
Regulating Orthogonality of Feature Functions for
Highly Compressed Deep Neural Networks

by

Wei-Chen Wang

B.S., B.A., University of Illinois at Urbana-Champaign (2020)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 13, 2022

Certified by. .
Lizhong Zheng

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Regulating Orthogonality of Feature Functions for Highly

Compressed Deep Neural Networks

by

Wei-Chen Wang

Submitted to the Department of Electrical Engineering and Computer Science
on May 13, 2022, in partial fulfillment of the

requirements for the degree of
Masters of Science

Abstract

When designing deep neural networks (DNN), the number of nodes in hidden layers
can have a profound impact on the performance of the model. The information car-
ried by the nodes in each layer creates a subspace, whose dimensionality is determined
by the number of nodes and their linear dependency. This paper focuses on highly-
compressed DNN – network with significantly less nodes in the last hidden layer than
in the output layer. Each node in the last hidden layer is considered a feature func-
tion, and we study how the orthogonality of feature functions changes throughout
the training process. We first develop how information is learned, stored and up-
dated in the DNN throughout training, and propose an algorithm which regulates
the orthogonality before and during training. Our experiment on high-dimensional
mixture Gaussian dataset reveals that the algorithm achieves higher orthogonality in
feature functions, and accelerates network convergence. Orthogonalizing feature func-
tions enable us to approximate Newton’s method via the gradient descent algorithm.
We can take advantage of the superior convergence properties of the second-order
optimization, without directly computing the Hessian matrix.

Thesis Supervisor: Lizhong Zheng
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

In the past two years, I have grown to become a better student, researcher, person,
and none of which would have been possible without the support, guidance and love
I received from everyone around me.

First and foremost, I would like to express my sincere gratitude to my thesis advi-
sor, Prof. Lizhong Zheng, for his unique advising style. When I first joined the group,
I had little knowledge in information theory, and my lack of mathematical maturity
was detrimental to the research progress. In the first few months, Lizhong patiently
explained fundamental concepts in detail, and emphasized on the connections between
topics. As I started taking graduate classes in information theory, these connections
became powerful tools for me to have a deeper understanding of the course materials.
Outside of research, he cares deeply about the future success of his students. His
unique perspective motivates me to reflect on the purpose and meaning of my grad-
uate career. Looking back, he is one of the few people who encourages me to take
risks, and I am grateful for the opportunity to explore alternative career paths.

Next, I would like to acknowledge my labmates Erixhen Sula and Xiangxiang Xu
for their contributions to my thesis. Several ideas in this paper were inspired by our
discussions, and your advice helped me solve many challenging problems. I would
also like to thank my other labmates, Mohamed Ibrahim AlHajri, Melihcan Hasan
Sabri Erol and Jiejun Jin. You have not only been my closest friends at MIT, but
also my mentors who gave me advice and guided me on the right path. In addition,
I want to thank Melihcan for being my pset partner. I am always amazed by your
ability to quickly and elegantly solve every challenging problem that I have no idea
how to start after staring at it for hours.

Being a student at MIT, I am privileged to be taught by the world renowned facul-
ties, including Prof. Gregory Wornell, Prof. Polina Golland, Prof. David Gamarnik,
Prof. Patrick Jaillet, and Prof. Michael Sipser. You have been great sources of knowl-
edge, and I thank you for your amazing classes. I am also grateful for Prof. Nidhi
Seethapathi for the opportunity to collaborate with her on the inverse reinforcement
learning project. I am excited to apply my knowledge in information theory and
computer science to solve real world problems in biomechanics.

During my time at the University of Illinois at Urbana-Champaign, a number of
professors have inspired me to pursue my studies in computer science, including Prof.
Neal Davis and Prof. Hope Michelson. I also want to thank many people who have
left a profound impact during my four years of undergraduate.

Lastly, I want to thank my parents for their love and encouragement, and I dedi-
cate this thesis to them. To my girlfriend, Ainsley, thank you for your infinite support,
and I am grateful to have you as someone I can always rely on. The past two year
has been challenging, and I could not have made it through without you.

5

6

Contents

1 Introduction 11

1.1 Neural Network . 11

1.2 Feature Functions . 12

1.3 Outline . 13

2 Related Work 15

3 Expressive Power of Neural Networks 17

3.1 Maximal Correlation . 17

3.2 Feature Projection . 19

3.3 Orthogonality of Feature Functions 20

4 Experiment 23

4.1 Neural Network Model . 23

4.2 Motivation . 24

4.3 Data Generation and Neural Network Design 24

5 Increasing Orthogonality of Feature Functions 29

5.1 Orthogonality during Training . 29

5.2 Orthogonality Regulator & Pre-Orthogonalization 31

5.3 Two-Phase Training . 33

6 Discussion 37

6.1 Effects on Orthogonalizing Feature Functions 37

7

6.2 Future Work . 38

A Gradient of the deep neural network 39

8

List of Figures

1 Deep Neural Network . 12

2 Input Dimension vs. Measurement with Varying 𝑘 21

3 Sample 3D Mixture Gaussian Distribution 25

4 Number of Feature Functions vs. Accuracy and Orthogonality 27

5 Epochs vs. Accuracy & Orthogonality 30

6 Epochs vs. Accuracy Different & Orthogonality with Varying Regula-

tor Weights . 32

7 Epochs vs. Accuracy Different & Orthogonality with Varying Itera-

tions of Orthogonalization . 33

8 Epochs vs. Accuracy Difference with Varying Parameters of Regulating

Weights and Iterations of Pre-Orthogonalization 34

9 Epochs vs. Orthogonality with Varying Regulator Weights after 10

(Top) / 1000 (Bottom) Iterations of Pre-Orthogonalization 35

9

10

Chapter 1

Introduction

1.1 Neural Network

Artificial neural networks, or simply neural networks (NN) in this context, are ma-

chine learning algorithms which model how human brains operate. Inspired by neuro-

logical systems, NN consists of neurons and edges, resembling how signals are trans-

mitted through the nervous system. A NN has one input layer and one output layer,

and can have hidden layers in between. Activation functions are added after layers

to enable a non-linear transformation. NN with hidden layers are considered deep

neural networks (DNN), and excels at handling tasks with high-dimensional input [1],

such as computer vision [2], speech recognition [3, 4] and natural language processing

[5].

A typical NN training process alternates between two phases. In forward propa-

gation, training data are passed from the input layer, and go through each layer from

left to right. The results at the output layer are compared to the true label with a

specified loss function. During backward propagation, the gradient of the loss with

respect to each weight is computed. To minimize the loss, the weights are adjusted

accordingly layer by layer in reverse direction.

11

1.2 Feature Functions

In this paper, we focus on DNN with softmax being the last activation function,

as illustrated in Figure 1. We shift our focus to the last hidden layer. Let 𝑥 and

𝑦 denote the input and output, respectively, and 𝑘 denote the number of nodes in

the last hidden layer. The nodes in the last layer are feature functions of the input,

namely 𝑓1(𝑥), . . . , 𝑓𝑘(𝑥), which span a linear subspace and provide information for

inference.

The number of feature functions in the last hidden layer plays an important role in

the accuracy and the complexity of the model. If 𝑘 is greater than min{|𝑥|, |𝑦|}, the

linear subspace spanned by the feature functions are more capable of explaining the

dataset. In such cases, the model tends to have high testing accuracy, yet the 𝑘 nodes

usually carry redundant information, and can potentially lead to overfitting if 𝑘 is

too large. On the other hand, when 𝑘 is less than min{|𝑥|, |𝑦|}, the last hidden layer

has limited expressive power as it can only span a low-dimensional subspace. Since

it cannot fully represent the complexity of the dataset, testing accuracy tends to be

low. However, under the constraint that the last hidden layer is highly compressed,

the 𝑘 feature functions are encouraged to extract the most relevant information from

the dataset. This enables the features to be more unique and thus orthogonal, which

has many desirable properties in practice.

Figure 1: Deep neural network for multi-class classification problem

12

1.3 Outline

First, a theoretical analysis on the convergence of NN is presented, with its accuracy

and orthogonality of features with varying number of nodes compared. Next, using

a high-dimensional mixture Gaussian dataset, we design a NN under the constraint

of a low number of features in the last hidden layer. We propose an algorithm which

adds a regulator to the loss function to incentivize the feature functions to be more

orthogonal. Its performance is compared to the regular training method, and we

consider an extension, in which the feature functions are orthogonalized prior to

training. Finally, we show that the proposed algorithm is an approximation to the

second-order optimization. Our implementation is available on GitHub1.

1https://github.com/ericwang1997/Feature-Orthogonalization

13

https://github.com/ericwang1997/Feature-Orthogonalization

14

Chapter 2

Related Work

In the past few decades, NN has shown promising results in solving complicated prob-

lems. For almost all datasets, we can design a similar NN structure and achieve high

accuracy with limited parameter tuning [6]. A theoretical analysis on the convergence

of NN shows that low-dimensional features extract the most relevant information

from a high-dimensional data [7]. These inferences are universal in the sense that the

properties of the feature functions are locally equivalent, and reveal the relationship

between singular value decomposition, maximal correlation, canonical correlation and

principle component analysis in neural networks [8].

Despite their best efforts, researchers have yet discovered a systematic way to

determine the hyper-parameters of neural networks. Trial-and-error remains the most

common approach, in which every combination of hyper-parameters is experimented

and evaluated [6, 9]. Several approaches have been proposed, including searching

for an optimal learning rate, batch size, momentum and weight decay without going

through all combinations [10]. Other parameters, such as the number of nodes in a

layer, still rely on rule-of-thumb [11], such as the number of neurons in hidden layers

being 70-90% of the input size, and between input and output sizes [12, 13]. Other

methods include starting from a low number of neurons in the hidden layers, and

subsequently adding more if the model underfits (or starting from a high number of

neurons and removing some of them if the model overfits) [14].

Most neural network libraries today rely on first-order optimization for back

15

propagation, with gradient descent being the most common method [15]. For low-

dimensional non-convex data, first-order optimization is susceptible to obtaining lo-

cal minima. However, this phenomenon does not translate to high-dimensional data,

whose critical points with error terms much larger than that of the global minima

are exponentially more likely to be saddle points instead of local minima [16, 17].

Despite its popularity and simplicity, first-order optimization still suffers from slow

convergence and stagnation near flat regions or saddle points [18].

We list several methods which have been proposed to improve gradient descent.

First, stochastic gradient descent aims to reduce computational cost by randomly

choosing one data point (or more commonly one mini-batch, which is a small subset

of the entire dataset) to approximate the gradient in each iteration [19]. Second,

batch normalization increases the speed and stability of NN training by normalizing

each mini-batch [20]. The reason why the method is effective remains debatable, as

the original authors claim that it reduces internal covariate shift, while others argue

that it smoothens the objective function [20, 21]. Third, initializing NN weights with

an orthogonal matrix alleviates the issue of vanishing or exploding gradients, which

becomes common as the depth of the DNN increases [22, 23]. It also speeds up

convergence compared to the standard Gaussian initialization [24].

On the other hand, Newton’s method in optimization, or second-order optimiza-

tion, is an alternative which takes the Hessian matrix into consideration. By doing

so, the information from the curvature enables the optimization to take a more di-

rect step and can dramatically accelerate convergence [25]. Despite having superior

convergence properties, second-order optimization are not commonly used in practice

due to its computational infeasibility [26], both for computing and storing the Hes-

sian matrix. Furthermore, Newton’s method moves towards the eigen-direction with

positive eigenvalue, making saddle points an attractor [27].

16

Chapter 3

Expressive Power of Neural Networks

3.1 Maximal Correlation

Consider discrete random variables 𝑋 and 𝑌 with joint distribution 𝑃𝑋,𝑌 , over finite

alphabets X = {1, 2, . . . , |X|} and Y = {1, 2, . . . , |Y|}, respectively. Here, we introduce

the Hirschfeld-Gebelein-Rényi (HGR) maximal correlation 𝜌(𝑋;𝑌) as a normalized

measure to quantify the dependence between 𝑋 and 𝑌 :

𝜌(𝑋;𝑌) ≜ max
𝑓 : X→R, 𝑔: Y→R
E[𝑓(𝑋)]=E[𝑔(𝑌)]=0
E[𝑓2(𝑋)]=E[𝑔2(𝑌)]=1

E[𝑓(𝑋)𝑔(𝑌)] (1)

Observe that the maximum is taken over all functions 𝑓 and 𝑔 with zero mean and unit

variance. Intuitively, HGR maximal correlation measures the correlation between the

most correlated function mappings of 𝑋 and 𝑌 [28]. Some useful properties include

0 ≤ 𝜌(𝑋;𝑌) ≤ 1, where equality on the LHS is achieved iff 𝑋 and 𝑌 are independent;

equality on the RHS is achieved iff there exists some mapping such that 𝑓(𝑋) = 𝑔(𝑌)

[29]. HGR maximal correlation can be extended to higher dimensional spaces, where

we consider the correlation in k-dimensional function mappings:

𝜌𝑘(𝑋;𝑌) ≜ max
𝑓 : X→R𝑘, 𝑔: Y→R𝑘

E[𝑓(𝑋)]=E[𝑔(𝑌)]=0
E[𝑓(𝑋)𝑓𝑇 (𝑋)]=E[𝑔(𝑌)𝑔𝑇 (𝑌)]=I

E[𝑓𝑇 (𝑋)𝑔(𝑌)] (2)

17

where the special case 𝑘 = 1 corresponds to (1). The HGR maximal correlation is

closely related to the field of machine learning, in which 𝑋 and 𝑌 are viewed as inputs

and labels, respectively. Under this setup, 𝑓 * can be considered the optimal feature

functions to predict 𝑌 , and 𝑔* the corresponding weights [30]. Next, we introduce

matrix B ∈ R|Y|×|X|, also known as the divergence transition matrix (DTM), whose

entries are:

B(𝑦, 𝑥) =
𝑃𝑋𝑌 (𝑥, 𝑦)√︀
𝑃𝑋(𝑥)

√︀
𝑃𝑌 (𝑦)

(3)

or in matrix form:

B =
[︁√︀

𝑃𝑌

]︁−1

𝑃𝑌,𝑋

[︁√︀
𝑃𝑋

]︁−1

(4)

where 𝑃𝑋 and 𝑃𝑌 are the marginal distributions. It is known that 𝜌(𝑋;𝑌) is the

second largest singular value of B [6, 8], and 𝑓 * and 𝑔* are chosen such that

[︁
𝑓 *(1)

√︀
𝑃𝑋(1), . . . , 𝑓

*(|X|)
√︀

𝑃𝑋(|X|)
]︁𝑇

and
[︁
𝑔*(1)

√︀
𝑃𝑌 (1), . . . , 𝑔

*(|Y|)
√︀
𝑃𝑌 (|Y|)

]︁𝑇
(5)

are the right and left singular vectors of B corresponding to the second largest singular

value [28]. Given that the largest singular value is always 1, it is convenient to subtract

the largest singular value from B. We construct B̃, also referred as the canonical

dependence matrix (CDM) as follows [8]:

B̃(𝑦, 𝑥) = B(𝑦, 𝑥)−
√︀
𝑃𝑋(𝑥)

√︀
𝑃𝑌 (𝑦) =

𝑃𝑋𝑌 (𝑥, 𝑦)− 𝑃𝑋(𝑥)𝑃𝑌 (𝑦)√︀
𝑃𝑋(𝑥)

√︀
𝑃𝑌 (𝑦)

(6)

In this case, the HGR maximal correlation becomes the largest singular value of B̃.

The generalized version of HGR maximal correlation retains a similar property, such

that 𝜌𝑘 is the sum of the 𝑘 largest singular values of B̃, and 𝑓 *, 𝑔* are the 𝑘 top

right and left singular vector, respectively [28]. Consider the basic properties of the

singular value decomposition. The number of non-zero singular values equals the rank

of B, which is upper bounded by min{|X|, |Y|}. It implies that

𝜌(𝑋;𝑌) ≤ 𝜌2(𝑋;𝑌) ≤ 𝜌3(𝑋;𝑌) ≤ · · · ≤ 𝜌𝑡(𝑋;𝑌) = 𝜌𝑡+1(𝑋;𝑌) = . . . (7)

18

where 𝑡 = min{|X|, |Y|} − 1. In the context of neural networks, the NN reaches the

theoretical upper bound of expressive power when its last hidden layer has 𝑡 nodes

(assuming all other hidden layers have at least 𝑡 nodes), and additional nodes do not

enable the NN to infer further information.

3.2 Feature Projection

Through the lens of maximal correlation, we explore how the NN operates during

training. The NN first initializes its weights1 to form random feature functions 𝑓(𝑥)

and random output layer weights 𝑔(𝑦). During back-propagation, we first fix 𝑓(𝑥) and

update 𝑔(𝑦) = E[𝑓(𝑋)|𝑌 = 𝑦], which are the optimal weights that best align with

𝑓(𝑥). Next, we fix 𝑔(𝑦) and update 𝑓(𝑥) = E[𝑔(𝑌)|𝑋 = 𝑥], which are the optimal

feature functions that best align with 𝑔(𝑦). After some iterations, we reach a stable

point where 𝑓(𝑥) and 𝑔(𝑦) align with each other. This procedure is referred as feature

projection [6], where the NN searches for two functional mappings which achieve the

highest maximal correlation.

Let 𝑇 denote the function which maps the input to the desired output, and 𝑈 ≜

𝑠𝑝𝑎𝑛(𝑓1, . . . , 𝑓𝑘) denote the span of feature functions. In each iteration, the NN

seeks to minimize the loss function by projecting 𝑇 onto 𝑈 . In practice, computing

such a projection is expensive. Hence, for stochastic gradient descent, it is common to

approximate the projection by projecting 𝑇 onto each feature independently, and sum

up the projections. Note that 𝑝𝑟𝑜𝑗𝑈𝑇 =
∑︀𝑘

𝑖=1 𝑝𝑟𝑜𝑗𝑢𝑖
𝑇 if the features are completely

orthogonal. Given that this rarely happens, the approximation in each iteration

deviates from the true projection but eventually converges. To compensate with the

difference, a small learning rate is used to prevent overshoot. When the features are

highly correlated, the NN tends to spend more iterations to converge.

1For a fully-connected linear layer with 𝑛 inputs, the weights are drawn randomly from a uniform
distribution between −1/

√
𝑛 and 1/

√
𝑛 by PyTorch’s default [15]. Other methods such as Kaiming

and Xavier initialization are also widely popular.

19

3.3 Orthogonality of Feature Functions

Suppose we have inputs 𝑥1, . . . , 𝑥𝑛 which are passed through the neural network from

the input layer. Consider the values at the last hidden layer with 𝑘 nodes, namely

𝑓1(𝑥𝑖), . . . , 𝑓𝑘(𝑥𝑖) for 𝑖 = 1, . . . , 𝑛. We construct a matrix 𝑀 of shape 𝑘×𝑛 such that

its (𝑖, 𝑗)’th entry is the value at the 𝑖’th node of the last hidden layer for the 𝑗’th

input. Define the covariance matrix2:

𝐾𝑀𝑀 ≜
1

𝑛− 1

𝑛∑︁
𝑖=1

(𝑓 − 𝑓)(𝑓 − 𝑓)𝑇 (8)

where 𝑓 = 1
𝑛

∑︀𝑛
𝑖=1 𝑓 . Observe that the (𝑖, 𝑗)’th entry of 𝐾𝑀𝑀 is simply the average

dot product of the 𝑖’th and 𝑗’th pair of feature functions. We propose a measure 𝑠

to measure the orthogonality of the covariance matrix, which is simply the sum of

squared diagonal terms of 𝐾𝑀𝑀 divided by the sum of square of all terms of 𝐾𝑀𝑀 ,

or more formally:

𝑠 =

∑︀
𝑖(𝐾𝑀𝑀(𝑖, 𝑖))2∑︀
𝑖,𝑗(𝐾𝑀𝑀(𝑖, 𝑗))2

=
𝑡𝑟(𝑑𝑖𝑎𝑔(𝐾𝑀𝑀)2)

𝑡𝑟(𝐾𝑇
𝑀𝑀𝐾𝑀𝑀)

(9)

where 𝐴(𝑖, 𝑗) denotes the (𝑖, 𝑗)’th entry of 𝐴, 𝑡𝑟(𝐴) denotes the trace of 𝐴, and

𝑑𝑖𝑎𝑔(𝐴) denotes a square diagonal matrix such that its (𝑖, 𝑖)’th entry is 𝐴(𝑖, 𝑖). Clearly,

0 ≤ 𝑠 ≤ 1, where the right equality is achieved iff 𝐾𝑀𝑀 is a diagonal matrix, which

implies that the features are orthogonal to each other. Using the definitions and

metric above, we study the orthogonality of features of an untrained NN. Since feature

functions are initially formed by randomly chosen weights, they can also be seen as 𝑘

randomly chosen functions in a 𝑚-dimensional space, where 𝑘 and 𝑚 are the number

of nodes in the last hidden layer and the dimensionality of the inputs, respectively.

As shown in Figure 2, a lower 𝑚 and a higher 𝑘 correspond to a lower 𝑠. This is

an expected result – when more feature functions are randomly chosen in a lower-

dimensional space, it is more likely that the feature functions are more redundant,

hence less orthogonal.

2We compute the unbiased estimator of 𝐾𝑀𝑀 ≜ E[(𝑀 −E[𝑀])(𝑀 −E[𝑀])𝑇]

20

Figure 2: Input dimension vs. measurement with varying 𝑘. As shown above, when
less feature functions were chosen from a higher-dimensional space, they tend to be
more orthogonal. The above result is the average of 100 runs with different random
seeds, using the dataset described in section 4.3.

21

22

Chapter 4

Experiment

4.1 Neural Network Model

In this paper, we study the multi-class classification problem. Consider the dataset

with 𝑛 samples {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 such that 𝑥𝑖 ∈ R𝑚 is the input and 𝑦𝑖 is its label. We

represent each label as an one-hot encoded vector1 of size 𝑐, where 𝑐 is the number of

classes. We focus on NN with at least one hidden layer, as shown in Figure 1. The

nodes in the last hidden layer are feature functions, connected to the pre-softmax layer

with a fully connected linear layer such that 𝑧 = 𝑤𝑓 + 𝑏, where 𝑤 is the linear layer

weights and 𝑏 is the bias. The outputs are fed to a softmax function to exponentially

normalize the probabilities, such that

𝑠𝑖 =
𝑒𝑧𝑖∑︀𝑛
𝑙=1 𝑒

𝑧𝑙
(10)

and the softmax outputs are compared to the true labels using cross-entropy loss:

𝐿(𝑦, 𝑠) = −
𝑐∑︁

𝑖=1

𝑦𝑖 log 𝑠𝑖 (11)

1Without loss of generality, assume that each sample has label between 0 and 𝑐− 1. The one-hot
encoding representation of label 𝑦𝑖 is a vector whose (𝑖+ 1)’th entry is 1, and 0 elsewhere.

23

4.2 Motivation

To better understand the updates during back-propagation, we analyze the gradient

of the loss function with respect to each layer in Appendix A. Intuitively, the process

is equivalent to projecting the correct function that maps the input to the output onto

each feature function and summing up the projections, instead of projecting onto the

linear span of feature functions. In practice, the NN does not have knowledge of the

correct function, but instead projects the empirical distribution of a mini-batch of

samples in the case of stochastic gradient descent. As shown in section 3.2, the two

approaches are equivalent when the features are orthogonal. When a large number of

feature functions are drawn, they are expected to over-represent the complexity of the

problem, thus containing more redundant information. Therefore, this paper focuses

on highly compressed DNNs, which indicate that they have significantly less nodes

in the last hidden layer compared to the input and output dimensions. For these

networks, we investigate how the orthogonality of features change throughout the

training of the model, and whether we can accelerate the convergence by encouraging

them to be more orthogonal.

4.3 Data Generation and Neural Network Design

We first generate a dataset from a mixture Gaussian distribution using Algorithm

1, which enables us to adjust the complexity and dimensions of the dataset. The

function takes five parameters, which refer to the dimension of input, number of

output classes, cluster per class, samples per cluster, and standard deviation for

the multivariate normal distribution covariance. Note that the code implementation

differs slightly from Algorithm 1 for computational optimization, and a random seed

is fixed to ensure the consistency of the dataset. The centers were uniformly chosen

in [0, 1]xdim, and Σ is a diagonal matrix such that each diagonal entry is 𝜎2. A visual

illustration of the dataset in 3D is shown in Figure 3.

24

Algorithm 1 Generate samples from a mixture Gaussian distribution
function getsamples(xdim, ycard, cpy, spc, sigma)

centers ← ycard × cpy coordinates uniformly chosen in xdim
nSample ← ycard × cpy × spc
data, labels ← initialize arrays of shapes [nSample, xdim] and [nSample]
for 𝑖 = 0, . . . , nSample− 1 do

labels[𝑖] = 𝑖 mod ycard
data[𝑖] = centers[labels[𝑖]] +𝒩 (0,Σ) // Multivariate Normal

end for
shuffle data and labels accordingly
return data, labels

end function

Figure 3: A visual representation of the 3D mixture Gaussian distribution, generated
from Algorithm 1, GETSAMPLES(3, 6, 2, 1000, 0.05). Each class is represented
by a different color. A specific random seed is chosen for a better visualization.

25

We generate 100, 000 samples using GETSAMPLES(50, 50, 2, 1000, 0.1), and

partition the samples to the training and testing dataset with a 3 : 1 ratio. The

parameters are chosen to ensure a reasonable complexity and size of the dataset. We

design a DNN with the following layers:

layer nodes activation function

input xdim= 50 N/A

hidden 𝑘 tanh

output ycard= 50 softmax

We use stochastic gradient descent as our optimization method, with a batch size of

1, 000 and a learning rate of 0.05. Cross-entropy loss is chosen as the loss function

to solve the multi-class classification problem. To verify the claim in section 3.3, we

experiment2 different number of feature functions on the same dataset. As shown

in Figure 4, the accuracy increases as 𝑘 increases, while the features become less

orthogonal.

2All experiments in this work are conducted for 100 times, and a different random seeds is fixed
to initialize the NN for each trial. The results are shown either in a box plot or a line graph (where
average is shown).

26

Figure 4: We train neural networks with same structures except for the number of
nodes (feature functions) in the hidden layer. The above shows the accuracy and
orthogonality of feature functions after 100 epochs of training. Outliers are removed
due to small IQRs.

27

28

Chapter 5

Increasing Orthogonality of Feature

Functions

5.1 Orthogonality during Training

In the remaining development, the dataset described in section 4.3 is used to train the

NN. Using the results in Figure 4, we fix 𝑘 = 6 such that the model can achieve high

accuracy, while the feature functions remain fairly orthogonal. As shown in Figure

5a, the accuracy increases steadily from 1.98%1 to 80.5%. On the other hand, orthog-

onality starts from about 89%, reaches a minimum average of 83.9% after 6 epochs,

and increases steadily afterwards, exceeding the initial orthogonality (around 97.4%

after 100 epochs). Since few feature functions are randomly chosen out of a high-

dimensional space, the high initial orthogonality of an untrained NN is expected2. In

the beginning, the NN emphasizes on extracting meaningful features at the expense

of the orthogonality to rapidly increase accuracy. After a few epochs, in order to

reduce the loss further under the tight constraint, the NN encourages the features to

contain more unique information to capture broader features of the dataset. As the

NN converges, the features are highly orthogonal (𝑠 = 96.1% after 100 epochs).

1Since there are 50 output classes, an untrained network randomly guesses the output, yielding
a theoretical accuracy of 1/50 = 2%

2See section 3.3 and Figure 2.

29

(a) Number of Feature Functions 𝑘 = 6

(b) Number of Feature Functions 𝑘 = 50

Figure 5: We train the model with different number of feature functions for 100
epochs with different random weight initialization. The accuracy and orthogonality
of features are measured after every epoch.

30

Suppose we loosen the constrain and perform the same experiment on 𝑘 = 50. As

shown in Figure 5b, the NN converges significantly faster and achieves a higher ac-

curacy, but the orthogonality remains low and does not even exceed its initial value.

5.2 Orthogonality Regulator & Pre-Orthogonalization

Recall that in section 3.2, we show that during the training process, the NN alternates

between updating the features and the weights of the last hidden layer while fixing

one another, until they align with each other after several iterations. If the features

are more orthogonal, the projections are more accurate and we can allow a more

aggressive learning rate. Therefore, we encourage the features to be more orthogonal

by adding a regulator to the loss function:

𝐿′(𝑦, 𝑠) = 𝐿(𝑦, 𝑠) + 𝜆 · (1− 𝑠) (12)

where 𝐿(𝑦, 𝑠) is the original loss function from (11), 𝜆 is the regulator weight, and 𝑠

is the orthogonality measurement from (9). In other words, we add a penalty on the

redundancy of features to the loss function. Here, a high 𝜆 encourages the gradient

descent to emphasize on orthogonalizing the features; a low 𝜆 encourages the gradient

descent to emphasize on reducing the cross-entropy loss. Therefore, we experiment

on the same dataset with a regulator with varying weights.

As shown in Figure 6, adding the regulator enables the NN to converge faster,

where the improvement is maximized at 𝜆 = 0.5. For 𝜆 ≥ 0.1, the algorithm with

a regulator added converges slower in the first few epochs. This corresponds to

Figure 5a, where the NN focuses on extracting information instead of orthogonalizing

features in the beginning. Therefore, the regulator does not become helpful until

the features represent some useful information, and encouraging them to be more

orthogonal becomes more beneficial afterwards under the tight constraint. At 𝜆 =

0.5, the regulator outperforms the approach without the regulator, yielding nearly a

1.5% improvement after 12 epochs. In addition, a heavier weight on the regulator

31

Figure 6: Orthogonalizing regulators were added to the loss function with varying
weights. The networks are trained for 50 epochs, and the average results are compared
to the one without a regulator (𝜆 = 0, shown in red). As expected, a heavier weight
on the regulator leads to a higher orthogonality. Accuracy is evaluated after every
epoch, while the orthogonality is measured every after every epoch only for the first 10
epochs, and every 10 epochs afterwards (same for figures 7-7[TODO: Change this]).

encourages the features to be more orthogonal, and a high orthogonality is maintained

throughout training.

Recall that throughout the NN training process, the orthogonality first decreases

then increases after a few epochs, eventually surpassing initial orthogonality, as shown

in Figure 5a. We explore whether starting from an orthogonal set of features can

accelerate the convergence. We start from a randomly initialized NN and back-

propagate only (1 − 𝑠) for multiple iterations. During this phase, the learning rate

is reduced to 0.01 to enable a careful selection of orthogonal features. Since pre-

orthogonalizing does not require labels, it can be done offline without additional

overhead cost. As shown in Figure 7, we orthogonalize the features prior to training

32

Figure 7: We back-propagate (1−𝑠) for varying number of iterations to orthogonalize
the features. More iterations correspond to higher initial orthogonality, but does not
make a significant difference during training.

with varying numbers of iterations. As expected, more iterations lead to higher initial

orthogonality (𝑠 = 99.78% at 100 iterations). Nevertheless, the orthogonality drops

to nearly the same minimum in the first few epochs and increases afterwards, and

does not lead to a significant change in accuracy.

5.3 Two-Phase Training

Lastly, we propose a two-phase training by combining both ideas: we first orthogo-

nalize the features, and use a regulator to maintain its high orthogonality throughout

training. We consider the combination of parameters from the two previous experi-

ments, and similarly compute its orthogonality and accuracy. In Figure 8, the average

accuracy of each combination is compared to that of the original approach (without

pre-orthogonalizing or regulator). Observe that the accuracy difference is dominated

33

by the regulator, and the impact of pre-orthogonalizing the features is minimum, if not

slightly worse in some cases. In addition, as shown in Figure 9, pre-orthogonalization

increases the initial orthogonality but has minimum impact afterwards. In combi-

nation with the regulators, if the network starts training from an orthogonal set of

features, a higher weight encourages the orthogonality to remain high.

Figure 8: We experiment different combinations of parameters, and compare the
results with the standard gradient descent approach. Since the accuracy difference is
heavily impacted by the regulator weight, we only highlight the baseline and the two
set of parameters which yield the highest accuracy after the first few epochs.

34

Figure 9: We compute the orthogonality of all combination of parameters, but we only
show the results after 10 (Top) and 1000 (Bottom) iterations of pre-orthogonalization
for brevity. More iterations enable the network to start with more orthogonal feature
functions, but some weight on the regulator is required to maintain high orthogonality.

35

36

Chapter 6

Discussion

6.1 Effects on Orthogonalizing Feature Functions

This paper develops an approach to accelerate the convergence of neural networks by

orthogonalizing feature functions. Chapter 2 gives an overview of the universal fea-

ture functions extracted in high-dimensional space, and methods to make the neural

networks more robust. Some main challenges include stagnation near saddle points,

and the infeasibility to replace gradient descent with the more efficient second-order

optimization. Chapter 3 introduces the HGR maximal correlation to quantify the

dependence between inputs and outputs, and explains how information is computed

and stored during the training process. The orthogonality of features reflects their

uniqueness, and plays a significant role in feature projection. Chapter 4 details

the experiment setup, including the mixture Gaussian dataset and the neural net-

work structure. It verifies the claim that more feature functions correspond to higher

accuracy but lower orthogonality. Chapter 5 proposes three methods to increase

orthogonality, including adding a regulator to penalize redundancy of features, pre-

orthogonalizing features prior to training, and combining both ideas. Results indicate

that the first method outperforms the standard gradient descent, while the second

method has minimum impact on the accuracy. When both methods are combined,

the accuracy difference is dominated by the regulator.

Orthogonal features have two desirable properties, which are particularly useful

37

for searching for an optimal point in the neural network. First, as shown in section 3.2,

if they are more orthogonal, projecting onto the linear subspace of the set of feature

functions is closer to summing up the projections onto each feature. This enables a

more aggressive learning rate, and can drastically reduce computation cost. Second,

recall that the main challenge of taking advantage of the superior properties of the

second-order optimization is the cost of computing and storing the Hessian matrix.

As the feature functions become more orthogonal, the Hessian matrix converges to

an identity matrix, making gradient descent an approximation to Newton’s method

in optimization1. This enables us to take advantage of the superior properties of the

second-order optimization without directly computing the Hessian matrix.

6.2 Future Work

While the regulator successfully makes the feature functions more orthogonal, it can

have adversarial effects on the model accuracy in some cases. As shown in Figure

5, the gradient descent method to increase accuracy indeed reduces orthogonality.

Therefore, adding a heavy weight on the orthogonality regulator in our experiments

can negatively impact the accuracy in the beginning, which motivates us to adjust the

weight on the regulator accordingly. Nevertheless, we are unable to locate where the

orthogonality reaches the minimum, which implies that the adjustments have to be

made on the fly. In addition, this paper considers the mixture Gaussian distribution

due to its flexibility to adjust the complexity and parameters. It will be helpful to

consider more complicated high-dimensional data, such as MNIST and CIFAR, to

examine if they share a similar pattern. While we do not expect improvements on all

datasets, we aim to generalize and explain on what type of datasets our algorithm

exhibits superior convergence. Deeper NN should also be considered, although their

properties are significantly harder to analyze due to an increasing number of non-

linear transformations.

1Gradient descent updates the solution by 𝑥𝑘+1 = 𝑥𝑘 − 𝛼 · ∇𝑓(𝑥), while Newton’s method in
optimization updates the solution by 𝑥𝑘+1 = 𝑥𝑘 − 𝛼 · ∇𝑓(𝑥)

∇2𝑓(𝑥) , where 𝛼 is the learning rate. As we
minimize the loss function, if features are highly orthogonal, then ∇2𝑓(𝑥) ≈ I.

38

Appendix A

Gradient of the deep neural network

Suppose the NN described in Figure 1 is trained on one sample (𝑥, 𝑦) for one iteration.

We compute its gradient with respect to each layer:

1. w.r.t. the softmax output:
𝜕𝐿

𝜕𝑠𝑖
= −𝑦𝑖

𝑠𝑖
(13)

2. w.r.t. the output layer:

𝜕𝐿

𝜕𝑧𝑗
=

𝑐∑︁
𝑖=1

𝜕𝐿

𝜕𝑠𝑖

𝜕𝑠𝑖
𝜕𝑧𝑗

= −
𝑐∑︁

𝑖=1

𝑦𝑖
𝑠𝑖
· 𝑠𝑖(1𝑖=𝑗 − 𝑠𝑗) =

𝑐∑︁
𝑖=1

𝑦𝑖𝑠𝑗 −
𝑐∑︁

𝑖=1

𝑦𝑖 · 1𝑖=𝑗 = 𝑠𝑗 − 𝑦𝑗

(14)

where we get the last equality because each sample belongs to exactly one class.

We can express the above in matrix form: 𝜕𝐿
𝜕𝑧

= 𝑠− 𝑦.

3. w.r.t. the last hidden layer:

𝜕𝐿

𝜕𝑤𝑖𝑗

=
𝑐∑︁

𝑙=1

𝜕𝐿

𝜕𝑧𝑙
· 𝜕𝑧𝑙
𝜕𝑤𝑖𝑗

=
𝜕𝐿

𝜕𝑧𝑖
· 𝜕𝑧𝑖
𝜕𝑤𝑖𝑗

= (𝑠𝑖 − 𝑦𝑖) · 𝑓𝑗 (15)

where we get the second to last equality because 𝜕𝑧𝑙
𝜕𝑤𝑖𝑗

= 0 if 𝑙 ̸= 𝑖, and the last

equality because 𝑧𝑖 =
∑︀𝑘

𝑗=1 𝑤𝑖𝑗𝑓𝑗+ 𝑏𝑖. We can express the above in matrix form
𝜕𝐿
𝜕𝑤𝑗

= (𝑠− 𝑦) · 𝑓𝑗, where 𝑤𝑗 is the 𝑗’th column vector of 𝑤.

39

Equation 15 reveals how gradient descent increases the model accuracy. During

each iteration, 𝑤𝑖𝑗 is adjusted by the gradient of the loss with respect to itself, or

more formally,

𝑤′
𝑖𝑗 = 𝑤𝑖𝑗 − 𝛼 · 𝜕𝐿

𝜕𝑤𝑖𝑗

(16)

where 𝛼 is the learning rate. Consider a sample with label 𝑡, such that 𝑦𝑖 = 1𝑖=𝑡

in one-hot representation. During the forward propagation, the model receives the

sample and passes it through the last hidden layer and the output layer, forming 𝑓

and 𝑠, respectively1. Since 𝑠𝑡 − 𝑦𝑡 < 0, we get that 𝜕𝐿
𝜕𝑤𝑡𝑗

< 0 if 𝑓𝑗 > 0, and 𝜕𝐿
𝜕𝑤𝑡𝑗

> 0

if 𝑓𝑗 < 0. Based on equation 16, the adjustments to 𝑤𝑡𝑗 is in the same direction as

𝑓𝑗, and its magnitude is proportional to how much 𝑡 is under-predicted. Similarly,

for 𝑖 ̸= 𝑡, the adjustments to 𝑤𝑖𝑗 is in the opposite direction, and its magnitude is

proportional to how much class 𝑖 is over-predicted.

1We assume that 𝑓𝑗 ̸= 0 and 0 < 𝑠𝑖 < 1, otherwise it will simply yield a zero gradient.

40

Bibliography

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Advances in neural information
processing systems, 25, 2012.

[3] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition
with deep recurrent neural networks. In 2013 IEEE international conference on
acoustics, speech and signal processing, pages 6645–6649. Ieee, 2013.

[4] Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N.
Sainath, and Brian Kingsbury. Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research groups. IEEE Signal
Processing Magazine, 29(6):82–97, 2012.

[5] Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of the
25th international conference on Machine learning, pages 160–167, 2008.

[6] L. Zheng. Understanding the power of neural networks, 2022.

[7] S.-L. Huang, X. Xu, L. Zheng, and G. W. Wornell. An information theoretic
interpretation to deep neural networks. In 2019 IEEE international symposium
on information theory (ISIT), pages 1984–1988. IEEE, 2019.

[8] S.-L. Huang, A. Makur, G. W. Wornell, and L. Zheng. On universal features for
high-dimensional learning and inference. arXiv preprint arXiv:1911.09105, 2019.

[9] N. Bacanin, T. Bezdan, E. Tuba, I. Strumberger, and M. Tuba. Optimizing
convolutional neural network hyperparameters by enhanced swarm intelligence
metaheuristics. Algorithms, 13(3):67, 2020.

[10] L. N. Smith. A disciplined approach to neural network hyper-parameters:
Part 1–learning rate, batch size, momentum, and weight decay. arXiv preprint
arXiv:1803.09820, 2018.

41

[11] S. Karsoliya. Approximating number of hidden layer neurons in multiple hid-
den layer bpnn architecture. International Journal of Engineering Trends and
Technology, 3(6):714–717, 2012.

[12] Z. Boger and H. Guterman. Knowledge extraction from artificial neural network
models. In 1997 IEEE International Conference on Systems, Man, and Cyber-
netics. Computational Cybernetics and Simulation, volume 4, pages 3030–3035
vol.4, 1997.

[13] S. Kazuhiro. A two phase method for determining the number of neurons in
the hidden layer of a 3-layer neural network. In Proceedings of SICE Annual
Conference 2010, pages 238–242, 2010.

[14] G. Bebis and M. Georgiopoulos. Feed-forward neural networks. IEEE Potentials,
13(4):27–31, 1994.

[15] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. Pytorch: An imperative style, high-performance deep learning li-
brary. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[16] A. J. Bray and D. S. Dean. Statistics of critical points of gaussian fields on
large-dimensional spaces. Physical review letters, 98(15):150201, 2007.

[17] G. Swirszcz, W. M. Czarnecki, and R. Pascanu. Local minima in training of
neural networks. arXiv preprint arXiv:1611.06310, 2016.

[18] P. Xu, F. Roosta, and M. W. Mahoney. Second-order optimization for non-
convex machine learning: An empirical study. In Proceedings of the 2020 SIAM
International Conference on Data Mining, pages 199–207. SIAM, 2020.

[19] L. Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the
trade, pages 421–436. Springer, 2012.

[20] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine
learning, pages 448–456. PMLR, 2015.

[21] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry. How does batch normalization
help optimization? Advances in neural information processing systems, 31, 2018.

[22] A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the non-
linear dynamics of learning in deep linear neural networks. arXiv preprint
arXiv:1312.6120, 2013.

42

[23] D. Xie, J. Xiong, and S. Pu. All you need is beyond a good init: Exploring
better solution for training extremely deep convolutional neural networks with
orthonormality and modulation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 6176–6185, 2017.

[24] W. Hu, L. Xiao, and J. Pennington. Provable benefit of orthogonal initialization
in optimizing deep linear networks. arXiv preprint arXiv:2001.05992, 2020.

[25] Tibshirani. R. Newton’s method. Carnegie Mellon University, 10-725, 2019.

[26] R. Anil, V. Gupta, T. Koren, K. Regan, and Y. Singer. Second order optimization
made practical. arXiv preprint arXiv:2002.09018, 2020.

[27] Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio.
Identifying and attacking the saddle point problem in high-dimensional non-
convex optimization. Advances in neural information processing systems, 27,
2014.

[28] S.-L. Huang and X. Xu. On the sample complexity of hgr maximal correla-
tion functions for large datasets. IEEE Transactions on Information Theory,
67(3):1951–1980, 2020.

[29] J. Lee. Maximal Correlation Feature Selection and Suppression With Applica-
tions. PhD thesis, Massachusetts Institute of Technology, 2021.

[30] X. Xu and S.-L. Huang. Maximal correlation regression. IEEE Access, 8:26591–
26601, 2020.

43

	Introduction
	Neural Network
	Feature Functions
	Outline

	Related Work
	Expressive Power of Neural Networks
	Maximal Correlation
	Feature Projection
	Orthogonality of Feature Functions

	Experiment
	Neural Network Model
	Motivation
	Data Generation and Neural Network Design

	Increasing Orthogonality of Feature Functions
	Orthogonality during Training
	Orthogonality Regulator & Pre-Orthogonalization
	Two-Phase Training

	Discussion
	Effects on Orthogonalizing Feature Functions
	Future Work

	Gradient of the deep neural network

