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Abstract

The presence of social media is getting greater in the sports arena. Many people
who watch live sports games also follow social media platforms for live coverage and
commentaries. Although these additional content can enrich the watching experiences
of the audience, they may become distractions to the audience from some key events
in a live sports game. In this thesis, we propose a system that will automatically
present relevant and engaging social media content for a live game. We will employ
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can enjoy the game without missing out on important game coverage and reactions
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Chapter 1

Introduction

1.1 Motivation

The COVID-19 pandemic gives rise to virtual substitutes for in-person activities, in-

cluding live sports events. Enhancing user experience during these events is important

to keep the users engaged. No viewers would find watching a soccer game on their

own a satisfactory substitute for in-person alternatives. There are many avenues for

solving this problem. For example, one can set up poll questions for users to quiz

their knowledge. In this project, we will investigate the direction of incorporating

social media content during those live events.

Besides watching the live game, social media platforms are useful places to view

live coverage and other important updates. Many viewers will share their opinions as

these live events go on. Seeing relatable content can connect viewers with one another

and create a sense of community among them. However, navigating between watching

the game and using social media applications can be rather distracting and may cause

users to miss important game events. Adding selected content that interests users

will avoid this problem and thus enhance their overall experiences.
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Figure 1-1: User interface of Sky Sports Fanzone, an application providing interactive
watch-together experiences for viewers.

1.2 Current Experience with Live Sports

There are many ongoing efforts to enhance interactive experiences during live sports

events. We will focus our discussions on three specific components: watch-together

experiences, live news feeds, and social media content.

The watch-together experience offers an alternative to in-person watching parties,

which can be popular when COVID-related restrictions are in effect. The essence of

this experience is to watch a live sports game together through a video conference

software, as demonstrated in Figure 1-1. However, developments of additional features

can enhance this virtual activity. For example, viewers can put on some fan gears

as virtual filters to show support for specific teams. They may also participate in

pregame quizzes to demonstrate their knowledge about players and teams involved

in a game. These new features make up for the lack of face-to-face experiences and

can build connections among users.

A live news feed for a sports event is the go-to place to see the perspective of

sports commentators. Figure 1-2 shows examples of such highlights. The vast ma-

jority of them are descriptions of some important moments during the game. They

may also contain some news reports to set up the context for the game. Although

16



Figure 1-2: Some example posts from the live news feed of the Brentford v. Manch-
ester United game on January 19, 2022.
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Figure 1-3: An example tweet showing a satire on the performance of the Arsenal
team.

the feature may help users to get a new perspective, most of these descriptions are

things that viewers probably can see for themselves. This feature has the risk of

not adding anything substantial to user experiences. Additionally, this feature can

become a distraction for viewers who are watching the live video stream of the game

simultaneously.

Content from social media platforms can perhaps better complement the experi-

ence of watching a live game. It is no surprise that viewers check their social media

accounts for updates frequently. Specifically, they look for updates, as well as inter-

esting opinions and commentaries. Figure 1-3 shows an example of such a tweet. It

attracted many engagements for its satire on Arsenal’s performance during a game

in August 2021.

18



This observation inspires us to improve the experience of these viewers with social

media content during a live sports game. Most users don’t have access to a feed

that contains relevant content for a specific game exclusively. Take Twitter as an

example. Almost all Twitter users will have other irrelevant content in their feed,

making it difficult for them to locate content specifically related to the game they

are watching. Furthermore, checking social media applications can be distracting

for viewers, causing them to miss important moments during a game. With those

considerations in mind, building a system to deliver a better companion social media

feed for a live sports game can improve their experiences watching sports coverage.

This system can also help them to feel connected with a community of sports fans

who are paying attention to the same game.

1.3 Main Contribution

1.3.1 Problem Statement

The main problem is to build a system that delivers relevant and interesting social

media content to a user watching live game coverage. We narrow the domain of the

problem to only include English Premier League games. We also choose to focus on

social media data on Twitter. Given a set of 𝑛 tweets provided by our clients, we

would like to find top 𝑘 tweets that are most suited for a Premier League game, or for

a specific moment within such a game, where 𝑘 ≤ 𝑛. We provide further definitions

of a "suited" tweet:

• A suited tweet is relevant. We want to ensure that any tweets that are shown

to the users must be relevant. For instance, users looking for tweets about a

foul probably will not be pleased to see tweets about a goal that happened 20

minutes ago. The system doesn’t need to rank the outputs by the extent of

relevance, but it must make sure that any tweets returned are related to the

game or a game moment that the client is looking for.

• A suited tweet is popular. A popular tweet gets lots of attention on Twitter,
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and the attention provides a strong signal that such a tweet contains good

content for our users to see. An example may be a tweet written by a player

thanking the supporters for their extraordinary achievements during the game.

Users don’t want to miss out on those trends on social media platforms while

watching live coverage.

• A suited tweet is sensational. Lots of sports reporting focus on facts and

figures about players and teams. These numbers and statistics do not include

the emotional aspects of a game. A committed foul can make some viewers

angry, while a missed goal will induce much disappointment. We can find lots

of emotions related to those Premier League games on social media platforms

like Twitter. Having sensational content will be an excellent complement.

1.3.2 List of Contributions

The main achievements of the thesis project are listed below:

• Created a basic quality control filter to remove incomplete tweets or those in

foreign languages.

• Created a relevance filter using keyword matching to remove any irrelevant

tweets provided by the clients.

• Implemented a sentiment analysis system via VaderSentiment[11] to choose

tweets with specific types of sentiment.

• Designed and trained a content moderation model with TF-IDF feature ex-

traction algorithm to remove offensive and inappropriate content from the user

feed.

• Designed and trained an engagement prediction model using a multimodal

Transformer-based algorithm[10] to predict the number of likes that a tweet

is expected to receive.

• Deployed the content moderation model and integrated it with our system.

20



• Deployed the engagement prediction model as an API endpoint using Amazon

SageMaker and integrated it with our system.

• Implemented a Kedro training pipeline[2] for the engagement prediction model

to automate the model training process.

1.4 Related Work and Literature Review

The success of this thesis project relies heavily on two aspects. The first one is a

solid framework for the engagement prediction task to achieve our main objective.

Additionally, the engagement prediction task itself requires a set of appropriate Nat-

ural Language Processing(NLP) techniques to maximize its performance. NLP also

plays a critical role in other aspects of this project, including sentiment analysis and

content moderation.

1.4.1 Engagement Prediction

There has not been too much work on engagement prediction overall. Instead, a lot of

the work has been focused on predicting individual engagement tendency on a piece

of content, rather than the overall engagement level. The RecSys challenge is a great

example of that. It featured user behavior prediction on Twitter content [4]. The

problem setup focuses on a specific target user and a tweet. The question they are

trying to address is: How likely is it for the target user to engage with this tweet? On

the other hand, we are trying to predict the overall level of engagement of a tweet,

and we are not concerned about the behaviors of each individual user. Nevertheless,

the methods used in these top submissions can inspire us on choices of features and

model architectures.

Many of the top submissions [15] [9] [8] [6] to this challenge involve BERT and

its variant to obtain a text embedding of the content. Some of them decided to train

the model with the original language modeling objective to get the model familiarized

with the language of Twitter. Other features from those papers include past behaviors
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of tweet authors and of the target users. Some of these features can be useful for our

thesis project. In fact, many of the features listed in Chapter 3.2 are motivated by

these papers. There is also a variety of choices in terms of models. One of them

decided on a full deep learning approach [15] while others tried ensemble models

involving gradient boosting trees [9] [8]. Our engagement prediction model adopts

a full deep learning approach, as we have discovered methods to combine different

forms of features without using a boosting tree.

We will now closely analyze the system presented in [15], as it is the most similar

to the main component of our system. It utilizes features about the content creator

and the target user. These features are directly fed into the feedforward layer in their

model. The system creates a history embedding that represents all the tweets of which

the target user interacted with in the past. This embedding can give us substantive

information about the target user, including their past behaviors and their interests.

This history embedding is then combined with the embedding of the tweet content

through an attention layer.

The system we propose in this thesis serves a different purpose. For example, we

don’t have access to past user behaviors and cannot make predictions on individual

level. However, many design ideas in this thesis are inspired by the system presented

in [15], including the use of features about the tweet creator and an attention layer

for combining different types of features.

1.4.2 NLP Techniques

A performant engagement prediction model relies on state-of-the-art NLP techniques.

In the RecSys challenge, the contestants were provided with the BERT embed-

dings of the tokens in the tweet. Unsurprisingly, many of those papers above used

Transformer-based models to obtain a vector representation of the tweet text, which

proved to be helpful in the task.

In recent years, there has been a significant breakthrough in NLP with the advent

of the Transformer-based models. BERT[7] is the prime example of that. The success

of these models heavily depend on the success of attention modules[14]. The most
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significant contribution of those models is that they can be used for all types of

downstream classification and regression tasks with a customized dataset.

Although BERT[7] is an excellent choice for a NLP model, it comes at the cost

of longer training time and higher demand for computational resources. In some

cases, we would like the performance of Transformer-based models like BERT, but

we also need more efficient training and inferences. As a result, further optimiza-

tions on Transformer-based models are discovered, including distilBERT[13]. Our

thesis project will use this model for extracting embeddings from textual data in the

engagement prediction model.

1.5 Thesis Organization

The thesis starts with an overview of the system. It then covers the engagement

prediction task in detail. Afterwards, experimental content and engineering work will

follow.

Chapter 2 gives an overview of our proposed system. It first enumerates our

design values. The chapter then describes each component of our proposed system

and specifies how the design choices with those components meet with our design

values.

Chapter 3 discusses the dataset we have built for the engagement prediction model.

It starts by describing the process of data collection. We then show some features

of the dataset that may be helpful for our task. These features are validated by our

exploratory data analysis that follows. Finally, we move on to considerations and

implementations for feature engineering.

Chapter 4 tells the story about the evolution of our engagement prediction model.

It covers a range of models, including a ridge regression model, a Transformer-based

model involving textual features, and other models that incorporate textual and tab-

ular data.

Chapter 5 is about the experiment setups and results of machine learning models

in our system. For both content moderation and engagement prediction, we describe
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the experiment setup to train the model and show the results of those experiments.

More discussions on the experimental results follow afterwards.

Chapter 6 focuses on the engineering work for this thesis project. It discusses the

deployment strategies for both of our machine learning models. We also discuss a

training pipeline for our engagement prediction task.

24



Chapter 2

System Overview

In this chapter we propose a system that will provide tweets with the highest engage-

ment potential given a Premier League game or event. We will provide an overview

of this system in this chapter and discuss each component briefly in each section.

Figure 2-1 shows the architecture diagram of our system.

2.1 Design Values

Before we discuss each component of our system, we would like to discuss some

important design requirements.

• The first obvious requirement of our system is being accurate. To be more

concrete, we would like to return tweets that are relevant and are with high

engagement potential. Or it needs to be sufficiently sensational. This relies on

our system to accurately identify this information. If we cannot achieve this

objective, users may be frustrated and become disinterested in this feature.

• The other major requirement is the system’s efficiency. Since we expect the

input tweets are often real-time. Typically, those are posted only for up to a few

minutes. It is essential for our system to perform analysis efficiently so that the

data we provide to our clients are still relevant and up-to-date. Clients won’t
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Figure 2-1: The architecture diagram of the system. Given game or event information,
the input will pass through several filters sequentially. Afterward, the remaining data
will be fed into an engagement prediction model to predict their popularity scores.
The system will then return tweets sorted by predicted popularity scores in descending
order.
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like it if our analysis takes minutes to complete. By then, a lot of the tweets

provided by clients will become out-of-date in the views of our users.

2.2 Quality and Relevance Filter

The first component is the quality and relevance filter. The main purpose of this

component is to filter out any tweets that may be irrelevant to the game that the

client is interested in, or any tweets that are truncated or not in English. For the

quality filter, there are specific attributes in the tweet objects that can be checked.

The relevance filter uses a simple rule-based approach by checking for presence of at

least one team name in the tweet content. We acknowledge that this may not be

the best method as it can potentially miss out on relevant tweets that do not include

any team names. It may also falsely introduce tweets with a team name with other

connotations. A tweet containing the word "Chelsea" may not necessarily be relevant

to the Chelsea FC team. Instead, it may be about Chelsea as a neighborhood in West

London.

Although the rule-based term matching heuristic has its faults, this may be the

best that we can do. One possible alternative is to use machine learning algorithms

to classify relevance, but we do not have any labeled data for doing this. In addition,

formulating this problem as an unsupervised learning problem is also challenging and

perhaps unnecessary. The specific way of which we will approach this unsupervised

learning problem is to encode our tweet text into an embedding. We need to do the

same to obtain the text embedding of a game event or of a Premier League game.

This can be difficult because encoding text such as "Arsenal v. Newcastle" or "Goal

by Player X" is not informative enough to produce a useful embedding. Without a

high quality game(or event) embedding, it is likely that our relevance filter will end

up looking for keywords in the tweet body, and that is very similar to our current

approach.

Since this component of our system does not involve any heavy computations,

it is the best idea to put this component as the first filter. The other components
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in the system use machine learning algorithms and may become the bottlenecks of

our system in terms of its efficiency. By removing irrelevant tweets or those with

poor quality, we can minimize the workload of our machine learning algorithms and

optimize the performance of our system.

2.3 Content Moderation

Although our system does not create any new social media content from scratch,

considering the consequences of the content that we produce from this system is

indispensable. Twitter can be a great tool to connect people, but any careless misuses

can have negative consequences. For example, our system may accidentally become

a spreader of misinformation. It is also possible for our system to output offensive

and inappropriate content that will turn users away. Wrong content can have huge

negative consequences for user experiences and any applications that use this system.

Having a content moderation model in our system is a responsible thing to do.

It is beneficial in two ways. First, the content moderation model will filter out a

vast majority of any offensive content. This can help improve user experiences by

ensuring that none of the users are offended or distracted. On top of that, removing

inappropriate content helps facilitate a healthy online environment for our users to

engage with live sports coverage.

We use a machine learning model to classify tweets and label them as "toxic" or

"not toxic". If our model predicts a sufficiently high probability score for a tweet to

be "toxic", we will filter it out before the tweet makes it to the next stage.

For our content moderation model, we use a TF-IDF count vectorizer as a feature

extraction algorithm. The feature vector is then fed into a logistic regression classifier

to produce the final prediction. Chapter 5.1 describes more experiment details and

reasons for choosing this specific model.
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2.4 Sentiment Filter

The next stage of our system is the sentiment filter. Depending on the needs of the

clients, it will filter out tweets with specific types of sentiments. There are three

types of sentiments: positive(score > 0.2), neutral(score between -0.2 and 0.2), and

negative(score < -0.2).

A sentiment filter may be necessary due to client requirements. Our system selects

the same tweets for all types of clients regardless of their personal preferences, and

this may be the only place where clients have some flexibility. Imagine a client may

be a fan of the Manchester United team. That client may have a preference to see

tweets about Manchester United with positive sentiment. The sentiment filter gives

them such flexibility for customization.

We use the vaderSentiment package[11] in Python to perform sentiment analysis.

This package employs a rule-based lexical analysis framework, and it is best suited

for Twitter data. Due to the fact that incoming data are most likely to be about

Premier League games, this package is generally effective, but it may be too generic

for our use case.

2.5 Engagement Prediction Model

All of the components covered so far provide basic quality assurances of the content

curated and satisfy some user preferences. We still need a component to rank all the

content and push out the most ideal one from Twitter. The engagement prediction

model will take up this responsibility.

After tweets have made it past the sentiment filter, all of them are sent as inputs

to the engagement prediction model. The model will provide a score for each tweet,

and the score represents the expected popularity level of that tweet. After obtaining

scores for all the tweets, we will rank them by the predicted popularity score in

descending order.

This method is necessary for our problem for two reasons. The first reason is
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that the engagement level of a tweet is a good proxy for its quality. Our clients

will probably want to capture trending content on social media and send them to

users in real-time. The second rationale is based on the lack of foresight on a tweet’s

engagement level in the future. We assume that all tweets provided by clients will be

real-time, and their current engagement metrics will not be reliable. A model will be

necessary to predict those metrics.
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Chapter 3

Engagement Prediction Dataset

A successful machine learning model for predicting engagement level requires good

data. That is the reason we invested in building the dataset for this task. To collect

data, we utilize the Twitter Search API to gather historical data from Twitter. Then

we identify some specific features that will intuitively impact the engagement level.

We then perform exploratory data analysis to verify our hypotheses and make final

decisions on features that can make it to our model. Finally, we will make some

feature engineering choices to represent all the features properly in our model and to

facilitate an efficient run of the optimization algorithm during the training process.

3.1 Data Collection

Since there are no existing datasets for performing the engagement prediction task

on Twitter data, we need to build a dataset from scratch. We do so by leveraging

the Twitter Search API for obtaining relevant tweets. Since England Premier League

games happen on a weekly basis, this effort is ongoing until late November 2021.

During each week, we identify the games that have taken place. For each game,

we build a query to pull all the tweets that contain at least one of the team name.

We note that this approach is not perfect as it may miss out on relevant tweets that

don’t have references to a specific team name. At the same time, it may also introduce

some irrelevant content. However, irrelevant tweets will not be a concern as there are
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Figure 3-1: An example tweet in the dataset.

very few of them in our dataset. As our dataset grows larger, the influence of those

irrelevant tweets on the model parameters will be insignificant.

Once we complete pulling all the tweets, we will pass all of our collected tweets

through the basic filter described in chapter 2.2. Our model is only intended to work

with complete tweets in English, so anything that doesn’t match this standard should

be discarded. With all the tweets collected, we remove any duplicates that we have

collected. We do not need to worry about repetitions across different weeks because

only tweets posted in the 7-day period before the time of which data is collected

are accessible through the Twitter Search API. All the tweets that we have collected

for this week will not overlap with anything from the previous week. We upload all

unique tweets as a file after deduplication. Finally, a crawler will process the uploaded

data and add them into a SQL database.

By the time of which this thesis is written, there are around 100,000 tweets related

to England’s Premier League games in the database. Figure 3-1 shows an example of

a tweet in our dataset.

3.2 Features Overview

As we inspect the metadata of our dataset, we identify a list of features that can

potentially be helpful in predicting engagement level. We provide a brief justification
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for each feature below:

• Text of the tweet(tweet_text): Obviously, what people write in their tweet

will matter a lot. More sensational content is more likely to attract other users.

• User bio(ud_text): The user bio in a profile helps us understand who a user

is. Influential figures such as football players of a Premier League team, or

a renowned sports journalist, can bring higher level of engagement for their

tweets.

• Time of day of which the tweet is posted(hour): We can imagine a tweet that

is posted at 8pm right after a game is likely to receive more engagements than

a midnight tweet.

• Number of hashtags(num_hashtags): Hashtags are helpful tools to reach out

to a broader audience group. However, having too many hashtags may work

against the goal of getting more attention.

• Number of URLs(num_urls): Having URLs in a tweet suggest that it has ex-

ternal content that can attract more engagements. At the same time, users are

generally wary of a tweet full of URLs.

• Number of user mentions(num_mentions): Mentioning too many users suggests

that the author can be reaching out to their small bubbles and may not care

about engagements. Users can also be turned away by tweets with many user

mentions.

• Number of media(num_media): Having media-rich content, such as images and

videos, can attract users for further engagements.

• Author’s verification status(user_verified): A verified user is likely a celebrity

or a reputable source of a subject area. In our context, those are most likely

associated with official team accounts, players of Premier League teams, and

verified sports reporters and commentators. These figures will have a broader

audience than those with unverified Twitter accounts.
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• Author’s number of followers(num_followers): More followers implies reaching

a broader audience.

• Number of lists that contain author’s account(num_lists): Newcomers to Twit-

ter can follow some lists of accounts with different topic focus. If one’s account

is in more lists, then that person is more likely to be followed by a new user on

Twitter. This will create more engagement opportunities.

• Number of tweets posted by the author in the past(num_past_tweets): This is

an indicator of user activity. Having posted more tweets in the past can be a

signal that the user is active. An active user can receive more engagements for

their tweets.

• Whether the profile/profile image is default

(default_profile, default_profile_image): Having a default profile or pro-

file image can suggest that the user may not be active and thus have fewer

engagements for the tweets that they post.

3.3 Exploratory Data Analysis

After identifying potential features, we want to analyze the data to verify our intu-

itions. We focus on analysis on two aspects of data: textual data(tweet_text and

ud_text) and tabular data(everything else).

3.3.1 Textual Data

During exploratory data analysis, we investigate the most common tokens people

use in their tweet and their user bio. We perform this analysis by grouping all the

tweets into two categories. The popular tweets are the ones that have received at

least 500 likes, and the normal ones do not meet this requirement. Table 3.1 shows

the wordclouds for the most frequent n-grams within the tweet content and the user

biographies.
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(a) Unigrams in content for popular tweets (b) Unigrams in content for normal tweets

(c) Bigrams in content for popular tweets (d) Bigrams in content for normal tweets

(e) Unigrams in user bio for popular tweets (f) Unigrams in user bio for normal tweets

(g) Bigrams in user bio for popular tweets (h) Bigrams in user bio for normal tweets

Table 3.1: A table with wordclouds representing the most frequent n-grams for tweet
content and user biographies. Each column represents a specific type of tweets. The
caption under each image describes the type of tweets, the feature, and number of
words that each wordcloud shows.
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Figure 3-2: The correlation matrix of the tabular data for the tweets collected.

An interesting trend we observe is that the most frequent tokens used for popular

tweets and regular tweets are similar within the tweet body. This suggests looking

for the presence of specific words within tweet content may not be the best for sepa-

rating popular and normal tweets. Therefore, a statistical learning model with word

frequency as features may not be effective. We may need more a sophisticated ap-

proach to extract a semantic embedding for tweet content. On the other hand, we

observe words like "official" and "account" float around in the user bio. These are

official accounts for teams and players and tend to have more followers. It may not

be surprising to see those tweets having higher levels of engagement.

3.3.2 Tabular Data

On the tabular features, we plot a correlation matrix to identify features that may

be helpful in predicting engagement level. Figure 3-2 shows the correlation matrix

among features and labels. The label we are using here is log_fav_count, which is

the logarithm of the number of likes a tweet has received. Some of the features here

are log-transformed. We will provide details on this transformation and the rationale

for doing so in Chapter 3.4

We can observe that number of followers and number of content lists of which the

author is in are important signals for predicting engagement level. This observation

is expected as authors with more followers are likely to have more content exposure.

This helps them to get a higher level of engagement for the content they produce on

Twitter. The rest of the features listed in Chapter 3.2 have weak correlations with our

label. We decide to incorporate all of the features without worrying too much about
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some features being highly correlated with each other. This is because we will have a

large quantity of training data, so overfitting will not be a concern. In addition, our

primary goal is to predict engagement level with our machine learning model. We

are not interested in performing any causal analysis to identify factors that cause a

tweet to have high engagement levels.

3.4 Feature Engineering

Now that we have decided on a set of features to use for our machine learning model.

The next step is to transform the features so that they are ready for the model to

use. This is an essential step to ensure that our features meet the input specifications

of our machine learning model.

The first set of decisions we need to make are with the textual features. We decided

to remove all hashtags, URLs, and user mentions in both tweet_text and ud_text.

We do so by applying a regular expression to identify all the relevant elements in the

textual data and then replacing them with empty strings. These decisions are made

in conjunction with our model choice. Since we are using a Transformer-based model

[14][7][13] for predictions, we rely on a tokenizer to break up the text into small word

units. These Transformer-based tokenizers are not specifically designed for handling

tweets, especially the hashtags, URLs, and user handles. Including these may hurt

model performance because the model will treat hashtags and other elements as some

unknown tokens. This will distract the model from learning to extract a good semantic

embedding for the entire tweet. Furthermore, we also have tabular features for the

number of such elements in a tweet, so including tweet-specific elements without

cleaning can be repetitive. Figure 3-3 shows an example output of the text cleaning

algorithm.

Besides textual features, we need to process other tabular features. We describe

the main decisions we have made for different groups of tabular features and justify

our choices below:

We use one-hot encoding to encode the hour of the day of which a tweet is posted.
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Figure 3-3: A demonstration of the text processing algorithm. The highlighted areas
are the text that will be removed. As shown in this figure, URLs, hashtags, and user
mentions are highlighted by a regular expression.

As discussed in Chapter 3.2, the time of which a tweet is posted can make an impact

on the engagement level. It will be problematic to use the hour as a raw categorical

feature because there is no direct linear relationship between engagement level and

increasing hour of day. To consider an example, a tweet posted at 8pm(hour=20)

may have a higher engagement level than a tweet posted at 6am(hour=6), as well as

a tweet posted at 11pm(hour=23). To resolve this issue, we use one-hot encoding to

convert the hour into a list of 0-1 features, with 1 representing the hour of which the

tweet is posted. This method enables us to analyze each hour interval independently

without losing information. Although this increases the dimension of our tabular

feature by around 23, having a large training set will alleviate this concern.

We applied log transformations on features and labels with large values, including

number of likes, retweets, followers, lists, and past tweets of which a user wrote in

the past. The rationale for applying this transformation is to standardize the range

of various features and labels. Consequently, this will facilitate a more efficient run

of our optimization algorithm during training. Without it, we can imagine some

categorical features with value of 0 or 1 while a user may have tens of millions of

followers. If we just pass in features with such a large magnitude, it will take forever

for our machine learning model to converge during training. The other reason that

makes this transformation reasonable is that all the features that we mention are non-

negative, which is a requirement for log transformations. To address the concern that

taking logarithm of 0 will be negative infinity, we use the 𝑡 function for transformation.

𝑡(𝑥) = 𝑙𝑜𝑔10(𝑥+ 1) (3.1)
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This transformation ensures that zero value will be mapped to zero and there will

not be any infinities in our transformed dataset.

We decide to leave other tabular features as-is because they are either categorical

features with 0/1 value, or numerical features with a range between 0 and 20.
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Chapter 4

Engagement Prediction Model

With a good dataset, we can now start building a machine learning model to predict

the engagement level of a given tweet. In particular, we try to predict the number

of likes a tweet will eventually get. We can typically observe these metrics a few

days after a tweet is posted, but this is apparently not realistic as we need to make

real-time predictions. As a result, it is important for us to extrapolate this metric

based on the information we have.

4.1 Linear Regression Model

Based on Occam’s Razor, the simplest model that does the job is typically the best

one. This philosophy motivates us to start with the simplest model, and we can then

attempt more sophisticated models later on. For our engagement prediction task, the

simplest model will be a linear regression model that uses all of our tabular features.

Although our feature dimension is significantly lower than the number of training

data points, we still need to avoid overfitting. Therefore, we fit our linear regression

model with L2 regularization. In essence, our linear regression model attempts to

minimize the following objective function:

𝐽(𝜃, 𝜃0) =
1

𝑛

𝑛∑︁
𝑖=1

(𝜃𝑇𝑥𝑖 + 𝜃0 − 𝑦𝑖)
2 + 𝜆‖𝜃‖2 (4.1)
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In the equations above, 𝜃 and 𝜃0 represent the parameters of our linear regression

model. Specifically, 𝜃0 is the zeroth-degree constant offset. 𝑥𝑖 and 𝑦𝑖 are the features

and label values, respectively. 𝑛 is the number of data points in the training set. 𝜆

is the regularization parameter. The first term in the equation is the typical Mean-

Squared Error(MSE) loss function for a linear regression model. The second term

avoids overfitting by penalizing any regressor with large parameters. Large param-

eters suggest the model may be overfitting to the training data. Intuitively, large 𝜆

will result in stronger regularization effect by favoring 𝜃 with small magnitude. In

our use case, we have sufficient training data and therefore a small 𝜆 will suffice.

4.2 Text-based Model

So far we have built a baseline model relying on tabular features. The result from the

exploratory data analysis in Chapter 3.3 suggests textual features may be helpful for

predicting engagement level. On top of that, any methods depending on word counts

may struggle because the most frequent words are similar for tweets with different

levels of engagement. These insights point us toward using state-of-the-art language

models to perform this regression task.

Transformer-based models are one of the most common choices for state-of-the-art

language models[7]. These models are first pretrained on a large corpus for language

modeling, and they can be then finetuned on a domain-specific dataset for a narrower

task. In our case, we finetune a Transformer-based regression model for predicting

engagement level.

Figure 4-1 shows the architecture diagram for our text-based model. We use two

separate distilBERT models[13] to extract semantic embeddings for the tweet text

and the user biography. We then concatenate the embeddings and feed it into a

simple linear layer. It is worth noting that the MLP regressor here only has a linear

layer to speed up training and inference. The reason that distilBERT is picked over

other variants is for its performance. DistilBERT models are more efficient than the

standard BERT model with marginal performance decline.
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Figure 4-1: The architecture diagram of the text-based model. The tweet content and
the user bio is fed into a distilBERT model and we obtain their respective embeddings.
We then concatenate the embeddings and feed the new feature vector into a linear
MLP to obtain the result.

4.3 Feature Combination

Now that we have created a model with two different sets of features. The next step

is to find a way to put everything together. We made two relatively simple attempts

in this section.

4.3.1 MLP Regressor

To make our feature combination method successful, we need an effective tool to

properly weigh semantic embeddings of textual features and other tabular features.

A simple linear layer for text regression task from Chapter 4.2 is insufficient and will

not result in significant model performance improvement for any feature combination

methods. This observation is reasonable given the complexity and the variety of our

features. To use all of them together, we need a more sophisticated module to ex-

tract useful information from the feature vector generated by our feature combination

methods. The MLP regressor described below serves our use case well.
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Figure 4-2: The architecture diagram of the MLP module. This figure demonstrates
a MLP unit with input dimension 64 and output dimension 1. The first linear project
the input down to 16-dimensional vector. Then it goes through batch normaliza-
tion, ReLU, and the dropout layer. The entire process is repeated again to get a
4-dimensional hidden vector. Finally, this hidden vector goes through a linear layer
to a 1-dimensional output. For our regression task, we use the identity function for
the activation module.

Now we will describe the architecture of our MLP regressor, as shown in Figure 4-2.

The MLP has several modules. Each module consists of a fully-connected layer. The

input dimension of the fully-connected layer is at least 4 times larger than the output

dimension. Following the fully-connected layer is a batch normalization module. Then

the output will be fed into the ReLU activation function. Finally, the result goes into

a dropout layer with a dropout probability of 0.1. The number of modules depending

on the dimension of input, the dimension of output, and a specified ratio between

input dimension and output dimension for each module. For the last module, only a

fully-connected layer is present.

4.3.2 Concatenation

Figure 4-3 shows the most straightforward feature combination method: concatenat-

ing all the feature vectors. In this approach, we use the distilBERT model to obtain

text embeddings from tweet content and user bio. We concatenate these text em-

beddings together, along with all the tabular features. This is the simplest way to

combine textual data and tabular data as the MLP regressor can now properly weigh

both types of data together.

The apparent weakness of this method is that the MLP regressor may not be able

to find the right balance between different types of features. This has to do with the
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Figure 4-3: The architecture diagram of the model using the concatenation feature
combination method. The tweet content and the user bio is fed into two separate
distilBERT models and we obtain their respective embeddings. We then concatenate
all the text embeddings with the tabular features and feed the result into the MLP
regressor.
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Figure 4-4: The architecture diagram of the model using the concatenation feature
combination method. The tweet content and the user bio is fed into two separate
distilBERT models and we obtain their respective embeddings. We feed to categorical
feature vector into the MLP. Note that the numerical feature vector is unchanged
moving out of that MLP for categorical features. We then concatenate all the text
embeddings with the tabular features and feed the result into the MLP regressor.

dimensions of those features. For our dataset, the dimension of the tabular vector is

around 30-40. This is very small compared to a 1528-dimensional concatenated text

embeddings for tweet content and user biography. On top of that, a right balance

between categorical features and numerical features within the tabular vector may be

difficult. We attempt to solve this problem in the next section.

4.3.3 MLP on Categorical Features

In the previous section, we mentioned that the model may not be able to find a proper

balance between categorical and numerical features. In particular, the dimension of

our numerical feature is less than 10 while our categorical feature vector is at least 20-

dimensional. It may be sensible to add a small MLP module for categorical features

to limit its dimension.

As shown in figure 4-4, this architecture is pretty much the same as the one in

Chapter 4.3.2, except we have a small MLP unit for the categorical features. Note
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that this MLP does not apply to the numerical features. The architecture of this MLP

is the same as the one described in Chapter 4.3.1, except for the number of output

units is 8 for our case. The additional MLP unit is intended to refine and extract

the most useful information out of the categorical feature vector, and the output will

be concatenated with the numerical feature vector to form the new tabular feature

vector.

This modification does not solve the problem of weighing tabular and textual

features properly. Perhaps the above addition may help, but we need something else

to achieve a good balance for all types of features. This leads to an attention module

as described in the next section.

4.4 Attention-based Multimodal Model

A question arises from the combination approach presented in section 4.3.2: We

know that the dimension of the text embeddings completely outweigh the dimension

of tabular features. With a simple fully-connected layer, the model may not be able to

learn the optimal balance in terms of weighing between textual features and tabular

features. We need to adopt a method that enables the model to figure out a fine

balance between the two types of features. We made an attempt in the previous

section to find a balance within two types of tabular features, but that may not be

suitable once we involve textual features. To solve this problem, we use an additional

attention layer.

The idea of an attention module has been discovered a while ago for machine

translation tasks [3]. The success of subsequent state-of-the-art Natural Language

Processing models, including the Transformer-based models, heavily rely on the at-

tention mechanism. The following equations describe the setup of our attention mod-

ule.

𝑚 = 𝛼𝑡,𝑡𝑊𝑡𝑥𝑡 + 𝛼𝑡,𝑐𝑊𝑐𝑥𝑐 + 𝛼𝑡,𝑛𝑊𝑛𝑥𝑛 (4.2)
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where

𝛼𝑖,𝑗 =
𝑒𝑥𝑝(LR(𝑎𝑇 [𝑊𝑖𝑥𝑖,𝑊𝑗𝑥𝑗]))∑︀

𝑘∈{𝑡,𝑐,𝑛} 𝑒𝑥𝑝(LR(𝑎𝑇 [𝑊𝑖𝑥𝑖,𝑊𝑘𝑥𝑘]))
(4.3)

In the above equations, 𝑥𝑡 represents the text embeddings, 𝑥𝑛 represents the nu-

merical feature vector, and 𝑥𝑐 represents the categorical feature vector. 𝑚 is the final

embedding vector output by the attention module, and it will be fed into a MLP

to produce the final output. 𝑎 is a trainable weight vector in the attention mod-

ule. 𝑊𝑖 represents a trainable weight matrix for different types of feature vectors.

[𝑥, 𝑦] represents the concatenation of vectors 𝑥 and 𝑦. LR represents the leaky ReLU

function.

We note that the final embedding 𝑚 that is fed into the MLP is a linear combi-

nation of the textual, categorical, and numerical features. We can think of 𝛼 as the

extent of which the model needs to pay attention to a specific type of features, as all

the 𝛼 values will add up to 1. This setup ensures that the model will learn the proper

way to distribute its attention to different types of features for different input data

points.

Now that we are done describing the attention layer. We present the architecture

diagram of the attention-based model as shown in Figure 4-5. The tweet content and

the user bio is fed into two separate distilBERT models and we obtain their respective

embeddings. Afterwards, the attention module that we have described will take the

concatenated text embedding and the tabular embeddings to produce the final tweet

embedding. The tweet embedding is then fed into the MLP regressor for the final

output.
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Figure 4-5: The architecture diagram of the model using the attention-based method.
The tweet content and the user bio is fed into two separate distilBERT models and
we obtain their respective embeddings. We then have a attention layer for the con-
catenated text embedding and the tabular embeddings to produce the final tweet
embedding.
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Chapter 5

Evaluation and Discussion

In this chapter, we will focus on the results of machine learning models in our system.

The first part of this chapter will focus on the content moderation model as presented

in Chapter 2.3. Then we will move on and discuss the engagement prediction model.

For each part, we will describe the experiment setup, present the performance of our

trained models, and discuss those results.

5.1 Content Moderation Model

As described in Chapter 2.3, we use machine learning to perform content modera-

tion. In particular, we want to classify a tweet as "toxic"(positive label) or "not

toxic"(negative label).

5.1.1 Experiment Setup

We use an existing toxic tweet dataset [1] on Kaggle, as it is the dataset closest to

our model use case. We split our dataset and only use 70 percent of the original

dataset as the training data. The rest of the dataset becomes testing data. Once the

dataset split is done, we preprocess the text by removing all URLs, hashtags, and

user mentions in the tweet text as they do not provide additional information on the

toxicity of tweets.
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Model Precision Recall F1 Score Accuracy Throughput(tweets/sec)
TF-IDF Feature 0.9358 0.9247 0.9301 0.9404 452

BERT 0.9388 0.9550 0.9468 0.9548 38

Table 5.1: The result on the test set for different models after training.

We use two approaches for this problem. The first method uses a TF-IDF count

vectorizer as a feature extraction algorithm. The feature vector is then fed into a logis-

tic regression classifier to produce the final prediction. Besides URLs, hashtags, and

user handles, we also remove common stopwords defined by the NLTK library[5]. All

of the common stopwords are generally non-toxic and may dilute signals of offensive

content.

The second method is to use BERT[7] to get a semantic embedding of the tweet.

Then we feed the semantic embedding to a classification layer to get a prediction.

Since BERT models are successful in many text classification tasks after being fine-

tuned a specific dataset, we choose to adopt this method. To train the BERT model,

we do so for 3 epochs with initial learning rate 2×10−5 with an AdamW optimizer[12].

We adopt a linearly decaying learning rate schedule. The dimension of the semantic

embedding is 768. The dropout probability is 0.1. The Transformer encoder within

the BERT model has 6 layers and 12 heads, Within the Transformer encoder, the

dimension of the internal hidden layer is 3072.

In the next section, we will see that the Transformer-based BERT model performs

better than the TF-IDF model. However, we decide to use the TF-IDF model due to

efficiency considerations and its performance on real-time data. To further probe the

performance of our content moderation models on real data, we collect an additional

1000 tweets related to specific Premier League games as an external dataset to test

our model. We label all the 1000 tweets manually.

5.1.2 Model Performance

Table 5.1 shows the performance of different models after being trained on the Kaggle

dataset. Although the BERT model has a higher F1 score than the TF-IDF model, its
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Threshold Precision Recall F1 Score Accuracy
0.5 0.9389 0.3275 0.4856 0.7134
0.3 0.9411 0.3721 0.5333 0.7310
0.2 0.9358 0.3953 0.5559 0.7390
0.1 0.9320 0.4516 0.6084 0.7598
0.05 0.9291 0.5078 0.6566 0.7806
0.01 0.8692 0.6182 0.7225 0.8038
0.005 0.7965 0.6977 0.7438 0.8014

Table 5.2: The result of the BERT content moderation model on the external data
set with different separating score thresholds.

Threshold Precision Recall F1 Score Accuracy
0.5 0.9586 0.5388 0.6898 0.7998
0.3 0.9251 0.6705 0.7776 0.8414
0.2 0.8836 0.7209 0.7940 0.8455
0.1 0.8152 0.8295 0.8223 0.8519
0.05 0.7516 0.8857 0.8131 0.8319
0.01 0.5664 0.9670 0.7144 0.6805
0.005 0.5163 0.9845 0.6773 0.6125

Table 5.3: The result of the TF-IDF content moderation model on the external data
set with different separating score thresholds.

inference speed is significantly slower. One of the main requirements for our system is

to be efficient as we are working with real-time data. Given that we will spend much

time for engagement prediction, we cannot afford to spend extra time for content

moderation.

We then evaluate both models on the newly collected tweets and try out different

score thresholds for toxicity classification. Table 5.2 shows the performance of the

BERT model on the collected data, and Table 5.3 shows the performance of the

TF-IDF model.

5.1.3 Discussion

We observe that the performance on the collected data is worse than the one on

the held-out test data for both models. This is reasonable with a few explanations.

First, the Kaggle dataset contains data from Twitter, but they are not constrained

to a specific topic. The content of the tweets in the training data is slightly different
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Figure 5-1: The distribution of prediction scores for content moderation models. The
one to the left is for the TF-IDF model and the right one is for the BERT model.
The y-axis measures the density of prediction distribution.

compared to the external dataset we have collected. This variation in data content

may give our models a more difficult time performing this classification task because

these models are working with data of a new context.

The second reason, and perhaps a more important one, is the discrepancies in

dataset labeling instructions between the Kaggle dataset and the external dataset.

For labeling the external dataset, we apply a high level of scrutiny on tweets. Even if

a tweet is appropriate overall and is not intended for harm or offense, we label a tweet

as "toxic" as long as we see a single inappropriate word in there. On the other hand,

the labeling standards are much more relaxed for the Kaggle dataset. Even though

we do not have direct access to their labeling standards, an appropriate tweet with

a swear word may be labeled as "not toxic". This difference in labeling standards

can negatively impact the performance of our models on the real-life dataset, as our

model is learning from a more relaxed standard and cannot adapt to stricter scrutiny

without extra training.

Finally, it can be shocking to learn that our BERT model is doing worse compared

to the TF-IDF model on the external dataset. This probably has to do with the

overconfidence of the Transformer-based model. As illustrated in Figure 5-1, we see

the predictions made by the BERT model are more polarized. In other words, the

BERT model tends to make more confident predictions. This overconfidence hurts the

BERT model in particular once we see the label shift as discussed earlier. Even setting

different thresholds will not save BERT model’s performance as the predictions are
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Name Description Value Models Applied
dropout Dropout probability for BERT embeddings 0.3 2,3,4

mlp_dropout Dropout probability for MLP layer 0.3 3,4
epochs Number of epochs of model training 12 2,3,4

lr Learning rate of the model 3× 10−5 2,3,4
max_len Maximum number of tokens in a text 240 2,3,4

Table 5.4: A list of hyperparameters used for training the engagement prediction
model.

too inflexible for the external dataset.

5.2 Engagement Prediction Model

The goal of the engagement prediction model is to predict the number of likes a tweet

will get at the end. In this experiment, we set up different models using various sets

of features and feature combination methods.

5.2.1 Experiment Setup

We use the engagement prediction dataset that we have built as described in Chapter

3. We split our engagement prediction dataset and use 80 percent of data for training,

10 percent of data for validation, and the other 10 percent for testing. We set up four

models for the experiment. The first one is a ridge regression model as described in

Chapter 4.1. We will only use the tabular features for this model and all the default

hyperparameters as defined in scikit-learn. The second model is a distilBERT model

as described in Chapter 4.2 that only uses textual features. The third model uses a

distilBERT model that concatenates textual embeddings and tabular features. The

fourth model uses a distilBERT model with an attention layer for different types of

features.

During training, we train each model for up to 12 epochs. At the end of every

epoch, we evaluate and save our model using our validation set. We then pick the

model with the lowest loss on the validation set and run it on the test set.

Table 5.4 shows the hyperparameter configurations we use for all the models men-
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Number Model Name Text Tabular Combine Method R2 Score MSE
1 Ridge Regression Yes - 0.5294 0.4204
2 DistilBERT Yes - 0.6251 0.3350
3 DistilBERT Yes Yes Chapter 4.3.2 0.7264 0.2445
4 DistilBERT Yes Yes Chapter 4.4 0.7385 0.2337

Table 5.5: The result on the test set of the engagement prediction dataset. MSE here
is the mean-squared-error of the model.

tioned above. Those hyperparameters are selected with our validation dataset as well.

It follows the process described in the previous paragraph, except that we are running

training different sets of hyperparameters. We choose the hyperparameter set that

achieves the lowest validation loss during the entire training process. Note that if

anything is missing from the table, then we are using the default configurations set

by the HuggingFace[16] and Multi-Modal Transformer[10] module.

5.2.2 Model Performance

Table 5.5 shows the performance of different models laid out in the previous section.

We note that relying on the textual features alone can be more effective than rely-

ing on tabular features only. This can be that ridge regression is not a sufficiently

sophisticated model to extract all information from the tabular features. It can also

be that the BERT model can build effective embedding for the tweet content and for

the user biography, both of which are important signals for engagement levels.

A simple concatenation of textual features and tabular features enhance model

performance further. This is expected as combining both pieces of information gives

us better ideas about engagement. In this case, the MLP regressor does most of the

heavy lifting and deserves the most credit for this improvement.

Finally, the attention-based concatenation method performs the best among all

models. One simple reason can be that the model has extra parameters in the atten-

tion layer that don’t otherwise exist. We will discuss more about the attention layer

in the next section.

56



Figure 5-2: The average attention distribution over all data in the testing set.

5.2.3 Discussion

Our engagement prediction model tends to struggle with tweets that put much more

emphasis on media content over text. For example, a tweet with a single word

"GOAL" and a few photos highlighting a quite sensational moment may get a high

level of engagement. However, our models do not consider specific media content or

perform any analysis on them. It won’t be surprising then to observe our models

producing a much lower prediction.

To further understand the importance of the attention layer, we attempt to visu-

alize the attention parameters. We do so by feeding in our held-out testing data into

our model. While the model is running inference, we collect the attention distribution

for each data point. Finally, we take the average for each element of the distribution.

Figure 5-2 shows the resulting attention parameters.

The result presented by the above figure may seem counterintuitive at first. The

performance of our models suggest we may be relying on textual features more. The

mean attention distribution suggests the contrary. To understand this distribution,

we need to keep in mind the dimension of various types of features. The tweet content

embedding and the user bio embedding have a dimension of 768 each. On the other

hand, we only have a 35-dimensional tabular feature space. By depending on the

concatenation method in model 3, it tends to overemphasize the textual features be-

cause it will weigh everything in the final embedding equally. This creates an inherent

advantage for the textual features caused by their high dimensions. Interestingly, we
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Figure 5-3: The right figure shows the attention distribution of the example tweet of
the left.

note that tweets with higher levels of predicted engagement tend to pay slightly less

attention to textual data compared to an average tweet. An example of this is shown

below in Figure 5-3.

5.3 Testing the Entire System

We are interested in seeing how the engagement prediction model can help us obtain

good content for the entire system. We do so by collecting around 5000 tweets related

to the Arsenal v. Newcastle game on November 27, 2021. We feed all the tweets into

the system by a batch of 500 and ask for the top 3 tweets that summarize the entire

game. Figure 5-4 shows the output from the system responding to this request.

All of the top 3 tweets suggested by our system have at least thousands of en-

gagement actions. The first two serve as a round-up for the entire game with a photo

depicting one of the highlighted moment during the game. The third tweet points

to an important event during the game: the first goal. It is worth noting that all of

three tweets come by users with verified accounts. In fact, all of these accounts have

the word "official" in their user biography. Finally, the tweets shown in Figure 5-4

are certainly not the top three tweets in terms of their levels of engagement, but it is

still useful for us to surface needed content to some extent.
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Figure 5-4: A sample output of our system when it is asked to provide the top tweets
for the whole Arsenal v. Newcastle game on November 27, 2021.
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Chapter 6

Engineering and Implementations

Now that we have trained our models, we need to integrate them with our system to

bring in their contributions. We will now discuss some specifics on the engineering

aspect of this project, especially on the deployment of machine learning models and

the creation of a streamlined machine learning training pipeline. The engineering

work is critical not only for its necessity for converting research ideas to practical

products, but it also paves the way for further research and improvements on this

project. All of the work described in the chapter is implemented and available for

internal use at Sky.

6.1 Deploying Content Moderation Model

The first model that we need to deploy is our content moderation model. Based on

the results presented in Chapter 5.1.2, we decide to deploy the TF-IDF model. To do

so, we upload our model file onto cloud storage. Whenever the system needs to use

the content moderation model, it will load the model file from the storage unit and

then perform inference on incoming data. We make the following considerations for

this deployment strategy:

• The methods we have described above are the easiest. We don’t need to write

extra code, besides the one for invoking the model. Setting up the right cloud
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environment on Amazon Web Services aside, there is not much effort involved

in making this happen. In comparison, alternative approaches such as making

a separate endpoint for the machine learning model will involve much more

implementations and become more time-consuming and may potentially take

more computing resources.

• It may not always be wise to load the model every time the system needs to

access it. Our current strategy forces us to load the model every time the

system receives incoming data. This is not a big deal for us. Once the model is

initialized and loaded for the first time after deployment, it will be cached and

future loads will become much more efficient. The time for model loads after

the cold start is negligible. In addition, the first load will take at most a few

seconds because the model file is relatively small.

One specific challenge with respect to this deployment strategy is to set up the

scikit-learn package, of which the model is implemented in. Our cloud environment

does not provide native support for this Python package, and it is impossible for the

automatic deployment script to upload a local version of the scikit-learn package

because of space constraints. We need to work around this issue by creating a custom

layer that supports scikit-learn. We then augment this layer to our system so that

the package is supported.

The deployed model performs efficiently given our demand. We observe that

there is approximately a 1-second cold-start period when the model receives an input

request. The system is loading the content moderation model during that 1-second

period. After loading the model, our system can make about 120 predictions per

second. This is reasonably efficient and will not slow down our entire system.

6.2 Inference Endpoint for Engagement Prediction

Contrary to the content moderation model, the situation with respect to the engage-

ment prediction model is very different. We work with model files around 500 MB,
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thus making the model loading process painfully long. Furthermore, there are other

files of which the model depends on to be successfully loaded. Finally, our engage-

ment prediction model has hundreds of millions of parameters and needs to be run

with a GPU environment to preserve its efficiency.

Flexibility is another critical property of our framework of choice. The content

moderation model has a single file, but we have more than that. For example, we have

a configuration file that helps with properly initializing the model. We also need sup-

port for a tokenizer to perform real-time data preprocessing before model inference.

Then a specialized environment is necessary so that all the Python packages we have

used, such as HuggingFace[16] and Multi-modal Transformers[10], are supported.

All of these considerations point us to create a new API endpoint to serve the

model. Clients will put in data through the API endpoint in the request body, and the

endpoint will handle user input and output predictions toward the input data. This

framework has several benefits. First, we can choose GPU as part of our hardware

support to significantly accelerate inference. Second, implementing an endpoint will

provide more flexibility.

Figure 6-1 shows the architecture diagram of our engagement prediction model

endpoint. Once an incoming inference request is accepted, the data in the request

body is extracted and passed into the model handler pipeline within the model image.

The model image is an environment specifically set up for so that our engagement

prediction model can run. The model handler pipeline contains three nodes. The Pre-

process node converts the input data to the form of which the model can accept. The

inference node invokes the engagement prediction model and obtains raw predictions

from it. If the model is not initialized, we will load the model from an S3 bucket, our

cloud storage unit. The Postprocess node will then convert predictions produced by

the model into a more workable data structure and send it back to clients.

While we set our eyes on this endpoint framework, there are some internal choices

we need to face. We had to choose between a PyTorch-based framework and a generic

framework. The PyTorch-based framework is easier to implement and more auto-

mated, while the generic framework is more flexible. At the end the flexible nature
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Figure 6-1: The architecture diagram of the deployed endpoint for the engagement
prediction model.
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of the generic framework wins. The ease of implementation for the PyTorch-based

framework comes at a cost of flexibility. It relies on message-passing between differ-

ent nodes of the model handler pipeline, and our model is way too big to be passed

around. The generic framework works around the limit in message passing by allow-

ing us to define our model and tokenizer objects as class attributes. This opens the

door for one-time only initialization at the beginning, which can be done by tracking

the model state.

There are more benefits with the generic model framework. A major one is its

modularity. We show the code structure of our model handler pipeline below:

class EPModelHandler :

def __init__( s e l f ) :

s e l f . i n i t a l i z e d = False

s e l f . ep_model = None

s e l f . t o k en i z e r = None

def i n i t i a l i z e ( s e l f , context ) :

# Code to i n i t i a l i z e model

s e l f . i n i t i a l i z e d = True

def prep roc e s s ( s e l f , r eque s t ) :

# Code to preproces s data

def i n f e r e n c e ( s e l f , model_input ) :

# Code to run model and ge t p r e d i c t i o n s

def pos tp roc e s s ( s e l f , r e s u l t ) :

# Code to conver t model p r e d i c t i o n s in t o a Python l i s t .

def handle ( s e l f , data , context ) :

model_in = s e l f . p r ep roce s s ( data )
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model_out = s e l f . i n f e r e n c e ( model_in )

output = s e l f . po s tp roc e s s (model_out )

return output

This structure can be helpful as we can run a subset of nodes in the model handler

pipeline. It also simplifies implementations as we can easily integrate some of the

code written for data processing and inference in Chapter 6.3. On the other hand,

the PyTorch-based framework provides limited modularity because we cannot define

class attributes. This forces most of the data processing work to be done in the

inference function, which is rather awkward from a software engineering point of

view.

Our API endpoint that serves the engagement prediction model can now take in

a batch of tweet objects and output their predicted engagement levels. Our endpoint

can handle approximately 35 tweets per second. Due to the limitation on the size of

the request body, the API endpoint can handle up to about 100 tweets per request.

The lack of automation is the main limitation with this model endpoint. While

the endpoint is running and fully functional, the deployment process is not fully auto-

matic. There is an existing script for deploying the pipeline, but people need to fill in

their authentication information manually before getting permission for deployment.

Automating this process will accelerate the deployment process and aid with future

improvements discussed in Chapter 6.3.

6.3 Training Pipeline for Engagement Prediction

One of the headaches that data scientists need to face when they are experiment-

ing with machine learning methods is the way to organize all the code. Since our

code intended for research and experiments is not subject to the same standard

as production-ready code written by software engineers, machine learning code can

become chaotic and disorganized very quickly without regular maintenance. For

production-level machine learning models, we need to ensure that the code is orga-

nized and modular. These properties will streamline the training and the deployment
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Figure 6-2: The architecture diagram of the end-to-end Kedro pipeline for training
an engagement model. The pipeline will take the data from a database and output a
trained machine learning model for engagement prediction.

process.

Fortunately, we have an existing tool that helps with organizing our machine learn-

ing code and converting it into a full training pipeline. We use the Kedro package[2]

in Python to create our training pipeline for the engagement prediction model.

Figure 6-2 shows the architecture diagram of the Kedro pipeline. It is composed

of a data engineering pipeline and a data science pipeline. The data engineering

pipeline takes in raw data from a database, preprocesses the data, and converts them

to "dataloaders", a format of which the our machine learning model can accept. The

data science pipeline is intended for training and evaluating a new model and output

a model file. It takes "dataloaders" that are preexisting or generated by the data

engineering pipeline, initializes and trains a new model, and stores the trained model

into a local file.

The data engineering pipeline first loads data stored from a database on Amazon

Athena, a database service provided by AWS. Then the loaded data goes through the
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"Preprocess" node so that we can obtain new features and clean existing features.

Details about the data processing are discussed in Chapter 3.4. The "Train-test Split"

node then splits the processed dataset into training, validation, and testing dataset.

We have a random seed to ensure the split is consistent across multiple runs. Finally

the "Make Dataloader" node converts split datasets into dataloader objects.

The first step in the data science pipeline is to initialize an untrained model based

on an internal model configuration file. Then it will take the dataloader and run the

training algorithm. Once training is complete, it will produce a model file and send

the model for evaluation. The evaluation node will run the trained model on test

data and report out all the metrics.

The Kedro and the design of this pipeline satisfies the important quality of mod-

ularity. Most users will run the entire pipeline at once. However, the design also

enables users to run the data engineering pipeline or the data science pipeline alone.

To take a step further, they can even decide to run a single node in the pipeline. The

Kedro framework allows us to modularize our training script by breaking it down by

different components and stitching them together as modular pipelines.

One limitation of this pipeline is that it can only perform computations locally.

If one needs to run the pipeline with the goal of having a trained model deployed.

They have to run the pipeline, upload the model file to cloud storage, and follow

instructions in Chapter 6.2 to make this happen. A good future direction for this

pipeline is to deploy it to the Amazon Web Services so that it can run on the cloud.

We can then configure the pipeline to save the trained model file to cloud storage.

We will then create a separate pipeline for deployment that takes in a model file and

produces an API endpoint for invoking the model.
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Chapter 7

Conclusion

Overall, we were able to build a Twitter Content Recommendation API specifically

for English Premier League games. The API endpoint will help with advice on the

best tweets for a companion feed during live game coverage. One can imagine using

this API endpoint for other use cases. For example, we can use this API endpoint to

gather all the tweets during the first half of a game during the half-game break. We

can also use this endpoint at the end of each game by identifying tweets that act as

a good summary of all the events during a live Premier League game.

The driving forces to make this API endpoint successful in its mission are the con-

tent moderation filter and the engagement prediction model. The content moderation

filter is critical to ensure that viewers will not see any inappropriate and offensive con-

tent, which will cause damage in terms of usage of the overall Sky application that

employs this API endpoint. The engagement prediction model helps with identifying

content with the highest engagement potential in the future, and this is indispensable

given that the tweets of which the clients do not have reliable engagement metrics.

7.1 Limitations and Future Work

There are several challenges that will limit the performance of this recommendation

API. In terms of its structural limit, the endpoint has to limit the number of tweets

a client input. This is because of the inherent restrictions of the amount of the data
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that Amazon API Gateway can handle per request. Having too much data will cause

the API endpoint to crash. Without changing the infrastructure of which we rely

on, there is no way to work around these limitations. The clients will be responsible

for developing a wise strategy to query the endpoint multiple times to achieve their

desired use case.

The other major challenge is the relevance filter. For now, we have a simple

rule-based system checking for matching terms. This approach works fine with most

content, but it can sometimes be too restrictive. Suppose we want to find the top

tweets about a goal that has just happened. The API endpoint will exclude all tweets

without mentioning "goal" or any players who are involved with that specific game

event. We can imagine such a system will miss out on a lot of valuable content. For

instance, a tweet saying "Brilliant!" with an image of the player who has scored the

goal will not make it past the relevance filter. On the other hand, this relevance filter

may accidentally include irrelevant content as well. A tweet that may be talking about

Brentford, an area in southwest London, can make it past the relevance filter for a

game involving the Brentford team. With these reasons above, the event endpoint

of the recommendation API may not necessarily work well. To resolve this issue,

we need a more sophisticated approach. The problem with using machine learning

methods is the lack of access to data. In particular, we need data that represents

games and events to match with tweet content. We can then use NLP models to

solve the relevance classification problems. Another possible solution is to create a

feature representation for images, which can be helpful for the relevance classification

problem if we have enough domain-specific image data.

Besides the inherent limitations with our API endpoint, making good use of this

API endpoint will be challenging without high quality data. Due to current limita-

tions with the relevance filter mentioned above, the burden of finding relevant tweets

falls more on clients. The process of acquiring such relevant tweets is nontrivial.

Clients can take advantage of the Twitter Search API or the Twitter Powertrack API

to customize their tweet feed for their input data. Nevertheless, the interface for

designing rules to match specific tweets is challenging to work with. On top of that,
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most of the rules focus on specific attributes of the tweet and of the authors. Clients

may also make very specific rules to match tweets based on the text, but no tools

can help them with determining relevance of their media content. This issue further

reinforces the need to refine the relevance filter.

7.2 Going Beyond Sports

For this thesis project, the social media content that we are working with is very

targeted in terms of its scope. We specifically focus on content related to the England

Premier League games. However, we can appropriate this tool to other domains with

some more work. Obvious alternatives include other sports, such as tennis and cricket

games. If we want to make this happen, we will need to retrain our engagement

prediction model on domain-specific data depending on our use cases, as our current

model will not work well with out-of-domain data. Although the tweet and author

attributes may still be reliable, out-of-domain text features will cause our engagement

prediction model to have suboptimal performance. With this method, we can even

go beyond sports.

We rely on collecting domain-specific data to empower our engagement prediction

model at this moment. Another interesting direction to take with the engagement

prediction model is to generalize it with a broader domain. For example, we may build

an engagement prediction model that can be used for all sports in England. This

generally results in lower model performance as the engagement prediction model

needs to learn about many domains during training. This can be overcome with

sufficient data across domains of our choices.

7.3 Personalization

The current system will provide the same set tweets to all users regardless of their

personal preferences. There are some existing features such as the sentiment filters

to provide some degrees of customization, but those are manual processes and are far
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from personalizations. One of the next steps is to add personalization into this system.

This can involve turning our machine learning model into a recommender system.

Rather than predicting the overall level of engagement, we can predict whether a

specific user will engage with a specific tweet. There is some previous work done on

individual-level tweet engagement prediction. Our version of the problem should be

slightly easier because all the tweets are from the same domain. The more challenging

part is for data collection. One potential proposal is to use this current system to

broadcast a set of tweets and ask users for feedback on specific tweets. The other

option is to add an engagement feature to enable users to interact with specific tweets,

and we can use those engagement data for training our new machine learning model.
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