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Abstract

The past few years have been a witness for the rise of the new era of satellite commu-
nications. The interest for providing broadband access from space has reached levels
that remind of those in the late 90s with Iridium and Globalstar among others. The
novel mega-constellation designs will rely on thousands of highly capable satellites
to provide service to the ever-growing communications market. Nevertheless, the
new payload flexibilities and the larger space segment involve a level of complexity
and dimensionality that this sector has not seen before. While manual allocation of
resources was feasible and efficient in early stages of this industry, it becomes un-
feasible under the new conditions. To exploit the capabilities of the new spacecrafts
to its full potential, new automatic and optimized tools for the Resource Allocation
(RA) problem in the context of satellite communications need to be developed.

While individual tools and methods for the specific sub-problems have been pro-
posed during these last years, most approaches fail to address the interactions be-
tween different sub-problems, and those who do rely on simplified assumptions that
do not capture the reality of modern operations. To close this gap, this Thesis
proposes an adaptive framework to solve the long-horizon RA problem under high
dimensionality conditions for highly flexible satellite constellations. The proposed
framework uses a divide-and-conquer approach where the RA problem is decom-
posed into different sub-problems, then solved via state-of-the-art optimization tech-
niques, and integrated back to obtain a valid, feasible, and efficient solution for the
long-horizon RA problem. The performance of this framework is then analyzed using
different user distributions, model parameters, and solution algorithms to understand

ii



the capabilities and robustness of the obtained solutions, as well as the sensitivity to
the different variables.

The executed analyses prove the validity and effectiveness of the framework to
deal with the incumbent problem. Specifically, the proposed method and algorithms
prove to be robust against a variety of user distributions and model parameters,
being always able to obtain a feasible plan. In addition, the tests performed in
this work demonstrate that the state-of-the-art algorithms significantly outperform
simple techniques, being able to multiply the capacity of the constellation by 4 with
the same payload characteristics, while reducing to a third the power consumption.
Furthermore, the sensitivity tests prove that optimized solutions are able to achieve
improved coverage even with limited hardware compared to heuristic techniques.

Thesis Supervisor: Edward F. Crawley
Title: Professor of Aeronautics and Astronautics

Thesis Supervisor: Bruce G. Cameron
Title: Director of the System Architecture Group
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Marlene Rüede, with whom I have shared many experiences. Anne-Marlene, thank

you for showing me that graduate life is more than just problem solving in front of

a screen, and thank you for all the time we have spent together. I do not want to

miss the chance to say thank you for the invaluable administrative support I always

get from Amy Jarvis, Beth Marois, Beata Shuster, and Ping Lee.

Finally, but not less important, I would like to thank my parents, Jørn and Nina,

for their unconditional support and love during my whole life. Thank you both for all

you gave me and the knowledge and skills that have helped me achieve my dreams.

I am also deeply grateful to my closest friends – you know who you are – who always

show me that distance is nothing when it comes to our friendship.

v





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 General objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 A Communications Satellite . . . . . . . . . . . . . . . . . . . 4

1.3.2 The link budget equation . . . . . . . . . . . . . . . . . . . . . 10

1.3.3 On the Resource Allocation framework . . . . . . . . . . . . . 15

1.4 Specific objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Literature review 20

2.1 Power Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Short-horizon Frequency Assignment . . . . . . . . . . . . . . . . . . 23

2.2.1 TDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Beam Hopping . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Long-horizon Frequency Assignment . . . . . . . . . . . . . . . . . . 26

2.3.1 FDMA or Bandwidth Allocation . . . . . . . . . . . . . . . . 26

2.3.2 Frequency Assignment . . . . . . . . . . . . . . . . . . . . . . 28

vi



2.4 User Grouping and Beam Placement . . . . . . . . . . . . . . . . . . 30

2.4.1 Beam Placement . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 User Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Beam Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Satellite Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Gateway and Inter-Satellite Routing . . . . . . . . . . . . . . . . . . 35

2.7.1 Gateway Routing problem . . . . . . . . . . . . . . . . . . . . 35

2.7.2 Inter-Satellite Routing . . . . . . . . . . . . . . . . . . . . . . 35

2.8 Joint problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8.1 Research on two sub-problems . . . . . . . . . . . . . . . . . . 38

2.8.2 Research on more than two sub-problems . . . . . . . . . . . . 45

2.9 Literature summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 A Divide and Conquer approach to the Resource Allocation Prob-

lem 52

3.1 On the Resource Allocation framework . . . . . . . . . . . . . . . . . 53

3.2 User Grouping and Beam Shaping . . . . . . . . . . . . . . . . . . . . 58

3.2.1 General problem description . . . . . . . . . . . . . . . . . . . 58

3.2.2 Specific problem description . . . . . . . . . . . . . . . . . . . 58

3.2.3 Subsequent problem interface . . . . . . . . . . . . . . . . . . 60

3.3 Satellite Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 General problem description . . . . . . . . . . . . . . . . . . . 62

3.3.2 Specific problem description . . . . . . . . . . . . . . . . . . . 62

3.3.3 A brief discussion on the joint User Grouping and Satellite

Routing problem . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.4 Subsequent-problem interface . . . . . . . . . . . . . . . . . . 66

vii



3.4 Gateway Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.1 General problem description . . . . . . . . . . . . . . . . . . . 66

3.4.2 Specific problem description . . . . . . . . . . . . . . . . . . . 67

3.4.3 A brief discussion on the joint Satellite Routing and Gateway

Routing problem . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.4 Subsequent-problem interface . . . . . . . . . . . . . . . . . . 72

3.5 Frequency Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.1 General problem description . . . . . . . . . . . . . . . . . . . 73

3.5.2 Specific problem description . . . . . . . . . . . . . . . . . . . 74

3.5.3 A brief discussion on the joint Gateway Routing and Frequency

Assignment problem . . . . . . . . . . . . . . . . . . . . . . . 78

3.6 System metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.6.1 Power consumption as a system metric . . . . . . . . . . . . . 79

3.6.2 User Satisfaction as a system metric . . . . . . . . . . . . . . 80

3.7 Assumptions and Challenges . . . . . . . . . . . . . . . . . . . . . . . 81

3.7.1 General assumptions and relaxations . . . . . . . . . . . . . . 81

3.7.2 Specific assumptions . . . . . . . . . . . . . . . . . . . . . . . 83

4 Heuristics, practical implementations, and efficient optimizations

for the Resource Allocation sub-problems 89

4.1 User Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1.1 One beam per user . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1.2 Minimum number of beams . . . . . . . . . . . . . . . . . . . 91

4.1.3 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1.4 Coverage grid . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 Satellite Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

viii



4.2.1 Closest satellite . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.2 Mixed Integer Linear Programming . . . . . . . . . . . . . . . 96

4.2.3 Particle Swarm Optimization . . . . . . . . . . . . . . . . . . 96

4.3 Gateway Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 Closest gateway . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.2 Mixed Integer Linear Programming . . . . . . . . . . . . . . . 99

4.4 Frequency Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.1 Heuristic approach . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4.2 Integer Linear Programming . . . . . . . . . . . . . . . . . . . 101

4.5 Power Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 A complete Resource Allocation Process for a long-term operations

plan 106

5.1 Integration validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Test procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 User distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.1 Satellite operator model (SES) . . . . . . . . . . . . . . . . . . 109

5.3.2 Proportional to population (Population) . . . . . . . . . . . . 109

5.3.3 Proportional to uncovered population (Uncovered) . . . . . . . 112

5.4 Constellation and Gateway Model . . . . . . . . . . . . . . . . . . . . 114

5.4.1 Constellation Model . . . . . . . . . . . . . . . . . . . . . . . 114

5.4.2 Gateway Model . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.6 Baseline Comparison and Performance Analysis (Experiment Set A) . 118

5.6.1 Low system capacity . . . . . . . . . . . . . . . . . . . . . . . 118

5.6.2 High system capacity . . . . . . . . . . . . . . . . . . . . . . . 123

ix



5.6.3 Run-time analysis . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Sensitivity and Robustness analysis on the Resource Allocation Pro-

cess 129

6.1 Robustness Analysis (Experiment Set B) . . . . . . . . . . . . . . . . 129

6.1.1 Robustness to dimensionality on the SES distribution . . . . . 130

6.1.2 Robustness to dimensionality on the Population distribution . 132

6.1.3 Robustness to dimensionality on the Uncovered distribution . 135

6.2 Sensitivity Analysis (Experiment Set C) . . . . . . . . . . . . . . . . 137

6.2.1 Sensitivity test: Number of satellites . . . . . . . . . . . . . . 138

6.2.2 Sensitivity test: Number of gateways . . . . . . . . . . . . . . 140

6.2.3 Sensitivity test: Number of beam channels . . . . . . . . . . . 142

6.2.4 Sensitivity test: Bandwidth per beam channel . . . . . . . . . 144

6.2.5 Sensitivity test: Frequency reuse factor . . . . . . . . . . . . . 146

6.2.6 Sensitivity test: Half cone angle . . . . . . . . . . . . . . . . . 148

6.2.7 Sensitivity test: Number of and bandwidth per beam channel 149

6.2.8 Sensitivity summary . . . . . . . . . . . . . . . . . . . . . . . 151

6.3 Sensitivity of the framework results to minor user changes . . . . . . 152

6.3.1 Sensitivity of the framework results to multiple executions . . 153

6.3.2 Sensitivity of the framework results to minor user changes . . 155

7 Conclusions 156

7.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.2 Main findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Appendices 163

x



A Mathematical Transformations 164

A.1 Logic operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.1.1 OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.1.2 AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.2 Activation variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.2.1 Transforming an inequality into a binary variable . . . . . . . 165

A.2.2 Transforming an equality into a binary variable . . . . . . . . 166

B Complete results 167

xi



List of Figures

1-1 Division of frequency spectrum . . . . . . . . . . . . . . . . . . . . . 6

1-2 Gain of a parabolic antenna . . . . . . . . . . . . . . . . . . . . . . . 9

1-3 Minimum elevation angle definition . . . . . . . . . . . . . . . . . . . 10

3-1 Long-horizon Resource Allocation framework . . . . . . . . . . . . . . 57

3-2 The joint User Grouping and Beam Shaping problem . . . . . . . . . 61

4-1 A possible grid based solution for the User Grouping problem . . . . 94

5-1 User Population distribution . . . . . . . . . . . . . . . . . . . . . . . 111

5-2 User Uncovered distribution . . . . . . . . . . . . . . . . . . . . . . . 113

5-3 Performance comparison under low system capacity . . . . . . . . . . 119

5-4 Impact of each resolution procedure decision on the low capacity system122

5-5 Performance comparison under high system capacity . . . . . . . . . 124

5-6 Impact of each resolution procedure decision on the high capacity system126

6-1 Performance comparison under three dimensionality scenarios . . . . 131

6-2 Performance comparison under the population proportional user dis-

tribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

xii



6-3 Performance comparison under the uncovered population user distri-

bution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6-4 Performance comparison under different number of satellites . . . . . 139

6-5 Performance comparison under different number of gateways . . . . . 141

6-6 Performance comparison under different number of beam channels . . 143

6-7 Performance comparison under different bandwidths . . . . . . . . . . 145

6-8 Performance comparison under different frequency reuse factors . . . 147

6-9 Performance comparison under different half cone angles . . . . . . . 149

6-10 Performance comparison under different number of beam channels and

bandwidths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

xiii



List of Tables

1.1 Summary of the six different sub-problems for NGSO constellations . 16

1.2 Short-horizon sub-problems for NGSO constellations . . . . . . . . . 18

1.3 Long-horizon sub-problems for NGSO constellations . . . . . . . . . . 18

1.4 Sub-problems considered in this work . . . . . . . . . . . . . . . . . . 19

2.1 Summary of the literature’s scope . . . . . . . . . . . . . . . . . . . . 50

2.2 Summary of the literature’s characteristics . . . . . . . . . . . . . . . 51

3.1 N2 diagram on the flow of information on the long-horizon RA problem 54

5.1 Constellation parameters. Those parameters are either taken directly

from the filings or based on the author’s assumptions. . . . . . . . . . 114

5.2 Summary of the resolution procedures used in the experiments . . . . 117

5.3 Summary of the experiments of this work. . . . . . . . . . . . . . . . 117

5.4 Detailed numbers on the performance comparison under low system

capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5 Detailed numbers on the performance comparison under high system

capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.6 Execution time for each optimization algorithm considered in this work128

xiv



6.1 Detailed numbers on the performance comparison under different di-

mensionality scenarios on the Population dataset . . . . . . . . . . . 133

6.2 Detailed numbers on the performance comparison under different di-

mensionality scenarios on the Uncovered dataset . . . . . . . . . . . . 136

6.3 Impact of choosing the fully optimized pipeline over the heuristic so-

lution when analyzing different model parameters . . . . . . . . . . . 152

6.4 Sensitivity of the optimization algorithms on multiple independent

executions under identical inputs . . . . . . . . . . . . . . . . . . . . 154

6.5 Sensitivity of the optimization algorithms on two independent execu-

tions under slightly different initial conditions . . . . . . . . . . . . . 155

B.1 Detailed numbers on the performance comparison under different di-

mensionality scenarios on the SES dataset . . . . . . . . . . . . . . . 167

B.2 Detailed numbers on the performance comparison under different di-

mensionality scenarios on the Population dataset . . . . . . . . . . . 168

B.3 Detailed numbers on the performance comparison under different di-

mensionality scenarios on the Uncovered dataset . . . . . . . . . . . . 169

B.4 Detailed numbers on the performance comparison under different num-

ber of satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

B.5 Detailed numbers on the performance comparison under different num-

ber of gateways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

B.6 Detailed numbers on the performance comparison under different num-

ber of beam channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

B.7 Detailed numbers on the performance comparison under different band-

width per beam channel . . . . . . . . . . . . . . . . . . . . . . . . . 172

xv



B.8 Detailed numbers on the performance comparison under different fre-

quency reuse factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

B.9 Detailed numbers on the performance comparison under different half

cone angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

B.10 Detailed numbers on the performance comparison under different num-

ber of and bandwidth per beam channel . . . . . . . . . . . . . . . . 173

xvi



Nomenclature

Acronyms

ABC Artificial Bee Colony

ACM Adaptive Modulation and Coding

ACO Ant Colony Optimization

BSh Beam Shaping

DRL Deep Reinforcement Learning

EIRP Effective Isotropic Radiated Power

FA Frequency Assignment

FDMA Frequency-division multiple access

FSL Free Space Loss

GA Genetic Algorithm

GEO Geosynchronous Earth Orbit

GR Gateway Routing

ILP Integer Linear Programming

ISL(s) Inter satellite link(s)

ITU International Telecommunication

Union

LEO Low Earth Orbit

LSE Least Squared Error

MD Met Demand

MEA Minimum Elevation Angle

MEO Medium Earth Orbit

MILP Mixed Integer Linear Programming

MODCOD Modulation and Coding

NGSO Non GeoSynchronous Orbits

NN Neural Network

PA Power Allocation

PSO Particle Swarm Optimization

xvii



RA Resource Allocation

SA Simulated Annealing

SINR Signal to Interference plus Noise Ra-

tio

SR Satellite Routing

TDMA Time-division multiple access

UD Unmet Demand

UG User Grouping

USC Unmet System Capacity

Symbols

δ Beam cone angle

ηi Number of channels needed for beam

i

Γ Spectral efficiency

λ Wavelength

Vi Set of users covered by beam i

θ Angle with reference to the beam

pointing

A Area

BWi Bandwidth needed for beam i

c Speed of light / Bandwidth of a chan-

nel (context dependent)

D Antenna diameter

du Demand of user u

f Frequency

G Gain

k Boltzmann constant

N Noise power

P Power / Period (context dependent)

pi Position of element i

R Data rate

r Antenna radius

T Temperature

tstart,i Initial point in time where beam i is

visible

tstop,i Final point in time where beam i is

visible

W Watt

x, y Auxiliary variables (problem depen-

dent)

xviii





Chapter 1

Introduction

1.1 Motivation

In an era driven by information, staying connected becomes a top priority. Over

the past few years, the world’s network infrastructure has been rapidly expanding

to cover the novel necessity for such information [1]. While terrestrial nets handle

most of this load, satellite networks have recently re-emerged to absorb the traffic

where the land infrastructure is poor or non-existent [2]. After a severe drawback

in the early 2000’s with the failure or cancellation of most space constellations for

broadband communications [3], newborn projects have materialized to deal with the

new market’s necessities. Both old competitors (e.g., SES, Telesat), and new entrants

(e.g., SpaceX, Amazon) aspire to take a piece of the communications cake.

The new era of satellite communications will be driven by two main factors: an ex-

panding user base with larger traffic requirements, and a technological improvement

that boosts the capacity of the network. For the former, several recent studies [2, 4]

analyze the economic aspects of the new mega-constellations and what parameters
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and factors are the key drivers of the financial viability of such systems. New users

with a variety of demand requirements will enter the market, and to maximize profit

the satellite operators will need to manage highly variable traffic for tens of thousands

of users in real-time. For the latter, the digitalization of on-board resources, usage of

phased-array antennas, and the adoption of novel adaptive control and modulation

allow for an enhanced spacecraft performance. Furthermore, reduced launch costs

and mass production of satellites evoke a larger and highly flexible space segment.

Moreover, managing the diverse pool of resources of a contemporary satellite to

guarantee service and maximize throughput is not an easy task. Modern spacecrafts

are able to reconfigure the position, shape, frequency, and power of each beam in

almost real-time. Each of these resources is in nature very distinct and involves a

particular and unique set of constraints. On top of that, satellites are able to project

from tens to thousands of beams and each constellation is constituted from a range

between tens to thousands of satellites. For example, SpaceX Starlink constella-

tion [5–8] has 4408 satellites with around 32 spot beams per spacecraft, while O3b

mPower constellation [9, 10] is conformed by 10 satellites with thousands of beams

per spacecraft. Both of those systems will need to continuously monitor tens of

thousands of beams.

While the new system capabilities boost the total throughput and increases the

range and availability of the space network, the new flexibilities and dimensionality

involve a greater degree of complexity that hasn’t been seen before in satellite opera-

tions. While manual and static resource allocation mechanisms worked well for early

stages of this industry, these techniques become obsolete when dealing with thou-

sands of software-driven satellites and tens of thousands of demand-varying users

in real-time. New automated tools and methods for the high dimensional resource

allocation problem in satellite communications need to be developed. Furthermore,
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optimizing the resource allocation process allows for a more effective usage of the

satellite flexibilities, increasing the overall performance of the system. Thus, op-

erators not only aim for a feasible operations plan, but rather the best possible

operations plan that maximizes throughput. However, the combination of resource-

specific constraints plus the high dimensionality element make the resource allocation

problem a complex conundrum difficult to solve with traditional optimization tech-

niques.

For this reason, recent literature has started looking at artificial intelligence

(AI) approaches to deal with the naturally dissimilar resources and/or the high-

dimensionality of the problem due to its performance in similar fields [11]. While

state-of-the-art studies have investigated individual resources in high-dimensional

environments, or pairs or triples of resources in dimensionality-restricted scenarios,

there is no clear path of how to implement those methods in real operations. This

Thesis aims to close this gap by developing a framework to solve the resource al-

location problem for satellite communications in high-dimensional scenarios using a

decomposition plus integration framework in combination with state-of-the-art algo-

rithms to achieve optimized system-level performance.

1.2 General objectives

The previous Section identified the key drivers of the next generation of satellite

communications and the necessary methods and tools that need to be developed

to achieve maximum system’s performance. Specifically, before implementing the

academia methods into industry, further research needs to:

• Develop a method to automate the complete resource allocation for satellite

communications. This tool needs to take into account all the flexibilities and
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dimensionality aspects of the new constellations and provide a feasible plan for

the satellite operators to execute. Furthermore, this method should be based

on an optimization framework that tries to maximize system’s performance by

efficiently assigning the available resources.

• Assess the capabilities and limitations of such tool. It is important to under-

stand to what limits can the tool be extended to and in which contexts can it

be applied. It is necessary to benchmark the resource allocation method under

a representative set of use cases to provide the satellite operator with enough

confidence and knowledge to cast informed decisions.

1.3 Background

The objective of this section is to introduce the reader to general concepts of satellite

communications that are going to be used throughout this Thesis. This does not

intend be a profound analysis of space communications or a replacement of other

more detailed work, but rather a brief summary of the most important concepts and

relevant definitions. For more knowledge about satellite communications, refer to

Maral et al. [12].

1.3.1 A Communications Satellite

A communications satellite can be defined as a device orbiting around the Earth

that is able to transmit information from one point of the Earth to another. This

transmission follows a two-step process connecting three entities: the transmission

from a ground station (i.e., a station on the surface of the Earth) to the satellite

(a.k.a. satellite uplink) and from the satellite to a second ground station (a.k.a.
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satellite downlink). Optionally, the information can travel through multiple satellites

before returning to the ground. The satellite to satellite connections are commonly

referred to as inter-satellite links (ISLs). In addition, the ground stations can be

defined into two sub-groups: users (or user terminals) and gateways. Users are small

ground stations that pay for a specific service and ask for information to be provided.

Gateways are generally larger and are responsible of providing that information. The

two flows of communication are: the forward link, which follows the path gateway

- satellite - user, and the return link, which follows user - satellite - gateway. For

services such as Internet provision, both flows tend to be asymmetric, as Internet

requests are generally smaller than the data being requested. Other types of services

such as phone communications may be more symmetric.

The Frequency Spectrum

Contrary to terrestrial cable communications based on electrical impulses, satellite

communications rely on electromagnetic waves. The information is encoded into the

wave at the transmitter, and decoded at the receiver. These waves are defined by

three main factors:

• Power : Determines the wave’s travel distance. As power decays with distance,

there is a point where the signal is no longer distinguishable from ambient

noise, which restricts the wave’s reachable destinations.

• Frequency : Rate of oscillation of the wave. Given the large amount of frequency

users and the scarcity of the frequency resource, the International Telecommu-

nication Union (ITU) is responsible of dividing the frequency space into the

different sectors. The bands assigned for space communications are shown in

Figure 1-1.
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Figure 1-1: Division of frequency spectrum [13]

• Polarization: Any electromagnetic wave is formed by an electric field and a

magnetic field. By nature, both fields are orthogonal and perpendicular to

the propagation of the wave and the direction of these fields is decided at the

transmission station. By physics, two perpendicular electric or magnetic fields

do no interfere. This allows for two waves with perpendicular fields with the

same frequency to be transmitted at the same time without information loss,

which permits doubling the effective capacity of the communication link. The

direction of the electric and magnetic fields is known as polarization.

Rather than encoding the information in the amplitude of the wave, as commonly

done in terrestrial links, the information is encoded in the frequency of the wave.

This allows for a much reliable link, at the expense of being limited by the amount

of frequency spectrum available. To transform the information bits into frequen-

cies, what is known as modulation and coding schemes (MODCODs) are commonly

6



used. These MODCODs are standard processes that, depending on the quality of

the link, decide how to encode the transmission information and how many error

correction bits to include. A higher quality link needs less error correction, and thus

the information transmission rate is higher. On the contrary, if the signal is barely

distinguishable from surrounding noise, the link needs many error correction bits,

which reduces considerable the efficiency of the connection. As a simple example,

with a perfect link we only need to transmit the information once with no error

correction, which allows for 100% efficiency. On the contrary, if the link is very unre-

liable, we may need to transmit the same information twice or thrice, which implies

efficiencies of 50% or 33%, respectively. The MODCODs used in this Thesis are the

ones in the standard DBV-S2X [14].

Satellite architecture

In simple words, a communications satellite is no more than a very sophisticated mir-

ror: a ground station sends a wave with information encoded and expects the satellite

to redirect that information to another ground station somewhere else. Conventional

satellites have often used what is known as the bent-pipe model: the received signal

is amplified and redirected directly into the transmitting antenna without modifica-

tion. This allows for a simplified payload model, but imposes additional constraints

regarding the uplink and downlink, since the signal is inherently the same. On the

other hand, modern satellites are able to decode the signal in the satellite payload

and encode it again with a different MODCOD. This makes the uplink and down-

link independent, and allows for a higher flexibility and spectrum usage. This latter

architecture is the one used in this work. However, the methods, algorithms, and

implementations developed can be applied to bent-pipe architectures with minimal
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modifications.

Antennas

The entities responsible for transforming a electrical signal into an electromagnetic

wave and vice versa are the antennas. By definition, an isotropic antenna is an

antenna that transmits the electromagnetic wave to all directions with the same

intensity. On the contrary, the most used type of antennas in space communications

are parabolic, which allow to concentrate most part of the power into a specific

direction or set of directions. Usually, these antennas create lobes as shown in Figure

1-2. The receiver antennas located inside the lobe receive a much higher signal

intensity that the ones outside. Since these antennas use power much more efficiently

by directing it into the correct direction, they help save power compared to an

isotropic antenna. The amount of power saved is known as the gain of the antenna.

Formally defined, the gain is the amount of power needed by an isotropic antenna to

reach the same signal intensity as a parabolic antenna at the center of the main lobe.

To determine the size of the lobe, the 3dB angle (θ3dB/2) is defined as the angle at

which the power is half of the power at the center of the lobe. A beam is defined

as the cone produced by the direction of the center of the lobe and a cone angle of

θ3dB. The center of the beam is the point where the axis of the cone intersects the

surface of the Earth. This definition can be seen as a hard constraint: users that

fall within θ3dB/2 of the center of the lobe can be served by the beam, while users

outside cannot.

Going a step beyond parabolic antennas, modern satellites use what is known as

phased array antennas. These antennas are able to create thousands of very narrow

beams that can reach a wide angle of directions with high gain without the need
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Figure 1-2: Gain of a parabolic antenna [12]

of moving the antenna. Although this allows for improved information rates, the

operational burden of managing all those beams is not negligible.

Satellite coverage

While modern satellites can create thousands of beams, not all positions in the surface

of the Earth can be reached by a single satellite at the same time. Given that the

Earth has a somewhat spherical shape, it acts as an occluding body to the satellite.

Ideally, the portion of the Earth that can be reached from a satellite is the set of

points that form an angle with the Earth’s surface higher than 0 degrees. In practice,

due to additional occluding elements such as buildings or natural formations, this

angle (known as minimum elevation angle, MEA) is higher than 0. Figure 1-3 shows

the coverage of a satellite with 0 degrees and ϵ degrees MEA (in blue and green,

respectively). The MEA is a given parameter of the constellation, as it must be

specified when filing for a new constellation. Formally, the coverage of a satellite at

any given time is the portion of the Earth that forms an elevation angle higher or

equal than the predefined MEA.
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Figure 1-3: Satellite coverage with 0 and ϵ minimum elevation angle, with blue
dashed and green dotted lines, respectively. RE denotes the radius of the Earth, and
h is the altitude of the orbit.

Given that the new applications for satellite communications follow NGSO, satel-

lites drift over time with respect to the Earth. Therefore, regions that were not visible

at some point in time may become visible after a while and vice versa. Starting from

a reference time, the visibility window of a specific surface position can be computed

as the period of time where the elevation angle between that position and the satellite

is higher than the MEA. This range can be computed with classical orbital equations

by determining the (at most) two moments for every period where the elevation angle

is equal to the MEA.

1.3.2 The link budget equation

To allow distinguishing the signal from surrounding noise, it needs to have a sig-

nificantly higher intensity than such noise. As mentioned in the previous section,

the intensity of an electromagnetic signal is equivalent to the received power. The

following lines detail how to compute the power to noise ratio, which will determine
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the quality of the link.

First, the transmission antenna emits the signal with a specific power PT . Due

to the use of non-isotropic antennas, this power gets amplified by a gain GT . The

resulting quantity is known as effective isotropic radiated power (EIRP):

EIRP = PTGT [W] (1.1)

To match common communications notation, values are usually transformed to

the logarithmic domain to keep track of large numbers. The common transformation

is: [dB] = 10 log10[−]. Next, for parabolic antennas, the gain at the center of the

beam Gmax can be computed as:

Gmax = µ

(
πD

λ

)2

[−] (1.2)

Where µ is the efficiency of the antenna, λ is the wavelength of the signal (which can

be computed with the frequency f and the speed of light c as λ = c
f
), and D is the

diameter of the antenna. The gain at an angle θ off the center axis, the total gain is:

G(θ) = Gmax − 12

(
θ

θ3dB

)2

[dB] (1.3)

Note that this definition is already in the logarithmic domain (i.e., Gmax needs to

be converted before the operation). Then, the signal travels through the space and

atmosphere to reach the receiver antenna. This travel implies a loss commonly known

as the free space loss (FSL):

LFSL =

(
4πr

λ

)2

[−] (1.4)
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Where r is the distance between both antennas. Note that this value appears as

a consequence of the loss of the signal due to the natural propagation of the wave.

No atmospheric losses have been included until this point. After such distance, the

signal reaches the receiver antenna and it gets amplified due to an additional gain

on the receiving end:

PR = PT +GT +GR − LFSL [dB] (1.5)

PR represents the power received at the receiver antenna. However, this is the ideal

power (i.e., if every element is ideal and there are no further losses). Reality tends to

be less perfect. The effects of additional losses can be reflected with the inclusion of

an additional generic term L. Those losses can have many sources: atmospheric at-

tenuation, non-ideal receivers and transmitters, pointing losses, signal disturbances,

etc. For a complete list of sources and a method for quantifying each one refer

to [12]. Although the received power is relevant to establish a successful connection,

its relation to noise is what determines if the signal can be understood or not. In

this context, noise is usually defined as:

N = kTB [W] (1.6)

Where k is Bolzmann’s constant, B is the bandwidth of the signal, and T is the

equivalent temperature at which a standard resistor would produce noise N . Then

the signal to noise ratio (SNR) can be computed as:

SNR = PT +GT +GR − LFSL − L−N [dB] (1.7)
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Interference and how to avoid it

In addition to surrounding noise, signals can receive and produce interference from

and to other signals if they operate on the same frequency range and polarization.

The four classical interference sources are:

• Carrier to adjacent beam interference: two beams may interfere if they point

to nearby locations.

• Carrier to adjacent satellites interference: two nearby satellites pointing at

nearby locations may cause mutual interference.

• Carrier cross polarization interference: since polarization is not a perfect pro-

cess, signals with different polarizations may still have an interfering effect

between them.

• Carrier to third order inter-modulation products of interference: electronic ma-

nipulation of signals create residual signals on nearby frequency bands, which

can interfere with other beams.

From this four elements, the most relevant one on continuous operation is the

carrier to adjacent beam interference. Nevertheless, it can be efficiently dealt with

in the resource allocation process. For the purposes of this work, it will be assumed

that nearby beams only produce harmful interference if they occupy the same fre-

quency band and they are geographically close. This latter factor will be determined

using the minimum angle difference between both beams when they are in the same

satellite and a threshold angle, after which interference is considered to be negligible.

Assuming this element is effectively managed in the RA process, for the each of the

interference components, an average interference of value I will be assumed. Then,
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the signal to noise plus interference can be computed as:

SINR =
1

1
SNR

+ 4
I

[−] (1.8)

Satellite throughput

For a signal to be correctly decoded by a receiver, two additional factors must be

taken into account: first, each MODCOD has an associated required margin (called

OBO) needed to perform the operation, and second, operators usually include a

margin factor m as a way to avoid signal loss under unforeseen disturbances. Then,

a signal can be properly understood if:

SINR−OBO −m ≥ 0 [dB] (1.9)

Where the acronym SINR stands for signal to interference plus noise ratio. Addi-

tionally, each MODCOD is directly related with a spectral efficiency Γ, that quanti-

fies how many bits can be transmitted per second for each Hertz of bandwidth used.

For a complete list of MODCODs, OBO, and spectral efficiency, see [14]. The total

data-rate for a specific beam i can then be computed as:

Ri = BWi Γi (1.10)

Where BWi corresponds to the bandwidth allocated to beam i, and Γi is the asso-

ciated spectral efficiency of the MODCOD used in the link of beam i. The value

Ri determines the data-rate provided to beam i and it is the way a communications

satellite delivers performance.

The procedure presented to compute the data-rate is usually a more academic ap-
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proach that what reality demands. In practice, the data-rate is given as a constraint,

and the MODCOD can be adapted to achieve the desired value. For this purpose,

this work will use an adaptive modulation and coding (ACM) scheme in which the

MODCOD with lowest OBO that matches the desired data-rate (i.e., that has a

spectral efficiency equal or higher than the requested value) is chosen. In case the

required spectral efficiency is too high and no MODCOD can match that value, the

highest spectral efficiency MODCOD will be used (so that the maximum amount of

data-rate can be provided). Note that this method assumes no constraints in power.

Power constrained approaches will be discussed later in this work.

1.3.3 On the Resource Allocation framework

The Resource Allocation problem (RA) for satellite communications can be defined

as finding the most efficient resource distribution that meets the users’ requirements.

This definition is driven purely by the general objective of maximizing profit: we

want to serve current users the best we can (since this maximizes current revenue),

while leaving as many resources as possible for future users (since this maximizes

expected revenue). To understand how to solve this problem, first we have to define

two important concepts: how are the users’ requirements defined and what are the

satellite resources. In this work, we consider the users’ requirements as some demand

that needs to be met. Each user is considered a point on the surface of the Earth

and the objective for the satellite constellation is to serve the demand of all users.

On the other hand, the satellites resources are all the elements that need to be

allocated so that the connection between user and gateway can take place. Guerster

et al. [15] consider four different resources to allocate: the radio-frequency transmis-

sion power, the central frequency and bandwidth, the position or direction of the
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beam, and the beam shape. In general, these are the classical elements on a GEO

satellite. However, given the capacity increase of modern satellites, operators usually

need multiple gateways per satellite to offload all their data traffic. Deciding which

gateway to use for each beam is an additional factor that was not considered in

earlier stages of this industry. Moreover, given the time-dependency in NGSO, there

are additional resources or decisions that need to be considered, such as when to

handover between different satellites. In general, we can decompose the RA problem

for satellite communications for modern NGSO systems into six different decisions,

summarized in Table 1.1. Given the complexity of this joint problem, the RA prob-

lem in satellite communications is often subdivided into different sub-problems, each

associated with a different satellite resource.

Resource or decision to
make

Common name(s) Question to answer

Transmission power (or
radio-frequency

transmission power)
Power Allocation

What is the necessary power transmitted to
the antenna to achieve the desired link

margin and data rate for a specific beam?

Frequency
Frequency
Assignment

How much bandwidth and which frequency
range to use for each beam and user?

Position and user grouping
Beam Placement /
User Grouping

Where to place the beam and which users
to serve?

Beam shape Beam shaping Which specific footprint shape to use?

Satellite
Satellite Routing /
Beam-to-Satellite

Scheduling

Which satellite is going to serve each beam
and when to handover between satellites?

Gateway Gateway Routing Which gateway to route beam’s data to?

Table 1.1: Summary of the six different sub-problems for NGSO constellations

In addition to the six sub-problems, it is important to define the time-horizon of

each problem. While transmission power is something that can be changed almost in

real time as it only involves one entity (the transmission antenna), frequency changes

need to be planned ahead of time as we have to synchronize the satellite antenna and

its frequency subsystems with the ground antenna and its frequency subsystems. Due
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to the high amount of synchronization, this Thesis will denote those sub-problems as

long-horizon sub-problems. On the other hand, the power sub-problem can be seen

as a short-horizon sub-problem.

Even more, depending on the definition of a sub-problem, it can be seen as a long-

or short-horizon sub-problem: if we define the frequency problem as determining the

frequency and bandwidth per beam or user (by using frequency-division multiple

access, FDMA), the problem is long-horizon, if, on the other hand, we only want

to split the frequency of a beam into multiple users in time (by using time-division

multiple access, TDMA), or to decide when to turn on and off a specific beam in

a beam hopping manner, the problem is short-horizon, since we are not changing

frequency and, thus, do not need specific synchronization.

In the case of the beam positioning and user grouping, deciding the exact position

of the beam is a short-horizon sub-problem, but changing the users from one beam

to another is a long-horizon sub-problem (due to the need to adapt the frequency

of those users). The beam shape sub-problem is a special case, since in theory

it could be a short-horizon sub-problem, but in practice modern satellites cannot

usually select whichever footprint they want, but rather they need to decide between

a sub-set of all possible footprints. Deciding which sub-set of footprints to use is

a long-horizon problem. Deciding the satellite and gateway to serve each beam is

always a long-horizon problem due to the need to synchronize the users with the

different satellites and gateways. However, choosing the path from the initial or user

satellite to the final or gateway satellite can be done dynamically in a short-horizon

formulation. Tables 1.2 and 1.3 summarize the different sub-problems depending on

the short-/long-horizon definition.
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Short-horizon
Resource Sub-problem Brief description

Transmission power Power Allocation Determine the power transmitted to the antenna

TDMA Determine the time-window for each user within the beam
Frequency

Beam Hopping Determine when to turn on/off each beam

Position and user grouping Beam Placement Determine where to place the beam

Beam shape Beam Shaping Determine which specific footprint shape to use

Satellite -

Gateway Inter-Satellite Routing Determine the best path from the initial to final satellites

Table 1.2: Short-horizon sub-problems for NGSO constellations

Long-horizon
Resource Sub-problem Brief description

Transmission power -

FDMA Determine the bandwidth for each user within the beam
Frequency

Frequency Assignment Determine the bandwidth and frequency for each beam

Position and user grouping User Grouping Determine which users to serve for each beam

Beam shape Shape Selection Determine which sub-set of shapes to use

Satellite Satellite Routing Determine the time window for each satellite

Gateway Gateway Routing Determine which gateway to route each beam to

Table 1.3: Long-horizon sub-problems for NGSO constellations

1.4 Specific objective

This Thesis has two main objectives:

• To develop a framework to solve the long-horizon resource allocation problem in

satellite communications by decomposing this complex conundrum into smaller

sub-problems (summarized in Table 1.4) and sequentially solving them using

state-of-the-art optimization algorithms for each individual resource.

• To test the performance of such framework under different operational condi-

tions by identifying the main inputs and parameters of the model and varying

them using sensibility and robustness schemes.
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Resource Sub-problem Brief description

Transmission power Power Allocation Determine the power transmitted to the antenna
Frequency Frequency Assignment Determine the bandwidth and frequency for each beam

Position and user grouping User Grouping Determine which users to serve for each beam
Beam shape Shape Selection Determine which sub-set of shapes to use
Satellite Satellite Routing Determine the time window for each satellite
Gateway Gateway Routing Determine which gateway to route each beam to

Table 1.4: Sub-problems considered in this work

1.5 Overview

The remainder of this Thesis is organized as follows: Chapter 2 briefly describes the

relevant literature on the resource allocation problem for satellite communications

and highlights the research gaps that need to be addressed moving forward, Chapter

3 details the decomposition framework developed in this work, identifies the building

blocks of such framework and provides a mathematical formulation for each one, and

describes the metrics and assumptions that drive the performance and limitations of

this method, Chapter 4 outlines different resolution methods for each block, ranging

from simple heuristics to state-of-the-art optimization algorithms, Chapter 5 defines

the integration and performance tests used in this work for the assessment of the

framework and provides a first comparison of the different resolution procedures

under different system configurations, Chapter 6 contains the main results of the

analysis, where the framework has been evaluated against different inputs and model

parameters to understand the effects of each factor on the final allocation, and, finally,

Chapter 7 summarizes the main findings of this work and possible directions of future

research.
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Chapter 2

Literature review

The Resource Allocation (RA) problem in satellite communications has received the

attention of many researchers in the recent years. Although most of the work focuses

on how to allocate one specific resource or how to solve one specific sub-problem,

there is also active research in the joint distribution of two or more resources. Given

the increasing complexity, the amount of research decreases as the number of active

resources increase. This chapter summarizes the work done on each of the individual

sub-problems, as well as the literature combining multiple sub-problems.

2.1 Power Allocation

Power Allocation is, together with the Frequency Assignment, the most studied sub-

problem from the six considered in this work. When constrained by amplifiers (i.e.,

when the number of amplifiers is less than the number of beams), it is shown to be

NP-hard and hard to approximate by Aravanis et al. [16]. To solve this problem,

the authors in that work propose a two-step multi-objective optimization process

20



to minimize power utilization and unmet demand (UD, called Unmet System Ca-

pacity, USC, in that work) using a combination of simulated annealing (SA) and

genetic algorithm (GA). They show more than a 50% improvement in system capac-

ity and a 20% reduction in power over uniform allocation techniques in a 37-beam

scenario. In a recent study, Efrem et al. [17] show that they are able to obtain sim-

ilar Pareto-optimal solutions as Aravanis using successive convex approximation in

a more resource-restricted environment. Regarding other metaheuristics, Durand et

al. [18] use particle swarm optimization (PSO) to solve the Power Allocation problem

and show their approach drastically reduces the operational complexity of the imple-

mentation, making it more suitable for higher dimensional scenarios, while achieving

close-to-optimal solutions.

Using the same 37-beam scenario, Liu et al. [19] propose a game-based approach

that outperforms uniform and proportional approaches over incremental and random

traffic demands. Their objective function is defined by the least squared error (LSE)

between the capacity requested and offered, which may lead to under serving users

when the system is overbooked, but ensures a better fairness between users compared

to the UD metric. Using the same formulation, Zhang et al. [20] propose a deep

reinforcement learning (DRL) architecture and shows a 5.3% improvement over the

game-based approach.

Another DRL implementation was proposed by Garau et al. [21]. In this case,

the authors used power, UD, and computation time metrics to show that their DRL

architecture was able to find solutions with comparable performance at least 1,300

times faster than previous GA approaches, making this formulation more suitable for

real-time operations. In a further study, Garau et el. [22] comprehensively compares

previous GA, SA, PSO, and DRL approaches together with some hybrid combina-

tions. The authors conclude that the DRL approach performs best in highly time-
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restricted scenarios, as it gives a close-to-optimal solution in seconds. However, a

hybrid PSO-GA is preferred when time is not critical as it outperforms DRL in the

long term executions. Nevertheless, this latter algorithm suffers some drawbacks in

uncertain scenarios, for which a more robust implementation, i.e., a non-hybrid GA

approach, is suggested.

While all these approaches cover the amplifier-constrained problem, the non-

amplifier-constrained problem can be solved optimally by manipulating the formula-

tion. Hong et al. [23] transform an LSE formulation of the non-amplifier-constrained

problem into a monotonically increasing function using the Lagrangian to include

the demand constraints. By doing so, they can obtain the optimal power using a

bisection search. Qi et al. [24], arguing that the objective function, although mono-

tonic, may not be differentiable, improve this formulation by exchanging the bisection

search with a sub-gradient optimization. In a similar fashion, Wang et al. [25] start

from an LSE formulation and the Lagrangian to obtain the dual problem, and solve

the remaining formulation using duality theory.

In a slightly different formulation, Destounis et al. [26] propose a user satisfaction

metric that only tracks how many users have been satisfied. Given that this approach

is again hard to solve, they propose a greedy approach that tries to satisfy as many

users as possible and show improvement over static allocations. In a later study,

Srivastava et al. [27] improve over this formulation by grouping the users with similar

power into clusters and applying a heuristic allocation to the clusters. This method

shows significant improvements over the greedy technique.

Finally, some works include external factors into the Power Allocation formula-

tion for a better representation of real operations and an improved optimal point:

Lagunas et al. [28] developed a formulation under interference-restricted scenarios

as a multi-objective approach, which they later transform into a single-objective
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formulation. They show that their proposed max-min implementation improves fair-

ness and overall data-rate over previous approaches. On the other hand, Kapsis et

al. [29] include rain and other weather-type perturbations to their model and pro-

pose a predictive-based water-filling-like method to maximize system capacity. Their

algorithm outperforms uniform power distributions over all scenarios considered.

2.2 Short-horizon Frequency Assignment

As explained in section 1.3, the Frequency Assignment problem can be defined in

multiple ways, depending on the specific variables considered. This work distin-

guished between long- and short-horizon problems, depending if the variable being

allocated does or does not need further synchronization between different entities, re-

spectively. This section reviews the literature concerning the Frequency Assignment

that fall under the short-horizon definition. For the long-horizon sub-problems, refer

to the following section.

2.2.1 TDMA

The time-division multiple access (TDMA) sub-problem is defined as how to allocate

the different time-slots to the users within a beam so that the demand of each user

is met. By comparing it to the bin-packing problem, Park et al. [30, 31] shows that

the problem is NP-complete. In order to solve it, they divide the problem into two

steps: a first step where they compute the amount of resources available given the

atmospheric conditions and predictions, and a second step where they allocate those

resources following an heuristic approach. The authors show that their proposed

algorithm outperforms classical fitting heuristics, such as first-fit and best-fit, both
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in terms of time-slot utilization and user satisfaction. In a similar approach, Dong

et al. [32] exploit the concept of recursion trees to come up with a different heuristic

algorithm. Although they also show improvements over first-fit, it is difficult to

assess the performance of both heuristics due to the lack of comparison studies. In

a further work, Feng et al. [33] propose a refined heuristic that presents improved

performance over Park’s heuristic in both voice and stream services when the number

of user terminals is greater than the number of frequency channels.

A more recent study by Bejarano et al. [34] includes interference mitigation in

their time-slot allocation algorithm. They propose two heuristics, a fast one and

a fair one, that present a 20% system throughput increase against pseudo-random

allocations. The authors also compare their algorithm with methods for bandwidth

manipulation and show that they achieve slightly better solutions in the same com-

putation window. Finally, Lee et al. [35] approach use a different formulation for the

TDMA problem and derive a binary integer programming description that can be

solved optimally with traditional optimization techniques. By decomposing the prob-

lem into smaller sub-problems, they are able to deal with the high-dimensionality of

the problem and find an optimal solutions in less than a second.

2.2.2 Beam Hopping

The beam hopping sub-problem is defined as when to turn on/off each beam to avoid

interference with nearby beams while achieving the desired data-rate to satisfy the

users. It can be seen as the beam-wise version of the TDMA approach. As one of the

first studies in this field, Angeletti et al. [36] compare a GEO satellite with classical

power and bandwidth flexibilities with a system using beam hopping. In order to

solve the inherent time-slot allocation problem, they propose a genetic algorithm
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approach, and show that the new system can offer up to a 30% capacity increase

with respect to the classical approach, but recognize a trade-off between system

performance and power consumption. In a posterior study, Anzalchi et al. [37] further

refine this results, concluding that a beam hopped system can achieve both improved

capacity and reduced power consumption compared to classical systems when both

use a single carrier scheme. When using multiple carriers, the beam hopped satellite

still performs slightly better than the classical one, but the improvements are reduced.

Focused on a different metric, Han et al. [38] propose an optimization based on

user satisfaction, rather than system throughput. In their formulation, the objective

is to minimize the delay of packets to the users and are able to derive close-form

solutions based on stochastic gradient theory. The authors show how their imple-

mentation outperforms other techniques in terms of fairness between the users. Hu

et al. [39] refine even further this idea, and develop a DRL algorithm to solve the

beam hopping problem. The authors conclude that their method outperforms classi-

cal optimization methods, as well as a genetic algorithm approach, giving less overall

packet delay. Using a multiobjective formulation combining user delay and system

throughput, Wang et al. [40] propose a genetic algorithm approach and show how

their algorithm outperforms other classical optimization techniques in both metrics.

Zhang et al. [41] slightly change the problem formulation and group the beams

into clusters. Then, they propose a mathematical approach to optimize over the clus-

ters, instead of the beams, which reduced the overall dimensionality of the problem.

By comparing different approaches, they conclude that one of their implementations

is able to follow closely the user demand and maximizes throughput. Lei et al. [42]

also use a different formulation. Their objective function relies on maximizing fair-

ness between the users, so that all of them get similar levels of throughput versus

demand ratios. To solve this approach, they propose a fully connected neural network
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(NN) that provides a close-to-optimal solution.

2.3 Long-horizon Frequency Assignment

This section encloses all the frequency related sub-problems that require time-consuming

synchronization between different entities. Specifically, frequency changes either in

bandwidth or central frequency require both, satellite and users, to reach an agree-

ment on the link characteristics.

2.3.1 FDMA or Bandwidth Allocation

The frequency-division multiple access (FDMA) problem, also known as the Band-

width Allocation problem, is defined as how to subdivide a given frequency range

into multiple users or carriers to satisfy the users’ demand. Similarly to the Power

Allocation works, Park et al. [43, 44] propose an LSE metric that tries to maximize

the allocation overall fairness between the users. In their works, the authors derive

a mathematical formulation of the problem and define an heuristic that proves to

be superior compared to water-filling methods in terms of user fairness. They also

show that the water filling method is the one that maximizes capacity. In a later

work, Wang et al. [45] further refine the previous formulation with the help of the

Lagrangian and show that the problem is convex. Therefore, they are able to obtain

an optimal solution that is able to achieve an optimal trade-off between the sys-

tem capacity and the distribution’s fairness compared to uniform and proportional

allocations.

Given the nature of the problem where different users or groups compete for

the unique pool of resources of the satellite, different game-based approaches have
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been proposed to solve the Bandwidth Allocation problem. Li et al. [46] propose an

asymmetric monopoly model to address the spectrum allocation. In their work, they

introduce the concept of spectrum price to model the value of the bandwidth and

derive their heuristic allocation based on the notion of Bayesian equilibrium. Su et

al. [47] propose a Stackelberg differential game. The authors divide the users into two

sets, higher demanding and lower demanding, and formulate and simulate their game-

based approach with the bandwidth as the available resource. They show optimality

by achieving Nash equilibrium. Wang et al. [48] also use a game-based approach

that relies on the Nash equilibrium to achieve optimality. In this work, however,

the authors propose an iterative learning algorithm that proves to outperform other

methods and achieve close-to-optimal solutions in all scenarios considered.

Other works on this problem change the original formulation to better adapt the

operations reality. Bisio et al. [49] describe the problem as a combination of vir-

tual and physical entities that compete for resources. Their formulation involves one

objective function per virtual-physical relation, which derives into a multi-objective

problem. The authors propose a minimum distance-based solution that proves to

save power with respect to other approaches. Liu et al. [50] define a user satisfac-

tion metric that includes traffic priority and propose a bee colony-based algorithm

as a solution. The authors define all the necessary elements for the bee colony op-

timization and show that their approach is superior in all metrics compared to a

fair water-based and a utility maximization methods. Kawamoto et al. [51] include

inter-beam interference and show how to mitigate it while solving the Bandwidth

Allocation problem. They compare their heuristic approach to two commonly used

simple algorithms and show that their method improves both system capacity and

flexibility under the four scenarios considered. Abe et al. [52] go a step beyond and

include control inputs in their implementation. Their formulation is based on model
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predictive control and a sparse optimization and proves to reduce the amount of

traffic loss within the simulated day.

2.3.2 Frequency Assignment

The Frequency Assignment problem is defined as what frequency range to assign

to each beam to meet the users’ demand. When the bandwidth of the beam is

fixed, it is also known as the beam coloring problem or graph coloring for satellite

communications. When considering co-channel interference, it is proven to be NP-

complete by Mizuike et al. [53]. To deal with this complexity, the authors in that work

propose an heuristic lexicographic minimization to achieve a solution. Throughout

the years, many researchers have proposed solutions to deal with this particular

problem as formulated in Mizuike’s work, most of which rely on modern optimization

techniques, which do not guarantee optimality, but achieve good solutions efficiently.

Funabiki et al. [54] describe a gradual NN in combination with heuristic approaches

for a faster convergence. The authors describe in detail the implementation and the

simulations and argue how their approach can also be applied to similar problems.

Salcedo et al. [55, 56] propose a Hopfield NN combined with simulated annealing

(SA) and GA, respectively. Both solutions present better scalability properties and

improved performance compared to previous proposals.

Wang et al. [57] apply the concepts of stochasticity and noise to perturb static

states for a better solution. By combining these concepts with the Hopfield NN,

Wang et al. [58] prove how their multi-start stochastic Hopfield NN proposal is able

to escape local minima. By a detailed comparison with previous techniques, the

authors show how their approach outperform all other NN presented so far for the

Frequency Assignment Problem. Although most of the approaches presented so far
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rely on NN as the core of the computation, other artificial intelligence techniques

have also shown the potential to perform well. Salman et al. [59] propose several

differential evolution algorithms combined with heuristics that make a better use of

the domain knowledge of the problem. The authors prove how their implementation

provide solutions with similar or better quality in less time. Wang et al. [60] go

a step beyond and propose a multi-objective approach that expands the previous

differential evolution implementation. By comparing their method with previous

techniques using the same benchmark, they prove the superiority of their algorithm.

By transforming the non-linear interference constraints into cumulative interfer-

ence, Houssin et al. [61] develop an integer linear programming (ILP) formulation of

the problem. This allows the authors to solve the problem using off-the-shelf math-

ematical solvers to find an optimal solution. They also propose a greedy approach

that provides comparable solutions to the ILP for low number of users, but with

significantly lower computation time. Focusing on mobile networks, Hu et al. [62]

propose a channel-based approach to the Frequency Assignment problem and de-

velop a DRL method to solve it. They show improved results over a 37-beam grid

compared to other techniques. As a final note on the Frequency Assignment prob-

lem, it is important to remark that this issue is not limited to space communications.

Many approaches have been proposed for the general Frequency Assignment problem

(i.e., not specialized in satellite communications), including a variety of applications

and implementations. Aardal et al. [63] summarize more than 100 methods and

techniques proposed for the problem.
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2.4 User Grouping and Beam Placement

As we move outside of the Power Allocation and Frequency Assignment sub-problems,

the amount of literature dwindles. This section focuses on the sub-problems affecting

the relation between users and beams (a.k.a. User Grouping) and the position of the

beam (a.k.a. Beam Placement).

2.4.1 Beam Placement

The Beam Placement problem is defined as where to place the center of each beam,

or where to direct each beam, such that the demand of the users is met. Xu et al. [64]

propose a tracking-based system for LEO mobile constellations in which the beam

follows the user until the connection finishes. This allows for significant savings in

power while improving the quality of service for the user. Ivanov et al. [65] develop

a method that creates a virtual and optimized grid over the Earth. The existence

of this grid allows for a reduced power allocation scheme and a reduced number of

handovers that only add overhead to the network. In addition, the low complexity

of their approach eases the implementation in real operations.

2.4.2 User Grouping

The User Grouping problem (a.k.a. Beam Arrangement problem) is defined as how

to group the users into beams such that the demand requirements of the users are

met. When considering the beam shapes as fixed sized circles, the problem can be

transformed into the Minimum Geometric Disk Cover, which Fowler et al. [66] proved

to be NP-hard. To deal with this complexity, Yao et al. [67] propose a modified

version of the heuristic K-means algorithm in which they include load balancing
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considerations (i.e., how to balance the users between the beams). Their algorithm

presents improvements against random allocations in terms of throughput and system

capacity. In a previous publication [68], this Thesis’ author developed a formulation

for the User Grouping problem that considers the real footprint of the fixed-shape

beam, which is an ellipsoid due to the projection of the conic beam over the Earth.

Due to the complexity of the problem, the authors in that work develop a GA

implementation to solve the problem, and prove how their proposal outperforms

previous techniques showing improved capacity while achieving a significant power

reduction.

2.5 Beam Shaping

Since the distinction between the Beam Shaping problem and the Shape Selection

problem is not as clear as in the previous sub-problems and most approaches deal

with both at the same time, this section will cover both simultaneously. In general

terms, the Shape Selection decides which sub-set of beam shapes to use in the entire

constellation, while the Beam Shape decides the beam-shape relation. The objective

of both problems is still to meet the requirements of the users.

As one of the first works on this field, Sherman [69] develops a formulation based

on beam directivity and ring-shaped circular layouts. They propose a GA implemen-

tation that decides how many beams to place on each ring and their shape and prove

that it achieves the desired margin. Zhao et al. [70] further refine this approach by

adding a dual coding to the GA to achieve better results in a more complex model.

In a different approach, Okello et al. [71] start from a uniform beam distribution and

propose an heuristic that iteratively modifies the position and shape to be able to

increase the balance between beams while maintaining the throughput.
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Qian et al. [72] also start from a uniform grid Beam Placement with a fixed shape,

and propose a shape modification mechanism that aims to balance the load between

beams. The authors develop and alternative configuration to the standard grid where

the central beam shrinks in size, while the adjacent beams grow, achieving a more

spread demand between the beams. This allows for an increased system throughput.

Wenqian et al. [73] propose a very similar approach where they iteratively modify

the shape of the beam until they achieve maximum performance. They show how

this approach outperforms conventional Beam Shaping techniques independently on

the systems characteristics. To avoid wasting the resources allocated to a beam,

Zhang et al. [74] develop a very similar approach where they keep increasing the size

of the central beam and serving the additional users with the exceeding resources,

until there are no more resources left. They show that their proposal increases user

satisfaction when the amount of traffic is low given the reduced complexity of the

layout.

Finally, Camino et al. [75] formulate the problem as a mixed-integer linear pro-

gramming optimization problem in which the exact placement and shape of the

beams are decision variables. The objective is to maximize the balance between the

different beams while serving the maximum number of users. Although this formu-

lation can be optimally solved with off-the-shelf mathematical solvers, the authors

show that the problem grows exponentially with the number of beams and users,

which has scalability issues in high-dimensional scenarios.

2.6 Satellite Routing

In order to accomplish the communication goal, we need to ensure that the data

being transported can reach its destination, which can be seen as a routing problem
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involving users, satellites, and gateways. This work divides this sub-problem into

two: the Satellite Routing sub-problem, i.e., starting from a user, deciding which

satellite is going to serve that user, and the Gateway Routing sub-problem, i.e., once

the data has reached the satellite, decide which gateway to use and how to transport

it there. This section covers the literature on the Satellite Routing sub-problem,

refer to the next section for the Gateway Routing sub-problem.

The Satellite Routing problem, most known in literature as the Satellite Handover

problem or Satellite Scheduling problem, consists of deciding which satellite is going

to serve each user at each point in time. Note that the difficulty of this problem

scales with the number of satellites in line of sight (LoS), which makes it trivial

for GEO satellites or sparse MEO constellations where only one satellite is visible,

and quite complex in LEO mega-constellations where each user sees more than 10

satellites at all times.

A simple and fast technique for Satellite Routing is to always reach for the near-

est satellite. Krewel et al. [76] presents a detailed comparison of several heuristics,

including going to the nearest satellite, as well as going to the satellite with maximal

signal power, longest visible satellite, or least congested satellite. They show that the

different techniques offer different trade-offs in terms of waiting time and network

load, and propose the last method for multimedia services given that it achieves the

lowest network load. Papapetrou et al. [77, 78] propose a different heuristic based

on channel reservation that includes the dynamic of the Earth and the satellite

movements to improve the user satisfaction. To reduce the complexity that involves

dealing with a large number of users, Zhu et al. [79] develop a grouping-based ap-

proach, where they cluster the different users based on similar characteristics and

assign handover times to the groups.

In a slight different approach, Wu et al. [80] pre-compute the time-window for
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each satellite and develop a graph based formulation to solve the problem. The

authors explain how all the other techniques can be easily included in their graph-

based approach for a better solution, and show how well-known algorithms for path

planning already yield good results on the considered problem. He et al. [81] go

a step beyond and develop a DRL framework that relies on the network load to

achieve improved user satisfaction. The authors compare their approach with other

state-of-the-art methods and show large improvements over all metrics considered,

specially user satisfaction. In a previous work [82], this Thesis’ author developed a

formulation that aims to balance the load for thousands of users distributed across

the world in a global constellation. The implementation relies on PSO and shows

improvements in terms of the total number of constraints a load balancing between

the regions.

The problem of Satellite Routing is also common in areas close to the satellite

communications field. As an example, this problem is very prominent in imaging

satellites, where the visibility windows are varying and the data load is large. Under

this conditions, authors have proposed many different implementations: Pemberton

et al. [83] develop a constraint satisfaction-based approach, Xhafa et al. [84] and

Kolici et al. [85] adapt a generic GA to solve this specific problem, Zhuang et al. [86]

use an artificial bee colony (ABC) optimization, Tharmarasa et al. [87] tailor a

markov decision process to suit their necessities, and Chen et al. [88] rely on a mixed

ILP (MILP). A survey of different methods for Satellite Scheduling is presented by

Xhafa et al. [89]. Finally, this problem is also relevant in mobile satellite networks,

where many different approaches and techniques have been proposed. Chowdhury

et al. [90] summarize some of the presented approaches.

34



2.7 Gateway and Inter-Satellite Routing

The previous section summarized the works on how to transport the data from the

user to an initial satellite. In this section, we deal with the subsequent problems:

how to decide the final satellite (the Gateway Routing problem, i.e., how to choose

the satellite that will serve as the ground connection to the user data), and how to

reach that satellite from the initial one (the Inter-Satellite Routing problem).

2.7.1 Gateway Routing problem

The Gateway Routing problem is defined and deciding which satellite and gateway

to use that will serve as the final destination of the user data in the satellite network.

This can be requested from the user, in which case the problem is trivial, or can be

dynamically assigned by the network, for example when the ground station serves

as the connection to the internet. Since in most cases the users have a pre-allocated

gateway, the amount of literature on this problem is scarce. The only example on

the literature that could be found is Crosnier et al. [91]. In that work, the authors

develop a load balancing heuristic that divides the data rate between the different

gateways to increase the capacity of the network while improving user satisfaction.

Their results show improvements over random and simple allocations.

2.7.2 Inter-Satellite Routing

The Inter-Satellite Routing problem is defined as, knowing the starting and final

satellite of the user-gateway connection, decide which route to follow in the satellite

network. Note that this problem is trivial when the initial and final satellites are

the same, which is generally the case in MEO and GEO constellations. In general,
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it can be transformed into a common network-flow problem with variable topology,

for which multiple solutions have been proposed. Following such transformation,

Werner [92] develops a virtual topology formulation, and a dynamic heuristic solution

to deal with the network variability. The author proves the feasibility of the new

design and how it can reduce delay. Going a step beyond, Sigel et al. [93] develop

an ant colony optimization (ACO) to reduce packet delays. Over a series of detailed

simulations, the authors show how their implementation outperforms other common

path planning algorithms and are able to reduce delay significantly. Using the same

metric, Li et al. [94] propose a Hopfield NN in combination with SA to achieve

minimum delay. The authors prove to achieve a lower delay than previous approaches

and a better optimum. Similarly, Rao et al. [95] improve over previous results with

their GA adaptation. They prove to achieve better solutions not only in packet delay,

but also in other user satisfaction metrics such as packet dropping probability. In

a recent study, Rajagopal et al. [96] propose a beetle swarm optimization combined

with extreme learning that relies on traffic prediction to improve performance. This

complex implementation proves to reduce delay even further and achieve state-of-

the-art optimality.

Sun et al. [97] propose adopting a throughput-centric view, instead of delay-

centric, to determine the goodness of the implementations. The authors then develop

three heuristic algorithms that prove to increase the system’s capacity, especially

when the satellites have buffering capabilities. In a different approach, Rao et al. [98]

present a formulation based on balancing the throughput throughout the network.

They propose an implementation that relies on agents transporting the information

through the network and direct the flow based on the obtain knowledge. This con-

cept is also used by Liu et al. [99], where nearby satellite exchange information of

the network and the transmission algorithm is a probabilistic-based implementation
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that evolves with this information. The authors prove that this approach reduces

complexity and increases performance in all scenarios considered. Usign a combi-

nation of all previous metrics, including transmission delay, system capacity, and

network flow balance, Zhao et al. [100] develop an ACO implementation that aims

to merge and outperform all previous formulations. With detailed simulations, the

authors show how this approach presents a balanced result and improved trade-off

in all metrics.

Finally, some works extend the original routing problem to better adapt real-case

scenarios. Wang et al. [101] propose an adapting routing scheme for a three-tier GEO-

MEO-LEO system. They improve over existing path-planning algorithms and show

better results than other commonly used methods. Fraire et al. [102] assess not only

the performance of their algorithm, but also the robustness and sensibility of routing

networks. The authors provide insightful analysis on different failure rates and how

the algorithms perform in each case. As a summary, Alagoz et al. [103] comprise

many more different routing approaches that have been proposed throughout the

years, and the idiosyncrasies of each one.

2.8 Joint problems

As mentioned before, although most of the literature on the RA problem focuses

on single sub-problems or specific instances, there is also research in joint problems.

This section covers the works combining multiple sub-problems. As emphasized

at the beginning of this chapter, the amount of literature rapidly decreases as the

amount of problems increase.
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2.8.1 Research on two sub-problems

Power Allocation + TDMA

Wang et al. [104] propose a formulation for the joint Power Allocation and timeslot

allocation (TDMA) problem that maximizes system capacity under fairness con-

straints. The authors then develop a hybrid GA - PSO implementation that solves

the joint problem and achieves increased throughput and fairness compared to simple

heuristics in scenarios with up to 45 users.

Power Allocation + Beam Hopping

For the joint Power Allocation and Beam Hopping problem, Alberti et al. [105] de-

velop a formulation that includes weather impairments and maximizes met demand.

The authors present an iterative algorithm to provide an refined solution and com-

pare their approach against traditional systems, which they prove to outperform. Lei

et al. [106] propose two different objectives to approach the problem: one based on

the difference with the desired demand and the other based on the relative fairness

between the users. The authors develop a mathematical formulation for both and

make use of the Lagrangian to solve the problem. Their approach allows them to

obtain a better optimum point with reduced power usage. Using the same objective

functions and mathematical formulation, Shi et al. [107] increase the complexity by

introducing non-uniform channels to the problem. To solve this new expression, the

authors divide the two sub-problems and propose a mathematical solution for each

one, which proves to outperform classical methods.

Wang et al. [108] propose a low-complexity solution by grouping the beams into

clusters and then applying a simple mathematical optimization procedure to resolve

over the clusters. They show to improve over non-optimized schemes, but it is hard
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to assess their performance against previous studies due to the lack of comparisons.

Finally, Wang et al. [109] develop an extensive mathematical formulation for this

joint problem. Due to the complexity of the search space, they propose a heuristic

implementation that proves to behave well and provides close-to-optimal solutions

with reduced complexity.

Power Allocation + Bandwidth Allocation

The joint problem of Power Allocation and Bandwidth Allocation is one of the most

studied, given their intrinsic dependence in the link budget equations. Cocco et

al. [110] develop a single-objective formulation that aims to maximize the user sat-

isfaction while meeting user requirements. The authors show that this problem is

non-convex and present a SA strategy to achieve a solution. They show how this

approach is able to follow closely the requested demand compared to more sim-

ple techniques. Following a different framework, Zhong et al. [111] formulates the

problem as a bargaining game, in which the different beams and users compete for

resources. This method proves to achieve a better trade-off between total capacity

and user fairness compared to other approaches. The metric of UD that was widely

under the Power Allocation framework is reused in the joint problem in the work

of Paris et al. [112]. The authors motivate this metric due to the non-symmetry of

user penalties when over- or under-serving. Based on this and the complexity of the

problem itself, they propose a GA to solve the model. Within their extensive results,

they show that including the bandwidth flexibility in the problem further helps to

increase system capacity and yield better results.

Jia et al. [113] formulate the joint problem including inter-beam interference and

use the LSE metric to achieve maximum capacity fit. The authors develop a detailed
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mathematical formulation and use the Lagrangian and dual to develop an iterative

algorithm that reaches a satisfactory solution. Liao et al. [114] propose a more

complex framework with a dual objective that aims to maximize fairness and system

capacity. To deal with this complexity, they introduce a DRL model based on a large

training set that proves to achieve good solutions and match traffic demand.

Power Allocation + Frequency Assignment

Jahn [115] develops an extensive work where he investigates how to apply graph the-

ory to the joint Power Allocation and Frequency Assignment problem. He proposes

different sub-graph families for each one and reports their impact in both MEO and

LEO configurations. He concludes that the problem is well framed under graph the-

ory and that known graph optimization algorithms already obtain good solutions on

this problem. Under a different framework, Lei et al. [116] develop a formulation

based on carrier allocation. The authors introduce the demand requirements as con-

straints and present a non-convex mathematical formulation, which they solve using

an iterative algorithm. In a similar framework, Abdu et al. [117] divide the problem

into two, and present a successive convex approximation to solve each one of them.

The authors show extensive comparative results and prove that their approach is

able to match closely the user requirements, which results in an increase of total

capacity and a reduction in unmet demand. Vidal et al. [118] propose a SA imple-

mentation for the joint problem, which allows them to include non-linear elements

in their formulation. They show that their approach scales well and outperforms

previous techniques in terms of total throughput.
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Power Allocation + Beam Placement

In a series of works, Choi et al. [119–121] propose a formulation to optimize Power

Allocation and Beam Placement at the same time using an LSE fairness metric. In

their multiple papers, the authors develop a realistic satellite model with beam steer-

ing capabilities and a mathematically found solution that can turn off or redistribute

certain beams to maximize the objective. They show how this combined approach

can increase the total capacity and serve more users. In a different framework, Taka-

hashi et al. [122–124] allow beam movement to achieve maximum throughput. They

develop a mathematical formulation that directly yields the optimum arrangement

and show how this method outperforms the approaches that deal with the individual

Power Allocation and Beam Placement problems.

Power Allocation + Beam Shaping

In a detailed study, Schubert et al. [125] refine a formulation that combines Power

Allocation with beam-forming capabilities. The authors also show how to obtain

the global optimum with an algebraic analysis on the formulation and an iterative

approach that converges to the desired value. They show how this approach outper-

forms conventional beam-forming techniques and is able to serve more users with the

same power limitation.

Power Allocation + Satellite Routing

The combined problem of Power Allocation and Satellite Handover in LEO is studied

by Liu et al. [126]. Similarly to approaches on the individual problem, the authors

develop a graph-based formulation for the handover scheme in which they include

multi-satellite connections and power management. The authors show that this
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method drastically increases the systems capacity over time and a achieves better

balance in the satellite network. Abdelsadek et al. [127] investigate the possibility of

including handover management in mobile satellite services. The authors develop an

extensive mathematical framework for this problem, which they convert into MILP.

To deal with the increased complexity, they propose a GA implementation that

increases the overall throughput compared to simple heuristics.

Bandwidth Allocation + Beam Shaping

For the joint Bandwidth Allocation and Beam Shaping problem, Kyrgiazos et al. [128]

develop a formulation where the implementation needs to decide between two possible

beam sizes, as well as the allocated bandwidth, for each beam. With an heuristic

iterative algorithm, the authors show that their method increases the system capacity

by 11% compared to constant shape allocations in a scenario with 200 beams.

Frequency Assignment + Beam Placement

In a series of works, Kiatmanaroj et al. [129–131] develop a refined mathematical

formulation for the Frequency Assignment problem based on ILP where they allow

the beams to move if that results in increased benefits. The beams are only allowed

to move slightly and never beyond some margin that ensures user coverage, but this

is enough to increase the number of covered users given the frequency constraints.

As a comparison, the authors develop an heuristic algorithm and prove that the ILP

implementation is able to achieve improved results in less computation time.
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Frequency Assignment + User Grouping

In a previous work [132], this Thesis’ author developed a formulation for allocating

beams to users and frequency to beams in a large LEO constellation. The proposed

solution in that work was based on a series of heuristics that proved to reduce the

amount of beams in the system and increase the frequency reuse, which allows to

serve more users. The authors showed results for the SpaceX constellation, for which

almost 10.000 beams were needed, and around 97.7% of those could be assigned a

frequency.

Frequency Assignment + Beam Shaping

The joint problem of Frequency Assignment and Beam Shaping is studied by Camino

et al. [133]. The authors propose a two step approach where first the beam shape

is selected, and then the frequencies are chosen. The first step is performed with

a greedy method, while the second one is based on a modified first-fit search. The

authors show the feasibility of the implementation and their results over Africa. In

a different approach, Zhong et al. [134] investigates how to obtain a uniform beam

layout with non-uniform shapes. The authors transform the problem into a circle

fitting problem (i.e., how to fit circles inside circles), which are allocated a frequency

a posteriori. They show how their proposal meets the imposed system requirements.

Frequency Assignment + Satellite Routing

Based on waiting queues and channel reservations, Wan et al [135] analyzes the

joint problem of Frequency Assignment and Satellite Handover for mobile satellite

networks. The authors propose a new scheme that aims to ensure a higher quality of

service compared to commonly used techniques in handover-only schemes. Based on
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a single comparison, the authors conclude that their approach can help reduce the

user overload and increase the systems performance.

User Grouping + Beam Shaping

Given the close relation between both problems, the joint User Grouping and Beam

Shaping algorithm has been often studied in the last years. Alinque [136] proposes

a greedy starting configuration, followed by a gradient descent optimization to reor-

ganize the beam layout. The author proves to achieve a higher gain and lower loss

per beam, which leads to an increased throughput. In a different approach, Liu et

al. [137] develop a mathematical formulation to maximize the total capacity. Given

the complexity of this approach, the authors propose a two-step heuristic approx-

imation to achieve a solution, which proves to outperform standard techniques in

terms of system capacity and number of beams. Tang et al. [138] elaborate their

formulation on the joint problem based on a combination of the individual problems.

Similarly to the User Grouping methods, the authors assume circular beam shapes

and transform the problem into the Minimum Geometric Disk Cover, which they

propose a p-center algorithm to solve it. On top of this, the authors allow the radius

of the circle to vary, so that the performance is maximized. Based on the compar-

ison of their system with classical methods, the authors prove to achieve increased

throughput and reduced user delay in all cases.

In a more mathematical approach, Honnaiah et al. [139] propose Voronoi maps

and ellipsoidal shapes to adapt the beam layout to the user demand. This approach

provides a higher antenna gain which resolves in higher throughput. By comparing

it to fixed beams, the authors show that it also increases the fairness between beams

and users. In a similar framework, Camino et al. [140] develop three MILP approxi-
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mations of the problem, which can be solved with commercial mathematical solvers.

The authors show how the implementations improve over classical layouts and are

able to increase the total coverage.

2.8.2 Research on more than two sub-problems

Power Allocation + Beam Hopping + Bandwidth Allocation

The joint problem combining Power Allocation, Beam Hopping, and Bandwidth Al-

location has been studied by Tian et al. [141]. The authors detail a mathematical

formulation where the objective is to maximize throughput. Given that this approach

is hard to resolve, they propose a greedy algorithm there only the maximum demand-

ing beams are served. With a comparison with other simpler methods, the authors

conclude that their approach is superior given that it provides higher throughput. Al-

though it proves that higher flexibility allows for increased performance, the authors

in this work oversee some crucial aspects of satellite operation: 1) user terminals

cannot adapt to bandwidth changes instantaneously due to the synchronization re-

quired, 2) satellites have frequency reuse mechanisms that allow operators to use

the same frequency several times, which complicates the bandwidth allocation and

requires from interference mitigation mechanisms, 3) modern satellites can manage

hundreds or even thousands of satellites, while this work presents results for up to

12.

Power Allocation + Beam Hopping + Frequency Assignment

To deal with the joint Power Allocation, Beam Hopping, and Frequency Assignment

problem, Zuo et al. [142] present a 3-level decomposition that deals with each prob-

lem individually. The authors propose a combination of heuristics and mathematical
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optimization to solve the different sub-problems and prove how this approach can

match the users’ requirements in terms of system throughput. They show results for

up to 20 beams. In a similar decomposition framework, Tang et al. [143] develop

a mathematical formulation for each of the individual sub-problems. They present

comparison results between a beam-hopping satellite and a multi-beam satellite un-

der different interference-constrained scenarios. The authors model the multi-beam

satellite with up to 91 beams. It is important to note that, in both works, the au-

thors assume that the satellite needs negligible time to send the new configuration

to the users, and that the user terminals need negligible time to adapt, which may

not be representative of real operations. In addition, the results presented deal with

a low number of beams, the satellites are assumed to be of low complexity with few

spectrum divisions, and the scalability of the different sub-problems is not discussed,

which poses questions on the validity of this approach for high-dimensional scenarios.

Power Allocation + Frequency Assignment + User Grouping

Deng et al. [144] study the joint Power Allocation, Frequency Assignment, and User

Grouping problem. Their implementation relies on two steps: first, the users are

grouped based on a heuristic clustering algorithm, and second, the joint Power Al-

location and Frequency Assignment problem is resolved optimally by applying the

Lagrangian to the mathematical formulation. The authors show how this approach

increases the capacity of the satellite compared to more inflexible allocations. Within

this work, there are some assumptions that could make the implementation in real

operations hard: 1) only fixed-size frequency channels can be assigned at a time,

which eases the formulation, but does not reflect the reality that satellites can use

multiple channels for a single beam at a time, 2) only GEO satellites are analyzed,
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which makes difficult to assess the extension of the approach to MEO or LEO or-

bits, where beam footprints and satellite visibility is constantly changing, and 3) the

simulation provided analyzes a low number of beams, which poses questions to the

scalability of the presented algorithms.

A similar divide and conquer approach is presented by Angeletti et al. [145]. In

their extensive report, the authors explain how to obtain a combined solution by

dividing the joint problem into the individual sub-problems, solving them using a

dense algebraic formulation, and obtain the final allocation by union of the singular

solutions. The User Grouping is solved by adjusting the position of all the beams

at the same time, the Power Allocation is resolved optimally with mathematical

transformations, and the Frequency Assignment is transformed into a color reuse

allocation for easier interpretation. By showing simulations with thousands of users,

the authors prove the feasibility of their design in high-dimensional scenarios. How-

ever, similar to the previous work, the color reuse transformation only allows for fixed

bandwidth for all beams, and the results are only shown for static GEO satellites.

Power Allocation + Bandwidth Allocation + Frequency Assignment +

Beam Placement

The work of Lagunas et al. [146] solves two different joint problems in a single paper:

the joint beam forming and carrier allocation problem for the satellite uplink, and

the joint carrier, power, and bandwidth allocation for the satellite downlink. For the

former, the authors divide the joint problem into the individual sub-problems: the

Beam Placement is solved using a linear formulation, and the Frequency Assignment

is solved by a beam-per-beam resolution. For the latter, they propose an optimal

solution to the joint carrier and power allocation at the beam level, followed by an
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optimal division of the allocated frequency into multiple users. To prove the feasiblity

of this approach, the authors show results for a GEO satellite over Europe with up

to 250 beams for both uplink and downlink. Due to the clear separation in the

paper, it is difficult to assess how the resolution on the uplink affects the resolution

on the downlink and vice versa. For instance, questions like how does beam forming

techniques affect the downlink transmission remain unanswered. In addition, the

extension of this work to MEO or LEO is also not immediate. Time-varying beam

footprints and visibility windows poses additional constraints with unclear resolution.

Finally, modern satellites are expected to have thousands of beams, which is an order

of magnitude higher of what is explored in this work. The high-dimensionality is an

additional factor that needs to be resolved moving forward.

2.9 Literature summary

The previous sections presented a dissected literature review on each on of the specific

sub-problems within the more general resource allocation problem. Table 2.1 presents

a summary of the different works and their focus. As shown, although there is

vast research on the individual sub-problems, there is also some studies combining

multiple problems. However, the amount of literature decreases proportionally to the

number of sub-problems considered. The research is scarce when considering three

sub-problems, and almost non-existent when considering more. In addition, these

higher-order works propose solutions for highly restricted scenarios. As highlighted

in the previous section, the solutions proposed tend to consider only GEO satellites,

reduced flexibility, such as fixed bandwidth, and/or low number of beams. From

this, we can observe a clear gap in existent work:

• How to include more than three sub-problems when solving the RA to achieve
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an improved solution.

• How to extend previous works to more dynamic LEO/MEO constellations

• How to include further flexibility within the sub-problems, such as uneven or

variable bandwidth distributions

• How to adapt the implementations for realistic high-dimensional scenarios.

The purpose of this work is to close part of this gap by developing a divide and

conquer-based approach for the joint problem combining all of the long-horizon sub-

problems within the RA problem plus Power Allocation and excluding Beam Shap-

ing (i.e., the joint problem combining Power Allocation, Frequency Assignment, User

Grouping, Satellite Routing, and Gateway Routing). Each problem is considered as a

building block within the wall that is the RA problem. This allows or a modification

the formulation of individual sub-problems without altering the overall structure, as

long as the interfaces within sub-problems remain the same. The implementation

proposed to solve the joint problem rises from combination of mathematical opti-

mization plus metaheuristic algorithms, which are the two most common techniques

in literature as shown in Table 2.2. To provide further insight, this solution is then

tested in very high-dimensional scenarios with tens of thousands of users on a simu-

lated equatorial MEO constellation. In addition, an extended study on the sensibility

and robustness of the proposed method is presented.
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Chapter 3

A Divide and Conquer approach to

the Resource Allocation Problem

The first step towards a successful resolution of any issue is a genuine and robust

definition of the problem. This Chapter describes the RA problem for satellite com-

munications as a composition of multiple sub-problems and outlines a framework

to approach such complex conundrum. Subsequently, each sub-problem is dissected

and analyzed, and a mathematical formulation for each one is detailed. Finally, this

Chapter concludes summarizing the overarching assumptions and challenges that

govern the described model. Note that this Chapter is agnostic to the resolution

procedure and is centered around defining the different sub-problems. For specific

solutions, refer to the next Chapter.
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3.1 On the Resource Allocation framework

As highlighted in Section 1.3.3, the Resource Allocation (RA) problem for satellite

communications can be defined as finding the most efficient resource distribution that

meets the users’ requirements. It can be subdivided into six different sub-problems:

Power Allocation, Frequency Assignment, Beam Placement and User Grouping,

Beam Shaping, Satellite Routing, and Gateway Routing. Furthermore, each sub-

problem can be analyzed from a long-horizon perspective (i.e., when the changes in

allocation must be synchronized between different entities), and a short-horizon per-

spective (i.e., when changes do not need to be synchronized). Long-horizon problems

need more time for planning and deploying, and can be assimilated with long-term

plans. Short-horizon problems have a faster deploy time and are the ones that can

be dealt with in real-time and solved via continuous operation. This Thesis focuses

on the long-horizon problem: how to obtain a static feasible plan that can satisfy

the users’ requirements. Specifically, the objective is to develop a framework for the

joint Frequency Assignment, User Grouping, Beam Shaping, Satellite Routing, and

Gateway Routing and the necessary formulation to solve it. In addition, this work

discusses the role of and presents a formulation for the Power Allocation problem,

as it will serve as a measure of performance for the defined system.

The long-horizon RA problem is defined in this work as assigning the users into

beams and finding the shape, frequency, bandwidth, handover time, and offload

gateway for each beam so that the users’ demand is met and the resources are

allocated efficiently. In order to achieve this goal, the problem is decomposed into

smaller interconnected sub-problems: the joint Beam Placement and Beam Shaping

problem, the Satellite Routing problem, the Gateway Routing problem, and the

Frequency Assignment problem.
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Beam frequency
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Frequency
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frequency and
bandwidth

Beam power
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Exact beam
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Gateway power
load

Beam power
consumption

Operations

Table 3.1: N2 diagram on the flow of information on the long-horizon RA problem.
The elements on the diagonal correspond to the different sub-problems. The elements
on the upper diagonal denote the flow of information from the element directly to
the left to the element directly below. The elements on the lower diagonal denote
the flow of information from the element directly to the right to the element directly
above.

The flow of information between the different elements is shown in Table 3.1. Note

that, without further assumptions, all elements are interconnected and the resolution

procedure would need to resolve all of them at once. However, since the nature of

each decision is extremely different, and modern operators need to deal with high-

dimensional scenarios, a unified solution that deals with all these factors is unlikely

to succeed in reasonable time. In order to reduce the complexity of the problem,

several assumptions help eliminate the lower diagonal triangle in the information

flow, which allows for a chain resolution of the problem. Specifically, the following

simplifications are introduced:

• Beam footprint limits: assume worse case scenario, i.e., the footprint limit

corresponds to the minimum elevation angle.

• Gateway-user restrictions: include the known restrictions in the user grouping
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process (e.g., if two users have to be served by different gateways, do not allow

them to be in the same beam)

• Gateway visibility window: restrict visibility windows where no gateway is

available and reward windows where more gateways are visible.

• Beam frequency and power consumption, beam frequency overlapping, and

gateway frequency and power load: assume all beams have the same spectral

efficiency, which allows the calculation of necessary bandwidth per beam based

on demand.

• Exact beam position: use an approximate beam position that is in practice

close to the real one.

These assumptions eliminate the lower triangle on the matrix shown in Table 3.1.

Consequently, there are no loops in the information flow, which allows for a chain-

based framework. Starting from the users’ distribution, the framework developed in

this work is the following:

1. Solve the User Grouping + Beam Shaping problem: group the users into shaped

beams.

2. Transform the data from user-centric to beam-centric and compute the possible

visibility window for each beam on each satellite.

3. Solve the Satellite Routing problem: decide the handover time for each beam.

4. Compute the real visibility window of each beam and the possible matching

between beams and gateways.
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5. Solve the Gateway Routing problem: decide the offloading gateway for each

beam.

6. Include the gateway beams to the model and compute the interference restric-

tions between beams.

7. Solve the Frequency Assignment problem: decide the central frequency and

bandwidth of each beam.

8. Operate the plan: solve the short-horizon problems and serve the users.

Figure 3-1 visually represents the previous transitions. Note that the diagram

described is an abstract representation of the problem and there is no condition on

the resolution procedure. This implies that the techniques used to solve each block

can vary as long as the interface remains the same, which makes the framework

adaptive to innovative sub-problem improvements. However, given the sequential

dependence between blocks, each action cannot be started before the previous one

is finished. The following sections discuss each of the individual sub-problems. Each

sub-problem is divided into four sub-sections: a general problem description, that

defines the problem and is independent on the formulation and resolution procedures,

a specific problem description, in which the specific formulation used in this work is

explained, a brief discussion on how to formulate the joint problem combining the

current one with the previous in the chain, and the necessary interface description,

which connects each sub-problem to the next one in the chain. As mentioned, the

Power Allocation formulation will be discussed at the end of this Chapter, since it

will be used as a metric of performance for the full resource allocation.
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Figure 3-1: Long-horizon Resource Allocation framework. Shaded boxed with non-
dashed borders imply decisions taken or to be made, while white boxes with dashed
lines imply computations (i.e., no decision). The white dashed box surrounding the
points 1-7 represents the scope of the framework described in this work.
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3.2 User Grouping and Beam Shaping

3.2.1 General problem description

The objective of the joint User Grouping and Beam Shaping problem is to cluster

the users into beams and determine the shape of each beam such that all users

are covered and the resources are minimized. However, as noted in the previous

section, the resource consumption is only known after the long- and short-horizon

RA problem is resolved. Also, knowing if a user can be served by a beam depends

on the footprint of the beam, which is strictly related to the shape, position, and

handover time of the beam. Following previous assumptions and in order to break

the information loops, it will be assumed that a user can only be served by a beam

if it always falls within the footprint for the full window of satellite visibility. In

addition, it will be assumed that the spectral efficiency for all beams is the same and

it is known. This two assumptions make the joint User Grouping and Beam Shaping

problem independent and allows for a standalone resolution.

3.2.2 Specific problem description

To reduce the complexity on this issue, in this work it will be assumed that all

beams have a constant a fixed circular beam shape with a cone angle of δ. Then, the

User Grouping is formulated in a similar manner as the author’s previous work [68].

To provide the reader with enough knowledge to understand how the problem was

defined, the following lines skim through the mathematical formulation of the User

Grouping problem. Refer to the mentioned work for additional insights.

The objective of the User Grouping problem is to provide a set of beams and a

collection of user-beam relations such that the users always fall within the footprint
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of the beam and all users are covered by a beam. In addition, the optimal solution

is the one that will incur in the lowest resource consumption. Given that the actual

consumption cannot be computed, a proxy multi-objective metric is used. First,

assuming a fixed spectral efficiency for all beams Γ, the bandwidth needed to serve

a specific beam b is:

BWb =

∑
u∈Vb

du

Γ
(3.1)

Where Vb is the set of users served by beam b and du represents the data rate

demanded by user u. Given that most satellites have predefined frequency channels

of size c, the amount of channels ηb needed for beam b is:

ηb =

⌈
BWb

c

⌉
(3.2)

The total amount of channels consumed by all beams (
∑

b ηb) is the first proxy metric

and aims to represent the amount of spectrum needed by the users. Note that this

value is not fixed due to the fixed-bandwidth channels imposed by the satellites’

payload. As an example, two separate users served by different beams that need half

a channel each would need a total of two channels (⌈0.5⌉+⌈0.5⌉ = 2). However, when

both users are served by the same beam, we only need one channel (⌈0.5 + 0.5⌉ = 1).

As opposed to this, beams that serve many users require larger bandwidth, which

makes them more difficult to allocate within the frequency spectrum as they have

tighter constraints. The second metric is to minimize the amount of channels per

beam (
∑

b ηb∑
b 1

). However, given that the amount of channels is already an optimization

objective, this is equivalent to maximizing the amount of beams (
∑

b 1). The final

formulation is as follows:
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min
∑
b

ηb

max
∑
b

1

s.t. C1 : Vi ∩ Vj = ∅ if i ̸= j ∀i, j

C2 :
⋃
∀i

Vi = U

C3 : αi ≤
δ

2
∀i

(3.3)

Where C1 ensures that a user can only be covered by one beam, C2 that each

user in the set of all users U is assigned a beam, and C3 that the angle α between

each user and the center of their respective beam is lower than the half cone angle of

the beam, which ensures user coverage. The solution to this problem is a collection of

Vb that represent the users served by each beam b. In fact, given the multi-objective

formulation, there are several optimal solutions that represent different trade-offs

between the metrics. To avoid the complexity of splitting the framework’s flow for

each solution, it will be assumed that there exists a selection function that chooses

one of the options provided by the formulation based on some criteria. A scheme

for the selection process will be discussed later in this work. Figure 3-2 dissects the

resolution procedure followed in this Thesis for the joint User Grouping and Beam

Shaping problem.

3.2.3 Subsequent problem interface

Once the collection of beams is obtained, the objective is to proceed with the Satellite

Routing problem. Before that, however, we need to compute the visibility window

for each beam and satellite, i.e., the range in time when a beam and a satellite
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Figure 3-2: A procedure to solve the joint User Grouping and Beam Shaping problem

form an elevation angle higher than the minimum elevation angle. To perform this

calculation, the position of the beam is necessary, which implies solving the short-

horizon Beam Placement problem. Nevertheless, given the set of users a beam is

serving, the possible location of the center of the beam such that all users are covered

is limited. The variation in the visibility window depending on the exact position is

relatively low if we can obtain an approximate position of the beam center. Therefore,

it is not necessary to solve the Beam Placement problem, and it is enough to obtain

an approximate solution. For this work, the beam center pb will be approximated as

the weighted sum of the position of the users within the beam pu, where the weight

wu is proportional to the sum of the distance of that user with respect to the others:

pb =
∑
u∈Vb

wupu (3.4)
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w̃u =
∑
v∈Vb

||pu − pv|| (3.5)

wu =
w̃u∑

u∈Vb
w̃u

(3.6)

The visibility windows can now be computed with the procedure explained in Section

1.3.

3.3 Satellite Routing

3.3.1 General problem description

The objective of the Satellite Routing problem is to determine the handover times for

each beam so that the resource consumption across the constellation is minimized,

a handover being the time when the satellite in charge of serving a specific beam

changes to a different satellite in the constellation. In single-plane constellations, this

implies computing the points in time where the beams are handed over a subsequent

satellite in the plane. Multi-plane constellations, especially multi-shell constellations

(i.e., constellations with multiple shells of satellites at different altitudes), are inher-

ently more complex since they also have to decide which plane is serving each beam

at each point in time.

3.3.2 Specific problem description

Although the nature of this problem is highly dynamic due to NGSO orbital charac-

teristics, in this work the scope of the handover scheme will be limited to one (or a

few) orbital period(s) (this period of time will be referred to as a cycle). This implies

the need to recompute the solution to the Satellite Routing problem periodically if
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the configuration of the constellation is significantly different after a cycle (e.g., if the

constellation suffers from severe orbital shifting, or if the characteristics of the set

of beams change considerably). This Thesis follows a Satellite Routing formulation

similar to the one presented in the author’s previous work [82]. For the purpose of

completeness, the following lines will give a brief description of the formulation used.

Refer to the aforementioned work for additional details.

To reduce complexity, this work will assume the utilization of (almost-)stationary

single-planar constellations with evenly spaced satellites. In this context, the term

almost-stationary means that the shifting of the constellation (i.e., the variation of

the right ascension of the ascending node) is low. In addition, the users’ demand

(or beams’ demand) is assumed to be constant and equal to the maximum demand.

This ensures that if we can serve the maximum demand, we can always meet the

users requirements. As mentioned in the previous section, it will be assumed that

the center of the beams is known and, additionally, that it is fixed for the duration

of the cycle. From these conditions, it can be shown that each satellite observes the

same conditions in terms of beam visibility and demand with a time-shift of P
Nsat

with respect to the previous satellite in the plane, where P refers to the period of the

orbit and Nsat refers to the number of satellites in the constellation. Given that the

conditions are the same, the solution that optimizes the resource consumption of a

satellite is the same as the previous satellite with the mentioned time-shift. Thus, it

is only necessary to solve the handover scheme for one period of one satellite (called

the reference satellite) and propagate the results to the rest of the constellation.

Similarly to what happened in the previous joint User Grouping and Beam Shap-

ing formulation, minimizing the resource consumption is a hard task since the real

resource consumption is only known when the subsequent RA sub-problems are re-

solved. To break the information loop, a proxy function for the resource consumption
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will be used. Specifically, this function relies on the fact that two beams that are

served by the same satellite compete for the resources of the satellite, which produces

a consumption overhead compared to if they were served by different satellites. This

is specially true if the beams are geographically close, since they may interfere be-

tween each other. Formally, two beams i and j overlap if their time-windows on

the reference satellite overlap (yij is defined to be 1 if i and j overlap, 0 otherwise).

In addition, the cost zij of two beams overlapping can be quantified based on the

demand of each beam and their geographical positions. The objective of the Satellite

Routing problem is to minimize the cost of overlapping by deciding the time-windows

of each beam. Mathematically, the formulation is as follows (extracted from [82]):

min
∑
i,j,i̸=j

yijzij

s.t. yij =

{
1 if

ti < tj + Ts

tj < ti + Ts


0 otherwise

tstart,i ≤ ti ≤ tstop,i − Ts

(3.7)

Where ti denotes the initial serving time of the beam i, Ts =
P

Nsat
, and tstart,i and tstop,i

represent the limits in time when the beam i can be served by the reference satellite.

The solution to this problem is the set of ti that minimize the total overlapping.

Once a solution has been found, the handover scheme for the entire constellation for

the desired cycle can be derived.

While this is the original formulation as presented in [82], it does not consider

gateway visibility windows due to the lack of an overarching framework. It could

happen, for example, that a beam is assigned a time-window that no gateway can
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serve, which would mean that the users on that beam cannot be served. To avoid

this issue, a slight modification is proposed. Instead of considering the entirety of

the valid range of satellite visibility, only the range where a gateway is available will

be considered. This range will be denoted as τgat,i ⊆ [tstart,i, tstop,i − Ts]. Note that if

there is no gateway available in the entire range, τgat,i = ∅ and the beam cannot be

served. However, this is consistent with real operations. The new problem definition

is:

min
∑
i,j,i̸=j

yijcij

s.t. yij =

{
1 if

ti < tj + Ts

tj < ti + Ts


0 otherwise

ti ∈ τgat,i

(3.8)

3.3.3 A brief discussion on the joint User Grouping and

Satellite Routing problem

While this work presents the User Grouping and Satellite Routing sub-problems as

different entities, a contrasting approach could be to address the joint User Grouping

and Satellite Routing problem. While the decision variables can be included into a

joint formulation easily, the complex part of this technique is to deal with the vari-

able footprints of the beams: knowing if a user can belong to a beam or not depends

on the footprint over all times, which depends on the serving window of the satellite.

In situations where the serving window can be placed within a wide range of possi-

bilities, the footprints may change significantly depending on the exact placement.

Obtaining the exact footprint requires expensive simulation. This would create a

costly evaluation function, which in turn slows down the optimization procedure. A
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good joint problem formulation needs to ensure that the computation of the footprint

does not make the computing time unreasonable. In addition, combining the metrics

of both problems is not straightforward: while the User Grouping tries to reduce vir-

tual demand while keeping a low demand per beam, the Satellite Routing objective

is to decrease overlapping between beams. How to deal with all three elements at

the same time falls out of the scope of this Thesis and needs to be resolved before

approaching the joint problem.

3.3.4 Subsequent-problem interface

Given that the Satellite Routing problem directly reports the serving window for each

beam, the only element left to compute in order to proceed with the next sub-problem

is the set of gateways that can serve each beam according to the matching between

the gateways’ visibility windows and the beams’ serving windows. In particular, for

constellations that do not use inter-satellite links (ISLs), the beam’s serving window

has to completely fall within a gateway’s visibility window so that the beam can be

served by that gateway. When the payload on the satellites include ISLs, virtually

any connection beam-gateway is possible as the data can travel through the satellite

network. The set of possibilities represents the flow of information between the

Satellite Routing problem and the subsequent Gateway Routing problem.

3.4 Gateway Routing

3.4.1 General problem description

The objective of the Gateway Routing problem is to determine the offloading gateway

for each beam such that the resources on the network can be distributed efficiently.
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In this work, it will be assumed that only one gateway is assigned to each beam.

Although assigning multiple gateways is technically possible, this carries an addi-

tional level of complexity, as it implies deciding how to distribute the load across the

gateways at each point in time. Consequently, and as highlighted in the previous

section, for constellations that don’t use ISLs, the only possible gateways are the

ones that are visible from the satellite for the full duration of the serving window

of a beam. If the constellation uses ISLs, any beam can connect to any gateway as

long as the gateway is visible to at least one satellite at all points in time. As hap-

pened in previous sub-problems, an efficient resource distribution relies on knowing

the resource consumption of each element, which is unknown at this point. To break

the information loop it will be assumed that all beams use the same spectral effi-

ciency, which allows the computation of the bandwidth needed to satisfy the user’s

requirements.

3.4.2 Specific problem description

Since the literature on the Gateway Routing problem is scarce, and there are no

works under a user-centric spot-beam configuration, this work will detail a novel

formulation for this problem. For the purpose of simplicity, it will be assumed that

the constellation under consideration does not use ISLs, which limits the possibilities

of each beam and excludes the complexity of the satellite network flow assessment.

As mentioned, the objective of the Gateway Routing problem is to determine the

beam-to-gateway connections such that the resource consumption is minimized, while

the users’ requirements are met. For a proper resolution, this needs to be framed as a

mathematical optimization problem where the variables, constraints, and objectives

are well defined. First, yij will denote the possible connection between beam i and
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gateway j. Specifically:

yij =

{
1 if tstart,j ≤ ti ≤ tstop,j − Ts

0 otherwise
(3.9)

Where, following the same notation as for the Satellite Routing problem, ti represents

the initial time of the serving window for beam i, Ts = P
Nsat

, and tstart,j and tstop,j

represent the limits in time when gateway j can be served by the reference satellite.

Note that, although this is a general definition, further business constraints may

alter the value of yij. For example, if the contract with a user specifies a concrete

gateway k to route the data to, yik follows previous definition and yij = 0 ∀j, j ̸= k.

Following this, xij is defined as a binary variable indicating if the offloading gateway

for beam i is gateway j (xij = 1), or if it is not (xij = 0). Beam i can only be served

by gateway j if it is visible, so:

0 ≤ xij ≤ yij; xij binary (3.10)

As a restriction, we impose that each beam has to be served by at most one gateway,

which can be encoded as: ∑
j

xij ≤ 1 ∀ i (3.11)

The reason for the inequality will be made clear in the following lines. At this point,

we need to define the objective of the optimization problem. Similarly to previous

problems, a proxy that represents the resource consumption will be used. Since

this problem allocates beams (and, thus, demand) to gateways, it seems natural

to account for the demand allocated to each gateway. Specifically, it is assumed

that each gateway j has a total capacity of µj, where the capacity is measured as the
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number of frequency channels it can handle at the same time. Under ideal conditions,

the number of channels for each gateway is bounded by the total number of channels

used on the satellite, without accounting for frequency reuse since the same frequency

cannot be reused for the same gateway. Assuming a satellite can handle Nch number

of channels and it uses dual polarization, the capacity is bounded by µj ≤ 2Nch

(µj ≤ Nch for single polarization). In this context, the inequality allows for an ad

hoc definition of the capacity of each gateway according to further constraints, such

as frequency limitations in certain regions, as µj is considered a given value of the

model. To accommodate the capacity limitation and similarly to the formulation in

Section 3.2, the bandwidth of each beam i is defined as:

BWi =

∑
u∈Vi

du

Γ
(3.12)

Where Vi is the set of users served by beam i, du represents the data rate demanded

by user u, and Γ denotes the spectral efficiency (assumed constant and given). Fur-

thermore, the number of channels needed for beam i is defined as ηi and computed

as:

ηi =

⌈
BWi

c

⌉
(3.13)

Where c denotes the bandwidth of each frequency channel. With this definition, the

restriction on the capacity on each gateway can be defined as:

∑
i

xijηi ≤ µj ∀ j (3.14)

The previous equation is the reason for the necessity of an inequality in Equation

3.11: since the total capacity of the network of gateways may be lower than the

demand of the beams, it is possible that some beams cannot be served by a gateway.
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Once all the variables and restrictions have been defined, the only aspect left to detail

is the optimization function. Similarly to the Satellite Routing problems and other

problems in industry, an uneven load distribution can cause resource consumption

overhead. Therefore, it is generally more efficient to aim at a well balanced distribu-

tion so that the resources on all gateways are used evenly. For this purpose, gmax is

defined as the load of the most loaded gateway in the system:

gmax = max
j

∑
i

xijηi (3.15)

Then, the objective is to spread the load between gateways, which can be translated

as minimizing the load on the most loaded gateway:

min gmax (3.16)

Without further intervention, the optimal solution is to not serve any beam (i.e.,

xij = 0 ∀i, j). To avoid this trivial solution, and to maximize the met demand,

another factor is added to the minimization:

min gmax −M
∑
i

∑
j

xij (3.17)

Where M follows the big-M notation and represents a big number (i.e., a number

sufficiently big such that the right part of the equation is always prioritized against

the left part). Now, the focus of the optimization is to maximize the balance be-

tween the gateways, while keeping as many beams active as possible. Note that

this a min-max problem, which may require deep computation to solve it. However,

a simple mathematical transformation converts the problem into an integer linear
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programming (ILP) problem:

min γ −M
∑
i

∑
j

xij

s.t. γ ≥
∑
i

xijηi ∀j
(3.18)

The complete formulation of the problem is as follows:

min γ −M
∑
i

∑
j

xij

s.t. γ ≥
∑
i

xijηi ∀j∑
i

xijηi ≤ µj ∀ j

∑
j

xij ≤ 1 ∀ i

0 ≤ xij ≤ yij; xij binary

(3.19)

The solution to the Gateway Routing problem is a set of xij that determine which

gateway is serving each beam. On the complexity analysis, the amount of decision

variables xij grows proportionally to the number of beams to allocate and the num-

ber of gateways considered. The input’s asymptotic complexity is O(nm) where n

is the number of beams and m the number of gateways. On the algorithmic side,

the problem can be solved optimally using traditional mathematical optimization

methods (e.g., problem relaxation plus bounding strategies to avoid non-integer so-

lutions). For large instances where computing time is an issue, modern optimization

techniques such as artificial intelligence or machine learning implementations can

achieve a close-to-optimal solution in reasonable time.
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3.4.3 A brief discussion on the joint Satellite Routing and

Gateway Routing problem

While the joint User Grouping and Satellite Routing problem needed further study

for a successful resolution, the joint Satellite Routing and Gateway Routing problem

is much more approachable: both individual problems follow similar formulations

with resembling decision variables and non-antagonistic metrics. A combined formu-

lation could involve a joint objective where both single-objectives are weighted with

respect to their importance, and an aggregation of the constraints of each individual

formulation. While the study of the joint problem falls outside the scope of this

work, it may be investigated in future research.

3.4.4 Subsequent-problem interface

Once the Gateway Routing problem is resolved, the last resource to allocate is the

frequency spectrum. In order to do so, the next objective is to solve the Frequency

Assignment problem. Since the key aspect of this problem is interference mitigation

and the position and serving windows for all user and gateway beams is known, it

is theoretically possible to compute the possible interference between beams before-

hand. However, the formulation of interference is inconsistent across works: some

consider interference as a binary factor that either exists or not, while others con-

sider a larger interference spectrum and advocate for minimizing the aggregated or

maximum value. Nevertheless, the common consensus is that the interference de-

pends on the angular separation between beams with reference to the satellite and

the frequency of such beams. While the latter is paradoxically the result of the

Frequency Assignment itself, the former can be pre-computed by simulating the or-

bit and computing the minimum separation angle between each pair of beams. For
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beams that are never served by the same satellite, the angular separation between

beams is irrelevant since they are not going to suffer from inter-beam interference

(although they might suffer from inter-satellite interference, this work assumes that

this type of interference is negligible).

3.5 Frequency Assignment

3.5.1 General problem description

The objective of the Frequency Assignment problem is to assign a central frequency

and bandwidth to each beam so that the resource consumption is minimized and the

users’ requirements are met. The assigned frequency and bandwidth must fall within

the frequency spectrum allocated to the constellation, and must respect ground reg-

ulations appropriately. For the purpose of the current problem, it is important to

highlight the differences between uplink and downlink, since the frequency spectrum

allocated to each connection may be different. Specifically, the uplink connections

tend to be generally less power and frequency constrained, since they are powered by

the Earth’s resources, while the downlink connections only rely on the power from

the satellite’s batteries and solar arrays and the frequency usage pointing to Earth

tends to be more restricted. For previous problems this distinction was irrelevant

since the problems for uplink and downlink were decoupled and could be solved inde-

pendently. However, the introduction of gateway beams introduces new relation: for

a given user beam, the associated gateway beam has the same demand but with op-

posite direction. The strength of the coupling depends on the satellite’s architecture:

a bent-pipe architecture implies a stronger coupling, since the uplink and downlink

beam’s pair need to have the same bandwidth, while satellites with on-board pro-
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cessing capabilities allow different bandwidths and evoke a weaker coupling. Both

the definition of interference, and the satellite’s architecture play a significant role

in how to formulate and resolve the Frequency Assignment problem.

3.5.2 Specific problem description

Although the formulation only varies slightly for bent-pipe architectures, this work

will assume the usage of satellites with on-board processing capabilities. In addition,

interference will be understood as a binary constraint with a threshold: a threshold

angle α defines the limit for inter-beam interference. Specifically, if the minimum

angle between two beams is lower than α, the beams cannot have the same frequency,

while a minimum angle higher than α allows for frequency reuse. Although this

approach is somewhat conservative in terms of interference mitigation, it admits

a strong mathematical formulation that allows to solve the Frequency Assignment

problem independently from operations. Finally, it will be assumed that for the

duration of the cycle, the frequency and bandwidth assigned to each beam is fixed

(i.e., only one frequency can be assigned and it cannot change). Variable frequencies

are technically possible, but require higher synchronization. This Thesis follows a

Frequency Assignment formulation similar to the one presented by the author [132]

and extended by Garau et al. [147]. The following lines give a brief description of

the formulation. Refer to the aforementioned works for additional insight.

Let fi and bi denote the initial channel and number of channels assigned to beam

i, respectively. Note that assigning central frequency is analogous to assigning initial

channel and assigning bandwidth is analogous to assigning number of channels for a

bandwidth-fixed channel system. In addition to these decision variables, let gi be the

index of the frequency reuse for beam i. The purpose of this index is to avoid reusing
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the same frequency more times that what the system can support. For completeness,

let pi denote the polarization of beam i. Note that frequency reuse and polarization

accomplish the same thing, determining the number of times a specific frequency

can be used, but it will be a pragmatic separation that allows for simpler constraint

definition.

Let βij denote a binary variable that specifies if two beams i and j are served by

the same satellite at some point in time (1 if they are, 0 if not). In addition, let γij

be the minimum angle between beams i and j over all points in time where they are

on the same satellite. The value of γij when βij = 0 is irrelevant. Then we can force

the following logical restrictions:

βij = 0 or fi + bi ≤ fj or fj + bj ≤ fi or gi ̸= gj or pi ̸= pj (3.20)

βij = 0 or γij ≥ α or fi + bi ≤ fj or fj + bj ≤ fi or pi ̸= pj (3.21)

Equation 3.20 ensures that if two beams are at some point in the same satellite,

either the frequency range, reuse index, or polarization is different. This secures

that the available resources are restricted to the satellite payload capabilities. On

the other hand, Equation 3.21 ensures that if two beams could potentially interfere,

they need to have non-overlapping frequencies or different polarization. This protects

the beams from harmful interference. Although these equations can be transformed

into more formal mathematical expressions, those require many additional auxiliary

variables and working through the algebra is not the main purpose of this work.

See [147] for how this transformation can be accomplished.

The next step is to define the objective function. As mentioned, the purpose

of the optimization should be to minimize the usage of resources while serving all
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the users. However minimize the usage of resources is an ambiguous definition that

leads to many different formulations. In this work, power consumption is defined as

the metric that determines the resource usage. It comes from two main sources: the

necessary power to serve the beams, i.e., the required power to close the link budget

equation as detailed in Section 1.3, and the necessary power for frequency reuse, i.e.,

the extra power required on the satellite to perform additional frequency reuses. The

total power consumption can be defined as:

P = hi(cbi, di) + ϵ|G| (3.22)

G =
⋃
i

{gi} (3.23)

Where hi(·,·) is a function that computes power based on the bandwidth, demand,

and user characteristics of beam i (note that this can be seen as an average or refer-

ence power, since the link conditions are unknown at this point), c is the bandwidth

assigned to each channel, and G denotes the set of all frequency reuse indexes that

are used in at least one beam. ϵ acts as a flexible optimization parameter to adjust

the weight of each factor according to the characteristics of the satellite’s payload.

A higher ϵ puts more emphasis into reducing the amount of frequency reuses, while

a lower ϵ tries to minimize power for each beam. The formulation for the Frequency
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Assignment problem is, then:

min P

s.t. Eq. 3.20

Eq. 3.21

0 ≤ fi ∀i

fi + bi ≤ Nch ∀i

bmin,i ≤ bi ≤ bmax,i ∀i

0 ≤ gi < Nr ∀i

0 ≤ pi < pmax ∀i

fi, bi, gi, pi integer ∀i

(3.24)

Where Nch is the total number of available channels, bmin,i and bmax,i denote the

minimum and maximum number of channels for beam i so that there exists a power

that closes the loop, Nr is the number of frequency reuses, and pmax represents the

number of different polarizations (either 1 or 2). In addition, it is important to

note that βij = 0 by definition if beam i and beam j have different directions since

they will never interfere. The solution to this optimization problem gives the desired

frequency, bandwidth, and polarization for each beam. Although this is strictly for

architectures with on-board processing capabilities, the formulation for bent-pipe

payloads only need to add an additional constraint imposing that the bandwidth

of the user beam has to be the same as the bandwidth on the associated gateway

beam. Also, this formulation assumes that all beams can be assigned a frequency,

which may not be the case for highly constrained scenarios. To adapt this case, it

will be assumed that the bandwidth that can be assigned to a beam can be 0, and
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that the power associated with 0 bandwidth is infinity (which can be transformed

into a big-M notation for practical purposes). Note that this is just an mathematical

approximation: in practice, the beams assigned 0 bandwidth will not be served and

need to be dropped, so the power consumption for those beams will also be 0.

3.5.3 A brief discussion on the joint Gateway Routing and

Frequency Assignment problem

Similar to the joint User Grouping and Satellite Routing discussion, how to merge

the individual Gateway Routing and Frequency Assignment sub-problems into one is

a complex task with unclear outcome. Although neither of the formulations present

opposed variables or metrics, the Gateway Routing problem introduces new gateway

links while the Frequency Assignment assumes fixed beams. How to deal with these

clashing views needs to be investigated before the joint problem can be successfully

resolved. This falls out of the scope of this Thesis and is left as an open challenge

for future work.

3.6 System metrics

As highlighted at the beginning of this Chapter, the objective of the Resource Allo-

cation problem is to assign resources to users efficiently while meeting the demand

requirements. From this general clause, two specific objectives arise: 1) optimize the

resource allocation, and 2) meet the users requirements. While the latter objective

could be addressed as a constraint (i.e., imposing that the users are always served),

the limitation on satellite resources may lead to unfeasible solutions (e.g., if the de-

mand of the users surpass the capacity of the network, not all users can be served
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and no feasible allocation exists). Therefore, it will be considered that all allocations

that satisfy the technical constraints are feasible, while the ones that maximize user

satisfaction are desired. When comparing two allocations that achieve the same user

satisfaction, the one with lower resource consumption is preferred. To quantitatively

assess two different allocations, each objective needs to be formally defined.

3.6.1 Power consumption as a system metric

Although assessing the efficiency of the RA process is ambiguous due to the different

resources involved and the flexibility within each resource, this Thesis will quantify

the adequacy of a RA from a power consumption perspective. Similar to the Fre-

quency Assignment sub-problem, the power consumption comes from two different

sources: the necessary power to meet the demand of each beam, and the additional

required power for frequency re-use. Note that the joint User Grouping and Beam

Shaping as well as the Satellite Routing and Gateway Routing sub-problems play a

significant role in the power consumption: the shape of the beam affects the gain,

the set of users that it is serving defines the demand, and the serving window deter-

mines the distance between antennas, which in turn affects the link quality. Thus,

power consumption reflects the effect of the complete resource allocation. For the

first factor, the power consumption for each beam can be computed by closing the

link budget equation of Section 1.3.

To this beam power, it is necessary to add the power consumption due to the

usage of reuse groups. For the purpose of this work, each additional resource group

has a power consumption of ϵ, which drives the total power consumption metric to:

P =
∑
i

Pi + ϵ|G| (3.25)
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It is important to highlight that, while physical systems are constrained by a maxi-

mum power, the explained optimization metric does not reflect this hard constraint.

In real operations, the system may need to drop certain demand in order to meet

the power requirements. However, it is apparent that procedures that obtain a lower

power consumption will be inherently more attractive, since the amount of demand

that needs to be dropped due to power limitations is lower (and, thus, more demand

can be met).

3.6.2 User Satisfaction as a system metric

In this work, user satisfaction is defined as the amount of user demand that can be

met. As mentioned, while ideally all the demand is satisfied, the limitation of on-

board resources may make this impossible. Specifically, this Thesis uses an unmet

demand (UD) metric, as defined in [16]. This metric is defined as:

UD =
∑
i

max(
∑
u∈Vi

du −Ri, 0) (3.26)

Where Ri is the actual data-rate offered by beam i, which can be computed based on

the power of the beam Pi computed in the previous section.
∑

u∈Vi
du−Ri represents

the amount of demand in beam i that could not be served. Note that beams that

could not be served by default (i.e., beams that could not find an offload gateway,

or beams that do not have assigned frequency due to constraints) have a data-rate

of 0 by definition (Ri = 0). As a final remark, some results will discuss the coverage

of the solution, which refers to the met demand (MD) and can be computed as

MD =
∑

i

∑
u∈Vi

du − UD.

Although other satisfaction metrics might be interesting for certain applications

80



(e.g., minimum delay for better quality of service or maximum fairness to avoid

prioritization of users), this work puts emphasis on guaranteeing service to the max-

imum number of users, which is equivalent to maximize capacity. The reasoning

behind this view is that it is less relevant to talk about user delay if not all users

can be served, and guaranteeing fairness among users is not useful if the minimum

contracted demand is not satisfied.

3.7 Assumptions and Challenges

This Section summarizes the assumptions on the general framework and the concrete

sub-problems that were highlighted through this Chapter. Moreover, it discusses

how to relax each assumption and emphasizes the remaining open challenges and

how future work can approach them.

3.7.1 General assumptions and relaxations

The following lines detail the general assumptions that the framework relies on, as

well as a brief discussion of the implications of each assumption.

A User distribution and demand is known: as this framework is user-centric, the

position and (maximum) demand need to be a parameter of the model.

• For uncertain user position, the framework is still valid if the uncertainty

is low (i.e., if the user position is known approximately with a specific

confidence level). For high uncertainty, a user-centric model is a less at-

tractive option. Note, however, that given that satellite communications

mostly involve a somewhat large antenna, the positions of such antennas
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tend to be known. Only for new market models or new services the un-

certainty may be higher. For uncertain user demand, usually contracts

specify a minimum and maximum ceiling. Without any more information

about real demand, contract values can be used without modifying the

framework. Introducing uncertainty in the user distribution remains an

open challenge and its effects may be studied in a future work.

B Gateway position and maximum capacity are known: this is a required param-

eter of the model.

• The purpose of this framework is to resolve the RA problem for a given

space and ground configuration. Choosing the gateway positions falls out

of the scope of this work. However, there is research specifically focused on

the Gateway Placement problem [148, 149]. Note that once the gateway

position and maximum demand is known, the framework can be applied

effectively again.

C The framework has no prior constraints or allocation that it needs to match.

However, specific business constraints are allowed as long as they fit within

the defined formulation for each sub-problem. For example, defining regional

spectrum limitation is relatively uncomplicated knowing the position of the

beam and setting limits to the frequency variables.

• Introducing a warm start does not disrupt the current framework as long

as the imposed constraints can be defined within the individual sub-

problem definition. However, the effects of a warm start are outside the

scope of this work and may be investigated in future research.

D Users are allowed to not be served, but maximizing served users is a priority.
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• Allowing users not to be served is an engineering convenience. While in

reality users need to be served at all costs (due to contract penalties),

the user distribution needs to ensure that there exists a feasible plan.

Since this work does not put constraints on the user distribution, not all

distributions can be fully served. To avoid falling in unfeasible scenarios,

allocations with unmet demand are allowed.

E Satellites have virtually no power constraint.

• In reality, all satellites rely on some power generation with limited ca-

pacity. By relaxing the power constraint we may end up in two possible

situations: either the power is lower than the power generation capabili-

ties, in which case the plan is technically feasible and there are no further

constraints, or the power is larger than the power capacity, in which case

means that the framework could not come up with a better distribution to

serve the users, and thus some demand needs to be dropped. For this latter

case, either the individual optimization resolutions need to be improved

enough to achieve a lower power consumption, or the user distribution

needs to be reevaluated according to the real system capacity.

3.7.2 Specific assumptions

To deal with the complexity of each individual sub-problem, specific assumptions

have been made. The relaxation of these assumptions can be addressed through

individual or multiple sub-problem formulation redefinitions. However, they usu-

ally involve a higher level of complexity. The implications of these relaxations and

possible approaches will be discussed in the following lines. Since each assumption
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derives from a specific problem, the indentation mark encodes which concrete sub-

problem the assumption applies to: UG refers to User Grouping and Beam Shaping,

SR refers to Satellite Routing, GR refers to Gateway Routing, and FA refers to

Frequency Assignment.

UG1 Users have a fixed position for the duration of the allocation cycle. However,

this position can be virtually anywhere in the world (if the position cannot be

served because of coverage constraints, the demand of the user will simply be

added to the UD metric).

• Although the mobility sector (i.e., planes and ships) is very attractive

for satellite communications, it involves a much complex resolution of the

allocation problem. If the velocity of the movement is low, or the users

tend to spend a lot of time in the same place (e.g., maritime users), the

problem can be solved within the framework assuming a shorter cycle.

For other cases, mobile users need an ad hoc problem resolution from

the sub-problem perspective for the joint User Grouping and Beam Shap-

ing, Satellite Routing, and Gateway Routing sub-problems (the Frequency

Assignment problem may not require additional modifications). How to

address mobility users for a spot-beam configuration has not yet been

studied in research. This remains as an open challenge and future works

may address this issue.

UG2 Each user is served by one beam, and the user has to fall within the beam

footprint at all times.

• Potentially, each user could be served by multiple beams if they have

the necessary antennas to support multiple operations. In practice, this
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implies solving an additional decision: how to split the demand of each

user into several beams. In addition, it involves additional constraints for

certain type of services (e.g., some services require a specific offloading

gateway, which would need to be addressed for each beam containing that

user). Clearly, this is a much complex problem and it falls out of the

scope of this work. However, once the splitting decision has been made,

the physical user could be divided into as many different virtual users as

beams to be split to, and the same framework could be applied at a virtual

level.

UG3 The shape of the beams is predefined and known.

• Beam Shaping is a complex problem in itself and assuming fixed shape

is a convenient simplification. To include a more complex Beam Shaping

resolution, it is enough to modify the joint User Grouping and Beam

Shaping block, without need of changing the framework. This Thesis

does not study the effect of Beam Shaping in the final allocation, and this

open challenge is left for future studies.

UG4 Satellites have fixed-bandwidth channels of known size.

• Fixed-bandwidth channels are generally a restriction of the payload, which

in turn depends on the advances of hardware engineering. Dealing with

channels of variable bandwidth is currently not considered on satellite

communications. In a scenario where this is no longer the case, it is suffi-

cient to exploit a mathematical peculiarity: variable bandwidth channels

are equivalent to fixed-bandwidth channels with size 0. For a practical
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purpose, it is enough to assign a very small channel size while maintain-

ing the same framework.

SR1 The visibility windows for each beam can be approximated with an estimate of

the beam center, which is known to be fixed, without incurring into technical

constraints.

• Given that the position of the center of the beam is limited to the region

where it covers all the users, the variation of the visibility window of the

approximated center versus the real center is relatively low. However, if

the technological constraints do not allow for any variation of this window,

a useful approximation is to be conservative in serving window assignation

(i.e., instead of considering the full window, consider a reduced window

where all possible real beam positions fall within technical feasibility).

SR2 The constellation lies on a single plane and the satellites are evenly spaced.

• Multi-plane constellations, especially multi-shell constellations, in addi-

tion to the serving window, involve deciding the satellite that serve each

beam at each point in time. Although this falls out of the scope of this

work, it is enough adapting the formulation of the Satellite Routing sub-

problem without any additional change. The analysis on the individual

sub-problem of Satellite Routing of multi-plane constellations remains an

open challenge and is left as possible future research.

SR3 The constellation has low drifting across the duration of the cycle.

• Most terrestrial constellations tend to have a relatively low variation of

the right ascension for the ascending node. In case this implies additional
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problems, it is enough to change the duration of a resource allocation

cycle. If the cycle turns out to be extremely short, the Satellite Routing

sub-problem formulation needs to be reevaluated to include a more robust

definition.

SR4 Handovers between satellites happen instantly.

• Instant handovers are an engineering simplification. In practice, han-

dovers usually take a time Th to happen. However, the formulation can

include this factor by extending the serving window to Ts = P
Nsat

+ 2Th,

where the initial and final handovers are included in the serving window.

GR1 The constellation does not use ISLs.

• The usage of ISLs involve a much higher complexity Gateway Routing

problem that requires network flow assessment. Given the scarcity of

research in the Gateway Routing problem in general, this work focuses

on constellations without ISLs, and systems including this technology are

left as an open challenge for future studies.

GR2 Each beam is served by one gateway for the full duration of the cycle.

• Similar to splitting users into several beams, splitting users into several

gateways is a precarious proposition that involves a much more complex

resolution. Moreover, the implication and benefits of such split remain to

be studied. Similarly to the user case, this falls out of the scope of this

Thesis.

FA1 Interference can be modelled with a threshold after which interference is neg-

ligible.
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• Interference calculation is a complex topic. Simplifying it to a binary

variable allows for a stronger mathematical formulation, at the expense

of a weaker representation of reality. If this approach is considered to

be insufficient or too conservative for practical purposes, it is enough to

modify the formulation for the Frequency Assignment problem for a more

accurate representation of the interference.

FA2 Satellites have on-board demodulation capabilities and allow frequency and

bandwidth changes from uplink to downlink.

• The implications of on-board computation against bent-pipe architectures

have been discussed in Section 3.5. As a summary, this Thesis will focus

on full flexible architectures, but minor changes in the formulation allow

for an extension to more constrained systems.

FA3 Each beam is assigned one frequency, bandwidth, and polarization for the full

duration of the cycle.

• Assigning one resource per cycle is again an engineering simplification.

While assigning multiple resources is possible, the benefits of such allo-

cation under stationary conditions are unclear. This analysis, as well as

how to obtain a robust formulation to address this context, fall out of the

scope of this Thesis and remains as an open challenge.
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Chapter 4

Heuristics, practical

implementations, and efficient

optimizations for the Resource

Allocation sub-problems

While the previous Chapter focused on explaining what the problem is and setting up

a comprehensive framework for the RA, this Chapter is centered around how to solve

each piece of the puzzle. The following sections detail resolution procedures for each

individual sub-problem that range from simple heuristics to more complex techniques

such as linear mathematical optimization and metaheuristic implementations.
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4.1 User Grouping

As highlighted in Section 3.2, the User Grouping problem can be formulated as:

min
∑
b

ηb

max
∑
b

1

s.t. Vi ∩ Vj = ∅ if i ̸= j ∀i, j⋃
∀i

Vi = U

αi ≤
δ

2
∀i

(4.1)

Where the objective of the problem is to group users to achieve less virtual

demand while keeping the demand of each beam as low as possible to avoid frequency

restrictions. In [68], the author highlights how this problem is at least NP-hard,

which means that there does not exist yet an optimal algorithm in polynomial time.

Thus, the reasonable resolutions for this problem come in the form of heuristics or

more complex approximations that inherently give a sub-optimal (but, hopefully,

close-to-optimal) solution.

4.1.1 One beam per user

The first trivial solution to the User Grouping problem is simply to center the objec-

tive of the problem as maximizing the number of beams, while ignoring the virtual

demand. This translates directly into assigning one beam per user. Note that, al-

though this resolution basically ignores the purpose of the optimization, it is widely

used in similar fields such as phone communications (where each phone is given a

channel on demand). Also, this heuristic gives the optimal solution when the users

90



are widely spread (e.g., where there are very few users distributed around the world)

or when the beams are very narrow (e.g., when instead of electromagnetic waves,

optical links are used). In such cases, no beam can cover more than one user due to

geographical limitations and assigning one beam per user is the only feasible solution.

4.1.2 Minimum number of beams

As opposed to the previous solution, the other extreme is to group the users as much

as possible to reduce the amount of virtual demand. However, as shown in [68],

the problem of minimizing the number of beams can be transformed into an Edge

Clique Cover problem, which is known to be NP-hard. This work will follow an

heuristic developed by the author in [132] in which the beams are selected based on

the number of users per beam in descending order.

4.1.3 Genetic Algorithm

While the multi-objective problem as presented above cannot be directly solved us-

ing traditional mathematical optimization methods due to its complexity, it can be

approximated using modern artificial intelligence (AI) techniques. Specifically, this

work uses a genetic algorithm (GA) approach developed by the author in [68]. The

following lines give a brief description of how this method works. Refer to the afore-

mentioned work for additional insight.

Genetic algorithms are a subclass of evolutionary algorithms inspired by the evo-

lution of a population over time [150]. The population consists of a set of individuals

which evolve based on two operators: crossing and mutation. Each individual repre-

sents a solution to the problem and, over multiple iterations, only the best individuals

are kept, while the others are discarded. In order to apply a genetic algorithm to a
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specific problem, four elements need to be defined: how to encode a solution to the

problem into an individual, and the crossover, mutation, and selection operators.

First, each individual is defined as a mapping from users to beams. Note that this

element has to satisfy the constraints imposed by the problem: each user has to be

covered by a beam and each beam has to cover all of its assigned users at all times.

The initial definition, as well as the subsequent operators applied to the individual,

need to make sure to not break these restrictions. Then, the operators are defined

as follows:

• Crossover (i.e., merging of two individuals to create a new solution): select a

non-colliding sub-set of beams from each individual and create a new solution

based on the aggregation of both sets. To avoid invalid assignments, allocate

a new beam for each user that remains uncovered.

• Mutation (i.e., change of a single individual to create a new solution): create,

alter, or remove a beam from the set of beams and tweak the remaining set to

ensure constraint satisfaction.

• Selection (i.e., filter the entire population by selecting only the individuals that

perform best under the metrics of the problem): given the multi-objective def-

inition, the selection process in this work is based on the NSGA-II [151], which

searches for Pareto-Front solutions while keeping a wide population diversity.

Upon execution, the GA iterates over the population to obtain better and better

solutions. Note that, due to the multi-objective formulation, the final set of individ-

uals might contain multiple optimal solutions with different trade-offs between the

metrics. As highlighted in the definition of NSGA-II, the solutions that deliver the

best performance in one metric are always part of the final set of individuals (i.e.,

92



the solutions that maximize the number of beams and minimize the total demand

are always part of the final set of solutions). Therefore, the heuristics that assign one

beam per user or minimize the number of beams are included within the solutions

of the GA. Since the previous two heuristics are a sub-set of the GA solutions, there

is no need to run such heuristics.

On a related note, the selector function described in Section 3.2 will consist of

a simple decision based on the number of beams. Specifically, different solutions

with different number of beams will be compared and their performance analyzed.

For example, the solutions with minimum and maximum number of beams will be

executed and tested within the framework. For completeness, other intermediate

solutions will also be studied.

4.1.4 Coverage grid

Instead of assigning beams to users, the User Grouping problem can also be seen as

assigning users to beams. Specifically, it is possible to detail a set of beams without

any constraints about the users, and then assign each user to each beam based on

proximity. To avoid empty regions while having a sparse net of beams, the simplest

technique is to divide the world into cells and assign a beam to each cell. Each user

is assigned to the beam in the corresponding cell. Note that the spherical shape

of the Earth makes this resolution slightly more complex since the division of the

Earth’s surface into equally shaped cells is not a simple problem. However, since

nearby beams are allowed to have colliding footprints as long as they do not interfere

in frequency, the conditions on this problem can be relaxed and an approximate

solution can be found. For consistency with the other approaches, if a beam has no

users assigned, it can be safely removed since its demand is zero.
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Figure 4-1: A possible grid based solution for the User Grouping problem. Image
extracted from Amazon’s LEO constellation (Kuiper) filings [152]

Figure 4-1 shows the beam grid followed by Amazon’s constellation described in

[152]. While this allows for easier beam management, it may create severe unbalance

between the beams. For example, beams on populated areas will inherently be more

loaded than other beams, which may pose additional problems in the frequency and

power allocation.

4.2 Satellite Routing

As detailed in Section 3.3, the objective of the Satellite Routing problem is to find

the handover times for each beam and satellite to satisfy the users requirements

while minimizing the resource consumption. The problem can be defined with a

94



single-objective formulation as follows:

min
∑
i,j,i̸=j

yijcij

s.t. yij =

{
1 if

ti < tj + Ts

tj < ti + Ts


0 otherwise

ti ∈ τgat,i

(4.2)

Where yij = 1 when two beams overlap and cij represents the cost of two beams

overlapping. While the natural linearity of the presented equations may suggest

a simple mathematical approach, the author in [82] showed that the traditional

approaches have scalability problems in high dimensional scenarios. Specifically,

and as noted in that work, there is one variable per beam pair, which increases

quadratically with the number of beams and may pose computational problems when

solving the problem for modern multi-beam constellations.

4.2.1 Closest satellite

One simple solution to the Satellite Routing problem for single-plane constellations is

to always reach for the nearest satellite, which theoretically benefits the link budget

equation since the ground antennas are closer to the satellite on average compared to

other more complex approaches. Specifically, in terms of the previous formulation,

the key would be to always reach for the middle point of the visibility window (i.e.,

ti =
tstart,i+tstop,i−Ts

2
). Note that, although this ignores the gateway visibility con-

straint encoded in τgat,i, most users are going to be in similar regions of gateways by

design, which allows to relax this requirement while still obtaining a feasible solution.
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This approach would not allow to serve users whose serving window does not fall

within a visibility window of a gateway. Note that this is an optimal solution when

both the user demand and gateways are perfectly distributed across the coverage of

the constellation, since the cost of overlapping is the same everywhere, or when the

number of satellites is low, since the visibility windows and the serving windows are

approximately the same size.

4.2.2 Mixed Integer Linear Programming

As described in [82], the Satellite Routing formulation can be transformed into a

mixed integer linear programming (MILP) formulation which can then be solved

using commercial software. Note that, however, the mentioned transformation does

not include the gateway restrictions and considers that the possible serving window

initial time is a continuous interval. Nevertheless, the restriction of having multiple

non-continuous intervals can be adapted by including additional variables that decide

which continuous interval to choose, and resolve the same formulation by treating

each interval independently.

As explained in the aforementioned work, although providing the optimal solu-

tion, the MILP formulation has scalability issues for cases with more than 200 beams.

For higher dimensional approaches, other less computationally intensive techniques

that provide a sub-optimal solution are better suited to carry out the optimization.

4.2.3 Particle Swarm Optimization

While traditional mathematical optimization suffers from computational restrictions

in high dimensional cases, more modern optimization approaches, such as meta-

heuristics, fill the gap of providing a close-to-optimal solution with low computa-
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tional complexity. Specifically, this work builds upon the author’s previous work

in [82] where a particle swarm optimization (PSO) implementation was proposed.

The following lines intend to give a brief description of the PSO as detailed in the

aforementioned paper. Refer to that work for additional insight.

Particle swarm optimization is a population- and iteration-based metaheuristic

algorithm inspired by the movement of bird flocks or insect swarms [153]. Similarly

to the GA, each individual in the population (a.k.a. particle) represents a solution

and the population changes over time to achieve improved results. However, instead

of encoding the solutions as a chain of genes as done in the GA, particles encode

the solution as a set of coordinates that represent their position in the search space.

The particles change position based on forces received from other particles and from

previous history of the set of particles (a.k.a. swarm). The swarm evolves according

to the dynamics of each particle. The objective of the algorithm is to direct the

swarm to interesting regions in the search space to obtain an optimized solution.

Specifically, the dynamics of the particle is described as follows: the position of

the particle encodes a solution to the problem, while the velocity represents the rate

of change of each coordinate. The velocity is usually composed by three factors:

the global pull, that represents the particle’s attraction towards the best particle in

the swarm, the local pull, that represents the particle’s attraction towards the best

position the particle has been so far, and the inertia, which represents the decay of

the velocity with respect to the previous iteration. In addition to these elements,

most implementations limit the maximum velocity to ensure that the search space

is explored enough before convergence. At each iteration, the velocity is computed

according to these definitions and the previous value, and the position is updated

accordingly based on the new velocity.

For this particular problem, we have one coordinate for each beam and the value
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of the coordinates represents the initial time of the serving window (ti). Given that

yij just encode auxiliary variables, we do not need to encode them within the par-

ticles. The position of each particle is initialized randomly respecting the limits

imposed by τgat,i. Then, the PSO is executed until convergence to achieve an opti-

mized set of handover times that minimize overlapping. Note that, since τgat,i may

represent multiple non-continuous intervals, the position of each particle may need

to be corrected to adapt to a feasible interval.

4.3 Gateway Routing

The objective of the Gateway Routing problem is to distribute the load of the beams

across gateways to maximize resource efficiency while meeting the users requirements

and satisfying the gateway constraints. Specifically, it can be mathematically defined

as (extracted from Section 3.4):

min γ −M
∑
i

∑
j

xij

s.t. γ ≥
∑
i

xijηi ∀j∑
i

xijηi ≤ µj ∀ j

∑
j

xij ≤ 1 ∀ i

0 ≤ xij ≤ yij; xij binary

(4.3)

Where xij represents the decision of assigning beam i to gateway j, γ is an auxil-

iary variable, and all the other parameters are given by the model. Note that this

formulation is already a MILP formulation. However, the amount of variables scale
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proportionally to the number of beams times the number of gateways, which may

pose computational problems for scenarios with thousands of gateways (as is the case

of LEO mega-constellations [154,155]).

4.3.1 Closest gateway

Similarly to the Satellite Routing closest satellite solution, a simple heuristic for

deciding the offloading gateway for each beam is to reach for the geographically

closest gateway. Although this ignores the optimization framework, this heuristic

provides a simple and scalable solution for the problem. Moreover, it achieves the

optimal solution when the beam demand is perfectly distributed near the gateways.

As the demand across regions becomes more unbalanced, the solution provided by the

heuristic moves away from the optimal. To keep the solution within the constraints,

if the theoretical load of the gateway surpasses its technical limits, the beams that

are geographically furthest out from the gateway are dropped.

4.3.2 Mixed Integer Linear Programming

Since the formulation is already in linear form, it can be directly fed into a commercial

solver to obtain the optimal solution. As mentioned, the optimal solution may need to

drop some beams to ensure feasiblity. If a beam does not have any gateway assigned,

it cannot acquire the desired data and must be deactivated. As a technical remark,

note that if yij = 0 there is no need to represent variable xij in the implementation,

since its value will always be 0. This can help alleviate computational pressure in

high dimensional scenarios.
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4.4 Frequency Assignment

As highlighted in Section 3.5, the Frequency Assignment problem aims to minimize

power consumption by efficiently allocating the frequency spectrum to the beams.

Specifically, the objective is to solve the following formulation:

min P

s.t. Eq. 3.20

Eq. 3.21

0 ≤ fi ∀i

fi + bi ≤ Nch ∀i

bmin,i ≤ bi ≤ bmax,i ∀i

0 ≤ gi < Nr ∀i

0 ≤ pi < pmax ∀i

fi, bi, gi, pi integer ∀i

(4.4)

Where fi, bi, gi, pi represent the initial frequency, bandwidth, frequency reuse, and

polarization of beam i, respectively. Note that the formulation is non-linear due

to the non-linearities in the power consumption and the or operation in Equations

3.20 and 3.21. Similarly, it is important to remark that there are multiple solutions

that could incur the same power consumption, which makes the optimal solution

non-unique. This factor may pose certain problems depending on the resolution

procedure.
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4.4.1 Heuristic approach

Given that the Frequency Assignment problem involves many decision variables and

the search space is highly non-linear, a reasonable first approach to solve the problem

is fall back to a heuristic procedure. This work will use the heuristic proposed by

the author in [132], in which the objective is to maximize the spectrum usage while

keeping a proportional distribution across beams. Specifically, the method is based

on consecutive allocation of frequency following a demand decreasing sequence of

the beams. If some beam cannot be assigned a frequency due to restrictions, it is

dropped from the sequence. Note that, while the objective is strictly different that

the formulation presented above, the aim is to increase the average bandwidth per

beam in an attempt to decrease the necessary power to reach the desired data-rate.

This approach ignores the second source of power coming from frequency reuse, which

is equivalent of assuming ϵ = 0.

4.4.2 Integer Linear Programming

While the original formulation falls in the non-linear division, the problem can be

linearized following standard mathematical transformations. Specifically, this work

presents an integer linear programming (ILP) formulation that follows the one pre-

sented by Garau et al. [147]. The following lines give a brief description of the

solution proposed by Garau et al. Refer to the aforementioned work for additional

details. Moreover, Appendix A describes how to perform linearizations of simple

operations such as or, and, and inequalities and equalities transformations.

First, or operations, such as the ones from Equations 3.20 and 3.21, can be

linearized in an uncomplicated way using auxiliary binary variables. Since this is

only part of the sources of non-linearity, it is also necessary to linearize the power
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function. As mentioned, power can be computed as:

P = hi(cbi, di) + ϵ|G| (4.5)

G =
⋃
i

{gi} (4.6)

Where hi is refers to the function that returns the solution to the link budget equa-

tion, di is the demand of beam i and |G| refers to the amount of frequency reuses

used. To deal with these expressions, let us define xij as a binary variable that is

1 if bi = j, 0 otherwise. Then, we can precompute the power used by beam i with

bandwidth j as Pij = hi(cj, di). With this, we can rewrite the power consumption

as:

P =
∑
i

∑
j

xijPij + ϵ|G| (4.7)

G =
⋃
i

{gi} (4.8)

Finally, let us define yk as a binary variable that is 1 when any gi = k ∀i, 0 otherwise.

Note that this can be transformed into a chain of or operations, which can be easily

linearized. Then, |G| can be computed as |G| =
∑

k yk, which leads to:

P =
∑
i

∑
j

xijPij + ϵ
∑
k

yk (4.9)

Now all sources of power consumption, as well as constraints, are linear, which allows

the formulation to be directly fed into a commercial linear integer solver. Note that,

in this formulation, the non-activated beams are represented as beams with bi = 0.

To be consistent with the general formulation, Pi0 = M ∀i, in which M follows the

big-M notation.
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It is important to remark that while the number of decision variable scales linearly

with the number of beams, the number of auxiliary variables does so quadratically,

which makes a brute-force approach computationally infeasible for high dimensional

scenarios. Therefore, Garau et al. propose an iteration based method where only

some beams are changed at each time, while the rest are left fixed. With this,

the complexity scales proportionally to the number of beams times the number of

beams that are allowed to change. By playing with the latter value, it is possible

to achieve reasonably low iteration times even in cases with thousands of beams.

As a remark, the initial value for all beams is obtained from the author’s heuristic

explained in [132].

Given that there are many solutions that achieve the same power consumption,

the problem is degenerated, which causes computational problems to linear solvers.

To deal with this, Garau et al. include an additional factor in the objective function

that penalizes lower frequencies and higher frequency reuse indexes. In addition, for

better scalability properties, the authors propose a formulation transformation where

the decision variables are encoded as binary decisions, and each variable encodes one

option for one beam. By exploiting the fact that some beams are static at each

iteration, the authors rank the best feasible options and only allow the algorithm to

take values within those preselected options. This greatly reduces the search space

and allows for faster run times. Including the current option in the search space

ensures that there is always at least one feasible option, which avoids running into

unfeasibilities. Now the number of variables increases linearly with the number of

options and the number of changes allowed, and the number of constraints scales

quadratically with the number of options and the number of changes allowed.
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4.5 Power Allocation

As mentioned in Section 3.6.1, this work uses power consumption as a metric to assess

the optimality of the resource allocation. Thus, it considers no further constraints

regarding power generation, and the objective is to determine, from two different

allocations, which one is more attractive. Following this, the resolution procedure

does not need to consider power restrictions. Specifically, based on Equation 1.9, a

simple resolution follows:

1. Compute necessary spectral efficiency based on beam demand
∑

u∈Vi
du and

bandwidth assigned cbi (the notation follows the one described for previous

sub-problems).

Γi =

∑
u∈Vi

du

cbi
(4.10)

2. Compute the MODCOD, and its associated link margin, that achieves at least

the required spectral efficiency with the lowest link quality. If no available

MODCOD exists that can match the desired spectral efficiency, assume highest

MODCOD.

3. Compute the necessary power Pi that achieves the required link margin by

solving equation 1.9.

Note that this resolution does not take into account interference between the

different beams and assumes that all demand is concentrated at the center of the

beam. For the former, the formulation for the Frequency Assignment sub-problem

ensures that the interference between beams with the same frequency is below a

predefined threshold and, thus, assumed negligible, which allows for an independent

resolution for each beam. For the latter, the actual pointing loss due to the users not
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being at the center of the beam can be computed based on the approximate position

of the beam center and the real position and demand of the users. This loss is added

to the link budget equation before obtaining the necessary power.

At this point, it is no longer necessary to assume maximum demand on the

user side. On the contrary, for a better representation of real operations, the full

constellation can be simulated and the actual link budget solutions computed. The

total power consumption is then the aggregated power over the simulated time. As

a technical note, although the optimization process has no preference and tries to

optimize power as a whole, only the downlink power will be included in the metric,

since it is usually the most constrained in satellite systems.
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Chapter 5

A complete Resource Allocation

Process for a long-term operations

plan

By combining the framework described in Chapter 3 with the methods detailed in

Chapter 4, one obtains a powerful tool to solve the long-horizon Resource Allocation

problem for Satellite Communications. However, to understand the effects, results,

and implications of this tool, it must be subjected to rigorous testing. This Chapter

dissects the testing procedures, user scenarios, and model parameters that will be

used to analyze the performance of this tool. In addition, this Chapter presents a

first analysis on the behaviour of the framework under different system conditions.
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5.1 Integration validation

Prior to analyzing the results and performance of the proposed framework, correct-

ness needs to be assessed. In this case, a plan is considered correct when it does

not break any restriction of the model. Specifically, we need to ensure that the dif-

ferent constraints of the individual problems are not violated. For this purpose, the

simulation includes additional validation functions that ensures the validity of the

solution:

• User Grouping: we need to ensure that the users assigned to a beam fall within

the footprint of the beam at all points. This can be checked by simulating an

orbital period of the constellation and computing the angle between the user

terminal and the center of the beam. If all users fall within the half cone angle

of the beam for all simulation steps, the User Grouping is considered valid.

• Satellite Routing: we need to ensure that the time window allocated to a

beam falls within the visibility window of the satellite. This can be checked

by computing the specific visibility window of each satellite and assessing if all

assigned beams fall within that window. If they do, the Satellite Routing is

considered valid.

• Gateway Routing: we need to ensure that the gateway assigned to a beam is

visible to the assigned satellite during the time window of the beam. This can

be checked by computing the specific visibility window of each satellite with

respect to each gateway and assessing if all assigned beams fall within that

window. If they do, the Gateway Routing is considered valid.

• Frequency Assignment: we need to ensure that beams do not occupy the same

spectrum resource on the same satellite at any point in time. For this purpose,
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we assess each interference restriction and ensure that if there is a restriction,

the beams cannot occupy the same frequencies. If no constraints are violated,

the Frequency Assignment is considered valid.

5.2 Test procedures

As highlighted in Chapter 3, the framework described in this work consists of a

sequential resolution of the different long-horizon RA sub-problems. Given a specific

constellation model and once the user distribution and characteristics are known,

the first aspect to resolve is the User Grouping sub-problem. After deciding how to

group the users into beams, the next step is to decide the mapping between beams,

satellites, and gateways (i.e., resolve the Satellite Routing and Gateway Routing sub-

problems). Finally, the frequency characteristics of each beam need to be assessed

and assigned in a way that allows for feasible operation, which translates to resolving

the Frequency Assignment problem. Once all the decisions have been made, the plan

is ready for real-time operations.

Following this scheme, one can construct different tests by considering different

user distributions, constellation models, or resolution procedures. Specifically, while

user distributions and constellation models are considered fixed and given by the

operating conditions, the resolution procedures can be tuned by the satellite operator.

To better understand how each method performs under different conditions, each test

will consist of a specific combination of user distribution and constellation model in

which different algorithms are evaluated. Each configuration will be assessed based

on the metrics previously presented: Unmet Demand (UD) and Power consumption

(P).
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5.3 User distribution

This Section describes the three user distributions considered in this work. Each

user distribution consists of a list of users with fixed and known position and vari-

able demand. In addition, the antenna characteristics, as well as ground operating

conditions, are also given by the model.

5.3.1 Satellite operator model (SES)

This user distribution is given by SES S.A. and consists of around 20000 users dis-

tributed across the world. This model represents a realistic operational scenario for

the satellite operator and, therefore, will be the most used user distribution in this

work. It contains information of the location of the users as well as the requested

demand across a day (24h) of operations. This is the same user model as used in the

author’s previous works [22,68,82,132,147].

5.3.2 Proportional to population (Population)

This user distribution is automatically generated based on a combination of the

world population distribution and the SES dataset. Specifically, data from the Grid-

ded Population of the World v4 dataset [156] (published by the NASA Socioeconomic

Data and Applications Center, SEDAC) has been used to create a grid with 0.1◦ res-

olution where each cell represents the amount of population living in that cell. Then,

a total of 20000 points have been sampled from that grid, where the probability of

each point being sampled is proportional to the population in that cell. Each one of

those points represents a user in the new distribution. In order to obtain the user

demand, each point additionally samples a demand from a Gaussian distribution
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where the mean is set to be average demand per user in the distribution given by

SES S.A., which allow for both distributions to have similar demand needs, although

different geographical distributions. For correctness, demands that fall below a min-

imum threshold are set to that threshold value. The additional characteristics of the

user, such as the antenna properties, are decided by copying the user parameters

from the user in the SES distribution for which the demand is closest to the sampled

value. This is done to avoid large discrepancies between user capabilities and de-

mand (e.g., assigning a large demand to a low-capability antenna may result in link

unfeasibilities that are unrelated with the framework). The variable demand is also

extracted from the SES dataset and adjusted accordingly to the sampled demand.

Figure 5-1 shows the obtained distribution of users across the world.
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5.3.3 Proportional to uncovered population (Uncovered)

This user distribution follows a similar construction mechanism as the previous dis-

tribution, with the only difference being that the data is taken from the uncovered

plus badly covered population, instead of the entire population. Specifically, the user

terminals are sampled from the data used in [2], which estimates the population of

the world that is currently uncovered or poorly covered by the terrestrial network

infrastructure. Figure 5-2 shows the obtained distribution of users across the world.
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Parameter Short name Unit Typical value

Number of satellites Ns - 10

Number of beam channels Nch - 150

Number of polarizations Np - 2

Frequency reuse factor Nr - 12

Bandwidth per beam channel BWch MHz 15

Beam half cone angle δ ◦ 1

Table 5.1: Constellation parameters. Those parameters are either taken directly
from the filings or based on the author’s assumptions.

5.4 Constellation and Gateway Model

5.4.1 Constellation Model

The constellation chosen for the experiments is the constellation O3b mPower [9,10],

which consists of 10 satellites in equatorial orbits at 8062 kilometers above the Earth’s

surface (MEO orbit). As specified in the filings, the minimum elevation angle is 10◦.

In addition to the parameters specified in the filings, the technology included in the

satellite determines the capacity and capabilities of the constellation. Specifically,

the payload on-board the satellite combined with the authorizations obtained by

the operator determines the number of beam channels, number of polarizations,

frequency reuse factor, bandwidth per beam channel, and beam half cone angle.

Although the specific characteristics of the constellation depend on the experiment

to be run, the common numbers used in this work are given in Table 5.1. In addition,

and as highlighted in Section 3.7, it is assumed that the satellites have sufficient on-

board processing capabilities to decouple uplink and downlink.
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5.4.2 Gateway Model

In addition to the constellation model, the exact position and capabilities of the

gateways is necessary to determine the quality and feasibility of the link. In this

work, the position of the gateways is determined following a similar procedure as the

one presented by del Portillo et al. [157], in which a large pool of possible gateway

locations (a total of 181) is down-selected to obtain the desired number of gateways

with the maximum coverage. Since this procedure uses a genetic algorithm imple-

mentation for the down-selection process, which can induce deviations if computed

multiple times, the best set of 10/20/40/80 gateways is precomputed given the char-

acteristics of the described constellation. This prefixed sets of gateways will be used

repeatedly during the experiments.

5.5 Experiments

The experiments in this work are divided into three main categories:

• Baseline Comparison (A): initial tests on the performance of the framework.

This category includes two analysis: a general test under low capacity condi-

tions (i.e., when the capacity of the system is likely not enough to satisfy all

the demand), and a general test under high capacity conditions (i.e., when the

capacity of the system is likely enough to satisfy all the demand).

• User distribution sensitivity (B): tests to determine the capacity of the frame-

work to deal with different user distributions, by selecting users from different

sets (SES, Population, and Uncovered), and scenario dimensionalities, by ran-

domly selecting only a subset of users to serve.
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• Model sensitivity (C): tests to determine the capacity of the framework to

adapt to different constellation characteristics and assess how those affect per-

formance. These experiments include one-at-a-time variations on the model

parameters and sensitivity testing on specific modifications.

The different resolution procedures considered in the experiments are shown in Table

5.2. A summary of the different experiments performed in this work is given by

Table 5.3. Throughout the experiments, the UD will be normalized against the total

aggregated demand according to the user distribution, while the Power metric will

be normalized against the estimated power capabilities of the system. It is important

to remark that if P > 1, the real system would not be able to perform such a plan,

and additional beams would need to be dropped to fall within the capabilities of

the system (i.e., the satellite operator would need to increase UD to reduce P so

that P ≤ 1). As a final remark, some results discuss the coverage of the solution,

which refers to the met demand (MD) and can be computed as MD = 1 − UD (in

normalized units).
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5.6 Baseline Comparison and Performance Anal-

ysis (Experiment Set A)

This Section presents a first initial performance comparison and evaluation on the

framework. For this purpose, two different scenarios have been considered: one

with low system capacity, where the main objective of the framework should be to

accommodate as many users as possible, and one with sufficient system capacity to

include all users, and where the objective of the framework should be to minimize

power consumption. The exact parameters of each run is summarized in Part A of

Table 5.3.

5.6.1 Low system capacity

This first initial analysis evaluates the performance of the system under low system

capacity conditions. The maximal throughput of the system is set to be lower than

the expected capacity, and the optimization framework should try to allocate the

resources as efficiently as possible to maximize the amount of users that can be served.

This exercise revolves around two ideas: 1) test how a fully optimized framework (i.e.,

a framework in which all problems are optimized with state-of-the-art algorithms)

compares to a simple heuristic solution (i.e., a solution consisting of aggregation of

heuristics), and 2) assess the effect of each algorithm and each decision on the final

solution. In this context, a fully optimized algorithm corresponds to selecting the GA

for the User Grouping and choosing the solution with the least amount of beams, and

selecting the PSO, IP, and IP resolutions for the Satellite Routing, Gateway Routing,

and Frequency Assignment, respectively. A simple heuristic resolution procedure

corresponds to selecting one beam per user (which is equivalent to running the GA
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for the User grouping and selecting the option with the largest amount of beams),

choosing the closest satellite and gateway for the Satellite Routing and Gateway

Routing problems, respectively, and using the heuristic method for the Frequency

Assignment. Then, to test how decisions on the resolution process affects the final

solution, the fully optimized pipeline is tuned one factor at a time: by changing

only the User Grouping solution, or the Satellite Routing, Gateway Routing, or

Frequency Assignment algorithms, we can understand the role of those elements in

the performance of the framework.
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Figure 5-3: Performance comparison under low system capacity. Each point repre-
sents a different experiment, and each line represents the tendency of each resolution
procedure with the number of beams. The upper legend encodes each resolution pro-
cedure with a color, where each element is defined by a Satellite Routing, Gateway
Routing, and Frequency Assignment algorithm, in order. The bottom legend encodes
a resolution procedure for the User Grouping and the number of beams selected (if
applicable) with a shape.
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Inputs Outputs

User
Grouping

Satellite
Routing

Gateway
Routing

Frequency
Assignment

Number of
beams

Power UD

GA PSO IP IP 2500 0.397 0.001

GA PSO IP HEU 2500 0.585 0.002

GA PSO HEU IP 2500 0.378 0.061

GA HEU IP IP 2500 0.362 0.026

GA HEU HEU HEU 2500 0.409 0.127

GA PSO IP IP 6000 0.492 0.001

GA PSO IP HEU 6000 0.650 0.002

GA PSO HEU IP 6000 0.447 0.105

GA HEU IP IP 6000 0.458 0.041

GA HEU HEU HEU 6000 0.453 0.187

GA PSO IP IP 10000 0.850 0.016

GA PSO IP HEU 10000 0.968 0.017

GA PSO HEU IP 10000 0.657 0.263

GA HEU IP IP 10000 0.729 0.065

GA HEU HEU HEU 10000 0.644 0.334

GA PSO IP IP 20000 2.534 0.104

GA PSO IP HEU 20000 2.532 0.100

GA PSO HEU IP 20000 1.479 0.686

GA HEU IP IP 20000 1.864 0.182

GA HEU HEU HEU 20000 1.218 0.752

Grid PSO IP IP 2500 0.363 0.001

Grid PSO IP HEU 2500 0.602 0.002

Grid PSO HEU IP 2500 0.347 0.066

Grid HEU IP IP 2500 0.342 0.028

Grid HEU HEU HEU 2500 0.440 0.123

Table 5.4: Detailed numbers on the performance comparison under low system ca-
pacity.

This leads to a total of 25 evaluations, which are illustrated in Figure 5-3 and

Table 5.4. The fully optimized solution corresponds to the blue square, while the

simple heuristic resolution corresponds to the red star. All the other points corre-

spond to intermediate solutions. As shown, the simple heuristics have approximately
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a 75% of UD, which corresponds to covering only 25% of the demand. On the other

hand, the fully optimized pipeline achieves the lowest UD, at only 0.1%. In other

words, the optimized framework is able to cover around 4 times the demand covered

by the heuristic resolution. In terms of power, the solution given by purely heuristics

achieves a value of 1.218, which is 21.8% higher than the actual power achievable

by the system. To obtain an operational plan, even more demand would need to be

dropped so that the power does not exceed the capabilities of the satellites. On the

other hand, the optimized framework not only manages to practically cover all the

demand, but does so using only 40% of the total power available.

While the two-point comparison clearly implies that an efficient usage of resources

is desirable in all fronts, it is also important to notice which factors generate the

larger gains. If we turn our look into the User Grouping solution and the number

of beams selected, we observe that selecting a lower number of beams is desirable

in most cases. As mentioned in Chapter 3, reducing the number of beams helps

reduce the amount of virtual demand (demand that only appears due to integer

restrictions on the allocation of resources), which increases the overall capacity of

the system. Additionally, dealing with beams with higher demand does not pose

additional problems to the resolution procedures (with one exception being the cyan

square, which corresponds to the 2.5k beam solution from the GA for the User

Grouping and the PSO, IP, and HEU procedures for the Satellite Routing, Gateway

Routing, and Frequency Assignment, respectively). If we compare the general low

beam solution to the grid approach, we observe that both of them perform fairly

similar, with barely any noticeable change in power or UD. The average improvement

in both power and UD when selecting the 2.5k beam solution over the 20k is shown

in the first section of Figure 5-4. As mentioned, choosing the 2.5k beams solution

over a grid solution only barely modifies performance, but selecting 2.5k beams over
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20k beams leads to almost 90% average reduction in UD and almost 80% average

reduction in power.

0% 10% 20% 30% 40% 50% 60% 70% 80%
Unmet Demand

GA (2.5k)-PSO-IP-IP

Optimized Frequency Assignment

Optimized Gateway Routing
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GA (20k)-HEU-HEU-HEU

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
Power consumption

GA (2.5k)-PSO-IP-IP

Optimized Frequency Assignment

Optimized Gateway Routing

Optimized Satellite Routing

Optimized User Grouping

GA (20k)-HEU-HEU-HEU

(b)

Figure 5-4: Impact of each resolution procedure decision on the low capacity system.
The upper and lower bars represent the heuristic and optimized solutions, respec-
tively. The intermediate bars denote the independent improvement (or decline) of
the optimized algorithms on each sub-problem.

When shifting focus to the other algorithms, the information contained in Figures

5-3 and 5-4 and Table 5.4 suggest that the problem with the highest impact on the

UD metric is the Gateway Routing problem. Specifically, an optimized algorithm for

this problem can achieve up to 90% average reductions in UD. This can be explained
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by the fact that gateways tend to be a bottleneck of the system, so a robust and

efficient allocation mechanism to map beams to gateways is needed to maximize

system capacity. On a secondary level, the Satellite Routing algorithm can help

reduce around 60% the UD. Similar to the previous case, satellites can also be a

bottleneck in dense regions, and spreading the demand throughout the constellation

helps in alleviating this pressure. Although less impactful than the previous two

resolution procedures, selecting a suitable technique for the Frequency Assignment

problem can reduce the UD around 40%. In terms of power, however, the same

Frequency Assignment algorithm can help reduce power consumption around 20%

on average. Selecting an optimized resolution for the Satellite Routing or Gateway

Routing problems actually increases the power consumption between 15% and 20%,

as a trade-off for improved system throughput. This is explained by the fact that the

heuristic of going to the nearest satellite or gateway is always the one that translates

to the lowest power consumption, since the satellite is nearest to the terminal and

less power is required for the communication to happen. Any other algorithm that

modifies this allocation will therefore incur in a larger power consumption.

5.6.2 High system capacity

The objective of this second analysis is to assess the properties of the system in

similar aspects as the previous one, but in a high capacity scenario. In this case,

the framework should try to minimize the overall power consumption of the system.

Similar to the previous case, the experiment revolves around 25 evaluations of the

framework under different resolution procedures, showcased in Figure 5-5 and Ta-

ble 5.5. As highlighted in the previous scenario, the red star represents an simple

solution constituted by classic heuristics. In this case, even this straightforward res-
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olution is able to cover more than 85% of the demand, due to the extraordinarily

high capabilities of the system. Furthermore, most algorithms are able to achieve

total coverage (0 UD) with minimal optimization. Given this conditions, the best

algorithm is the one that provides the solution with lower power, which turns out to

be the one that uses a Grid approach for the User Grouping, and a HEU, IP, and IP

for the Satellite Routing, Gateway Routing, and Frequency Assignment problems,

respectively (denoted as a green plus symbol).
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Figure 5-5: Performance comparison under high system capacity. Each point repre-
sents a different experiment, and each line represents the tendency of each resolution
procedure with the number of beams. The upper legend encodes each resolution pro-
cedure with a color, where each element is defined by a Satellite Routing, Gateway
Routing, and Frequency Assignment algorithm, in order. The bottom legend encodes
a resolution procedure for the User Grouping and the number of beams selected (if
applicable) with a shape.

Similar to the previous case, reducing the number of beams always helps in re-
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Inputs Outputs

User
Grouping

Satellite
Routing

Gateway
Routing

Frequency
Assignment

Number of
beams

Power UD

GA PSO IP IP 2500 0.339 0.000

GA PSO IP HEU 2500 0.433 0.000

GA PSO HEU IP 2500 0.332 0.000

GA HEU IP IP 2500 0.334 0.000

GA HEU HEU HEU 2500 0.512 0.004

GA PSO IP IP 6000 0.398 0.000

GA PSO IP HEU 6000 0.484 0.000

GA PSO HEU IP 6000 0.399 0.000

GA HEU IP IP 6000 0.386 0.000

GA HEU HEU HEU 6000 0.557 0.015

GA PSO IP IP 10000 0.685 0.000

GA PSO IP HEU 10000 0.970 0.000

GA PSO HEU IP 10000 0.718 0.001

GA HEU IP IP 10000 0.668 0.004

GA HEU HEU HEU 10000 0.937 0.023

GA PSO IP IP 20000 2.527 0.004

GA PSO IP HEU 20000 3.182 0.006

GA PSO HEU IP 20000 2.185 0.113

GA HEU IP IP 20000 2.184 0.030

GA HEU HEU HEU 20000 2.258 0.141

Grid PSO IP IP 2500 0.341 0.000

Grid PSO IP HEU 2500 0.482 0.000

Grid PSO HEU IP 2500 0.328 0.000

Grid HEU IP IP 2500 0.305 0.000

Grid HEU HEU HEU 2500 0.519 0.003

Table 5.5: Detailed numbers on the performance comparison under high system
capacity.

ducing both the UD and power consumption, since it helps reducing the amount of

virtual demand on the system. Likewise, the grid method performs comparable to

the lowest beam solution from the GA approach, both in terms of UD and power.

As shown in the first part of Figure 5-6, we can achieve significant gains in power by

125



reducing the number of beams. Specifically, we can reduce power around 85% when

using 2.5k beams over 20k beams. As shown, the 2.5k beam solution for the User

Grouping performs on average slightly better than the Grid approach, but the reduc-

tion in power is not significant enough (less than 5%) to determine which approach

is better.
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Power consumption

GA (2.5k)-PSO-IP-IP
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Optimized Satellite Routing

Optimized User Grouping

GA (20k)-HEU-HEU-HEU

Figure 5-6: Impact of each resolution procedure decision on the power for the high
capacity system. The upper and lower bars represent the heuristic and optimized
solutions, respectively. The intermediate bars denote the independent improvement
of the optimized algorithms on each sub-problem.

The largest difference of this high capacity scenario versus the previous low ca-

pacity one is shown in the resolution procedures for the Satellite Routing, Gateway

Routing, and Frequency Assignment. While an optimized algorithm for the Fre-

quency Assignment had the lowest impact on UD in the previous experiment, it is

highly relevant to choose a good Frequency Assignment method if the objective is

solely to reduce power, and the results show that an optimized version can reduce

power in the order of 30% on average with respect to simple heuristics. It is also

important to note that, while the optimized methods for the Satellite Routing and

Gateway Routing problems implied an increase in power consumption on the low

capacity case, here they have the opposite effect and they actually help in decreasing
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the power consumption. This can be explained by the fact that, while the consump-

tion per beam is larger due to being further from the satellite with respect to the

heuristic, a more balanced allocation can favor a better distributed spectrum man-

agement, which compensates for the power loss of those methods. However, their

impact is generally small and they can only achieve reductions up to 10%.

5.6.3 Run-time analysis

While the previous Section showed that the optimized pipeline is desirable to achieve

improved UD and power consumption, it comes at a computation cost: while sim-

ple heuristics tend to be fast to compute and evaluate, complex algorithms incur

in significantly higher computing cost, which may make them impractical for real

operations. For this reason, it is important to analyze the cost of the optimization

algorithms in terms of computation and demonstrate that the full framework can

be executed in reasonable time. The results in Table 5.6 correspond to the average

computing time of 4 independent runs of the algorithms in the same conditions as

the previous Section. The code has been executed using common python libraries for

Artificial Intelligence, such as numpy or gurobi®, and a 16 CPU modern computer

operating at 2.3 GHz. The results show that the full optimization framework can

be executed in around 3.5h and produces a plan that is valid for at least an orbital

period. Note that using a Grid algorithm for the User Grouping problem instead of

a GA can reduce the computing time to around 1h at the expense of a slight de-

crease in system performance. All other algorithms not presented in the table have

an execution time < 1 minute due to their heuristical nature.
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Algorithm Average Computing Time (h)

Genetic Algorithm for User Grouping 2.560

Grid for User Grouping 0.041

Particle Swarm Optimization for
Satellite Routing

0.020

Mixed Integer Programming for
Gateway Routing

0.001

Mixed Integer Programming for
Frequency Assignment

0.988

Table 5.6: Execution time for each optimization algorithm considered in this work.
Results are reported as the average of 4 independent runs on a standard 16 CPU
computer at 2.3 GHz.
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Chapter 6

Sensitivity and Robustness

analysis on the Resource

Allocation Process

Following the pattern established by Table 5.3, this Chapter will cover the experi-

ments noted as B, which refer to the robustness and performance of the model against

different user distributions, and C, which refer to the sensitivity of the model against

different operational parameters. While the Figures will be covered in the following

lines, only some Tables will be presented in this Section to ease comprehension. A

complete list of Tables with all the detailed results can be found in Appendix B.

6.1 Robustness Analysis (Experiment Set B)

This Section details the results for the robustness analysis performed in this work,

where robustness refers to the capacity of the framework to adapt to different inputs
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of the model. In this case, the inputs of the model corresponds to the user distri-

bution. This Section will be decomposed into three different tests, one for each user

distribution (SES, Population, and Uncovered). In each test, each resolution proce-

dure1 will be evaluated under three different scenarios with 200, 2k, and 20k users.

Since the results that involved the Grid and the GA with 2.5k beams for the User

Grouping have been shown to be practically identical, only the solution with 2.5k

beams will be considered in the experiments of this Section. Similarly, since solutions

with higher number of beams have been shown to perform worse in an overwhelming

amount of the experiments in set A, they have been left out of the experiments in

set B.

6.1.1 Robustness to dimensionality on the SES distribution

This first robustness tests assesses the capability of the framework to adapt to dif-

ferent dimensionality scenarios under the SES user distribution. Since the results for

Section 5.6 already report the values of the framework on the 20k user input, only

the heuristic and the fully optimized resolution procedures have been evaluated in

this scenario.

Figure 6-1 shows the results for the heuristic and fully optimized pipelines on the

200, 2k, and 20k user inputs on both power and UD. If we focus on the points with

20k users (marked as a cross), we observe that the main focus of the framework is

to prioritize the reduction in unmet demand, while power plays a secondary role.

By observing the tendency of the heuristic solutions (red line), we can assess that

even the heuristics where no objective function is defined tend to try to maximize

the system’s capacity, often disregarding power aspects. As mentioned in Section

1A resolution procedure represents a specific combination of algorithms that resolve each of the
sub-problems in the framework
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Figure 6-1: Performance comparison under three dimensionality scenarios. Each
point represents a different experiment, and each line represents the tendency of
each resolution procedure with the number of users. The upper legend encodes each
resolution procedure with a color, where each element is defined by a User Grouping,
Satellite Routing, Gateway Routing, and Frequency Assignment algorithm, in order.
The bottom legend encodes the number of users considered in each evaluation with
a shape.

5.6, the optimized pipeline is able to quadruple the amount of demand met with

similar power levels. As we reach 0 UD (square and circle shapes), the focus shifts

towards minimizing power, where the optimized pipeline is able to reduce power by

75% and 40% for the 200 and 2k user input over the heuristic resolution, respectively.

This first analysis entails that having an optimized resolution procedure for the full

long-horizon resource allocation pipeline yields highly improved results over heuristic

procedures independently on the dimensionality of the problem.
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6.1.2 Robustness to dimensionality on the Population dis-

tribution

Together with the next experiment, this second robustness test addresses the ca-

pability of the framework to adapt to different user distributions. Specifically, this

experiment uses the Population proportional user dataset, which represents a user

scenario where the user terminals are sampled from the global population distribu-

tion, as explained in Section 5.3.
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Figure 6-2: Performance comparison under the population proportional user distri-
bution. Each point represents a different experiment, and each line represents the
tendency of each resolution procedure with the number of users. The upper legend
encodes each resolution procedure with a color, where each element is defined by
a User Grouping, Satellite Routing, Gateway Routing, and Frequency Assignment
algorithm, in order. The bottom legend encodes the number of users considered in
each evaluation with a shape.

Figure 6-2 and Table 6.1 show results for 5 different resolution procedures under
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Inputs Outputs

User
Grouping

Satellite
Routing

Gateway
Routing

Frequency
Assignment

Number of
users

Power UD

GA (200) PSO IP IP 200 0.034 0.000

GA (200) PSO IP HEU 200 0.183 0.000

GA (200) PSO HEU IP 200 0.035 0.000

GA (200) HEU IP IP 200 0.035 0.000

GA (200) HEU HEU HEU 200 0.133 0.000

GA (2k) PSO IP IP 2000 0.193 0.000

GA (2k) PSO IP HEU 2000 0.274 0.000

GA (2k) PSO HEU IP 2000 0.187 0.000

GA (2k) HEU IP IP 2000 0.164 0.000

GA (2k) HEU HEU HEU 2000 0.257 0.000

GA (4k) PSO IP IP 20000 0.434 0.106

GA (4k) PSO IP HEU 20000 0.489 0.122

GA (4k) PSO HEU IP 20000 0.388 0.241

GA (4k) HEU IP IP 20000 0.329 0.209

GA (4k) HEU HEU HEU 20000 0.311 0.323

Table 6.1: Detailed numbers on the performance comparison under different dimen-
sionality scenarios on the Population dataset. The leftmost columns indicate the
resolution procedure chosen for each sub-problem (plus the number of beams se-
lected for the User Grouping problem). The fifth column indicates the variable that
is being tuned in the experiments. The two rightmost columns indicate the metrics
of the framework under the established conditions.

3 different user dimensionality scenarios: 200, 2k, and 20k users. If we focus on the

20k user input data (cross-shaped points), we observe a similar behaviour as observed

in the set of experiments A in Section 5.6: the fully optimized pipeline achieves the

lowest UD, and each algorithm in the chain helps contribute in reducing this factor.

However, this reduction comes at a power cost: the fully optimized solution achieves

a 67% reduction in UD over the heuristics resolution, at an expense of a 40% increase

in power consumption. Still, the final solution is below power limits of the system

capacity (represented by a normalized value of 1). Even more, results show that
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both the Satellite Routing and Gateway Routing formulations trade a lower UD for

a higher power, while the Frequency Assignment algorithm achieves a reduction in

both factors simultaneously.

Similarly to the results of experiment set A, once we move to the 0 UD region a

fully optimized pipeline may not yield the lowest power. This can be observed in the

200 and 2k user inputs (square and circle shapes, respectively): since the optimized

algorithms for Satellite Routing and Gateway Algorithm tend to put beams further

away from the satellite, the system capacity rises at the cost of an increased power

consumption. Thus, if we have enough capacity to cover all users, the results suggest

that we can use heuristic resolutions for the Satellite Routing and Gateway Routing

algorithms in order to save power.

It is important to highlight that, while the heuristics perform better under this

user scenario than under the SES dataset for the 20k user input (from 75% UD in the

previous case to 32% in this one), the fully optimized pipeline performs worse (from

0.1% UD to 11%). This can be explained by the nature of the user distributions:

the SES dataset tends to have highly dense areas and large sparse zones, while the

Population proportional distribution has a more spread demand. Concentrating the

user base implies very high demand peaks, which are not well dealt by the heuristic

algorithms, but are well exploited by the optimized techniques. Thus, more dense

environments advocate for an improved and more complex resolution procedure,

while simpler algorithms can be developed for more demand-spread scenarios. To

assess this conclusion further, the next experiment should offer a middle ground

between density and spread in demand. If this statement is correct, the results

should show an improvement in UD that is between the one seen for the SES dataset

and the one for the Population proportional dataset.
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6.1.3 Robustness to dimensionality on the Uncovered distri-

bution

This third and final test evaluates the performance of the different resolution pro-

cedures under the Uncovered population dataset. Similarly to the Population pro-

portional user distribution used in the previous experiment, the user terminals are

sampled from the uncovered areas of the Earth according to population distribution,

as explained in 5.3.
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Figure 6-3: Performance comparison under the uncovered population user distri-
bution. Each point represents a different experiment, and each line represents the
tendency of each resolution procedure with the number of users. The upper legend
encodes each resolution procedure with a color, where each element is defined by
a User Grouping, Satellite Routing, Gateway Routing, and Frequency Assignment
algorithm, in order. The bottom legend encodes the number of users considered in
each evaluation with a shape.

Figure 6-3 and Table 6.2 show the results for the 5 resolution procedures and
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Inputs Outputs

User
Grouping

Satellite
Routing

Gateway
Routing

Frequency
Assignment

Number of
users

Power UD

GA (200) PSO IP IP 200 0.034 0.000

GA (200) PSO IP HEU 200 0.154 0.000

GA (200) PSO HEU IP 200 0.032 0.000

GA (200) HEU IP IP 200 0.030 0.000

GA (200) HEU HEU HEU 200 0.110 0.000

GA (2k) PSO IP IP 2000 0.173 0.000

GA (2k) PSO IP HEU 2000 0.270 0.000

GA (2k) PSO HEU IP 2000 0.178 0.000

GA (2k) HEU IP IP 2000 0.152 0.001

GA (2k) HEU HEU HEU 2000 0.231 0.002

GA (3k) PSO IP IP 20000 0.387 0.194

GA (3k) PSO IP HEU 20000 0.475 0.196

GA (3k) PSO HEU IP 20000 0.360 0.323

GA (3k) HEU IP IP 20000 0.245 0.383

GA (3k) HEU HEU HEU 20000 0.262 0.448

Table 6.2: Detailed numbers on the performance comparison under different dimen-
sionality scenarios on the Uncovered dataset. The leftmost columns indicate the
resolution procedure chosen for each sub-problem (plus the number of beams se-
lected for the User Grouping problem). The fifth column indicates the variable that
is being tuned in the experiments. The two rightmost columns indicate the metrics
of the framework under the established conditions.

3 dimensionality scenarios on the Uncovered population dataset. Similarly to the

previous cases, the 20k results (cross-shape points) show that the optimized resolu-

tion procedures are able to highly reduce the UD compared to simple heuristics, at

the expense of an increase in power consumption. Specifically, the fully optimized

pipeline reduces the unmet demand to 19%, which translates to a 57% reduction

over the heuristic result. This follows the logic presented in the previous section

about user distributions and proves the validity of the claim: the heuristic solutions

presented in this work are highly affected by user density and are unable to balance
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the load between regions, which leads to a poorer performance. On the other hand,

optimized algorithms are able to exploit the regional characteristics of dense regions

and greatly boost performance compared to more simple techniques.

For lower dimensionality scenarios (square and circle shapes), the results state

once again the conclusions of the previous sections: once we move into 0 UD re-

gions, the optimized algorithms tend to achieve solutions with slightly higher power

compared to more simple approaches. Specifically, in scenarios with excess capac-

ity, simple solutions allow for power savings due to the power-efficiency approaches

considered, while in scenarios with low capacity, optimized resolution procedures are

able to efficiently manage the system’s resources to significantly raise the satellite’s

capabilities, thus highly increasing the number of users that can be served.

As a closing remark for experiment set B, the results show that, although the

performance of the algorithms varies depending on the user distribution, the frame-

work is able to provide a feasible and operable solution for the resource allocation

problem in all cases. Even more, optimized implementations prove to improve sys-

tem throughput compared to simple heuristics, independently on the user input and

dimensionality scenario.

6.2 Sensitivity Analysis (Experiment Set C)

This Section details the results for the sensitivity analysis performed in this work,

where sensitivity refers to the capacity of the framework to adapt to different pa-

rameters of the model. In this case, the parameters of the model denote all those

operational variables defined by the hardware characteristics. All evaluations in this

Section will be performed on the SES user distribution. This Section will be de-

composed into seven different tests: one for each model parameter (i.e., number of
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satellites, number of gateways, number of beam channels, frequency reuse factor,

bandwidth per beam channel, and half cone angle) plus one performing a combined

analysis (number of beam channels plus bandwidth per beam channel). In each test,

each resolution procedure will be evaluated under three or four parameter values,

as specified in Table 5.3. Since solutions with higher number of beams have been

shown to perform worse in an overwhelming amount of the experiments in set A,

they have been left out of the experiments in set C. Finally, to ease comprehension

of the results, most analysis will only include two versions of the resolution pipeline:

one heuristic version that includes the Grid solution for the User Grouping, and a

heuristic algorithm for the rest of the sub-problems, and one optimized version that

corresponds to the best pipeline determined in Section 5.6.

6.2.1 Sensitivity test: Number of satellites

While the number of satellites in a constellation is usually an early decision in the

development of a space project, analyzing how coverage varies depending on this

factor can help assess the performance and validity of the framework under different

conditions while informing future design decisions. This experiment evaluates the

framework under a constellation with 6, 10, and 14 satellites. The rest of the satellite

and orbital parameters are kept constant.

Figure 6-4 and Table B.4 present the results of the framework for the heuristic

and fully optimized pipelines under different number of satellites. Since increasing

the number of satellites actively boosts the capacity of the constellation, the coverage

always improves when adding more spacecrafts. While the relation with power is not

so apparent at first, it is important to note that the capacity of the system in terms of

power also increases with the number of satellites. Therefore, while the total power
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Figure 6-4: Performance comparison under different number of satellites. Each point
represents a different experiment, and each line represents the tendency of each
resolution procedure with the number of satellites. The upper legend encodes each
resolution procedure with a color, where each element is defined by a User Grouping,
Satellite Routing, Gateway Routing, and Frequency Assignment algorithm, in order.
The bottom legend encodes the number of satellites considered in each evaluation
with a shape.

may increase, it does so at a lower rate than the total power capacity, and thus the

power per satellite will always be lower.

Turning our attention to the heuristic pipeline (red line), we observe that while

the UD for 6 satellites is at 24%, increasing the number of satellites to 14 only reduces

UD by 50% and the final configuration still has almost 12% of uncovered users. In

other words, the heuristic allocations are unable to exploit the increased capacity

of the system and are unable to deliver the expected performance when increasing

the number of satellites. On the other hand, an optimized allocation is already able
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to achieve a 10% UD with only 6 satellites. It is important to emphasize that the

optimized framework is able to achieve better performance with 6 satellites than the

heuristics with 14 in terms of coverage. Even more, when increasing the number of

satellites to 10, the system is able to achieve virtually total coverage, with only 0.1%

of uncovered demand. In terms of power consumption, the optimized solution is also

able to reduce this value between 10% and 23% over simple heuristics.

6.2.2 Sensitivity test: Number of gateways

Deciding how many gateways to use in a satellite constellation is one of the key

drivers of system throughput [155]. Thus, analyzing how the framework performs

under different ground station configurations can give significant insight on the be-

haviour of each resolution procedure and the overall capabilities of the framework.

For this purpose, this experiment evaluates the different algorithm pipelines under

four gateway configurations with 10, 20, 40, and 80 gateways.

Figure 6-5 and Table B.5 illustrate the results for the heuristic and fully optimized

pipelines under different number of gateways. Similar to the previous case, increasing

the number of gateways has always a positive impact in the total coverage. However,

the effect on the power consumption is less apparent: while increasing the number

of gateways in the low range (between 10 and 20) reduces the power consumption

by allowing for a better use of the frequency spectrum, adding more ground stations

after this point has the opposite effect, as the increase in capacity allows for more

users to be added, which incur in a larger power value.

If we shift our focus on the heuristic pipeline (red line), we observe that the

number of gateways plays a crucial role in the capacity of the system: while only

14% of the demand is covered with 10 gateways, this number rises up to 57% with
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Figure 6-5: Performance comparison under different number of gateways. Each point
represents a different experiment, and each line represents the tendency of each
resolution procedure with the number of gateways. The upper legend encodes each
resolution procedure with a color, where each element is defined by a User Grouping,
Satellite Routing, Gateway Routing, and Frequency Assignment algorithm, in order.
The bottom legend encodes the number of gateways considered in each evaluation
with a shape.

20, 88% with 40, and 92% with 80. In other words, the system is able to multiply by

more than 4 the capacity of the constellation only by increasing by a factor of 2 the

number of gateways in the range from 10 to 20. Gains in the 20 to 40 range continue

to be significant, being a factor of 1.5. After that, further increasing the capabilities

of the ground segment report minimal gains on the throughput of the system. On

the other hand, the optimized pipeline is able to obtain better coverage with 10

gateways than the heuristic results with 80, which demonstrates the capabilities of

the optimization framework. Going from 10 to 20 gateways shifts the UD from 7%
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to 3%, while the system achieves virtually total coverage with 40 gateways.

6.2.3 Sensitivity test: Number of beam channels

While the previous two tests cover important parameters outside the spacecraft, the

on-board technology is what determines the capacity and flexibility of each satellite.

Together with power, the frequency pool is the most important factor in determining

the available resources. Specifically, this pool is limited by the total amount of fre-

quency available (which connects to the number of beam channels and the bandwidth

per beam channel), and the number of frequency reuses allowed by the hardware.

The following tests analyze each of these three elements and their impact in the

framework’s performance.

As a pure measure of the total capacity, the number of beam channels determine

how many frequency slots are available to use. This test assesses the performance

of different algorithms with different number of beam channels (100, 150, and 200).

Exceptionally, this test will evaluate 5 different pipelines, since this will ease the

comprehension of how this parameter affects each optimization method.

Figure 6-6 and Table B.6 present the results for the 5 different resolution pro-

cedures under 3 different number of beam channels. As expected, increasing this

factor (which corresponds to increasing capacity) always has a positive impact in the

coverage of the constellation and reduces UD. However, its effect in power is unclear

and depends on the exact characteristics of the scenario and resolution procedure.

As a general trend, increasing the number of beam channels in solutions with higher

UD will tend to trade power for UD, while in solutions with low UD will tend to

reduce both metrics.

If we shift our focus onto the full heuristic resolution (red line), we observe a
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Figure 6-6: Performance comparison under different number of beam channels. Each
point represents a different experiment, and each line represents the tendency of
each resolution procedure with the number of beam channels. The upper legend
encodes each resolution procedure with a color, where each element is defined by
a User Grouping, Satellite Routing, Gateway Routing, and Frequency Assignment
algorithm, in order. The bottom legend encodes the number of beam channels con-
sidered in each evaluation with a shape.

net increase of 41% (from 62% to 88%) in coverage when increasing the frequency

pool to 1.5 its initial value, which practically corresponds to a linear gain. The

gain observed when increasing up to 200 beam channels is significantly reduced, but

still noticeable, reducing the UD to only 4%. All these improvements come at a

power expense. Turning our attention to the fully optimized pipeline (blue line),

we can make a similar statement as previous experiments regarding the capabilities

of the optimization framework: the results show that a fully optimized pipeline

with 100 beam channels is able to achieve better performance than the heuristic
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implementations with twice the number of channels. Even more, increasing the

number of channels also implies a reduction in power of 22% when doubling the

system’s capacity.

The results involving different resolution procedures (cyan, purple, and green

lines) reinforce the conclusions from Section 5.6. The most crucial sub-problem to

reduce UD is the Gateway Routing algorithm, followed by the Satellite Routing and

Frequency Assignment. On the other hand, the Frequency Assignment is critical to

reduce the power consumption of the system, being able to achieve power reductions

between 17% and 32% solely by optimizing frequency. Once more, if the system is

able to cover all the users (i.e., the solution is in the 0 UD region), the best resolution

procedure may involve heuristics that improve the link budget link quality in a way

that reduces power consumption (in this case the best solution for the 200 beam

channel scenario corresponds to the purple pipeline).

6.2.4 Sensitivity test: Bandwidth per beam channel

Similar to the number of beam channels, the bandwidth per beam channel has a

direct impact in the total capacity of the system. In this case, instead of the number

of slots available, the bandwidth per beam channel affects the size of each slot. This

test assesses the performance of different algorithms with different bandwidth per

beam channel (10 MHz, 15 MHz, and 20 MHz).

Figure 6-7 and Table B.7 show the results for the the heuristic and the fully

optimized pipelines under 3 different bandwidths per beam channel. As expected,

an increase in the total bandwidth per channel has a positive impact in the total

coverage of the system, since the system throughput is boosted. On the other hand,

the effect on power is less clear and depends on the exact configuration and resolution
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Figure 6-7: Performance comparison under different bandwidths. Each point repre-
sents a different experiment, and each line represents the tendency of each resolution
procedure with the bandwidth. The upper legend encodes each resolution procedure
with a color, where each element is defined by a User Grouping, Satellite Routing,
Gateway Routing, and Frequency Assignment algorithm, in order. The bottom leg-
end encodes the bandwidth considered in each evaluation with a shape.

procedure. While increasing the bandwidth always helps reducing power in the

optimized resolution procedure, its effect on the heuristic solution does not follow a

clear pattern.

If we turn our attention to the heuristic solution (red line), we observe that

the change from 10 MHz per beam channel to 15 MHz reduces the UD from 36%

to 12%, which translates to a 33% increase in total coverage. Further increases in

bandwidth also achieve up to 9% improvement in coverage. However, similarly as the

previous case, the optimized algorithm is able to achieve better coverage and power

consumption with 10 MHz per beam channel compared to the heuristic solution
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with 20 MHz per beam channel. In other words, even with half the system capacity,

the optimized pipeline obtains improved performance over the heuristic solutions.

Furthermore, increasing the bandwidth has a positive effect in both UD and power

consumption, as the optimization algorithms are able to fully exploit the flexibilities

of the system.

6.2.5 Sensitivity test: Frequency reuse factor

This test evaluates the sensitivity of the results against different reuse factor values

(6, 12, and 18). While the number of beam channels and the bandwidth per beam

channel have clear implications in the total capacity of the system, the impact of the

frequency reuse factor depends on the user distribution and its effectiveness depends

on the user density. Specifically, if all users were to be clumped into the same region,

a frequency reuse factor larger than 1 would have virtually no impact, since all the

users would have interference restrictions between them. On the other end, when

users are highly spread amongst zones, the frequency reuse factor has a significant

contribution to the total capacity.

Figure 6-8 and Table B.8 illustrate the results for the fully optimized and heuris-

tic pipelines on different frequency reuse factors. As expected, the frequency reuse

factor has a positive impact in UD. However, this effect is severely limited when con-

sidering the fully heuristic resolution procedure, since those techniques tend to obtain

a larger number of frequency-related constraints, which limits the impact of reusing

frequency. Specifically, when doubling the frequency reuse factor from 6 to 12, the

constellation is able to improve coverage by 7% when using the heuristic resolution

procedure. Furthermore, there is no significant improvement when changing the fre-

quency reuse factor from 12 to 18. On the other end, the fully optimized algorithms
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Figure 6-8: Performance comparison under different frequency reuse factors. Each
point represents a different experiment, and each line represents the tendency of each
resolution procedure with the frequency reuse factors. The upper legend encodes each
resolution procedure with a color, where each element is defined by a User Grouping,
Satellite Routing, Gateway Routing, and Frequency Assignment algorithm, in order.
The bottom legend encodes the frequency reuse factors considered in each evaluation
with a shape.

can make better use of this flexibility and exploit the regional characteristics of the

user distribution to maximize system capacity. An optimized framework is able to

achieve higher coverage with a frequency reuse factor of 6 compared to an heuristic

resolution with three times the reuse factor. Even more, when the frequency reuse

factor is increased to 12, virtually all the demand is met.
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6.2.6 Sensitivity test: Half cone angle

While the relation between the frequency pool and total capacity is fairly clear, the

effects of the beam’s half cone angle are not apparent. On one hand, a larger footprint

allows for a better grouping of beams and, thus, less beams, which has a significant

contribution to performance as discussed in Section 5.6. On the other hand, smaller

footprints allow for higher gains and better link quality while reducing the overall

interference with nearby beams. The objective of this experiment is to assess the

impact of the half cone angle on the developed framework and its implications in

performance. The experiment will test the fully optimized pipeline and the heuristic

resolution on three different half cone angle configurations: 0.5◦, 1◦, and 1.5◦.

Figure 6-9 and Table B.9 present the results for the two main resolution proce-

dures on the three half cone angle configurations. According to the results, reducing

the half cone angle has a positive impact on UD and offers a significant increase in

coverage without changing most of the configuration of the payload. The advantages

of having a reduced footprint in terms of higher gain and lower interference outweigh

the benefits of grouping the users further in terms of total coverage. On the other

hand, reducing the half cone angle implies a higher power requirement, since we

need more individual beams. This implies that once we reach 0 UD, we should not

decrease the half cone angle further without trying to increase demand, since that

would only result in a higher power consumption.

If we focus on the heuristic results (red line), we observe a 19% increase in coverage

when changing from 1.5◦ to 1◦. There is still benefit in further reducing the half

cone angle, but the impact is less significant. Similarly to the previous results, the

optimized pipeline is able to achieve improved performance in both metrics with a

half cone angle of 1.5◦ (blue cross) compared to the heuristic resolution with a half
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Figure 6-9: Performance comparison under different half cone angles. Each point
represents a different experiment, and each line represents the tendency of each reso-
lution procedure with the half cone angle. The upper legend encodes each resolution
procedure with a color, where each element is defined by a User Grouping, Satellite
Routing, Gateway Routing, and Frequency Assignment algorithm, in order. The bot-
tom legend encodes the half cone angle considered in each evaluation with a shape.

cone angle of 0.5◦ (red square).

6.2.7 Sensitivity test: Number of and bandwidth per beam

channel

While one-at-a-time experiments evaluate the tendency of change of single factors,

tests combining multiple elements are necessary to understand how the different com-

ponents interact. This last experiment assesses the interaction between the number

of beam channels and the bandwidth assigned to each channel. Specifically, the ob-
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Figure 6-10: Performance comparison under different number of beam channels and
bandwidths. Each point represents a different experiment, and each line represents
the tendency of each resolution procedure with both the number of beam channels
and bandwidth. The upper legend encodes each resolution procedure with a color,
where each element is defined by a User Grouping, Satellite Routing, Gateway Rout-
ing, and Frequency Assignment algorithm, in order. The bottom legend encodes the
number of and bandwidth per beam channel considered in each evaluation with a
shape.

jective is to understand the tendency of the system when the total capacity is fixed

(i.e., when the product of the number of beam channels and the bandwidth per beam

channel is predefined), but we have the ability to decide how to split the frequency

pool between those two factors. For this purpose, the fully optimized an heuristic

resolution procedures have been evaluated in three different configurations: 1) 100

beam channels and 22.5 MHz per channel, 2) 150 beam channels and 15 MHz per

channel, and 3) 200 beam channels and 11.25 MHz per channel.

Figure 6-10 and Table B.10 illustrate the results for the optimized and heuristic
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pipelines under the three aforementioned configurations. The first aspect to notice

is that reducing the size of the channel and increasing the number of channels has a

clear positive impact on the UD. This can be explained by the fact that, since fre-

quency can only be split in a finite number of channels but the demand is continuous,

configurations with higher flexibility will be able to better match the demand and

make more appropriate use of the available resources. Thanks to this, the results

exhibit minor improvements when selecting configurations with more and smaller

beam channels. On the other hand, the effects on power are unclear and depends on

the exact configuration. Increasing the number of slots implies a significant power in-

crease when using the heuristic resolution while obtaining only a minor improvement

in coverage. On the other hand, increasing the number of slots evokes a reduction

in power when using the optimized pipeline.

6.2.8 Sensitivity summary

The experiments detailed in the previous sections meticulously explain the influence

of each factor on each resolution procedure and on the final operational plan. The

results show that an optimized pipeline is able to outperform heuristic solutions even

with limited hardware. Specifically, Table 6.3 summarizes these findings by present-

ing the comparison between a heuristic pipeline and an optimized resolution with

reduced hardware (i.e., with less number of satellites, number of gateways, number

of beam channels, bandwidth per beam channel, or frequency reuse factor, or with a

larger half cone angle). In particular, using state-of-the-art algorithms for the differ-

ent sub-problems can yield solutions with improved coverage with 57% less satellites,

88% less gateways, half the frequency spectrum, a third of the frequency reuse fac-

tor, or three times the half cone angle. These results showcase the importance of
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Model
Parame-

ter

Number of
satellites

Number of
gateways

Number of
beam

channels

Bandwidth
per beam
channel

Frequency
reuse factor

Half cone
angle

Hardware
factor

1 1 1 1 1 1

UD -100% -100% -100% -100% -100% -100%

Power -13% -2% -25% -16% -20% -23%

Hardware
factor

2.3 8 2 2 3 3

UD -6% -8% -31% -50% -52% -93%

Power 15% 97% -4% 12% -36% -42%

Table 6.3: Impact of choosing the fully optimized pipeline over the heuristic solu-
tion when analyzing different model parameters. The hardware factor denotes the
improvement in hardware (i.e., reduction in number of satellites, number of gate-
ways, number of beam channels, bandwidth per beam channel, or frequency reuse
factor, or increase in half cone angle) on the heuristic resolution compared to the
optimized algorithm chain. For example, a hardware factor of 2 on the number of
beam channels implies that the cell is comparing the performance of the optimized
pipeline against a heuristic solution which has twice the number of beam channels.

choosing the right algorithm to carry out the resource allocation, especially when

the capacity of the system is constrained.

6.3 Sensitivity of the framework results to minor

user changes

Up until this point, this Thesis has discussed how different resolution procedures

achieve different performances and trade-offs on a system level. However, once the

framework produces a feasible and operable plan, it is important to understand how

that plan may change under minor changes on the user distribution. For example, if

the framework computed a plan that assumed a certain user position, but it turns

out to be slightly different, it is important to understand how different would the new

plan be compared to the pre-computed one. For this purpose, this Section analyzes
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the effects of minor changes in the user distribution on each of the optimization

algorithms.

6.3.1 Sensitivity of the framework results to multiple exe-

cutions

Since most of the optimization algorithms considered in this work rely on random

effects to achieve improved solutions, it is important to first understand how solutions

change under independent executions. In other words, if we execute the framework

repeatedly, how different are the solutions that we obtain. To analyze this effect,

each optimization algorithm has been executed multiple times under the same initial

conditions, and the similarity of solutions has been studied. Specifically, each method

has been executed a total of 5 times and the solutions have been compared using a

distance metric that varies from problem to problem:

• User Grouping: Since the User Grouping problem revolves around clustering

the user terminals, this work uses the Rand Index (RI, [158]) to determine how

similar are two User Grouping solutions. Specifically, this metric performs a

pairwise comparison between all the user terminals to determine how similar

the clusterings are. The value presented in the results correspond to 1−RI as

it reflects better the distance between two solutions.

• Satellite Routing: Since the result of the Satellite Routing problem is an array

of serving times, the intuitive distance metric is to determine the difference

between the two arrays using Euclidean distance.

• Gateway Routing: The results of the gateway Routing problem does not include

any random effect and can be solved optimally under the formulation presented.
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Thus, it can be left out of this analysis.

• Frequency Assignment: Determining the difference between two frequency

plans is no simple task, since one could argue that two plans in which two

beams are swapped are effectively the same. Thus, this work will consider only

the difference in bandwidth: once each frequency plan is computed, an array

containing the bandwidth for each beam can be created and compared to other

plans using Euclidean distance.

Table 6.4 illustrates the difference between solutions on multiple independent

executions of the algorithms under identical input parameters. As shown, the GA

for User Grouping produces solutions that are basically identical, with only a few

beams changing between solutions. The PSO for Satellite Routing has slightly more

variability between different runs due to the fast converge of the PSO to a local

optima. Still, the results show a < 10% in difference between solutions. On the

other hand, the MILP for the Frequency Assignment proves to be highly variable

in terms of specific solution, while keeping similar solution quality. In other words,

since many Frequency Assignment solutions achieve the same objective value, the

Algorithm
Mean distance

between solutions
Standard
deviation

Genetic Algorithm for User Grouping 0.002 4× 10−5

Particle Swarm Optimization for
Satellite Routing

0.089 0.001

Mixed Integer Programming for
Frequency Assignment

0.212 0.062

Table 6.4: Sensitivity of the optimization algorithms on multiple independent ex-
ecutions under identical inputs. All other algorithms not shown in this Table but
considered in this work are deterministic, and therefore have no difference between
executions.
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Algorithm
Distance between

solutions

Genetic Algorithm for User Grouping 0.236

Particle Swarm Optimization for
Satellite Routing

0.158

Mixed Integer Programming for
Frequency Assignment

0.465

Table 6.5: Sensitivity of the optimization algorithms on two independent executions
under slightly different initial conditions. All other algorithms not shown in this
Table but considered in this work are deterministic, and therefore have no difference
between executions.

algorithm may obtain qualitatively very different solutions while achieving a similar

result. This produces a high variance in the final operational plan.

6.3.2 Sensitivity of the framework results to minor user changes

In order to analyze how the resource allocation plan changes with minor changes on

the users, this Section will compare two solutions to the framework, one correspond-

ing to the full optimized pipeline under the same conditions as Experiment A in

Section 5.6, and a second scenario based on the exact same use case, but where 1%

of the users suffer some minor changes in location and demand. Following the same

distance metrics as the previous Section, Table 6.5 presents the distance between

the two executions on the different steps of the framework. As shown, changing the

position and demand of 1% of the users produces significant changes in the final

solution. These variations imply a 24% difference in the User Grouping plan, a 16%

different in the Satellite Routing plan, and a 47% difference in the Frequency As-

signment plan. Note that while the Satellite Routing algorithm is the least affected,

the Frequency Assignment can be deemed as significantly different between the two

executions.
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Chapter 7

Conclusions

7.1 Thesis summary

This Thesis describes a comprehensive framework to solve the long-horizon Resource

Allocation (RA) problem in the context of High Throughput Satellite Constellations

and analyses its performance over different user distributions and constellation con-

figurations. The first Chapter starts with an overview of the evolution of the space

communication market over the past years and a brief outline on the characteristics of

the next generation of space constellations. After discussing the role of autonomous

decision making algorithms, the Thesis proceeds with a synopsis of the most rele-

vant satellite communications concepts and ideas to give an engineering background

based on which this work builds upon. Then, the RA problem is described and de-

composed into smaller sub-problems, which are grouped into two categories (short or

long) based on the time-horizon that they aim to make decisions for. This Chapter

ends by highlighting the main objectives of this Thesis.

Chapter 2 provides the relevant literature for the RA problem in satellite com-
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munications and briefly describes the contributions and limitations of each work.

After analyzing the literature related to each individual sub-problem as decomposed

in Chapter 1, works combining multiple sub-problems are dissected and discussed.

Based on this study, this Chapter highlights the research gap that needs to be exam-

ined before the academia knowledge can be implemented onto industry. The Chapter

concludes with an explanation of how this Thesis addresses this disparity and the

specific topics that drive the construction of the long-horizon RA framework.

Next, Chapter 3 constitutes the theoretical back-bone of this work. First, this

Chapter starts with an initial discussion of how the long-horizon RA problem can be

addressed with a sequential resolution of the individual sub-problems. Based on this

concept, the variables, constraints, and objectives of each individual sub-problem are

detailed. In addition, to ensure proper interaction between the different elements, the

interfaces between the components are examined. Then, the evaluation metrics used

for the framework are introduced. This Chapter ends with an extensive discussion

on the different assumptions that the framework or the different sub-problems build

upon and how those can be addressed to improve the generality of the results.

The fourth Chapter builds upon the previous one and introduces all the resolution

algorithms that aim to solve each individual problem. For each single component in

the framework, this Chapter details techniques that range from simple heuristics to

state-of-the-art optimization methods. This Chapter concludes with a simple method

to compute the metrics which will allow to assess the potential and performance of

the discussed framework.

Then, Chapter 5 details the validity checks and experiment configuration that

determine the behaviour of the framework under different conditions. First, this

Chapter starts with a brief discussion on how to ensure correctness on the final

solution. Second, the test procedures are explained. Third, the main inputs and
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configurations of the model for the different experiments are specified. Fourth, a

summary of the full set of experiments is introduced. And, fifth, this Chapter con-

cludes with a first analysis of the framework under two representative conditions and

a detailed discussion on the results and implications.

Finally, Chapter 6 constitutes the main performance analysis of this Thesis. The

framework and the different sub-problem algorithms have been evaluated under dif-

ferent user distributions and constellation model configurations to determine their

robustness and sensitivity against the different parameters. The first set of exper-

iments validates the framework against different user arrangements and dimension-

ality, while the second set checks the importance and effectiveness of each system

design variable.

7.2 Main findings

The objective of this Thesis has been to develop a framework to solve the long-

horizon Resource Allocation (RA) problem for satellite communications and assess

the validity and performance of the framework and the underlying algorithms under

different user and model conditions. The results prove the soundness and effectiveness

of such framework to obtain a feasible plan for representative satellite operations in

an automated way.

As a first conclusion, decomposing the long-horizon RA problem into smaller

sub-problems and sequentially solving them has been proven to be a valid, effective,

and scalable, tool to obtain an operable resource allocation plan. The assumptions

and simplifications explained along the framework allow for the transformation of

the complex long-horizon RA conundrum into a tractable and solvable problem,

which can be optimized using independent state-of-the-art optimization techniques.
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According to the reviewed literature, this Thesis is the first public work that at-

tempts to solve the complete long-horizon RA problem, and it does so using modern

optimization techniques to maximize the system’s performance in a variety of dimen-

sionality scenarios.

Second, optimized algorithms have proven to be key to maximize system’s capac-

ity. While heuristic approaches can give a feasible solution and a valid operational

plan in all scenarios, state-of-the-art techniques prove to significantly increase the

performance of the allocation, being able to quadruple the system’s capacity with

a third of the power consumption in low-capacity scenarios, and obtaining an 86%

power reduction while maximizing coverage in high-capacity situations. Using a re-

fined User Grouping algorithm compared to trivial approaches has proven to be the

key driver in those reductions. Specifically, using a solution with low number of

beams shows to reduce both UD and power consumption between 75% and 90% in

all cases with respect to the simple solution of assigning one user per beam. Improv-

ing the Gateway Routing allocation using an optimized algorithm offers significant

reductions in UD, at the expense of a slight increase in power. At a lower scale, opti-

mizing the Satellite Routing solution also trades higher power for lower UD. Finally,

using optimized tools for the Frequency Assignment problem offers meaningful gains

in both metrics and it is a key power driver in high capacity scenarios.

Third, the framework and algorithms tested prove to be robust against different

user distributions and dimensionality scenarios. The sequential resolution of inde-

pendent sub-problems proves to give satisfactory results independently of the user

input. Even more, optimized solutions prove to systematically outperform heuristic

resolutions in terms of UD in high demand scenarios and in terms of power when

UD = 0, independently of the number of users considered or where those users are

located. Nonetheless, the user distribution does affect the performance of the res-
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olution procedure: while heuristics tend to deal better with scenarios with spread

demand, the optimized techniques are able to exploit the regional benefits of dense

regions and maximize system’s throughput in scenarios where the users are concen-

trated in small areas. While simple heuristic might provide good enough results in

widely spread user distributions, optimization techniques are mandatory to accom-

modate demand in dense regions.

Fourth, the framework and algorithms tested prove to be robust against different

model parameters and design decisions. Furthermore, the state-of-the-art resolution

algorithms consistently prove to improve coverage with reduced system capabilities

over simple heuristics with improved hardware. Specifically, results show that the

fully optimized resolution procedure is able to find a solution with better:

• Coverage with 6 satellites than a heuristic approach with 14.

• Coverage with 10 gateways than a heuristic approach with 80.

• Performance in both power and UD with 100 beam channels than a heuristic

approach with 200 beam channels.

• Coverage with 10 MHz per channel than a heuristic approach with 20 MHz per

channel.

• Performance in both power and UD with a reuse factor of 6 than a heuristic

approach with a reuse factor of 18.

• Performance in both power and UD with a half cone angle of 1.5◦ than a

heuristic approach with a half cone angle of 0.5◦.

Which highlights the potency of using optimized algorithms for the individual sub-

problems. Furthermore, while increasing the frequency spectrum of the spacecraft is
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an obvious way of improving the performance of the constellation, the results show

that enlarging the ground or space segment can also give interesting opportunities to

maximize capacity. Improving the beam-forming hardware to achieve higher gains

and smaller footprints can also yield significant gains. On the other hand, the fre-

quency reuse factor has a lower impact on performance and should be considered

only in certain scenarios.

7.3 Future work

Based on the results and main conclusions of this work, different directions of future

research have been identified:

• Explore relaxations of the different assumptions and simplifications to better

understand the limits of the framework and extend its functionality to more

general configurations. While the framework has been constructed using both

general and problem-specific assumptions, a future study could enlighten ways

to extend the capabilities of the sequential resolution to allow for improved or

more general solutions. Specifically, constellations with non-static users (such

as planes or ships), multiple orbital planes (with potentially multiple altitudes),

or that use inter-satellite links may be of high interest in the upcoming years.

• Extension of the results with different algorithms. While this work has consid-

ered state-of-the-art optimization techniques for each individual sub-problem,

future research may investigate the impact of different techniques on the overall

long-horizon resource allocation problem. Furthermore, an interesting research

direction is to assess how the improvements on the individual sub-problems

affect the general solution.
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• Extension and generalization of the framework with different formulations.

While the problem-specific mathematical formulations have been taken from

recent literature, the independence between problems allows for an adaptive

framework in which different formulations can be considered. Future research

may include different formulations that tackle each sub-problem with a more

realistic formulation.

• Extension of the results with different user cases and operational scenarios.

While this Thesis has evaluated the framework under different conditions and

configurations, further intelligence on the real conditions will allow for a better

assessment of the capabilities of the framework. Furthermore, while this Thesis

has considered the O3b mPower constellation as the reference for experiments,

future work may include other modern constellations to assess the capabilities

of the framework to adapt to different environments.

• Inclusion of uncertainty. While this work has considered that the demand

of the users is fixed and known, operational reality is usually more complex.

Exploring the capabilities of the framework to adapt to different uncertainty

levels is a candidate direction of future work.

• Extension of the framework to the short-horizon RA problem. While this

work has focused on the long-horizon RA problem, the real-time short-horizon

problem still needs to be addressed to maximize the system’s performance.

Studying how both problems interact and how one can inform the other will

be necessary to exploit the system’s flexibilities to the limit.
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Appendix A

Mathematical Transformations

The objective of this Appendix is to introduce the reader to some useful mathematical

adjustments to transform a non-linear formulation to a linear one.

A.1 Logic operations

A.1.1 OR

Let us define a binary variable x that is 1 only when either y or z are 1, 0 otherwise.

This can be linearly formulated as:

x ≤ y + z ≤ 2x (A.1)

While this formulation is very simple, it can be extended to N variables. That is,

suppose that x denotes the or operation between yi, i ∈ {1, ..., N}. Then:

x ≤
∑
i

yi ≤ Nx (A.2)

164



Note that, in this case, x denotes an auxiliary variable. If x is not a decision or

variable, but rather fixed and given by the problem, it is sufficient to fix the numerical

value. For example, if we need to enforce that either y or z to be 1, then we can

write this restriction as:

1 ≤ y + z (A.3)

A.1.2 AND

Let us define a binary variable x that is 1 only when both y and z are 1, 0 otherwise.

This can be linearly formulated as:

2x ≤ y + z ≤ x+ 1 (A.4)

If instead on two factors, we have an array ofN elements denoted as yi, i ∈ {1, ..., N}:

Nx ≤
∑
i

yi ≤ x+N − 1 (A.5)

Similarly to the previous case, if x is given by the model or by the definition of the

problem, the it is enough to fix the numerical value of the variable.

A.2 Activation variables

A.2.1 Transforming an inequality into a binary variable

Let us define x as a binary variable that is equal to 1 when a ≤ b and 0 otherwise.

Mathematically, this can be linearly expressed with a big-M notation:

−Mx ≤ a− b ≤ M(1− x) (A.6)
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Where M is a sufficiently large number so that M ≥ |a− b| ∀a, b.

A.2.2 Transforming an equality into a binary variable

Let us define x as a binary variable that is equal to 1 when a = b and 0 otherwise.

Although the formulation is slightly more complex than the previous one, there is a

simple trick that allows us to use the same notation: x can be defined as the union

of a ≤ b and a ≥ b. Then, we can use the previous results to obtain a binary variable

such that x− = 1 when a ≤ b, 0 otherwise, and x+ = 1 when a ≥ b, 0 otherwise.

Finally, the value of x can be derived as the AND operation between x− = 1 and

x+ = 1.
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Appendix B

Complete results

This chapter presents the complete results for the optimization framework presented

under the different conditions explained in Chapter 5.

Inputs Outputs

User
Grouping

Satellite
Routing

Gateway
Routing

Frequency
Assignment

Number of
users

Power UD

GA (2.5k) PSO IP IP 200 0.042 0.000

Grid HEU HEU HEU 200 0.161 0.000

GA (2.5k) PSO IP IP 2000 0.258 0.000

Grid HEU HEU HEU 2000 0.421 0.000

GA (2.5k) PSO IP IP 20000 0.397 0.001

Grid HEU HEU HEU 20000 0.409 0.127

Table B.1: Detailed numbers on the performance comparison under different dimen-
sionality scenarios on the SES dataset. The leftmost columns indicate the resolution
procedure chosen for each sub-problem (plus the number of beams selected for the
User Grouping problem). The fifth column indicates the variable that is being tuned
in the experiments. The two rightmost columns indicate the metrics of the framework
under the established conditions.
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Inputs Outputs

User
Grouping

Satellite
Routing

Gateway
Routing

Frequency
Assignment

Number of
users

Power UD

GA (200) PSO IP IP 200 0.034 0.000

GA (200) PSO IP HEU 200 0.183 0.000

GA (200) PSO HEU IP 200 0.035 0.000

GA (200) HEU IP IP 200 0.035 0.000

GA (200) HEU HEU HEU 200 0.133 0.000

GA (2k) PSO IP IP 2000 0.193 0.000

GA (2k) PSO IP HEU 2000 0.274 0.000

GA (2k) PSO HEU IP 2000 0.187 0.000

GA (2k) HEU IP IP 2000 0.164 0.000

GA (2k) HEU HEU HEU 2000 0.257 0.000

GA (4k) PSO IP IP 20000 0.434 0.106

GA (4k) PSO IP HEU 20000 0.489 0.122

GA (4k) PSO HEU IP 20000 0.388 0.241

GA (4k) HEU IP IP 20000 0.329 0.209

GA (4k) HEU HEU HEU 20000 0.311 0.323

Table B.2: Detailed numbers on the performance comparison under different dimen-
sionality scenarios on the Population dataset. The leftmost columns indicate the
resolution procedure chosen for each sub-problem (plus the number of beams se-
lected for the User Grouping problem). The fifth column indicates the variable that
is being tuned in the experiments. The two rightmost columns indicate the metrics
of the framework under the established conditions.
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Inputs Outputs

User
Grouping

Satellite
Routing

Gateway
Routing

Frequency
Assignment

Number of
users

Power UD

GA (200) PSO IP IP 200 0.034 0.000

GA (200) PSO IP HEU 200 0.154 0.000

GA (200) PSO HEU IP 200 0.032 0.000

GA (200) HEU IP IP 200 0.030 0.000

GA (200) HEU HEU HEU 200 0.110 0.000

GA (2k) PSO IP IP 2000 0.173 0.000

GA (2k) PSO IP HEU 2000 0.270 0.000

GA (2k) PSO HEU IP 2000 0.178 0.000

GA (2k) HEU IP IP 2000 0.152 0.001

GA (2k) HEU HEU HEU 2000 0.231 0.002

GA (3k) PSO IP IP 20000 0.387 0.194

GA (3k) PSO IP HEU 20000 0.475 0.196

GA (3k) PSO HEU IP 20000 0.360 0.323

GA (3k) HEU IP IP 20000 0.245 0.383

GA (3k) HEU HEU HEU 20000 0.262 0.448

Table B.3: Detailed numbers on the performance comparison under different dimen-
sionality scenarios on the Uncovered dataset. The leftmost columns indicate the
resolution procedure chosen for each sub-problem (plus the number of beams se-
lected for the User Grouping problem). The fifth column indicates the variable that
is being tuned in the experiments. The two rightmost columns indicate the metrics
of the framework under the established conditions.
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Inputs Outputs

User
Grouping

Satellite
Routing

Gateway
Routing

Frequency
Assignment

Number of
satellites

Power UD

GA (2.5k) PSO IP IP 6 0.433 0.099

Grid HEU HEU HEU 6 0.561 0.242

GA (2.5k) PSO IP IP 10 0.397 0.001

Grid HEU HEU HEU 10 0.440 0.123

GA (2.5k) PSO IP IP 14 0.325 0.000

Grid HEU HEU HEU 14 0.375 0.105

Table B.4: Detailed numbers on the performance comparison under different number
of satellites. The leftmost columns indicate the resolution procedure chosen for each
sub-problem (plus the number of beams selected for the User Grouping problem).
The fifth column indicates the variable that is being tuned in the experiments. The
two rightmost columns indicate the metrics of the framework under the established
conditions.

Inputs Outputs

User
Grouping

Satellite
Routing

Gateway
Routing

Frequency
Assignment

Number of
gateways

Power UD

GA (2.5k) PSO IP IP 10 0.922 0.070

Grid HEU HEU HEU 10 0.373 0.855

GA (2.5k) PSO IP IP 20 0.381 0.029

Grid HEU HEU HEU 20 0.386 0.432

GA (2.5k) PSO IP IP 40 0.397 0.001

Grid HEU HEU HEU 40 0.440 0.123

GA (2.5k) PSO IP IP 80 0.460 0.000

Grid HEU HEU HEU 80 0.468 0.076

Table B.5: Detailed numbers on the performance comparison under different number
of gateways. The leftmost columns indicate the resolution procedure chosen for each
sub-problem (plus the number of beams selected for the User Grouping problem).
The fifth column indicates the variable that is being tuned in the experiments. The
two rightmost columns indicate the metrics of the framework under the established
conditions.
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Inputs Outputs

User
Grouping

Satellite
Routing

Gateway
Routing

Frequency
Assignment

Number of
beam channels

Power UD

GA (2.5k) PSO IP IP 100 0.459 0.024

GA (2.5k) PSO IP HEU 100 0.550 0.027

GA (2.5k) PSO HEU IP 100 0.372 0.268

GA (2.5k) HEU IP IP 100 0.405 0.115

Grid HEU HEU HEU 100 0.382 0.379

GA (2.5k) PSO IP IP 150 0.397 0.001

GA (2.5k) PSO IP HEU 150 0.585 0.002

GA (2.5k) PSO HEU IP 150 0.378 0.061

GA (2.5k) HEU IP IP 150 0.362 0.026

Grid HEU HEU HEU 150 0.440 0.123

GA (2.5k) PSO IP IP 200 0.359 0.000

GA (2.5k) PSO IP HEU 200 0.521 0.000

GA (2.5k) PSO HEU IP 200 0.357 0.000

GA (2.5k) HEU IP IP 200 0.360 0.009

Grid HEU HEU HEU 200 0.479 0.035

Table B.6: Detailed numbers on the performance comparison under different number
of beam channels. The leftmost columns indicate the resolution procedure chosen
for each sub-problem (plus the number of beams selected for the User Grouping
problem). The fifth column indicates the variable that is being tuned in the experi-
ments. The two rightmost columns indicate the metrics of the framework under the
established conditions.
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Inputs Outputs

User
Grouping

Satellite
Routing

Gateway
Routing

Frequency
Assignment

Bandwidth per
beam channel

[Mhz]
Power UD

GA (2.5k) PSO IP IP 10 0.513 0.018

Grid HEU HEU HEU 10 0.468 0.361

GA (2.5k) PSO IP IP 15 0.397 0.001

Grid HEU HEU HEU 15 0.440 0.123

GA (2.5k) PSO IP IP 20 0.385 0.000

Grid HEU HEU HEU 20 0.459 0.036

Table B.7: Detailed numbers on the performance comparison under different band-
width per beam channel. The leftmost columns indicate the resolution procedure
chosen for each sub-problem (plus the number of beams selected for the User Group-
ing problem). The fifth column indicates the variable that is being tuned in the
experiments. The two rightmost columns indicate the metrics of the framework
under the established conditions.

Inputs Outputs

User
Grouping

Satellite
Routing

Gateway
Routing

Frequency
Assignment

Frequency
reuse factor

Power UD

GA (2.5k) PSO IP IP 6 0.350 0.059

Grid HEU HEU HEU 6 0.282 0.177

GA (2.5k) PSO IP IP 12 0.397 0.001

Grid HEU HEU HEU 12 0.440 0.123

GA (2.5k) PSO IP IP 18 0.433 0.000

Grid HEU HEU HEU 18 0.544 0.122

Table B.8: Detailed numbers on the performance comparison under different fre-
quency reuse factors. The leftmost columns indicate the resolution procedure chosen
for each sub-problem (plus the number of beams selected for the User Grouping
problem). The fifth column indicates the variable that is being tuned in the experi-
ments. The two rightmost columns indicate the metrics of the framework under the
established conditions.
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Inputs Outputs

User
Grouping

Satellite
Routing

Gateway
Routing

Frequency
Assignment

Half cone
angle [o]

Power UD

GA (2.5k) PSO IP IP 0.5 0.475 0.000

Grid HEU HEU HEU 0.5 0.619 0.115

GA (2.5k) PSO IP IP 1.0 0.397 0.001

Grid HEU HEU HEU 1.0 0.440 0.123

GA (2.5k) PSO IP IP 1.5 0.360 0.008

Grid HEU HEU HEU 1.5 0.334 0.261

Table B.9: Detailed numbers on the performance comparison under different half
cone angles. The leftmost columns indicate the resolution procedure chosen for each
sub-problem (plus the number of beams selected for the User Grouping problem).
The fifth column indicates the variable that is being tuned in the experiments. The
two rightmost columns indicate the metrics of the framework under the established
conditions.

Inputs Outputs

User
Grouping

Satellite
Routing

Gateway
Routing

Frequency
Assignment

Number of and
Bandwidth per
beam channel

Power UD

GA (2.5k) PSO IP IP 100 / 22.5 0.423 0.004

Grid HEU HEU HEU 100 / 22.5 0.400 0.146

GA (2.5k) PSO IP IP 150 / 15 0.397 0.001

Grid HEU HEU HEU 150 / 15 0.440 0.123

GA (2.5k) PSO IP IP 200 / 11.25 0.398 0.000

Grid HEU HEU HEU 200 / 11.25 0.521 0.114

Table B.10: Detailed numbers on the performance comparison under different num-
ber of and bandwidth per beam channel. The leftmost columns indicate the resolu-
tion procedure chosen for each sub-problem (plus the number of beams selected for
the User Grouping problem). The fifth column indicates the variable that is being
tuned in the experiments. The two rightmost columns indicate the metrics of the
framework under the established conditions.
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