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Abstract

Nonlinear systems allow us to describe and analyze physical and virtual systems,
including dynamical systems, power grids, robots, and neural networks. The problems
involving nonlinearity pose challenges in providing safety guarantees and robustness
in the presence of uncertainty. This thesis provides methods to exploit knowledge on
upper and lower bounds on the nonlinearity and solves problems related to robustness
verification and optimization subject to uncertain parameters. The first half of the
thesis develops the convex restriction of a non-convex feasibility set defined by a set
of nonlinear equality and inequality constraints. Convex restrictions provide a closed-
form convex quadratic condition that is sufficient for solving a system of nonlinear
equations. By replacing the original constraints with the proposed conditions, a
non-convex optimization problem can be solved as a sequence of convex optimization
problems, with feasibility and robustness guarantees. We demonstrate its applications
in Model Predictive Control (MPC), robustness verification of neural networks, robust
Optimal Power Flow (OPF) problem, and motion planning in robotics. The second
part of the thesis focuses on nonlinear dynamical systems and develops reachability
analysis and constrained-input constrained-output analysis for verification problems.
We provide an optimization-based method for computing reachable sets around a
nominal trajectory. The proposed methods use contraction metrics to find templates
for reachable sets. Additionally, we developed constrained-input constrained-output
analysis to characterize the relationship between peak magnitudes of input and output
signals. Numerical experiments were conducted to demonstrate their applicability to
a broad class of nonlinear systems.

Thesis Supervisor: Jean-Jacques E. Slotine
Title: Professor of Mechanical Engineering, and Brain and Cognitive Sciences
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Chapter 1

Introduction

1.1 Overview

Nonlinear systems are ubiquitous in describing physical phenomena and modeling

mathematical problems, ranging from designing electric power grids to neural net-

works. Identifying and solving the set of equations is often at the core of mathemati-

cal analysis and engineering problems. For example, operating and designing electric

power grids rely on nonlinear models to predict its reliability and safety. The power

flow between nodes has a nonlinear relationship following Kirchoff’s voltage and cur-

rent laws. Delivering electricity from the point of generation to consumption involves

feasibility to the power flow equations subject to operational constraints. Another

example is designing and operating a robot with kinematic models described by a sys-

tem of nonlinear equations. The solvability of the kinematic equations describes the

feasible configurations of the robot. More recently, neural networks enabled break-

throughs in many domains such as image recognition, natural language processing,

and perception. The layers of nonlinear activation functions in neural networks pro-

vide the expressive power as a nonlinear function approximator. Understanding the

inherent robustness of prediction involves studying the equations involved in neural

networks.

The underlying system model described in the above applications is written as a

17



system of equations denoted by

𝑓(𝑥, 𝑢) = 0.

The variables are partitioned into a parameter vector 𝑢 ∈ R𝑚 and the solution vector

𝑥 ∈ R𝑛. The vector of functions 𝑓 : (R𝑛,R𝑚) → R𝑛 describes the relationship

between 𝑥 and 𝑢. This parameter vector 𝑢 can describe either deterministic quantities

that can be controlled or uncertain quantities that are unknown but have some known

properties.

Systems involving dynamics can be described as an ordinary differential equation

of the form

𝑥̇ = 𝑓(𝑥, 𝑢),

where 𝑥 is the state, and 𝑢 is the control parameter. The equilibrium (or fixed

point) of the system corresponds to 𝑓(𝑥, 𝑢) = 0, which is the nonlinear steady-state

equation. The discrete-time version of the dynamical system 𝑥𝑡+1 = 𝑓(𝑥𝑡, 𝑢𝑡) can

be also analyzed by considering nonlinear equations in a finite-time horizon (i.e.,

𝑥1 − 𝑓(𝑥0, 𝑢0) = 0, . . . , 𝑥𝑁+1 − 𝑓(𝑥𝑁 , 𝑢𝑁) = 0.)

1.2 Bounding Nonlinearities

A recurring theme throughout this thesis is the idea of bounding the nonlinearity by

upper and lower estimators and deriving a result that holds for any function within

the bounds. These nonlinear estimators are used to enforce the condition:

𝑓(𝑥) = 0, 𝑥 ∈ 𝒟 ⇒ 𝑓 ℓ(𝑥) ≤ 𝑓(𝑥) ≤ 𝑓𝑢(𝑥).

The envelopes provide a necessary condition for satisfying the equality constraint. By

enforcing either convexity or concavity to the upper and lower estimators, we develop

methods that are computationally tractable. Figure 1-1 shows two examples of such

envelopes.

There are a number of methods that exploit known bounds on nonlinearity in

18



Figure 1-1: Examples of (a) Upper-convex lower-concave envelopes and (b) upper-
concave lower convex envelopes denoted by red lines. The blue line is the considered
nonlinear function, and the yellow dash line denotes the domain of the state space
where the envelope is valid.

optimization and control applications.

The upper-concave lower convex envelope on the left of Figure 1-1 is widely used

in convex relaxation of nonlinear equality constraints. The inequality constraints

𝑓 ℓ(𝑥) ≤ 𝑓(𝑥) ≤ 𝑓𝑢(𝑥) is convex when the function 𝑓 ℓ is convex and 𝑓𝑢 is concave

with respect to 𝑥. McCormick envelopes for bilinear functions and quadratic envelopes

for trigonometric functions are well-known examples in this category [68, 49]. The

condition on the left forms a superset of the feasibility set, and solving a minimization

problem replaced with convex relaxation finds a lower bound on the global optimal

solution.

In control theory, sector bounds use a related approach by exploiting a conic bound

on the nonlinearity [87, 54]. Absolute stability can be proven if the system is stable

with respect to any nonlinear function that belongs to the sector. A one-dimensional

sector bound is a special case of upper-convex lower-concave envelopes, but they are

not equivalent to general high-dimensional systems. While sector bounds often result

in linear matrix inequality constraints in the analysis, the proposed envelopes in this

thesis can often yield less conservative results by expressing the bounds by a set of

inequalities.

Lipschitz continuity of a function is widely used in proving the existence of a

solution for nonlinear equations as well as the convergence of algorithms. The L-
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smoothness of a function implies the existence of an upper-convex lower-concave en-

velope. We provide a lemma below to show how an upper-convex lower-concave

envelope can be systematically derived from the L-smoothness of a function.

Quadratic Concave Envelopes

Definition 1. A function, 𝑓 : R𝑛 → R is called L-smooth if it is continuously differ-

entiable and its gradient is Lipschitz continuous with Lipschitz constant 𝐿:

‖∇𝑓(𝑥) −∇𝑓(𝑦)‖2 ≤ 𝐿‖𝑥− 𝑦‖2, ∀𝑥, 𝑦 ∈ R𝑛. (1.1)

If 𝑓 is twice continuously differentiable, this is equivalent to ‖∇2𝑓(𝑥)‖2≤ 𝐿 for all

𝑥 ∈ R𝑛.

Lemma 1. If ∇𝑓(𝑥) is uniformly Lipschitz in 𝑥 with Lipschitz constant 𝐿 and 𝑥(0) ∈

R𝑛 be any fixed point, then

𝑓(𝑥) ≤ 𝑓(𝑥(0)) + ∇𝑓(𝑥(0))𝑇 (𝑥− 𝑥(0)) +
𝐿

2
‖𝑥− 𝑥(0)‖22,

𝑓(𝑥) ≥ 𝑓(𝑥(0)) + ∇𝑓(𝑥(0))𝑇 (𝑥− 𝑥(0)) − 𝐿

2
‖𝑥− 𝑥(0)‖22.

(1.2)

Proof. From calculus, 𝑓(𝑥) = 𝑓(𝑦) +
∫︀ 1

0
∇𝑓(𝑧𝛼)𝑇 (𝑥 − 𝑦) where 𝑧𝛼 = 𝑦 + 𝛼(𝑥 − 𝑦).

Then,

|𝑓(𝑥) − 𝑓(𝑦) −∇𝑓(𝑦)𝑇 (𝑥− 𝑦)| =

⃒⃒⃒⃒∫︁ 1

0

(∇𝑓(𝑧𝛼) −∇𝑓(𝑦))𝑇 (𝑥− 𝑦)𝑑𝛼

⃒⃒⃒⃒
≤
∫︁ 1

0

‖∇𝑓(𝑧𝛼) −∇𝑓(𝑦)‖2 ‖𝑥− 𝑦‖2 𝑑𝛼 ≤ 𝐿

∫︁ 1

0

𝛼 ‖𝑥− 𝑦‖22 𝑑𝛼 =
𝐿

2
‖𝑥− 𝑦‖22 .

By rearranging and letting 𝑦 = 𝑥(0), we obtain (1.2).

Equation 1.2 in Lemma 1 provide a upper-convex and lower-concave envelope

just based on gradient and Lipschitz constant for any L-smooth function. Given

more knowledge of the nonlinearity, a tighter bound can be derived to provide a less
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conservative result. Examples of more general envelopes are provided in appendix A.1

for bilinear, trigonometric, and logistic functions.

Co-optimization of Domain

Another technique that utilized in this thesis is co-optimization of the domain,

𝒟(𝑥ℓ, 𝑥𝑢) =
{︀
𝑥 | 𝑥ℓ ≤ 𝑥 ≤ 𝑥𝑢

}︀
,

where the domain 𝒟 is parametrized by 𝑥ℓ and 𝑥𝑢, which are the upper and lower

bounds on the state variable. In some applications, the description of the domain is

generalized to a polytope 𝒫(𝑧ℓ, 𝑧𝑢) =
{︀
𝑥 | 𝑧ℓ ≤ 𝐴𝑥 ≤ 𝑧𝑢

}︀
rather than a simple box.

The underlying idea is to restrict the domain of interest such that the result

is applicable to systems that only exhibit local properties. By parametrizing the

domain with the upper and lower bounds on state, we use optimization to search for

the domain that satisfies the condition of interest. This is particularly useful when

the system does not exhibit global property. Co-optimization of domain is used in

Chapters 2, 3, and 6, and the detailed formulation and discussions can be found in

the respective chapters.

Robustness to Uncertainty

This thesis deals with both robustness verification and robust optimization that in-

volves nonlinear equations. We will consider the uncertainties that are unknown but

bounded, and a system will be considered robust if there is no violation of safety

constraints under all realizations within the uncertainty set.

1.3 Thesis Overview and Contributions

In this section, we provide an overview of the thesis structure and summarize the

contributions of each chapter. We develop a variety of techniques that provide guar-

antees for optimization and robustness verification problems. Our approach consists
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of exploiting knowledge about nonlinearity and using the information in computation

and optimization to provide a provable guarantee.

Chapter 2 propose convex restriction of a feasibility set that is described by a

system of nonlinear equations. Convex restriction provides a sufficient condition on

the parameter space such that the solution to a system of nonlinear equations is

feasible to a set of constraints. There has been a constant interest in finding an

inner approximation of the feasibility set in the power systems community due to

its importance in the safety of critical infrastructures. In this chapter, we present

a convex condition that achieves (i) reduced conservativeness (ii) universality in its

applications, and (iii) significant improvement in terms of scalability compared to

the existing methods. We exploit sparse representation of nonlinear terms to control

the trade-off between scalability and conservativeness of the proposed condition. By

replacing the original constraint with the convex restriction, we propose sequential

convex restriction to leverage convex optimization for solving non-convex problems.

The result of the algorithm is guaranteed to produce a feasible path between the

initial point to the final point and is useful for transitioning system settings without

violating safety constraints. Related publications can be found in [64, 61].

Chapter 3 presents applications of convex restriction in optimization under uncer-

tainty. We show that robustness can be guaranteed by ensuring that the uncertainty

set resides inside of the convex restriction. The existing literature in robust op-

timization focused on inequality constraints and often neglected nonlinear equality

constraints. By assuming that there are some quantities that can be controlled to

satisfy equality constraints, equality constraints were solved with linear decision rules

or bilevel optimization problems. In this chapter, we provide a method that can cap-

ture nonlinear relationships between decision variables in an optimization problem.

While the solution of the proposed approach may not be globally optimal, the solution

can be found with tractable methods by solving a sequence of convex optimization

problems with the guarantee of robustness against the pre-specified uncertainty set

Related publications can be found in [64, 65].

Chapter 4 shows applications of convex restriction in control, energy systems,
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machine learning, and robotics. The first application considers robust model pre-

dictive control under uncertainty and safety constraints. Our framework considers a

nonlinear dynamical system subject to disturbances from an unknown but bounded

uncertainty set. By viewing the system as a fixed point of an operator acting over

trajectories, we propose a convex condition on control actions that guarantee safety

against the uncertainty set. Moreover, we consider the implicit time-discretization

of system dynamics to increase the prediction horizon and enhance computational

accuracy. The second application considers electric power grids with uncertain fluc-

tuations from load demands and renewables. It considers the robust AC OPF problem

that minimizes the generation cost while requiring a certain level of system security in

the presence of uncertainty. We develop a convex restriction of the AC OPF problem

that accounts for uncertainty in the power injections. The third application presents

a convex condition that provides guaranteed upper and lower bounds on the outputs

of a neural network. We propose a generalized fixed-point interpretation of deep neu-

ral networks and use it to derive a convex inner approximation of the feasible space

defined by a trained neural network. The coefficients involved in the convex condition

can be obtained by backpropagation, with the number of constraints and variables

linearly proportional to the number of nodes in the neural network. The proposed

condition is a set of linear constraints for a ReLU-activated neural network and a set

of convex quadratic constraints for more general activation functions. The last appli-

cation considers feasible path planning in robot manipulation. We show several test

cases with potential failure modes. Related publications can be found in [66, 63, 65].

Chapter 5 presents a reachability analysis framework that utilizes contraction

analysis. Reachability analysis is a formal verification method for satisfying safety

constraints in discrete-time dynamical systems. In this chapter, we consider reachabil-

ity analysis based on convex relaxation using upper-concave lower-convex envelopes.

By exploiting the knowledge of nonlinearity involved in dynamics, the reachable set is

computed by solving convex optimization problems. These bounds provide a guaran-

teed bound on all possible reachable trajectories given the initial condition. Moreover,

the reachable sets are designed using contraction analysis in order to capture the dis-
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tortion between neighboring trajectories. The templates for the reachable set can be

computed by backpropagation of contraction condition in time. Related publications

can be found in [62].

Chapter 6 presents input-output stability analysis of dynamical system around its

equilibrium. This chapter develops a method to analyze the input to output rela-

tionship when the peak magnitude of the input is constrained by some quantity. We

propose a certificate on the disturbance bound such that the output is guaranteed to

be bounded by some pre-specified limit. The result guarantees that the system is ro-

bust against all possible realizations of magnitude-bounded disturbances. We present

a method based on convex optimization to identify the peak magnitude that is toler-

able by the system. We propose the concept of constrained-input constrained-output

for locally stable systems and extend the bounded-input bounded-output stability

result for globally stable systems. The related publication can be found in [60].

Chapter 7 summarizes the thesis contributions and discusses future directions.
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Chapter 2

Convex Restriction

2.1 Introduction

This chapter studies methods for guaranteeing solvability and feasibility in the pres-

ence of nonlinear equality constraints. Consider the following optimization problem

minimize
𝑢,𝑥

𝑓0(𝑢)

subject to 𝑓(𝑥, 𝑢) = 0,

ℎ(𝑥, 𝑢) ≤ 0,

(2.1)

where 𝑓 : (R𝑛,R𝑚) → R𝑛 and ℎ : (R𝑛,R𝑚) → R𝑠 are vectors of continuous nonlinear

functions. The decision variables are divided into 𝑥 ∈ R𝑛, referred to as implicit

(decision) variables, and 𝑢 ∈ R𝑚, referred to as explicit (decision) variables. Explicit

variables are a subset of decision variables that are independent of the uncertain

variables, and implicit variables are a subset of decision variables that adapt to the

uncertain variables according to the equality constraints. Note that the number

of equality constraints and the number of implicit variables are the same, so the

implicit variables can be solved by the system of equations if explicit variables are

appropriately chosen. The objective function is 𝑓0 : R𝑚 → R and is a convex function

of 𝑢 without loss of generality. If the objective does not meet this condition, it can be

rewritten in this form by adding 𝑓0(𝑥, 𝑢) ≤ 𝑢𝑚+1 as a constraint and setting 𝑢𝑚+1 as
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the objective function. Consider the constraints involved in the optimization problem:

𝑓(𝑥, 𝑢) = 0 (2.2a)

ℎ(𝑥, 𝑢) ≤ 0. (2.2b)

The feasible domain of explicit variables satisfying the nominal constraints is denoted

by

𝒰 = {𝑢 | ∃𝑥, 𝑓(𝑥, 𝑢) = 0, ℎ(𝑥, 𝑢) ≤ 0}.

This notion implies that the solution manifold satisfying 𝑓(𝑥, 𝑢) = 0 is projected

onto the space of explicit variables. As an example, consider a quadratic equation,

𝑓(𝑥, 𝑢) = 𝑥2 + 𝑢1𝑥 + 𝑢2. The projection of the manifold leads to the well-known

solvability condition, 𝒰 = {𝑢 | 𝑢21 − 4𝑢2 ≥ 0}. The illustration of both manifold and

its projection is shown in Figure 2-1. Notice that (a) finding a general solvability

condition for a large system of nonlinear equations is generally difficult if possible,

and (b) the solvability condition forms a non-convex set.

Figure 2-1: Projection of the manifold created by 𝑥2 + 𝑢1𝑥+ 𝑢2 = 0 onto the explicit
variable space.

We considers the convex restriction of 𝒰 , which we denote by 𝒰 cvxrs ⊆ 𝒰 . The con-

vex restriction provides a convex sufficient condition for the feasibility of the explicit

variable 𝑢 and can be written with a closed-form expression based on the envelope

over the nonlinear functions. We start with preliminaries and will show an extended

analysis of the convex restriction and demonstrate its application.
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2.2 Preliminaries

2.2.1 Fixed Point Theorems

Fixed point theorems have been widely used in game theory, economics, and dynam-

ical systems [19, 18, 43]. In this chapter, Brouwer’s fixed point theorem will be used

in the proof to certify the existence of the implicit variable that satisfies the given

constraints.

Theorem 1. (Brouwer’s Fixed Point Theorem [19]) Let 𝒫 ⊆ R𝑛 be a nonempty

compact convex set and 𝐺 : 𝒫 → 𝒫 be a continuous mapping. Then there exists

some 𝑥 ∈ 𝒫 such that 𝐺(𝑥) = 𝑥.

The convex restriction will be derived by designing the fixed-point equation from

Newton’s iteration and the self-mapping set 𝒫 to be a polytope that is parametrized

by its affine term. Using the sparse representation of the constraints, we will show

that the number of constraints in convex restriction is linearly proportional to the

number of constraints of the original problem.

Another well-known is the Banach Fixed Point Theorem, which relies on finding

the contraction metric.

Theorem 2. (Banach Fixed Point Theorem [5]) Let (𝒫 , 𝑑) be a non-empty complete

metric space with a contraction mapping 𝐺 : 𝒫 → 𝒫 . That is there exists 𝑞 ∈ [0, 1)

such that 𝑑(𝐺(𝑥), 𝐺(𝑦)) ≤ 𝑞𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 in 𝒫 . Then 𝐺 admits a unique fixed-

point 𝑥*. Furthermore, 𝑥* can be found as follows: start with an arbitrary element

𝑥0 in 𝒫 and define a sequence {𝑥𝑛} by 𝑥𝑛 = 𝐺(𝑥𝑛−1), then 𝑥𝑛 → 𝑥*.

Moreover, consider the Implicit Function Theorem around some nominal point

that satisfies 𝑓(𝑥(0), 𝑢(0)) = 0.

Theorem 3. (Implicit Function Theorem [36]) Suppose 𝑓 is continuously differentiable.

If 𝐽𝑓,0 = ∇𝑥𝑓 |(𝑥(0),𝑢(0)) is invertable, then there exists an open set 𝒰 cvxrs ⊆ R𝑚

containing 𝑢(0) such that there exists a unique continuously differentiable function

such that 𝑥 = 𝜙(𝑢) and 𝑓(𝑥, 𝑢) = 0 for all 𝑢 ∈ 𝒰 cvxrs.
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The implicit function theorem states that the state 𝑥 can be expressed as some

function of 𝑢 under the non-singular Jacobian condition, and its implications have

been studied extensively [38]. The theorem states that there exists some open neigh-

borhood around the nominal point where the implicit function exists, but it does not

define the exact neighborhood. Unlike implicit function theorem, we are concerned

with characterizing the domain where the solution is guaranteed to exist, and this is

a much less restricted condition.

2.2.2 Decomposed Representation

The constraints in Equations (2.2a) and (2.2b) can be represented as linear combina-

tions of continuous basis functions,

𝑓(𝑥, 𝑢) = 𝑀𝜓(𝑧, 𝑢)

ℎ(𝑥, 𝑢) = 𝐿𝜓(𝑧, 𝑢)

𝑧 = 𝐶𝑥,

(2.3)

where 𝜓 : (R𝑞,R𝑚) → R𝑝 is a vector of nonlinear basis functions, and𝑀 ∈ R𝑛×𝑝, 𝐿 ∈

R𝑠×𝑝 and 𝐶 ∈ R𝑞×𝑛 are constant matrices. The variable 𝑧 ∈ R𝑞 is a linearly trans-

formed implicit variable and is assumed to satisfy the following condition.

Condition 1. rank(𝐶) = 𝑛. Equivalently, 𝒫 = {𝑥 | 𝑧 = 𝐶𝑥, 𝑧ℓ ≤ 𝑧 ≤ 𝑧𝑢} is closed

for some 𝑧𝑢, 𝑧ℓ ∈ R𝑞.

The representation in Equation (2.3) satisfying Condition 1 always exists where a

trivial example is setting 𝑀 and 𝐶 to be the identity matrix, and 𝜓(𝑧, 𝑢) = 𝑓(𝑥, 𝑢)

with 𝑧 = 𝑥. The set of basis functions is not unique, and there is a natural trade-off

between the complexity and conservatism based on the choice of the basis functions

(see Example 3). In addition, the transformed implicit variable 𝑧 needs to be chosen

such that 𝜓𝑖 is a function of only a finite subset of {𝑧1, ..., 𝑧𝑞}. To make this statement

more precise, let ℐ𝑘 denote the set of indices of 𝑧 that the basis function 𝜓𝑘 depends

on. That is, given 𝑒𝑗 ∈ R𝑞 is a unit vector with 𝑗th element equal to 1 and zero
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otherwise,

ℐ𝑘 = {𝑗 | ∃ (𝑧, 𝑢, 𝜀 ̸= 0), 𝜓𝑘(𝑧, 𝑢) ̸= 𝜓𝑘(𝑧 + 𝜀𝑒𝑗, 𝑢)} .

The degree of sparsity of the representation is defined as the worst-case cardinality

of ℐ𝑘 and is denoted by |ℐ| where

|ℐ| = max
𝑘∈{1,...,𝑝}

|ℐ𝑘|.

It will be shown later that the number of constraints involved in the convex restriction

grows exponentially with respect to |ℐ|, but there often exists a natural choice of 𝑧

such that |ℐ| does not grow with respect to the size of the problem. The following

example in a network flow problem shows how these variables can be chosen.

Example 1. (Nonlinear Network Flow Problem) Consider a directed graph 𝐺 =

(𝒩 ,𝒜) with 𝜃𝑖 and 𝑏𝑖 representing the internal state and external supply at each

node 𝑖 ∈ 𝒩 , and 𝐸 denoting the incidence matrix of the graph. Suppose the flow

model between node 𝑖 and 𝑗 is given by a nonlinear function 𝜎 : R → R. The

conservation of the flows at every node imposes the constraint,

𝑏𝑖 +
∑︁
𝑗∈𝐼(𝑖)

𝜎(𝜃𝑗 − 𝜃𝑖) =
∑︁
𝑗∈𝑂(𝑖)

𝜎(𝜃𝑖 − 𝜃𝑗), ∀𝑖 ∈ 𝒩 ,

where 𝐼(𝑖) is the set of start nodes of the edges that are incoming to, and 𝑂(𝑖) is

the set of end nodes of the edges that are outgoing from, node 𝑖. Suppose that

the supply 𝑏𝑖 at node 𝑖 = {2, . . . , |𝒩 |} are controlled while 𝑏1 balances the overall

supply and demand. Then the explicit variables are 𝑢 =
[︁
𝑏2 . . . 𝑏|𝒩 |

]︁𝑇
, and the

implicit variables are 𝑥 =
[︁
𝜃𝑇 𝑏1

]︁𝑇
. Let the transformed variable be 𝑧 =

[︁
𝐸𝑇 𝜃 𝑏1

]︁
by choosing 𝐶 = blkdiag(𝐸𝑇 , 1). The equality constraint can be represented by

𝑀 =
[︁
−𝐸 𝐼

]︁
with the basis function 𝜓(𝑧, 𝑢) =

[︁
𝜎(𝑧1) ... 𝜎(𝑧|𝒜|) 𝑧|𝒜|+1 𝑢𝑇

]︁𝑇
.

Since 𝜓𝑖 has only one variable as the argument for all 𝑖, the degree of sparsity is

|ℐ| = 1 independent of the size of the network.

An important feature to notice is that the nonlinearity of 𝜓𝑘 can be arbitrarily
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bounded by constraining only |ℐ𝑘| variables.

Lemma 2. For all 𝑢 ∈ 𝒰 and 𝜀 > 0, there exists some 𝛿 such that if 𝒫𝑘 = {𝑥 | 𝑧 =

𝐶𝑥, 𝑧ℓ𝑖 ≤ 𝑧𝑖 ≤ 𝑧𝑢𝑖 , ∀ 𝑖 ∈ ℐ𝑘} with 𝑧𝑢𝑖 − 𝑧ℓ𝑖 < 𝛿 for all 𝑖 ∈ ℐ𝑘, then

max
𝑥∈𝒫𝑘

𝜓𝑘(𝐶𝑥, 𝑢) − min
𝑥∈𝒫𝑘

𝜓𝑘(𝐶𝑥, 𝑢) < 𝜀.

Proof. Suppose 𝒫 = {𝑥 | 𝑧 = 𝐶𝑥, 𝑧ℓ ≤ 𝑧 ≤ 𝑧𝑢} with 𝑧𝑢 − 𝑧ℓ < 𝛿. Since the basis

functions are continuous, for all 𝑢 ∈ 𝒰 and 𝜀 > 0, there exists 𝛿 such that if 𝑧𝑢−𝑧ℓ < 𝛿

then

max
𝑥∈𝒫

𝜓𝑘(𝐶𝑥, 𝑢) − min
𝑥∈𝒫

𝜓𝑘(𝐶𝑥, 𝑢) < 𝜀.

Since the 𝜓𝑘(𝑥, 𝑢) is independent of 𝑧𝑗 with 𝑗 ∈ {1, ..., 𝑞} ∖ ℐ𝑘,

max
𝑥∈𝒫𝑘

𝜓𝑘(𝐶𝑥, 𝑢) − min
𝑥∈𝒫𝑘

𝜓𝑘(𝐶𝑥, 𝑢) = max
𝑥∈𝒫

𝜓𝑘(𝐶𝑥, 𝑢) − min
𝑥∈𝒫

𝜓𝑘(𝐶𝑥, 𝑢) < 𝜀.

The effect of nonlinearity can be controlled by bounding a finite number of vari-

ables as we saw in Example 1. This property of the sparse representation will dras-

tically reduce the complexity involved in convex restriction.

2.3 Convex Restriction

The convex restriction provides an analytical expression for a convex sufficient con-

dition for feasibility in Equation (2.2) around some nominal point, (𝑥(0), 𝑢(0)). While

convex relaxation has a globally optimal outer approximation (i.e., the convex hull

of the feasible set,) the convex restriction can have many local regions where it can-

not form a larger region due to the restriction as a convex set. We use the nominal

point as the reference point around which the convex restriction is constructed. The

nominal point is assumed to satisfy the following conditions.
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Condition 2. The nominal point, (𝑥(0), 𝑢(0)), satisfies

(i) 𝑓(𝑥(0), 𝑢(0)) = 0 and ℎ(𝑥(0), 𝑢(0)) ≤ 0, and

(ii) If 𝑓(𝑥, 𝑢) is differentiable with respect to 𝑥, ∇𝑥𝑓(𝑥, 𝑢) |(𝑥(0),𝑢(0)) is invertable.

Condition 2 is not strictly necessary in constructing convex restriction, but it will

be used later in the analysis of the algorithm proposed based on the convex restriction.

From the Implicit Function Theorem, it is known that there is a neighborhood of

solutions where 𝑥 can be expressed as a function of 𝑢 if Condition 2 is satisfied. The

convex restriction will provide the bounds on the implicit variable and an explicit

description of a convex neighborhood where the existence of the implicit variable is

guaranteed.

2.3.1 Fixed Point Representation

Here we present the fixed point representation of the equality constraint 𝑓(𝑥, 𝑢) = 0.

The equality constraint can be rewritten in the following fixed point form,

𝑥 = −(𝑀Λ𝐶)−1𝑀𝑔(𝑧, 𝑢), (2.4)

where

𝑔(𝑧, 𝑢) = 𝜓(𝑧, 𝑢) − Λ𝑧,

with some matrix Λ ∈ R𝑝×𝑞. The conservatism of the convex restriction depends

on the choice of Λ. Finding the optimal Λ that maximizes the region for convex

restriction is difficult, but the Jacobian evaluated at the base point gives a good

approximate solution.

• If 𝑓 is differentiable at the nominal point and ∇𝑥𝑓(𝑥0, 𝑢0) is non-singular, choose

Λ as the Jacobian of the basis function with respect to 𝑧 evaluated at the base

point,

Λ = ∇𝑧𝜓(𝑧, 𝑢(0)) |𝑧=𝑧(0) .

Note that in this case 𝑀Λ𝐶 = ∇𝑥𝑓(𝑥, 𝑢(0)) |𝑥=𝑥(0) .
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• If 𝑓 is non-differentiable at the nominal point, choose each element of Λ as

Λ𝑖𝑗 = 𝜕𝑧𝑗𝜓𝑖(𝑧, 𝑢
(0)) |𝑧=𝑧(0) ,

where 𝜕𝑧𝑗𝜓𝑖(𝑧, 𝑢) is the subgradient of 𝜓𝑖 if 𝜓𝑖 is locally convex with respect

to 𝑧𝑗 at the nominal point. If 𝜓𝑖 is locally concave, then 𝜕𝑧𝑗𝜓𝑖(𝑧, 𝑢) is the

supergradient.

For differentiable functions, the fixed point form in Equation (2.4) is equivalent to a

single step of Newton’s method, 𝑥 = −𝐽−1
𝑓 (𝑓(𝑥, 𝑢) − 𝐽𝑓𝑥), where 𝐽𝑓 = ∇𝑥𝑓(𝑥, 𝑢).

Given the explicit variable 𝑢, Equation (2.4) defines a continuous nonlinear oper-

ator 𝐺 : R𝑛 → R𝑛 that maps the implicit variable 𝑥 to −(𝑀Λ𝐶)−1𝑀𝑔(𝐶𝑥, 𝑢). By

iterating this operator, a sequence of approximate solutions can be generated with the

initial condition 𝑥 = 𝑥(0) for an arbitrary value of 𝑢. We will verify the existence of

the implicit variable by studying this sequence of approximate solutions and inferring

the existence of a fixed point of the sequence.

2.3.2 Self-mapping Polytope

Consider the following set of polytopes as a candidate for the self-mapping set in

Brouwer’s fixed point theorem,

𝒫(𝑏) = {𝑥 | 𝐴𝑥 ≤ 𝑏}

where

𝐴 =

⎡⎣ 𝐶

−𝐶

⎤⎦ , 𝑏 =

⎡⎣ 𝑧𝑢

−𝑧ℓ

⎤⎦ . (2.5)

An alternative representation of this polytope is

𝒫(𝑏) = {𝑥 | 𝑧 = 𝐶𝑥, 𝑧ℓ ≤ 𝑧 ≤ 𝑧𝑢}.
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Since 𝒫(𝑏) is a polytope satisfying Condition 1, the set is compact and convex. The

set of polytopes parameterized by 𝑏 ∈ R2𝑞 will be used to guarantee the existence of

an implicit solution using Brouwer’s fixed point theorem.

Lemma 3. For a given explicit variable 𝑢, there exists an implicit variable 𝑥 that

satifies 𝑓(𝑥, 𝑢) = 0 if and only if there exists 𝑏 ∈ R2𝑞 such that

max
𝑥∈𝒫(𝑏)

𝐾𝑖𝑔(𝐶𝑥, 𝑢) ≤ 𝑏𝑖, 𝑖 = 1, . . . , 2𝑞, (2.6)

where 𝐾𝑖 ∈ R1×𝑝 is the 𝑖th row of matrix 𝐾 and

𝐾 = −𝐴(𝑀Λ𝐶)−1𝑀.

Proof. The condition in Equation (2.6) implies that −(𝑀Λ𝐶)−1𝑀𝑔(𝐶𝑥, 𝑢) ∈ 𝒫(𝑏)

for all 𝑥 ∈ 𝒫(𝑏). Then the set 𝒫(𝑏) is self-mapping with the nonlinear map 𝐺(𝑥) =

−(𝑀Λ𝐶)−1𝑀𝑔(𝐶𝑥, 𝑢), so there exists an implicit variable 𝑥 ∈ 𝒫(𝑏) from Brouwer’s

fixed point theorem. To prove that this is a necessary condition, suppose there exists

(𝑥(0), 𝑢(0)) satisfying Equation (2.2a). Choose 𝑏 = [(𝐶𝑥(0))𝑇 (−𝐶𝑥(0))𝑇 ]𝑇 , then for

𝑖 = 1, . . . , 2𝑞, max𝑥∈𝒫(𝑏)𝐾𝑖𝑔(𝑥, 𝑢) = 𝐴𝑖𝑥
(0) = 𝑏𝑖, which satisfies the condition in

Equation (2.6).

2.3.3 Concave Envelopes

Suppose that the function 𝑔𝑘 is known to be bounded by some analytical functions

𝑔𝑢𝑘 and 𝑔ℓ𝑘 such that

𝑔ℓ𝑘(𝑧, 𝑢) ≤ 𝑔𝑘(𝑧, 𝑢) ≤ 𝑔𝑢𝑘 (𝑧, 𝑢),

where the envelopes satisfy the following conditions.

Condition 3. 𝑔𝑢𝑘 and 𝑔ℓ𝑘 are over- and under-estimators of 𝑔𝑘 such that

(i) 𝑔𝑢𝑘 is convex and 𝑔ℓ𝑘 is concave function of 𝑧 and 𝑢,
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(ii) 𝑔𝑢𝑘 and 𝑔ℓ𝑘 are tight at the nominal point,

𝑔ℓ𝑘(𝑧
(0), 𝑢(0)) = 𝑔𝑘(𝑧

(0), 𝑢(0)) = 𝑔𝑢𝑘 (𝑧(0), 𝑢(0)),

(iii) if 𝑔 is differentiable at the nominal point, the derivatives of estimators are tight,

∇𝑧𝑔
ℓ
𝑘(𝑧, 𝑢

(0))
⃒⃒
𝑧=𝑧(0)

= ∇𝑧𝑔
𝑢
𝑘 (𝑧, 𝑢(0))

⃒⃒
𝑧=𝑧(0)

,

∇𝑢𝑔
ℓ
𝑘(𝑧

(0), 𝑢)
⃒⃒
𝑢=𝑢(0)

= ∇𝑢𝑔
𝑢
𝑘 (𝑧(0), 𝑢)

⃒⃒
𝑢=𝑢(0)

.

Similarly 𝜓𝑢𝑘 and 𝜓ℓ𝑘 are the over- and under-estimators of 𝜓𝑘 that satisfy Condition

3. We define the envelope such that the nonlinear function is bounded by a convex

over-estimator and a concave under-estimator, which was discussed in Chapter 1. For

any continuous function, there exists a concave envelope satisfying Condition 3.

z
<latexit sha1_base64="dZjnh52nrovi2SgVMlzTdOMUa6c=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeix68diC/YA2lM120q7dbMLuRqihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtR1Sax/LejBP0IzqQPOSMGivVn3qlsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDaz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveRcWtX5arN3kcBTiGEzgDD66gCndQgwYwQHiGV3hzHpwX5935mLeuOPnMEfyB8/kD6euNAA==</latexit>

g(z, u)
<latexit sha1_base64="FVxjPCtQBFlGdH/uzftp5SJS1/8=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpTdKuix6MVjBfsB7VKyabaNzSZLkhXq0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTS0TRWiDSC5VO8CaciZowzDDaTtWFEcBp61gdDP1W49UaSbFvRnH1I/wQLCQEWys1ByUn86S016x5FbcGdAy8TJSggz1XvGr25ckiagwhGOtO54bGz/FyjDC6aTQTTSNMRnhAe1YKnBEtZ/Orp2gE6v0USiVLWHQTP09keJI63EU2M4Im6Fe9Kbif14nMeGVnzIRJ4YKMl8UJhwZiaavoz5TlBg+tgQTxeytiAyxwsTYgAo2BG/x5WXSrFa884p7d1GqXWdx5OEIjqEMHlxCDW6hDg0g8ADP8ApvjnRenHfnY96ac7KZQ/gD5/MHsmKOiw==</latexit>

Figure 2-2: Illustration of a upper-convex lower-concave envelope.

An example of such an envelope is shown in Figure 2-2, which turns out to be

necessary for enforcing convexity to a restricted set. These envelopes have flipped

convexity and concavity compared to the envelopes used in convex relaxation [49, 70].

Given the model of the system, these envelopes are assumed to have a closed-form

expression, and examples are provided in Appendix A.1.
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2.3.4 Bounds over Intervals

Given the upper-convex lower-concave envelopes, the bound of 𝑔𝑘 over the polytope

𝒫(𝑏) can be defined as

𝑔ℓ𝒫,𝑘(𝑢, 𝑏) ≤ 𝑔𝑘(𝑧, 𝑢) ≤ 𝑔𝑢𝒫,𝑘(𝑢, 𝑏),

which is valid for all 𝑧 ∈ {𝐶𝑥 | 𝑥 ∈ 𝒫(𝑏)}. These bounds are defined as

𝑔𝑢𝒫,𝑘(𝑢, 𝑏) = max
𝑥∈𝒫(𝑏)

𝑔𝑢𝑘 (𝐶𝑥, 𝑢)

𝑔ℓ𝒫,𝑘(𝑢, 𝑏) = min
𝑥∈𝒫(𝑏)

𝑔ℓ𝑘(𝐶𝑥, 𝑢).

Since 𝑔𝑢𝑘 (𝑧, 𝑢) is a convex function, its maximum occurs at at least one of the vertices

of the polytope 𝒫(𝑏). Similarly, the minimum of concave 𝑔ℓ𝑘(𝑧, 𝑢) occurs at the vertex.

The self-mapping condition in Brouwer’s fixed point theorem can be viewed as solving

a containment of the polytope 𝒫(𝑏) into the inequality constrained sets Equations

(2.6) and (2.2b). Solving the containment problem is generally hard, but it becomes

tractable if the polytope is in the vertex representation contained in a convex set [53].

2.3.5 Vertex Tracking

By relaxing the equations with concave envelopes, the interval bound of 𝑔𝑘(𝑧, 𝑢) can

be expressed by tracking all the vertices of the polytope

𝑔𝑢𝒫,𝑘(𝑢, 𝑏) = max
𝑥∈𝜕𝒫(𝑏)

𝑔𝑢𝑘 (𝐶𝑥, 𝑢)

𝑔ℓ𝒫,𝑘(𝑢, 𝑏) = min
𝑥∈𝜕𝒫(𝑏)

𝑔ℓ𝑘(𝐶𝑥, 𝑢),

where 𝜕𝒫(𝑏) are the vertices of the polytope 𝒫(𝑏). Although the number of vertices

of the face-polytope 𝒫(𝑏) grows exponentially with respect to the number of faces,

the following lemma shows that only the vertices involved in ℐ(𝑘) need to be tracked.
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Lemma 4. The interval bounds can be expressed with the inequalities

𝑔𝑢𝒫,𝑘(𝑢, 𝑏) ≥ 𝑔𝑢𝑘 (𝑧, 𝑢), ∀𝑧 ∈ {𝑧 | 𝑧𝑖 ∈ {𝑧ℓ𝑖 , 𝑧𝑢𝑖 }, ∀𝑖 ∈ ℐ𝑘}

𝑔ℓ𝒫,𝑘(𝑢, 𝑏) ≤ 𝑔ℓ𝑘(𝑧, 𝑢), ∀𝑧 ∈ {𝑧 | 𝑧𝑖 ∈ {𝑧ℓ𝑖 , 𝑧𝑢𝑖 }, ∀𝑖 ∈ ℐ𝑘},
(2.7)

where these inequalities can be expressed by 2ℐ𝑘+1 inequalities by listing all possible

vertices.

Lemma 2 from the previous section showed that the nonlinearity can be bounded

by controlling |ℐ𝑘| variables. Similarly, 𝑔𝑢𝒫,𝑘 and 𝑔ℓ𝒫,𝑘 can be expressed by inequalities

involving |ℐ𝑘| variables. If the nonlinearity is decomposed in a way such that |ℐ𝑘| does

not grow with the problem size, the number of constraints involved is also independent

of the problem size.

2.3.6 Vertex Pruning

It is not necessary to track all the vertices in Equation (2.7) because the maximum

or minimum never occurs at some of those vertices. As an example, consider the

bilinear function in Appendix A.1.1. The maximum always occurs at vertices (𝑥𝑢, 𝑦𝑢)

or (𝑥ℓ, 𝑦ℓ), and it is unnecessary to trace (𝑥𝑢, 𝑦ℓ) and (𝑥ℓ, 𝑦𝑢). Many of the vertices

can be pruned from the candidates by exploiting this property.

2.3.7 Convex Restriction and its Properties

Given these considerations, the convex restriction of the feasibility set can be ex-

pressed as an explicit condition. This condition was first provided in [61].

Theorem 4. (Convex Restriction of Feasibility Set) For a given explicit variable 𝑢,

there exists an implicit variable 𝑥 that satisfies 𝑓(𝑥, 𝑢) = 0 and ℎ(𝑥, 𝑢) ≤ 0 if there

exists 𝑏 ∈ R2𝑞 such that

𝐾+𝑔𝑢𝒫(𝑢, 𝑏) +𝐾−𝑔ℓ𝒫(𝑢, 𝑏) ≤ 𝑏 (2.8a)

𝐿+𝜓𝑢𝒫(𝑢, 𝑏) + 𝐿−𝜓ℓ𝒫(𝑢, 𝑏) ≤ 0, (2.8b)
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where 𝐾+
𝑖𝑗 = max{𝐾𝑖𝑗, 0} and 𝐾−

𝑖𝑗 = min{𝐾𝑖𝑗, 0} for each element of 𝐾.

Proof. From Condition (2.8a), for 𝑖 = 1, . . . , 2𝑞,

max
𝑥∈𝒫(𝑏)

𝐾𝑖𝑔(𝐶𝑥, 𝑢) ≤ max
𝑥∈𝒫(𝑏)

(︀
𝐾+
𝑖 𝑔

𝑢(𝐶𝑥, 𝑢) +𝐾−
𝑖 𝑔

ℓ(𝐶𝑥, 𝑢)
)︀

≤ 𝐾+
𝑖 max
𝑥∈𝒫(𝑏)

𝑔𝑢(𝐶𝑥, 𝑢) +𝐾−
𝑖 min
𝑥∈𝒫(𝑏)

𝑔ℓ(𝐶𝑥, 𝑢)

= 𝐾+
𝑖 max
𝑥∈𝜕𝒫(𝑏)

𝑔𝑢(𝐶𝑥, 𝑢) +𝐾−
𝑖 min
𝑥∈𝜕𝒫(𝑏)

𝑔ℓ(𝐶𝑥, 𝑢)

= 𝐾+
𝑖 𝑔

𝑢
𝒫(𝑢, 𝑏) +𝐾−

𝑖 𝑔
ℓ
𝒫(𝑢, 𝑏) ≤ 𝑏𝑖.

From Lemma 3, there exists a solution for the implicit variable, 𝑥 ∈ 𝒫(𝑏). Similarly,

from the condition in Equation (2.8b),

max
𝑥∈𝒫(𝑏)

𝐿𝑖𝜓(𝑥, 𝑢) ≤ 𝐿+
𝑖 𝜓

𝑢
𝒫(𝑢, 𝑏) + 𝐿−

𝑖 𝜓
ℓ
𝒫(𝑢, 𝑏) ≤ 0, 𝑖 = 1, . . . , 𝑠,

so for all 𝑥 ∈ 𝒫(𝑏), 𝐿𝜓(𝐶𝑥, 𝑢) ≤ 0. Therefore, there exists an implicit variable

satisfying 𝑓(𝑥, 𝑢) = 0 and ℎ(𝑥, 𝑢) ≤ 0.

This is a sufficient condition for the existence of a feasible implicit variable for

a given explicit variable. Note that the condition in Equation (2.8) is a convex

constraint with respect to both 𝑢 and 𝑏. This region in the explicit variable space

will be denoted by 𝒰 cvxrs
(0) ⊆ 𝒰 where

𝒰 cvxrs
(0) = {𝑢 | ∃ 𝑏, 𝐾+𝑔𝑢𝒫(𝑢, 𝑏) +𝐾−𝑔ℓ𝒫(𝑢, 𝑏) ≤ 𝑏,

𝐿+𝜓𝑢𝒫(𝑢, 𝑏) + 𝐿−𝜓ℓ𝒫(𝑢, 𝑏) ≤ 0}.

The subscript (0) denotes that (𝑥(0), 𝑢(0)) is used as the nominal point for constructing

the convex restriction.

Example 2. (Quadratic Equations) Consider a quadratic equation with 𝑥 ∈ R parametrized

by 𝑢 ∈ R2 from the introduction,

𝑓(𝑥, 𝑢) = 𝑥2 + 𝑢1𝑥+ 𝑢2,
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where there exist real solutions for 𝑥 if and only if 𝑢21 − 4𝑢2 ≥ 0. In addition we

consider the inequality constraint, −2 ≤ 𝑥 ≤ 2. Define 𝑧 = 𝑥 and the basis function

𝜓(𝑧, 𝑢) = 𝑓(𝑥, 𝑢). The residual function is then 𝑔(𝑧, 𝑢) = ⟨𝑧, 𝑧−2𝑧(0)+𝑢1−𝑢(0)1 ⟩+𝑢2.

The bilinear envelope in Appendix A.1.1 can be applied to 𝑧 and 𝑧− 2𝑧(0) + 𝑢1 − 𝑢
(0)
1

with 𝜌1 = 𝜌2 = 1. Let the derivative of the equation with respect to 𝑥 evaluated at

the nominal point be denoted by 𝐽0 = 2𝑥(0) + 𝑢
(0)
1 . The convex restriction condition

in Equation (2.8) gives the following closed-form expression,

𝒰 cvxrs
(0) = {𝑢 | ∃ (𝑧𝑢, 𝑧ℓ), 𝑧𝑢 ≤ 2, 𝑧ℓ ≥ −2,

−|𝐽−1
0 |
(︁
𝑥(0)(𝑢1 − 𝑢

(0)
1 ) − (𝑥(0))2 − 0.25(𝑢1 − 𝑢

(0)
1 )2 + 𝑢2

)︁
≤ 𝑧𝑢,

|𝐽−1
0 |
(︁
𝑥(0)(𝑢1 − 𝑢

(0)
1 ) − (𝑥(0))2 + 0.25(2𝑧𝑢 − 2𝑥(0) + 𝑢1 − 𝑢

(0)
1 )2 + 𝑢2

)︁
≤ −𝑧ℓ,

|𝐽−1
0 |
(︁
𝑥(0)(𝑢1 − 𝑢

(0)
1 ) − (𝑥(0))2 + 0.25(2𝑧ℓ − 2𝑥(0) + 𝑢1 − 𝑢

(0)
1 )2 + 𝑢2

)︁
≤ −𝑧ℓ}.

Figure 2-3 shows this region in explicit variable space where both equality and in-

equality constraints were considered with the nominal point at (𝑥(0), 𝑢(0)) = (0, [4, 0]).
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Figure 2-3: The convex restriction of a quadratic equation with (a) the solvability
of the equality constraints and (b) the feasibility with the additional inequality con-
straint, 𝑥 ∈ [−2, 2]. The blue region shows the true feasible region, and the green
region shows the convex restriction. The red dot marks the nominal point.

While the example considers a simple equation, the convex restriction creates a

scalable condition for any sparse system of equations where |ℐ| is finite, independent

of the problem size.

Remark 1. (Scalability of Convex Restriction) The number of constraints involved in

convex restriction is bounded by 𝑞 · 2|ℐ|+2 + 2𝑛+ 𝑠.
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There are 2𝑛+𝑠 inequality constraints involved in Equation (2.8), and
∑︀𝑞

𝑘=1 2|ℐ(𝑘)|

inequality constraints involved in 𝑔𝑢, 𝑔ℓ, 𝜓𝑢 and 𝜓ℓ as shown in Equation (2.7). As

we saw in Example 1, there exists a representation such that |ℐ| is independent of the

size of the original problem in many applications. Then the number of constraints

involved in the convex restriction grows linearly with respect to 𝑛 and 𝑠.

Remark 2. (Retrieval of Implicit Variable) Consider a sequence {𝑥𝑘} generated by

𝑥𝑘 = −(𝑀Λ𝐶)−1𝑀𝑔(𝑥𝑘−1, 𝑢) with 𝑢 ∈ 𝒰 cvxrs and the initial condition, 𝑥0 = 𝑥(0). If

the solution converges to a fixed point, 𝑥*, then 𝑓(𝑥*, 𝑢) = 0 and ℎ(𝑥*, 𝑢) = 0.

Similar to any numerical approach for solving nonlinear equations, the above

sequence is not guaranteed to converge. However, the convex restriction condition

guarantees that the sequence will not diverge outside of the closed polytope 𝒫(𝑏).

Instead of Newton’s method, the above iteration can be an alternative method to

retrieve the implicit variables more efficiently without requiring the inversion of any

matrix.

Lemma 5. (Non-emptiness of Convex Restriction) The convex restriction is non-

empty and contains the nominal point. Moreover, if there exists 𝑏 ∈ R2𝑞 such that

𝐾+𝑔𝑢𝒫(𝑢, 𝑏) +𝐾−𝑔ℓ𝒫(𝑢, 𝑏) < 𝑏

𝐿+𝜓𝑢𝒫(𝑢, 𝑏) + 𝐿−𝜓ℓ𝒫(𝑢, 𝑏) < 0,
(2.9)

the convex restriction contains an open non-empty neighborhood around the nominal

point. That is ∀ 𝑣 ∈ R𝑚, ∃ 𝜀 > 0 such that 𝑢(0) + 𝜀𝑣 ∈ 𝒰cvxrs
(0) .

Proof. Let 𝑏(0) = 𝐴𝑥(0), then 𝒫(𝑏) = {𝑥(0)} since 𝒫(𝑏) is closed. Then,

𝐾+𝑔𝑢𝒫(𝑢(0), 𝑏(0)) +𝐾−𝑔ℓ𝒫(𝑢(0), 𝑏(0)) = 𝐾𝑔(𝑥(0), 𝑢(0)) = 𝑏(0)

𝐿+𝜓𝑢𝒫(𝑢(0), 𝑏(0)) + 𝐿−𝜓ℓ𝒫(𝑢(0), 𝑏(0)) = 𝐿𝜓(𝑥(0), 𝑢(0)) = 0,

from Condition 3, so (𝑢(0), 𝑏(0)) is always feasible to the constraints in Equation (2.8),

and thus the convex restriction is always non-empty. Since 𝑔𝑢𝒫 and 𝑔ℓ𝒫 are convex and

concave respectively, they are continuous functions with respect to 𝑏 and 𝑢. Then for
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all 𝑣 ∈ R𝑚, there exists 𝜀 > 0 such that

𝐾+𝑔𝑢𝒫(𝑢+ 𝜀𝑣, 𝑏) +𝐾−𝑔ℓ𝒫(𝑢+ 𝜀𝑣, 𝑏) ≤ 𝑏

𝐿+𝜓𝑢𝒫(𝑢+ 𝜀𝑣, 𝑏) + 𝐿−𝜓ℓ𝒫(𝑢+ 𝜀𝑣, 𝑏) ≤ 0.

Therefore, 𝑢 + 𝜀𝑣 ∈ 𝒰 cvxrs from Theorem 4, and the convex restriction contains an

open non-empty neighborhood around its nominal point.

Moreover, the condition in Theorem 4 is an equivalent condition to the original

feasibility constraints if the original constraints are convex constraints.

Corollary 1. (Equivalence for Convex Constraints) Suppose that the constraints are

convex constraints: 𝑓(𝑥, 𝑢) is linear and ℎ(𝑥, 𝑢) is convex with respect to 𝑥 and 𝑢.

Then 𝑢 ∈ 𝒰 if and only if there exists 𝑏 ∈ R2𝑞 that satisfies Equation (2.8).

Proof. Consider the decomposed representation of the constraints using the basis

function 𝜓(𝑧, 𝑢) =
[︁
𝑓(𝑧, 𝑢)𝑇 ℎ(𝑧, 𝑢)𝑇

]︁𝑇
with 𝑧 = 𝑥, and ℎ𝑢(𝑥, 𝑢) = ℎ(𝑥, 𝑢) since ℎ is

already a convex function. Following the convex restriction procedure, the resulting

Condition (2.8) can be written as

𝑧ℓ ≤ −𝐽−1
𝑓 𝑓(0, 𝑢) ≤ 𝑧𝑢 and ℎ𝑘(𝑧, 𝑢) ≤ 0, ∀𝑧 ∈ {𝑧 | 𝑧𝑖 ∈ {𝑧ℓ𝑖 , 𝑧𝑢𝑖 }, 𝑖 ∈ ℐ𝑘}, (2.10)

for 𝑘 = 1, ..., 𝑠. From Theorem 4, 𝑓(𝑥, 𝑢) = 0 and ℎ(𝑥, 𝑢) ≤ 0. To prove that

this is a necessary condition, suppose 𝑥 and 𝑢 satisfy 𝑓(𝑥, 𝑢) = 0 and ℎ(𝑥, 𝑢) ≤ 0.

Choose 𝑧𝑢 = 𝑧ℓ = 𝑥, then it satisfies Equation (2.10), and thus is feasible to Equation

(2.8).

Corollary 1 shows that the convex restriction can retrieve the original feasibility set

if the original set is convex. If the feasibility set is non-convex, the convex restriction

fundamentally cannot be equivalent to the feasibility set. Note that the condition in

Lemma 3 was a necessary and sufficient condition for feasibility, and there were two

main steps that introduced conservatism of the convex restriction relative to 𝒰 . First

is the tightness of the concave envelope. This is an unavoidable limitation where

the nonlinear functions have to be bounded by concave envelopes. Second is the
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decomposition of the basis functions, and the use of the fact that the maximum of

the sum is always less than the sum of the maximum,

max
𝑥∈𝒫(𝑏)

𝐾+
𝑖 𝑔

𝑢(𝐶𝑥, 𝑢) ≤ 𝐾+
𝑖 max
𝑥∈𝒫(𝑏)

𝑔𝑢(𝐶𝑥, 𝑢).

The more variables each combination of 𝑔𝑖 and 𝑔𝑗 share, the less conservative the

convex restriction will be, but the complexity of the restriction will increase as it

increases the degree of the sparsity |ℐ|. The next example shows this relationship

more explicitly.

Example 3. (Conservatism v.s. Complexity Trade-off) Consider the following system

of polynomial equations,

𝑥1𝑥2 + ...+ 𝑥1𝑥𝑛 + 𝑢1 = 0

𝑥𝑖 + 𝑢𝑖 = 0, 𝑖 = 2, ..., 𝑛

𝑥1𝑥2 + ...+ 𝑥1𝑥𝑛 ≤ 10.

For a given 𝑘, let us select the basis function to be

𝜓(𝑘)(𝑧, 𝑢) =
[︁∑︀𝑘

𝑖=2 𝑥1𝑥𝑖, 𝑥1𝑥𝑘+1, ... 𝑥1𝑥𝑛, 𝑥𝑇 , 𝑢𝑇
]︁𝑇
,

with 𝑧 = 𝑥. Decreasing 𝑘 decomposes the representation further and leads to a

more sparse representation. Figure 2-4 shows the trade-off between the conser-

vatism and the complexity as 𝑘 varies. The conservatism was quantified by solving

min
𝑢∈𝒰cvxrs,(𝑘)

(0)

𝑢1 − 𝑢*1 where 𝒰 cvxrs,(𝑘)
(0) is the convex restriction constructed with the

basis function 𝜓(𝑘) and 𝑢*1 = −10 is the global optimal value. The complexity was

quantified by the number of constraints involved in the convex restriction, which is

proportional to 2𝑘 for a naive implementation without vertex pruning. The degree

of sparsity for 𝜓(𝑘)
1 = ⟨𝑥1,

∑︀𝑘
𝑖=2 𝑥𝑖⟩ is ℐ1 = 𝑘, and the vertex tracking require all

combinations of 𝑥𝑖 ∈ {𝑥𝑢𝑖 , 𝑥ℓ𝑖} for 𝑖 = 1, ..., 𝑘. However, this is a special case where

the vertex pruning drastically reduces the number of constraints regardless of 𝑘. The

maximum of 𝜓(𝑘)
1 occurs at (𝑥𝑢1 ,

∑︀𝑘
𝑖=2 𝑥

𝑢
𝑖 ) or (𝑥ℓ1,

∑︀𝑘
𝑖=2 𝑥

ℓ
𝑖) and only 2 vertices need to
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be tracked instead of 2𝑘 vertices, and the restriction can scale without sacrificing the

performance in this example.
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Figure 2-4: Illustration of the trade-off between the complexity and the conservatism.
The complexity is quantified by the number of constraints involved, and the conser-
vatism is quantified by the optimality gap.

2.4 Sequential Convex Restriction

In this section, we provide the analysis of the algorithm for solving the optimization

problem,

minimize
𝑢,𝑥

𝑓0(𝑢), subject to 𝑓(𝑥, 𝑢) = 0, ℎ(𝑥, 𝑢) ≤ 0. (2.11)

Sequential convex restriction (SCRS) for nominal constraints belongs to the fam-

ily of Sequential Convex Optimization, which is a local search method that iteratively

solves convex approximations of the original problem. In particular, the related clas-

sical algorithms are the Sequential Quadratic Programming (SQP) and trust-region

methods [17, 32, 47, 74]. While these methods showed success in practice for solving a

large optimization with equality constraints, some of the possible shortcomings were

(i) the linearized constraints may be inconsistent, (ii) the solution may be infeasible,

and (iii) the iteration may diverge. These shortcomings could be overcome by using

extended methods such as Inexact SQP [33, 22, 21]. Sequential convex restriction

provides potentially a more elegant way to handle the shortcomings of SQP. An al-
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ternative view of SCRS is that the self-mapping set 𝒫(𝑏) can be interpreted as a trust

region, and the lifted formulation allows us to co-optimize the decision variables and

the trust region cast as a single convex optimization problem.

The problem can be solved by iterating between (a) solving the optimization with

convex restriction, and (b) setting the solution as the new nominal point for construct-

ing the convex restriction. The algorithm described here is named sequential convex

restriction, and the procedure is described in Algorithm 1 with some termination

thresholds 𝜀1, 𝜀2, 𝜀3 > 0.

Algorithm 1 Sequential Convex Restriction
Initialization: 𝑢(0), 𝑥(0), and 𝑘 = 0
while ‖𝑢(𝑘+1) − 𝑢(𝑘)‖2 > 𝜀1 or ‖𝑓0(𝑢(𝑘+1)) − 𝑓0(𝑢

(𝑘))‖2 > 𝜀2 do
𝐾 =

[︀
−𝐼 𝐼

]︀𝑇
𝐶(𝑀Λ𝐶)−1𝑀

𝑢(𝑘+1) = arg min𝑢∈𝒰cvxrs
(𝑘)

𝑓0(𝑢)

𝑥(𝑘+1) = 𝑥(𝑘)

while ‖𝑓(𝑥(𝑘+1), 𝑢(𝑘+1)𝑠)‖2 > 𝜀3 do
𝑥(𝑘+1) = −(𝑀Λ𝐶)−1𝑀𝑔(𝑥(𝑘+1), 𝑢(𝑘+1))

end while
𝑘 := 𝑘 + 1

end while

There are three computationally notable steps, which are computing the inverse

of the Jacobian to compute 𝐾, solving the convex optimization problem with convex

restriction, and retrieving the nominal implicit variable. The retrieval of the implicit

variable leverages Remark 2 in the proposed algorithm, but this step can be replaced

by other procedures such as Newton’s method or the Gauss-Seidel method.

2.4.1 Analysis on the Subproblems

Sequential Convex Restriction in Algorithm 1 solves the following convex optimization

problem as the subproblems of the algorithm,

minimize
𝑢,𝑏

𝑓0(𝑢)

subject to 𝐾+𝑔𝑢𝒫(𝑢, 𝑏) +𝐾−𝑔ℓ𝒫(𝑢, 𝑏) ≤ 𝑏

𝐿+𝜓𝑢𝒫(𝑢, 𝑏) + 𝐿−𝜓ℓ𝒫(𝑢, 𝑏) ≤ 0.

(2.12)
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The key feature of the convex restriction is that the non-convex constraint can be

replaced by a convex approximation that guarantees a feasible solution. Moreover,

the containment of the nominal point from Lemma 5 ensures that the optimal value

is improved at every iteration.

Corollary 2. (Bounds on the Optimal Cost) Suppose that 𝑢(𝑘+1) denotes the solution

of the problem in Equation (2.12):

𝑢(𝑘+1) = arg min
𝑢∈𝒰cvxrs

(𝑘)

𝑓0(𝑢). (2.13)

The optimal value of the problem is bounded by

𝑓0(𝑢
opt) ≤ 𝑓0(𝑢

(𝑘+1)) ≤ 𝑓0(𝑢
(𝑘)), (2.14)

where 𝑢opt is the global optimal solution of the problem in Equation (2.1).

Proof. The lower bound comes from the definition of the global optimal value. From

Lemma 5, the convex restriction always contains the nominal point, 𝑢(𝑘) ∈ 𝒰 cvxrs
𝒲,(𝑘).

Therefore, min𝑢∈𝒰cvxrs
𝒲,(𝑘)

𝑓0(𝑢) ≤ 𝑓0(𝑢
(𝑘)).

2.4.2 Analysis on the Outer-loop of the Algorithm

We show the convergence result for the algorithm, which states that the converged

point will satisfy the KKT condition. This is a necessary condition for optimality for

non-convex problems.

Corollary 3. (Convergence of SCRS) Suppose the explicit variable 𝑢* is the output

of Algorithm 1 such that

𝑢* = lim
𝑘→∞

arg min
𝑢(𝑘+1)∈𝒰cvxrs

𝒲,(𝑘)

𝑓0(𝑢). (2.15)

Then, there exists a corresponding implicit variable 𝑥* such that (𝑥*, 𝑢*) is feasible

and
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• ∇𝑥𝑓(𝑥*, 𝑢*) |𝑥=𝑥* is singular, or

• (𝑥*, 𝑢*) satisfies the KKT condition of the original problem in Equation (2.11).

Proof. The algorithm yields a sequence of explicit variables {𝑢(𝑘)} that satisfies 𝑓0(𝑢(𝑘+1)) ≤

𝑓0(𝑢
(𝑘)) from Corollary 2. Moreover, since the sequence is bounded below by the

global optimal solution 𝑓 *
0 , the sequence converges to a finite value from the Mono-

tone Convergence Theorem. Suppose the converged solution is denoted by (𝑥*, 𝑢*),

which satisfies

𝑢* = arg min
𝑢∈𝒰cvxrs

*

𝑓0(𝑢), (2.16)

where 𝒰 cvxrs
* is the convex restriction with (𝑥*, 𝑢*) as the nominal point. Without loss

of generality, 𝑏* =
[︁
(𝐶𝑥*)𝑇 −(𝐶𝑥*)𝑇

]︁𝑇
is always a feasible solution for 𝒰 cvxrs

* and is

an optimal solution for the above problem. Suppose ∇𝑥𝑓(𝑥*, 𝑢*) |𝑥=𝑥* is non-singular,

then 𝑀Λ𝐶 is invertible. Let Γ = −𝐶(𝑀Λ𝐶)−1𝑀 , then the following KKT condition

is a necessary and sufficient condition for optimality of the problem Equation (2.16),

Γ+𝑔𝑢𝒫(𝑢*, 𝑏*) + Γ−𝑔ℓ𝒫(𝑢*, 𝑏*) ≤ 𝑧*,

−Γ−𝑔𝑢𝒫(𝑢*, 𝑏*) − Γ+𝑔ℓ𝒫(𝑢*, 𝑏*) ≤ −𝑧*,

𝐿+𝜓𝑢𝒫(𝑢*, 𝑏*) + 𝐿−𝜓ℓ𝒫(𝑢*, 𝑏*) ≤ 0,

𝜆*1 ≥ 0, 𝜆*2 ≥ 0, 𝜆*3 ≥ 0,

𝜆*1,𝑖Γ
+
𝑖 𝑔

𝑢
𝒫(𝑢*, 𝑏*) + 𝜆*1,𝑖Γ

−
𝑖 𝑔

ℓ
𝒫(𝑢*, 𝑏*) = 𝜆*1,𝑖𝑧

*
𝑖 , 𝑖 = 1, ..., 𝑞,

−𝜆*2,𝑖Γ−
𝑖 𝑔

𝑢
𝒫(𝑢*, 𝑏*) − 𝜆*2,𝑖Γ

+
𝑖 𝑔

ℓ
𝒫(𝑢*, 𝑏*) = −𝜆*2,𝑖𝑧*𝑖 , 𝑖 = 1, ..., 𝑞,

𝜆*3,𝑖𝐿
+
𝑖 𝜓

𝑢
𝒫(𝑢*, 𝑏*) + 𝜆*3,𝑖𝐿

−
𝑖 𝜓

ℓ
𝒫(𝑢*, 𝑏*) = 0, 𝑖 = 1, ..., 𝑠,

∇𝑓0(𝑢*) +

𝑞∑︁
𝑖=1

𝜆*1,𝑖
{︀

Γ+
𝑖 ∇𝑔𝑢𝒫(𝑢*, 𝑏*) + Γ−

𝑖 ∇𝑔ℓ𝒫(𝑢*, 𝑏*) −∇𝑧𝑖(𝑧*)
}︀

+

𝑞∑︁
𝑖=1

𝜆*2,𝑖
{︀
−Γ−

𝑖 ∇𝑔𝑢𝒫(𝑢*, 𝑏*) − Γ+
𝑖 ∇𝑔ℓ𝒫(𝑢*, 𝑏*) + ∇𝑧𝑖(𝑧*)

}︀
+

𝑞∑︁
𝑖=1

𝜆*3,𝑖
{︀
𝐿+
𝑖 ∇𝜓𝑢𝒫(𝑢*, 𝑏*) + 𝐿−

𝑖 ∇𝜓ℓ𝒫(𝑢*, 𝑏*)
}︀

= 0
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Since (𝑥*, 𝑢*) is the nominal point and satisfies Condition 3,

𝑔ℓ𝒫(𝑢*, 𝑏*) = 𝑔(𝑧*, 𝑢*) = 𝑔𝑢𝒫(𝑢*, 𝑏*),

∇𝑔ℓ𝒫(𝑢*, 𝑏*) = ∇𝑔(𝑢*, 𝑏*) = ∇𝑔𝑢𝒫(𝑢*, 𝑏*).

Substitute the above equation and 𝜈𝑖 =
∑︀𝑞

𝑗=1(𝜆
*
2,𝑗 − 𝜆*1,𝑗)𝐶𝑗𝑖 for 𝑖 = 1, ..., 𝑛 to the

KKT condition of the problem in Equation (2.16), then

−(𝑀Λ𝐶)−1𝑀𝑔(𝑥*, 𝑢*) = 𝑥*, 𝐿𝜓(𝑥*, 𝑢*) ≤ 0,

𝜆*3 ≥ 0, 𝜆*3,𝑖𝐿𝑖𝜓(𝑥*, 𝑢*) = 0, 𝑖 = 1, ..., 𝑠,

∇𝑓0(𝑢*) +
𝑛∑︁
𝑖=1

𝜈*𝑖
{︀

[(𝑀Λ𝐶)−1]𝑖𝑀∇𝑔(𝑧*, 𝑢*) + ∇𝑥𝑖(𝑥*)
}︀

+

𝑞∑︁
𝑖=1

𝜆*3,𝑖𝐿𝑖∇𝜓(𝑧*, 𝑢*) = 0

which is the KKT condition of the nominal problem in Equation (2.11) where the

equality constraint is replaced by its fixed point representation.

Next, we show an example of a polynomial optimization problem that includes

nonlinear equality constraints.

Example 4. (Polynomial Optimization) In this example, a polynomial optimization

problem adapted from an example in [76] is considered,

minimize
𝑢,𝑥

𝑢3

subject to 𝑥21 + 𝑥22 + 𝑥23 − 1 = 0

𝑢1 − 𝑥21 = 0

𝑢2 − 𝑥2𝑥3 = 0

𝑥1𝑢1 − 2𝑥1𝑢2 + 𝑥2 ≤ 𝑢3.

The robust optimization will be considered later in Example 6. Figure 2-5 shows

the convergence of the sequential convex restriction described in Algorithm 1 with

four different initial conditions. The triangular-shaped feasible region is created by

the solvability condition, and the convergence of the algorithm depends on the ini-

tialization. The global optimal point is achieved with the initial condition in (a) in
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this example. The initial conditions in (a) and (b) arrive at a local optimal point

satisfying the KKT conditions. The initial condition in (c) arrives at the boundary

of the constraints where ∇𝑥𝑓(𝑥, 𝑢*) |𝑥=𝑥* becomes singular.
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0 0.5 1
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0 0.5 1

-0.5

0

0.5

(a) (b) (c)

Figure 2-5: The blue region represents the feasible region and the contour line shows
the objective function where the darker contour lines have the lower objective value.
The initial condition for the explicit variable was set to 𝑢(0) = [0.25, 0, 2]. The initial
condition for the implicit variable was set to (a) [0.5, −0.866, 0], (b) [−0.5, −0.866, 0],
and (c) [0.5, 0, 0.866].

A larger example for solving the Optimal Power Flow problem using the sequential

convex restriction was considered in [63] as an extension of [61] for a power systems

application. Chapter 3 will discuss its applications in more detail.

While Corollary 3 gives some convergence guarantees, the sequential convex re-

striction is subject to the Maratos effect similar to SQP, and therefore the fast conver-

gence may not be guaranteed near the optimal point [74]. We see this effect in Figure

2-5 (c) as the nominal point progresses to the local optimal point at a slow rate.

Nevertheless, the main motivation for using SCRS is that the optimization problem

can include uncertain variables in the presence of nonlinear equality constraints. We

discuss its applications to robust optimization in the next chapter.

2.5 Concluding Remarks

In this chapter, we presented a convex sufficient condition for solving a system of non-

linear equations under parametric changes and propose a sequential convex optimiza-

tion method for solving robust optimization problems with nonlinear equality con-

straints. By bounding the nonlinearity with concave envelopes and using Brouwer’s
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fixed point theorem, the sufficient condition is expressed in terms of closed-form con-

vex inequality constraints. Using these conditions, a non-convex optimization prob-

lem can be solved as a sequence of convex optimization problems, with a feasibility

guarantee.
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Chapter 3

Robust Optimization with Equality

Constraints

3.1 Convex Restriction under Uncertainty

In this chapter, we extend the convex restriction to include uncertain variables that

are bounded by a given uncertainty set 𝒲 ⊆ R𝑟. The nominal optimization problem

is similar to Chapter 2, but it now includes uncertain variables:

minimize
𝑢,𝑥

𝑓0(𝑢)

subject to 𝑓(𝑥, 𝑢, 𝑤) = 0,

ℎ(𝑥, 𝑢, 𝑤) ≤ 0, ∀𝑤 ∈ 𝒲 ,

(3.1)

where 𝑓 : (R𝑛,R𝑚,R𝑟) → R𝑛 and ℎ : (R𝑛,R𝑚,R𝑟) → R𝑠 are vectors of continuous

nonlinear functions. The decision variables are divided into 𝑥 ∈ R𝑛, referred to as

implicit (decision) variables, and 𝑢 ∈ R𝑚, referred to as explicit (decision) variables.

Explicit variables are a subset of decision variables that are independent of the un-

certain variables, and implicit variables are a subset of decision variables that adapt

to the uncertain variables according to the equality constraints. Note that the num-

ber of equality constraints and the number of implicit variables are the same, so the

implicit variables can be solved by the system of equations if explicit variables are
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appropriately chosen. Uncertain variables are denoted by 𝑤 ∈ R𝑟 and are restricted

to the uncertainty set, 𝒲 . This is a semi-infinite optimization problem, where the

constraints need to be satisfied for all realizations of the uncertainty set.

We will assume that there is some known nominal value of the uncertain variable,

which will be denoted by 𝑤(0). The set of robust feasible explicit variables is denoted

by

𝒰𝒲 = {𝑢 | ∀𝑤 ∈ 𝒲 , ∃𝑥, 𝑓(𝑥, 𝑢, 𝑤) = 0, ℎ(𝑥, 𝑢, 𝑤) ≤ 0}.

3.1.1 General Nonlinear Constraints

The idea remains the same as Chapter 2, and the only modification is that the concave

envelopes need to capture the uncertainty set. Similar to the previous section, the

nonlinear functions are expressed by a linear combination of basis functions,

𝑓(𝑥, 𝑢, 𝑤) = 𝑀𝜓(𝑧, 𝑢, 𝑤) (3.2a)

ℎ(𝑥, 𝑢, 𝑤) = 𝐿𝜓(𝑧, 𝑢, 𝑤). (3.2b)

Equation (3.2a) can be written in the fixed point form,

𝑥 = −(𝑀Λ𝐶)−1𝑀𝑔(𝑧, 𝑢, 𝑤),

where 𝑔(𝑧, 𝑢, 𝑤) = 𝜓(𝑧, 𝑢, 𝑤) − Λ𝑧. The matrix Λ is chosen in the same way as

Section 2.3.1, which is Λ = ∇𝑧𝜓(𝑧, 𝑢(0), 𝑤(0)) |𝑧=𝑧(0) for differentiable 𝑓 . Let the

nonlinear residual be bounded by

𝑔ℓ𝒲,𝑘(𝑧, 𝑢) ≤ 𝑔𝑘(𝑧, 𝑢, 𝑤) ≤ 𝑔𝑢𝒲,𝑘(𝑧, 𝑢), ∀𝑤 ∈ 𝒲 , (3.3)

where 𝑔𝑢𝒲 is a convex over-estimator and 𝑔ℓ𝒲 is a concave under-estimator of 𝑔 over

the uncertainty set 𝒲 . Note that when we introduce uncertainty, we cannot satisfy

Condition 3 (ii) and (iii) for the basis functions that are dependent on the uncertain

variable. Then the bounds over 𝒫 and 𝒲 can be expressed as
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𝑔𝑢𝒫𝒲,𝑘(𝑢, 𝑏) ≥ 𝑔𝑢𝒲,𝑘(𝑧, 𝑢) ∀𝑧 ∈ {𝑧 | 𝑧𝑖 ∈ {𝑧ℓ𝑖 , 𝑧𝑢𝑖 }, ∀𝑖 ∈ ℐ𝑘}

𝑔ℓ𝒫𝒲,𝑘(𝑢, 𝑏) ≤ 𝑔ℓ𝒲,𝑘(𝑧, 𝑢) ∀𝑧 ∈ {𝑧 | 𝑧𝑖 ∈ {𝑧ℓ𝑖 , 𝑧𝑢𝑖 }, ∀𝑖 ∈ ℐ𝑘},

where the subscript 𝒫𝒲 indicates that it is a valid bound over the self-mapping

polytope and the uncertainty set. Given these definitions, the following theorem

provides a robust feasibility condition.

Theorem 5. (Robust Feasibility under General Uncertainty) For a given explicit vari-

able 𝑢, there exists an implicit variable 𝑥 that satisfies 𝑓(𝑥, 𝑢, 𝑤) = 0 and ℎ(𝑥, 𝑢, 𝑤) ≤

0 for all 𝑤 ∈ 𝒲 if there exists 𝑏 ∈ R2𝑞 such that

𝐾+𝑔𝑢𝒫𝒲(𝑢, 𝑏) +𝐾−𝑔ℓ𝒫𝒲(𝑢, 𝑏) ≤ 𝑏 (3.4a)

𝐿+𝜓𝑢𝒫𝒲(𝑢, 𝑏) + 𝐿−𝜓ℓ𝒫𝒲(𝑢, 𝑏) ≤ 0. (3.4b)

Proof. The proof remains mostly similar to Theorem 4. The condition (3.4) ensures

that
sup
𝑤∈𝒲

max
𝑥∈𝒫(𝑏)

𝐾𝑖𝑔(𝑥, 𝑢, 𝑤) ≤ 𝐾+
𝑖 max
𝑥∈𝒫(𝑏)

𝑔𝑢𝒲(𝑥, 𝑢) +𝐾−
𝑖 min
𝑥∈𝒫(𝑏)

𝑔ℓ𝒲(𝑥, 𝑢)

≤ 𝐾+
𝑖 𝑔

𝑢
𝒫𝒲(𝑢, 𝑏) +𝐾−

𝑖 𝑔
ℓ
𝒫𝒲(𝑢, 𝑏) ≤ 𝑏𝑖.

From Lemma 3, there exists an implicit variable 𝑥 ∈ 𝒫(𝑏) for all 𝑤 ∈ 𝒲 . Similarly,

sup
𝑤∈𝒲

max
𝑥∈𝒫(𝑏)

𝐿𝑖𝜓(𝑥, 𝑢) ≤ 𝐿+
𝑖 𝜓

𝑢
𝒫𝒲(𝑢, 𝑏) + 𝐿−

𝑖 𝜓
ℓ
𝒫𝒲(𝑢, 𝑏) ≤ 0, 𝑖 = 1, . . . , 𝑠,

so for all 𝑥 ∈ 𝒫(𝑏) and 𝑤 ∈ 𝒲 , 𝐿𝜓(𝐶𝑥, 𝑢, 𝑤) ≤ 0. Therefore, there exists an implicit

variable satisfying 𝑓(𝑥, 𝑢, 𝑤) = 0 and ℎ(𝑥, 𝑢, 𝑤) ≤ 0 for all 𝑤 ∈ 𝒲 .

The convex restriction under uncertainty will be denoted by 𝒰 cvxrs
𝒲,(0) ⊆ 𝒰𝒲 where

𝒰 cvxrs
𝒲,(0) = {𝑢 | ∃ 𝑏, 𝐾+𝑔𝑢𝒫𝒲(𝑢, 𝑏) +𝐾−𝑔ℓ𝒫𝒲(𝑢, 𝑏) ≤ 𝑏,

𝐿+𝜓𝑢𝒫𝒲(𝑢, 𝑏) + 𝐿−𝜓ℓ𝒫𝒲(𝑢, 𝑏) ≤ 0}.

The subscript (0) again indicates that the nominal point is (𝑥(0), 𝑢(0), 𝑤(0)).
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When the explicit variables are given and the uncertainties are introduced, there

will be generally a set of implicit variables defined through the realizations of the

uncertain variable and the nonlinear equality constraints. The following remark shows

the motivation and the role of the self-mapping polytope, which provides a bound on

the set of implicit variables.

Remark 3. Given 𝑢 and 𝑏 satisfying the condition (3.4), the self-mapping polytope,

𝒫(𝑏), is an outer-approximation of all possible solutions for implicit variables under

the uncertainty set 𝒲 .

This gives an intuitive reason behind the convex restriction condition in the lifted

domain with the parameter 𝑏, representing the bound on the implicit variables. The

following is an example of the envelopes that capture the uncertain variables.

Example 5. (Nonlinear Network Flow Problem under Uncertainty) Consider a special

case of Example 1 where the nonlinear flow models are subject to uncertainty,

𝜎(𝑥𝑖 − 𝑥𝑗) = 𝑤 sin(𝑥𝑖 − 𝑥𝑗),

where the line parameter is subject to the uncertain variable 𝑤, bounded by 𝒲 =

{𝑤 | 𝑤 ∈ [𝑤ℓ, 𝑤𝑢]}. Given that the basis functions are the same as Example 1, the

residual function is

𝑔𝑖(𝑧𝑖, 𝑤) = 𝑤 sin 𝑧 − 𝑤(0) cos (𝑧(0))𝑧,

for 𝑖 = 1, . . . , 𝑝. The concave envelope under uncertainty is then

𝑔𝑢𝒲,𝑘(𝑧, 𝑢) ≥ 𝑤̃ sin 𝑧
(0)
𝑖 + 𝑤̃ cos 𝑧

(0)
𝑖 (𝑧𝑖 − 𝑧

(0)
𝑖 ) +

𝑤̃

2
(𝑧𝑖 − 𝑧

(0)
𝑖 )2 − 𝑤(0) cos (𝑧

(0)
𝑖 )𝑧𝑖

𝑔ℓ𝒲,𝑘(𝑧, 𝑢) ≤ 𝑤̃ sin 𝑧
(0)
𝑖 + 𝑤̃ cos 𝑧

(0)
𝑖 (𝑧𝑖 − 𝑧

(0)
𝑖 ) − 𝑤̃

2
(𝑧𝑖 − 𝑧

(0)
𝑖 )2 − 𝑤(0) cos (𝑧

(0)
𝑖 )𝑧𝑖,

for 𝑤̃ ∈ {𝑤𝑢, 𝑤ℓ}. The convex restriction with the uncertain variable can be derived

by Theorem 5 using the envelope above.

Although this procedure is able to capture general nonlinearity and uncertainty

sets, finding the upper-convex lower-concave envelope in Equation (3.3) could be
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difficult for some of the applications. The next section discusses a special class of

constraints where the robustness can be incorporated systematically.

3.1.2 State-Uncertainty Separable Constraints

In this section, we study a special case where the basis functions can be expressed by

a sum of two nonlinear functions where implicit variables, 𝑥, and uncertain variables,

𝑤, are separable. Consider

𝑓(𝑥, 𝑢, 𝑤) = 𝑀 [𝜓(𝑥, 𝑢) + 𝛼(𝑢,𝑤)]

ℎ(𝑥, 𝑢, 𝑤) = 𝐿[𝜓(𝑥, 𝑢) + 𝛽(𝑢,𝑤)],
(3.5)

where 𝛼 : (R𝑚,R𝑟) → R𝑝 and 𝛽 : (R𝑚,R𝑟) → R𝑝 are vectors of continuous functions.

The functions 𝛼𝑖 are linear with respect to 𝑤, and 𝐿𝑗𝛽 are concave with respect to 𝑤

for all 𝑢 ∈ R𝑚. The uncertainty set 𝒲 is a given non-empty, convex and compact set.

The derivation here closely follows [10], which provides a systematic way to construct

the robust counterpart for nonlinear uncertain inequality constraints. Let us denote

the convex conjugate of some function 𝜙 as

𝜙*(𝑣) = sup
𝑤∈dom(𝜙)

{𝑣𝑇𝑤 − 𝜙(𝑤)},

and the concave conjugate of 𝜙 as

𝜙*(𝑣) = inf
𝑤∈dom(𝜙)

{𝑣𝑇𝑤 − 𝜙(𝑤)}.

The indicator function of the set 𝒲 is

𝛿(𝑤 | 𝒲) =

⎧⎪⎨⎪⎩0 if 𝑤 ∈ 𝒲

∞ otherwise.
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The support function of 𝒲 is the conjugate of the indicator function,

𝛿*(𝑣 | 𝒲) = sup
𝑤∈R𝑟

{𝑣𝑇𝑤 − 𝛿(𝑤 | 𝒲)} = sup
𝑤∈𝒲

𝑣𝑇𝑤. (3.6)

When the implicit variables and the uncertain variables are separable, there is a

systematic way to derive the robust feasible condition using the support function and

the conjugate function.

Theorem 6. (Robust Feasibility for State-Uncertainty Separable Constraints) For a

given explicit variable 𝑢, there exists an implicit variable 𝑥 that satisfies constraints

𝑓(𝑥, 𝑢, 𝑤) = 0 and ℎ(𝑥, 𝑢, 𝑤) ≤ 0 for all 𝑤 ∈ 𝒲 if there exists 𝑏 ∈ R2𝑞, 𝑣 ∈ R𝑟, and

𝑦 ∈ R𝑟 such that

𝐾+𝑔𝑢𝒫(𝑢, 𝑏) +𝐾−𝑔ℓ𝒫(𝑢, 𝑏) + 𝜉(𝑢, 𝑣) ≤ 𝑏 (3.7a)

𝐿+𝜓𝑢𝒫(𝑢, 𝑏) + 𝐿−𝜓ℓ𝒫(𝑢, 𝑏) + 𝜁(𝑢, 𝑦) ≤ 0, (3.7b)

where 𝜉 : (R𝑚,R𝑟) → R2𝑞 and 𝜁 : (R𝑚,R𝑟) → R𝑠 are given by

𝜉𝑖(𝑢, 𝑣) = 𝛿*(𝑣 | 𝒲) − [𝐾𝑖𝛼]*(𝑢, 𝑣)

𝜁𝑗(𝑢, 𝑦) = 𝛿*(𝑦 | 𝒲) − [𝐿𝑗𝛽]*(𝑢, 𝑦).
(3.8)

Proof. From the definition of indicator functions and using the Fenchel duality [13],

max
𝑤∈𝒲

𝐾𝑖𝛼(𝑢,𝑤) = max
𝑤∈R𝑟

{𝐾𝑖𝛼(𝑢,𝑤) − 𝛿(𝑤 | 𝒲)}

= min
𝑣∈R𝑟

{𝛿*(𝑣 | 𝒲) − [𝐾𝑖𝛼]*(𝑢, 𝑣)} .

Then using the expression above,

max
𝑤∈𝒲

max
𝑥∈𝒫(𝑏)

[𝐾𝑖𝑔(𝐶𝑥, 𝑢) +𝐾𝑖𝛼(𝑢,𝑤)] ≤ max
𝑥∈𝒫(𝑏)

𝐾𝑖𝑔(𝐶𝑥, 𝑢) + max
𝑤∈𝒲

𝐾𝑖𝛼(𝑢,𝑤)

≤ 𝐾+
𝑖 𝑔

𝑢
𝒫(𝑢, 𝑏) +𝐾−

𝑖 𝑔
ℓ
𝒫(𝑢, 𝑏) + 𝜉𝑖(𝑣, 𝑢) ≤ 𝑏𝑖,

for some 𝑣 ∈ R𝑟. Therefore, the existence of 𝑣 ∈ R𝑟 guarantees the existence of an
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implicit variable under all realizations of 𝑤 ∈ 𝒲 . Similarly, for 𝑗 = 1, . . . , 𝑠,

sup
𝑤∈𝒲

max
𝑥∈𝒫(𝑏)

[𝐿𝑗𝜓(𝐶𝑥, 𝑢) + 𝐿𝑗𝛽(𝐶𝑥, 𝑢)] ≤ 𝐿+
𝑗 𝜓

𝑢
𝒫(𝑢, 𝑏) + 𝐿−

𝑗 𝜓
ℓ
𝒫(𝑢, 𝑏) + 𝜁𝑗(𝑢, 𝑦) ≤ 0,

therefore, there exists an implicit variable satisfying 𝑓(𝑥, 𝑢, 𝑤) = 0 and ℎ(𝑥, 𝑢, 𝑤) ≤ 0

for all 𝑤 ∈ 𝒲 .

There is a table of closed-form expressions for 𝜉 and 𝜁 in Equation (3.8) depending

on the function and the uncertainty set. We refer readers to [10] for those cases, and

we will show only one special case where those functions are linear with respect to 𝑤.

3.1.3 Additive Uncertainty Constraints

We consider again a special case of state-uncertainty separable constraints in Equation

(3.5) where 𝛼 and 𝛽 are linear functions of 𝑤 such that

𝑓(𝑥, 𝑢, 𝑤) = 𝑀 [𝜓(𝑥, 𝑢) +𝐵𝑤]

ℎ(𝑥, 𝑢, 𝑤) = 𝐿[𝜓(𝑥, 𝑢) +𝐷𝑤],
(3.9)

where 𝐵 ∈ R𝑛×𝑟 and 𝐷 ∈ R𝑠×𝑟 are constant matrices. In addition, the uncertainty

sets considered here are norm-bounded uncertainty sets,

𝒲𝑄(𝛾) =
{︀
𝑤 | ‖𝑤 − 𝑤(0)‖2 ≤ 𝛾

}︀
𝒲𝐵(𝛾) =

{︀
𝑤 | ‖𝑤 − 𝑤(0)‖∞ ≤ 𝛾

}︀
,

(3.10)

where 𝛾 ∈ R represents the margin. As 𝛾 → 0, the uncertainty set vanishes, and

the analysis on the nominal constraints applies. Moreover, there is the following

manipulation to convert any general nonlinear uncertainty into additive uncertainty.

Remark 4. Any nonlinear constraint, 𝑓(𝑥, 𝑢, 𝑤) = 0 and ℎ(𝑥, 𝑢, 𝑤) ≤ 0, can be

replaced with the additive uncertainty representation, 𝑓(𝑥̃, 𝑢, 𝑤) = 0 and ℎ̃(𝑥̃, 𝑢, 𝑤) ≤
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0. The functions 𝑓 : (R𝑛+𝑟,R𝑚,R𝑟) → R𝑛+𝑟 and ℎ̃ : (R𝑛+𝑟,R𝑚,R𝑟) → R𝑠 are

𝑓(𝑥̃, 𝑢, 𝑤) =

⎡⎣𝑓(𝑥, 𝑢, 𝑥𝑤)

𝑥𝑤 − 𝑤

⎤⎦ , ℎ̃(𝑥̃, 𝑢, 𝑤) = ℎ(𝑥, 𝑢, 𝑥𝑤) (3.11)

where 𝑥𝑤 ∈ R𝑟 and 𝑥̃ =
[︁
𝑥𝑇 𝑥𝑇𝑤

]︁𝑇
. The replaced condition is equivalent to the

original constraint, and the uncertainty 𝑤 enters the nonlinear equation as an additive

term.

When the system of nonlinear equations can be represented with the additive

uncertainty, the following theorem provides a sufficient condition for robust feasibility.

Corollary 4. (Robust Feasibility for Additive Uncertainty) Suppose that the uncer-

tainty set is given by a norm-bounded set, 𝒲(𝛾) = {𝑤 | ‖𝑤‖ ≤ 𝛾}. For a given

explicit variable 𝑢, there exists an implicit variable 𝑥 that satisfies 𝑓(𝑥, 𝑢, 𝑤) = 0 and

ℎ(𝑥, 𝑢, 𝑤) ≤ 0 for all 𝑤 ∈ 𝒲(𝛾) if there exists 𝑏 ∈ R2𝑞 such that

𝐾+𝑔𝑢𝒫(𝑢, 𝑏) +𝐾−𝑔ℓ𝒫(𝑢, 𝑏) + 𝜉(𝛾) ≤ 𝑏 (3.12a)

𝐿+𝜓𝑢𝒫(𝑢, 𝑏) + 𝐿−𝜓ℓ𝒫(𝑢, 𝑏) + 𝜁(𝛾) ≤ 0, (3.12b)

where for 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑠, 𝜉𝑖 and 𝜁𝑗 are given by the following table

depending on the type of uncertainty set.

Table 3.1: Required robustness margin for ellipsoidal and interval uncertainty sets
𝒲𝑄(𝛾) 𝒲𝐵(𝛾)

𝜉𝑖(𝛾) 𝐾𝑖𝐵𝑤
(0) + 𝛾‖𝐾𝑖𝐵‖2 𝐾𝑖𝐵𝑤

(0) + 𝛾‖𝐾𝑖𝐵‖∞
𝜁𝑗(𝛾) 𝐿𝑗𝐷𝑤

(0) + 𝛾‖𝐿𝑗𝐷‖2 𝐿𝑗𝐷𝑤
(0) + 𝛾‖𝐿𝑗𝐷‖∞

Proof. This is a special case of Theorem 6 with 𝛼(𝑢,𝑤) = 𝐵𝑤 and 𝛽(𝑢,𝑤) = 𝐵𝑤, so

Equation (3.8) can be used to compute 𝜉 and 𝜁. Since 𝛼 and 𝛽 are linear functions with

respect to 𝑤, their concave conjugate functions are [𝐾𝑖𝛼]*(𝑢, 𝑣) = 0 with 𝑣 = (𝐾𝑖𝐵)𝑇 ,
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and [𝐿𝑗𝛽]*(𝑢, 𝑦) = 0 with 𝑦 = (𝐿𝑗𝐷)𝑇 . Substituting 𝑣 and 𝑦 to the support function,

𝜉𝑖(𝛾) = 𝛿*(𝑣 | 𝒲𝑄(𝛾)) |𝑣=(𝐾𝑖𝐵)𝑇 = 𝐾𝑖𝐵𝑤
(0) + 𝛾‖𝐾𝑖𝐵‖2

𝜁𝑗(𝛾) = 𝛿*(𝑦 | 𝒲𝑄(𝛾)) |𝑦=(𝐿𝑗𝐷)𝑇 = 𝐿𝑗𝐷𝑤
(0) + 𝛾‖𝐿𝑗𝐷‖2.

Similarly, the margins 𝜉 and 𝜁 can be derived for the uncertainty set 𝒲𝐵(𝛾).

Here the size of the uncertainty set is parametrized by 𝛾 where the larger the 𝛾,

the more robust the system is against the uncertain variable. The robustness of a

solution (𝑥(0), 𝑢(0)) is often defined as how much uncertainty a solution can tolerate

without violating the constraints. With convex restriction and additive uncertainty

constraints, the lower bound on the margin can be computed by solving a convex

optimization problem.

Corollary 5. (Robustness Margin) Suppose that 𝛾 ∈ R is given by solving the follow-

ing optimization problem,

maximize
𝛾,𝑏

𝛾

subject to 𝐾+𝑔𝑢𝒫(𝑢(0), 𝑏) +𝐾−𝑔ℓ𝒫(𝑢(0), 𝑏) + 𝜉(𝛾) ≤ 𝑏

𝐿+𝜓𝑢𝒫(𝑢(0), 𝑏) + 𝐿−𝜓ℓ𝒫(𝑢(0), 𝑏) + 𝜁(𝛾) ≤ 0,

(3.13)

where 𝜉 and 𝜁 are linear functions of 𝛾 given in Corollary 4. Then the explicit variable

𝑢(0) has a corresponding implicit variable 𝑥 satisfying 𝑓(𝑥, 𝑢, 𝑤) = 0 and ℎ(𝑥, 𝑢, 𝑤) ≤ 0

for all realizations of the uncertainty set 𝒲(𝛾) = {𝑤 | ‖𝑤 − 𝑤(0)‖ ≤ 𝛾}.

In addition to finding the robustness margin of a solution, the explicit variable 𝑢(0)

can be iteratively updated to find the optimal solution given the nonlinear equality

and inequality constraints.

3.2 Robust Optimization

In this section, we extend the sequential convex restriction to solve the robust opti-

mization problems with nonlinear equality constraints in Equation (3.1).
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Many classes of robust optimization problems are known to have counterparts that

can be solved with a finite and explicit optimization problem, however, those results

are limited to nonlinear inequality constraints [9, 15, 12, 3, 11, 14, 16, 44]. The

equality constraints were mostly assumed to be linear and studied under a special

context [41, 23]. The equality constraint was considered in [93], but it relies on the

first-order approximation around its neighborhood and does not provide a rigorous

guarantee.

3.2.1 Sequential Convex Restriction for Robust Optimization

In this section, we develop the algorithm to solve the robust optimization in Equation

(3.1),

minimize
𝑢

𝑓0(𝑢)

subject to ∀𝑤 ∈ 𝒲 , ∃𝑥 ∈ R𝑛, 𝑓(𝑥, 𝑢, 𝑤) = 0, ℎ(𝑥, 𝑢, 𝑤) ≤ 0.

The non-convex constraints in this problem can be restricted to convex constraints

by the conditions provided in Theorem 4 for the nominal constraints and Theorem

5 for constraints including uncertainty. Special cases such as state-uncertainty sepa-

rable constraints or additive uncertainty constraints can use the convex restrictions

in Theorem 6 and Corollary 4, respectively. Similar to nominal optimization prob-

lem, we iterate between (a) solving the optimization with convex restriction, and (b)

setting the solution as the new nominal point for constructing the convex restriction.

Algorithm 2 provides the full algorithm with termination thresholds 𝜀1, 𝜀2, 𝜀3 > 0.

3.2.2 Analysis on the Optimality Gap

On the other hand, sequential convex restriction described in Algorithm 2 gives a

guarantee for robustness against the given uncertainty set. Moreover, we discussed a

number of results for the convex restriction of the nominal constraints, and these re-

sults imply that SCRS for robust optimization problems will yield a good approximate

solution. One thing to note is that while SCRS guarantees robustness, optimality is
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Algorithm 2 Sequential Convex Restriction for Robust Optimization Problem
Initialization: 𝑢(0), 𝑥(0), and 𝑘 = 0
while ‖𝑢(𝑘+1) − 𝑢(𝑘)‖2 > 𝜀1 or ‖𝑓0(𝑢(𝑘+1)) − 𝑓0(𝑢

(𝑘))‖2 > 𝜀2 do
𝐾 =

[︀
−𝐼 𝐼

]︀𝑇
𝐶(𝑀Λ𝐶)−1𝑀

𝑢(𝑘+1) = arg min𝑢∈𝒰cvxrs
𝒲,(𝑘)

𝑓0(𝑢)

𝑥(𝑘+1) = 𝑥(𝑘)

while ‖𝑓(𝑥(𝑘+1), 𝑢(𝑘+1), 𝑤(0))‖2 > 𝜀3 do
𝑥(𝑘+1) = −(𝑀Λ𝐶)−1𝑀𝑔(𝑥(𝑘+1), 𝑢(𝑘+1), 𝑤(0))

end while
𝑘 := 𝑘 + 1

end while

not necessarily guaranteed. The following remark provides a practical way to quantify

the optimality gap.

Corollary 6. (Optimality Gap for Robust Optimization Problem) Suppose that 𝑢*

denotes the converged solution of Algorithm 2. The optimality gap can be bounded

by

𝑓0(𝑢
*) − 𝑓0(𝑢

robust-opt) ≤ 𝑓0(𝑢
*) − 𝑓0(𝑢

nominal-opt), (3.14)

where 𝑢robust-opt is the globally optimal solution for the robust optimization problem

in Equation (3.1), and 𝑢nominal-opt is the globally optimal solution of the nominal

problem in Equation (2.11).

Proof. Since the nominal uncertainty is a special case in the uncertainty set, 𝑤(0) ∈ 𝒲 ,

it follows that 𝑓0(𝑢nominal-opt) ≤ 𝑓0(𝑢
robust-opt). A simple rearrangement leads to the

condition in Equation (3.14).

Next, we show an example in polynomial optimization subject to additive uncer-

tainties.

Example 6. (Polynomial Optimization) Consider the robust optimization problem
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in Example 4 where the uncertainty set is 𝒲 = {𝑤 | ‖𝑤‖2 ≤ 𝛾} with 𝛾 > 0:

minimize
𝑢,𝑥

𝑢3

subject to 𝑥21 + 𝑥22 + 𝑥23 − 1 = 0

𝑢1 − 𝑥21 + 𝑤1 = 0

𝑢2 − 𝑥2𝑥3 + 𝑤2 = 0

𝑥1𝑢1 − 2𝑥1𝑢2 + 𝑥2 ≤ 𝑢3, ∀𝑤 ∈ 𝒲𝑄(𝛾).

In this example, the uncertainty is additive to the nonlinear equation, and the con-

dition from Corollary 4 was used to guarantee robustness. Figure 3-1 shows the il-

lustration of the results for various sizes of the uncertainty set and initial conditions.
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(a) (b) (c)

Figure 3-1: The convergence of sequential convex restriction with 𝛾 = 0.05 (blue),
𝛾 = 0.1 (red), and 𝛾 = 0.15 (yellow).

3.3 Concluding Remarks

In this chapter, we have developed the sequential convex restriction for solving a

robust optimization problem with nonlinear equality and inequality constraints. We

expand the convex restriction of nominal constraints and develop sufficient conditions

for robust feasibility against the given uncertainty set. The algorithm guarantees the

robust feasibility of the solution at every iteration by leveraging the conditions from

convex restriction.
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Chapter 4

Applications of Convex Restriction

In this chapter, we present several applications of convex restriction for systems with

equality constraints. These applications are some of the standard problems in various

fields of study. We first study Model Predictive Control (MPC) problem where the

system is governed by nonlinear dynamics. The second application solves the Optimal

Power Flow (OPF) problem to deal with nonlinear AC power flow equations in electric

power grids. The third application deals with neural network robustness verification

problems where nonlinear activation functions enter as nonlinear equality constraints.

The last application considers robot kinematics and shows a path planning algorithm

based on convex restriction.

4.1 Model Predictive Control (MPC)

Model Predictive Control (MPC) has remained a popular control strategy due to

its ability to incorporate complex dynamical systems and safety constraints. One

of MPC’s advantages is its elegant formulation for considering safety constraints in

safety-critical applications such as navigation, robotics, power systems, and chemical

plant regulation. Advances in sensing and computation provide new opportunities for

MPC formulation to tackle a broader range of systems, where mathematical models

can be readily estimated using data. However, uncertainties in models or sensors

can cause the system to deviate from the planned trajectory, and there is a need to
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Figure 4-1: Examples of a non-robust and a robust trajectory are shown. Two blocks,
ℬ𝑡,1 and ℬ𝑡,2, are the obstacles that the agent needs to avoid. The non-robust trajec-
tory collides at the red circle while the robust trajectory is able to reach the target
point without collision.

consider robustness in safety-critical applications.

One of the natural ways to guarantee robustness is to construct a tube or a

funnel around a nominal trajectory that contains all possible realizations of the state

trajectory under disturbances [24, 55, 81, 7]. An example is shown in Figure 4-1,

where the grey tube around the robust trajectory represents the bound on possible

realizations of trajectories under uncertainty. If the performance specifications are

met within the tube, the controller is verified to be robust against a range of model

variations and noise.

4.1.1 Constrained Robust Model Predictive Control Problem

In this section, we provide an overview of the MPC problem with safety and robustness

constraints. We consider both the explicit and implicit time-discretization.

1. Explicit time-discretization (Forward Euler): The explicit scheme approximates

the differential equation by

𝑥𝑡+1 = 𝑥𝑡 + ℎ · 𝑓(𝑥𝑡, 𝑢𝑡+1, 𝑤𝑡+1), (4.1)
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where 𝑥𝑡+1 can be computed explicitly given 𝑥𝑡.

2. Implicit time-discretization (Backward Euler): The implicit scheme approxi-

mates the diffential equation by

𝑥𝑡+1 = 𝑥𝑡 + ℎ · 𝑓(𝑥𝑡+1, 𝑢𝑡+1, 𝑤𝑡+1), (4.2)

where 𝑥𝑡+1 can be obtained by solving a system of nonlinear equations given 𝑥𝑡.

Implicit time-discretization schemes admit a more accurate solution compared

to the explicit scheme and may use a larger step size ℎ to predict a longer

horizon.

The robust MPC problem solves the following optimization problem over a finite

horizon of 𝑁 time steps:

minimize
𝑢,𝑥

𝑐(𝑥, 𝑢)

subject to ∀𝑤𝑡 ∈ 𝒲𝑡, ∀𝑤init ∈ 𝒲init,

𝑥0 = 𝑤init,

for 𝑡 = 0, ..., 𝑁 − 1,

𝑥𝑡+1 ∈ 𝒳𝑡+1, 𝑢𝑡 ∈ 𝒰𝑡,

(if explicit) 𝑥𝑡+1 = 𝑥𝑡 + ℎ · (𝑓(𝑥𝑡, 𝑢𝑡) + 𝑤𝑡),

(if implicit) 𝑥𝑡+1 = 𝑥𝑡 + ℎ · (𝑓(𝑥𝑡+1, 𝑢𝑡) + 𝑤𝑡).

(4.3)

The objective function considers the worst-case cost under uncertainty, defined by

𝑐(𝑥, 𝑢) = max
𝑤𝑡∈𝒲𝑡

(︃
𝑁−1∑︁
𝑡=0

[𝑐𝑥,𝑡(𝑥𝑡) + 𝑐𝑢,𝑡(𝑢𝑡)] + 𝑐𝑥,𝑁(𝑥𝑁)

)︃
, (4.4)

where 𝑐𝑥,𝑡 : R𝑛 → R and 𝑐𝑢,𝑡 : R𝑚 → R for 𝑡 = 1, . . . , 𝑁 are convex cost functions

for states and control actions, respectively. The implementation of MPC follows the

receding horizon fashion where the first control action of the solution from (4.3) is

applied to the plant, and the remaining computed control actions are discarded. This

process is repeated with the new system state set to the initial condition.
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Modeling Safety Constraints

The state of the system is constrained by safety constraints, which forms a general

nonconvex set denoted by 𝒳𝑡. As an example, these constraints could include physical

obstacles that the navigating agent must avoid and safety limits that the system and

controller need to respect. We represent the safety constraints in the form of avoiding

𝑠 convex obstacles at time 𝑡. The state is declared feasible or safe if 𝑥𝑡 ∈ 𝒳𝑡 or

equivalently,

𝑥𝑡 /∈ ℬ𝑡,(𝑖), 𝑖 = 1, . . . , 𝑠, (4.5)

where ℬ𝑡,(𝑖) ⊆ R𝑛, 𝑖 = 1, . . . , 𝑠 are convex sets representing the obstacles. The sub-

script 𝑡 denotes that the obstacle may be time-dependent to represent moving obsta-

cles. The subscript (𝑖) denotes the index of the obstacle. The safety constraint can

be represented as an intersection of the complement of convex obstacles such that

𝒳𝑡 =

(︃
𝑠⋃︁
𝑖=1

ℬ𝑡,(𝑖)

)︃𝐶

=
𝑠⋂︁
𝑖=1

ℬ𝐶𝑡,(𝑖), (4.6)

where ℬ𝐶𝑡,(𝑖) denotes the complement of the set ℬ𝑡,(𝑖). The safety constraints are

assumed to be represented with a finite number of obstacles. This representation

includes the majority of practically relevant applications such as the ground vehicle

navigation problem.

Modeling Uncertainty Sets

We provide two types of uncertainty sets as examples:

𝒲𝑄(𝛾) = {𝑤 | (𝑤 − 𝑤(0))𝑇Σ−1(𝑤 − 𝑤(0)) ≤ 𝛾2},

𝒲𝐼(𝛾) = {𝑤 | |𝑤𝑖 − 𝑤
(0)
𝑖 | ≤ 𝛾𝑖, 𝑖 = 1, . . . , 𝑟},

(4.7)

where the superscripts 𝑄 and 𝐼 denote ellipsoidal and interval uncertainty sets, re-

spectively. The ellipsoidal uncertainty set, 𝒲𝑄(𝛾), has its center at the nominal

value, 𝑤(0) ∈ R𝑟, with variance and radius of Σ ∈ R𝑟×𝑟 and 𝛾 ∈ R, respectively. The

interval uncertainty set, 𝒲𝐼(𝛾), is upper and lower bounded by 𝑤(0)
𝑖 +𝛾𝑖 and 𝑤(0)

𝑖 −𝛾𝑖
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for each element of 𝑤𝑖.

4.1.2 Dynamics as a System of Nonlinear Equations

We consider the system trajectories as a collection of system variables over the pre-

diction horizon 𝑁 . The state, control and uncertainty trajectories will be denoted by

x ∈ R(𝑛+1)·𝑁 , u ∈ R𝑚·𝑁 , and w ∈ R𝑛+𝑟·𝑁 where

x =

⎡⎢⎢⎢⎣
𝑥0
...

𝑥𝑁

⎤⎥⎥⎥⎦ , u =

⎡⎢⎢⎢⎣
𝑢1
...

𝑢𝑁

⎤⎥⎥⎥⎦ , w =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑤init

𝑤1

...

𝑤𝑁

⎤⎥⎥⎥⎥⎥⎥⎦ .

The uncertain variable, w, includes both the uncertain initial condition, 𝑤init, and the

uncertain dynamics 𝑤0, . . . , 𝑤𝑁−1. We will write that w ∈ 𝒲(𝛾) if 𝑤init ∈ 𝒲init(𝛾)

and 𝑤𝑡 ∈ 𝒲𝑡(𝛾) for 𝑡 = 1, . . . , 𝑁 . The cardinality of x will be denoted by |x| so that

x ∈ R|x|.

The dynamic equations of 𝑁 time steps can be cast as a system of nonlinear

equations by concatenating the equality constraints in (4.3). This formulation con-

verts the dynamic equation in (5.1) to finding a zero of a set of algebraic equa-

tions 𝐹 (x,u,w) = 0 where 𝐹 : (R|x|,R|u|,R|w|) → R|x| defines the dynamics

of the system. For example, the dynamic equation in (4.1) can be rearranged to

𝑥𝑡 + ℎ · 𝑓(𝑥𝑡, 𝑢𝑡+1, 𝑤𝑡+1) − 𝑥𝑡+1 = 0, and the initial can be written as 𝑤init − 𝑥0 = 0.

Then, the set of equations for explicit time-discretization scheme is given by

𝐹explicit(x,u,w) =⎡⎢⎢⎢⎢⎢⎢⎣
𝑤init − 𝑥0

𝑥0 + ℎ · 𝑓(𝑥0, 𝑢1, 𝑤1) − 𝑥1
...

𝑥𝑁−1 + ℎ · 𝑓(𝑥𝑁−1, 𝑢𝑁 , 𝑤𝑁) − 𝑥𝑁

⎤⎥⎥⎥⎥⎥⎥⎦ ,
(4.8)
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and the equations for implicit scheme is given by

𝐹Implicit(x,u,w) =⎡⎢⎢⎢⎢⎢⎢⎣
𝑤init − 𝑥0

𝑥0 + ℎ · 𝑓(𝑥1, 𝑢1, 𝑤1) − 𝑥1
...

𝑥𝑁−1 + ℎ · 𝑓(𝑥𝑁 , 𝑢𝑁 , 𝑤𝑁) − 𝑥𝑁

⎤⎥⎥⎥⎥⎥⎥⎦ .
(4.9)

The number of equations in 𝐹 (x,u,w) is the same as the number of unknown

variables in x, which is the state trajectory given the control and uncertain variables.

Fixed-Point Analysis of Discrete-time Dynamical Systems

Consider the nonlinear equation 𝐹 (x,u,w) = 0 defined in (4.8) or (4.9) depending on

the choice of time-discretization scheme. Let 𝜕𝐹
𝜕x

⃒⃒
(0)

= 𝜕𝐹
𝜕x

⃒⃒
x=x(0),u=u(0),w=w(0) denote

the Jacobian of 𝐹 with respect to x evaluated at the nominal system trajectory. Note

that the variables x(0), u(0), and w(0) denote the nominal trajectories. The dynamic

equation, 𝐹 (x,u,w) = 0, can be written as the following fixed-point equation:

x = −

(︃
𝜕𝐹

𝜕x

⃒⃒⃒⃒−1

(0)

)︃
𝑔(x,u,w) −

(︃
𝜕𝐹

𝜕x

⃒⃒⃒⃒−1

(0)

· 𝜕𝐹
𝜕w

⃒⃒⃒⃒
(0)

)︃
w, (4.10)

where 𝑔 : (R|x|,R|u|,R|w|) → R|x| is the residual function:

𝑔(x,u,w) = 𝐹 (x,u,w) −

(︃
𝜕𝐹

𝜕x

⃒⃒⃒⃒
(0)

)︃
x−

(︃
𝜕𝐹

𝜕w

⃒⃒⃒⃒
(0)

)︃
w. (4.11)

Closed-form expressions for the Jacobian and the residual function are provided in

Appendix A.3.1 and A.3.2.

Lemma 6. The inverse of the Jacobian, 𝜕𝐹
𝜕x

⃒⃒−1

(0)
, exists for both explicit and implicit

time-discretization schemes if the step size, ℎ, is sufficiently small. Then, the set of

dynamic equations, 𝐹 (x,u,w) = 0, is satisfied if and only if (4.10) is satisfied.

Proof. A closed-form representation of the Jacobian inverse is provided in Lemma 15
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and 16 in Appendix A.3.1. Substituting the residual function in Equation (4.11) to

(4.10), 0 = −𝜕𝐹
𝜕x

⃒⃒−1

(0)
𝐹 (x,u,w). Since the Jacobian is invertible, 𝐹 (x,u,w) = 0.

Convex Restriction of Control Actions

Using envelopes and the fixed-point equation, we present the convex sufficient condi-

tion that guarantees that the self-mapping polytope is indeed the outer approximation

of possible state trajectories. Let the matrices 𝐾 ∈ R|x|×|x| and 𝑅 ∈ R|x|×|w| be de-

fined by

𝐾 = −𝜕𝐹
𝜕x

⃒⃒⃒⃒−1

(0)

, 𝑅 = −𝜕𝐹
𝜕x

⃒⃒⃒⃒−1

(0)

· 𝜕𝐹
𝜕w

⃒⃒⃒⃒
(0)

. (4.12)

Let the constant matrices 𝐾+, 𝐾− ∈ R|x|×|x| denote 𝐾+
𝑖𝑗 = max{𝐾𝑖𝑗, 0} and 𝐾−

𝑖𝑗 =

min{𝐾𝑖𝑗, 0} for each element of 𝐾. The following theorem provides a convex inner-

approximation of the control action and an interval outer-approximation of the state

trajectory against the uncertainty with a given robustness margin 𝛾.

Theorem 7. Suppose that for a control trajectory u, there exist variables x𝑢, xℓ ∈ R|x|

and 𝑔𝑢𝒫 , 𝑔
ℓ
𝒫 ∈ R|x| that satisfies convex inequality constraints in (2.7) and

𝐾+𝑔𝑢𝒫 +𝐾−𝑔ℓ𝒫 + 𝜉𝑢(𝛾) ≤ x𝑢,

𝐾+𝑔ℓ𝒫 +𝐾−𝑔𝑢𝒫 + 𝜉ℓ(𝛾) ≥ xℓ,
(4.13)

and for 𝑖 = 1, . . . , |x|,
𝜉𝑢𝑖 (𝛾) = max

w∈𝒲(𝛾)
𝑅𝑖w,

𝜉ℓ𝑖 (𝛾) = min
w∈𝒲(𝛾)

𝑅𝑖w.
(4.14)

Then, for every w ∈ 𝒲(𝛾), there exists a state trajectory x such that x ∈ 𝒫(x𝑢,xℓ).

Convex Restriction of Safety Constraints

In this section, we propose a procedure for deriving the convex restriction of the

safety constraints. The objective is to find a convex subset of 𝒳𝑡 around 𝑥
(0)
𝑡 for

𝑡 = 1, . . . , 𝑁 . The restricted convex set will be used to certify that the trajectories lie
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inside the safety constraints. The procedure relies on the projection of nominal state

to obstacles at each time step,

𝑃ℬ𝑡,𝑖
[𝑥

(0)
𝑡 ] = arg min

𝑥∈ℬ𝑡,𝑖

‖𝑥− 𝑥
(0)
𝑡 ‖22, (4.15)

where ℬ𝑡,𝑖, 𝑖 = 1, . . . , 𝑠 are obstacles. The following lemma provides the convex

restriction of the safety constraints using the projections.

Lemma 7. The state at time step 𝑡 satisfies the safety constraints, 𝑥𝑡 ∈ 𝒳𝑡, if 𝑥𝑡

satisfies

𝐿𝑡𝑥𝑡 + 𝑑𝑡 < 0, (4.16)

where the constants 𝐿𝑡 ∈ R𝑠×𝑛 and 𝑑𝑡 ∈ R𝑠 are

𝐿𝑡 =

⎡⎢⎢⎢⎣
(𝑃ℬ𝑡,1 [𝑥

(0)
𝑡 ] − 𝑥

(0)
𝑡 )𝑇

...

(𝑃ℬ𝑡,𝑠 [𝑥
(0)
𝑡 ] − 𝑥

(0)
𝑡 )𝑇

⎤⎥⎥⎥⎦ , 𝑑𝑡 = −𝐿𝑡

⎡⎢⎢⎢⎣
𝑃ℬ𝑡,1 [𝑥

(0)
𝑡 ]

...

𝑃ℬ𝑡,𝑠 [𝑥
(0)
𝑡 ]

⎤⎥⎥⎥⎦ .

A formal proof is presented in Appendix A.3.3, and Figure 4-2 illustrates the

underlying idea. Since the obstacles ℬ𝑡,𝑖 are assumed to be convex, the supporting

hyperplane at the projection provides a half-space where an obstacle cannot exist. By

intersecting these half-spaces, we can derive a convex restriction of safety constraints

at each state at time 𝑡. Next, we provide a sufficient condition for the robust feasible

control action by ensuring that the self-mapping tube 𝒫(x𝑢,xℓ) lies inside the convex

restriction of safety constraints.

Theorem 8. The control trajectory u is a robust feasible control action if there exist

variables x𝑢, xℓ, 𝑔𝑢𝒫 , 𝑔
ℓ
𝒫 ∈ R|x| that satisfies convex inequality constraints in (2.7),

(4.13), and

𝐿+
𝑡 𝑥

𝑢
𝑡 + 𝐿−

𝑡 𝑥
ℓ
𝑡 + 𝑑𝑡 < 0, ∀𝑡 = 1, . . . , 𝑁. (4.17)

Proof. Conditions (2.7) and (4.13) ensure that there exists a state trajectory x ∈ 𝒫(z̃)
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Figure 4-2: Illustration of convex restriction of safety constraints. The blue dot
shows the current nominal state 𝑥(0)𝑡 , and the red dots show their projection to the
obstacles. The supporting hyperplanes at the projected point provide half-spaces that
are guaranteed to avoid obstacles. By finding the intersection of half-spaces, convex
restrictions of safety constraints are shown in the green region.

from Theorem 7. Inequality condition in (4.17) ensures that

𝐿𝑡𝑥𝑡 + 𝑑𝑡 ≤ 𝐿+
𝑡 𝑥

𝑢
𝑡 + 𝐿−

𝑡 𝑥
ℓ
𝑡 + 𝑑𝑡 < 0,

for 𝑡 = 1, . . . , 𝑁 . From Lemma 7, for all x ∈ 𝒫(xℓ,x𝑢), 𝑥𝑡 ∈ 𝒳𝑡, and thus there exists

state trajectories satisfying the safety constraints for all w ∈ 𝒲 .

4.1.3 Numerical Results

This section presents a numerical example that is illustrated on a ground vehicle

navigation model. This example contains nonconvex safety constraints, which are

obstacles in the context of navigation problems. The numerical experiments were

done on 3.3 GHz Intel Core i7 with 16 GB Memory, and the convex optimization

problems were implemented with Python with CVXPY with ECOS as the solver

[39]. The MOSEK solver was used to solve the convex Quadratically Constrained

Quadratic Programming problems generated by convex restriction.
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Ground Vehicle Model

The dynamics of the ground vehicle is given by

𝑑

𝑑𝑡

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥1

𝑥2

𝑣

𝜃

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑣 cos 𝜃 + 𝑤1

𝑣 sin 𝜃 + 𝑤2

𝑢1 + 𝑤3

𝑣 tan𝑢2 + 𝑤4

⎤⎥⎥⎥⎥⎥⎥⎦ (4.18)

where (𝑥1, 𝑥2) ∈ R2 and 𝜃 are the vehicle’s position and direction. The variable 𝑣

is the speed, and 𝑢1 and 𝑢2 are acceleration and steering velocity. Euler’s forward

method was used for time discretization with the step size ℎ = 0.05. The degree of

sparsity in this system is |ℐ|=2 since the terms 𝑣 cos 𝜃 and 𝑣 sin 𝜃 involve 𝑣 and 𝜃 as the

dependent variables. The safety constraints considered two time-invariant obstacles,

which are expressed by a polytope of the form ℬ(𝑖), 𝑖 = 1, 2. These obstacles are shown

in blue in Figure 4-4. The control actions were subject to the limits, 𝑢𝑡,1 ∈ [−1, 1]

and 𝑢𝑡,2 ∈ [−0.785, 0.785], and the vehicle speed is limited by 𝑥𝑡,3 ∈ [−5.55, 15.28].

The uncertainty in initial condition is set to 𝒲init(𝛾init) = {(𝑥1, 𝑥2, 𝑣, 𝜃) | 𝑥21+𝑥22 ≤

𝛾2init,𝑥, |𝑣| ≤ 𝛾init,𝑣, |𝜃| ≤ 𝛾init,𝜃} where 𝛾init,𝑥 = 0.05, 𝛾init,𝑣 = 0.05, and 𝛾init,𝜃 = 0.005.

The uncertainty set in dynamics is set to 𝒲𝑡(𝛾dyn) = {𝑤 | 𝑤2
1 + 𝑤2

2 ≤ 𝛾2dyn,𝑥, |𝑤3| ≤

𝛾dyn,𝑣, |𝑤4| ≤ 𝛾dyn,𝜃} where 𝛾dyn,𝑥 = 0.05, 𝛾dyn,𝑣 = 0.005, and 𝛾dyn,𝜃 = 0.005.

The cost function for the robust MPC problem was set to 𝑐𝑢,𝑡(𝑢𝑡) = 0.01𝑢2𝑡,1 +

0.001𝑢2𝑡,2 and 𝑐𝑥,𝑡(𝑥𝑡) = (𝑥 − 𝑥target)
𝑇𝑄(𝑥 − 𝑥target) where 𝑥target = (3, 5, 0, 0) and

𝑄 = diag([1, 1, 0.5, 0.0001]).

Constrained Robust Model Predictive Control

The constrained robust MPC was solved using sequential convex restriction. The

subproblems were solved with SCR described in Algorithm 1.

Figure 4-3 shows the convergence plot for both nominal and worst-case costs.

The average solver time per iteration was 0.733 seconds, and it took five iterations to

converge. The figure provides some insight into the conservatism of our approach. The
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Figure 4-3: The convergence of sequential convex restriction is shown. The blue plot
shows the nominal cost as a function of number of iterations, and the orange plot
shows the bound on worst-case cost.

worst-case cost provides the upper bound, and the nominal cost provides the lower

bound on the control cost for all realizations of the uncertainty set. This corresponds

to an uncertainty of 8.44 % with respect to the worst-case cost.

The following experiments show the result where the initial trajectory was pro-

vided by path-following feedback control. The trajectory was optimized again using

SCR with 𝑁 = 50.

Figure 4-4 shows the nominal state trajectories of the solution to the algorithm as

well as the set of possible state trajectories under uncertainty and the self-mapping

tube. The set of possible state trajectories under uncertainty grows with time due

to the propagation of uncertain variables in dynamics. The self-mapping tube is

guaranteed to contain the possible state trajectory and satisfies the safety constraints.

The circles represent the inner approximation of possible state realization. Any point

inside the circle can be realized by some uncertainty trajectory within the specified

uncertainty set.

Figure 4-5 shows the state and control trajectories of the solution from sequential

convex restriction. The position of the vehicle safely arrives at the target point. The

trajectories of the vehicle’s velocity and angle are tight to the self-mapping tube since

the associated dynamics are linear and are not affected by the uncertain variables.
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Figure 4-4: The nominal state trajectory obtained by the sequential convex restriction
is shown in the blue line. The obstacles are shown in two blue regions, and the
uncertainty set is shown with black circles. The grey rectangular boxes show the
solution for the self-mapping tube 𝒫(z̃), which provides the outer approximation of
the possible state trajectories.
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Figure 4-5: The state trajectories for the obtained control action is shown with the
self-mapping tube obtained by the convex restriction. The control action obtained by
the convex restriction is shown. The limits of the control inputs are 𝑢1 ∈ [−100, 20]
and 𝑢2 ∈ [−1.5, 1.5].

One unconventional feature in convex restriction that distinguishes itself from con-

ventional approaches is that it does not rely on propagating the uncertainty set in the

time domain. The outer approximation in Figure 4-4 is verified via the fixed-point

theorem, and the tube does not become overly conservative over time. The outer ap-

proximation’s tightness is enforced only on the bottom and left faces of the rectangles

where the worst-case cost occurs since it is the furthest point away from the target

point. This feature allows us to obtain the tube that satisfies the safety constraint

while not overly approximating the worst-case realization of the state trajectories.

4.2 Optimal Power Flow (OPF)

The operation of the power grid requires the system operator to determine a dispatch

point to the generators such that the grid supplies electricity to consumers securely

and reliably. In order to determine the dispatch point with minimum generation cost,

the optimal power flow (OPF) problems are solved with the physical models of the

grid, such as the AC power flow equation, and operational constraints such as voltage

magnitude, line flow, and generator limits.
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Notation

The scalars 𝑛b, 𝑛g, 𝑛pv, 𝑛pq, 𝑛l, and 𝑛d denote the number of buses, generators,

PV, PQ buses, lines, and loads, respectively. The variables 𝑝g ∈ R𝑛g and 𝑞g ∈ R𝑛g

represent the generators’ active and reactive power outputs. Uncontrollable active

and reactive power injections are denoted by 𝑝d ∈ R𝑛d and 𝑞d ∈ R𝑛d where positive

values indicate stochastic loads and negative values indicate uncertain generation such

as renewables. The voltage magnitudes and phase angles are 𝑣 ∈ R𝑛b and 𝜃 ∈ R𝑛b .

The from and to buses for the lines are denoted by “f” and “t”. The non-reference,

PV, and PQ elements of a vector are denoted with subscripts “ns”, “pv”, and “pq”. Let

𝐸 ∈ R𝑛b×𝑛l be the incidence matrix of the grid. The connection matrices for generator

buses and load buses are denoted by 𝐶g ∈ R𝑛b×𝑛g and 𝐶d ∈ R𝑛b×𝑛d , respectively. The

matrices 𝐼 and 0 denote identity and zero matrices of appropriate size. The vertical

concatenation of vectors 𝑎 and 𝑏 is denoted by (𝑎, 𝑏).

AC Optimal Power Flow Problem Formulation

For notational convenience, we denote the angle differences between the terminals of

the transmission lines as 𝜙:

𝜙𝑙 = 𝜃f
𝑙 − 𝜃t

𝑙 , 𝑙 = 1, . . . , 𝑛l, (4.19)

where 𝜃f
𝑖 and 𝜃t

𝑖 are the phase angles of the from bus and to bus of line 𝑙. The AC OPF

problem is:

minimize
𝑥,𝑢,𝑠f,𝑠t

𝑐(𝑝g) =

𝑛g∑︁
𝑖=1

𝑐𝑖(𝑝g,𝑖) (4.20)

subject to: for 𝑘 = 1, . . . , 𝑛b,

𝑝inj
𝑘 =

𝑛l∑︁
𝑙=1

𝑣f
𝑙𝑣

t
𝑙 (𝐺c

𝑘𝑙 cos𝜙𝑙 +𝐵s
𝑘𝑙 sin𝜙𝑙) +𝐺d

kk𝑣
2
𝑘, (4.21a)

𝑞inj
𝑘 =

𝑛l∑︁
𝑙=1

𝑣f
𝑙𝑣

t
𝑙 (𝐺s

𝑘𝑙 sin𝜙𝑙 −𝐵c
𝑘𝑙 cos𝜙𝑙) −𝐵d

kk𝑣
2
𝑘, (4.21b)
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𝑝 min
g,𝑖 ≤𝑝g,𝑖 ≤ 𝑝max

g,𝑖 , 𝑖 = 1, . . . , 𝑛g, (4.22a)

𝑞min
g,𝑖 ≤𝑞g,𝑖 ≤ 𝑞max

g,𝑖 , 𝑖 = 1, . . . , 𝑛g, (4.22b)

𝑣min
𝑖 ≤𝑣𝑖 ≤ 𝑣max

𝑖 , 𝑖 = 1, . . . , 𝑛b (4.22c)

𝜙min
𝑙 ≤𝜙𝑙 ≤ 𝜙max

𝑙 , 𝑙 = 1, . . . , 𝑛l, (4.22d)

(𝑠f
p,𝑙)

2+(𝑠f
q,𝑙)

2 ≤ (𝑠max
𝑙 )2, 𝑙 = 1, . . . , 𝑛l, (4.22e)

(𝑠t
p,𝑙)

2+(𝑠t
q,𝑙)

2 ≤ (𝑠max
𝑙 )2, 𝑙 = 1, . . . , 𝑛l. (4.22f)

where the matrices 𝐺c, 𝐺s, 𝐵c, 𝐵s ∈ R𝑛b×𝑛l and 𝐺d, 𝐵d ∈ R𝑛b×𝑛b are transformed

admittance matrices for the respective conductance and susceptance terms. The

exact definitions of the transformed matrices are available in [63]. The objective

𝑐 : R𝑛𝑔 → R is a monotonically increasing function of the active power generation.

The active and reactive power injections are 𝑝inj = 𝐶g𝑝g−𝐶d𝑝d and 𝑞inj = 𝐶g𝑞g−𝐶d𝑞d.

Superscripts max and min denote the maximum and minimum limits of the associated

quantity. Constraints (4.22a) and (4.22b) impose the generators’ active and reactive

power output limits. Constraints (4.22c) and (4.22d) limit the voltage magnitudes

and the angle differences. Constraints (4.22e) and (4.22f) impose line flow limits

where 𝑠f/t
p,𝑙 and 𝑠f/t

q,𝑙 are the active and reactive power flowing into the line 𝑙 at the from

and to buses, respectively.

Power Injection Uncertainty Modelling

The variable 𝑤 = (𝑝𝑑, 𝑞𝑑) ∈ R2𝑛𝑑 consists of uncertain active and reactive power

injections 𝑝d ∈ R𝑛𝑑 and 𝑞d ∈ R𝑛𝑑 . The nominal value of the uncertain variable is

𝑤(0). We consider a bounded uncertainty set 𝒲 modeled with a confidence ellipsoid

containing all power injections within a ball of radius 𝛾 centered on the nominal power

injections:

𝒲(𝛾) = {𝑤 | (𝑤 − 𝑤(0))𝑇Σ−1(𝑤 − 𝑤(0)) ≤ 𝛾2}. (4.23)

The power injection covariance matrix Σ ∈ R2𝑛𝑑×2𝑛𝑑 and the radius 𝛾 ∈ R determine

the shape and size, respectively, of the uncertainty set. The covariance matrix Σ
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captures the correlations between power injections. By choosing an appropriate value

for 𝛾, the confidence ellipsoid can be designed such that the probability of containing

the uncertainty realization is greater than the desired threshold. For example, if the

uncertainty is drawn from a univariate normal distribution, we can ensure that 95%

of the uncertainty realizations are within the confidence ellipsoid by setting 𝛾 to be

twice the variance.

Basis Function Formulation of the Power Flow Equations

In this section, we rewrite the AC power flow equations in terms of basis functions

that serve as building blocks for the power flow nonlinearities. The vector of nonlinear

functions, 𝜓 : (R𝑛b+𝑛pq ,R2𝑛g) → R𝑛g+2𝑛l+𝑛b , denotes the basis function, 𝜓(𝑥, 𝑢) =

(𝜓p, 𝜓cos, 𝜓sin, 𝜓quad), where

𝜓p
𝑖 (𝑥, 𝑢) = 𝑝g,ref,𝑖 + 𝛼𝑖∆, 𝑖 = 1, . . . , 𝑛g, (4.24a)

𝜓cos
𝑙 (𝑥, 𝑢) = 𝑣f𝑙𝑣

t
𝑙 cos (𝜙𝑙), 𝑙 = 1, . . . , 𝑛l, (4.24b)

𝜓sin
𝑙 (𝑥, 𝑢) = 𝑣f𝑙𝑣

t
𝑙 sin (𝜙𝑙), 𝑙 = 1, . . . , 𝑛l, (4.24c)

𝜓quad
𝑘 (𝑥, 𝑢) = 𝑣2𝑘, 𝑘 = 1, . . . , 𝑛b. (4.24d)

The AC power flow equations in (4.21) can be written in terms of the basis func-

tions and the uncertain variables as

𝑀𝜓(𝑥, 𝑢) +𝑅𝑤 = 0, (4.25)

where 𝑀 ∈ R(𝑛b+𝑛pq)×(𝑛g+2𝑛l+𝑛b) and 𝑅 ∈ R(𝑛b+𝑛pq)×2𝑛d are constant matrices defined

as

𝑀 =

⎡⎣𝐶g −𝐺c −𝐵s −𝐺d

0 𝐵c
pq −𝐺s

pq 𝐵d
pq

⎤⎦ , 𝑅 = −

⎡⎣𝐶d 0

0 𝐶d,pq

⎤⎦ . (4.26)

The matrix 𝐵c
pq ∈ R𝑛pq×𝑛l is a submatrix of 𝐵c ∈ R𝑛b×𝑛l containing the rows

corresponding to the PQ buses. Matrices 𝐺s
pq, 𝐵d

pq, 𝐶g,pq, and 𝐶d,pq are defined
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similarly.

Convex Restriction of OPF constraints

Direct application of Theorem 6 provides the following result for robust feasibility of

AC OPF constraints.

Theorem 9. (Robust Feasibility Condition for AC Optimal Power Flow) The dispatch

point 𝑢 = (𝑝𝑔,ref, 𝑣g) is robustly feasible with respect to the uncertainty set 𝒲(𝛾) if

there exist bounds on the internal states 𝑧𝑢 = (𝜙𝑢, 𝑣𝑢pq, ∆𝑢), 𝑧ℓ = (𝜙ℓ, 𝑣ℓpq,∆
ℓ), 𝑔𝑢𝒫 , 𝑔ℓ𝒫 ,

𝜓𝑢𝒫 , and 𝜓ℓ𝒫 that satisfy (2.7), (2.8), and the following set of operational constraints:

𝑝 min
g,𝑖 ≤𝑝g,ref,𝑖 + 𝛼∆ℓ, 𝑖 = 1, . . . , 𝑛g, (4.27a)

𝑝g,ref,𝑖 + 𝛼∆𝑢 ≤ 𝑝max
g,𝑖 , 𝑖 = 1, . . . , 𝑛g, (4.27b)

𝑞min
g,𝑖 ≤𝑞ℓg,𝑖, 𝑞𝑢g,𝑖 ≤ 𝑞max

g,𝑖 , 𝑖 = 1, . . . , 𝑛g, (4.27c)

𝑣min
pq,𝑖 ≤𝑣ℓpq,𝑖, 𝑣

𝑢
pq,𝑖 ≤ 𝑣max

pq,𝑖 , 𝑖 = 1, . . . , 𝑛pq (4.27d)

𝑣min
g,𝑖 ≤𝑣g,𝑖 ≤ 𝑣max

g,𝑖 , 𝑖 = 1, . . . , 𝑛g (4.27e)

𝜙min
𝑙 ≤𝜙ℓ𝑙 , 𝜙𝑢𝑙 ≤ 𝜙max

𝑙 , 𝑙 = 1, . . . , 𝑛l, (4.27f)

(𝑠f,𝑢
p,𝑙)

2+(𝑠f,𝑢
q,𝑙)

2 ≤ (𝑠max
𝑙 )2, 𝑙 = 1, . . . , 𝑛l, (4.27g)

(𝑠t,𝑢
p,𝑙 )

2+(𝑠t,𝑢
q,𝑙 )

2 ≤ (𝑠max
𝑙 )2, 𝑙 = 1, . . . , 𝑛l. (4.27h)

The reactive power generation bounds 𝑞ℓg and 𝑞𝑢g satisfy

𝐿+
q 𝜓

𝑢
𝒫 + 𝐿−

q 𝜓
ℓ
𝒫 + 𝜁𝑢(𝛾) ≤ 𝐶g,pv 𝑞

𝑢
𝑔 ,

𝐿−
q 𝜓

𝑢
𝒫 + 𝐿+

q 𝜓
ℓ
𝒫 + 𝜁ℓ(𝛾) ≥ 𝐶g,pv 𝑞

ℓ
𝑔,

(4.28)

𝜁𝑢𝑖 (𝛾) = 𝐶d,pv,𝑖Σ
1/2
q 𝑤(0) + 𝛾

⃦⃦
𝐶d,pv,𝑖Σ

1/2
q

⃦⃦
2
,

𝜁ℓ𝑖 (𝛾) = 𝐶d,pv,𝑖Σ
1/2
q 𝑤(0) − 𝛾

⃦⃦
𝐶d,pv,𝑖Σ

1/2
q

⃦⃦
2
,

(4.29)
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and the line flow bounds 𝑠t,𝑢
p , 𝑠f,𝑢

q , and 𝑠t,𝑢
q satisfy

𝐿k,+
j, line𝜓

𝑢
𝒫 + 𝐿k,−

j,line𝜓
ℓ
𝒫 ≤ 𝑠k,𝑢

j ,

−𝐿k,−
j,line𝜓

𝑢
𝒫 − 𝐿k,+

j,line𝜓
ℓ
𝒫 ≤ 𝑠k,𝑢

j .
(4.30)

for k ∈ {f, t} and j ∈ {p, q}. The decision variables 𝜓𝑢𝒫 and 𝜓ℓ𝒫 are the basis function

bounds over 𝒫(𝑧𝑢, 𝑧ℓ), and they are constrained by (2.7) by replacing the function 𝑔

by 𝜓.

4.2.1 Illustrative Example using a 9-Bus System

We begin by considering the 9-bus system from [28] with uncertain loads at buses 5

and 7. This 9-bus system is operating in a normal condition with positive active and

reactive power load demands. The participation factors are set to 1 for the generator

at bus 1 and 0 for the other generators, which corresponds to the single slack bus

formulation.

Comparison of nominal and robust solution

We first consider normally distributed loads with a mean equal to the nominal

load 𝑤(0) and standard deviation equal to 10% of 𝑤(0) without correlation between

loads. For our robust AC OPF algorithm, we use an uncertainty set 𝒲(𝛾req) that

encloses two standard deviations of the considered load uncertainty by setting Σ =

diag(𝑝2d) and 𝛾req = 0.2. To assess the quality of our solutions from the probabilistic

aspect, we compute the probability of constraint violations using 10,000 samples of

the random loads.

Fig. 4-6 shows the uncertainty set and the convex restriction for the loads at

buses 5 and 7. The nominal loads and the confidence ellipsoid are intrinsic to the

uncertainty model and do not change with the dispatch point. Changes in the dispatch

point adjust the set of feasible demands, and thus the feasible sets are shown in

Figs. 4-6(a) and (b) are different while the nominal load stays at the same location.

Specifically, the robust dispatch solution changes the feasible set of loading conditions
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(a) Non-robust solution (b) Robust solution (c) Robustness Margin

Figure 4-6: Figure (a) shows the vulnerability of non-robust optimal solution for
electric gird where more than half of the operating point fails to meet the operational
constraints. Figure (b) and (c) shows a robust optimal solution obtained by convex
restriction.

such that it inscribes the confidence ellipsoid. The quality of our solution is evident

by examining the distance between the boundaries of the feasible region, convex

restriction, and uncertainty set. For the nominal (non-robust) OPF solution in Fig. 4-

6(a), the operational cost is 5296.69 $/hr and constraint violations occur in 55.18%

of the samples. The most common violations are the maximum voltage magnitude

limits at buses 6 and 8. For the robust OPF solution in Fig. 4-6(b), we observe

that all uncertainty realizations within the considered uncertainty set (red circle) are

feasible, as guaranteed by our algorithm. The generation cost for the robust dispatch

point (5342.99 $/hr) is 0.87% greater than the cost for the nominal dispatch point,

but only 0.13% of the samples result in constraint violations.

Robustness Margin Maximization

We next examine a scenario where the system operators want to determine the op-

erating point with the largest robustness margin. First, we let the dispatch point 𝑢

be a decision variable and maximize the robustness margin. The resulting robustness

margin 𝛾 was 0.380, which is 90% greater than what was required (𝛾req = 0.2) in the

robust OPF solution above. This achieves robustness against ±38% fluctuations in

loads at every bus while the generation cost (5383.96 $/hr) only increased by 0.77%

relative to the robust OPF solution.

Second, we examine a scenario where the dispatch point is given by 𝑢 = 𝑢(0) and
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introduce correlation between loads. We define the dispatch point 𝑢(0) as the solution

in Fig. 4-6(b), and maximize the robustness margin with the additional constraint

𝑢 = 𝑢(0). We solve this problem several times for different correlation matrices Σ. The

legend of Fig. 4-6(c) gives the robustness margins 𝛾 obtained for different correlation

matrices Σ, with the corresponding uncertainty sets shown by the ellipses.

Computation Time

Since the robustness condition is convex, these problems can be solved efficiently. For

the 9-bus system, the robust AC OPF algorithm converged in two iterations, each

taking an average of 0.0497 seconds to compute. The number of iterations indicates

how many times the sub-optimization problem was solved. The average computation

time for obtaining the robustness margins is 0.0585 seconds.

4.2.2 Robustness vs. Cost Trade-Off for the IEEE 118-Bus

System

We next study the trade-off between operating cost and the probability of constraint

violations by solving the robust AC OPF problem for the IEEE 118-bus system [50].

Load uncertainty is modeled via a Gaussian distribution with variance equal to 1%

of the nominal load. The results are plotted in Fig. 4-7 with the enforced robustness

margin 𝛾req on the x-axis. The left y-axis (in blue) shows the empirically determined

join violation probability, i.e., the probability that a sample from the considered

uncertainty distribution violates one or more constraints. The right y-axis (in orange)

shows both the nominal (𝑐(0)) and worst-case (𝑐𝑢) generation costs.

We observe that increasing the robustness margin results in lower violation proba-

bility and higher generation cost. By examining this trade-off, operators can balance

generation cost and robustness based on the assessed level of power injection uncer-

tainty. For example, we can avoid constraint violations with 99% probability against

random samples from the Gaussian distribution by setting 𝛾req = 0.03, which increases

the cost relative to the nominal solution by 0.24%.
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Figure 4-7: The trade-off between generation cost and robustness for the IEEE 118-
bus system. The x-axis shows the required robustness margin, 𝛾req. The solid and
dashed red lines show the nominal and worst-case generation costs, 𝑐(0) and 𝑐𝑢, re-
spectively. The blue lines show the joint probability of constraint violations with
stochastic uncertainty.

4.2.3 Numerical Studies using the PGLib Test Cases

Finally, we show the effectiveness of our robust AC OPF algorithm using the PGLib

test cases [50] with sizes up to 179 buses. Each generator’s participation factor is pro-

portional to the generator’s capacity, i.e., 𝛼𝑖 = (𝑝max
g,𝑖 − 𝑝min

g,𝑖 )/
∑︀𝑛𝑔

𝑖=1(𝑝
max
g,𝑖 − 𝑝min

g,𝑖 ). The

uncertainty set for the robust OPF problem was modeled by 1% demand fluctuations

at every load bus (i.e., Σ = diag(𝑝2d) and 𝛾req = 0.01).

Table 4.1 compares the generation cost of the nominal (non-robust) solution ob-

tained using PowerModels.jl [31] with our robust dispatch point in the second and

fifth columns, respectively. The bound on the optimality gap in Corollary 6 is shown

in the tenth column, which is computed by taking the difference in generation costs

between the nominal and robust OPF solution. The optimality gap is approximately

less than 1%, indicating that only a marginal trade-off in generation cost is necessary

to achieve this level of robustness. The robustness against stochastic uncertainty was

evaluated by checking the feasibility of 10,000 samples from Gaussian and uniform

distributions. Columns 3 and 6 in Table 4.1 used samples from a uniform distribu-

tion within the uncertainty set. Since our robust OPF solution guarantees robust
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feasibility, there was no violated case for uniform distribution. Columns 4 and 7 used

a Gaussian distribution with its mean set to the nominal loads and variance set to

0.5% of the nominal loads. The results show that while the nominal OPF solution

is very sensitive to fluctuation, the robust solution makes the grid significantly more

robust against stochastic uncertainty. Columns 8 and 9 show the solver time and the

number of iterations, respectively. All of the studied test cases required fewer than

five iterations. Columns 10 and 11 show bounds on the optimality gaps computed

by the right-hand side of (3.14) in Corollary 6. The optimality gap in column 10

is calculated using the generation cost from a local search method (IPOPT [90]),

and column 11 uses the lower bound on the generation cost from the quadratic con-

vex (QC) relaxation [30]. We note that the optimality gap from the QC relaxation

in column 11 includes both the relaxation gap and the gap from the robust convex

restriction.

4.3 Analysis of Neural Networks

Neural networks are increasingly integrated as a critical component in safety-critical

systems by learning underlying models from data and making predictions and de-

cisions. While the multi-layer, nonlinear structure of the neural network gives the

ability to represent functions with high complexity, making decisions and analyzing

predictions is difficult due to its non-convex and nonlinear nature. The problems

in decision and prediction are often cast as an optimization where a trained neural

network approximates the objective function or constraints.

For example, trained neural networks are embedded to learn and estimate the

model [80, 6, 73, 29] or the cost-to-go function in reinforcement learning [71, 82]

such that the decisions are made by optimizing over the trained models. Analyzing

a trained neural network also involves an optimization problem. The robustness

verification problem can be cast as a feasibility problem where the output label does

not change within the permissible perturbation [40, 42, 56, 84, 85, 88, 92]. Another

example is finding an adversarial example, which searches for a minimum distortion
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(f) Sigmoid (Circles) (g) Sigmoid (Moons) (i) Sigmoid (Aniso)(h) Sigmoid (Varied)
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Figure 4-8: Convex restriction of neural networks trained for two-dimensional classi-
fication problems. The convex restriction (green region) provides an inner approxi-
mation of a class identified by the neural network (blue region). The scattered dots
are data used to train the neural network, and the red dot is the nominal input data
where the convex restriction is constructed around.

to an image that causes incorrect prediction of a neural network [46, 57, 72, 25, 45].

In this section, we propose a convex sufficient condition over the input to the

neural network such that the output satisfies upper and lower bound constraints. An

example is shown in Figure 4-8 where a neural network was trained for a classification

task, and the decision margins are plotted with different colors for each class.

4.3.1 Problem Formulation

We consider a trained 𝐿-layer feedforward neural network with nonlinear activation

functions. The input dimension is denoted by 𝑑0, and the number of hidden units at

layer 𝑘 is denoted by 𝑑𝑘. Let 𝑥 ∈ R𝑑0 be the input data to the neural network, and

𝑧𝑘 ∈ R𝑑𝑘 be the output variable at layer 𝑘. The weights between layers 𝑘 − 1 and

𝑘 are denoted by 𝑊𝑘 ∈ R𝑑𝑘×𝑑𝑘−1 , and the bias at layer 𝑘 is denoted by 𝑏𝑘 ∈ R𝑑𝑘 for

𝑘 = 1, . . . , 𝐿. The neural network can be written as the algebraic equations,

𝑧0 = 𝑥,

𝑧𝑘 = 𝜎𝑘(𝑊𝑘𝑧𝑘−1 + 𝑏𝑘), 𝑘 = 1, . . . , 𝐿,
(4.31)
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where 𝜎𝑘 : R𝑑𝑘 → R𝑑𝑘 is a vector of activation functions at 𝑘-th layer. The activation

functions are arbitrary nonlinear functions that are continuous, including ReLU, sig-

moid, pooling functions, and the convolutional layer. The analysis is carried out on a

trained neural network where the weights are fixed. Both classification and regression

problems are considered with the following setup.

Classification problems label each data point to a class 𝑘 ∈ {1, . . . , 𝑑𝐿}, where the

input data is predicted by 𝑘 = arg max𝑖 𝑧𝐿,𝑖. The constraint for fixing the label in

classification can be set by 𝑧𝐿,𝑘 ≥ 𝑧𝐿,𝑖 for 𝑖 = 1, . . . , 𝑑𝐿 where 𝑘 is the desired output

class. Regression problems have a predictor 𝑦 ∈ R𝑑𝐿 given by the output layer of

the neural network, 𝑦 = 𝑧𝐿. Constraints on the output of the neural network can be

directly imposed on 𝑧𝐿.

Neural Constrained Optimization Problems

We consider the following canonical optimization problem involving a neural network,

minimize
𝑥,𝑧

𝑐(𝑧, 𝑥) subject to 𝑓(𝑧, 𝑥) = 0, ℎ(𝑧, 𝑥) ≤ 0. (4.32)

where 𝑧 =
[︁
𝑧𝑇0 . . . 𝑧𝑇𝐿

]︁𝑇
∈ R𝑛 with 𝑛 =

∑︀𝐿
𝑘=0 𝑑𝑘, and 𝑓 : (R𝑛,R𝑑0) → R𝑛 is defined

as

𝑓(𝑧, 𝑥) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥− 𝑧0

𝜎1(𝑊1𝑧0 + 𝑏1) − 𝑧1
...

𝜎𝐿(𝑊𝐿𝑧𝐿−1 + 𝑏𝐿) − 𝑧𝐿

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.33)

The equality constraint can be viewed as a square system with 𝑛 unknown variables

(𝑧 ∈ R𝑛) and 𝑛 equations parametrized by 𝑥 ∈ R𝑑0 . The choice of the cost function

𝑐 : (R𝑛,R𝑑0) → R and inequality constraints ℎ : (R𝑛,R𝑑0) → R𝑚 depend on the

problem formulation. If the neural network outputs a scalar that represents the

objective function, then it can be simply set to 𝑐(𝑧, 𝑥) = 𝑧𝑁 . If the neural network

models the constraint, then it can be added as a constraint ℎ(𝑧, 𝑥) = 𝑧𝑁 − 𝑏 ≤ 0

where 𝑏 is some constant. For classification problems, the inequality constraint can
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be set to ℎ𝑖(𝑧, 𝑥) = 𝑧𝐿,𝑖 − 𝑧𝐿,𝑘 ≤ 0 for 𝑖 = 1, . . . , 𝑑𝐿 where 𝑘 is the target label.

Robustness Margin of Neural Networks: The robustness margin for the

neural network can be defined as how much norm-bounded perturbation can be added

to the input data without changing the output label. Such a problem can be cast as

an optimization problem in (3.1).

Adversarial Example: Finding an adversarial example is minimizing some dis-

tance metric subject to the neural network in (4.31). This problem can be also cast

as an optimization problem in (3.1).

Optimization over Neural Networks In general, convex restriction provides a

way to optimize with the neural network as a constraint. For example, we may want

to minimize the input data with respect to some objective function. This problem

could be solved by a sequence of convex optimization by replacing the neural network

with convex restriction.

Convex restriction of neural networks

In this section, we present the convex sufficient condition for the equality and in-

equality constraints imposed by the neural network in (4.32). By applying envelopes

for activation functions to the fixed-point representation of the neural network, the

following theorem states our main result.

Theorem 10. (Convex Restriction of Neural Networks) Given the input data 𝑥 ∈ R𝑑0

with some perturbation within a ball ℬ𝛾(𝑥(0)), the output of the neural network in

(4.31) is bounded by 𝑧ℓ ≤ 𝑧 ≤ 𝑧𝑢 if there exists 𝑧𝑢, 𝑧ℓ ∈ R𝑛 and 𝑔𝑢𝒫 , 𝑔
ℓ
𝒫 ∈ R𝑛 such

that

𝐾+ 𝑔𝑢𝒫 +𝐾− 𝑔ℓ𝒫 + 𝜉 = 𝑧𝑢,

𝐾− 𝑔𝑢𝒫 +𝐾+ 𝑔ℓ𝒫 − 𝜉 = 𝑧ℓ,

𝜉𝑖 = 𝛾‖𝐾𝑖,1:𝑑0‖2, 𝑖 = 1, . . . , 𝑛

𝑔𝑢𝒫,0 ≥ 𝑥, 𝑔𝑢𝒫,𝑘 ≥ 𝑔𝑢𝑘 (𝑧𝑢𝑘−1), 𝑔
𝑢
𝒫,𝑘 ≥ 𝑔𝑢𝑘 (𝑧ℓ𝑘−1), 𝑘 = 1, . . . , 𝐿,

𝑔ℓ𝒫,0 ≤ 𝑥, 𝑔ℓ𝒫,𝑘 ≤ 𝑔ℓ𝑘(𝑧
𝑢
𝑘−1), 𝑔

ℓ
𝒫,𝑘 ≤ 𝑔ℓ𝑘(𝑧

ℓ
𝑘−1), 𝑘 = 1, . . . , 𝐿,

(4.34)
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where 𝐾𝑖,1:𝑑0 ∈ ℛ1×𝑑0 is a row vector that corresponds to the 𝑖-th row and 1-st to

𝑑0-th columns of the matrix 𝐾.

4.3.2 Experiments

We demonstrate our condition using optimization test functions [51] and MNIST

dataset of hand-written digits [59]. We note that the focus of this paper is on the

analysis of trained neural networks, and our results hold regardless of the training data

and training procedure. Pytorch was used to construct and train a neural network

[77], and CVXPY [35] with Gurobi [48] as the solvers were used to solve convex

optimization problems. The problems were solved on a laptop with 3.3 GHz Intel

Core i7 and 16 GB memory. More illustrations and our code are available in the

supplement.

Solving an optimization problem with an unknown objective function and

constraints

For solving optimization problems with trained neural networks, we sample data from

standard optimization test functions and train neural networks to fit the data. We

evaluate our approach on a neural network trained to learn an optimization test

function. We generated 50000 random points from a uniform distribution and eval-

uated it using the Rosenbrock function, 𝑣(𝑥) =
∑︀𝑑0−1

𝑖=1 [100(𝑥𝑖+1 − 𝑥2𝑖 )
2 + (1 − 𝑥𝑖)

2]

where 𝑑0 is 1000. We trained a neural network with three hidden layers and 1000

total hidden nodes. Figure 4-9 shows an illustration for 𝑑0 = 2 where the scattered

data are training data, and the surface plot is the learned function using the neural

network. We solve an optimization problem where the objective is to minimize the

learned function 𝑣(𝑥). We compare the performance of sequential convex restriction

with subgradient descent [77] and trust-region method [89]. Figure 4-9 (b) shows the

comparisons where mixed-integer linear programming provides a global minimum so-

lution, and convex relaxation provides a lower bound on the objective function. The

performance of sequential convex restriction is usually comparable to the trust-region
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method.

Figure 4-9: Figure (a) shows the trained test optimization function. Figure (b) and
(c) show comparisons with other methods.

Finding an adversarial morphing

We consider morphing from an initial input data to a target data without changing

the neural network’s prediction. We train a 5-layer neural network where the first

two layers are convolutional layers with ReLU activation functions, and the next two

layers are ReLU layers. There are a total of 9154 hidden nodes in the neural network.

Figure 4-10 shows the solutions from sequential convex restriction, which took 36.88

seconds per iteration on average. Since every consecutive solution from sequential

convex restriction belongs to a convex set, it follows from the definition of the convex

set that

∀𝛼 ∈ [0, 1], 𝛼 · 𝑥(𝑘) + (1 − 𝛼) · 𝑥(𝑘+1) ∈ 𝒰 cvxrs ⊆ 𝒰

for every iteration 𝑘. Therefore, a piece-wise linear transition from the initial input

data produces a target label while satisfying the neural network out constraints.

Initial data Iteration 1 Iteration 2 Iteration 3 Iteration 4 Target data

Figure 4-10: Numerical experiment for finding a targeted adversarial example.
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4.4 Collision-free Motion Planning in Robotics

In this section, we consider robotic motion planning to generate collision-free trajec-

tories. The problem considers both the nonlinear kinematics of the robot and the

nonconvex obstacles, which can be represented as equality and inequality constraints.

We search for the configuration of the robot such that it is closest to the targeting end-

effector position and provide a collision-free path to go from the initial configuration

to the solved configuration.

4.4.1 Problem Formulation

We assume the robot is position controlled with the kinematic equation given by

𝑢 = 𝑓(𝑞) (4.35)

where 𝑢 ∈ R𝑚 and 𝑞 ∈ R𝑛 are the end-effector coordinates and the configuration

of the robot. Moreover, we add obstacles that the end-effector must avoid. If the

end-effector does not collide with the obstacle and has a corresponding configuration,

then we declare that the end-effector is safe or feasible. A feasible end-effector is

denoted by 𝑢 ∈ 𝒰 .

Problem Statement: Our objective is to find a path such that convex restriction

provides a convex sufficient condition that ensures both the satisfaction of kinematic

constraints in (4.35) and the safety constraints 𝑢 ∈ 𝒰 .

In particular, we will use a piece-wise linear path in the end-effector space such

that the sequence 𝑢(0), 𝑢(1), . . . , 𝑢(𝑁) has the property that a linear transition from a

consecutive end-effector will be always feasible (i.e., 𝛼𝑢(𝑖) + (1 − 𝛼)𝑢(𝑖) for 𝛼 ∈ [0, 1]

is feasible). Finding the configuration such that the end-effector is at the desired

position can be cast as the following optimization problem,

minimize
𝑢,𝑞

𝑓0(𝑢, 𝑢ref) subject to 𝑢 = 𝑓(𝑞), 𝑢 ∈ 𝒰 , (4.36)
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where 𝑓0(𝑢, 𝑢ref) denotes the distance metric between the target and planned end-

effector, and 𝒰 denotes the safety constraints of the robot.

Figure 4-11: An illustration of the problem set up with three-armed robot.

We use a simple 3-armed robot illustrated in Figure 4-11. The end-effector of the

system was defined as

𝑢 = [𝑥, 𝑦, 𝑞1]
𝑇 ,

where 𝑥 and 𝑦 are the positions of the end of the arm in cartesian coordinates, and

𝑞1 is one of the joint angles. Since the degree of freedom of the robot arm is 3, we

can specify the position of the end-effector as well as the orientation. The kinematic

equation of the system is

𝑓(𝑞) =

⎡⎢⎢⎢⎣
𝐿1 cos(𝑞1) + 𝐿2 cos(𝑞1 + 𝑞2) + 𝐿3 cos(𝑞1 + 𝑞2 + 𝑞3)

𝐿1 sin(𝑞1) + 𝐿2 sin(𝑞1 + 𝑞2) + 𝐿3 sin(𝑞1 + 𝑞2 + 𝑞3)

𝑞1

⎤⎥⎥⎥⎦ , (4.37)

where 𝐿1 = 1, 𝐿2 = 2, and 𝐿3 = 0.5. Due to the Kinematic constraints, there is

an inherent limitation to the end-effector position. For this particular system, the

constraints are such that the position of the end-effector should be within some range

from the origin (i.e.
√︀
𝑥2 + 𝑦2 ∈ [𝐿2 − 𝐿1 − 𝐿3, 𝐿1 + 𝐿2 + 𝐿3]). An illustration of

the experiment is shown in Figure 4-11. The figure shows the robot with black lines

showing links and red dots showing joints. The orange squares represent obstacles

that the robot needs to avoid. We impose the collision constraints only on the end-

effector (the end of the robot arm) and have not considered the collision of any other
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parts of the robot. Extensions to consider the entire body of the robot will be a

future work of this project. The blue region shows the kinematic constraints that

were described. Only the empty space of Figure 4-11 is reachable or manipulable

by the robot. The desired end-effector position is marked by the red x mark. An

example of a feasible path is shown with a black line.

Using the kinematic equations, the sequential convex restriction was applied with

illustration in Figure 4-12. The green contour line shows the convex restriction around

the given robot configuration. This case shows a successful case where the robot is

able to reach the target position. We note that the collision constraints are applied

only at the end-effector, and the body collisions were not considered.

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Figure 4-12: The convex restriction is drawn with a green contour line, which repre-
sents end-effector positions that the robot arm can maneuver. Convex optimization
problems can be solved sequentially to move the robot arm from some initial condition
to the desired position.

4.4.2 Simulation Results

In this section, we show some of the successful test cases where the sequential convex

restriction. Figures (a), (b), and (d) show the trajectory where the robot avoids the

obstacles that are between the initial and desired points. Figures (b) and (e) demon-

strate cases where sequential convex restriction can go through a narrow passage.

In addition, we conduct additional experiments by randomly sampling the obsta-

cles with various locations and sizes, the initial configuration of the robot, and the

target point. These were drawn from a uniform distribution. The success rate of

reaching the target point was about 63 percent with an average computation time

per iteration of 0.0488 seconds. The number of samples for this experiment was 1000.
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(a) (b) (c) (d) (e)

Figure 4-13: Successful test cases of Sequential Convex Restriction.

Failure Modes

(a) (b) (c) (d)

Figure 4-14: Failed test cases of Sequential Convex Restriction.

While the previous section showed cases where the end-effector arrived at the

desired solution, there were cases where the algorithm failed due to the kinematic

constraints. There are two main failure modes to the algorithm.

1. Since we specify the end-effector position of the robot, the manipulation be-

comes prohibitive when the robot is at a configuration where the Kinematic

Jacobian is singular (e.g., the robot arm is at a straight-up position where

𝑞1 = 𝑞2 = 𝑞3 = 0). Figure 4-14 (a) and (b) show the algorithm being stuck at

the end-effector where the kinematic Jacobian becomes singular.

2. Similar to the potential fields method and TrajOpt [83], the sequential convex

restriction is a local search method and may experience local solutions for the

end-effector that is not the desired end-effector. Figure 4-14 (c) and (d) show

the cases where the robot is stuck at a local solution.
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4.5 Concluding Remarks

This chapter presented a number of applications for sequential convex restriction.

The problems considered in this chapter were considered challenging due to the non-

linearity introduced by the system model. Convex restriction enables the use of rich

theory and efficient algorithms for convex optimization, which provides a potential for

tractable analysis of its applications. We showed that the coefficient involved in the

MPC problem and neural network verification problem can be computed efficiently

by exploiting their sequential structure. We showed extensive numerical studies for

the OPF problem to demonstrate the effectiveness of the proposed approach.
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Chapter 5

Reachability Analysis with

Contraction Metric

5.1 Introduction

Safety and reliability became one of the most important questions in recent control

applications such as autonomous driving and renewable integration in electrical power

grids. There is a growing need for a set of tools that can measure reliability in

safety-critical applications. These applications have various sets of safety constraints

that need to be satisfied. The problem becomes challenging for nonlinear dynamical

systems subject to uncertainty.

In this section, we develop a theory and algorithm for reachability analysis and

combine the results with contraction analysis in order to bring a powerful set of

tools for verification problems in control. Reachability analysis provides a verification

procedure for nonlinear dynamical systems such that the agent avoids any obstacles

and remains in a safe set.

One of the precedent work regarding the idea of bounding trajectory started with

interval analysis, which was developed for bounding rounding and measurement errors

[52]. More recently, the generalization of intervals to other shapes such as polytopes or

ellipsoids showed more promising results for studying dynamical systems [8, 34, 58].

This approach provides a rigorous enclosure of trajectories to model equations by
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building a "funnel" of possible outcomes and had success in applications such as

robotics and motion planning [86] and power systems [78, 27].

More recently, a similar type of analysis based on polytope with the assistance of

optimization has been proposed in [8, 34] for polynomial systems. The algorithm in

the paper is scalable only to relatively low-order polynomial systems, and it needs to

be scalable to larger systems. Existing methods based on linear sensitivity analysis

or approximated order estimates are not rigorous and do not guarantee stability. On

the other hand, the interval analysis approach gives a rigorous bound on the possible

trajectories and determines the effect of uncertainties.

However, the convergence of the bounded states in interval analysis has not been

possible because it is usually conservative. The intervals form a box that typically

does not converge in under-damped systems. To alleviate this major limitation, we

introduce a novel approach that constructs the bounding template using a polytope,

which incorporates the geometrical characterization of system dynamics.

5.2 Preliminaries

5.2.1 System Model

We consider an autonomous nonlinaer system of the form,

𝑥𝑡+1 = 𝑓𝑡(𝑥𝑡, 𝑤𝑡), 𝑥0 ∈ 𝒳0 (5.1)

where 𝑥 ∈ R𝑛 is the state, 𝑤 ∈ R𝑟 is the uncertain parameters and 𝑓𝑡(𝑥,𝑤) :

(R𝑛,R𝑟) → R𝑛 is a vector of nonlinear functions at time 𝑡. The system in (5.1) in-

cludes feedback controlled system 𝑥𝑡+1 = 𝑓𝑡(𝑥𝑡, 𝑢𝑡, 𝑤𝑡) with control policy 𝑢𝑡 = 𝜋𝑡(𝑥𝑡).

Defining 𝑓𝑡(𝑥𝑡, 𝑤𝑡) := 𝑓𝑡(𝑥𝑡, 𝜋𝑡(𝑥𝑡), 𝑤𝑡), Equation (5.1) can model feedback systems

without the loss of generality.
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5.2.2 Reachability Analysis

Finite-time forward reachability analysis is widely used for applications in safety and

robustness verification. Reachability analysis aims to find a set 𝒫𝑡 for some 𝑡 > 0

such that

𝑥0 ∈ 𝒳0 ⇒ 𝑥𝑡 ∈ 𝒫𝑡. (5.2)

The forward reachability analysis aims to find the smallest region 𝒫𝑡 such that (5.2)

is satisfied. We consider the following applications for reachability analysis for safety

verification.

Finite-time Reach Verification

The nonlinear system in Equation (5.1) is said to achieve finite-time arrival with

respect to (𝒳0, 𝒮) if

𝑥 ∈ 𝒳0 ⇒ 𝑥𝑇 ∈ 𝒢, (5.3)

where 𝒳0 is a set of initial conditions and 𝒮 ⊆ R𝑛 is a set of acceptable target states.

The finite-time arrival can be directly implied from the definition of reachability

analysis. By ensuring that the result of the reachability analysis satisfies 𝒫𝑇 ⊆ 𝒢,

the finite stability can be verified for the given nonlinear system. In contrast to

Lyapunov stability, the definition in (5.3) uses pre-specified initial state-bound 𝒳0

and the target state bounds 𝒢 and is not concerned with intermediate time steps.

Finite-time stability can be useful for guaranteeing that for any initial condition

starting within the set 𝒳0, the system is able to achieve the target state at the final

time step.

Finite-time Avoid Verification

The nonlinear system in Equation (5.1) is said to achieve reach-avoidance if

𝑥 ∈ 𝒳0 ⇒ 𝑥𝑡 /∈ ℬ𝑡, (5.4)

where 𝒳0 is a set of initial conditions and ℬ𝑡 ⊆ R𝑛 is a set of unsafe states at time 𝑡.
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5.2.3 Contraction Analysis

Contraction theory studies the differential analysis of neighboring trajectories [67].

Consider a discrete-time autonomous system 𝑥𝑡+1 = 𝑓(𝑥𝑡). Consider an infinitesimal

displacement between two neighboring trajectories denoted by 𝛿𝑥. We denote the

change in coordinate with

𝛿𝑧 = Θ(𝑥)𝛿𝑥, (5.5)

where Θ(𝑥, 𝑡) is a square matrix, which transforms the state, and its corresponding

virtual dynamics:

𝛿𝑥𝑡+1 =
𝜕𝑓

𝜕𝑥
(𝑥𝑡)𝛿𝑥𝑡. (5.6)

5.3 Reachability Analysis with Convex Relaxation

In this section, we consider the reachable set represented by polytopes and present

an optimization-based method for computing those sets.

Computing Reachable Set with Polytopes

We consider the following poloytope as a candidate for reachability verifications,

𝒫𝑡(𝑧𝑢𝑡 , 𝑧ℓ𝑡 ) = {𝑥𝑡 | 𝑧ℓ𝑡 ≤ 𝐴𝑡𝑥𝑡 ≤ 𝑧𝑢𝑡 }, (5.7)

where 𝑧ℓ𝑡 , 𝑧𝑢𝑡 ∈ R𝑝 are parameters that defines the set, and 𝐴𝑡 ∈ R𝑝×𝑛 is a matrix

with ker(𝐴𝑡) = 0. We assume that the polytope is represented as an intersection of

half-spaces (H-polytope) where the number of hyper planes is finite. The reachability

analysis can be performed by computing the reachable set in the consecutive the

consecutive time step (i.e., 𝑥𝑡 ∈ 𝒫𝑡(𝑧𝑢𝑡 , 𝑧ℓ𝑡 ) ⇒ 𝑥𝑡+1 ∈ 𝒫𝑡+1(𝑧
𝑢
𝑡 , 𝑧

ℓ
𝑡 ).)

Lemma 8. Suppose that the variables 𝑧𝑢 ∈ R𝑚 and 𝑧ℓ ∈ R𝑚 are given by
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𝑧𝑢𝑘,𝑡+1 = max
𝑥𝑡,𝑥𝑡+1,𝑤𝑡

𝐴𝑘,𝑡+1𝑥𝑡+1

subject to 𝑥𝑡+1 = 𝑓(𝑥𝑡)

𝑥𝑡 ∈ 𝒫𝑡(𝑧𝑢𝑡 , 𝑧ℓ𝑡 ),

(5.8)

Then, for every 𝑥𝑡 ∈ 𝒫𝑡(𝑧𝑢𝑡 , 𝑧ℓ𝑡 ), the next state satisfies 𝑥𝑡+1 ∈ 𝒫𝑡+1(𝑧
𝑢
𝑡+1, 𝑧

ℓ
𝑡+1).

Proof. By definition, 𝑧ℓ𝑡+1 ≤ 𝐴𝑡+1𝑥𝑡+1 ≤ 𝑧𝑢𝑡+1, and therefore, 𝑥(𝑡+1) ∈ 𝒫𝑡+1

The problem in (5.8) are non-convex problems, and is NP-hard to solve in general.

Convex Relaxation

Given knowledge about nonlinearity, we can use known upper-concave lower-convex

envelopes to relax the nonlinear equality constraints.

Corollary 7. (Upper-Concave Lower-Convex Envelopes) Suppose that the function 𝑓𝑘

is known to be bounded by some analytical functions 𝑓𝑢𝑘 and 𝑓 ℓ𝑘 such that

𝑓 ℓ𝑘,𝒟(𝑥) ≤ 𝑓𝑘(𝑥) ≤ 𝑓𝑢𝑘,𝒟(𝑥), 𝑥 ∈ 𝒟, (5.9)

where 𝑓 ℓ𝑘,𝒟 is concave and 𝑓𝑢𝑘,𝒟 is convex function of 𝑥 in the domain 𝒟.

The subscript 𝒟 in the envelope denotes that the domain for the envelope is 𝒟.

Having smaller 𝒟 allows more accurate estimators.

Lemma 9. (Convex Relaxation) Suppose that function 𝑓𝑢 and 𝑓 ℓ Suppose that the

variables 𝑧𝑢 and 𝑧ℓ are given by

𝑧𝑢𝑘,𝑡+1 = max
𝑧

𝐴𝑘,𝑡+1𝑥𝑡+1

subject to 𝑓 ℓ(𝑥𝑡) ≤ 𝑥𝑡+1 ≤ 𝑓𝑢(𝑥𝑡)

𝑥𝑡 ∈ 𝒫𝑡(𝑧𝑢𝑡 , 𝑧ℓ𝑡 ),

(5.10)

Then, for every 𝑥𝑡+1 ∈ 𝒫𝑡+1(𝑧
𝑢
𝑡+1, 𝑧

ℓ
𝑡+1).

Algorithm for computing reachable sets
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Algorithm 3 Reachability Analysis
1: Initialize: Compute nominal trajectory
2: for 𝑡 = 1, . . . , 𝑇 do
3: for 𝑘 = 1, . . . , 𝑛 do
4: Update 𝑧𝑢 and 𝑧ℓ in Equation (5.10):

𝑧𝑢𝑘,𝑡+1 = max
𝑧

𝐴𝑘,𝑡+1𝑥𝑡+1

subject to 𝑓 ℓ(𝑥𝑡) ≤ 𝑥𝑡+1 ≤ 𝑓𝑢(𝑥𝑡)

𝑥𝑡 ∈ 𝒫𝑡(𝑧𝑢𝑡 , 𝑧ℓ𝑡 ),

(5.11)

5: end for
6: end for
7: return 𝒫(𝑧𝑢, 𝑧ℓ).

5.4 Obtaining Reachable Set Templates via Contrac-

tion Analysis

In this section, we provide a numerical method for computing contraction metrics in

discrete-time dynamical systems.

5.4.1 Global Contraction metric

Lemma 10. Suppose that there exists a contraction metric Θ such that for every

𝑥 ∈ 𝒟,

Θ (𝑓(𝑥))
𝜕𝑓

𝜕𝑥
(𝑥) =

√︀
𝛽Θ(𝑥). (5.12)

Then, the system is semi-contracting with metric 𝑀 = Θ𝑇Θ in the domain 𝒟.

Proof. Consider the virtual displacement 𝛿𝑧𝑇𝑡+1𝛿𝑧𝑡+1. Equation 5.12 implies that

𝛿𝑧𝑇𝑡+1𝛿𝑧𝑡+1 = 𝛿𝑥𝑇𝑡+1Θ
𝑇
𝑡+1Θ𝑡+1𝛿𝑥𝑡+1

= 𝛿𝑥𝑇𝑡
𝜕𝑓

𝜕𝑥

𝑇

Θ𝑇
𝑡+1Θ𝑡+1

𝜕𝑓

𝜕𝑥
𝛿𝑥𝑡 = 𝛽𝛿𝑥𝑇𝑡 Θ𝑇

𝑡 Θ𝑡𝛿𝑥𝑡 = 𝛽𝛿𝑧𝑇𝑡 𝛿𝑧𝑡.

Corollary 8. Suppose that the condition in Equation 5.12 holds. Then, 𝐹 𝑇
𝑡 𝐹𝑡 = 𝛽𝐼

where 𝐹𝑡 is the generalized Jacobian.
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Proof. Given that the generalized Jacobian is defined as 𝐹𝑡 = Θ𝑡+1
𝜕𝑓
𝜕𝑥

Θ−1
𝑡 :

𝐹 𝑇
𝑡 𝐹𝑡 =

(︀
Θ𝑇
𝑡

)︀−1 𝜕𝑓

𝜕𝑥

𝑇

Θ𝑇
𝑡+1Θ𝑡+1

𝜕𝑓

𝜕𝑥
Θ−1
𝑡

=
(︀
Θ𝑇
𝑡

)︀−1 (︀
𝛽Θ𝑇

𝑡 Θ𝑡

)︀
Θ−1
𝑡 = 𝛽𝐼.

5.4.2 Contraction metric for a nominal trajectory

Consider a nominal trajectory 𝑥1, . . . , 𝑥𝑁 that satisfies 𝑥𝑡+1 = 𝑓(𝑥𝑡).

Lemma 11. Suppose that the metric is computed recursively by solving the equation,

Θ(𝑥𝑡+1)
𝜕𝑓

𝜕𝑥
(𝑥𝑡) =

√︀
𝛽Θ(𝑥𝑡) (5.13)

Then the metric 𝑀(𝑥) = Θ(𝑥)𝑇Θ(𝑥𝑡) is a valid contraction metric for the dynamical

system, 𝑥𝑡+1 = 𝑓(𝑥𝑡).

This metric can be computed by solving a system of linear equation Θ(𝑥𝑡+1) =(︀
𝜕𝑓
𝜕𝑥

(𝑥𝑡)
)︀−1

Θ(𝑥𝑡), or more efficiently by propagating the metric backwards in time by

Θ(𝑥𝑡) = Θ(𝑥𝑡+1)
𝜕𝑓
𝜕𝑥

(𝑥𝑡).

5.4.3 Contraction in Invariant Set

Corollary 9. If the system is linear (i.e., 𝑓(𝑥) = 𝐴𝑥), then the condition in Lemma 9

is a necessary and sufficient condition.

Lemma 12. Suppose that for every 𝑥 ∈ 𝒫𝑡(𝑧𝑢𝑡 , 𝑧ℓ𝑡 ),

𝜕𝑓

𝜕𝑥
(𝑥)𝑇𝑀𝑡+1

𝜕𝑓

𝜕𝑥
(𝑥) ≤𝑀𝑡, (5.14)

then the trajectories in 𝒫𝑡(𝑧𝑢𝑡 , 𝑧ℓ𝑡 ) is contracting and converges exponentially to each

other.
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5.5 Numerical Studies

A transmission line or generator contingency on power systems is a common cause

of loss of synchronism. The existence of a feasible solution is insufficient, and the

dynamic stability of the system should be studied as well in order to ensure the

security of the grid. In this paper, we consider the second-order swing equation with

Kron reduction, which is widely used:

𝑚𝑘𝛿𝑘 + 𝑑𝑘𝛿̇𝑘 +
∑︁
𝑗∈𝒩𝑘

𝑎𝑘𝑗 sin(𝛿𝑘 − 𝛿𝑗) = 𝑃𝑚𝑘 (5.15)

where 𝑚𝑘, 𝑑𝑘 and 𝑃𝑚𝑘 are the inertia, damping and mechanical power injection at

bus 𝑘, respectively. 𝑎𝑘𝑗 = 𝐵𝑘𝑗𝑉𝑘𝑉𝑗 is the constant as we assume that the voltage

is strictly regulated to 1 p.u. We can rewrite the swing equation with the following

compact vector notation,

𝛿̇ = 𝜔

𝜔̇ = 𝑀−1(−𝐷𝜔 − 𝐸𝑇𝑋−1 sin(𝐸𝛿) + 𝑃𝑖𝑛𝑗).
(5.16)

where 𝑀 , 𝐷 and 𝑋 are diagonal matrix with diagonal entries being the inertia and

damping of generators and line impedance respectively. 𝑃𝑖𝑛𝑗 is a vector of power

injection.

2 bus system

In this section, we present the result on a 2 bus system for illustration of our ap-

proach. Figure 5-1 shows the phase portrait of the system as well as the polytope

computed at every time step. In this case, every trajectory from the initial operating

point set is stabilized to the equilibrium. We note that this approach can survive

near the unstable equilibrium point where the system becomes highly nonlinear in

2-dimensional analysis. Figure 5-2 shows the Monte-Carlo simulation as well as the

bound computed using the reachability approach. The bound is shown to be very

tight to the Monte-Carlo simulation and converges to the equilibrium.
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Figure 5-3 shows a case where the initial polytope goes through the unstable

equilibrium. While some of the solutions are able to reach back to the equilibrium, the

polytope grows due to the trajectories that do not converge to the desired equilibrium.

Figure 5-1: The phase portrait of the dynamics as well as the polytopes computed
with the reachability analysis is shown for a 2 bus system. In this case all the initial
conditions converged to the equilibrium.

Figure 5-2: The time domain simulation of the system based on the Monte-carlo sim-
ulation is shown. The red dashed lines are the bound from the reachability analysis.
On the bottom, the distance of each planes from the equilibrium is shown, which
converged to zero.
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Figure 5-3: Case study for an unstable case in 2 bus system is shown in this figure.

39 bus system

In Figure 5-4, the contraction of the polytope is also shown. It also demonstrates an

exponential convergence towards the equilibrium.

Figure 5-4: Contraction of polytope size on a 39 bus system.

5.6 Concluding Remarks

We present the reachability analysis approach for discrete-time nonlinear systems.

We presented an algorithm based on convex relaxation to compute reachable sets.

The states are bounded using polytope that is adapted to the natural modal shape of

the system dynamics in the neighborhoods of the equilibrium. We demonstrate our
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method on IEEE test cases to certify the stability and bound the state trajectories.
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Chapter 6

Constrained-Input

Constrained-Output Analysis

6.1 Introduction

In the presence of external disturbances to a dynamical system, the behavior of state

variables changes constantly. One way to characterize the system is determining the

relationship between the input signal and the output signal. Consider a dynamical

system with input 𝑢 and output 𝑦,

𝑥̇ = 𝑓(𝑥, 𝑢),

𝑦 = ℎ(𝑥, 𝑢).

The input signal 𝑢 : [0,∞) → R𝑛, the state 𝑥 : [0,∞) → R𝑠, and output signal 𝑦 :

[0,∞) → R𝑚 maps the time interval [0,∞) into Euclidean space, and 𝑓 : (R𝑠,R𝑛) →

R𝑛 and ℎ : (R𝑠,R𝑛) → R𝑚 are vectors of continuous function. We assume that there

is a known nominal equilibrium 𝑥eq and 𝑢eq such that 𝑓(𝑥eq, 𝑢eq) = 0, and the initial

condition starts at that equilibrium (i.e., 𝑥(0) = 𝑥eq and 𝑢(0) = 𝑢eq). This chapter

focuses on finding the relationship between the bound on the peak magnitude of input

signal and output signal. Input to output analysis in this chapter aims to follow the

following condition:
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∀ 𝑖, max
𝑡≥0

|𝑢𝑖(𝑡)| ≤ 𝑢̄𝑖 ⇒ ∀ 𝑗, max
𝑡≥0

|𝑦𝑗(𝑡)| ≤ 𝑦𝑗, (6.1)

for some bounds 𝑢̄ ∈ R𝑛 and 𝑦 ∈ R𝑚. We want to find the least conservative estimate

of 𝑦𝑗 while guaranteeing condition (6.1) since a trivial bound 𝑦𝑗 would be infinite.

For engineering applications, we are sometimes interested in computing maximum

tolerable input disturbance given output constraints (i.e., given 𝑦, compute maximum

𝑢̄ that satisfies condition (6.1).) Alternatively, computing the worst-case damage to

the system when the input disturbance is known can be useful to assess potential

damage to the system.

One of the applications of the input-output relationship problems has been the

transient stability of power systems under operational (e.g., frequency) constraints.

These studies can be divided into three main groups. The first group proposes nu-

merical simulations under stochastic disturbances, where the output trajectory is

computed for a given realization of the disturbance [37, 69, 75]. Time-domain sim-

ulations yield high fidelity assessments when the disturbance and the operating con-

ditions are known exactly. However, when there is limited information about the

disturbance, the assessment may require a large number of simulations. The second

group is based on reachability analysis, where the output trajectories are bounded

inside the reachable set [26, 27, 62, 1, 94]. While some of these formulations allow

differential-algebraic equations to model the power grid dynamics, they rely on the

approximation of the dynamics via linearization or Taylor-series expansion [26, 27].

The works in [27, 62] give tight time-dependent bounds on the output, but they re-

quire solving an optimization problem at every time step. The third and final group

is based on Input-to-State Stability (ISS) [2, 91] analysis. ISS provides a powerful

rigorous approach to tackle such a problem, however finding a Lyapunov function

that renders this approach non-conservative is in general very difficult.
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6.2 Background

6.2.1 Lur’e System Representation

Lur’e system represents a system as an interconnection of a linear dynamical system

with a nonlinear static state feedback. The Lur’e system, together with the efficient

bounding of the nonlinearity between linear functions, heavily simplifies the analysis

of the nonlinear systems. The nominal form of the dynamical systems is given by

𝑥̇ = 𝐴𝑥+𝐵𝑣𝑣 +𝐵𝑢𝑢 (6.2a)

𝑣 = 𝜓(𝑧) (6.2b)

𝑦 = 𝐶𝑦𝑥+𝐷𝑦𝑢 (6.2c)

𝑧 = 𝐶𝑧𝑥, (6.2d)

where 𝑥(𝑡) ∈ R𝑠, 𝑢(𝑡) ∈ R𝑛, and 𝑦(𝑡) ∈ R𝑚 are system state, input signal, and output

signal, respectively. Variables 𝑧(𝑡) ∈ Rℓ and 𝑣(𝑡) ∈ R𝑞 are transformed system state,

and 𝐴 ∈ R𝑠×𝑠, 𝐵𝑣 ∈ R𝑠×𝑞, 𝐵𝑢 ∈ R𝑠×𝑛, 𝐶𝑦 ∈ R𝑚×𝑠, 𝐷𝑦 ∈ R𝑚×𝑛, and 𝐶𝑧 ∈ Rℓ×𝑠 are

constant matrices defined in the system. The function 𝜓 : Rℓ → Rℓ is a vector of

function, and we assume that it is decentralized, i.e., 𝑣𝑖 = 𝜓𝑖(𝑧𝑖) ∀𝑖 ∈ {1, . . . , ℓ}.

Transfer Function Matrix

Let the transfer function matrix 𝐺(𝑠) represent the linear dynamics in Laplace domain

where the linear system is defined by Equations (6.2a), (6.2c), and (6.2d). Then the

Lur’e system (6.2) can be graphically represented as in Figure 6-1. Following this

representation of the system, the transfer function matrix 𝐺 can be divided into four

blocks:

𝐺(𝑠) =

⎡⎣𝐺𝑦,𝑢(𝑠) 𝐺𝑦,𝑣(𝑠)

𝐺𝑧,𝑢(𝑠) 𝐺𝑧,𝑣(𝑠)

⎤⎦ (6.3)

where each block of transfer matrix can be computed by 𝐺𝑖,𝑗(𝑠) = 𝐶𝑖(𝑠𝐼 − 𝐴)−1𝐵𝑗,

with 𝑖 ∈ {𝑦, 𝑧} and 𝑗 ∈ {𝑢, 𝑣}. This representation of the system implies that the

initial condition of the system is at the equilibrium (i.e. 𝑥0 = 0). Given the system
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model described in this section, the problem can be formulated as follows.

Figure 6-1: Lur’e system representation of the power system dynamics in 𝐺(𝑠) and
the nonlinear components in 𝜓(·).

6.2.2 Problem Formulation

Consider the system model (6.2), containing the additive magnitude-bounded distur-

bance 𝑢. This chapter concentrates on finding the maximum bound on the magnitude

of the disturbance such that the output signal satisfies safety constraints. In order to

quantify the magnitude of the disturbance 𝑢, we propose the following element-wise

infinity norm.

Definition 2. Let 𝑢(𝑡) ∈ R𝑛. Its element-wise ℒ-infinity norm, which we denote by

|𝑢|ℒ𝑛
∞ ∈ R𝑛, is defined as [︀

|𝑢|ℒ𝑛
∞

]︀
𝑖

= sup
𝑡≥0

|𝑢𝑖(𝑡)| (6.4)

where
[︀
|𝑢|ℒ𝑛

∞

]︀
𝑖
and 𝑢𝑖 are the 𝑖-th entries of |𝑢|ℒ𝑛

∞ and 𝑢, respectively.

Remark 5. The element-wise ℒ-infinity generalizes the standard ℒ∞ norm of 𝑢, de-

fined as ‖𝑢‖ℒ∞ = max𝑖(sup𝑡≥0 |𝑢𝑖(𝑡)|). The proposed element-wise norm allows us to

represent different magnitudes at each component of the vector, rather than bound-

ing them uniformly. This fact will be exploited later, where an optimization problem

will be formulated to compute the maximum magnitude of the admissible distur-

bance. To avoid any confusion, we denoted the element-wise ℒ-infinity norm of an

𝑛-dimensional signal by ℒ𝑛∞, where the superscript 𝑛 should remind the reader that

|·|ℒ𝑛
∞ is an 𝑛-dimensional vector.

110



Problem Formulation

Consider the system written in the Lur’e form (6.2), with initial condition 𝑥0 = 0. The

objective of our problem is to find the maximum bound 𝑢̄ ∈ R𝑛 on the disturbance

such that if |𝑢|ℒ𝑛
∞ ≤ 𝑢̄, then |𝑦|ℒ𝑚

∞ ≤ 𝑦.

6.2.3 Preliminaries

Definition 3. A mapping 𝐻 : ℒ𝑚𝑒 → ℒ𝑞𝑒 is ℒ stable if there exists a class 𝒦 function

Let 𝑦 = 𝐻𝑢 define an input-output relation, where 𝐻 is an operator that specifies

the output 𝑦 in terms of the input 𝑢. In the following we will introduce three types

of input-output relations for the operator 𝐻 with respect to the element-wise infinity

norm |·|ℒ·
∞ . The first type is the Bounded Input Bounded Output stability, which is

defined as follows.

Definition 4 (Bounded Input Bounded Output). The operator 𝐻 is BIBO stable

if for every input constraint 𝑢̄, if |𝑢|ℒ𝑛
∞ ≤ 𝑢̄, then the output |𝑦|ℒ𝑚

∞ is bounded.

Notice that it is not always possible to meet such a condition, especially for non-

linear systems. We now define the second type of input-output stability, namely the

Constrained Input Bounded Output (CIBO) stability.

Definition 5. (Constrained Input Bounded Output) The operator 𝐻 is CIBO

stable if there exists an input constraint 𝑢̄, such that for every input 𝑢 with |𝑢|ℒ𝑛
∞ ≤ 𝑢̄,

the output |𝑦|ℒ𝑚
∞ is bounded.

Recall from Section 6.2.2 that we want to find the maximum bound on the mag-

nitude of the disturbance such that the output signal satisfies safety constraints. We

formalize this concept into the third and last type of input-output stability, Con-

strained Input Constrained Output (CICO) stability.

Definition 6. (Constrained Input Constrained Output) The operator 𝐻 is

CICO stable if given an output constraint 𝑦, there exists an input constraint 𝑢̄, such

that for every input with 𝑢 with |𝑢|ℒ𝑛
∞ ≤ 𝑢̄, the output satisfies |𝑦|ℒ𝑚

∞ ≤ 𝑦.

In Section 6.3 we will propose conditions under which the system (6.2) is BIBO,

CIBO, and CICO stable.
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System Gain

Let 𝑦 = 𝐻𝑢 be a BIBO stable system. If there exists a non-negative constant matrix

𝛾𝐻 ∈ R𝑚×𝑛 such that

|𝑦|ℒ𝑚
∞ ≤ 𝛾𝐻 |𝑢|ℒ𝑛

∞ , (6.5)

then we refer to 𝛾𝐻 as the gain matrix of the system.

When the input is bounded, i.e., |𝑢|ℒ𝑛
∞ ≤ 𝑢̄, we denote the gain matrix by 𝛾𝐻(𝑢̄)

to remind that it is a function of the domain parametrized by 𝑢̄.

For a BIBO stable linear system, where the operator 𝐻 corresponds to the trans-

fer function 𝐺(𝑠) in equation (6.3), the gain matrix 𝛾𝐺 can be computed using the

following lemma.

Lemma 13. Given a BIBO stable linear system with transfer function 𝐺(𝑠), the 𝑖𝑗

element of the gain matrix 𝛾𝐺 can be computed as

𝛾𝐺,𝑖𝑗 = ‖𝐺𝑖𝑗‖ℒ1 (6.6)

with ‖𝐺𝑖𝑗‖ℒ1 =
∫︀∞
−∞ |ℎ𝑖𝑗(𝜏)|𝑑𝜏 , where ℎ𝑖𝑗 is the impulse response of 𝐺𝑖𝑗.

Proof. For the 𝑖-th element of the output vector,

|𝑦𝑖(𝑡)| ≤
∑︁
𝑗

𝑢̄𝑗

∫︁ ∞

−∞
|ℎ𝑖𝑗(𝜏)|𝑑𝜏 =

∑︁
𝑗

‖𝐺𝑖𝑗‖ℒ1𝑢̄𝑗.

The matrix 𝛾𝐺, can be divided, according to (6.3), into

𝛾𝐺 =

⎡⎣𝛾𝑦,𝑢 𝛾𝑦,𝑣

𝛾𝑧,𝑢 𝛾𝑧,𝑣

⎤⎦ , (6.7)

where 𝛾𝑦,𝑢 ∈ R𝑚×𝑛, 𝛾𝑦,𝑣 ∈ R𝑚×ℓ, 𝛾𝑧,𝑢 ∈ Rℓ×𝑛, and 𝛾𝑧,𝑣 ∈ Rℓ×ℓ are the gain matrices

computed as shown in Lemma 13.
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The gain of the nonlinear component, 𝛾𝜓, can be computed by

𝛾𝜓,𝑖𝑗 = sup
𝑧𝑗

⃒⃒⃒⃒
𝑣𝑖
𝑧𝑗

⃒⃒⃒⃒
. (6.8)

For number of applications, the expression for Equation (6.8) have a closed-form

solution. We will present a power grid example later in the simulation section.

6.3 Input-Output Stability Analysis

In this section, we establish the mathematical framework for the analysis and as-

sessment of the system under the additive disturbance 𝑢. The proposed framework

combines the input-output stability approach with the sector bounds on the non-

linearity 𝑣 in the Lur’e system to propose a novel small-gain theorem based on the

element-wise ℒ-infinity norm |·|ℒ·
∞ .

Given the computed gain matrices of the system, the following inequalities hold:

|𝑦|ℒ𝑚
∞ ≤ 𝛾𝑦,𝑢|𝑢|ℒ𝑛

∞ + 𝛾𝑦,𝑣|𝑣|ℒℓ
∞

(6.9a)

|𝑧|ℒℓ
∞
≤ 𝛾𝑧,𝑢|𝑢|ℒ𝑛

∞ + 𝛾𝑤,𝑣|𝑣|ℒℓ
∞

(6.9b)

|𝑣|ℒℓ
∞
≤ 𝛾𝜓|𝑧|ℒℓ

∞
(6.9c)

The gain matrices are non-negative, i.e., 𝛾𝑖,𝑗 ≥ 0, ∀ 𝑖, 𝑗. Using this property, we state

the following lemma, which will be important in the proof of the subsequent results

of this section.

Lemma 14. Given the positive matrices 𝛾𝑤,𝑣 and 𝛾𝜓, the following three conditions

are equivalent:

(i) 𝜌(𝛾𝑧,𝑣𝛾𝜓) < 1

(ii) (𝐼 − 𝛾𝑧,𝑣𝛾𝜓)−1 ≥ 0

(iii) There exists 𝑥 ≥ 0 such that (𝐼 − 𝛾𝑧,𝑣𝛾𝜓)𝑥 > 0
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Proof. The proof is based on the properties of 𝑍 and 𝑀 -matrices. A matrix is a

𝑍-matrix if its off-diagonal elements are non-positive, and it is an 𝑀 -matrix if it

is a 𝑍-matrix and its eigenvalues have non-negative real parts. First the matrix

𝐼 − 𝛾𝑧,𝑣𝛾𝜓 is a 𝑍-matrix since the gain matrices are non-negative. Now notice that

𝜌(𝛾𝑧,𝑣𝛾𝜓) < 1 if and only if the eigenvalues of 𝐼−𝛾𝑧,𝑣𝛾𝜓 have positive real parts, which

is the definition of a nonsingular 𝑀 -matrix. Given that 𝐼 − 𝛾𝑧,𝑣𝛾𝜓 is a nonsingular

𝑀 -matrix, condition (i), (ii), and (iii) are equivalent [79].

Remark 6. Since the matrix 𝛾𝑧,𝑣𝛾𝜓 is nonnegative, it has a real eigenvalue equal to

its spectral radius 𝜌(𝛾𝑧,𝑣𝛾𝜓) [20].

In the next theorem, we present the condition under which the system is BIBO

stable.

Theorem 11 (Small-Gain Theorem). The system (6.2) is BIBO stable if the gain

matrices 𝛾𝐺 and 𝛾𝜓 are finite, and 𝜌(𝛾𝑧,𝑣𝛾𝜓) < 1.

Proof. By substituting Equation (6.9b) into Equation (6.9c) and rearranging, we have

(𝐼 − 𝛾𝑧,𝑣𝛾𝜓)|𝑧|ℒℓ
∞
≤ 𝛾𝑧,𝑢|𝑢|ℒ𝑛

∞ .

Since 𝜌(𝛾𝑧,𝑣𝛾𝜓) < 1, Lemma 14 guarantees that (𝐼 − 𝛾𝑧,𝑣𝛾𝜓)−1 ≥ 0. As such,

|𝑧|ℒℓ
∞
≤ (𝐼 − 𝛾𝑧,𝑣𝛾𝜓)−1𝛾𝑧,𝑢|𝑢|ℒ𝑛

∞ .

The output can be bounded by

|𝑦|ℒ𝑚
∞ ≤ 𝛾𝑦,𝑢|𝑢|ℒ𝑛

∞ + 𝛾𝑦,𝑣|𝑣|ℒℓ
∞

≤ 𝛾𝑦,𝑢|𝑢|ℒ𝑛
∞ + 𝛾𝑦,𝑣𝛾𝜓|𝑧|ℒℓ

∞

≤
[︀
𝛾𝑦,𝑢 + 𝛾𝑦,𝑣𝛾𝜓(𝐼 − 𝛾𝑧,𝑣𝛾𝜓)−1𝛾𝑧,𝑢

]︀
|𝑢|ℒ𝑛

∞ .

Therefore, the system is BIBO stable.

Remark 7. Theorem 11 ensures more than just BIBO stability. The last inequality

in the proof implies that there exists a non-negative constant gain matrix 𝛾𝐻 =
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Figure 6-2: Sector bound for 𝑣 = 𝜓(𝑧) = sin(𝑧 + 𝜙*) − cos(𝜙*)𝑧.

[︀
𝛾𝑦,𝑢 + 𝛾𝑦,𝑣𝛾𝜓(𝐼 − 𝛾𝑧,𝑣𝛾𝜓)−1𝛾𝑧,𝑢

]︀
such that

|𝑦|ℒ𝑚
∞ ≤ 𝛾𝐻 |𝑢|ℒ𝑛

∞ , (6.10)

and therefore the system is finite gain ℒ·
∞ stable [54].

Theorem 11 presents a novel small-gain theorem, defined for the element-wise

ℒ-infinity norm |·|ℒ·
∞ . The small-gain condition ensures BIBO stability, which guar-

antees that the output is bounded for any bounded input. For general nonlinear

systems, the boundedness of the output cannot be guaranteed for every bounded in-

put. However, if the magnitude of the disturbance is constrained by some appropriate

𝑢̄, the output could be bounded.

The condition in Theorem 11 is not satisfied for an arbitrary nonlinear gain matrix

𝛾𝜓. Indeed, since 𝜌(𝛾𝑧,𝑣𝛾𝜓) < 1, it results that for fixed linear gain matrix 𝛾𝑧,𝑣, there

exists a limit on the magnitude of 𝛾𝜓 such that our system is BIBO stable. This can

be deduced from the fact that 𝛾𝜓 is a non-negative diagonal matrix, and therefore

the spectral radius 𝜌(𝛾𝑧,𝑣𝛾𝜓) is a strictly increasing function in 𝛾𝜓. Let 𝑧 be some

magnitude bound on 𝑧, i.e., |𝑧|ℒℓ
∞
≤ 𝑧. Now 𝛾𝜓 is function of 𝑧, i.e., 𝛾𝜓 = 𝛾𝜓(𝑧), and

that larger 𝑧 results in larger 𝛾𝜓(𝑧) (see Figure 6-2). As a consequence, the condition

in Theorem 11 could be satisfied for some 𝑧.

This observation is exploited in the following theorem, where a sufficient condition
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for the CIBO stability of our system is presented.

Theorem 12. Let 𝑢̄ be a bound on the magnitude of the input, i.e., |𝑢|ℒ𝑛
∞ ≤ 𝑢̄. If 𝛾𝐺

and 𝛾𝜓 are finite, and if there exist 𝑢̄ and 𝑧 satisfying

𝛾𝑧,𝑢𝑢̄ < (𝐼 − 𝛾𝑧,𝑣𝛾𝜓(𝑧))𝑧 (6.11)

then the system (6.2) is CIBO stable and |𝑧|ℒℓ
∞
≤ 𝑧.

Proof. Since the gain matrix is a positive matrix and 𝑢̄ ≥ 0, (𝐼−𝛾𝑧,𝑣𝛾𝜓(𝑧))𝑧 > 𝛾𝑧,𝑢𝑢̄ ≥

0 with 𝑧 ≥ 0. From Lemma 14, 𝜌(𝛾𝑧,𝑣𝛾𝜓) < 1, and by using Theorem 11, the system

is BIBO stable for |𝑢|ℒ𝑛
∞ ≤ 𝑢̄. Substituting condition (6.11) and Equation (6.9c) into

Equation (6.9a), we have

|𝑧|ℒℓ
∞
≤ 𝛾𝑧,𝑢|𝑢|ℒ𝑛

∞ + 𝛾𝑧,𝑣|𝑣|ℒℓ
∞

≤ (𝐼 − 𝛾𝑧,𝑣𝛾𝜓(𝑧))𝑧 + 𝛾𝑧,𝑣𝛾𝜓(𝑧)|𝑧|ℒℓ
∞
.

By rearranging,

(𝐼 − 𝛾𝑧,𝑣𝛾𝜓(𝑧))|𝑧|ℒℓ
∞
≤ (𝐼 − 𝛾𝑧,𝑣𝛾𝜓(𝑧))𝑧.

Now, 𝐼 − 𝛾𝑧,𝑣𝛾𝜓(𝑧) is inverse-positive from Lemma 14, so |𝑧|ℒℓ
∞
≤ 𝑧.

Remark 8. Theorem 12 provides a local small-gain condition over the domain |𝑧|ℒℓ
∞
≤

𝑧. If the condition (6.11) is satisfied for all 𝑧, then it is equivalent to the small-gain

condition from Theorem 11, and the system is BIBO stable.

This remark can be directly observed from Lemma 14. This inequality condition

is a different representation of the small-gain condition, but further exploits the fact

that 𝛾𝜓 can be a function of 𝑧. There is a natural trade-off based on the value of 𝑧.

The nonlinear gain 𝛾𝜓 increases as 𝑧 increases, which makes it difficult to meet the

small-gain condition. On the other hand, small 𝑧 imposes a stricter bound on the

phase difference on the transmission lines. This trade-off is represented as the product

of 𝐼 − 𝛾𝑧,𝑣𝛾𝜓(𝑧) and 𝑧, which are monotonically decreasing and linearly increasing

functions of 𝑧, respectively.
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Now, in order to enforce output constraints, we need to impose an additional con-

dition that will guarantee CICO stability. This is presented in the following theorem.

Theorem 13. Let 𝑢̄ be a bound on the magnitude of the input, i.e., |𝑢|ℒ𝑛
∞ ≤ 𝑢̄. If 𝛾𝐺

and 𝛾𝜓 are finite, and if there exist 𝑢̄ and 𝑧 such that

𝛾𝑧,𝑢𝑢̄ < (𝐼 − 𝛾𝑧,𝑣𝛾𝜓(𝑧))𝑧

𝛾𝑦,𝑢𝑢̄+ 𝛾𝑦,𝑣𝛾𝜓(𝑧)𝑧 ≤ 𝑦
(6.12)

then the system (6.2) is CICO stable. Moreover, we have |𝑧|ℒℓ
∞
≤ 𝑧 and |𝑦|ℒ𝑚

∞ ≤ 𝑦.

Proof. From Theorem 12, the first condition in (6.12) ensures |𝑧|ℒℓ
∞

≤ 𝑧. Moreover,

the substitution of the condition in this theorem and Equation (6.9c) into Equation

(6.9a) results in

|𝑦|ℒ𝑚
∞ ≤ 𝛾𝑦,𝑢|𝑢|ℒ𝑛

∞ + 𝛾𝑦,𝑣𝛾𝜓|𝑧|ℒℓ
∞
≤ 𝛾𝑦,𝑢𝑢̄+ 𝛾𝑦,𝑣𝛾𝜓𝑧 ≤ 𝑦.

The inequalities proposed in Theorem 13 provide a sufficient condition for CICO

stability. Condition (6.12) will be used in the next section as a constraint in an opti-

mization problem that computes the maximum admissible disturbance magnitude.

6.4 Computation of the Disturbance Bound

In the following, an optimization problem is formulated to find the bound 𝑢̄ on the

disturbance such that the frequencies of the generators remain inside the operational

limits. Given a potential disturbance 𝑢, the system operator only needs to check that

|𝑢|ℒ𝑛
∞ ≤ 𝑢̄ is satisfied to ensure that the safety constraints are not violated. The

input-output stability framework developed in Theorem 13 will be used to solve this

problem.

The maximum bound on the magnitude of the admissible disturbance can be
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computed with the following optimization problem:

maximize
𝑧≥0, 𝑢̄≥0, 𝜇

𝜇

subject to 𝛾𝑧,𝑢𝑢̄ < (𝐼 − 𝛾𝑧,𝑣𝛾𝜓(𝑧))𝑧

𝛾𝑦,𝑢𝑢̄+ 𝛾𝑦,𝑣𝛾𝜓(𝑧)𝑧 ≤ 𝑦

𝜇 ≤ 𝑐𝑇 𝑢̄

(6.13)

where 𝑦 is the output peak magnitude limit provided by the system operators. The

vector 𝑐 ∈ R𝑛 is used to fix the ratio of the disturbance entering at each component

of the vector. This procedure allows us to find the maximum disturbance magnitude

at a particular index, or alternatively, at a combination of indices.

The term 𝛾𝜓(𝑧))𝑧 in Equation (6.13) introduce nonlinearity to the system, and

the constraint could be non-convex as a result. In the next section, we present an

example where there is an analytical expression for the nonlinear term.

6.4.1 Analytical derivation of nonlinear gain

Consider the following nonlinear function as an example for 𝑣 = 𝜓(𝑧):

𝜓(𝑧) = sin(𝜙* + 𝑧) − sin𝜙* − diag(cos𝜙*)𝑧

We derive an explicit expression for the gain of nonlinear component 𝛾𝜓. Recall that

𝛾𝜓 is function of 𝑧:

𝛾𝜓,𝑖𝑖(𝑧𝑖) = sup
|𝑧𝑖|≤𝑧𝑖

⃒⃒⃒⃒
sin(𝑧𝑖 + 𝜙*

𝑖 ) − sin(𝜙*
𝑖 )

𝑧𝑖
− cos(𝜙*

𝑖 )

⃒⃒⃒⃒
(6.14)

where 𝜙* = 𝐸𝑇 𝛿*.

In the following corollary, we derive an analytical expression for the gain of the

nonlinear components 𝛾𝜓,𝑖𝑖(𝑧𝑖), for angle deviation constraints that are of practical

interest.

Corollary 10. Let 𝑧 be a bound on the angle difference between generators and 𝜙* =
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𝐸𝑇 𝛿* be such that |𝜙*
𝑖 | + 𝑧𝑖 ≤ 𝜋, |𝜙*

𝑖 | ≤ 𝜋
2
∀𝑖. Then,

𝛾𝜓,𝑖𝑖(𝑧𝑖) ≤ cos |𝜙*
𝑖 | −

sin(|𝜙*
𝑖 | + 𝑧𝑖) − sin |𝜙*

𝑖 |
𝑧𝑖

. (6.15)

Proof. From Equation (6.14) and given |𝜙*
𝑖 | ≤ 𝜋

2
, we have

𝛾𝜓,𝑖𝑖(𝑧𝑖) = sup
|𝑧𝑖|≤𝑧𝑖

⃒⃒⃒⃒
sin(𝑧𝑖 + 𝜙*

𝑖 ) − sin(𝜙*
𝑖 )

𝑧𝑖
− cos(𝜙*

𝑖 )

⃒⃒⃒⃒
= sup

|𝑧𝑖|≤𝑧𝑖

⃒⃒⃒⃒
sin 𝑧𝑖 − 𝑧𝑖

𝑧𝑖
cos𝜙*

𝑖 +
cos 𝑧𝑖 − 1

𝑧𝑖
sin𝜙*

𝑖

⃒⃒⃒⃒
≤ sup

|𝑧𝑖|≤𝑧𝑖

|𝑧𝑖| − sin |𝑧𝑖|
|𝑧𝑖|

cos |𝜙*
𝑖 | +

1 − cos |𝑧𝑖|
|𝑧𝑖|

sin |𝜙*
𝑖 |

Moreover, the function inside the supremum is increasing monotonically with respect

to 𝑧𝑖 for |𝜙*
𝑖 | + 𝑧𝑖 ≤ 𝜋. Therefore, the inequality (6.15) holds true.

Propostion 1. The optimization problem (6.13) is convex within the region defined

by the angle deviation constraints |𝜙*
𝑖 | + 𝑧𝑖 ≤ 𝜋, |𝜙*

𝑖 | ≤ 𝜋
2
∀𝑖.

Proof. Using the explicit expression for 𝛾𝜓(𝑧) in the constraint 𝛾𝑧,𝑢𝑢̄ ≤ (𝐼−𝛾𝑧,𝑣𝛾𝜓(𝑧))𝑧,

we obtain the following constraint:

𝛾𝑧,𝑢𝑢̄ ≤ (𝐼 − 𝛾𝑧,𝑣diag(cos𝜙*))𝑧

− 𝛾𝑧,𝑣 sin |𝜙*| + 𝛾𝑧,𝑣 sin(|𝜙*| + 𝑧).
(6.16)

The sinusoidal term is concave within the region defined by the bound 0 ≤

|𝜙*
𝑖 | + 𝑧𝑖 ≤ 𝜋, and therefore the constraint in equation (6.16) forms a convex re-

gion. Similarly, the constrained output condition is similarly bounded to a convex

region of a sinusoidal function. Therefore, the constraints are convex, and we can

conclude that the optimization problem (6.13) is convex.
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6.5 Numerical Simulations

In this section, we numerically validate the theoretical and computational results

presented in this paper. For illustration purposes, we first consider a single machine

infinite bus system, on which we test and interpret the proposed results. Then, some

practically important disturbance scenarios (e.g., simultaneous tripping of generators

and loads, as well as the uncertainty from wind generation) will be tested on the

standard IEEE 9-bus and 39-bus test cases.

Power Grid

We first discuss the model used in this experiment. Consider the following second-

order swing equation for modeling the power system dynamics:

𝑀𝛿𝐺 +𝐷𝐺𝛿̇𝐺 + 𝐸𝐺Φ sin(𝐸𝑇 𝛿) = 𝑝

𝐷𝐿𝛿̇𝐿 + 𝐸𝐿Φ sin(𝐸𝑇 𝛿) = 𝑃𝐿 + 𝑢𝐿

𝑇 𝑝̇+ 𝑝+𝑅−1𝛿̇𝐺 = 𝑃𝐺 + 𝑢𝐺.

(6.17)

where 𝑢 =
[︁
𝑢𝑇𝐺 𝑢𝑇𝐿

]︁𝑇
is the disturbance vector. This simple formulation of the

disturbance could incorporate a rich variety of uncertainty scenarios, such as load

shedding, generation tripping, and stochastic fluctuations in the power output from

wind turbines.

For 𝑢𝐿 = 0 and 𝑢𝐺 = 0, let 𝛿* and 𝛿̇ = 0 represent the equilibrium point of

(6.17), with generator power injection 𝑝*. Then, we define the state of the system as

𝑥 =
[︁
𝑥𝑇1 𝑥𝑇2 𝑥𝑇3 𝑥𝑇4

]︁𝑇
, with 𝑥1 = 𝛿𝐺 − 𝛿*𝐺, 𝑥2 = 𝛿̇𝐺, 𝑥3 = 𝛿𝐿 − 𝛿*𝐿, and 𝑥4 = 𝑝− 𝑝*.

Now let 𝑧 = 𝐸𝑇 𝛿 − 𝐸𝑇 𝛿* be the phase difference on each transmission line sub-

tracted by its equilibrium, and 𝑦 be the vector containing the frequencies of the gener-

ators 𝑦 = 𝛿̇𝐺. Finally, let 𝜙* = 𝐸𝑇 𝛿*, and 𝑣 = sin(𝜙* + 𝑧)− sin(𝜙*)− diag(cos(𝜙*))𝑧.

With these new variables, the system (6.2) can be written in the Lur’e form 𝑥̇ =
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𝐴𝑥+𝐵𝑣𝑣 +𝐵𝑢𝑢 as follows:

𝑥̇ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 𝐼 0 0

𝐴21 −𝑀−1𝐷𝐺 𝐴23 𝑀−1

𝐴31 0 𝐴33 0

0 −𝑅−1𝑇−1 0 −𝑇−1

⎤⎥⎥⎥⎥⎥⎥⎦𝑥+

⎡⎢⎢⎢⎢⎢⎢⎣
0

−𝑀−1𝐸𝐺Φ

−𝐷−1
𝐿 𝐸𝐿Φ

0

⎤⎥⎥⎥⎥⎥⎥⎦ 𝑣 +

⎡⎢⎢⎢⎢⎢⎢⎣
0 0

0 0

0 𝐷−1
𝐿

𝑇−1 0

⎤⎥⎥⎥⎥⎥⎥⎦𝑢 (6.18)

The complete model can be compactly written as

𝑥̇ = 𝐴𝑥+𝐵𝑣𝑣 +𝐵𝑢𝑢 (6.19a)

𝑣 = sin(𝜙* + 𝑧) − sin𝜙* − diag(cos𝜙*)𝑧 (6.19b)

𝑦 =
[︁
0 𝐼 0 0

]︁
𝑥 = 𝐶𝑦𝑥 (6.19c)

𝑧 =
[︁
𝐸𝑇
𝐺 0 𝐸𝑇

𝐿 0
]︁
𝑥 = 𝐶𝑧𝑥. (6.19d)

The matrix 𝐴 in (6.2) was obtained by linearization of the system (6.19) around the

equilibrium point 𝑥 = 0. The vector 𝑣 represents the static nonlinear feedback of the

state 𝑥, i.e., 𝑣 = 𝜓(𝑧) = 𝜓(𝐶𝑧𝑥).

6.5.1 Single Machine Infinite Bus (SMIB)

The procedure and results are illustrated on a system composed of a single machine

connected to an infinite bus through a lossless line. The dynamic equation is given

by

𝑀𝛿 +𝐷𝛿̇ + 𝜑 sin 𝛿 = 𝑝+ 𝑢 (6.20)

where 𝑀 = 1, 𝐷 = 1.2, 𝑝 = 0.2 and 𝜑 = 0.8 are the parameters used in this study.

For 𝑢 = 0, its equilibrium is given by 𝛿* = arcsin(𝑝/𝜑), 𝛿̇ = 0. Let the output be the

frequency in Hertz, 𝑦 = 𝛿̇/2𝜋. Substituting 𝑧 = 𝛿− 𝛿*, and 𝑣 = sin(𝛿)− cos(𝛿*)𝑤, we

get

𝑀𝑥̈+𝐷𝑥̇+ 𝜑 cos(𝛿*)𝑥+ 𝜑𝑣 = 𝑢. (6.21)
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In frequency domain,

𝑍(𝑠) =
1

𝑀𝑠2 +𝐷𝑠+ 𝜑 cos(𝛿*)

[︀
𝑈(𝑠) − 𝜑𝑉 (𝑠)

]︀
= 𝐺𝑤,𝑢𝑈(𝑠) +𝐺𝑤,𝑣𝑉 (𝑠),

(6.22)

and 𝑌 (𝑠) = 𝑠𝑍/2𝜋.

The gains corresponding to the transfer functions 𝐺𝑦,𝑢, 𝐺𝑦,𝑣, 𝐺𝑧,𝑢, and 𝐺𝑧,𝑣 are

𝛾𝑦,𝑢 = 0.178, 𝛾𝑦,𝑣 = 0.142, 𝛾𝑧,𝑢 = 1.434, and 𝛾𝑧,𝑣 = 1.148, respectively. Following

the proposed procedure, the nonlinear gain is a function of the bound on the phase

difference. This can be seen in Figure 6-3(a).

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5
(a) System gain

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8
(b) Admissible disturbance bound

Figure 6-3: Maximum disturbance magnitude allowed as a function of sector bound
for a SMIB system.

Since the gain matrices are just scalars, the condition for BIBO stability is simply

𝛾𝑧,𝑣𝛾𝜓 < 1. In Figure 6-3(b) we plot with blue the CIBO stability condition presented

in Theorem II. The vertical dashed black lines in the Figures 6-3(a) and 6-3(b) show
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that the small-gain condition is violated if the CIBO stability condition is not satisfied.

In Figure 6-3(b), the estimation of the upper bound on the disturbance magnitude

was computed by time-domain simulations. After applying a step disturbance with

magnitude bounded by 𝑢̄, the maximum phase difference deviation 𝑧 was recorded.

All the simulation points are represented with orange, and they are all connected by

a dashed orange line. Since every simulation point is only a single realization among

all possible disturbances, it only provides an upper-bound on the magnitude of the

disturbance.

The approach proposed in this section uses convex optimization to efficiently com-

pute the maximum magnitude for the admissible disturbance. Figure 6-3(b) shows

that the gap between the upper-bound and the bound on the magnitude based on our

method is very tight. The maximum disturbance magnitude allowed occurs when 𝑧

is about 1.2 rad, which can be computed with the optimization problem (6.13). The

small-gain condition in Figure 6-3(a) is violated when the angle deviation is about

2.4 rad. The bound on the disturbance magnitude becomes zero at the same 𝑧, which

illustrates the equivalence of conditions (i) and (iii) in Lemma 14. In Figure 6-4, the

maximum frequency deviation is computed with the second condition in Theorem 13.

Similarly, a lower-bound on the frequency deviation was computed using the same

procedure explained for the upper-bound on the magnitude of the disturbance.

6.5.2 9-bus and 39-bus systems

This section presents numerical case studies on the IEEE 9-bus and 39-bus systems.

The nonlinear optimization was performed using the interior point method in IPOPT

[90] on a PC laptop with an Intel Core I7 3.3 GHz CPU and 16GB of memory. In

Figure 6-5, we show a graphical representation of the computed maximum bound

on the magnitude of the disturbance that can enter every single bus. The results

suggest that the bigger disturbances are allowed to enter the buses with many neigh-

bors to distribute the impact. For the generator nodes, the second-order dynamics

together with the governor reduce the damping ratio, and only small disturbances are

admissible.
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Figure 6-4: Maximum frequency deviation for a SMIB system.

Regarding the computation time, for the 9-bus system, the gain matrix took

1.86 seconds to compute, while the optimization took 0.017 seconds. For the 39-

bus system, the computation time for the gain matrix was 166.9 seconds, while the

optimization time was 0.148 seconds. Therefore, the most computationally intense

step in our method is the computation of the gain matrix of the linear component,

which requires simulation of impulse response and numerical integration. However,

the computation time of the gain matrix could be improved by estimating only an

upper-bound, rather than its exact value [4].

For the 39-bus case study, we consider the following disturbance scenarios: a step

disturbance to represent the simultaneous tripping of distributed generators, and

continuous disturbances to represent the varying power output from wind generation.

Simultaneous Distributed Generators tripping

In this scenario, we consider the simultaneous tripping of the loads at buses 3, 15,

and 27. The active power loads at those buses are 3.22 p.u., 3.2 p.u., and 2.81 p.u.,

respectively. Under the frequency constraint of 0.5 Hz, the maximum tripped load

magnitude needs to be less than 0.939 p.u. Without the frequency constraint, the

maximum disturbance magnitude allowed at each load is 2.29 p.u..
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Figure 6-5: Maximum disturbance bound at every bus for the 9-bus and 39-bus
systems. A disturbance on every individual node is considered and the resulting
maximum bound is represented as the size of circle at that node. For both systems,
a reference circle is labeled with its value.

Figure 6-6: Simulation results for (a)varying wind generation, and (b) simultaneous
generation tripping, together with their frequency response for the 39-bus system.
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Wind generation

In this scenario, we consider the varying power output from wind generation at buses

1, 9, and 16. Under the frequency constraint of 0.5 Hz, the deviation from the nominal

generation needs to be less than 1.305 p.u. Without the frequency constraint, a

deviation in the active power of 2.02 p.u. is allowed at each wind generator.

6.6 Concluding Remarks

In this section, we proposed a notion of input-output stability in the presence of con-

straints on inputs and outputs. The applications in the electric power grid showed

promising results for mitigating instabilities due to renewable energy. Time-domain

simulation-based assessment of the system robustness against uncertain and stochas-

tic disturbances is extremely time-consuming. The proposed method provided an

optimization-based method with a robustness guarantee. The derived certificate is

efficiently constructed via convex optimization and is shown to be non-conservative

for different IEEE test cases.
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Chapter 7

Conclusion

This chapter summarizes the contributions of this thesis and discusses potential fu-

ture work and open problems. We developed a set of algorithms to solve robustness

verification and optimization problems in both steady-state and dynamical settings.

Our approach focused on providing guarantees for safety by ensuring that we meet

a set of constraints. We achieve computational tractability by enforcing convexity

using nonlinear envelopes. We summarize chapter-specific contributions below.

7.1 Summary of Contributions

In Chapter 2, we provided a convex sufficient condition that satisfies a set of nonlinear

equality and inequality constraints. The benefit of convex restriction is that we can

exploit convexity to enjoy computational efficiency and rich theory with a guarantee

of feasibility. The technique developed in this chapter can be applied to a general

set of nonlinear equations as long as the functions are continuous. We exploited the

decomposability of the sparse structure in the problem and showed examples of how

the trade-off between conservativeness and tractability can be controlled.

In Chapter 3, convex restriction was extended to consider uncertain variables that

are unknown but bounded. The general approach is to ensure that the uncertainty

set is inscribed by the convex restriction. Since convex restriction is a set of convex

quadratic constraints, the standard robust counterpart of the constraint can be de-
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rived. We present a number of cases where there are analytical expressions for the

required robustness margin. The expressions are incorporated into convex restriction

so that they can be added as a constraint to an optimization problem with the desired

objective function.

In Chapter 4, we present a number of applications in robotics, neural network

robustness verification, model predictive control, and optimal power flow problems.

Its application in robust model predictive control requires the satisfaction of safety

constraints under all realizations of uncertainty. Our formulation’s main advantage

is that it gives a unified treatment to the problem involving nonlinear dynamics,

nonconvex safety constraints, and provable robustness against uncertainty. For power

grid application, our approach addresses inherent uncertainties in power injections

due to the growing quantities of renewable generation. The main advantage of our

approach is its theoretical guarantees with respect to both power flow solvability and

operational constraint satisfaction for robust AC OPF problems. In neural networks

and robotics applications, convex restriction provides a method to find a convex

subset of decision boundary and feasible configuration space. We demonstrated its

wide applications across many domains.

In Chapter 5, we investigate reach avoid the problem with reachability analysis.

We use convex relaxation to bound nonlinearity and the reachable sets could be solved

via convex optimization. We explored methods to compute contraction metrics for

discrete-time nonlinear systems. We showed that the contraction metrics could be

used to construct the templates for reachable sets. In particular, the template from

contraction metric yield if and only if condition for linear systems. We demonstrated

the proposed method on IEEE power grid test cases.

In Chapter 6, we developed a method to quantify the relationship between the peak

magnitudes of input and output of nonlinear dynamical systems. The method gives us

the ability to compute the peak magnitude bounds on the input such that we satisfy

constraints on peak magnitude bounds on the output. This is useful for engineering

applications where there are safety constraints on the output, and the system operator

needs to determine how much uncertainty the system can tolerate before violating
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the safety constraints. We formulate the system as a Lur’e problem and use upper-

convex lower-concave envelopes to bound the nonlinearity. The proposed condition

is a convex sufficient condition with peak magnitudes on the input and output as

decision variables. The condition can be used as a constraint in optimization to

determine the worst-case bound on the input that is tolerable by the system without

violating output constraints. We have demonstrated our approach in IEEE test cases

for electric power grids.

7.2 Future Directions

The work presented in this thesis has several directions for future work. The first

involves generalizing or specializing the envelopes used in this work to function with

other unique properties such as monotonicity or quasi-convexity. The upper-convex

lower-concave can be relaxed to upper-quasi-convex lower-quasi-concave envelopes,

and the methods proposed in this thesis can be directly applied to obtain quasi-

convex sufficient conditions for considered problems. In addition, the choice of sparse

nonlinear representation is problem-specific, and the domain knowledge should be

incorporated. Having the least amount of shared decision variable between nonlinear

basis functions is important to reduce conservativeness. The manipulation of algebraic

equations can also change the shape of the nonlinear manifold. Exploring different

representations will result in different scalability and performance.

Another direction is finding a set of problems where the solution of sequential

convex optimization can be simplified. If there are either analytical solutions or ap-

proximate solutions without having to call the convex optimization solver. One of the

limitations of sequential convex restriction is that the algorithm still needs to solve

large-scale convex optimization problems, which could require a significant computa-

tional burden. While our approach can be applied to a wide range of applications with

constraints that are sometimes difficult to handle, there could be a class of problems

where the solutions to the convex subproblems are easy to obtain.

Lastly, the envelopes for nonlinear functions provide a loose estimate of the model.
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Data-driven methods could be further studied for deriving the envelopes for nonlin-

earities. With the limited amount of data, there is inherent uncertainty in model

estimation, and our approach could be combined with the estimated error to pro-

vide confidence in the model. The combined framework could address the questions

regarding the robustness of the estimated model.
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Appendix A

Nonlinear Envelopes

A.1 Upper-Convex Lower-Concave Envelopes

A.1.1 Upper-Convex Lower-Concave Envelope for Bilinear Func-

tion

A bilinear function can be bounded by the following concave envelopes with some

𝜌1, 𝜌2 > 0 and the nominal point (𝑥(0), 𝑦(0)) [61],

𝑥𝑦 ≥ 𝑥(0)𝑦(0) + 𝑦(0)(𝑥− 𝑥(0)) + 𝑥(0)(𝑦 − 𝑦(0)) − 1

4

[︂
𝜌1(𝑥− 𝑥(0)) − 1

𝜌1
(𝑦 − 𝑦(0))

]︂2
𝑥𝑦 ≤ 𝑥(0)𝑦(0) + 𝑦(0)(𝑥− 𝑥(0)) + 𝑥(0)(𝑦 − 𝑦(0)) +

1

4

[︂
𝜌2(𝑥− 𝑥(0)) +

1

𝜌2
(𝑦 − 𝑦(0))

]︂2
.

(A.1)

The over-estimator is tight along 𝜌2(𝑥−𝑥(0))− 1
𝜌2

(𝑦−𝑦(0)) = 0, and the under-estimator

is tight along 𝜌2(𝑥 − 𝑥(0)) + 1
𝜌2

(𝑦 − 𝑦(0)) = 0. Both over- and under-estimators are

tight at the nominal point, (𝑥(0), 𝑦(0)).
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Figure A-1: Illustration of concave envelopes for a bilinear function.

A.1.2 Upper-Convex Lower-Concave Envelope for Unitary Quadratic

Function

A unitary quad-ratic function can be bounded by the following quadratic concave

envelopes for all 𝑥 given the nominal point 𝑥(0) [61],

𝑥2 ≥ (𝑥(0))2 + 2𝑥(0)(𝑥− 𝑥(0)) + (𝑥− 𝑥(0))2 = 𝑥2

𝑥2 ≤ (𝑥(0))2 + 2𝑥(0)(𝑥− 𝑥(0)) = 2𝑥(0)𝑥− (𝑥(0))2.
(A.2)

A.1.3 Upper-Convex Lower-Concave Envelope for Trigonomet-

ric Function

Trigonometric functions can be bounded by the following quadratic concave envelopes

for all 𝜃 given the nominal point 𝜃0,

sin 𝜃 ≥ sin 𝜃(0) + cos 𝜃(0)(𝜃 − 𝜃(0)) − 1

2
(𝜃 − 𝜃(0))2

sin 𝜃 ≤ sin 𝜃(0) + cos 𝜃(0)(𝜃 − 𝜃(0)) +
1

2
(𝜃 − 𝜃(0))2,

cos 𝜃 ≥ cos 𝜃(0) − sin 𝜃(0)(𝜃 − 𝜃(0)) − 1

2
(𝜃 − 𝜃(0))2

cos 𝜃 ≤ cos 𝜃(0) − sin 𝜃(0)(𝜃 − 𝜃(0)) +
1

2
(𝜃 − 𝜃(0))2.
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A.1.4 Upper-Convex Lower-Concave Envelope for Logistic Func-

tion

A logistic function, 𝜎(𝑥) = 1
1+𝑒−𝑥 , has the bounded second derivative of

√
3

18
, and its

quadratic concave envelope is

𝜎(𝑥) ≥ 𝜎(0) + 𝜎(0)(1 − 𝜎(0))(𝑥− 𝑥(0)) −
√

3

36
(𝑥− 𝑥(0))2

𝜎(𝑥) ≤ 𝜎(0) + 𝜎(0)(1 − 𝜎(0))(𝑥− 𝑥(0)) +

√
3

36
(𝑥− 𝑥(0))2.

where 𝑥(0) is the nominal point and 𝜎(0) = 1

1+𝑒−𝑥(0)
.

A.2 Upper-Concave Lower-Convex Envelopes

A.2.1 Upper-Concave Lower-Convex Envelope for Bilinear Func-

tion

A bilinear function can be outer-approximated by McCormick envelop [68]. Given

the bounds, 𝑥 ≤ 𝑥 ≤ 𝑥 and 𝑦 ≤ 𝑦 ≤ 𝑦 , the envelope is

𝑥𝑦 ≥ 𝑥𝑦 + 𝑥𝑦 − 𝑥𝑦

𝑥𝑦 ≥ 𝑥𝑦 + 𝑥𝑦 − 𝑥𝑦

𝑥𝑦 ≤ 𝑥𝑦 + 𝑥𝑦 − 𝑥𝑦

𝑥𝑦 ≤ 𝑥𝑦 + 𝑥𝑦 − 𝑥𝑦.

(A.3)
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A.2.2 Upper-Concave Lower-Convex Envelope for Trigonomet-

ric Function

Trigonometric functions can be bounded by the following quadratic envelopes pro-

vided in [30]. For all 𝑥 ∈ [−𝑥𝑢, 𝑥𝑢], the envelopes are

sin(𝑥) ≤ cos

(︂
𝑥𝑢

2

)︂(︂
𝑥− 𝑥𝑢

2

)︂
+ sin

(︂
𝑥𝑢

2

)︂
sin(𝑥) ≥ cos

(︂
𝑥𝑢

2

)︂(︂
𝑥+

𝑥𝑢

2

)︂
− sin

(︂
𝑥𝑢

2

)︂
,

(A.4)

cos(𝑥) ≤ 1 − 1 − cos(𝑥𝑢)

(𝑥𝑢)2
𝑥2

cos(𝑥) ≥ cos (𝑥𝑢).

(A.5)
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A.3 Formulations and Proofs for Chapter 4.1

A.3.1 Jacobian for System of Dynamical Equations

In this section, we derive the Jacobian of the system of equation and its inverse in

Equation (2.4).

Jacobian for Explicit Time-discretization

The Jacobian for the system of equations, 𝐹explicit(x,u,w) in (4.8), evaluated at the

nominal trajectory is given by

𝜕𝐹explicit

𝜕x

⃒⃒⃒⃒
(0)

=

⎡⎢⎢⎢⎢⎢⎢⎣
−𝐼 0 . . . 0

𝐴
(0)
1 −𝐼 0

...

0
. . . . . . 0

0 0 𝐴
(0)
𝑁 −𝐼

⎤⎥⎥⎥⎥⎥⎥⎦ , (A.6)

where 𝐴(0)
𝑡 = 𝐼 + ℎ · 𝜕𝑓

𝜕𝑥

⃒⃒
(𝑥

(0)
𝑡−1,𝑢

(0)
𝑡 ,𝑤

(0)
𝑡 )

.

Lemma 15. The inverse of the Jacobian in (A.6) always exists and has the following

closed-form representation,

𝜕𝐹explicit

𝜕x

⃒⃒⃒⃒−1

(0)

= −

⎡⎢⎢⎢⎢⎢⎢⎣
𝐼 0 . . . 0

𝐴
(0)
(1,0) 𝐼 0

...
... . . . . . . 0

𝐴
(0)
(𝑁,0) . . . 𝐴

(0)
(𝑁,𝑁−1) 𝐼

⎤⎥⎥⎥⎥⎥⎥⎦ , (A.7)

where 𝐴(0)
(𝑖,𝑗) represents the linear sensitivity of the state at time step 𝑖 with respect

to the state at time step 𝑗. The sensitivity can be solved by applying the chain rule,

𝐴
(0)
(𝑖,𝑗) =

𝑖∏︁
𝑡=𝑗+1

(︃
𝐼 + ℎ · 𝜕𝑓

𝜕𝑥

⃒⃒⃒(︁
𝑥
(0)
𝑡−1,𝑢

(0)
𝑡 ,𝑤

(0)
𝑡

)︁
)︃
. (A.8)

Lemma 15 can be checked by showing that multiplication of (A.6) and (A.7) is
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an identity matrix.

Jacobian for Implicit Time-discretization

The Jacobian for the system of equations, 𝐹implicit(x,u,w) in (4.9), evaluated at the

nominal trajectory is given by

𝜕𝐹implicit

𝜕x

⃒⃒⃒⃒
(0)

=

⎡⎢⎢⎢⎢⎢⎢⎣
−𝐼 0 . . . 0

𝐼 −𝐴(0)
1 0

...

0
. . . . . . 0

0 0 𝐼 −𝐴(0)
𝑁

⎤⎥⎥⎥⎥⎥⎥⎦ , (A.9)

where 𝐴(0)
𝑡 = 𝐼 − ℎ · 𝜕𝑓

𝜕𝑥

⃒⃒
(𝑥

(0)
𝑡 ,𝑢

(0)
𝑡 ,𝑤

(0)
𝑡 )

.

Lemma 16. The inverse of the Jacobian in (A.9) always exists and has the following

closed-form representation,

𝜕𝐹implicit

𝜕x

⃒⃒⃒⃒−1

(0)

= −

⎡⎢⎢⎢⎢⎢⎢⎣
𝐼 0 . . . 0

𝐴
(0),−1
(1,1) 𝐴

(0),−1
(1,1) 0

...
...

... . . . 0

𝐴
(0),−1
(𝑁,1) 𝐴

(0),−1
(𝑁,1) . . . 𝐴

(0),−1
(𝑁,𝑁)

⎤⎥⎥⎥⎥⎥⎥⎦ , (A.10)

where 𝐴(0)
(𝑖,𝑗) represents the linear sensitivity of the state at time step 𝑖 with respect

to the state at time step 𝑗. The sensitivity can be solved by applying the chain rule,

𝐴
(0),−1
(𝑖,𝑗) =

𝑖∏︁
𝑡=𝑗

(︃
𝐼 − ℎ · 𝜕𝑓

𝜕𝑥

⃒⃒⃒(︁
𝑥
(0)
𝑡 ,𝑢

(0)
𝑡 ,𝑤

(0)
𝑡

)︁
)︃−1

. (A.11)

Similar to explicit scheme, Lemma 16 can be checked by showing that multiplica-

tion of (A.9) and (A.10) is an identity matrix.
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A.3.2 Residual Feedback Representation

The residual representation of the system involves the nonlinear residual function

𝑔 : (R𝑛,R𝑚) → R𝑛,

𝑑

𝑑𝑡
𝑥 = 𝐴(𝑡)𝑥+𝐵(𝑡)𝑤 + 𝑔(𝑥, 𝑢, 𝑤)

𝑔(𝑥, 𝑢, 𝑤) = 𝑓(𝑥, 𝑢, 𝑤) − 𝐴(𝑡)𝑥−𝐵(𝑡)𝑤

(A.12)

where 𝐴(𝑡) = 𝜕𝑓
𝜕𝑥

⃒⃒
(𝑥(0),𝑢(0),𝑤(0))

and 𝐵(𝑡) = 𝜕𝑓
𝜕𝑤

⃒⃒
(𝑥(0),𝑢(0),𝑤(0))

are the Jacobians of the

system dynamics evaluated at the nominal values. This representation is related to

the Lur’e form in control [87, 54], which uses the sector bound to contain the nonlin-

earity. Similarly, we use upper-convex and lower-concave envelopes for bounding the

nonlinearity.

The residual functions in (4.11) has the following representation for explicit scheme,

𝑔explicit(x,u,w) =

⎡⎢⎢⎢⎢⎢⎢⎣
0𝑛

ℎ · 𝑔(𝑥0, 𝑢1, 𝑤1)
...

ℎ · 𝑔(𝑥𝑁−1, 𝑢𝑁 , 𝑤𝑁)

⎤⎥⎥⎥⎥⎥⎥⎦ , (A.13)

and for implicit scheme,

𝑔implicit(x,u,w) =

⎡⎢⎢⎢⎢⎢⎢⎣
0𝑛

ℎ · 𝑔(𝑥1, 𝑢1, 𝑤1)
...

ℎ · 𝑔(𝑥𝑁 , 𝑢𝑁 , 𝑤𝑁)

⎤⎥⎥⎥⎥⎥⎥⎦ , (A.14)

where 𝑔(𝑥, 𝑢, 𝑤) is the nonlinear residual defined in (A.12) and 0𝑛 ∈ R𝑛 is a vector of

zeros.

The worst-case contribution from the residual function over the domain 𝑥 ∈
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𝒫(𝑥𝑢, 𝑥ℓ) and 𝑤 ∈ 𝒲(𝛾) are

𝑔𝑢𝒫,𝑘(u,x
𝑢,xℓ) = max

x∈𝒫(xℓ,x𝑢)
max

w∈𝒲(𝛾)
𝑔𝑢𝑘(x,u,w),

𝑔ℓ𝒫,𝑘(u,x
𝑢,xℓ) = min

x∈𝒫(xℓ,x𝑢)
min

w∈𝒲(𝛾)
𝑔ℓ𝑘(x,u,w).

(A.15)

A.3.3 Proof of Lemma 7

Proof. The necessary and sufficient condition for optimality for the projection prob-

lem in (4.15) is

(𝑃ℬ𝑡,𝑖
[𝑥

(0)
𝑡 ] − 𝑥

(0)
𝑡 )𝑇 (𝑥̃− 𝑃ℬ𝑡,𝑖

[𝑥
(0)
𝑡 ]) ≥ 0, ∀𝑥̃ ∈ ℬ𝑡,(𝑖),

for 𝑖 = 1, . . . , 𝑠. The condition, 𝐿𝑡𝑥𝑡 + 𝑑𝑡 < 0, ensures that

(𝑃ℬ𝑡,𝑖
[𝑥

(0)
𝑡 ] − 𝑥

(0)
𝑡 )𝑇 (𝑥𝑡 − 𝑃ℬ𝑡,𝑖

[𝑥
(0)
𝑡 ]) < 0, 𝑖 = 1, . . . , 𝑠.

Therefore, 𝑥𝑡 /∈ ℬ𝑡,(𝑖) for 𝑖 = 1, . . . , 𝑠. Therefore, the state 𝑥𝑡 satisfies the safety

constraints.
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