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by

Songtao He
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Abstract

Digital street maps with rich features are the foundation of many applications. How-
ever, creating and maintaining up-to-date digital maps often involve many labor-
intensive tasks, making the mapping process time-consuming and expensive. This
thesis explores automated techniques for enriching digital street maps from aerial
imagery and GPS data.

Digital street maps consist of a collection of geometry structures such as a road
graph and the semantics associated with the structures, such as the lane count and the
speed limit of a road segment. This thesis first proposes two solutions, RoadRunner
and Sat2Graph, to automatically extract road-level street maps from GPS trajectory
data and aerial imagery, respectively. Road-level street maps serve as the base maps
in digital street maps, providing the basic yet fundamental way-finding service to the
map users. However, road-level street maps don’t have lane structure information,
which is essential for lane-to-lane navigation and autonomous vehicles. Therefore, this
thesis proposes a mapping pipeline that extracts lane-level street maps from aerial
imagery. Besides road structure extraction, this thesis proposes RoadTagger to infer
road attributes such as the lane count and road type of road segments from aerial
imagery. Finally, this thesis proposes a mapping solution to create high-resolution
traffic accident risk maps that can enrich the semantics of existing digital maps and
enable new applications such as safety-aware routing and precise insurance.

Thesis Supervisor: Hari Balakrishnan
Title: Fujitsu Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Digital street maps are collections of information that describe the road infrastructure

around us. The most basic element of a digital street map is the road network, which

contains information about where the roads are and how the roads connect. This

information provides a simple but fundamental service to the map users - helping

them find routes going from one location to another. Though simple, this service has

played a critical role in our everyday life and work.

We consider the road network as the base map in a digital street map. Starting

from this base map, digital street maps have evolved drastically in the past decades.

In this evolution, more and more features have been incorporated into digital street

maps, including a rich set of road attributes such as the road type (e.g., residential

road or highway road), the lane count, the surface type of the road, biking lane

type, etc. These new features have enabled many new applications to improve map

users’ experience. For example, customized routing becomes possible with rich road

attribute information; new drivers can set their routing preference to avoid primary

and highway roads, cyclists can find routes with separated bike lanes, and runners

can find routes with the best surfaces for their knees.

Besides road attributes, digital street maps also start to incorporate more subtle

road structures, which enable the support for new applications and further improve

the user experience. For example, the position of each driving lane of a road and

the positions of the turning lanes at intersections are critical map elements for lane-
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to-lane navigation and self-driving car routing. A map that contains crosswalk and

sidewalk information can significantly improve the navigation experience for pedestri-

ans. Beyond describing the concrete subjects on the road, modern digital street maps

also include information such as real-time traffic, crash and road closure reports, and

even carbon emission estimation of routes. All these bring the importance of digital

street maps to a new level.

1.1 Challenges in Map-Making

Nowadays, digital street maps with rich features have become the foundation of many

applications, benefiting all of us directly and indirectly. However, creating and main-

taining digital street maps is time-consuming and labor-intensive. For example, the

most popular crowdsourced digital street map provider, OpenStreetMap (OSM), uses

iD editor as its default map editor. The contributors can create roads by drawing

polylines over satellite imagery background and entering the road attributes through

a GUI. The whole process is manual and slow. Even though OSM has over 8.3 mil-

lion (2022-01-10) map contributors, the base map still has limited coverage in some

remote places. Many essential road attributes are still missing even in popular areas.

The reason behind the incompleteness of OSM is not only about the time-consuming

mapping process but also due to the nature of maps; road networks are growing. For

example, in Figure 1-1, we show the satellite images (years 2000, 2010, and 2020) of

Doha, Qatar, a rapidly developing city. The road network grew dramatically from

2000 to 2020. Therefore, creating a near-complete map requires the map makers to

map all the existing roads and keep tracking all the newly constructed roads.

In the meantime, Road networks are changing. In Figure 1-2, we show the satellite

images of a roundabout in Doha from 2017 to 2020. At the very beginning, there is

only one roundabout. After a few months, a new intersection was constructed near

it. Then, a new roundabout was constructed, people started to use it, and the old

intersection was removed. This example implies that the map makers also need to

monitor the changes of existing roads to create a near-complete map.
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Figure 1-1: Satellite images of Doha, Qatar in years 2000, 2010 and 2020. Road
network grew dramatically from 2000 to 2020.

Figure 1-2: Satellite images of a roundabout in Doha from 2017 to 2020. Road network
is changing over time. For example, a roundabout changed into an intersection then
changed back to a roundabout.

Road networks are growing and changing, making it highly challenging to create

and maintain digital street maps on a global scale. Because of the high mapping

costs, mapping resources are more dedicated to high-value areas. As a result, the

base map coverage is limited in many remote areas. Many new map features such as

lane-level maps, crosswalks, and sidewalk maps are only available in popular cities.

To make digital maps accessible to everyone globally, we have to develop low-cost and

scalable mapping solutions. This thesis focuses on developing such mapping solutions.

Specifically, this thesis focuses on automatic mapping techniques that rely on largely

available and low-cost data sources and can help enrich digital street maps at a global

scale.
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1.2 Automatic Mapping Techniques

Automatic mapping techniques fall into two categories based on their data sources.

One type of mapping solution relies on the sensors mounted on vehicles, e.g., GPS

receivers, IMUs, cameras, and lidars. This mapping solution can provide decent

accuracy and cover a rich set of road features such as speed limits, street names,

and turning restrictions. However, mapping costs are often high because it relies on

sensor-equipped vehicles, especially when maintaining an up-to-date map covering

a large region. Among all the possible data sources from vehicles, GPS trajectory

data has many potentials to achieve relatively low-cost mapping as the acquisition

of GPS trajectory data becomes cheaper and more scalable with the ubiquitous of

GPS-equipped smartphones. However, GPS data are often noisy. As a result, existing

GPS-based mapping solutions often have low precision.

Another type of mapping solution relies on aerial imagery collected from airplanes

or satellites. This type of mapping solution can quickly scale up to a large region at a

low cost. However, aerial imagery has a top-down view. This top-down view provides

a global view of the region of interest, but some important objects such as the vertical

road signs are invisible from the top-down view. Besides this limitation, many road

surfaces and important lane markers are often occluded by trees, buildings, or even

vehicles driving on the roads. As a result, extracting digital maps from aerial imagery

data is challenging, and many prior works yield limited accuracy.

Although many challenges exist, automatic mapping techniques still hold the po-

tential to benefit many applications by providing low-cost maps that can span the

globe and quickly reflect road network changes. Therefore, this thesis focuses on auto-

mated mapping techniques with aerial imagery and GPS data and proposes techniques

to improve mapping accuracy and enrich digital maps. As shown in Figure 1-3, we

propose RoadRunner (Figure 1-3.a and §2) and Sat2Graph (Figure 1-3.b and §3) to ex-

tract road-level street maps (the base maps) from GPS trajectory and aerial imagery

(satellite imagery), respectively. Meanwhile, we propose a mapping pipeline based

on aerial imagery to extract lane-level street maps that are essential for lane-to-lane
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Figure 1-3: This thesis proposes a set of automated techniques to enrich digital maps.

navigation and autonomous vehicles (Figure 1-3.c and §4). Besides road structure ex-

traction, we propose RoadTagger (Figure 1-3.d and §5) to infer road attributes such as

the lane count and road type of road segments. Finally, beyond inferring traditional

digital map features, we propose a mapping solution to create high-resolution traffic

accident risk maps that can enrich the semantics of existing digital maps and support

new applications such as safety-aware routing and precise insurance (Figure 1-3.e and

§6).
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1.3 Technical Challenges

In the design of the above five automation techniques, we find two common technical

challenges, data modality conversion and geospatial reasoning.

Data modality conversion. In our proposed mapping solutions, a typical map-

ping task takes geospatial data with one or more data modalities (e.g., trajectories,

graphs, and arrays), processes the input data, and produces the map features. In this

procedure, the input geospatial data and the output map features may have different

data modalities. Therefore, the mapping task often needs to convert data modality,

either for intermediate data processing, final result generation, or both. For example,

producing a road graph from an aerial image (a 3D data array), producing a road

graph from a set of GPS trajectories, producing a data array representing a road

graph or a set of GPS trajectories, etc. Many of such conversions are non-trivial,

and good conversion solutions are very critical to the accuracy of the automation

solutions. Of course, such good conversion solutions often require novel designs.

This thesis demonstrates a few examples of such modality conversion designs. In

Table 1.1, we summarize the modality conversions involved in each work.

Solutions Input Data Type(s) Output Data Type
RoadRunner (§2) Trajectory Graph
Sat2Graph (§3) Imagery Graph
Lane Extraction (§4) Imagery Graph
RoadTagger (§5) Imagery and Graph Vertex Label
Crash Risk Map (§6) Imagery, Graph and Trajectory Imagery

Table 1.1: Data modality conversions in each work.

Geospatial reasoning. In many of the problems we are solving, we find that the

expected output result at one geo-location is often not only determined by the local

information at that location but also information from its neighboring locations or

even information from far away places. This property makes it challenging to design

robust algorithms and neural network models because they have to exploit both local

and non-local information effectively.

This thesis demonstrates a few examples of how we address this challenge. More
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specifically, RoadRunner (§2) demonstrates how we extract non-local information

from GPS trajectories. RoadTagger (§4) demonstrates a neural network architecture

that can effectively combine and process visual information scattering in a wide area.
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Chapter 2

Road Graph Extraction from GPS

Trajectories

The availability of accurate and up-to-date road maps is critical for many applica-

tions, including GPS-based navigation services, disaster relief efforts, and autonomous

transportation. However, creating and maintaining road network maps is currently

human-intensive, expensive, and slow. Thus, automating parts or all of the map cre-

ation and maintenance process holds the potential to benefit many applications by

providing maps that quickly reflect road network changes. Crowdsourced GPS trajec-

tories are a useful data source for this task. These trajectories are sequences of GPS

observations collected as vehicles travel along the road network, and are available at

scale nowadays from smartphones.

Inferring road network maps from GPS data has received considerable attention in

recent years [19, 71, 5, 42]. Broadly, existing inference schemes infer a high-coverage

but low-accuracy initial graph, and then apply refinement heuristics (e.g., graph span-

ners pruning [90] and 𝑘-means refinement [20]) to improve precision. However, we

find that these methods fail to produce maps of high quality, especially in dense urban

areas and in areas with complex intersections. In the two left panels of Figure 2-1,

we show the results from two such approaches on selected regions of three cities.

The resulting maps suffer from three significant problems:

• They connect overpasses with underpasses in a planar graph, despite the un-
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Figure 2-1: Motivation. GPS-trajectory based mapmaking algorithms running on
complex interchanges in major cities. Red lines show algorithm output overlaid on
underlying ground truth map in gray. Two existing algorithms are on left, our pro-
posed RoadRunner algorithm is on right. Both existing approaches connect parallel
segments on highways, often with many small, spurious crossing segments, and also
add incorrect intersections where roads of different heights cross.

derlying techniques using heuristics to avoid these spurious connections.

• They connect adjacent roads that do not intersect.

• They fail to capture detailed topology such as highway interchanges.

Because prior schemes developed over a period of several years suffer from these

problems, we believe that strategies that start with a low-accuracy initial graph and

then refine it will not be able to regain high precision.

Thus, in this work, we turn the strategy on its head. We propose a two-stage

architecture that focuses on precision first, and recall second. In the first stage, we

infer a high-accuracy road network to accurately capture road topology in complex

regions like overpasses/underpasses, stacked roads, parallel roads, multi-road inter-

sections, and dense urban areas. Then, in the second stage, rather than developing

34



new refinement heuristics, our approach regains recall by simply running any of sev-

eral prior schemes, but taking care not to disrupt the segments and interconnections

computed in the first stage. The result is much higher precision with recall similar to

the second-stage scheme.

Accurately inferring road topology in complex regions is difficult even when high

recall is not a concern. For example, in Figure 2-2, we cannot discern whether the two

roads meet from a point cloud of GPS observations across the trajectories (where we

discard the connectivity between observations defined by the trajectories). A common

technique of taking a histogram over observations (kernel density estimation [40]), in

which each cell is weighted by the number of GPS samples contained in the cell, does

not reveal the underlying network topology. On the other hand, the topology becomes

clear if we bring back the trajectory connectivity: because no trajectory that starts

from the left road exits along the right road and vice versa, we can conclude that the

two roads do not intersect.

Figure 2-2: Illustration of the importance of accounting for the association between
observations in a trajectory. Two roads that pass near each other but do not meet are
shown on the left. In the center, we show a set of trajectories that pass these roads,
along with an example histogram over GPS observations in those trajectories. We
cannot tell whether the roads intersect from the histogram, although it is clear from
the original trajectories. Existing approaches often produce a road network graph
similar to the one on the right.

We present RoadRunner, a method that exploits trajectory connectivity to gen-

erate accurate maps in challenging regions where existing methods fail. RoadRunner
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constructs a road network graph incrementally by following the flow of GPS trajec-

tories. This iterative process enables RoadRunner to consider GPS observations on

each iteration not in isolation, but in the context of several predecessor and successor

observations in the same trajectory. This context, which we use in a trajectory fil-

tering algorithm, is crucial to precisely separating out nearby but distinct roads, and

doing so in a way that is robust to GPS noise and complex road topologies. The right

panel of Figure 2-1 exemplifies how RoadRunner produces maps with significantly

higher precision than prior work.

Although our incremental procedure and filtering strategy allow RoadRunner to

infer roads with high precision, they also cause RoadRunner to miss roads that are

covered by few GPS trajectories, such as roads in residential areas. Fortunately, exist-

ing methods already perform well in such regions. Thus, after running RoadRunner

to produce a high-precision map covering the most challenging areas of the road net-

work, we run an existing high-recall method in the second stage. Then, we apply a

merging procedure to identify segments found by the high-recall method but not by

RoadRunner, and integrate them into the inferred map.

In summary, we make the following contributions:

• We propose a two-stage map inference architecture that enables us to generate

high precision road network graphs without sacrificing the coverage. At the core

of this architecture is RoadRunner, our high-precision first-stage method that

uses the connectivity of GPS trajectories to produce accurate maps in dense

urban areas and at complex intersections where current approaches perform

poorly.

• We show how to integrate several prior schemes as the second stage in our

two-stage architecture with a merging procedure to combine the road segments

inferred by RoadRunner with those inferred by existing approaches. We apply

the merging procedure to two current state-of-the-art GPS-based approaches,

Biagioni-Eriksson (BE) [19] and Kharita [90], and to RoadTracer [15], which

processes aerial imagery.

• We evaluate our two-stage architecture over 4 km × 4 km regions of four U.S.
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cities containing 1,864 kilometers of roads on a GPS trajectory dataset of over

60,000 trajectories. We find that our proposed two-stage architecture signifi-

cantly improves the quality of the inferred maps compared with the state-of-art

solutions. We summarize the evaluation result in table 2.1.

Schemes Precision Recall Routing Error
BE 84.5% 37.2% 76.1 meters
RoadRunner+BE 89.7% 42.8% 24.8 meters
Kharita 60.0% 43.0% 73.7 meters
RoadRunner+Kharita 84.3% 44.7% 41.4 meters

Table 2.1: Summary of the evaluation results

2.1 Background

The rapid adoption of GPS-enabled smartphones has led to considerable interest in

the problem of automatic road network inference from GPS trajectories [20, 71, 5].

However, as we demonstrated in Figure 2-1, prior schemes yield noisy maps with

low precision on complex topologies such as highway interchanges. We show that

precision can be improved by exploiting the connectivity between GPS observations

at different times along the same trajectory.

Broadly, road network inference schemes can be divided into three categories [20].

𝑘-means approaches begin by clustering the GPS observations. Cluster centers be-

come vertices in the inferred road network graph, and edges are added between the

clusters of successive observations in each trajectory [43, 86, 4]. During clustering,

the longitude, latitude, heading, and speed of each observation may be considered,

but the connectivity between observations in the same trajectory is ignored. Al-

though this connectivity is used to add edges, this stage still only considers pairs of

consecutive observations rather than longer trajectory subsequences.

Kernel density estimation (KDE) approaches first generate a spatial histogram

where each cell is weighted by the number of GPS trajectories that pass through

the cell. Kernel smoothing is applied on the histogram (typically using a Gaussian

distribution), followed by morphological thinning or similar skeletonization techniques
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to extract centerlines and produce a graph [33, 40, 88]. These techniques do not

consider the connectivity between GPS observations.

Trajectory merging approaches merge GPS trajectories one at a time into an ini-

tially empty road network graph [27, 7]. Again, while these approaches iterate over a

trajectory to merge it into the graph, the merging process operates only on pairs of

successive observations at a time.

Recently, a number of methods have been proposed that combine or extend these

techniques. Biagioni et al. [19] propose a hybrid pipeline using KDE with an adaptive

thresholding scheme to obtain an initial road network graph, followed by geometry

and topology refinement and map-matching-based pruning to further improve accu-

racy. Chen et al. [34] propose a supervised learning framework that leverages prior

knowledge on real-world road networks to learn the shape of different junctions, and

integrate this with a cluster based algorithm. Stanojevic et al. [90] develop a novel

model in which map construction is framed as a network alignment problem. The

derived optimization problem is then mapped into a hybrid algorithm combining 𝑘-

means clustering and graph spanners. Zheng and Zhu [117] propose a revisited version

of the trace merging method, applying a novel clustering algorithm that uses a partial

curve matching method based on Fréchet distance to measure the partial similarity

between any trajectory and a previously created link. While these methods improve

on earlier schemes, none utilize the long-term connectivity between observations in

the same trajectory when constructing the road network graph.

Other data sources, aerial imagery in particular, have also been leveraged for

automatic road network inference. DeepRoadMapper [72] applies CNN-based seg-

mentation followed by an extensive post-processing pipeline to extract a road net-

work graph from aerial imagery. RoadTracer [15] uses an iterative graph construction

strategy to obtain a graph directly from a CNN, thereby attaining higher precision

that segmentation-based approaches. However, because of occlusion by tall buildings,

shadows, and overpasses, accurately inferring roads from aerial imagery in dense ur-

ban areas and complex intersections is challenging—indeed, these methods assume a

fully planar road network graph, and thus yield low precision in these regions.
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Figure 2-3: We visualize the partially constructed graph 𝐺 (red) and the active
vertices queue 𝑄 (blue) from different iterations in the construction procedure. In
this example, the algorithm begins with a single vertex (green) at the upper-right
corner of the region.

2.2 RoadRunner

RoadRunner iteratively constructs the road network from an initial graph by following

the flow of GPS trajectories. We show the structure of RoadRunner in Algorithm 1.

The algorithm begins with an initial graph; this may be obtained from an existing

graph or a graph inferred by another approach. We first push all the vertices in this

initial graph into a queue 𝑄. We call the vertices in the queue active vertices. On

each iteration, RoadRunner picks an active vertex from the queue and extends the

current graph from this active vertex by performing two key operations — adding

new road segments (tracing), or connecting the active vertex with an existing vertex

when two physical roads join together (merging).

We show an example of how RoadRunner works in Figure 2-3. The algorithm

starts with an initial graph 𝐺 which has only one single vertex (the green vertex

near the upper-right corner). We visualize the partially constructed graph and the

active vertices at different iterations. The construction procedure uses the GPS data

to gradually extend the graph by following the road network, including forking at

intersections and merging when two roads come together. The algorithm stops tracing

a road when it reaches a dead end, leaves the region of interest, or joins with other

roads. Finally, after the search queue is empty, we obtain the road network graph for

the whole region.
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Figure 2-4: We show the GPS trajectories (grey) near a complex highway junction as
well as the corresponding aerial image of the same region. The red vertices represent
the partially constructed graph and the blue vertex is the active vertex from where
we are going to extend the graph. We highlight the trajectories that pass near the
partially constructed graph in green. In the aerial image, we highlight three roads
that are challenging for map inference algorithm.
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Algorithm 1 RoadRunner
1: procedure RoadRunner(InitialGraph)
2: 𝐺← InitialGraph
3: 𝑄← Push all vertices of 𝐺 into a queue
4: while 𝑄 is not empty do
5: 𝑣 ← 𝑄.𝑝𝑜𝑝()
6: 𝒟 ← Trace(𝐺, 𝑣) � Return the direction(s) of the GPS flow(s) around

vertex 𝑣.
7: for each direction 𝜃 in 𝒟 do
8: 𝑙𝑜𝑐← 𝑣.𝑙𝑜𝑐+ 𝑑 · (𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃)
9: 𝑢← 𝐺.𝑖𝑛𝑖𝑡𝑉 𝑒𝑟𝑡𝑒𝑥𝐴𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑙𝑜𝑐)

10: 𝑢.𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 ← 𝑣
11: 𝐺.𝑎𝑑𝑑𝐸𝑑𝑔𝑒(𝑣, 𝑢)
12: 𝑠𝑢𝑐𝑐←Merge(𝐺, 𝑢) � Try to merge the vertex 𝑢 with the current

graph 𝐺, return the state of merging.
13: if 𝑠𝑢𝑐𝑐 is False then
14: 𝑄.𝑝𝑢𝑠ℎ(𝑢)

15: return 𝐺 as the inferred road network graph

Constructing the road network graph in an iterative manner enables RoadRunner

to exploit the long-term connectivity between GPS observations to accurately capture

road geometry and topology as it adds each segment to the graph. By contrast, most

prior approaches rely on a histogram over observations [40], the position of individual

or pairs of GPS observations [27], or the local heading of observations [90, 34, 42] to

construct the road graph. Some prior approaches use long-term trajectory information

after an initial road network graph has been produced. For example, BE [19] leverages

the trajectory sequences in a post-processing phase to prune edges from an initial low-

accuracy graph. However, fixing a low-accuracy graph is very difficult, particularly,

in regions with complex road topology or high GPS noise.

At each iteration, RoadRunner compares trajectory sequences with the partially

constructed graph to filter trajectories that are not related to the road of interest.

Consider Figure 2-4, where we are extending the graph from the blue vertex corre-

sponding to a highway ramp. Since the three highlighted roads are close to each other

and have almost the same heading, if we take GPS observations from all of the tra-

jectories into account, we may connect the underpass and overpass of the green road

and the red road, or merge the red road with the blue road. However, by excluding
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trajectories that do not pass near a sequence of edges in the partially constructed

graph corresponding to the current road, we obtain a much cleaner subset of GPS

trajectories that covers only the red road. Our iterative graph construction architec-

ture enables us to construct such a subset of trajectories on each step, and to use it

to accurately capture the road network.

To realize this idea, we introduce a primitive called a way path filter. Given a

sequence of circles centered at locations along a road, the way path filter prunes the

GPS trajectory data to retain only trajectories that pass through the circles in order.

Thus, the circles act as waypoints that we require the trajectories to traverse.

Formally, given the trajectories 𝑇 and a sequence of circles 𝑃 = ⟨(𝑝1, 𝑟1), (𝑝2, 𝑟2),

. . . , (𝑝𝑛, 𝑟𝑛)⟩, where the 𝑖th circle is centered at 𝑝𝑖 and has radius 𝑟𝑖, the way path

filter is a function 𝑓𝑖𝑙𝑡𝑒𝑟(𝑇, 𝑃 ) that computes a subset of 𝑇 containing trajectories

that pass through the circles in 𝑃 sequentially. A trajectory 𝑡 ∈ 𝑇 is in this subset

if there exists a subsequence of GPS observations in the trajectory, ⟨𝑡𝑗1 , . . . , 𝑡𝑗𝑛⟩ such

that the distance from 𝑡𝑗𝑖 to 𝑝𝑖 is at most 𝑟𝑖 for all 𝑖.

For a particular active vertex, we apply the way path filter to retain only trajecto-

ries that are likely to have traversed the road corresponding to the active vertex. To

do so, we compute a path in 𝐺 of length 𝑘 that terminates at the active vertex, and

then apply the filter with circles drawn around vertices along this path. The radius

of these circles should correspond to the width of the road at the vertex, so that the

circle covers all trajectories that traverse the road. We estimate this width from the

trajectory data (section 2.5.1).

The length of the path, 𝑘, impacts the precision of the inferred map. A larger 𝑘

applies a filter through a longer path, enabling more accurate tracing and merging

operations. In practice, we set 𝑘 to be 75 meters, that is at the same scale of a typical

city block. We find this 𝑘 is long enough for us to accurately capture the complex

road structures.

Next, we discuss RoadRunner’s tracing operation (section 2.3), merging operation

(section 2.4), and some implementation details (section 2.5).
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2.3 Tracing

The tracing operation extends the road network graph by adding new vertices and

edges to an active vertex in the direction of the GPS trajectories that pass through

that vertex. RoadRunner simultaneously follows all peak directions indicated by the

trajectories. It predicts these directions using Algorithm 2.

Consider the example in Figure 2-5, where we are predicting the peak directions

of GPS trajectories near the active vertex 𝑣 (blue). Let 𝑃 = ⟨(𝑝0, 𝑟0), (𝑝1, 𝑟1), ...

, (𝑝𝑘−1, 𝑟𝑘−1)⟩ be a sequence of circles centered at vertex 𝑣 and its 𝑘 − 1 predecessors

in the partially constructed graph (line 2-3). In the figure, we highlight the trajectories

in 𝑓𝑖𝑙𝑡𝑒𝑟(𝑇, 𝑃 ). We can clearly see that the trajectories split into three groups at the

intersection.

Algorithm 2 Trace Operation
1: procedure Trace(Graph 𝐺, Vertex 𝑣)
2: u = ⟨𝑢𝑖⟩ ← the first 𝑘 − 1 predecessors of 𝑣.
3: P← the circle sequence of path u+ ⟨𝑣⟩
4: 𝑁,𝑆𝑐𝑜𝑟𝑒← arrays indexed by different angles.
5: for each 𝜃 in evenly spaced angles from 0 to 2𝜋 do
6: 𝑤 ← circle (𝑣.𝑙𝑜𝑐+𝐷 · (𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃), 𝑟)
7: 𝑇 ′ ← 𝑓𝑖𝑙𝑡𝑒𝑟(𝑇,P+ ⟨𝑤⟩)
8: 𝑁 [𝜃]← 𝑚𝑖𝑛(0, |𝑇 ′| −𝑀)

9: 𝑆𝑐𝑜𝑟𝑒← 𝑠𝑚𝑜𝑜𝑡ℎ(𝑁)
10: return angles of local peaks of 𝑆𝑐𝑜𝑟𝑒[𝜃]

To predict the directions of these outgoing groups of trajectories, we check 72

evenly spaced angles from 0 to 2𝜋. For each direction 𝜃, we create a circle 𝑤 =

(𝑣+𝐷(𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃), 𝑟) located at a distance 𝐷 from 𝑣 in the direction 𝜃. We count the

number of GPS trajectories that pass near the path P+ ⟨𝑤⟩ using the way path filter

(line 7). We subtract the counted number by 𝑀 . The parameter 𝑀 helps control the

precision of constructed maps by excluding low confidence (low density) GPS flows.

We define the score function as the smoothed version of this counter over different

angles. In the 𝑠𝑚𝑜𝑜𝑡ℎ function, we convolve the input array with a Gaussian kernel.

Smoothening helps remove small changes in the score function and lets us focus on

only major peaks. We extract the directions of all outgoing GPS flows by identifying
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Score Function Over Different Angles

Left-turning Flow

Straight Flow

Right-turning Flow

Figure 2-5: We show an example of the tracing operation near a four-way intersection.
In the above figure, the red vertices are the partially constructed graph and the blue
vertex is the active vertex. We highlight the GPS trajectories that pass near this
partially constructed graph in green. The green GPS flow splits into three groups at
the intersection. We predict the directions of these outgoing GPS flows through a
score function. Here, we can clearly see three local peaks in the score function over
different angles.
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local peaks of this score function. We show an example of this score function in

Figure 2-5. There are three local peaks in the score function, corresponding to the

left-turning flow, the straight flow, and the right-turning flow. After we get the

directions of the outgoing flows, we extend the graph 𝐺 by adding new vertices with

a small fixed distance from 𝑣 toward each direction.

2.4 Merging

When the construction procedure encounters a road segment that has already been

explored in the graph 𝐺, we need to merge the current road with the previous path.

However, merging is challenging: we need to merge roads that connect while ensuring

that overpasses/underpasses, parallel roads, and multilayer roads remain separated.

Correctly capturing connectivity is crucial because even a small number of incorrect

connections lead to a large number of navigation errors.

Existing approaches [90, 19] aggressively merge road segments, considering only

local information such as distance and heading. This yields numerous incorrect con-

nections in challenging regions like dense urban areas and highway intersections. We

find that deciding whether we should merge two road segments with only local in-

formation such as distance and heading is not enough. As the example shown in

Figure 2-6, a universal merging threshold may not exist if we only consider the local

information.

To overcome this challenge, we introduce a novel merging criteria that can accu-

rately decide whether road segments should merge or not. When two road segments

are close to each other, instead of only considering the local information of these two

road segments such as distance and heading, we look at the GPS trajectories that

pass through these two road segments. We merge the road segments if and only if

the distributions of these two groups of GPS trajectories match in the future (after

traveling the two road segments).

We show the distributions of GPS trajectories that pass after the blue and green

road segments in Figure 2-6. We can clearly see that the two distributions of example
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Nearby Narrow Ramps Four-lane Wide Road 

20m 20m

200m 200m

200m 200m

Distribution 1 Distribution 1

Distribution 2 Distribution 2

Example (a) Example (b)

Figure 2-6: Suppose we are considering to merge the green road and the blue road
in the above two examples. Simply considering the distance between the two roads
cannot yield valid results. In fact, the distance between the two roads in example (b)
is larger than the distance in example (a). However, we need to merge the two roads
in example (b) rather than the two roads in example (a). Below the satellite images,
we show the distribution of GPS trajectories after they pass through the blue road
segments (distribution 1) and the green road segments (distribution 2).
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(a) disagree with each other, while the two distributions are highly similar in example

(b). This design enables us to make correct decisions on whether the two roads should

be merged or not in a very general way, supporting a wide range of road types.

Again, we use the partially constructed graph as a trajectory filter to generate the

Algorithm 3 Merge Operation
1: procedure Merge(Graph 𝐺, Vertex 𝑣)
2: 𝐷𝑣 ← 𝐺𝑒𝑛𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝐺, 𝑣)
3: for each vertex 𝑢 near 𝑣 do
4: 𝐷𝑢 ← 𝐺𝑒𝑛𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝐺, 𝑢)
5: if 𝐷𝑢 is similar with 𝐷𝑣 then
6: 𝐺.𝑎𝑑𝑑𝐸𝑑𝑔𝑒(𝑢, 𝑣)
7: return 𝑇𝑟𝑢𝑒
8: return 𝐹𝑎𝑙𝑠𝑒
9: procedure GenDistribution(Graph 𝐺, Vertex 𝑣)

10: Pv ← the path formed by 𝑣’s predecessors
11: 𝑇𝑣 ← 𝑓𝑖𝑙𝑡𝑒𝑟(𝑇,Pv)
12: 𝑇 ′

𝑣 ← for each 𝑡 in 𝑇𝑣, we only keep a portion of it; this portion starts near 𝑣
and continues for a fixed distance, e.g., 300 meters.

13: return the spatial distribution of 𝑇 ′
𝑣

two distributions. The details of the merging algorithm are shown in Algorithm 3.

2.5 Implementation Details

In this section, we discuss the implementation details of RoadRunner, including the

vertex radius estimation, tracing acute branches and the parameter settings.

2.5.1 Vertex Radius Estimation

Each vertex in the road network graph has a radius attribute. Recall the way path

filter, we filter GPS trajectories based on this radius attribute. Instead of using a

fixed radius for all vertices, we estimate this radius for each vertex during the graph

construction process. The basic idea is to estimate the width of the road at vertex 𝑣

from the GPS trajectories and use that as the radius.

Specifically, we consider the vertex sequence from 𝑣’s 2𝑘th predecessor to its 𝑘th

predecessor. Then, we apply the way path filter on this vertex sequence. We look
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at the distribution of the filtered trajectories along the perpendicular direction of

the edge 𝑣.𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 → 𝑣. Here, we assume this distribution follows Gaussian

mixture model, where the component closest to the center line corresponds to the

road through 𝑣.𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 → 𝑣, while other components capture nearby roads that

may have just forked from the main road. We estimate the number of the mixture

components as well as the mean and standard deviation of each component. Then

we use the standard deviation of the component located closest to the center line as

the radius of vertex 𝑣. Note that this estimation algorithm depends on the radius of

𝑣’s predecessors. Thus, we set the radius of all vertices in the initial graph to a fixed

initial value, e.g., 5 meters.

This dynamic radius estimation solution enables us to handle a wide range of road

types, i.e., highway and residential roads, and different GPS noise levels.

2.5.2 Tracing Acute Branches

The tracing algorithm in section (2.3) may fail to trace all branches when the angle

between two branches are very acute. This often happens on highways. When there is

a ramp coming out from the highway, the large traffic volume disparity together with

the very acute angle of the branches make it hard to identify the GPS flow through the

ramp. We solve this problem by re-using the Gaussian mixture components estimated

in the vertex radius estimation (Section 2.5.1). In the road width estimation, each

mixture component, located along the perpendicular direction of the current road,

represents a nearby road that just forked from the current road. We check all these

nearby roads. If they are not covered by the road network graph, we add them to the

graph and push their last vertices into the active vertices queue.

2.5.3 Parameter Setting

RoadRunner involves several configurable parameters. These parameters are impor-

tant to the quality of inferred maps. Here, we explain our choices of three major

parameters. Each time we add an edge to the graph, we set the length of this edge
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(step size) to be 7.5 meters (𝑑 = 7.5). We find this number is a good trade-off be-

tween the algorithm’s running time and the map coverage; a larger step size may

speed up the running time but it may jump over some intersections. We set the his-

tory length 𝑘 to be 75 meters, as we find this is long enough for us to distinguish the

most challenging road structures. In fact, in our experiments, we find that a larger

k yields a higher precision but a slightly lower recall. After the k reaches 75 meters

the precision stops improving. Finally, we set the default minimum number of GPS

trips 𝑀 in the scoring function to 2. This parameter decides the minimal number of

GPS trajectories required for each inferred road segment. A larger 𝑀 yields higher

precision but lower coverage.

2.6 Two-stage Map Inference

As shown in Figure 2-1, RoadRunner can capture complex portions of the road net-

work with high accuracy. However, we find that RoadRunner may miss roads in

regions that are covered by very few GPS trajectories, such as residential areas. The

reason is that RoadRunner aggressively filters trajectories that don’t conform to the

structure of the currently explored road at each step of the search; this strategy en-

ables very high precision but misses lightly covered roads. Fortunately, these are the

very regions where current state-of-the-art inference algorithms excel.

Thus, we develop a merging procedure to get the best of both worlds. We obtain

a highly accurate road network graph covering noisy and topologically-complex areas

from RoadRunner, and then merge segments inferred by an existing approach that

correspond to new roads.

Let 𝐺1 be a road network graph inferred by RoadRunner, and 𝐺2 be one inferred

by an existing scheme that captures sparsely covered roads. We prune edges and

portions of edges in 𝐺2 that lie within 𝑅merge meters of 𝐺1 to obtain 𝐺′
2; this eliminates

segments corresponding to roads that RoadRunner has already captured. We then

compute 𝐺 as the union of 𝐺1 and 𝐺′
2. However, roads added from 𝐺′

2 will be

disconnected from the rest of the road network. To add back connections, we iterate
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through dead-end vertices in 𝐺, i.e., vertices with exactly one incident edge. We

merge a dead-end vertex 𝑣 with an edge (𝑢,𝑤) if both of the following hold:

• The distance from 𝑣 to (𝑢,𝑤) is less than 𝑅merge.

• |𝑓𝑖𝑙𝑡𝑒𝑟(𝑇, ⟨𝑣, 𝑝, 𝑢⟩)| or |𝑓𝑖𝑙𝑡𝑒𝑟(𝑇, ⟨𝑣, 𝑝, 𝑤⟩)| exceed a threshold, where 𝑝 is ob-

tained by projecting 𝑣 onto the line segment (𝑢,𝑤).

Together, these conditions prevent the introduction of spurious connections.

In Figure 2-7, we show an example of the map inferred by this two-stage map

inference algorithm. We merge the output map of RoadRunner with the output map

of a KDE based map inference scheme[20]. As shown in Figure 2-7, RoadRunner

accurately captures the complex road structures in challenge regions such as highway

junctions and parallel roads, whereas the KDE scheme fills up the missing roads where

the GPS data is sparse. These combination yields a map with both good coverage

and very high precision.

2.7 Evaluation

In this section, we compare our two-stage map inference scheme with RoadRunner

against two GPS trajectory map inference algorithms, BE [19] and Kharita [90],

and one aerial imagery inference approach, RoadTracer [15], on 16 sq km regions

of four cities. BE applies kernel density estimation followed by several refinement

steps. Kharita uses graph spanners to prune redundant edges from an initial graph

constructed with k-means clustering. RoadTracer infers roads from aerial imagery

with a computer vision approach.

2.7.1 Dataset

We evaluate the approaches on a large dataset of over 60 thousand GPS trajectories

spanning 4km by 4km regions at the centers of four cities: Los Angeles, Boston,

Chicago, and New York City. These regions contain diverse road structures, from

complex highway interchanges to small residential roads, and a wide range of GPS
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Figure 2-7: The merge result of RoadRunner (in red color) and an KDE based solution
(in blue color) in Los Angeles

noise, from near-perfect GPS accuracy in open areas to heavy noise in the downtown

core. The sampling interval of our GPS data is 1 second. A summary of this dataset

is shown in table 2.2.

City Number of Trips Number of GPS samples
Los Angeles 8,422 2,582,195

Boston 30,422 7,805,400
Chicago 9,940 4,832,594

New York City 13,729 6,151,150

Table 2.2: GPS Dataset

We use OpenStreetMap [50] as the ground truth map for all evaluations.
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2.7.2 Metrics

We evaluate inferred maps on two metrics: TOPO [20], which is commonly used in

related work, and a shortest-path metric, which we develop by combining ideas from

several existing path-comparison-based metrics [5, 98].

TOPO Metric

TOPO captures both geometry and topology differences between two maps. We first

drop “seeds” at 50-meter intervals on every road in the ground truth map. For each

seed, we try to find a corresponding point in the inferred map with similar distance

and orientation (i.e., the angles of the edges that the seed and point fall on). If there

exists such a point, we say the seed is valid.

For each valid seed, we drop “holes” every 5 meters on the edges of the ground truth

map that can be reached within 300 meters from the seed. We then drop “marbles”

in the same way from the nearest corresponding point in the inferred map. Then,

we compute the maximum one-to-one matching between the marbles and holes. A

marble and a hole can be matched only if the distance between them is smaller than

15 meters and the difference between the orientations of the edges they belong to is

smaller than 45 degrees. From this matching, we compute a precision and recall for

the seed:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
# 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑚𝑎𝑟𝑏𝑙𝑒𝑠

# 𝑜𝑓 𝑎𝑙𝑙 𝑚𝑎𝑟𝑏𝑙𝑒𝑠
𝑟𝑒𝑐𝑎𝑙𝑙 =

# 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 ℎ𝑜𝑙𝑒𝑠

# 𝑜𝑓 𝑎𝑙𝑙 ℎ𝑜𝑙𝑒𝑠

We compute the overall precision and recall in a region as the average of the

precision and recall from all seeds in this region. In the computation of the overall

precision, we ignore the invalid seeds in the region. In contrast, we consider the recall

of an invalid seed to be 0 in the computation of the overall recall of a region. This

yields a fair comparison when two inferred maps have different numbers of valid seeds.

52



Shortest-Path Metric

We propose a shortest-path metric to evaluate the correctness of navigation routes in

the inferred map. In each city, we randomly sample 10,000 origin-destination pairs

using the GPS trajectory data; each origin and destination is sampled uniformly from

the origins and destinations of the trajectories. Then, for each sampled pair, we find

the closest points to the origin and the destination in the inferred map. We compute

the shortest path 𝑃𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑 in the inferred map between these two points.

To evaluate the correctness of this path, we find the path 𝑃𝐺𝑇 in the ground truth

map that minimizes the Fréchet distance [8] between 𝑃𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑 and 𝑃𝐺𝑇 . If 𝑃𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑

uses an invalid road or connection (e.g., the path jumps to a highway road from

another non-connected road), the corresponding portion of 𝑃𝐺𝑇 may involve a long

detour, yielding a large Fréchet distance between the two paths.

To aggregate results across all origin-destination pairs, we define the routing error

as the median Fréchet distance.

2.7.3 Parameters

For all the schemes we evaluated, we fix most of their parameters except one tun-

ing parameter, which we vary to explore the trade-off between precision and recall

(Table 2.3). We explain the choice of this parameter for each different scheme below.

RoadRunner (RR). We vary the threshold of the minimum trajectory number 𝑀 in

the scoring function (recall that we only add a new edge toward angle 𝜃 if there are at

least 𝑀 trajectories on this direction). Increasing this threshold makes RoadRunner

more cautious when adding new roads.

Biagioni and Eriksson (BE). During map-matching-based pruning, roads with

fewer than 𝐿𝑚𝑚 matched GPS trajectories are removed from the road network graph.

We vary 𝐿𝑚𝑚. When 𝐿𝑚𝑚 is higher, more roads are pruned. The authors set 𝐿𝑚𝑚 = 2.

Kharita. We vary the initial seed radius for 𝑘-means clustering. This radius cor-

responds to the maximum degree of GPS noise that Kharita can handle. A larger

radius increases precision by merging noisy GPS observations with other observations
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Scheme Parameter Notation Parameter Set
BE Minimum GPS traversals 2, 5, 10, 30, 50

Kharita Initial seed radius 20, 50, 75, 100
RoadRunner Minimum GPS traversals 2,3,4,6,10

Table 2.3: The parameter set we used for different schemes

from the road, but may also merge observations from two nearby roads. The authors

propose two seed radiuses, 20m and 75m.

In the following sections, we denote particular parameter settings by suffixing the

approach name with this setting. For example, in BE-2, we set the minimum number

of matched trajectories 𝐿𝑚𝑚 = 2.

2.7.4 Geometry and Topology Correctness

In this section, we focus on the geometry and topology correctness of the inferred map.

We evaluate BE, Kharita and RoadRunner schemes as well as the RoadRunner-based

two-stage schemes with TOPO metric. The evaluation covers all the GPS data in our

dataset (approximately 4km by 4km for each city.)

In the two-stage map inference scheme, we first use RoadRunner (Section 2.2) to

generate the high precision map, covering the most challenging areas. Then, we use

the algorithm introduced in Section 2.6 to merge this high precision map with maps

generated by BE or Kharita.

Error-Rate Frontier of Different Schemes. To obtain a comprehensive un-

derstanding of the potential performance of all the schemes, we evaluated the schemes

with a wide range of parameters. The parameters we used for all the schemes are

shown in Table 2.3. For two-stage schemes, we evaluate them with all the pairs of

parameter combinations.

In Figure 2-8, we show the error-rate frontier of different schemes. The error-rate

frontier of a scheme is generated from the output maps with all its different parameter

configurations.

We would like to use this error-rate frontier to demonstrate the best achievable

performance of different algorithms. More specifically, we can compare the error
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Los Angeles Boston Chicago

New York City Average

Figure 2-8: The error-rate frontier of RR, BE, Kharita schemes and the two-stage
schemes, RR plus BE and RR plus Kharita. The markers show the point on the
frontier corresponding to the specific parameters that produce the best average 𝐹1

scores.

rates of different schemes conditioned on recall by looking at the cross points of the

schemes’ error-rate frontiers and a horizontal line corresponding to a certain recall.

As shown in Figure 2-8, tuning the parameters of the existing map inference algo-

rithms can yield improvements in error rate. However, due to the inherent limitations

of these algorithms, the improvement in the error rate often comes at the expense of

a sharp decrease in recall. The best achievable error rate is also limited.

By contrast, as a standalone scheme, RoadRunner can achieve a significantly lower

error-rate compared with other schemes in all four cities. However, since RoadRunner

sometimes fails to infer roads when there are not enough GPS trajectories, its highest

achievable recall is lower compared to other schemes. As we discussed in §2.6, our

merging procedure is intended to yield a two-stage solution that achieves both high

precision and high recall. Indeed, Figure 2-8, shows that the RoadRunner-based

two-stage solutions significantly reduce the error rate with no impact on recall. For
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example, the error-rate frontier of the hybrid of RoadRunner and BE completely

surpasses the frontier of BE scheme alone in each of the four cities.

These results show that when merging the RoadRunner scheme with an existing

map inference algorithm, the merging procedure effectively replaces the high error-

rate regions of the output of the inference algorithm with RoadRunner’s accurate

map. Meanwhile, the roads missed by RoadRunner but found by the map inference

algorithm are mostly retained in the final inferred map.

Los Angeles Boston Chicago New York Average
0.0

0.1

0.2

0.3

0.4

0.5

0.6
BE-2 Kharita-20 RR-2 RR-2 + BE-2 RR-2 + Kharita-20

Figure 2-9: The TOPO error rates of different schemes with their best parameter
settings.

Comparison with the best parameter settings. We take the parameter

setting that can produce the best average 𝐹1 score for each scheme as their best

parameter setting. We compare our two-stage schemes against BE and Kharita with

the best parameter settings. As shown in Figure 2-9 and Figure 2-10, the two-stage

scheme significantly reduces the error rates by 5.2 points(33.6%) versus BE, and

24.3 points (60.7%) versus Kharita on average over the four cities, with a slight

improvement in recall.

Note that recall here is limited because the ground truth OpenStreetMap road

network includes alleys, service roads, and other minor roads that are not covered by
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Figure 2-10: The TOPO recalls of different schemes with their best parameter set-
tings.

our GPS trajectory dataset.

High Error Rate Areas in Existing Schemes We study the distribution

of high error rate areas in the existing schemes. For each city, we split the whole

evaluation region 𝐴 into 100-meter by 100-meter grids. We ignore grids that include

no road inside them in the ground-truth map. For each grid 𝐺, we compute the error

rate (1 − precision) of the inferred map in 𝐺 using the TOPO metric. We visualize

the grids with high (top-5, top-10 and top-20) error rates in Figure 2-11.

The distribution of the high error rate grids demonstrate the areas where existing

approaches failed. As shown in Figure 2-11, most of the high error rate grids consist

of highway interchanges, overpasses and underpasses, complex road structures or

downtown areas where GPS is noisy; these places are exactly the target scenarios of

RoadRunner’s high precision design.

2.7.5 Usability in Navigation Scenario

We evaluate the navigation usability of the inferred maps from RoadRunner, BE,

Kharita and the RoadRunner based two-stage scheme. As shown in Figure 2-12,
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Figure 2-11: The distribution of the areas where existing schemes failed to infer the
road network correctly.
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Figure 2-12: The median of the minimal Fréchet Distances in the shortest-path metric.
The unit of the y-axis is in meter.

our RoadRunner scheme significantly reduces the routing error by 3.9x versus BE,

and 3.8x versus Kharita. The two-stage scheme also yields a significant reduction

in the routing error, by 3.1x versus BE and 1.8x versus Kharita, even with a slight

improvement on the map coverage (from TOPO metric).

These results show that RoadRunner captures the major road network very ac-

curately. The two-stage scheme inherits this major road network from RoadRunner,

yielding higher confidence routes in navigation scenario. The results also imply the

importance of getting road network correctly in challenging areas; this areas often

have a large volume of traffic and play an important role in a city’s road network.

2.7.6 Integration with Computer Vision-based Solution

We also study the impact of RoadRunner when combined with a computer-vision-

based map inference solution that uses satellite imagery to infer the location of roads.

Specifically, we compare the overall quality of the output map from RoadTracer[15]

with a RoadRunner-enhanced two-stage solution. Because RoadTracer is also an

incremental algorithm, in the two-stage solution, instead of merging two maps into
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Figure 2-13: The generated map of the two-stage scheme with RoadRunner RR-2
(yellow) and RoadTracer (cyan).

one, we first use RoadRunner to generate a high precision map; then we use this map

as the initial input to RoadTracer, which fills in missing roads in the RoadRunner

output based on satellite imagery.

We use 𝐹1 score of TOPO metric to quantify the overall quality of the output

maps. We show the comparison results in Table 2.4. For the overall 𝐹1 score, our

two-stage solution achieves an improvement of 16.43% on average over the four cities

against the satellite imagery alone solution.

We show the generated map from our two-stage solution in Figure 2-13. We

find this combination of RoadRunner and imagery based solutions enables us to pro-

duce maps with much higher quality than prior solutions: the GPS based solution

RoadRunner accurately captures the road structures in challenge areas where existing
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computer-vision based solutions fail, on the other hand, the imagery based solutions

fill up the missing roads in areas where GPS data is very sparse or not available. We

envision that this combination is the right way to take toward fully automated map

generation systems.

City RoadTracer RR-2 + RoadTracer Gain
Los Angeles 0.634 0.673 6.17%

Boston 0.540 0.608 12.68%
Chicago 0.585 0.653 11.56%

New York City 0.497 0.673 35.33%

Table 2.4: 𝐹1 score of RoadTracer and RR-2 + RoadTracer

2.8 Conclusion

In this work, we proposed a two-stage map inference architecture that enables us to

generate high precision road network graphs without sacrificing coverage. As the core

of this architecture, we presented RoadRunner, an automatic road network inference

method that leverages the long-term structure of GPS trajectories to generate accu-

rate maps in the dense urban areas and complex intersections where existing methods

fail. We evaluated RoadRunner together with two state-of-the-art GPS-based meth-

ods and a recent computer vision-based solution on 64 𝑘𝑚2 from four U.S. cities.

Compared with the existing map-making methods, our RoadRunner based two-stage

scheme yields an improvement in the overall quality of the inferred map by 15.29%1

on average in TOPO 𝐹1𝑠𝑐𝑜𝑟𝑒. This quality improvement represents up to a 60.7%

error rate reduction of road segments and up to a 3.1x reduction of routing errors in

navigation scenario, with a small increase in recall.

Insufficient precision of current automated map-making solutions is perhaps the

biggest obstacle that prevents them from real-world deployment. We believe that our

approach, which significantly improves the precision of automatically generated maps

while not reducing recall, marks an important step towards automating the process

of road map generation.
112.17% for RR+BE, 17.28% for RR+Kharita, 16.43% for RR+RoadRunner
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Chapter 3

Road Graph Extraction from Aerial

Imagery

Accurate and up-to-date road maps are critical in many applications, from navigation

to self-driving vehicles. However, creating and maintaining digital maps is expensive

and involves tedious manual labor. In response, automated solutions have been pro-

posed to automatically infer road maps from different sources of data, including GPS

tracks, aerial imagery, and satellite imagery. In this chapter, we focus on extracting

road network graphs from satellite imagery.

Although many techniques have been proposed [14, 17, 36, 37, 61, 69, 72, 99,

115, 118, 24, 77], extracting road networks from satellite imagery is still a challeng-

ing computer vision task due to the complexity and diversity of the road networks.

Input Images Sat2Graph Graph-Tensor Encoding

Decode
One-Step 

CNN
Inference

Stacking 
Road

Normal
Intersection

Stacking 
Road

Normal
Intersection

Sat2Graph Output Graphs

Figure 3-1: Highlight of Sat2Graph.
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Prior solutions fall into two categories: pixel-wise segmentation-based approaches and

graph-based approaches. Segmentation-based approaches assign a roadness score to

each pixel in the satellite imagery. Then, they extract the road network graph using

heuristic approaches. Here, the road segmentation acts as the intermediate represen-

tation of the road network graph. In contrast, graph-based approaches construct a

road network graph directly from satellite imagery. Recently, Bastani et al. [14], as

well as several follow-up works [37, 69], utilize graph-based solutions that iteratively

add vertices and edges to the partially constructed graph.

We observe that the approaches in these two categories often tradeoff with each

other. Segmentation-based approaches typically have a wider receptive field but rely

on an intermediate non-graph representation and a post-processing heuristic (e.g.,

morphological thinning and line following) to extract road network graphs from this

intermediate representation. The usage of the intermediate non-graph representation

limits the segmentation-based approaches, and they often produce noisy and lower

precision road networks compared with the graph-based methods as a result. To

encourage the neural network model to focus more on the graph structure of road

networks, recent work [17] proposes to train the road segmentation model jointly

with road directions, and the approach achieves better road connectivity through

this joint training strategy. However, a postprocessing heuristic is still needed.

In contrast, graph-based approaches [14, 37, 69] learn the graph structure directly.

As a result, graph-based approaches yield road network graphs with better road

connectivity compared with the original segmentation-based approach [14]. However,

the graph generation process is often iterative, resulting in a neural network model

that focuses more on local information rather than global information. To take more

global information into account, recent work [37, 69] proposes to improve the graph-

based approaches with a sequential generative model, resulting in better performance

compared with other state-of-art approaches.

Recent advancements [17, 37, 69] in segmentation-based approaches and graph-

based approaches respectively are primarily focused on overcoming the inherent lim-

itations of their baseline approaches, which are exactly from the same aspects that
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the methods in the competing baseline approach (i.e., from the other category) claim

as advantages. Based on this observation, a natural question to ask is if it is possible

to combine the segmentation-based approach and the graph-based approach into one

unified approach that can benefit from the advantages of both?

Our answer to this question is a new road network extraction approach, Sat2Graph,

which combines the inherent advantages of segmentation-based approaches and graph-

based approaches into one simple, unified framework. To do this, we design a novel

encoding scheme, graph-tensor encoding (GTE), to encode the road network graph

into a tensor representation, making it possible to train a simple, non-recurrent, su-

pervised model that predicts graph structures holistically from the input image.

In addition to the tensor-based network encoding, this work makes two contribu-

tions:

1. Sat2Graph surpasses state-of-the-art approaches in a widely used topology-

similarity metric at all precision-recall trade-off positions in an evaluation over a

large city-scale dataset covering 720 𝑘𝑚2 area in 20 U.S. cities and the popular

SpaceNet roads dataset [96].

2. Sat2Graph can naturally infer stacked roads, which prior approaches don’t han-

dle.

3.1 Background

Traditional Approaches. Extracting road networks from satellite imagery has

long history [47, 97]. Traditional approaches generally use heuristics and probabilis-

tic models to infer road networks from imagery. For examples, Hinz et al. [61] propose

an approach to create road networks through a complicated road model that is built

using detailed knowledge about roads and the environmental context, such as the

nearby buildings, vehicles and so on. Wegner et al. [99] propose to model the road

network with higher-order conditional random fields (CRFs). They first segment the

aerial images into super-pixels, then they connect these super-pixels based on the

65



CRF model.

Segmentation-Based Approaches. With the increasing popularity of deep learn-

ing, researchers have used convolutional neural networks (CNN) to extract road net-

work from satellite imagery [115, 118, 24, 36, 72, 17]. For example, Cheng et al. [36]

use an end-to-end cascaded CNN to extract road segmentation from satellite imagery.

They apply a binary threshold to the road segmentation and use morphological thin-

ning to extract the road center-lines. Then, a road network graph is produced through

tracing the single-pixel-width road center-lines. Many other segmentation-based ap-

proaches proposed different improvements upon this basic graph extraction pipeline,

including improved CNN backbones [24, 118], improved post-processing strategy [72],

improved loss functions [72, 77], incorporating GAN [114, 87, 39], and joint train-

ing [17].

In contrast with existing segmentation-based approaches, Sat2Graph does not rely

on the road segmentation as intermediate representation and learns the graph struc-

ture directly.

Graph-Based Approaches. Graph-based approaches construct a road network

graph directly from satellite imagery. Recently, Bastani et al. [14] proposed Road-

Tracer, a graph-based approach to generate road network in an iterative way. The

algorithm starts from a known location on the road map. Then, at each iteration, the

algorithm uses a deep neural network to predict the next location to visit along the

road through looking at the surrounding satellite imagery of the current location. Re-

cent works [37, 69] advanced the graph-based approach through applying sequential

generative models (RNN) to generate road network iteratively. The usage of sequen-

tial models allows the graph generation model to take more context information into

account compared with RoadTracer [14].

In contrast with existing graph-based approaches, Sat2Graph generates the road

graphs in one shot (holistic). This allows Sat2Graph to easily capture the global

information and make better coordination of vertex placement. The non-recurrent
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property of Sat2Graph also makes it easy to train and easy to extend (e.g., combine

Sat2Graph with GAN). We think this simplicity of Sat2Graph is another advantage

over other solutions.

Using Other Data Sources and Other Digital Map Inference Tasks. Ex-

tracting road networks from other data sources has also been extensively studied,

e.g., using GPS trajectories collected from moving vehicles [21, 6, 44, 41, 28, 91, 55].

Besides road topology inference, satellite imagery also enables inference of different

map attributes, including high-definition road details [73, 74, 57], road safety [78] and

road quality [25].

3.2 Sat2Graph

In this section, we present the details of our proposed approach - Sat2Graph. Sat2Graph

relies on a novel encoding scheme that can encode the road network graph into a three-

dimensional tensor. We call this encoding scheme Graph-Tensor Encoding (GTE).

This graph-tensor encoding scheme allows us to train a simple, non-recurrent, neu-

ral network model to directly map the input satellite imagery into the road network

graph (i.e., edges and vertices). As noted in the introduction, this graph construction

strategy combines the advantages of segmentation-based and graph-based approaches.

3.2.1 Graph-Tensor Encoding (GTE)

We show our graph-tensor encoding (GTE) scheme in Figure 3-2(a). For a road

network graph 𝐺 = {𝑉,𝐸} that covers a 𝑊 meters by 𝐻 meters region, GTE uses a
𝑊
𝜆
× 𝐻

𝜆
× (1 + 3 ·𝐷𝑚𝑎𝑥) 3D-tensor (denoted as 𝑇 ) to store the encoding of the graph.

Here, the 𝜆 is the spatial resolution, i.e., one meter, which restricts the encoded graph

in a way that no two vertices can be co-located within a 𝜆× 𝜆 grid, and 𝐷𝑚𝑎𝑥 is the

maximum edges that can be encoded at each 𝜆× 𝜆 grid.

The first two dimensions of 𝑇 correspond to the two spatial axes in the 2D plane.

We use the vector at each spatial location 𝑢𝑥,𝑦 = [𝑇𝑥,𝑦,1, 𝑇𝑥,𝑦,2, ... , 𝑇𝑥,𝑦,(1+3·𝐷𝑚𝑎𝑥)]
𝑇
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Figure 3-2: Graph-Tensor Encoding and Sat2Graph workflow.

to encode the graph information. As shown in Figure 3-2(a), the vector 𝑢𝑥,𝑦 has

(1+3·𝐷𝑚𝑎𝑥) elements. Its first element 𝑝𝑣 ∈ [0, 1] (vertexness) encodes the probability

of having a vertex at position (𝑥, 𝑦). Following the first element are 𝐷𝑚𝑎𝑥 3-element

groups, each of which encodes the information of a potential outgoing edge from

position (𝑥, 𝑦). For the 𝑖-th 3-element group, its first element 𝑝𝑒𝑖 ∈ [0, 1] (edgeness)

encodes the probability of having an outgoing edge toward (𝑑𝑥𝑖, 𝑑𝑦𝑖), i.e., an edge

pointing from (𝑥, 𝑦) to (𝑥 + 𝑑𝑥𝑖, 𝑦 + 𝑑𝑦𝑖). Here, we set 𝐷𝑚𝑎𝑥 to six as we find that

vertices with degree greater than six are very rare in road network graphs.

To reduce the number of possible different isomorphic encodings of the same input

graph, GTE only uses the 𝑖-th 3-element group to encode edges pointing toward a
360

𝐷𝑚𝑎𝑥
-degree sector from (𝑖 − 1) · 360

𝐷𝑚𝑎𝑥
degrees to 𝑖 · 360

𝐷𝑚𝑎𝑥
degrees. We show this

restriction and an example edge (in red color) in Figure 3-2(a). This strategy imposes

a new restriction on the encoded graphs – for each vertex in the encoded graph, there

can only be at most one outgoing edge toward each 360
𝐷𝑚𝑎𝑥

-degree sector. However, we

find this restriction does not impact the representation ability of GTE for most road

graphs. This is because the graphs encoded by GTE are undirected. We defer the

discussion on this in Section 3.4.
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Encode

Encoding a road network graph into GTE is straightforward. For road network ex-

traction application, the encoding algorithm first interpolates the segment of straight

road in the road network graph. It selects the minimum number of evenly spaced in-

termediate points so that the distance between consecutive points is under 𝑑 meters.

This interpolation strategy regulates the length of the edge vector in GTE, making

the training process stable. Here, a small 𝑑 value, e.g., 𝑑 < 5, converts GTE back

to the road segmentation, making GTE unable to represent stacking roads. A very

large 𝑑 value, e.g. 𝑑 = 50, makes the GTE hard to approximate curvy roads. For

these reasons, we think a 𝑑 value between 15 to 25 can work the best. In our setup,

we set 𝑑 to 20.

For stacked roads, the interpolation may produce vertices belonging to two over-

lapped road segments at the same position. When this happens, we use an iterative

conflict-resolution algorithm to shift the positions of the endpoint vertices of the two

edges. The goal is to make sure the distance between any two vertices (from the two

overlapping edges) is greater than 5 meters. During training, this conflict-resolution

pre-processing also yields more consistent supervision signal for stacked roads - over-

lapped edges tend to always cross near the middle of each edge. After this step, the

encoding algorithm maps each of the vertices to the 3D-tensor 𝑇 following the scheme

shown in Figure 3-2(a). For example, the algorithm sets the vertexness (𝑝𝑣) of 𝑢𝑥,𝑦

to 1 when there is a vertex at position (𝑥, 𝑦), otherwise the vertexness is set to 0.

Decode

GTE’s Decoding algorithm converts the predicted GTE (often noisy) of a graph back

to the regular graph format (G = {V,E}). The decoding algorithm consists of two

steps, (1) vertex extraction and, (2) edge connection. As both the vertexness predic-

tions and edgeness predictions are real numbers between 0 and 1, we only consider

vertices and edges with probability greater than a threshold (denoted as 𝑝𝑡ℎ𝑟).

In the vertex extraction step, the decoding algorithm extracts the potential ver-
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tices through localizing the local maximas of the vertexness map (we show an example

of this in Figure 3-2(b)). The algorithm only considers the local maximas with ver-

texness greater than 𝑝𝑡ℎ𝑟.

In the edge connection step, for each candidate vertex 𝑣 ∈ 𝑉 , the decoding algo-

rithm connects its outgoing edges to other vertices. For the 𝑖-th edge of vertex 𝑣 ∈ 𝑉 ,

the algorithm computes its distance to all nearby vertices 𝑢 through the following

distance function,

𝑑(𝑣, 𝑖, 𝑢) =||(𝑣𝑥 + 𝑑𝑥𝑖, 𝑣𝑦 + 𝑑𝑦𝑖)− (𝑢𝑥, 𝑢𝑦)||

+ 𝑤 · 𝑐𝑜𝑠𝑑𝑖𝑠𝑡((𝑑𝑥𝑖, 𝑑𝑦𝑖), (𝑢𝑥 − 𝑣𝑥, 𝑢𝑦 − 𝑣𝑦))
(3.1)

, where 𝑐𝑜𝑠𝑑𝑖𝑠𝑡(𝑣1, 𝑣2) is the cosine distance of the two vectors, and 𝑤 is the weight

of the cosine distance in the distance function. Here, we set 𝑤 to a large number,

i.e., 100, to avoid incorrect connections. After computing this distance, the decoding

algorithm picks up a vertex 𝑢′ that minimizes the distance function 𝑑(𝑣, 𝑖, 𝑢), and adds

an edge between 𝑣 and 𝑢′. We set a maximum distance threshold, i.e., 15 meters,

to avoid incorrect edges being added to the graph when there are no good candidate

vertices nearby.

3.2.2 Training Sat2Graph

We use cross-entropy loss (denoted as ℒ𝐶𝐸) and 𝐿2-loss to train Sat2Graph. The

cross-entropy loss is applied to vertexness channel (𝑝𝑣) and edgeness channels (𝑝𝑒𝑖 𝑖 ∈

{1, 2, ..., 𝐷𝑚𝑎𝑥}), and the 𝐿2-loss is applied to the edge vector channels ((𝑑𝑥𝑖, 𝑑𝑦𝑖) 𝑖 ∈

{1, 2, ..., 𝐷𝑚𝑎𝑥}). GTE is inconsistent along long road segments. In this case, the same

road structure can be mapped to different ground truth labels in GTE representation.

Because of this inconsistency, we only compute the losses for edgeness and edge vectors

at position (𝑥, 𝑦) when there is a vertex at position (𝑥, 𝑦) in the ground truth. We
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show the overall loss function below (𝑇 , 𝑝𝑣, 𝑝𝑒𝑖 , 𝑑𝑥𝑖
, 𝑑𝑦𝑖are from ground truth),

ℒ(𝑇, 𝑇 ) =
∑︁

(𝑥,𝑦)∈[1..𝑊 ]×[1..𝐻]

(︃
ℒ𝐶𝐸(𝑝𝑣, 𝑝𝑣)

+ 𝑇𝑥,𝑦,1 ·
(︁𝐷𝑚𝑎𝑥∑︁

𝑖=1

(︀
ℒ𝐶𝐸(𝑝𝑒𝑖 , 𝑝𝑒𝑖) + ℒ2((𝑑𝑥𝑖, 𝑑𝑦𝑖), (𝑑𝑥𝑖, 𝑑𝑦𝑖))

)︀)︁)︃ (3.2)

In Figure 3-2(b), we show the training and inferring workflows of Sat2Graph.

Sat2Graph is agnostic to the CNN backbones. In this work, we choose to use the Deep

Layer Aggregation (DLA) [109] segmentation architecture as our CNN backbone.

We use residual blocks [52] for the aggregation function in DLA. The feasibility of

training Sat2Graph with supervised learning is counter-intuitive because of the GTE’s

inconsistency. We defer the discussion of this to Section 3.4.

3.3 Evaluation

We now present experimental results comparing Sat2Graph to several state-of-the-art

road-network generation systems.

3.3.1 Datasets

We conduct our evaluation on two datasets, one is a large city-scale dataset and the

other is the popular SpaceNet roads dataset [96].

City-Scale Dataset. Our city-scale dataset covers 720 𝑘𝑚2 area in 20 U.S.

cities. We collect road network data from OpenStreetMap [50] as ground truth and

the corresponding satellite imagery through Google static map API [48]. The spatial

resolution of the satellite imagery is set to one meter per pixel. This dataset enables

us to evaluate the performance of different approaches at city scale, e.g., evaluating

the quality of the shortest path crossing the entire downtown of a city on the inferred

road graphs.

The dataset is organized as 180 tiles; each tile is a 2 km by 2 km square region.

We randomly choose 15% (27 tiles) of them as a testing dataset and 5% (9 tiles) of
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them as a validation dataset. The remaining 80% (144 tiles) are used as training

dataset.

SpaceNet Roads Dataset. Another dataset we used is the SpaceNet roads

Dataset [96]. Because the ground truth of the testing data in the SpaceNet dataset

is not public, we randomly split the 2549 tiles (non-empty) of the original training

dataset into training(80%), testing(15%) and validating(5%) datasets. Each tile is

a 0.4 km by 0.4 km square. Similar to the city-scale dataset, we resize the spatial

resolution of the satellite imagery to one meter per pixel.

3.3.2 Baselines

We compare Sat2Graph with four different segmentation-based approaches and one

graph-based approach.

Segmentation-Based Approaches. We use four different segmentation-based ap-

proaches as baselines.

1. Seg-UNet: Seg-UNet uses a simple U-Net [85] backbone to produce road seg-

mentation from satellite imagery. The model is trained with cross-entropy loss.

This scheme acts as the naive baseline as it is the most straightforward solution

for road extraction.

2. Seg-DRM [72](ICCV-17): Seg-DRM uses a stronger CNN backbone which con-

tains 55 ResNet [52] layers to improve the road extraction performance. Mean-

while, Seg-DRM proposes to train the road segmentation model with soft-IoU

loss to achieve better performance. However, we find training the Seg-DRM

model with cross-entropy loss yields much better performance in terms of topol-

ogy correctness. Thus, in our evaluation, we train the Seg-DRM model with

cross-entropy loss.

3. Seg-Orientation [17](ICCV-19): Seg-Orientation is a recent state-or-the-art ap-

proach which proposes to improve the road connectivity by joint learning of road
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orientation and road segmentation. Similar to Seg-DRM, we show the results

of Seg-Orientation trained with cross-entropy loss as we find it performs better

compared with soft-IoU loss.

4. Seg-DLA: Seg-DLA is our enhanced segmentation-based approach which uses

the same CNN backbone as our Sat2Graph model. Seg-DLA, together with

Seg-UNet, act as the baselines of an ablation study of Sat2Graph.

Graph-Based Approaches. For graph-based approaches, we compare our Sat2Graph

solution with RoadTracer [14](CVPR-18) by applying their code on our dataset. Dur-

ing inference, we use peaks in the segmentation output as starting locations for Road-

Tracer’s iterative search.

3.3.3 Implementation Details

Data Augmentation: For all models in our evaluation, we augment the training

dataset with random image brightness, hue and color temperature, random rotation

of the tiles, and random masks on the satellite imagery.

Training: We implemented both Sat2Graph and baseline segmentation approaches

using Tensorflow. We train the model on a V100 GPU for 300k iterations (about

120 epochs) with a learning rate starting from 0.001 and decreasing by 2x every 50k

iterations. We train all models with the same receptive field, i.e., 352 by 352. We

evaluate the performance on the validation dataset for each model every 5k iterations

during training, and pick up the best model on the validation dataset as the converged

model for each approach to avoid overfitting.

3.3.4 Evaluation Metrics

In the evaluation, we focus on the topology correctness of the inferred road graph

rather than edge-wise correctness. This is because the topology correctness is often
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crucial in many real-world applications. For example, in navigation applications, a

small missing road edge in the road graph could make two regions disconnected. This

small missing road segment is a small error in terms of edge-wise correctness but a

huge error in terms of topology correctness.

We evaluate the topology correctness of the inferred road graphs through two

metrics, TOPO [20] and APLS [96]. Here, we describe the high level idea of these

two metrics. Please refer to [20, 96] for more details about these two metrics.

TOPO metric: TOPO metric measures the similarity of sub-graphs sampled on the

ground truth graph and the inferred graph from a seed location. The seed location

is matched to the closest seed node on each graph. Here, given a seed node on a

graph, the sub-graph contains all the nodes such that their distances (on the graph)

to the seed node are less than a threshold, e.g., 300 meters. For each seed location,

the similarity between two sampled sub-graphs is quantified as precision, recall and

𝐹1-score. The metric reports the average precision, recall and 𝐹1-score over randomly

sampled seed locations over the entire region.

The TOPO metric has different implementations. We implement the TOPO met-

ric in a very strict way following the description in [55]. This strict implementation

allows the metric to penalize detailed topology errors.

APLS metric: APLS measures the quality of the shortest paths between two loca-

tions on the graph. For example, suppose the shortest path between two locations

on the ground truth map is 200 meters, but the shortest path between the same

two locations on the inferred map is 20 meters (a wrong shortcut), or 500 meters, or

doesn’t exist. In these cases, the APLS metric yields a very low score, even though

there might be only one incorrect edge on the inferred graph.

3.3.5 Quantitative Evaluation

Overall Quality. Each of the approaches we evaluated has one major hyper-

parameter, which is often a probability threshold, that allows us to make different

precision-recall trade-offs. We change this parameter for each approach to plot an
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Figure 3-3: TOPO metric precision-recall trade-off curves

precision-recall curve. We show the precision-recall curves for different approaches in

Figure 3-3. This precision-recall curve allows us to see the full picture of the capa-

bility of each approach. We also show the best achievable TOPO 𝐹1-score and APLS

score of each approach in Table 3.1 for reference.

From Figure 3-3, we find an approach may not always better than another ap-

proach at different precision-recall position (TOPO metric). For examples, the graph-

based approach RoadTracer performs better than others when the precision is high,

whereas the segmentation-based approach DeepRoadMapper performs better when

the recall is high.

Meanwhile, we find an approach may not always better than another approach on

both TOPO and APLS. For example, in Table 3.1, RoadTracer has the best APLS

score but the worst TOPO 𝐹1-score in the five baselines on the city-scale dataset. This

is because RoadTracer is good at coarse-grained road connectivity and the precision

of inferred road graphs rather than recall. For example, in Figure 3-4(a), RoadTracer

is better compared with Seg-DRM and Seg-Orientation in terms of road connectivity

when the satellite imagery is full of shadow.

In contrast, Sat2Graph surpasses all other approaches on APLS metric and at all

TOPO precision-recall positions – for a given precision, Sat2Graph always has the

best recall; and for a given recall, Sat2Graph always has the best precision. We think
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Method City-Scale Dataset
Prec. Rec. 𝐹1 APLS

RoadTracer[14](CVPR-18) 78.00 57.44 66.16 57.29
Seg-UNet 75.34 65.99 70.36 52.50
Seg-DRM[72](ICCV-17) 76.54 71.25 73.80 54.32
Seg-Orientation[17](ICCV-19) 75.83 68.90 72.20 55.34
Seg-DLA(ours) 75.59 72.26 73.89 57.22
Sat2Graph-DLA(ours) 80.70 72.28 76.26 63.14

Method SpaceNet Roads Dataset
Prec. Rec. 𝐹1 APLS

RoadTracer[14](CVPR-18) 78.61 62.45 69.60 56.03
Seg-UNet 68.96 66.32 67.61 53.77
Seg-DRM[72](ICCV-17) 82.79 72.56 77.34 62.26
Seg-Orientation[17](ICCV-19) 81.56 71.38 76.13 58.82
Seg-DLA(ours) 78.99 69.80 74.11 56.36
Sat2Graph-DLA(ours) 85.93 76.55 80.97 64.43

Table 3.1: Comparison of the best achievable TOPO 𝐹1-score and APLS score. We
show the best TOPO 𝐹1-score’s corresponding precision and recall just for reference
not for comparison. (All the values in this table are percentages)

this is because Sat2Graph’s graph-tensor encoding takes advantages from both the

segmentation-based approaches and graph-based approaches, and allows Sat2Graph

to infer stacking roads that none of the other approaches can handle. As an ablation

study, we compare Sat2Graph-DLA with Seg-DLA (Seg-DLA uses the same CNN

backbone as Sat2Graph-DLA). We find the superiority of Sat2Graph comes from the

graph-tensor encoding rather than the stronger CNN backbone.

Benefit from GTE. In addition to the results shown in Table 3.1, we show the

results of using GTE with other backbones. On our city-wide dataset, we find GTE

can improve the TOPO 𝐹1-score from 70.36% to 76.40% with the U-Net backbone

and from 73.80% to 74.66% with the Seg-DRM backbone. Here, the improvement on

Seg-DRM backbone is minor because Seg-DRM backbone has a very shallow decoder.

Sensitivity on 𝑤. In our decoding algorithm, we have a hyper-parameter 𝑤

which is the weight of the cosine distance term in equation 3.1. In Table 3.2, we show

how this parameter impacts the TOPO 𝐹1-score on our city-wide dataset. We find

the performance is robust to w - the 𝐹1-scores are all greater than 76.2% with w in
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Value of 𝑤 1 5 10 25 75 100 150
𝐹1-score 75.87% 76.28% 76.62% 76.72% 76.55% 76.26% 75.68%

Table 3.2: TOPO 𝐹1 scores on our city-wide dataset with different 𝑤 values.

the range from 5 to 100.

Vertex threshold and edge threshold. In our basic setup, we set the vertex

threshold and the edge threshold of Sat2Graph to the same value. However, we can

also use independent probability thresholds for vertices and edges. We evaluate this by

choosing a fixed point and vary one probability threshold at a time. We find the vertex

threshold dominates the performance and using a higher edge probability threshold

(compared with the vertex probability) is helpful to achieve better performance.

Stacking Road. We evaluate the quality of the stacking road by matching the

overpass/underpass crossing points between the ground truth graphs and the proposed

graphs. In this evaluation, we find our approach has a precision of 83.11% (number of

correct crossing points over the number of all proposed crossing points) and a recall

of 49.81% (number of correct crossing points over the number of all ground-truth

crossing points) on stacked roads. In fact only 0.37% of intersections are incorrectly

predicted as overpasses/underpasses (false-positive rate). We find some small roads

under wide highway roads are missing entirely. We think this is the reason for the

low recall.

3.3.6 Qualitative Evaluation

Regular Urban Areas. In the regular urban areas (Figure 3-4), we find the ex-

isting segmentation-based approach with a strong CNN backbone (Seg-DLA) and

better data augmentation techniques has already been able to achieve decent results

in terms of both precision and recall, even if the satellite imagery is full of shadows

and occlusions. Compared with Sat2Graph, the most apparent remaining issue of the

segmentation-based approach appears at parallel roads. We think the root cause of

this issue is from the fundamental limitation of segmentation-based approaches — the

road-segmentation intermediate representation. Sat2Graph eliminates this limitation
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through graph-tensor encoding, thereby, Sat2Graph is able to produce detailed road

structures precisely even along closeby parallel roads.

Stacked Roads. We show the orthogonal superiority of Sat2Graph on stacked roads

in Figure 3-5. None of the existing approaches can handle stacked roads, whereas

Sat2Graph can naturally infer stacked roads thanks to the graph-tensor encoding.

We find Sat2Graph may still fail to infer stacking roads in some complicated scenarios

such as in Figure 3-5(d-e). We think this can be further improved in a future work,

such as adding discriminative loss to regulate the inferred road structure.

RoadTracer
(CVPR-18)

Sat2Graph 
(ours)

Ground Truth
(OpenStreetMap)

Seg-DRM
(ICCV-17)

Seg-Orientation
(ICCV-19)

Seg-DLA
(ours)

(a)

(b)

(c)

(d)

Figure 3-4: Qualitative Comparison in Regular Urban Areas. We use the models that
yield the best TOPO 𝐹1 scores to create this visualization.
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Sat2Graph
Pre-Decoding

(a)

(b)

(c)

(d)

(e)

Ground Truth
(OpenStreetMap)

RoadTracer
(CVPR-18)

Sat2Graph 
(ours)

Seg-DRM
(ICCV-17)

Seg-Orientation
(ICCV-19)

Figure 3-5: Qualitative Comparison for Stacked Roads. Sat2Graph robustly infers
stacked roads in examples (a-c), but makes some errors in (d) and (e). Prior work
infers only planar graphs and incorrectly captures road topology around stacked roads
in all cases. We highlight edges that cross without connecting in green and blue.

3.4 Discussion

There are two concerns regarding Sat2Graph: (1) it seems that the heavily restricted

and non-lossless graph-tensor encoding may not be able to correctly represent all

different road network graphs, and (2) training a model to output GTE representation

with supervised learning seems impossible because the GTE representation is not

consistent.

Concern about the encoding capability. We think there are two reasons that

make GTE able to encode almost all road network graphs.
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𝐷max 3 4 5 6 8
Fixed with undirected property 8.62% 2.81% 1.18% 0.92% 0.59%
Fixed with interpolatable property 0.013% 0.0025% 0.0015% 0.0013% 0.0013%

Table 3.3: The ratios of edges fixed using the undirected and interpolatable properties.

First, the road network graph is undirected. Although roads have directions,

the road directions can be added later as road attributes, after the road network

extraction. In this case, for each edge 𝑒 = (𝑣𝑎, 𝑣𝑏), we only need to encode one link

from 𝑣𝑎 to 𝑣𝑏 or from 𝑣𝑏 to 𝑣𝑎, rather than encode both of the two links. Even though

GTE has the 360
𝐷𝑚𝑎𝑥

-degree sector restriction on outgoing edges from one vertex, this

undirected-graph property makes it possible to encode very sharp branches such as

the branch vertices between a highway and an exit ramp.

Second, the road network graph is interpolatable. There could be a case where

none of the two links of an edge 𝑒 = (𝑣𝑎, 𝑣𝑏) can be encoded into GTE because

both 𝑣𝑎 and 𝑣𝑏 need to encode their other outgoing links. However, because the

road network graph is interpolatable, we can always interpolate the edge 𝑒 into two

edges 𝑒1 = (𝑣𝑎, 𝑣
′) and 𝑒2 = (𝑣′, 𝑣𝑏). After the interpolation, the original geometry

and topology remain the same but we can use the additional vertex 𝑣′ to encode the

connectivity between 𝑣𝑎 and 𝑣𝑏.

In Table 3.3, we show the ratios of edges that need to be fixed using the undirected

and interpolatable properties in our dataset with different 𝐷max values.

Concern about supervised learning. Another concern with GTE is that for

one input graph, there exist many different isomorphic encodings for it (e.g., there

are many possible vertex interpolations on a long road segment.). These isomorphic

encodings produce inconsistent ground truth labels. During training, this inconsis-

tency of the ground truth can make it very hard to learn the right mapping through

supervised learning.

However, counter-intuitively, we find Sat2Graph is able to learn through super-

vised learning and learn well. We find the key reason of this is because of the in-

consistency of GTE representation doesn’t equally impact the vertices and edges in

a graph. For example, the locations of intersection vertices are always consistent in
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different isomorphic GTEs.

We find GTE has high label consistency for supervised learning at important

places such as intersections and overpass/underpass roads. Often, these places are the

locations where the challenges really come from. Although GTE has low consistency

for long road segments, the topology of the long road segment is very simple and can

still be corrected through GTE’s decoding algorithm.

3.5 Conclusion

In this work, we have proposed a simple, unified road network extraction solution that

combines the advantages from both segmentation-based approaches and graph-based

approaches. Our key insight is a novel graph-tensor encoding scheme. Powered by

this graph-tensor approach, Sat2Graph is able to surpass existing solutions in terms

of topology-similarity metric at all precision-recall points in an evaluation over two

large datasets. Additionally, Sat2Graph naturally infers stacked roads like highway

overpasses that none of the existing approaches can handle.
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Chapter 4

Lane-Level Street Map Extraction

Digital maps with lane-level details are the foundation of many applications, including

lane-to-lane navigation, route planning for delivery fleets or autonomous vehicles,

and lane-level localization. However, creating and maintaining digital street maps,

especially with lane-level details, are time-consuming and labor-intensive. As a result,

automatic mapping techniques have drawn much attention from both industry and

academics, and they have proposed many solutions to automate the mapping process.

Albeit great efforts devoted to this problem, given the complex nature of real-world

scenarios, how to automatically produce digital maps at scale with low costs and an

acceptable accuracy is still an open research question.

We can put automatic mapping techniques into two categories based on their data

sources. (1) One type of mapping solution relies on the sensors mounted on vehicles,

e.g., GPS receivers, IMUs, cameras, and lidars. This type of mapping solution can

provide decent mapping accuracy. However, because it relies on sensor-equipped

vehicles, the mapping cost is often high, especially when maintaining an up-to-date

map covering a large region. (2) Another type of mapping solution relies on remote

sensing data, i.e., imagery and radar data, collected from airplanes or satellites. This

type of mapping solution can quickly scale up to a large region at a low cost. However,

limited by the top-down view and the resolution of the data, prior works mainly focus

on extracting maps at road level [72, 14, 118, 17, 106, 70, 37, 56, 92, 13, 16], extracting

road curbs [103, 104, 105], segmenting visible lane markers [11, 46], and inferring lane
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count and lane position [58, 113]; none of them extract a complete and routable

lane-level street map.

Figure 4-1: Example of a lane-level street map and our proposed mapping pipeline.
We show lanes at non-intersection areas with solid lines and show the turning lanes
with dashed lines. The colors of lanes indicate their driving directions. We highlight
the terminal nodes in blue.

This work takes one step forward toward a promising direction – extracting

routable lane-level street maps from aerial imagery. In Figure 4-1 (a), we show

an example of the lane-level street map at an intersection. Unlike road-level street

maps, the lane-level street maps capture detailed road network features, including

lane geometry such as lane merging and lane diverging, and rich semantic informa-

tion such as driving directions, e.g., the one-way road in Figure 4-1 (a), and turning
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lane restrictions, e.g., the left-only and right-only lanes in Figure 4-1 (a,b). Because

of the complexity of lane topology and semantic, extracting lane-level street maps

from aerial imagery is a challenging vision task and existing road-level street map

extraction solutions are incompetent to solve it.

In this work, to address the challenge, we propose a mapping pipeline for lane-

level street map extraction. We have a key observation that, unlike road-level map

extraction, extracting the entire lane-level maps in one shot can be very challenging.

However, the lane extraction problem becomes solvable if we divide the task into

sub-tasks and solve them separately. Hence, we split the lane extraction task into

two sub-tasks. As shown in Figure 4-1(b), we first create lane-level maps at non-

intersection areas with lane geometry and lane direction. Then, we enumerate all the

possible turning lanes, i.e., a connection between two terminal nodes (we highlight

the terminal nodes in blue in Figure 4-1), at the intersections. We check if the turning

lanes are valid and extract the geometry of the valid turning lanes to complete the

map. Here, we consider the lanes that go straight at intersections also turning lanes.

We evaluate our mapping pipeline on a dataset containing 400 km of lanes in

four US cities, Boston, Seattle, Phoenix, and Miami. In the evaluation, we compare

different neural network designs at each stage of the mapping pipeline, showing the

effectiveness of our mapping pipeline and the potential of aerial-imagery-based lane-

level street map extraction.

In this work, we make the following contributions,

• We proposed an automatic mapping pipeline to extract routable lane-level street

maps from aerial imagery. To the best of our knowledge, this is the first work

that extracts a fully-routable lane-level street maps from aerial imagery.

• Our evaluation demonstrates the effectiveness of our mapping pipeline and un-

veils challenges in the task, which can inspire future research work.
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4.1 Background

Mapping with aerial or satellite imagery. Extracting digital maps from aerial

or satellite imagery has been extensively studied. Most of the prior works focus

on extracting road-level maps. A widely-used strategy to solve this problem is to

turn the road extraction problem into a road segmentation problem, for examples,

DeepRoadMapper [72], D-LinkNet [118], joint orientation learning [17], and many

other works [106, 24, 95, 45] – they all adopt a segmentation-based map extraction

strategy. Besides the segmentation-based approaches, RoadTracer [14] first proposes

to extract the road network using an iterative graph construction approach that does

not rely on the road segmentation but constructs the road network directly. After

RoadTracer, several follow-up works [70, 92, 37] have proposed improvements upon

the graph construction strategy. Recently, Sat2Graph [56] proposes the graph-tensor

encoding to unify the segmentation strategy and the graph construction strategy,

and shows promising results. However, all of those works focus on map extraction at

road levels, and we cannot directly apply them to lane-level map extraction given the

complexity of lane-level maps in terms of both topology and semantic.

Besides road topology extraction, many other works extract different map features

from aerial or satellite imagery. For example, lane marker extractions [11, 46], lane

curb extraction [103, 104, 105], lane count and position extraction [58, 113], road

attribute inference [58], road safety assessment [59, 78], etc. These works extract

important features about the road networks; however, they cannot produce a complete

routable lane graph that is directly useful for downstream applications.

Mapping with vehicle sensors. Creating maps using sensor data collected

on vehicles, including dedicated survey vehicles and other vehicles like taxis, has

drawn great attention in industry and academics. Prior works have explored mapping

solutions with different sensor data sources including GPS [6, 21, 28, 41, 44, 55, 91,

10], cameras [64, 63], lidars [62, 65, 83, 116], and the combinations of different data

sources [119]. In this work, we focus on mapping with remote sensing data, i.e., aerial

imagery, which complements the mapping solutions based on vehicle sensors.
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4.2 Mapping Pipeline

Figure 4-2: Our proposed lane-level street map extraction pipeline.

In this work, we represent the lane-level street map as a directed graph 𝐺 =

{𝑉,𝐸}, where the vertices represent locations in a plane and the edges represent

lane segments (centerlines). This graph captures both non-intersection lanes and the

turning lanes (virtual lanes) at intersections. The direction of the edge encodes the

driving direction of the lane. We call this directed graph a lane graph when we use
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it to describe a lane-level street map. While a lane-level street map contains many

features, the lane graph is a basic but essential map representation capturing the core

features that make the lane-level street map routable. In this work, we propose a

mapping pipeline to extract the lane graph from aerial imagery.

Though prior works have proposed many solutions on road network extraction, we

cannot directly use them to extract lane graphs because most of the existing works

extract the road network as a planar graph (no intersecting edges). However, at

road intersections, the lane graph is not planar – it needs to represent turning lanes

that intersect but are not connected. Nevertheless, we need to extract the driving

directions of the lanes, whereas this is not necessary for road-level map extraction.

Therefore, we have to design a new solution to extract the lane graph.

We propose a mapping pipeline to extract lane graphs from aerial imagery. As

shown in Figure 4-2, we split the lane graph extraction task into two sub-tasks. In

the first sub-task, the goal is to extract lanes at non-intersection areas, where the

lane graph is planar; therefore, we can adapt existing road extraction algorithms to

extract the lanes. We show the details of this sub-task in Section 4.2.1.

In the second sub-task, the goal is to extract turning lanes at intersections. At

intersections, the lane graph is no longer planar, and it contains many intersecting

edges, making it very challenging to extract the lane graph. To overcome this chal-

lenge, we extract each turning lane separately instead of extracting the entire lane

graph in one shot. As we have already extracted the lane graph at non-intersection

areas, we can locate all the terminal vertices (the endpoints of lanes at intersections,

highlighted in blue circles in Figure 4-2 (f)). Because each turning lane has to start

from one terminal vertex and end at another terminal vertex, we can enumerate all

the possible pairs of terminal vertices that may have valid turning lanes connecting

them. In our mapping pipeline, we enumerate all the terminal vertex pairs whose

distance (distance between two vertices in a pair) is below a threshold. Then, for

each pair, we validate its connectivity using a classifier (a neural network). If the

classifier indicates a turning lane connecting the pair of terminal vertices, we extract

the vectors of the turning lanes (Figure 4-2 (g)). Finally, we merge the extracted
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turning lanes with the lane graph extracted in sub-task 1 to create a complete lane

graph.

4.2.1 Lane Extraction at Non-Intersection Areas

In the first sub-task of the mapping pipeline, we extract the lane graph at non-

intersection areas using a segmentation-based approach. In this approach, we repre-

sent the lane graph as a lane segmentation, e.g., Figure 4-2 (b), where each location

in the segmentation has a value of either one or zero , indicating if that location has

a lane or not. To extract the lane graph from aerial imagery, we first use a semantic

segmentation model to extract the lane segmentation from aerial imagery and then

extract the lane graph (Figure 4-2 (d)) from the lane segmentation. Different from

road extraction tasks, we also need to extract the direction of the lanes. To do so, we

extract a direction map (Figure 4-2 (c)) from the input aerial imagery and combine it

with the extracted lane graph to create the final directed lane graph (Figure 4-2 (e)).

Next, we discuss the details of the model architecture, and the training/inference

processes.

Lane extraction model. Suppose the input aerial image has a spatial dimension

of 𝑁 × 𝑁 with three color channels. We use a convolutional neural network to

extract the lane segmentation 𝑠 ∈ R𝑁×𝑁 , 0 ≤ 𝑠𝑖,𝑗 ≤ 1 and the direction map 𝑑 ∈

R𝑁×𝑁×2,−1 ≤ 𝑑𝑖,𝑗,𝑘 ≤ 1. In the direction map 𝑑, if the location (𝑖, 𝑗) overlaps with

a lane, we encode the lane direction as a normalized 2D vector in 𝑑𝑖,𝑗; otherwise, we

set 𝑑𝑖,𝑗 to a zero vector.

In Figure 4-3, we show the architecture of our lane extraction model. Inspired

by [118, 45], we adapts an UNet [85] structure with a ResNet [52] encoder for better

feature extraction and dilated convolutional layers [108] for larger receptive field. To

output the lane segmentation and the lane direction map, we use two branches after

the last decoder block so that these two tasks can share most of the neural weights

in the model. We use softmax as the activation function for the lane segmentation

branch and use linear activation function for the direction map branch.

Ground truth. We create the ground truth lane segmentation 𝑠 and the direction
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Figure 4-3: Lane Extraction Model

map 𝑑 by rendering edges of the lane graph with a width of 5 pixels, which is 0.625-

meter wide as the imagery in our evaluation dataset has a ground sampling distance

(GSD) of 0.125 meters/pixel.

Training. We set the input window size to 640× 640 during training. We intend

to use this large window size so that the model can learn to use global information.

For example, if trees occlude a short lane segment, the model should still extract it

by using nearby information.

Inspired by the joint orientation learning work [17], we train the lane segmentation

branch and the lane direction branch jointly as Batra et al. [17] have shown that

learning road extraction jointly with road orientation can achieve better connectivity.

For the lane segmentation branch, inspired by the SpaceNet challenge [45], we use

a linear combination of the cross-entropy loss (ℒ𝑐𝑒) and the soft dice loss (ℒ𝑑𝑖𝑐𝑒) as
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the loss function. For the lane direction branch, we use ℒ2 loss. Therefore, the overall

loss function is,

ℒ = ℒ2(𝑑, 𝑑) +
1

2
(ℒ𝑐𝑒(𝑠, 𝑠) + ℒ𝑑𝑖𝑐𝑒(𝑠, 𝑠)) (4.1)

Inference. We need to apply our model to large aerial images whose size is often

over thousands of pixels during inference. To run the lane extraction model on such

large input images, we use a 2-dimension sliding window approach where the sliding

window size is 640 × 640. Each time we move this sliding window by 256 pixels

either vertically or horizontally to cover the entire input image. Because we move

the sliding window 256 pixels each time, the inference results from different sliding

window instances may overlap on each other. When this happens, we use the average

result from different sliding window instances.

Lane graph extraction. After we extract the lane segmentation and the lane

direction map from the input aerial image, we first extract the lane graph (undirected)

from the lane segmentation. Similar to other segmentation-based road extraction

work, we binarize the output lane segmentation with a threshold (e.g., 0.5), create a

skeleton from this binary segmentation mask using morphology thining, and turn the

skeleton into a graph.

Next, we use the direction map output to assign directions to the lane graph.

As shown in Figure 4-2 (d), we first decompose the lane graph into individual lane

segments. Each lane segment consists of a sequence of edges [𝑒1, ..., 𝑒𝑚] (𝑒𝑖 connects

to 𝑒𝑖+1). Because the direction map output can be very noisy, we use the entire lane

segment to decide its direction. Formally, we compute the following value for each

lane segment.
𝑐 =

𝑚∑︁
𝑖=1

∑︁
(𝑥,𝑦)∈𝑃 (𝑒𝑖)

⟨𝐷(𝑒𝑖),𝑑𝑥,𝑦⟩ (4.2)

, where 𝑃 (𝑒) = {(𝑥, 𝑦)|Edge e intersects location (x,y)}, 𝐷(𝑒) is the normalized direc-

tion vector of edge 𝑒, and ⟨ , ⟩ is the vector inner product operator. If 𝑐 is greater than

zero for a lane segment [𝑒1, ..., 𝑒𝑚], that indicates the direction of the lane segment

should be from 𝑒1 to 𝑒𝑚; otherwise, the direction should be the opposite — from 𝑒𝑚

to 𝑒1.
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4.2.2 Turning Lane Extraction

Figure 4-4: Given a pair of terminal nodes A and B, we use the above architecture to
infer if there is a valid turning lane connecting node A and node B. If so, we extract
the turning lane vectors using a segmentation approach.

After the first stage of the mapping pipeline, we get a lane graph covering all the

non-intersection areas, and this lane graph has many terminal nodes at intersections.

In the second stage, we extract the turning lanes at intersections by examining all

the terminal node pairs whose distances are below a threshold, i.e., 70 meters. We

consider those terminal node pairs as candidate turning lanes. For each terminal node

pair (𝑣𝐴, 𝑣𝐵), we use neural network models to validate the turning lane going from

node A to node B and extract the turning lane vectors. In Figure 4-4, we show the

detailed workflow.

Input. For each terminal node pair (𝑣𝐴, 𝑣𝐵), we consider a window of size 𝑁 ×𝑁

centered at the midpoint between node A and node B. We use the aerial image, the

direction map (extracted in stage-1) in this window as inputs. Meanwhile, for each
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node, we create an auxiliary input 𝑝 ∈ R𝑁×𝑁×3 whose first channel is a binary mask

indicating the position of the node, and the second and third channels encodes the

offsets from the node. Formally, suppose the position of the node is at (𝑛𝑥, 𝑛𝑦), we

define 𝑝 as,

𝑝𝑥,𝑦,1 = 1 if 𝑥 = 𝑛𝑥, 𝑦 = 𝑛𝑦, otherwise 0

𝑝𝑥,𝑦,2 =
1

𝑁
|𝑥− 𝑛𝑥| 𝑝𝑥,𝑦,3 =

1

𝑁
|𝑦 − 𝑛𝑦|

(4.3)

We use 𝑝 to provide auxiliary position information for the neural network models

so that the model can reason the relative distances effectively.

Turning lane validation. To validate a candidate turning lane (𝑣𝐴, 𝑣𝐵), we

first extract the segmentation of the reachable lanes from node A and node B. Here

the reachable lanes from a node are the lanes that can be reached on the lane graph

through only turning lanes. As examples, we show the corresponding reachable lanes

from node A and node B in Figure 4-4 (e) and (f), respectively. We extract the reach-

able turning lane segmentation using a neural network that has the same architecture

(and the same loss function) as Figure 4-3 except the direction prediction branch.

After we extract the reachable lane segmentation, we concatenate it with all other

input data and feed them into a binary classification model that predicts if the can-

didate turning lane is valid or not.

Alternative-1: An alternative design is to get rid of the reachable lane extraction

modules and directly feed the input data to a binary classification model. Our eval-

uation finds that this design yields poor accuracy on the testing dataset because the

turning lane validation task depends on spatial information such as the relative po-

sitions of lanes and lane markers. However, the encoder-only structure in the binary

classification model makes it difficult to reason the spatial correlation effectively. In

contrast, our design uses the reachable lane extraction model that adapts a UNet

(encoder-decoder) structure to help reason the spatial correlation. Therefore, our

design can achieve much higher accuracy on unseen data.

Turning lane extraction. To extract the turning lane, we first adopt the same
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neural network model as the reachable lane extraction model to extract the segmen-

tation of the turning lane, and then extract the lane vector from the segmentation

(similar to sub-task 1). In our evaluation, we find that this solution is sufficient to

achieve very high accuracy.

Alternative-2: With this turning lane extraction model, we can derive an alter-

native design for turning lane validation. In this alternative design, we train a lane

extraction model to produce the turning lane segmentation if the input node pair is

valid and produce an empty segmentation map otherwise. We check if a path connects

the two nodes in the segmentation output to validate the turning lane during testing.

This alternative design is much simpler than ours. However, this alternative design

also performs poorly because it often produces noisy and disconnected segmentation

for valid turning lanes, making it hard to reach a clear decision by only checking the

segmentation output.

Training. During training, we randomly sample terminal node pairs whose dis-

tances are shorter than 70 meters in the ground truth lane graph and use the ground

truth labels to generate the corresponding direction maps. For the turning lane valida-

tion model, we train it together with the reachable lane extraction model end-to-end.

For the turning lane extraction model, we train it with only valid terminal node pairs

so that the model can always produce a sharp turning lane segmentation.

4.3 Evaluation

4.3.1 Dataset

We find there are very limited public datasets or resources for lane-level map extrac-

tion. One of the related datasets is the Argoverse dataset [31] where they provide

two high-definition maps, but they do not provide the corresponding aerial imagery.

Hence, to evaluate our proposed mapping pipeline, we create our dataset.

Our dataset covers about 400 km of lanes in four cities, Miami, Boston, Seattle,

and Phoenix. For the aerial imagery, we collect them from MapBox [1] and resize the
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images to 0.125 meters per pixel. For the lane graph labels, we adapt the lane graph

labels in the Argoverse dataset for Miami. We tweak the lane graph labels so that

they match our aerial imagery. To improve the diversity of the dataset, we manually

annotate the lane graphs in three more cities, Boston, Seattle, and Phoenix. We

organize the dataset as 35 tiles. The dimension of each tile is 4096 by 4096 (pixels).

We use 24 tiles as the training dataset and 11 tiles as the testing dataset. Our dataset

is available on GitHub.

4.3.2 Metrics

To evaluate the quality of the extracted lane graphs, we adapt two widely used metrics

in road extraction problems, the GEO metric and TOPO metric.

GEO metric. In the GEO metric, we interpolate (densify) the ground truth lane

graph and the extracted lane graph so that the distances between any two connected

vertices are 0.25 meters. After the interpolation, we got the ground truth lane graph

𝐺̂ = {𝑉 , 𝐸̂}, and the extracted lane graph 𝐺 = {𝑉,𝐸}, where 𝑉 , 𝑉 are the sets of

vertices and 𝐸̂, 𝐸 are the sets of edges. We consider a pair of vertices (𝑣 ∈ 𝑉, 𝑣 ∈ 𝑉 ) as

a valid match if the distance between the two vertices is less than 𝑟 meters. Then, we

compute a maximal one-to-one matching between 𝑉 and 𝑉 and denote the matched

vertices in the extracted lane graph as 𝑉𝑚𝑎𝑡𝑐ℎ. Finally, we report the precision |𝑉𝑚𝑎𝑡𝑐ℎ|
|𝑉 | ,

recall |𝑉𝑚𝑎𝑡𝑐ℎ|
|𝑉 | and 𝐹1 score based on the matching result.

The threshold 𝑟 determines the error tolerance of the metric. In our evaluation,

we set it to 1 meter so that the metric can penalize minor errors.

TOPO metric. The GEO metric focuses on local correctness, but it does not

take connectivity into account. For example, if there is a small missing gap in an

extracted lane, the GEO metric will still report a very high recall even though the

small missing gap makes the entire lane disconnected. In contrast, the TOPO metric

takes connectivity into account. We implement the TOPO metric on top of the GEO

metric. For each matched vertex pair (𝑣, 𝑣) in the GEO metric, we consider the sub-

graphs 𝑆𝑣 and 𝑆𝑣 on 𝐺 and 𝐺̂ where all the vertices in 𝑆𝑣 and 𝑆𝑣 can be reached

from 𝑣 and 𝑣 by walking on the graph for less than 50 meters, respectively. We

95

https://github.com/songtaohe/LaneExtraction.git


then compute the GEO metric between the two sub-graphs 𝑆𝑣 and 𝑆𝑣, denoted as

PrecisionGEO(𝑆𝑣, 𝑆𝑣) and RecallGEO(𝑆𝑣, 𝑆𝑣). Finally, we report the TOPO precision

and recall defined as,

PrecisionTOPO =

∑︀
matched (𝑣,𝑣) PrecisionGEO(𝑆𝑣, 𝑆𝑣)

|𝑉 |

RecallTOPO =

∑︀
matched (𝑣,𝑣) RecallGEO(𝑆𝑣, 𝑆𝑣)

|𝑉 |

(4.4)

Here, we can consider the TOPO metric as a weighted version of the GEO metric

where each matched vertex pair only contributes a fraction to the precision and recall

based on the correctness of the local connectivity.

Directed versions. To evaluate the directed lane graphs, we derive the directed

versions of the GEO and TOPO metric. In the directed version, we assign a direction

to each vertex based on its edges (we ignore vertices that have more than two neigh-

bors). During matching, we only consider the vertex pairs whose angle differences

are less than 60 degrees. We use these directed versions to evaluate lane graphs with

driving direction information.

4.3.3 Implementation Details

We implement our mapping pipeline in Tensorflow [2] and use Adam optimizer [66]

for training. For all the models, we train them for 500 epochs on our training dataset.

We start with a learning rate of 0.001 and decrease it by ten at the 350-th epoch and

450-th epoch during training. We augment the input images with random rotations,

cropping, color balances, and brightness. Our implementation is available on GitHub.

4.3.4 Performance of each Component

In this section, we evaluate each component in our mapping pipeline separately. The

components include,

(1) Undirected lane extraction in sub-task 1.

(2) Lane direction inference in sub-task 1.
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(3) Turning lane validation in sub-task 2.

(4) Turning lane extraction in sub-task 2.

Method GEO metric TOPO metric
Precision Recall 𝐹1 Score Precision Recall 𝐹1 Score

Basic UNet 0.811 0.762 0.786 0.747 0.622 0.679
Add Dilated Layers 0.818 0.792 0.805 0.753 0.680 0.715
With ResNet18 Encoder 0.828 0.812 0.820 0.768 0.708 0.737
With ResNet34 Encoder 0.835 0.821 0.828 0.774 0.724 0.748

Table 4.1: Lane extraction accuracy at non-intersection areas.

Undirected lane graph extraction. We report the evaluation result of the

undirected lane graph extracted at non-intersection areas (see Figure 4-2(d)). We

compare the extracted graph with the ground truth lane graph using GEO and TOPO

metric (undirected). In Table 4.1, we report the precision, recall, and 𝐹1-scores of our

proposed model and several alternatives. As shown in Table 4.1, our proposed solution

achieves decent 𝐹1 scores in both the GEO metric and TOPO metric. Compared with

the alternatives, adding dilated layers and using ResNet encoder can help improve

the lane extraction accuracy. Overall, our model improves the GEO 𝐹1-score by 4.2

points and improves the TOPO 𝐹1-score by 6.9 points against the UNet baseline.

Lane direction inference. For each lane in the ground truth graph, we extract

its direction from the lane direction map prediction (see Figure 4-2(c)) and compare

the extracted direction with the actual direction. If the directions match, we consider

the lane as a correct lane. In Table 4.2, we report the lane direction inference

accuracy, which is the ratio between the total length of the correct lanes and the

total length of all lanes.

As shown in Table 4.2, we find all the models can achieve high overall accuracy

(around 94%). If we look at the accuracy on one-way and two-way roads separately, we

can find that the accuracy on two-way roads is much higher than the accuracy on one-

way roads because inferring the lane direction on one-way roads is very challenging.

Usually, not many visible signs from aerial imagery (e.g., arrows) can explicitly tell

the lane’s direction. The neural network model often has to rely on weak indicators

such as the heading of cars and the positions of stop lines to speculate the direction.
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Method Lane direction inference accuracy
One-way Two-way All

Basic UNet 67.68% 97.81% 93.95%
+Dilated Layers 66.73% 98.22% 94.19%
+ResNet18 71.40% 98.15% 94.72%
+ResNet34 69.61% 98.23% 94.56%

Table 4.2: In our testing dataset, about 14.7% of lanes (in terms of lane length)
belong to one-way roads. This table reports the lane direction inference accuracy for
one-way roads, two-way roads, and all roads separately.

Turning lane validation. To evaluate the turning lane validation model, we

enumerate all the turning lane candidates (a pair of terminal vertices whose distance

is below 70 meters) at the intersections in the ground truth lane graph. Suppose we

have 𝑁 turning lane candidates. We check each of them using our lane validation

model and produce a label indicating the valid turning lanes during the evaluation.

Let 𝑉𝐺𝑇 be the set of ground truth valid turning lanes, and 𝑉𝐼𝑛𝑓𝑒𝑟 be the set of

predicted valid turning lanes. Because the counts of valid turning lanes and invalid

turning lanes are imbalanced, we do not use accuracy as the metric. Instead, we

report the precision, recall, 𝐹1-score, and IoU defined as,

Precision =
|𝑉𝐺𝑇 ∩ 𝑉𝐼𝑛𝑓𝑒𝑟|
|𝑉𝐼𝑛𝑓𝑒𝑟|

Recall =
|𝑉𝐺𝑇 ∩ 𝑉𝐼𝑛𝑓𝑒𝑟|
|𝑉𝐺𝑇 |

𝐹1 =
2 · Precision · Recall
Precision + Recall

IoU =
|𝑉𝐺𝑇 ∩ 𝑉𝐼𝑛𝑓𝑒𝑟|
|𝑉𝐺𝑇 ∪ 𝑉𝐼𝑛𝑓𝑒𝑟|

(4.5)

Method Prec. Rec. 𝐹1 IoU
Classification only 0.391 0.443 0.415 0.262
Segmentation only 0.586 0.892 0.707 0.547
Ours full solution 0.921 0.961 0.941 0.888

Table 4.3: Turning lane validation performance.

We show the results of our proposed solution and two alternatives in Table 4.3.

Our solution achieves a high 𝐹1-score of 94.1%, which is much higher than the 𝐹1-

scores of the two alternative solutions (Section 4.2.2) – 41.5% for the classification

only alternative and 70.7% for the segmentation only alternative.

Turning lane extraction. We compare each extracted turning lane (in graph
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format) with the ground truth turning lane using the TOPO metric. We find our

proposed method has very high accuracy in this task; it achieves an average TOPO

precision of 94.2% and an average TOPO recall of 95.8%.

4.3.5 Overall Performance

We compare the complete lane graph extracted from our mapping pipeline with the

ground truth lane graph using the GEO and TOPO metrics (directed). In Table 4.4,

we report the precision, recall, and 𝐹1-scores of the extracted lane graphs. We also

show the results of the partial lane graphs from two earlier stages in the mapping

pipeline. Overall, our mapping pipeline achieves a 76.5% 𝐹1-score in the GEO metric

and a 62.7% 𝐹1-score in the TOPO metric. We consider this a decent result because

the matching threshold in our GEO metric and TOPO metric is only one meter.

Lane graphs at different pipeline stages GEO metric TOPO metric
Precision Recall 𝐹1 Score Precision Recall 𝐹1 Score

Lane graph at non-intersection areas (undirected) 0.835 0.821 0.828 0.774 0.724 0.748
Lane graph at non-intersection areas (directed) 0.800 0.787 0.793 0.745 0.697 0.720
Final lane graph (directed) 0.770 0.760 0.765 0.612 0.642 0.627

Table 4.4: Accuracy of the lane graphs at different pipeline stages.

4.3.6 Qualitative results

We show examples of the extracted lane graphs in Figure 4-5 (a-d). In those examples,

our mapping pipeline correctly extracts the lane graphs in many challenging scenarios

including lane diverging, left-only and right-only turning lanes in Figure 4-5 (a),

four-lane four-way intersection in Figure 4-5 (b), two-lane four-way intersections in

Figure 4-5 (c), and three-way intersections in Figure 4-5 (d).

Failure example. In Figure 4-5 (e), we show an example of the output lane

graph that has several errors. As shown in Figure 4-5 (e), our mapping pipeline fails

to extract the correct lane geometry and direction at non-intersection areas in the red

rectangles c,d, and e, which in turn messes up the turning lane extraction in the right

two intersections. We observe similar errors on small roads where the lane markers

are missing, unclear, or the entire roads are occluded.
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Figure 4-5: Examples of the extracted lane graph from our testing dataset.

Our model also fails to infer the u-turn lane (red rectangle a) and an unusual right

turn lane (red rectangle b). These two failure cases are examples of a fundamental

challenge in aerial-imagery-based lane graph extraction – it is often hard or even

impossible to infer the correct turning lanes at some intersections without ground

road sign information.

Limitation. The above failures unveil a major limitation of our mapping pipeline

— the quality of the extracted lane graph depends on the visibility of important road

features such as lane markers. This limitation motivates a future work to estimate a

confidence score for the extracted lane graph based on the visibility of roads. With
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this confidence estimator, we can still use our mapping pipeline to extract lane graphs

on high-confidence areas, e.g., the places in Figure 4-5 (a-d), and complement other

mapping solutions.

4.4 Conclusion

In this work, we propose a mapping pipeline to extract routable lane-level street

maps from aerial imagery. To the best of our knowledge, this is the first work that

proposes a complete mapping pipeline for routable lane-level street map extraction

from aerial imagery. We evaluate our solution on a dataset consisting of 400 km of

lanes, showing the effectiveness of our solution and unveiling several challenges in the

problem. Overall, we show that extracting lane-level street maps from aerial imagery

is a promising direction toward scalable data-driven map making.
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Chapter 5

Road Attributes Inference

Detailed road attributes enrich maps and enable numerous new applications. For

example, mapping the number of lanes on each road makes lane-to-lane navigation

possible, where a navigation system informs the driver which lanes will diverge to the

correct branch at a junction. Similarly, maps that incorporate the presence of bicycle

lanes along each road enable cyclists to make more informed decisions when choosing

a route. Additionally, maps with up-to-date road conditions and road types improve

the efficiency of road maintenance and disaster relief.

Unfortunately, producing and maintaining digital maps with road attributes is

tedious and labor-intensive. In this paper, we show how to automate the inference of

road attributes from satellite imagery.

Consider the problem of determining the number of lanes on the road from images.

A natural approach would be to map this problem to an image classification problem.

Because the number of lanes of one road may vary, we can scan the road with a sliding

window and train a classifier to predict the number of lanes in each window along the

road independently. After we have the classifier predictions in each window, we can

apply a post-processing step to improve the prediction results; e.g., using the road

network graph to remove inconsistent predictions along the road. Some prior map

inference papers adopt such a strategy [25, 78].

This approach suffers from a fundamental limitation: the limited effective-receptive-

field of image classifiers. Consider Figure 5-1(a), where lane markings are visible only
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Figure 5-1: Challenges in road attribute inference. In (a) the lane markings are absent
on one side of the road. In (b) the road is occluded by trees and the lane markings
are also partially missing. To make correct predictions at all positions on the road,
we need to incorporate both the local information and the global information along
the road network graph.

on the left. Because the road width remains the same, these lane markings imply

the remainder of the road on the right has the same number of lanes, despite not

having explicit markings. However, because practical image classifiers can only be

scalably trained with small windows of the city-wide satellite imagery as input, a

window-based image classifier cannot capture this spatial correlation and would not

correctly predict the number of lanes in the right portion of the road. Thus, the

limited effective-receptive-field of the classifier does not capture the long-term spatial

propagation of the image features needed to accurately infer road attributes.

To overcome this limitation, prior work [73] proposes adding a global inference

phase to post-process the output from the local classifiers. We find that this fix is

inadequate. For example, see Figure 5-2(a), where the lane count changes from 4 to 5

near an intersection. The image classifier outputs partially incorrect labels. However,

the post-processing strategy (Markov Random Field) cannot fix this problem as the

global inference phase only takes the predictions from the image classifier as input and

it may not be able to tell whether the number of lanes indeed changes or it is an error
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Figure 5-2: Examples of lane inference (examples (a-e)) and road type inference
(example (f)). In each image, blue lines show the road graph. The number of lanes
or the type of the road predicted by the CNN Image Classifier (with and without
MRF) and RoadTagger on each segment are shown along the bottom of each figure.
For road type inference, we use capital P to represent primary roads and capital R to
represent residential roads. We color the output numbers and letters green for correct
predictions and red for incorrect predictions.

of the image classifier. This limitation is caused by the information barrier induced

by the separation of local classification and global inference; the global inference

phase can only use the image classifier’s prediction as input, but not other important

information such as whether trees occlude the road or whether the road width changes.

We propose RoadTagger, an end-to-end road attribute inference framework that

eliminates this barrier using a novel combination of a Convolutional Neural Network

(CNN) and a Graph Neural Network (GNN) [100]. It takes both the satellite imagery

and the road network graph as input. For each vertex in the road network graph,

RoadTagger uses a CNN to derive a feature vector from a window of satellite imagery

around the vertex. Then, the information from each vertex is propagated along the
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road network graph using a GNN. Finally, it produces the road attribute prediction

at each vertex. The GNN eliminates the effective-receptive-field limitation of local

image classifiers by propagating information along the road network graph. The end-

to-end training of the combined CNN and GNN model is the key to the success of

the method: RoadTagger doesn’t select features using only the CNN; instead, by

backpropagating from the output of the GNN, the information barrier that limited

previous post-processing methods is eliminated.

We evaluate the performance and robustness of RoadTagger with both a real-world

dataset covering a 688 km2 area in 20 U.S. cities and a synthesized dataset focused

on different challenges in road attribute inference. We focus on two types of road

attributes: the number of lanes and the type of road (e.g., primary or residential).

In the real-world dataset, we show that RoadTagger surpasses a set of CNN-based

image classifier baselines (with and without post-processing). Compared with the

CNN image classifier baseline, RoadTagger improves the inference accuracy of the

number of lanes from 71.8% to 77.2%, and of the road type from 89.1% to 93.1%.

This improvement comes with a reduction of the absolute lane detection error of

22.2%. We show output examples in Figure 5-2. On the synthesized dataset, we

found that RoadTagger is able to learn complicated inductive rules and is robust to

different disruptions.

5.1 Related Work

Cadamuro et al. adapt CNN image classifiers to predict road quality from im-

agery [25]. Najjar et al. use satellite imagery to create a road safety map of a

city [78] by adapting a CNN image classifier to assign a safety score to each input

satellite image window. Azimi et al. apply a CNN to perform a semantic segmen-

tation for lane markings [11]. However, because these schemes derive labels directly

from the CNN, they are only able to infer attributes that pertain to small objects

(e.g. a satellite image window or a lane marker), and not attributes over an entire

road.
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To address this issue, Máttyus et al. propose modeling the problem as an inference

problem in a Markov Random Field (MRF) [73]. They develop an MRF model that

encodes low-level image features such as edge, pixel intensity, and image homogeneity;

high-level image features such as road detector results and car detector results; and

domain knowledge such as the smoothness of the road and overlapping constraints.

They show that this model can infer various road attributes, including road width,

centerline position, and parking lane location. They further extend the approach to

take ground images (dashcam) into account [74]. In contrast to this MRF approach,

RoadTagger does not require specification of different features and domain knowledge

for each road attribute. Instead, RoadTagger extracts the useful image features and

domain knowledge through end-to-end learning, making it a powerful and easy-to-use

framework for different road attributes.

Recent work has also explored using satellite imagery for fully automated road

network inference and building footprint mapping. DeepRoadMapper [72] segments

the satellite imagery to classify each pixel as road or not road. It then extracts the

road network from the segmentation result and applies additional post-processing

heuristics to enhance the road network. RoadTracer [14] trains a CNN model to

predict the direction of the road. It starts from a known location on the road and

traces the road network based on the direction prediction from the CNN model.

Hamaguchi et al. [51] use an ensemble of size-specific CNN building detectors to

produce accurate building footprints for a wide range of building sizes.

5.2 RoadTagger

RoadTagger uses both a CNN and a Gated Graph Neural Network (GGNN) [68]

to infer road attributes from satellite imagery and the corresponding road network

graph. We assume here the road network graph is already available and accurate,

since prior work shows how to infer the graph from satellite imagery [14, 72] or GPS

traces [21, 6, 44, 41, 28, 91, 55].

Figure 5-3 shows an overview of RoadTagger. The first step is to densify the road
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Figure 5-3: The overview of RoadTagger road attribute inference framework.

network graph so that there is one vertex every 20 meters. Then for each vertex in

the graph, get the satellite imagery in the area around the vertex to a CNN encoder,

and rotate it so that the road direction is always vertical in the image. Each image

is 384 × 384 pixels, corresponding to a 48 × 48 meter tile at 12.5 cm/pixel image

resolution. This high resolution is needed to capture details on the road such as

lane markings. The CNN encoder uses 12 convolutional layers and 3 fully-connected

layers to extract a 64-dimension embedding for each vertex. The method then passes

the embeddings of all the vertices to the GNN module. The GNN propagates local

information around each vertex to neighbouring vertices on the road network graph.

After a few steps of information exchanges, the GNN produces the final prediction of

each vertex through three additional fully-connected layers and a soft-max layer.

The model can be expressed as

𝑦𝑣 = 𝑓GNN(𝑓CNN(𝑠𝑣), 𝐺) (5.1)

where 𝑠𝑣 is the input satellite image tile at vertex 𝑣, 𝑓𝐶𝑁𝑁() is the CNN encoder, 𝐺 is

the densified road network graph, 𝑓𝐺𝑁𝑁() is the graph neural network module and 𝑦𝑣

is the set of output road attribute labels (soft-max) at vertex 𝑣. We train the model

end-to-end with cross-entropy loss using known ground-truth labels at each vertex 𝑣.
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5.2.1 Graph Neural Network Module

A Gated GNN is an extension of a Recurrent Neural Network (RNN) on a graph,

using a Gated Recurrent Unit (GRU) [38] to propagate information between adjacent

vertices of the graph. We represent the embedding of the vertex 𝑣 as 𝑥𝑣. Before

applying the GGNN, we extend the dimension of 𝑥𝑣 from 64 to 128 through two

fully-connected layers (the 𝑓raise() function). Extending the dimension of the origi-

nal embedding helps ensure that we don’t induce an information bottleneck when the

information is propagating on the graph. We represent the hidden state at propaga-

tion step 𝑡 of vertex 𝑣 as ℎ𝑡
𝑣. Then, the basic propagation model on the road network

graph {𝑉,𝐸} can be written as

ℎ0
𝑣 = [𝑓𝑟𝑎𝑖𝑠𝑒(𝑥𝑣)]

𝑚𝑡
𝑣 = 𝑓1(ℎ

𝑡−1
𝑣 )

𝑎𝑡𝑣 =
1

|𝑁(𝑣)|
∑︁

𝑢∈𝑁(𝑣)

𝑚𝑡
𝑢

ℎ𝑡
𝑣 = 𝑓𝐺𝑅𝑈(ℎ

𝑡−1
𝑣 , 𝑎𝑡𝑣)

(5.2)

Here, 𝑁(𝑣) is a function representing the set of all logical neighbors of 𝑣 (explained

below), 𝑓1 is a fully-connected layer, and 𝑓𝐺𝑅𝑈 is a GRU. The algorithm uses this

propagation function to propagate the information on the graph for 𝑇 steps, finally

producing the prediction labels through three additional fully-connected layers and a

soft-max layer.

Graph Structures

In the propagation model (5.2), the choice of edge placement defined by 𝑁(𝑣) is

critical to the inference performance; because it controls how the vertices in the

graph communicate with each other.

We investigate different graph structures derived from the original road network

graph to define 𝑁(𝑣). These graph structures share the same set of vertices as the

original road network graph but may have different edges defined by 𝑁(𝑣). Because
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the graph structure controls the propagation of information, we can use it to restrict

communication to only a subset of the graph or enable communication between two

vertices that were not connected in the original road network graph. A good graph

structure can improve the performance of the graph neural network. We now discuss

four example graph structures:

1. Original Graph. The structure enables communication between all connected

vertices in the road network graph. It allows the GNN to learn the best way

of communication without any restriction or preference. However, this freedom

also makes it less efficient to learn certain types of road attributes; such as for

road-specific attributes, when two roads with different road-specific attributes

interact at an intersection, the graph neural network model need to make sure

the information from one road won’t mess up with the information from the

other road.

2. Road Extraction Graph. This structure helps propagate messages only within

the same road. To automate this process, extract road chains belonging to

the same logical road from the original graph. Here, we call a sequence of

connected edges a “road chain belonging to the same logical road” when the

directional difference between any two consecutive edges is less than 60 degrees.

We show examples of road chains with different colors in Figure 5-3. We find

that this restriction is helpful for the propagation of road-specific information

as it removes the ambiguity at intersections.

3. Road Extraction Graph (Directional). We can decompose one road chain into

two chains with opposing directions. This decomposition yields two separate

graph structures. By providing two graph structures with opposite edge direc-

tion to the GNN, we can explicitly specify the source of each message. This

modification can help the GNN learn more efficiently.

4. Auxiliary Graph for Parallel Road Pairs. The original graph adapts two separate

vertex chains to represent a parallel road pair. This representation prevents
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communication between the two roads in a parallel road pair. We enable this

communication by adding auxiliary edges between the two roads in a parallel

road pair. We show an example of the auxiliary edges in Figure 5-3. The

intuition here is that roads belonging to the same parallel road pair often share

the same road attributes, e.g., road type. If one road in a pair of parallel roads

is occluded by buildings or trees in the satellite image, RoadTagger can still

infer the road attributes correctly by incorporating information from the other

road through the auxiliary edges.

We find all these graph structures improve RoadTagger in different ways. Thus,

we extend the propagation model (5.2) to support multiple graph structures. Instead

of aggregating messages from different graph structures together, we treat them sepa-

rately. To support 𝑘 different graph structures, we extend the dimension of the hidden

state from 𝑚 to 𝑘 ×𝑚, where the messages from the 𝑖-th graph structure are stored

in the 𝑖-th 𝑚-dimensional chunk in the hidden state vector. Although messages from

different graph structures are stored separately, they can still interact with each other

in the GRU (𝑓𝐺𝑅𝑈()).

5.2.2 Training RoadTagger

Training a deep model with both a CNN and a GNN is not straightforward. We

found that training RoadTagger with standard cross-entropy loss and common anti-

overfitting techniques such as data augmentation and dropout was insufficient. This

is because, compared with CNN-based image classifiers on the same training dataset,

RoadTagger usually has more parameters, but perceives less diversity.

Moreover, nodes in RoadTagger have a larger set of inputs than the local informa-

tion in CNNs due to the usage of graph neural networks. This extra information makes

RoadTagger even easier to overfit. Unfortunately, there is no well-known regulariza-

tion mechanism that can be applied during training procedure to prevent RoadTagger

from overfitting to this extra information.

In order to prevent RoadTagger from overfitting, we explore two training tech-
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niques, random vertex dropout and graph Laplace regularization [89].

Random Vertex Dropout. We represent the embedding of vertex 𝑣 as 𝑒𝑣.

During training, we randomly pick up 10% of vertices and set their embedding to a

random vector 𝑒*𝑣 where,

𝑒*𝑣 = 𝑒𝑣 ⊙ 𝑟, 𝑟𝑖 ∼ 𝒰([−1, 1]) (5.3)

Here, we use ⊙ to denote element-wise multiplication. We stop the gradient back-

propagation for the dropped vertices. This random vertex dropout is an extension of

the standard dropout. However, instead of setting the embeddings to all zeros, we

set them to a random vector. This is because an all-zeros vector is too easy for the

neural network to distinguish. We aim to use this random vertex dropout to simulate

scenarios where the road is partially occluded by trees, buildings or bridges. This can

increase the diversity of the training dataset and thus reduce over-fitting.

Graph Laplace Regularization. As we mentioned, there is no regulation mech-

anism in our training procedure to prevent RoadTagger from abusing the extra infor-

mation. To overcome this limitation, we add a regularization term based on graph

Laplace regularization to the final loss function. We represent the final soft-max out-

put for vertex 𝑣 as a 𝑛-dimensional vector yv, where 𝑛 is the number of classes of the

road attribute. Then, the regularization term for vertex 𝑣 can be written as,

Lreg(𝑣) = 𝜆(𝑣)|yv −
1

|𝑁(𝑣)|
∑︁

𝑢∈𝑁(𝑣)

yu|2 (5.4)

where 𝜆 is the weight of the regularization term at different vertices. We set 𝜆(𝑣)

to zero if vertex 𝑣 and its neighbours 𝑁(𝑣) have inconsistent ground truth labels.

Otherwise, we set 𝜆(𝑣) to a constant weight factor.

This additional term forces RoadTagger to generate consistent labels for neigh-

bouring vertices regardless of their correctness. It acts as a regularization term for

the cross-entropy loss, which only focuses on per-vertex correctness; thus, it reduces

overfitting.
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5.3 Evaluation

In this section, we evaluate the performance and robustness of RoadTagger. We com-

pare RoadTagger against CNN image classifier based solutions. In the evaluation, we

focus on the architecture comparison between RoadTagger’s end-to-end CNN+GNN

framework and the CNN only image classifier solution. We use the same configuration

for all the convolutional layers and fully connected layers except the last one in both

RoadTagger’s CNN encoder and the CNN image classifier. We also use the same

input satellite image size for both RoadTagger and the CNN image classifier.

In the evaluation, we demonstrate RoadTagger’s performance improvement in

road attribute inference in a large scale real world environment. We evaluated the

performance of different variants of RoadTagger . In addition, we show when and why

RoadTagger can yield better performance and analyze its limitations via a robustness

study on a synthesized dataset.

5.3.1 Dataset

We conduct our evaluation on two datasets, one real-world dataset and one syn-

thetic micro-benchmark. For the real-world dataset, we collect the road attributes

(ground truth labels) from OpenStreetMap [50] and the corresponding satellite im-

agery through the Google static map API [48]. This dataset covers 688 𝑘𝑚2 area in

20 U.S. cities. We manually verified the labels of 16 𝑘𝑚2 of the dataset from four rep-

resentative cities: Boston, Chicago, Washington D.C., and Seattle. We use one third

of the verified dataset as validation dataset and two thirds of it as testing dataset.

We use all the remaining dataset as training dataset.

We focus on inferring two types of road attribute: the number of lanes and the

types of roads (residential roads or primary roads). We use these two types of road

attributes as representatives because they both have spatial correlation such that

nearby segments tend to have the same labels.
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5.3.2 Implementation Details

We implemented both RoadTagger and the CNN image classifier using Tensorflow [3].

We use both input image augmentation and dropout to reduce over-fitting. For Road-

Tagger, we set the graph Laplace regularization weight to 3.0 and set the propagation

step to 8 in the graph neural network. We train the model to predict both the number

of lanes and the type of the road simultaneously. We train the model on a V100 GPU

for 300k iterations with a learning rate starting from 0.0001 and decreasing by 3x

every 30k iterations. For both models, we use a batch size of 128. In RoadTagger,

at each iteration, we pick up a random vertex in the road network graph and start

a DFS or BFS from it. We use the first 256 vertices in the search result to generate

a sub-graph as input graph to RoadTagger. We only consider a random 128 vertices

from the 256 vertices in the loss function. For both models, we use batch normaliza-

tion to speed up training. We use the model that performs best on the validation set

as the final model.

5.3.3 Baselines

We compare RoadTagger against four different baselines, including (1) using only

CNN image classifier, (2) using CNN image classifier with smoothing post-processing,

(3) using CNN image classifier with Markov Random Field (MRF) post-processing,

and (4) using CNN image classifier with larger receptive fields (1.5x and 2.0x).

In the smoothing post-processing approach, we set the probability outputs of each

vertex to be the average probability of itself and its neighbouring vertices in the road

network graph. This simple post-processing step can remove scattered errors and

make the output labels more consistent.

In the MRF post-processing approach, we use a pairwise term in the energy func-

tion of MRF to encourage the road segments, which are connected and belonging to the

same logical road, to have the same label. The energy function of the post-processing

MRF is,

𝐸(𝑥) =
∑︁
𝑖

− log𝑃 (𝑥𝑖) + 𝜆
∑︁

connected 𝑖,𝑗

|𝑥𝑖 − 𝑥𝑗|𝑛 (5.5)
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We find the best hyper-parameters of MRF (𝑛 and 𝜆) through brute-force search on

the validation set. At the inference time, we use belief propagation to minimize the

energy function 𝐸(𝑥).

We also evaluate the CNN image classifier with larger receptive fields. The original

CNN receptive field at each vertex is a 48x48 meter tile. We derive new baseline

approaches by enlarging the receptive field to a 72x72 meter tile (1.5x) and a 96x96

meter tile (2.0x).

5.3.4 Evaluation on Real-World Dataset

Schemes # of Lane Acc. Gain Road Type Acc. Gain ALE Reduction
CNN Image Classifier (naive baseline) 71.8% - 89.1% - 0.374 -
- with smoothing post-processing 74.1% 2.3% 90.6% 1.5% 0.337 9.8%
- with MRF post-processing 73.7% 1.9% 92.2% 3.1% 0.355 5.1%
CNN Image Classifier (1.5x receptive field) 71.8% 0.0% 90.1% 1.0% 0.367 1.9%
- with smoothing post-processing 74.0% 2.2% 91.1% 2.0% 0.340 9.1%
- with MRF post-processing 74.1% 2.3% 92.9% 3.8% 0.340 9.1%
CNN Image Classifier (2.0x receptive field) 68.8% -2.0% 89.1% 0.0% 0.393 -5.1%
- with smoothing post-processing 70.6% -1.2% 89.9% 0.8% 0.371 0.8%
- with MRF post-processing 70.2% -1.6% 91.6% 2.5% 0.386 -3.2%
RoadTagger (ours) 77.2% 5.4% 93.1% 4.0% 0.291 22.2%

Table 5.1: Performance of RoadTagger and different CNN image classifier baselines.
In the table, we highlight both the best and the second best results.

We use the overall accuracy as metrics for both the number of lane prediction and

the road type prediction. For the number of lanes prediction, a two-lane road may

be incorrectly recognized as a three-lane road or even a six-lane road. However, the

overall accuracy metric doesn’t penalize more for the wrong prediction with six lanes

than the wrong prediction with three lanes. Thus, we use an additional metric, the

absolute lane error (ALE), to take the degree of error into account. We represent the

output prediction of vertex 𝑣 as 𝑦𝑣 and the corresponding ground truth is 𝑦𝑣, where

both 𝑦𝑣 and 𝑦𝑣 are integers between 1 and 6. Then, the ALE is defined as,

ALE =
1

|𝑉 |
∑︁
𝑣∈𝑉

|𝑦𝑣 − 𝑦𝑣| (5.6)

We use this absolute lane error (ALE) as a complement to the overall accuracy metric

in our evaluation.
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Comparison against Baselines

We report the overall accuracy of the two types of road attributes and the absolute

lane error for the CNN image classifier baselines and RoadTagger in table 5.1. We

show the result of RoadTagger with its best configuration in this table. As shown

in the table, RoadTagger surpasses all the CNN image classifier based baselines.

Compared with the baseline using only CNN image classifier, RoadTagger improves

the inference accuracy of the number of lanes from 71.8% to 77.2%, and of the road

type from 89.1% to 93.1%. This improvement comes with a reduction of the absolute

lane detection error of 22.2%. Compared with the best baseline (with MRF post-

processing and 1.5x larger receptive field), RoadTagger still improves the accuracy of

the lane count inference by 3.1 points, which comes with a reduction of the absolute

lane detection error of 14.4%, and achieves similar accuracy in road type inference.

We show output examples of the number of lane prediction and the road type pre-

diction in Figure 5-2. We find RoadTagger performs more robust in many challenging

places than the CNN image classifier. This is because the usage of the graph neu-

ral network enables RoadTagger to transitively incorporate information from nearby

road segments. Meanwhile, during training, unlike the CNN image classifier, Road-

Tagger treats all vertices on the sub-graph as a whole rather than treating each vertex

independently. This doesn’t force RoadTagger to learn how to map the image of a

building into a two-lane road when the building occludes the road in the training

dataset. Instead, RoadTagger can learn a more generic inductive rule to understand

the spatial correlations and effect of different visual features (e.g., bridges, trees, inter-

sections, etc) on road attributes. Although post-processing approach can be applied

to fix some of the scattered errors, e.g., example (e) and (f) in Figure 5-2, it cannot

fix errors which requires more context information such as the errors in examples

(a-d) in Figure 5-2. This limitation is due to the information barrier induced by the

separation of local classification and global inference.

116



Scheme # of Lane Road Type ALE
RoadTagger with - - -
- Raw 74.0% 91.2% 0.332
- Road 75.5% 92.3% 0.327
- Road(D) 75.6% 92.0% 0.324
- Raw+Road(D)+Aux 77.2% 93.1% 0.291

Table 5.2: Impact of different graph structures used in RoadTagger. Here, we use
abbreviations to denote different graphs. We use Raw for the original road network
graph, Road for the road extraction graph, Road(D) for the road extraction graph
with directional decomposition and Aux for the auxiliary graph for parallel roads.

Comparison within RoadTagger

Within RoadTagger, we first compare the performance of RoadTagger with different

graph structures. We show results of RoadTagger with different graph structures in

Table 5.2.

For a single graph structure, we find adding more restrictions into the graph

structure can yield better performance, e.g., the performance of using road extraction

graph is better than the performance of using the original raw road network graph.

This is because in the road extraction graph, message propagation in the graph neural

network is restricted to be within each logical road. This can remove the ambiguity

of message propagation at intersections in the original road network graph, thus,

improve performance.

RoadTagger supports using multiple graph structures. We find using the combi-

nation of the Raw graph, Road(D) graph and Aux graph can yield better performance

compared with the performance of using a single graph structure. This is because

using multiple graph structures allows our neural network model to learn the best

message propagation graph(s) for different attributes end-to-end.

As we mentioned before, we adopt two training techniques to improve the perfor-

mance of RoadTagger. We show the comparison results in Table 5.3. We find both

of these two techniques are critical to the performance improvement of RoadTagger;

the random vertex dropout has more impact on the number of lane inference and the

graph Laplace regularization has more impact on the road type inference.
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Scheme # of Lane Road Type ALE
RoadTagger 77.2% 93.1% 0.291
No Vertex Dropout 74.7% 92.7% 0.325
No Regularization. 76.5% 90.8% 0.300

Table 5.3: Impact of random vertex dropout and graph Laplace regularization.

5.3.5 Evaluation on Synthesized Micro-Benchmark

Figure 5-4: Two representative samples of the micro benchmark. RoadTagger predicts
both of them correctly.

We conduct an extensive evaluation of RoadTagger on a micro benchmark. In

this micro benchmark, we inject different types of challenges to the satellite imagery.

We would like to study the impact of occlusions with different types and amounts

as well as other challenges such as missing lane markings in a controlled way. In

this micro benchmark, we find RoadTagger is robust to a wide range of different

disruptions. These disruptions include removing all the lane markings on part of the
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roads, alternatively occluding the left and right side of the roads, and even occluding

the target road with an overpass road.

We show two representative examples of this benchmark in Figure 5-4. Please

refer to the Appendix A for the evaluation on the whole micro-benchmark.

We find the two examples shown in Figure 5-4 particularly interesting. In example

(a), an overpass road occluded the target road. In example (b), the lane count changes

when the road is occluded by trees. To correctly predict the number of lanes in both

example (a) and (b), RoadTagger needs to know that when the starting point of an

overpass road is detected, the visual features of the overpass should be ignored until

the far edge of the overpass is detected. At the same time, RoadTagger needs to know

if the road is temporarily occluded by trees, the following road segment still belongs

to the same target road. We find RoadTagger’s end-to-end architecture enables it to

learn all this knowledge correctly without any additional labels or explicit features.

This is perhaps the most attractive part of RoadTagger.

5.4 Discussion

Can RoadTagger Generalize to City-Scale Graphs? In our evaluation, we find

RoadTagger can generalize well to city-scale graphs. During inference, RoadTagger

labels the whole road network graph (with 3,000 to 4,000 vertices) for each 2km by

2km region in one shot (Use the entire road network graph as input). We find training

RoadTagger with 256-node subgraphs can generalize well in larger graphs, e.g., graphs

with 3,000 to 4,000 nodes.

Errors Made by RoadTagger. We observe two types of errors made by Road-

Tagger in our evaluation. (1) We find RoadTagger makes wrong predictions for in-

visible roads (occluded by trees or buildings) when the disruptions are longer than

the GNN propagation step (we show examples of this type of failure in the supple-

mentary material). We think this type of error can be eliminated through enlarging

the propagation step and the subgraph size (i.e., 256) during training. (2) We find

RoadTagger outputs road attributes in ABABA style along the road when the road
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attribute is ambiguous. We think this issue can be addressed by incorporating GAN

into RoadTagger framework.

5.5 Conclusion

In this work, we propose RoadTagger. RoadTagger adapts a novel combination of

CNN and graph neural network to enable end-to-end training for road attribute infer-

ence. This framework eliminates fundamental limitations of the current state-of-the-

art that relies on a single CNN with post-processing. We conduct a comprehensive

evaluation of the performance and robustness of RoadTagger; the evaluation result

shows a significant improvement in both performance and robustness compared with

the current state-of-the-art. The result also shows RoadTagger’s strong inductive

reasoning ability learned end-to-end. We believe RoadTagger framework is a funda-

mental improvement in road attributes inference and can be easily extended to other

road attributes.
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Chapter 6

Traffic Accident Risk Map Inference

Figure 6-1: Our model inputs road maps, satellite imagery, GPS trajectories, and
historical traffic accidents. It outputs accident probability distribution. Note that
our model has identified a few locations as high-risk (highlighted with circles) even
though they have no historical accidents. Locations that our model has identified as
high-risk experienced accidents during the follow-up years.

According to WHO, each year 1.35 million people die and 20 to 50 million people

sustain non-fatal injuries from traffic accidents [81]. In the US alone, traffic accidents

cost $871 billion annually [23]. In most countries traffic accidents cost about 3% of

the GDP [81]. By identifying high-risk locations on the map, many groups, including

drivers, police departments, transportation departments and insurance companies can

take actions to reduce this risk.

Accident risk maps assign an expected rate of accident over a given time period to
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each location on the map. Prior works predict accident maps with resolutions of a few

hundred meters (Table 6.1.1). In this work we predict maps with 5m×5m resolution

because there are important details that are not captured in lower resolutions. At this

resolution, sparsity causes a bias-variance trade-off in the estimation of the underlying

risk. We explain this challenge in Section 6.1.

We improve this trade-off by incorporating context information from satellite im-

agery, GPS trajectories, and road maps. We use an end-to-end deep neural network to

combine different data modalities. We discuss the details of our model in Section 6.2.

Figure 6-1 shows our four input modalities, our prediction, and the accidents in the

follow-up years.

At 5m×5m resolution, evaluation is also challenging because the ground-truth

is noisy (It is sampled from a hidden risk distribution.) In Section 6.3 we present

a process to estimate the prediction error with respect to the true underlying risk

distribution. Our maps outperform prior work in terms of resolution and prediction

error.

6.1 Challenge of Sparsity

In the US, the average annual rate of reported accidents on a 5m×5m block of road

is about 1 in 1000. Our analysis on US traffic accidents dataset [76] shows that 31%

of the accidents occur in places where no other accidents happened nearby (within 50

meters) within four years. Therefore, Monte Carlo probability estimation will miss

some high-risk areas and misidentify low-risk areas as high-risk.

Our goal in accident risk prediction is not to identify exactly where new accidents

will occur because this is impossible. Instead, our goal is to identify the underlying

risk of accidents at each location, whether accidents occur or not. Ideally, we should

use the underlying risk of accidents as ground-truth. However, the underlying risk of

accidents is unknown. Therefore, we use a map of future accidents as an alternative

ground-truth. The map of future accidents is a Monte Carlo estimation of the un-

derlying rate of accidents, so it carries a large amount of estimation error. This error
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leads to challenges in both prediction and evaluation.

Prediction: Assume that a 5m×5m grid cell has a 1% annual rate of accidents. In

one year, the number of accidents at this location would be either 0 or 1. Estimating

the true risk of 1% given an input of 0 or 1 is challenging.

Evaluation: Since the true underlying rate of accidents is unknown, we can only

use an observed rate of accident as a proxy to ground-truth. Therefore, our ground-

truth itself carries error and this adversely affects the evaluation.

One way to deal with the challenges of sparsity is to reduce estimation resolution.

However, this low resolution causes bias in estimation. As an example of this bias,

assume that a dangerous intersection and a safe street are grouped into one single

cell. An estimate for the risk in this cell will underestimate the risk of the dangerous

intersection and will overestimate the risk of the safe street (Figure 6-2-c). This

underestimation and overestimation repeats with varying input, therefore, it is a

form of model bias.

6.1.1 Prior Work

Year Authors Resolution Method Input data
2005 Chang et al. [30] Entire highway Decision Tree Road map, average daily traffic (AADT), weather
2005 Chang et al. [29] Entire highway Neural Networks Road map, average daily traffic (AADT), weather
2007 Caliendo et al. [26] Entire highway Max. Likelihood Road map, AADT, slope and presence of junctions
2016 Chen et al. [35] 500m × 500m SdAE [18] GPS trajectories, historical accidents
2017 Yuan et al. [111] road segments Deep networks Historical Accidents, road map, weather
2017 Najjar et al. [78] 150m × 150m Pre-trained Alex-net Satellite imagery, accident history
2018 Ren et al. [84] 1km × 1km LSTM Historical accidents
2018 Chen et al. [32] 500m × 500m SdAE [18] Traffic flow (from plate recognition system), accident history
2018 Yuan et al. [110] 5km × 5km ConvLSTM Traffic volume, road condition, weather, satellite imagery
2019 Bao et al. [12] > 360m STCL-Net Crash, GPS, road, land use, population and weather data
2020 Zhou et al. [120] 1.5km × 1.5km RiskSeq Traffic flow, road network, weather and accident history
2021 This work 5m × 5m End-to-end deep net Satellite imagery, GPS trajectories, road map, accident history

Table 6.1: Overview of prior work on traffic and accident map prediction. We predict
accident maps with one to two orders of magnitude higher resolution than prior work.
We also use richer input data than prior works.

Most prior works use low resolutions to control sparsity (Table 6.1.1). Several

works in transportation journals adopt a high resolution, but they are used for visu-

alization purposes and do not evaluate their results.

The general problem of accident prediction is a frequent subject of study [107],
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but few studies produce accident maps. Most works focus on the effect of certain

events (weather, calendar, lighting) on the frequency of accidents [60]. In this work,

we study the spatial accident maps and only review major prior works that produce

accident maps. These works either produce coarse resolution maps or use kernel

density estimation.

Coarse resolution: Some works choose a coarse spatial granularity to predict

accident risk. The most relevant works include the work by Najjar et al. [78] that

uses satellite imagery, and the work by Chen et al. [35] that uses GPS trajectories.

Other notable works are listed in Table 6.1.1. Coarse-resolution models miss accident

hot-spots and misidentify low risk locations as high risk (Figure 6-2-c).

Kernel Density Estimation: Most works in transportation journals use Kernel

Density Estimation. KDE applies a Gaussian kernel to historical measurements [93].

Xie et al. [101] use KDE along the roads rather than in the 2D domain. Most KDE

works evaluate their performance only visually. The most notable exception is the

work by Xie et al. [102] that calculates statistical significance levels. Anderson et al. [9]

identify accident hot-spots but do not quantitatively evaluate the performance. Le et

al. [67] identify hot-spots and evaluate their ranking. All of these KDE-based works

only use historical accidents and a road map to visualize accidents [82, 22, 94, 12, 120].

These works use similar KDE techniques in different cities around the world. Okabe et

al. [80], Netek et al. [79] and Shariat et al. [75] implemented KDE in GIS environment.

We implemented KDE and compared against it (Figure 6-2).

6.1.2 Addressing the Challenge of Sparsity

Prior work based on historical accidents uses variants of Monte Carlo estimation. As

such, it only works for places where there is sufficient historical accident data and well-

maintained records. To overcome this challenge, we note that places with similar road

structures, similar visual appearances, and similar traffic patterns are likely to have

similar accident risk profiles. If one intersection experiences as accident, we can share

some risks with similar intersections. In order to generalize from one intersection to

another, we need some context information that can capture the similarity between
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Figure 6-2: (b) Kernel density estimation (KDE) generally highlights areas with
historical accidents as hot-spots. Therefore, it fails to predict new accidents (compare
the blue box) and can only work for high-risk areas. (c) Low-resolution models have a
high bias because they may assign the same risk score to a freeway and its neighboring
residential road simultaneously (compare the purple box). (d) Our approach can
identify high-risk locations that have not experienced accidents in historical data
but are likely to experience accidents in the future. Note that the KDE predicts very
specific risky locations, many of which do not have accidents in the future. In contrast,
our method accurately highlights the roads where future accidents happen, properly
attributing more risk to intersections and ramps. We did not visualize historical
accidents as they look similar to KDE.

intersections.

In this work, we use context from satellite imagery, GPS trajectories, and road

maps. We use a deep model that inputs context and learns to generate useful rep-

resentations for each position. Our model learns an internal metric based on an

accident-based similarity score.

The three data modalities that we used (in addition to historical accident data)

provide complementary information. For example, GPS trajectories carry information

about the density, speed, and flow of traffic. Satellite imagery carries information

about the road, such as the number of lanes, whether there is a road shoulder, and
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whether there are many pedestrians.

6.1.3 Evaluation with Ground-Truth Error

We use future accidents as a proxy to the underlying rate of accidents. This proxy

has an error that adversely affects evaluation, therefore we need to isolate it.

Assume a map has 𝑛 grid cells and there is an underlying rate of accident for

each cell 𝑅𝑖 that we want to estimate. There is an observation of the historical rate

of accidents at each location 𝐻𝑖. There is also an observation of the future rate of

accident 𝐹𝑖. Since accidents are independent events, We can assume 𝐻𝑖 and 𝐹𝑖 are

drawn from a Poisson distribution with rate 𝑅𝑖. We can write down the rate of all

grid cells write them down in the following vector form:

|𝐻 − 𝐹 |22 = |𝐻 −𝑅|22 + |𝐹 −𝑅|22 + 2(𝐻 −𝑅)(𝐹 −𝑅). (6.1)

Since at each location 𝑖, 𝐻𝑖 and 𝐹𝑖 are independent draws from the same Poisson dis-

tribution, in expectation, 𝐹 and 𝐻 have orthogonal deviations from the distribution

mean 𝑅. Therefore, the last term in Equation 6.1 is negligible in practical settings.

Also 𝐻𝑖 and 𝐹𝑖 have similar expected errors. Simplifying, we get:

|𝐹 −𝑅|22 = |𝐻 −𝑅|22 =
1

2
|𝐻 − 𝐹 |22. (6.2)

Even though we don’t know 𝑅, we can approximate the error of 𝐹 with respect to 𝑅.

Our goal is to estimate the underlying risk of accidents 𝑅̂. Since 𝑅 is not given,

we use 𝐹 as a proxy and calculate |𝑅̂ − 𝐹 |22 as prediction error. There is a similar

relation to equation 6.1 between 𝑅̂ and 𝐹 :

|𝑅̂− 𝐹 |22 = |𝑅̂−𝑅|22 + |𝐹 −𝑅|22 + 2(𝑅̂−𝑅)(𝐹 −𝑅). (6.3)

Note that in equation 6.3 the last term multiplies two residuals from 𝑅. If these two

residuals have any significant correlation, it means that our prediction shares some

error with the test set. This is not possible because our model doesn’t get feedback
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from the test set. Therefore, these two residuals should be uncorrelated in practical

settings. Using Equations 6.2 and 6.3 we have:

|𝑅̂−𝑅|22 = |𝑅̂− 𝐹 |22 −
1

2
|𝐻 − 𝐹 |22. (6.4)

This way we eliminate the error of 𝐹 from our evaluation.

If the residuals were I.I.D., the dot product between residuals would reach zero

with a rate of Θ(
√
𝑛
𝑛
). Even though the residuals are not I.I.D., in practice, accident

maps span a diverse area and accident rates are bounded; therefore we can argue that

the last term in Equations 6.1 and 6.3 grow slower than Θ(1) and reach zero when 𝑛

is large.

We tried formulating the same logic using maximum-likelihood, KL-divergence

and 𝐿1-norm. However, the properties of orthogonality that make this analysis work

are only available in 𝐿2-norm.

6.2 Learning to Predict Risk Maps

We use a deep model to predict accident risk at every grid cell on the map. In the

design of this model, we need to overcome the challenges caused by sparsity while

making sure that our model can learn useful information from all input sources.

We illustrate our model architecture in Figure 6-3. The model takes different data

modalities as input and predicts a 2D risk map 𝑦 ∈ R𝑁×𝑁 , where 𝑁 is the dimension

of the target map grid, and we set it to 48. Next, we discuss the details of our model.

Model Inputs: Our model takes five different data sources as input to predict

a risk map for an 𝑁 × 𝑁 map gird with a resolution of 5 meters. The first input is

an RGB-channel satellite image. We use a higher-resolution (8𝑁 × 8𝑁) imagery to

capture more visual information. In this case, the satellite image input is represented

as an 8𝑁 × 8𝑁 × 3 tensor. The second input is a segmentation mask of the road map

in the target region. Similar to the satellite image input, we use a high resolution for

the road mask (8𝑁 × 8𝑁 × 1).
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Our model also takes GPS trajectories as input. We represent the GPS trajectories

in two formats: One is a 2D histogram (𝑁 × 𝑁 × 1) which encodes the density of

the GPS trajectories (at log-scale) on each grid cell. The other format extends the

2D GPS histogram with 12 additional features, encoding the statistics (10-th, 50-th

and 90-th percentiles) of the speeds, accelerations, turning angles, and the counts

of left/right/no turns of all the GPS trajectories that pass through each grid cell.

Combined with the original 2D GPS histogram, this input format contains 13 channels

in total, and we represent it as an 𝑁 ×𝑁 × 13 tensor.

The last input source is the historical accident data. We use the rate of historical

accidents in each grid cell.

During training, we randomly drop out each input source with a probability of

20%. We find that this strategy is helpful when the training dataset is small. Our

model supports using a subset of the above five data sources as input. In this case,

we can predict risk maps even if some data sources are not available in the region of

study.
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Figure 6-3: We use a deep model that takes four different data sources as input and
predicts an accident risk map at 5-meter resolution – only at this high resolution can
we distinguish the different risks in the output example where the freeway road has a
higher risk than the nearby residential roads and the ramp merging and exiting area
has an even higher risk than other places.

Model architecture: In our model, we first pre-process input data so that dif-

ferent sources of data all have the same spatial dimensions. We stack the satellite

input and the road segmentation input into one tensor and pass it to a 6-layer CNN

encoder which down-scales the input dimension and extends the channel width from 4
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(3 RGB channels + 1 map channel) to 32. Meanwhile, we use a 2-layer CNN encoder

to increase the dimensions of the GPS feature input from 13 to 30. Therefore, if we

stack all the input sources together, the total number of channels add up to 64.

After pre-processing, we stack all the input sources into an 𝑁×𝑁×64 tensor and

pass it to a ResNet-18 encoder. We take the feature maps after each residual block

set and up-sample them so that they all have the same spatial dimensions. Then, we

stack them into a 𝑁 × 𝑁 × 960 feature map and pass this feature map to a 3-layer

CNN decoder.

Skip Connections and Fusion: We don’t use this 3-layer CNN decoder to

predict the final risk map directly; instead, we introduce a skip connection and a

fusion module to produce the final risk map. We observed that the historical data

is very similar to the training target in some high-risk regions. As a result, if we

directly produce the risk map using the 3-layer CNN decoder, the model relies on

the historical data and ignores other data sources, ending up in a low-performance

local optima. To overcome this issue, we let the 3-layer CNN decoder predict two

𝑁 × 𝑁 tensors: a risk map denoted as 𝑦1 and a gate 𝑔 where 𝑔𝑖,𝑗 ∈ (0, 1). We use

the weighted average of 𝑦1 and another risk map prediction 𝑦2, which only uses the

historical data as the final output. Formally, we have 𝑦 = 𝑦1 · 𝑔 + 𝑦2 · (1 − 𝑔). This

allows our model to focus on learning the residual between the historical data and

the target.

Target and loss function: We temporally partition accidents into two groups:

historical accidents (happened before some time 𝑡) and future accidents (happened

after 𝑡). A historical accident map is given as input to let the model understand the

distribution of accidents. A future accident map is given as the prediction target.

We use future accidents as a proxy for the true underlying risk distribution which is

unknown. The future accident map is a sparse sample from the true underlying risk

distribution. Therefore, it is noisy and not ideal. However, it is useful because the

sampling error in the future accident map is not correlated with the sampling error

in the historical accident map (because they are independent samples). Therefore,

future accident map does not carry a systematic bias from historical accidents, so it
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LA NYC Chicago Boston
Tiles 813 458 282 319
Accidents 351k 88k 45k 33k
GPS (km) 3.1M 1.8M 0.7M 2.0M

Table 6.2: Dataset details in each city. The fact that Boston has fewer accidents
explains why more features don’t always help.

is a useful proxy. Our loss function is the mean squared error between our prediction

and the future accident map.

6.3 Evaluation

6.3.1 Dataset

We evaluate our model on a dataset covering an area of 7,488 km2 from four metropoli-

tan areas: Los Angeles, New York City, Chicago, and Boston. The dataset is or-

ganized as 1,872 2km×2km tiles. For each tile, we collect satellite imagery from

MapBox [1] and create the road segmentation mask using OpenStreetMap [49]. Our

imagery has a resolution of 0.625 meters. We also construct the road segmentation

mask with this resolution.

We use a proprietary GPS dataset collected from 2015 to 2017 in the four metropoli-

tan areas as the source of GPS trajectories. This dataset contains a total of 7.6 million

km of GPS trajectories with a 1-second sampling rate.

We use the US accidents dataset [76] that contains 4.2 million records for accidents

that were occurred in the US from 2016 to 2020. Each record comes with coordinates,

timestamps, and a few other fields of information. We split this accident dataset into

two parts containing the data from the first two years and the data from the last two

years. We use the first two years’ data as historical data to feed into the model as

input. We use the last two years’ data as future accidents. Future accidents are used

for training and evaluation. In table 6.3.1, we summarize the amount of available

data in each city that helps to compare the results from the four different cities.
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6.3.2 Training Details

In our evaluation, we split the dataset spatially into a training set (80%), a testing

set (15%), and a validation set (5%). We train our models on the training set for

50 epochs, start with a learning rate of 0.0001 and decrease it by a factor of 1
10

at

the 20-th epoch and the 40-th epoch. The training took 6 days on one Nvidia V-100

GPU. After training, we use the validation set to find the best model and evaluate the

model on the testing set. The training/evaluation code, the output accident maps,

and the instruction to download the dataset are available on GitHub.

6.3.3 Evaluation Settings

We have two major evaluation settings: with history and without history. In the “with

history” setting, we supply historical accidents to the model, while in the “without

history” setting, we do not supply historical accidents to the model.

Depending on the use case, historical accident data may or may not be available

to the model. If historical accident data is available and the goal is to produce

an accurate accident map, then accident history data should be used as input. If

historical accident data is unavailable, or if this model is being used as a recommender

system or to compare hypothetical designs, then historical data cannot be supplied.

We evaluate a few variants for each of the “with history” and “without history”

settings. These variants include six variants of our model, kernel density estimation,

and theoretical upper-bounds for low-resolution techniques. We compare with the

theoretical upper-bounds as a reference to show the effect of the resolution.

In the “with history” evaluation setting, we use two years or accident data as input,

while in the “without history” evaluation setting, we do not use historical accidents

as input.

6.3.4 Evaluation Metrics

In prior works, accident map prediction is formulated either as a binary classification

problem or as a regression problem. Classification-based works assign a binary label
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(whether any accidents happened) to each cell within a time window of interest.

Then they predict a score for each cell within the time window of interest. Finally,

they compare their prediction scores with the binary ground truth and evaluate their

performance using the precision-recall curve and average precision.

Regression-based techniques predict the number of accidents within each cell and

the time window of interest. Regression-based techniques often have a low resolution;

therefore, several accidents could occur within each cell. Regression-based techniques

typically use RMSE between the ground-truth number of accidents in each cell and

their estimation to evaluate their regression performance.

We evaluate our model with both AP and RMSE. Figure 6-4-a shows our precision-

recall curve for the “with history” model. Figure 6-4-b shows our precision-recall

curve for the “without history” model. Table 6.3.4 also compare average precision

quantitatively.

Traffic accident estimation techniques that perform regression use RMSE to evalu-

ate their performance. We compared our performance with RMSE in table 6.3.4. AP

and RMSE have a few notable differences. First, AP puts a higher weight on high-

risk locations than RMSE. Second, AP does not distinguish between one or many

accidents in a cell. AP is useful for evaluating performance in high-risk areas. RMSE

is useful to evaluate overall performance.

When reading these precision-recall curves, we should note that the prior proba-

bility of the prediction target has a large effect on AP statistics. A classification task

on a 10m×10m map has four times higher prior than a classification on a 5m×5m

map. Therefore, average precision numbers on different resolutions are different and

should not be compared. Furthermore, since ground-truth itself is noisy, there is an

upper limit on maximum AP.

6.3.5 Baselines and Prior Work

Unfortunately, the code for most of the prior work is not available. Furthermore, each

prior work has studied one separate city with private data. We use the US accidents

dataset [76] that is a large scale and publicly available dataset covering the entire US.
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(b) Accident Risk Prediction Without Historical Data(a) Accident Risk Prediction With 2-Year Historical Data

Figure 6-4: (a) Precision-Recall curves for “with history” setting. We present the
results of three variants of our model, Kernel Density Estimation (KDE), and three
upper-bounds on low-resolution techniques. The improvement from satellite imagery
is on the lower-risk (right) side of the curve. KDE identifies the most high-risk places
well but performs worse on low-risk places. (b) Precision-Recall curves for “without
history” setting. In the absences of historical data, accident prediction accuracy is
lower and the context information is more useful. In this case, GPS trajectories are
effective in improving the performance.

Methods Average Precision (%) RMSE (10−6)
LA NYC CHI BOS Avg. LA NYC CHI BOS Avg.

w
/o

hi
st

or
ic

al
da

ta GPS Density 16.82 11.87 6.95 5.83 11.90 1.397 2.652 5.216 4.555 2.823
Road (ours) 19.67 13.36 10.85 13.75 15.51 1.330 2.630 5.035 4.363 2.730
Road+Satellite (ours) 24.61 14.13 13.98 11.74 19.81 1.282 2.574 4.869 4.309 2.662
Road+GPS-Hist (ours) 28.59 17.56 22.71 16.72 23.01 1.239 2.552 4.690 4.203 2.594
Road+GPS-Hist+Sat. (ours) 28.83 16.51 21.02 16.75 23.15 1.233 2.556 4.688 4.243 2.599
Road+GPS-Feat. (ours) 27.28 15.11 19.66 15.12 21.71 1.271 2.616 4.744 4.296 2.648
Road+GPS-Feat.+Sat. (ours) 28.29 16.41 22.26 14.49 22.15 1.242 2.608 4.591 4.338 2.618

w
it

h
hi

st
or

ic
al

da
ta

100m (upper bound) 23.64 20.28 13.79 16.40 21.37 1.328 2.462 4.925 4.210 2.644
200m (upper bound) 14.28 10.68 6.20 8.54 12.32 1.404 2.657 5.163 4.462 2.804
500m (upper bound) 7.86 5.61 2.94 3.70 6.62 1.439 2.729 5.255 4.583 2.872
KDE on historical data 42.60 22.11 25.68 20.06 34.24 0.945 2.562 4.060 5.073 2.529
Road (ours) 43.48 25.41 27.26 23.16 35.86 0.901 2.459 3.938 4.758 2.412
Road+Satellite (ours) 44.77 23.91 27.08 21.09 35.10 0.860 2.306 3.897 4.570 2.317
Road+GPS-Hist (ours) 46.42 27.71 30.83 24.87 38.33 0.865 2.365 3.818 4.461 2.304
Road+GPS-Hist+Sat. (ours) 46.27 26.96 30.01 23.93 37.79 0.859 2.278 3.888 4.573 2.308
Road+GPS-Feat. (ours) 46.55 28.07 33.38 24.13 38.28 0.852 2.330 3.701 4.724 2.318
Road+GPS-Feat.+Sat. (ours) 47.67 28.90 32.95 24.63 39.11 0.853 2.316 3.799 4.783 2.339

Table 6.3: Comparison of AP and RMSE for different methods. The first 7 rows
compare the methods without using historical data as input, and the last 7 rows
compare the methods that use the historical data as input. We also show the theoret-
ical upper-bounds for the low-resolution risk maps at rows 8-10. In this comparison,
all variants of our model consistently outperform other methods on both metrics.
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In order to compare to the prior work we perform the following:

1. Since several prior works use KDE, we implemented and evaluated KDE as a

baseline. The details of KDE is presented in [93]. We tuned the parameters of

KDE so that it can achieve its highest average precision.

2. Since prior works use lower resolution than we do (Table 6.1.1), they cannot

pinpoint accident hot-spots. This has a profound adverse effect on their perfor-

mance. The effect of low resolution (100m×100m vs 5m×5m) is so significant

that even if the prior works are allowed to optimize their output on the actual

test-set, they still under-perform comparing to our model. To compare with

the prior works, we use the best theoretical possible prediction (optimized on

the test set with the knowledge of the future accidents) at their resolution. We

refer to this as theoretical upper-bound for their accuracy. We show that our

technique outperforms this theoretical upper-bound for prior works. We use

theoretical upper-bound because the code for prior works is not available and

they are evaluated on different cities than ours.

3. Different prior works use different sources of data as input (Table 6.1.1). We

measure the effect of different sources of data on the performance of the model.

This measures the effect of the extra data that we use.

6.3.6 Evaluation Results

We summarize our results in Table 6.3.4 and Figure 6-5. We show the APs and

RMSEs of different approaches under two setups – with and without historical data.

Next, we discuss a few insights we learned from this experiment.

Prediction with historical data: Our model uses other data sources to improve

the risk map prediction when the historical data is available. As a result, our model

performs better than the KDE-based approaches that only take the historical data

input into account. As shown in Table 6.3.4, compared to the KDE-based approaches,

our models improve the AP by 4.87 points and reduce the RMSE by 8.8%.

Prediction without historical data: When historical data is not available,

our model can still use the other data sources to estimate the risk, achieving an AP
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Figure 6-5: We show the risk maps produced by the KDE approach, and our approach
(with and w/o historical data), along with the 2-year future accidents (used as the
target in our evaluation) and the 2-year historical accidents in the four cities. We
find that our risk maps can capture the underlying risk distribution that determines
the probability of future accidents at all places and do so even without any historical
data. In contrast, the KDE-based approach can only highlight places where there
were accidents before and fail to assess the risks at other places. For example, in
New York City, the accidents happened at random intersections in those two 2-year
periods. Even though it looks like our risk map has low precision because there is no
accident at many high-risk intersections in a 2-year period, our model captures the
underlying risk distribution — accidents happen at those intersections with a similar
chance.

of 23.15% and an RMSE of 2.594; this accuracy is significantly improved compared

to a baseline method that only uses GPS density to estimate the traffic risk. More

importantly, unlike most prior works that rely on historical accidents, we can use this

model to create risk maps for places that do not have historical data, holding the

potential to create broader impact.

Low resolution prediction upper bounds: We find that our models can out-

perform the 100-meter resolution upper bound by a large margin — 17.74 points

on the AP metric and a 12.8%-reduction on the RMSE metric when the historical

data is available. Even when the historical data is not available, our models can still
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outperform this upper bound thanks to the high resolution of our predicted risk maps.

Impact of each data source: Within our model, we evaluate six variants that

use different combinations of data sources. In our experiments, 2 of the variants do

not have GPS input. Comparing them with the other four variants, we can observe the

benefit of the GPS data source. This benefit is due to two reasons, (1) the information

carried by GPS data, such as the volume of the traffic, has a strong correlation with

accident risk, (2) because information contained in the GPS data after aggregation

(e.g., using a histogram) is relatively limited, overfitting becomes unlikely, and the

prior learned from one place can be easily generalized to other places. This property

is especially important in our scenario where the ground truth data is sparse.

Besides the benefit of the GPS data source, we also observe another important fact.

Among the four cities, LA is the most unsafe city (has the highest accident density),

followed by New York City, Chicago and Boston. The sparsity of our dataset in

each city follows the reverse order. If we look at the average precision (AP) of each

model (with historical data) in these four cities, we find that the models that take

more information as input generally perform better in LA and New York City where

accidents are less sparse. However, they perform worse in Boston, where the accidents

are sparser. This fact verifies that the challenge caused by sparsity does indeed exist.

Because the GPS data contains important information about traffic patterns that

can be helpful for accident risk prediction, instead of using the aggregated GPS

histogram or hand-crafted statistics such as the median speed, we tried to use a

Deep Set [112] to extract more information from the raw GPS trajectories end-to-

end. However, we found that DeepSet actually harms the accuracy in our dataset

because the provision of the extra rich features from the raw GPS trajectories greatly

increases model variance and overfitting. We observe this fact even in LA, where it

has the highest accident density.

Cross-city evaluation: We evaluate the generalization ability of our model in a

cross-city evaluation setup where we train a model on three different cities and test

it on an unseen city. As shown in Table 6.4, we find our model can generalize well on

unseen testing cities.
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Training cfg. LA NYC CHI BOS
Same cities 47.67% 28.90% 32.95% 24.63%
Cross-city 47.61% 27.79% 31.33% 24.52%

Table 6.4: Comparison of the average precision of city-specific models vs a cross-city
model. City-specific models perform slightly better. We believe this is because each
city has certain unique characteristics.

Hyper-parameters: Since the targets (accidents) are sparse, over-fitting is a

major issue. We found that optimal hyper-parameters (including model size) highly

depend on the size and sparsity of the dataset. Larger models generally perform better

in larger cities. Hyper-parameters must be tuned to the input size. In this work, we

focused on the logic behind model design rather than tuning hyper-parameters to one

dataset.

Insight: In summary, we find that the sparsity of accidents is a major challenge

in the design of an accident risk prediction model. On the one hand, we need to use

more data sources and deeper architectures so that we can learn a good estimation

of the accident risk. On the other hand, due to the sparsity of the accidents, using

more input features and deeper models can lead to overfitting.

6.4 Conclusion

We presented an end-to-end deep model that predicts high-resolution traffic accident

risk maps. Since accident data is sparse, sample efficiency is key for a successful

accident risk estimation technique. To improve sample efficiency, we use a model

that establishes the similarity between locations, not just based on proximity (as in

KDE) but also on similarity in appearance. We developed a model to use satellite

imagery, GPS trajectories, and road maps to achieve this. We extensively evaluated

and showed that our model has state-of-the-art performance. Besides the improved

performance and the useful maps we generated, our evaluations provide insights into

how to achieve high performance in the face of accident data sparsity.

Future work: One potential extension of this work is to combine this work with

temporal risk prediction techniques to establish a spatio-temporal accident risk model.
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In the simplest form, there could be independent spatial and temporal components

in the model. A comprehensive accident risk model could potentially input other fac-

tors, including weather patterns, driver characteristics, driving behavior, and vehicle

condition.

Accident related applications: Our model is flexible in terms of what data

sources are available. Once our model is trained, we can apply it to countries where

detailed historical accident data is not published. Furthermore, this model can be

potentially used to compare city layout designs before construction.

Other Applications: Even though this model has been developed for accident

prediction, this fundamental technique can work for similar sparse location-based

problems, including 911 emergency risk maps or taxi demand maps.
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Chapter 7

Conclusion

This thesis presents five automation techniques that utilize aerial imagery, satellite im-

agery and GPS trajectory data to extract base maps and infer essential map features.

These techniques advance the state-of-the-arts in map extraction field by improving

the map extraction accuracy and enabling the inference of new map features.

Specifically, RoadRunner (§2) extracts accurate base maps from GPS trajectories.

It exploits the long-term structure of GPS trajectories to generate accurate maps in

dense urban areas and complex intersections where prior methods fail. Sat2Graph

(§3) focuses on base map extraction from aerial imagery and satellite imagery. It

proposes the graph-tensor encoding scheme that eliminates several limitations of the

road segmentation encoding scheme, improving the base map extraction accuracy

by a large margin. RoadTagger (§5) infers the road attributes from aerial imagery.

It improves inference accuracy using a novel combination of convolutional neural

networks and graph neural networks. Chapter 5 and chapter 6 present the first works

to extract a fully-routable lane-level street map from only aerial imagery and to infer

a 5-meter high-resolution traffic crash risk map, respectively.

Digital maps are ruling the world with their ubiquitous influence in almost all

applications and services. Research work in digital map creation and maintenance

holds the potential to reduce the mapping cost, enrich map features, and improve

map coverage, making digital maps accessible to everyone and benefiting their daily

lives and work. This thesis stretches the surface of map-making research. Looking
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ahead, there are still many open research problems and opportunities in this field. To

conclude this thesis, we outline a few of them.

Interactive map-making. The map extraction algorithms proposed in this the-

sis target a specific workflow where we train the deep learning models with predefined

datasets and apply the models to unseen places to extract the maps. However, this

workflow has two drawbacks in practice. First, the state-of-the-art models still don’t

outperform humans, and the extracted maps still require human validation, which is

also an expensive process. Second, the definitions in road maps have regional differ-

ences. Two visually similar roads may be considered a primary road in one place but

a residential road in another. This regional difference makes it challenging to train

one model that can work for all cases.

A more practical workflow is interactive map-making, where the human map mak-

ers can interact with the automation algorithm. For example, in one interaction itera-

tion, the automation algorithm first extracts the map. Then the human map makers

provide feedback to the automation algorithm, and the automation algorithm can

adjust its output based on the feedback. It is an exciting research direction to design

efficient interaction protocols and the core deep learning algorithms that should have

the ability to react to human input in real-time.

Extracting more digital map features. This thesis proposes techniques that

use aerial/satellite imagery and GPS data to extract four map features, road network

base maps, road attributes, drivable lane maps, and traffic crash risk maps. Besides

these features, many other map features can fulfill different needs and help improve

map users’ experience if we can create such a map efficiently. For example, we can

build a safety map for pedestrians, which may take the existence of street lights,

criminal rate, popularity, and traffic condition into account. This map can help

pedestrians better plan their routes and mitigate potential risks. We can also build a

surface-type map for runners to help them find running routes that are best for their

knees.

Specialized deep learning algorithms and platforms for geospatial data.

Deep learning has become a standard building block in many techniques for enriching
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digital maps. These techniques need to process a wide range of different geospatial

data with different modalities. Geospatial data often comes with global positions,

and different data points are related not only based on their data types but also their

locations. Unlike imagery, video, and text data, there is limited support for geospatial

data in existing machine learning algorithms and platforms, creating two exciting re-

search problems. One is to design specialized neural network architectures that have

the capability to express spatial correlations and work natively with multi-modalities

geospatial data. The other is to build specialized machine learning platforms that

can simplify the development of geospatial machine learning applications and auto-

matically optimize the performance of model training and model deployment given

the unique character of geospatial data layout.
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Appendix A

RoadTagger Synthesized

Micro-Benchmark

In the following pages, we show the whole micro-benchmark as well as the correspond-

ing outputs from the CNN image classifier, CNN image classifier with MRF post-

processing and our proposed RoadTagger. We use this synthesized micro-benchmark

to study the robustness of RoadTagger in a controllable way. This micro-benchmark

complements the large-scale real-world dataset we used in our paper.

As we mentioned in the paper, in this micro-benchmark, we find RoadTagger is

robust to a wide range of different disruptions. These disruptions include remov-

ing all the lane markings on part of the roads, alternatively occluding the left and

right side of the roads, and even occluding the target road with another overpass road.

Highlight Examples. We find the overpass example shown in Figure A-1(3)

particularly interesting. In this example, an overpass road occluded the target road.

Although the number of lanes of the overpass road is very clear on the satellite

imagery, our RoadTagger learns to ignore this strong visual signal. This shows the

strong ability of inductive reasoning learned by RoadTagger as it not only learns

the number of lanes from the imagery but also learns how to extract other useful

information and use this additional information to improve the prediction.

Although adding Markov Random Field (MRF) as post-processing to the CNN
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Image Classifier approach can handle some of the disruptions, it cannot work well

in all scenarios due to the information-barrier induced by the separation of CNN

image classifier and the post-processing; the MRF post-processing may abuse its

prior knowledge and make incorrect corrections such as what happened in example

(1) and (2) in Figure A-1.

In fact, to correctly predict the number of lanes in both example (1) and example

(3) in Figure A-1, RoadTagger needs to know that when the starting point of an

overpass road is detected, the visual features of the overpass should be ignored until

the far edge of the overpass is detected. At the same time, RoadTagger needs to know

if the road is temporarily occluded by trees, the following road segment still belongs

to the same target road. RoadTagger’s end-to-end architecture enables it to learn all

this knowledge without any additional labels or explicit features. This is perhaps the

most attractive part of our RoadTagger framework.

Failure Examples. We also show two examples in Figure 6 where RoadTagger

failed to predict the lane count correctly. In this two examples, the occlusion is

longer than the propagation step (a configurable hyper-parameter of RoadTagger)

of our graph neural network model (i.e., 8 in our current setup), which makes it

impossible to propagate information between the left side and the right side of the

road. Therefore, RoadTagger yields incorrect predictions in these two examples.
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Figure A-1: Examples (1) to (4). In each image, blue lines show the road graph.
The number of lanes predicted by the CNN Image Classifier, CNN image classifier
with MRF post-processing and RoadAnnotator on each segment are shown along the
bottom of each figure. We color the output numbers green for correct predictions and
red for incorrect predictions.
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Figure A-2: Examples (5) to (8). In each image, blue lines show the road graph.
The number of lanes predicted by the CNN Image Classifier, CNN image classifier
with MRF post-processing and RoadAnnotator on each segment are shown along the
bottom of each figure. We color the output numbers green for correct predictions and
red for incorrect predictions.
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Figure A-3: Examples (9) to (12). In each image, blue lines show the road graph.
The number of lanes predicted by the CNN Image Classifier, CNN image classifier
with MRF post-processing and RoadAnnotator on each segment are shown along the
bottom of each figure. We color the output numbers green for correct predictions and
red for incorrect predictions.
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Figure A-4: Examples (13) to (16). In each image, blue lines show the road graph.
The number of lanes predicted by the CNN Image Classifier, CNN image classifier
with MRF post-processing and RoadAnnotator on each segment are shown along the
bottom of each figure. We color the output numbers green for correct predictions and
red for incorrect predictions.
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Figure A-5: Examples (17) to (20). In each image, blue lines show the road graph.
The number of lanes predicted by the CNN Image Classifier, CNN image classifier
with MRF post-processing and RoadAnnotator on each segment are shown along the
bottom of each figure. We color the output numbers green for correct predictions and
red for incorrect predictions.
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Figure A-6: Examples (21) to (22). In each image, blue lines show the road graph.
The number of lanes predicted by the CNN Image Classifier, CNN image classifier
with MRF post-processing and RoadAnnotator on each segment are shown along the
bottom of each figure. We color the output numbers green for correct predictions and
red for incorrect predictions.
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Appendix B

Crash Risk Maps

Model comparison using lift chart

Lift chart is a risk analysis tool used by insurance actuaries for risk assessment. Lift

charts can compare a risk prediction model against a baseline. Figure B-1 shows a

lift chart comparing different versions of our “with history” model against KDE as

a baseline. In this figure, road grid cells are sorted in decreasing order according

to their risk estimate. Grid cells with equal risk estimates are permuted randomly.

Given any threshold, the cumulative percentage of recalled accidents are estimated

both with the baseline and our model. Given any threshold, the ratio between our

recalled accidents and the baseline’s recalled accidents is reported as “lift”.

All versions of our “with history” model outperform KDE. Please note that KDE’s

kernel is optimized in all experiments. Also KDE does not apply to “without history”

models because KDE needs history.

In the top one percent of high-risk areas, our model does not significantly out-

perform KDE (the left side of the Figure B-1). This is because in the most high-risk

areas, the frequency of accidents is high enough that KDE has low variance. In con-

trast, our model outperforms KDE in lower-risk areas as KDE gets affected by data

sparsity in low-risk areas more seriously.

Between our models, road topology alone is useful because it can identify inter-

changes and intersections. However, among the top 5% of dangerous locations, road
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Figure B-1: Lift chart to compare our models with a KDE baseline. Note that
different variants of our model outperform KDE.

topology alone cannot identify risk any better than KDE. GPS trajectories are helpful

to distinguish between high-risk and very high-risk areas. Satellite imagery is also

helpful in high-risk areas but does not help in low-risk areas in the presence of GPS

trajectories.

Figure B-2 provides an explanation as to why KDE fails. Since KDE works based

on historical frequency analysis, in places where no accidents have occurred, KDE

estimates the frequency as zero. As shown in Figure B-2, KDE can recall about 58%

of accidents in the top 4% of grid cells. However, after this, all other grid cells are

seen to have a similar risk profile. A major advantage of our technique is that we can

estimate accident risk in places that have not experienced any accidents previously.
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Figure B-2: Comparison of different models based on accident recall. Each model
ranks grid cells according to accident risk. Since KDE heavily relies on historical
accidents, except the top 5% of dangerous grid cells where historical accidents have
occurred, it cannot distinguish high-risk and low-risk grid cells, therefore, its curve
has a constant slope.
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