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Abstract

Irregular applications have frequent data-dependent memory accesses and control flow. They

arise in many emerging and important domains, including sparse deep learning, graph analytics,

and database processing. Conventional architectures cannot handle irregular applications

efficiently because their techniques for improving performance, like exploiting instruction-level

or data-level parallelism, are not tailored to them. Thus, continued progress in these crucial

domains depends on exploring new avenues of parallelism.

Fortunately, irregular applications contain abundant but untapped pipeline parallelism: they

can be divided into networks of stages. Pipelining not only exposes parallelism but also enables

decoupling, which hides the latency of long events by allowing producer stages to run ahead of

consumer stages. To properly decouple these applications, though, this pipeline parallelism must

be exploited at fine-grain, with few operations per stage. Prior work has proposed architectures,

compilers, and languages for pipelines, but focus on regular pipelines, and thus are unable to

overcome several challenges of irregular applications. First, architectures need to support the

efficient execution of many fine-grain pipeline stages. Second, such irregular pipelines suffer

from load imbalance, as the amount of work in each stage varies rapidly as the program runs.

Finally, these stages must communicate and coordinate changes in control flow.

This thesis demonstrates that exploiting fine-grain pipeline parallelism in irregular applica-

tions is effective and practical. To this end, this thesis proposes two hardware architectures

and a compiler: Pipette, the first architecture, reuses existing structures in modern out-of-

order cores to implement load-balanced decoupled communication between stages; and Fifer,

the second architecture, makes the acceleration benefits of coarse-grain reconfigurable arrays

available to irregular applications. Pipette achieves gmean 1.9× speedup over a data-parallel

implementation, and Fifer achieves up to 47× speedup over an out-of-order multicore while

using considerably less area. Both architectures also further accelerate challenging memory

accesses and resolve the load balancing and control flow challenges that are ubiquitous in

irregular applications. Finally, Phloem is a compiler that makes it easy for programmers to

use these architectures by producing high-performance pipeline-parallel implementations of

irregular applications from serial code. Phloem automatically achieves 85% of the performance

of manually pipelined versions.

Thesis Supervisor: Daniel Sanchez

Title: Associate Professor of Electrical Engineering and Computer Science
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1 Introduction

Advances in computer architecture have enabled significant improvements

in the applications that run on them. In turn, these applications produce

significant benefits for society in countless ways; as a result, computing is

now embedded in all aspects of modern life.

Progress in architecture, silicon fabrication, and other fields have been

important drivers of increased performance; in this thesis, we focus on

parallelism. Parallelizing a program consists of dividing it into smaller

units of work, or tasks, that can be run at the same time while preserving

the semantics of the original program. By exploiting parallelism and

performing these tasks simultaneously, we can improve performance by

completing the workload faster and reaping its attendant benefits, such

as consuming less energy.

As processors have become faster, the amount of data has ballooned

and the ways we process it have become much more sophisticated. The

result is that sparse applications have become much more common. A

sparse application operates on sparse data structures, like sparse matrices,

tensors, graphs, trees, hash tables, and more. These structures exploit the

observation that the relationships represented by this data are themselves

sparse. For example, a graph’s millions of vertices may each have just

a few edges to other vertices. Thus, efficiency benefits arise from not

having to represent nonexistent relationships.

Leveraging sparsity this way introduces irregularity. In this thesis, we

define an irregular application as one that has frequent, unpredictable

(i.e., not statically known or easily computed ahead) data-dependent

memory accesses and control flow. However, improvements in computer

architecture over the last several decades have primarily benefited only

regular applications—those that work on dense, uncompressed data struc-

tures, like dense vectors of matrices. Furthermore, with Moore’s Law

ending [34], we must be judicious in the way we use transistor budgets
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to extract performance from irregular applications.

In this thesis, we consider organizing an application as a pipeline.

Structuring an application as a pipeline involves further breaking down

an algorithm into multiple smaller tasks, called stages, which are ordered

to preserve the order of operations performed by the original algorithm.

Each stage now receives operands from one or more preceding producer

stages, carries out a subset of the original operations, and sends the results

to one or more following consumer stages.

This division into multiple stages yields more tasks and exposes ad-

ditional parallelism. Specifically, pipeline parallelism is the property of

a pipeline that each stage can carry out its operations using only values

received by the stage as well as that stage’s internal state. Thus, stages

can run independently of each other. There are plenty of examples of ex-

ploiting pipeline parallelism: processor pipelines [95] split the execution

of each instruction across multiple stages. Image and video processing

applications are also structured as pipelines, where each stage operates on

an intermediate image or video frame, and application-specific integrated

circuit (ASIC) accelerators [115] mirror this organization by structuring

their compute as pipelines as well. Finally, pipelines are a common orga-

nization in software [103] as well, where an application can be structured

as stages that communicate values through memory.

For this thesis, we focus on pipelines in which the stages are im-

plemented as programmable (or configurable) hardware units that can

perform these tasks. Stages in these pipelines are connected by queues:

storage structures that contain outputs written (enqueued) by a producer

stage that are read (dequeued) by a consumer stage. These stages are now

decoupled from each other. If an output queue becomes full or an input

queue becomes empty, the stage stalls, but other stages can continue to

run. Decoupling grants a crucial property: latency tolerance—the ability

to overlap long-latency events with useful work.

Finally, pipelines may operate at different granularities. The number

of operations in each stage, the amount of data communicated between

stages, and the frequency of communication, determine the granularity

of the stages and the resulting pipeline. Granularity is relative; in this

thesis, we set the finest unit of granularity to the fundamental operations

(add, multiply, load, store) on a modern machine’s word width (32 or 64

bits) that can be carried out in a single clock cycle. This granularity is

comparable to an instruction executed by a RISC pipeline or a micro-op

executed on a modern out-of-order processor. Thus, a fine-grain stage

14



carries out few operations on few values and communicates extremely

frequently—once every few cycles.

We can leverage pipeline parallelism to accelerate irregular applica-

tions, but a careful choice of granularity is essential. Fine-grain pipelines

confer numerous advantages: first, the ability to divide applications along

sources of irregularity yields ample opportunities to insert latency toler-

ance mechanisms where needed. Second, dividing an application into

fine-grain stages results in stages that contain substantially less work,

making them simpler to implement and accelerate. Finally, even with

queues of many tens or hundreds of elements, the overall storage area

needed remains reasonably sized (comparable to today’s L1 data caches

on modern CPUs) for physical implementation.

1.1 Challenges

Adding hardware queues between compute units is not new: starting

with James Smith’s seminal 1982 paper on decoupled access-execute

(DAE) [108], many systems [25, 30, 41, 45, 82, 83, 92, 102, 109, 119, 124,

138] also propose connecting compute units with hardware queues. Un-

fortunately, prior work fails to effectively support irregular applications

structured as fine-grain pipelines. This lack of support is due to several

challenges:

Applications need the flexibility to be decoupled at any point into

arbitrarily many fine-grain stages. Irregular applications contain many

sources of irregularity, and they may occur chained together, such as

a series of memory accesses. To achieve good performance, sources of

irregularity that happen frequently must be decoupled from each other.

While fine-grain decoupling enables us to separate sources of irregularity,

the underlying hardware must also be able to support these numerous

stages. Many earlier designs, including DAE, only support two stages.

Moreover, many prior designs limit the types of operations a stage can

perform. For example, DAE requires memory accesses to be performed

specifically by the access stage.

Stages must coordinate changes in control flow. Activity in one stage

could affect control flow decisions made by another stage. For instance,

stages may need to synchronize before moving onto the next phase of a

program. For performance reasons, nested loops may need to be further

decoupled into stages, but these stages need to match the semantics of
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the original loop. The need to communicate control flow information

between stages introduces additional complexity.

Fine-grain pipelines suffer from load imbalance, as the amount of

work in each stage varies rapidly as the program runs. Related to

the previous challenge, stages may experience rapid fluctuations in the

amount of work in their input queues. One input element could produce

many output elements for downstream stages, but the next one could

produce few elements. Thus, it is not possible to statically scale or replicate

stages to maintain balanced throughputs. Fine-grain pipelines thus have

load imbalance, meaning that some stages may remain busy with lots of

work and other stages may not have work to do at all. Prior work has

suffered from poor utilization due to load imbalance, chiefly because they

map stages to different compute units.

No tool automatically creates fine-grain pipelines of irregular appli-

cations from serial code, limiting the benefits of hardware support.

Prior work in compilers of pipeline-parallel programs limit their tasks to

be no larger than the innermost loop of an application [19, 43, 102]. How-

ever, irregular applications contain many nested control structures with

possibly several long-latency events in each level. In order to make full use

of hardware support for fine-grain pipeline parallelism, the compiler must

recognize opportunities for creating pipelines that span control structures

(like multiple loop nests) and properly decouple all long-latency events

from each other.

1.2 Contributions

This thesis demonstrates that exploiting fine-grain pipeline parallelism in

irregular applications is effective and practical. These are the key enabling

insights:

1. Irregular applications can be structured as fine-grain pipelines.

2. Time-division multiplexing is cheap to implement and can be used to

efficiently execute these pipelines while maximizing utilization.

3. These pipelines can be built systematically, and therefore automatically,

from serial code, making this type of parallelism more accessible to pro-

grammers.
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This thesis presents two novel hardware architectures and a compiler that

leverage these three insights.

Pipette: The first hardware architecture, Pipette [82], exploits fine-grain

pipeline parallelism using the threads of a multithreaded general-purpose

core. Each thread executes a stage in the pipeline, and stages communicate

using architecturally visible queues. An interface for passing control

flow information between stages, as well as hardware support to make

changing control flow efficient, make it practical to implement irregular

applications as fine-grain pipelines. To cope with load imbalance, cores

reuse the time-division multiplexing feature of modern out-of-order (OOO)

cores—simultaneous multithreading—to always have work to issue, even

if some stages are blocked. Pipette reduces implementation complexity by

reusing other components of existing OOO cores, such as backing queue

storage by reusing the physical register file. Pipette achieves gmean 1.9×

speedup over a variety of challenging irregular applications.

Fifer: The second hardware architecture, Fifer [83], extends Pipette’s

insights to specialized architectures. Fifer targets coarse-grain reconfig-

urable arrays (CGRAs), which have been traditionally used for accelerating

regular computations but have been ineffective for accelerating irregular

applications because of their rigid internal pipelining. Fifer demonstrates

that CGRAs can be efficiently leveraged for irregular applications. Like

Pipette, Fifer runs networks of pipeline stages and time-multiplexes many

stages onto a single CGRA to achieve high utilization. To cope with irreg-

ularity, Fifer not only buffers the inputs and outputs to each CGRA, but

also changes the currently executing stage in response to varying load.

Support for rapid reconfiguration keeps the overhead of time-multiplexing

low, and support for passing control information makes it feasible to im-

plement an irregular application’s complex control structures within a

CGRA. Thanks to the increased compute density of the specialized fabric

and improved utilization, Fifer achieves up to 47× speedup over an OOO

multicore while using much less area.

Phloem: Finally, the compiler, Phloem [84], automatically transforms

serial programs into high-performance pipeline-parallel implementations.

It systematizes the process of creating pipelines, including accelerating

memory accesses and coordinating changes in control flow across stages.

Phloem achieves 85% of the performance attained through manual par-

allelization. Thus, a wide variety of applications can now benefit from

hardware support for fine-grain pipeline parallelism.
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1.3 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 reviews back-

ground and related work. Chapter 3 presents Pipette, which leverages

fine-grain pipeline parallelism within a multithreaded core. Chapter 4

presents Fifer, which extends Pipette’s insights to specialized architectures.

Chapter 5 presents Phloem, a compiler that transforms serial programs

into efficient pipeline-parallel implementations. Chapter 6 concludes this

thesis and discusses future work.

18



2 Background and Related Work

Irregular applications have frequent data-dependent memory accesses

and control flow. They are the norm in many domains, like graph analytics

and sparse linear/tensor algebra, because irregularity arises from sparse

data structures, like graphs and sparse matrices. Their data-dependent

accesses and control are often unpredictable, causing poor performance

on CPUs and GPUs. To drive the discussion of the background and related

work, consider the following code:

for (int i = 0; i < N; i++)

if (A[i] > 0)

work(B[A[i]]);

This simple snippet is representative of the challenges of irregular ap-

plications (we will see fuller examples later on). Assume that work()

takes few operations per call (e.g., about 10), and that it does not mod-

ify arrays A[] or B[]. This code will run very poorly on a CPU: if A[i]

frequently alternates between positive and negative, the if (A[i] > 0)

branch is unpredictable, serializing iterations and inducing a very low

instructions per cycle (IPC). Moreover, the indirect access B[A[i]] will

cause frequent memory misses that are hard to prefetch, making exe-

cution memory latency-bound. Data parallelism is of limited help: on

a GPU or vector processor, if (A[i] > 0) induces conditional/masked

execution that limits lane utilization, and the frequent memory gather

B[A[i]] causes expensive uncoalesced accesses.

Instead, consider the following pipeline-parallel implementation of the

above code snippet:

Fetch  A[i] Filter  A[i]> 0 Fetch B[A[i]] Call  work()

Each stage runs in parallel, e.g., in a separate CPU core. Stages produce

streams of values and communicate them to other stages through queues.
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This decouples their execution, allowing producers to run ahead of con-

sumers. This decoupling also hides latencies and uses resources better.

For example, each branch in the filter stage is resolved more quickly, since

A[i] comes from a fast queue instead of main memory; and each mispre-

diction in filter no longer fills the core with misspeculated instructions

from work() or fetches from array B[].

The above pipeline is fine-grained: it has very frequent communication,

with each stage enqueueing or dequeueing a value every 5–10 instructions.

Thus, software-only queues (which take hundreds of cycles per opera-

tion [39, 104]) would add very high overheads. To enable fine-grained

pipelining, much prior work has proposed adding hardware queues across

cores or threads [25, 30, 41, 45, 82, 83, 92, 102, 108, 109, 119, 124, 138].

However, many of these systems only work well when every stage in

the pipeline proceeds at a regular, predictable rate. By contrast, in an

irregular application, stages undergo rapid variations in the amount of

work, creating load imbalance. For instance, consecutive runs of positive

or negative A[i] values affect the output rate of filter, quickly changing

the ratio of work between the first and last two stages. If these stages

were distributed spatially (e.g., scheduled on separate cores), some would

idle often while others limit throughput.

2.1 A Fully Fledged Example: Breadth-First Search

Although the previous example contains enough irregularity to cause

serious problems, we turn to a more realistic example, breadth-first search

(BFS), to fully illustrate the challenges of irregular applications. BFS is a

common graph analytics algorithm that visits all vertices reachable from a

source vertex src in a given input graph and tags them with the shortest

distance to the source, in number of edges.

Figure 2-1(a) shows a serial implementation of BFS. This algorithm

iteratively tags all vertices at a given distance from the source, cur_dist,

before moving on to the next distance. A fringe tracks the set of all vertices

at the previous distance (cur_dist-1). As BFS visits the neighbors of

each vertex in the fringe, it checks whether the neighbor’s distance has

been set. If not, BFS sets its distance and adds it to the next iteration’s

fringe (next_fringe). In the next iteration, BFS processes the vertices of

the next fringe, continuing until an iteration results in an empty fringe—

indicating that all vertices reachable from the source have been visited.
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define bfs(src):

distances[src] = 0

cur_fringe = [src]

cur_dist = 1

while not cur_fringe.empty():

for v in cur_fringe:

start, end = offsets[v], offsets[v+1]

for e in range(start, end):

ngh = neighbors[e]

dist = distances[ngh]

if dist is unset:

distances[ngh] = cur_dist

next_fringe.push(ngh)

cur_fringe = []

swap(cur_fringe, next_fringe)

cur_dist += 1

(a) Pseudocode for serial BFS.

1

2
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0

1 2

2

(b) An example graph G.
0 1 2 3 4 5

0 2 3 6 7 7

1 2 3 1 3 4 4

0 1 2 3 4
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offsets

neighbors

distances

(c) G’s CSR representation

and, at right, the output (dis-

tances) produced by BFS.

Enumerate 
neighbors

Process
current fringe

Fetch
distances

Update data, 
next fringe

(d) A pipeline-parallel implementation of BFS.

Figure 2-1: An implementation of breadth-first search (BFS).

The BFS implementation in Figure 2-1(a) uses a graph in compressed

sparse row (CSR) format, the most commonly used representation [80,

106, 112]. Figure 2-1(b) shows an example graph and Figure 2-1(c) shows

its CSR representation. CSR stores the graph using two arrays, offsets

and neighbors. For each vertex id, the offsets array stores where its

neighbors begin in the neighbors array. Thus, vertex v has edges to

neighbors[i] for i in the half-open interval [offsets[v],offsets[v+1]).

The neighbors array stores the vertex id of each neighbor.

Obtaining and setting the distance of a neighbor vertex thus manifests

as four indirections in a three-level loop: reading the fringe for the current

vertex, reading that vertex’s edge list, finding the neighbor of each edge,

and finally loading the distance of that neighbor.

Like before, we mitigate the effects of these variable-latency indirec-

tions by separating BFS into a feed-forward network of pipeline stages.

The stages are then decoupled with queues, which buffer work between

stages and allow them to run ahead of each other. This decoupling is

made possible by the observation that lookups of neighbor distances (at a

given cur_dist) do not depend on each other.

However, simply decoupling BFS and assigning each stage to a sep-

arate core or thread presents a new problem: load imbalance. Load
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Name

Flexible

number of

stages > 2

Independent

control

flow

Dynamic

load

balancing

Reuses

core

structures

DAE [108], DeSC [45] ✘ ✘ ✘ ✘

MT-DCAE [114] ✘ ✘ ✔ ✘

Raw [119], MPPA [30] ✔ ✔ ✘ ✘

Triggered instructions [92] ✔ ✔ ✔ ✘

DSWP [102] ✔ ✘ ✘ ✘

Outrider [25] ✔ ✘ ✔ ✘

Table 2-1: Feature comparison of related work.

imbalance occurs because work varies quickly throughout phases of exe-

cution. In BFS, load imbalance could occur because a vertex could have

many neighbors, or no neighbors at all. This leads to poor utilization, in

which some cores or threads remain idle while others run at full tilt.

2.2 Related Work

We break our discussion of related work into three major parts. First,

we discuss techniques that employ decoupled execution. Second, we

review prior specialized architectures and how they improve compute

density over general-purpose cores but also why they fall short of our

goals. Third, we explore why compiler support for these architectures is

lacking, limiting the accessibility and effectiveness of hardware support.

2.2.1 Decoupled Architectures

In general, prior decoupled architectures suffer from two limitations:

(i) their queue-based communication and control mechanisms target

applications with regular control flow, and impose restrictions on the

number of stages or the types of activities within each stage, so they are

insufficient to decouple stages in irregular applications; and (ii) most of this

prior work places each stage on a different core, which causes high load

imbalance in irregular programs. Table 2-1 summarizes the shortcomings

of this prior work.

Decoupled Access-Execute (DAE) architectures [108] feature two spe-

cialized units: an access core that performs memory operations and an

execute core that performs compute operations. The cores are linked
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to each other by queues, allowing the access core to run ahead. Soft-

ware techniques for DAE [54] leverage the same insights, but without

the need for specialized hardware. Unfortunately, DAE-based architec-

tures and its descendants, including PIPE [41], ZS-1 [109], ACRI-1 [124],

MT-DCAE [114], and DeSC [45], suffer from loss of decoupling because

they allow only two stages, access and execute, and each stage has a lim-

ited set of operations, which causes tight two-way dependences between

these stages. For example, DAE cannot decouple BFS as described.

Streaming multicores like Raw [119], Imagine [58], Merrimac [27], and

Kalray’s MPPA [30] introduce hardware support for decoupled communi-

cation between cores, which can stream values over the network [27, 29,

65, 120]. Unlike DAE, streaming multicores allow more than two pipeline

stages and let each core execute arbitrary instructions. However, this

cross-core decoupling is inefficient for irregular workloads due to load

imbalance: since the work per stage varies quickly, cores incur many idle

cycles. In fact, these streaming multicores were only used for regular

pipeline-parallel applications. These systems relied on precise knowledge

of the execution time and communication requirements of all stages, gath-

ered through static analysis or annotations, to statically map stages to

cores [65, 67, 94].

Decoupled multithreaded cores introduce support for queue-based com-

munication among cores. Decoupled software pipelining (DSWP) [102]

proposes the synchronization array, a hardware structure to facilitate

communication between cores or the threads of a multithreaded core.

But DSWP focuses on pipelining a single loop across different threads,

which is too limiting for irregular applications. For example, BFS uses

three levels of nested loops, with stages across several loop levels (and

because inner loops are short, decoupling only within the inner loop is

insufficient).

In addition to DSWP, Outrider [25] introduces hardware queues to

decouple the threads of a single multithreaded core. In principle, this

makes load-balancing across stages easy. However, Outrider was designed

for applications with regular control flow, and lacks the control-flow mech-

anisms needed to accelerate irregular applications. Specifically, Outrider

uses a global queue for control decisions and requires that all control

instructions reside within the first thread to achieve any decoupling. For

example, Outrider would not work for BFS, as three out of the four stages

have control flow.
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Figure 2-2: Coarse-grain reconfigurable array (CGRA, left) and functional

unit design (right).

Helper Threads: Architectures with helper threads [74], including runa-

head execution [79], slipstream processing [113], and “flea-flicker” two-

pass pipelining [12], perform redundant computation so that the main

thread benefits from improved branch prediction and prefetched operands.

Our goal is to instead create pipelines of threads whose work is never

discarded.

2.2.2 Specialized Architectures

General-purpose cores, which continuously change the operations (in-

structions) on data kept in the same place (e.g., the register file), can

be considered temporal architectures. On the other hand, a spatial ar-

chitecture is structured as a spatially distributed grid of functional units

that each perform a fixed, but configurable, operation. They perform

computation by moving data from one functional unit to the next.

Coarse-grain reconfigurable arrays (CGRAs) are spatial architectures;

they promise improved computational efficiency by arranging computa-

tion as a grid of functional units connected with configurable switches

as shown in Figure 2-2. Functional units are composed to perform more

complex computations, and data is moved among functional units through

a network of simple switches. CGRAs achieve programmability without

the need to continuously fetch and decode instructions.

Many CGRA-based architectures have been proposed, either as stan-

dalone accelerators [26, 40, 50, 77, 86, 125] or tightly integrated within

the pipeline of a general-purpose processor [43, 72, 75, 107, 131]. Stream

dataflow [86] provides an interface to express streaming semantics and
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uses CGRAs to reduce instruction count. Plasticine [98], for instance,

proposes a grid of specialized compute and memory units.

However, a purely spatial approach has disadvantages: the size of

the program is limited by the number of functional units, and to achieve

high performance, these units must be configured as a pipeline, to allow

many functional units to be active simultaneously. Prior work relies on

CGRAs’ rigid internal pipelines for good performance, but their lack of

latency tolerance mechanisms presents significant challenges when there

is irregularity. Triggered Instructions [92] adds a temporal component to

spatial architectures by allowing its functional units to dynamically select

one of many operations to execute. Overheads are high, though, because

each functional unit only supports a small number of instructions, e.g.,

sixteen. In Chapter 4, we show how to cheaply add latency tolerance

mechanisms to make good use of highly efficient CGRAs on irregular

applications.

Graphics processing units (GPUs) are massively data-parallel architec-

tures that improve performance by simultaneously processing data over

hundreds or thousands of vector lanes, and prior work has attempted

to fit irregular applications to these architectures. UGC [14], G2 [15],

IrGL [90], Gunrock [132], and Medusa [145] are frameworks for graph

processing on GPUs, but must contend with awkward marshaling of data

across GPU lanes. In BFS on a GPU, a neighbor could be added mul-

tiple times to the next fringe, but the optimal strategy is to add it just

once; Gunrock, for instance, must filter out these duplicates. Some GPUs

now include specialized units featuring spatial execution, like NVIDIA’s

Tensor Cores [23], which, though less programmable, resemble CGRAs.

Inter-thread communication has also been extended to GPUs [131], but

this communication is in service of the GPU’s many data-parallel threads,

rather than for making a pipeline.

Application-specific accelerators often employ spatial architectures to

improve throughput and reuse, especially when faced with irregular ap-

plications’ unpredictable compute latencies and memory access patterns.

To cope with this, prior techniques specialize their hardware to the prob-

lem. For example, SCNN [93] targets compressed sparse convolutional

neural networks by directly embedding knowledge of the data structure

format into the accelerator. Graphicionado [47] proposes pipelines for

graph processing, and Q100 [137] proposes a spatial accelerator for

databases. Accelerators for sparse linear algebra, like GAMMA [140],
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MatRaptor [110], ExTensor [48], SpArch [143], and OuterSPACE [91],

are also organized as spatial architectures. These designs trade a high

degree of specialization for high performance in a narrow problem do-

main. As a result, prior efforts to accelerate these irregular applications

often culminate in accelerators that are heavily tuned to the specifics of

an application—benefiting only those whose needs are exactly met by the

technique.

Indirect prefetchers hide the latency of accesses common in irregular

workloads. IMP [139] prefetches accesses of the form A[B[i]], which

is insufficient work for BFS, as it has several indirections. Ainsworth

and Jones propose a prefetcher tailored to BFS [5] and a more general

event-driven prefetcher [6] that can handle multiple levels of indirection.

Prodigy [116] uses hardware-software codesign to program a prefetcher

to keep its prefetches in pace with the core’s execution. However, these

prefetchers are complex, taking significant energy to infer dependent

accesses from memory traffic; they cannot handle all accesses accurately

(like fetching the right set of offsets and neighbors in BFS, which requires

iteration [6]); they can handle a limited set of access patterns; and they

duplicate much of the work done in the cores, hurting efficiency.

Data structure fetchers are similar to prefetchers, but feed fetched data

to cores to avoid duplicating work. HATS [78] performs graph traversals;

Widx [62] accelerates hash indexing; and SQRL [66] handles vector, hash

table, and tree traversals. SpZip [138] combines range-based scanning, in-

direction, and compression operators to efficiently traverse data structures

before they reach the core. Fetchers avoid the inefficiencies of prefetchers,

but are limited to specific data structures and to operations where data

structure traversal and computation are not interleaved. Data structures

are often tailored for a specific computation; the sparse linear algebra

accelerators mentioned above all have hardwired assumptions about the

input data structure, e.g., CSR.

2.2.3 Compiler support for pipeline parallelism

Prior work has proposed compiler techniques to exploit pipeline paral-

lelism, but they fail to support irregular applications. Much of this prior

work, including StreamIt [42, 121, 122], Piper [68], SGMS [65], and Team

Scheduling [94], targets regular programs, where the throughput and

input/output of each stage are known ahead of time. This information is

used to produce fixed thread schedules that maintain load balance and
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achieve decoupling with limited buffers. This approach does not extend

to irregular applications, as stages incur an unknown and highly variable

throughput.

Compilers for specialized architectures [37, 71, 88, 134] help applica-

tions take advantage of hardware specialized for specific application do-

mains. These also target neural networks [118], data analytics [38, 130],

and signal processing [96, 135].

Pattern-specific compilers and frameworks focus on a specific irregular

pattern or data structure. HELIX [19] and HELIX-RC [18] seek to decouple

communication from execution. HELIX-RC is a co-designed compiler and

architectural support for inter-core communication, but is still limited to

parallelizing a single loop. Irregular applications also need the flexibility

to parallelize across loop levels (which in turn helps expand the search

space for finding the best mapping of irregular applications to stages).
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3 Pipette:

Improving Core Utilization with

Intra-Core Pipeline Parallelism

3.1 Introduction

Irregular workloads, such as graph analytics and sparse linear algebra,

use high-performance cores poorly: these workloads suffer from frequent

long-latency memory accesses and hard-to-predict branches that limit

instruction-level parallelism and render out-of-order execution mecha-

nisms ineffective. In this chapter we focus on non-invasive modifications

to existing out-of-order cores to make these challenging workloads run

efficiently.

Leveraging multithreaded cores is a common way to improve core

utilization. But structuring irregular applications into multiple data-

parallel threads suffers from three key problems: (i) latencies are larger

than what can be effectively hidden by a moderately large number of

threads per core (e.g., four); (ii) operating on disjoint parts of the input

increases pressure on the memory hierarchy, limiting performance [44];

and (iii) data-parallel implementations suffer from overheads because

they need to synchronize through shared memory.

We explore a different and more effective approach to improve uti-

lization in simultaneous multithreading (SMT) cores: exploiting pipeline

parallelism. As described in previous chapters, a pipeline-parallel program

is structured as a series of feed-forward pipeline stages, with each stage

executing on a separate thread. Decoupling stages with queues hides

latency by allowing producer stages to run far ahead of consumer stages.

Abundant prior work has proposed decoupled architectures to exploit

pipeline parallelism:decoupled access-execute (DAE) architectures [41,
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45, 108, 109, 114, 124], streaming multicores [25, 30, 119], and spatial ar-

chitectures [87, 92, 100, 137] use queues as latency-insensitive interfaces

between cores, threads, or specialized processing elements (Section 2.2).

Unfortunately, these architectures are ineffective for our use case because

they (i) suffer from load imbalance, as they decouple stages across sep-

arate cores or processing elements, (ii) lack control-flow mechanisms,

preventing decoupling of irregular applications, and/or (iii) fail to target

threads within SMT cores, so their implementations miss opportunities to

reuse already-existing resources to implement decoupling cheaply.

To address these limitations, we present Pipette. Pipette introduces

architectural support for pipeline parallelism within the threads of a

multithreaded core. Pipette’s novel ISA (Section 3.2) allows threads to

define inter-thread queues. By exploiting pipeline parallelism within

a multithreaded core, Pipette hides latencies more effectively than the

same number of data-parallel threads. Pipeline parallelism’s naturally

smaller memory footprint alleviates cache pressure and reduces the need

to synchronize through shared memory.

By using SMT to time-multiplex stages in the same core, Pipette avoids

load imbalance issues that arise when decoupling stages across separate

cores or processing elements. Nevertheless, Pipette allows queues to

span multiple cores, avoiding limitations on the number of stages (and

thus opportunities for decoupling). Pipette also adds out-of-band control

flow to keep producer and consumer loops running despite complex

control flow. With these features, Pipette effectively decouples irregular

applications, unlike prior work.

In addition to using SMT for load balancing, Pipette’s microarchi-

tecture (Section 3.3) features two more novel aspects. First, the im-

plementation reuses core structures: it uses the physical register file to

implement queues cheaply, avoiding the storage costs of prior techniques.

Second, the implementation exposes a decoupled interface that cleanly

accommodates reference accelerators, simple hardware units that further

accelerate common memory accesses like indirections. Whereas prior

work proposed coarse-grain specialized units to access complex data struc-

tures [62, 66, 78], Pipette enables composable, fine-grain interleaving of

accelerated accesses and general-purpose computation.

We evaluate Pipette on applications from graph analytics, sparse linear

algebra, and databases (Section 3.5). It substantially outperforms prior

work, by gmean 1.9× and up to 3.9× over SMT with data-parallel threads.

Moreover, Pipette is more efficient because it achieves high core utilization.
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In summary, we make the following contributions:

• We identify the architectural support needed to efficiently express many

irregular applications as a pipeline of decoupled stages.

• We present a novel ISA and control flow primitives that enable effective

decoupling in these applications.

• We present a novel implementation of this ISA that reuses existing core

machinery to achieve decoupling and load-balanced execution cheaply,

and adds simple, composable specialized units to accelerate common

memory accesses.

• We demonstrate the effectiveness of this approach on a wide range of

applications.

3.2 Pipette ISA

Design goals: Pipette’s design is driven by three main goals:

1. Providing inter-thread queues at extremely low overheads, so that threads

can communicate very frequently, potentially on almost every instruction.

This enables a fine-grain slicing of the program into stages, which is

crucial, as we saw in Chapter 2. For example, some stages of BFS have as

little as one dereference per enqueue and dequeue.

2. Providing control flow primitives that avoid instruction overheads when

a serial thread is split into multiple stages. For example, in BFS, stages

must synchronize on distance changes. If each stage had to check on

every dequeue whether a distance increase was needed, control overheads

would negate the benefits of splitting work into stages.

3. Achieving an efficient implementation that reuses existing core structures

and accelerates common access patterns.

Pipette’s ISA is designed to achieve all these goals. We first discuss how

the Pipette ISA achieves extremely low-overhead queues (Section 3.2.1),

enabling the first design goal. We then present Pipette ISA’s control

primitives for efficient inter-stage coordination (Section 3.2.2), enabling

the second goal. Section 3.3 presents Pipette’s microarchitecture, which

efficiently implements the Pipette ISA to achieve all design goals. Table 3-1

details the Pipette instruction set.
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Mnemonic Function

map_enq $q, %rq Map writes to architectural register %rq as enqueues to

queue $q.

map_deq $q, %rq Map reads from architectural register %rq as dequeues

from queue $q.

unmap %rq Revert %rq to a non-queue register.

peek %rd, %rq Peek top element from queue %rq, writing %rd without

dequeueing %rq.

enq_ctrl %rq, %rs Enqueue a control value (§ 3.2.2).

skip_to_ctrl %rd, %rq Skip to the next occurrence of a control value (§ 3.2.2).

Table 3-1: Pipette instruction set additions. $q is a queue id; %rd, %rs, %rq

are general-purpose registers used as a destination, source, or queue.

3.2.1 Enqueue and dequeue operations

Pipette provides a fixed number of FIFO queues per core (e.g., 16 in

our implementation). To minimize overheads, Pipette does not have

explicit enqueue or dequeue instructions. Instead, each thread can map

the input or output of a queue to a general-purpose register. Each write

to a queue input register implicitly enqueues the written value, and each

read of a queue output register implicitly dequeues it. As we will see in

Section 3.3, this register-mapped communication is cheap to implement

through register renaming.

It is sometimes useful to read the value at the head of the queue without

dequeueing it. To accomplish this, Pipette provides a peek instruction, as

shown in Table 3-1.

Pipette queues have a maximum size (e.g., 32 values). To avoid

full/empty checks, queues have blocking semantics: dequeue or peek op-

erations to an empty queue block until a value is enqueued, and enqueues

to a full queue block until free space is available. We later describe how

producers and consumers can use control values to coordinate without

adding instruction overheads in the common case.

Figure 3-1 shows why register-mapped, implicit enqueues and de-

queues are crucial for performance in the enumerate neighbors stage of

BFS (presented in Figure 2-1(a)). Figure 3-1(b) shows assembly code cor-

responding to the excerpt of C code in Figure 3-1(a). If a pipeline-parallel

implementation used an enq instruction to enqueue values to queues, as

done in Figure 3-1(c), it would expand the inner loop by one instruction,
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int start = offsets[v];

int end = offsets[v+1];

for (int e = start;

e < end;

e++) {

int ngh = neighbors[e];

// fetch distances[ngh]

// if unset:

// update distance

// add to next fringe

}

(a) C code enumerating neighbors

of a vertex.

; vertex v’s first neighbor

a2 = &(neighbors[offsets[v]])

; vertex v+1’s first neighbor

a3 = &(neighbors[offsets[v+1]])

...

loop:

; ngh = neighbors[offsets[v]]

lw t1, 0(a2)

; fetch distance

; set if unset

addi a2, a2, 4 ; next neigh. addr

blt a2, a3, loop ; more neighs?

(b) Serial assembly code.

loop:

lw t1, 0(a2)

enq q1, t1 ; overhead

addi a2, a2, 4

blt a2, a3, loop

(c) Pipeline-parallel assembly

code using an enq instruction,

which does not exist in Pipette,

to manipulate a queue.

; writes to t1

; enqueue q1

map_enq q1, t1

...

loop:

; q1 enq ngh

lw t1, 0(a2)

addi a2, a2, 4

blt a2, a3, loop

(d) Pipette code tightens the inner

loop by making writes to t1 en-

queue q1.

Figure 3-1: Example showing the importance of tight inner loops: adapting

the code from Figure 3-1(b) to Figure 3-1(c) using explicit enqueue instruc-

tions adds an instruction to a tight inner loop. Pipette addresses this in

Figure 3-1(d) with its implicit queue semantics.

a 33% increase for this short loop. This instruction would add pressure

to the core frontend (to fetch and decode it) and backend (to execute

and commit a micro-op that merely copies a value). Instead, Pipette

uses implicit communication, implemented through register renaming, to

avoid all these overheads: the Pipette code in Figure 3-1(d) maps register

t1 so that the load instruction directly enqueues q1.

3.2.2 Efficient control flow

Producers often need to communicate control flow changes or exceptional

conditions to consumers. Doing this through normal enqueues and de-

queues would be inefficient. Instead, Pipette provides control values (CVs).

Control values are similar to other values passed through queues except

that they convey changes to control flow instead of application data. To
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Figure 3-2: Sparse matrix-matrix multiplication (SpMM), with one stage

receiving two inputs.

differentiate them from application data, each CV is enqueued with the

enq_ctrl instruction, which sets the control bit for its queue entry.

CVs let programs avoid checks for infrequent conditions by using

semantics similar to those of exceptions. Before starting execution, each

thread registers a dequeue control handler, similar to an exception handler.

A thread dequeueing from or peeking at a queue with a control value at

its head instead jumps to the dequeue control handler (this jump happens

entirely in user level and does not involve the operating system). The

dequeue control handler receives the control value and the id of the queue

that triggered it. The handler processes the control value, then jumps

back to mainline Pipette code to continue computation.

Going back to the BFS example from Figure 3-1(d), it’s easy to see why

control values make execution efficient: the inner loop in Figure 3-1(d)

does not check for termination or level switches in the inner loop. Instead,

stages handle these conditions through control values and dequeue control

handlers, leaving the inner loops to deal with data values only.

For a more sophisticated use of control values, consider the inner-

product sparse matrix-matrix multiply (SpMM) kernel, shown in Figure 3-

2. SpMM computes the dot product of a row of A and a column of B at a

time. Both matrices are sparse, so the leftmost stages (stream rows/cols)

stream the non-zero coordinates of a row and a column at a time. Then, the

merge-intersect stage finds the matching non-zeros, which the accumulate

stage fetches and accumulates.

Control values make SpMM efficient by letting the stream rows/cols

stages delineate each row and column. For example, the stream rows

stage enqueues all non-zeros for a row of A, followed by a control value

denoting the index of the next row, and then the non-zeros of the next row.

The merge-intersect code need not check for row or column termination,

and the stream rows stage can fetch multiple rows ahead, which is useful

as rows often have few non-zeros.
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Figure 3-3: In SpMM, an inner product in which the input row and column

differ greatly in length.

Consumer-producer coordination: So far, we have seen how produc-

ers can delimit data values with control values to communicate with

consumers. The dual case is also desirable: consumers may need to com-

municate with producers. For example, a consumer may discover that the

work a producer is enqueueing is no longer useful, and should alter the

producer’s control flow to reduce unnecessary work.

To achieve this, the skip_to_ctrl instruction finds and dequeues the

next control value in a queue, discarding all earlier data values. If the

queue does not have a control value, skip_to_ctrl blocks waiting for

one, and the next time the producer attempts an enqueue, it jumps to an

enqueue control handler instead. This lets the producer redirect control

flow and enqueue a control value that unblocks the consumer.

SpMM shows why skip_to_ctrl and enqueue control handlers are

useful. Figure 3-3 shows an inner product where A’s row is much longer

than B’s column, and the last coordinate in B’s column is seen very early

in A’s row, so no more matched coordinates are possible. It would be

wasteful for stream rows to stream the full row of A, but only merge-

intersect can detect this condition. To address this, when merge-intersect

sees the end of B’s column (its dequeue control handler fires), it performs

skip_to_ctrl on the rows queue to skip to the next row. If stream rows

is still working on the same row, the queue has no control value, so on

the next enqueue, the enqueue control handler of stream rows fires and

moves to the next row. If stream rows is already on a later row, then

skip_to_ctrl lets merge-intersect discard the current row without undue

interruptions to stream rows.

In summary, control values and enqueue/dequeue control handlers

enable producers and consumers to coordinate out-of-band, in a way

similar to user-level exceptions. This avoids frequent checks on inner loops

that would add significant overheads to the pipelined version. Beyond

the two instructions required to enqueue and dequeue control values, this

mechanism requires two control registers per thread to store the PCs of

enqueue and dequeue control handlers.
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3.2.3 Integrating Pipette into the system

Code transformations to use Pipette: We use a simple, systematic pro-

cedure to split applications into Pipette stages: we split programs along

every long-latency indirect load, starting at the innermost loop and moving

outwards. BFS in Chapter 2 demonstrated this procedure.

In this chapter, we transform applications manually (in Chapter 5 we

show how to perform this transformation automatically). We transform

source code rather than assembly, by using a simple C/C++ API that

encapsulates Pipette functionality (e.g., abstracting the mapping and use

of queue registers). Irregular applications have non-trivial considerations

for pipelining, as their complex indirections may be impacted by aliasing

and races.

For example, one such race condition arises in the last stage of BFS,

update data. To decouple this stage from the previous one, the Pipette BFS

implementation fetches distances in advance. However, this distance may

be stale, as the neighbor may have been recently reached from another

fringe vertex. It would be incorrect to use the distance as-is. Our manually

transformed code uses this distance for an initial check, but if unset, it

re-fetches the distance to ensure it was not set in the interim (this second

access is cheap, as it hits in the L1).

Pipette is orthogonal to the memory consistency model, and programs

behave like normal multithreaded programs.

Finally, if a Pipette application is incorrectly synchronized, it may

deadlock. Deadlocks leave user-level threads blocked, but the OS can use

interrupts to break those deadlocks (like e.g., a blocked monitor/mwait

instruction).

Architectural state and context switches: Pipette queues are architec-

tural state, and must be drained and saved across context switches. As is

done for FPU state, operating systems (OSs) need not save and restore

this state on every system call or interrupt, only when the process is

descheduled. As these context switches occur infrequently, saving queue

contents represents a negligible fraction of the time spent in OS code.

Draining and refilling queues can be done with normal Pipette instruc-

tions. In addition to the OS, debuggers could inspect queues by draining

and refilling them.

Privileged code and virtualization: Since threads are an OS abstraction,

and threads from multiple processes may share the same core, some

of Pipette’s operations must be privileged. Specifically, the map and
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Figure 3-4: Pipette implementation overview and modified out-of-order

pipeline. The key modifications, the queue register map (QRM) and ref-

erence accelerators (RAs), are shown in purple with dotted borders.

unmap operations and the registration of control handlers must happen

though system calls. Similar to virtual memory, the OS can provide each

process with a set of virtual queues, which it can then map to physical

queue ids within each core. This allows descheduling and rescheduling

individual threads in any order. Since each queue is shared between

a producer and a consumer thread, the last of the two threads to be

descheduled saves the queue’s state. Threads can migrate across cores

(using cross-core queues, Section 3.3.3). A producer/consumer thread

can enqueue/dequeue to a queue while the other thread is descheduled;

however, in practice it will quickly block on a full/empty queue. Thus,

the OS should co-schedule the threads of a Pipette program, e.g., using

gang scheduling [36].

OS-mediated queue mappings prevent accessing queues from other

processes. Side channels are possible just like in normal SMT cores;

to avoid them, Pipette threads should not be co-scheduled with other

processes on the same core.

3.3 Pipette Microarchitecture

Figure 3-4 gives an overview of Pipette’s implementation, focusing on

its two distinguishing features. First, our Pipette implementation uses

the physical register file to implement queues (Section 3.3.1). We observe

that physical registers are underutilized in irregular applications, where

deep out-of-order execution is not efficient. This enables a cheap imple-
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each Pipette queue. Each queue is managed as a circular buffer.

mentation that leverages existing OOO structures: physical registers and

register renaming. Second, we introduce reference accelerators to speed

up common access patterns (Section 3.3.2). We also introduce connec-

tors to enable cross-core queues (Section 3.3.3), and evaluate Pipette’s

implementation costs (Section 3.3.4).

3.3.1 Register-based inter-thread queues

Pipette maintains queues within the physical register file, and adds minor

changes to register renaming to implement FIFO queue semantics. Pipette

prevents queues from starving threads of physical registers by sizing each

queue and limiting the space all queues may collectively occupy. Since

queues are embedded within speculatively managed structures, we first

explain the basic Pipette bookkeeping structure, then how it interacts

with speculative execution.

Basic operation: Figure 3-5 shows the Queue Register Map (QRM), the

structure that tracks the state of all queues. The QRM has as many entries

as the maximum capacity of all queues. Each queue takes a contiguous

chunk of entries (shown in different colors in the figure), and manages it

as a circular buffer. The chunk associated with each queue determines

its capacity. This mapping is configurable by the OS, but cannot change

while queues are active.

Figure 3-5 also shows how each queue is managed. Each queue has

both speculative and committed pointers for head and tail. Enqueues

happen to the tail of the queue, and dequeues happen from the head. We

restrict each queue to be point-to-point, so there is a single enqueuer and

dequeuer thread.
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Each entry between the head and tail pointers tracks the physical

register index that holds the enqueued value. Moreover, each entry has

a control value bit that denotes whether the entry holds a control value

(enqueued with enq_ctrl).

The QRM is designed to require simple changes to register renaming.

Enqueue operations are nearly identical to normal register writes. On

issue, the rename stage acquires a free register index from the freelist, and

uses it to store the enqueued value. As usual, the reorder buffer (ROB)

stores the previous physical register index. The only difference is that,

on commit, the ROB does not free the previous physical register index.

Instead, the QRM manages it, as it is part of a queue.

Dequeue operations are also very similar to reads. For each dequeue-

mapped queue, the thread’s register map simply holds the index for the

head of the queue. A dequeue simply uses this value, and additionally

modifies the register map to point to the next register in the queue,

supplied by the QRM. On commit, the QRM returns the register to the

freelist. Finally, peek operations are exactly like normal reads.

Speculative value management: Because registers are written and read

speculatively, there are multiple value management options. We choose

the simplest one: enqueued values cannot be dequeued until they are non-

speculative.

This leads to a simple implementation: QRM’s speculative head and

tail pointers are the only eagerly managed values. Each enqueue advances

the speculative tail pointer on issue, and the committed tail pointer on

commit; similarly, each dequeue advances the speculative head pointer

on issue, and the committed head pointer on commit. The queue is

considered empty if the speculative head is about to catch up with the

committed tail, and full if the speculative tail is about to catch up with

the committed head. The issue stage stalls the thread on enqueues to full

queues or dequeues from empty queues.

Recovery from misspeculation simply requires rolling back the spec-

ulative head and tail pointers, as well as releasing the registers from

rolled-back enqueues to the freelist.

A key benefit of consuming only committed values is that misspec-

ulation in a producer thread does not propagate to the consumer thread.

This allows us to implement Pipette with simple changes to the issue and

rename stages.

We also tried a more complex variant of Pipette that allowed dequeues

to consume still-speculative enqueued values. This version barely im-
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proved performance (by about 1% on average), and occasionally caused

minor performance degradations. Intuitively, this result makes sense

because the point of Pipette is to keep threads decoupled, so while al-

lowing dequeues to dip into the speculative region of the queue may get

some out-of-order benefits, in well-decoupled programs producers should

already run far ahead of consumers.

Issue logic modifications: Pipette requires minor changes to the issue

logic. First, the per-thread issue logic stalls on a dequeue from an empty

queue or an enqueue from a full queue. Second, every dequeue of a control

value triggers a jump to the dequeue control handler. For simplicity, we

reuse the exception logic to implement this redirection.

Our current Pipette implementation does not change the thread prior-

itization logic. We use the standard ICOUNT policy [128] to avoid issue

queue clog. Further gains might be achieved by controlling thread priori-

ties to increase decoupling, e.g., by prioritizing producers over consumers.

However, we find Pipette works well with ICOUNT, and leave exploration

of more advanced issue policies to future work.

3.3.2 Accelerating common access patterns

By exposing a queue-based interface, Pipette makes it easy to add special-

ized units to accelerate long-latency memory accesses. Pipette achieves

this with reference accelerators (RAs), simple configurable units that per-

form indirect loads and communicate with threads through queues.

Benefits: BFS (in Figure 2-1(d)) showcases the two key benefits of RAs.

First, some stages, like fetch distances in BFS, are very simple, performing

indirect or strided accesses. Using a thread for such simple work is overkill:

a simple RA can perform them much more efficiently. Second, to get de-

coupling, Pipette divides the code across each long-latency indirection.

While this lets producers run ahead of consumers, producers still suffer

from long-latency loads. For example, the process current fringe stage in

BFS issues loads to the offsets array. These loads take a long time to

commit and stress the ROB, limiting memory-level parallelism. RAs allow

offloading these producer long-latency accesses. This results in producers

with short, tight loops that do not stress OOO resources, improving perfor-

mance. For example, in our RA-enhanced BFS, the process current fringe

stage passes v to an RA, which fetches offsets[v] and offsets[v+1]

autonomously and non-speculatively, producing start and end.
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Interface: Each RA is a configurable unit with a single input and output

queue. The RA takes in a stream of input elements, uses them to perform

indirect accesses, and places the resulting data in its output queue. RA

accesses are independent from those of general-purpose threads. With

respect to consistency, programs simply see each RA as a separate thread.

RAs are configured once, by specifying which queues to use, a starting

address A, an element size S, and the access mode with can be indirect or

scan. The RA interprets A as an array with elements of size S. In indirect

mode, the RA takes a stream of indices at its input, and for each index

i, it fetches A[i]. In scan mode, the RA takes a stream of starting and

ending indices at its input, and for each pair of input values {start, end},

it fetches elements A[start:end-1].

We find that these simple modes cover most indirection patterns and

benefit all our applications. For instance, in BFS, the indirect mode covers

the first and third stages, and the scan mode covers the second stage.

Implementation: RAs use existing core machinery. RAs opportunistically

use spare rename and register bandwidth, and manipulate the QRM like

ordinary threads on enqueues and dequeues. When performing memory

accesses, RAs use the load/store unit and use virtual addresses. Each RA

has a small completion buffer to track outstanding loads (Section 3.3.4

presents implementation costs). On a virtual memory exception, the core

interrupts the producer thread associated with the RA.

3.3.3 Extending Pipette to cross-core queues

We have so far described how queues work within a core, but allowing

queues to span threads in multiple cores is desirable for three reasons.

First, although Pipette’s main goal is to improve core utilization, achieving

effective decoupling may require more stages than a core has threads.

Second, as we will see later (Section 3.5.6), Pipette can scale and bal-

ance work across cores in new ways, by using inter-core queues to im-

prove locality and avoid shared-memory synchronization costs. Third,

as Section 3.2.3 discussed, it is desirable to let the OS schedule threads

individually, in separate cores if needed.

We achieve this through connectors, simple hardware structures that

stream a queue from a producer to a consumer core. Producer and

consumer threads are both given intra-core queues. The connector is a

simple FSM that sits on the producer’s core. It has a similar but simpler

implementation than RAs: rather than interacting with the load/store
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Component
QRM entries QRM pointers Handler PCs Pipette Int. PRF (for

148× 9 bits 64× 8 bits 8× 64 bits total comparison)

Size (bits) 1,332 512 512 2,356 13,568

Table 3-2: Pipette storage requirements.

unit, it just sends values from the producer to the consumer core, using

credit-based flow control to avoid saturating the on-chip network and

strictly limits the receiver queue’s state to its capacity. When descheduling

a consumer thread, the OS must wait for its connectors to quiesce; this

requires a simple teardown protocol on top of credit-based flow control.

3.3.4 Implementation costs

Pipette’s storage and logic additions impose minimal overheads. Table 3-2

summarizes Pipette’s storage requirements. In our configuration, Pipette

can map up to 148 physical registers, and takes 1844 bits (231 bytes).

This is only 14% of the physical register file, showing the benefits of

leveraging physical registers to implement queue storage. Beyond the

QRM, 512 bits (64 bytes) are required for the per-thread enqueue and

dequeue control handler PCs. Overall, only 2356 bits (295 bytes) of

additional storage are needed to implement Pipette, a small overhead for

a modern core.

RAs, the other hardware addition, are small. We write complete RTL

for RAs, including configuration registers, address generation, and a 32-

entry completion buffer. We synthesize RAs using yosys [136] and the

45 nm FreePDK45 library [51]. Four RAs take 0.0014 mm2 at 45 nm,

adding an estimated 0.007 % to core area, a tiny overhead.

3.4 Experimental Methodology

3.4.1 Simulated System

We implement Pipette on a detailed event-driven, cycle-level simulator

based on Pin [73]. Table 3-3 lists the parameters of our simulated sys-

tem, whose cores are modeled after Intel’s Skylake [32], scaled to 4 SMT

threads from the usual two. Core structures are sized as in Skylake; we

grow the physical register file (PRF) from 180 to 212 entries to accom-

modate the 32 architectural registers of the two extra threads. Thus, the
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Cores 1 or 4 cores, 3.5 GHz, x86-64 ISA, Skylake-like: 6-wide out-of-order

issue, 224-entry ROB, 97-entry issue window, 72-entry load buffer, 56-

entry store buffer, 212 integer physical registers, 168 vector physical

registers; 4-thread SMT with ICOUNT issue policy and dynamically

shared ROB, issue window, PRF, and LSQs

Pipette QRM with 148 physical register entries, 16 queues max; 4 RAs; 4 con-

nectors; queues are sized 24 elements deep by default

L1 cache 32 KB/core, 8-way set-associative, 4 cycle latency

L2 cache 256 KB/core, 8-way set-associative, 12 cycle latency

L3 cache 2 MB/core, 16-way set-associative, 40 cycle latency

Main mem 120-cycle minimum latency, 2 controllers, 25 GB/s each

Table 3-3: Configuration parameters of the evaluated system.

PRF entries left for renaming are the same as in Skylake. We extend cores

to faithfully simulate Pipette additions, with the configuration shown in

Table 3-3. We use McPAT [70] to model core and uncore energy at 22 nm,

and Micron DDR3L datasheets [76] to model main memory energy.

We evaluate 1- and 4-core systems. Since Pipette’s main goal is to im-

prove core utilization, we first compare Pipette and data-parallel programs

on a single 4-thread SMT core. Then, we compare 1-core, 4-thread Pipette

with a baseline decoupled architecture: a 4-core streaming multicore.

Finally, we show that Pipette also scales across cores.

3.4.2 Benchmarks

We evaluate Pipette on six applications from graph analytics, sparse linear

algebra, and databases. For each application, we start from a state-of-

the-art implementation that includes serial and data-parallel versions.

We derive the Pipette version of each benchmark from the serial version.

The wide variety of Pipette applications highlights its generality and the

abundance of pipeline parallelism.

Breadth-first search (BFS), first described in Chapter 2, determines the

distance of graph vertices to a source vertex. We base our implementation

on PBFS [69].

Connected components (CC), PageRank-Delta (PRD), and Radii esti-

mation (Radii) are graph algorithms from the Ligra framework [106].

CC uses multiple invocations of BFS to discover graph connectivity. PRD

is a PageRank variant that only visits vertices whose PageRank value

changes by more than a certain amount. Radii launches several breadth-
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Figure 3-6: Silo, with bounded feedback loops.

Domain Graph Vertices Edges

Human collaboration (Hu) coAuthorsDBLP-symmetric 299K 1.9M

Dynamic simulation (Dy) hugetrace-00000 4.6M 14M

Circuit simulation (Ci) Freescale1 3.4M 19M

Internet graph (In) as-Skitter 1.7M 22M

Road network (Rd) USA-road-d-USA 24M 58M

Table 3-4: Input graphs, sorted by number of edges.

first searches from random points in the graph to estimate the radii of its

vertices. These algorithms process only a subset of graph vertices in each

iteration, so their memory access patterns are very irregular. The pipelines

for these algorithms resemble the pipeline for BFS in Figure 2-1(d).

Sparse matrix-matrix multiplication (SpMM), introduced in Section 3.2,

is a key component of sparse linear algebra, and its merge-intersection

parallels similar operations on databases.

Silo [127] is an in-memory database. Silo is dominated by lookups

to B+tree indexes. Our Pipette implementation, shown in Figure 3-

6, pipelines multiple tree traversals. The lookup thread performs tree

lookups level by level, requeueing the key and lookup status in its input

queue if the lookup needs to go to the next level by traversing internal

nodes. This recursive process manifests as a cycle in the pipeline diagram

(dashed gray line).

Silo shows that Pipette programs can feature cycles in their application

graphs. As in dataflow systems, we avoid application-level deadlock as

long as cycles are bounded—in this case, each lookup thread re-enqueues

at most one element for each element it processes.

Input sets: Graph applications use five large, real-world graphs that

include road networks, Web connectivity graphs, and academic collabora-

tion graphs, listed in Table 3-4. SpMM uses six diverse sparse matrices,

listed in Table 3-5. Silo uses the YCSB-C workload [24] on a 52 GB dataset.
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Domain Matrix Size (n× n) Avg. nnz/row

File sharing (FS) p2p-Gnutella31 62,586 2.4

Graph as matrix (Gr) amazon0312 400,727 8.0

Collaboration (Co) ca-CondMat 23,133 8.1

Gel electrophoresis (GE) cage12 130,228 15.6

Electromagnetics (EM) 2cubes_sphere 101,492 16.2

Fluid dynamics (FD) rma10 46,835 49.7

Structural (St) pwtk 217,918 52.9

Table 3-5: Input matrices, sorted by average non-zero elements per row.

Fifer (Chapter 4) uses FS instead of Co; Pipette does not use FS.

On some of PRD, Radii, and SpMM’s largest inputs, we use iteration

sampling to keep simulation times reasonable: we simulate only a subset of

iterations, uniformly distributed. Even with sampling, simulated periods

are long (e.g., ∼3 billion cycles per phase of PRD), so no warmup is

needed. For all other benchmarks, we simulate the full algorithm.

Reference accelerators: We build Pipette benchmark variants with and

without RAs. We apply RAs systematically, offloading every producer load

to an RA as described in Section 3.3.2. All workloads benefit from RAs.

We report results with RAs on by default; Section 3.5.5 studies the impact

of RAs.

3.5 Evaluation

We first analyze Pipette’s single-core performance and compare Pipette

and data-parallel implementations. Then, we compare Pipette to a 4-core

streaming multicore to show the utilization and efficiency benefits of

time-multiplexing stages among threads. We then report microarchitec-

tural efficiency metrics, study sensitivity to configuration parameters, and

conclude by studying Pipette on multiple multithreaded cores.

3.5.1 Pipette vs. data-parallel implementations

Figure 3-7 (left) summarizes the performance of the serial, data-parallel,

and Pipette versions of all benchmarks. These versions use a single

4-thread SMT core. Performance is reported as speedup over the data-

parallel version (not serial), averaged (gmean) across inputs. Figure 3-7

shows that Pipette substantially outperforms the data-parallel versions, by
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Figure 3-7: Performance of Pipette implementations on a single 4-thread

core and a 4-core streaming multicore, as well as performance per core.

1.9× gmean across applications; by up to 2.5× for an application (BFS);

and by up to 3.9× on particular inputs (Figure 3-11).

3.5.2 Pipette vs. cross-core decoupling

Beyond data-parallel implementations, we compare Pipette against a

baseline decoupled architecture, a streaming multicore. Pipette’s key

benefit over prior decoupled architectures is its ability to time-multiplex

stages across the same core to achieve load balance and high utilization.

To focus on evaluating this effect, we model the streaming multicore

simply as multi-core, single-thread Pipette: the streaming multicore uses

4 single-threaded cores, and benefits from Pipette’s ISA and features. This

includes reference accelerators, even though they are our contribution.

Figure 3-7 compares the performance of Pipette on a single multi-

threaded core to the single-threaded 4-core streaming multicore. To mea-

sure how effectively Pipette uses its core resources, we also show the

performance per core.

Figure 3-7 shows that, while the streaming multicore outperforms

Pipette, it does so by relatively small margins given that it uses four times

the cores: BFS, CC, Radii, and SpMM perform similarly, and Streaming

is 24% faster on PRD and 59% faster on Silo. Overall, Streaming is only

22% faster than Pipette.

This happens because load imbalance hampers utilization of decoupled

cores in irregular applications: the right plot in Figure 3-7, which nor-

malizes by the number of cores, shows that each core in the Streaming
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Figure 3-8: Instructions executed (lower is better) and average IPC (higher

is better), averaged across program inputs, for 1-core data-parallel and

Pipette as well as 4-core Streaming.

baseline contributes similar performance as Serial. This is because, unlike

in regular applications where stages proceed at matched rates, irregular

applications have highly variable utilization across stages.

3.5.3 Pipette is resource-efficient

To further understand these results, Figure 3-8 compares the instructions

executed by each benchmark version, relative to those of the data-parallel

implementation (left graph, lower is better) as well as instructions per

cycle (IPC, right graph, higher is better). Each group of bars shows results

for a single benchmark, averaged across all inputs.

These figures reveal that Pipette consistently uses cores efficiently, but

the reasons are application-dependent:

• In BFS and CC, Pipette’s improvement mainly comes from its dramatic gain

in IPC. Pipette executes nearly the same instructions as the sequential code,

whereas the data-parallel versions incur some synchronization overheads.

• In PRD and Radii, Pipette’s benefits mainly come from reducing the

number of instructions. Instruction overheads in these benchmarks stem

from synchronization overheads. (These benchmarks come from Ligra,

and unfortunately, the serial Ligra version also carries these overheads.)

Pipette avoids this and reduces instruction count by up to 3.2×. Thus,

while Pipette’s IPCs are slightly lower, each instruction does more work.
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Figure 3-9: Breakdown of cycles spent executing each application, nor-

malized to data-parallel and averaged across inputs. (S: Serial, D: Data-

parallel, P: Pipette, M: streaming Multicore)

• In SpMM, Pipette’s benefits stem from both increasing IPC and reducing

the number of executed instructions.

• Pipette improves Silo by increasing IPC, which is slightly attenuated by a

modest increase in executed instructions.

Figure 3-9 gives more insight into the factors contributing to IPC by

showing a breakdown of cycles spent by cores, derived using the CPI stack

methodology [35]. Each group of bars reports breakdowns of each variant

across benchmarks (averaged across inputs), relative to the data-parallel

baseline. Each bar within a group reports cycles for one technique, broken

down in cycles spent (i) issuing micro-ops, and waiting on (ii) backend

stalls (including memory latency), (iii) full or empty queues (for Pipette

and Streaming), or (iv) other stalls (e.g., frontend).

Figure 3-9 shows that the serial and data-parallel versions are limited

by backend stalls, which are caused by long memory accesses. Meanwhile,

the streaming multicore is limited by queue stalls, i.e., load imbalance.

By contrast, Pipette incurs few stalls: proper decoupling dramatically

reduces backend stalls, and time-multiplexing stages in the same core

keeps queue stalls low.

Finally, Figure 3-10 shows the breakdown of energy consumption

of each variant across benchmarks (averaged across inputs), relative

to the data-parallel baseline. Pipette is the most efficient variant for

BFS, CC, PRD, Radii, and SpMM, reducing energy by up to 2.2× (PRD).

Pipette’s savings mainly come from reducing dynamic core energy (fewer

instructions) and reducing static energy (fewer cycles, as performance is

higher). Figure 3-10 shows that the streaming multicore is not efficient

overall, as it suffers from high static energy due to poor core utilization.

48



BFS CC PRD Radii SpMM Silo
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 e
ne

rg
y 

 
S D

P

M
S D

P

M S
D

P

M

S D

P

M S D
P

M
S

D P

M
Memory
L3
L1/L2
Core
Static

Figure 3-10: Breakdown of energy consumed by each application, nor-
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3.5.4 Per-input results

Figure 3-11 reports the performance of all variants across each input.

Per-input results reveal some interesting behaviors.

BFS: Pipette widely outperforms the serial and data-parallel BFS versions,

as shown in Figure 3-11(a). Pipette outperforms the data-parallel BFS by

gmean 2.5× and by up to 3.9×.

Speedups mainly depend on two factors: graph size and average

degree. Pipette yields more benefits in larger graphs, where misses are

more frequent; and Pipette is more efficient at enumerating small sets

of edges than conventional code, where hard-to-predict control flow is

inefficient. Thus, Pipette achieves the best speedups in low-degree graphs

(Dy and Rd).

CC, PRD, and Radii (Figure 3-11(b-d)) show similar trends to BFS:

Pipette consistently outperforms the data-parallel versions, of gmean

speedups of 2.3×, 2.2×, and 1.5×.

Unlike BFS, these algorithms operate on a fraction of the graph that

changes slowly over iterations, so they get better reuse. However, synchro-

nization is more complex, so the data-parallel versions suffer from costly

overheads that add substantial extra work. Thus, Pipette’s low instruction

counts contribute substantially to speedups, as explained above.

SpMM (Figure 3-11(e)) shows more mixed performance results: Pipette

outperforms data-parallel SpMM by up to 2.1×, but it is slightly slower

than data-parallel SpMM on one input.

The slight slowdown on the Co input results from a combination of

two factors. First, Co has only 8 non-zeros per row (Table 3-5), so control

values are common and the merge-intersect stage spends a significant

fraction of time in the dequeue control handler. Second, Co is a small

matrix that fits on-chip, so decoupling yields limited benefits. This result

shows that, while Pipette’s control flow mechanisms work well even un-

der frequent control flow, in some cases data parallelism (i.e., processing

several row-column pairs in parallel) is slightly better. An adaptive imple-

mentation could detect this and switch between Pipette and data-parallel

versions.

Finally, Silo (Figure 3-11(f)) yields a modest 24% gain for Pipette. Silo’s

high-radix B+tree is cache-friendly, and the data-parallel version hides

occasional misses reasonably well, but Pipette achieves further decoupling

and hence performs better.
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3.5.5 Sensitivity studies

Sensitivity to physical register count: Figure 3-12 compares the perfor-

mance of Pipette and data-parallel variants as the physical register file

(PRF) changes. The graph shows the gmean speedup over all benchmarks,

relative to the serial version with the default 212-entry PRF. We scale

the PRF from 180 to 308 entries. We scale Pipette’s queues proportion-

ally with PRF size, so larger PRFs result in larger queues and thus more

decoupling.

Figure 3-12 shows that implementing queues using physical registers

is a good choice. Pipette maintains a substantial performance advantage

over the full range of PRF sizes. Moreover, while data-parallel benchmarks

are insensitive to PRF capacity (as they are bound by backend stalls, the

issue queue and ROB limit them), Pipette can modestly benefit from larger

PRFs, which improve decoupling.

Pipette vs. software techniques: Pipette programs feature fine-grain

stages that communicate extremely frequently: as many as one in six

register file reads/writes are enqueues/dequeues (BFS, SpMM) or as few

as one in 27 (Silo). This shows the need for hardware support: state-of-

the-art software queues take tens of cycles per enqueue/dequeue [7], so

using them instead of Pipette would add very high overheads.

Effect of the number of stages on decoupling: Figure 3-13 examines

the performance of 2-, 3-, and 4-stage versions of BFS. This shows that

proper decoupling requires more than two stages: the best-performing
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implementation is the 4-stage one. We also measure the effect of RAs

these pipelines. Without RAs, performance peaks in the 3-stage imple-

mentation, as the 4-stage version has higher ROB pressure. The 2-stage

implementation decouples the distance updates, but leaves the fringe

accesses and neighbor enumeration needlessly tightly coupled. RAs and

decoupling go hand-in-hand; the 2t+RA point demonstrates the pitfalls of

adding RAs without first properly decoupling the application. A distance

fetched by an RA can become stale if that distance is updated later. This

race condition requires an extra check in the second stage, whose latency

cannot be overcome by the limited decoupling. When RAs offload all

long-latency loads, they reduce backend pressure and enable peak per-

formance with 4 stages—a 1.7× speedup over the conventional 4-stage

pipeline.

Effect of RAs: Figure 3-14 shows Pipette’s per-application performance

without and with RAs. BFS, CC, and SpMM benefit substantially from

RAs, whereas PRD, Radii and Silo see modest gains. Overall, RAs improve

performance by gmean 38%, by reducing instruction count and core

backend pressure.

3.5.6 Multicore Pipette

Finally, we compare the performance of a different Pipette BFS variant

on a 4-core system, showing that data and pipeline parallelism are com-

plementary, and that Pipette’s techniques scale outside of the core.

Figure 3-15 (right) compares the performance of four different BFS

implementations: Serial (1 core, 1 thread), data-parallel (with 4 cores

and 4 threads/core), streaming single-threaded (with each BFS stage

running on a separate core), and the Pipette multicore BFS shown in
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its performance compared to serial, data-parallel, and streaming versions.

Figure 3-15 (left). In this version, all stages are replicated across cores

to achieve load balance, so each core processes a fraction of the fringe.

Furthermore, instead of using shared-memory synchronization, neighbors

are partitioned across cores and sent to be processed at their corresponding

core, as shown by the cross-core communication in Figure 3-15 (left)

among the last two stages.

Figure 3-15 shows that, like in the single-core case, the data-parallel

version leaves performance on the table, with a gmean speedup of 3.8×

vs. serial despite using 16 threads on 4 cores. The streaming version

sometimes outperforms the data-parallel version, though it is limited

by load imbalance as each core runs a single stage. Finally, the Pipette

multicore version performs best, achieving a gmean speedup of 5.9×.

To analyze scalability, we also evaluate a 16-core system for a total

of 64 threads. At 16 cores, the data-parallel version is 1.5× faster than

the 4-core system, while Pipette is 1.8× faster (and thus 1.9× faster than

16-core data-parallel). While Pipette scales better, at 64 threads BFS

suffers synchronization overheads that limit its scalability.

In summary, this result shows that Pipette continues to be attractive

in multicore systems. Multicore Pipette achieves high core utilization and

avoids the synchronization overheads of the data-parallel implementation

by using connectors to join queues across cores.

3.6 Summary

Applications with irregular access patterns and control flow have latent

pipeline parallelism that can be exploited to improve core utilization.
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However, prior decoupled architectures are insufficient for these irregular

applications. We have presented Pipette, which achieves high utilization

by exploiting fine-grain pipeline parallelism within the threads of a multi-

threaded core. This new regime not only allows fast and inexpensive local

communication, but also sidesteps the load balancing issues that affect

prior decoupled architectures and enables a cheap implementation that

reuses otherwise-idle registers and accelerates common access patterns.

As a result, Pipette achieves significant speedups on several applications

over a wide variety of inputs. Pipette thus offers a high-performance,

practical substrate for pipeline-parallel programs.
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4 Fifer:

Practical Acceleration of

Irregular Applications on

Reconfigurable Architectures

4.1 Introduction

General-purpose processors, like the ones used to implement Pipette, are

woefully inefficient: they routinely spend less than 1% of their energy

executing computation [49], and spend most of their energy and area on

instruction interpretation overheads and general but expensive latency-

tolerance mechanisms, like out-of-order execution and speculation. With

Moore’s Law waning, it is crucial to reduce this bloat. While specializing

hardware to each application achieves maximum performance and effi-

ciency, it is inflexible. Ideally, we want architectures that approach the

efficiency of full specialization, while being programmable and capable

of executing a wide range of applications.

Coarse-grain reconfigurable arrays (CGRAs) are a promising approach

to achieve this goal. CGRAs implement a sea of spatially distributed func-

tional units that can be configured and connected with switches to create

high-throughput datapaths. Prior work has explored and implemented a

wide range of CGRA designs, either as standalone accelerators [26, 50,

77, 98, 105] or tightly integrated coprocessors [43, 75, 107, 131].

Unfortunately, CGRAs are restricted to regular applications, i.e., those

with structured access patterns and control flow, like dense linear algebra.

These features are necessary to produce a high-performance pipeline that

can be spatially and statically mapped to a CGRA fabric. By contrast,

CGRAs struggle with irregular applications, i.e., those with unstructured
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memory accesses (like indirections) and control flow (like data-dependent

branches). These applications arise in many important domains, like

graph analytics, sparse linear algebra, sparse deep learning, and databases.

CGRAs are ill-equipped to handle these operations: faced with a long-

latency operation, like a cache miss, they simply stall; and even if misses

are rare, irregular control flow causes load imbalance that leaves most of

the fabric idle.

In this chapter, we present Fifer, an architecture and compilation

technique that makes irregular applications efficient on CGRAs. Fifer

combines two key techniques:

Extracting regular stages from irregular applications: We show that

an application’s irregular accesses and control can be decoupled from

its regular computation, which can then be efficiently processed by the

CGRA. This approach divides the computation into a pipeline, i.e., a

feed-forward network of stages. These stages are connected with latency-

insensitive channels, like FIFO queues, to tolerate unpredictable latencies.

Importantly, this approach produces regular stages that can be turned

into high-throughput datapaths mapped to a CGRA fabric and confines

irregularity to happen across pipeline stages.

Despite this transformation, conventional CGRAs are still inefficient:

while each stage maps well to a CGRA fabric, irregularity causes wide

variations in work across stages. CGRAs, being pure spatial architectures,

cannot accommodate these variations and suffer from load imbalance.

This necessitates Fifer’s second key technique:

Dynamic temporal pipelining: To avoid load imbalance, Fifer temporally

pipelines CGRA-based architectures: multiple stages are time-multiplexed

into the same CGRA fabric, with a scheduler dynamically choosing which

stage to run based on the availability of work. This avoids load imbalance

by dedicating more cycles to stages with more work. To be efficient,

reconfigurations should be infrequent (occurring every few hundred cy-

cles), and brief (lasting tens of cycles). We introduce fast reconfiguration

mechanisms to make this possible.

Prior work has also explored adding time-multiplexing to CGRAs: Trig-

gered Instructions [92] maps multiple operations onto each element of

the fabric, and each element selects a ready operation to execute each

cycle. This fine-grain time-multiplexing tolerates imbalance, but requires

substantial additions to a CGRA to support such frequent switching. By

contrast, Fifer reconfigures at coarser granularity: switching between
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large, regular chunks of operations over several cycles. Because our pro-

gram transformation coarsens work into chunks that are switched less

often, we can use much simpler scheduling hardware to achieve load

balance on the CGRA fabric. By analogy with general-purpose cores, Trig-

gered Instructions is the CGRA counterpart to fine-grained multithreading,

whereas Fifer is the CGRA counterpart to coarse-grained multithreading.

To implement Fifer, we make three simple modifications to an exist-

ing CGRA: (1) frequent and rapid reconfiguration, (2) buffers acting as

queues decoupling spatial and temporal pipelines, and (3) logic to fur-

ther decouple irregular memory accesses. Altogether, these modifications

present an interface similar to that of Pipette’s and allow us to extend

Pipette’s insights to CGRAs. We prototype Fifer in a system with multiple

processing elements (specialized cores), each with its own CGRA fabric

and private cache. We show that Fifer scales well to large systems by

combining spatial and temporal pipelining. We implement Fifer’s major

components in RTL and show that its additions are simple and cheap.

Our evaluation shows Fifer outperforms an OOO multicore by over

gmean 17× while using much less area. We also compare Fifer to a CGRA-

based architecture that cannot time-multiplex stages. Fifer outperforms

this baseline by gmean 2.8×, and by up to 5.5×, across several challenging

irregular applications.

In summary, we make the following contributions:

• We identify the challenges of irregular applications on reconfigurable

spatial architectures.

• We present a technique to decouple applications across sources of irregu-

larity for effective CGRA mappings.

• We introduce Fifer, a CGRA-based architecture that time-multiplexes mul-

tiple configurations onto its processing elements to avoid load imbalance.

• We implement Fifer and evaluate its effectiveness on a wide range of

applications, demonstrating its applicability.

4.2 Background and Motivation

4.2.1 Challenges of irregular applications

CGRAs are amenable to creating static spatial pipelines, in which an appli-

cation is split into pipeline stages and mapped to functional units across
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Figure 4-1: Mapping breadth-first search (BFS) to spatial architectures.

the fabric. To perform a particular computation, operands are passed

from one functional unit to the next in this fixed pipeline. These are

highly effective for regular applications, where the data access patterns

and control flow are highly predictable.

However, mapping irregular applications to spatial architectures is

more complex, because their unpredictable latencies and control flow can

significantly impact CGRA throughput. The key insight to enabling effec-

tive mappings of irregular applications is to recognize that they are rich in

otherwise-regular computation, but interspersed with irregular memory

accesses and control flow. Moreover, in the previous chapter, we showed

that irregular applications can be easily decomposed into pipelines and,

with Pipette, efficiently executed in general-purpose cores. By extending

Pipette’s insights to CGRAs, we arrive at Fifer’s first major contribution:

enabling effective mappings to reconfigurable spatial architectures by

partitioning stages across sources of irregularity.

Consider the pipelined BFS example from Chapter 2, but instead of

each stage implemented as instructions for a general-purpose core, each

stage is now mapped to a CGRA. (Keep in mind that BFS has tricky control

flow; this is a non-trivial problem not handled by prior work that we will

address in Section 4.3.) This transformed BFS can now be mapped to

a spatial architecture, but it will suffer from poor performance due to

load imbalance across stages. The baseline architecture that we use in

this chapter (Section 4.3) has multiple processing elements (PEs), each

with a separate CGRA fabric, and PEs can communicate through FIFO
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queues and access memory individually. Figure 4-1(b) shows how our

transformed BFS can be executed in this architecture by mapping each

stage to a PE. But this approach is still a static spatial pipeline, and quick

variations in load across stages will cause stalls on empty or full queues,

resulting in poor utilization.

Fifer’s other key insight addresses the shortcomings of static spatial

pipelines by observing that a stage need not be fixed to a PE for the

lifetime of a computation. Instead of placing stages on physically distinct

PEs and creating a spatial pipeline, we can temporally pipeline stages by

time-multiplexing them onto the same PE. Figure 4-2 shows how Fifer

maps BFS using this approach. We call this dynamic temporal pipelining,

because a scheduler dynamically switches across stages based on the

availability of work (e.g., when a stage runs out of work, the ready stage

with the most work is switched in). Switches happen every few tens to

hundreds of cycles, long enough to amortize reconfiguration overheads,

and short enough to keep queue and memory footprint low (as these grow

the further stages are decoupled).

4.2.2 Prior spatial and temporal CGRAs

Fifer is not the first proposal to add a temporal component to a spatial

architecture, but to the best of our knowledge, it is the first to do so at

this granularity.

At one extreme, prior work has proposed time-multiplexing at the

cycle level: Triggered Instructions [92] is a spatial architecture with an

array of PEs that communicate through latency-insensitive channels. Each
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PE holds a limited number of instructions (e.g., 16), which become ready

depending on runtime conditions (e.g., the availability of a value in a

queue). Each PE chooses among one of the ready instructions each cycle.

Though this cycle-level approach improves utilization, it comes at a cost:

each PE is more complicated than the functional unit in a CGRA, and PEs

communicate through queues rather than registers.

At the other extreme, run-time reconfiguration (RTR), a feature of

commercial FPGAs (another kind of spatial architecture), has been used to

time-multiplex configurations when a design exceeds available resources.

However, this happens at coarse timescales—hundreds of microseconds

[81]—much longer than the tens of cycles needed to effectively load

balance stages of a pipeline or tolerate memory latency. Moreover, prior

use of RTR only targeted applications that already map well to spatial

architectures, like sorting [63] and streaming [21], or HLS-generated

pipelines targeting applications with abundant data parallelism [117].

Fifer lies in the middle of these extremes, reconfiguring every few

10s –100s of cycles. This avoids expensive modifications to CGRAs and

amortizes reconfiguration overheads, yet suffices to avoid load imbalance

and achieve high utilization.

It is useful to contrast these techniques with general-purpose pro-

cessors. They are analogous to multithreading, where a core switches

among multiple threads of execution to improve utilization. Triggered

Instructions is the CGRA analog to fine-grained multithreading [8, 55, 64]

(FGMT), where the core time-multiplexes threads cycle by cycle; Fifer is

the CGRA analog to coarse-grained multithreading [2, 3, 4, 57] (CGMT),

where the core switches across threads less frequently, to tolerate long-

latency events (e.g., on every L2 cache miss); and RTR is the spatial

analog to software-only context-switching of threads by the operating

system. Just as CGMT requires simpler core changes than FGMT, Fifer

requires simpler changes than Triggered Instructions (quantitatively, the

difference between these is larger since CGRAs do not already have a

temporal component).

Unlike prior work, Fifer combines spatial pipelining and temporal

pipelining at coarse-grain timescales (10s –100s of cycles) to amortize the

costs of reconfiguration yet effectively tolerate latencies of the memory

hierarchy, with coarse-grain computation (at the width of machine words,

not bits) to address prior systems’ limited throughput and flexibility.

We achieve better utilization by (1) time-multiplexing the fabric at

the individual PE level for improved load balance, and (2) enabling fast
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communication between stages on the same PE. Our novel programming

model—structuring applications as pipeline-parallel stages of computation

that can be time-multiplexed on the same PE—overcomes the limitations

of prior architectures and enables Fifer’s performance benefits.

4.3 Baseline CGRA Architecture

Because there are many CGRA designs, we first introduce the baseline

CGRA architecture to make the discussion concrete. Fifer then builds on

this baseline.

CGRA fabric: As discussed in Section 2.2.2 and illustrated in Figure 4-3,

a coarse-grain reconfigurable array (CGRA) is a grid of functional units

connected together with switches. Each functional unitcontains an integer

ALU similar to one in a general-purpose processor, capable of elementary

operations (arithmetic, shifts, bitwise operations) at machine word width

(e.g., 64 bits). Each PE also incorporates a few double-precision fused

multiply-add (FMA) units to support floating-point workloads.

Configuration cells (registers) at each functional unit specify the oper-

ation of the ALU; additional configuration cells specify the connectivity

of switches passing operands between functional units. Because conven-

tional CGRAs are reconfigured rarely, their configuration cells use slow

but simple write mechanisms, like register scan chains. (Fifer contributes

a fast reconfiguration mechanism in Section 4.5.1.)

Inputs and outputs enter and leave the reconfigurable array through

ports at the edges of the grid. The reconfigurable array is internally
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pipelined; that is, functional units are separated by registers as shown in

Figure 2-2, and the longest input-output path through functional units

sets the latency of a given configuration. Registers also allow the CGRA

to retain program state, e.g., to track loop iteration counts or accumulate

values over loop iterations.

Multi-PE CGRA architecture: A single CGRA fabric is sometimes used as

a functional unit or coprocessor [40, 43, 107] to accelerate small kernels.

However, our goal is to handle full algorithms autonomously, without

having general-purpose cores as intermediaries. To this end, our baseline

architecture, shown in Figure 4-3, consists of multiple processing elements

(PEs), each of which integrates a CGRA fabric, a private L1 cache, and

mechanisms for queue-based communication. All PEs share a (highly

banked) last-level cache.

This approach is preferable to having a single, very large CGRA fabric

for two reasons. First, it enables having multiple independent private

caches, so the system can achieve high memory throughput and exploit

locality. Second, it provides decoupled communication between PEs.

Because functional units inside each CGRA fabric are tightly coupled

through rigid pipelines, a single stall would quickly propagate through

the whole fabric. By contrast, PEs communicate with each other through

FIFO queues, so when one incurs a stall (e.g., due to a cache miss), other

PEs will not necessarily stall.

Our baseline implements inter-PE queues through a flexible interface:

the switches at the edges of the fabric can dequeue from input queues and

enqueue to output queues. Queues are stored in a small queue memory in

each PE (a 16 KB SRAM in our implementation). This queue memory can

be statically divided among multiple queues, each of which is managed

as a circular buffer.

Mapping applications: To use this multi-PE design, applications are

divided in stages, each of which is mapped to a PE. Then, these stages

communicate through queues.

To use this baseline system well, it is crucial that all stages proceed at

roughly the same rate: if one stage produces more inputs at a higher rate

than its consumer, it will be bottlenecked by its consumer and frequently

stall on a full output queue. Conversely, a too-fast consumer will spend

many cycles waiting for input. Note that queues provide decoupling, but

only against temporary mismatches in throughput, e.g., due to a cache

miss. Long-running throughput differences will, over time, leave queues
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full or empty, and make the whole program run at the pace of the rate-

limiting stage. Because queues do not provide unbounded decoupling, we

consider this design a static spatial pipeline, even though it is decoupled.

Prior work has proposed different techniques to use this kind of static

pipeline well, such as replicating slow stages [42]. But this requires having

known and stable rates, which is not the case with irregular applications.

4.4 Extracting Regular Stages from

Irregular Applications

We present a new technique to map irregular applications to CGRA fabrics—

this is a prerequisite for Fifer, but also for our baseline architecture. The

key insight, as we explained in Section 4.2.1, is to first partition the

application into stages across sources of irregularity. This produces regular

stages and confines the irregularity to happen across stages. Then, these

regular stages are efficiently mapped to a CGRA. In our implementation,

the first step is manual, while the second is automated.

Partitioning: A program may be split at arbitrary locations into arbitrarily

many stages, but judiciously decoupling programs is essential for good

performance. Our overarching objective is to decouple irregular parts

of the computation, such as unpredictable memory accesses and control

flow, from more regular parts. Like Pipette, we split a program at every

long-latency load, so that loads issued by a given stage are consumed by a

different stage. Remember that for BFS (Chapter 2), each loop nest level

contains such a load, so each stage corresponds to a level. Finally, stages

that are too large to fit on one PE can always be divided into multiple

smaller stages.

Mapping: Figure 4-4 shows the process of transforming partitioned serial

code into configurations for a CGRA. We generate LLVM intermediate

representation (IR) for each stage, which represents low-level operations

on data and their dependences. An automated tool examines the LLVM IR
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mov %r_neighbors, ...;

deq %r_e,   $q_start;

deq %r_end, $q_end;

loop:

lea   %r_addr, (%r_neighbors,%r_e,2);

ld %r_ngh, (%r_addr);

enq $q_ngh, %r_ngh;

addi %r_e, %r_e, 1;

blt %r_e, %r_end, loop

done:

...

Serial code:

for e in range(start, end):

ngh = neighbors[e]

start

end

neighbors

e

end < ?

LEA

1

LD

Cache
Control

address of

neighbors[e] ngh

Pseudo-assembly:

Mapping:

Figure 4-5: Example mapping of BFS’s enumerate neighbors stage to a

CGRA.

and produces a dataflow graph (DFG) using the actual operations that can

be performed by a PE’s functional units. The DFG is modified to receive

its inputs and send its outputs via queues. A final bitstream generation

step transforms the DFG into a bitstream that, when configured into a

CGRA, carries out the computation represented by the DFG.

To concretely demonstrate this process, consider the enumerate neigh-

bors stage from BFS, shown in Figure 4-5. This stage dequeues the start

and end positions of the edge list of a vertex, and produces neighbor

vertex ids. The operations required to carry out the serial code (in or-

ange) for this stage are represented with the pseudo-assembly code (in

purple) resembling the lowered LLVM IR produced by the compiler. Each

pseudo-assembly instruction corresponds to an operation assigned to a

functional unit in the PE.

When mapped to a DFG, this stage computes addresses (LEA) in the

neighbors array, performs the dereference (LD), and passes the neighbor

(ngh) to the next stage. Some additional logic (+ and < ?) determines

whether we have finished this edge list.

Values are processed in the order they arrive; once dequeued, they

flow through one functional unit per cycle. Some control logic (the red

cloud) triggers dequeues of new start and end values. In addition to

driving enqueues and dequeues, per-PE control logic also orchestrates
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Figure 4-6: Fifer’s modifications to a reconfigurable spatial architecture

and processing elements, surrounded by a dashed line. (Queues, colored

purple, are only illustrative and virtualized in the queue memory.)

reconfigurations (Section 4.5.1) and stalls the pipeline for cache misses

on coupled loads (Section 4.5.4).

Inter-stage control flow: In irregular applications, stages often need to

communicate control flow decisions to other stages; for example, in BFS,

all stages need to know when the current distance from the source vertex

has changed. Since stages communicate through queues, it is natural to

pass this control information through the same queues. We extend queues

to carry control or data values. Since control values are infrequent, we

compile stages to handle either multiple input data values or one control

value per cycle. Section 4.5.4 gives implementation details.

4.5 Fifer Architecture

Static spatial pipelines have several limitations reducing their effectiveness

on irregular applications. Fifer overcomes these limitations by augmenting

spatial pipelines with temporal pipelines. Figure 4-6 shows our modifi-

cations to the baseline system. We organize our discussion of Fifer to

describe:

1. how multiple stages are time-multiplexed onto the same PE through the

reconfiguration process,
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2. how to extend queues to communicate between stages on the same PE,

and

3. how to further decouple long-latency memory accesses.

We initially focus on a single-PE Fifer system that implements pure tem-

poral pipelining. In Section 4.5.5 we discuss how multi-PE Fifer leverages

both temporal and spatial pipelines.

4.5.1 Rapid reconfiguration

Each Fifer PE may select from not just one, but many possible configura-

tions, so a PE may represent any part of a temporal pipeline throughout a

program’s execution.

Fifer is designed to transparently switch stages so that any ready stage

begins executing as soon as possible. When a stage is scheduled onto a PE,

functional units are configured with the operations needed by the stage.

Reconfiguration also establishes connections between these functional

units, as well as any input/output queues, registers, and memory connec-

tions. Any state required by the application, such as fixed constants, are

loaded into the appropriate registers.

Unlike configurations for the baseline system, Fifer’s configurations are

stored in cacheable memory and loaded from the L1 cache. Configuration

cells are chained, so that configurations can be loaded over multiple cycles.

For example, our L1 supports a bandwidth of 64 bytes/cycle, and our

16×5 fabric requires about 360 bytes of configuration, so configuration

cells are divided in 6 groups (with 5 groups consisting of a row of ALUs

and switches, and one group being the last row of switches). Each cycle,

the L1 serves 64 bytes of configuration data, which are propagated though

the chained configuration cells. Thus, over 6 cycles (plus the L1 latency),

the new configuration is loaded in place.

Loading the new configuration, as described by the previous paragraph,

forms step (1) of a three-step reconfiguration process. Step (2) drains the

in-flight operations from the current configuration. Step (3) activates the

new configuration. Fifer introduces double-buffered configuration cells so

that steps (1) and (2) take place in parallel. Consider the process in which

Stage 3 is currently running on a Fifer PE and now needs to switch to run

Stage 2. Figure 4-7 shows the behavior of a configuration cell (top row)

and how it changes the currently executing stage of a Fifer PE (middle

row).
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As soon as the scheduler begins the reconfiguration process, Stage 3

stops accepting new inputs and begins draining in-flight operations, as

Figure 4-7(b) shows. In parallel with draining in-flight operations, the PE

begins loading the new configuration. This parallel loading is enabled by

Fifer’s double-buffered cells, which offers two configuration slots (Cfg. A

and Cfg. B): one containing the current configuration and one to receive

the new configuration. The PE loads new configuration data into the

unused configuration slot (e.g., Cfg. B, since Cfg. A is currently used for

Stage 3). Double-buffering allows us to overlap execution of the current

configuration with the loading of the next configuration, which is essential

to reducing the cost of reconfiguration. In practice, most configurations

have over 6 pipeline stages, so draining them takes longer than loading
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the new configuration and is the dominant cost of reconfigurations for

most applications.

Once remaining in-flight operations finish and the new configuration

is loaded, the fabric activates the new configuration. Within the double-

buffered configuration cells in Figure 4-7(c), a multiplexer switches from

reading Cfg. A to Cfg. B, so now Stage 2 becomes active. We account for

this process with an activation time, a dead time of two cycles. At last, in

Figure 4-7(d), Stage 2 commences execution.

The old configuration may have written to state elements, like registers,

that need be preserved across reconfigurations. As the new configuration

loads, the contents of these state elements are drained out along with the

old configuration to the L1 cache.

We define the reconfiguration period to be the time spent performing

all of these operations: draining in-flight operations, loading the new

configuration, and activating it. The residence time for a given stage is

the time between activating that stage and the activation of the next

stage (and thus includes the reconfiguration period). Fifer’s effectiveness

relies on keeping the reconfiguration period small—no more than a few

dozen cycles—and maximizing residence times to many hundreds of

cycles. We evaluate the effect of reconfiguration period on performance

in Section 4.8.3.

4.5.2 Scheduling reconfigurations

Fifer extends each PE with a simple scheduler that dynamically switches

among stages. Which stage is scheduled onto a particular PE depends on

which input queues have values available and which output queues have

space.

To keep utilization high and amortize the overall cost of reconfigura-

tions, the scheduler follows a simple policy. First, it keeps a PE configured

to the current stage until it is blocked by a full output queue or an empty

input queue. Second, when it must select a new stage, the scheduler

examines the occupancies of the queues used by the other stages. Of the

unblocked stages (i.e., those with non-empty input queues and non-full

output queues), the scheduler selects the stage with the greatest amount

of work available in its input queues. By selecting stages with more work,

the scheduler reduces the number of reconfigurations.

We also tried other scheduler policies, such as a round-robin scheduler

or finer-grain multithreading, but found that these did not work as well.
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This makes sense: the application work done is nearly constant regardless

of the scheduling policy, so processing the stage with the most work

reduces the amount of reconfigurations; alternative policies increase

reconfiguration frequency.

4.5.3 Communicating in temporal pipelines

Because Fifer allows a producer stage to communicate with a consumer

stage that may be located at the same PE, we introduce intra-PE queues.

We augment the queue buffer described in Section 4.3 with more head/tail

pointers to store these additional queues. These intra-PE queues offer high-

bandwidth communication between stages located on the same PE, so it

is advantageous to decouple applications such that stages communicating

frequently reside on the same PE. Of course, as before, a producer stage

on one Fifer PE can enqueue data destined for a consumer stage at a

different PE.

For the purposes of evaluation, the baseline spatial architecture and

Fifer have the same amount of queue buffer per PE. This means that Fifer,

which can fit many more pipelines than the baseline, could have less

effective space per queue. However, as we will see, modest decoupling

suffices to achieve high utilization.

4.5.4 Decoupling memory accesses and handling control flow

As we saw in Pipette, irregular applications pose unique challenges in its

long chains of memory accesses and complex control flow. We extend

Pipette’s insights to address them in specialized architectures as well.

Further decoupling memory accesses: Memory accesses have widely

varying needs: some may be irregular and cause stalls so they need to

be decoupled; others may be known to rarely cause cache misses and so

they do not merit further decoupling. Thus, Fifer PEs offer both decoupled

and coupled load interfaces. The conventional, coupled load interface is a

simple connection to the cache and stalls the PE on cache misses. Simple

memory access patterns, like streaming linearly through memory, do not

need to be decoupled, and would be suitable for this interface.

However, some accesses are known to miss frequently, causing lengthy

stalls. Fifer allows these accesses to be further decoupled from stages;

we accomplish this by adapting Pipette’s reference accelerators (RAs,

Section 3.3.2) to Fifer. Reference accelerators are especially critical here,
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as the CGRA fabric’s rigid pipelines are especially sensitive to latency.

Unlike memory accesses initiated by the fabric, RAs’ memory accesses

may complete out of order. Just like Pipette, RAs are configured once at

initialization and continue performing accesses regardless of the currently

scheduled stage.

Handling control flow: Sometimes, producers may need to communi-

cate control flow decisions to downstream consumer stages. Control

values, as done in Pipette (Section 3.2.2), lets PEs change local state

(such as updating the current BFS fringe), wait to synchronize with other

PEs, or switch to another configuration. Using control values cheaply

implements point-to-point synchronization where global synchronization

is unnecessary or cumbersome.

4.5.5 Multi-PE Fifer to exploit data parallelism

Up to this point, we have focused on temporal pipelines running on a

single Fifer PE. We now explore how spatial pipelines can be used to

leverage data parallelism. While our programming model focuses on

making pipeline parallelism easy to exploit, data parallelism and pipeline

parallelism are complementary; by exploiting them together, Fifer offers

advantages that are not available when exploiting data parallelism alone.

We now present two techniques that exploit data parallelism within a PE

and across PEs.

SIMD-style parallelism within a PE: Because we can split applications

into as many stages as needed, each stage can be arbitrarily small. When a

stage implements data-parallel computation, the datapath obtained from

its DFG can be replicated to use the PE’s fabric as much as possible by

filling unused functional units and switches. For example, a 16×5 grid of

functional units can be configured as four copies of a datapath that fit on a

smaller 4× 5 grid, yielding a potential 4× throughput improvement. Our

applications provide abundant opportunities to take advantage of SIMD-

style parallelism: for example, the many edge list accesses performed by

graph applications can be launched in parallel.

These datapaths run in lockstep: if multiple input elements are avail-

able at once, they can be dequeued as a group and processed simulta-

neously, up to the number of replicated datapaths. Control values are

always handled serially: in a given cycle, a PE can dequeue multiple data

values but will always dequeue a single control value.
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Figure 4-8: Replicated 4-PE BFS with Fifer.

This process is analogous to how vector processors, SIMD instructions,

and GPUs exploit data parallelism: running multiple copies of the same

operation in lockstep. When fewer than the maximum supported number

of elements are available at the input, some datapaths are left unused, just

like masked-off lanes in vector processing. However, Fifer’s decoupled exe-

cution model makes exploiting SIMD-style data parallelism more efficient.

For example, to get good GPU lane utilization in graph algorithms, edges

from multiple vertices need to be processed in the same warp, leading

to complex marshaling of vertex and graph metadata. Instead, Fifer’s

queue-based approach allows decoupling the processing of vertices and

edges across stages, so they are grouped independently and easily fill the

parallel datapaths.

Replicated temporal pipelines across PEs: Temporal pipelines can co-

exist with spatial pipelines; we spatially partition the data across multiple

PEs, each running its own temporal pipeline. This partition is similar to

the multicore, multithreaded implementation for Pipette in Section 3.5.6.

Figure 4-8 replicates the BFS pipeline from Figure 4-1(a) across four PEs,

each pipeline processing a fraction of fringe and updating separate parts

of the graph.

Pipeline parallelism and queue-based communication enable a crucial

optimization: instead of synchronizing through shared memory, each

pipeline—that is, a processing element—sends neighbors “owned” by a

different pipeline on another processing element. In BFS, this sharding is

represented by the cross-PE communication between fetch distances, the

third stage, and update data and next fringe, the final stage. By avoiding

the need for shared-memory synchronization, applications scale better

than by exploiting data parallelism alone.
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Item Area

Reconfigurable fabric, 16× 5 func. units 0.91 mm2

and 4× double-precision FMA units 0.15 mm2

16 KB queue SRAM 0.054 mm2

4× reference accelerators (RAs) 0.0029 mm2

32 KB data cache 0.22 mm2

Total area (per PE) 1.34 mm2

Table 4-1: Implementation costs for major components of a Fifer PE.

Inter-PE queues use credit-based flow control [28] to implement back-

pressure and handle multiple producers. Credits are associated to free

queue space. Each destination queue divides credits evenly across pro-

ducers, and a producer stalls when it runs out of credits.

Importantly, each PE in this replicated pipeline is still a dynamic

temporal pipeline, so it independently reconfigures itself in response to

varying load. Thus, different PEs can work on different stages. This

scheme offers an additional dimension of load balance: not only is work

distributed across PEs, but each PE also tolerates a different distribution

of work among stages. This allows us to employ simpler partitioning

schemes—for example, by examining bits of the neighbor id—rather than

resorting to more complex techniques like work stealing.

4.6 Fifer Implementation

We implement the Fifer architecture by writing and synthesizing RTL for

its major components.

The CGRA in each PE is a 16× 5 grid of functional units surrounded

by switches, a scaled-up version of the DySER fabric [43]. We use the

CGRA-ME [22] framework to generate RTL for this fabric. CGRA-ME’s

output Verilog only uses a simple register scan chain to implement its

configuration; we replace this with double-buffered configuration cells

(Section 4.5.1) to allow loading a new configuration while the current

configuration’s remaining in-flight operations complete. To make loading

configurations fast, Fifer loads configuration data served at the L1 width,

not through a serial scan chain.

Our virtualized queues are stored in a 16 KB buffer, and each PE

contains a 32 KB data cache. To support the floating-point operations used
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in some of our benchmarks, we synthesize several double-precision fused

multiply-add (FMA) units and distribute them evenly across the fabric.

The reference accelerators (RAs), which launch and track decoupled

memory accesses, add little additional area cost.

We synthesized these components with Yosys [136] and the 45 nm

FreePDK45 library [51], closing timing at 2 GHz, and summarize the area

used in Table 4-1. The memory arrays in caches and queue storage were

estimated with CACTI [11]. Overall, each PE is 4.6% of the area of a

core in the same technology node (45 nm Nehalem [123]), and each

PE has higher arithmetic intensity. To account for this difference, in the

evaluation, CGRA-based systems use 4 PEs for each OOO core of the

baseline, which is conservative area-wise. (Our evaluation in Section 4.8

uses Skylake cores with larger structures, which makes our estimate even

more conservative, even considering scaling to Skylake’s 14 nm node.)

We transform our evaluated applications in two steps. We first derive

the pipeline-parallel version by manually dividing code into stages using

the systematic approach described in Section 4.2.1 and Section 4.4. Then,

we use per-stage data parallelism by replicating the dataflow graph until

we fill the PE fabric.

Whenever a Fifer PE changes configuration, it takes a minimum of 12

cycles (loading the new configuration from the L1 cache is 10 cycles, plus 2

cycles for the activation time), but as previously discussed in Section 4.5.1,

draining in-flight operations may increase this time.

4.7 Experimental Methodology

4.7.1 Evaluated systems

We implement and evaluate Fifer using cycle-level simulation. For the

serial and OOO cores, we use the same evaluation methodology as used

for Pipette (but the cores do not use Pipette). We also create a cycle-level

simulator to evaluate our CGRA-based systems; it simulates executing

stages using mapping information produced by CGRA-ME [22].

We model core and uncore energy at 22 nm for the OOO systems with

McPAT [70] and use prior work to estimate HBM energy consumption [89].

Energy consumption for the reconfigurable fabric is based on Synopsys

Design Compiler post-synthesis power estimates and scaled from 45 nm

to 22 nm.
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Figure 4-9: Baseline and Fifer system implementations.

Figure 4-9(b) shows our modeled spatial reconfigurable architectures,

including 16 PEs with buffers serving as queue storage. A control core is

responsible for initialization and teardown of a Fifer program as well as

interactions requiring a general-purpose CPU (such as calls to the OS).

Comparison systems: Our baseline is the 16-PE system depicted in Fig-

ure 4-9(a). Each stage of an application is mapped to a single PE, and this

mapping remains fixed throughout the run. As a result, the predominant

flow of data through the pipeline is also fairly fixed; for example, in BFS

the predominant flow of data would be from left to right, as indicated

by the gray arrow. While the baseline and Fifer systems have the same

amount of space allocated for queues on each PE, the static system notably

lacks the scheduler. The baseline system also retains RAs, to focus our

analysis on the effects of time-multiplexing on load balance. Table 4-2

summarizes our evaluated systems’ parameters.

Benchmarks: We evaluate Fifer on the same six applications from Pipette,

with each application mapped to CGRA fabric. Otherwise, we use the

same pipeline configurations, inputs and overall evaluation methodology

as Pipette (see Section 3.4).
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PEs 16 PEs, 2 GHz, 16×5 func. unit mesh, 32 KB L1 cache (8-way set-associative,

4-cycle latency)

Fifer Up to 16 queues per PE, virtualized on a 16 KB buffer

LLC 2 MB/core or 512 KB/PE, 16-way set-associative, 40-cycle latency

Main mem 120-cycle latency, 256 GB/s high-bandwidth memory

Table 4-2: Configuration parameters of the evaluated system.
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Figure 4-10: Per-input performance of all evaluated applications.

4.8 Evaluation

We compare Fifer to state-of-the-art data-parallel baseline implementa-

tions running on a generously provisioned out-of-order core. We compare

our technique to an OOO baseline, then show that our approach achieves

better utilization, and thus better performance, than a pipeline of static,

single-stage PEs.
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4.8.1 Fifer outperforms the OOO baseline

The OOO core baseline, despite its significant area overheads, fails to

perform well because it cannot effectively handle these applications’ un-

predictable memory accesses and control flow. Because it is a temporal

architecture that sequences instructions one after another, it also suf-

fers from low arithmetic intensity compared to the CGRA fabric. As a

result, the static pipeline and Fifer are 25× and 72× faster than serial,

respectively.

4.8.2 Fifer outperforms static pipelines

Figure 4-10 shows the performance of our evaluated systems normalized

to the performance of the OOO multicore (not serial). Fifer outperforms

the static pipeline by gmean 2.8× and by up to 5.5× (CC with the Dy

input). This speedup comes from Fifer’s ability to change contexts in

response to available work at each PE. For example, in BFS, speedups

are best on graphs with high outdegree, where Fifer’s many dynamic

temporal pipelines working in parallel achieve better throughput than the

baseline’s few static pipelines.

To better understand how each system spends its execution time, Fig-

ure 4-11 shows the breakdown of cycles spent executing each benchmark.

We report the proportion of time spent by a core using the CPI stack

methodology [35]. We extend this methodology to our PEs as well. Each

group of bars reports breakdowns of each variant across benchmarks

(averaged across inputs), relative to the static pipeline baseline. Each

bar within a group reports cycles for one system, broken down in cycles
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spent (1) performing useful computation, and waiting on (2) backend

or CGRA stalls (due to non-decoupled loads), (3) full or empty queues,

(4) reconfigurations (for Fifer), or (5) idle stalls (when a PE is completely

inactive while waiting for other PEs, e.g., a barrier).

As expected, a significant source of slowdowns in the serial and data-

parallel systems is waiting on the backend (in red), which includes waiting

for memory accesses and OOO core structures becoming full. In the static

pipeline and Fifer systems, the breakdown also includes stalls resulting

from full or empty queues (in purple). Finally, for Fifer, time spent

reconfiguring is shown in green. In spite of this, Fifer performs better

because it overlaps useful work, like completing memory accesses, as

these reconfigurations occur.

These cycle breakdowns help us understand why Fifer performs con-

sistently better across applications: as expected, the static pipeline spends

a significant fraction of time stalled on full or empty queues (purple

bars). Reconfiguration stalls are significant in SpMM because it is a

control-intensive application: the merge-intersect stage intersects values

at very high throughput, and when it reaches the end of an input row

or column, it directs the producer to stop fetching unneeded data. In

relatively sparse matrices, such as FS and Gr, with averages of 2.4 and 8.0

non-zero elements per row, respectively, merge-intersections complete

rapidly, resulting in queues emptying more often and triggering more

reconfigurations. In SpMM, despite frequent reconfigurations, Fifer is

gmean 2.2× faster.

We also examine the energy consumed by each system in Figure 4-12.

Each bar indicates the dynamic energy consumed by the memory hierarchy

(red and orange), dynamic energy consumed by cores or PEs (green), and

energy consumed due to leakage currents (blue). The systems with OOO
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Figure 4-13: Fifer performance as the size of per-PE queue memory grows

and how double-buffered configuration cells affect speedup.

cores not only suffer from considerable leakage currents but also consume

significant dynamic energy per instruction. By contrast, the systems with

reconfigurable PEs consume much less energy, due to their reduced area

and higher performance: the static pipeline achieves gmean 12× better

energy efficiency than the OOO multicore across all applications. Using

Fifer further improves energy efficiency because applications complete

faster and reduce the energy lost to leakage. In SpMM, the static pipeline

suffers from increased main memory energy usage due to the larger

memory footprint created by separate PEs working on different parts of

the matrix; Fifer avoids this by keeping the entire pipeline’s working set at

a single PE. Otherwise, dynamic energy consumed by the reconfigurable

fabric and the memory hierarchy in Fifer and the static pipeline remain

largely the same. Overall, Fifer reduces gmean energy consumption by

1.5× over the static pipeline and by 19× over the 4-core OOO system.

4.8.3 Sensitivity to queue size and reconfiguration time

We now study Fifer’s sensitivity to queue size. Figure 4-13 reports gmean

performance relative to the default configuration, a 16 KB queue memory,

as it changes from 4 KB (0.25× the default) to 64 KB (4× the default). A

second line allows us to study the effect of using Fifer’s double-buffered

configuration cells.

Figure 4-13 shows that applications are sensitive to these parameters

in different ways. First, BFS is mainly sensitive to queue sizes: its perfor-

mance nearly halves with a 4 KB memory due to insufficient decoupling.

CC, PRD, and Radii, which also benefit from the additional queue space,

show similar trends in speedup as queue size increases. These applica-

tions do not see significant changes with the addition of double-buffered
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configuration cells. Because larger queues make reconfigurations less

frequent, slower reconfigurations are irrelevant for large queue sizes.

Next, SpMM is mainly sensitive to reconfiguration latency: its perfor-

mance reduces by about 15% without the double-buffered configuration

cells. As mentioned, SpMM is a control-intensive application; precisely

because of this reason, SpMM’s performance is flat across queue sizes:

larger queues let producers fetch further ahead, but this is not used be-

cause merge-intersections redirect producers every few elements. Without

double-buffering, PEs cannot overlap loading a new configuration from

memory as they complete the old stage’s in-flight operations.

Finally, while Silo is insensitive to reconfiguration latency, its perfor-

mance somewhat decreases as queue size increases. The larger queues

enable so much parallelism that it significantly strains the memory hierar-

chy: with a 64 KB queue buffer, the working set of a stage matches the L1

size, and L1 hit rates fall from 66% to 62%. This increases pressure on

the LLC and adds non-decoupled L1 misses that stall the PEs. This shows

that extremely excessive decoupling can cause memory footprint issues,

just as how prefetchers can trigger extra cache misses when running too

far ahead.

Table 4-3 lists the average time a configuration resides on a PE, as well

as the time needed to complete a reconfiguration for each benchmark. A

typical application, BFS, executes each stage for about 140 cycles before

reconfiguring, and spends around 13 cycles in reconfiguration, most of

which is spent completing the previous configuration’s in-flight opera-

tions. Applications on average spend 448 cycles per configuration with

about 19.7 of those cycles spent reconfiguring. SpMM, with its frequent

switching, shows why double-buffered configuration cells are crucial:

being able to load the new configuration and finishing the current one in

parallel minimizes dead time on a PE. Finally, the average time spent in a

configuration is correlated to queue capacity; quadrupling queue storage

increases the average residence time to 1488 cycles.

Finally, we also evaluated a system that can perfectly overlap load-

ing a new configuration with completing the previous configuration’s

operations, achieving zero-cost reconfiguration. This system improves

performance by just 10% gmean (and up to 1.8× on SpMM’s Gr input).

We conclude that this alternative design is a poor tradeoff, as it incurs

too much complexity for its limited benefits (for example, due to stalls

from the outgoing stage, functional units would have to interleave the

execution of multiple stages).
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Application BFS CC PRD Radii SpMM Silo Mean

Avg. residence time 140 279 927 564 30 1490 448

Avg. reconfig. period 12.5 13.9 20.4 27.7 12.6 60.1 19.7

Table 4-3: Average residence time of a configuration and time needed to

complete reconfiguration (draining the old configuration, loading and ac-

tivating the new configuration), in cycles.

BFS CC PRD Radii SpMM Silo
0
1
2
3
4

Sp
ee

du
p

Fully decoupled static pipeline Merged static pipeline Fifer

Figure 4-14: Performance of applications with merged stages.

4.8.4 Sensitivity to stage count

So far we have evaluated fully decoupled application pipelines: we have

used our partitioning technique to split the application into stages across

every long-latency load. This produces regular stages that can execute on

a CGRA fabric efficiently. Because Fifer time-multiplexes stages, splitting

the program aggressively is the right approach. But for the static pipeline,

the tradeoff is less clear: because each stage runs on a separate PE, having

many stages improves decoupling but may worsen load imbalance.

To study this effect, we now consider alternative application pipelines

where we judiciously merge stages to try to improve the performance

of the static pipeline. For example, in BFS, the source-centric stages

(processing the fringe, enumerating neighbors, and fetching distances)

can be merged into a single stage, reducing a 4-stage pipeline to two

stages. This pipeline still decouples across the most expensive indirection

and, in the static pipeline, allows twice the number of parallel pipelines

to be instantiated. However, the resulting first stage of this pipeline will

incur stalls due to long-latency loads. In general, we choose which stages

to merge by focusing on less-frequent indirections, merging low-activity

stages, and keeping stage logic small enough to still fit in a single PE.

Figure 4-14 shows the results of combining stages compared to the

original (i.e., fully decoupled) Fifer and static pipeline, normalized to the

performance of the original static pipeline and averaged across inputs.
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Overall, applications see very different effects. In BFS, because combining

stages reintroduces coupling, the merged static pipeline is 4.4× slower

than the original. CC sees a similar tradeoff as BFS, but PRD and Radii

become slightly faster. In SpMM, stages are combined so that a single

PE carries out the entire matrix multiplication for its share of rows. This

exploits more data-parallelism at the expense of decoupling and benefits

from small matrices like FS and Gr, which, as we discussed previously,

cause Fifer to switch very frequently. Due to high speedups in those

matrices, the merged static pipeline is gmean 4% faster than Fifer across

inputs (Fifer using this coupled pipeline for the inputs that benefit from it

and the decoupled pipeline for the others is 12% faster). Finally, Silo sees

a slight performance degradation from the merged pipeline.

4.9 Summary

We were able to achieve speedups on irregular applications in general-

purpose cores with Pipette. However, general-purpose cores are still

very inefficient due to their organization as temporal architectures. We

observed that reconfigurable spatial architectures can significantly im-

prove compute intensity. However, the unpredictable memory accesses

and control flow of irregular applications are significant obstacles to

good performance when using spatial architectures. As before, we struc-

tured irregular applications as spatial pipelines. Then, we proposed Fifer,

which augments a spatial reconfigurable fabric with dynamic temporal

pipelines, allowing us to create pipeline-parallel applications whose stages

are time-multiplexed onto this fabric. Just as we used SMT in Pipette

to time-multiplex many stages in a general-purpose core, we added a

cheap reconfiguration mechanism that lets us layer temporal pipelines

atop spatial pipelines. With this addition, and several other features

like handling control flow and reference acceleration, we demonstrated

significant utilization and performance improvements in key application

domains. Fifer thus makes efficient acceleration of irregular applications

practical for reconfigurable architectures.
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5 Phloem:

Automatic Acceleration of

Irregular Applications with

Fine-Grain Pipeline Parallelism

5.1 Introduction

The two previous chapters described hardware architectures that execute

irregular applications efficiently, achieving speedups of up to 47× over

an OOO multicore. However, there is currently no automatic way to gen-

erate efficient pipelines for irregular applications. Existing compilers only

produce regular pipelines [29, 42, 65, 94, 121, 122], and so far, irregular

pipelines have been written by hand. Creating an irregular application

pipeline requires making many choices that have significant impact on

performance, and it is tedious and error-prone to do so manually.

Pipelining an irregular application involves three challenges. First, it

requires decoupling straight-line code into pipeline stages, e.g., producing

the two example pipelines from Chapter 2. More concretely, while the

simple serial description of BFS (Figure 5-1, top) is about thirty lines of

code, turning this into efficient pipeline-parallel code (bottom) not only

doubles the size of code, but also requires several complex transformations.

Second, and more importantly, it requires selecting the right pipeline,

which depends on the application and architecture. For instance, in the

example at the beginning of Chapter 2, if A[] is prefetched accurately, it

may be better to combine the fetch A[i] and filter stages. Third, because

irregular applications have frequent control flow and shared state, it is

important to handle these efficiently when partitioning it across stages.

Otherwise, the resulting overheads may negate the benefits of pipelining.
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void bfs(Graph* g, int* cur_fringe, int* next_fringe,
int root, int* distances) {

int cur_fringe_idx = 0, next_fringe_idx = 0;
int cur_dist = 0;
// Add root to fringe
cur_fringe[cur_fringe_idx++] = root;
distances[root] = 0;
while (cur_fringe_idx != 0) {

cur_dist++;
// Process current fringe
for (int i = 0; i < cur_fringe_idx; i++) {

int v = cur_fringe[i];
// Enumerate neighbors
int edge_start = g->nodes[v];
int edge_end = g->nodes[v+1];
for (int e = edge_start; e < edge_end; e++) {

// Visit neighbor
int ngh = g->edges[e];
// If dist decreases, update it,
// add ngh to next fringe
int old_dist = distances[ngh];
if (cur_dist < old_dist) {

distances[ngh] = cur_dist;
next_fringe[next_fringe_idx++] = ngh;

}
}

}
swap(&cur_fringe, &next_fringe);
cur_fringe_idx = next_fringe_idx;
next_fringe_idx = 0;

}
}

void bfs_stage1(Graph* g, int* cur_fringe, int* next_fringe,
int root, int* distances) {

int cur_fringe_idx = 0;
int cur_dist = 0;
// Add root to fringe
cur_fringe[cur_fringe_idx++] = root;
distances[root] = 0;
while (cur_fringe_idx != 0) {

cur_dist++;
// Process current fringe
for (int i = 0; i < cur_fringe_idx; i++) {

int v = cur_fringe[i];
enq(1, v);
enq(1, v+1);

}
enq_ctrl(1, NEXT);
swap(&cur_fringe, &next_fringe);
cur_fringe_idx = deq(5);

}
enq_ctrl(1, LAST);

}

void bfs_stage2(Graph* g, int* cur_fringe, int* next_fringe,
int root, int* distances) {

setup_reference_accelerator(1, INDIRECT, g->nodes);
setup_control_value_handler(1, &&q1_handle_ctrl);
while (true) {

while (true) {
// Enumerate neighbors
int edge_start = deq(1);
int edge_end = deq(1);
for (int e = edge_start; e < edge_end; e++) {

enq(2, e);
}

}
q1_handle_ctrl:

if (deq(1) == LAST) {
enq_ctrl(2, LAST);
break;

}
enq_ctrl(2, NEXT);

}
}

void bfs_stage3(Graph* g, int* cur_fringe, int* next_fringe,
int root, int* distances) {

setup_reference_accelerator(2, INDIRECT, g->edges);
setup_control_value_handler(2, &&q2_handle_ctrl);
while (true) {

while (true) {
// Visit neighbor
int ngh = deq(2);
enq(3, ngh);
enq(4, ngh);

}
q2_handle_ctrl:

if (deq(2) == LAST) {
enq_ctrl(3, LAST);
break;

}
enq_ctrl(3, NEXT);

}
}

void bfs_stage4(Graph* g, int* cur_fringe, int* next_fringe,
int root, int* distances) {

int next_fringe_idx = 0;
int cur_dist = 0;
setup_reference_accelerator(4, INDIRECT, distances);
setup_control_value_handler(3, &&q3_handle_ctrl);
while (true) {

cur_dist++;
while (true) {

int ngh = deq(3);
// If dist decreases, update it,
// add ngh to next fringe
int old_dist = deq(4);
if (cur_dist < old_dist) {

distances[ngh] = cur_dist;
next_fringe[next_fringe_idx++] = ngh;

}
}

q3_handle_ctrl:
if (deq(3) == LAST)

break;
swap(&cur_fringe, &next_fringe);
enq(5, next_fringe_idx);
next_fringe_idx = 0;

}
}

Figure 5-1: Sequential BFS code (above) and hand-optimized pipeline-

parallel BFS implementation (below), with changes shaded in gray. Par-

allelizing this multithreaded code by hand is tedious and error-prone; we

automate this process with Phloem.
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We present Phloem,1 a compiler that automatically discovers and ex-

ploits pipeline parallelism in irregular applications. Phloem’s key enabling

insight is that the transformations required for pipeline parallelism can be

carried out as a series of novel, simple, composable passes that leverage

simple static analyses and cost models. These analyses and models help

Phloem select effective decoupling points, tighten inner loops, and reduce

the impact of irregular control flow. Finally, Phloem generates code that

leverages hardware support that enables irregular applications to run

efficiently as pipelines.

Our Phloem implementation can be used as a standalone compiler on

serial C/C++ code or combined with existing domain-specific compilers to

produce efficient pipeline-parallel applications from high-level code. We

demonstrate this by combining Phloem with Taco [61] to automatically

pipeline sparse linear algebra kernels.

Our evaluation shows that Phloem approaches the performance of

manually tuned pipelines. Averaging across all evaluated applications,

Phloem achieves gmean speedup 1.7× over serial code, and 85% of the

performance of manually tuned code. In the best case, Phloem even

exceeds the performance of manually tuned code by 15%. We also show

that Phloem can be combined with existing domain-specific compilers to

produce efficient pipeline-parallel applications.

In summary, we make the following contributions:

• We show how to systematically partition irregular applications into stages

and how to manage state to maximize performance.

• We introduce Phloem, which automatically transforms serial source code

into efficient pipeline-parallel implementations through a series of simple

passes.

• We demonstrate Phloem’s broad applicability by interfacing it seamlessly

with a domain-specific compiler.

• We implement and evaluate Phloem, achieving performance comparable

to hand-optimized code.

1 Pronounced like “flow 'em”, phloem is a plant’s specialized vascular tissue for conducting

sugars and other metabolic products [1].
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5.2 Baseline architecture

Phloem leverages hardware support for irregular application pipelines.

We use Pipette (Chapter 3) as our baseline architecture. Phloem uses

nearly every Pipette feature to create efficient pipelines from irregular ap-

plications. These include Pipette’s support for further decoupling memory

accesses (reference accelerators) as well as its mechanisms for efficiently

handling control flow (control values and control value handlers).

We also augment Pipette’s reference accelerators by allowing them to

be chained. Chained reference accelerators allow Phloem to exploit the fact

that some stages simply dequeue values from one RA only to enqueue it

to another one. We extend Pipette to support chained RAs, which perform

the work of several consecutive indirections. BFS contains an opportunity

for chained RAs.

As an example, in BFS, edge_start comes from loading g->nodes[v].

Now, instead of directly performing an indirection, the process current

fringe stage only needs to enqueue v to a reference accelerator configured

to indirect on g->nodes. The enumerate neighbors stage simply dequeues

the value of edge_start as an output of the RA. These two values form the

starting and ending indices for g->edges, so we can chain this to a second

scanning RA to read neighbors (ngh) out of g->edges. Chained RAs free

us to devote general-purpose threads and core resources to application

compute, rather than manipulating queues.

5.3 Phloem Design

We now present Phloem’s design and key techniques. We first explain

Phloem’s programming interface, introduce Phloem’s core transformations

to produce efficient pipelines, and present additional features.

5.3.1 Phloem interface

Phloem transforms serial code, starting with a program written in C. Other

interfaces are possible, e.g., we later introduce a TACO-based frontend.

Our C-based interface is not limiting, because Phloem’s key challenge is

not to find pipeline parallelism, but to generate efficient pipelines.

Phloem is automatic, but programmers can control some aspects

through the pragma annotations listed in Table 5-1.
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#pragma Function

phloem Mark this function for automatic pipeline parallelization.

decouple Separate the following instructions into a new stage.

replicate Make copies of the pipeline to fill hardware resources.

distribute Send values to another replica identified by a user-specified function.

Table 5-1: Summary of Phloem annotations.

Visit neighbors

Update data, next fringe

ngh = deq();

old_dist = deq();

if (cur_dist < old_dist) {    

distances[ngh] = cur_dist;

// update next fringe

}

37

...

INT_MAX
28 1 

7 INT_MAX 

37 INT_MAX 

...

ngh old_dist

1

2

cur_dist

3

1
Neighbor 37 dequeued with

old distance INT_MAX

2
Another neighbor 37 enqueued

with old distance INT_MAX

3
Distance of first neighbor 37

updated to cur_dist

4
Update data stage receives

stale old_dist value from

second copy of neighbor 37
(gets INT_MAX again)

4

old_dist = distances[ngh];

enq(ngh);

enq(old_dist);

Figure 5-2: A race condition in BFS that would arise with an incorrect de-

coupling into pipeline-parallel stages.

Phloem transforms single procedures: Phloem currently works on a

single procedure; this is not a major limitation in our experience, as the

main kernel of an irregular application typically fits in a concise definition

in a single function. Calls to other functions are supported, but Phloem

does not decouple within those calls. Inlining could remove this limitation;

we leave this to future work.

Memory and aliasing: To preserve the semantics of the serial program,

Phloem requires information about memory beyond C’s standard seman-

tics. Specifically, the programmer must provide precise aliasing infor-

mation, e.g., by tagging pointers with C’s restrict keyword. Modern

high-performance programs often do this already, as it enables other com-

piler optimizations; we shortly discuss how to handle situations without

precise aliasing information. This enables Phloem to safely transform code

that reads and writes memory, by ensuring involved operations cannot

alias. In addition, Phloem does not attempt to track and transform value

communication through memory (i.e., load-store telescoping).

One of the most significant benefits of this approach is that it prevents

race conditions; nevertheless, Phloem can work with such code provided

that some care is taken. Figure 5-2 shows the race in BFS described in

Section 3.2.3: if we pipelined the lookup of neighbors, a given neighbor
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Figure 5-3: Speedup over the original serial BFS implementation with each

added pass.

(for instance, neighbor 37) may appear as a neighbor of multiple edges.

If we also pipeline the lookup of old_dist, and the update data stage

updates the distance of neighbor 37, then any already-queued copies of

neighbor 37 will have a stale value for old_dist, as it has changed.

Avoiding races like this one requires a simple compiler analysis: plac-

ing reads and writes to the same data structure, or doing so through

pointers that may alias, in separate stages is disallowed. Phloem also

allows programmers to instruct it to be more conservative around code

that might cause race conditions. However, Phloem may still prefetch data

in this case. In the above example, visit neighbors and update data can

still be decoupled to prefetch neighbor distances, but update data must

read and update the distances itself to avoid observing stale data.

Program phases: Phloem generally decouples one loop nest (of arbitrary

depth) at a time; some programs, like PageRank-Delta, are structured as

phases of several loop nests that successively build on each other. These

loop nests can be decoupled individually, but in general, their execution

cannot be overlapped. To ensure correctness in this case, Phloem inserts

synchronization to ensure that all the stages complete the previous loop

nest before moving onto the next one.

5.3.2 Producing efficient fine-grain pipelines

Phloem produces efficient pipeline-parallel programs with the system-

atic application of six passes. We introduce these passes with a detailed

example using BFS, showing how they complement each other and pro-

gressively improve performance.
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Figure 5-3 shows the performance benefits of implementing BFS on

Pipette and running it on a large road network input: BFS achieves a

4.6× speedup over the serial implementation. We emphasize that these

performance benefits were achieved by manually applying non-trivial

insights about efficient execution of pipeline-parallel programs; we now

describe a potential pitfall of working at the wrong abstraction level.

A more general, but costlier, approach than pipeline parallelism is to

leverage a dataflow architecture [9, 31], where computations are expressed

as a graph of operators that communicate values, and the availability

of data drives the execution of operators. Dataflow execution can hide

long latencies because operators do not run in any particular order. We

initially studied Dynamatic [56], a state-of-the-art technique to transform

serial code into dataflow graphs. We used it to map BFS to a dataflow

graph, with which we simulated dataflow execution: any operation can

begin as soon as its inputs are available. However, as Figure 5-3 shows,

the performance of this dataflow graph is very poor: 1.7× worse than

the serial version. The chief reason is that pipeline stages are extremely

sensitive to overhead, and Dynamatic, which breaks down applications

into basic blocks, must track all of the context and control information

of each block. This is the case even if these values are unused or easily

recomputed. Thus, Dynamatic’s dataflow graphs propagate significant

amounts of program state across stages. These extra storage overheads

and operations ruin throughput, just like how extra instructions in the

innermost loops in serial programs hurt throughput.

We now show how to Phloem’s passes achieve an efficient pipeline-

parallel BFS. To make discussion concrete, we focus on one stage of BFS,

enumerate neighbors, and show how each of the six passes applies to this

stage’s code. Figure 5-4 shows all but the last pass (which operates across

multiple stages).

Decouple: Before applying any transformations, Phloem first identifies

where to decouple code into stages. Phloem decouples across long-latency

loads, because these are BFS’s main source of irregularity. Because each

loop level usually contains a long-latency load, decoupling an irregular

application often results with each loop level to its own stage. Choosing

decoupling points is critical for performance; Section 5.4 fully describes

how Phloem selects these points.

The loop level in the enumerate neighbors stage iterates over the

variable e to traverse the g->edges array, based on values of edge_start
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for (i = 0;

i < cur_fringe_idx; i++) {

v = cur_fringe[i];

edge_start = g->nodes[v];

edge_end = g->nodes[v+1];

for (e = edge_start;

e < edge_end; e++) {

ngh = g->edges[e];

...

}

}
Move to next stage

for (i = 0; i < 

cur_fringe_idx; i++) {

v = deq();

v_1 = deq(); // v+1

edge_start = g->nodes[v];

edge_end = g->nodes[v_1];

for (e = edge_start;

e < edge_end; e++) {

enq(e);

...

}

}

Move to previous stage

for (i = 0; i < 

cur_fringe_idx; i++) {

v = deq();

edge_start = g->nodes[v];

edge_end = g->nodes[v+1];

for (e = edge_start;

e < edge_end; e++) {

enq(e);

}

}

setup_reference_accelerator(

INDIRECT, g->nodes);

for (i = 0;

i < cur_fringe_idx; i++) {

edge_start = deq();

edge_end = deq();

for (e = edge_start;

e < edge_end; e++) {        

enq(e);

}

}

setup_reference_accelerator(

INDIRECT, g->nodes);

while (true) {

edge_start = deq();

if (is_control(edge_start))

break;

edge_end = deq();

for (e = edge_start;

e < edge_end; e++) {                 

enq(e);

}

}

enq_ctrl(NEXT);

setup_reference_accelerator(     

INDIRECT, g->nodes);

setup_control_value_handler(

&&handle_ctrl);

while (true) {

edge_start = deq();

edge_end = deq();

for (e = edge_start;

e < edge_end; e++) {                 

enq(e);

}

}

handle_ctrl:

deq();

enq_ctrl(NEXT);

RA RA RA

CH CH

Decouple Pass 1: Add queues Pass 2: Recompute

Pass 3: Accelerate accesses Pass 4: Use control values Pass 5: Use control handlers

Figure 5-4: Passes to transform serial code into an efficient pipeline. After

the initial decoupling step, each column shows successive transformations

of the enumerate neighbors stage (changes shaded in gray). Pass 6, inter-

stage dead code elimination, is not shown.

and edge_end. But now we have a context management problem: we

need to communicate the current vertex v to this stage.

1. Add queues: The simplest way to achieve a functionally correct

pipeline is to pass every needed value through a queue. Phloem adds

queues to communicate the values of v and v+1, which were produced in

the previous stage. However, passing everything through queues produces

poor results because queue communication has overhead. For example,

sending v+1 is not needed because it can be recomputed from v.
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2. Recompute: Some values change infrequently, or can be determined

without communication from another stage. In this case, we can simply

recompute the value (similar to rematerialization in compiler literature).

A great candidate for this optimization is index computations: calculating

v+1 rather than passing it through a queue is more efficient.

3. Accelerate accesses: In the enumerate neighbors stage, Phloem can

use Pipette’s reference accelerators to offload accesses to g->nodes, and

since both edge_start and edge_end access this array, we can route them

through the same RA: the producer simply enqueues v and then v+1.

4. Use control values: We can signal the end of an edge list by sending

the NEXT control value, which the stage detects with the is_control()

function. If so, the code breaks out of this loop. Now, stages simply check

for a control value rather than recompute the loop condition.

5. Use control value handlers: Instead of checking for control values

in the inner loop, Phloem sets up control handlers: these process control

values and, if necessary, send more control values to downstream stages

and break out of inner loops. At initialization, Phloem configures Pipette

with the address of the control handler (the code uses the && unary

operator to indicate taking the address of a label).

6. Inter-stage dead code elimination: Finally, Phloem improves decou-

pling by performing inter-stage dead code elimination on superfluous

control values. Using control values represents breaking out of inner

loops in the original sequential source code. However, separating the

program into stages means that some of these outer loops in some stages

are empty—this means that a control value used at this loop level is

unneeded. For example, all vertices visited in an iteration of BFS are

compared to the same distance. It is unnecessary to distinguish which

vertex a particular neighbor vertex belonged to. A naive implementation

of control values, however, would send an unnecessary control value after

the end of each edge list. By eliminating this control value, downstream

stages can simply process all vertices until the iteration ends.

Figure 5-3 shows the impact of applying these techniques. To bet-

ter understand the performance impact of each pass, we show multiple

intermediate combinations of theses passes. For instance, three of the

control-based passes (corresponding to CV, DCE, CH in Figure 5-3) build

successively on each other. The plot shows the performance improve-

ment of adding each of these passes to code which already contains

queues (Q) and recomputation (R). The benefits of adding control values,
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#pragma phloem distribute
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if (cur_dist < old_dist) {
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...

#pragma phloem replicate

void bfs(Graph* g, int* cur_fringe, int* next_fringe,

int root, int* distances) ...

Replica 0

Replica 1

Replica 2
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if (ngh & 0x3 == 0)

// send to replica 0

else if (ngh & 0x3 == 1)
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...

// set up replica 0 fringe

// set up replica 1 fringe

...

Figure 5-5: Replicating a decoupled pipeline and distributing work be-

tween replicas.

eliminating unused control values, and adding control handlers (the bar

labeled CH, DCE, CV, R, Q) culminates in a 1.85× speedup over the original

non-decoupled code.

With 4.7× speedup over the original code, the performance of Phloem’s

emitted BFS now even exceeds that of hand-optimized code. Moreover,

Phloem accomplishes this performance through simple static inspection of

the program, whereas the manually optimized version needed to leverage

application-specific insight about communication patterns.

5.3.3 Composing data and pipeline parallelism

As we saw in Pipette (Section 3.5.6) and Fifer (Section 4.5.5), data

parallelism and pipeline parallelism flexibly compose; pipeline replication,

enabled by Pipette’s support for cross-core queue communication, lets us

fully exploit the resources of modern multicore systems.

For instance, a single BFS pipeline can be replicated over many cores

so that each pipeline works on a specific part of the input graph as shown

in Figure 5-5. Working on disjoint parts of the input eliminates the need

for expensive synchronization operations across shared memory.

With time-division multiplexing of stages in each core, each replicated

pipeline can also mitigate load imbalance. This implementation can then
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use a simple partitioning scheme, like examining bits of the neighbor

vertex id, to determine which replica to send neighbors to. This shows

that exploiting pipeline and data parallelism together can lead to simpler

implementations than exploiting data parallelism alone.

By marking a function with #pragma replicate and specifying the

number of replicas, a programmer can create multiple copies of a pipeline.

By default, these pipelines operate independently but over the same data;

Phloem does not automatically infer which data structures are shared

or replicated. Instead, by defining a simple replicate_arguments()

function, a programmer can indicate how to partition work across the

pipelines. For instance, in a replicated BFS, each replica works on its

own fringe array, so this function would allocate new cur_fringe and

next_fringe arrays for each one. The partition need not be complex,

because each pipeline is automatically load-balanced by the underlying

hardware. As a result, the replicas proceed at roughly the same rate, even

with irregularities in the stages.

To better exploit locality, Phloem also allows pipelines to distribute

work in a data-centric way, by allowing one replica to enqueue work to

not only its next stage but also the corresponding stage of any replica.

The programmer defines another simple function to describe how to

select which replica will receive the enqueued value. In BFS, adding

#pragma distribute between the visit neighbor and the update data

stages splits the replicas into source-centric and destination-centric sections;

selecting the replica simply involves inspecting bits in the neighbor id.

This improves data locality in the update data stage because each replica

works on separate parts of the graph.

5.3.4 Making efficient domain-specific pipelines

Phloem’s implementation as a source-to-source transform on C/C++ is

crucial, as C/C++ remains the lingua franca of domain-specific accelerator

compilers [10, 16, 61, 101, 142] and frameworks [13, 106]. Using C as

an input language to Phloem, then, makes it possible to seamlessly pass

code to and from these compilers and frameworks. These compilers

emit code with structure that Phloem can easily discover; this process

would take considerable time for a human to do the same. Furthermore,

compilers emit code that already meet Phloem’s input requirements; for

example, these tools emit data structures that are qualified with the C/C++

restrict keyword.
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As a case study, we examine Phloem’s performance on a variety of

automatically generated sparse linear algebra kernels from the Tensor

Algebra Compiler (Taco) [61]. Taco accepts a tensor expression that

represents operations on sparse tensors, such as the multiplication of a

matrix A by a vector x with the expression y(j) = A(i,j) * b(i). Then,

given the storage formats of each tensor (for instance, A could be stored

in CSR format), Taco produces C code. We then process this C code with

Phloem to produce an efficient pipeline-parallel implementation to be

executed on Pipette.

5.4 Automatic Decoupling

The previous section presented the techniques that enable Phloem to

produce efficient pipeline-parallel programs. The remaining challenge in

implementing Phloem is finding decoupling points. Choosing where to de-

couple is crucial, as missing frequent irregular accesses hurts performance

and these accesses are not always easy to identify.

Phloem intermediate representation (IR): Phloem transforms the C

abstract syntax tree into a custom intermediate representation (IR) that

represents fine-grain operations (e.g., load, add) within the program.

It is important to represent the program as a fine-grain graph because

decoupling could conceivably occur at any point in the program. That

said, it is not necessary to decouple every operation from each other; we

will show that decoupling at just a few (3 or 4) strategically chosen points

is enough for good performance.

Decoupling in the Phloem IR amounts to selecting edges that will be

replaced by queued communication. Importantly, and unlike conventional

IRs like LLVM’s, Phloem’s IR supports operations to manipulate queues

as previously described: to carry out communication and convey control

flow changes. These have the effect of restoring definitions of values to

these subgraphs.

Determining decoupling points statically: Phloem can find decoupling

points using static analysis. In this mode, Phloem ranks all possible

decoupling points using a cost model, and selects the (N − 1) highest-

ranked points to build an N -stage pipeline. Each stage is assigned to a

separate thread.

Phloem’s cost model prioritizes decoupling points according to two

factors: how expensive the memory access is predicted to be, and how
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Figure 5-6: How Phloem selects decoupling points, generates pipelines,

communicates data between stages, and outputs a pipeline.

frequently it happens. First, to estimate access cost, Phloem considers

both whether the access is indirect (rather than sequential) and whether

there are other accesses nearby. For instance, the BFS example has two

nearby accesses to g->nodes. The first access is an indirection, so it is

predicted to be costly. However, the second access touches the location

after the first one, so it is very likely a cache hit, and is predicted to be

cheap. This biases these two accesses to happen together, rather than in

two separate stages. To estimate access frequency, Phloem gives higher

weight to memory references located in the innermost loops and less

weight to infrequent accesses in the outer loop. Accordingly, the access

to g->edges is considered more even more costly than to g->nodes, and

would be prioritized for decoupling.

Figure 5-6 (center) shows the static compilation flow, in which only one

pipeline is generated and no training occurs. This simple, static approach

works well and produces pipelines that approach manually optimized

versions. This makes sense, as the innermost loops typically demand

the highest throughput but also come at the end of the longest chains of

indirections. By building stages from the innermost loop outwards, we

usually produce a pipeline that decouples the most performance-critical

sources of irregularity.

Phloem makes it simple to target the stage count that matches the

number of threads supported by the architecture: 2, 4, or even 8. Phloem

can generate pipelines with more stages than there are threads on a core;
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just as we generated replicated pipelines (Section 5.3.3), it is similarly

possible to generate non-replicated pipelines spanning multiple cores.

Autotuning decoupling points: Though the above approach produces

reasonable pipelines, the cost model is by necessity approximate: in

irregular applications, the misses to each data structure and the loop

lengths are highly input-dependent, and often vary over time. To improve

performance, Phloem includes a profile-guided optimization mode. In

this mode, Phloem selects more than (N −1) candidate decoupling points

from the highest-ranked ones, and then builds the candidate pipelines

stemming from all their combinations. These pipelines are then profiled

on small training inputs to find the best one. Figure 5-6 also illustrates

this process, with the pipeline search and profile-guided optimization

shaded in gray. This process, which completes in under an hour, allows

exploiting decoupling points that are statically ranked below the bar, but

happen to be more profitable.

The static compilation process completes within seconds, and its

pipelines also work well in practice. Our evaluation compares the perfor-

mance of pipelines generated by both the static compilation and profile-

guided optimization modes.

5.5 Methodology

We implement Phloem as a source-to-source compiler. For each of our

benchmarks, we start with high-quality serial implementations. Phloem

automatically identifies decoupling points based on a simple heuristic

of the costliest operations (long chains of dependent references in deep

loop nests), and produces pipeline-parallel versions. We then compile

Phloem-generated code with gcc -O3.

5.5.1 Evaluated systems

We evaluate Phloem’s generated benchmarks on an extended version of

Pipette (Section 5.2) and use Pipette’s evaluation configuration, including

the same core parameters. We also use the same benchmarks as Pipette

with the exception of Silo (as Phloem does not yet detect bounded cycles

in loops).

Taco benchmarks: We integrate Phloem with the Tensor Algebra Com-

piler (Taco) [61] to automatically compile tensor algebra expressions into
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Domain Graph Vertices Edges Avg. deg.

Training inputs

Training internet graph internet 126K 207K 1.7

Training road network USA-road-d-NY 264K 734K 2.8

Table 5-2: Training graphs, sorted by the number of edges. (The test graphs

are listed in Table 3-4.)

Domain Matrix Size (n× n) Avg. nnz/row

SpMM training inputs

Training graph as matrix 1 email-Enron 36,692 10.0

Training graph as matrix 2 wiki-Vote 8,297 12.5

Taco (MTMul, Residual, SpMV, SDDMM) test inputs

Circuit simulation scircuit 170,998 5.6

Economics mac_econ_fwd500 206,500 6.2

Particle physics cop20k_A 121,192 21.7

Structural pwtk 217,918 52.9

Cantilever cant 62,451 64.2

Table 5-3: Input matrices, sorted by average non-zeros per row. (Test ma-

trices used by SpMM are listed in Table 3-5.)

pipeline-parallel programs. We compare Phloem-generated pipelines with

Taco-generated serial and data-parallel versions. We use the following

Taco benchmarks:

Sparse Matrix-Vector Product (SpMV) evaluates y = Ax , where x and

y are dense vectors and A is a sparse matrix.

Sampled Dense-Dense Matrix Multiplication (SDDMM) evaluates A=

B ◦ (C D), where C and D are dense matrices, A and B are sparse matrices,

and the ◦ operator represents component-wise multiplication.

Matrix-Transpose Multiplication (MTMul) evaluates y = αA⊺ + βz,

where α and β are constants; x , y, and z are vectors; and A is a sparse

matrix.

Residual evaluates y = b− Ax , where b, x , and y are vectors and A is a

sparse matrix.

Inputs and sampling: We use the inputs evaluated by Pipette (Sec-

tion 3.4) as test inputs; training inputs for the graph benchmarks are listed

in Table 5-2 and training inputs for SpMM are listed in Table 5-3. (We
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Figure 5-7: Per-benchmark speedup over the serial baseline. Each Phloem

bar (green) shows the performance of a pipeline produced through profile-

guided optimization; an × indicates the performance of a pipeline pro-

duced by the static cost model.

also use the same sampling methodology for PRD and Radii as Pipette.)

We evaluated the Taco benchmarks using the same matrices as its original

evaluation; Table 5-3 also lists these matrices.

5.5.2 Automatic pipeline generation and search

We use Phloem to automatically generate all pipelines of up to four threads.

(This results in no fewer than fifty different pipelines for each benchmark.)

We then select the best pipeline by running each pipeline configuration

on a small set of training inputs: for graph applications, internet and

USA-road-d-NY; for SpMM, email-Enron and wiki-Vote. We then use

the best-performing pipeline as determined by these training inputs and

evaluate its performance on the test input set. Importantly, we do not

present results for the best pipeline over all inputs a priori; nevertheless,

training may identify the globally optimal pipeline. Finally, for simplicity,

we use the static compilation flow for the Taco benchmarks.

5.6 Evaluation

Figure 5-7 reports the overall speedups of Phloem compared to the non-

decoupled serial code, a competitive data-parallel implementation, as

well as a manually optimized version. Each group of bars shows results

for one application, and each bar represents the gmean speedup across

inputs of each variant over the serial version. For Phloem, the height

of the bar shows the result for the pipeline produced by profile-guided
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Figure 5-8: Breakdown of cycles, normalized to serial baseline (S: Serial,

D: Data-parallel, P: Phloem, M: Manually pipelined).

optimization, and the × mark shows the speedup of the pipeline produced

by the static compilation flow.

Phloem achieves significant speedups—on average, 1.7× over serial—

which are comparable to that of the hand-tuned version. In all but one

case, the performance of the Phloem version not only surpasses the serial

version but also a competitive data-parallel implementation. On average,

Phloem achieves 85% of the performance gains of the manually optimized

version. In two applications, BFS and Radii, Phloem outperforms the man-

ually optimized version. SpMM shows a negative result, where Phloem

does not improve performance.

Figure 5-8 gives more insight into these results by showing a break-

down of cycles spent by cores. Each group of bars reports cycles for

one application, relative to the serial baseline. Each bar is broken down

in cycles spent (i) issuing micro-ops, and waiting on (ii) backend stalls

(including memory latency), (iii) full or empty queues (for Phloem and

Manually pipelined), or (iv) other stalls (e.g., frontend).

Comparing the manually optimized code to the Phloem-generated

BFS code, the Phloem version runs slightly fewer instructions. Threads

also block less often from full or empty queues in the Phloem version,

keeping OOO core resources busy and resulting in Phloem beating the

hand-optimized pipeline by 15%. Radii primarily benefits from a better

decoupling that reduces queue stalls. CC and PRD, on the other hand,

show slightly worse decouplings, both due to increased memory stalls,

but still do much better than data-parallel.

Finally, Phloem does not benefit SpMM. The reason is that SpMM’s

manual version uses a bespoke implementation of merge-intersect where,

upon finding the end of an input queue through a control value, the

consumer skips the remaining values in the other input queue up to

its next control value. This reduces instructions and stalls by avoiding
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Figure 5-9: Speedups over serial baseline for Taco benchmarks.

ineffectual work. However, it is a highly application-specific insight that

is hard to derive from serial code, and is thus unavailable to Phloem. This

shows that there are some patterns for which a manual approach yields

better performance.

Taco results: Figure 5-9 reports Phloem’s speedups when parallelizing

Taco programs. (This is similar to Figure 5-7, except that we lack manually

optimized pipelines for these programs.) For MTMul, Residual, and SpMV,

Phloem easily parallelizes the code, resulting in a gmean speedup of 1.5×

over serial across their inputs for each of these benchmarks. Notably,

data-parallel Taco versions barely improve performance, as the increase in

instructions outweighs the benefits gained by turning to data parallelism.

SDDMM shows the opposite result: while Phloem-generated code

shows no improvement over the serial version, the data-parallel version

sees some speedup. This is because SDDMM, unlike the other benchmarks,

has a regular innermost loop that multiplies dense, uncompressed matrices

C and D. Conventional architectures handle this case well.

The speedups gained by simply adding Phloem as a pass to an existing

domain-specific compiler showcases not only Phloem’s generality, but also

the applicability and effectiveness of fine-grain pipeline parallelism.

5.6.1 Analysis of generated pipelines

We now evaluate the impact of profile-guided optimization by examining

the pipelines generated by the search process. Figure 5-10 shows the

distribution of gmean speedups for pipelines of a given number of stages.

Speedups are relative to the original serial code, and here, the number of

stages includes any reference accelerators used. For instance, in BFS, the

best 4-stage pipeline is 2.8× better than serial, while an 8-stage pipeline

is only 2.4× better. This illustrates the many tradeoffs that exist when
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Figure 5-10: Plot showing the distribution of gmean performance over the

training inputs of Phloem-generated pipelines for select benchmarks as the

number of stages are varied. An × indicates that no pipeline of that length

was profiled.

constructing pipelines, as adding too many stages can cause excessive

communication that limits possible performance. This is underscored

by SpMM, in which performance diminishes as stages are added for the

reasons already discussed. Lastly, forcing a particular pipeline length could

cause awkward pipeline stage boundaries that decrease performance, as

seen in SpMV at 5 stages. Applying profile-guided optimization helps

avoid falling into such minima. Overall, our automatic approach finds

well-performing pipelines within the distribution.

5.6.2 Replicating pipelines

We evaluate how Phloem effectively uses multicore resources by producing

replicated pipelines. In addition to the replicated BFS, presented in

Section 5.3.3, we also evaluate replicated pipelines for CC, PRD, and Radii,

all of which are also amenable to a data-centric partitioning scheme.

We scale the system to a 4-core system with 4 threads each, scaling the

data-parallel system and replicating the Phloem and manual pipelines to

use all threads. We use #pragma replicate and distribute annotations

to direct Phloem to produce the replicated pipeline, which uses Pipette’s

inter-core queue communication to send work to other cores.

Figure 5-11 compares the performance of these systems to a single-

core, single-thread serial configuration. In BFS and CC, the data-parallel

system achieves speedups somewhat linearly with the number of cores,

the manually pipelined versions of BFS and CC respectively achieve 12×

and 7× better performance than the serial implementation. Phloem’s

automatically replicated versions of these pipelines perform 10× and 4×

better than serial, and in both cases outperform the data-parallel system.

Phloem’s replicated Radii pipeline outperforms both the data-parallel and
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Figure 5-11: Performance of BFS, CC, PageRank-Delta, and Radii replicated

over many cores, compared to serial, data-parallel, and manually pipelined

versions.

manually pipelined versions. Unlike the other automatically replicated

pipelines, which replicate 4 stages (plus RAs) four times across four cores,

Radii’s pipeline is 2 stages (plus RAs), replicated eight times across four

cores. This organization better exploits data locality and reduces the

impact of memory stalls. Finally, while PRD also outperforms the data-

parallel implementation, its performance is about half that of the manual

pipeline. The manual version merges the two middle stages together to

make room for a second level of stage replication within each already-

replicated pipeline. Phloem does not yet support this transformation

automatically. On a final note, when replicating pipelines, Phloem also

selects different pipeline configurations than merely replicating stages

from the single-replica configuration. This change further reinforces

the need for automatic parallelization: changes to the pipeline alter the

tradeoffs needed to get good performance.

5.7 Additional Related Work

In this section, we discuss prior work not covered so far.

Domain-specific software frameworks: Several frameworks and lan-

guages may feature pipeline-like behavior, but they ultimately address

different problems than Phloem.

For example, Ligra [106] accelerates graph applications by first casting

them into combinations of edge-centric and vertex-centric operators. It

achieves good performance on graph analytics applications due to graph-

specific optimizations applied to these operators.

Halide [101] is a domain-specific language for image processing

pipelines, but its optimizations are highly tuned for its specific domain.
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For instance, it cannot handle arbitrarily deep chains of dependent mem-

ory accesses, which have no meaningful analogue in image processing.

Like specialized hardware accelerators, these domain-specific frameworks

achieve good performance within their intended domain, but would re-

quire wholly different tradeoffs to adapt to other domains.

T2S-Tensor [111] extends Halide to create spatial accelerators for

dense, uncompressed tensor kernels. However, irregular applications,

Phloem’s target application domain, do not map to systolic arrays in a

performant way.

Phloem sidesteps the limitations of domain-specific accelerators by

exploiting a general technique, pipeline parallelism. Nevertheless, despite

having orthogonal goals to these frameworks, we demonstrated that

Phloem can be easily combined with them, serving as a backend to produce

efficient pipeline-parallel code from the code emitted by these frameworks.

Partitioning dataflow graphs: Several prior techniques perform tempo-

ral partitioning [20, 53, 99] in the context of reconfigurable architectures,

which divides a dataflow graph into multiple partitions. By executing

each partition over multiple time steps, a reconfigurable architecture can

perform a computation that is been otherwise too large to fit all at once.

Many crucial shortcomings of these works make them insufficient for

partitioning our dataflows. First, communication between partitions is

only concerned with minimizing the number of reconfigurations and the

amount of communication, so it is acceptable to slowly communicate

data between partitions through memory on the reconfigurable unit [99]

or main memory [59]. Second, these prior works generally examine

applications that give rise to regular implementations on reconfigurable

architectures, like signal processing (e.g., filters, FFT, and DCT). Third,

these techniques statically schedule partitions [52, 129] and run them in

a fixed order (e.g., round-robin [60, 126]), so they cannot mitigate load

variation by dynamically selecting a partition. Finally, these approaches

target reconfigurable architectures; Phloem generalizes this approach to

general-purpose architectures.

Compilers for spatial architectures solve problems adjacent to those

of Phloem, as they need to map operations to architectures supporting

some form of dataflow. However, they have all focused on mappings in

which the configuration (and thus computation) is fixed throughout the

application’s execution [17, 144]. SARA [141] exploits coarse-grain data

parallelism in mapping applications to the Plasticine architecture [98], but
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its focus is not on irregular applications; instead, it focuses on compute-

heavy regular applications with little control. Some compilers identify

parallel patterns for FPGA implementation, including pipelines [97], but

these all assume that the entire pipeline can be mapped to the hardware

at once, resulting in different tradeoffs.

Phloem’s ability to also generate configurations for spatial architec-

tures superficially resembles high-level synthesis (HLS) and the interme-

diate representations (IRs) that have been recently developed in service

of that goal. For instance, Calyx [85] is an IR intended for hardware

implementation, but relies on unrolled loops for exploiting parallelism

in regular applications. Its support for pipelines remains immature—in

fact, it explicitly identifies the need for compiler support for supporting

(explicit) pipeline parallelism.

Moreover, Phloem generates pipelines for dynamic time-multiplexed

architectures, which have different design considerations. For instance,

Aetherling [33] produces statically scheduled streaming hardware cir-

cuits, but it specifically does not support variable-latency operators—a

hallmark of irregular applications. Moreover, dynamic time-multiplexed

architectures contain features for efficient control and memory accesses

that are required to make irregular applications run well—features that

are not exploited by prior work.

5.8 Summary

Irregular applications use both conventional and specialized architec-

tures poorly. Pipette and Fifer present simple hardware support to ex-

ploit untapped fine-grain pipeline parallelism in irregular applications by

structuring them as pipelines. However, they needed manually created

and painstakingly hand-tuned applications that were produced through

a tricky and error-prone process. Phloem automates the extraction of

efficient fine-grain pipeline parallelism in irregular applications, system-

atizing numerous insights in a robust and composable approach. This

enables automatic high performance on irregular applications and helps

make Pipette’s and Fifer’s hardware support more easily available to

programmers.

104



6 Conclusion and Future Work

Advances in computer architecture have enabled significant changes in

the computing landscape, but they have also increased the demand for

processing more data in more complex ways. The introduction of irreg-

ularity, in the form of unpredictable memory accesses and control flow,

threatens continued progress in today’s important emerging applications,

because current systems mainly target regular applications.

This thesis demonstrates that accelerating irregular applications with

fine-grain pipeline parallelism is practical and effective with an end-to-end

approach consisting of two hardware architectures and a compiler.

The first hardware architecture, Pipette, takes advantage of existing

structures in modern OOO cores to implement fine-grain pipelines of

irregular applications. Specifically, it reuses the physical register file as

backing storage for decoupled communication, and simultaneous mul-

tithreading to ensure high utilization even when some pipeline stages

stall. It also introduces inexpensive mechanisms for handling control flow

efficiently and accelerating common memory accesses. Pipette achieves

nearly two-fold gmean speedup over a variety of irregular applications.

The second hardware architecture, Fifer, extends Pipette’s insights

to specialized architectures and shows that fixed-latency compute-rich

fabrics can be used to efficiently implement high-performance irregular

application pipelines. Fifer’s double-buffered reconfiguration scheme

lowers the cost of using these highly efficient fabrics, and its adaptation

of the control flow handling and memory access acceleration techniques

from Pipette makes implementing irregular applications practical. Thus,

Fifer makes the efficiency benefits of spatial reconfigurable architectures

available to irregular applications.

Finally, Phloem, the compiler, makes it easy to tap into this new hard-

ware support by transforming serial code into efficient pipeline-parallel

implementations. It systematizes the creation of pipelines and their stages,
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using cost models that identify chains of challenging indirections that need

decoupling. With both a static compilation flow as well as a profile-guided

optimization flow, Phloem automates the laborious trial-and-error process

of manually creating pipelines while retaining 85% of the performance

improvements gained by making pipelines by hand. Phloem thus makes

the acceleration benefits of architectures like Pipette and Fifer much more

accessible to programmers.

6.1 Future Work

This line of work opens exciting avenues for future research.

Expanding the repertoire of pipelined irregular applications: This

thesis has demonstrated that latent pipeline parallelism is plentiful and can

be exploited efficiently. Further inquiries into other irregular applications

can yield more opportunities for acceleration.

Bringing dynamic pipeline parallelism to hardware: Current hard-

ware architectures make it infeasible to automatically pipeline-parallelize

arbitrary binary code due to race conditions (see Phloem’s description of

race conditions in Section 5.3). While Phloem offers mechanisms to auto-

matically cope with these conditions, a programmer must often intervene

with application-specific insights to maximize performance.

This opportunity can also be viewed as the difference between explicit

and implicit parallelization. These architectures rely on a programmer

(or compiler) to explicitly harness pipeline parallelism by decoupling

programs into stages. Future work could add architectural support for

implicit pipeline parallelism, to automatically infer pipelines in the same

way that out-of-order cores can extract instruction-level parallelism from

unmodified binary code by knowing which instructions to run out of order.

Such additions could make the benefits of pipeline parallelism available

without specific compiler support or programmer intervention.

Extending instruction sets for pipelines: Extensions to the ISA to sup-

port SIMD instructions, like MMX, SSE, and AVX for the Intel x86 ar-

chitectures, have made exploiting data-level parallelism accessible to

programmers and compilers. An extension to a modern, clean instruc-

tion set like RISC-V [133] with instructions to support pipeline semantics

can improve interoperability between the many proposed systems that

leverage hardware queues. Even within a single system, a standard

queue-based communication interface might need to coordinate between
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heterogeneous units, like accelerators and general-purpose processors, all

across the memory hierarchy or within a single core.

Developing decoupled functional units: Pipette’s and Fifer’s reference

accelerators have repeatedly proved themselves crucial in improving the

performance of irregular applications. So useful, in fact, that similar

decoupled, specialized structures to fetch individual values, or ranges

of values, from memory appear in other work [46, 116, 138]. A full

treatment of these types of units may help drive the inclusion of these

units (controlled by the aforementioned instruction set extension) in

future commercial architectures.

Targeting new architectures: While Pipette and Fifer target out-of-order

cores and coarse-grain reconfigurable arrays, the techniques developed

here can be applied to a variety of other architectures. Pipeline parallelism

is especially relevant where plenty of work can be buffered and then fed

through a high-throughput datapath in rapid succession. In particular,

GPUs are a good candidate for future exploration.

Balancing general-purpose and specialized support for pipeline par-

allelism: Pipette and Fifer represent two points at opposite extremes in

a tradeoff between general-purpose and specialized computation. Even

in Pipette, in which any computation can be carried out by the general-

purpose core, the reference accelerators provide specialization that is

crucial for performance. A future system could devote more area to spe-

cialized hardware that more closely resembles RAs in functionality and

size, but leave a few general-purpose cores to have the flexibility to handle

stages that are better expressed as instructions.

Executing regular programs more efficiently: This thesis demonstrated

the effectiveness of exploiting fine-grain pipeline parallelism on irregular

applications. Future work could examine how to support both regular

and irregular applications. In particular, we have shown that building

temporal pipelines by time-multiplexing compute resources places less

demands on chip area because it is cheaper than duplicating compute

structures outright. We could accelerate regular applications in a way

that is more resourceful than simply deepening speculative structures or

widening vector lanes.
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