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Abstract

Given the large environmental impact of the concrete industry, which represents 8-
9% of global CO2 emissions, the design of concrete mixes with low carbon footprints
that still meet structural performance requirements will be an essential part of global
decarbonization efforts. In this work, we build a concrete performance model, which
maps from concrete constituents to compressive strength, a key structural property.
Specifically, we leverage the quantity and quality of information provided by our in-
dustrial concrete partners (whereas most existing related studies use small, narrow
datasets derived from laboratory experiments) to establish an improved concrete per-
formance model that captures the role of several concrete ingredients and a wide
variety of formulas. We find that the features which are predicted to be important to
concrete strength are compatible with industry knowledge, and that predictions can
be improved in the case of small datasets by leveraging information from other larger
datasets. Additionally, we integrate our machine learning model into an optimization
procedure, and identify mixtures which have minimal cost and minimal climate im-
pact. Lastly, we discuss the trade-offs between these two design parameters, and how
these considerations differ by the required strength of the concrete.
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Chapter 1

Introduction

1.1 Problem setup

Concrete is the most widely used building material in the world, with a global annual

consumption of approximately 30 billion metric tons [1]. The demand for concrete

continues to grow at a rate faster than steel and wood, and the versatility and dura-

bility of concrete has made it a fundamental building staple for centuries [1]. In

particular, concrete will be necessary to create infrastructure for a climate-resilient

future, where buildings, roads, and bridges are long-lasting and resistant to disaster.

Concrete is made up of two basic components: 1) aggregates (rock fragments), and

2) a paste that binds the aggregates together. Aggregates may be coarse (e.g., crushed

stone, gravel) or fine (e.g., sand). The paste that is used in concrete is traditionally

made by mixing ordinary Portland cement (OPC) and water. The manufacturing

of OPC involves heating limestone and clay in a kiln to a sintering temperature of

1450∘C. This calcination process causes the limestone (CaCO3) to decompose into

lime (CaO) and carbon dioxide (CO2). When also including the emissions associated

with fossil fuel combustion required to generate the heat, it is estimated that one

metric ton of CO2 is released for every one metric ton of cement produced [1]. In

fact, the manufacturing of OPC is responsible for 8% of global CO2 emissions [2].

The partial replacement of OPC with supplementary cementitious materials (SCMs),

such as those derived from industrial wastes, can therefore both improve resulting con-
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crete properties and reduce the overall carbon footprint of concrete. Commonly used

SCMs include fly ash (a by-product of burning coal), slag (a by-product of iron pro-

duction), and silica fume (a by-product of silicon metal production). The inclusion of

SCMs can increase the long-term strength of concrete, improve durability, and mit-

igate permeability, among other effects. Almost all of produced ground granulated

blast furnace slag (GGBFS) is used in concrete; its usage is limited by supply. How-

ever, this example is the exception and most SCMs are under-utilized in the concrete

industry, due to challenges with understanding the performance of various composi-

tions. The design of environmentally friendly concrete mixtures will be an essential

part of global decarbonization efforts. Thus, there is an opportunity to use machine

learning to improve the design of concrete formulas, achieving lower environmental

impacts while still meeting structural performance requirements.

1.2 Literature and Contribution

Numerous groups in the literature have explored machine learning (ML) as a means

to predict the properties of a given concrete formula, and some have extended this

to optimal mixture design. In their review of machine learning for the prediction

of mechanical properties of concrete, Ben Chaabene et al. [3] reviewed nearly 100

instances of machine learning algorithms applied to concrete data. Across all, the

average size of the dataset used was about 451 data points, where few (16) had size

greater than 1,000 observations, and only 1 had size greater than 2,000 observations.

A range of machine learning models have been applied to concrete in the literature,

including support vector machines (SVM), artificial neural networks (NN), decision

trees, and hybrid models. Many input features are considered, such as type and

quantity of constituents.

Young et al. [4] predicted compressive strength using data (roughly 10,000 obser-

vations) from a vertically integrated cement/concrete industrial producer (VIP), and

also evaluated their model performance on a benchmark dataset from the academic

literature. Four models were considered: linear regression, NN, random forest (RF),
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and SVM. They found that the RF model achieved the lowest root mean squared er-

ror (RMSE) and best 𝑅2 for both datasets, and that overall model performance was

slightly poorer on the VIP dataset than on the lab benchmark. They believed this

to be due to differences in measurement style or ambient conditions at job sites (as

opposed to the controlled laboratory setting) and suggested that future work should

aim to expand the size of the data and incorporate a wider set of input variables for

improved results using job site data. Young et al. [4] then integrates their NN model

(which had available gradients, unlike the RF) into an optimization procedure to de-

sign concrete mixtures which minimize cost while still meeting target strengths. The

authors also consider a second optimization which minimizes mixture cost subject to

both target strength constraints and target embodied carbon impact.

While the study by Young et al. [4] provides many new insights on the application

of machine learning to industrial-based datasets, it is limited in the following aspects.

First, the concrete mixtures that are considered in the study contain only fly ash

as SCM; they do not contain slag nor silica fume, which are two other key SCMs

that are often used in concrete. Second, the design strengths of the mixtures range

from 30 MPa (~4,300 psi) to 55 MPa (~8,000 psi); information on the minimum

costs that can be achieved in the case of high-strength projects (e.g., >10,000 psi)

remains unknown. Additionally, the authors consider environmental impact via a

constraint in their optimization of cost; it would be beneficial to optimize directly for

low carbon footprint. Lastly, when faced with multiple design criteria, it is valuable

to understand the trade-offs via a multi-objective optimization, i.e., a visualization

of the pareto front with each objective along the axes.

Many researchers have investigated the design of more environmentally friendly

concrete, such as those containing recycled aggregates [5–7], those which use industrial

waste as supplementary cementitious materials [8–10], and other materials, such as

grass for lightweight aggregate [11] and steel fibers [12].

Zhang et al. [10] couple an ML model for strength and optimization for design

of concrete mixtures. They formulate a tri-objective optimization which is posed as

a weighted sum of the following three objective functions: 1) maximize compressive
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strength, 2) minimize cost, and 3) minimize embodied CO2. The compressive strength

was estimated using a NN. Input variables included content of cement, silica fume,

water, coarse aggregate, fine aggregate, maximum size of coarse aggregate, high-range

water reducing admixture, and curing age. They modified the beetle antennae search

(BAS) algorithm so that it could be applied in a multi-objective setting. The authors

validated the performance of their multi-objective beetle antennae search algorithm

(MOBAS) on a number of multi-objective benchmark functions and showed that it

performed comparably with other heuristic optimization algorithms, including genetic

algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE),

with significantly lower computation time. The authors also performed global sensi-

tivity analysis and determined that after age, high-range water reducing admixture

content has the most significant impact on compressive strength.

Nunez et al. [6] studied the prediction of compressive strength of concrete mixtures

which contain recycled aggregates, called recycled aggregate concrete (RAC). They

compiled an experimental dataset (n=1,134) from available studies (55 peer-reviewed

publications) in the literature. Input variables include water-to-cement ratio (w/c),

cement content, sand content, recycled aggregate content, high-range water reduc-

ing admixture content, silica fume content, age, specimen type, and 28-day design

strength (f’c). The authors explored three different ML models for predicting the

compressive strength of the RAC, namely recurrent neural network RNN, gradient-

boosted regression tree (GBRT), and Gaussian processes (GP). Separately, the au-

thors applied the PSO algorithm to minimize the cost of a concrete mixture, using

four sets of bounds associated with four different target strength classes. Then, the

best-performing ML model (in this case, the GBRT) was used in order to verify that

the predicted strength of optimal mixtures in each of the four strength classes met

or exceeded specified targets. The authors note that future work should integrate

SCMs.

Pereira Dias et al. [11] use data driven modeling for the design of concrete which

uses Miscanthus grass as lightweight aggregate. There are nine inputs considered

(Miscanthus, cement, lime, high-range water reducing admixture, CaCl2, water, form

12



of specimen, curing time, and pre-treatment condition). They create 413 specimens

which are evaluated at 7, 14, and 28 days after casting. The authors employ Gaussian

process regression. The authors create a useful graphical user interface with knobs

which allow a concrete designer to visualize the prediction compressive strengths and

sensitivities to selected parameter values.

Using a large dataset provided by an industrial concrete producer, we leverage

rich information to build an improved concrete performance model, mapping from

concrete mix attributes to key properties and explicitly modeling time as a dimension

of the problem. With this model established, we formulate an optimization procedure

which aligns with a concrete designer’s needs and enables them to better understand

the trade-offs between structural performance, environmental impact, and cost. This

enables the exploration of various potential mixtures before investing in and carrying

out laboratory experimental work, and ultimately this framework can be used to

improve utilization of regionally available raw materials at scale.
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Chapter 2

Compressive strength prediction on

industrial datasets

2.1 Data

Through an initiative launched in partnership with industrial concrete producers, we

curated a database from three companies (referred to as C1, C2 and C3) of concrete

mixture attributes and their corresponding compressive strength measurements, to-

taling over 200,000 observations. Although strength is measured at various ages, the

most important age is 28 days, when approximately 99% of the strength has devel-

oped. After this day, the gain in strength is minimal. Many building specifications

are thus based upon the strength achieved at 28 days. In this section, we focus on

prediction of the 28-day strength specifically.

As the raw data provided by the companies was in various formats, we first iden-

tified a set of standard, or generic, concrete mixture constituents and then processed

the data accordingly. The generic mixture constituents include: coarse aggregate,

fine aggregate, water, cement, fly ash, slag, silica fume, and five chemical admixtures

(high-range water reducing, water reducing, accelerating, air-entraining, and other

(e.g., viscosity modifying) admixtures). Additionally, constituent quantities were di-

vided by the total yielded volume (provided by the companies) when necessary in

order to obtain mass quantities required to produce one cubic yard (CY) of concrete.
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All units are converted to the English system, with masses of admixtures measured

in ounces (oz), masses of all other constituents in pounds (lbs), and compressive

strengths in pounds per square inch (psi). Lastly, outlier cleaning was performed

on an individual company basis in order to remove values more than three standard

deviations from the mean of each constituent, as these are believed to be errors. We

also include a benchmark dataset (referred to as L) by Yeh [13] which consists of 1,030

strength observations. This dataset is also pre-processed in the same manner as the

industrial datasets. The sizes of the subsets of the four datasets which are relevant

in the 28-day strength prediction are listed in Table 2.2.

Each mixture can be represented by the 13-dimensional vector z = [𝑧0, ..., 𝑧12].

The first element, 𝑧0, is a derived feature; it is the mass-based ratio of water to

cementitious materials (w/cm), a key design attribute of concrete. The remaining

elements 𝑧𝑖, with 𝑖 > 0, are each the constituent amount used to produce one CY

of concrete respectively as follows: pounds (lbs) of coarse aggregate, fine aggregate,

water, cement, slag, fly ash, silica fume, and ounces (oz) of high-range water re-

ducing admixture, water reducing admixture, accelerating admixture, air-entraining

admixture, and other admixture.

The kernel density estimation (KDE) plots for the four datasets and the 12 con-

stituent quantities and 28-day compressive strength are shown in Figure 2-1 and 2-2

respectively. The KDE is similar to a histogram, however, it smoothly estimates

the probability density function of a random variable. The area under this curve is

1. Note that some features are not available in some datasets. This information is

provided in tabular format in Table 2.1.

2.2 Models to predict compressive strength

2.2.1 Random forest

Developed by Breiman [14], a random forest is an ensemble method in which the

predictions of its individual components, decision trees, are aggregated in order to

15



Figure 2-1: Kernel density estimation plots for the constituent quantities across the
four datasets.

Figure 2-2: Kernel density estimation plots for the 28-day compressive strength across
the four datasets.
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Table 2.1: Features available for the four datasets.
Feature C1 C2 C3 L

w/cm ✓ ✓ ✓ ✓
Coarse aggregate ✓ ✓ ✓
Fine aggregate ✓ ✓ ✓

Water ✓ ✓ ✓ ✓
Cement ✓ ✓ ✓ ✓
Fly ash ✓ ✓ ✓ ✓

Slag ✓ ✓ ✓
Silica fume ✓

High-range water reducing admixture ✓ ✓
Water reducing admixture ✓

Accelerating admixture ✓
Air-entraining admixture ✓

Other admixture ✓

Table 2.2: Sizes of datasets (train and test) for the 28-day strength prediction task.
Dataset Training size Testing size

C1 15,294 5,097
C2 42,696 14,231
C3 3,007 1,002
L 313 104

17



obtain a single output. Decision trees are non-parametric supervised machine learning

techniques for both classification and regression tasks. The tree structure involves

using rules to repeatedly split the data based on feature values in order to obtain

predictions of the target. A random forest fits many decision trees to different sub-

samples of the dataset, a technique to mitigate overfitting. The random forest models

used in this work were implemented using the scikit-learn [15] library for machine

learning in Python.

Key hyperparameters for training the random forest include the number of decision

trees in the forest, the number of features to consider at each split, and the maximum

allowed depth of the trees. We found that the best number of features to consider at

each split was 3. We train 100 trees with no maximum depth.

2.2.2 Multi-layer perceptron

A multi-layer perceptron (MLP) is the simplest class of artificial neural networks.

Generally, a MLP is a feedforward, fully connected neural network with at least three

layers (input, hidden layer, output) and nonlinear activation functions. Feedforward

indicates that information in the network moves only in the forward direction (from

input to output), without any cycles. Fully connected means that all of the nodes in

one layer are connected to all of the nodes in the next layer.

The design and training of an MLP involves optimal selection of the number of

hidden layers, the hidden layer sizes, activation functions, learning rate, and solver.

In this work, the best architecture selected had an input of size 13, six hidden layers

of size 50, output of size 1. The activation function is the rectified linear unit (ReLU).

The MLP was trained for 151 epochs using a learning rate of 1e-3 using the Adam

solver [16]. The MLP models in this study were implemented using the pytorch [17]

library for deep learning in Python.

18



Figure 2-3: Test RMSE for the random forest and multi-layer perceptron on the four
datasets.

2.2.3 Results

We find that the RF model has the best performance on all datasets, as shown in

the plot of the root-mean-squared-error (RMSE) in Figure 2-3. The lowest RMSE

achieved by the RF is on dataset C2, at 779 psi. It is noteworthy that this dataset had

the fewest number of features available for predictions, however, it had the highest

number of training points and the narrowest distribution of 28-day strength measure-

ments. The RF is only moderately better than the MLP for the other two industrial

datasets. In the case of dataset L, which had only 313 points available for training,

it is likely that the MLP was not able to accurately infer parameters from this small

dataset.
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Figure 2-4: SHAP summary plots for the four datasets, with a, b, c, and d corre-
sponding to C1, C2, C3, and L respectively.

2.3 Feature analysis: Comparison with existing do-

main knowledge

We use SHAP [18, 19], a Python package developed for interpreting model results, in

order to explore whether features that are important for ML model predictions align

with knowledge in materials science. SHAP stands for SHapley Additive exPlanations

and uses a game theoretic approach to obtain additive feature attributions. We

explore the feature importance of the RF model using the TreeExplainer. The

summary plots for testing sets for the four datasets are shown in Figure 2-4, with

a, b, c, and d corresponding to C1, C2, C3, and L respectively. In these summary

plots, the x-axis represents the impact on the prediction, where values greater than 0

indicate an increase in the predicted 28-day strength, and values less than 0 indicate

a decrease in the predicted 28-day strength. Features are marked along the y-axis and

are ranked according to importance, with the most important at the top. The colors

of the data points in the swarm for each feature indicate the value of the feature,

where pink corresponds to high values and blue corresponds to low values.
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We find several consistent patterns in the ranking of importance and the direc-

tionality of feature values on the predicted 28-day strength. We find that higher

quantities of cement are associated with higher predicted 28-day strengths. Cement

ranks within the top three important features across all four datasets. In concrete de-

sign it is well known that the amount of cement, the hydration of which contributes to

strength gain, is a key driver of 28-day strength. Additionally, in our summary plots,

lower w/cm ratios are associated with higher predicted 28-day strengths. Across all

datasets, the w/cm ratio ranks within the top four most important features. This is

once again a well known relation in the domain.

In panels a, c, and d of Figure 2-4, the amount of slag is shown to increase the

predicted 28-day strength. In general, SCMs are often used to increase the late term

strength of concrete. This effect is observed in our model interpretation with the

exception of fly ash in panels b and d, where we observe a mixed effect and negative

impact respectively. This may be due to the limited feature set with dataset C2 in

panel b, and the low number of data points in dataset L in panel d. Given knowledge

that the inclusion of SCMs impacts strength differently based on age, future work

should investigate the feature importances along the time dimension in detail.

2.4 Toward generalization: Model architectures for

improved prediction

As demonstrated in Section 2.2, strength prediction performance differs depending on

the size of the dataset and the number of features available. Thus, it seems possible

to leverage information included in richer datasets in order to improve strength pre-

dictions on lower-quality datasets. To this end, we explore three architectures which

enable higher generalization: 1) Pooled RF, 2) Pooled MLP, and 3) Multi-trunk MLP.
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2.4.1 Pooled Architectures

The term ‘pooled’ refers to a pre-processing step in which all datasets are combined,

or pooled, prior to training a single model. The model does not explicitly know

which data point belongs to which dataset, however we keep track of this information

externally. It is then possible to compute performance scores and errors over the entire

single pooled dataset, as well as over the original separate datasets. We explored two

versions of this pooled architecture: a pooled random forest and a pooled multi-layer

perceptron. In both cases, the same model architectures from Section 2.2 are used,

with the pooling applied prior.

2.4.2 Multi-trunk MLP

The multi-trunk MLP is a hierarchical structure with two levels, as shown in Figure

2-5, that allow the model to simultaneously learn dataset-specific transformations and

share information across datasets. We first concatenate 𝐾 datasets, each with features

𝑥, targets 𝑦, and a dataset indicator variable 𝑧 in Eq. 2.1, to produce 𝒟 of size 𝑁 .

The bottom level of the multi-trunk model has 𝐾 MLP trunks, 𝑓𝜃𝑘 for 𝑘 = 1, . . . , 𝐾.

Each model 𝑓𝜃𝑘 consists of five hidden layers of size 50 and ReLU activation function,

ultimately learning parameters 𝜃𝑘 for a 50-dimensional representation for each subset

of 𝒟 where 𝑧𝑛 = 𝑘. The upper level of the multi-trunk model, 𝑓𝜃𝑠ℎ𝑎𝑟𝑒𝑑 is an MLP

which takes as input the 𝐾 50-dimensional representations and produces a single

final output 𝑦𝑛. The parameters 𝜃 are chosen to maximize the log likelihood of the

data, as in Eq. 2.2 and 2.3.

𝒟 = {𝑥𝑛, 𝑦𝑛, 𝑧𝑛}𝑁𝑛=1 (2.1)

𝜃 = argmax
𝜃

𝑁∑︁
𝑛=1

𝐾∑︁
𝑘=1

1𝑧𝑛=𝑘 log 𝑝(𝑦𝑛 | 𝑓𝜃𝑘(𝑥𝑛), 𝜃𝑠ℎ𝑎𝑟𝑒𝑑) (2.2)

𝜃 = {𝜃𝑠ℎ𝑎𝑟𝑒𝑑, 𝜃1, 𝜃2, . . . , 𝜃𝐾} (2.3)
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Figure 2-5: Multi-trunk architecture.
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Table 2.3: RMSE for the four datasets (C1, C2, C3, L) and five architectures (RF,
MLP, pooled RF, pooled MLP, and multi-trunk MLP. Lower values are better.

Individual Pooled Multi-trunk
RSME (↓) RF MLP RF MLP MLP

C1 823.93 839.13 1266.36 1197.70 871.69
C2 779.05 847.52 780.81 852.03 823.25
C3 843.94 857.30 1029.13 1147.01 843.00
L 854.23 939.20 995.20 1253.62 771.84

Overall - - 938.56 967.47 836.3

Table 2.4: 𝑅2 for the four datasets (C1, C2, C3, L) and five architectures (RF, MLP,
pooled RF, pooled MLP, and multi-trunk MLP. Higher values are better.

Individual Pooled Multi-trunk
𝑅2 (↑) RF MLP RF MLP MLP
C1 0.84 0.83 0.63 0.66 0.82
C2 0.72 0.67 0.73 0.67 0.69
C3 0.85 0.85 0.78 0.72 0.85
L 0.83 0.80 0.75 0.64 0.87

Overall - - 0.82 0.81 0.86

2.4.3 Results

We plot the RMSE for the four datasets (C1, C2, C3, L) and five architectures

(individual RF and individual MLP from Section 2.2, and the proposed pooled RF,

pooled MLP, and multi-trunk MLP) in Figure 2-6. Scatter plots for predicted 28-day

compressive strength vs. actual strength for each generalization model can be found

in Table A-1 of the Appendix. The multi-trunk MLP model performs consistently

well across all four datasets, often comparable with the individually trained RFs and

MLPs.

2.5 Discussion

Across the four datasets in this study, we identify common themes in the predictive

ability of certain features of a concrete toward compressive strength, and these find-

ings align well with the existing science. Additionally, we find an opportunity to use

a hierarchical model, which learns both dataset-specific information and population-
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Figure 2-6: Comparison of RMSE across four datasets (C1-L) and overall for the
various model architectures (RF, MLP, Pooled, and Multi-trunk).

based parameters, in order to improve prediction accuracy on smaller datasets in par-

ticular. Further, while complete information on the attributes of a concrete mixture

may be necessary for downstream tasks, it is not required for achieving compressive

strength prediction with low error.

Future work should focus on understanding the role of more detailed and specific

features (e.g., type of cement, size of coarse aggregate) on the prediction of concrete

compressive strength. This will aid in understanding the nuance of the interaction

between constituents, and ultimately enable improved design. Additionally, concrete

is cast in an environment with a particular temperature, humidity, and other atmo-

spheric conditions. In a laboratory setting, specimens are prepared following ASTM

Standards with the ultimate exposure conditions in mind. In practice at an on-site

project, conditions may be drastically different than the lab setting, and they may

change between measurements. As such, it would be beneficial to incorporate esti-

mates for the measurement uncertainty or account for the environmental conditions

at the time of curing in order to improve prediction accuracy using machine learning.

Machine learning can serve as a screening tool for concrete designers to evaluate

candidate mixtures before investing in the labor and equipment associated with the
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trial-and-error experimental process.
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Chapter 3

Optimal concrete design framework

A key performance metric for evaluating a concrete mixture is its compressive strength,

a property that increases with time as the concrete sets. Experimentalists typically

perform several compressive strength tests on a number of cast cylinders in order

to gather strength measurements at 3, 7, 14, 28, and 56 days. This collected data

amounts to a time series, and the problem of predicting compressive strength is well-

suited to time-series analysis methods that involve curve fitting, where the underlying

assumption is that a target 𝑦 is ordered by 𝑥, the time variable. Thus, we first use a

novel Gaussian process model which was presented in Severson et al. [20] to estimate

the complete strength trajectory of a concrete mixture over the entire curing time

period. This model is described in detail in Section 3.2. Second, we integrate this

strength model into an optimization procedure via a nonlinear constraint, where the

predicted strength must exceed a specified design target. This ensures that optimal

mixtures meet structural requirements. We optimize the concrete on two dimensions:

cost and climate impact (specifically, greenhouse gas (GHG) emissions). We also an-

alyze the trade-offs between these two objectives using a weighted sum method to

obtain the Pareto front. The optimization procedure is described in detail in Section

3.5.
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Figure 3-1: Visualization of 28-day compressive strength as a function of each of the
13 measurements.

3.1 Industrial concrete data

The concrete mixture dataset used in this study is provided by an industrial con-

crete producer. Information is available for 10,796 unique mixes, each with a varying

number of strength measurements at different ages (range 1-26, average 4.1 measure-

ments per mix) for a total of 44,490 measurements. As in Section 2.1, each mixture

is represented by a 13-dimensional vector, with the first element being the water-

to-cementitious material ratio, and the remaining 12 elements being the content of

constituents for one cubic yard of concrete. Figure 3-1 displays 28-day compressive

strength as a function of each of the 13 measurements.

We use 80% of the data for training the model and the remaining 20% for evalua-

tion. To avoid leakage between the train and test sets, we partition the data based on

mixture ID, such that a given mixture with multiple strength observations appears

only in the training set or testing set (or vice versa), but not both. All values are

z-scored prior to training, by subtracting the mean and dividing by the standard
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deviation.

3.2 Gaussian process regression model for prediction

of strength trajectories

By definition, a Gaussian process (GP) is a collection of random variables, any finite

number of which are jointly Gaussian distributed Rasmussen & Williams [21]. GPs

are suited for time series predictions, as motivated by Roberts et al. [22], in particular

because the use of Bayesian inference enables direct uncertainty quantification.

GPs are distributions over functions, and they are specified by a mean function and

covariance function. The mean function is our expectation prior to any observations,

and is thus informed by domain knowledge of the expected trend. The covariance

function specifies the relation between any pair of outputs (i.e., the function magni-

tude and time scale). Thus, a GP is governed by the hyperparameters, 𝜃, of these

functions. There are two typical approaches for estimating these hyperparameters.

In the first, the parameters are optimized individually for each sample by maximizing

the log likelihood of the data. In the second, one set of optimal parameters is chosen

for the entire population.

In the context of a concrete mixture and its compressive strength measurements,

we have a set of static covariates (i.e., the mixture ingredients). Thus, the novel GP

model described in Severson et al. [20] uses a multi-layer perceptron (MLP) to esti-

mate the hyperparameters of the mean and covariance functions based on the static

mixture ingredients (𝜃 = 𝑀𝐿𝑃 (z)). This is advantageous because our observations

per sample, where a sample is the strength trajectory of a particular mixture, are

limited in number and thus restrict our ability to infer accurate hyperparameters via

the individual approach.

Using domain knowledge on the progression of strength, we specify a linear mean

function in logarithmic time (i.e., t = log10(𝑡𝑖𝑚𝑒)) as in Eq. 3.1. Although there exist

readily available empirical equations describing strength in the literature, in practice
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we found that these resulted in poorer performance than the linear mean function.

We use squared exponential covariance function as in Eq. 3.2, which is a standard

choice.

𝑚(t𝑖;𝜃𝑖) = 𝜃𝑖1t𝑖 + 𝜃𝑖2 (3.1)

𝑘(t𝑖, t
′
𝑖;𝜃𝑖) = 𝜃𝑖3 exp

(︂
−‖t𝑖 − t′𝑖‖2

2(𝜃𝑖4)2

)︂
(3.2)

3.3 Estimating the climate impact of concrete

We estimate the climate impact of a given concrete mixture on a cradle-to-gate basis,

considering the GHG emissions that are associated with the concrete’s raw materials

extraction, transportation, and production phases (Eq. 3.3). The climate impact

factors for the raw materials extraction (𝑔𝑚,𝑖) and transportation (𝑔𝑡,𝑖) of each concrete

constituent 𝑖 are shown in Table 3.1. These factors are measured in units of CO2

equivalents (CO2-eq) per mass of constituent, where the global warming potential

(GWP) index is used in order to express the total warming effect of all GHGs in terms

of CO2. For example, 1 kg of methane has about 30 times the warming potential of

1 kg of CO2 over a fixed time period (e.g., 100 years), thus the GWP of methane is

about 30. The climate impact associated with the production of 1 CY of concrete

is 5.49 kg CO2-eq. Since each 𝑧𝑖 represents the mass of the constituent 𝑖 in 1 CY of

concrete, the function in Eq. 3.3 results in the climate impact of a mixture in units

of kg CO2-eq/CY of concrete.

We consider two main data sources for the environmental impact analysis: the

ecoinvent inventory database for raw materials [23] and the life cycle assessment

(LCA) report commissioned by the National Ready Mixed Concrete Association

(NRMCA) [24] for transportation and production. Environmental product decla-

rations for chemical admixtures provide materials climate impacts estimates in [25–

27].
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Table 3.1: Climate impact factors associated with raw materials production (𝑔𝑚,𝑖)
and transportation (𝑔𝑡,𝑖) of each constituent 𝑖 on a mass basis. The climate impact
associated with the production of 1 CY of concrete (𝑔𝑝) is 5.49 kg CO2-eq.
𝑖 Mixture constituent Raw materials (𝑔𝑚,𝑖) Transportation (𝑔𝑡,𝑖)

(Non-admixtures) kg CO2-eq/lb kg CO2-eq/lb transported
1 Coarse aggregate 0.00228 0.0033
2 Fine aggregate 0.00228 0.00327
3 Water 0.00096 0
4 Cement 0.473 0.0133
5 Fly ash 0 0.00856
6 Slag 0.0667 0.00881
7 Silica fume 0 0

(Admixtures) kg CO2-eq/oz kg CO2-eq/oz transported
8 High-range water reducing 0.05341 0
9 Water reducing 0.05341 0
10 Accelerating 0.038 0
11 Air-entraining 0.01497 0
12 Viscocity modifier 0.063 0

𝑓𝑔(z) = gm
⊺z+ gt

⊺z+ 𝑔𝑝 (3.3)

3.4 Estimating the cost of concrete

We estimate the cost of a concrete mixture per CY (Eq. 3.4) by considering the

materials costs and transportation as in Table 3.2. We do not estimate production

costs. We note that our cost estimates do not account for forming, reinforcements, or

labor involved with the production of one CY of concrete and are thus underestimates

of the true cost. Except for SCMs, material cost values are based upon Young et al. [4].

Transportation cost estimates use national average transport distances and quantities

reported in [24], and assume costs per ton-mile for truck, rail, ocean, and barge to be

$0.15, $0.05, $0.04,and $0.03 respectively.

It is important to consider how optimal mixtures may change as SCMs become

more expensive, for example, as coal plants are retired and fly ash becomes more

scarce. Thus, we have developed three cost scenarios in addition to our baseline data,
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Figure 3-2: Cost scenarios for per-mass prices of cement, slag, and fly ash.

as in Figure 3-2. In the Baseline Scenario, we assume that the cost of slag is equal to

the cost of cement ($0.05/lb), and that the cost of fly ash is 50% of that ($0.025/lb).

In Scenario 1, we increase slag costs; we set slag costs to be 150% of its Baseline value,

totaling $0.075/lb. In Scenario 2, we increase fly ash costs; we set fly ash costs to be

200% of its Baseline value, now equivalent with both cement and slag, or $0.05/lb.

In Scenario 3, we simultaneously increase the cost of slag and the cost of fly ash as

in the previous two scenarios.

𝑓𝑐(z) = cm
⊺z+ ct

⊺z (3.4)

3.5 Optimization for concrete mixture design

In Figure 3-3, we show the histograms for estimated costs and climate impacts for

all mixtures in the industrial dataset. We note that the distribution of costs is wide,

ranging from $50 to $100, and that some of the spread can be accounted for by the

achieved strength (Fig. 3-4, left panel). However, there is still a clear opportunity for

improved design for cost. Similarly, in Figure 3-4 (right), we observe that there exists

a high mode at 390 kg/CO2-eq for mixtures which achieve compressive strengths of

10,000 to 11,000 psi; however, there exist a number of mixtures with lower climate

impacts that still achieve comparable strengths. Therefore, in this section we design
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Table 3.2: Cost factors for materials (𝑐𝑚,𝑖) and transportation (𝑐𝑡,𝑖) for each con-
stituent 𝑖 on a mass basis.
𝑖 Mixture constituent Raw Materials (𝑐𝑚,𝑖) Transportation (𝑐𝑡,𝑖)

(Non-admixtures) $/lb $/lb
1 Coarse aggregate 0.0045 0.002388
2 Fine aggregate 0.0027 0.002302
3 Water 0 0
4 Cement 0.05 0.012379
5 Fly ash 0.025 0.00598
6 Slag 0.05 0.010896
7 Silica fume 0.18 0

(Admixtures) $/oz $/oz
8 High-range water reducing 0.083 0
9 Water reducing 0.083 0
10 Accelerating 0.083 0
11 Air-entraining 0.083 0
12 Other 0.083 0

optimization procedures to 1) minimize cost, 2) minimize climate impact, and 3)

understand the trade-offs associated with each objective.

3.5.1 Single objective minimization

In order to ensure that optimal mixtures obey the physical requirements of a concrete

system, we first define bounds and constraints necessary in Sections 3.5.1.1 and 3.5.1.2

respectively. We then pose the full optimization procedures for the single objective

minimization of climate impact and cost in Section 3.5.1.3.

3.5.1.1 Bounds

Bounds for each of the constituent quantities are displayed in Table 3.3 based on the

ranges of values of constituents in the industrial dataset.

3.5.1.2 Constraints

Strength With the GP model established in Section 3.2, we can now obtain pre-

dictions of strength as a function the mixture vector z and age 𝑡 as expressed Eq.

3.6. Note that Eq. 3.6 is equivalent to the mean function of the GP (Eq. 3.1). Thus,
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Figure 3-3: Estimated cost (left) and climate impact (right) values for mixtures in
industrial dataset. The red line represents the mean.

Figure 3-4: Estimated cost (left) and climate impact (right) values for mixtures in
industrial dataset, for two distinct strength classes: 7,000 to 8,000 psi and 10,000 to
11,000 psi.
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Table 3.3: Densities and bounds for each constituent.
𝑖 Mixture constituent Density(𝜌𝑖) Lower Bound Upper Bound

(Non-admixtures) lb/CY lb lb
1 Coarse aggregate 4214 700 4000
2 Fine aggregate 4467 700 4000
3 Water 1686 30 1000
4 Cement 5310 100 3000
5 Fly ash 4214 0 500
6 Slag 3371 0 500
7 Silica fume 3708 0 100

(Admixtures) oz/CY oz oz
8 High-range water reducing 29666 0 200
9 Water reducing 32363 0 200
10 Accelerating 37756 0 600
11 Air-entraining 26969 0 100
12 Other 36408 0 1000

the constraint as written in Eq. 3.7 can be interpreted as the following: the mean

predicted strength of mixture z at time 𝑡 should meet or exceed a minimum specified

target, 𝑠𝑚𝑖𝑛. In this work, we evaluate six target strengths, the first starting at 6,000

psi, and incremented by 1,000 through 11,000 psi. Additionally, we use 𝑡=28 in our

work and recommend future investigations to explore multiple constraints of strength

over time.

𝜃 = 𝑀𝐿𝑃 (z) (3.5)

𝑓𝑠(z, 𝑡) = 𝜃1𝑡+ 𝜃2 (3.6)

𝑠𝑚𝑖𝑛 ≤ 𝑓𝑠(z, 𝑡) (3.7)

Total Volume Constraint Optimal mixture proportions should produce one cubic

yard of concrete. Using standard densities, 𝜌, for constituents as given in Table

3.3, we estimate the total volume of a mixture in Eq. 3.8. We assume concrete

mixtures which contain a nonzero amount of air-entraining admixture contain 6% air

by volume; this estimate is based on a widespread trend present in the industrial

data. Subsequently, when Eq. 3.8 is applied to the industrial dataset we obtain
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Figure 3-5: Histogram of calculated volumes of mixtures in industrial dataset using
constituent densities in Table 3.3 and Eq. 3.8. Units are in cubic yards (CY).

calculated volumes V as shown Figure 3-5. We observe that there is a clear mode at

1 CY, and a majority (51%) of mixtures fall in the range from 0.99 CY to 1.01 CY,

suggesting that our volume estimation method is reasonable. Therefore, we formulate

the volume constraint as an inequality in the optimization as shown in Eq. 3.9. This

form of the constraint is more attainable, as it can be thought of as a relaxed version

of an equality constraint.

Aggregate Volume Ratio Constraint Additionally, the range of acceptable vol-

ume fraction of aggregates is known in concrete design, and is 0.65 to 0.75. We

calculate the volume fraction of aggregates in Eq. 3.10 and its associated constraint

is shown in Eq. 3.11.

𝑉 =
𝑧1
𝜌1

+
𝑧2
𝜌2

+
𝑧3
𝜌3

+
𝑧4
𝜌4

+
𝑧5
𝜌5

+
𝑧6
𝜌6

+
𝑧7
𝜌7

+
𝑧8
𝜌8

+
𝑧9
𝜌9

+
𝑧10
𝜌10

+
𝑧11
𝜌11

+
𝑧12
𝜌12

(3.8)

0.99 ≤ 𝑉 ≤ 1.01 (3.9)
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Table 3.4: Ratio constraints used in the optimization procedure.
Parameter Expression Lower Upper

Total supplementary cementitious
material ratio (𝑅𝑆𝐶𝑀)

𝑧5 + 𝑧6 + 𝑧7
𝑧4 + 𝑧5 + 𝑧6 + 𝑧7

0 0.6

Fly ash ratio (𝑅𝐹𝐴)
𝑧5

𝑧4 + 𝑧5 + 𝑧6 + 𝑧7
0 0.4

Slag ratio (𝑅𝑆𝐿)
𝑧6

𝑧4 + 𝑧5 + 𝑧6 + 𝑧7
0 0.6

Silica fume ratio (𝑅𝑆𝐹 )
𝑧7

𝑧4 + 𝑧5 + 𝑧6 + 𝑧7
0 0.1

w/cm (𝑅𝑊𝐶𝑀)
𝑧3

𝑧4 + 𝑧5 + 𝑧6 + 𝑧7
0.2 0.6

𝑉𝑎𝑔𝑔 =
𝑧1/𝜌1 + 𝑧2/𝜌2

𝑉
(3.10)

0.65 ≤ 𝑉𝑎𝑔𝑔 ≤ 0.75 (3.11)

Ratio Constraints There are a number of constraints informed by materials sci-

ence knowledge that must be imposed in order to ensure the optimal concrete mix-

tures are physically sound. The water to total cementitious material ratio should

be between 0.2 and 0.6 to ensure workability. The total supplementary cementitious

material should represent not more than 60% of the total cementitious material of a

concrete mixture. Similarly, individual ratios of fly ash, slag, and silica fume to total

cementitious material ratio should be limited because addition of SCMs reduce the

amount of cement, which is more reactive than SCMs, that is available for hydration.

There are subtle differences in terms of the limit of their ratios described as follows:

(i) Fly ash and silica fume are, by themselves, unreactive. Both react with Ca(OH)2,

which is a product of OPC hydration, in order to provide the strength-giving phase

(C-S-H gel). When there is insufficient cement to hydrate to provide Ca(OH)2, the

additional fly ash and silica fume act as inert fillers. (ii) Slag is slightly reactive with-

out the presence of Ca(OH)2; hence, relatively higher proportions are acceptable. (iii)

Silica fume has a much higher surface area than the other SCMs, and requires larger

amounts of water in order to maintain workability. Table 3.4 lists expressions and
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bounds for these constraints.

3.5.1.3 Objective functions

There are two objectives of interest when designing a concrete mixture: 1) minimizing

the climate impact and 2) minimizing cost.

Algorithm The optimization procedures in this work use the differential evolution

(DE) algorithm, a heuristic optimization algorithm developed by Storn & Price [28].

Heuristic methods are typically stochastic direct search methods which involve gen-

eration of variations of a candidate solution vector. These methods are able to search

large spaces with reasonable computation cost. DE is a highly versatile evolutionary

algorithm for solving multidimensional, continuous, minimization problems. Unlike

genetic algorithms, DE is specifically designed for real-valued functions. We use the

DE implementation available in the SciPy Python package [29]. The algorithm is

run 50 times for each weight and target strength pair using the Sobol population

initialization method.

Minimize Climate Impact

min 𝑓𝑔(z)

subject to 𝑠𝑚𝑖𝑛 ≤ 𝑓𝑠(z, 28)

0.99 ≤ 𝑉 ≤ 1.01

0 ≤ 𝑅𝑆𝐶𝑀 ≤ 0.6

0 ≤ 𝑅𝐹𝐴 ≤ 0.4

0 ≤ 𝑅𝑆𝐿 ≤ 0.6

0 ≤ 𝑅𝑆𝐹 ≤ 0.1

0.2 ≤ 𝑅𝑊𝐶𝑀 ≤ 0.6

0.65 ≤ 𝑉𝑎𝑔𝑔 ≤ 0.75

(3.12)
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Minimize Cost
min 𝑓𝑐(z)

subject to 𝑠𝑚𝑖𝑛 ≤ 𝑓𝑠(z, 28)

0.99 ≤ 𝑉 ≤ 1.01

0 ≤ 𝑅𝑆𝐶𝑀 ≤ 0.6

0 ≤ 𝑅𝐹𝐴 ≤ 0.4

0 ≤ 𝑅𝑆𝐿 ≤ 0.6

0 ≤ 𝑅𝑆𝐹 ≤ 0.1

0.2 ≤ 𝑅𝑊𝐶𝑀 ≤ 0.6

0.65 ≤ 𝑉𝑎𝑔𝑔 ≤ 0.75

(3.13)

3.5.2 Bi-objective minimization

3.5.2.1 Objective normalization

Following the methods in Marler & Arora [30], we normalize each of the single objec-

tive functions in Eq. 3.14 and 3.15, where z*𝑐 is the formula which which minimizes

𝑓𝑐 and z*𝑔 is the formula which minimizes 𝑓𝑔.

𝑓𝑛𝑜𝑟𝑚
𝑐 (z) =

𝑓𝑐(z)

𝑓𝑐(z*𝑐)
(3.14)

𝑓𝑛𝑜𝑟𝑚
𝑔 (z) =

𝑓𝑔(z)

𝑓𝑔(z*𝑔)
(3.15)

3.5.2.2 Weighted sum method

There are several classical methods for multi-objective problem, including 𝜖-constraint,

goal attainment, and weighted sum. The weighted sum method, among the simplest

and most popular to implement, involves converting the multi-objective problem into

a weighted sum of all single objectives. We adopt this method in our work, and define

39



a new function 𝐹 in Eq. 3.16 representing the bi-objective problem. In this form, we

select various values of 𝑤 in the range [0, 1] in order to vary the prioritization of one

objective function over another. As a result, we will be able to understand trade-offs

between the two objectives.

𝐹 = 𝑤 · 𝑓𝑛𝑜𝑟𝑚
𝑔 (z) + (1− 𝑤) · 𝑓𝑛𝑜𝑟𝑚

𝑐 (z) (3.16)

3.6 Results & Discussion

In Fig. 3-6 we plot the optimal costs (left) and climate impacts (right) for the specified

target strengths along the x-axis. There is convergence to a common minimum, as

shown by the violin shape displaying the distribution of points achieved over all

algorithm runs. It is noteworthy that cost is more sensitive to increasing required

strength than the climate impact. Specifically, there is a percent change in the median

costs over the increasing target strengths of 28%, while only a 3.7% change in median

climate impacts.

Unsurprisingly, in Figure 3-7 we observe that the optimal cost increases with the

scenarios in which SCMs are made more expensive. A large jump from the obtained

Baseline optimal costs occurs in Scenario 2, when fly ash costs are set at 200% of the

Baseline value, becoming equal with both cement and slag. This suggests that fly ash

is relied upon more heavily than the other SCMs.

It is interesting to analyze how optimal mixtures differ from existing mixtures in

the industrial dataset based upon the constituents. In Figure 3-8, we plot the overall

constituent distributions using the kernel density estimation for minimum climate

impact mixtures, minimum cost mixtures, and the industrial dataset. Note that

there exist multiple peaks for some constituents; these peaks typically align with the

various required strength targets. For example, observe the bi-modal nature of the

amount of high-range water reducing (HRWR) admixture for the minimum climate

mixtures (green curve). We can break down this curve by the various levels of target
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compressive strengths as in Figure 3-9. In fact, we observe that concrete mixtures

which must meet a strength requirement of > 8,000 psi contain increasing amounts of

the HRWR admixture (all contributing to the wide spread of the right peak in Figure

3-8), while concrete mixtures which only satisfy lower strength requirements contain

negligible amounts of the admixture (contributing to the left peak). The amounts of

all other admixtures are negligible. In the minimization of climate impact, nearly all

mixtures contain approximately 200 lb of cement. Additionally, the mixtures contain

all three SCMs, though the predominant SCM is fly ash.

Within Figure 3-9, there is generally little variation in the constituent quantities

based on target strength, with the exception of coarse aggregate, fine aggregate,

water, and HRWR admixture. This suggests that there is a relatively small set of

mixtures which can achieve minimum climate impact. However, in contrast, there

are several constituents within the minimal cost mixtures that vary greatly based on

target strength (Figure 3-10). For example, the coarse aggregate content is seen to

oscillate with target strength, from roughly 1550 lb up to 1800 lb and then back down.

There also appears to be a shift in the type of SCM used depending on the target

strength; low-level target strengths use both slag and fly ash, mid-level strengths

almost exclusively use fly ash, and the highest target strength uses fly ash and silica

fume.

In Figure 3-11 we plot the industrial data with the optimal cost (left) and climate

impacts (right). We note that the plotted industrial data is a filtered version of the

original dataset; it is the subset which obeys the optimization constraints and bounds

within +/- 10%. As a result, there are a few points which lie below the optimal line.

These extreme points in particular violate the volume fraction of aggregate ratio. In

general, the lower end of the industrial data points are reasonably close to the optimal

costs, with many being within $10/CY. The vast majority of industrial mixtures

have costs upwards of $75, suggesting large room for improvement. However, it is

important to note that the industrial data mixtures were likely subject to additional

constraints, such as workability and durability requirements.

As discussed previously, climate impact is less sensitive to increasing target strength
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than cost. Now plotted in context with the industrial data, the nearly flat slope or

‘floor’ of the optimal climate impact line becomes more apparent. The gap between

optimal climate impact line and the industrial data is larger than the gap for cost.

Additionally, there is a cluster of low climate impact industrial data points, nearly

parallel to the optimal line, which incorporate greater levels of SCMs. This provides

us with confidence that it is indeed possible to achieve the floor of climate impact for

a variety of strength requirements.

Lastly, the results of the bi-objective optimization using the weighted sum method

are shown in Figure 3-12. In this plot, each color in the series corresponds to a

particular target strength. The points in each series are shaded according to the

weight 𝑤, with 𝑤 = 1 (dark shaded points) effectively minimizing only cost, and

𝑤 = 0 (light shaded points) effectively minimizing only climate impact. Points with

values of 𝑤 within the interval create the Pareto front of the trade-offs between the

two objectives.

We observe that for the low-level target strengths (e.g., 6000, 7000, and 8000 psi),

the Pareto fronts are nearly vertical, with a slight negative slope. This shape indicates

that there is a wide variety in cost of mixtures, however each achieves nearly the same

climate impact, with cheaper mixtures being just slightly more carbon intense. For

the mid-level to high-level target strengths, we observe that there exists a trade-off

between the cheapest and most climate-friendly mixtures. However, for the 9,000 and

10,000 psi strength targets, a less expensive mixture is always available at a nearly

constant climate impact. In these cases, the cheapest mixture is only marginally less

expensive than the alternatives, but it is significantly more carbon-intense.

3.6.1 Potential GHG abatement

Based on our industrial dataset, the average climate impact of a concrete mixture is

302 kg CO2-eq. The U.S. alone uses nearly 260 million cubic yards of concrete each

year. These two values combine to result in a total annual estimated impact of the

U.S. concrete industry of 78.5 million metric tons of CO2-eq. If all mixtures instead

were optimized (achieved an embodied impact of 130 kg CO2-eq.), this would amount
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Figure 3-6: Optimal cost and climate impact achieved for specified target strengths.

to an annual savings of 44.7 million metric tons of CO2-eq.
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Figure 3-7: Optimal cost achieved for specified target strengths, colored by cost
pricing scenario.
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Figure 3-8: Overall constituent distribution comparison between the optimal climate
impact mixtures, optimal cost mixtures, and industrial data. Lines represent kernel
density estimations along a shared x-axis.

Figure 3-9: Minimum climate impact mixture constituent distribution comparison
between various target strengths. Lines represent kernel density estimations along a
shared x-axis.
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Figure 3-10: Minimum cost mixture constituent distribution comparison between
various target strengths. Lines represent kernel density estimations along a shared
x-axis.

Figure 3-11: Comparison of optimal cost and climate impact and industrial data.
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Figure 3-12: Pareto fronts for the bi-objective minimization of climate impact and
cost.
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Chapter 4

Opportunities for policy

Concrete is an indispensible staple of our world, and it will remain as such for the

foreseeable future. As a result, it will be important to achieve low-carbon produc-

tion of cement. The combustion of fossil fuels generates the heat necessary for the

calcination of limestone and clay, and accounts for approximately 35% of the cement

production’s footprint. It is possible to use alternative fuels, such as biomass or

waste, however, the replacement is limited due to the lower calorific value of these

materials [31]. Hydrogen is another fuel source which may provide the heat, however,

investigations are still at an early stage. Thus, incentives for further research will be

necessary to drive work in this key area.

Further, nearly 75% of energy used in the production of cement is thermal; the

remaining 25% is electricity [32]. Cement clinker production experiences high levels of

heat loss via the kiln exhaust and cooling procedures, and approximately 40% of pro-

cess heat and 26% of input heat is lost overall [32]. This makes cement plants suitable

candidates for waste heat recovery (WHR) systems, which often involve retrofitting a

steam turbine to capture the exhaust. Such systems can improve the energy efficiency

of a cement plant, enabling it to generate from 4 to 6 MW of electric power. While

most large cement producers currently utilize WHR systems in their facilities, with

the majority existing in China, there are still a number of locations where it is not

yet economical to retrofit the plant. Industrial electricity tariffs and sustainability

initiatives can drive increased consideration of such systems [33].
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Alternatively, the electrification of cement production is another potential path-

way which is being explored. The replacement of fossil fuel-based energy when pos-

sible, such as in griding processes or those that have low heat requirements, with

electricity can result in some emissions savings as long as the electricity grid has a

reasonable proportion of clean resources in the mix. In addition, the electrochemical

synthesis of cement has been demonstrated [2] as an alternative method for producing

cement. This process generates a higher concentration of CO2 in the resulting flue gas

(67%, as opposed to 25% in the conventional method), lending itself to be coupled

with CO2 capture [34]. The success of such processes will nonetheless be dependent

on the policy support for carbon capture and sequestration and utilization. In the

United States, the federal tax credit 45Q currently offers $35 per ton of CO2 captured

for beneficial use.

Lastly, public buildings make up a large portion of our global infrastructure, giv-

ing government agencies both leverage and responsibility on the front of sustainable

development. In the U.S, an increasing number of states are requiring environmen-

tal product declarations, which report the embodied carbon impacts of materials, in

their procurement processes. Legislation which continues to require transparency in

the building construction industry will enable the transition to cleaner infrastructure.
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Chapter 5

Conclusions

Efforts to reduce the carbon intensity of the concrete industry will be essential for

climate change mitigation and adaptation. Machine learning can serve as an effective

screening tool for concrete designers to evaluate candidate mixtures, before investing

in the labor and equipment to carry out the time-intensive experiments and reduc-

ing the trial-and-error process. In concrete design, there are necessarily structural

requirements, however, additional parameters, such as the cost and climate impact of

the mixture, should be considered, and their trade-offs analyzed.

In this work, we have achieved successful prediction of compressive strength of

concrete from the mixture attributes using various machine learning models. No-

tably, we find that there is alignment between the important features of our random

forest model and the existing materials science knowledge surrounding concrete mix-

ture proportioning. Additionally, we determine that prediction accuracies on small

datasets can be improved by using a hierarchical model structure which learns both

dataset-specific transformations and shares population information across datasets.

In our optimization procedure, we find that it is possible to achieve low climate

impacts of approximately 130 kg CO2-eq, down from an industrial baseline 300 kg

CO2-eq, at a wide variety of costs by incorporating higher amounts of supplementary

cementitious materials. We also find that cost is more sensitive than climate impact

to increased levels of required compressive strength strength, and that moderately less

expensive mixtures can be produced at extremely low climate impacts. This suggests
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that there is a great opportunity for greenhouse gas emissions abatement at little to

no additional cost, on the scale of 44.7 million metric tons of CO2-eq per year in the

U.S. alone.
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Appendix A

Appendix

Figure A-1: Scatter plot of 28-day strength testing predictions vs. actual values for
(a) multi-trunk MLP, (b) pooled MLP, (c) pooled random RF.
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