
Model-based Control for Robot Manipulation Tasks
with High-dimensional State Spaces

by

Bilha-Catherine "Bilkit" W. Githinji

B.S., University of Washington (2016)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

May 13, 2022

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Julie A. Shah

Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students



2



Model-based Control for Robot Manipulation Tasks with

High-dimensional State Spaces

by

Bilha-Catherine "Bilkit" W. Githinji

Submitted to the Department of Electrical Engineering and Computer Science
on May 13, 2022, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Long horizon manipulation tasks are typically composed of sub-tasks with varying
complexity. One phase of the task, for example, may require a continuous action space
and another may be more efficiently solved using a discrete action space. Similarly,
complexity in the state space may require analogous abstractions in order to apply
classical planning and control methods; e.g., viewing a symbolic representation versus
pixel-based representation. A common approach to addressing long horizon tasks is
to develop a hierarchical system with a fixed state representation and a set of discrete
and continuous action spaces to solve components of the task. However, tasks with
high-dimensional state spaces present a problem for this approach where the fixed
representation is ill-fit for solving certain phases of the task. This work motivates an
alternative where learnt abstractions of the state space allow a hierarchical system
to do coarse-to-fine reasoning of representation information to solve a task more
effectively. We demonstrate a prototype of such an adaptive system and compare its
performance with a system that has fixed representations. The prototype was tested
in simulated table-top experiments as well as physical experiments with the Franka
Emika Panda arm. The prototype outperformed the baselines in all long horizon cloth
manipulation tasks by a margin of up to 20% and matched baseline performance in
the rope domain.

Thesis Supervisor: Julie A. Shah
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Chapter 1

Introduction

Robot manipulation is a frontier of robotics research that has recently made rapid

progress thanks to advances in machine learning and its application to sensing, per-

ception and reinforcement learning. Research groups like Google Brain and OpenAI

have stunned the world with systems capable of human-like dexerity, e.g., solving a

Rubicks Cube while balancing it in a single robot hand [30]. The methods under-

lying these solutions incorporate with machine learning components that efficiently

solve seemingly intractable manipulation problems. In particular, deep learning has

enabled decision-making algorithms to operate directly over high-dimensional inputs,

like pixel observations, and thus largely void the need to manually design state rep-

resentations [22]. With increasing task complexity, however, researchers have pivoted

towards learning low-dimensional inputs from images to increase the efficiency and

generalisation capabilities of downstream planning and control frameworks. Deter-

mining what information should be summarised in the low-dimensional input is a

non-trivial problem, and in cases where elements of the task vary (e.g., visual and

physical variations), popular solutions that learn and fix representations are limited

[14].

Many decision-making problems are formulated as Markov Decision Processes

(MDPs), which define an interactive process between a robot and its environment.

The robot’s behaviour is determined by solving an MDP using Dynamic Program-

17



ming, Reinforcement Learning and other optimisation algorithms. This kind of for-

mulation strongly depends on the notion of a state, a summarisation of task-relevant

information about a robot and its environment.

1.1 The Notion of State

The problem of defining and estimating the state of the environment is at times

posed as a representation learning problem, as frequently seen in computer vision. In

many scenarios, the environment state is grounded in image observations. So, there is

a natural dimensionality reduction problem; determining how to extract information

from high-dimensional data into a succinct state description that characterises it,

or, for our purposes, best aids task execution. As the environment becomes more

complex, however, more variables are needed to capture an expressive summary, which

instantiates a curse of dimensionality problem. That is, optimisation with respect to

more complex state descriptions becomes more challenging, and often intractable.

It is desireable then to learn state representations with as low dimensionality as is

appropriate for solving a task. Many robotics problems involve systems whose state

is fairly straightforward to describe in low dimensions, but let’s consider the richer

space of object manipulation.

1.2 Object Manipulation

Dealing with objects introduces a combinatorial aspect to manipulation problems

and it contributes significantly to the curse of dimensionality. There is, virtually, an

unbounded variety of object types, and within each class is a vast range of shapes

and sizes, for example. Object manipulation usually require contact with the environ-

ment, so, depending on the task, a manually defined state description will encapsulate

an object label or identifier, simple geometric parameters, a pose, etc. The number of

dimensions of these representation spaces grow exponentially with increasing object

multiplicity.
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To simplify manipulation tasks, researchers often restrict the range of objects to a

small set within the same class or adjacent classes. Another example, tasks like pick-

and-place, where the robot transports an object from one location to another, often

scope out complex object geometries to more directly address the grasping problem.

One simplification that this work concerns is the strong assumption that researchers

typically make about object rigidity.

Assuming object rigidity helps to reduce state descriptions to a small set of vari-

ables that convey key information, but is unreasonable for solving real-world object

manipulation. While useful for addressing established research questions, these as-

sumptions don’t transfer well to questions that consider real-world settings where

objects have high-dimensional state. In such domains manually deriving a concise

state descriptions becomes a massive bottleneck. There is little intuition about how

to identify relevant information in high dimensions and the standard hand-crafted

representations used by many controllers don’t necessarily have clear analogues in

high-dimensions - e.g., the meaning of "pose" becomes elusive. Richer state descrip-

tions are necessary for real-world manipulation tasks, but one paralysing obstacle is

the lack of intuition about what information is relevant and how to quantify it in

lower dimensions.

1.3 Motivation

Simple learnt representations are desired for integration with the optimisation al-

gorithms underlying most controllers. They provide a means of automatically filtering

task-relevant information from the environment observations. However, they come at

the cost of expressivity. When addressing tasks with high-dimensional state spaces,

this cost becomes untenable. It induces a task-conditioned representation selection

problem, whereby an optimal representation is chosen from a set of candidates. If

the controller were applied to a task that deviates from the conditional task, then the

representation may be sub-optimal to a potentially detrimental extent. This scenario
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commonly occurs in multi-stage tasks where popular methods use multiple controllers

to execute parts of the task, or an adaptive controller that engages different modes

depending on the task phase. In this work, we consider the latter approach and pro-

pose to view the variable modes as fluid representations.

1.4 Overview

This thesis proposes a novel approach to solving mult-stage tasks with controllers

than optimise over adaptive representations. Our main contributions include the

following:

• An analysis of the trade-offs between employing various representations for solv-

ing short-horizon and multi-stage tasks.

• An implementation of a proof of concept adaptive control framework that dy-

namically filters state information to tailor trajectory tracking solutions to local

parts of the state space.

• A benchmark against baselines that demonstrates the task performance lim-

itations of fixing the learnt representation for the duration of a long horizon

task.

• A physical setup that testes the prototype in a real world setting.

Chapter 2 contextualises our proposed approach by drawing relations to repre-

sentation learning, hierarchical control and adaptive control. It reviews various de-

formable object representations that were successfully used in classical planning and

control and explains how integrating machine learning has enabled these approaches

to address increasingly more complex manipulation tasks. Further, it highlights the

limitations of using past methods in long horizon task settings.

A hybrid model-based controller with a mutable representation of the environment

is described in Chapter 3 along with details of our problem formulation. Fundamen-

20



tally, our approach leverages techniques from representation learning to overcome the

challenges of modelling high-dimensional systems and draws ideas from the divide-

and-conquer paradigm to implement a coarse-to-fine strategy for long horizon trajec-

tory tracking.

The proposed hybrid controller is evaluated in a suite of simulation experiments

and benchmarks presented in Chapter 4. The benchmarks show that the hybrid con-

troller outperforms baselines that exist in strong prior art. The chapter closes with

interprets of the results in using visualisations and case studies. In preparation for

real-world experiments, Chapter 5 provides a description of a physical system that

reproduces the simulated experiments. Figure 5-6 lays out the architecture of a phys-

ical implementation of the system.

Chapter 6 concludes this report with suggested extensions of our approach to re-

lated deformable object manipulation problems and areas beyond robot manipulation

where control optimisation is hindered by high-dimensionality of the state; e.g., doing

manipulation with changing number of objects (assembly/disassembly), soft robotic

control, and humanoid control.
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Chapter 2

Background

The work in this thesis advances ideas from representation learning, hierarchical con-

trol and adaptive control. Sections 2.1-2.2 review prior works that leveraged low-

dimensional representations to reduce state complexity for object manipulation tasks.

Hierarchical approaches to long horizon control problems are addressed by Section

2.3.

2.1 Representations for Non-Rigid Objects

Previous works in object manipulation have developed low-dimensional represen-

tations for use in traditional planning and control frameworks to reduce the com-

plexity of systems with large and high-dimensional state. Early work often optimised

the representations to contain the minimal information required to complete a task.

For instance, graphical and topological state descriptions were successfully used for

planning complex rope knotting sequences [24, 55, 38]. These sparse representations

contained information about the topology; e.g., the number and identity of cross-

ings in the rope configuration. As a result, these representations were insufficient

for tying functional knots (e.g., fastening a shoe lace). Manipulation tasks gradually

increased in complexity and demanded motion planning and control solutions. There

was a need for representations that took into account the dynamical properties of

ropes, cloth and 3D deformable objects. Lower-level representations such as linear
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and mesh mass-spring models were designed for surgical knotting and cloth folding

tasks [51, 57, 50, 40]. Other representations include deformation models that were

used by pick-and-place planners to solve quasi-static tasks; precise rope and cloth

shaping, for example [10, 19]. Some even addressed dynamic tasks like high-speed

knot tying, dynamic cloth unfolding and ”in air” knotting [54, 11, 38]. While these

representations offer higher expressivity, their fitness for a specific task hinges on

careful parameter tuning - an impracticality for scaling to real-world domains.

Machine learning has played an increasingly important role in robotic control, es-

pecially in deformable object manipulation, to solve state estimation problems includ-

ing system identification and state representation learning. Deisenroth et al. (2011)

and Power & Berenson (2020) proposed probabilistic dynamics models that increased

the efficiency of model-based policy search algorithms by steering them away from

states with high uncertainty [6, 33], as estimated by Gaussian Processes or an ensem-

ble of neural models. Simple mechanical models (the classical and inverted pendulum)

were used in both cases to represent complex systems; e.g., a real world unicycle sys-

tem and a ball on the end of a string. Integrating data-driven system identification

with traditional state representations is a viable approach to control problems with

complex systems. However, the same treatment does not translate well to systems

in the deformable object domain where hand-crafted analogues typically yield high

aleaotoric uncertainty. This thesis is partially motivated by limitations in this area.

2.2 Learning State Representations

Modelling the behaviour of deformable objects is particularly challenging because

they are under-actuated systems with high dimensional state and non-linear dynam-

ics. We take inspiration from state representation learning literature, in particular

[22, 27, 56, 29], to develop the dynamics model described in Chapter 3. Supervised

learning methods have been used to learn how to represent and estimate the dynamics
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of rope and cloth. Contrastive learning, however, has provided an avenue for learn-

ing object-centric representations in a self-supervised manner [25]. Sundaresan et al.

(2020) extended the technique in Manuelli et al. (2020) to learn task-specific geomet-

ric representations by incorporating supervision for untying dense knots [45, 9]. Their

task-oriented representation was a key addition to established knot-theoretic planning

algorithms [50, 24], but it relied on human supervision to identify the task-relevant

features, which does not scale well to real-world applications. The core of these ap-

proaches was the idea of learning key points that summarised important information

about grasping objects. The key points indicated parts of the object that were use-

ful for a particular task; e.g., identifying the heel of a shoe as a graspable region.

Yan et al. (2020) approached the representation learning problem from a different

angle applying ideas from contrastive predictive coding to learn a low-dimensional

state representation and non-linear dynamics jointly for rope and cloth manipulation

[56, 29]. In this framework, latent features were optimised for maximising forward

prediction accuracy for their Model Predictive Control (MPC) algorithm. This body

of work showed that learning representations in an self-supervised manner was an

highly effective approach to reducing high-dimensional state. However, there is little

work that extends these approaches to long horizon object manipulation tasks in the

real world. Long horizon, or more generally multi-stage tasks, can often be composed

into a sequence sub-tasks. The individual sub-tasks may require a continuous action

space or a discrete action space in order to complete a task more efficiently. For

example, a table clearing requires discrete actions for selecting items to be moved

and continuous actions for physically removing them. Similarly, complexity in the

state space may require analogous abstractions in order to apply classical planning

and control methods; e.g., viewing a symbolic representation versus pixel-based rep-

resentation.
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2.3 Multi-Stage (Long Horizon) Tasks

Typically a hierarchical approach is required to effectively and efficiently per-

form long horizon tasks. A long history of approaches have achieved impressive

results on rope shaping and cloth folding tasks, some of which have a long horizon

[5, 26, 51, 53, 56, 15]. One of the most common hierarchical approaches is to ap-

ply learning from demonstration to solve DOM tasks; i.e., to use human-guidance

to scope the search space for motion planners and controllers. The key idea is to

provide a either reference trajectory or a sequence of way-points (i.e., sub-goals) in

the action space that a policy mimics, dramatically simplifying object modelling and

cost function estimation [4, 1, 41]. The reference may also be grounded in the ob-

servation space, in which case a control algorithm tracks the trajectory [40, 39, 28].

One limiting factor of these approaches is that a controller may not be able to reach

the sub-goals effectively if there is enough distribution shift such that the reference

context is no longer relevant at execution time. Hence, it is of primary interest

in this thesis to invest in object modelling and to leverage latent derivatives of the

observation space to solve multi-stage tasks with robust demonstration tracking. Fur-

thermore, we postulate that these latent representations should not be fixed over the

duration of long horizon tasks. Inspired by divide-and-conquer paradigms computer

vision that quickly reduce the problem search space, we propose an adaptive control

framework that varies the low-dimensional state representation in a coarse-to-fine

manner to benefit local tracking of a long horizon trajectory [36, 31, 58]. We find

a similar approach in model-free RL that implemented a coarse-to-fine strategy to

augment an RL agent that attends over pixel inputs via Q-attention [18, 17]. This

prior work does not address deformable object manipulatoin.

An alternative to trajectory tracking is a recent innovation by Lin et al. (2020)

called DiffSkill, a hierarchical approach to solving food preparation tasks using tools.

This framework was developed to solve sequential manipulation tasks that involved

shaping and cutting cooking dough with tools. The general idea was to learn action
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primitives from a set of simulated demonstration trajectories. The action primitives,

dubbed "skills", are a system of neural models that represent a policy, reward estima-

tor, feasibility estimator and an image encoder. Similar to the proposed architecture

in Chapter 3, the low-level system that executes the skills operates over a latent space

generated by the encoder. To conduct a long horizon task, a planner optimised over

the action primitives to produce a high-level action sequence: e.g., moving the dough

to a target location, rolling out and cutting it in half. The differences between this

work and our proposed method lie in the nature of the task and the architecture of

the hierarchical approach. For example, degree of precision is higher in our proposed

set of tasks, in that the interactions between the controller and the object are more

nuanced; e.g., while both are challenging, creating a rectangular fold requires different

reasoning than using tools to make large deformations of the object. Additionally,

while DiffSkill decomposes the long horizon task at the action level, learning individ-

ual neural systems for action primitives, our approach is interested in decomposition

at the representation level.

The following Chapter establishes control theoretic formulations for high-dimensional

trajectory tracking and presents our unique approach which leverages ideas from prior

work that reason about spatial information in a hierarchical manner.
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Chapter 3

Hybrid Model-based Control

In light of the methods covered in Chapter 2, we suggest an alternative approach

to solve non-rigid object manipulation tasks that uses time-varying representations

of the state. In particular, we concern ourselves with goal-conditioned manipulation

tasks that require multiple stages of low-level reasoning under guidance of a high-

level policy; e.g., a plan generated by a human. One underlying problem in this

domain is related to the difficulty of reasoning about high-dimensional state spaces,

e.g., object deformation or decomposition, where guidance in the form of trajectory

tracking is computationally arduous. We propose to address this problem using an

adaptive control strategy that modulates the coarseness of information conveyed by

a low dimensional analogue of the state to track trajectories. Along the same line of

thinking as James et al. (2022) [17], who developed a novel Reinforcement Learning

algorithm Coarse-to-fine Q-attention, we aim to develop model-based controllers that

dynamically select the granularity of state information to address deformable object

manipulation tasks that span multiple stages. Our approach consists of two key com-

ponents: a learning framework for modelling non-rigid objects and a prototype for

this novel adaptive controller.

This chapter introduces a formal problem description and details the proof of con-

cept adaptive control scheme. It lays out the theoretical foundation for our hybrid

control scheme and elaborates on how representation learning was incorporated into
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this framework to address the problem of high-dimensional state estimation.

3.1 Preliminaries

Sequential decision making is a fundamental problem in robotics. It is most com-

monly formalised using Markov Decision Processes (MDPs) in planning and control.

The formalisation depends on the notion of an environment, its state, actions, an

agent, and an evaluation function (i.e., reward). Together these elements frame the

decision making problem of learning to achieve a goal from interacting with the envi-

ronment [46]. In the control regime, the analogous elements are: a system, its state

x ∈ 𝒳 ⊂ R𝑑𝑥 , control inputs u ∈ 𝒰 ⊂ R𝑑𝑢 , a controller 𝜋 : 𝒳 → 𝒰 , and a cost

function 𝑐(x) ∈ 𝒞 ⊂ R.

A key feature of MDPs is the Markovian property which makes it possible to

model interactions between the controller and the environment, i.e., the dynamics.

The Markov property enforces a strong constraint on the state definition - that a

state must convey all past information necessary to recover information about future

states, thus ensuring that the system is memoryless.

Provided the Markovian state assumption, it is possible to define forward transi-

tion functions to relate sequential states by control inputs. Let 𝑋 ∈ 𝒳𝑡 and 𝑈 ∈ 𝒰𝑡
be random variables representing the environment state and the control input. The

dynamics then are given by:

𝑝(x𝑡+1|x𝑡,u𝑡) = Pr{𝑋𝑡+1 = 𝑥𝑡+1|𝑋𝑡 = 𝑥𝑡, 𝑈𝑡 = 𝑢𝑡}, (3.1)

or in a deterministic view, x𝑡+1 = 𝑓(x𝑡,u𝑡). It is important to note the two schools

of thought at the core of many MDP solutions that are based on the burden or util-

ity of dynamics estimation. Those dubbed the "model-free" approaches avoid the

estimation problem entirely. On the other hand, "model-based" approaches allocate
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significant effort to characterise the system dynamics in order to restrict the optimi-

sation search space. Both sides make trade-offs that are worthwhile in some contexts,

but prohibitive in others. The high-dimensional manipulation problem we considered

in this work would benefit more from a model-based approach, as described in the

following sections.

3.2 Model-based Control

Optimal control is an instance of an MDP that is widely used to formulate opti-

misation problems in robotics where a sequence of control inputs must be determined

to optimise an objective. The dynamics are a useful tool that constrains the opti-

misation algorithm to evaluate future states in a manner that is consistent with the

system’s behaviour. They typically arise, for example, from the equations of motion

for a simplified mechanical system that represents the robot and its environment.

As previously mentioned, the system dynamics are fundamental to the model-based

optimal control problem.

A generalised form of the model-based optimal control problem (OCP) involves

solving for a set of decision variables that minimise a prescribed cost objective [35].

Typically, the decision variables are a state and control input trajectory. They must

also adhere to a set of constraints that ensure that the optimal trajectory is feasible.

More precisely, let 𝑓 be the system dynamics function, x0 and 𝒳𝑓𝑖𝑛𝑎𝑙 be an initial

state and terminal state set, ℓ and 𝑉 be the instantaneous cost function and terminal

cost, Z be a set of admissible trajectories, and 𝑁 be a finite time horizon. In the

discrete time setting, the goal of model-based optimal control is to find a feasible

trajectory 𝜏𝑥,𝑢 = ((x[0],u[0]), . . . , (x[𝑁 − 1],u[𝑁 − 1]), (x[𝑁 ],0)) that satisfies the

31



following optimisation problem:

min
𝜏𝑥,𝑢

𝑁−1∑︁
𝑡=0

ℓ(𝜏𝑥,𝑢[𝑡]) + 𝑉final(𝜏𝑥,𝑢[𝑁 ]) (3.2)

subject to (3.3)

x[0] = x0 (3.4)

x[𝑡+ 1] = 𝑓(𝜏𝑥,𝑢) (3.5)

x[𝑁 ] ∈ 𝒳𝑓𝑖𝑛𝑎𝑙 (3.6)

𝜏𝑥,𝑢[𝑡] ∈ Z,∀𝑡 (3.7)

A cost minimising trajectory must satisfy the constraints 3.4-3.6. Equations 3.4 and

3.6 state that the state trajectory at time 𝑡 = 0 must begin with the initial state 𝑥0

and at time 𝑡 = 𝑁 it must terminate at a state that is contained in the pre-defined set

of final states. Additionally, all points in the trajectory (x[0],u[0]) must be contained

in a pre-defined set of admissible decision variables Z (Equation 3.7). Finally, transi-

tions between states along the trajectory must be explained by the system dynamics

(Equation 3.5). Due to the tightly regulated solutions to Equation 3.2, satisfying

these hard constraints may be intractable in problems with large and complex state

spaces. The next section presents another view of optimal control that simplifies this

optimal control problem.

3.3 Model Predictive Control

A variant of this problem reduces the decision variable set to 𝜏𝑢 = (u[0]), . . . ,u[𝑁−

1]) by embedding the dynamics function constraint directly into the objective. The

state trajectory can be computed by a function Φ provided 𝑓 , x0 and 𝜏𝑢. The result
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is a sequential optimal control problem:

min
𝜏𝑢

𝑁−1∑︁
𝑡=0

ℓ(Φ(𝑘;x0, 𝜏𝑢) + 𝑉final(Φ(𝑁 ;x0, 𝜏𝑢)) (3.8)

subject to (3.9)

x[0] = x0 (3.10)

(Φ(𝑡;x0, 𝜏𝑢),u[𝑡]) ∈ Z, ∀𝑡 (3.11)

Φ(𝑁 ;x0, 𝜏𝑢) ∈ 𝒳𝑓𝑖𝑛𝑎𝑙 (3.12)

The constraints in this problem are analogous to those in the OCP setting (Equation

3.2). The main difference being that the intermediate states and the final state are

computed by the forward simulation function Φ, which implicitly enforces the dy-

namics constraint. As a result, the optimisation is done over only the control input

trajectory 𝜏𝑢.

The Sequential Optimal Control Problem (Seq-OCP) is a more appropriate for-

mulation than OCP in situations that are characteristic of our application. Namely, if

there lacks sparsity in the set of optimisation variables. Consider a classic deformable

object manipulation task; folding a piece of cloth. The cloth may be modelled as

a set of particles connected with springs or a mesh. The state may consist of the

positions and velocities, as well as orientation, of those particles. The optimisation

problem in Equation 3.2 would require solving for the myriad elements in the state,

which, depending on the resolution of the mesh, would be intractable. There are,

however, simplified formulations that we can leverage for problems where the state

space is large and high-dimensional.

Real-world contexts are laden with non-linear system dynamics that require com-

plex models to characterise them reliably. OCP and Seq-OCP rely on exact charac-

terisations of the system dynamics in order to converge. Potential errors introduced

by poorly modelled dynamics can make these problems impossible to solve. Such
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uncertainties can occur when a model class that lacks sufficient representation power

(aleotoric uncertainty) or there is insufficient data to estimate the dynamics with a

reasonable model (epistemic uncertainty). For this reason, it is convenient to treat

optimal control as a two-stage problems: solve a state estimation problem then apply

its solution to optimise OCP. We directly apply this paradigm to our approach in

Section 3.5.

3.4 Problem Formulation

Consider a set of multi-stage table-top manipulation tasks deformable objects.

Each task requires the objects to be arranged into specific configurations. An oracle

(e.g., a human expert) will provide an 𝑀 -length sequence of visual sub-goals 𝑠𝑀𝑔 =

{𝑜𝑖𝑔}𝑖=[1:𝑀 ] that eventually reach the target arrangement (see Figure 3-1). The visual

sub-goals are birds-eye view observations of the scene taken at intermediate stages of

task execution. The sub-goals do not explicitly contain any information about the

oracle’s actions. Given an initial observation 𝑜0 and 𝑠𝑀𝑔 = {𝑜𝑖𝑔}𝑖=[1:𝑀 ], an end-effector

controller must optimise a trajectory of control inputs to manipulate the objects in

scene from their initial configuration to sequentially match the configurations observed

in 𝑠𝑀𝑔 .

More formally, let 𝜋(u𝑡|𝑜𝑡) be a controller that takes as input image observations

𝑜𝑡 ∈ 𝒪 and outputs control inputs u𝑡 ∈ 𝒰 ⊂ SE(3). The controller optimises control

inputs 𝜏𝑢 = {u𝑡}𝑡=[0:𝑁−1] to sequentially shape the objects in the scene to match those

in 𝑆𝑀𝑔 until the goal configuration is reached. The controller is evaluated according

to a goal-conditioned cost ℓ(𝑜𝑡, 𝑠𝑀𝑔 ) over finite time horizon 𝑁 .

For brevity, the variable notation in subsequent sections assumes time dependence;

i.e., 𝑜 = 𝑜𝑡, for example. Prime notation is used as short-hand for the subsequent

time step; i.e., 𝑜′ = 𝑜𝑡+1.
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Figure 3-1: Examples of multi-stage tasks. The examples shown are for rope shap-
ing, cloth unfolding and covering an object with a piece of fabric. Given an initial
observation and a sequence of sub-goals, a controller must manipulate the objects
from their initial configuration to match each stage in the sequence until the goal is
reached.

3.5 A Hybrid Control Approach

The problem in Section 3.4 corresponds to learning a sequence of paired primi-

tive actions that satisfies a task specification prescribed by a sequence of sub-goals

drawn from an oracle (see Chapter 4). Since the search space over states and actions

is not sparse the OCP underlying the proposed problem is extremely challenging to

optimise. This hindrance motivates our choice to use a model predictive control al-

gorithm to solve instances of Seq-OCPs to track the observed sub-goal sequence 𝑠𝑀𝑔 .

Consequently, it was necessary to define and estimate the state and dynamics.

Machine learning is a critical tool for estimating the high-dimensional state in-

duced by the non-rigid objects and as well as characterising the under-actuated and

non-linear dynamics [55]. We rely on neural models to generate a low-dimensional

state representation and to compute a dynamics function that coincided with observed

transitions. Additionally, we hypothesise that using a single low-dimensional repre-

sentation would limit tracking performance as the non-rigid object underwent drastic

deformation and various contact modes. So, we propose a simple hybrid control ar-
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chitecture with components taken from Yan et al. (2020) [56] that would emulate an

adaptive controller with a dynamic feature set.

3.5.1 Observation and action space

As explained in Section 3.6, self-supervised representation learning to derive a

low-dimensional state representation and forward dynamics estimator. Two models,

discussed in the following section, are jointly optimised to yield these components.

The system of models take as input observations of the scene 𝑜 ∈ R𝑊×𝐻×𝑐 with

dimensions width, height and channel depth 𝑊,𝐻 and 𝑐. They encode the obser-

vations into embeddings 𝑧 ∈ 𝒵 ⊂ R𝑘, 𝑘 ∈ N. The space 𝒵 represents a mutable

state representation. Optimal control cost was evaluated entirely in 𝒵. As part of

pre-processing, the pixels in 𝑜 were normalised and transformed to the range [−1, 1].

These transformations result in model inputs that were consistent and zero-centered,

a desirable property for model training.

The hybrid controller generated actions in the normalised pixel space. The actions

consisted of a 3D pick pixel and pull direction, u = [𝑢, 𝑣, 𝑑,∆𝑣,∆𝑢,∆𝑑]𝑇 ∈ R6, where

𝑢, 𝑣, and 𝑑 are pixel values along each dimension of the image. The components of u

were defined in the range [−1, 1] to correspond to the pixel locations in 𝑜. They were

used to compute 3D pick-and-place actions 𝑎pick(u) = 𝒯 (u(𝑢,𝑣), 𝑃 ), where 𝒯 defines

a mapping from the observation space to world coordinate frame using camera cali-

bration matrix 𝑃 . The component 𝑑 depends on selection of 𝑢, 𝑣. The place actions

were computed as 𝑎place(u) = 𝑎pick(u) + 𝛾u(Δ𝑣,Δ𝑢,Δ𝑑), where 𝛾 is a scalar gain in the

world coordinate frame.

3.5.2 Controller Design

Multi-stage tasks are composed of multiple phases of low-level control that can be

formulated as Seq-OCPs (Equation 3.8). With deformable object manipulation tasks
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in mind (see Chapter 4), we propose a hybrid model-based controller that tracks

the sub-goal sequence 𝑠𝑀𝑔 where each stage is formulated as an Seq-OCP with a

low-dimensional state representation. The controller modulates the number of fea-

tures used to represent state information in order to reach and stabilise around each

sub-goal. Let 𝑘 denote the dimensionality of the embedding space generated by

a pre-trained model and 𝒦 ⊂ N be the set of feature sizes corresponding to each

model. For example, 𝒦 may contain dimensions {2𝑖}𝑖=[3:12], for image inputs with

𝑊 = 64, 𝐻 = 64. A set of pre-trained models {ℎ𝑘𝜃 : 𝒪 → 𝒵|𝒵 ⊂ R𝑘, 𝑘 ∈ 𝒦} are used

to instantiate a set of low-level controllers {𝜋𝑘 : 𝒪 → 𝒰|𝑘 ∈ 𝒦}. To refer to the com-

ponents of the model independently, we use the model parameters 𝜓 and 𝜑 to index

into the encoder ℎ𝑘𝜓 = 𝑔𝑘𝜓 and forward model ℎ𝑘𝜑 = 𝑓𝑘𝜑 . The observation sequence 𝑠𝑀𝑔
is mapped by the pre-trained models to a set of latent sub-goals {𝑧𝑘,𝑀𝑔 }. To simplify

notation, the superscript 𝑘 will be implicit; i.e., the embeddings 𝑧𝑘𝑔 , 𝑧𝑘 ∈ R𝑘 will be

denoted by 𝑧𝑔, 𝑧 ∈ R𝑘 instead.

To emulate a controller with an adaptive representation, the hybrid controller

implicitly optimises the control input trajectory by invoking a controller drawn from

{𝜋𝑘} to drive the state towards individual sub-goals 𝑧𝑖𝑔 ∈ 𝑧𝑀𝑔 , for 𝑖 = 1, . . . ,𝑀 .

It optimises the following objective with free choice over a control mode trajectory

𝜆 = {𝑘𝑖,𝑡}𝑡=[0:𝑁−1],𝑖=[1:𝑀 ], 𝑘𝑖,𝑡 ∈ 𝒦 ⊂ N which determines which controller is active at

each time step:

min
𝜆

𝑀∑︁
𝑖=1

[︃
𝑐(𝑧0, 𝑧

𝑖
𝑔) +

𝑁−1∑︁
𝑡=1

ℓ(𝑧𝑡, 𝜋𝜆𝑖,𝑡(𝑧𝑡), 𝑧
𝑖
𝑔)

]︃
(3.13)

subject to (3.14)

𝑧𝑡=0 = 𝑧0 (3.15)

(Φ(𝑗; 𝑧0, 𝜋𝜆), 𝜋𝜆𝑗) ∈ Z,∀𝑗 = [0, . . . ,𝑀𝑁 − 1] (3.16)

Φ(𝑗; 𝑧0, 𝜋𝜆) ∈ 𝑧𝑀𝑔 ,∀𝑗 = 𝑖 *𝑁, (3.17)
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where Φ(·; 𝑧0, 𝜋𝜆) computes a sequence of forward predictions {ℎ𝜑(𝑧𝑛, 𝜋𝜆𝑛(𝑧𝑛))}𝑛=[0:𝑡],

𝑗 is a sequence index and 𝜋𝜆 is the control input trajectory from .

The hybrid controller executes a policy selection scheme (Algorithm 1) to invoke a

low-level controller according to a condition on the latent state trajectory; e.g., state

trajectory’s convergence 𝐺𝜖-conv(𝑧𝑡, 𝑧𝑡+1) or its proximity to the sub-goal 𝐺𝜖-prox(𝑧𝑡, 𝑧
𝑖
𝑔):

𝐺(𝑧, 𝑧′) =

⎧⎪⎨⎪⎩1, if ‖𝑧 − 𝑧′‖22 ≤ 𝜖

0, otherwise.
(3.18)

The controller carries out a coarse-to-fine strategy where the state space is repre-

sented with a small number of dimensions when it is far from the goal and becomes

more refined near the goal. In lines 5 and 7, the model with the lowest dimensionality

is used to generate coarse state representations of the goal and current observation.

The policy selection criterion 𝐺 is then evaluated with respect to the coarse rep-

resentations. Generally, the mode selection mechanism, indicated by the function

SelectMode (Line 8), is a switch over models {ℎ𝑘𝜃}. Suppose there are three choices

𝑘min ≤ 𝑘1 < 𝑘2 ∈ 𝒦. An example may be a binary selector that uses 𝐺𝜖-prox to select

between a control models 𝑘1, 𝑘2 depending on whether the trajectory is within 𝜖 dis-

tance of the goal. An 𝑛-step MPC routine runs model-based optimal control using

model ℎ𝜆𝑡𝜃 , denoted from now on as ℎ𝜆𝑡𝜓,𝜑 with 𝜓 parameters of the encoder model and

𝜑 parameters of the forward model.

The 𝑛-step MPC procedure optimises a control input trajectory to satisfy the

objective min𝜏𝑢
∑︀𝑛

𝑡=1 ‖ℎ𝜑(𝑧𝑡, 𝜏𝑢,𝑡) − 𝑧𝑔‖22. It uses ℎ𝜓 to encode observations and uses

Algorithm 2 to optimise this objective. Following methods from Yan et al. (2020),

we optimise highly non-convex objective using Cross-Entropy Method (CEM) to

avoid local optima. In line 2, the controller samples a batch of randomly inputs

û ∼ 𝑈[−1,1]6 and evaluates them to find the cost minimising input with respect to
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Algorithm 1 Hybrid Control

procedure Run(𝑠𝑀𝑔 , {h𝑘𝜓,𝜑})
Initialise ℎ𝑘min

𝜓 ∈ {ℎ𝑘𝜓,𝜑} with 𝑘min = min(𝒦) ◁ Define coarsest model
Define 𝑛 ∈ [1, . . . , 𝑁 ] ◁ Set MPC horizon
for 𝑖 = [1, . . . ,𝑀 ] do

𝑧𝑖𝑔 ← ℎ𝑘min
𝜓 (𝑜𝑖𝑔) ◁ Coarse goal state

while 𝑡 < 𝑁 do
𝑧𝑡 ← ℎ𝑘min

𝜓 (𝑜𝑡) ◁ Coarse observed state
𝜆𝑡 ← SelectMode(𝐺𝜖-prox(𝑧𝑡, 𝑧

𝑖
𝑔)) ∈ 𝒦

𝜏𝑢 ← 𝜏𝑢∪ RunMPC(𝑜𝑡, 𝑜𝑖𝑔, ℎ
𝜆𝑡
𝜃 ,𝑛) ◁ Optimise control inputs

𝑡← 𝑡+ 𝑛
end while

end for
return 𝜏𝑢

end procedure

Algorithm 2 𝑛-Step MPC

procedure RunMPC(𝑜𝑡, 𝑜𝑖𝑔, {ℎ𝑘𝜓,𝜑}, 𝑛)
Initialise empty 𝑈* ◁ n-step solution
Define ℓ(𝑧,u, 𝑧𝑔) := ‖ℎ𝜑(𝑧,u)− 𝑧𝑔‖22
Define SampleBatch(𝑆) := {û ∼ 𝑈[−1,1]6}𝑆
𝑧0 ← ℎ𝑘𝜓(𝑜0), 𝑧

𝑖
𝑔 ← ℎ𝑘𝜓(𝑜

𝑖
𝑔) ◁ Estimate state

for 𝑡 = [0, . . . , 𝑛− 1] do
�̂� ← {{0}6}

⋃︀
SampleBatch(S=1000) ◁ Sample candidate inputs

u𝑡 = argminu𝑡∈�̂� ℓ(𝑧𝑡,u, 𝑧𝑔) ◁ Select cost minimising input
𝑈* ← 𝑈* ∪ u𝑡 ◁ Update solution
𝑧𝑡 ← ℎ𝜑(𝑧𝑡, 𝜏𝑢,𝑡) ◁ Update forward prediction

end for
return 𝑈*

end procedure
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ℓ(𝑧,u, 𝑧𝑔) = ‖ℎ𝜑(𝑧𝑡, 𝜏𝑢,𝑡)− 𝑧𝑔‖22. This process repeats for each step along the horizon

𝑛. In addition to the low-level control in Algorithm 1, the baseline controllers in our

experiments (Chapter 4) implemented this algorithm with fixed 𝑘 and horizon 𝑛 = 1.

3.6 Dynamics Estimation

Recent work in representation learning has demonstrated that neural models are

a powerful tools for extracting useful features from large datasets for application in

complex tasks like image classification and language parsing. State representation

learning is concerned with extracting features that convey task-relevant information

about the environment. Many robotics applications have scarce training corpora,

let alone labelled data, so self-supervised representation learning is highly desireable.

Contrastive learning offers methods that depend less on human supervision than other

forms of representation learning. These offerings make it well suited for state estima-

tion problems where representations with high utility are unintuitive and difficult to

hand-craft.

3.6.1 Model Training

The work proposed by Yan et al. (2020) [56] gave inspiration for the model ar-

chitectures and training setup that we used to learn a state representations and a

dynamics estimator. This paper applied contrastive learning theory in Oord et al.

(2018) [29] to embed environment observations in such a way that preserved mutual

information between the latent space and environment state. The key idea was to use

temporal distance between images as a learning signal to encourage similar observa-

tions to be clustered in the latent space while dissimilar observations were dispersed.

The contrastive learning objective they used applied a constraint on the latent space

which made it possible to traverse in a way that was consistent with the observed

system dynamics.
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Specifically, we applied their framework to train a model ℎ𝜃 with components

𝑔𝜓 : 𝒪 → 𝒵 an image encoder and 𝑓𝜑 : 𝒵×𝒰 → 𝒵 a forward dynamics estimator. We

relied on a simulated environment to generate a dynamics data by randomly perturb-

ing objects in the environment and recording trajectories the tuple {(u, 𝑜, 𝑜′, {𝑜}𝑛)}𝐿

at each timestep, where 𝐿 was the trajectory length, 𝑜 was the observed image, 𝑜′

was the subsequent image after applying perturbation u ∼ 𝒩 (0, 𝐼), and {𝑜}𝑛 were 𝑛

examples of incorrect subsequent images. Let 𝜇 : 𝒵 ×𝒵 → R be a similarity measure

between states in the embedding space. The joint model ℎ𝜃 was trained using the

following contrastive loss which seeks to localise latent states based on their relative

distance according to measure 𝜇:

ℒcontrastive := −E(𝑜,𝑜′,{𝑜𝑛},u)∼𝒟

[︂
log

𝜇(𝑧+, 𝑧′)∑︀𝑛
𝑖=1 𝜇(𝑧

+, 𝑧𝑖)

]︂
, (3.19)

where 𝑧+ = 𝑔𝜓(𝑜
′) is the embedding of the next observation, 𝑧′ = ℎ𝜃(𝑜,u) is the

model’s forward prediction and 𝑧𝑖 = 𝑔𝜓(𝑜𝑖) is the embedding of an incorrect example

of the next observation. Given disjoint batches of trajectories 𝑏𝑥, 𝑏𝑦 ∼ 𝒟, the obser-

vations 𝑜, 𝑜+ were drawn from 𝑏𝑥 and negative examples 𝑧𝑖 were either drawn from 𝑏𝑦.

As a result, minimising ℒcontrastive encouraged the models to learn a state representa-

tion and transition function such that the control input trajectory 𝜏𝑢 (see Section 3.1)

yields a latent trajectory {𝑧𝑡+1 = ℎ𝜃(𝑜𝑡,u𝑡)|u𝑡 ∈ 𝜏𝑢, 𝑡 = 0, . . . , 𝐿} that has high mu-

tual information with the observed trajectory {𝑜𝑡+1 = 𝑓(𝑜𝑡,u𝑡)|u𝑡 ∈ 𝜏𝑢, 𝑡 = 0, . . . , 𝐿}.

3.6.2 Model Architecture

The model architecture we used for the system ℎ𝜃 was taken directly from Yan et

al. (2020) [56]. The image encoder 𝑔𝜓 was a seven-layer convolutional neural network

that reduced observations 𝑜 ∈ R𝑊×𝐻×𝑐 to embeddings 𝑧 ∈ R𝑘. It was composed of an

input layer and six layers of convolutional filters partitioned by Leaky ReLU activa-

tions. The dynamics estimator 𝑓𝜑 was a three-layer feed-forward neural network with

one input layer and two hidden layers. An embedding 𝑔𝜓(𝑜)→ 𝑧 and a control input
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u were concatenated to generate the forward model’s input 𝑦 ∈ R𝑘+6 which computed

the outcome of the control input as embedding 𝑧′ ∈ R𝑘. Though fairly lightweight

compared to state-of-the-art representation learning models (visual transformers, and

the like), these model architectures sufficiently exhibited good training performance

and were capable of modelling test systems well enough to do optimal control.

3.6.3 Augmentations

Minor modifications that we made to the original model included adding a depth

channel and a separately trained decoder model. The depth channel was an important

addition that enriched the learnt representations with geometric information. Such

information was necessary to distinguish between observations where the object was

heavily self-occluded, e.g., in the case of cloth folding. Additionally, we train a decoder

model 𝑔−1
𝜓dec

: 𝒵 → 𝒪 alongside ℎ𝜃 as an evaluation tool. As described later in Section

??, this inverse map made it possible to evaluate latent predictions across different

models using metrics in a common space. The model was optimised according to the

reconstruction loss:

ℒrecon := E(𝑜,𝑜′,{𝑜𝑛},u)∼𝒟

[︃∑︁
𝑛

∑︁
𝑢,𝑣

(𝑔−1
𝜓dec

(𝑧)𝑢,𝑣 − 𝑜𝑢,𝑣)2
]︃
, (3.20)

where 𝑢 ∈ {0, . . . , 𝐻−1} and 𝑢 ∈ {0, . . . , 𝑉−1} are pixel indices and 𝑛 ∈ {0, . . . , |𝒟|−

1}is a sample index. Again, note that ℒrecon did not make contributions to optimising

Equation (3.6.3).

E This chapter reviewed the problem on which this thesis centers and introduced our

approach to solving it. It grounded the standard mathematical formulation for model-

based optimal control in the problem of multi-stage deformable object manipulation.

It also detailed the architecture of our proposed solution. The next chapter presents

results on extensive simulation experiments that tested our proposed state estimation

and optimal control framework.
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Chapter 4

Experiments & Analysis

The control design described in Chapter 3 was implemented and tested in a collection

of simulated object manipulation tasks. We sought to understand the trade-offs

between the representations generated by model variations like changing the similarity

measure, dimensionality of the embedding space, and training parameters. We studied

these factors in experiments involving short horizon tasks. The findings motivated a

key design choice for the adaptive control prototype: to change the dimensionality

of the controller’s representation in an online fashion. The hybrid control design

was analysed in a set of multi-stage task experiments. Sections 4.1-4.2 establish the

data collection pipeline, task environments, our experimental setup and evaluation

metrics. Subsequent sections discuss the simulated experiments that were directed at

the following questions:

(Section 4.3) What kinds of variation in the state representation yield dynamics

models with low prediction error?

(Section 4.4) How do different state representations affect the quality of optimal

control solutions on simple object reconfiguration tasks?

(Section 4.4) What strategies are useful for the adaptive hybrid controller?

(Section 4.5) For tasks with multiple objects, how does the quality of optimal

control solutions found with adaptive state representations compare with those

found using a fixed representation?
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These experiments reveal that the state space dimensionality is an effective way

to modulate the granularity of information conveyed by the state representation. We

find that increasing the dimensionality of the latent space improves the quality of

optimal control solutions up to a surprisingly low limit, after which performance on

object reconfiguration tasks drops drastically. Furthermore, the results suggest that,

when using a fixed representation, the quality of optimal control solutions depends

on the state space region; e.g., whether a rope is flat or coiled. These outcomes af-

firm our hypothesis that fixed representations are sub-optimal when compared with

adaptive representations. Additional experiments measure task performance of the

hybrid controller against that of baseline controllers with fixed representations. In

most cases, the hybrid controller outperforms the baselines.

4.1 Training Data Collection

Under the assumption that large temporal distance corresponds to high object dis-

placement and deformation, it was possible to automatically generate a rich dataset

for training the models in Section 3.6. The data generation process required a sim-

ulation environment with realistic physics and tuneable physical parameters. Given

such a tool, we simulated interactions between a virtual end-effector and the scene

by randomly sampling pick-and-place actions and recording the relevant data needed

to optimise Equation 3.6.3.

Training the joint model ℎ𝜃 reliably depended on access to a large dataset of

interactions between a controller and the system. We designed the data collection

pipeline in environments derived from the Deep Mind Control Suite (DM Control

Suite) [48, 49] task environments in the same manner as Yan et al. (2020). The

control suite was integrated with MuJoCo 2.0, a high-fidelity physics engine, that

produced realistic behaviours for both contact rich settings and environments with
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deformable objects like rope and fabric. Though the MuJoCo framework could in-

corporate robot models into the simulation environment, we chose to represented the

robot’s end-effector with a mass-less point that could exert forces on the scene; the

motivation being that the trained models would more likely generalise across robot

platforms. Section 5.2 elaborates on how the model ℎ𝜃 are applied when the physical

robot’s end-effector is present in the scene.

Figure 4-1: Rope Domain: Samples drawn from the a rope dynamics dataset. Each
sample consists of an observation 𝑜, the next observation 𝑜′ and a set of negative
examples drawn randomly from other rollouts. Domain randomisation, in the form of
lighting, mass, inertia and friction variation, was applied to increase model robustness
to these variations during inference.

The models were trained on data generated in task environments from the DM

Control Suite. Each environment provided access to observations that included the

physics engine’s full state, color images and depth images. The full state for non-rigid
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objects was given by mesh representations similar to those introduced in Section 2.1;

e.g., a piece of fabric was defined by an 𝑛×𝑚 grid of particles and joints. A dynamics

dataset 𝒟 of 200k samples was collected by taking the union of 𝑟 rollouts generated by

a random policy 𝜋rand := u ∼ [Uniform(−1, 1)]6. This policy simulated the control in-

put trajectory that would be produced by a physical robot’s end-effector. The policy

ran in a randomly initialised environment for 𝐿 timesteps. The full state information

was used to apply forces according to the output of 𝜋rand and to adjust the physical

properties of the scene elements. This pipeline made it possible to quickly generate

data from many scenes with a range of physical variations including lighting, object

mass, friction and inertia.

Once the rollouts were gathered, a pre-processing pipeline reorganised the trajec-

tories into training samples as described in Section 3.6. The data points consisted of

the observations 𝑜, the random policy’s output u and the consequential observations

𝑜′ for 𝑖 = {1, ..., 𝑛}, where 𝑛 is the dataset size. We initialised rollouts by loading

a scene and applying a random perturbation on the deformable object; specifically,

selecting two points and applying a large force in 𝑧. We then shuffled and partitioned

the data into subsets 𝒟train and 𝒟test with a 0.8 split ratio (Figure 4-1).

4.2 Experiment Setup

The control design introduced in Section 3.5.2 was tested on rope and cloth ma-

nipulation tasks. Inspiration for our experiment design came largely from prior work

[15, 28, 41, 43] which proposed human-guided control frameworks. Each experiment

was based in a task environment that resembled the data collection environments. The

experiment setup generally consisted of a table-top scene with a solid background and

a set of objects (see Figure 4-2). Observations were captured from an overhead image

sensor that provided 𝑐-channel images observations 𝑜 ∈ R64×64×𝑐. The control input

trajectory 𝜏𝑢 generated by each controller was scaled up to the simulated sensor’s

native resolution and small forces were applied iteratively to the scene elements ac-
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cording to the 3D pull direction. The experiments involving rope manipulation gave

controllers a horizon of 20 timesteps and those based on cloth manipulation gave 40

timestep horizon to complete the task.

(a) Flatten Rope (b) Smooth Cloth

(c) Random Rope (d) Random Cloth

Figure 4-2: Example observations taken from short horizon tasks in Shape Rope and
Shape Cloth environments. Three example tasks are shown for each task type. The
middle column (e.g., marked with "t=T") are examples of the final configuration a
test policy achieved. Each task has a pre-defined initial object configuration and goal
configuration. The "Flatten" rope and "Smooth" cloth tasks have fixed goal configu-
rations across all trials. "Random" object tasks have randomised initial configuration
and randomised goal configurations.

4.2.1 Short Horizon Task Suite

An initial set of experiments were required to validate model performance on

short-range tasks. Simple reconfiguration tasks were an adequate setting to anal-

yse the effects of varying model hyper-parameters on the quality of control input

trajectories. They involved shaping a single target object into a pre-specified goal

configuration. The target configurations were achievable in the allotted horizon. The

goal of these tasks was to provide a setting for model evaluation (see Section 4.3).

An important assumption made in Algorithm 2 is that sampling space is actually

restricted to pixels belonging to the object; i.e., those in an object segmented frame.

Otherwise, the control input sampling scheme may cause the controller’s performance
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to degrade if the object size relative to the scene background is small. The probabil-

ity of selecting a pick point from the background could be disproportionately high.

For this reason, we chose to aid the action sampling scheme by providing a mask

segmentation from which to sample - especially since we are concerned with testing

model performance, which is independent of the action sampling scheme. Aside from

this important assumption, all of the following experiments follow suite from work in

Nair et al. (2017), Sundaresan et al. (2020) and Yan et al. (2020) [28, 45, 56].

Shape Rope Domain: Flatten Rope

This task was the simplest out of the short-range tasks. The scene was initialised with

a random rope configuration. However, the same "flat" goal configuration was used

for all trials. This provided a controlled setting for comparing different controllers. A

more stringent controlled setting called "Flatten Rope-X" used fixed initial and goal

configurations for qualitative comparison of executed trajectories (see Figure 4-7). A

control horizon 𝑇 = 20 was used for all rope shaping tasks (Figure 4-2a).

Shape Rope Domain: Random Rope

The initial configuration and goal configuration were both randomised in this task. In

some cases, the goal specification required looping the rope and in others the rope was

positioned at the boundary of the field of view. These tested the models’ ability to

handle, quite literally, the corner cases. It exemplified the more difficult and general

case of rope shaping (Figure 5-4a).

Shape Cloth Domain: Smooth Cloth

Similar to the Flatten Rope task, the initial configuration was randomised, but the

goal configuration was held across trials. A "Smooth Cloth-X" task was also available

for qualitative comparison of executed trajectories. A control horizon 𝑇 = 40 was

used for all rope shaping tasks (Figure 4-2b).

Shape Cloth Domain: Random Cloth

This task was the most challenging for model evaluation. Often the worst-case differ-

ence, as measured using the full state (see Section 4.1), between the initial and goal

cloth configuration was highest. (Figure 4-2b).
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4.2.2 Tracking Task Suite

Hybrid controllers were evaluated on multi-stage task experiments. Each task

tested the quality of trajectory tracking with respect to the metrics described in

Section 4.2.4. The fixed-representation controllers were implemented by a hybrid

controller that optimised Equation (3.13) with a singleton decision variable set. Hy-

brid controllers were given a set of two low-level controllers 𝜋𝑘1 , 𝜋𝑘2 , where 𝑘𝑖 denotes

different latent space dimensions. Both types of controllers were given a sub-goal

sequence 𝑠𝑀𝑔 that was generated using Algorithm 3. The sub-goal control horizon,

i.e., the time allotted to reach a sub-goal, was 20 time steps for rope tasks and 40 for

cloth tasks.

(a) Rope Unloop

(b) Cloth Unfold I

(c) Cloth Unfold II

(d) Cloth Fold

Figure 4-3: Example reference trajectories generated an oracle for simple tracking
tasks.
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Rope Unloop

We used this task to conduct low tier tracking experiments that tested whether the

controllers could achieve non-trivial intermediate shapes to reach a goal configuration.

Given a 𝑀 = 4 length demonstration sequence, the goal of the task was to shape

the rope to match each configuration in the sequence. We relied on this task for

qualitative analysis as visual inspection of the alignment between the manipulated

object and the intermediate configurations was more viable than in the rest of the

suite.

Cloth Unfold I

Inspired by classic multi-stage cloth manipulation tasks [52, 41, 15, 42], the goal of

this task was to unfold a piece of fabric that had been folded three times over. Each

stage of this task requires a coordinated sequence of actions to align the cloth into

a particular folded, or unfolded, configuration. For example, alternating between

pulling a subset of the cloth’s "corners" to the left and another subset downward.

Furthermore, the intermediate configurations involve heavy self-occlusion.

Cloth Unfold II

In this task, another sequence of precise actions are required to unfold a piece of fabric

whose "corners" been folded towards the center. High self-occlusion was the primary

feature of this task, as seen in the second frame. In addition to a specific action

sequence to achieve folds, as seen in Cloth Unfold I, this task required reasoning

about the fold sequence itself. In the second frame, for example, the probability of

successfully completing the task depends on whether the left fold is unfolded versus

the right fold.

Cloth Fold

Similar to Cloth Unfold I and II, a precise action sequence is required to configure

the cloth into a fold.

4.2.3 Oracle Policy

Sub-goal sequences 𝑠𝑀𝑔 (Figure 4-3) for each task were generated by an oracle

policy. The oracle was given an image observation of the scene where all the objects
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are in the target configuration. It then applied a sequence of actions to rearrange

the objects to the initial configuration specified in the task. The sequence was highly

structured in the sense the actions were optimised to minimise the effort required

to reshape the target configuration into the initial configuration, much like what a

human would do in the real world. For example, for the Rope Unloop task, the envi-

ronment was initialised in the "flat" state and the oracle applies a small set of actions

to the flattened rope to form a looped shape.

Algorithm 3 Oracle Controller
procedure Run(𝑀)

𝑟𝑀𝑔 ← {𝑜𝑀𝑔 } ◁ Initialise with final goal
for 𝑖 = [1, . . . ,𝑀 ] do ◁ For 𝑀 sub-goals

for 𝑗 = [1, . . . , 𝐿] do ◁ For horizon 𝐿
x𝑡 ← FindKeyPoints(𝑜𝑡) ◁ Detect key points
u𝑡 ← TaskStateMachine(𝑖 * 𝑗,x𝑡) ◁ Apply action

end for
𝑟𝑀𝑔 ← 𝑟𝑀𝑔 ∪ {𝑜𝑡} ◁ Store current observation

end for
𝑠𝑀𝑔 ← Reverse({𝑟𝑀𝑔 }) ◁ Reverse the sequence
return 𝑠𝑀𝑔

end procedure

Figure 4-4: Annotated demonstrations for Rope Unloop and Cloth Fold that were
generated by the oracle policy in Algorithm 3. The red points correspond to keypoints
that are defined as part of the task state machine. Given an the key points and an
index, the state machine outputs u indicated by a blue arrow.

To achieve the structured action trajectory, the oracle computed a set of key
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points for each object and runs a state machine to generate an action (see Algorithm

3). Figure 4-4 illustrates the key points given as input to the oracle, e.g., the (red)

endpoints for the rope and (red) corner points for the cloth. The oracle executed a

state machine that yielded control inputs (blue arrows) that shape the object into

the desired initial configuration with high probability - despite selecting actions with

unknown object dynamics. As an example of the TaskStateMachine (Line ??) for

Cloth Fold, the oracle would alternate between picking the top left corner and the

bottom left corner, and apply a large force to the right to each corner until a single

fold is completed. Target corners (e.g., "top left" corner) were identified by their

distance to the corners of the frame. The oracle policy was able to generate a wide

range of demonstrations such as looping a rope, folding fabric and stacking objects.

4.2.4 Performance Metrics

The contrastive loss and reconstruction loss (see Section 3.6) described in the train-

ing scheme were useful indicators of model quality. A low contrastive loss showed that

the model ℎ𝜃 preserved, to a greater degree, mutual information between observations

and their embeddings than a model with higher contrastive loss. In other words, the

state predictions made by model were more consistent with the observed transitions.

Reconstruction loss, on the other hand, provided an indication of the amount of in-

formation lost in the dimensionality reduction carried out by 𝑔𝜓.

In addition to the training task performance, our models were evaluated based on

their efficacy in the optimisation a control input trajectory for solving the tasks in

Section 4.2. All metrics were computed in the pixel space in order to compare met-

rics consistently across latent trajectories residing in different spaces. We assumed

high contrast between foreground objects and the background to simplify object seg-

mentation for constraining the controller’s action sample space as well as computing

coverage metrics.

Namely, we used the Jaccard distance, otherwise known as Intersection-over-Union
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(IoU), to measure similarity between image observations:

IoU(𝑜1, 𝑜2) =

∑︀
𝑢,𝑣(𝑚(𝑜1) ∩𝑚(𝑜2))𝑢,𝑣∑︀
𝑢,𝑣(𝑚(𝑜1) ∪𝑚(𝑜2))𝑢,𝑣

(4.1)

, where 𝑚(·) is a function that returns a binary masked segmentation of the object

in 𝑜. One important note: computing distances at the pixel level proved difficult

for tasks with objects that have a small footprint. For example, "thin objects" were

disproportionately penalised in terms of IoU if their configuration satisfied the target

shape, but was not perfectly aligned with the goal configuration. Yan et al. (2020)

[56] reported the intersection of masked pixels instead with the assumption that the

object shape (or size) remained consistent. Despite these nuances of the IOU metric,

we chose to use this standard measure.

We also used Mean Squared Error (MSE) to measure reconstruction error and

prediction error:

MSE(𝑜1, 𝑜2) =
∑︁
𝑢,𝑣

(𝑜1,𝑢,𝑣 − 𝑜2,𝑢,𝑣)2. (4.2)

These metrics provided an approximate gauge for information lost in the encoding

process. More importantly, they provided a means for comparing modeling errors.

It was difficult, for example, to judge whether the prediction error measured in, say,

8 dimensional state space was actually lower than prediction error measured in a 64

dimesnional state space (see Figure 4-6). Prediction error measured in the pixel space

(via MSE) was more aligned with reconstruction error than when it was measured in

the latent space.

Lastly, the trajectory’s proximity to the goal, as measured by L2-distance in the

state space 𝒵, is used as a discussion point when we study the effects of increasing 𝑘 on

task performance (e.g., Figure 4-5). Though not as prudential as the aforementioned

metrics, it was a useful point of comparison for understanding the behaviour of the

latent trajectory.
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4.3 Model Evaluation

Our initial experiments evaluated task performance of models with variations,

ranging from sensor input, latent space dimensionality, similarity metric, extended

training epochs, etc., to find a mode of variation that would be conducive to the

hybrid control system. We used tasks from the short horizon Task Suite as a bench-

mark (Section 4.2). The models were trained from scratch in each of these envi-

ronments and evaluated on the corresponding reconfiguration task. Each model was

initialised with three different random seeds and trained with the similarity measure

𝜇 = exp(−‖𝑧 − 𝑧′‖22) (squared-exponential) for 30k training steps, by default. Note

that for model architectures with 𝑐 = 3 inputs, the control inputs u were restricted

to the table-top surface by setting the 𝑑 and ∆𝑑 components to zero.

Table 4.1: Raw goal coverage (IoU) at time 𝑡 = 𝑁 on simple reconfiguration tasks
of single controller with various model types defined by the set of hyper-parameters
in column 1. The first row presents our reproduction of the method of Yan et al.
(2020), which did not report IoU. Subsequent rows report results produced with the
following variations: 𝑐 number of input channels, 𝑘-dimensionality of 𝑍, training
epochs, 𝜇 similarity measure (e.g., using the dot produce). The mean coverage and
standard deviation were computed over 33 trials. Models marked with * were trained
with three different random seeds for sample size=99.

IoU(𝜎)
Hyper-Parameters Flatten Rope Smooth Cloth
Yan et al. (2020) 0.129 (0.064) 0.586 (0.068)

k=16, c=3 0.093 (0.068) 0.678 (0.051)
k=16, c=1 0.078 (0.047) 0.749 (0.069)
k=8, c=4* 0.124 (0.108) 0.614 (0.127)
k=16, c=4* 0.107 (0.084) 0.631 (0.133)
k=32, c=4* 0.075 (0.054) 0.636 (0.120)
k=64, c=4* 0.061 (0.075) 0.642 (0.116)
k=256, c=4* - 0.603 (0.127)

A collection of parameter sweeps are summarised in Tables 4.1 and 4.2, which

list the raw performance as final goal-coverage (IoU) averaged over 33 trials for the
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Flatten Rope and Smooth Cloth tasks. The average coverage and standard deviation

were reported for the original model parameters in Yan et al. (2020) followed by

variations on the input channels 𝑐, dimensionality of the latent space 𝑘, training

time, and similarity measure 𝜇 (specifically, the dot produce). The input channels

𝑐 = 1, 3, 4 correspond to Depth-only, RGB and RGB-D sensor input. Note that results

marked with * were aggregated over three random training seeds for a total of 99 trials.

We found that varying sensor input to include depth information as input increased

performance in the both domains. Depth was a more useful signal than texture alone

for distinguishing configurations where the object was self-occluded. However, we

observed that RGB-D yielded the best performance in the rope setting which was

not as serverely hindered by self-occlusions. Interestingly, in the Flatten Rope task

there was up to a 50% performance drop off with 4x increase in 𝑘. The trend was

less evident in the Smooth Cloth task where final performance floated around a tight

range of 60-64%. To mitigate the performance drop for high 𝑘 we attempted to train

the models with dot-product similarity in the contrastive loss (see Table 4.2). Neither

modification yielded better results than varying 𝑘.

Table 4.2: Raw goal coverage (IoU) at time 𝑡 = 𝑁 on rope reconfiguration tasks of
single controller with various model types defined by the set of hyper-parameters in
column 1.

IoU(𝜎)
Hyper-Parameters Flatten Rope

k=32, c=4, epochs=60 0.060 (0.045)
k=64, c=4, epochs=60 0.053 (0.042)

k=8, c=4, 𝜇 = 𝑧𝑇 𝑧′ 0.039 (0.027)
k=64, c=4, 𝜇 = 𝑧𝑇 𝑧′ 0.053 (0.038)

Recall that the short horizon test suites use random initial configurations. To

make comparisons between the controllers more consistent, we report the % change

in IoU and latent goal distance in Figure 4-5 for Random Rope and Random Cloth

tasks. In this view, the highest performing models used 𝑘 = 16 and 𝑘 = 32 for the

rope and cloth tasks, respectively. Figure 4-5a shows higher performance from models
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(a) Flatten Rope (b) Random Rope (c) Random Cloth

Figure 4-5: Shape Task: Goal coverage (% change in IoU) (top) and % change in
latent goal L2-distance (bottom) over 𝑁 time steps for controllers using model with
𝑘 ∈ {8, 16, 32, 64, 256}. The upper bounds 𝑘 = 64 for 𝑘 = 256 represent the extreme
case where the model would resemble a visual forward model; i.e., the encoder does no
compression. Notice that there was a significant drop off in performance as measured
by the latent L2-distance for both domains. The goal coverage metric indicated that
the best performing models used 𝑘 = 16 for rope and 𝑘 = 32 for cloth tasks.

trained with 𝑘 = 8 for the Flatten Rope task. An emerging trend was that lowering

𝑘 yielded higher performance.

In general, increasing the 𝑘-dimensionality of the latent space was detrimental to

optimal control in the Shape Rope setting and, to a lesser extent, the Shape Cloth

setting. Surprisingly, there was an unexpected drop off in performance for models

that exceeded 𝑘 = 32 in both domains. Though reconstruction error (see Figure

4-6) decreased with increasing 𝑘, it did not always yield decreasing prediction error.

Potentially, increasing 𝑘 may have inadvertently widened the information bottleneck

enforced by the contrastive loss in Equation 3.6.3, allowing the encoder to inject task-

irrelevant features into 𝒵𝑘. For the rope shaping tasks, there was little tolerance for
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widening the bottleneck. For the cloth shaping tasks, increasing 𝑘 to 32 was admis-

sible before a large performance decrease (as measured by L2-distance to the latent

goal).

(a) Prediction Error (L2-distance) and Reconstruction Error (MSE)

(b) Prediction Error (MSE) and Reconstruction Error (MSE)

Figure 4-6: Cloth Unfold I: Latent prediction error measured in 𝒵𝑘 (top), latent
prediction error measured in 𝑂 (bottom), and reconstruction error for baseline con-
trollers equipped models trained with 𝑘 ∈ {8, 32, 64}.

The primary insight from these initial results was that varying the dimensionality

of the latent space, for the specific models introduced in Section 3.6.2, is an effective

way to vary the representation to increase the efficacy of optimal control. Another

key insight is that one cannot merely increase 𝑘, even within a low range of values,
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to increase optimal control performance. This finding coincides with prior work in

Section 2.2 that emphasised the importance of learning simple representations over

highly expressive ones. Furthermore, the common model selection strategy for se-

lecting and fixing 𝑘 for all tasks may not be a reliable way to address the tracking

problem. The Flatten Rope task demonstrated that reducing 𝑘 for shaping into flat

configurations was better than fixing it at the value prescribed by model selection,

𝑘 = 16. This observation suggests that the efficacy of the fixed representations varies

depending on the object configuration. Therefore, we chose to define variants of the

models used in the hybrid control system with respect to 𝑘 dimensions of the latent

space.

4.4 Controller Evaluation: Short Horizon Setting

(a) Flatten Rope-X (k=8) (b) Flatten Rope-X (k={8,32})

(c) Smooth Cloth-X (k=32) (d) Smooth Cloth-X (k={8,32})

Figure 4-7: Object Shaping Tasks: A comparison of object shaping trajectories gen-
erated by the best baseline controllers and hybrid controllers in the rope and cloth
shaping task suites.

The hybrid controller presented in Algorithm 1 was implemented with two pre-

trained models {ℎ𝑘1 , ℎ𝑘2}, where 𝑘1, 𝑘2 ∈ {2𝑖}𝑖=[3:6]. We used both the criteria

𝐺𝜖-prox and 𝐺𝜖-conv (Section 3.5) to optimise the high-level output of the controller.

The first round of experiments were carried out in the simplest setting; Flatten

Rope and Smooth cloth. There, we set 𝑗 = 8 and instantiated hybrid controllers

𝜋(𝑧;𝐺, {ℎ𝑗=8, ℎ𝑘}) with 𝑘 ∈ {16, 32, 64}. Across all experiments 𝜖 = 8 for the goal-
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(a) Flatten Rope (Proximity) (b) Flatten Rope (Convergence)

(c) Smooth Cloth (Proximity) (d) Smooth Cloth (Convergence)

Figure 4-8: Shaping Task: Goal coverage (% change in IoU) over 𝑁 time steps
for baseline (blue) and hybrid controllers on Flatten Rope (top) and Smooth Cloth
(bottom). Hybrid controllers outperform the baseline controllers if the appropriate
policy switching criterion is used. In the case of cloth, the convergence criterion
yielded nearly a 5% gain on cloth smoothing. However, the controller using the
proximity criterion made a 20% gain on the baseline.

proximity criterion; otherwise 𝜖 = 1. Table 4.3, Figure 4-7 and Figure 4-8 contrast

performance of hybrid controllers 𝜋(𝑧; ·, ·) with that of baseline controllers �̄�(𝑧;ℎ𝑘).

The baselines were equipped with the best models, ℎ𝑘=8 for the rope and ℎ𝑘=32 for

cloth, according to model selection (in the Flatten/Smooth tasks). Due to storage

constraints, the results in the plots were computed over 33 out of 1000 uniformly
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sampled evaluation trials. They showed that 𝐺𝜖-prox was the superior strategy (by

about 20%) for rope tasks, while 𝐺𝜖-conv outperformed the baseline by 5% on the

cloth smoothing. The implications of these results encouraged further experimen-

tation in the multi-stage task setting. We expected the hybrid controller to reason

about the different sub-goals in a similar manner as what was observed in these short

horizon experiments.

Table 4.3: Raw goal coverage (IoU) at time 𝑡 = 𝑁 on short horizon tasks for the base-
line �̄�(𝑧;ℎ8) and hybrid controllers 𝜋(𝑧;𝐺𝜖−(·); {ℎ𝑘1 , ℎ𝑘2}) which varied by 𝑘2 and the
criterion 𝐺𝜖−(·). Note that these metrics were computed over randomly initialised ob-
ject configurations. Results summarisied in Figure 4-8 show that the hybrid controller
outperformed the baseline 𝜋(𝑧;ℎ8) in three out of four settings.

IoU(𝜎)
Controller Type Flatten Rope Smooth Cloth

𝜋(𝑧;ℎ8) 0.124 (0.108) 0.614 (0.127)
𝜋(𝑧;𝐺8-prox, {ℎ8, ℎ16}) 0.109 (0.079) 0.591 (0.129)
𝜋(𝑧;𝐺8-prox, {ℎ8, ℎ32}) 0.116 (0.094) 0.601 (0.118)
𝜋(𝑧;𝐺8-prox, {ℎ8, ℎ64}) 0.097 (0.085) 0.605 (0.120)
𝜋(𝑧;𝐺1-conv, {ℎ8, ℎ16}) 0.111 (0.087) 0.604 (0.110)
𝜋(𝑧;𝐺1-conv, {ℎ8, ℎ32}) 0.079 (0.056) 0.611 (0.113)
𝜋(𝑧;𝐺1-conv, {ℎ8, ℎ64}) 0.067 (0.043) 0.627 (0.112)

4.5 Controller Evaluation: Tracking Setting

Experiments in the trajectory tracking suite suggested that the coarse-to-fine

strategy carried out by the hybrid controller was more effective in the cloth domain

and as effective in the rope domain than using the most performant baseline con-

trollers (Table 4.3). We tested two hybrid controllers with varying 𝑘 ∈ {8, 32, 64},

with 𝑘 = 8 being the dimensionality of a coarse representation, and fixed the action

selection criterion to 𝐺4−𝑝𝑟𝑜𝑥. Their performance was measured on the Rope Unloop

and Cloth Unfold I tasks against the baselines {�̄�1(𝑧;ℎ8), �̄�2(𝑧;ℎ32)}, the highest per-

forming controllers in the Flatten Rope and Smooth Cloth tasks. In both multi-stage
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tasks, the initial configuration was sufficiently far from the goal (i.e., with IoU=0

at t=0). And though similar disparities existed in the short horizon setting, the

multi-stage task introduced the further challenge of stabilising about each sub-goal

to achieve the final goal configuration. We also benchmarked the controllers in the

Cloth Unfold II and Cloth Fold tasks. The level of difficulty in these settings was

greater because there was self-occlusion in the intermediate configurations and align-

ment with the goal configuration required specific action sequences (see Section 4.2).

(a) �̄�1 (b) �̄�2 (c) 𝜋(𝑧;𝐺4−𝑝𝑟𝑜𝑥; {ℎ8, ℎ32})

Figure 4-9: Rope Unloop: Comparison of trajectory execution for (a) �̄�1(𝑧;ℎ8), (b)
�̄�2(𝑧;ℎ

32) and (c) 𝜋(𝑧;𝐺4−𝑝𝑟𝑜𝑥; {ℎ8, ℎ32}). A four-stage demonstration (see column
three) was given as input to the controllers. At the first stage in the demonstration,
the controller was given an initial frame (column one) and executed a trajectory
resulting the final frame shown in column two. The next phase of trajectory was
initialised using the final frame from the previous stage. The hybrid controller (right)
successfully achieved the final "flat" configuration (row four) by leveraging a coarse-
to-fine representation to stabilise about each intermediate goal. The baselines, on the
other hand, either failed to reach the intermediate goals or were unable to stabilise
around them.

Visual comparison between the executed trajectories indicated that the hybrid

controllers were able to trade-off the utility of different representations to achieve the

goal. Figures 4-9 and 4-10 show qualitative tracking results for �̄�1 (left), �̄�2 (middle)

and the hybrid controller 𝜋(𝑧;𝐺4-prox, {ℎ8, ℎ32}) (right). Each sub-figure corresponds

to a full trajectory, where the task stages span the rows. The columns indicate the
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(a) �̄�1 (b) �̄�2 (c) 𝜋(𝑧;𝐺4−𝑝𝑟𝑜𝑥; {ℎ8, ℎ32})

Figure 4-10: Cloth Unfold I: Comparison of trajectory tracking (a) �̄�1(𝑧;ℎ8), (b)
�̄�2(𝑧;ℎ

32) and (c) 𝜋(𝑧;𝐺4−𝑝𝑟𝑜𝑥; {ℎ8, ℎ32}). Rows indicate each stage in the demonstra-
tion trajectory (column three). The initial and final configurations during execution
are shown in columns one and two, respectively. The baseline controllers were able
to reposition the cloth. Only one baseline was able to smooth the cloth, but not as
effectively as the hybrid controller which was able to use a coarse representation to
position the fabric and attend to lower level features to smooth the cloth in later
stages.

initial, final and goal configuration at each stage of the task. In the Rope Unloop

task, the baseline controller �̄�1 was able to achieve configurations that were close to

the target, but failed at accurate alignment (see Figure 4-9a). On the other hand, the

second baseline controller (see Figure 4-9b) achieved accurate partial alignment with

early intermediate configurations, but struggled to reason about the later configura-

tions where the current and target configuration were highly dissimilar. The hybrid

controller was able to closely shape the rope to match the goal configuration by using

the coarse representation first and switching to the more expressive representation to

stabilise around the goal configuration. Similar behaviour was observed in the Cloth

Unfold I task. The first baseline was only able to translate and reorient the fabric

to maximise coverage. The second baseline used a more detailed representation to

position and smooth the fabric. However, the hybrid controller leveraged the coarse

representation to position the fabric close to the goal where it could attend to finer

details to maximise goal coverage.
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Table 4.4: Tracking Task: Raw goal coverage (IoU) at time 𝑡 = 𝑁 on trajectory
tracking for baseline and hybrid controllers with varying criterion 𝐺𝜖−(·). These met-
rics were computed over 500 trials where the reference trajectory was held constant.
We refer the reader to Figure 4-11 for further comparison.

IoU(𝜎)
Controller Type Rope Unloop Cloth Unfold I Cloth Unfold II

�̄�1(𝑧;ℎ
8) 0.154 (0.120) 0.416 (0.081) 0.521 (0.083)

�̄�2(𝑧;ℎ
32) 0.067 (0.036) 0.451 (0.064) 0.517 (0.088)

𝜋(𝑧;𝐺4-prox, {ℎ8, ℎ32}) 0.124 (0.104) 0.457 (0.070) 0.540 (0.085)
𝜋(𝑧;𝐺4-prox, {ℎ32, ℎ64}) - 0.424 (0.073) 0.506 (0.040)

(a) Rope Unloop (IoU) (b) Cloth Unfold I (IoU) (c) Cloth Unfold II (IoU)

(d) Rope Unloop
(Pr{𝑘 = 32})

(e) Cloth Unfold I
(Pr{𝑘 = 32})

(f) Cloth Unfold II
(Pr{𝑘 = 32})

Figure 4-11: Rope Unloop, Cloth Unfold I and Cloth Unfold II: Raw goal coverage
over 𝑁×𝑀 time steps for baseline (blue) and hybrid controllers on Rope Unloop (left)
and Cloth Unfold I (right). All hybrid controllers used criterion 𝐺4-prox and models
{ℎ8, ℎ32} while all baseline controllers used ℎ8. For the majority of task stages, the
hybrid controllers performed at par with the baseline controllers. In the case of cloth
unfolding, the hybrid controller exceeded the baseline by 4%.
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(a) Cloth Unfold II

(b) Cloth Fold

Figure 4-12: Cloth Unfold II and Cloth Fold: Snapshots of the control inputs gener-
ated by the hybrid controller 𝜋(𝑧;𝐺4−𝑝𝑟𝑜𝑥; {ℎ8, ℎ32}) during execution of 𝑀 = {3, 4}
stages (rows) over time horizon 𝑁 = 40 (columns). A red dot overlays the cloth
configuration to indicate the selected pick point. The box in the lower left corner
of the image shows the selected pull direction which corresponds to the force vector
that will be applied at the pick point. The next frame shows the resulting cloth
configuration. At the beginning of each stage, the controller applies large forces on
the cloth to position it closer to the sub-goal configurations. As the cloth approaches
the sub-goal, the force decreases suggesting that the controller was reasoning over the
finer representation to align the cloth with the target configuration.

Quantitative results showed that the hybrid controller yielded similar or higher

performance in Cloth Unfold I and II to the strongest baseline, �̄�2(𝑧;ℎ32). It was

expected that �̄�2 would outperform all models based on model selection in the Shape

Cloth suite. However, goal coverage metrics summarised in Table 4.4 indicated

that both baseline controllers were sub-optimal compared to the hybrid controller

𝜋(𝑧;𝐺4-prox, {ℎ8, ℎ32}). Figure 4-11 shows the final goal coverage during each time

step of the trajectory execution. The histograms in the figure convey the probability

that the hybrid controller switched to a fine-grained representation. The coarse-to-

fine strategy lead to a 4% increase in performance over baseline 𝜋1 and outperformed

both controllers by a similar margin in Cloth Unfold II. A sample of the control in-

puts generated by the hybrid controller along each stage of the Cloth Unfold II and
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Cloth Fold demonstrations are shown in Figure 4-12. In early stages of tracking, the

outputs hybrid controller were relatively larger than at later stages where it reasoned

about the more detailed representation to refine alignment between the current and

goal configuration.

These experiments showed that a simple hybrid control design with mutable

state representation effectively used a coarse to fine strategy to outperform fixed-

representation controllers. Figure 4-13 presents reconstructions of latent trajectories

(with 𝑁 = 20 time steps) taken by the constituents of the hybrid controller. Though

we have yet to report direct measures of mutual information between the observed

and latent dynamics, these reconstructions give a sense of the amount of information

lost during the encoding phase. Based on this qualitative analysis, the representa-

tions with lower 𝑘 conveyed coarser spatial information. Consequently, controllers

with coarser representations selected control inputs that were effective at quickly ma-

neuvering the object to the correct location to match the goal configuration. They

failed, however, to make the necessary fine adjustments to achieve perfect alignment.

On the other hand, representations with larger 𝑘 retained information that enabled

more precise alignment. In Figure 4-13b, a model with 𝑘 = 16 achieved near perfect

alignment about four timesteps sooner than the allotted horizon, but the lower dimen-

sional counterpart achieved the "flat" shape sooner. Refining the representation by

further increasing 𝑘 to 32 dimensions allowed information about complex geometries

to percolate to the optimisation algorithm, however the embedding space appears to

convey extra information that manifests as slightly distortion in the reconstructions.

With the appropriate control mode selection strategy, the hybrid controller was able

to chose representations presented the right level of information for increasing the

accuracy of the trajectory tracking solution.

Our choice to vary the latent dimensionality as a means of adapting the state

representation is analogous to a simple attention mechanism. The hybrid controller’s

strategy could be interpreted as attending over high-level information about the ob-
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(a) 𝑘 = 8

(b) 𝑘 = 16

(c) 𝑘 = 32

Figure 4-13: Flatten Rope: Planned versus executed trajectories during rope flat-
tening task execution for models trained with 𝑘 ∈ {8, 16, 32}. Each row shows an
annotated trajectory of observations and actions. In each frame, the action is indi-
cated by a blue arrow and a ghost of the next frame is overlaid to show the effect
of the action. Reconstructions of the planned latent trajectory {𝑧𝑘𝑡 }𝑁−1

𝑡=0 (lower) are
shown for each observation and action pair.

ject’s location and orientation when the current configuration is far from the target.

As it approaches the target configuration, the controller attends over more complex

aspects of the object’s geometry to reach and stabilise around the target. Observe

the behaviour of model prediction error for the Cloth Unfold I task in Figure 4-14.

Recall that there was high self-occlusion in the initial configuration of the unfolding

task. The models with higher 𝑘 had relatively low prediction error despite the cloth’s

configuration. Lower dimensional models lacked sufficient details to make good state

predictions for complex cloth configurations. The reconstruction error suggests that

either the encodings were too lossy or that features were encoded that contained

enough geometric information, but were irrelevant for dynamics prediction for com-

plex configurations. The model with highest 𝑘 captured sufficient information for

maintaining consistently prediction errors for a variety of configurations. A limita-

tion of using this ensemble-style architecture is the lack of regulation over the features

with respect to the execution task. In other words, our current models learn features

to maximise forward model prediction. The only way to sub-select features for, say,

computing goal distance at different stages in the task is to reduce 𝑘 and therefore
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lose prediction performance.

Rather than prototyping an adaptive controller using an ensemble of models, we

would consider implementing a single model with high 𝑘 and pre-training it to max-

imise forward prediction (Figure 4-14). During task execution an online algorithm

can employ classical feature filtering methods to sub-select features that are relevant

for a particular task phase [37]. We may also explore model-based analogues of the

Q-attention algorithm discussed in Chapter 2.

(a) Cloth Unfold I

Figure 4-14: Rope Unloop and Cloth Unfold I: Latent prediction error (MSE) and
reconstruction error (MSE) for models trained with 𝑘 = {8, 16, 32, 64}.

Overall, we found that a simple hybrid control scheme could successfully trade-

off the advantages of coarse and fine representations to outperform controllers with

fixed representations. Initial model evaluation uncovered the surprising trade-offs of

increasing the latent space dimensionality. Our experiments showed that the hybrid

control strategy was more beneficial in domains with objects of higher complexity

than 1D deformable objects (e.g., rope). The success of the hybrid controller in

simulation motivated further testing in the physical setup described in Chapter 5.
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Chapter 5

Physical System

After confirming our hypothesis in the simulation experiments in Chapter 4, we made

the engineering effort to reproduce the system on a physical platform. This chapter

reviews the components of the physical system and shows examples of task execution

in the real world. Section 5.2 describes the perception pipeline that generated model

inputs. The architecture of the end-effector controller is explained in Section 5.3. It

also provides examples of rope and cloth manipulation in a physical Rope and Cloth

Shape environment.

5.1 System Overview

The physical system replicated the simulated table-top setup in Section 4.2. Fig-

ure 5-1 depicts a schematic layout of the system. It consisted of an overhead camera

and an arm that was mounted to the table. Our platform of choice was the Franka

Emika Panda Arm1, a 7DOF robot that is capable of position and torque control.

It’s integration with the Robot Operating System (ROS)2 and rich software interface

made it an ideal choice for developing our table-top manipulation tasks. The scene

was recorded using a Azure Kinect3 sensor that was suspended 0.7m above the table

surface. Our real-world implementation consisted of two main parts; a perception

1https://frankaemika.github.io/docs/franka𝑟𝑜𝑠.ℎ𝑡𝑚𝑙
2https://www.ros.org/
3https://docs.microsoft.com/en-us/azure/kinect-dk/
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pipeline and a control pipeline.

Figure 5-1: System Overview: A physical system used to conduct real world experi-
ments where a robot arm manipulated rope and cloth on a table. The robot platform
we used was the Franka Emika Panda arm. It was mounted to a table shown in grey
with an overhead camera suspended above the table surface. The system software
of the system was composed of a perception pipeline, the hybrid controller (Section
3.5.2), a motion generator and a cartesian impedence controller. We used the Robot
Operating System (ROS) to unify these components.

5.2 Perception System

The perception pipeline was responsible for transforming images recorded from

the Kinect to a form that was compatible with the hybrid controller’s models (see

Figure 5-2). First the pipeline pre-propcessed the raw color and depth images into the

correct input size. The process began by cropping the color images into square im-
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ages. We then used the Gaussian Pyramid implementation in OpenCV4 to iteratively

downsize the color image from the square resolution to a 64×64×𝑐 image, where c=3

and 1, respectively. This custom pre-processing step was necessary to minimise alias-

ing artifacts that occurred while downsizing the images. During the iterative process,

we recorded the scale factor to undo the downsizing operation for individual pixels,

as we’ll later explain. The same process was repeated for depth images, which re-

quired an extra undistortion step to rectify the images generated by the depth sensor.

Figure 5-2: A primary function of our perception pipeline was to pre-processes images
captured by the Kinect sensor into inputs for the hybrid controller’s models. A raw
image is shown on the left with a blue box indicating where it was cropped to form
the 64 × 64 image on the right. The cropped image was downsized using standard
downsampling methods.

Another important role of the perception system was to generate an object seg-

mentation mask that excluded pixels belonging to the robot. The mask was used

to cull the action sampling space for the hybrid controller, as discussed in Section

3.5.2. The object segmentation mask was generated by a custom algorithm based on

Watershed Segmentation [47]. We made an important assumption about the scene

to simplify the segmentation problem; namely, that the background was uncluttered,

untextured and had high contrast with the object (see Figure 5-3). This allowed us to

treat object segmentation as foreground segmentation. Consequently, the robot was

included in the mask. To remove pixels belonging to the robot, we took advantage of
4https://docs.opencv.org/3.4/
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the overhead camera setup, assuming that the robot and the object would not coexist

in the same depth plane (because of the table). So, we used depth information to

remove pixels that corresponded to depth values below an empirically determined

threshold.

Figure 5-3: Intermediate outputs of the Watershed Segmentation algorithm. The top
left image is the input to the segmentor and the bottom right image shows labeled
contours of the object. We treated all non-zero labels as the rope object, with the
key assumption that the background was uncluttered, had minimal texture and high
contrast with the object.

As alluded to before, the perception provided a crucial means to transform control

inputs u determined by the hybrid controller from the normalised pixel space to the

images recorded from the sensor. The pixel values corresponding to the chosen action

in the downsized images seen in Figure 5-2 were upscaled using scalar values recorded

during the downsizing step. Once in the native resolution of the sensor images, we

could use the camera calibration data to map the pick points in the image space to

the 3D world coordinate frame. The place points were determined by scaling the

displacement vector shown in Figure 5-5 by an empirically determined scale factor.
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(a) t = 0s (b) t = 2s

Figure 5-4: Example of the robot filter used to mask pixels belonging to the robot
arm. The two frames were taken from an overhead recording of the scene where the
robot arm was passing over the yellow cloth (top). The segmentation mask (bottom)
highlights the cloth pixels that will be a part of the action sampling set in Algorithm
2. Note that the segmentation mask will undergo cropping before being passed to the
models. In other words, the QR code highlighted at the top of the image will not be
seen by the models.

Figure 5-5: Post processing was required to map the control inputs produced by
Algorithm 2 to the native image. The input image to the hybrid controller’s model is
shown on the left with u near the top left corner of the image (see small red arrow).
The vector is mapped into the native resolution of the image (right) where it can be
further mapped into a 3D coordinate frame using the camera calibration data. The
mapped vector is indicated in the right image by a blue square with a red arrow near
the gripper. The location matches that of its original location and direction in the
model input image.

5.3 Control System

The control pipeline shown in Figure 5-6 (see dashed box) consisted of our hybrid

controller, a motion generator and a cartesian impedence controller. The pipeline
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Figure 5-6: A more detailed view of the system architecture, including important
transforms for relating the sensor coordinate frame and the robot’s base frame.

took image observations that were pre-processed by the perception pipeline in Sec-

tion 5.2. It produced a sequence of end-effector poses in the robot’s coordinate frame

that were later relayed to Franka Emika Panda’s low-level control pipeline through

the Franka Control Interface.

The control loop began with the hybrid controller. Provided a color image, depth

image and object mask the hybrid controller generated a coarse latent state and op-

timised a pick-and-place action in the compressed pixel space. We used the post

processing step in Section 5.2 to map the action back to the native resolution of the

images captured from the Kinect. This step was crucial as it allowed us to use the

camera calibration data to map the pixels in the native image to the world coordinate

74



frame. We did this using QR-code-based landmark features called April Tags.

The hybrid controller’s outputs were mapped to the robot coordinate frame through

a sequence of transforms that related the camera coordinate frame with the robot’s

base. Pixel locations in the camera frames were transformed into the base frame

using April Tag landmarks that were mounted in the scene. We used the April Tags

software to detect the QR code and localise it in the camera coordinate frame. Pro-

vided an accurate pose estimate of the QR code, we could map actions selected by the

hybrid controller to the robot’s coordinate frame. A manual calibration process was

used to measure the transform between the QR code and robot base base𝑇𝑄𝑅 (Figures

5-6 and 5-7). The April Tag software was available as a ROS package, so it was easy

to integrate into our perception and control pipeline.

Figure 5-7: An illustration showing how actions in the pixel space are transformed
into the robot’s base frame. On the left, the selected control input (encircled in cyan)
is transformed from the camera coordinate frame to the world coordinate frame. The
the custom motion generator computes a rough trajectory (blue lines) to outline
the pick-and-place action and interpolates it to produce a smooth trajectory of end-
effector poses. The robot arm is shown on the right to indicate the position of the
gripper and the base of the robot in the 3D plot.

Once the output of the hybrid was transformed to the robot’s base, we generated a

motion plan to execute the pick-and-place action. This required implementing a mo-

tion trajectory planner that produced a trajectory of end-effector poses that executed

the pick-and-place action. The motion generator interpolated a sparse intermediate

trajectory shown in the 3D plot in Figure 5-7.
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Figure 5-8: A view of the system attempting to pick the corner of a piece of cloth.
The blue box indicates the cropped region of the image that is downsized and given
as input to the hybrid controller’s models. The outputs of the controller are marked
by small blue squares with red vectors to indicate the intended displacement.

Figure 5-9: Three views of the scene: (right) a rendering of the overhead Kinect
sensor, QR code attached to the table surface and the scene point cloud; (bottom left)
the raw images inputs to the perception system taken from the camera pose shown on
the right; (top left) the (color) output of the perception pipeline and reconstructions of
the cloth state generated by models trained in simulation with domain randomisation.

Overall the hybrid control system was able to generate useful outputs despite not

being trained on real world data. We rendered its selected control inputs over real

images of the scene(see Figure 5-8) and observed that the system reasoned over the

shape of the cloth, attempting to pick the right edge of the cloth. There were, how-

ever, failure modes caused by the calibration of the April Tag setup that resulted in
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the gripper missing a pick (see Figure 5-9). Additionally, the gripper state (whether it

is open or closed) was occasionally not synchronised with the location of the pick. As

a result there were moments when the gripper would reach the cloth, but the gripper

had begun closing before the fabric was reached. These technicalities are resolvable

with minor engineering hacks; e.g., ensuring the QR code is consistently fixed relative

to the robot’s base and using a state machine to align the gripper state with key

points in the pick-and-place motion.

This physical setup provided a means for testing the hybrid model in a real world

setting. However, the hybrid controller was not rigorously tested on the Cloth Unfold

I and II tasks. The robustness of the models to variations in the cloth color, stiffness

and texture should also be tested. We delegate these experiments to future work.
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Chapter 6

Conclusion

At the beginning of this thesis, we introduced the problem of performing multi-stage

manipulation tasks in cases where the state space is high-dimensional. The task do-

mains that we addressed were centered on manipulating deformable objects to change

their shape to a high degree. We aspired to design an adaptive controller with the

capability of attending to different levels of representational information in order to

complete a multi-stage task by following expert guidance. The main challenge in this

problem was induced by the presence of deformable objects, which are under-actuated

non-linear systems with high-dimensional state space. We formalised the guided

multi-stage task execution problem as a trajectory tracking control problem and ap-

plied machine learning to overcome the complexity of tracking in high-dimensional

spaces. We developed a hybrid controller to prototype the adaptive controller and

demonstrated the utility of adapting the state representation in a wide range of sim-

ulated experiments. The experiments benchmarked the performance of the hybrid

controller against baselines that extend prior work. We also deployed the hybrid con-

troller to a control pipeline on a physical platform as a stepping stone towards doing

long horizon object manipulation in the real world. Finally, we envision applications

beyond deformable object manipulation where this approach could form the basis for

solutions to manipulation problems around construction (disassembly), food prepa-

ration, or problems outside of the robotic manipulation domain; multi-agent systems,

humanoid control and control of soft robots.
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One immediate area of expansion in this work is to run a large suite of physical ex-

periments that validate our proposed system’s ability to track in a real-world setting.

So far, the physical system runs end-to-end with models trained in simulation using

domain randomisation. Recall in Figure 5-9 that the hybrid controller generated sen-

sible pick-and-place actions for smoothing the cloth. However, the reconstructions

in the top left visualisation indicate that the model made errors in reproducing the

shape of the cloth. A large sim-to-real gap, a common ailment in robot manipula-

tion [59], was likely the cause. Often the gap is dealt with by domain randomisation

methods that require prior knowledge about the type of variations and the range of

variations that would be anticipated in the deployment context. Our models were

trained on fabrics of different color (including yellow), different lighting conditions,

as well as different fabric masses and friction values, yet there may have been enough

of a difference in the image statistics - given real downsized images instead of crisp

simulation renderings - to cause a larger gap than we anticipated. For this reason, we

hope to explore more sophisticated sim-to-real transfer techniques that will allow us

to make the most of a rich corpora of simulation data [14, 20, 2]. Another possibility

is to consider relying more strongly on depth inputs [52, 34].

Another consideration for future work is to enrich our model architecture to

achieve higher performance on our task suite. The architectures we described in

Chapter 3 are relatively general, thanks to their simplicity. That is, the loss and

architecture are not biased towards any particular task, so the models were able to

represent a variety of objects - 1D, 2D and 3D. We may consider incorporating terms

into the training loss or modifying the architecture to steer the models learn more

constrained, and possibly more interpretable features. For example, recent meth-

ods use graphical neural networks to learn mesh-based representations of fabric for

more accurate state estimation of configurations with high self-occlusion during cloth

folding tasks [23, 3]. The model architecture we used for estimating dynamics in the

latent space may also be upgraded to emulate Recurrent State Space Models (RSSM),
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proposed by Hafner et al. (2019) [12, 13, 44]. RSSM and its derivatives are capable of

representing stochastic dynamics, which would be appropriate feature to incorporate

to our deformable object models.

Further development of this research direction could benefit manipulation tasks

beyond 1D, 2D and 3D deformable object manipulation. This thesis did not address

particle-based systems that would characterise deformable objects like food, liquids

and granular material. Previous work on manipulation of food items, e.g., peeling

a banana, that planning solutions with hand-crafted and fixed models would benefit

from extensions of our approach [8, 60]. Another consideration, force sensing and

multiple arms could be incorporated into our framework to enable food manipulation

tasks that require precise force inputs to successfully complete a task. One example

might be to fold a burrito while minimising spillage. In the more general realm of

robot manipulation, assembly and disassembly of decomposable objects share similar

challenges in reasoning over high dimensional states, where the number of constituents

may vary [21]. Transcending manipulation tasks, ideas in this line of work could yield

creative solutions to highly related problems in the multi-agent control setting, con-

trol algorithms for humanoid robots and soft robots [16, 32, 7].
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