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Abstract
I present Pyrosome1, a generic framework for the verification of extensible, compo-
sitional compilers in Coq. Current techniques for proving compiler correctness are
generally tied to the specific structures of the languages and compilers that they sup-
port. This limits the extent to which these systems can be extended and composed. In
Pyrosome, verified compilers are fully extensible, meaning that to add a new feature
to a language simply requires defining and verifying the compilation of that single
feature, reusing the old correctness theorem to cover all other cases. This is made
possible by an inductive formulation of equivalence preservation that supports the
addition of new rules to the source language, target language, and compiler.

Pyrosome defines a formal, deeply embedded notion of programming languages
with semantics given by sorted equational theories, so all compiler-correctness proofs
boil down to type-checking and equational reasoning. My work supports vertical
composition of any compilers expressed in Pyrosome in addition to feature extension.
Since my design requires compilers to support open programs, my correctness guar-
antees support linking with any target code of the appropriate type. As a case study,
I present a multipass compiler from STLC through CPS translation and closure con-
version, and show that natural numbers, the unit type, recursive functions, and a
global heap can be added to this compiler while reusing the original proofs.

Thesis Supervisor: Adam Chlipala
Title: Associate Professor of Electrical Engineering and Computer Science

1Pyrosomes are tiny colonial organisms that connect to each other to form tube-shaped colonies
up to 60 feet in length. In my framework, compilers are similarly made up of many small, independent
components.
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Chapter 1

Introduction

Compiler verification is a laborious process compared to unverified implementation.

Nevertheless, numerous researchers have taken on the challenge [Leroy et al., 2016;

Chlipala, 2010; Kumar et al., 2014] due to the significant benefits of formal verification

[Yang et al., 2011]. Compilers are one of the most critical classes of programs to

which we can apply formal verification due to their presence in almost every software

pipeline. To verify a full software system requires verifying any compilers involved

[Erbsen et al., 2021], and even in unverified software stacks, the volume of code that

depends on a given compiler often warrants the work of providing strong guarantees.

Despite the clear desirability of formally verified compilers, the overwhelming ma-

jority of compilers in use today are unverified. Examining the current state of compiler

verification, existing efforts suffer one or more limitations with the end result that

a few common requirements of software systems cannot be satisfied by current tech-

niques. To begin with, existing projects’ internal mechanics are typically closely tied

to their chosen source languages, and often to their implementations. As a result,

augmenting their results to support more permissive linking and extensibility quickly

grows difficult [Kang et al., 2016; Patterson and Ahmed, 2019]. When verified com-

pilers support linking, it often is in the form of separate compilation, meaning that

they can only link programs that were compiled from the same source language and

sometimes only by the same compiler. While a useful result, separate compilation

does not permit, for example, linking with specialized low-level code written directly

9



bA → Bc ≜ ¬(bAc × ¬bBc)
bxc ≜ k x

bλ(x : A). ec ≜ k λ(x : bAc, k′ : ¬bBc). bec[k′/k],
where e : B

be e′c ≜ bind x := bec; bind y := be′c; x 〈y, k〉
bind x := e; e′ ≜ e[λx. e′/k]

Figure 1-1: CPS translation for STLC

in the target language. Furthermore, the state of the art in verification is ill-equipped

to remedy this. Correct compilers tend to be bespoke artifacts and, like most ver-

ification efforts, can be difficult to extend. Perconti and Ahmed [2014] proved a

correctness result that supported linking with arbitrary target programs, but their

multilanguage approach builds all languages in the compiler into the statement of the

correctness theorem, making it difficult to extend with new features. This limitation

is also the root cause of another key factor in the slow adoption of verified compila-

tion. Most major programming languages are living projects with routinely evolving

specifications. State-of-the-art verification efforts view source-language specifications

as single, monolithic entities. As a result, the kind of incremental improvements

one might expect to see in an actively evolving language pose a serious threat to at-

tempts at formal verification. While many such changes might be handled by effective

automation and proof engineering, the cross-cutting nature of specification changes

makes it difficult to estimate the cost of updating the verification since there is no

hard upper bound on the necessary revisions.

Pyrosome is a language-agnostic framework for compiler verification that ad-

dresses these concerns via a formal system of language and compiler modularity and

extension. Pyrosome provides a straightforward method of proving type and equiva-

lence preservation that is monotone under such extension. This allows us to add new

rules to a language, augment its compiler, and reverify it by only considering those

new rules. Similarly, the work required to update a language feature in a verified

compiler is limited to the set of dependent features.

As an informal example, consider the compiler b−c in Figure 1-1. It transforms

10



the simply typed lambda calculus (STLC) into continuation-passing style (CPS),

with the convention that the continuation is bound to variable k. This compiler

may be proven type-preserving without making use of Pyrosome by induction on

the input, with one proof case per syntactic form in the source language. To cover

the variable case, given Γ ` x : A in STLC, it suffices to derive that k x is well-

typed under the target context bΓc, k : ¬bAc. However, equivalence preservation

is typically more complicated. Existing work on compiler verification often utilizes

contextual equivalence, which relates each pair of terms that cannot be distinguished

by any context in a given language. Unfortunately, contextual equivalence is difficult

to reason about [Patrignani et al., 2019]. In particular, it plays poorly with language

extension since it can vary based on the inclusion of language features unrelated

to the terms under consideration. Language semantics in Pyrosome are defined via

equational theories, eliminating the dependency on arbitrary contexts. In practice,

many rules in these theories look similar to small-step operational semantics. For

example, to characterize the equivalence of terms in STLC requires two rules in the

language specification, beta and eta equivalence:

(λ(x : A). e) v = e[v/x] (1.1)

(λ(x : A). f x) = f (1.2)

Pyrosome turns these rules into an equivalence relation by taking their reflexive,

transitive, symmetric, congruence closure. I prove a generic theorem that allows

users of Pyrosome to prove equivalence preservation for a given compiler analogously

to an inductive proof of type preservation, with one proof case per equation in the

source-language specification. Consider Equation 1.1, the rule for beta equivalence.

When verifying the CPS translation, the proof obligation that Pyrosome generates

corresponding to this rule requires us to show b(λ(x : A). e) vc = be[v/x]c in the

target language’s equivalence relation. By evaluating the compiler and rewriting the

11



bnc ≜ k n, where n ∈ N
bset e := e′c ≜ bind x := bec; bind y := be′c;

set x := y in k 〈〉
bget ec ≜ bind x := bec; get x as y in k y

Figure 1-2: CPS mutation extension

term via target-language rules, we can do so roughly as follows:

b(λ(x : A). e) vc

= bind x := bλ(x : A). ec; bind y := bvc; x 〈y, k〉

= bind x := k λ(x : bAc, k′ : ¬bBc). bec[k′/k];

bind y := bvc; x 〈y, k〉

= (λx. bind y := bvc; x 〈y, k〉) λ(x : bAc, k′ : ¬bBc).

bec[k′/k]

= bind y := bvc; (λ(x : bAc, k′ : ¬bBc). bec[k′/k]) 〈y, k〉

= (λ(x : bAc, k′ : ¬bBc). bec[k′/k]) 〈bvc, k〉

= bec[bvc/x]

= be[v/x]c

To extend a language and compiler with new rules, it suffices to prove the appro-

priate conditions for the new rules just as we did for the base language. For example,

we might want to add a global store to our compiler from Figure 1-1. In Figure 1-2, I

sketch an extension to the compiler to add features for interacting with a global heap

to the source language by compiling them to CPS-compatible versions of the same

operations in the target. We can extend our original compiler, which did not feature

mutation in the source or target, with this addition by first embedding its output

into an extended CPS calculus with effectful operations, utilizing monotonicity to

guarantee well-typedness and equivalence preservation, then proving the appropriate

fact for each new case of the compiler and each additional source axiom.

12



1.1 Contributions

Concretely, I present the following novel contributions, with code in the attached

supplement:

• I mechanize an existing formalism for programming-language specification [Ster-

ling, 2019] in Coq.

• I define an inductive characterization of well-formedness for compilers between

languages encoded in Pyrosome and prove that it implies both type and equiv-

alence preservation.

• I characterize extensions of these specifications and compilers and prove theo-

rems enabling separate reasoning about and combination of such extensions.

• I present as a case study a multipass compiler starting with STLC that trans-

forms it into CPS and then performs closure conversion.

• I extend this compiler with natural numbers, the unit type, recursive func-

tions, and a global heap using the original correctness theorem to justify the

correctness of the existing components.

13
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Chapter 2

Concepts of Pyrosome

I begin by outlining the high-level functionality of Pyrosome via additional informal

examples before I go into the technical details of its implementation. Figure 2-1 shows

the grammars for STLC and various extensions. I use ellipses in each of the extensions

to indicate that it inherits all of the rules of the grammar it is extending. For example,

if we were to consider the language formed by extending STLC with naturals, then

we would have two listed value forms: naturals n and lambdas λ(x : A). e. I will use

+ to indicate language extension, writing STLC + Naturals to indicate the extension

of STLC with the natural-numbers feature.

Pyrosome’s greatest benefit is laying out a modular procedure for proving type

and equivalence preservation for compilers based on results about their constituent

components. I define a predicate Preserving(Lt, cmp, Ls) for this purpose, described

in more detail in section 3.3, which implies that cmp is a type- and equivalence-

preserving compiler from Ls to Lt. This predicate can be proven modularly. In fact,

proving Preserving(Lt, cmp, Ls) requires exactly one goal per syntactic form and one

per equation of Ls. As mentioned in chapter 1, this amounts to proving well-typedness

of each case of the compiler, just as if we were inducting on its input, and proving

that each rule t1 = t2 in the source language corresponds to a derivable equality

bt1c = bt2c in the target where I use b−c to indicate compilation by cmp.

If Ls = L1 + L2, for example STLC + Recursion, we can prove the necessary

cases for features from STLC and from Recursion separately. The Recursion cases

15



STLC: Naturals:
A,B ::= ... | A → B
v, v′ ::= ... | λ(x : A). e
e, e′ ::= ... | e e′

A,B ::= ... | nat
v, v′ ::= ... | n
e, e′ ::= ... | e+ e | e ∗ e
n ∈ N

Recursion: State:
A,B ::= ...
v, v′ ::= ... | fix f(x : A) := e
e, e′ ::= ...

A,B ::= ...
v, v′ ::= ...
e, e′ ::= ... | set e := e′ | get e

Figure 2-1: Language grammars

will depend on the definition of the STLC compiler since Recursion is an extension

of STLC, but the STLC cases do not have to be aware of Recursion or other po-

tential extensions, and all cases can be proven independently. To extend the CPS

compiler to support State, we can add the cases from Figure 1-2 and prove the ad-

ditional obligations in the same manner. While the syntax of State is simple, its

equations depend on a few features not described here: the addition of heaps H as

finite maps from N to N, configurations 〈H, e〉 that pair computations with heaps, and

evaluation contexts E, including a plug operation E[e]. I leave the details of these

constructs to section 4.2. For now, we consider the proof obligation corresponding to

the source-language rule 〈H,E[get n]〉 = 〈H,E[H(n)]〉, which describes evaluation of

get expressions, to demonstrate how they come into play. To prove that this equation

is preserved in the target, we must show that the compilation of the left-hand term is

equivalent to the compilation of the right-hand term, which we have by the following

16



equational reasoning:

b〈H,E[get n]〉c

= 〈H, bE[get n]c〉

= 〈H, bind x := bget nc; bEc[x]〉

= 〈H, bind x := (bind x := bnc; get x as y in k y); bEc[x]〉

= 〈H, bind x := get n as y in k y; bEc[x]〉

= 〈H, get n as y in (λ(x : nat). bEc[x]) y〉

= 〈H, get n as y in bEc[y]〉

= 〈H, bEc[H(n)]〉

= 〈H, bind x := H(n); bEc[x]〉

= b〈H,E[H(n)]〉c

Close observation of this proof and the earlier one for beta reduction will show that

they amount to computing normal forms for both the left- and right-hand sides, if we

think of our equations as operational rules going from left to right. In this case, we

have 〈H, bEc[H(n)]〉, third from the bottom, as a common normal form. While this

pattern does not apply to all cases, I automate it in the mechanization to solve the

vast majority of goals in my case study.

One benefit of working with equivalence preservation is that compiler correctness

is transitive. For example, we could choose to include fix f(x : A) := e in our base

calculus instead of λ(x : A). e and implement λ(x : A). e as an extension. We

would then define our base CPS transform on Recursion instead of STLC, as shown

in Figure 2-2. Later, we could add nonrecursive functions to the source language by

means of a preliminary pass defined by adding the rule bλ(x : A). ec = fix f(x :

bAc) := bec to a compiler that otherwise leaves syntactic forms intact. We can

prove separately that this compiler and the CPS compiler for Recursion preserve

equivalences and then compose the results to verify the 2-stage compiler. Should we

ever replace our CPS compiler with a different phase, we can simply compose the

desugaring of lambda with that new pass.

Since our compilers operate on open terms, equivalences preserved by Pyrosome

17



bA → Bc ≜ ¬(bAc × ¬bBc)
bxc ≜ k x

bfix f(x : A) := ec ≜ k fix f(x : bAc, k′ : ¬bBc) := bec[k′/k],
where e : B

be e′c ≜ bind x := bec; bind y := be′c; x 〈y, k〉
bind x := e; e′ ≜ e[λx. e′/k]

Figure 2-2: CPS for recursion

compilers support arbitrary linking with target programs. Specifically, if t1 = t2 in

Ls, then for any target substitution γ with the appropriate domain, γ(bt1c) = γ(bt2c)

where b−c denotes compilation by any type- and equivalence-preserving compiler.

Consider the following program:

callTwice ≜ λ(f : nat → nat). λ(x : nat).

(λ(_ : nat). f x) (f 0)

When passed f and x, it first calls f on 0 and then returns f x. Let natFun ≜
¬(nat × ¬nat). If we run the compiler from Figure 1-1 on callTwice, we get a term

of type ¬(natFun × ¬natFun) passed to some continuation k. I use these target

functions, which use a halt primitive typed ¬nat, to illustrate compiled behavior:

haltEarly ≜ λ(x : nat, k : ¬nat). halt x

callWithOne ≜ λ(f : natFun). f 〈1, halt〉

If we substitute

cont ≜ λ(c : ¬(natFun × ¬natFun)).

c 〈haltEarly , callWithOne〉

for k in bcallTwicec, then running the resultant program will call haltEarly on 0 first.

It will then halt with result 0 and drop the continuation containing callWithOne.

By the guarantees of Pyrosome, we therefore know that for any term f such that

f = callTwice in STLC, bfc[cont/k] = halt 0 in the theory of the target language.

18



This example illustrates the importance of using equational theories to capture a

language’s intended semantics as opposed to contextual equivalence. In pure STLC,

callTwice is contextually equivalent to λ(f : nat → nat). f , but compiling the latter

with this continuation would produce a program that halts with result 1. Equational

theories allow us to specify which equalities we expect to hold for a given calculus,

whereas contextual equivalence implicitly includes all equations that are consistent

with the observations available in that calculus, whether intentional or incidental. In

fact, due to the modular nature of equational theories, all judgments in Pyrosome

are monotonic under language extension, so it even supports linking with programs

written in any extension of the target language.

Language designers could abuse this modular nature to lay out incompatible sets

of rules if they choose, but since each source-language equation generates a compiler-

verification obligation, invalid extensions will simply be unimplementable, other than

by trivial compilers. To pick a concrete example, consider beta reduction again:

(λ(x : A). e) v = e[v/x]. Notice that we limit this equation to call-by-value, rather

than allowing full beta reduction. This restriction prevents us from relating callTwice

and λ(f : nat → nat). f in our theory since we cannot reduce the internal application

in callTwice before we have evaluated its argument, f 0. If we instead allowed full

beta reduction, these two terms would be equivalent in our source-language semantics.

However, we would run into a problem in the process of proving compiler correctness

for our CPS transformation since the compiler fixes an order of evaluation due to the

order it passes terms their continuations.
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Chapter 3

Formalism and Metatheory

3.1 Language Specifications

One of the keys to my approach is a formal mechanism for programming-language ex-

tension that solves the well-known expression problem [Wadler, 1998; Krishnamurthi

et al., 1998] for the particular goals of compiler correctness. Standard presentations

of programming languages using inference rules are informally modular in that it

is straightforward to write down another rule in the language, but like functional

programs over syntax [Krishnamurthi et al., 1998], formal properties of languages

generated by inference rules do not easily generalize upon the addition of new con-

structs. I use a formal description of programming languages and their extensions

to draw on existing ideas in the literature about the expression problem as it relates

to functional programs, extensible syntax, and logical statements [Swierstra, 2008;

Delaware et al., 2013a,b; Allais et al., 2018].

One goal of Pyrosome is for researchers and developers to be able to specify their

languages and compilers as closely as possible to the way they would on paper with

inference rules. Generalized algebraic theories (GATs) [Sterling, 2019] represent this

style of definition well. Prior work describes various other generic formalizations

of what characterizes a programming language [Felleisen, 1991]. However, I find

GATs to be well-structured for the purpose of extensibility. For a comparison to

some alternatives, see section 5.1. In Pyrosome, program terms are n-ary trees of
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syntax, with the available syntactic constructs determined by the object language

under consideration. Each term has a sort that serves as a combination of its syntactic

class and a well-formedness judgment for that class. Language modules define both

terms and sorts, as well as equational axioms, but I will begin by focusing on term

definitions. I use the following notation to represent terms, where ellipses represent

space-delimited sequences of 0 or more:

x, c ∈ string

term ::= #c term... | x | (term)

Terms come in two forms: object-language syntax written #c term... where c is

the name of the syntactic form and term... are subterms, and metavariables x. One

key detail to the design of this framework is the distinction between object-language

variables and framework-level metavariables. Programming-languages research typ-

ically treats metavariables in language definitions as ranging over concrete terms.

GATs make this concept explicit by including metavariables as part of the syntax,

allowing us to represent such patterns directly as ASTs. Object-language binding

structures are defined separately as a user-defined language module, so they do not

affect my handling of metavariables. In the mechanization I use de Bruijn indices

for object-language variables. For example, I write the term λ(x : A). 〈x, x〉 in

the Coq formalization as #"lambda" "A" (#"pair" #"hd" #"hd") where "A" is a

metavariable, #"hd" is de Bruijn index 01, and all other strings represent the ex-

pected object-language syntactic forms. However, I present named variables in the

rest of this thesis for readability.

A language specification in Pyrosome is built up as a list of inference rules that

each either declare a new syntactic form and the conditions under which it is well-

formed or a new equation that relates two terms. As an example, consider the def-

inition of STLC in Figure 3-1. The first three rules define STLC’s term syntax and

its associated typing judgments, and the last rule declares β-equivalence. We encode

these rules in Pyrosome in Figure 3-2. They retain the same structure, with two
1The name refers to the head of the environment viewed as a list.
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` A type ` B type

` A → B type

Γ ` e : A → B Γ ` e′ : A

Γ ` e e′ : B

Γ, x : A ` e : B

Γ ` λ(x : A). e : A → B

Γ, A ` e : B Γ ` v : A

Γ ` (λ(x : A). e) v = e[v/x] : B

Figure 3-1: STLC

notable exceptions: First, every metavariable must be given an explicit sort above

the line, as a basic tenet of my framework. Second, to maintain a value/expression

distinction, we define separate sorts for the two and use an explicit return operator

to inject values into the sort of expressions.

We will use the rules in Figure 3-2 to illustrate some important points about

using Pyrosome. The first three rules are term rules that declare new syntactic

forms and assign them sorts given the sorts of their subterms. In this thesis, I use

“term” to refer to constructions in the object-language syntax, which in this case

includes not only expressions and values but also types, and I use “sort” to refer to

the syntactic classes and their judgment forms that categorize my terms. Thus, the

rule declaring #"->" "A" "B" to be a type is a term rule that assigns this syntax the

sort #"ty". The rules for application and lambda both demonstrate an important

feature of Pyrosome, which is the ability to manage implicit subterms. From the

perspective of Pyrosome’s theory, each metavariable declared above the horizontal

line is a subterm that must be included in the AST. This would be infeasible to write

by hand, so term rules declare which arguments they expect to be written down by

listing them after the name of the new syntactic form below the line. In the case

of application, I expect the user to provide "e" and "e’", while I assume that the

environment and types can be inferred. Pyrosome does not commit to a particular

inference strategy, instead leaving inference up to tactics run during proof of term

well-formedness. I discuss this in section 4.5. For lambda, I choose to require that

the input type "A" be written down. This decision makes the standard tradeoff of

simplifying inference at the expense of brevity. I could just as easily leave lambda’s
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Definition stlc : lang := {[l/subst
[:| "A" : #"ty", "B": #"ty"

-----------------------------------------------
#"->" "A" "B" : #"ty" ];

[:| "G" : #"env",
"A" : #"ty",
"B" : #"ty",
"e" : #"exp" "G" (#"->" "A" "B"),
"e’" : #"exp" "G" "A"
-----------------------------------------------
#"app" "e" "e’" : #"exp" "G" "B" ];

[:| "G" : #"env",
"A" : #"ty",
"B" : #"ty",
"e" : #"exp" (#"ext" "G" "A") "B"
-----------------------------------------------
#"lambda" "A" "e" : #"val" "G" (#"->" "A" "B") ];

[:= "G" : #"env",
"A" : #"ty",
"B" : #"ty",
"e" : #"exp" (#"ext" "G" "A") "B",
"v" : #"val" "G" "A"
----------------------------------------------- ("beta")
#"app" (#"ret" (#"lambda" "A" "e")) (#"ret" "v")
= #"exp_subst" (#"snoc" #"id" "v") "e"
: #"exp" "G" "B" ]]}.

Figure 3-2: Definition of STLC in Pyrosome
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Γ ` e : nat
Γ ` get e : nat

Γ ` e : nat Γ ` e′ : nat
Γ ` set e := e′ : unit

Γ ` E : nat⇝ A

Γ ` 〈H,E[get n]〉 = 〈H,E[H(n)]〉 : A

Γ ` E : unit⇝ A

Γ ` 〈H,E[set n := m]〉 = 〈H[n 7→ m], E[〈〉]〉 : A

Figure 3-3: STLC state extension

"A" implicit in Figure 3-2, but it would require more powerful inference to instantiate.

The last rule in Figure 3-2 declares equivalence between an applied lambda on the left

and the substitution of its argument into its body on the right. I defer an explanation

of the substitution calculus used here to section 4.3 and use standard notations as in

Figure 3-1 in the rest of the thesis.

Now that we have a base calculus in mind, we can discuss extensions to this

language. In fact, the rules for STLC already extend our substitution calculus, but

we will use a new example to avoid getting sidetracked by the details of substitution.

Figure 3-3 gives the rules in traditional notation of an extension that provides a global

store both containing and indexed by natural numbers. As mentioned in chapter 2,

this extension also depends on heap and evaluation-context extensions, not shown

here. Our goal is then to construct a language that contains all of the rules from both

Figure 3-1 and Figure 3-3 (as well as the elided rules they depend on) such that we

can type-check terms like λ(x : nat). set x := 42, a function that takes in a number

and sets the cell at that index to 42. Fortunately, since languages in Pyrosome are

lists of rules, we construct this language by concatenating the lists.

3.2 Compilers and Correctness

There is a central tension in the area of compiler correctness between expressivity

and modularity, and this extends to what compilers I consider in this work. In order
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to fully support both linking and compiler extension, I require compilers to operate

on terms with arbitrary free metavariables. Furthermore, I want compilation to be

invariant under substitution of metavariables, i.e. bγ(e)c = bγc(bec), where γ(e)

denotes the metavariable substitution γ applied to the term e. I therefore define

my compilers via finite maps from source-language sort and term names to target-

language sorts and terms. These finite maps are then folded over a source term,

looking up each constructor, to compile it. Then, just as we can extend our languages

by appending new rules, we can extend our compilers by appending new mappings.

This style formalizes patterns that appear in prior work on compositional compiler

correctness [Perconti and Ahmed, 2014; New et al., 2016; Mates et al., 2019]. However,

it does impose some limitations, especially around optimization. See section 5.3 for

a discussion of how I anticipate optimization will fit into Pyrosome.

Recall the CPS transformation outlined in chapter 1, in particular the global-store

extension from Figure 1-2. In Pyrosome, this compiler would be represented as a table

indexed by the constructors on the left of the ≜ and containing the terms on the right

of the ≜. This is straightforward for constants like naturals but requires a little insight

for syntax with subterms like get e and set e := e′. Since we include metavariables

in our term representation, we can represent the terms on the right by plugging a

metavariable in for each recursive call to the compiler. In other words, our compilation

table would map the label for “get” to the term “bind x := e; get x as y in k y” where

e is a framework metavariable. To compile a term using such a compilation table, we

traverse its syntax tree from the leaves up and replace each syntactic form with the

corresponding term in the range of the table, filling that term’s metavariables with

the appropriate compiled subterms. Metavariables in a term undergoing compilation

remain constant. For example, to compile the term #"get" "v", we proceed as

follows: As "v" is a metavariable, it is compiled to itself. We then look up "get"

in our table and replace "e" with "v" in the associated term, giving us “bind x :=

v; get x as y in k y”.
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3.3 Framework Proof Structure

A significant contribution of this work is my definition of a predicate over compilers

that follows the structure of the source language and a proof that this predicate implies

type and equivalence preservation. To demonstrate why this predicate is essential to

our extensibility results, consider a standard proof of equivalence preservation for our

CPS pass for STLC before we extend it. We assume type preservation in this example

for simplicity and walk through the term equivalence case. Given two terms e1 and

e2 such that Γ `STLC e1 = e2 : A, we have to show that bΓc `CPS be1c = be2c : bAc.

We proceed by induction on the proof of Γ `STLC e1 = e2 : A, which requires us to

consider reflexivity, transitivity, symmetry, congruence, and beta reduction. The first

three hold either trivially or by the inductive hypothesis. Congruence requires that

the compiler be a homomorphism with respect to substitution, which we have by the

structure of compilers in Pyrosome. This leaves us the beta-reduction case, where we

must prove that the right- and left-hand sides compile to equivalent terms, although

we omit the proof here.

If we examine the structure of this proof sketch, the only case that depends on

the rules of STLC or the definition of the CPS compiler is beta reduction. The rest

can be proven using invariants common across all Pyrosome languages and compilers.

Since they are independent of the compiler under consideration, we can prove them

generically, so we focus on equations from the source language definition like beta

reduction. Consider how the proof must be extended to add a new feature, for

example product types. Intuitively, the proof case for beta reduction should remain

the same, and we must add new cases for the first and second projections out of

a pair. Such an extension is logically straightforward, so we would expect it to be

reasonable to formulate mechanically.

However, the structure of our theorem statement, that for all STLC terms, or

for all terms made of product constructs, compilation preserves equivalence, is ill-

suited to such extension since it tells us nothing about terms with a mix of product

operations and STLC constructs. To properly reuse our proof about STLC, we need

27



to encapsulate it in a lemma that can be extended inside the induction on equivalence

proofs.

To describe the proof obligations associated with a given source language and

compiler, I define the inductive predicate Preserving(Lt, cmp, Ls), which takes as

input a target language Lt, compiler cmp, and source language Ls. This predicate

has one case for each kind of rule that can be appended to Ls. Each case requires

that the compiler satisfies Preserving for the tail of Ls and the appropriate condition

for the head depending on the kind of rule:

• For a new sort rule, the compiler must map it to a well-formed sort in the target.

• For a new term rule, the compiler must map it to a well-formed term in the

target.

• For an equation, the compiler must map the left- and right-hand sides to equiv-

alent terms in the target.

Since Preserving is defined pointwise over the rules of the input language, it is

invariant under language extension, as shown in Theorem 1. If two compilers cmp1

and cmp2 map L1 and L2 respectively to a shared target T , we can append them to

produce a compiler from L1+L2 to T . Theorem 1 generalizes this fact to account for

an arbitrary shared prefix in the case that L1 and L2 are extensions of some existing

language.

Theorem 1 (Compiler extension). Let Lpre + L1 and Lpre + L2 be well-formed lan-

guages such that the rule names in L1 and L2 are disjoint. If Preserving(Lt, cmppre+

cmp1, Lpre+L1) and Preserving(Lt, cmppre+cmp2, Lpre+L2), then Preserving(Lt, cmppre+

cmp1 + cmp2, Lpre + L1 + L2).

The key to proving this property is that each case of Preserving only relies on

earlier cases’ language rules and mappings in the compiler. Since the sorts, terms,

and contexts that make up each rule of a language can only reference constructs from

earlier rules, it is sufficient at each rule to be able to compile only the previous rules.

For example, when compiling STLC using the CPS compiler, the proof obligation for
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lambdas references a prefix of the compiler that does not include application, since

the application rule comes later in the language specification. This ordering is key to

the modularity of Preserving since it means that proofs of earlier obligations remain

valid as the compiler is extended. In addition, we can use a weakening principle on

the proof of Preserving for one extension so that it correctly fits on top of the other

extension thanks to monotonicity.

We bridge the gap between these well-structured proof obligations and type and

equivalence preservation in Theorem 2, which states that the predicate described

above implies the universally quantified semantic properties. The proof of this theo-

rem is by mutual induction over all of the judgment forms in Pyrosome, where for each

judgment, we must show that it is preserved by compilation. The term equivalence

case resembles the earlier proof we sketched for the CPS pass starting from STLC,

except that we generalize the beta-reduction case to a lemma about the preservation

of each equivalence written in the language description. This lemma relies on two

related principles: weakening and monotonicity. We disallow compilers from over-

writing old cases, so we can safely use weakening lemmas to extend the compilers

in the hypotheses provided by Preserving so that they refer to the whole compiler.

To finish lifting each obligation to cover the whole compiler and source language,

we appeal to the fact that all judgments in Pyrosome are monotonic under language

extension.

Theorem 2 (Preserving implies semantic preservation). Let Ls and Lt be well-formed

languages, and let cmp be a compiler. If Preserving(Lt, cmp, Ls), then cmp is a type-

and equivalence-preserving compiler from Ls to Lt.

Thanks to this theorem, we prove semantic preservation for each compiler in Pyro-

some by way of Preserving. Our mechanization automatically breaks down the neces-

sary proof obligations and the resulting goals are quite amenable to both automation

and human reasoning since they feature no quantification at the Coq level and can be

proven by direct construction of either well-formedness or equivalence derivations in

the target language. In chapter 2 I show how to solve one such equational-reasoning
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obligation for the state extension to the CPS compiler.

We can also embed the output of our compilers into larger target languages using

Theorem 3. I use Lt ⊆ L′
t in the theorem in the literal sense that all rules in Lt

are also in L′
t. Recall the CPS-transformation extension in chapter 1 that added

global state. It compiled a source-language extension adding stateful operations to a

related target-language extension that was not present in the target of the core CPS

transformation. We expand the target language of the core compiler with Theorem 3

so that we can verify the extension.

Theorem 3 (Compiler codomain embedding). If we know Preserving(Lt, cmp, Ls)

and Lt ⊆ L′
t, then it follows that Preserving(L′

t, cmp, Ls).

3.4 Why Equivalence Preservation

There are many interpretations of compiler correctness in the literature [Patterson

and Ahmed, 2019]. The original CompCert [Leroy et al., 2016] work proved whole-

program simulation of the source language by the target language and used that to

show trace refinement. Simulation of closed programs is inherently vertically com-

positional, which allowed CompCert’s proof of correctness to be divided cleanly by

pass. However, modern software relies on linking code from multiple sources, which

a correctness property of this form does not cover [Ahmed, 2015].

Some work on verified compiler correctness solves the linking problem for programs

that share a specific low-level target language [Wang et al., 2014]. It is not clear how to

modify such a framework to allow modular addition of new target-language features.

Pyrosome is designed for proving that compilers are type- and equivalence-preserving

with respect to source and target equational theories. I claim that these properties are

the critical ones for notions of compiler correctness. Equivalence preservation is of-

ten discussed in terms of contextual equivalence [Ahmed and Blume, 2011; Devriese

et al., 2016]. However, as our callTwice example in chapter 2 showed, contextual

equivalence can in fact be too strong to admit desirable language extensions. For

example, in source languages with nondeterministic concurrency, a compiler might
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want to pick a particular schedule for some portion of the code, thereby rendering it

equivalent to a sequential program.

In this setting, there is one important potential blind spot: an equivalence-

preserving compiler has the liberty to equate unintended values. At the most basic

level, the trivial compiler that maps all programs to one that returns 0 is equivalence-

preserving. On a similar note, both equivalence-preserving and fully abstract com-

pilers can exchange true and false, or perform other isomorphic but potentially un-

desirable transformations. Fortunately, both of these issues can be resolved by fixing

an expected mapping from observable values in the source to ones in the target, for

example mapping all naturals and Booleans to themselves when they exist in both

languages. These properties can be checked on top of my framework, say by reasoning

about the effect of the compiler on an expression that is just a metavariable standing

for a constant.
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Chapter 4

Case Study

To validate Pyrosome, I present as a case study a 3-pass compiler for STLC that

converts it to CPS and then performs closure conversion. I then extend this compiler

to support natural numbers, the unit type, recursive functions, and mutable state to

demonstrate the reusability of Pyrosome compilers. Figure 4-1 displays the rules of

our STLC calculus. This figure is largely the same as Figure 3-1, but I make the

value-expression distinction explicit. I use ret v, a construct from the substitution

calculus, to embed values into the sort of expressions.

Our CPS translation targets a calculus of continuations, shown in the top half of

Figure 4-2. Since our computations do not return, we eliminate the return type from

their judgment form, writing Γ ` e to indicate a well-formed computation and ¬A as

the type of a continuation that accepts input of type A. We still retain the judgment

form Γ ` v : A for values, however. To bridge the gap between source-language expres-

sion judgments and target-language computations, we translate expression judgments

` A type ` B type

` A → B type

Γ ` e : A → B Γ ` e′ : A

Γ ` e e′ : B

Γ, x : A ` e : B

Γ `v λ(x : A). e : A → B

Γ, x : A ` e : B Γ `v v : A

Γ ` ret (λ(x : A). e) (ret v) = e[v/x] : B

Figure 4-1: STLC

33



` A type

` ¬A type

Γ ` v : ¬A Γ ` v′ : A

Γ ` v v′
Γ, x : A ` e

Γ ` λ(x : A). e : ¬A

Γ, x : A ` e Γ ` v : A

Γ ` (λ(x : A). e) v = e[v/x]

Γ ` v : ¬A
Γ ` (λ(x : A). v x) = v : ¬A

bA → Bc ≜ ¬(bAc × ¬bBc)
bret vc ≜ k bvc

bλ(x : A). ec ≜ λ(p : bAc × ¬bBc). let 〈x, k〉 := p in bec
be e′c ≜ bind x := bec; bind y := be′c; x 〈y, k〉

bind x := e; e′ ≜ e[λ(x : B). e′/k], where Γ, k : ¬B ` e

Figure 4-2: Continuation calculus and CPS for STLC

Γ ` e : A to computation judgments bΓc, k : ¬bAc ` bec, using the variable k for

the continuation. The second half of Figure 4-2 gives the translation from STLC

into our CPS calculus, which also utilizes products in the target language. We prove

equivalence preservation for this compiler via my predicate described in section 3.3.

For each extension to each pass, we prove a theorem of the same form as Theorem 4,

and then we rely on the theorems in section 3.3 to connect them and prove type and

equivalence preservation. We prove similar properties for all languages and exten-

sions mentioned in this section but elide most of them to avoid repetition. Section

4.5 discusses the statements and proofs of these theorems in Coq.

Theorem 4 (The CPS translation for STLC satisfies Preserving). The CPS transla-

tion satisfies Preserving with STLC as the source language and our CPS calculus as

the target.

For the second pass of my case study, I perform closure conversion, materializing

the environment as a tuple value. In Figure 4-3, I show the closure calculus that

replaces the CPS calculus. To construct environment tuples in a compositional way,

we compile CPS environments to closure-converted types and map CPS judgments

Γ ` e and Γ `v v : A to closure-converted judgments z : bΓc ` bec and z : bΓc `v

bvc : bAc, using the variable z for the environment. Since I do not address type

variables in this case study, I use a fused closure form clo 〈(z : A × B).e, v〉 that

34



` A type

` ¬A type

Γ ` v : ¬A Γ ` v′ : A

Γ ` v v′
z : A× B ` e Γ ` v : A

Γ ` clo 〈(z : A× B).e, v〉 : ¬B

z : A× B ` e Γ ` v : A Γ ` v′ : B

Γ ` clo 〈(z : A× B).e, v〉 v′ = e[〈v, v′〉/z]

z : A `v v : ¬B
z : A `v clo 〈(z : A× B).v[z.1/z] z.2, z〉 = v : ¬B

b·c ≜ unit
bΓ, x : Ac ≜ bΓc × bAc

b¬Ac ≜ ¬bAc
bλ(x : A). ec ≜ clo 〈(x : bAc).bec, z〉

bv v′c ≜ bvc bv′c

Figure 4-3: Closure conversion (excerpt)

captures the combined behavior of the existential, pair, and function in the normal

translation. I define two equations on closures, a beta rule and an eta rule. The beta

rule evaluates the body of the closure, passing in a tuple formed of its argument and

its environment. The eta rule states that if we have a closure v with a free variable

z, then it is equivalent to a new closure that stores z as its environment and calls v

in its body.

4.1 Recursive Functions

We extend STLC with recursive functions, written fix f(x : A) := e, as a new value

of function type, as shown below:

Γ, f : A → B, x : A ` e : B

Γ ` fix f(x : A) := e : A → B

Γ, f : A → B, x : A ` e : B Γ ` v : A

Γ ` (fix f(x : A) := e) v = e[(fix f(x : A) := e)/f, v/x] : B
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Since we assign this construct the same type as lambdas, we can use the same

application form as well by providing a reduction rule for application of a recursive

function. To perform CPS translation on recursive functions, we add an analogous

construct for recursive continuations to the CPS calculus and translate from the first

set of rules to the second:

Γ, f : ¬A, x : A ` e

Γ ` fix f(x : A) := e : ¬A

Γ, f : ¬A, x : A ` e Γ ` v : A

Γ ` (fix f(x : A) := e) v = e[(fix f(x : A) := e)/f, v/x]

bfix f(x : A) := ec = fix f(z : bAc × ¬bBc) := let 〈x, k〉 := z in bec

Building on the result for the core CPS transformation, we show that the compiler for

the recursion extension satisfies Preserving. Since we have already proven Theorem 4,

this proof requires fulfilling three new obligations: one to show that the compiler

is type-preserving on recursive functions, one to show that reduction of recursive

functions is preserved, and one for substitution, which we discuss in section 4.3.

Theorem 5 (The CPS translation for recursion satisfies Preserving). The extended

CPS translation satisfies Preserving with STLC + Recursion as the source language

and our CPS calculus extended with recursive continuations as the target.

Closure conversion for recursive functions requires a bit more care. The interaction

between recursive functions as formulated in our first two calculi and the environment

tuple are a bit complex when all of the behavior is fused into a single construct, so

we separate out a fixpoint combinator in our closure-conversion language:

Γ ` v : ¬(¬A× A)

Γ ` fix v : ¬A

Γ ` v : ¬(¬A× A) Γ ` v′ : A

Γ ` (fix v) v′ = v 〈fix v, v′〉

bfix f(x : A) := ec = fix clo 〈(z : bΓc × ¬(¬A× A)).bec[〈〈z.1, z.2.1〉, z.2.2〉/z], z〉
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The translation features some verbose tuple rearrangement, but in essence it splits

the recursive function into the fixpoint combinator and its argument, which is si-

multaneously closure-converted. The separation of the two parts means that we can

apply closure laws as normal to reason about the body and cordon off the recursion

so that the two concerns do not interfere with each other.

4.2 Global State and Evaluation Contexts

We provided the rules of our source-level global-state extension in Figure 3-3. As we

discussed, these rules depend on two other extensions, one describing the behavior of

global heaps and another that sets up evaluation contexts. Global heaps are given

their own sort, with the basic axioms of finite maps. Evaluation contexts serve as

an interesting example of cross-extension interaction. When defining pure reductions

for features like functions and products, evaluation contexts are unnecessary since

Pyrosome provides congruence. However, they are essential for the global-heap rules

since they allow us to describe performing a stateful operation inside some larger

program. From a formal perspective, they let us focus on a subterm of the computa-

tion while defining an equation on the whole configuration so that we can access the

heap. Figure 4-4 shows the core constructs of our evaluation-context extension on

the first line, as well as the contexts for STLC as an example. Plug and the empty

context are common to all languages with evaluation contexts, so they form the core

extension. We add evaluation contexts in for each construct with evaluable subterms

as new pieces of syntax belonging to a sort of evaluation contexts with judgment form

Γ ` E : A ⇝ B and define how plug acts on them to produce filled expressions. We

can then use equational reasoning in our proofs to decompose terms and find their

redices.

Since our CPS translation uses bind x := e; e′ to sequence computations, we

actually compile away evaluation contexts in our first pass. The bottom part of Fig-

ure 4-4 shows the translation for the core operations as well as for STLC’s evaluation

contexts. This translation maps source-language judgments Γ ` E : A⇝ B to target
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Γ ` [ ] : A⇝ A

Γ ` E : A⇝ B Γ ` e : A

Γ ` E[e] : B

Γ ` e : A

Γ ` [ ][e] = e : A

Γ ` E : A⇝ B → C Γ ` e : B

Γ ` E e : A⇝ C

Γ ` v : B → C Γ ` E : A⇝ B

Γ ` v E : A⇝ C

Γ ` E : A⇝ B → C Γ ` e : B Γ ` e′ : A

Γ ` (E e)[e′] = E[e′] e : C

Γ ` v : B → C Γ ` E : A⇝ B Γ ` e : A

Γ ` (v E)[e] = v E[e] : C

b[ ]c ≜ k xh

bE[e]c ≜ bind x := bec; bEc
bE ec ≜ bind x := bEc; bind y := bec; x 〈y, k〉
bv Ec ≜ bind y := bEc; bvc 〈y, k〉

Figure 4-4: Evaluation-context extension with STLC

judgments Γ, k : ¬B, xh : A ` bEc, translating evaluation contexts into computations

with an extra free variable we call xh by convention. Plug then turns into a bind

operation, and holes behave similarly to return operations. Since evaluation contexts

disappear in the CPS translation, they do not affect closure conversion.

With evaluation contexts established, the translation for our heap operations is

minimal. Recall the CPS pass from Figure 1-2, restated here:

bset e := e′c ≜ bind x := e;bind y := e′; set x := y in k〈〉

bget ec ≜ bind x := e; get x as y in k y

To match the pattern of the CPS calculus, the heap operations now each take their

continuation as a subterm. This inversion is why we no longer need to worry about

evaluating effects inside of a context. Since this extension does not interact directly

with functions, we can reuse the CPS version with our closure-converted calculus. We

still have to do a little more than write an identity compiler, however, since closure

conversion changes the expected judgment form, which interacts with the binder in
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Γ, A `v 0 : A `↑ : Γ, A ⇒ Γ

` γ : Γ ⇒ Γ′ Γ′ `v v : A

Γ `v γ(v) : A

` γ : Γ ⇒ Γ′ Γ′ ` e : A

Γ ` γ(e) : A

Γ `v v : A

Γ ` ret v : A

` γ : Γ ⇒ Γ′ Γ′ `v v : A

Γ ` γ(ret v) = ret γ(v) : A

` id : Γ ⇒ Γ

` γ : Γ ⇒ Γ′ Γ `v v : A

` 〈γ, v〉 : Γ ⇒ Γ′, A

` γ : Γ ⇒ Γ′ Γ `v v : A

Γ `v 〈γ, v〉(0) = v : A

` γ : Γ ⇒ Γ′ γ′ : Γ′ ⇒ Γ′′

Γ ` γ ◦ γ′ : Γ ⇒ Γ′′
` γ : Γ ⇒ Γ′ Γ `v v : A

Γ ` 〈γ, v〉◦ ↑ = γ : Γ ⇒ Γ′

Figure 4-5: Substitution calculus (excerpt)

get x as v in e:

bset v := v′ in ec ≜ set bvc := bv′c in bec

bget x as v in ec ≜ get x as bvc in e[〈z, x〉/z]

4.3 Substitution

So far, I have assumed the existence of variables and substitution operations as con-

venient. I outline the formal structure of these constructs below. In summary, I use

an explicit substitution calculus, implemented as a language module within Pyro-

some. This calculus is a derivative of the one found in Sterling [2019], but simply

typed rather than dependently typed to fit within the bounds of my current proof

automation. In addition, this calculus makes a distinction between values and expres-

sions. Since substitutions can only contain values, this calculus naturally supports

call-by-value language features. Figure 4-5 shows some of the rules of this calculus.

Variables are actually repeated applications of the weakening substitution ↑ to

the index 0, acting as de Bruijn indices. When we apply a nonempty substitution to

0, it grabs the first value, whereas composing the same substitution with ↑ discards

that value. Notably missing here is how substitutions interact with the constructs

in our extensions. However, this is to be expected. If we were to mechanize the
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case study outside of Pyrosome, we would have to define a substitution function

that operates over each language’s syntax, with one case per syntactic form in each

language feature. Instead, we take advantage of the systematic form of language

definitions in Pyrosome to programmatically generate corresponding equations from

language syntax rules. While the resulting rules form part of the compiler’s trusted

specification, they can be straightforwardly audited. For example, we generate the

following rules for STLC:

Γ ` e : A → B Γ ` e′ : A ` γ : Γ′ ⇒ Γ

Γ ` γ(e e′) = γ(e) γ(e′) : B

Γ, A ` e : B ` γ : Γ′ ⇒ Γ

Γ `v γ(λA. e) = λA. 〈γ, 0〉(e) : A → B

Since we implement substitution internally to Pyrosome just like any other fea-

ture, different languages can adapt their own notions of binding as necessary. Indeed,

our CPS calculus replaces the rules for expressions that have return types with rules

for nonreturning computations. Thanks to the modularity provided by Pyrosome, we

reuse the behavior of substitutions on values rather than fully implementing substi-

tution twice. Closure conversion targets the same substitution calculus as CPS, so

we have little duplication.

4.4 Summary of Case-Study Implementation

While my case-study compiler itself is simple, the range of language extensions I

include shows that Pyrosome allows me to add multiple effects to my language and

verify them independently of each other and STLC’s pure reasoning. I combine

all of the separate correctness proofs of my components to show correctness of the

amalgamated multipass compiler using Theorem 2 and my modularity theorems:

Theorem 6 (Equivalence preservation of the case-study compiler). The case-study

components form an equivalence-preserving compiler from STLC + Naturals + Re-
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Definitions Theorem Statements Proofs
1054 259 112

Figure 4-6: Case-study lines of code by purpose

cursion + Unit + State to the closure-conversion calculus augmented with a fixpoint

combinator, state operations, the unit type, and product types.

To assess the work required to use Pyrosome, I categorize the lines of code required

for proving the Preserving predicate for all of my compilers by purpose in Figure 4-6.

I designate three categories: language and compiler definitions, theorem statements,

and proofs. Compiler definitions include any helper functions and shorthand I define.

I leave out import statements, hints, and blank lines. While it may seem that I have

many lines of definitions and theorem statements for a rather modest compiler, the

code in these categories is quite sparse since I take advantage of vertical space to

improve its formatting. Theorem statements have a fixed format, so although they

represent a reasonable proportion of the code, they should not pose a burden to users

of Pyrosome. Each theorem consists of a list of dependencies followed by the language

or compiler to be verified. Most remarkably for this case study, I manage to prove the

majority of my theorems using single tactics. These tactics are generic over language

extensions in Pyrosome, as I discuss in section 4.5. While they are currently limited

to simple types, this case study demonstrates that Pyrosome has the potential to

substantially lower the burden of proof engineering for its users.

4.5 Inference and Automation

As mentioned in section 3.1 and section 4.4, I rely on automation for type inference

and to do most of the heavy lifting in my proofs. To support type inference, I define

a separate elaboration judgment in parallel with each well-formedness judgment of

Pyrosome, including term well-formedness, language well-formedness, and Preserving.

These versions take in an extra parameter, the preelaboration syntax, and ensure

that the term, language, or compiler under scrutiny lines up with it. I then derive

the full term, language, or compiler with tactics that generate correct-by-construction
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Derive fix_cc
SuchThat (elab_preserving_compiler

(cc ++ prod_cc_compile ++ subst_cc)
(fix_cc_lang ++ ... ++ value_subst)
fix_cc_def fix_cc fix_cps_lang)

As fix_cc_preserving.
Proof.

auto_elab_compiler.
cleanup_elab_after

(reduce;
term_cong; try term_refl;
eapply eq_term_trans;
[eapply eq_term_sym;
eredex_steps_with cc_lang "clo_eta"|];

by_reduction).
Qed.

Figure 4-7: Coq proof for recursive continuations

elaborations. The tactics I developed are fairly general and bear no ties to any of

the languages in my case study, including to the substitution calculus. For example,

they would likely do just as well on languages with dynamic scope or linearity. Their

primary limitation at present is with regard to languages that have type equations, for

example to handle substitution of type variables. They can handle certain instances

of type equalities but are not yet advanced enough to automate polymorphism or

dependent typechecking. It is still possible to model such languages in Pyrosome, but

they currently require far more manual proofs. I discuss this further in section 5.5.

Since all terms in the case study are simply typed, however, I fully automate all term

and language elaboration and well-formedness proofs in my examples. I also largely

automate proofs of equivalence preservation using a tactic to normalize both sides of

the equation. To do so, I rely on the convention that the equations specified in each

language can be read left-to-right as reduction rules. This approach turned out to

be very effective, solving almost all of the equivalence-preservation goals in my case

study.

While I have exhibited two of my compiler-correctness theorems in chapter 4

using English, I provide one example in Figure 4-7 of the direct Coq statement
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and proof to convey the detailed workings of my framework. I use Coq’s Derive

command to indicate that this theorem constructs an elaborated language fix_cc

while proving that fix_cc is an elaboration of fix_cc_def and satisfies the predi-

cate Preserving(Lt, cmppre+fix_cc, Lpre+Ls), where Lt is the language passed as the

second argument to the predicate, cmppre is the compiler passed as the first argument,

and Lpre is the source language of cmppre. I use ++, Coq’s built-in append function

on lists, to build Lpre and cmppre from smaller components. In this proof, my main

tactic auto_elab_compiler only solves 2 out of 3 of this theorem’s proof obligations,

and the remaining obligation requires a little finesse. I must show that the behavior

of substitution on CPS-calculus recursive functions is preserved by the translation.

To do so, I use eta expansion for closures in the proof, so I cannot solve it solely by

beta reduction. I first reduce both sides of the equation as much as possible. This

leaves us with two instances of the fix v combinator, whose arguments I must equate.

I go under the combinator using congruence, apply the eta law on the left-hand side

in the appropriate orientation, and solve the goal by my reduction tactic.
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Chapter 5

Related and Future Work

5.1 Alternative Generic Frameworks

The principle benefit of GATs [Sterling, 2019] over most generic frameworks for

programming-language metatheory [Felleisen, 1991; Delaware et al., 2013a,b] is its

presentation via equational theories rather than operational semantics. Felleisen

[1991] gives meaning to its programs by an arbitrary termination predicate and a

contextual-equivalence relation defined in terms of that predicate. As discussed in

chapter 2, contextual equivalence is too strong for extensible reasoning. I, by design,

choose not to include every reasonable equation in a given language since equations

that may be reasonable to include, say, in a pure language interact poorly with ef-

fectful extensions. By using minimal equational theories wherever possible, users of

Pyrosome increase the compatibility and extensibility of their developments. Ad-

ditionally, since I do not rely on evaluation, I can reason about fully normalizing

languages and extensions in the same way as Turing-complete ones.

Prior work on modular metatheory and language extensibility mechanized a sys-

tem in Coq that covered components like language interpreters, including modular

soundness properties [Delaware et al., 2013a,b], in the style of Swierstra [2008]. Al-

lais et al. [2018] also built a framework for reasoning about binding, renaming, and

translation that bears some similarities to this work. However, both projects incor-

porate object-language binding and substitution into their frameworks, rather than
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implementing them as a first-class feature. While this is attractive for ease of use

since it lifts substitution reasoning into the metatheory, it restricts the generality of

the framework.

The K Framework [Roşu and Şerbănută, 2010] has built an extensive ecosystem

of generic language-specification tooling, and their logic is powerful enough to express

a variety of binders internally [Chen and Roşu, 2020]. The project has also recently

expanded to cover certified proofs of the behavior of individual programs [Chen et al.,

2021]. However, they do not address the higher-order concerns of verified compilation

and compiler extensibility that I cover in this work.

5.2 Multilanguage Semantics

Existing literature documents some of the uses of multilanguage semantics, including

in compiler verification [Matthews and Findler, 2009; Perconti and Ahmed, 2014;

Ahmed, 2015]. However, rather than use a formal framework to describe the way these

works combine languages, the authors design ad-hoc multilanguages for their specific

use cases. As a result, they cannot exploit the generic properties of language extension

that I take advantage of. Furthermore, since they use contextual equivalence in their

multilanguages in their specifications of compiler correctness [Perconti and Ahmed,

2014], they cannot extend their compilers with new supported features or additional

passes. Related work takes steps towards generalizing the key elements of this line of

research so as to better support modular reasoning and extensibility [Bowman, 2021]

by expressing compiler cases as operational rules, but it is still limited by its use of

contextual equivalence.

5.3 Optimization

My current formulation of compilers precludes any real attempt at an optimizing

compiler since I maintain the invariant bγ(e)c = bγc(bec) syntactically. This forces

my compilers to generate the same code for each occurrence of a syntactic form,
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even when some of them could be optimized. However, I still see a way to make

optimization work within Pyrosome. While for extensibility’s sake, my translations

from one language to another cannot optimize, intralanguage optimization seems

much more feasible. Consider an arbitrary function o : term → term such that

for any well-formed term e : t in some language, e = o(e) : t in that language.

I should be able to insert such a function into a vertically composed sequence of

translations and still derive semantic equivalence preservation of the composition. In

this way, optimization passes would have the freedom to manipulate the program tree

arbitrarily so long as they respect the semantics. The key to this approach is that

since optimization occurs within one language unlike translation, it can directly relate

the input to the output. The technique described above is not perfect. Working with

an arbitrary function in the middle of the compiler gives up on the extensibility of

whatever language it operates on. I hope to explore the design space of optimizations

in future work to see if there is a middle ground that can both express standard

optimizations and retain some level of extensibility.

5.4 Modeling Pyrosome’s Equational Theories

As-is, theorems proven about compilation using Pyrosome include the initial source-

language and final target-language specifications in their trusted base, in addition

to the core definitions of the framework. I hope to bridge the gap between existing

formal semantics and ones defined in Pyrosome so that end users can benefit from

the extensibility of engineering done in Pyrosome without having to trust Pyrosome’s

definitions. The most important step in this process is to develop models of target-

language theories implemented by verified low-level systems. I hope in the future to

target established projects like CompCert [Leroy et al., 2016] and Bedrock [Erbsen

et al., 2021] so that upper levels of a compiler can use the flexibility of Pyrosome

while benefitting from established codebases beneath.
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5.5 Advanced Type Systems

Pyrosome was designed to support a wide range of features at both the term and type

levels. The current theory should support a variety of interesting type-level features,

such as polymorphism, linearity, or dependent types. For example, I have defined

a variant of my substitution language that includes type-level substitutions so as to

support polymorphic or dependent types. However, in this thesis I chose to focus

on simple types as they were adequate to present the features of the framework and

allowed for effective proof automation. More complex type systems should fit natu-

rally within Pyrosome with either additional manual effort or improved automation

techniques.
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