜂1

are generated. This hybrid is indistinguishable from Hyb1 since 𝑠 is uniformly random value

in the real execution.

Hyb3: In this hybrid, instead of using real input 𝑤𝑖 for the 𝑦𝑖 message sent to the

server, for each honest user 𝑖 ∈ 𝒰∖𝒞, SIM randomly picks 𝑤̃𝑖 under the constraint that∑︀
𝑖∈𝒰∖𝒞 𝑤̃𝑖 =

∑︀
𝑖∈𝒰∖𝒞 𝑤𝑖 = 𝑧.

This hybrid is indistinguishable from the previous hybrid (see Lemma 6.1 in [9]), since

𝑤𝑖 is uniformly random value in the real execution.

The distribution of this hybrid is exactly the same as the distribution of the previous

hybrid. In this hybrid, the simulator does not know 𝑤𝑖 for any user 𝑖.

Now I have proved that the joint view of 𝒞 in the real execution is computationally

indistinguishable from the view in the simulated execution.

Security against malicious users Next I show privacy of the honest parties inputs for the

case where 𝑡 users are maliciously corrupted.

Theorem 9 (Privacy against 𝑡 malicious users). For security parameter 𝜆, an 𝑛-party

protocol for an aggregation function 𝑓 and all leakage 𝐿 of size 𝑂(𝑛), is 𝐿-secure if there

exists a PPT simulator SIM such that for all PPT adversaries 𝑀𝒞 and 𝑘, 𝑡,𝒰 where 𝑡 < |𝒰|,

all corrupted parties 𝒞 ⊆ 𝒰 and all 𝑤𝒰∖𝒞 , which denote all secret inputs of all users in all

iterations 𝑘, letting 𝑛 = |𝒰|, then the output of SIM is computationally indistinguishable

110

from the output of REAL𝒰 ,𝑡,𝑘:

REAL𝒰 ,𝑡,𝑘
𝒞 (𝜆,𝑤𝒰∖𝒞, 𝐿) ≈𝑐 SIM

𝒰 ,𝑡,𝑘
𝒞 (𝜆,𝑀𝒞, 𝐿)

Proof. As in the proof of Theorem 1, even though the adversarial users get to send arbitrary

messages, the messages they receive from honest users never depend on the inputs of those

users. That said, the simulator can emulate the real view of the corrupted parties 𝒞 by

running the honest users on dummy inputs and using 𝑀𝒞 for the adversarial users.

In the following sections I argue about security given the noisy sum of inputs of the

honest parties.

A.7 Collusion Privacy

Recall the definition of Collusion-Privacy in the presence of an 𝑛− 1 attack, in our case the

probability distribution 𝒟 will be the Laplace distribution.

Collusion-Privacy: An 𝑛-party protocol provides Collusion-Privacy, for an aggregation

function 𝑓 and a probability distribution 𝒟, if any adversary, who controls all parties

except client 𝑃ℎ, learns no more than the honest party’s values 𝑤ℎ + 𝜂 where 𝜂 ← 𝒟 and

𝑓(𝑤1, . . . , 𝑤𝑛).

In our oblivious protocol implementation each party 𝑃𝑖 sends 𝜂𝑏𝑖,𝑗 = 𝑠𝑖,𝑗 + 𝛾𝑏
𝑖,𝑗 − 𝛾𝑏

𝑖,𝑗 for

𝑏 ∈ {0, 1} to every party 𝑃𝑗 where 𝛾𝑏
𝑖,𝑗 and 𝛾𝑏

𝑖,𝑗 denote two random values independently

drawn from the same gamma distribution 𝒢(𝑛, 𝜆). Then, the server sums up all values

received from the users such that 𝑊 =
∑︀𝑛

𝑖=1𝑤𝑖+
∑︀𝑁

𝑖=1(𝒢1(𝑛, 𝜆)−𝒢2(𝑛, 𝜆)) =
∑︀𝑛

𝑖=1𝑤𝑖+∑︀𝑁
𝑖=1 ℒ(𝜆) where 𝑁 = 𝑛2.

In our oblivious protocol, if 𝑛 − 1 parties collaborate against party 𝑃ℎ, then the final

noise added to the weight of the honest party 𝑤ℎ consists of 𝑛2 − 𝑛 + 1 noise terms (the

𝑛− 1 parties can only subtract the 𝑛− 1 noise terms 𝜂𝑖,𝑗 for the case where 𝑖 = 𝑗). Since

every group of size 𝑛 of them constitutes a Laplace distribution, the attack leaves in the end

(𝑛2 − 𝑛 + 1)/𝑛 > 𝑛 i.i.d noise terms from a Laplace distribution. For the case where the

111

colluding parties try to remove 𝑛2 − 2𝑛− 1 noise terms by guessing which noise terms are

actually chosen, the error left in 𝑤ℎ is on average the same as in the case where the parties

subtract 𝑛2− 𝑛+ 1 noise terms (the probability of guessing the correct chosen noise is 1/2).

For the case where the colluding parties try to remove 𝑛2− 2𝑛− 1 noise terms by taking the

mean of 𝛾𝑏
𝑖,𝑗 and 𝛾𝑏

𝑖,𝑗 then the variance of the error left is reduced to almost half. See Figure

3 for the empirical results.

A.8 Misbehaved Colluding Parties

Note that the scope of this work is not malicious security. However, colluding parties could

misbehave and choose to not add any encrypted noise term received from their peers to

their weights in order to learn more information about the weights of the honest parties. In

what follows I show a simple modification to Protocol 1 which avoids such a behavior. In

particular, the parties choose the random masks 𝑠 according to an additive secret sharing

scheme.

Additive Secret-Sharing. In an additive secret-sharing scheme, 𝑛 parties hold shares, the

sum of which yields the desired secret. By setting all but a single share to be a random

element, I ensure that any subset of 𝑛− 1 parties cannot recover the initial secret.

Definition 4 (Additive secret-sharing). Consider the secret-sharing scheme A𝑛 = (Share,Recover)

defined below.

• The algorithm Share on input (𝑠, 𝑛) performs the following:

1. Generate (𝑠1, . . . , 𝑠𝑛−1) uniformly at random and define 𝑠𝑛 = 𝑠−
∑︀𝑛−1

𝑖=1 𝑠𝑖.

2. Output (𝑠1, . . . , 𝑠𝑛) where 𝑠𝑖 is the share of the 𝑖-th party.

• The recovery algorithm Recover on input (𝑠1, · · · , 𝑠𝑛), outputs
∑︀𝑛

𝑖=1 𝑠𝑖.

It is easy to show that the distribution of any 𝑛− 1 of the shares is the uniform one and

hence independent of 𝑠.

112

Secret-sharing Notation. Denote by [𝑠] a random sharing of 𝑠 for the secret-sharing

scheme A𝑛 where [𝑠] = (𝑠1, . . . , 𝑠𝑛).

ΠPPFL secure against misbehaved colluding parties. During the setup phase ΠPPFL.Setup

of Protocol 1, each party 𝑃𝑖 proceeds as follows:

1. Generate a secret sharing of the zero value using the additive secret-sharing scheme

A𝑛+1 such that [0] = (𝑠𝑖,1, . . . , 𝑠𝑖,𝑛, 𝑠𝑖,𝑛+1).

2. For all 𝑗 ∈ [𝑛], compute noise 𝜂0𝑖,𝑗 = 𝑠𝑖,𝑗 + 𝛾0
𝑖,𝑗 − 𝛾0

𝑖,𝑗 and 𝜂1𝑖,𝑗 = 𝑠𝑖,𝑗 + 𝛾1
𝑖,𝑗 − 𝛾1

𝑖,𝑗 .

During the computation phase ΠPPFL.WeightedAverage of Protocol 1, each party 𝑃𝑖

sends to the server:

𝑦𝑖 := 𝑤𝑖 +
𝑛∑︁

𝑗=𝑖+1

𝑟𝑖,𝑗 −
𝑖−1∑︁
𝑘=1

𝑟𝑘,𝑖 +
𝑛∑︁

𝑗=1

𝜂𝑏𝑖𝑖,𝑗 + 𝑠𝑖,𝑛+1.

If the 𝑛− 1 colluding parties misbehave and do not add the prescribed 𝜂 values to the

message sent to the server, then the final output of the aggregation protocol will be incorrect.

More specifically, since the honest party 𝑃ℎ generated a secret sharing of the masks such

that
∑︀𝑛+1

𝑗=1 𝑠ℎ,𝑗 = 0, the masks will not cancel out during the aggregation and the attack will

be unsuccessful.

A.9 Security against Sybil Attacks

In the case of a sybil attack, the server collaborates with (or fakes) 𝑛 − 1 parties in an

effort to leak more information about the weights of the honest party given the output of the

aggregation protocol. To accommodate such an attack in Protocol 1, the parties could run a

shuffle protocol where the encrypted noise terms are shuffled and randomized collectively

(not only by the server). As mentioned in the main body, I have not implemented such a

secure shuffle protocol in this version. Using generic MPC the parties could run once at

the onset of the protocol during the setup phase a secure shuffle protocol where the parties

randomize the encrypted noise terms and generate a secret permutation (which cannot be

113

revealed even if 𝑛−1 parties collaborate). The permutation can be applied to the randomized

encrypted noise terms. I leave the implementation of such a protocol as future work.

Note that protocols in the shuffle model [8, 20, 27] do not apply in this case since I do not

need to just shuffle the encrypted noise terms I also need to randomize them. Furthermore,

sybil attacks are still possible in the shuffle model.

A.10 Communication Protocol Diagrams

Our protocol includes the ability to reuse the common randomness for each iteration

of logistic regression, so the clients will only require pairwise communication once via

the server, at the start of the protocol. In subsequent iterations, each client only has to

communicate with the server. The left side of Figure A-1 shows a secure 3-party weighted

average protocol where 𝑤̄1 = 𝑤1+𝑟12+𝑟13, 𝑤̄2 = 𝑤2−𝑟21+𝑟23, 𝑤̄3 = 𝑤3−𝑟31−𝑟32. Note

that the weights are encrypted via the use of the common randomness 𝑟. The values 𝑤̄ reveal

nothing about the weights 𝑤. In the right side of Figure A-1, client 𝑃1 receives encrypted

noise terms 𝜂21 = (𝜂021, 𝜂
1
21) and 𝜂31 = (𝜂031, 𝜂

1
31) and it decides to add only 1-out-of-2 of

them. For example, client 𝑃1 will add to his encrypted weights 𝑥̄1, the encrypted noise term

𝜂12,1 and 𝜂03,1. The final weight sent to the server is 𝑊 1 = 𝑤̄1 + 𝜂12,1 + 𝜂03,1.

Figure A-1: Toy example of 3-party secure weighted average protocol with server 𝑆.

114

A.11 Secure Aggregation for Multiple Iterations

In Protocol 1, in order to handle the next iteration without the need to re-run the Diffie-

Hellman key exchange I follow the same approach as in [9]. More specifically, in the first

iteration I use a pseudorandom generator1 (𝑟′𝑖,𝑗, 𝑠) = 𝑃𝑅𝐺(𝑟𝑖,𝑗) to both update the common

randomness 𝑟𝑖,𝑗 := 𝑟′𝑖,𝑗 and obtain a new random seed 𝑠. For subsequent iterations, instead

of executing ΠPPFL.Setup, parties can run 𝑃𝑅𝐺(𝑠) to obtain a new 𝑟′𝑖,𝑗 and the seed for the

next iteration and so on. Thus the parties need to run the exchange only once at the onset of

the training.

A.12 Supplementary Material: Experiments

A.12.1 Matthews Correlation Coefficient

For our adult census income data set, the proper classification for 75% of the examples is

False (<= $50,000 income), therefore a naive classifier that always returns False would

achieve a misleading 75% accuracy of prediction.

I instead assess our approach using the Matthews Correlation Coefficient (MCC).[63]

MCC assesses binary classification performance even in the face of unbalanced output

classes by accounting for the size of the true negative prediction set: Information not captured

by precision, recall, and the F-score.[5] MCC is a contingency method of calculating the

Pearson product-moment correlation coefficient and therefore has the same interpretation.

[75, 77, 28] For example, the MCC of the aforementioned naive classifier would be zero,

indicating no correlation between the predicted and actual values.

Let 𝐶(𝑀,𝐷) represent the confusion matrix between binary classification model 𝑀

and data 𝐷, and recall that for classification output variable 𝑦, 𝑇𝑟𝑢𝑒 indicates the higher

income bracket and 𝐹𝑎𝑙𝑠𝑒 indicates the lower bracket. I can then define 𝑀𝐶𝐶(𝑀,𝐷) for

this problem as:

𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁√︀
(𝑇𝑃 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

(A.3)

1A pseudorandom generator with double expansion is defined as follows: 𝑃𝑅𝐺 : {0, 1}𝜆 → {0, 1}2𝜆.

115

where matrix entries 𝑇𝑃 = 𝐶(𝑇𝑟𝑢𝑒, 𝑇𝑟𝑢𝑒), 𝐹𝑃 = 𝐶(𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒), 𝑇𝑁 = 𝐶(𝐹𝑎𝑙𝑠𝑒, 𝐹𝑎𝑙𝑠𝑒),

and 𝐹𝑁 = 𝐶(𝐹𝑎𝑙𝑠𝑒, 𝑇𝑟𝑢𝑒).

A.12.2 Additional Timing Results

In Table A.1, I present categorized millisecond timing for Protocol 1. The table outlines

four categories:

• Server includes all data reception, storage, and aggregation tasks by the server pre-

sented as mean time per protocol iteration.

• DH Setup includes the one-time Diffie-Hellman Key Exchange and noise generation

presented as mean time per client party.

• Training includes the time spent performing logistic regression on local training data

presented as mean time per client per protocol iteration.

• Encryption includes the time spent applying encryption randomness, generating the

next encryption randomness, and applying privacy noise presented as mean time per

client per protocol iteration.

The total number of messages sent by the parties grows quadratically with 𝑛 for the

one-time DH Setup phase, and linearly with 𝑛 for each Encryption phase. No messages are

sent for the Training phase.

User
Users Server DH Setup Training Encrypt

200 20.3 193.0 7.5 2.9
400 42.7 404.0 7.7 5.6
600 61.4 631.6 7.4 8.3
800 81.5 832.1 7.4 11.1

1000 101.1 1,046.5 7.3 13.9
3000 303.8 3,185.0 7.5 41.3
5000 532.5 5,277.9 7.9 68.9

Table A.1: Categorized protocol time in milliseconds.

116

These timings were generated using network graph 1, which is the case that places all

parties including the server at random locations around New York City. I note, however, that

choice of network graph should not affect these component times, only the communication

latency for the full protocol running times shown in the main body.

A.13 Attacks against the protocol

Here I consider in further depth the security of the protocol against attacks from within the

participant population. The first attack is defended well by previous non-oblivious protocols,

but the second is not. Our oblivious protocol defends well from both attacks.

A.13.1 Snooping Server

First suppose that the untrusted server, acting alone, attempts to infer the unencrypted

weights of a particular client. For a single model weight 𝑀 , the value transmitted by the

honest party ℎ to the server is:

𝑀ℎ = 𝑤ℎ + 𝑇ℎ +𝑅ℎ (A.4)

where 𝑤ℎ is the honest party’s original weight, 𝑇ℎ is the total privacy noise added by ℎ, and

𝑅ℎ =
∑︀

𝑐∈𝐶 ±𝑟𝑐ℎ for the set of all other clients 𝐶. Recall that for each client pair (ℎ, 𝑐),

one of them will add 𝑅𝑐ℎ and the other will subtract it. In the case of the server acting alone,

I do not need to be concerned with the details of 𝑇ℎ, because the weights are already heavily

encrypted against the server by MPC.

When the server tries to solve the problem of reconstructing 𝑤ℎ from 𝑀ℎ, it does not

possess any of the pairwise client values 𝑟𝑐ℎ that compose 𝑅ℎ. With just 100 participating

clients, a single client’s 𝑅ℎ is a summation of 99 values randomly generated (in our case)

from the range (0, 232). The value of 𝑅ℎ is therefore orders of magnitude greater than the

range of 𝑤ℎ, leaving the server with no meaningful information about the honest client’s

private model weights.

As noted, this relatively simple case is handled well by the secure aggregation protocol

117

alone and successfully defended by prior works in our area. The next case is not.

A.13.2 Collusion attack

This attack is described in the main body. Here I discuss an additional failure mode of the

attack.

Additional Residual Noise: In the main body, I discuss a key aspect of our protocol’s

security against an 𝑛− 1 collusion attack, that given final model output for a single weight:

𝐹 = 𝑤ℎ +𝑊𝐶 + 𝑇ℎ + 𝑇𝐶 (A.5)

where 𝑤ℎ is the honest party’s original weight, 𝑇ℎ is the honest party’s noise sum, 𝑊𝐶 =∑︀
𝑐∈𝐶 𝑤𝑐, and 𝑇𝐶 =

∑︀
𝑐∈𝐶 𝑇𝑐, the conspirators 𝐶 cannot accurately infer 𝑇ℎ because each

conspirator 𝑐 does not know whether ℎ added 𝛾0
𝑐ℎ or 𝛾1

𝑐ℎ to its weight.

However, I only briefly touched on a second aspect of our protocol’s resistance to the

𝑛− 1 attack. Not only can the conspirators not remove 𝑇ℎ, they actually cannot accurately

remove the 𝑇𝐶 either. This is because Protocol 1 also encrypts the oblivious distributed

differential privacy noise choices. When ℎ generates 𝛾0
ℎ𝑐, it is a composition:

𝛾0
ℎ𝑐 = 𝛾0

ℎ𝑐 + 𝑠ℎ𝑐 (A.6)

where 𝛾0
ℎ𝑐 is the initial noise choice generated from a difference of gamma distributions and

𝑠ℎ𝑐 is a large value. Honest party ℎ adds the same 𝑠ℎ𝑐 to 𝛾0
ℎ𝑐 and 𝛾1

ℎ𝑐. It later subtracts 𝑠ℎ𝑐

from its own transmitted weights to avoid disturbing the calculation. For the case where

𝑠ℎ𝑐 is generated based on additive secret sharing (see Section A.9), the honest party uses a

different 𝑠ℎ𝑐 for its own transmitted weights and this attack does not apply because the sum

of all the 𝑠’s is zero.

Thus conspirator 𝑐 knows 𝛾0
ℎ𝑐 and 𝛾1

ℎ𝑐, and knows which one it selected. However the

encryption randomness 𝑠ℎ𝑐 has already been removed from the final shared output weight,

leaving only the unencrypted 𝛾0
ℎ𝑐 or 𝛾1

ℎ𝑐. Conspirator 𝑐 must therefore remove only the

appropriate 𝛾ℎ𝑐 and not 𝛾ℎ𝑐, but it cannot do this, because it does not know what 𝑠ℎ𝑐 was.

118

I did not simulate this additional error in the current work. With 𝑛 parties, this will

cause the collaborators 𝐶 in our attack cases to be even more wrong since they can only

approximate the 𝑛− 1 values of 𝑠’s chosen by the honest party for each weight of ℎ, when 𝑐

removes values based on encrypted 𝛾ℎ𝑐 instead of unencrypted 𝛾ℎ𝑐.

Thus under our Protocol 1, for each collaborator 𝑐, the additional error (beyond basic

differential privacy noise) in the estimate of 𝑤ℎ will compose two factors:

1. Not knowing whether ℎ added 𝛾0
𝑐ℎ or 𝛾1

𝑐ℎ.

2. Being off by large encryption value 𝑠ℎ𝑐 when subtracting 𝛾0
ℎ𝑐 or 𝛾1

ℎ𝑐.

I evaluated the first error in this work and left detailed analysis of the second for future

work, although it is already part of the additional security of our protocol.

A.14 Diffie-Hellman Key Exchange Protocol

The cryptographic primitives used in this protocol include:

• An algorithm 𝐺(1𝜆), where 𝜆 is the security parameter, that outputs a representation of

a cyclic group G of order 𝑞 (with ||𝑞|| = 𝜆) for which the discrete logarithm problem

is believed to be hard (in other words, it is hard to guess 𝑥 given 𝑔𝑥 for particular

groups G).

• A key derivation function 𝐻 : G → {0, 1}𝜆. It is assumed that if ℎ is distributed

uniformly in G, then 𝐻(ℎ) is distributed uniformly in {0, 1}𝜆.

• A pseudorandom generator with double expansion, i.e., 𝑃𝑅𝐺 : {0, 1}𝜆 → {0, 1}2𝜆.

(See Protocol 1 Detail Diffie-Hellman Key Exchange listing on following page.)

119

Protocol 2 Detail Diffie-Hellman Key Exchange Protocol ΠDH

The protocol ΠPPFL runs with parties 𝑃1, . . . , 𝑃𝑛 and a server 𝑆. It proceeds as follows:
Public Parameters: (G, 𝑔, 𝑞) generated by 𝐺(1𝜆) and modulo 𝑝.

Round 1: Each party 𝑃𝑖 for 𝑖 ∈ [𝑛] proceeds as follows:

• Choose 𝑛 secrets 𝑎𝑖,1, . . . , 𝑎𝑖,𝑛 uniformly and independently at random from Z𝑞

and computes (𝑝𝑘𝑖,1, . . . , 𝑝𝑘𝑖,𝑛) = (𝑔𝑎𝑖,1 mod 𝑝, . . . , 𝑔𝑎𝑖,𝑛 mod 𝑝).

• Each party 𝑃𝑖 sends 𝑝𝑘𝑖,𝑗 to 𝑆 who forwards to party 𝑃𝑗 .

Round 2: Each party 𝑃𝑗 for 𝑗 ∈ [𝑛] proceeds as follows:

• Upon receiving all values (𝑝𝑘1,𝑗, . . . , 𝑝𝑘𝑛,𝑗), compute the shared common keys
𝑟𝑖,𝑗 for all 𝑖 ∈ [𝑛] as follows:

(a) Using the secret 𝑎𝑗,𝑖 compute 𝑐𝑖,𝑗 = 𝑐𝑗,𝑖 = (𝑝𝑘𝑖,𝑗)
𝑎𝑗,𝑖 = (𝑔𝑎𝑖,𝑗)𝑎𝑗,𝑖 mod 𝑝.

(b) Let 𝑐1,𝑗, . . . , 𝑐𝑛,𝑗 be the set of all common keys. Use a key-derivation
function and set 𝑟𝑖,𝑗 = 𝑟𝑗,𝑖 = 𝐻(𝑐𝑖,𝑗)

Output: Each party 𝑃𝑖 obtains a shared common key 𝑟𝑖,𝑗 with every other party 𝑃𝑗 for
𝑖 ̸= 𝑗.

120

Appendix B

Appendix for "Gradient Masked

Averaging for Federated Learning"

B.1 GMA on SCAFFOLD

In this section I show SCAFFOLD with the proposed gradient masking.

B.2 Datasets and Models

In this section I discuss more about the datasets used for different test settings, the distribution

of the dataset across the clients, and the models used for our experiments in detail.

B.2.1 IID and Non-IID data distribution

I simulate IID distribution of data by assigning samples from all classes to each client such

that the representation of each class on a client is approximately equal. This ensures that

all labels are equally represented on each client. The same idea of i.i.d-ness is used in all

experiments and datasets of in-distribution and out-of-distribution test settings. Table B.1

shows a sample distribution of classes across 10 clients in IID setting.

For the Non-IID distribution, I use the label distribution skew with 10% noise. That is,

each client will have a majority or 90% of samples from any 2 classes randomly chosen from

121

Algorithm 4 Gradient Masked SCAFFOLD [45]
Initialize 𝑤0

for each server epoch, t = 1,2,3,... do
Choose C clients at random
for each client in C, n do
𝑤𝑛

𝑡 = ClientUpdate(𝑤𝑡−1)
𝑤𝑛

𝑡 ,∆
𝑛
𝑐 = ClientUpdate(𝑤𝑡−1,∆𝑐)

∆𝑛
𝑡 = 𝑛𝑘∑︀𝑁

𝑛=1 𝑛𝑘
(𝑤𝑛

𝑡 − 𝑤𝑡−1)

end for
∆𝑡 =

∑︀𝑁
𝑛=1 ∆

𝑛
𝑡

∆𝑐 =
1
𝑁

∑︀𝑁
𝑛=1∆

𝑛
𝑐

𝑚𝑎𝑠𝑘 = 𝑚̃𝜏 ({∆𝑛
𝑡 }𝑛=1..𝐶)

𝑤𝑡 = 𝑤𝑡−1 − 𝜂𝑔 *𝑚𝑎𝑠𝑘 ⊙∆𝑡

end for
ClientUpdate(w):

Initialize 𝑤0 = 𝑤
𝑐𝑖 = 𝑐+𝑖
for each local client epoch, i=0,1,2,3,..,n do
𝑔𝑖 = ∇𝑤𝑖

𝐿(𝑤𝑖)
𝑤𝑖+1 = 𝑤𝑖 − 𝜂𝑐 𝑔𝑖 − 𝑐𝑖 + 𝑐

end for
𝑐+𝑖 = (𝑖)𝑔𝑖(𝑥)or (𝑖𝑖)𝑐𝑖 − 𝑐+ 1

𝐾𝜂𝑙
(𝑥− 𝑦𝑖)

return 𝑤𝑖+1 , 𝑐+𝑖 − 𝑐𝑖 to server

the set of all classes and the rest 10% of samples would include data samples from all other

8 classes. This induces a heterogeneity in the label distribution. The label distribution skew

ensures that the distribution varies across clients. Table B.2 shows a sample distribution

of classes across 10 clients in non-IID setting. It is to be noted that this IID and Non-IID

distribution of data is specific to the distribution of the train data across the clients. It

is independent of the distribution of the test dataset or the dataset used to evaluate the

performance of the global model. In both these cases the global model test dataset contains

samples from all classes in equal proportions.

122

Table B.1: This table shows the label distribution across clients for an IID setting. Each client will
have randomly chosen examples from all 10 classes. This represent the 10 class setting in MNIST. I
have considered 3 clients for the table. The same pattern would be present across all clients.

0 1 2 3 4 5 6 7 8 9

Client 1 585 643 591 550 571 561 631 628 620 620

Client 2 589 691 593 628 553 526 588 640 602 590

Client 3 531 697 595 627 557 557 596 626 581 633

......

Table B.2: This table shows the label distribution skew for experiments on the non-IID data distribu-
tion across clients. This represents the 10 class setting in MNIST. I have taken 3 clients. The same
pattern would be present across all clients.

0 1 2 3 4 5 6 7 8 9

Client 1 2894 2247 51 48 50 53 52 47 47 47

Client 2 44 2246 1962 40 42 42 42 41 41 46

Client 3 31 31 33 1962 33 1371 35 31 31 32

......

B.2.2 Datasets

FedCMNIST Colored MNIST was introduced [4] to evaluate OOD generalization. It was

used for binary classification based on the class label. The digit were colored red or green

depending on its correlation with the label. Precisely, numbers 0-4 (label 0) were colored

red and 5-9 (label 1) were colored green in the train environment with a noise of probability

0.2 to 0.25. The colors were reversed on the test environment. This was ported naively to a

federated setting by [30]. In this setting, the task was binary classification and the federated

network was limited to 2 clients. Each client involved all class labels, however, there was a

difference in the probability of noises induced in the train clients and the test client had a

123

reversed color based spuriousness. In this paper I use a complex version of colored MNIST.

I design a multi-class classification problem where the task is to identify the digit. I induce

a spuriousness based on correlation with the class label. Specifically, each digit would have

one or more color that remains the same across examples in the train set or in the data at the

participating clients. The color of the same digit in the test set would be different from that

at any of the train clients. I call this dataset FedCMNIST. This spuriousness is in addition to

the label distribution based skew with non-iid distribution of data across clients.

FedRotMNIST The rotated MNIST dataset was introduced by [35] for domain gener-

alization. It was adapted to a federated setting by [30] where all data samples at a client

would be rotated at a specified angle irrespective of the class label. I use a slightly different

spuriousness that is more correlated to the class label or digit. I rotate each digit at an angle

such that a label based correlation is induced. In our experiments the digits were rotated at

10, -10, 20, -20, 30, -30, 40, -40, 50, and -50 respectively. The test images are not rotated at

any angle irrespective of the digit or label. The preprocessing includes padding on rotation

and cropping.

FEMNIST is a federated version of Extended MNIST [21] with labels to identify the

writer of the character. A real world distribution of this dataset was introduced in [15] where

the data is partitioned across clients such that the data from a writer is always clustered.

The test data is reserved for samples from writers who were not included in any of the train

clients. This ensures a different data distribution for evaluation of the global model. This is

a simpler version of out-of-distribution generalization performance evaluation of the global

model.

B.3 Hyperparameters

In this section I discuss the various hyperparameters involved in the experiments and their

effects.

124

B.3.1 Effects of 𝜏

𝜏 ∈ {0, 1} is a hyperparameter introduced to threshold agreement across clients in Equation

3. It marks the minimum agreement required to consider the gradient for aggregation.

When 𝜏 = 0 or negligible, the gradients of all parameters will have an agreement score

greater than or equal to 𝜏 . This makes all gradients consistent across clients. The agreement

score would be over-written by 1 and the equation becomes equal to that of naive federated

aggregation where all gradients are averaged with the same importance. This is equivalent

to an underfit condition. The opposite overfit criterion can happen with a high 𝜏 value. In

this case, no gradient would be considered dominant and all parameters updates would be

diminished corresponding to their agreement score. The agreement score can be 1 when the

data distribution across clients is an ideal i.i.d distribution where all gradients across clients

would be along the same direction. But in practical scenario, such data distributions are

rare in a federated setting. When agreement = 1, 𝑤𝑘 = 𝑤𝑘−1 − 𝜂𝑔 1⊙∆𝑘 = 𝑤𝑘 − 𝜂𝑔∆
𝑘;

equivalent to naive federated aggregation. This implies that the naive federated aggregation

is a case of the proposed gradient masked averaging.

Throughout the experiments I have maintained 𝜏 = 0.4. This value was observed to give

the best performance across models and datasets on searching on {0, 1.0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9}. 𝜏 = 0.4 implies that the gradient being considered have a 40% excess or

a total of 60% of the client gradients along the dominant direction. From our experiments it

was observed that when 𝜏 is low, the model underfits. The accuracy was best at 𝜏 = 0.4 and

on further increasing 𝜏 , it was overfitting. This is visible from the test accuracy vs. 𝜏 plot in

Figure B-1a and test loss vs. 𝜏 plot in Figure B-1b.

B.3.2 Effect of Client Momentum

In contrast to the experiments in [79], I use an SGD optimizer with momentum (𝜌 = 0.9)

at each client for all our experiments. This was primarily because of the increase in

test accuracy observed during our experiments on FedAVG with and without momentum.

However, the enhancements due to gradient masking was independent of the momentum

induced at the client optimizer. In both cases (with and without momentum), gradient

125

(a) (b)

Figure B-1: (a) Test accuracy vs. 𝜏 (b) Test loss vs. 𝜏 . The experiment was on non-i.i.d distributed
CIFAR-10 using a ResNet model.

masking was outperforming naive averaging in most of the algorithms and datasets. Table

B.3 shows the performance of the algorithms and their GMA versions on non-i.i.d distributed

FMNIST using an LeNet model. The client optimizers used in our experiments is a naive

SGD optimizer with momentum parameter and it does not involve the correction parameter

introduced in [99].

126

Table B.3: Performance of the algorithms and their GMA versions with and without momentum(𝜌)
on non-i.i.d distributed FMNIST using an LeNet model. Momentum improves performance of the
algorithms. Irrespective of momentum, GMA outperforms AVG.

Dataset

(Model)

FedAVG

(𝜌 = 0)

FedAVG

(𝜌 = 0.9)

AVG GMA AVG GMA

MNIST

(LeNet)

IID 99.01 98.96 99.1 99.16

Non-IID 98.43 98.55 98.87 98.9

FMNIST

(LeNet)

IID 88.61 88.49 89.14 90.52

Non-IID 86.95 87.8 88.1 88.38

FEMNIST

(LeNet)

IID 98.8 98.92 99.7 99.68

Non-IID 92.17 94.61 94.2 96.04

CIFAR-10

(ResNet)

IID 85.8 86.31 87.3 87.61

Non-IID 81.1 82.28 83.25 83.95

B.3.3 Effect of GroupNorm

The test accuracies reported in paper corresponding to CIFAR-10 used a ResNet18 model

with batch normalization layers replaced by group normalization[96] similar to the experi-

ments in [79]. Our initial experiments involved batch normalization as in the original ResNet

and it was observed that the replacement of batch norm with group norm improved the test

accuracies. Table B.4 shows the comparison of the algorithms and their GMA versions on

CIFAR-10 using ResNet model having batch normalization and group normalization layers.

127

It is to be noted that irrespective of the normalization layer used, gradient masking was

outperforming naive averaging across all algorithms and data distributions. This further

validates the capabilities of the proposed GMA.

Table B.4: Average in-distribution test performance(%) over the last 10 communication rounds of
FedAVG, FedProx, SCAFFOLD, FedAdam, FedYogi and their GMA versions on i.i.d and non-i.i.d
distributions of CIFAR-10 on ResNet18 models using batch normalization and group normalization.
The best result among AVG and GMA versions of each algorithm is shown in bold.

Dataset

(Model)

FedAVG FedProx SCAFFOLD FedADAM FedYogi

AVG GMA AVG GMA AVG GMA AVG GMA AVG GMA

ResNet

BatchNorm

IID 87.11 87.42 87.2 87.38 87.56 87.52 77.32 80.65 78.78 80.55

Non-IID 77.3 79.9 78.4 80.2 75.82 78.83 69.82 74.05 67.29 71.51

ResNet

GroupNorm

IID 87.3 87.61 87.18 87.5 86.58 86.72 86.9 87.7 87.53 87.78

Non-IID 83.25 83.66 83.87 84.4 84.01 85.36 83.53 84.84 83.17 84.55

B.3.4 Grid Search Range

For all our experiments a search for client learning rate (𝜂𝑙) and global learning (𝜂𝑔) rate

across the grid specified below was conducted and the best performing learning rates of

each algorithm was used for experiments that reported the test performances in the paper.

The grid was fixed the same for all datasets and algorithms for easy experimentation.

𝜂l ∈ {10−3, 10−2, 5.10−2, 10−1}

𝜂g ∈ {10−2, 10−1, 1, 1.5, 2}

𝜏 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

128

Table B.5: The best learning rates corresponding to the performances of the algorithms and datasets
as reported in Table B.4

Dataset FedAVG FedProx SCAFFOLD FedAdam FedYogi
𝜂𝑔 𝜂𝑙 𝜂𝑔 𝜂𝑙 𝜂𝑔 𝜂𝑙 𝜂𝑔 𝜂𝑙 𝜂𝑔 𝜂𝑙

MNIST IID 1.0 0.01 1.0 0.01 1.0 0.01 0.05 0.001 0.05 0.001
Non-IID 1.0 0.01 1.0 0.01 1.0 0.01 0.05 0.001 0.05 0.001

FMNIST IID 1.0 0.1 1.0 0.1 1.0 0.01 0.05 0.001 0.05 0.001
Non-IID 1.0 0.01 1.0 0.01 1.0 0.01 0.05 0.001 0.05 0.001

FEMNIST IID 1.0 0.01 1.0 0.01 1.5 0.1 0.05 0.001 0.05 0.001
Non-IID 1.0 0.01 1.5 0.01 1.0 0.01 0.05 0.001 0.05 0.001

CIFAR-10 IID 1.0 0.01 1.0 0.01 1.5 0.01 0.01 0.001 0.01 0.001
Non-IID 1.5 0.01 1.0 0.001 1.5 0.001 0.05 0.001 0.05 0.001

The values for global learning rate and client learning rate was observed to vary across

algorithms and datasets. However, it was observed that the same combination was giving

the best performance for GMA and AVG versions of the same algorithm for the same

dataset. This enables better comparison of naive averaging and gradient masked versions

of algorithms better. For 𝜏 , it was observed that 𝜏 = 0.4 was giving the best result acriss

algorithms and datasets. More details about hyperparameter 𝜏 is given in Appendix C.1.

B.3.5 Best Performing Learning Rates

The best performing learning rates corresponding to the Tables B.4 and 3.2 are given below

in Tables B.5 and B.6 respectively.

129

Table B.6: The best learning rates corresponding to the performances of the algorithms and datasets
as reported in Table 3.2

Dataset
FedAVG FedProx SCAFFOLD FedAdam FedYogi

𝜂𝑔 𝜂𝑙 𝜂𝑔 𝜂𝑙 𝜂𝑔 𝜂𝑙 𝜂𝑔 𝜂𝑙 𝜂𝑔 𝜂𝑙

FEMNIST Real World 1.0 0.01 1.0 0.01 1.0 0.01 0.05 0.001 0.05 0.001

FedCMNIST IID 1.0 0.01 1.0 0.01 1.0 0.01 0.05 0.001 0.05 0.001

Non-IID 1.0 0.01 1.0 0.01 1.0 0.01 0.05 0.001 0.05 0.001

FedRotMNIST IID 1.0 0.01 1.0 0.01 1.5 0.01 0.05 0.001 0.05 0.001

Non-IID 1.0 0.01 1.5 0.01 1.0 0.01 0.05 0.001 0.05 0.001

B.3.6 Performance for same learning rates

Table B.7 shows the in-distribution test performance of naive and gradient masked versions

of FedAVG on non-iid FMNIST dataset. Performance corresponding to the entire range

of hyperparameters mentioned in Appendix C.4 has been given here. It can be noted that

across learning rates where the model learns, gradient masking outperforms naive averaging.

This suggest the gains are highly robust to hyperparameter choices.

130

Table B.7: Performance of FedAVG across a range of global learning rate and client rate on non-iid
FMNIST. It can be observed that GMA outperforms AVG in most of the cases where the algorithms
learn and converge.

Global

Learning

Rate

0.01 0.1 56.06 61.66 68.02 0.1 AVG

0.1 57.72 65.13 72.56 0.1 GMA

0.1
56.93 73.66 83.39 85.22 0.1 AVG

57.51 73.9 83.79 87.22 0.1 GMA

1.0
72.69 86.49 87.76 88.31 0.1 AVG

73.34 87.0 88.14 88.4 0.1 GMA

1.5
77.11 86.29 87.82 86.96 0.1 AVG

75.63 87.04 88.21 88.3 0.1 GMA

2.0
71.53 82.42 86.93 87.63 0.1 AVG

77.59 86.9 87.6 88.1 0.1 GMA

0.001 0.01 0.05 0.1 1.0

Client Learning Rate

B.3.7 Additional Hyperparameters

In this section I mention the additional hyperparameters that I have used in our experiments.

These hyperparameters were maintained the same across all experiments considering the

large number of hyperparameters to tune. Batch size was maintained at 32 for all our

experiments across datasets and algorithms. An L2 regularization of strength 1𝑒−5 was used

in all the loss functions. 𝜇 = 1 for FedProx. Additionally, all models start from the same

131

initialization of parameters considering the results in [64].

B.4 Details of Experiments

In this section I give more details about the various experiments included in the paper.

B.4.1 Increased Clients and Local Epochs

Table B.8 and Table B.9 shows average test accuracies corresponding to Figures 3-1a and

3-1b. These report the average test performance over last 10 communication rounds on

convergence of FedAVG and its GMA version across increasing number of selected clients

and number of local epochs at each client per communication round.

Table B.8: Average test performance values of non-i.i.d FMNIST on varying number of clients

Number of

Selected Clients
10 50 100 250

FedAVG
AVG 88.1 82.42 74.39 71.11

GMA 88.38 83.11 76.11 72.87

Table B.9: Average test performance values of non-i.i.d FMNIST with varying number of local client
epochs per communication round

Number of

Local Epochs
3 5 10 20

FedAVG
AVG 89.91 85.71 84.13 80.27

GMA 91.73 87.29 87.11 86.66

132

B.4.2 Convex Objective

For the experiments on convex objective I employed a logistic regression model on MNIST

with FedAVG for global model approximation at the server. The model was created using

a single linear layer in a perceptron model without any non-linear activation functions.

A cross-entropy loss was used and the model was updated by an SGD optimizer with

momentum at each client. Each client undergoes 1 update step before aggregation (gradient

masked or naive avergaing) to approximate the global model. Experiments included i.i.d

and non-i.i.d data distribution of data across clients with in-distribution test for global model

evaluation. The number of clients selected at each round was set to 10 and the models were

run until convergence. The various hyperparameters involved in the experiments are global

model learning rate of 1.0, client model learning rate of 0.01, and 𝜏 = 0.4.

B.4.3 Membership Inference Attack

Most machine learning models tends to overfit on their training data and such models are

susceptible to membership inference attacks that can accurately predict whether a data

sample was present in the training set of the model given the model output logits [89]. This

is a major privacy breach and it can be simulated by using a black-box adversarial attacker

model. The attacker model I have employed is a binary logistic regression model with binary

cross-entropy loss. The input to this attacker model is the logits of the converged gradient

masked averaging model and naive averaging model. The attacker model is supposed to

identify whether the input of the global model corresponding to the logit given was present

in the global model’s training set or not. For our experiments, I used CIFAR-10 and ResNet

models. Firstly, the GMA and AVG models were trained and tested. For each model, the

logits corresponding to the train and test set data and their labels (whether train data or test

data) were stored. The data is split as shown in Figure B-2a [89] and the attacker model is

trained for 5000 rounds. The accuracy is as reported in the paper and loss as shown in Figure

B-2b. A lower attack accuracy of gradient masked implies that GMA has better immunity to

membership inference attacks than naive averaging global models.

133

(a)

(b)

Figure B-2: (a) Data split and creation for attacker model (b) Test loss vs. epochs of the logistic
regression attacker model.

134

Bibliography

[1] Kartik Ahuja, Karthikeyan Shanmugam, Kush R. Varshney, and Amit Dhurandhar.
Invariant risk minimization games, 2020.

[2] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. Advances in
Neural Information Processing Systems, 30, 2017.

[3] Martin Arjovsky. Out of distribution generalization in machine learning, 2021.

[4] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant
risk minimization, 2020.

[5] Pierre Baldi, Søren Brunak, Yves Chauvin, Claus AF Andersen, and Henrik Nielsen.
Assessing the accuracy of prediction algorithms for classification: an overview.
Bioinformatics, 16(5):412–424, 2000.

[6] Leighton Pate Barnes, Huseyin A Inan, Berivan Isik, and Ayfer Özgür. rtop-k: A
statistical estimation approach to distributed sgd. IEEE Journal on Selected Areas in
Information Theory, 1(3):897–907, 2020.

[7] Stephen D Bay, Dennis Kibler, Michael J Pazzani, and Padhraic Smyth. The uci
kdd archive of large data sets for data mining research and experimentation. ACM
SIGKDD explorations newsletter, 2(2):81–85, 2000.

[8] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghunathan,
David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnés, and Bernhard Seefeld.
Prochlo: Strong privacy for analytics in the crowd. In Proceedings of the 26th
Symposium on Operating Systems Principles, Shanghai, China, October 28-31, 2017,
pages 441–459. ACM, 2017.

[9] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical
secure aggregation for privacy-preserving machine learning. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, pages
1175–1191. ACM, 2017.

[10] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

135

[11] David Byrd, Maria Hybinette, and Tucker Hybinette Balch. ABIDES: towards
high-fidelity market simulation for AI research. CoRR, abs/1904.12066, 2019.

[12] David Byrd and Antigoni Polychroniadou. Differentially private secure multi-party
computation for federated learning in financial applications. In Proceedings of the
2020 ACM International Conference on AI in Finance, ACM ICAIF ’20, New York,
NY, USA, 2020. Association for Computing Machinery.

[13] Peter Bühlmann. Invariance, causality and robustness, 2018.

[14] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ,
H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for
federated settings. arXiv preprint arXiv:1812.01097, 2018.

[15] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný,
H. Brendan McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for
federated settings, 2019.

[16] Jeffrey Champion, Abhi Shelat, and Jonathan Ullman. Securely sampling biased
coins with applications to differential privacy. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’19, page
603–614, New York, NY, USA, 2019. Association for Computing Machinery.

[17] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private
empirical risk minimization. Journal of Machine Learning Research, 12(Mar):1069–
1109, 2011.

[18] Yiqiang Chen, Wang Lu, Jindong Wang, and Xin Qin. Fedhealth 2: Weighted
federated transfer learning via batch normalization for personalized healthcare. arXiv
preprint arXiv:2106.01009, 2021.

[19] Yiqiang Chen, Wang Lu, Jindong Wang, Xin Qin, and Tao Qin. Federated
learning with adaptive batchnorm for personalized healthcare. arXiv preprint
arXiv:2112.00734, 2021.

[20] Albert Cheu, Adam D. Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev.
Distributed differential privacy via shuffling. In Yuval Ishai and Vincent Rijmen,
editors, Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt,
Germany, May 19-23, 2019, Proceedings, Part I, volume 11476 of Lecture Notes in
Computer Science, pages 375–403. Springer, 2019.

[21] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. Emnist: an
extension of mnist to handwritten letters, 2017.

[22] Andrea Dal Pozzolo, Olivier Caelen, Reid A Johnson, and Gianluca Bontempi.
Calibrating probability with undersampling for unbalanced classification. In 2015
IEEE Symposium Series on Computational Intelligence, pages 159–166. IEEE, 2015.

136

[23] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans.
Information Theory, 22(6):644–654, 1976.

[24] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[25] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni
Naor. Our data, ourselves: Privacy via distributed noise generation. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
pages 486–503. Springer, 2006.

[26] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In Theory of cryptography conference, pages
265–284. Springer, 2006.

[27] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar,
and Abhradeep Thakurta. Amplification by shuffling: From local to central differential
privacy via anonymity. In Timothy M. Chan, editor, Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego,
California, USA, January 6-9, 2019, pages 2468–2479. SIAM, 2019.

[28] James D Evans. Straightforward statistics for the behavioral sciences. Brooks/Cole,
1996.

[29] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated
learning: A meta-learning approach, 2020.

[30] Sreya Francis, Irene Tenison, and Irina Rish. Towards causal federated learning for
enhanced robustness and privacy, 2021.

[31] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. arXiv preprint arXiv:1803.03635, 2018.

[32] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin.
Stabilizing the lottery ticket hypothesis. arXiv preprint arXiv:1903.01611, 2019.

[33] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting
gradients–how easy is it to break privacy in federated learning? arXiv preprint
arXiv:2003.14053, 2020.

[34] Quan Geng, Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The staircase mech-
anism in differential privacy. IEEE Journal of Selected Topics in Signal Processing,
9(7):1176–1184, 2015.

[35] Muhammad Ghifary, W. Bastiaan Kleijn, Mengjie Zhang, and David Balduzzi. Do-
main generalization for object recognition with multi-task autoencoders, 2015.

[36] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Proceedings of the
19th Annual ACM Symposium on Theory of Computing, 1987, New York, New York,
USA, pages 218–229, 1987.

137

[37] Jenny Hamer, Mehryar Mohri, and Ananda Theertha Suresh. Fedboost: A
communication-efficient algorithm for federated learning. In International Con-
ference on Machine Learning, pages 3973–3983. PMLR, 2020.

[38] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of
non-identical data distribution for federated visual classification. arXiv preprint
arXiv:1909.06335, 2019.

[39] Meryem Janati Idrissi, Ismail Berrada, and Guevara Noubir. Fedbs: Learning on
non-iid data in federated learning using batch normalization. In 2021 IEEE 33rd
International Conference on Tools with Artificial Intelligence (ICTAI), pages 861–867.
IEEE, 2021.

[40] A Ingerman and K Ostrowski. Introducing tensorflow federated. External Links:
Link Cited by, 4, 2019.

[41] Bargav Jayaraman, Lingxiao Wang, David Evans, and Quanquan Gu. Distributed
learning without distress: Privacy-preserving empirical risk minimization. In Ad-
vances in Neural Information Processing Systems, pages 6343–6354, 2018.

[42] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis,
Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel
Cummings, et al. Advances and open problems in federated learning. arXiv preprint
arXiv:1912.04977, 2019.

[43] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb,
David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B.
Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo,
Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak,
Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède
Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür,
Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn
Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh,
Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang
Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances and open problems in federated
learning, 2021.

[44] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian
Stich, and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for
federated learning. In International Conference on Machine Learning, pages 5132–
5143. PMLR, 2020.

[45] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebas-
tian U. Stich, and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging
for federated learning, 2021.

138

[46] Geeho Kim, Jinkyu Kim, and Bohyung Han. Communication-efficient federated
learning with acceleration of global momentum. arXiv preprint arXiv:2201.03172,
2022.

[47] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha
Suresh, and Dave Bacon. Federated learning: Strategies for improving communication
efficiency. arXiv preprint arXiv:1610.05492, 2016.

[48] Kavya Kopparapu and Eric Lin. Fedfmc: Sequential efficient federated learning on
non-iid data. arXiv preprint arXiv:2006.10937, 2020.

[49] S. Kotz, T. Kozubowski, and K. Podgorski. The Laplace Distribution and General-
izations: A Revisit with Applications to Communications, Economics, Engineering,
and Finance. Progress in Mathematics. Birkhäuser Boston, 2001.

[50] Masanori Koyama and Shoichiro Yamaguchi. When is invariance useful in an out-of-
distribution generalization problem ?, 2021.

[51] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images.
Master’s thesis, Department of Computer Science, University of Toronto, 2009.

[52] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan
Binas, Dinghuai Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution
generalization via risk extrapolation (rex), 2021.

[53] Viraj Kulkarni, Milind Kulkarni, and Aniruddha Pant. Survey of personalization
techniques for federated learning. In 2020 Fourth World Conference on Smart Trends
in Systems, Security and Sustainability (WorldS4), pages 794–797. IEEE, 2020.

[54] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[55] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of
handwritten digits, 1998. URL http://yann. lecun. com/exdb/mnist, 10:34, 1998.

[56] Ang Li, Jingwei Sun, Binghui Wang, Lin Duan, Sicheng Li, Yiran Chen, and Hai Li.
Lotteryfl: Personalized and communication-efficient federated learning with lottery
ticket hypothesis on non-iid datasets. arXiv preprint arXiv:2008.03371, 2020.

[57] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust
federated learning through personalization, 2021.

[58] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning:
Challenges, methods, and future directions. IEEE Signal Processing Magazine,
37(3):50–60, May 2020.

[59] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and
Virginia Smith. Federated optimization in heterogeneous networks, 2020.

139

[60] Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn:
Federated learning on non-iid features via local batch normalization. arXiv preprint
arXiv:2102.07623, 2021.

[61] Yanjun Ma, Dianhai Yu, Tian Wu, and Haifeng Wang. Paddlepaddle: An open-source
deep learning platform from industrial practice. Frontiers of Data and Domputing,
1(1):105–115, 2019.

[62] Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three
approaches for personalization with applications to federated learning. arXiv preprint
arXiv:2002.10619, 2020.

[63] Brian W Matthews. Comparison of the predicted and observed secondary structure
of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure,
405(2):442–451, 1975.

[64] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera
y Arcas. Communication-efficient learning of deep networks from decentralized data.
In Artificial intelligence and statistics, pages 1273–1282. PMLR, 2017.

[65] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploit-
ing unintended feature leakage in collaborative learning. In 2019 IEEE Symposium
on Security and Privacy (SP), pages 691–706. IEEE, 2019.

[66] Ari Morcos, Haonan Yu, Michela Paganini, and Yuandong Tian. One ticket to win
them all: generalizing lottery ticket initializations across datasets and optimizers.
Advances in neural information processing systems, 32, 2019.

[67] Vaikkunth Mugunthan, Anton Peraire-Bueno, and Lalana Kagal. Privacyfl: A simula-
tor for privacy-preserving and secure federated learning. In Proceedings of the 29th
ACM International Conference on Information & Knowledge Management, pages
3085–3092, 2020.

[68] Vaikkunth Mugunthan, Ravi Rahman, and Lalana Kagal. Blockflow: An accountable
and privacy-preserving solution for federated learning, 2020.

[69] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of
deep learning: Stand-alone and federated learning under passive and active white-box
inference attacks. arXiv preprint arXiv:1812.00910, 2018.

[70] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of
deep learning: Passive and active white-box inference attacks against centralized and
federated learning. In 2019 IEEE Symposium on Security and Privacy (SP), pages
739–753. IEEE, 2019.

[71] DJ Newman, S Hettich, CL Blake, and CJ Merz. Uci repository of machine learning
databases. dept. information and computer sciences, univ. california, irvine, 1998.

140

[72] Jaehoon Oh, Sangmook Kim, and Se-Young Yun. Fedbabu: Towards enhanced
representation for federated image classification, 2021.

[73] Emre Ozfatura, Kerem Ozfatura, and Deniz Gündüz. Fedadc: Accelerated federated
learning with drift control. In 2021 IEEE International Symposium on Information
Theory (ISIT), pages 467–472. IEEE, 2021.

[74] Giambattista Parascandolo, Alexander Neitz, Antonio Orvieto, Luigi Gresele, and
Bernhard Schölkopf. Learning explanations that are hard to vary, 2020.

[75] Karl Pearson. Note on regression and inheritance in the case of two parents. Proceed-
ings of the Royal Society of London, 58:240–242, 1895.

[76] Mohammad Pezeshki, Sékou-Oumar Kaba, Yoshua Bengio, Aaron Courville, Doina
Precup, and Guillaume Lajoie. Gradient starvation: A learning proclivity in neural
networks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, 2021.

[77] David Martin Powers. Evaluation: from precision, recall and f-measure to roc, in-
formedness, markedness and correlation. Journal of Machine Learning Technologies,
2011.

[78] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub
Konečnỳ, Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization.
arXiv preprint arXiv:2003.00295, 2020.

[79] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub
Konečný, Sanjiv Kumar, and H. Brendan McMahan. Adaptive federated optimization,
2021.

[80] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and
Ramtin Pedarsani. Fedpaq: A communication-efficient federated learning method
with periodic averaging and quantization, 2020.

[81] Jonatan Reyes, Lisa Di Jorio, Cecile Low-Kam, and Marta Kersten-Oertel. Precision-
weighted federated learning. arXiv preprint arXiv:2107.09627, 2021.

[82] Theo Ryffel, Andrew Trask, Morten Dahl, Bobby Wagner, Jason Mancuso, Daniel
Rueckert, and Jonathan Passerat-Palmbach. A generic framework for privacy preserv-
ing deep learning. arXiv preprint arXiv:1811.04017, 2018.

[83] Soroosh Shahtalebi, Jean-Christophe Gagnon-Audet, Touraj Laleh, Mojtaba Fara-
marzi, Kartik Ahuja, and Irina Rish. Sand-mask: An enhanced gradient masking
strategy for the discovery of invariances in domain generalization, 2021.

[84] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership
inference attacks against machine learning models. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 3–18. IEEE, 2017.

141

[85] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated
multi-task learning. Advances in neural information processing systems, 30, 2017.

[86] Sebastian U. Stich. Local SGD converges fast and communicates little. In Interna-
tional Conference on Learning Representations, 2019.

[87] Ananda Theertha Suresh, X Yu Felix, Sanjiv Kumar, and H Brendan McMahan. Dis-
tributed mean estimation with limited communication. In International Conference
on Machine Learning, pages 3329–3337. PMLR, 2017.

[88] Irene Tenison, Sai Aravind Sreeramadas, Vaikkunth Mugunthan, Edouard Oyallon,
Eugene Belilovsky, and Irina Rish. Gradient masked averaging for federated learning.
arXiv preprint arXiv:2201.11986, 2022.

[89] Shruti Tople, Amit Sharma, and Aditya Nori. Alleviating privacy attacks via causal
learning, 2020.

[90] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman
Khazaeni. Federated learning with matched averaging, 2020.

[91] Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified framework for the design
and analysis of communication-efficient sgd algorithms, 2019.

[92] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. Tackling
the objective inconsistency problem in heterogeneous federated optimization, 2020.

[93] Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner, Françoise Beaufays,
and Daniel Ramage. Federated evaluation of on-device personalization. arXiv preprint
arXiv:1910.10252, 2019.

[94] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K. Leung, Christian Makaya,
Ting He, and Kevin Chan. Adaptive federated learning in resource constrained edge
computing systems, 2019.

[95] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H. Yang, Farokhi Farhad, Shi Jin,
Tony Q. S. Quek, and H. Vincent Poor. Federated learning with differential privacy:
Algorithms and performance analysis, 2019.

[96] Yuxin Wu and Kaiming He. Group normalization, 2018.

[97] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms, 2017.

[98] An Xu and Heng Huang. Double momentum sgd for federated learning. arXiv
preprint arXiv:2102.03970, 2021.

[99] Jing Xu, Sen Wang, Liwei Wang, and Andrew Chi-Chih Yao. Fedcm: Federated
learning with client-level momentum, 2021.

142

[100] Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han Yu. Federated
learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 13(3):1–
207, 2019.

[101] Yousef Yeganeh, Azade Farshad, Nassir Navab, and Shadi Albarqouni. Inverse
distance aggregation for federated learning with non-iid data. In Domain Adaptation
and Representation Transfer, and Distributed and Collaborative Learning, pages
150–159. Springer, 2020.

[102] Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster convergence
and less communication: Demystifying why model averaging works for deep learning,
2018.

[103] Honglin Yuan and Tengyu Ma. Federated accelerated stochastic gradient descent,
2021.

[104] Honglin Yuan, Warren Morningstar, Lin Ning, and Karan Singhal. What do we mean
by generalization in federated learning?, 2021.

[105] Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia
Hoang, and Yasaman Khazaeni. Probabilistic federated neural matching, 2019.

[106] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra.
Federated learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

143

	Introduction
	Federated Learning Challenges
	Thesis Contributions
	Thesis Overview

	Privacy-Preserving and Secure FL
	Introduction
	Background
	Secure Multiparty Computation
	Differential Privacy
	Federated Logistic Regression Classifiers
	Network Topology & Threat Model

	Approach
	Eliminating weight leakage
	Eliminating weighted average leakage

	Secure Weighted Average Protocol
	Our Protocol
	Security of our Protocol

	Experiments
	Experimental Dataset and Method
	Protocol Timing Results
	Protocol Accuracy Results
	Adversarial Data Recovery

	Summary

	Tackling Statistical Heterogeneity in FL
	Introduction
	Related Work

	Connections of FL to OOD Generalization
	Methods
	Federated Aggregation
	Gradient Masked Aggregation

	Method Analysis
	Experiments
	In-Distribution Evaluation
	Real-World Evaluation
	Out-of-Distribution Evaluation
	Convex Objective

	Summary

	Personalized and Communication-Efficient FL
	Introduction
	Related Work

	FedLTN: Federated Learning for Sparse and Personalized Lottery Ticket Networks
	Personalization
	Smaller memory footprint / Faster pruning

	Experiments
	Experiment Setup
	Evaluation

	Summary

	PrivacyFL: A Simulator for Privacy-Preserving and Secure Federated Learning
	Introduction
	Related Work

	Architecture
	Simulation Lifecycle
	Classes
	Configurations and Features

	Algorithms
	Differentially Private Federated Averaging
	Secure Aggregation

	Experiments
	Experiment 1: Accuracy vs Privacy vs Number of Clients Trade-offs
	Experiment 2: Privacy Constraints
	Experiment 3: Decentralized (Serverless) Federated Learning
	Experiment 4: Real-World Latency Simulation

	Availability
	Summary

	DynamoFL: A Production Level FL System
	Introduction
	DynamoFL's Decentralized Federated Learning Workflow
	Challenges: Federated Learning Infrastructure

	How DynamoFL plugs seamlessly into AI/ML pipelines
	Docker-based Datapod Client
	Python Client Package
	HTTP API

	Use Cases of DynamoFL
	Health AI
	Insurtech
	Financial Fraud Detection
	Cohesive Interdepartmental data and ML pipelines
	Manufacturing, Supply-Chain, and Logistics
	Machine Learning on the Edge

	Summary

	Conclusion
	Appendix for "Collusion Resistant Federated Learning with Oblivious Distributed Differential Privacy"
	Secure Multi-Party Computation
	Global Sensitivity
	Laplacian Mechanism
	Generating Laplace Random Variable from Gamma Random Variables
	Supplementary Material: Security Proof
	Security Proofs
	Collusion Privacy
	Misbehaved Colluding Parties
	Security against Sybil Attacks
	Communication Protocol Diagrams
	Secure Aggregation for Multiple Iterations
	Supplementary Material: Experiments
	Matthews Correlation Coefficient
	Additional Timing Results

	Attacks against the protocol
	Snooping Server
	Collusion attack

	Diffie-Hellman Key Exchange Protocol

	Appendix for "Gradient Masked Averaging for Federated Learning"
	GMA on SCAFFOLD
	Datasets and Models
	IID and Non-IID data distribution
	Datasets

	Hyperparameters
	Effects of
	Effect of Client Momentum
	Effect of GroupNorm
	Grid Search Range
	Best Performing Learning Rates
	Performance for same learning rates
	Additional Hyperparameters

	Details of Experiments
	Increased Clients and Local Epochs
	Convex Objective
	Membership Inference Attack

