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Abstract

The modern paradigm in speech processing has demonstrated the importance of
scale and compute for end-to-end speech recognition and synthesis. For instance,
state-of-the-art self-supervised speech representation learning models typically consists
of more than 300M model parameters and being trained on 24 GPUs. While such a
paradigm has proven to be effective in certain offline settings, it remains unclear the
extent to which it can be extended to online and small-device scenarios.

This thesis is a step toward making advanced speech processing models more
parameter-efficient. We aim to answer the following: do sparse subnetworks exist in
modern speech processing models, and if so, how can we discover them efficiently? The
key contribution is a new pruning algorithm termed Prune-Adjust-Re-Prune (PARP),
that discovers sparse subnetworks efficiently. PARP is inspired by our observation that
subnetworks pruned for pre-training tasks need merely a slight adjustment to achieve
a sizeable performance boost in downstream ASR tasks. We first demonstrate its
effectiveness for self-supervised ASR in various low-resource settings. In particular,
extensive experiments verify (1) sparse subnetworks exist in mono-lingual/multi-
lingual pre-trained self-supervised learning representations, and (2) the computational
advantage and performance gain of PARP over baseline pruning methods.

In the second study, we extend PARP to end-to-end TTS, including both spectrogram
prediction networks and vocoders. We thoroughly investigate the tradeoffs between
sparsity and its subsequent effects on synthetic speech. The findings suggest that
not only are end-to-end TTS models highly prunable, but also, perhaps surprisingly,
pruned TTS models can produce synthetic speech with equal or higher naturalness
and intelligibility, with similar prosody.

Thesis Supervisor: James R. Glass
Title: Senior Research Scientist
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Chapter 1

Introduction

Over the last decade, we have seen significant advancement in end-to-end and self-

supervised learning in spoken language processing. One key lesson that emerges over

time is the importance of model scaling, regardless of training objectives, supervision,

or architecture, in order to attain state-of-the-art results. While models with increasing

large number of parameters has proven to be effective in various benchmarks and

in-house data sets, there is much space for improvement when it comes to extending

the same technology to more limited settings. Given that there is little work in

parameter-efficiency for speech, this thesis work focuses on developing insights into

finding sparse subnetwork in modern speech processing models, with the ultimate goal

of reducing the training and inference requirement of these state-of-the-art models.

1.1 Contributions

The main contributions of this thesis center around a novel pruning algorithm termed

PARP. We conduct extensive PARP and baseline (OMP and IMP) pruning experiments

on low-resource ASR with mono-lingual (pre-trained wav2vec 2.0 (Baevski et al.,

2020)) and cross-lingual (pre-trained XLSR-53 (Conneau et al., 2020)) transfer. PARP

finds significantly superior speech SSL subnetworks for low-resource ASR, while only

requiring a single pass of downstream ASR finetuning. We then extends PARP to

synthesis, with the intention of not only reducing architectural complexity for end-to-
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end TTS, but also demonstrating the surprising efficacy and simplicity of pruning in

contrast to prior TTS efficiency work. The summary of contributions are:

• We show that sparse subnetworks exist in pre-trained speech SSL when finetuned

for low-resource ASR. In addition, PARP achieves superior results to OMP and IMP

across all sparsities, amount of finetuning supervision, pre-trained model scale,

and downstream spoken languages. Specifically, on Librispeech 10min without

LM decoding, PARP discovers subnetworks from wav2vec 2.0 with an absolute

10.9%/12.6% WER decrease compared to the full model, without modifying the

finetuning hyper-parameters or objective.

• PARP minimizes phone recognition error increases in cross-lingual mask transfer,

where a subnetwork pruned for ASR in one spoken language is adapted for

ASR in another language. PARP can also be applied to efficient multi-lingual

subnetwork discovery for 10 spoken languages.

• We also demonstrate PARP’s effectiveness on pre-trained BERT/XLNet, miti-

gating the cross-task performance degradation reported in BERT-Ticket (Chen

et al., 2020b).

• We present the first comprehensive study on pruning end-to-end acoustic models

(Transformer-TTS (Li et al., 2019), Tacotron2 (Shen et al., 2018)) and vocoders

(Parallel WaveGAN (Yamamoto et al., 2020)) with PARP.

• We show that end-to-end TTS models are over-parameterized. Pruned models

produce speech with similar levels of naturalness, intelligibility, and prosody to

that of unpruned models.

1.2 Thesis Outline

The thesis is composed of three main chapters. In Chapter 2, we first lay the foundation

of neural network pruning, and some hurdles when it is naively applied to speech

processing. In Chapter 3, we formulate the proposed algorithm PARP and its application

18



to pre-trained self-supervised representations in low-resource speech recognition (ASR)

settings. In Chapter 4, we further extend PARP to end-to-end speech synthesis (TTS),

gaining insights into the effect of sparsity in synthesis naturalness, intelligibility, and

prosody. Chapter 5 concludes with a brief summary of the thesis.
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Chapter 2

Sparse Subnetwork Discovery in

Neural Networks

2.1 Introduction

Neural network pruning (LeCun et al., 1990; Hassibi and Stork, 1993; Han et al.,

2015; Li et al., 2016), as well as the more recently proposed Lottery Ticket Hypothesis

(LTH) (Frankle and Carbin, 2018), suggests the existence of sparse subnetworks in

pre-trained neural networks. According to LTH, there exists sparse subnetworks that

can achieve the same or even better accuracy than the original dense network. Such

phenomena have been successfully observed in various domains: Natural Language

Processing (NLP) (Yu et al., 2019; Chen et al., 2020b; Prasanna et al., 2020; Movva and

Zhao, 2020), Computer Vision (CV) (Chen et al., 2020a; Girish et al., 2020), and many

others. All finding sparse subnetworks with comparable or better performance than the

dense network. Given the lack of similar studies on pruning speech processing models,

we intend to fill this gap by finding sparse subnetworks in pre-trained Automatic

Speech Recognition(ASR) and Speech Synthesis (TTS) models.
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2.2 Sparse Subnetwork Discovery in Speech

2.2.1 Formulation

Consider a sequence-to-sequence learning problem, where 𝑋 and 𝑌 represent the input

and output sequences respectively. For ASR, 𝑋 is waveforms and 𝑌 is character/phone

sequences; for a TTS acoustic model, 𝑋 is character/phone sequences and 𝑌 is

spectrogram sequences; for a vocoder, 𝑋 is spectrogram sequences and 𝑌 is waveforms.

A mapping function 𝑓(𝑋; 𝜃) parametrized by a neural network is learned, where

𝜃 ∈ ℛ𝑑 represents the network parameters and 𝑑 represents the number of parameters.

Sequence-level log-likelihood E
[︀
ln𝑃 (𝑌 | 𝑋; 𝜃)] on target dataset 𝒟 is maximized.

The goal of sparse subnetwork discovery is to find a subnetwork 𝑚⊙ 𝜃, where ⊙ is

the element-wise product and a binary pruning mask 𝑚 ∈ {0, 1}𝑑 is applied on the

model weights 𝜃. The ideal pruning method would learn 𝑚 at target sparsity such

that 𝑓(𝑋;𝑚⊙ 𝜃) achieves similar loss as 𝑓(𝑋; 𝜃) after training on 𝒟.

2.2.2 Methods

Unstructured Magnitude Pruning (UMP) (Frankle and Carbin, 2018; Gale et al.,

2019) sorts the model’s weights according to their magnitudes across layers regardless

of the network structure, and removes the smallest ones to meet a predefined sparsity

level. Weights that are pruned out (specified by 𝑚) are zeroed out and do not receive

gradient updates during training.

One-Shot Magnitude Pruning (OMP) (Frankle and Carbin, 2018; Gale et al., 2019)

is based on UMP and assumes an initial model weight 𝜃0 and a target dataset 𝒟 are

given. OMP can be described as:

1. Directly prune 𝜃0 at target sparsity, and obtain an initial pruning mask 𝑚0. Zero

out weights in 𝜃0 given by 𝑚0.

2. Train 𝑓(𝑋;𝑚0 ⊙ 𝜃0) on 𝒟 until convergence. Zeroed-out weights do not receive
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gradient updates via backpropogation.

Iterative Magnitude Pruning (IMP) extends OMP to multiple iterations by updating

𝜃0 with the finetuned model weight 𝜃*𝐷 from Step 2.

2.2.3 Shortcomings

Directly applying the above pruning methods to speech processing suffers from two

challenges. First, these methods applied to SOTA speech models, either ASR or TTS,

is extremely time-consuming. OMP and IMP involve more than one round of training

on 𝒟 (c.f. Figure 2-1), and yet one-round of ASR or TTS training is prohibitively

time-consuming and computationally demanding compared to NLP or CV1. The

second challenge is that we do not observe any performance improvement of the

subnetworks over the original dense network with OMP or IMP. Figure 3-2 shows the

WER under low-resource scenarios of the subnetworks identified by OMP (purple line)

and IMP (blue dashed line) at different sparsity levels. None of the sparsity levels

achieves a visible drop in WER compared to the zero sparsity case, corresponding to

the original dense network. These two challenges have prompted us to ask – do there

exist sparse subnetworks within in SOTA speech processing models? Furthermore,

how can we discover them efficiently?

1Standard wav2vec 2.0 finetuning setup (Baevski et al., 2020) on any Librispeech/Libri-light splits
requires at least 50∼100 V100 hours, which is more than 50 times the computation cost for finetuning
a pre-trained BERT on GLUE (Wang et al., 2018).
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Figure 2-1: Number of ASR finetuning iterations needed (y-axis) versus target sparsities
(x-axis) for each downstream task/language. Cross-referencing Figure 3-2 indicates that
IMP requires linearly more compute to match the performance (either sparsity/WER)
of PARP.
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Chapter 3

Finding Sparse Subnetworks in

Self-Supervised Speech Recognition

3.1 Introduction

For many low-resource spoken languages in the world, collecting large-scale transcribed

corpora is very costly and sometimes infeasible. Inspired by efforts such as the IARPA

BABEL program, Automatic Speech Recognition (ASR) trained without sufficient

transcribed speech data has been a critical yet challenging research agenda in speech

processing (Cui et al., 2013, 2014; Gales et al., 2014; Cui et al., 2015; Cho et al.,

2018). Recently, Self-Supervised Speech Representation Learning (speech SSL) has

emerged as a promising pathway toward solving low-resource ASR (Oord et al., 2018b;

Chung et al., 2019; Wang et al., 2020; Baevski et al., 2020; Conneau et al., 2020;

Zhang et al., 2020; Hsu et al., 2021c; Chung et al., 2021b). Speech SSL involves

pre-training a speech representation module on large-scale unlabelled data with a self-

supervised learning objective, followed by finetuning on a small amount of supervised

transcriptions. Many recent studies have demonstrated the empirical successes of

speech SSL on low-resource English and multi-lingual ASR, matching systems trained

on fully-supervised settings (Baevski et al., 2020; Conneau et al., 2020; Zhang et al.,

2020; Baevski et al., 2021; Zhang et al., 2021a). Prior research attempts, however,

focus on pre-training objectives (Oord et al., 2018b; Chung et al., 2019; Wang et al.,
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2020; Liu et al., 2020a; Jiang et al., 2020; Liu et al., 2020b; Ling and Liu, 2020; Liu

et al., 2021; Hsu et al., 2021c; Chorowski et al., 2021; Chung et al., 2021b; Chen et al.,

2021d; Zhu et al., 2021), scaling up speech representation modules (Baevski et al.,

2019b, 2020; Hsu et al., 2021a), pre-training data selections (Wang et al., 2021b; Hsu

et al., 2021b; Wang et al., 2021a,d; Meng et al., 2021), or applications of pre-trained

speech representations (Chung et al., 2018; Lai, 2019; Rivière et al., 2020; Chung

et al., 2020; Lai et al., 2021a; Conneau et al., 2020; Maekaku et al., 2021; Yang et al.,

2021; Lakhotia et al., 2021; Xu et al., 2021a; Wiesner et al., 2021; Gao et al., 2021;

Baevski et al., 2021; Polyak et al., 2021; Kharitonov et al., 2021; Lee et al., 2021; Ao

et al., 2021; Huang et al., 2021; Tseng et al., 2021; Chang et al., 2021; Cooper et al.,

2021; Chen et al., 2021e). In this work, we aim to develop an orthogonal approach

that is complementary to these existing speech SSL studies, that achieves 1) lower

architectural complexity and 2) higher performance (lower WER) under the same

low-resource ASR settings.

3.1.1 Background

As model scale (Synnaeve et al., 2019; Baevski et al., 2020; Han et al., 2020; Gulati

et al., 2020; Yu et al., 2020; Pratap et al., 2020b,a; Yu et al., 2021; Chen et al., 2021c;

You et al., 2021; Li et al., 2021a) and model pre-training (Baevski et al., 2020; Zhang

et al., 2020; Conneau et al., 2020; Kong et al., 2020b; Jiang et al., 2020; Lai et al., 2021a;

Hsu et al., 2021c; Xu et al., 2021b; Chan et al., 2021; Kanda et al., 2021; Sanabria

et al., 2021; Saeed et al., 2021; Ng et al., 2021; Polyak et al., 2021; Wang et al., 2021c)

have become the two essential ingredients for obtaining SOTA performance in ASR

and other speech tasks, applying and developing various forms of memory-efficient

algorithms, such as network pruning, to these large-scale pre-trained models will

predictably soon become an indispensable research endeavor. Early work on ASR

pruning can be dated back to pruning decoding search spaces (Abdou and Scordilis,

2004; Pylkkönen, 2005; Siivola et al., 2007; He et al., 2014; Xu et al., 2018; Zhang et al.,

2021b) and HMM state space (Van Hamme and Van Aelten, 1996). Since the seminal

work of Yu et al. (Yu et al., 2012), ASR pruning has focused primarily on end-to-end
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network architectures: (Shangguan et al., 2019; Wu et al., 2021) applied pruning and

quantization to LSTM-based RNN-Transducers, (Panchapagesan et al., 2021) applied

knowledge distillation to Conformer-based RNN-Transducers, (Venkatesh et al., 2021;

Shi et al., 2021; Li et al., 2021b) designed efficient architecture/mechanisms for LSTM,

Transformer, Conformer-based ASR models, (Narang et al., 2017) applied pruning

to Deep Speech, (Braun and Liu, 2019) introduced SNR-based probabilistic pruning

on LSTM-based CTC model, (Gao et al., 2020) proposed entropy-regularizer for

LSTM-based ASR model, (Xue et al., 2013; Povey et al., 2018) applied SVD on ASR

models’ weight matrices. We emphasize that our work is the first on pruning large

self-supervised pre-trained models for low-resource and multi-lingual ASR. In addition,

to our knowledge, none of the prior speech pruning work demonstrated the pruned

models attain superior performance than its original counterpart.

3.1.2 Method Overview

We propose a magnitude-based unstructured pruning method (Gale et al., 2019;

Blalock et al., 2020), termed Prune-Adjust-Re-Prune (PARP), for discovering sparse

subnetworks within pre-trained speech SSL. PARP consists of the following two steps:

1. Directly prune the SSL pre-trained model at target sparsity, and obtain an initial

subnetwork and an initial pruning mask.

2. Finetune the initial subnetwork on target downstream task/language. During

finetuning, zero out the pruned weights specified by the pruning mask, but allow

the weights be updated by gradient descent during backpropogation. After a few

number of model updates, re-prune the updated subnetwork at target sparsity

again.

Step 1 provides an initial subnetwork that is agnostic to the downstream task, and

Step 2 makes learnable adjustments by reviving pruned out weights. A formal and

generalized description and its extension are introduced in Section 3.3. Different

from pruning methods in (Han et al., 2015; Frankle and Carbin, 2018), PARP allows
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pruned-out weights to be revived during finetuning. Although such a high-level idea

was introduced in (Guo et al., 2016), we provide an alternative insight: despite its

flexibility, Step 2 only makes minimal adjustment to the initial subnetwork, and

obtaining a good initial subnetwork in Step 1 is the key. We empirically show that

any task-agnostic subnetwork surprisingly provides a good basis for Step 2, suggesting

that the initial subnetwork can be cheaply obtained either from a readily available

task/language or directly pruning the pre-trained SSL model itself. In addition, this

observation allows us to perform cross-lingual pruning (mask transfer) experiments,

where the initial subnetwork is obtained via a different language other than the target

language.

3.2 Preliminaries

Consider the low-resource ASR problem, where there is only a small transcribed

training set (𝑥, 𝑦) ∈ 𝒟𝑙. Here 𝑥 represents input audio, and 𝑦 represents output

transcription. Subscript 𝑙 ∈ {1, 2, · · · } represents the downstream spoken language

identity. Because of the small dataset size, empirical risk minimization generally

does not yield good results. Speech SSL instead assumes there is a much larger

unannotated dataset 𝑥 ∈ 𝒟0. SSL pre-trains a neural network 𝑓(𝑥; 𝜃), where 𝜃 ∈ ℛ𝑑

represents the network parameters and 𝑑 represents the number of parameters, on

some self-supervised objective, and obtains the pre-trained weights 𝜃0. 𝑓(𝑥; 𝜃0) is then

finetuned on downstream ASR tasks specified by a downstream loss ℒ𝑙(𝜃), such as

CTC, and evaluated on target dataset 𝒟𝑙.

Our goal is to discover a subnetwork that minimizes downstream ASR WER on 𝒟𝑙.

Formally, denote 𝑚 ∈ {0, 1}𝑑, as a binary pruning mask for the pre-trained weights 𝜃0,

and 𝜃𝑙 as the finetuned weights on 𝒟𝑙. The ideal pruning method should learn (𝑚, 𝜃𝑙),

such that the subnetwork 𝑓(𝑥;𝑚 ⊙ 𝜃𝑙) (where ⊙ is element-wise product) achieves

minimal finetuning ℒ𝑙(𝜃) loss on 𝒟𝑙.
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3.2.1 Pruning Targets and Settings

We adopted pre-trained speech SSL wav2vec2 and xlsr for the pre-trained initializa-

tion 𝜃0.

wav2vec 2.0 We took wav2vec 2.0 base (wav2vec2-base) and large (wav2vec2-large)

pre-trained on Librispeech 960 hours (Baevski et al., 2020). During finetuning, a task

specific linear layer is added on top of wav2vec2 and jointly finetuned with CTC loss.

XLSR-53 (xlsr) shares the same architecture, pre-training and finetuning ob-

jectives as wav2vec2-large. xlsr is pre-trained on 53 languages sampled from

CommonVoice, BABEL, and Multilingual LibriSpeech, totaling for 56k hours of

multi-lingual speech data.

We consider three settings where wav2vec2 and xlsr are used as the basis for

low-resource ASR:

LSR: Low-Resource English ASR. Mono-lingual pre-training and finetuning

– an English pre-trained speech SSL such as wav2vec2 is finetuned for low-resource

English ASR.

H2L: High-to-Low Resource Transfer for Multi-lingual ASR. Mono-lingual

pre-training and multi-lingual finetuning – a speech SSL pre-trained on a high-resource

language such as English is finetuned for low-resource multi-lingual ASR.

CSR: Cross-lingual Transfer for Multi-lingual ASR. Multi-lingual pre-

training and finetuning – a cross-lingual pretrained speech SSL such as xlsr is

finetuned for low-resource multi-lingual ASR.

3.2.2 Subnetwork Discovery in Pre-trained SSL

One obvious solution to the aforementioned problem is to directly apply pruning

with rewinding to 𝜃0, which has been successfully applied to pre-trained BERT (Chen

et al., 2020b) and SimCLR (Chen et al., 2020a). All pruning methods, including

our proposed PARP, are based on Unstructured Magnitude Pruning (UMP) (Frankle

and Carbin, 2018; Gale et al., 2019), where weights of the lowest magnitudes are

pruned out regardless of the network structure to meet the target sparsity level. We
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introduce four pruning baselines below, and we also provide results with Random

Pruning (RP) (Frankle and Carbin, 2018; Gale et al., 2019; Chen et al., 2020b), where

weights in 𝜃0 are randomly eliminated.

Task-Aware Subnetwork Discovery is pruning with target dataset 𝐷𝑙 seen

in advance, including One-Shot Magnitude Pruning (OMP) and Iterative Magnitude

Pruning (IMP). OMP is summarized as:

1. Finetune pretrained weights 𝜃0 on target dataset 𝒟𝑙 to get the finetuned weights

𝜃𝑙.

2. Apply UMP on 𝜃𝑙 and retrieve pruning mask 𝑚.

IMP breaks down the above subnetwork discovery phase into multiple iterations – in

our case multiple downstream ASR finetunings. Each iteration itself is an OMP with a

fraction of the target sparsity pruned. We follow the IMP implementation described

in BERT-Ticket (Chen et al., 2020b), where each iteration prunes out 10% of the

remaining weights. The main bottleneck for OMP and IMP is the computational cost,

since multiple rounds of finetunings are required for subnetwork discovery.

Task-Agnostic Subnetwork Discovery refers to pruning without having seen 𝐷𝑙

nor 𝑙 in advance. One instance is applying UMP directly on 𝜃0 without any downstream

finetuning to retrieve 𝑚, referred to as Magnitude Pruning at Pre-trained Initailizations

(MPI). Another case is pruning weights finetuned for a different language 𝑡, i.e. applying

UMP on 𝜃𝑡 for the target language 𝑙; in our study, we refer to this as cross-lingual mask

transfer. While these approaches do not require target task finetuning, the discovered

subnetworks generally have worse performance than those from OMP or IMP.

The above methods are only for subnetwork discovery via applying pruning mask 𝑚

on 𝜃0. The discovered subnetwork 𝑓(𝑥;𝑚⊙ 𝜃0) needs another downstream finetuning

to recover the pruning loss1, i.e. finetune 𝑓(𝑥;𝑚⊙ 𝜃0) on 𝐷𝑙.

1This step is referred to as subnetwork finetuning/re-training in the pruning literature (Liu et al.,
2018; Renda et al., 2020; Blalock et al., 2020).
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3.3 Proposed Method

In this section, we highlight our proposed pruning method, PARP (Section 3.3.1), its

underlying intuition (Section 3.3.2), and an extension termed PARP-P (Section 3.3.3).

3.3.1 Algorithm

We formally describe PARP with the notations from Section 3.2. A visual overview of

PARP is Figure 3-6.

Algorithm 1 Prune-Adjust-Re-Prune (PARP) to target sparsity 𝑠

1: Assume there are 𝑁 model updates in target task/language 𝑙’s downstream finetuning.

2: Take a pre-trained SSL 𝑓(𝑥; 𝜃0) model. Apply task-agnostic subnetwork discovery, such

as MPI2, at target sparsity 𝑠 to obtain initial subnetwork 𝑓(𝑥;𝑚0 ⊙ 𝜃0). Set 𝑚 = 𝑚0 and

variable 𝑛1 = 0 .

3: repeat

4: Zero-out masked-out weights in 𝜃𝑛1 given by 𝑚. Lift up 𝑚 such that whole 𝜃𝑛1 is

updatable.

5: Train 𝑓(𝑥; 𝜃𝑛1) for 𝑛 model updates and obtain 𝑓(𝑥; 𝜃𝑛2).

6: Apply UMP on 𝑓(𝑥; 𝜃𝑛2) and adjust 𝑚 accordingly. The adjusted subnetwork is

𝑓(𝑥;𝑚⊙ 𝜃𝑛2). Set variable 𝑛1 = 𝑛2.

7: until total model updates reach 𝑁 .

8: Return finetuned subnetwork 𝑓(𝑥;𝑚⊙ 𝜃𝑁 ).

Empirically, we found the choice of 𝑛 has little impact. In contrast to OMP/IMP/MPI,

PARP allows the pruned-out weights to take gradient descent updates. A side benefit

of PARP is it jointly discovers and finetunes subnetwork in a single pass, instead of two

or more in OMP and IMP.

3.3.2 Obtaining and Adjusting the Initial Subnetwork

PARP achieves superior or comparable pruning results as task-aware subnetwork discov-
2By default, MPI is used for obtaining the initial subnetwork for PARP and PARP-P unless specified

otherwise.
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ery, while inducing similar computational cost as task-agnostic subnetwork discovery.

How does it get the best of both worlds? The key is the discovered subnetworks from

task-aware and task-agnostic prunings have high, non-trivial overlaps in LSR, H2L,

and CSR. We first define Intersection over Union (IOU) for quantifying subnetworks’

(represented by their pruning masks 𝑚𝑎 and 𝑚𝑏) similarity:

IOU(𝑚𝑎,𝑚𝑏) ≜
|(𝑚𝑎 = 1) ∩ (𝑚𝑏 = 1)|
|(𝑚𝑎 = 1) ∪ (𝑚𝑏 = 1)|

(3.1)

Take H2L and CSR for instance, Figure 3-1 visualizes language pairs’ OMP pruning

mask IOUs on wav2vec2 and xlsr. Observe the high overlaps across all pairs, but

also the high IOUs with the MPI masks (second to last row). We generalize these

observations to the following:

Observation 1 For any sparsity, any amount of finetuning supervision, any

pre-training model scale, and any downstream spoken languages, the non-zero

ASR pruning masks obtained from task-agnostic subnetwork discovery has high

IOUs with those obtained from task-aware subnetwork discovery.

Observation 1 suggests that any task-agnostic subnetwork could sufficiently be a

good initial subnetwork in PARP due to the high similarities. In the same instance

for H2L and CSR, we could either take MPI on wav2vec2 and xlsr, or take OMP on

a different spoken language as the initial subnetworks. Similarly in LSR, we take

MPI on wav2vec2 as the initial subnetwork. The underlying message is – the initial

subnetwork can be obtained cheaply, without target task finetuning.

Now, because of the high similarity, the initial subnetwork (represented by its

pruning mask 𝑚0) needed merely a slight adjustment for the target downstream

task. While there are techniques such as dynamic mask adjustment (Guo et al.,

2016), important weights pruning (Molchanov et al., 2019), and deep rewiring (Bellec

et al., 2017), we provide an even simpler alternative suited for our setting. Instead

of permanently removing the masked-out weights from the computation graph, PARP

merely zeroes them out. Weights that are important for the downstream task (the

32



“important weights”) should emerge with gradient updates; those that are relatively

irrelevant should decrease in magnitude, and thus be zero-outed at the end. Doing so

circumvents the need of straight-through estimation or additional sparsity loss, see

Table 1 of (Sanh et al., 2020).

3.3.3 PARP-Progressive (PARP-P)

An extension to PARP is PARP-P, where the second P stands for Progressive. In PARP-P,

the initial subnetwork starts at a lower sparsity, and progressively prune up to the

target sparsity 𝑠 in Step 2. The intuition is that despite Observation 1, not any

subnetwork can be a good initial subnetwork, such as those obtained from RP, or

those obtained at very high sparsities in MPI/OMP/IMP. We show later that PARP-P is

especially effective in higher sparsity regions, e.g. 90% for LSR. Note that PARP-P has

the same computational cost as PARP, and the only difference is the initial starting

sparsity in Step 1.

3.4 Experiments and Analysis

3.4.1 Comparing PARP, OMP, and IMP on LSR, H2L, and CSR

We first investigate the existence of sparse subnetworks in speech SSL. Figure 3-2

shows the pruning results on LSR. Observe that subnetworks discovered by PARP

and PARP-P can achieve 60∼80% sparsities with minimal degradation to the full

models. The gap between PARP and other pruning methods also widens as sparsities

increase. For instance, Table 3.1 compares PARP and PARP-P with OMP and IMP at

90% sparsity, and PARP-P has a 40% absolute WER reduction. In addition, observe

the WER reduction with PARP in the low sparsity regions on the 10min split in

Figure 3-2. The same effect is not seen with OMP, IMP, nor MPI. Table 3.2 compares

the subnetworks discovered by PARP with the full wav2vec2 and prior work on LSR

under the same setting3. Surprisingly, the discovered subnetwork attains an absolute
3We underscore again that LM decoding/self-training are not included to isolate the effect of

pruning.
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Figure 3-1: IOUs over all spoken language pairs’ OMP pruning masks on finetuned
wav2vec2 and xlsr. Second to last row is the IOUs between OMP masks and the
MPI masks from pre-trained wav2vec2 and xlsr. Here, we show the IOUs at 50%
sparsity.Surprisingly at any sparsities, there is a high, non-trivial (c.f. RP in the last
row), similarity (>90%) between all spoken language OMP masks, as well as with the
MPI masks.
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10.9%/12.6% WER reduction over the full wav2vec2-large. We hypothesize that the

performance gains are attributed to pruning out generic, unnecessary weights while

preserving important weights, which facilitates training convergence. In other words,

PARP provides additional regularization effects to downstream finetuning. We also

examined the effectiveness of IMP with different rewinding starting points as studied

in (Frankle et al., 2020; Renda et al., 2020), and found rewinding initializations bear

minimal effect on downstream ASR.

Figure 3-2: Comparison of different pruning techniques on LSR (wav2vec2 with
10min/1h/10h Librispeech finetuning splits). PARP (black line) and PARP-P (black
dashed line) are especially effective under ultra-low data regime (e.g. 10min) and
high-sparsity (70-100%) regions.

Next, we examine if the pruning results of LSR transfers to H2L and CSR. Figure 3-

3 is pruning H2L and CSR with 1h of Dutch (nl) finetuning, and the same conclusion

can be extended to other spoken languages. Comparing Figures 3-2 and 3-3, we notice

that shapes of their pruning curves are different, which can be attributed to the effect

of character versus phone predictions. Comparing left and center of Figure 3-3, we

show that PARP and OMP reach 50% sparsity on H2L and 70% sparsity on CSR with

minimal degradations. Furthermore, while PARP is more effective than OMP on H2L

for all sparsities, such advantage is only visible in the higher sparsity regions on CSR.

Lastly, Table 3.3 compares the subnetworks from H2L and CSR with prior work. Even
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Table 3.1: WER comparison of pruning LSR: wav2vec2-base at 90% sparsity with
10h finetuning on Librispeech without LM decoding. At 90% sparsity, OMP/IMP/MPI
perform nearly as bad as RP. sub-finetuning stands for subnetwork finetuning.

Method # ASR test test
finetunings clean other

RP + sub-finetuning 1 94.5 96.4
MPI + sub-finetuning 1 93.6 96.1
OMP + sub-finetuning 2 92.0 95.3
IMP + sub-finetuning 10 89.6 93.9

PARP (90% → 90%) 1 83.6 90.7
PARP-P
70% → 90% 1 51.9 69.1
60% → 80% → 90% 2 33.6 53.3

Table 3.2: WER comparison of PARP for LSR with previous speech SSL results on
Librispeech 10min. PARP discovers sparse subnetworks within wav2vec2 with lower
WER while adding minimal computational cost to the original ASR finetuning.

Method test test
clean other

Continuous BERT (Baevski et al., 2019a) + LM 49.5 66.3
Discrete BERT (Baevski et al., 2019a) + LM 16.3 25.2
wav2vec2-base reported (Baevski et al., 2020) 46.9 50.9
wav2vec2-large reported (Baevski et al., 2020) 43.5 45.3
wav2vec2-base replicated 49.3 53.2
wav2vec2-large replicated 46.3 48.1

wav2vec2-base w/ 10% PARP 38.0 44.3
wav2vec2-large w/ 10% PARP 33.7 37.2

with as high as 90% sparsities in either settings, subnetworks from PARP and OMP

out-performs prior art.

3.4.2 How Important is the Initial Subnetwork (Step 1) in

PARP?

Obtaining a good initial subnetwork (Step 1) is critical for PARP, as Adjust & Re-Prune

(Step 2) is operated on top of it. In this section, we isolate the effect of Step 1 from

Step 2 and examine the role of the initial subnetwork in PARP. Figure 3-4 shows PARP
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Figure 3-3: Comparison of pruning techniques on H2L & CSR with 1h of Dutch (nl)
ASR finetuning. (Left) Pruning H2L (wav2vec2-base + nl). (Center) Pruning
CSR (xlsr + nl). (Right) Pruning jointly-finetuned wav2vec2-base and xlsr on nl.
Trend is consistent for other 9 spoken languages.

with a random subnetwork from RP, instead of subnetwork from MPI, as the initial

subnetwork. PARP with random initial subnetwork performs nearly as bad as RP (grey

line), signifying the importance of the initial subnetwork.

Secondly, despite Observation 1, MPI in high sparsity regions (e.g. 90% in LSR) is

not a good initial subnetwork, since the majority of the weights are already pruned

out (thus is hard to be recovered from). From Figure 3-2, PARP performs only on

par or even worse than IMP in high sparsity regions. In contrast, PARP-P starts with

a relatively lower sparsity (e.g. 60% or 70% MPI), and progressively prunes up to

the target sparsity. Doing so yields considerable performance gain (up to over 50%

absolute WER reduction). Third, as shown in Figure 3.4, there is >99.99% IOU

between the final “adjusted” subnetwork from PARP and its initial MPI subnetwork

after 20% sparsity, confirming Step 2 indeed only made minimal “adjustment” to the

initial subnetwork.

3.4.3 Are Pruning Masks Transferrable across Spoken Lan-

guages?

Is it possible to discover subnetworks with the wrong guidance, and how transferrable

are such subnetworks? More concretely, we investigate the transferability of OMP

pruning mask discovered from a source language by finetuning its subnetwork on

another target language. Such study should shed some insights on the underlying
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Table 3.3: Comparing subnetworks discovered by OMP and PARP from wav2vec2-base
and xlsr with prior work on H2L and CSR. PER is averaged over 10 languages.

Method Pre-training Sparsity avg. PER

Bottleneck (Fer et al., 2017) Babel-1070h 0% 44.9
CPC (Oord et al., 2018b) LS-100h 0% 50.9
Modified CPC (Rivière et al., 2020) LS-360h 0% 44.5

wav2vec2-base LS-960h 0% 18.7
wav2vec2 + OMP LS-960h 70% 41.3
wav2vec2 + PARP LS-960h 90% 40.1

xlsr reported (Conneau et al., 2020) 56,000h 0% 7.6
xlsr replicated 56,000h 0% 9.9
xlsr + OMP 56,000h 90% 33.9
xlsr + PARP-P 56,000h 90% 22.9

Table 3.4: PARP’s final subnetwork and its initial MPI subnetwork exceeds 99.99% IOU
after 20% sparsity (black line).
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Figure 3-4: PARP with random (red line) v.s. with MPI (black line) initial subnetworks
in LSR.

influence of spoken language structure on network pruning – that similar language

pairs should be transferrable. From a practical perspective, consider pruning for

an unseen new language in H2L, we could deploy the readily available discovered

subnetworks and thus save the additional finetuning and memory costs.

In this case, the initial subnetwork of PARP is given by applying OMP on another

spoken language. According to Observation 1, PARP’s Step 2 is effectively under-going

cross-lingual subnetwork adaptation for the target language. Figure 3-5 shows the

transferability results on H2L with pre-trained wav2vec2-base. On the left is a

subnetwork at 50% sparsity transfer with regular finetuning that contains subtle

language clusters – for example, when finetuning on ru, source masks from es, fr, it,

ky, nl induces a much higher PER compare to that from sv-SE, tr, tt, zh-TW. On

the right of Figure 3-5, we show that there is no cross-lingual PER degradation with

PARP, supporting our claim above.

3.4.4 Discovering a Single Subnetwork for 10 Spoken Lan-

guages

A major downside of pruning pre-trained SSL models for many downstream tasks is

the exponential computational and memory costs. In H2L and CSR, the same pruning

method needs to be repeatedly re-run for each downstream spoken language at each

given sparsity. Therefore, we investigate the possibility of obtaining a single shared

subnetwork for all downstream languages. Instead of finetuning separately for each
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Figure 3-5: (Left) Cross-lingual OMP mask transfer with regular subnetwork finetuning.
(Right) Cross-lingual OMP mask transfer with PARP. Last rows are RP. Values are
relative PER gains over same-language pair transfer (hence the darker the bettter).
Both are on H2L with pretrained wav2vec2.
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language, we construct a joint phoneme dictionary and finetune wav2vec2 and xlsr

on all 10 languages jointly in H2L and CSR. Note that PARP with joint-finetuning

can retrieve a shared subnetwork in a single run. The shared subnetwork can then

be decoded for each language separately. The right side of Figure 3-3 illustrates the

results.

Comparing joint-finetuning and individual-finetuning, in H2L, we found that the

shared subnetwork obtained via OMP has lower PERs between 60∼80% but slightly

higher PERs in other sparsity regions; in CSR, the shared subnetwork from OMP has

slightly worse PERs at all sparsities. Comparing PARP to OMP in joint-finetuning,

we found that while PARP is effective in the individual-finetuning setting (left of

Figure 3-3), its shared subnetworks are only slightly better than OMP in both H2L and

CSR (right of Figure 3-3). The smaller performance gain of PARP over OMP in pruning

jointly-finetuned models is expected, since the important weights for each language

are disjoint and joint-finetuning may send mixed signal to the adjustment step in PARP

(see Figure 3-6 for better illustration).

3.4.5 Does PARP work on Pre-trained BERT/XLNet?

We also analyzed whether Observation 1 holds for pre-trained BERT/XLNet on 9

GLUE tasks. Surprisingly, we found that there are also high (>98%) overlaps between

the 9 tasks’ IMP pruning masks. Given this observation, we replicated the cross-task

subnetwork transfer experiment (take subnetwork found by IMP at task A and finetune

it for task B) in BERT-Ticket (Chen et al., 2020b) on pre-trained BERT/XLNet with

PARP. Table 3.5 compares PARP (averaged for each target task) to regular finetuning,

hinting the applicability of PARP to more pre-trained NLP models and downstream

natural language tasks.

3.4.6 Implications

Observation 1 is consistent with the findings of probing large pre-trained NLP models,

that pre-trained SSL models are over-parametrized and there exist task-oriented

41



Table 3.5: Comparison of cross-task transfer on GLUE (subnetwork from source task
A is finetuned for target task B). Numbers are averaged acc. across source tasks for
each target task.

Method Averaged transferred subnetworks performance finetuned for
CoLA MRPC QNLI QQP RTE SST-2 STS-B WNLI MNLI

70% sparse subnetworks from pre-trained BERT
Same-task Transfer (top line) 38.89 75.57 88.89 89.95 58.37 89.99 87.34 53.87 82.56

Cross-task Transfer with PARP 28.48 75.98 87.12 90.40 59.69 89.59 86.25 54.62 81.61
Regular Cross-task Transfer (Chen et al., 2020b) 10.12 71.94 86.54 88.50 57.59 88.80 80.27 54.03 80.48

70% sparse subnetworks from pre-trained XLNet
Same-task Transfer (top line) 29.92 76.47 89.62 90.74 59.21 92.2 80.78 42.25 85.16

Cross-task Transfer with PARP 30.09 77.56 87.10 90.66 58.88 91.73 83.80 52.11 83.87
Regular Cross-task Transfer (Chen et al., 2020b) 11.47 74.16 85.21 89.11 55.80 90.19 75.61 42.25 82.65
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Figure 3-6: Conceptual sketch of pruning the few task-specific important weights in
pretrained SSL. (A) Task-aware subnetwork discovery(OMP/IMP) is more effective than
task-agnostic pruning (MPI) since it foresees the important weights in advance, via
multiple downstream finetunings. (B) PARP starts with an initial subnetwork given
by MPI. Observation 1 suggests that the subnetwork is only off by the few important
weights, and thus Step 2 revives them by adjusting the initial subnetwork.

weights/neurons. Figure 3-1 implies that these important weights only account for a

small part of the pre-trained speech SSL. In fact, a large body of NLP work is dedicated

to studying task-oriented weights in pre-trained models. To name a few, (Durrani

et al., 2020; Dalvi et al., 2019; Bau et al., 2018; Xin et al., 2019) measured, (Bau

et al., 2018; Dai et al., 2021; Kovaleva et al., 2019) leveraged, (Mu and Andreas,

2020; Goh et al., 2021) visualized, and (Voita et al., 2019; Dalvi et al., 2020; Cao

et al., 2021) pruned out these important weights/neurons via probing and quantifying
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contextualized representations. Based on Observation 1, we can project that these

NLP results should in general transfer to speech, see pioneering studies (Belinkov

and Glass, 2017; Belinkov et al., 2019; Chung et al., 2021a; Chowdhury et al., 2021).

However, different from them, PARP leverages important weights for UMP on the whole

network structure instead of just the contextualized representations.

We could further hypothesize that a good pruning algorithm avoids pruning out

task-specific neurons in pre-trained SSL (Lee et al., 2018; Guo et al., 2016; Molchanov

et al., 2019), see Figure 3-6. This hypothesis not only offers an explanation on why

PARP is effective in high sparsity regions and cross-lingual mask transfer, it also suggests

that an iterative method such as IMP is superior to OMP because IMP gradually avoids

pruning out important weights in several iterations, at the cost of more compute4.

Finally, we make connections to prior work that showed RP prevail (Blalock et al.,

2020; Chen et al., 2020b; Liu et al., 2018; Malach et al., 2020; Ramanujan et al., 2020)

– under a certain threshold and setting, task-specific neurons are less likely to get

“accidentally” pruned and thus accuracy is preserved even with RP.

3.5 Chapter Summary

In this chapter, we conduct extensive PARP and baseline (OMP and IMP) pruning

experiments on low-resource ASR with mono-lingual (pre-trained wav2vec 2.0 (Baevski

et al., 2020)) and cross-lingual (pre-trained XLSR-53 (Conneau et al., 2020)) transfer.

PARP finds significantly superior speech SSL subnetworks for low-resource ASR, while

only requiring a single pass of downstream ASR finetuning. Due to its simplicity, PARP

adds minimal computation overhead to existing SSL downstream finetuning.

• We show that sparse subnetworks exist in pre-trained speech SSL when finetuned

for low-resource ASR. In addition, PARP achieves superior results to OMP and IMP

across all sparsities, amount of finetuning supervision, pre-trained model scale,
4From Section 6 of (Frankle and Carbin, 2018): “iterative pruning is computationally intensive,

requiring training a network 15 or more times consecutively for multiple trials." From Section 1
of (Guo et al., 2016): “several iterations of alternate pruning and retraining are necessary to get
a fair compression rate on AlexNet, while each retraining process consists of millions of iterations,
which can be very time consuming."
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and downstream spoken languages. Specifically, on Librispeech 10min without

LM decoding, PARP discovers subnetworks from wav2vec 2.0 with an absolute

10.9%/12.6% WER decrease compared to the full model, without modifying the

finetuning hyper-parameters or objective (Section 3.4.1).

• PARP minimizes phone recognition error increases in cross-lingual mask transfer,

where a subnetwork pruned for ASR in one spoken language is adapted for

ASR in another language (Section 3.4.3). PARP can also be applied to efficient

multi-lingual subnetwork discovery for 10 spoken languages (Section 3.4.4).

• Last but not least, we demonstrate PARP’s effectiveness on pre-trained BERT/XL-

Net, mitigating the cross-task performance degradation reported in BERT-

Ticket (Chen et al., 2020b) (Section 3.4.5).
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Chapter 4

Finding Sparse Subnetworks in

End-to-End Speech Synthesis

4.1 Introduction

End-to-end text-to-speech (TTS)1 research has focused heavily on modeling techniques

and architectures, aiming to produce more natural, adaptive, and expressive speech in

robust, low-resource, controllable, or online conditions (Tan et al., 2021). We argue

that an overlooked orthogonal research direction in end-to-end TTS is architectural

efficiency, and in particular, there has not been any established study on pruning

end-to-end TTS in a principled manner. As the body of TTS research moves toward

the mature end of the spectrum, we expect a myriad of effort delving into developing

efficient TTS, with direct implications such as on-device TTS or a better rudimentary

understanding of training TTS models from scratch (Frankle and Carbin, 2018).

To this end, this chapter covers analyses on the effects of pruning end-to-end

TTS, utilizing basic unstructured magnitude-based weight pruning2. The overarching

message we aim to deliver is two-fold:

1We refer to end-to-end TTS systems as those composed of an acoustic model (also known as
text-to-spectrogram prediction network) and a separate vocoder, as there are relatively few direct
text-to-waveform models; see (Tan et al., 2021).

2Given that there has not been a dedicated TTS pruning study in the past, we resort to the most
basic form of pruning. For more advanced pruning techniques, please refer to (Gale et al., 2019;
Blalock et al., 2020).
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• End-to-end TTS models are over-parameterized; their weights can be pruned

with unstructured magnitude-based methods.

• Pruned models can produce synthetic speech at equal or even better naturalness

and intelligibility with similar prosody.

4.1.1 Background

To introduce our work, we first review two areas of related work:

Efficiency in TTS One line of work is on small-footpoint, fast, and parallelizable

versions of WaveNet (Oord et al., 2016) and WaveGlow (Prenger et al., 2019) vocoders;

prominent examples are WaveRNN3 (Kalchbrenner et al., 2018), WaveFlow (Ping

et al., 2020), Clarinet (Ping et al., 2019), HiFi-GAN (Kong et al., 2020a), Parallel

WaveNet (Oord et al., 2018a), SqueezeWave (Zhai et al., 2020), DiffWave (Kong

et al., 2021), WaveGrad 1 (Chen et al., 2021a), Parallel WaveGAN (Yamamoto

et al., 2020) etc. Another is acoustic models based on non-autoregressive generation

(ParaNet (Peng et al., 2020), Flow-TTS (Miao et al., 2020), MelGAN (Kumar et al.,

2019), EfficientTTS (Miao et al., 2021), FastSpeech (Ren et al., 2019, 2021)), neural

architecture search (LightSpeech (Luo et al., 2021)), diffusion (WaveGrad 2 (Chen

et al., 2021b)), etc. Noticeably, efficient music generation has gathered attention too,

e.g. NEWT (Hayes et al., 2021) and DDSP (Engel et al., 2020).

ASR Pruning Earlier work on ASR pruning reduces the FST search space, such

as (Xu et al., 2018). More recently, the focus has shifted to pruning end-to-end ASR

models (Yu et al., 2012; Shangguan et al., 2019; Wu et al., 2021; Lai et al., 2021b).

Generally speaking, pruning techniques proposed for vision models (Gale et al., 2019;

Blalock et al., 2020) work decently well in prior ASR pruning work, which leads us to

ask, how effective are simple pruning techniques for TTS?

3Structured pruning was in fact employed in WaveRNN, but merely for reducing memory overhead
for the vocoder. What sets this work apart is our pursuit of the scientific aspects of pruning end-to-end
TTS holistically.
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4.2 Preliminaries

  

   

LJSpeech 
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(B) Pruning Algorithms & Training(A) Model Setup (C) Pruned Model Evaluation

 
 

Naturalness
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input text:
Speech is not solved yet!

Trained 
Models

Figure 4-1: Illustration of our end-to-end TTS pruning setup. Left: three TTS
models are considered: Tacotron2, Transformer-TTS, and Parallel WaveGAN. By
default, we set the initial weights 𝜃0 to trained models 𝜃𝐷 on LJSpeech, but they can
also be randomly initialized 𝜃𝑅𝐼 . Middle: top row is the IMP Baseline, and bottom
row is PARP. Both are architecture-agnostic, and utilize UMP for retrieving initial
pruning mask 𝑚0. The only difference is that 𝑚0 is adjustable in PARP during training,
while being fixed in IMP. Both algorithms produce pruned subnetworks 𝑚⊙ 𝜃*𝐷 that
are finetuned on LJSpeech. Right: we evaluate pruned model synthetic speech’s
naturalness, intelligibility, and prosody via large-scale subjective and objective tests
across sparsities.

Prune-Adjust-Re-Prune (PARP) (Lai et al., 2021b) is a simple modified version

of IMP recently proposed for self-supervised speech recognition, showing that pruned

wav2vec 2.0 (Baevski et al., 2020) attains lower WERs than the full model under

low-resource conditions. Given its simplicity, here we show that PARP can be applied

to any sequence-to-sequence learning scenario. Similarly, given an initial model weight

𝜃0 and 𝒟, PARP can be described as (See Fig 4-1 for visualization):

1. Same as IMP’s Step 1.

2. Train 𝑓(𝑋; 𝜃0) on 𝒟. Zeroed-out weights in 𝜃0 receive gradient updates via

backprop. After 𝑁 model updates, obtain the trained model 𝑓(𝑋; 𝜃*𝐷), and

apply UMP on 𝜃*𝐷 to obtain mask 𝑚𝐷. Return subnetwork 𝑚𝐷 ⊙ 𝜃*𝐷.

Setting Initial Model Weight 𝜃0 In (Lai et al., 2021b), PARP’s 𝜃0 can be the

self-supervised pretrained initializations, or any trained model weight 𝜃𝑃 (𝑃 needs not

be the target task 𝐷). On the other hand, IMP’s 𝜃0 is target-task dependent i.e. 𝜃0 is

set to a trained weight on 𝒟, denoted as 𝜃𝐷. However, since the focus in this work is
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on the final pruning performance only, we set 𝜃0 to 𝜃𝐷 by default for both PARP and

IMP.

Progressive Pruning with PARP-P Following (Lai et al., 2021b), we also experiment

with progressive pruning (PARP-P), where PARP-P’s Step 1 prunes 𝜃0 at a lower sparsity,

and its Step 2 progressively prunes to the target sparsity every 𝑁 model updates. We

show later that PARP-P is especially effective in higher sparsity regions.

4.3 Experimental Setup

4.3.1 TTS Models and Data

Model Configs Our end-to-end TTS is based on an acoustic model (phone to

melspec) and a vocoder (melspec to wav). To ensure reproducibility, we used publicly

available and widely adopted implementations4: Transformer-TTS (Li et al., 2019)

and Tacotron2 (Shen et al., 2018) as the acoustic models, and Parallel WaveGAN (Ya-

mamoto et al., 2020) as the vocoder. Transformer-TTS and Tacotron2 have the same

high-level structure (encoder, decoder, pre-net, post-net) and loss (l2 reconstructions

before and after post-nets and stop token cross-entropy). Transformer-TTS consists

of a 6-layer encoder and a 6-layer decoder. Tacotron2’s encoder consists of 3-layer

convolutions and a BLSTM, and its decoder is a 2-layer LSTM with attention. Both

use a standard G2P for converting text to phone sequences as the model input. Parallel

WaveGAN consists of convolution-based generator 𝐺 and discriminator 𝐷.

Datasets LJspeech (Ito and Johnson, 2017) is used for training acoustic models

and vocoders. It is a female single-speaker read speech corpus with 13k text-audio

pairs, totaling 24h of recordings. We also used the transcription of Librispeech’s

train-clean-100 partition (Panayotov et al., 2015) as additional unspoken text5

used in TTS-Augmentation.

4Checkpoints are also available at ESPnet and ParallelWaveGAN.
5Both LJspeech and Librispeech are based on audiobooks.
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4.3.2 PARP Implementation

UMP is based on PyTorch’s API6. For all models, 𝜃0 is set to pretrained checkpoints

on LJspeech, and 𝑁 is set to 1 epoch of model updates. We jointly prune encoder,

decoder, pre-nets, and post-nets for the acoustic model; for vocoder, since only 𝐺 is

needed during test-time synthesis, only 𝐺 is pruned (𝐷 is still trainable).

4.3.3 Complementary Techniques for PARP

TTS-Augmentation for unspoken transcriptions The first technique is based

on TTS-Augmentation (Hwang et al., 2021). It is a form of self-training, where we

take 𝑓(𝜃𝐷) to label additional unspoken text 𝑋𝑢. The newly synthesized paired data,

denoted 𝒟𝑢 = (𝑋𝑢, 𝑓(𝑋𝑢; 𝜃𝐷)), is used together with 𝒟 in PARP’s Step 2.

Combining Knowledge-Distillation (KD) and PARP, with a teacher model denoted

as 𝑓(𝜃𝐷). The training objective in PARP’s Step 2 is set to reconstructing both ground

truth melspec and melspec synthesized by an (unpruned) teacher acoustic model

𝑓(𝜃𝐷).

4.3.4 Subjective and Objective Evaluations

We examine the following three aspects of the synthetic speech:

• Naturalness is quantified by the 5-point (1-point increment) scale Mean Opinion

Score (MOS). 20 unique utterances (with 5 repetitions) are synthesized and

compared across pruned models, for a total of 100 HITs (crowdsourced tasks) per

MOS test. In each HIT, the input texts to all models are the same to minimize

variability.

• Intelligibility is measured with Google’s ASR API7.

• Prosody via mean and standard deviation (std) fundamental frequency (𝐹0)

estimations8 and utterance duration, averaged over dev and eval utterances.

6PyTorch Pruning API
7https://pypi.org/project/SpeechRecognition/
8𝐹0 estimation with probabilistic YIN (pYIN) implemented in Librosa.
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We also perform pairwise comparison (A/B) testings for naturalness and intelligibility

(separately). Similar to our MOS test, we release 20 unique utterances (with 10

repetitions), for a total of 200 HITs per A/B test. In each HIT, input text to models

are also the same. MOS and A/B tests are conducted in Amazon Mechanical Turk

(AMT).

Statistical Testing To ensure our AMT results are statistically significant, we run

Mann-Whitney U test for each MOS test, and pairwise z-test for each A/B test, both

at significance level of 𝑝 ≤ 0.05.

4.4 Results
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Figure 4-2: Box plots for four independent MOS tests across configurations (pruned/un-
pruned acoustic models + pruned/unpruned vocoders). At each sparstiy, is the mean
and is the median MOS score over 100 HITs. Ground truth recordings (natural)
are included as the topline.

4.4.1 Does Sparsity improve Naturalness?

Fig 4-2 is the box plot of MOS scores of pruned end-to-end TTS models at 0%∼99%

sparsities with PARP. In each set of experiments, only one of the acoustic model or

vocoder is pruned, while the other is kept intact. For either pruned Transformer-TTS

or Tacotron2 acoustic models, their MOS scores are statistically not different from the

unpruned ones at up to 90% sparsity. For pruned Parallel WaveGAN, pairing it with
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an unpruned Transformer-TTS reaches up to 88% sparsity without any statistical

MOS decrease, and up to 85% if paired with an unpruned Tacotron2. Based on these

results, we first conclude that end-to-end TTS models are over-parameterized across

model architectures, and removing the majority of their weights does not significantly

affect naturalness.

Secondly, we observe that the 30% pruned Tacotron2 has a statistically higher

MOS score than unpruned Tacotron2. Although this phenomenon is not seen in

Transformer-TTS, WaveGAN, or at other sparsities, it is nonetheless surprising given

PARP’s simplicity. We can hypothesize that under the right conditions, pruned models

train better, which results in higher naturalness over unpruned models.

4.4.2 Does Sparsity improve Intelligibility?
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Figure 4-3: Top plots the synthetic speech WERs over sparsities for all model
combinations. Bottom compares the WERs for different pruning configurations.
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We measure intelligibility of synthetic speech via Google ASR, and Figure 4-3

plots synthetic speech’s WERs across sparsities over model and pruning configurations.

Focusing on the top plot, we have the following two high-level impressions: (1) WER

decreases at initial sparsities and increases dramatically at around 85% sparsity with

PARP (yellow and purple dotted lines). (2) pruning the vocoder does not change the

WERs at all (observe the straight red dotted line).

Specifically, for Transformer-TTS, PARP at 75% and PARP-P at 90% sparsities have

lower WERs (higher intelligibility) than its unpruned version. For Tacotron2, there is

no WER reduction and its WERs remain at ∼9% at up to 40% sparsity (no change

in intelligibility). Based on (2) and Section 4.4.1, we can further conclude that the

CNN-based vocoder is highly prunable, with little to no naturalness and intelligibility

degradation at up to almost 90% sparsity.

4.4.3 Does Sparsity change Prosody?

We used synthetic speech’s utterance duration and mean/std 𝐹0 across time as three

rough proxies for prosody. Fig 4-4 plots the prosody mismatch between pruned models

and ground truth recordings across model combinations. Observe PARP on Tacotron2

and on Transformer-TTS result in visible differences in prosody changes over sparsities.

In the top plot, pruned Transformer-TTS (yellow dotted line) have the same utterance

duration (+0.2 seconds over ground truth) at 10%∼75% sparsities, while in the same

region, pruned Tacotron2 (purple dotted line) results in a linear decrease in duration

(-0.2∼-0.8 seconds). Indeed, we confirmed by listening to synthesis samples that

pruning Tacotron2 leads to shorter utterance duration as sparsity increases.

In the middle plot and up to 80% sparsity, pruned Tacotron2 models have a much

large 𝐹0 mean variation (-20∼-7.5 Hz) compared to that of Transformer-TTS (-10∼-15

Hz). We hypothesize that PARP on RNN-based models leads to unstable gradients

through time during training, while Transformer-based models are easier to prune.

Further, PARP on WaveGAN (red dotted line) has a minimal effect on both metrics

across sparsities, which leads us to another hypothesis that vocoder is not responsible

for prosody generation.
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Figure 4-4: Top is utterance duration mismatch (in seconds), Middle is 𝐹0 mean
mismatch (in Hz), and Bottom is 𝐹0 std (in Hz). Mismatches are calculated against
ground truth recordings. Full model (0%) results are also included.

In the bottom plot and up to 80% sparsity, pruned models all have minimal 𝐹0

std variations (≤ 2 Hz) compared to 53Hz ground truth 𝐹0 std. We infer that at

reasonable sparsities, pruning does not hurt prosodic expressivity, due to lack of 𝐹0

oversmoothing (Tan et al., 2021; Zen et al., 2009).
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4.4.4 Does more finetuning data improve sparsity?

In (Lai et al., 2021b), the authors attain pruned wav2vec 2.0 at much higher spar-

sity without WER increase given sufficient finetuning data (10h Librispeech split).

Therefore, one question we had was, how much finetuning data is “good enough" for

pruning end-to-end TTS? We did two sets of experiments, and for each, we modify

the amount of data in PARP’s Step 2, while keeping 𝜃0 as is (trained on full LJspeech).

The first set of experiments result is Fig 4-5. Even at as high as 90% spar-

sity, 30% of finetuning data (∼7.2h) is enough for PARP to reach the same level of

naturalness as full data9. The other set of experiment is TTS-Augmentation for

utilizing additional unspoken text (∼100h, no domain mismatch) for PARP’s Step 2.

In Fig 4-3’s bottom plot, we see TTS-Augmentations (dark & light green lines) bear

minimal effect on the synthetic speech WERs. However, Table 4.1 indicates that

TTS-Augmentation PARP+seq-aug does statistically improve PARP in naturalness and

intelligibility subjective testings.
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Figure 4-5: Effect of amount of finetuning data in PARP’s Step 2 on MOS score. Model
is 90% pruned Transformer-TTS.

4.4.5 Ablations

Knowledge Distillation hurts PARP Surprisingly, we found combining knowledge

distillation from teacher model 𝑓(𝜃𝐷) with PARP significantly reduces the synthesis

9The effect of using less data to obtain 𝜃0 remains unclear.
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quality, see PARP+KD v.s. PARP in Table 4.1. Perhaps more careful tuning is required

to make KD work.

Importance of 𝜃0 Bottom plot of Fig 4-3 (black dotted line) and Table 4.1 (PARP

v.s. PARP-RI) demonstrate the importance of setting the initial model weight 𝜃0. In

both cases, we set 𝜃0 to random initialization (RI) instead of 𝜃𝐷 on LJspeech.

Effectiveness of IMP Table 4.1 shows the clear advantage of PARP-P over IMP at

high sparsities, yet PARP is not strictly better than IMP.

Table 4.1: A/B testing results. Each comparison is over 200 HITs. Bold numbers are
statistical significant under pairwise z test.

Proposal Baseline Sparsity Preference over Baseline

Level Naturalness Intelligibility

pruned Transformer-TTS + unpruned Parallel WaveGAN
PARP-P PARP 90% 57% 66%

95% 63% 64%
PARP+KD PARP 70% 40% 43%

90% 36% 27%
PARP-P IMP 90% 53% 51%

95% 64% 61%
PARP IMP 30% 54% 58%

50% 46% 54%
90% 42% 37%

PARP PARP-RI 10% 55% 57%
30% 55% 53%
50% 56% 67%
70% 53% 53%
90% 60% 56%

PARP+seq-aug PARP 10% 58% 58%
30% 52% 57%
50% 44% 41%
70% 57% 54%
90% 51% 56%

4.5 Chapter Summary

This chapter builds upon a recent ASR pruning technique termed PARP (Lai et al.,

2021b), with the intention of not only reducing architectural complexity for end-to-end
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TTS, but also demonstrating the surprising efficacy and simplicity of pruning in

contrast to prior TTS efficiency work. Our contributions are:

• We present the first comprehensive study on pruning end-to-end acoustic models

(Transformer-TTS (Li et al., 2019), Tacotron2 (Shen et al., 2018)) and vocoders

(Parallel WaveGAN (Yamamoto et al., 2020)) with an unstructured magnitude

based pruning method PARP (Lai et al., 2021b).

• We extend PARP with knowledge distillation (KD) and TTS-Augmentation (Hwang

et al., 2021) for TTS pruning, demonstrating PARP’s applicability and effective-

ness regardless of network architectures or input/output pairs.

• We show that end-to-end TTS models are over-parameterized. Pruned models

produce speech with similar levels of naturalness, intelligibility, and prosody to

that of unpruned models.

• For instance, with large-scale subjective tests and objective measures, Tacotron2

at 30% sparsity has statistically better naturalness than its original version; for

another, small footprint CNN-based vocoder has little to no synthesis degradation

at up to 88% sparsity.
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Chapter 5

Conclusion

This thesis proposes a simple and intuitive pruning method, PARP, for self-supervised

speech recognition and end-to-end speech synthesis. On the high-level, we show that

sparse subnetworks exist in modern speech processing models, and sparse subnetworks

attain similar performance as dense networks in recognition and synthesis.

Summary of Results. In the first study, we conduct experiments on pruning pre-

trained wav2vec 2.0 and XLSR-53 under three low-resource settings, demonstrating

(1) PARP discovers better subnetworks than baseline pruning methods while requiring

a fraction of their computational cost, (2) the discovered subnetworks yields over 10%

WER reduction over the full model, (3) PARP induces minimal cross-lingual subnetwork

adaptation errors, (4) PARP can discover a shared subnetwork for multiple spoken

languages in one pass, and (5) PARP significantly reduces cross-task adaptation errors

of pre-trained BERT/XLNet. In the second study, we then demonstrate PARP’s effec-

tiveness by pruning transformer-TTS and Parallel WaveGAN, finding the pruned TTS

models produce synthetic speech at equal or even better naturalness and intelligibility

with similar prosody. Beyond the scope of our study, we aspire PARP as the beginning

of many future endeavours on developing more efficient speech processing models.

Broader Impact. The broader impact of this thesis is making speech technologies

more accessible in two orthogonal dimensions: (i) extending modern-day speech
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technology to many under-explored low-resource spoken languages, and (ii) introducing

a new and flexible pruning technique to current and future speech processing models

that reduces the computational costs required for adapting (finetuning) them to

custom settings.
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