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by
Jessica Sonner

Submitted to the Department of Mechanical Engineering
on May 8, 2022, in partial fulfillment of the

requirements for the degree of
Bachelor of Science in Mechanical Engineering

Abstract

The drag coefficient of 4928 batted balls in the MLB in 2019 were measured and
matched with 121 pitchers who threw the ball to examine if they are statistically
more or less likely to select a high or low drag ball to throw. It was hypothesized
that (1) pitchers are routinely selecting for either high or low drag balls, and (2) the
regular selection of high drag balls are associated with "better performing" pitchers,
or pitchers who have less home runs scored against them, as high drag balls travel
less far through the air than low drag balls. However, it was found that pitchers in
this data set do not appear to be selecting for higher or lower drag balls, and the
average drag coefficient of the balls they select is not correlated with that of higher
or lower performing pitching statistics.

Thesis Supervisor: Anette (Peko) Hosoi
Title: Neil and Jane Pappalardo Professor of Mechanical Engineering
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Chapter 1

Introduction

Major League Baseball is the fourth most popular sport in the United States, with
over 20 million viewers during the 2017 World Series alone [9]. One of the most
noteworthy, memorable, and rarest aspects of the game is the home run. However,
just in the past several years, the number of home runs during a game has substantially
increased causing the MLB in 2017 to commission an independent study to investigate
why this increase is observed now, when the game of baseball has been around since
1846. Using positional data of the ball collected from Doppler radar systems installed
in MLB stadiums in 2015, this study suggests there has been a change in aerodynamic
properties of balls, specifically a reduced drag coefficient. Changes in the ball since
2015, most notably the seam height, may account on average for a nearly 6ft. increase
in batted ball distance, leading to the increased rate in home runs [1].

As this phenomenon has arisen within professional baseball, so has the appearance
of notable “unlucky” or “lucky” pitchers. When a pitcher is about to throw, they grab
a ball, examine it, and physically sense its weight in their hands. They then use
intuition created from both playing baseball for their lifetime and being an expert in
the sport to decide if it is a “good” or “bad” ball. In other words, they will decide if
they want to use that ball to pitch or not. A bad ball is one more likely to have a home
run scored off the pitch, where a good ball is one that is less likely to have a home
run scored. This research seeks to investigate if the phenomenon of “lucky” pitchers
are ones who routinely see fewer home runs scored off their pitch by unknowingly (or
perhaps knowingly) self-selecting for low drag balls. The potential correlation between
unluckiness and low drag balls is investigated by analyzing the trajectory flight path
of balls pitched across 4 different years in the MLB, calculating the respective drag
coefficients, characterizing the relatively high or low drag characteristic of the ball,
then matching that information with pitchers in 2019 as evidence to determine if
certain pitchers are routinely getting home runs scored off them on account of ball
selection. This information could inform pitching strategies and even drive game-time
coaching tactics or decisions.
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Chapter 2

Baseball Aerodynamics

2.1 Forces

As a baseball moves through the air, it experiences three different forces that dic-
tate its trajectory: gravity, lift (Magnus force), and drag (Figure 2-1). Gravity is
independent of where the ball is located within space. It always points downwards,
pulling the ball towards the earth at a constant acceleration. If the baseball were
launched in a vacuum, the only force the ball would experience is gravity, render-
ing the computation of the distance the ball travels quite easy and solely dependent
upon one constant force. However, the aerodynamics of a ball traveling through air
is quite complex, as the ball not only is subject to gravity but also has to push air
molecules out of the way to travel through it [1]. These forces are produced by the
contact between the ball and the air and are dependent upon the velocity of the ball
within space specifically with regard to the angle of the ball’s flight path relative to
the horizontal. The lift force describes how the ball moves normal to its flight path
(Equation 2.1). 𝜔 is the angular velocity vector pointing out of the page, where the

Figure 2-1: Forces acting on a baseball [5].
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𝑡 vector is pointing in the direction of the baseball’s flight path. Thus, the lift force
is normal to that of the direction the baseball is traveling in (Figure 2-1).

𝐹𝐿 =
1

2
𝜌𝐴𝐶𝐿𝑉

2(𝜔 × 𝑡) (2.1)

Comparatively, the drag force is in the opposite direction of the ball’s flight path,
describing how a ball slows along its path due interactions with the air (Equation
2.2). Thus, the drag force is associated with decreasing the carry of the ball, making
it more difficult to fly through the air.

𝐹𝐷 = −1

2
𝜌𝐴𝐶𝐷𝑉

2(𝑡) (2.2)

2.2 Drag Force and Coefficient

Both drag and lift forces are commonly described in terms of their coefficients [3]. The
drag coefficient characterizes the magnitude of the drag force on an object traveling
through the air [3]. It is a unitless number and typically lies in the range of 0.25 - 0.5
for a baseball [1].

The drag coefficient is directly proportional to the drag force, and thus a greater
drag coefficient means that there is a larger force of drag on the ball, making it more
difficult to fly through the air, and thus it will travel a shorter distance (Equation
2.2). Comparatively, a smaller drag coefficient indicates a smaller force of drag on the
ball, and less resistance is present from the air on the ball when the ball is mid-flight.

The drag force is also dependent upon the cross sectional area of the ball. A
greater cross sectional area indicates that there are more air particles that need to be
moved in order for the ball to travel through the air. More air particles mean there
is a greater force of the air against the baseball, resulting in a larger drag force.

2.3 Recent Changes in MLB Drag Coefficients

The analysis conducted by the MLB Committee revealed that the primary reason for
the increase in home run rates beginning in 2015 is that the ball carries longer for the
same initial conditions. An initial hypothesis revolved around increased temperatures
and humidity due to rising global temperatures, leading to lower air density and re-
duced drag. However, even at fixed temperatures in temperature-controlled stadiums,
increased home run rates were observed [1, 2]. Data shows that the increase in home
run rate between 2018 and 2019 was due in part to a change in aerodynamic prop-
erties of the baseball. They observed a notable decrease in drag coefficients, likely
correlated to decreasing seam heights by about one-thousandth of an inch causing
the ball to fly up to 6 feet farther and creating the increase seen in home runs in the

14



Figure 2-2: Effect of spin on drag coefficient [1].
.

year of 2019, [1].

2.4 Accounting for Aerodynamic Inconsistencies

The aerodynamic flow over a baseball is complex, resulting in drag properties that
depend not only on seam height but also on spin rate, spin axis, seam orientation,
application of mud, and possibly other factors not yet identified [1]. While the baseball
can be modeled as a sphere flying through the air, its irregular shape causes it to stray
from the expected model in a variety of ways. For example, the irregular shape of
the baseball results in a relatively large variation in lift and drag, complicating the
study of aerodynamic effects [2].

2.4.1 Effect of Spin and Speed on 𝐶𝑑

Drag is sensitive to ball speed [1]. Spherical sport balls can experience a phenomenon
known as the "drag crisis", when a ball’s drag coefficient decreases quickly with
increasing ball speeds. At Reynolds numbers just above 105, the aerodynamic drag
force on a sphere drops sharply as the flow begins to become turbulent in the boundary
layer [7]. For baseballs, this "drag crisis" can occur at speeds which are typical for
pitched or batted balls, when the laminar flow of air in a boundary layer near the
ball begins to separate and become turbulent [4]. The effect of this turbulence in the
boundary layer of air around the ball reduces the size of the turbulent wake behind the
ball, and reduces the drag force. Thus, balls with increasing linear velocities show
decreased drag coefficients. Changes in the drag regime occur when the Reynolds
number exceeds about 105. The Reynolds number (Re) as seen in 2.3 is defined by
the diameter of the baseball (𝑑), the kinematic velocity of the baseball relative to the
air (𝑉 ) and the viscosity of the air (𝜈).

15



Figure 2-3: Spin dependence on drag coefficient [9].

𝑅𝑒 =
𝑉 𝑑

𝜈
(2.3)

Drag is also dependent on the angular speed and rotation of the ball. As seen
in Figure 2-2, in comparing a ball with spin and a ball with no spin, it’s clear those
with increasing spin have larger drag coefficients [1]. Additional research has shown
that the change in the positions of the baseball seams as the ball rotates through the
air might explain the inconsistent, oscillatory behavior in the drag coefficient (Figure
2-3).
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Chapter 3

Analysis Technique / Methodology

To determine if the change in the drag coefficient leading to an increase in home run
rates has led to pitchers consistently getting or not getting home runs scored off of
their throw, the estimated drag coefficients of batted balls are calculated and matched
to the pitcher who threw it. As the effect of drag on carry is far greater than the
effect of lift on the carry of the ball, the sole focus of this study is on calculating the
drag coefficient [1]. The strategy for this research is as follows:

1. Derive the equations of motion
2. Take the derivatives of equations of positional data
3. Calculate the drag coefficient
4. Match the drag coefficient of the batted ball to the pitcher
5. Find presence or absence of correlation between high or low drag balls and specific
pitchers

3.1 Data Used

The XYZ positional data used in this study are from the Statcast data collected
from Doppler radar systems in the MLB ballparks, provided by the MLB during the
seasons of 2016-2019. The Doppler radar systems were initially installed in 2015,
but the Committee found that data from the year of 2015 was anomalous [1], and
acknowledged that the system underwent many adjustments and recalibrations as the
season progressed. Thus data from the years 2016-2019 were used in calculating the
drag coefficient of balls, and the year 2019 was matched to players, due to the focus
on the drag analysis conducted in 2019 by the MLB committee as well as the available
pitcher data from 2019 sent from the MLB.

The coordinate system is typical in the Statcast system, with the origin at the

17



Figure 3-1: Coordinate system from the perspective of the catcher [8].

home plate, 𝑦 that pointed towards the pitcher, and 𝑧 points vertically upward. The
x-axis points to the catcher’s left and right, and this coordinate system was used
throughout the extent of this research [8].

3.1.1 Drag Calculation

This analysis begins by looking at the sum of the forces on the ball, using Equations
2.1 and 2.2 to account for 𝐹𝐿 and 𝐹𝐷 respectively:

#»

𝐹 = 𝑚 #»𝑎

# »

𝐹𝐿 +
#  »

𝐹𝐷 +𝑚 #»𝑔 = 𝑚 #»𝑎 (3.1)

The instantaneous acceleration at each point in time point can be a direct measure
of 𝑎 in Equation 3.1, and can be calculated by taking the derivative of the velocity
𝑉 (Equation 3.2), with 𝑉 calculated directly from the XYZ Statcast positional data
(3.3).

𝑑𝑉𝑖

𝑑𝑡
=

𝑉𝑖+1 − 𝑉𝑖−1

𝑡𝑖+1 − 𝑡𝑖−1

(3.2)

𝑉𝑖 =
√︁

𝑣2𝑥,𝑖 + 𝑣2𝑦,𝑖 + 𝑣2𝑧,𝑖. (3.3)

Acquiring 𝑑𝑉
𝑑𝑡

from positional data and combining it into Equation 3.1 leads to a
governing equation of motion (Equation 3.4) where where the only unknowns are 𝐶𝐿

and 𝐶𝑑 [1].

18



𝑚
𝑑

#»

𝑉

𝑑𝑡
=

# »

𝐹𝐿 +
#  »

𝐹𝐷 +𝑚 #»𝑔 (3.4)

Next, the sum of the forces can be broken down into the sum of the forces along
each axis. In isolating the forces on the ball solely in the direction of the drag force,
this eliminates the need to calculate for the lift force and lift coefficient as the lift
force is perpendicular and has no magnitude or contribution of force in the direction
of ball’s flight path. Taking the direction of each of these expressions into account,
gravity (g) is now represented in both magnitude and direction in our calculation by
the vector (0, 0, -g) [1]. Equations 3.5 and 3.6 show the breakdown from extracting
the forces only in the direction of the ball’s flight path.

𝑚
𝑑𝑉

𝑑𝑡
(𝑡) = 𝐹𝐷(𝑡)−𝑚𝑔 sin 𝜃(𝑡) (3.5)

𝑚
𝑑𝑉

𝑑𝑡
= −1

2
𝜌𝐴𝐶𝐷𝑉

2 −𝑚𝑔 sin 𝜃. (3.6)

A new variable 𝜃 is introduced as a reflection of the projection of the gravitational
force in the direction of the tangent vector to the ball’s flight path. Theta can be
computed by examining the angle created by the projection of the ball in the XY
plane and in the Z plane.

𝜃𝑖+1/2 = arctan(
𝑧𝑖+1 − 𝑧𝑖√︀

(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2
) (3.7)

𝜃𝑖+1/2 lies between subsequent time coordinate values as it is calculated with positional
values immediately next to each other. To shift the vector values of 𝜃 onto the correct
time values as the positional coordinates, the average of the value of 𝜃 with one half
step forward and one half step backwards is averaged in equation 3.8.

𝜃𝑖 =
1

2
(𝜃𝑖+1/2 + 𝜃𝑖−1/2). (3.8)

A vector of 𝐶𝐷 values associated with each point in time can now be calculated
with the above information.

𝐶𝐷,𝑖 = (−𝑔 sin 𝜃𝑖)−
𝑑𝑉𝑖

𝑑𝑡
) * 2𝑚

𝜌𝐴𝑉 2
𝑖

(3.9)

Values of parameters used Equation 3.9 are as listed below [1]:

• Air density (𝜌) = 1.225 𝑘𝑔/𝑚3

• Baseball radius (𝑟) = 3.69 cm
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• Cross-sectional area of the baseball (𝐴 = 𝜋𝑟2) = 42.776 𝑐𝑚2

• Gravitational acceleration (𝑔) = 9.8 𝑚/𝑠2

3.1.2 Selection of Trajectory

The extraction of the drag coefficient begins with identifying and extracting the pitch,
then selecting for the rising trajectory of the batted ball (Figure 3-2, 3-3, 3-4). In
Figure 3-2, the trajectory of one data file is shown along with the first point in time
shown in red. Figure 3-4 represents the changing XYZ coordinates over time from
the play in Figure 3-2. The small (<1.5 second) gaps in time are representative of
when the ball hits the ground and/or when a player takes time to grab the ball and
throw it to a different player. To simplify calculations, this research only considered
points from after the ball was batted up to the trajectory peak.

As seen in Figure 3-2, one Statcast trajectory file does not only contain the pitch
and the batted ball. Rather, it contains information from the entire play from when
the ball leaves the pitchers hand, until the end of the play, (likely at first base in
this example). The pitcher mound and coordinates stay consistent throughout the
trajectory files. However, the first data point in time collected does not always begin
when the ball leaves the pitchers hand like it does in Figure 3-2. Additionally, most
trajectory files do not consist of only the pitch and rising part of the trajectory. The
Doppler radar system at times can accidentally capture trajectory segments from
the previous play or segments within the next play. This presents obstacles in the
extraction of the drag coefficient: if the incorrect part of the play is selected that
is from a different play (either the one just before or the one just after), it can
result in a drag coefficient from a ball different than the one that is pitched. Thus,
the assumption that first data point collected in time is representative of when the
ball leaves the pitchers hand cannot be made, and care must be taken to correctly
identify the beginning of the batted ball as it will be later tied to a pitcher’s name
and performance. A Matlab program was created to identify the beginning of pitch
independent of time, and then select for the rising part of the trajectory (Figure 3-5).
Additional information on pitch identification parameters and the selection process
employed within this study and Matlab program are located in Appendix A.

3.2 Extracting the Drag Coefficient

In Figure 3-4, the graph on the left shows the identification of the XY projection of the
pitch. After being identified, it is subsequently removed along with any data following
the trajectory peak. This ensures the correct segment of the rising trajectory of the
batted ball is used in the calculation of the drag coefficient, shown in the graph on
the right in Figure 3-5.

20



Figure 3-2: Example play from one Statcast trajectory file.
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Figure 3-3: Orientation of trajectory in Figure 3-2 on baseball diamond.

Figure 3-4: Progression of XYZ trajectory coordinates from Figure 3-4 over time.
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Figure 3-5: Selection of rising trajectory of batted ball.
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Figure 3-6: Instantaneous position, angle, velocity, and acceleration over time of the
rising ball with respect to the horizontal.
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Figure 3-7: Plot of drag coefficient over time.

It was noticed that the drag has an oscillatory behavior in time as seen in Figure
3-7. However previous studies have acknowledged this phenomenon as well and con-
nected it back to the rotation of the laces in the air that changes the airflow around
the ball. The cause of the oscillations seen in the drag coefficient in this study may
be a result of the changing airflow around the ball [9]. To find a value of 𝐶𝑑 inde-
pendent from this oscillatory behavior, the average 𝐶𝑑 over time was taken as the
representative value of the drag coefficient in time for each batted ball (Figure 3-7).

3.2.1 Spin Correction

The Statcast data for spin is truncated at 3500 RMP in early 2015 data sets [1].
To remove this bias, as the committee did in their report, only trajectories with
spin values under 3500 RPM and above 1900 RPM were considered in this report.
Knowing that spin increases the value of the drag coefficient (Figure 2-2), steps are
taken to remove the dependency of the drag coefficient on spin.

As seen in Figure 3-7, there is a linear relationship between the spin of the ball
and the drag coefficient in the years 2016-2019. The drag coefficient increases for in-
creasing rates of spin. Thus, an increased value of spin makes the ball more difficult
to fly through the air. A decreased value of spin is correlated with a smaller drag co-
efficient value, showing that for smaller values of spin, the ball can fly farther through
the air. These linear relationships demonstrate how there is a dependency of spin on
the calculation of the drag coefficient. It’s important to remove the dependency of
spin on the drag coefficient to enable the comparison of drag coefficients of balls with
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Figure 3-8: Plots of the average drag coefficient across 4 years against corresponding
values of spin.
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different spins.
As confirmed by the study commissioned by the MLB in 2017, the drag coefficient

is found to be well approximated by a linear function of spin as seen in Equation
3.10, enabling for a streamlined extraction of the added value of the spin to the drag
coefficient [1]:

𝐶𝑑 = 𝑚 * 𝑠𝑝𝑖𝑛+ 𝐶𝑑0. (3.10)

This can be done simply by subtracting from the average drag found in each of the
data files, the slope of the line of best fit (Figure 3-7) multiplied by the measured
value of spin (Equation 3.2).

𝐶𝑑0 = 𝐶𝑑 −𝑚 * 𝑠𝑝𝑖𝑛 (3.11)

The y-intercepts (the new average spin-independent 𝐶𝑑 values across all the data
points for each year in Figure 3-8) for 2016 - 2019, respectively, are 0.2672± 0.0078,
0.2619± 0.0081, 0.285± .0076, 0.2667± .0077.

The removal of the additional spin contribution from the drag enables for the
calculation of an average Cd for each year, as the drag coefficient values are now
normalized to a horizontal line.
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Figure 3-9: Conversion of spin-dependent to spin-independent 𝐶𝑑 values using Equa-
tion 3.2.
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Chapter 4

Results

The value of the drag coefficient was initially thought to be inversely proportional to
statistics descriptive to baseball performance, with higher drag balls thought to be
correlated with less home runs against the pitcher.

There were two initialized hypotheses around the drag of the baseball: (1) pitchers
were routinely selecting for either high or low drag balls, as there has been spoken
observations around "lucky" or "unlucky" pitchers routinely picking up character-
istically high or low drag balls, respectively, without necessarily being "better" or
"worse" pitchers that season. (2) High drag balls were thought to be indicative of
better performance, and lower home runs scored against them.

However, the data indicates that pitchers do not appear to be selecting for high
drag balls. There is no apparent correlation with statistics representative of pitcher
performance and drag coefficients. As seen in Figure 4-1, there is no obvious correla-
tion between pitchers who are selecting low drag balls and those that have a low hone
run rate, as described by the statistic "HR/9". HR/9 is the number of home runs
against the pitcher per 9 innings. A low value of HR/9 indicates that the pitcher has
fewer home runs against them, and comparatively, a high value of HR/9 indicates a
pitcher has more home runs scored against them. While pitchers such as "Pitcher 1"
or "Pitcher 2" might colloquially claim that they select for high drag balls, there is
no apparent correlation with their performance and that of the drag of the balls.

A few of the pitchers were selected from Figure 4-1 with average drag coefficients
that fell outside of one standard deviation of the mean of all of the drag coefficients
for all of the balls thrown, either higher or lower. However, only 4 pitchers of 151 had
an average drag coefficient across the the different balls they threw to be outside of
one standard deviation of the mean of all of drag coefficients from the balls thrown.
In other words, only 2.65% of pitchers had average drag coefficient values that were
farther than 68% of all of the drag coefficients calculated from the average drag
coefficient across all balls thrown. For these results to be statistically significant
and to be suggestive that pitchers are routinely selecting for high or low drag balls,
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Figure 4-1: Plot of average 𝐶𝑑 per pitcher vs. HR/9 statistic in 2019, denoting a few
possible pitchers of interest.

or routinely seeing higher performance characteristics from consistencies in the drag
of the balls chosen, we might expect to see it farther than 95% of all average drag
coefficient values. However, because it is much less than that, we don’t have evidence
to suggest there is a characteristic similarity in high or low drag coefficients from the
balls that this population of pitchers are selecting in the year 2019.

Two of these 4 pitchers, pitchers 135 and 145 were above one standard deviation
of the population mean with average 𝐶𝑑 values of 0.2949 and 0.2928 respectively
and pitchers 8 and 129 were the only two with 𝐶𝑑 values farther than one standard
deviation below the population mean, with 𝐶𝑑 values of 0.2428 and 0.2397. While this
data doesn’t yet have relations to their performance, there is no evidence to suggest
that some pitchers are statistically choosing more higher or lower drag balls out of
the current sample size on a regular basis in 2019. If we look at these notable athletes
and see how their HR/9 scores compare, they do not fall outside of one standard
deviation of the HR/9 statistics for this population of pitchers in 2019 as shown in
Figure 4-2. This supports a notion that there is no evidence to suggest that even
those pitchers who might be picking higher or lower drag balls than others within
this group of pitchers have statistically significant differences in performance, either
positive or negative.

ERA is another statistic of interest. It describes not only home runs against the
pitcher across 9 innings, but all runs. This statistic was incorporated into the analysis
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Figure 4-2: Plot of average 𝐶𝑑 per pitcher vs. HR/9 statistic in 2019, noting the
only 4 pitchers with average drag coefficients outside one standard deviation of the
population mean.
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Figure 4-3: Plot of average 𝐶𝑑 per pitcher vs. ERA in 2019.

to see if there was any correlation to any baseball play the pitchers has from their
pitch and the drag coefficient of the ball. However, there is a similar amount of
randomness existent in this analysis as the one in the HR/9, as seen in Figure 4-3.

4.1 HR/9 - Handedness and League

Figures 4-1 and 4-2 show the HR/9 statistic for each player against that player’s
average drag coefficient in the 2019 season. Figure 4-4 depicts the different league
these players are in (National vs. American) and Figure 4-5 shows the difference in
handedness among pitchers. 47 out of 151 pitchers are left handed, and 104 are right
handed. 66 pitchers are from the National League, and 85 out of 151 are from the
American League. Similar to Figure 4-1, there is no apparent correlation between
handedness or league in the magnitude of the drag coefficient or the HR/9 for each
pitcher, and no evidence to suggest that in this study, handedness or league has any
impact on either the average drag coefficient or on the HR/9 for pitchers.

4.2 Further Analysis

It should be noted that the error bars are quite high, and may be caused by high
variance in 𝐶𝑑 values from ball-to-ball, possibly due to surface roughness [1]. However,
it is noteworthy that not all pitchers might want to select for high drag balls. They
might want the ball to fly as fast as it can. As discussed in Section 2.4.1, with
decreasing drag coefficients comes increasing speeds. This might not be advantageous
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Figure 4-4: Plot of average 𝐶𝑑 per pitcher vs. HR/9 in 2019 with focus on league.

Figure 4-5: Plot of average 𝐶𝑑 per pitcher vs. HR/9 in 2019 with focus on handedness.
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for the batter, as increasing speeds of the pitch in conjunction with a lower drag
coefficient might enable for a better opportunity to score a home run [1], but a ball
that can fly fast through the air might be advantageous for the type of pitch the
pitcher selects.
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Appendix A

Extraction of Pitch

Statcast data provided by the MLB is collected through Doppler radar systems fas-
tened to the top of the stadiums. The radar collects the XYZ coordinate points (ft)
of each of the plays. These systems were first installed in 2015, and they’re able to
track everything on the field at all time, including balls in the wide range of 30 - 120
mph [6].

While the radar system is set to record each play at the start of the pitch, at times
the radar will collect more in all of the years including 2019: either capture the end
of the previous play before the pitch or capture the beginning of the next play. It is
vital that the correct segment of the batted ball is chosen, because if not, it might
not be that of the ball that was pitched with, lending to an inaccurate measurement
of the drag coefficient. As the drag coefficient is linked to a specific pitcher and will
be correlated with their performance, it’s very important to select the accurate pitch.
Thus, a conservative approach was taken to decide if a file should be used or not, as
well as which segment of the data is selected for.

Central questions arose in selecting the correct and noticing repetitive inconsis-
tencies data:

1. At what time does the pitch begin?
2. At what point in the play does the time begin?
3. Are there extra data points from the previous pitch and/or the following pitch?

It’s impossible to answer question 1 and 2 initially as there is a lack of consistency
around when time begins in the radar files. While it was initially assumed that
time(1) would be the very beginning of the pitch where the play itself begins, it may
be at the very beginning of the pitch, or in the middle of the batted ball, or in the
middle of a play that is finishing just before the one of interest begins. With regards
to question 3, if the beginning of the pitch can be located anywhere in the file, it
can select for the correct trajectory amongst any extraneous trajectories regardless of
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Figure A-1: Extraction of trajectory from sample inconsistent data

Figure A-2: XYZ trajectory data in time from sample inconsistent data
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what extra data might lie before or after the pitch. This is the goal of the program
and constraints created: to select for and extract the pitch associated with the rising
trajectory of the batted ball.

However one initial assumption is made: the first pitch that is located is the pitch
of interest. This assumption was made around the examination of over 4000 data
files, where none contained greater than one complete trajectories of interest, where a
trajectory of interest can be defined by a completed pitch + batted ball. Figure A-1
and Figure A-2 show an example of inconsistent data, where there is both extraneous
data and the data didn’t begin at the first point in the pitch, Additionally, there is
great time between different aspects of the play, almost an entire minute, which acts
as further evidence to suggest that this data did not come from the same play.

To preserve as many data files as possible and, a program was created to isolate
the first pitch of the data file, and calculate the drag coefficient off of the subsequent
batted ball. Parameters to characterize and locate the pitch are based off of 2 aspects
of the flight path (Figure A-3): (1) the average number of points within a pitch and
(2) the difference in the height (z) between the first and the last data point in the
pitch. This accounts for characterizing the pitch in each of the three planes: (1)
estimates the length of pitch in the X and Y planes, and (2) accounts for the change
in height in the Z plane. The program also looks for one parameter not within the
flight path, but the location of the baseball diamond – specifically the pitchers mound.
It was recognized that the files where incorect data was selected, was if there was a
play close to the ground from a previous play that was much like the trajectory of
the pitch, just at a different location on the field. Thus, a paramter was accounted
for to say that if along with the relative size of the pitch (in the XY plane as well as
the Z plane) is an identification factor, then the location of these characteristics on
the field need to also be a factor. Thus, the program will only select a pitch that is
less than 75ft in the Y direction, limiting the presence of stray data from the outfield
that could disguise itself as a pitch. The program then looks for windows of data that
meets these parameters, and then shifts this window each subsequent point further
in the trajectory data until a characteristic trajectory is found.

With regards to (1), the average number of points for all data sets within the pitch
is 12 ±1.3. As points cannot be partial, the range of 11-13 of points was selected to
define the pitch, and the average change in height is between 4.44 ft and -8.4548 ft (one
standard deviation of the mean of -2.02 ft) taking into account that the file could go
backwards in time if time(1) is at the end of the positional data, in which the change
from the first point to the last point could either be negative or positive depending
on which way time leads. It is recognized that there may be changes in height that
have the same values, that are much higher in the Z-axis, and not close to where the
pitch would be near the ground. Thus, a third parameter was also introduced, which
was to say if along with the change in height, if the first and last point are within
one standard deviation of the average high between the located pitch, then that will
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Figure A-3: Elements in pitch characterization

be another characteristic parameter of the pitch.
To summarize, if the number of points in the pitch lies within one standard de-

viation of the average of these different constraints described previously then the
program selects that file to continue with. While the program only selects for 68% of
the data files that fall within these constraints, it is done to ensure the best opportu-
nity to choose for the right trajectory within these varying radar files. This is 2x the
amount of files that are selected than previously, where any abnormality in the data
would cause that entire file to be skipped over.

After finding the pitch, time = 1 is now set at the begging of the located pitch. It
is understood that there is a range within the number of points of the pitch, so the
program does not locate the beginning of the batted ball at the end of the selected
pitch. Rather, the program looks for the abrupt change in slope that is indicative of
the ball being struck off of the bat, and determines this as the batted ball.
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