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Abstract

Multiagent decision-making is a ubiquitous problem with many real-world applica-
tions, such as autonomous driving, multi-player video games, and robot team sports.
Key challenges of multiagent learning include the presence of uncertainty in the other
agent’s behaviors and the curse of dimensionality caused by the high dimensionality of
the joint observation, action, and policy space. These challenges are accentuated even
further in adversarial scenarios due to the unknown agent intents and unexpected,
possibly adversarial behaviors. This thesis presents approaches for robust and scalable
multiagent learning with the goal of efficiently building autonomous agents that can
operate robustly in adversarial scenarios. The capability of accurately inferring un-
known agent intents by observing its behaviors is critical for robust decision-making.
A challenge in this case is the high uncertainty in an adversary’s actual behavior,
including potential deception, which could be significantly different from an a priori
behavior model. Capturing the interaction between the ego-agent and the adversaries
as well as the reasoning of available information to both agents is critical for mod-
eling this deceptive behavior. This thesis addresses this intent recognition problem
using a game-theoretic opponent modeling approach based on a new diversity-driven
belief-space ensemble training technique that is used to achieve robustness against
deception. To extend the ensemble approach to scenarios with multiple agents, this
thesis presents a scalable multiagent learning technique that facilitates near-optimal
joint policy learning through a sparse-attention mechanism. This mechanism results
in focused parameter update, which significantly improves sample-efficiency. More-
over, this thesis also contributes a novel implicit ensemble training approach that
leverages multi-task learning and deep generative policy distribution to achieve bet-
ter robustness at a much lower computation and memory cost compared with previous
ensemble techniques. The combination of robust intent recognition and scalable mul-
tiagent learning leads to robust and scalable offline policy learning. However, a fully
autonomous agent also needs to be able to continually learn from (and adapt to) new
environments and peer agents. Thus this thesis also presents to a safe adaptation ap-
proach that enables adaptation to a new opponent while maintaining low exploitabil-

3



ity for any possible opponent exploitation in adversarial scenarios. The contributions
presented in this thesis facilitate building autonomous agents that can make robust
decisions under competitive multiagent scenarios with uncertainty and safely adapt
to previously unseen peer agents, through computationally efficient learning.

Thesis Supervisor: Jonathan P. How
Title: R. C. Maclaurin Professor of Aeronautics and Astronautics

Thesis Supervisor: John Leonard
Title: Samuel C. Collins Professor of Mechanical and Ocean Engineering

Thesis Committee Chair: George Barbastathis
Title: Singapore Research Professor of Optics; Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Overview

Multiagent decision-making is a ubiquitous problem with many real-world applica-

tions. Despite great breakthroughs in building superhuman AI in recent years such as

AlphaZero [1] and Libratus [2], learning to make good decisions in real-world multia-

gent scenarios, especially adversarial scenarios, remains a challenging problem. This

thesis addresses several technical challenges to facilitate efficient learning that enables

near-optimal decision-making in multiagent adversarial scenarios.

In particular, this thesis focuses on robust and scalable multiagent reinforcement

learning (MARL) in adversarial scenarios. The robustness problem in machine learn-

ing arises from the distributional mismatch between training data and testing data [3],

which leads to significant performance degradation in the testing phase. In the MARL

context, this mismatch corresponds to shifting of agent behaviors from training to

testing [4], as well as high uncertainty of agent intents. As a result, understanding

agent intents and reasoning about possible agent behaviors are critical capabilities

to achieve robustness in multiagent adversarial scenarios, which is the first technical

challenge addressed in this thesis.

Besides robustness, scalability is a second issue that prevents the application of

current MARL approaches to complicated multiagent scenarios. The training and

inference of superhuman AI such as AlphaZero and Libratus require thousands of

15



CPUs and GPUs [1, 2], which is prohibitively demanding. The ensemble training

technique used in AlphaZero is one of the major reasons for this huge computation

cost [1], where the latest AlphaZero agent is trained against hundreds of its previous

policies. The motivation of using ensemble training is to achieve out-of-distribution

robustness against previously unseen opponent policies. To achieve this goal, the

agent must be trained against a diverse portfolio of strong opponent behaviors to

generalize its training performance to testing. Quite a few empirical studies [5–9]

show that this ensemble training process effectively improves robustness against out-

of-distribution opponents, which is critical for agents to survive in adversarial sce-

narios. In general multiagent adversarial scenarios that involve heterogeneous agents,

robustifying the ego-agent’s policy requires an ensemble of strong opponent policies,

while learning strong opponent policies requires an ensemble of strong ego-agent’s

policies. As a result, each agent has to learn an ensemble of policies, which sig-

nificantly increases the computation and memory requirements. Besides, extending

these techniques to scenarios with more than two agents and possibly many agents

is an additional challenge that significantly increases the number of required sam-

ples and computation [10]. Therefore, the capability of scaling up multiagent robust

policy learning with multiple agents and multiple policies is critical to the devel-

opment of practical MARL approaches for complicated multiagent scenarios. This

thesis presents approaches for addressing these two sub-problems of scalable MARL:

a computation-and-memory-efficient approach for ensemble-based policy learning and

a sample-efficient joint policy learning approach for multiagent scenarios with many

agents. These two approaches enable efficient offline learning of robust policies for

multiagent coordination and competition in adversarial scenarios.

Moreover, a fully autonomous agent needs to continually learn from and adapt

to new environments and peer agents to remain competitive in adversarial scenar-

ios. While there have been a variety of recent works on fast adaptation via meta-

learning [11–13] and multiagent meta-learning [14, 15], maintaining low exploitability

and high robustness against a previously unseen and possibly co-adapting adversary

during adaptation is an unsolved but important technical challenge in adversarial sce-
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narios. This thesis presents a safe adaptation approach that addresses this challenge,

which constitutes a complement to meta-learning towards building safe and adaptive

autonomous agents.

The following sections introduce the statement of problems addressed by this thesis

in further detail (Section 1.2), describe the technical contributions (Section 1.3), and

the thesis structure (Section 1.4).

1.2 Problem Statement

This thesis presents solutions to address the problem of how to design robust and scal-

able RL algorithms for multiagent systems, which can be decomposed into answers

to the following sub-problems: 1) How to robustly identify the intent of an opponent

agent in adversarial scenarios? 2) How to scale up MARL for learning near-optimal

joint policy in scenarios involving more than two, possibly many agents? 3) How

to reduce the computation complexity of ensemble training to achieve efficient ro-

bust policy learning? 4) How to safely adapt to an opponent while maintaining

low exploitability during the adaptation? The following sections elaborate on each

sub-problem, while the technical problem formulations are left for the subsequent

chapters.

1.2.1 Robust Intent Recognition under Asymmetric-information

Adversarial Scenarios

Most existing multiagent learning approaches do not account for the uncertainty of

opponent intents [2, 5, 16]. However, many safety-critical multiagent scenarios, e.g.

autonomous driving [17], urban security [18] and cyber security [19], require reasoning

about opponent intents to make good decisions. Moreover, these scenarios typically

involve asymmetric information, where the opponent has an information advantage

over the ego-agent, which incentivizes deceptive opponent behaviors. The research

problem is to develop a robust intent recognition approach that achieves high accuracy
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in asymmetric-information scenarios for making optimal decisions against a previously

unseen (possibly deceptive) opponent.

1.2.2 Near-optimal Multiagent Joint Policy Learning with Many

Agents

The complexity of a multiagent scenario largely depends on the number of agents

involved in the interaction. As a result, learning good joint policy is difficult in

scenarios with a large number of agents coordinating or competing with each other.

However, many real-world multiagent scenarios involve many agents. To bridge this

gap, the research problem is to develop a scalable multiagent learning algorithm that

enables learning of near-optimal joint policy in scenarios with a large number of

agents.

1.2.3 Efficient Ensemble-based Robust Policy Learning

Policy learned from MARL could be susceptible to overfitting to the opponent policy

during the training [20], which leads to performance degradation against a previously

unseen opponent when deployed in the real world. Ensemble training [5, 21, 22] is

an effective approach to mitigate overfitting and improve robustness. However, the

computation overhead of existing ensemble approaches [5, 21] is significant, which

prevents efficient robust policy learning in complicated multiagent scenarios. The

research problem is to develop a new ensemble training approach with significantly

reduced computation and memory overhead, while still achieving high robustness of

the learned policy.

1.2.4 Safe Adaptation against Adversarial Exploiter

Adaptation is a critical capability to achieve long-term competitiveness in an ever-

changing real-world environment. In multiagent adversarial scenarios, adaptation

corresponds to exploiting the sub-optimality of the opponent. However, as the ego-

agent exploits its opponent, the exploitability of its own policy also tends to increase,

which is known as the trade-off between exploitation and exploitability [23]. The
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research problem is to develop a safe adaptation approach for exploiting a sub-optimal

opponent while maintaining low exploitability against any other possible opponent

exploitation during the adaptation phase.

1.3 Contributions

Contribution 1: Robust Intent Recognition via Game-theoretic Ensem-

ble Opponent Modeling This contribution [18], based on our prior work [24],

addresses the problem of robust intent recognition against a previously unseen oppo-

nent. The key idea is a game-theoretic opponent modeling approach that captures

more sophisticated adversarial behaviors than what a single-agent opponent model

can capture. In addition, a diversity-driven ensemble training approach is developed

to capture a wide spectrum of possible adversarial behaviors including deception in

asymmetric-information scenarios, which effectively improves the accuracy of intent

recognition and robustness of the ego-agent’s policy against previously unseen adver-

saries. Specifically, the proposed approach increases the intent recognition precision

by about 30% and recall by about 60% against a deceptive adversary compared with

existing intent recognition approach based on single opponent modeling without en-

semble.

Contribution 2: Near-optimal Multiagent Joint Policy Learning with Sparse

Attentional Graph Neural Network This contribution [25] addresses the prob-

lem of learning near-optimal joint policy in scenarios with a large number of agents.

The key innovation is a novel sparse attention mechanism, which enables selective

attention to a small subset of peer agents’ information that is critical to the ego-

agent’s decision-making. As a result, the sample-efficiency is significantly improved

so that we can scale up MARL to scenarios with many agents without significant com-

promise on optimality. We demonstrated learning of joint policy that achieves high

performance with this new approach in scenarios with 20-30 agents, where previous

approaches perform poorly. Specifically, the proposed approach increases the success
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rate by about 70% in cooperative scenarios compared with baselines that do not ex-

ploit sparseness. In the competitive scenario, the proposed approach (overall score:

26) wins against the baselines (overall scores: -6 and -20) with significant margin.

Contribution 3: Efficient Ensemble-based Robust Policy Learning through

Implicit Ensemble Training This contribution [26] addresses the problem of

achieving ensemble-based robust policy learning with significantly reduced compu-

tation and memory overhead so as to scale up robust multiagent learning to more

complicated scenarios. The key innovation is a novel multi-tasking deep generative

model for representing a policy distribution implicitly within a single network archi-

tecture. The main benefits are improved sample-efficiency and policy diversity, which

leads to significantly improved training efficiency and robustness of the learned pol-

icy. With this capability, we are able to learn robust policy within hours which would

have taken weeks using previous ensemble training approaches.

Contribution 4: Safe Adaptation against Adversarial Exploiter via En-

semble Regularized Opponent Distribution Modeling This contribution [27]

addresses the problem of safe adaptation for exploiting a sub-optimal opponent while

maintaining low exploitability during the adaptation phase. The key innovation is a

novel Bayesian formulation of MARL where the posterior distribution over the op-

ponent policy not only captures the behavior of the opponent via maximizing the

likelihood of the observed data but also is regularized to stay close to a robust policy

distribution. As a result, training against this regularized opponent model enables

adaptation to the opponent as well as robustness against any possible opponent ex-

ploitation. Specifically, the proposed approach increases the overall metric of adap-

tation and robustness by about 50% and 40% respectively in two multiagent robotic

domains compared with two reference approaches that only optimize one of the adap-

tation and robustness metrics.
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1.4 Thesis Structure

The rest of the thesis is structured as follows:

1. Chapter 2 is the preliminaries on the decision-making framework of MARL as

the foundation of the approaches developed in this thesis.

2. Chapter 3 presents the approach for robust intent recognition via game-theoretic

ensemble opponent modeling (Contribution 1).

The content of this chapter is based on: Macheng Shen, and Jonathan P.

How. “Robust opponent modeling via adversarial ensemble reinforcement learn-

ing.” Proceedings of the International Conference on Automated Planning and

Scheduling. Vol. 31. 2021. URL: https://ojs.aaai.org/index.php/ICAPS/

article/view/16006/15817.

3. Chapter 4 presents the approach for near-optimal multiagent joint policy learn-

ing with a sparse attentional graph neural network (Contribution 2).

The content of this chapter is based on: Chuangchuang Sun*, Macheng Shen*,

and Jonathan P. How. “Scaling up multiagent reinforcement learning for robotic

systems: Learn an adaptive sparse communication graph.” IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS). IEEE, 2020.

URL: https://ieeexplore.ieee.org/document/9341303.

4. Chapter 5 presents the implicit ensemble training approach for efficient ensemble-

based robust policy learning (Contribution 3).

The content of this chapter is based on: Macheng Shen and Jonathan P How.

“Implicit ensemble training for efficient and robust multiagent reinforcement

learning.” 2021 International Conference on Machine Learning Workshop on

Uncertainty and Robustness in Deep Learning (ICML-UDL), URL: http://

www.gatsby.ucl.ac.uk/~balaji/udl2021/accepted-papers/UDL2021-paper-019.

pdf (Extended version to be submitted to Transactions on Machine Learning

Research).

21

https://ojs.aaai.org/index.php/ICAPS/article/view/16006/15817
https://ojs.aaai.org/index.php/ICAPS/article/view/16006/15817
https://ieeexplore.ieee.org/document/9341303
http://www.gatsby.ucl.ac.uk/~balaji/udl2021/accepted-papers/UDL2021-paper-019.pdf
http://www.gatsby.ucl.ac.uk/~balaji/udl2021/accepted-papers/UDL2021-paper-019.pdf
http://www.gatsby.ucl.ac.uk/~balaji/udl2021/accepted-papers/UDL2021-paper-019.pdf


5. Chapter 6 presents the approach for safe adaptation against adversarial exploiter

via ensemble regularized opponent distribution modeling (Contribution 4).

The content of this chapter is based on: Macheng Shen and Jonathan P How.

“Safe adaptation in multiagent competition.” IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), under review, URL: https:

//arxiv.org/pdf/2203.07562.pdf, 2022.

6. Chapter 7 summarizes the contributions presented in this thesis.

Given the diversity of the topics covered, a literature review on related works is

provided for each sub-topic in Chapters 3 to 6.
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Chapter 2

Preliminaries

This chapter presents the single-agent and multiagent decision-making frameworks,

Markov Decision Process (MDP), Markov Game (MG) and Bayesian Game (BG), as

well as the framework of MARL, as the foundation of the approaches presented in

the subsequent chapters.

2.1 Markov Decision Process

A Markov Decision Process is represented by a tuple ⟨𝒮,𝒜 𝒫𝑇 ,ℛ⟩ [28], where,

• 𝒮 is the set of state,

• 𝒜 is the action space,

• 𝒫𝑇 (𝑠′|𝑠, 𝑎) is the Markovian state transition,

• ℛ : 𝒮 ×𝒜 → R is the reward function.

The agent in the MDP has a stochastic policy 𝜋 : 𝒮 × 𝒜 ↦→ [0, 1], which maps each

state to a probability distribution over the action space. The objective of this agent

is to maximize the expected discounted cumulative reward 𝑅 =
∑︀𝑇

𝑡=0 𝛾
𝑡𝑟𝑡,

𝐽 = E𝑠∼𝑝𝜋 ,𝑎∼𝜋 [𝑅(𝑠, 𝑎)] . (2.1)
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2.2 Markov Game

A Markov game is a multiagent extension of MDP. A Markov Game for 𝑁 agents is

defined by 𝐺 = ⟨𝒮, {𝒜𝑖}, {𝒪𝑖}, 𝒫𝑇 ,𝒫𝑂, {𝑅𝑖}⟩ [29], where,

• 𝒮 is the set of state,

• 𝒜𝑖 is the action space of each agent, and we use 𝑎 = ⟨𝑎1, . . . , 𝑎𝑛⟩ to denote the

joint action, with 𝑎𝑖 ∈ 𝒜𝑖,

• 𝒪𝑖 is the observation space for each agent, and we use 𝑜 = ⟨𝑜1, . . . , 𝑜𝑛⟩ to denote

the joint observation, with 𝑜𝑖 ∈ 𝒪𝑖,

• 𝒫𝑇 (𝑠′|𝑠,𝑎) is the Markovian state transition, and 𝒫𝑂(𝑜|𝑠,𝑎) is the observation

probability,

• ℛ𝑖 : 𝒮 ×𝒜 → R is the reward function of each agent.

Each agent has a stochastic policy 𝜋𝑖 : 𝒪𝑖 × 𝒜𝑖 ↦→ [0, 1], and a reward function

𝑟𝑖 : 𝒮 ×𝒜𝑖 ↦→ R.

2.3 Bayesian Game

A Bayesian game (BG) [30] is defined by𝐺 = ⟨ℐ, ⟨𝒮,ℋ⟩, {𝑏0}, {𝒜𝑖}, {𝒪𝑖}, 𝒫𝑇 ,𝒫𝑂, {𝑅𝑖}⟩,

where,

• ℐ is a finite set of agents indexed by 1, . . . , 𝑛,

• Ω = ⟨𝒮,ℋ⟩ is the set of state of nature, which includes the physical states and

the agent hidden states,

• 𝑏0 ∈ ∆(𝒮 ×ℋ) is the common prior probability distribution over Ω, where ∆

is the probabilistic simplex,

• 𝒜𝑖, 𝒪𝑖, 𝒫𝑇 (𝑠′|𝑠,𝑎) and 𝒫𝑂(𝑜|𝑠,𝑎) are the same as those defined in Markov

Game,

• ℛ𝑖 : Ω×𝒜 → R is the reward function of each agent.

Each agent has a belief-space stochastic policy ∆Ω × 𝒜𝑖 ↦→ [0, 1], and a reward

function 𝑟𝑖 : Ω×𝒜𝑖 ↦→ R.
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2.4 Multiagent Reinforcement Learning (MARL)

The objective of each agent is to maximize its own cumulative reward 𝑅𝑖 =
∑︀𝑇

𝑡=0 𝛾
𝑡𝑟𝑡𝑖

with discount factor 𝛾 and time horizon 𝑇 [5]. As a result, the learning problem is

formulated as finding a joint policy 𝜋 = {𝜋𝑖}𝑖=1:𝑁 , where each policy maximizes its

own reward,

𝐽𝑖 = E𝑠∼𝑝𝜋 ,𝑎𝑖∼𝜋𝑖,𝑎−𝑖∼𝜋−𝑖
[𝑅𝑖(𝑠,𝑎)] , (2.2)

with 𝑝𝜋 being the transition dynamics and the subscript −𝑖 denotes the set {𝑗|𝑗 ̸=

𝑖, 𝑗 = 1, 2, . . . , 𝑁}.

2.5 MARL with policy distribution

In practice, learning with a single joint policy typically leads to over-fitting between

policies and poor generalization to previously unseen policies. A variety of empiri-

cal studies [5, 9, 16, 21, 31–33] and a recent theoretical study [8] suggest that it is

necessary to maintain a diverse set of policies for each agent to improve the strength

of the joint policy via MARL. Therefore, instead of learning a single joint policy, we

consider the following objective function which learns a distribution of policies for

each agent,

𝐽𝑖 = E𝑠∼𝑝𝜋 ,𝑎∼𝜋,𝜋∼𝒫Π, [𝑅𝑖(𝑠,𝑎)] , (2.3)

where 𝒫Π is a joint distribution over the joint policy space Π = Π1 × Π2 . . . × Π𝑁 .

Each agent is learning its own policy distribution Π𝑖 to optimize its objective 𝐽𝑖

subject to the joint distribution Π.

Note that the feasibility set of Eq. 2.3 contains that of Eq. 2.2, which is analogous

to the relationship between a mixed-strategy Nash Equilibrium and a pure-strategy

Nash Equilibrium [34]. This relationship also suggests that Eq. 2.3 is a generalized

learning objective of Eq. 2.2.
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2.6 Summary

This chapter briefly introduces the decision-making frameworks including MDP, MG,

BG, and MARL as preliminaries for the subsequent chapters.
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Chapter 3

Robust Intent Recognition via

Game-theoretic Ensemble Opponent

Modeling

3.1 Introduction

Recent advances in deep reinforcement learning (DRL) have achieved breakthroughs

in solving challenging decision-making problems in both single-agent environments

[35–37] and multiagent games [6, 9, 16, 38, 39]. Among these multiagent games, some

have fully observable states, and others includes hidden states that are partially-

observable (or unobservable) to some agents. Nevertheless, the agent types (intents)

in these games are known to all the agents. For example, Go is a zero-sum game where

the two players compete with each other, where player 1 (hereafter we refer to as the

ego-agent or the protagonist agent interchangeably) knows that its opponent player 2

is playing an adversarial role that tries to minimize player 1’s winning probability.

However, there also exist many important multiagent scenarios in which some of

the agent types are uncertain or not well known to all. For example, in a cyber-

security scenario, the network administrator (ego-agent/protagonist) observes signals

that could have been sent by normal users (neutral) or by malicious attacker agents
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(adversary), without knowing the type of each individual (hereafter, we refer to the

second agent of uncertain types as opponent).

Given this type uncertainty, the network administrator needs to infer the identity

of the signal sender before making the decision of blocking the signal or not, which

significantly increases the complexity of the network administrator’s decision-making

process.

An opponent model is typically required, either explicitly [40–43], or implicitly

[44–47], to make such inference feasible. An explicit modeling approach tries to

model the opponent’s policy directly, while an implicit model instead estimates inter-

mediate statistics such as the anticipated value of the ego-agent’s policy against the

opponent [48]. In the scenarios with uncertain opponent types, the implicit opponent

modeling approach could be predicting opponent’s hidden type from the observation

of opponent’s states and actions, while an explicit modeling approach also permit this

hidden type inference by using the Bayes’ rule. We will show evidence that explicit

opponent modeling leads to superior performance compared with implicit opponent

modeling.

One simple explicit opponent modelling approach is to treat the opponent as a

goal-directed MDP agent by specifying a reward function and then learn/use the opti-

mal goal-achieving policy as the opponent model. This approach has two limitations.

First, an adversarial opponent has the incentive of concealing its identity through

disguise behavior. For example, an attacker might mimic a normal user’s behav-

ior to avoid being detected immediately, while a simple goal-directed reward cannot

capture this strategic behavior. We argue that a game-theoretic opponent model

which captures the full interaction and strategic reasoning between the ego-agent and

the opponent agent is superior than a goal-directed opponent model of single-agent

perspective. The second limitation of using the opponent’s optimal policy as the

opponent model is the high sensitivity with respect to modeling error, which could

result in significant performance degradation against a previously unseen opponent.

To mitigate sensitivity and improve the robustness of the opponent model, we propose

to learn an ensemble of diverse opponent policies through multiagent reinforcement
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learning (MARL) and distill these policies to form an ‘average’ opponent model for

inferring the hidden type of an opponent from its observed state-action history.

This work presents an algorithmic framework for learning robust policies in multi-

agent scenarios with uncertain opponent types. We focus on the scenarios where the

opponent type is unknown to the ego-agent, but the ego-agent’s identity is certain to

the opponent. We are interested in learning an opponent model for the ego-agent to

update its belief on the opponent type and defend robustly against previously unseen

opponent. This setting is an abstraction of security-domain scenarios, but has seldom

been well-studied in the context of MARL.

3.2 Background

This section reviews the preliminary of the decision-making framework and solution

techniques.

3.2.1 Decision-making Framework

The multiagent scenarios with uncertain opponent types as described in the Intro-

duction Section is a special case of Bayesian Games as described in Section 2.3, where

Ω = ⟨𝒮,ℋ⟩ is the set of state of nature, which includes the physical states and the

agent hidden states corresponding to agent types in our problem. Note that the re-

ward function ℛ𝑖 : Ω × 𝒜 → R depends on both the state, action and the hidden

agent types. The same action against different types of opponents could result in

rewards of opposite signs (positive v.s. negative). As a result, correctly inferring the

opponent’s type is crucial for the ego-agent to maximize its reward.

3.2.2 Belief Space Reward

In partially observable domains, the belief-space value function is used instead of the

state value function for decision-making, which is defined as the expected cumulative
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reward with respect to the state-action distribution under the belief space policy 𝜋,

𝑉 𝜋(𝑏0) =
∞∑︁
𝑡=0

𝛾𝑡E𝑠𝑡∼𝑝(𝑠𝑡),𝑎𝑡∼𝜋(𝑏𝑡)[𝑅(𝑠𝑡, 𝑎𝑡)], (3.1)

where 𝑝(𝑠𝑡) is the state distribution and 𝑏𝑡 is the belief over the state. If the belief is

unbiased, then 𝑝(𝑠𝑡) = 𝑏(𝑠𝑡) and Eq. 3.1 reduces to

𝑉 𝜋(𝑏0) =
∞∑︁
𝑡=0

𝛾𝑡𝑟(𝑏𝑡, 𝑎𝑡), (3.2)

where 𝑟(𝑏, 𝑎) = E𝑠∼𝑏(𝑠)[𝑟(𝑠, 𝑎)] is the belief-space reward. In model-free reinforcement

learning (RL), reward is sampled from the environment at each step. The belief-space

reward sample 𝑟(𝑏𝑡, 𝑎𝑡) has lower variance than the actual reward sample 𝑟(𝑠𝑡, 𝑎𝑡)

because the uncertainty associated with the state distribution has been analytically

marginalized out. This low variance is beneficial for RL algorithms. In general,

however, the state distribution 𝑝𝑡 and the belief 𝑏𝑡 could be different, for example,

when the environment model 𝒫 used for belief update is biased. In this case, the policy

maximizing the belief space cumulative reward Eq. 3.2 does not necessarily maximize

the actual cumulative reward Eq. 3.1. This mismatch is inevitable in multiagent

scenarios with uncertain opponent types, because it is impossible to perfectly model

an opponent, which makes these type of problems challenging. Therefore, developing

an accurate opponent type inference scheme is crucial for learning a good belief-space

policy.

3.2.3 Related Work

Our work is at the intersection of hidden-information/(hidden-role) games, robust

MARL, and adversarial attack. The DeepRole algorithm [49] is the first deep MARL

approach for hidden role games, to the best of the authors’ knowledge. It combines

counterfactual regret minimization (CFR) with deep value networks trained through

self-play and integrates deductive reasoning into the RL module to reason about

joint beliefs and deduce partially observable actions. Our work is similar to [49]
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in terms of opponent modeling: both works learn deep policy through self-play and

explicitly infer opponent type using the learned policy. However, [49] did not explicitly

consider the robustness of the learned policy, while we demonstrated in our example

that robustness is a critical issue in hidden role games, and proposed solutions to

effectively improve the robustness through ensemble training.

Ensemble training techniques for robust MARL have been developed/applied in

[5], [6, 7, 9, 50]. Among these works, [9] is the only one that actively optimizes the

ensemble within the population-based-training (PBT) [50] framework. In [9], the main

exploiters trained against their main agents and the league exploiters trained against

all past players play a similar role as the ensemble evaluation procedure does in our

work. That architecture has achieved considerable improvements in the robustness,

leading to superhuman level performance in StarCraft II, but the associated significant

increase in complexity makes this technique impractical for most implementations.

In contrast, our ensemble optimization scheme requires much less computation.

Adversarial attacks against deep neural network and countermeasures have also

been widely studied, e.g., in [51–54]. The works on adversarial attacks in RL mostly

focus on different types of problems where the adversary can manipulate the reward

[55], policy [56], observation [57] or environment [58] of the ego-agent. Our work is

different from these bodies of work, in that the adversary is unable to directly manip-

ulate the reward, policy or environment. Our work is based on a similar assumption

as in [59]: the adversary cannot directly manipulate the protagonist’s observation

but can carefully choose an adversarial policy to act in the multi-agent environment

to create natural adversarial observations. In [59], the authors showed that in a

humanoid robot domain, the adversary can learn policies that reliably win against

the ego-agent but generate seemingly random and uncoordinated behavior (feature-

level attack), which induce substantially different activations in the ego-agent’s policy

network than when the ego-agent plays against a normal opponent. Also, these ad-

versarial policies are more successful in high-dimensional environments. In contrast,

our work focuses on scenarios where the adversarial attack is on the strategic level

(adversary type hidden, carefully chooses action from low-dimensional discrete ac-
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tion space that maneuvers the ego-agent’s belief). In addition, the main focus of our

work is on developing an inference scheme on the hidden type of the opponent and

a robust policy learning algorithm in MARL, while [59] focuses on investigating the

possibility of learning an adversarial policy against a fixed victim, which is essentially

a single-agent problem.

The scope of this work is also closely related with multiagent reasoning and goal

recognition, where the standard assumption is the availability of a library of action

models (one action model is analogous to one single policy of a certain opponent

type in our work), as in [46, 47]. Therefore, our MDP-S baseline corresponds to goal

recognition with a library of MDP action models, and the GT-S baseline corresponds

to goal recognition with a library of game-theoretic action models, which requires a

game-solver for bayesian games. This requirement is non-trivial with planning-based

approaches. As a result, planning-based multiagent reasoning was mostly studied

in very restricted domains (e.g., matrix games as in [60]; two-stage games as [19]),

while our approach is more scalable. Besides, we demonstrated that game-theoretic

modeling alone is insufficient for learning robust policy, and our results show that

the ensemble training is critical for improving robustness of policy against adversarial

exploitation, which has rarely been explored in planning-based multiagent reasoning

works.

3.3 Approach

We first give an overview of our approach. We use MARL to derive a game-theoretic

model of the opponent, where the ego-agent and the opponent agent are trained

against each other. Note that this learned opponent model is an ‘imagined opponent’,

which is different than the unseen opponent during the testing. This opponent model

is only used to update the ego-agent’s belief about the type of the opponent during

the testing. We use neural network to represent a belief space policy for the ego-

agent. The belief state is updated via Bayes’ rule using the learned opponent model.

The opponent model learning process consists of an ensemble policy training step
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Figure 3-1: Illustration of the workflow: we train one ego-agent/protagonist pol-
icy that uses an internal opponent model for belief update. The opponent model
is learned by distilling an ensemble of opponent policies trained against the ego-
agent/protagonist policy. Both the ego-agent and the opponent improve their policies
concurrently in the training environment

and a policy distillation step. We apply a neuro-evolutionary method to improve

the diversity of the ensemble population to avoid over-fitting to a single opponent

model, which improves the robustness of the opponent modeling. The above steps

are illustrated in Fig. 3-1. We present the detail of each step in the following sections.

3.3.1 MARL with Ensemble Training

To improve the policy robustness of the ego-agent, we formulate its RL objective as

the average cumulative reward against an ensemble of opponent policies of size 𝐾, as

in [5],

𝐽 (𝜋𝑖) = E𝑘∼unif(1,𝐾),
𝑎𝑖∼𝜋𝑖,
𝑎−𝑖∼𝜋

(𝑘)
−𝑖

[︃
∞∑︁
𝑡=0

𝛾𝑡𝑟𝑖(𝑠,𝑎)

]︃
, (3.3)

where unif(1, 𝐾) denotes the uniform distribution. The policy ensemble {𝜋(𝑘)
−𝑖 , 𝑘 =

1, 2, . . . , 𝐾} is also learned from training the opponent agent against the ego-agent’s

policy. Via this concurrent learning, both the ego-agent and its opponent improve

their policies. Nonetheless, there is no explicit mechanism to enforce distinction

among the policies within the ensemble. As a result, there could be policies that are

very similar to the others. To address this redundancy issue, we apply the cooperative
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evolutionary reinforcement learning (CERL) approach [61]. The key idea is to use

different hyper-parameter settings for each opponent policy, use an off-policy learning

algorithm and a shared experience replay buffer to improve the sample efficiency for

efficient training.

3.3.2 Belief Space Policy and Belief Update

We use the belief space approach for agent policy learning. Agents explicitly maintain

a belief over the hidden states (including the uncertain opponent types), and learns

a belief-space policy that maps belief to action. We parameterize this mapping using

a multi-layer perceptron (MLP). Instead of Eq. 3.3, the learning objective becomes,

𝐽 (𝜋𝑖) = E𝑘∼unif(1,𝐾),
𝑎𝑖∼𝜋𝑖(𝑏𝑖),
𝑎−𝑖∼𝜋

(𝑘)
−𝑖

[︃
∞∑︁
𝑡=0

𝛾𝑡𝑟𝑖(𝑏𝑖,𝑎)

]︃
. (3.4)

A belief update mechanism is required to fully specify the agent policy. The belief is

the posterior distribution over the hidden states given action and observation history,

𝑏𝑡𝑖 = 𝑝(𝑠𝑡, ℎ𝑡|𝑜0:𝑡𝑖 ). The intuition behind this hidden state inference is: the observation

is affected by the joint action, which depends on the joint policy as well as the hidden

type; the joint policy also depends on some hidden state such as agent type. Therefore,

reasoning about the hidden agent type via modeling the agent policy is possible.

We present the belief update rule for hidden type inference, starting from intro-

ducing our key assumptions.

Assumption 1 (Objective observation). Agents’ observations are conditionally in-

dependent of their internal type states, given the physical state and joint action.

Assumption 2 (Independent decision-maker). Each agent 𝑖 makes its own decision

conditioned on its own type variable ℎ𝑡𝑖, and its immediate observation 𝑜𝑡𝑖.

Assumption 3 (Time-invariant agent type). Within each episode, the agent types

are sampled at the beginning of this episode and do not change over time.
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Based on these assumptions, we derive the belief update scheme beginning from

the Bayes’ rule,

𝑏𝑡𝑖 ∝ 𝑝(𝑜𝑡𝑖|𝑠𝑡, ℎ𝑡, 𝑜0:𝑡−1
𝑖 )𝑝(𝑠𝑡, ℎ𝑡|𝑜0:𝑡−1

𝑖 ) (3.5)

the first term of which can be written as

𝑝(𝑜𝑡𝑖|𝑠𝑡, ℎ𝑡, 𝑜0:𝑡−1
𝑖 ) = 𝑝(𝑜𝑡𝑖|𝑠𝑡, ℎ𝑡)

=

∫︁
𝑝(𝑜𝑡𝑖|𝑎𝑡, 𝑠𝑡, ℎ𝑡)𝑝(𝑎𝑡|𝑠𝑡, ℎ𝑡)𝑑𝑎𝑡

(3.6)

where the first term, 𝑝(𝑜𝑡𝑖|𝑎𝑡, 𝑠𝑡, ℎ𝑡), is the observation probability. It is reasonable

to assume 𝑝(𝑜𝑡𝑖|𝑎𝑡, 𝑠𝑡, ℎ𝑡) = 𝑝(𝑜𝑡𝑖|𝑎𝑡, 𝑠𝑡) = 𝒫𝑂(𝑜𝑡𝑖|𝑎𝑡, 𝑠𝑡), i.e., agents’ observations are

independent from their internal type states (see Assumption 1). The second term

in Eq. (3.6) 𝑝(𝑎𝑡|𝑠𝑡, ℎ𝑡) is the key connection between opponent type inference and

opponent policy modeling. Intuitively, this term is closely related to agent policy,

we introduce the joint observation immediately before all the agents taking actions,

denoted as 𝑜𝑡
− , and rewrite 𝑝(𝑎𝑡|𝑠𝑡, ℎ𝑡) as follows,

𝑝(𝑎𝑡|𝑠𝑡, ℎ𝑡) =
∫︁
𝑝(𝑎𝑡|𝑜𝑡− , 𝑠𝑡, ℎ𝑡)𝑝(𝑜𝑡−|𝑠𝑡, ℎ𝑡)𝑑𝑜𝑡− . (3.7)

The second term 𝑝(𝑜𝑡
− |𝑠𝑡, ℎ𝑡) is the observation probability 𝒫𝑂(𝑜𝑡−|𝑠𝑡). This proba-

bility is not conditioned on the immediate joint actions, because the joint actions have

not been taken yet. The first term 𝑝(𝑎𝑡|𝑜𝑡− , 𝑠𝑡, ℎ𝑡) is related to the joint policies. In

order to reveal this connection, we invoke Assumption 2. Based on this assumption,

we have the following factorization,

𝑝(𝑎𝑡|𝑜𝑡− , 𝑠𝑡, ℎ𝑡) = 𝑝(𝑎𝑡|𝑜𝑡− , ℎ𝑡) ≈
𝑁∏︁
𝑗

𝜋𝑗(𝑜
𝑡
𝑗|ℎ𝑗). (3.8)

To summarize, Eq. (3.6) can be represented as:

𝑝(𝑜𝑡𝑖|𝑠𝑡, ℎ𝑡, 𝑜0:𝑡−1
𝑖 ) = E𝑎𝑡∼𝜋(𝑜|ℎ)[𝒫𝑂(𝑜𝑡𝑖|𝑎𝑡, 𝑠𝑡)], (3.9)
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where 𝑜 =
∫︀
𝒫𝑂(𝑜𝑡− |𝑠𝑡)𝑑𝑜𝑡− . The interpretation of Eq. (3.9) is that the probability

of receiving an observation 𝑜𝑡𝑖 is the expected observation by marginalizing out all

the possible joint actions over the observation probability 𝒫𝑂(𝑜𝑡𝑖|𝑎𝑡, 𝑠𝑡), where the

probability of the joint actions 𝜋(𝑜|ℎ) is obtained from the joint policies using the

expected joint observation of all the agents.

The second term in Eq. (3.5), 𝑝(𝑠𝑡, ℎ𝑡|𝑜0:𝑡−1
𝑖 ) can be expressed as

∫︁
𝑝(𝑠𝑡, ℎ𝑡|𝑠𝑡−1, ℎ𝑡−1)𝑝(𝑠𝑡−1, ℎ𝑡−1|𝑜0:𝑡−1

𝑖 )𝑑𝑠𝑡−1𝑑ℎ𝑡−1 (3.10)

=

∫︁
𝑝(𝑠𝑡, ℎ𝑡|𝑠𝑡−1, ℎ𝑡−1)𝑏𝑡−1

𝑖 𝑑𝑠𝑡−1𝑑ℎ𝑡−1. (3.11)

To further simplify this expression, we invoke Assumption 3 so that

𝑝(𝑠𝑡, ℎ𝑡|𝑠𝑡−1, ℎ𝑡−1) = 𝑝(𝑠𝑡, ℎ𝑡|𝑠𝑡−1, ℎ𝑡−1)𝛿(ℎ𝑡|ℎ𝑡−1),

where 𝛿(ℎ𝑡|ℎ𝑡−1) denotes the Dirac-delta measure. With this assumption, Eq. (3.11)

simplifies to

𝑝(𝑠𝑡, ℎ𝑡|𝑜0:𝑡−1
𝑖 ) =

∫︁
𝑝(𝑠𝑡|𝑠𝑡−1, ℎ𝑡)𝑏𝑡−1

𝑖 𝑑𝑠𝑡−1. (3.12)

Combining Eqs. (3.5), (3.9), and (3.12) yields the recursive belief update rule,

𝑏𝑡𝑖 ∝ E𝑎𝑡∼𝜋(𝑜|ℎ)[𝒫𝑂(𝑜𝑡𝑖|𝑎𝑡, 𝑠𝑡)]
∫︁
𝑝(𝑠𝑡|𝑠𝑡−1, ℎ𝑡)𝑏𝑡−1

𝑖 𝑑𝑠𝑡−1, (3.13)

which has the following interpretation: To infer the state of current step, we can

predict it based on the posterior belief of the last step, by propagating the physical

state distribution and correcting the belief over the hidden type variable via comparing

the actual observation with the anticipated observation according to agent policy

modeling.

Remark 1. In the belief update rule, the inference over the hidden type variable is im-

plicit inside the expectation term. The observation probability is crucial to the discrim-

inative power of this inference. To illustrate this point, consider an extreme case where

the observation contains no information about agents’ actions, i.e., 𝒫𝑂(𝑜𝑡𝑖|𝑎𝑡, 𝑠𝑡) is
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not a function of 𝑎𝑡. In this case, this expectation term will be independent of the

joint policy (will be a constant due to normalization condition of expectation). As a

result, no information about the hidden type variable can be extracted from this term.

This makes sense, because if the observation tells us nothing about the actions taken

by the other agents (dictated by their policies and hidden types), then it is impossible

to update our belief over their hidden types. Conversely, if the observation contains

full information about the joint action (e.g., the ego-directly observes the joint ac-

tion), this expectation term would be highly dependent on the joint policies (therefore,

on the hidden type variable), and the discriminative power of this inference scheme

is maximized.

The observation probability 𝒫𝑂(𝑜𝑡𝑖|𝑎𝑡, 𝑠𝑡), the agent policies 𝜋, and the state tran-

sition probability 𝑝(𝑠𝑡|𝑠𝑡−1, ℎ𝑡−1) are required to implement the belief update, which

is anticipated. This work focuses on a special case in which the physical states are

fully observable to all the agents, so agents do not need to maintain a belief over

𝑠𝑡. This assumption simplifies the computational aspect of the problem, but it does

not diminish the central difficulty of the problem, i.e., inferring the hidden type of

opponent.

To approximate the policies of agent 𝑗 of each possible type {ℎ(𝑚)
𝑗 }𝑀𝑚=1, recall that,

in the ensemble training step, we create 𝐾 different policies {𝜋(𝑘)
𝑗,𝑚}𝐾𝑘=1 for each agent

of each type. Here we use shorthand 𝜋𝑗,𝑚 to denote agent 𝑗 with type ℎ(𝑚)
𝑗 . Each

policy within one ensemble can be interpreted as one of the likely strategies that could

be adopted by agent 𝑗 with type ℎ(𝑚)
𝑗 . However, in the belief update equation, we

need only one single policy for agent 𝑗 with type ℎ(𝑚)
𝑗 . As a result, we must synthesize

the policy ensemble into one representative policy that best represents the average

behavior of the policy ensemble. We learn this representative policy by minimizing

the information theoretic distance (Kullback−Leibler (KL) divergence) between this

policy and the policy ensemble. The resulting optimization problem to learn the
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representative policy 𝜋0
𝑗,𝑚 is then

𝐽(𝜋0
𝑗,𝑚) =

𝐾∑︁
𝑘=1

KL(𝜋(𝑘)
𝑗,𝑚, 𝜋

0
𝑗,𝑚), (3.14)

which is policy distillation [62]. The solution to this minimization is,

𝜋0
𝑗,𝑚 =

1

𝐾

𝐾∑︁
𝑘=1

𝜋
(𝑘)
𝑗,𝑚, (3.15)

which happens to be the average over the policies within one ensemble. As a result,

we can approximate 𝜋0
𝑗,𝑚 by training a policy distillation network to minimize the

residue of Eq. (3.15) using data sample, which is computationally much more efficient

than calculating all the 𝐾 policies during testing.

3.3.3 Policy Ensemble Optimization

The ensemble training step typically improves the robustness of the ego-agent’s policy.

However, two problems need to be addressed to make this approach more effective

and efficient. First, we want a metric for measuring policy robustness and we want to

explicitly optimize this robustness metrics. Second, we want to reduce the additional

computation overhead introduced by ensemble training.

We address these two problems by training a hold-out adversary agent to exploit

the ego-agent’s policy, and use the resulted ego-agent’s reward as a robustness score.

Instead of using a fixed-size ensemble, we dynamically resize the ensemble through

three operations: pop, append, and exchange. pop randomly removes one policy

from the ensemble and pushes it into a deactivation-set. append randomly selects one

policy from the deactivation-set and adds it to the ensemble. exchange randomly

selects one policy from both the ensemble and the deactivation-set and exchanges

them.

The objective of modifying the ensemble is to obtain a good trade-off between

robustness and computational complexity, which is dominated by the ensemble size.
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Procedure 1 Ensemble evaluation
1: Fix the ego-agent’s policy
2: Train a single opponent policy against the fixed ego-agent’s policy
3: Obtain the average ego-agent reward 𝑟𝑝 and opponent reward 𝑟𝑜 after training

Procedure 2 Ensemble Optimization
1: Randomly select an operation 𝜉 from {pop, append, exchange} to apply on

the policy ensemble
2: Obtain a new metrics 𝜌new via Procedure 1
3: Accept the operation 𝜉 with probability 𝑝, where
4: 𝑝 = exp(min{0, 𝜌old − 𝜌new}/𝑇 )

We propose to measure the robustness via Procedure 1, and we define the following

metric (with weights 𝜆𝑖)

𝜌 = −𝑟𝑝 + 𝜆1𝑟
𝑜 + 𝜆2𝐾, (3.16)

where 𝐾 is the varying size of the policy ensemble. The combined reward term

−𝑟𝑝 + 𝜆1𝑟
𝑜 is a measure of the robustness of the ego-agent’s policy, which is noisy

due to the intrinsic stochasticity of RL, while 𝐾 is a surrogate measure for compu-

tation complexity. Minimizing 𝜌 leads to a trade-off between policy robustness and

computation complexity. We interpret this minimization problem as a stochastic op-

timization over the powerset of the initial policy ensemble. We solve this stochastic

optimization via simulated annealing (Procedure 2).

Table 3.1: Hyper-parameter of ensemble optimization

Hyper-parameter Value
Opponent loss weight 𝜆1 0.1
Ensemble size weight 𝜆2 1.0
Initial temperature 𝑇0 30.0

Minimum temperature 𝑇min 0.2
Temperature decay rate 0.975

3.4 Experiments

This section addresses the following questions:
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Figure 3-2: Sketch of the scenario, the opponent (bottom middle) could be an adver-
sary or a neutral agent. The ego-agent/protagonist agent (upper right corner in the
green region) must infer the identity of the opponent and tag the adversary and let
the neural agent pass.

1. Is it necessary to use ensemble training, considering its additional computation

overhead?

2. Is it beneficial to explicitly model opponent policy and maintain a belief?

3. How much improvement do we get from ensemble training?

3.4.1 Scenario: Urban-security Game

We design a two-player urban-security game with uncertain opponent types to eval-

uate our algorithm, as illustrated in Fig. 3-2. There are two agents: the ego-

agent/protagonist agent (the officer) and the opponent agent with two possible types

(either a neutral agent or an adversary). The opponent’s objective is to reach its home

base (a neutral opponent goes to the ally’s base, the blue castle, while an adversarial

opponent goes to the enemy’s base, the red castle). The protagonist’s objective is to

identify the type of its opponent and obtain reward by tagging the adversarial oppo-
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nent and let pass the neutral opponent. Mistakenly tagging a neutral would incur a

large penalty to the protagonist. The protagonist cannot enter the blue region of the

map, so once the opponent has passed the green region and entered the blue region,

the protagonist cannot tag it anymore. If the opponent is an adversary, it receives a

large penalty if tagged. The opponent always receives penalty if it has not reached

its base, and the penalty increases with its distance from its base. Based on the

game rules, an adversarial opponent could try multiple strategies. For example, one

strategy is to rush towards its home base to minimize the distance penalty. However,

if it takes this greedy strategy, the protagonist can quickly identify this adversary and

try to tag it (large penalty for the adversary). Another strategy is to initially head

towards the ally base, to trick the protagonist agent into believing that the opponent

is a neutral opponent. Once the adversary is close enough to the blue region, it can

safely head to its base. This strategy incurs a larger distance penalty but might get

a higher reward by avoiding being tagged.

State and Action Space

The state of each agent is its 2-d position, i.e., 𝒮𝑖 = [0, 8] × [0, 8]. The protagonist

agent has a discrete action space

𝒜𝑝 = [move left,move right,move up,move down, tag,probe].

The opponent agent’s action space is

𝒜𝑜 = [move left,move right,move up,move down].

Each of the ‘move’ action changes the agent position by one unit distance. The

tag action succeeds if and only if the distance between the two agents is less than

2.5. The probe action is equivalent to query a noisy measurement of the opponent’s

true type, where there is 0.8 probability getting the correct type and 0.2 probability

getting the wrong type. The protagonist agent could take this probe action to help

with its inference besides simply observing the opponent. Each probe action incurs

cost, so the protagonist agent has to wisely decide when and how many times to

probe.
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Reward

The reward of the opponent agent consists of two parts: (1) 𝑟𝑑 = −0.25𝑑2/5, where 𝑑

is its distance from its home base; (2) 𝑟tagged = −10 if being tagged.

The state-action reward of the protagonist agent consists of several parts: (1)

𝑟tag adversary = 10 if tagging an adversarial agent; (2) 𝑟tag neutral = −20 if tagging a

neutral agent; (3) 𝑟d2o = −0.25𝑑2/5o , where 𝑑o is the distance between the protagonist

agent and the opponent. This is a heuristic reward to help the protagonist agent

learning sensible behaviors; (4) Tag cost 𝑟tag cost = −0.2, no matter tagging is suc-

cessful or not; (5) Probe cost 𝑟probe cost = −0.25𝐶, where 𝐶 is the cumulative counts

of the probing action so far, i.e., the probe cost per time increases as the total num-

ber of probing increases. This effectively prevents the agent from abusing the probe

action.

3.4.2 Ensemble Training vs. Single Model

To answer the first question, we compared the protagonist policy learned from training

against an ensemble of opponent policies and that from training against a single

opponent policy. We used a similar ensemble as used in [61], which consists of four

opponent policies, each policy is learned from training against the protagonist policy.

We used four different discount factors for the opponent learning objectives: 𝛾1 =

0.9, 𝛾2 = 0.99, 𝛾3 = 0.997, 𝛾4 = 0.9995. An interpretation of this setting is a variety

of opponent playing styles ranging from myopic to far-sighted strategies.

For comparison, we also trained the protagonist policy individually against each

opponent model, so we obtained five protagonist policies in total. For evaluation,

we trained five separate opponent evaluation policies, each corresponding to one of

the protagonist policies. The evaluation policies all used the same discount factor

𝛾 = 0.99.

Fig. 3-3a and Fig. 3-3b (each curve is averaged over three runs) show the training

and evaluation rewards. During training, the single model policies generally lead to

higher protagonist reward, while the ensemble training results in the lowest protag-
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(a) Protagonist training reward

(b) Protagonist evaluation reward
Figure 3-3: Training and evaluation rewards of the protagonist agent: Single opponent
models (𝛾 = 0.9, 𝛾 = 0.99, 𝛾 = 0.997, 𝛾 = 0.9995) performs better than ensemble
training in the training phase due to overfitting to simple opponent models, while
ensemble training outperforms single opponent models in evaluation
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Table 3.2: Mean evaluation reward: vs. LSTM

Algorithm* Protagonist Adversary
belief space, with EO & CE -14.4±1.49 -83.0±17.0
LSTM, with EO & CE -17.7±1.9 -66.2±13.8
belief space, w/o EO & CE -16.5±1.1 -58.6±24.9
LSTM, w/o EO & CE -16.8±3.1 -49.4±6.6

* EO: ensemble optimization, CE: cooperative evolution.

onist reward. This suggests that the protagonist policy overfits to one of the single

opponent models, thus achieving high training reward but low evaluation reward.

In contrast, the protagonist policy trained against the ensemble achieves the best

evaluation reward. It is worth pointing out that, in the second single model setting,

although the hyper-parameter 𝛾2 = 0.99 is the same as that of the evaluation oppo-

nent, the evaluation reward is still significantly worse than the training reward. This

is not surprising, as the agent could learn different policies even with the same hyper-

parameter setting. Therefore, overfitting is almost inevitable when training against

a single model.

3.4.3 Belief Space Policy vs. Implicit Approach via RNN

To answer the second question, we replaced belief space policy with a recurrent policy

parameterized by a Long short term memory network (LSTM). Fig. 3-4 (histogram

of rewards from 10 runs) and Table 3.2 (mean rewards) show the comparison between

these two settings, where the belief space policy consistently outperforms the recurrent

policy. This result agrees with our conjecture that learning a recurrent policy is

difficult due to the lack of prior knowledge on the information structure and the

high-variance of the state-space reward.

3.4.4 Ablation Study

To answer the third question, we compared our algorithm with its ablated versions:

(I) without neuro-evolution, (II) without both neuro-evolution and ensemble opti-

mization. For the ablated version II, we randomly sampled subsets of the ensemble
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(a) Protagonist reward: higher is better

(b) Opponent (adversary) reward: lower is better

Figure 3-4: Evaluation rewards distribution of the protagonist agent (top) and the
opponent agent (bottom): (1) belief space policy, with ensemble optimization (EO)
and cooperative-evolution (CE); (2) LSTM, with EO and CE; (3) belief space policy,
without EO and CE (single opponent model); (4) LSTM, without EO and CE (single
opponent model); Belief space policy (1) and (3) outperforms LSTM (2) and (4)
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(a) Protagonist reward: higher is better

(b) Opponent (adversary) reward: lower is better

Figure 3-5: Evaluation rewards of the protagonist agent (top) and the opponent agent
(bottom): (1) with both ensemble optimization (EO) and cooperative-evolution (CE);
(2) with CE but without EO; (3) without EO and CE (single opponent model); EO
+ CE outperforms CE only, which outperforms single opponent model
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Table 3.3: Mean evaluation reward: ablation study

Ablated version* Protagonist Adversary
with EO & CE -14.4±1.49 -83.0±17.0
w/o EO -15.5±2.2 -65.8±28.5
w/o EO & CE -16.5±1.1 -58.6±24.9

* EO: ensemble optimization, CE: cooperative evolution.

from its powerset and used the fixed subset for training. We ran 10 independent sim-

ulations for each of the ablated version. Fig. 3-5 (histogram of rewards from 10 runs)

and Table 3.3 (mean rewards) shows the evaluation rewards of the full and ablated

versions of our algorithm. This result suggests that both neuro-evolution and ensem-

ble optimization have important contributions to the performance improvement.

3.4.5 Accuracy of Hidden Type Inference

To gain insight into the reason behind the results shown above, we present the accu-

racy of the opponent’s hidden type inference under the different opponent modeling

settings:

1. MDP-S: The baseline approach, where the opponent agent is modeled as a

goal-directed MDP agent, and the optimal goal-achieving policy is used by the

protagonist agent for opponent type inference.

2. GT-S: A game theoretic opponent modeling approach with a single opponent

policy where the protagonist agent and the opponent concurrently update their

policies during the training, and the protagonist agent uses this learned oppo-

nent model for type inference during the testing.

3. GT-E: A game theoretic opponent modeling approach with an ensemble of op-

ponent policies, and the protagonist agent uses the distilled policy from this

ensemble for type inference during the testing.

We randomly sampled the opponent type with an equal probability (50%) of neutral

and adversary. Table 3.4 shows the average true positive rate (TPR, successfully iden-
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Table 3.4: Opponent type inference accuracy / Rewards

Metrics*/Approach MDP-S GT-S GT-E
TPR10 0.12 0.34 0.68
TPR20 0.06 0.26 0.74
TNR10 0.91 0.73 0.85
TNR20 0.96 0.82 0.91
Precision10 0.57 0.56 0.82
Precision20 0.60 0.59 0.89
Recall10 0.12 0.34 0.68
Recall20 0.06 0.26 0.74
Protagonist reward -19.44 -17.55 -14.4
Adversary reward -50.48 -58.19 -83.0

* TRPn: TPR after n time steps, similarly for the
other metrics.

tify an adversary), true negative rate (TNR, successfully identify a neutral), precision,

recall, and mean rewards for both agents.

The TPR corresponding to MDP-S is quite low, indicating that the protagonist

agent completely mis-classifies the adversary agent as a neutral agent. As the time

step increases (comparison between TPR10 and TPR20), this mis-classification be-

comes worse (from 0.12 to 0.06). This result indicates that there is a significant

mismatch between the protagonist’s model of the adversary policy and the actual ad-

versary policy during the testing. Besides, the true negative rate is quite high. This

result suggests that the adversary indeed learned a policy that confuses the protago-

nist agent by mimicking the behavior of a neutral agent, and therefore, the protagonist

agent always classifies the opponent as a neutral agent. Similarly, the TPR corre-

sponds to GT-S is also significantly lower than the prior probability (50%), which

indicates a mismatch between the opponent model and the actual opponent, while

GT-S outperforms MDP-S by a large margin since the game-theoretic aspect accounts

for the strategic reasoning between the adversary and the protagonist agent which is

missing in the MDP-S approach. In contrast, the TPR corresponding to GT-E signif-

icantly outperforms the other two approaches. Moreover, as the time step increases,

the TPR also increases from 0.68 to 0.74, which indicates that this opponent model

successfully captures an adversary’s general behavior pattern and is able to generalize
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to previously unseen adversaries.

The TNR statistics of these three modeling approaches are all significantly higher

than 50%, which indicates a good success rate of identifying a neutral agent. This

result is also anticipated due to the fact that the neutral agent’s policy is simple

(heading towards its goal), so it can be accurately learned by the protagonist agent.

Although the TNR of MDP-S is highest among these three modeling approaches, this

high TNR does not necessarily indicate MDP-S is good at identifying the neutral

agent, but rather always ‘guessing’ the opponent as being neutral. As a result, the

recall scores of the MDP-S and the GT-S approaches are much lower than that of the

GT-E approach, and consequently lead to a poorer protagonist agent performance as

indicated by the rewards.

3.5 Summary

We summarize the key findings of this work as follows:

• We present algorithms based on MARL and ensemble training for robust oppo-

nent modeling and posterior inference over the opponent type from the observed

action.

• We demonstrate that the explicit opponent modeling outperforms a black-box

RNN approach, and the ensemble training approach outperforms a single agent

model. We analyze the reason for this observation by inspecting the agent type

inference, and show that the performance of the ego-agent policy (protagonist)

is highly correlated to the quality of the type inference accuracy.

49



50



Chapter 4

Scalable Multiagent Joint Policy

Learning with Sparse-attentional

Graph Neural Network

4.1 Introduction

Reinforcement Learning (RL) has achieved enormous successes in robotics [63] and

gaming [64] in both single and multiagent settings. For example, deep reinforcement

learning (DRL) achieved super-human performance in the two-player game Go, which

has a very high-dimensional state-action space [65, 66]. However, in multiagent sce-

narios, the sizes of the state space, joint action space, and joint observation space

grow exponentially with the number of agents. As a result of this high dimensional-

ity, existing multiagent reinforcement learning (MARL) algorithms require significant

computational resources to learn an optimal policy, which impedes the application

of MARL to systems such as swarm robotics [67]. Thus, improving the scalability of

MARL is a necessary step towards building large-scale multiagent learning systems

for real-world applications.

In MARL, the increase of complexity of finding an optimal joint policy, with

respect to the number of agents, is a result of coupled interactions between agents
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[68]. However, in many multiagent scenarios, the interactions between agents are

quite sparse. For example, in a soccer game, an agent typically only needs to pay

attention to other nearby agents when dribbling because agents far away are not

able to intercept. The existence of such sparsity structures of the state transition

dynamics (or the state-action-reward relationships) suggests that an agent may only

need to attend to information from a small subset of the agents for near-optimal

decision-making. Note that the other players that require attention might not be

nearby, such as the receiver of a long pass in soccer. In such cases, the agent only

needs to selectively attend to agents that “matter the most". As a result, the agent

can spatially and temporally reduce the scale of the planning problem.

In large-scale MARL, sample complexity is a bottleneck of scalability [69]. To re-

duce the sample complexity, another feature we can exploit is the interchangeability

of homogeneous agents: switching two agents’ state/action will not make any differ-

ence to the environment. This interchangeability implies permutation-invariance of

the multiagent state-action value function (a.k.a. the centralized 𝑄-function) as well

as interchangeability of agent policies. However, many MARL algorithms such as

MADDPG [70], VDN [71], QMIX [72] do not exploit this symmetry and thus have to

learn this interchangeability from experience, which increases the sample complexity

unnecessarily.

Graph neural network (GNN) is a specific neural network architecture in which

permutation-invariance features can be embedded via graph pooling operations, so

this approach has been applied in MARL [73–75] to exploit the interchangeabil-

ity. As MARL is a non-structural scenario where the links/connections between the

nodes/agents are ambiguous to decide, a graph has to be created in advance to apply

GNN for MARL. Refs. [73–75], apply ad-hoc methods, such as 𝑘-nearest neighbors,

hard threshold, and random dropout to obtain a graph structure. However, these

methods require handcrafted metrics to measure the closeness between agents, which

are scenario-specific and thus not general/principled. Inappropriately selecting neigh-

bors based on a poorly designed closeness metric could lead to the failure of learning

a useful policy.
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While attention mechanisms [76] could be applied to learn the strength of the

connections between a pair of agents (i.e., closeness metric) in a general and principled

way, such strengths are often dense, leading to a nearly-complete computation graph

that does not benefit scalability. The dense attention mechanism results from that

the softmax activation function operated on the raw attention logits generates a

probability distribution with full support. One solution to enforce a sparse graph is

top 𝑘 thresholding [77], which keeps the 𝑘-largest attention scores and truncates the

rest to zero. However, this truncation is a non-differentiable operation that may cause

problems for gradient-based optimization algorithms, such as those used in end-to-

end training. Therefore, a sparse attention mechanism that preserves the gradient

flow necessary for gradient-based training is required.

To address the non-differentiability issue in sparse attention mechanisms, we gen-

eralize sparsemax [78] and obtain a sparsity mechanism whose pattern is adaptive

to the environment states. This sparsity mechanism can reduce the complexity of

both the forward pass and the back-propagation of the policy and value networks, as

well as preserving the end-to-end trainability in contrast to hard thresholding. With

the introduction of GNN and generalized sparsemax, which can preserve permutation

invariance and promote sparsity respectively, the scalability of MARL is improved.

The discussion so far was restricted to homogeneous agents and thus permutation-

invariance is desirable. However, in heterogeneous multiagent systems or competitive

environments, permutation invariance and interchangeability are no longer valid. For

example, in soccer, switching positions of two players from different sides can make

a difference to the game. To address this heterogeneity, GNN-based MARL must

distinguish the different semantic meanings of the connections between different agent

pairs (e.g. friend/friend relationship versus friend/foe relationship). We address this

requirement by multi-relational graph convolution network [79] to pass messages using

different graph convolution layers on graph edge connections with different semantic

meanings.

To summarize, we propose to learn an adaptive sparse communication graph

within the GNN-based framework to improve the scalability of MARL, which applies
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to both homogeneous and heterogeneous multiagent systems in mixed cooperative-

competitive scenarios.

4.2 Background

4.2.1 Multi-head attention

The scaled dot-product attention mechanism was first proposed in [76] for natural

language processing. An attention function maps the query and a set of key-value

pairs to the output, which is the weighted sum of the values. The weight assigned

to the each value calculated via a compatibility function of the query and the cor-

responding key. In the context of MARL, let ℎ𝑖, 𝑖 ∈ 𝑁 be the representation of the

agents. Key, query and value of agent 𝑖 is defined as 𝐾 𝑙
𝑖 = 𝑊𝐾ℎ

𝑙
𝑖 ∈ R𝑑𝐾 , 𝑄𝑙

𝑖 = 𝑊𝑄ℎ
𝑙
𝑖

and 𝑉 𝑙
𝑖 = 𝑊𝑉 ℎ

𝑙
𝑖, respectively with 𝑊𝐾 ,𝑊𝑄 and 𝑊𝑉 are parameter matrices. The

output for agent 𝑖 is then

Att𝑖(ℎ) =
∑︁
𝑗

𝑤𝑖𝑗𝑉𝑗, (4.1)

where 𝑤𝑖∙ ∈ R𝑛, the 𝑖-th row of the weight matrix 𝑤, is defined as

𝑤𝑖∙ = 𝜎𝑎

(︁(𝐾𝑖)
𝑇𝑄√
𝑑𝐾

)︁
(4.2)

with 𝜎𝑎 being the softmax function in previous works of GNN-based MARL. The

weight 𝑤𝑖∙ is dense as softmax𝑖(𝑧) ̸= 0 for any vector 𝑧 and 𝑖.

To increase the expressiveness, multi-head attention is applied here via simply

concatenating the outputs from a single attention function [76].

4.2.2 Relational GNN

In heterogeneous multiagent systems, different agent pair can have different relations,

such as friend or foe in a two-party zero-sum game. As a result, information aggre-

gation from agents with different relations should have different parameters. Work in

[79] proposed relational graph convolutional network to model multi-relational data.
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The forward-pass update of agent 𝑖 in a multi-relational graph is as follows

ℎ
(𝑙+1)
𝑖 = 𝜎

(︁∑︁
𝑟∈ℛ

∑︁
𝑗∈𝒩 𝑟

𝑖

1

𝑐𝑖,𝑟
𝑊 (𝑙)
𝑟 ℎ

(𝑙)
𝑗 +𝑊

(𝑙)
0 ℎ

(𝑙)
𝑖

)︁
, (4.3)

where 𝒩 𝑟
𝑖 denotes the set of neighbor indices of agent 𝑖 under relation 𝑟 ∈ ℛ and 𝑐𝑖,𝑟

is a normalization constant. To distinguish the heterogeneity in MARL, similar to

this convolution-based multi-relational GNN, we apply different attention heads on

agent pairs with different relations.

4.3 Related Work

One of the existing works exploiting the structure in MARL is the mean-field re-

inforcement learning (MFRL) [80] algorithm, which takes as input the observation

and the mean action of neighboring agents to make the decision, and neglects the

actions of all the other agents. This simplification leads to good scalability. How-

ever, the mean action cannot distinguish the difference among neighboring agents

and the locality approximations fail to capture information from a far but important

agent for optimal decision-making, which leads to sub-optimal policies. Multi-Actor-

Attention-Critic (MAAC) is proposed in [81] to aggregate information using attention

mechanism from all the other agents. Similarly, [73, 75, 82] also employ the atten-

tion mechanism to learn a representation for the action-value function. However, the

communication graphs used there are either dense or ad-hoc (𝑘 nearest neighbors),

which makes the learning difficult.

Sparse attention mechanisms were first studied by the natural language processing

community in [78], where sparsemax was proposed as a sparse alternative to the

activation function softmax. The basic idea is to project the attention logits onto

the probability simplex, which can generate zero entries once the projection hits the

boundary of the simplex. While generalized sparse attention mechanisms were further

studied in [83–85], they are not adaptive to the state in the context of MARL, in terms

of the sparsity pattern.
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Given this state of the art, the contributions of this work are twofold. First, we

propose a new adaptive sparse attention mechanism in MARL to learn a sparse com-

munication graph, which improves the scalability of MARL by lowering the sample

complexity. Second, we extend our GNN-based MARL to heterogeneous systems in

mixed cooperative-competitive settings using multi-relational GNN. The evaluations

show that our algorithm significantly outperforms previous approaches on applica-

tions involving a large number of agents. This technique can be applied to empower

large-scale autonomous systems such as swarm robotics.

4.4 Approach

In this section, we present our approach to exploit the sparsity in MARL by gen-

eralizing the dense soft-max attention to adaptive sparse attention. Moreover, our

approach to apply multi-relational attention mechanism for heterogeneous games in-

volving competitive agents is also introduced.

4.4.1 Learning a communication graph via adaptive sparse at-

tention

The scaled dot-product attention is applied to learn the communication graph in

MARL. If an attention weight between a pair of agents is zero, then there is no

communication/message passing between them. Thus, the normalization function

𝜎𝑎(∙) in (4.2) is critical to learn a communication graph. As usually used in the

attention mechanism [76] or classifications, 𝜎𝑎(∙) is usually set to be softmax, which

cannot induce sparsity. We propose an adaptive sparse activation function as an

alternative to softmax.

Let 𝑥 ∈ R𝑑 be the raw attention logits and 𝑦 be normalized attention strength in

the (𝑑−1)-dimensional probability simplex defined as ∆𝑑 := {𝑦 ∈ R𝑑|𝑦 ≥ 0,1𝑇𝑦 = 1}.

We are interested in the mapping from 𝑥 ∈ R𝑑 to 𝑦 ∈ ∆𝑑. In other words, such a

mapping can transform real weights to a probability distribution, i.e., the normalized
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attention strength between a pair of agents. The classical softmax, used in most

attention mechanisms, is defined component-wisely as

𝑦𝑖 = softmax
𝑖

(𝑥) =
𝑒𝑥𝑖∑︀𝑑
𝑖=1 𝑒

𝑥𝑖
. (4.4)

A limitation of the softmax transformation is that the resulting probability distribu-

tion always has full support, which makes the communication graph dense, resulting

in high complexity. In order to reduce the complexity, our idea is to replace the

softmax activation function with a generalized activation function, which could adap-

tively be dense or sparse based on the state. To investigate alternative activation

functions to softmax, consider the max operator defined as

max(𝑥) := max
𝑖∈[𝑑]

(𝑥𝑖) = sup
𝑦∈Δ𝑑

𝑦𝑇𝑥, (4.5)

where [𝑑] = {1, . . . , 𝑑}. The second equality comes from that the supremum of the

linear form over a simplex is always achieved at a vertex, i.e., one of the standard

basis vector {𝑒𝑖}𝑖∈[𝑑]. As a result, the max operator puts all the probability mass onto

a single element, or in other words, only one entry of 𝑦 is nonzero corresponding to

the largest entry of 𝑥. For example, with 𝑥 = [0, 𝑡] ∈ R2, the probability distribution

w.r.t. the logit 𝑡, i.e., (arg sup𝑦∈Δ𝑑 𝑦𝑇𝑥)2, is a step function, as (arg sup𝑦∈Δ𝑑 𝑦𝑇𝑥)2

equals 1 if 𝑡 > 0 and 0 otherwise. This discontinuity at 𝑡 = 0 of the step function

is not amenable to gradient-based optimization algorithms for training deep neural

networks. One solution to the discontinuity issue encountered in (4.6) is to add a

regularized Ω(𝑦) in the max operator as

ΠΩ(𝑥) = argmax
𝑦∈Δ𝑑

𝑦𝑇𝑥+ 𝛾Ω(𝑦) (4.6)

Different regularizers Ω(𝑦) produce different mappings with distinct properties (see

summary in Table 4.1). Note that with Ω(𝑦) as the Shannon entropy, ΠΩ(𝑥) recovers

softmax. With the states/observations evolving, the ideal profile of ΠΩ(𝑥) should be

able to adapt the sparsity extent (controlled via 𝛾) and the pattern (controlled via
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Table 4.1: List of different regularizers and their corresponding mappings 𝑦 = ΠΩ(𝑥),
where 𝑥 is the raw attention logits and 𝑦 is the probability distribution in ∆𝑑.

Entropy Ω(𝑦) ΠΩ(𝑥) Ref.
Shannon

∑︀
𝑖 𝑦𝑖 log(𝑦𝑖) softmax𝑖(𝑥) =

𝑒𝑥𝑖∑︀𝑑
𝑖=1 𝑒

𝑥𝑖
[84]

𝑙2 norm −1
2

∑︀
𝑖 𝑦

2
𝑖 argmin𝑦∈Δ𝑑 ‖𝑦 − 𝑥‖2 [78]

Tsallis

{︃ ∑︀
𝑖(𝑦𝑖−𝑦𝛼𝑖 )
𝛼(𝛼−1)

, 𝛼 ̸= 1∑︀
𝑖 𝑦𝑖 log(𝑦𝑖),𝛼 = 1

No closed-form [86]

Generalized
1

𝑞

∑︁
𝑖

(𝑦𝑖 −
𝑒𝑞𝑦𝑖 − 1

𝑒𝑞 − 1
) No closed-form [87]

Table 4.2: List of different 𝐺(𝑥) and their resulting mappings ΠΩ(𝑥)

𝛾𝐺𝑖(𝑥)
𝑒𝑥𝑖∑︀
𝑖 𝑒

𝑥𝑖

𝑥2𝑖∑︀
𝑖 𝑥

2
𝑖

𝑥𝑖

ΠΩ(𝑥) softmax softmax sparsemax

Property Translation invariance
ΠΩ(𝑥) = ΠΩ(𝑥+ 𝑐1)

Scaling invariance
ΠΩ(𝑥) = ΠΩ(𝑐𝑥)

Translation invariance
ΠΩ(𝑥) = ΠΩ(𝑥+ 𝑐1)

Example ΠΩ([100, 101]) = ΠΩ([0, 1]) ΠΩ([1, 2]) = ΠΩ([1, 2]× 10−3) ΠΩ([100, 101]) = ΠΩ([0, 1])

the selection of Ω(𝑦)) accordingly.

Note that the Tsallis entropy and the generalized entropy in Table 4.1 do not

have closed-form solutions [84], which will increase the computational burden since

iterative numerical algorithms will have to be employed. Sparsemax has a closed-form

solution and can induce sparsity, but sparsemax is not adaptive and lacks flexibility

as it is unable to switch from one sparsity pattern to another when necessary. We aim

to combine the advantages and avoid the disadvantages using this new formulation

ΠΩ(𝑥) = argmin
𝑦∈Δ𝑑

||𝑦 − 𝛾𝐺(𝑥)||2, (4.7)

with𝐺(𝑥) : R𝑑 → R𝑑 and 𝛾 being a learnable neural network and a scalar, respectively.

By choosing different 𝐺(𝑥), ΠΩ(𝑥) can exhibit different sparsity patterns including

softmax and sparsemax. With 𝐺(𝑥) fixed, the parameter 𝛾 can control how sparse the

output could be, similar to the temperature parameter in softmax. The summary in

Table 4.2 shows that (4.7) will lead to a general mapping and can combine properties
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such as translation and scaling invariance adaptively. Work in [85] proposed sparse-

hourglass that can adjust the trade-off between translation and scaling invariance via

tunable parameters. However, it is unclear under which circumstances one property is

more desirable than the other, so there is little to no prior knowledge on how to tune

such parameters. In contrast, our formulation in (4.7) can balance such trade-off via

learning 𝐺(𝑥) and 𝛾 while work in [85] is based on a fixed form of 𝐺(𝑥) with tunable

parameters.

While we can let the neural network learn 𝐺(𝑥) : R𝑑 → R𝑑 without any restric-

tions, there is indeed prior knowledge that we can apply, e.g., monotonicity. It is

desired to keep the monotonicity of ΠΩ(𝑥), i.e., ∀𝑥𝑖 > 𝑥𝑗, (ΠΩ(𝑥))𝑖 > (ΠΩ(𝑥)𝑗, as

larger attention logit should be mapped into larger attention strength. As sparse-

max is monotonic, this requires that ∀𝑥𝑖 > 𝑥𝑗, 𝐺𝑖(𝑥) > 𝐺𝑗(𝑥), or in other words,

the order of the input of 𝐺(𝑥) coincides with that of the output. To keep this

property, 𝐺(𝑥) is designed component-wisely as 𝐺𝑖(𝑥) = 𝜓(𝜑1(𝑥𝑖),
∑︀

𝑖 𝜑2(𝑥𝑖)), with

𝜓 : R2 → R1, 𝜑1, 𝜑2 : R1 → R1 are neural networks with hidden layers. Note that

𝐺𝑖(𝑥) should be coupled with all of the entries of 𝑥 instead of be a univariate function

only depending on 𝑥𝑖, as demonstrated in Table II. As the second argument of 𝜓 (i.e.,∑︀
𝑖 𝜑2(𝑥𝑖)) is invariant to 𝐺𝑖(𝑥),∀𝑖 ∈ [𝑑], the order preserving of 𝐺(𝑥) : R𝑑 → R𝑑 is

equivalent to the monotonicity of 𝜓(∙) and 𝜑1(∙). In order to keep this monotonicity,

we enforce all the weights of the networks 𝜓 and 𝜑1 to be positive [88], by applying an

absolute value function on the weights. This architecture can accelerate the learning

process with extra prior knowledge, as it is monotonic by design.

4.4.2 Message passing in MARL via GNN

We will present how the information is aggregated to learn a representation for per-

agent value/policy network using a graph neural network. The scaled dot-product

attention mechanism (Section 4.2.1) with our generalized sparsemax as the activation

function, denoted as sparse-Att, is applied to learn a communication graph and pass

messages through the connections in the graph.

We start with homogeneous multiagent system, where the relation between any
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agent pair is identical. A graph is defined as 𝒢 := (𝒱 , ℰ), where 𝑣𝑖 ∈ 𝒱 represent

an agent and the cardinality of 𝒱 is |𝒱|. Moreover, 𝑒𝑖𝑗 ∈ ℰ is 1 if agent 𝑖 and 𝑗 can

communicate directly (or agent 𝑗 is observable to agent 𝑖), and 0 otherwise. This is a

restriction on the communication graph and ℰ is the set of all possible edges. Then

sparse-Att aims to learn a subset of ℰ via induced sparsity without compromising

much optimality. For agent 𝑖, let 𝑈𝑖 = 𝑓𝑎(𝑋𝑖) and 𝐸𝑖 be its observation and entity

encoding respectively, where 𝑋𝑖, 𝑖 ∈ 𝒱 is the local state and 𝑓𝑎 is a learnable agent

encoder network. Then the initial observation embedding of agent 𝑖, denoted as ℎ(1)𝑖 ,

is

ℎ
(1)
𝑖 = 𝑓𝑚𝑝(𝑈𝑖‖𝐸𝑖), (4.8)

where 𝑓𝑚𝑝 is another learnable network and the operator ‖ denotes concatenation.

Then at hop 𝑙 (𝑙-th round of message passing), agent 𝑖 aggregates information from

its possible neighbors belonging to the set 𝒩 = {𝑗 ∈ 𝒱|𝑒𝑖𝑗 = 1} as follows

ℎ
(𝑙+1)
𝑖 = 𝑓𝑚𝑝

(︁
ℎ
(𝑙)
𝑖 ‖sparse-Att𝒩𝑖 (ℎ

(𝑙))
)︁
. (4.9)

With 𝑙 ≥ 2, the multi-hop message passing can enable the agent to obtain infor-

mation from beyond its immediate neighbors. In the message aggregation from all

of the agents 𝒩 , identical parameters are used in sparse-Att𝒩𝑖 , which enforces the

permutation-invariance. This property is desirable because homogeneous agents are

interchangeable.

However, interchangeability is no longer applicable to heterogeneous systems or

mixed cooperative-competitive environment. For example, with 𝒱1,𝒱2 ⊆ 𝒱 being

a two-team partition of 𝒱 , agents cooperate with other agents from the same team

but compete against agents from the other team. For agent 𝑖 ∈ 𝒱1, its teammate

neighborhood and enemy neighborhood are 𝒩+ = {𝑗 ∈ 𝒱1|𝑒𝑖𝑗 = 1} and 𝒩− = {𝑗 ∈

𝒱2|𝑒𝑖𝑗 = 1}, respectively. The edges connecting teammates and enemies are called

positive and negative edges. Then based on multi-relational GNN, agent 𝑖 aggregates
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Figure 4-1: Our sparse-Att framework consists of three modules: encoder, multi-relational
sparse attention mechanism, and value/policy network, with homogeneous agents sharing
all parameters. Agents employ different attention heads to aggregate information alongside
connections with different semantic meanings, followed by a concatenation. 𝐿 is the number
of the message-passing rounds; see (4.9). “concat" denotes the concatenation operation. Here
only two classes (shown in red and blue) of heterogeneous agents are shown for simplicity.

information at hop 𝑙 in the following way

ℎ
(𝑙+1)
𝑖 = 𝑓𝑚𝑝

(︁
ℎ
(𝑙)
𝑖 ‖sparse-Att𝒩+

𝑖 (ℎ(𝑙))‖sparse-Att𝒩−
𝑖 (ℎ(𝑙))

)︁
,

where sparse-Att𝒩+

𝑖 and sparse-Att𝒩−
𝑖 are different attention heads. Additionally,

balance theory [89] suggests that “the teammate of my teammate is my teammate"

and “the enemy of my enemy is my teammate." In a two-team competitive game,

any walk (a sequence of nodes and edges of a graph) between an agent pair in the

communication graph, comprising of both positive and negative edges, will lead to

the same relation between the agent pair [90]. This property eliminates the ambiguity

that the information aggregated from the same agent (but different walk) might have

a different teammate/enemy property.

The proposed algorithmic framework is illustrated in Fig. 4-1. After 𝐿 rounds

of message passing, each agent has an updated encoding ℎ
(𝐿+1)
𝑖 . This encoding is

then fed into the value network and the policy network, which estimate the state

value and a probability distribution over all possible actions, respectively. As homo-
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geneous agents are interchangeable, they share all of the parameters, including entity

encoding, policy, value and message passing. Proximal policy gradient (PPO, [91])

is employed to train the model in an end-to-end manner. As only local information

is required, the proposed approach is decentralized. Moreover, our approach main-

tains the transferability of GNN-based approaches as all the network dimensions are

invariant to agent/entity number in the system.

4.5 Experiments

4.5.1 Task description

The proposed algorithm is evaluated in three swarm robotics tasks: Coverage, Forma-

tion, and ParticleSoccer [92], first two of which are cooperative and the third is com-

petitive. The tasks are simulated in the Multiagent Particle Environment1(MAPE [70]).

The agents in MAPE can move in a 2-dimensional space following a double integrator

dynamic model. The action space of the agents is discretized, with each agent can ac-

celerate/decelerate in both 𝑋 and 𝑌 direction. The three tasks are briefly introduced

as follows.

Coverage: There are 𝑛𝐴 agents (light purple) and 𝑛𝐿 landmarks (black) in the

environment (see illustration in Fig. 4-2a). The objective for the agents is to cover

the landmarks with the smallest possible number of timesteps. Agents are not as-

signed to reach a certain landmark, but instead, have to figure out the assignment

via communication such that the task can be finished optimally.

Formation: There are 𝑛𝐴 agents (blue) and 1 landmarks (black) in the environ-

ment (see illustration in Fig. 4-2b), with 𝑛𝐴 being an even natural number. The

agents need to split into two sub-teams of equal size, with each of them building a

formation of a regular pentagon. The two regular pentagons with different sizes are

both centered at the landmark.

ParticleSoccer: There are 𝑛𝐴 agents and 3 landmarks in the environment (see

1https://github.com/openai/multiagent-particle-envs
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(a) Coverage (b) Formation (c) ParticleSoccer

Figure 4-2: Three different simulation tasks used in this work.

illustration in Fig. 4-2c), with the bigger landmark as a movable ball and the two

smaller ones as a fixed landmark. A team wins the game via pushing the black ball

to the opponent team’s goal. The goal color of the light blue (red, resp.) team is blue

(red, resp.).

4.5.2 Implementation specifications

The agent encoder 𝑓𝑎(∙) and the entity encoder take input the 4-dimensional agent

states and 2-dimensional entity states, respectively. The queries, keys, and values in

all of the sparse attention mechanism are 128-dimensional. The communication hop

is 𝐿 = 2. All neural networks are fully connected with the ReLU activation function.

In the sparsity-promoting function (4.7), 𝜑1, 𝜑2 and 𝜓 all have one hidden layer with

dimensions being 16, 16 and 64, respectively. The absolute value function is used to

keep the weights of the monotonicity-preserving neural network positive.

Evaluation is performed every 320 episodes and PPO update is executed for 4

epochs after collecting experience of 4096 timesteps.

4.5.3 Results

In the cooperative scenarios i.e., Coverage and Formation, two metrics are used to

evaluate the algorithms. The first is the average reward per step and the second is

the task success rate. Higher means better performance for both metrics.
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We compare our algorithms with two baselines: GNN-based MARL with dense

attention mechanism [73] and MAAC [81]. These two algorithms are considered to be

strong baselines as they reported advantageous results against algorithms including

MADDPG [70], COMA [93], VDN [94] and QMIX [72]. Public repositories23 are

used for comparison. As both repositories also apply their algorithms on MAPE, the

default hyperparameters are used for comparison.

In simulation, we set 𝑛𝐴 = 30 and 𝑛𝐴 = 20 for Coverage and Formation, respec-

tively. Fig. 4-3 and Fig. 4-4 demonstrated that our algorithm can achieve higher

rewards than the two baselines with fewer episodes. This validates that sparse-Att

can accelerate the learning process via aggregating information from agents that mat-

ter the most. Moreover, in terms of the second metric, i.e., success rate, our algo-

rithm consistently outperforms the two baselines by a significant margin (with a

much smaller variance), as shown in Fig. 4-5. The evaluations of both metrics for two

scenarios provide strong support for the advantages of our algorithm.

For the competitive ParticleSoccer task, we set 𝑛𝐴 = 20 with both red team and

blue team of size 𝑛𝐴

2
= 10. As this task is competitive, the above two metrics are

no longer applicable. Instead, we let the red (blue, resp.) play against a blue (red,

resp.) team from another algorithm. Table 4.3 presents the results of the inter-

algorithm competition. The overall score of each algorithm equals the sum of the

winning evaluation episodes of its red team and blue team playing against blue and

red team respectively from other algorithms. The overall scores in Table 4.3 show

that our algorithm can learn strong policies.

4.5.4 Interpretability of the sparse communication graph

Let us proceed by considering the inherent sparity in Formation and ParticleSoccer.

As mentioned in the description of the Formation scenario, the formation of each

pentagon is related to half of the agents, while the sub-team assignments need to be

learned. In the implementation, the reward is set to require that the first 𝑛𝐴

2
agents

2https://github.com/sumitsk/matrl.git
3https://github.com/shariqiqbal2810/MAAC

64



Figure 4-3: Reward comparison of our algorithm against two baselines for the Cov-
erage task.

Figure 4-4: Reward comparison of our algorithm against two baselines for the For-
mation task.

65



(a) Coverage (b) Formation

Figure 4-5: Performance comparison of three algorithm on two scenarios. Multiple
policies learned from each algorithm are evaluated and the mean/standard deviation
are plotted.

closest to the landmark build the formations of the inner pentagon and the remaining
𝑛𝐴

2
agents to build the formations of the outer pentagon. With the convergence of

the learning algorithm, once a sub-team partition is learned to complete the two sub-

tasks, the learned agent indexing of each team should not vary due to the distance

sorting and the two pentagons are relatively far away. As a result, the reward to

complete each sub-task is only related to the corresponding sub-team and hence the

two sub-teams are decoupled from each other. The adjacency matrix of the learned

communication graph shown in Fig. 4-6a validates that the inter-team communication

is very sparse. This adjacency matrix is up to row/column permutation as indexing

of each sub-team is learned without being known as a prior. Moreover, in a sub-

team, the algorithm learns a communication graph similar to a star-graph. It can

be understood that each sub-team selects a leader. As a star-graph is a connected

graph with possibly minimum edges, this communication protocol is both effective

and efficient. Also, the length of the path between any agent pair in a star graph

is no greater than 2, which echos the two-hop communication (𝐿 = 2) we used in

the simulation. That is because due to the two-hop message-passing, the agents can

eventually communicate with agents as far as two edges away, which includes all of

the agents in a star graph. Note that the sparsity on the diagonal entries of the
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Table 4.3: Evaluation of three algorithms in the competitive ParticleSoccer task. Each
pair is evaluated for 50 episodes and the (∙, ∙, ∙) in each cell denotes the number of
red team winning episodes, blue team wining episodes and the draw episodes. A draw
means that neither team scores within a given episode length. winred and winblue are
the winning episodes of the red and blue team, respectively when competing against
blue and red team from other algorithms.

Red
Blue sparse-Att

(ours) dense-Att MAAC winred

sparse-Att
(ours) (48, 0, 2) (15, 0, 35) (26, 0, 24) 41

dense-Att (9, 1, 40) (5, 0, 45) (3, 0, 47) 11
MAAC (7,0,43) (2,0,48) (3, 0, 47) 9
winblue −15 −17 −29 N/A

sparse-Att
(ours) dense-Att MAAC

overall scores:
winred + winblue

26 −6 −20

communication graph does not mean that the agent’s own information is neglected,

as it is separately concatenated; see (4.9).

Also, in the ParticleSoccer scenario, from each team’s perspective, agents need to

coordinate tightly within the team to greedily push the ball to the other team’s goal

while only attending to a small number of agents from the other team. This leads

to dense intra-team communication but relatively sparse inter-team communication.

This is validated by the approximately block-diagonal adjacency matrix of the learned

communication graph in Fig. 4-6b.

4.6 Summary

This work exploits sparsity to scale up MARL, which is motivated by the fact that

interactions are often sparse in multiagent systems. We propose a new general and

adaptive sparsity-inducing activation function to empower an attention mechanism,

which can learn a sparse communication graph among agents. The sparse commu-
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(a) Formation (b) ParticleSoccer

Figure 4-6: Sparse communication graph for two scenarios. For the Formation, our
sparse-Att learns to split into two sub-team as desired and the learned sparse star-
like communication graph makes communication both effective and efficient. In the
ParticleSoccer, sparse-Att learn to pay more attention to teammates and a necessary
subset of enemies.

nication graph can make the message-passing both effective and efficient such that

the scalability of MARL is improved without compromising optimality. Our algo-

rithm outperforms two baselines by a significant margin on three tasks. Moreover,

for scenarios with inherent sparsity, it is shown that the sparsity of the learned com-

munication graph is interpretable.
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Chapter 5

Efficient Robust Policy Learning

through Implicit Ensemble Training

5.1 Introduction

In competitive multiagent scenarios, the learned policy of each agent depends on the

joint policy of all the other learning agents. However, since all agents are learning

concurrently, this leads to a non-stationary environment [5]. One challenge result-

ing from such multiagent learning is that the policy learned from training might not

perform well in the testing environment where the opponents’ policies could be sig-

nificantly different from those of the training opponents (distribution shift between

training and testing). Even worse, the testing opponents could be trained to exploit

the weakness of the policy learned from the training [20].

One effective approach to mitigate the performance degradation from training to

testing is ensemble training, which has been applied in many previous works [5, 9,

16, 21, 31]. In ensemble training, each agent has multiple policies (as in [5, 9, 31])

or keeps multiple copies of previous policies (as in [16, 21]), from which one policy

for each agent is sampled to play against each other. As a result, each policy is

optimized against a distribution of the other agents’ policies, which effectively reduces

the distribution shift between training and testing (because a single policy can be

regarded as a single Dirac-delta distribution centered at one point within the policy
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space). However, one drawback of applying this ensemble training technique is the

significant increase in computation and memory consumption due to the learning and

storage of multiple policies. Besides, the number of policies required for guaranteed

policy strength improvement is a function of the non-transitivity dimension [8] of the

multiagent scenario, which could be on the order of tens for simple games such as

Tic-Tac-Toe and more than thousands for complicated real-world games [8]. As a

result, this ensemble training approach either becomes intractable due to constraints

on computational resources or ends up with learning weak policies due to insufficient

policy diversity.

In this work, we propose a novel implicit ensemble training (IET) approach by

formulating ensemble training as a multitask learning problem. Instead of maintaining

multiple policies explicitly with independent neural networks, our IET approach uses

a unified hierarchical modular network architecture [95] with a learnable conditional

latent variable distribution. The unified network architecture increases the knowledge

sharing within the modules for improved learning efficiency and the conditional latent

variable captures the diversity of the policy, which is necessary for robustness.

Our contributions are: 1) we identify the cause of inefficiency in standard ensem-

ble training and suggest a multitask solution to improve the efficiency of ensemble

training; 2) we propose a novel algorithm that extends ensemble training with latent

variables and a multitask network; and 3) we show that the new algorithm improves

both learning efficiency (with less computation) and robustness.

5.2 Background

5.2.1 MARL with policy distribution

In practice, learning with a single joint policy typically leads to over-fitting between

policies and poor generalization to previously unseen policies. The distribution based

learning objective, Eq. 2.3,

𝐽𝑖 = E𝑠∼𝑝𝜋 ,𝑎∼𝜋,𝜋∼𝒫Π, [𝑅𝑖(𝑠,𝑎)] , (5.1)
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is a more appropriate learning objective than the single policy learning objective Eq.

2.2.

One simple parametrization of 𝒫𝑗(Π𝑗) is a uniform distribution over a policy

ensemble of fixed size (a set of independent policies, each parametrized by a neu-

ral network), such as in [5]. Policy space response oracle (PSRO) [32] is another

parametrization, with an expanding set of policies. At each iteration, a new policy

produced by an oracle, via solving for the (approximate) best response against a mix-

ture of other agents’ policies, is added to the policy ensemble. PSRO leads to better

convergence towards Nash Equilibrium in poker games than self-play (single policy)

and fictitious self-play (uniform distributed over previous policies). Despite the better

convergence property, these ensemble approaches are not scalable as the computation

increases linearly with respect to the ensemble size, while the number of policies to

guarantee policy improvement may increases exponentially with respect to the com-

plexity of the multiagent interactions [8]. This limitation motivates developing a new

parametrization of policy distribution with better parameter-efficiency.

5.2.2 Related Work

This work is at the intersection of robust MARL and efficient MARL. Ensemble train-

ing for robust MARL has been studied in many previous works such as [5, 9, 21, 31, 50].

These approaches focus on improving the robustness of the learned policies, regardless

of the associated increase of computational complexity. In contrast, our work focuses

on improving the efficiency of ensemble training without sacrificing robustness. An-

other approach for robust MARL is minimax policy optimization, in which each agent

optimizes its policy assuming all the other agents and the environment dynamics are

adversarial (see [96, 97]). One difficulty with this approach is the requirement of solv-

ing the nested minimax optimization, which is typically approximated by optimizing

the inner minimization for one step only [97]. In addition, the minimax formulation

tends to result in overly-conservative policies because of the pessimistic assumption

about the other agents.

Our work is also closely related to multi-task reinforcement learning (MTRL).
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MTRL aims to improve the learning efficiency by knowledge sharing across tasks

[98]. Recent works [95, 99, 100] found that the modular policy network is an effec-

tive architecture for improving parameter-efficiency via sharing of learned modules.

However, that MTRL work focuses on solving the single-agent multi-task problem.

In contrast, our work leverages the modular network architecture combined with la-

tent conditional policy learning [101, 102] to improve the efficiency of ensemble-based

robust MARL. The innovation of our approach is re-formulating ensemble training as

multi-task learning while using a latent variable to preserve policy diversity which is

essential for robust MARL.

5.3 Approach

In this section, we present a parameter-efficient parametrization of the policy distri-

bution, which we call an implicit ensemble. We start from revealing the relationship

between a uniform ensemble with a latent-conditioned policy, and then show how

our implicit ensemble approach extends the uniform ensemble for higher parameter-

efficiency and policy diversity.

5.3.1 Generalization of ensemble training as latent-conditioned

policy

Ensemble training with a uniform distribution over a fixed-sized set of policies is a

standard approach for improving the robustness of policies in MARL. In ensemble

training, each agent’s policy 𝜋𝑖 is an ensemble of 𝐾 sub-policies, with each denoted

as 𝜋
𝜃
(𝑘)
𝑖

or 𝜋(𝑘)
𝑖 and parameterized by separate NN parameters 𝜃(𝑘)𝑖 . The generative

process for the ensemble training policy 𝜋𝑖 is expressed as

𝑘 ∼ unif(1, K) =
1

𝐾

𝐾∑︁
𝑗=1

𝛿(𝑘 − 𝑗),

𝜃𝑖|𝑘 ∼ 𝛿(𝜃𝑖 − 𝜃(𝑘)𝑖 ),

𝑎𝑖|𝜃𝑖 ∼ 𝑓𝜃𝑖(𝑜𝑖),

(5.2)
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Figure 5-1: Connections between a standard ensemble and our proposed implicit en-
semble: In the standard ensemble, a random index is sampled and the corresponding
network is selected to output an action; while in the implicit ensemble, a random
Gaussian variable is sampled and encoded into a latent vector by a shaping network,
which is then passed to a conditional policy network to output an action.

where 𝛿 is the Dirac-delta distribution. One interpretation of Eq. 5.2 is that 𝜋𝑖 is a

conditional policy on a uniform discrete latent random variable 𝑘,

𝑎𝑖|𝑘 ∼ 𝑓(𝑜𝑖, 𝜃
(1)
𝑖 , 𝜃

(2)
𝑖 , . . . , 𝜃

(𝐾)
𝑖 ; 𝑘) = 𝑓

𝜃
(𝑘)
𝑖
(𝑜𝑖). (5.3)

Eq. 5.3 suggests that ensemble training can be interpreted as a latent-conditioned

policy [101–103] conditioned on the discrete random variable 𝑘 coming from a uniform

distribution. However, this parametrization is inefficient because only one out of the

𝐾 sets of sub-policy parameters [𝜃(1)𝑖 , 𝜃
(2)
𝑖 , . . . , 𝜃

(𝐾)
𝑖 ] is activated per sampling of 𝑎𝑖. As

a result, the rollout from executing one set of sub-policy parameter cannot be used

to optimize the rest 𝐾 − 1 sets of sub-policy parameters, which reduces the sample

efficiency by a factor of 𝐾.
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5.3.2 Implicit ensemble training

Our IET generalizes ensemble training via two steps: 1) relax the discrete random

variable 𝑘 ∈ {1, 2, . . . , 𝐾} into a continuous latent variable 𝑐 ∈ R𝐿 with a learned

distribution that adaptively captures the diversity of the policy ensemble; 2) replace

the𝐾 independent NNs with a unified modular network architecture with parameter 𝜑

that improves parameter-efficiency by knowledge sharing between sub-modules within

the network. The continuous relaxation also makes the policy differentiable with

respect to the latent variable, thus making it possible to synthesize new policies from

the learned skills represented by the sub-modules within the modular network by

perturbing the latent variable distribution.

The generative process of this implicit ensemble is

𝑧 ∼ 𝒩 (0, I𝐿×𝐿),

𝑐|𝑧 = 𝑔𝜓(𝑧),

𝑎𝑖|𝑐 ∼ ℎ𝜑(𝑜𝑖; 𝑐).

(5.4)

In Eq. 5.4, a random Gaussian noise vector 𝑧 is sampled from the standard multivari-

ate Gaussian distribution (sampled once at the beginning of each episode and remains

fixed during the episode), then passed through a shaping network parameterized by

𝜓 to output a latent condition variable 𝑐. Finally, the action is sampled from a policy

which is parameterized by 𝜑 and conditioned on the latent condition variable 𝑐. Both

𝜓 and 𝜑 are learnable parameters that are optimized end-to-end with respect to the

reinforcement learning objective.

The implicit ensemble Eq. 5.4 is a more flexible parameterization than the en-

semble training Eq. 5.2. In fact, the latter is a special case of the former, where the

distribution of the latent variable 𝑐 collapses into a discrete distribution (correspond-

ing to the uniform discrete distribution of 𝑘), and the shared parameter 𝜑 is divided

into 𝐾 disjoint sets of parameters each of which is activated in the policy network

when only one of the discrete values of 𝑐 is drawn.

In contrast to the ensemble training formulation Eq.5.2, where the ensemble size

74



𝐾 is a hyperparameter to control the diversity of the (ensemble) policy, Eq. 5.4 does

not contain this explicit hyperparameter. Instead, the diversity of the policy is cap-

tured adaptively by the learned latent distribution parameterized by 𝜓: a complicated

multi-modal distribution corresponds to high diversity, while a simple uni-modal dis-

tribution corresponds to low diversity.

5.3.3 Model architecture

Fig. 5-1 shows the model architecture for implementing the IET. There are two ma-

jor components within this architecture: 1) a shaping network, corresponding to the

mapping 𝑔𝜓(·) in Eq. 5.4 that transforms the Gaussian noise vector 𝑧 into the la-

tent condition variable 𝑐; and 2) a conditional policy network, corresponding to the

parametrization ℎ𝜑.

The shaping network is responsible for adding diversity to the conditional policy

for improving the robustness of the learned policy, and the conditional policy network

improves parameter-efficiency via knowledge sharing. The detailed design of these two

networks is presented as follows.

Shaping network

The shaping network takes a Gaussian noise vector 𝑧 ∈ R𝐿 as input and transforms 𝑧

into a latent condition variable 𝑐, which modifies the standard multi-variate Gaussian

distribution into a learned (complicated) distribution. We use a feed-forward network

with 2 fully-connected layers followed by a Softmax layer to parameterize this shaping

network.

Multi-tasking network

Recent studies [95, 99, 100] found that modular architecture is a parameter-efficient

way of learning multi-tasking policies. In ensemble training, the multi-tasking re-

quirement naturally arises from the fact that each policy is optimized against the

ensemble of policies of the other agents.
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To improve the parameter-efficiency of ensemble training, we use the modular

architecture proposed in [95] as our conditional policy network for multi-tasking.

The modular network is composed of a base network and a routing network. The

base network is a modular network that has 𝑛 layers, and each layer has 𝑚 modules.

Each module is a feedforward network, and the input and the output are 𝑑-dimension

vectors. The routing network takes the observation and the latent condition variable

as inputs, and it then outputs the 𝑛 normalized weight vectors, one for each layer,

for weighting the modules of the base policy network. The weight vectors 𝑤𝑗 ∈ R𝑚2

are calculated as
𝑝𝑗=1 = 𝑊 𝑗=1

𝑑 (𝜎 (𝐹 (𝑜) ·𝐻 (𝑐))) ,

𝑝𝑗+1 = 𝑊 𝑗
𝑑

(︀
𝜎
(︀
𝑊 𝑗
𝑢𝑝

𝑗 · (𝐹 (𝑜) ·𝐻 (𝑐))
)︀)︀
,

𝑤𝑗 = Softmax(𝑝𝑗),

(5.5)

where 𝐹 and 𝐻 are the embedding layers, which map the observation vector 𝑜 and the

latent condition variable 𝑐 into 𝐷-dimension embeddings. 𝜎 is the activation function

(we use the ReLU activation). 𝑊𝑢 and 𝑊𝑑 are fully-connected layers of size R𝐷×𝑚2

and R𝑚2×𝐷, respectively.

The base network takes the observation vector 𝑜 as input and outputs policy logits

/ value, with the following relationship between the 𝑖-th module in the 𝑗 + 1 layer’s

input and the 𝑘-th module in the 𝑗-th layer’s output,

𝑓 𝑗+1
𝑖 =

𝑚∑︁
𝑙=1

𝑤𝑗𝑖,𝑙

(︁
𝜎
(︁
𝑊 𝑗
𝑙 𝑓

𝑗
𝑙

)︁)︁
, (5.6)

where 𝑊 𝑗
𝑙 ∈ R𝑑×𝑑 is the learnable module parameters.

Remark 2. Modular networks are not the only choice for the knowledge sharing. Any

multi-tasking network architecture that takes in a latent conditional variable can be a

substitution to this modular network architecture.
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5.4 Experiments

5.4.1 Scenarios

We evaluate our approach on two types of 2-player (which we refer to as the blue

agent and the red agent hereafter) multiagent scenarios.

• Board-game: turn-based games implemented in the PettingZoo multiagent

environment1 [104] and the RLCard toolkit2 [105]: Connect Four, Leduc

Hold’em, and Texas Hold’em (Limit).

• RoboSchool-Racer: continuous problems modified from the robot racing sce-

narios in the RoboSchool environment3: Ant and Cheetah, where we decom-

pose each robot into front and rear parts, and assign opposite rewards to each

part. As such, the front is learning to move forward while the rear is learning

to move backward.

5.4.2 Baselines

We compare our approach with the following baselines:

1. Single Policy Training (SPT): a standard multiagent training approach wherein

each agent optimizes only one policy.

2. Simple Ensemble Training (SET): a standard ensemble training approach

wherein each agent optimizes an ensemble of policies against each other. We

use an ensemble size of 3 for each agent (an ensemble of 3 policies has been

shown to improve robustness significantly in previous works [5] and [21]), which

also increases the amount of computation by a factor of 3.

3. Minimax Training (MT): achieves worst-case robustness through optimizing

one’s policy against the worst-case opponents, which is formulated as a minimax
1https://www.pettingzoo.ml
2https://github.com/datamllab/rlcard
3https://github.com/openai/roboschool
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optimization. We use the one-step approximation approach in [97] with the

Multiagent Actor-attention-critic (MAAC) algorithm [106]

5.4.3 Implementation detail

We used the RLlib [107] implementation of Proximal Policy Optimization (PPO)

with a mini-batch size of 256 and a learning rate of 5 × 10−5. We use independent

networks for the policy and the value function approximations and set the following

hyperparameters for IET: 𝐿 = 10 for the latent condition variable dimension; 𝐻 = 64

for the hidden layer dimension in the shaping network; 𝑛 = 2 and 𝑚 = 2 for the

number of layers and number of modules of the modular network; 𝐷 = 64 and 𝑑 = 64

for the embedding and module hidden dimension. For the other approaches, each

of the policy and the value networks consists of two fully-connected layers with 256

hidden units.

In the simple ensemble training setting, each sub-policy within an ensemble only

has a probability of 1/3 to be selected for execution. If the same number of envi-

ronment rollouts is used to train the simple ensemble as used for the other training

settings, the simple ensemble policy will perform poorly due to insufficient training.

Therefore, we roll out two additional environment simulations (but counted as one

training step when training the simple ensemble) for a fair comparison at the cost of

additional computational overhead.

To evaluate the robustness of the learned policies, we adopted a similar approach

as in [9, 20] by training an independent exploiter agent. Specifically, we launched two

concurrent threads, one for the training, the other for the testing, and repeated the

following steps:

1. Train the blue agent and the red agent in the training thread for one training

epoch.

2. Copy the blue agent’s policy to the testing thread and freeze it.

3. Train the red exploiter agent in the testing thread against the fixed blue agent.
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As a result, the red exploiter agent learns to exploit any weakness of the blue policy,

and the corresponding reward is an informative indicator of the adversarial robustness

of the blue policy.

5.4.4 Results and comparisons

This section discusses experimental results and compares baseline approaches with

our proposed IET approach.

Adversarial robustness

We investigate the adversarial robustness of the learned blue policy by training a red

exploiter agent against the frozen blue agent policy.

Fig. 5-3 shows the training and testing rewards of both agents corresponding to

the three baseline approaches and our proposed IET approach in the board game

Leduc Hold’em (plots for the other scenarios show similar patterns). Since the red

exploiter agent is trained against the fixed blue policy during the testing, these plots

reflect the adversarial robustness (assuming the red exploiter agent can successfully

learn the optimal exploiting policy against the blue policy, which is not always true,

as will be discussed in later sections) of these four training settings. The plots show

that there is always a gap between the training and testing reward. The training

blue reward is always higher than the corresponding testing blue reward, while the

testing red reward is always higher than the training red reward, which manifests the

robustness issue of policies learned through MARL. Moreover, sometimes the training

reward and the testing reward are not positively correlated, for example, in Fig. 5-3a,

which indicates that the single policy training approach suffers the most from the

adversarial exploitation.

The simple ensemble training mitigates this robustness issue by adding policy di-

versity into the training, reflected by the smaller gaps, higher testing blue reward, and

lower testing red reward, at the cost of triple computation and memory consumption.

In contrast, our proposed IET approach achieves high blue agent testing rewards,
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Table 5.1: Competition scores between SPT, SET, and IET. IET achieves the best
adversarial robustness in Connect Four (CF) and Leduc Hold’em (LH). Higher
score implies that the blue policy is stronger than the red policy. The lowest scores
across the columns is bold for each row, and the highest bold score across each row
is marked green, which corresponds to the blue policy that achieves best out-of-
distribution robustness.

CF SPT SET IET

SPT -1.0±0.0 -0.16±0.04 0.29±0.04
SET 0.35±0.04 -0.98±0.01 0.65±0.03
IET 1.0±0.0 1.0±0.0 -0.33±0.04

LH SPT SET IET

SPT -0.63±0.12 -0.34±0.09 0.12±0.07
SET 0.55±0.14 -0.04±0.1 -0.07±0.09
IET 0.47±0.12 0.11±0.09 -0.03±0.09

TH SPT SET IET

SPT -1.47±0.32 -0.12±0.11 0.0±0.05
SET -0.6±0.27 -0.16±0.18 0.05±0.10
IET 0.39±0.24 -0.09±0.16 0.13±0.12

low red agent testing rewards, as well as relatively small gaps between the training

and the testing rewards, outperforming the other three baselines, using a comparable

amount of computation and memory as SPT.

5.4.5 Competition scores between training settings

To evaluate the out-of-distribution robustness, we also include the competition scores

between the blue agent and the red exploiter agent, calculated as (𝑟blue − 𝑟red)/2 for

each pair of training settings in Tables 5.1. The blue agent uses the policy learned in

the training thread, while the red agent uses the exploiter policy learned in the testing

thread. As a result, the diagonal scores are in favor of the red agent, because the red

exploiter policy is trained against the corresponding blue policy, but not the other way

around. The diagonal scores measure the adversarial robustness of the learned blue

policy. In contrast, the off-diagonal scores measure the out-of-distribution robustness

of the blue policy, because neither the blue policy nor the red policy has been trained
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against each other. However, drawing conclusions directly from Tables 5.1 about

the relative strength of the policies learned by the three training settings is difficult,

because the competition scores show that there is no single policy that can dominate

all the rest policies. This non-transitive nature of real-world games has also been

observed in previous work [108].

To quantitatively evaluate the robustness of the learned blue policy, we provide

two metrics: (1) Normalized score: we find the worst-case reward gap between blue

and red min𝜋𝑟∈Π[𝑟blue(𝜋𝑏, 𝜋𝑟) − 𝑟red(𝜋𝑏, 𝜋𝑟)], Π = [SPT, SET, IET] (higher is better)

and normalize it to [0, 1], (2) Nash policy probability: we follow the approach pro-

posed in [109] by solving for the Nash-Equilibrium (NE) [34] of the meta-game [110],

which involves a row-player and a column-player, whose actions are selecting which

row/column policy to execute from the four available policies. The NE of the meta-

game is a pair of stochastic policies. The probability of a policy being selected by the

meta-player measures the strength (robustness) of this policy.

We show these two metrics in Table 5.2 and Table 5.3. The results show that

our IET approach consistently outperforms the other ones across all the scenarios.

Besides the improved robustness, the computational efficiency of our IET approach

compares favorably to SET as shown by the normalized wall clock training time in

Table 5.4.

Comparison with the minimax robust approach

We also show in Table 5.5 the comparison between the ensemble training approaches

with the minimax robust learning approach [97] which maximizes the worst-case re-

ward to obtain adversarial robustness. We use the RoboSchool environment because

the minimax approach requires differentiability with respect to the action (therefore

continuous action environments).

As the complexity of the environments increases, we see that the scores become

noisier due to the difficulty of the reinforcement learning algorithm to optimize the

policy (indicated by the fact that fewer minimal scores across the column are achieved

at the diagonal). Again, we show the Nash meta-policy probability in Table 5.6, which
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(a) Single Policy Training
(b) Simple Ensemble Train-
ing

(c) Implicit Ensemble
Training

Figure 5-2: Training and testing reward of the blue/agent and the red/adversary in
Connect Four

Table 5.2: Normalized scores that measure the adversarial robustness.

Scenarios / Settings SPT SET IET

Connect Four 5e-3 1e-2 0.33
Leduc Hold’em 0.18 0.46 0.48
Texas Hold’em 0.0 0.2 0.46

Table 5.3: Nash policy probability of the meta-player that measures the overall
strength of the policy.

Scenarios / Settings SPT SET IET

Connect Four 0.0 0.38 0.62
Leduc Hold’em 0.0 0.41 0.59
Texas Hold’em 0.0 0.0 1.0

Table 5.4: Normalized wall clock time of training

Settings SPT SET IET

Normalized training time 1.0 3.0 1.53
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(a) Single Policy Training
(b) Simple Ensemble Train-
ing

(c) Implicit Ensemble
Training

Figure 5-3: Training and testing reward of the blue/agent and the red/adversary in
Leduc Hold’em

(a) Single Policy Training
(b) Simple Ensemble Train-
ing

(c) Implicit Ensemble
Training

Figure 5-4: Training and testing reward of the blue/agent and the red/adversary in
Texas Hold’em
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Table 5.5: Competition scores between SPT, SET, IET, and MT. IET achieves the
best adversarial robustness in Ant (AT) as well as best out-of-distribution robustness
in both Ant and Cheetah (CT).

AT SPT SET IET MT

SPT 8.42±0.26 26.2±0.82 1.95±0.54 -4.49±2.86
SET -35.3±1.54 5.09±1.0 -23.7±0.86 -24.5±2.03
IET 4.13±0.84 33.64±1.03 15.2±0.38 37.7±0.81
MT -25.37±1.73 -2.53±0.90 -13.85±1.44 -25.7±0.50

CT SPT SET IET MT

SPT -15.54±0.68 -15.95±0.72 -7.16±0.34 4.26±0.22
SET -9.05±0.21 -12.60±0.64 -1.76±0.41 6.45±0.29
IET -9.22±0.22 -11.88±0.27 0.24±0.37 8.16±0.24
MT -13.71±0.59 -20.12±0.65 -4.02±0.50 4.84±0.38

suggests our IET approach achieves the best robustness. The fact that our approach

outperforms the minimax robust approach could be a result of two reasons: 1) The

minimax formulation may not be a good approach to achieve out-of-distribution ro-

bustness since it aggressively optimizes for the worst-case reward, which sometimes

may lead to overly-conservative behaviors that fail to exploit the weaknesses of the

opponent; 2) The one-step solution technique for the minimax problem proposed in

[97] is an approximate solution, which may find a sub-optimal solution due to the

difficulty of selecting a suitable step-size parameter. We tuned this parameter by

selecting from a few random values based on the testing reward, which may not be

the best way of tuning this parameter.

Table 5.6: Nash meta-policy probability in the RoboSchool scenarios.

Scenarios / Settings SPT SET IET MT

Ant 0.0 0.37 0.63 0.0
Cheetah 0.0 0.0 1.0 0.0

5.4.6 Ablation studies

To further understand the role of the shaping network and the multi-tasking network,

we conduct two additional experiments: 1) We show that the shaping network learns a
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(a) MPE: Simple (b) Connect Four

(c) Leduc Hold’em (d) Texas Hold’em
Figure 5-5: t-SNE of the learned latent condition variable distributions, where the
distribution in the single-agent (MPE: Simple) scenario is flat, while the distributions
in the multiagent scenarios are complicated that involves multiple modes and clusters.

non-trivial mapping from the Gaussian noise to the latent variable only when diversity

is required through visualizing the mappings represented by the shaping networks

learned in multiagent scenarios and compare those with that learned in a single-

agent scenario; 2) We show that we can improve the sample-efficiency of the PSRO

algorithm by sharing the intermediate layers within a multi-tasking network, and the

optimal performance is obtained at a medium level of sharing.

Visualization of latent variable distribution

Fig. 5-5 shows the 2D t-distributed stochastic neighbor embedding (t-SNE) visual-

ization of the latent condition variable. In addition to the three board games, we

also run our IET approach on the Simple scenario in the Multiagent Particle En-

vironment (MPE) (a simple single-agent scenario where the agent is rewarded based

on its distance to its goal at a random location). The figure shows two different pat-
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terns of the latent condition variable distribution. The latent condition variable is

on a flat hyper-plane in the single-agent scenario (MPE: Simple). In contrast, in the

multiagent scenarios (Connect Four, Leduc Hold’em, and Texas Hold’em), the latent

condition variables are on more complicated manifolds with curvatures and clusters,

which indicates that the corresponding conditional policies have more diversity. This

experiment suggests that our IET approach is capable of adaptively adjusting the

degree of diversity through learning the shaping network end-to-end.

Ablation on the levels of sharing

We investigate how the level of sharing within the multi-tasking network influences

the sample-efficiency. As our approach is not restricted to the modular network

architecture, for the convenience of ablation, we instead use a more intuitive multi-

tasking network architecture consisting of 𝐿 = 5 fully connected layers, where the

first 𝐿sharing layers are shared and the last 𝐿−𝐿sharing layers are independent for each

policy.

We show in Fig. 5-6a, 5-6b, 5-6c and 5-6d the exploitability and its area under the

curve (AUC) of the joint policy when running the PSRO algorithm with the multi-

tasking network of different sharing levels. With 𝐿sharing = 0 (independent policies)

corresponds to the standard PSRO, and 𝐿sharing = 5 (identical policies) corresponds

to self-play. We see that the best exploitability descent happens at 𝐿sharing = 2,

while the two extremes (𝐿sharing = 0, 5) perform poorly. This observation suggests a

trade-off between knowledge sharing (positive transfer) and loss of flexibility (negative

transfer), which is commonly observed in multi-task learning. This ablation study also

verifies our design purpose that the multi-tasking network in our implicit ensemble

approach is responsible for improving the sample-efficiency via sharing parameters.

5.5 Summary

This work proposes IET, an implicit ensemble training approach that effectively re-

duces the computational complexity of ensemble training while maintaining the pol-
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(a) Exploitability of FSA (b) AUC of FSA

(c) Exploitability of LH (d) AUC of LH
Figure 5-6: Exploitability (interpreted as a distance from Nash Equilibrium [32]) and
the area under the curve (AUC) of the joint policies learned through running PSRO
with the multi-task network of different sharing levels. The optimal exploitability
descent happens at medium sharing levels (𝐿sharing = 2). Scenarios First Sealed
Auction (FSA) and Leduc Hold’em (LH) implementation from OpenSpiel.

icy diversity for learning robust multiagent policies. In contrast to previous ensemble

training approaches that require optimizing multiple policy networks, our IET ap-

proach optimizes a single shared network, which requires less computation and mem-

ory. Numerical results show that our approach improves both the learning efficiency

and the robustness of the learned policy. For future works, we would like to explore

network architectures that strike a better trade-off between scalability and optimality.
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Chapter 6

Safe Adaptation through Ensemble

Regularization

6.1 Introduction

One critical step towards building fully autonomous intelligent robots is to enable

the capability of continual adaptation to new environments. In multiagent sce-

narios, besides the changing environment dynamics, agents must also adapt to the

novel/evolving behaviors of other agents, some of which may not have been seen

during training.

6.1.1 Related Work

There has been a lot of recent progress on fast adaptation to new tasks via meta-

learning in both single-agent RL [11, 12, 111–113], and MARL [14, 15, 114]. While

learning involves an algorithm that improves with experience on a task, meta-learning

is an algorithm that is used across multiple tasks that improves with experiences and

tasks [111]. During the meta-training phase, the agent meta-learns from tasks sam-

pled from a task distribution how to quickly learn from a new task, which enables fast

learning during the meta-testing phase, where testing samples are tasks drawn from

the task distribution. One important assumption within the meta-learning frame-
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work is that the task distribution is stationary [13]. As a result, the tasks encoun-

tered during the meta-testing phase are sampled from the same distribution as those

encountered during the meta-training phase. However, in multiagent competitive set-

tings, assuming access to the task distribution (sampling from the unknown opponent

agent’s policy distribution) is often unrealistic. Furthermore, as the ego-agent adapts

to the opponent, the opponent may also adapt to the ego-agent concurrently, leading

to non-stationarity from the ego-agent’s perspective [114, 115]. Achieving effective

adaptation requires knowledge about the opponent’s learning dynamics [14, 114],

which is a very strong assumption in competitive scenarios.

In addition to the lack of knowledge about the opponent, another common chal-

lenge of adaptation in competitive scenarios is the need to avoid being exploited by the

opponent. In two-player zero-sum games, to exploit the opponent, the ego-agent has

to deviate from the Nash-Equilibrium [116], leading to increased exploitability. Previ-

ous works demonstrated search-based safe exploitation in extensive-form games [117]

(games that can be represented as a decision tree), where the ego-agent updates its

strategy via subgame-resolving leveraging a model of the opponent’s strategy without

substantially increasing the exploitability [23, 118–120]. However, these approaches

are specialized for extensive-form games with knowledge of the whole game tree, so it

is unclear how to extend these approaches to handle more general multiagent settings,

potentially with continuous dynamics, within the model-free reinforcement learning

setting.

This work focuses on safe adaptation in two-player zero-sum scenarios (as an

important initial step towards multiagent safe adaptation), where the ego-agent needs

to update its policy based on the limited amount of interaction experience with an

opponent agent. The goal of adaptation is to exploit the specific opponent that

the ego-agent is interacting with while satisfying a safety requirement, which is that

the ego-agent must also maintain high competitiveness against any other possible

opponent (with either a stationary or evolving policy) during the whole adaptation

phase. We investigate this problem under the framework of Markov game [29] and

MARL in a model-free setting without explicit assumptions on the state or action
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space. As such, the main contributions of this work are:

1. This work presents a novel Bayesian formulation of the safe adaptation problem

within the MARL framework, which bridges the connection between robust

MARL and safe adaptation.

2. This work proposes an optimization objective for modeling the opponent, with a

behavior cloning term for adaptation and a novel ensemble-regularization term

to achieve low exploitability, which is derived from the Bayesian formulation.

3. This work demonstrates that the proposed approach achieves adaptation by

learning from a limited amount of interaction experience with the opponent

while maintaining low exploitability against a second opponent that actively

co-adapts to exploit the ego-agent.

6.2 Background

This work uses the Markov Game and MARL with policy distribution as the decision-

making framework. Given the focus on two-player zero-sum games, Eq. 2.3 is re-

written from the ego-agent’s perspective as:

𝐽ego = E𝜋ego∼𝑝(Πego),𝜋oppo∼𝑝(Πoppo) [E𝑠∼𝑝𝜋 ,𝑎∼𝜋 [𝑅ego(𝑠,𝑎)]] , (6.1)

where the ego-agent optimizes its policy distribution Πego, subject to a given opponent

policy distribution Πoppo. Since the optimal Πego with respect to Eq. 6.1 depends

on the opponent policy distribution Πoppo, determining Πoppo is critical. Here, we

discuss some common choices for the opponent policy distribution Πoppo.

6.2.1 Oracle policy distribution

Suppose we know the true policy distribution of the opponent, we can optimize

the ego-agent policy distribution against the opponent policy distribution to ob-

tain Πoracle
ego . However, there are two problems with this approach: 1) Feasibility:
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In competitive scenarios, it is unlikely to get access to the policy of the opponent.

2) Robustness: As the ego-agent over-fits its policy to the opponent, the resulting

Πoracle
ego may not perform well (or even poorly as shown in [20]) against an adversarial

opponent that is trained against Πoracle
ego to exploit its weakness.

6.2.2 Learned opponent policy distribution

As the ego-agent interacts with the opponent, the ego-agent can learn an internal

model of the opponent policy Πmodel
oppo distribution from the interaction experience

as an approximation of the true opponent policy distribution [121–124]. Many pre-

vious works [121–123], assume access to the opponent’s observation and action for

this model learning, which is not a strong assumption in robotic domains with full-

observability over the state space since the opponent’s observation and action can

be deducted from the state observation. Besides, [124] also demonstrates the pos-

sibility of learning an opponent model from the ego-agent’s observation alone via

variational inference over a hidden space that models the opponent’s private infor-

mation. However, this opponent modeling approach also suffers from the robustness

problem mentioned before.

6.2.3 Nash Equilibrium policy distribution

Another way to model the opponent is to solve for the Nash Equilibrium policy dis-

tribution Πnash
oppo (or equivalently, the minimax solution [125] in two-player zero-sum

games [34]), with no prior knowledge of the opponent’s policy distribution. The cor-

responding optimal policy distribution for the ego-agent is also the Nash Equilibrium

Πnash
ego , which is the least exploitable policy. However, this approach does not at-

tempt to adapt to the opponent that the ego-agent is interacting with, leading to

sub-optimal performance against an opponent that is exploitable.
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6.3 Approach

A better approach to modeling the opponent’s policy distribution should leverage the

available interaction experience for adaptation as well as stay close to the equilibrium

distribution to ensure robustness against adversarial exploitation. We develop this

approach by reformulating the sub-problem within Eq. 6.1 of modeling the opponent

policy distribution 𝜋oppo ∼ 𝑝 (Πoppo) into a Bayesian inference problem over the space

of policy distributions given the interaction experience 𝒟 between the ego-agent and

the opponent:
𝜋oppo ∼ 𝑝 (Πoppo|𝒟) ∝ 𝑝 (Πoppo|∅) 𝑝 (𝒟|Πoppo) ,

= 𝑝NE (Πoppo) 𝑝 (𝒟|Πoppo) ,
(6.2)

where ∅ denotes the empty set, so 𝑝prior (Πoppo) = 𝑝 (Πoppo|∅) is the prior distribu-

tion over the opponent’s policy space before obtaining any interaction experience.

We argue that the Nash Equilibrium policy distribution is a sensible choice for this

prior, i.e. 𝑝prior (Πoppo) = 𝑝NE (Πoppo), because, with no information about the oppo-

nent, the best choice is to minimize the ego-agent’s exploitability. As the ego-agent

receives more interaction experience with the opponent, the posterior distribution

𝑝 (Πoppo|𝒟) is updated through the likelihood term 𝑝 (𝒟|Πoppo) while being regular-

ized by the prior term, which ensures adaptation to the opponent while maintaining

low exploitability.

However, the posterior inference problem Eq. 6.2 is challenging for two reasons:

1) Solving for the Nash Equilibrium policy distribution 𝑝NE (Πoppo) is a challeng-

ing problem in itself; 2) representing and parameterizing the policy distribution is

challenging. Therefore, we apply the following two approximations,

1. The Nash Equilibrium policy distribution is approximated by an ensemble of

policies generated via Algorithm 3, which has been shown in [5, 20, 21] to

produce robust agent behaviors that are much less exploitable than policies

generated without ensembling.

2. The posterior distribution over policy Eq. 6.2 is approximated by the maximum

a posteriori probability (MAP) estimate via a single opponent policy model.
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With these two approximations, we propose an alternative formulation for the esti-

mated opponent policy as the optimization problem

�̂�oppo = argmin
𝜋

[D(Πensemble
oppo | 𝜋) + 𝜆1Llikelihood(𝒟 | 𝜋) +𝜆2LRL(Π

ensemble
ego , 𝜋)], (6.3)

where 𝜆1 and 𝜆2 are hyperparameters. The first term D(Πensemble
oppo | 𝜋) denotes a

distance metric between the opponent policy ensemble generated via Algorithm 3

and the estimated opponent model, which regularizes the opponent policy to stay

close to the robust ensemble policy distribution. This term corresponds to the prior

term 𝑝NE (Πoppo) in Eq. 6.2. The second term Llikelihood(𝒟 | 𝜋) is the log-likelihood of

observing the interaction experience 𝒟 given the opponent policy, which corresponds

to the likelihood term 𝑝 (𝒟|Πoppo) in Eq. 6.2. The third term LRL(Π
ensemble
ego , 𝜋)] is the

reinforcement learning loss that optimizes the opponent policy against the ego-agent’s

policy ensemble,

LRL(Π
ensemble
ego , 𝜋) = −E𝜋ego∼𝑝(Πensemble

ego ),𝜋oppo=𝜋
[E𝑠∼𝑝𝜋 ,𝑎∼𝜋 [𝑅oppo(𝑠,𝑎)]] , (6.4)

where the minus sign ensures that minimizing this loss results in maximization of the

reward. This term did not appear in Eq. 6.2, but this term enables the opponent

policy to continually evolve as we update the ego-agent’s policy ensemble to adapt to

the opponent via optimizing its reinforcement learning objective,

𝐽ego = E𝜋ego∼𝑝(Πensemble
ego ),𝜋oppo=�̂�oppo

[E𝑠∼𝑝𝜋 ,𝑎∼𝜋 [𝑅ego(𝑠,𝑎)]] . (6.5)

We include LRL in Eq. 6.3 because we found that although LRL does not make much

difference when adapting to a stationary opponent, it could be critical for achieving

high competitiveness against an evolving opponent, as is shown later in the experiment

section 6.4.2.

Now we discuss our choice for the first two terms in Eq. 6.3. The first term

D(Πensemble
oppo | 𝜋) measures the discrepancy between the policy ensemble Πensemble

oppo and

our estimated opponent policy 𝜋. There are several closed-form metrics to measure
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Algorithm 3 Ensemble training
Require: Ensemble size 𝑁 , number of training iterations 𝐾
1: Randomly initialize policy ensembles: Πensemble

ego = {𝜋𝑖ego}𝑖=1:𝑁 , Πensemble
oppo =

{𝜋𝑖oppo}𝑖=1:𝑁

2: for k = 1:𝐾 do
3: Randomly sample policy index: 𝑗 ∼ {1, . . . , 𝑁}, 𝑙 ∼ {1, . . . , 𝑁}
4: Environment_rollout(𝜋𝑗ego, 𝜋𝑙oppo)
5: Update 𝜋𝑗ego and 𝜋𝑙oppo to optimize objective Eq. 2.3
6: end for
7: return Πensemble

ego and Πensemble
oppo

Algorithm 4 Safe adaptation

Require: Policy ensembles Πensemble
ego and Πensemble

oppo , interaction experience 𝒟, number
of iterations 𝐾

1: freeze Πensemble
oppo

2: Initialize �̂�0
oppo as random policy

3: Πensemble,0
oppo ← Πensemble

oppo
4: for k = 1:𝐾 do
5: �̂�𝑘oppo ← 𝑢𝑝𝑑𝑎𝑡𝑒_𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡(�̂�𝑘−1

oppo,Π
ensemble
oppo ,

6: Πensemble,𝑘−1
ego ,𝒟) ◁ one gradient step of Eq. 6.3

7: Πensemble,𝑘
ego ← 𝑢𝑝𝑑𝑎𝑡𝑒_𝑒𝑔𝑜_𝑎𝑔𝑒𝑛𝑡(�̂�𝑘oppo,Π

ensemble,𝑘−1
ego ) ◁ one gradient step of

Eq. 6.5
8: end for
9: return Πensemble,𝐾

ego

the discrepancy between two policies, including KL-divergence discrepancy [126], to-

tal variation distance [127] and maximum mean discrepancy [128]. However, it is

unclear how to select one metric over another given a specific application domain,

and whether the selected metric can optimally discriminate between two policies. To

resolve this ambiguity and achieve strong discriminative power, we choose to learn

the discrepancy metric via adversarial learning following the paradigm of generative

adversarial imitation learning (GAIL) [129]. In this approach we train a discriminator

𝐷𝑤(𝑜, 𝑎) : 𝒪oppo ×𝒜oppo → [0, 1] to minimize the following discrimination loss,

E𝜏𝜋 [log𝐷𝑤(𝑜, 𝑎)] + E𝜏
Πensembleoppo

[log(1−𝐷𝑤(𝑜, 𝑎))], (6.6)

such that

D(Πensemble
oppo | 𝜋) = −E𝜏𝜋 [log𝐷𝑤(𝑜, 𝑎)], (6.7)
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where the shorthand notation 𝜏(·) denotes the trajectory distribution when the ego-

agent follows policy 𝜋ego ∼ 𝑝 (Πego), while the opponent follows policy (·). This loss

function is minimized by maximizing an imitation reward 𝑟imit = log𝐷𝑤(𝑜, 𝑎).

The second term in Eq. 6.3 is the log-likelihood of observing the experience𝒟 given

the opponent policy 𝜋. Since the opponent policy can only affect the probability of

the opponent’s taken action, this term can be reduced to behavior cloning loss,

𝑝 (𝒟 | 𝜋) =
∑︁

(𝑎,𝑜)∈𝒟

log 𝜋(𝑎 | 𝑜). (6.8)

In practice, we use mini-batch to calculate the gradient of this loss.

6.4 Experiments

6.4.1 Experiment setting

We evaluate our safe adaptation approach on the Multiagent Mujoco domain [130],

where each robot is decomposed into parts that are controlled by individual agents

as illustrated in Fig. 6-1. We use a zero-sum reward where the ego-agent tries to

maximize the reward for moving forward and the opponent agent tries to minimize

this reward.

To evaluate the capability of safe adaptation to a previously unseen opponent, we

describe the following procedure to set up the evaluation.

Off-line training phase:

1. Alternating for 𝐾1 iterations, between one-step (𝐾 = 1) policy ensemble train-

ing of size 𝑁 = 5 for both agents, Πensemble
ego ,Πensemble

oppo via Algorithm 3 and

one-step training of exploiter opponent 𝜋exp
oppo via Algorithm 5.

2. Freeze Πensemble
ego ,Πensemble

oppo , and training exploiter opponent 𝜋exp
oppo against Πensemble

ego

for an additional 𝐾2 iterations.

On-line adaptation phase (for Πensemble
ego to adapt to 𝜋exp

oppo):

1. Freeze 𝜋exp
oppo, Πensemble

oppo , and Πensemble
ego .
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Figure 6-1: Mujoco environments (left: swimmer; right: ant), where the blue part
of the body is controlled by the ego-agent and the red part of the body is controlled
by the opponent agent. The white circles are the joints where agents can apply
torques on. The ego-agent is rewarded for moving forward while the opponent agent
is rewarded for moving backward.

2. Collect interaction experience 𝒟 between Πensemble
ego and 𝜋exp

oppo.

3. Unfreeze Πensemble
ego .

4. Initialize second exploiter opponent 𝜋*exp
oppo from 𝜋exp

oppo.

5. Alternating for 𝐾3 iterations, between one-step safe adaptation for Πensemble
ego to

adapt to 𝜋exp
oppo via Algorithm 4 and one-step training of the second exploiter

opponent 𝜋*exp
oppo to exploit Πensemble

ego via Algorithm 5.

During the off-line training phase, we alternate between ensemble training Πensemble
ego

and Πensemble
oppo , and training of exploiter opponent 𝜋exp

oppo to mitigate the well-known

problem of training imbalance [21, 131] in competitive/adversarial training. The ad-

ditional training of the exploiter opponent ensures that the exploiter is sufficiently

trained to exploit the ego-agent, which motivates the ego-agent to adapt to this

exploiter in the adaptation phase. During the whole off-line training phase, the ego-

agent does not collect experiences against the exploiter opponent 𝜋exp
oppo. As a result,

this exploiter is a previously unseen opponent from the ego-agent’s perspective.

During the on-line adaptation phase, the ego-agent policy ensemble Πensemble
ego
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Algorithm 5 Train exploiter opponent

Require: Ego-agent ensemble Πensemble
ego , exploiter opponent policy 𝜋exp

oppo, number of
training iterations 𝐾

1: freeze Πensemble
ego

2: for k = 1:𝐾 do
3: Train 𝜋exp

oppo against Πensemble
ego by gradient decent on LRL(Π

ensemble
ego , 𝜋exp

oppo)
4: end for
5: Unfreeze Πensemble

ego
6: return 𝜋exp

oppo

adapts to the exploiter opponent 𝜋exp
oppo given a fixed size interaction experience 𝒟,

with regularization from Πensemble
oppo . Concurrently, the second exploiter 𝜋*exp

oppo is trained

to exploit the Πensemble
ego . As a result, the reward against the first exploiter opponent

𝜋exp
oppo during the adaptation phase measures the capability of adaptation against a

stationary opponent, while the reward against the second exploiter opponent 𝜋*exp
oppo

measures robustness/safety against an evolving adversarial exploiter.

Each agent uses a stochastic policy with Gaussian distribution parameterized by

a feedforward network with two fully-connected hidden layers, each with 128 hidden

units followed by ReLU activate layer. A Pytorch implementation1 of Soft Actor-

Critic [132] (SAC) with dual critic networks and automatic tuning of the entropy

parameter is used to train the ensemble networks and the two exploiter opponents in

both the off-line training phase and the on-line adaptation phase. The replay buffer

size is one million for the off-line training phase and half a million for the on-line

adaptation phase to save memory. The adaptation implementation is modified from

the GAIL implementation in PyTorch-RL2 with Proximal Policy Optimization [133]

(PPO) for training �̂�oppo, with PPO rollout batch size of 1000, mini-batch size of 128,

and 10 gradient updates per PPO batch. The learning rate is 0.001 for both training

and adaptation. In both environments, the number of steps per episode is fixed at

500. Each agent can observe the joints/bodies position and velocity of its own and

its opponent’s, so the agents have full observability.

In the off-line training phase, we use 𝐾1 = 10000 iterations (episodes), and 𝐾2 =

1https://github.com/p-christ/Deep-Reinforcement-Learning-Algorithms-with-PyTorch
2https://github.com/Khrylx/PyTorch-RL
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5000 iterations in the swimmer environment and 𝐾2 = 2000 for the ant environment.

In the on-line adaptation phase, we use different 𝐾3 for the two environments until

the average rewards become steady. We collect 10 episodes of interaction experience

for adaptation, which corresponds to |𝒟| = 5000 environment steps. We tune the

hyper-parameters 𝜆1 and 𝜆2 independently for each environment. We select from the

following values: {0.1, 0.5, 1.0, 5.0}, and manually choose the best one by looking at

the adaptation rewards against both of the two exploiter opponents. The selected

hyper-parameters are: 𝜆1 = 1.0, 𝜆2 = 1.0 for the swimmer environment and 𝜆1 =

0.1, 𝜆2 = 1.0 for the ant environment.

6.4.2 Results

The exploiter opponent rewards during the adaptation phase are shown in Fig. 6-2,

which includes the following settings:

1. oracle opponent, where the ego-agent is trained against the first exploiter di-

rectly. This setting is unrealistic since the first exploiter’s policy is unknown to

the ego-agent;

2. ensemble opponent, where the ego-agent is trained against the opponent ensem-

ble policy generated from the off-line training phase;

3. reg_bc_rl: our proposed approach including all the three terms in Eq. 6.3;

4. bc_rl: ablation of our approach without the ensemble regularization term;

5. reg_rl: ablation of our approach without the behavior cloning term;

6. reg_bc: ablation of our approach without the RL term.

Fig. 6-2a shows that the oracle opponent setting (reference) achieves the best

adaptation against the first exploiter opponent, while all the settings with the behav-

ior cloning loss achieve comparable adaptation performance as the reference. For all

the settings, the opponent reward decreases due to the fact that the opponent policy

is fixed but the ego-agent policy is updating. However, there remains a gap between

those settings without interaction experience with the first exploiter opponent (en-

semble opponent and reg_rl) and the other settings.
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(a) Swimmer adaptation against first ex-
ploiter

(b) Swimmer adaptation against second ex-
ploiter

(c) Ant adaptation against first exploiter (d) Ant adaptation against second exploiter

Figure 6-2: Exploiter opponent rewards during the adaptation phase. Lower opponent
reward against the first (6-2a, 6-2c) and the second (6-2b, 6-2d) exploiter indicates
better adaptation and safety of the ego-agent policy, respectively. Our proposed ap-
proach (reg_bc_rl) achieves near-optimal performance (w.r.t. the references) at both
adaptation and safety, while the references (oracle opponent and ensemble opponent)
achieve good performance only at one of these two metrics, but poor performance at
the other.

Fig. 6-2b shows that those settings without the ensemble regularization term (ora-

cle opponent and bc_rl) are unable to achieve robustness against the second exploiter

opponent which actively exploits the ego-agent’s policy. Combining Fig. 6-2a and 6-

2b, we can conclude that our approach (reg_bc_rl) strikes a better trade-off between

adaptation and safety, compared with the two reference approaches (oracle opponent:

good adaptation but poor robustness; ensemble opponent: good robustness but poor

adaptation).

Fig. 6-2c and 6-2d show consistent results as those in Fig. 6-2a and 6-2b: the
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ego-agent’s policies that are adapting to the first exploiter opponent are also more

susceptible to be exploited by the second exploiter opponent. Besides, Fig. 6-2d

shows that the setting without the RL loss (reg_bc) is also exploited after the second

exploiter is sufficiently trained. Our conjectured reason for this observation is that

the RL term enables the estimated opponent policy �̂�oppo to discover the weakness of

the ego-agent’s policy, which also helps reduce the ego-agent’s exploitability because

the ego-agent is trained against the estimated opponent policy.

To quantitatively measure the adaptation and robustness of different settings, we

calculate the area under curve (AUC) metrics of both the first exploiter’s (measures

adaptation) and the second exploiter’s (measures robustness) reward curves normal-

ized by the two reference settings (oracle opponent and ensemble opponent), as shown

in Table 6.1. We calculate the AUC using reward curves from steps 1e7 to 2e7 for the

swimmer environment and from steps 1e7 to 3.5e7 for the ant environment. These

results are consistent with our hypothesis that learning from the interaction expe-

rience with the opponent enables adaptation, but without regularization from the

ensemble policy, this adaptation could be highly exploitable. The regularization term

is effective for achieving safe adaptation. As a result, our approach achieves the best

overall metric which combines adaptation and robustness.

From Table 6.1, we can also see that the adaptation metric and the robustness

metric tend to be negatively correlated. To further analyze the relationship between

adaptation (exploitation) and robustness (exploitability), we show the normalized

area between curves (ABC) in Table 6.2, which is the gap between the reward against

the second exploiter opponent and the first exploiter opponent. Lower ABC indicates

less sensitivity to opponent exploitation. This result, together with the result shown

in Table 6.1, verifies the well-known trade-off between exploitation and exploitability

[23]: the settings with both the ensemble regularization term and the behavior cloning

terms (reg_bc_rl and reg_bc) are slightly more exploitable than their counterpart

without the behavior cloning term (reg_rl), which is an inevitable consequence of

exploiting the interaction experience against the first exploiter opponent.
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Table 6.1: Adaptation and robustness metrics of different settings, where the oracle
opponent and the ensemble opponent settings are taken as references. The best two
settings are highlighted.

Swimmer
Settings/Metrics Adaptation Robustness Overall (A+R)
Oracle opponent 1.0 0.0 1.0
Ensemble opponent 0.0 1.0 1.0
Reg_bc_rl 0.50 1.01 1.51
Bc_rl 0.67 -0.92 -0.25
Reg_rl -0.16 0.69 0.53
Reg_bc 0.52 1.07 1.59

Ant
Settings/Metrics Adaptation Robustness Overall (A+R)
Oracle opponent 1.0 0.0 1.0
Ensemble opponent 0.0 1.0 1.0
Reg_bc_rl 0.60 0.79 1.39
Bc_rl 0.76 -0.60 0.16
Reg_rl 0.06 0.89 0.95
Reg_bc 0.48 0.25 0.73

Table 6.2: Normalized ABC (area between curves) between the second exploiter re-
ward and the first exploiter reward. Lower ABC score indicates that the ego-agent’s
policy is less sensitive to opponent exploitation.

Swimmer
Settings Normalized ABC
Oracle opponent 1.0
Ensemble opponent 0.0
Reg_bc_rl 0.27
Bc_rl 1.23
Reg_rl 0.05
Reg_bc 0.25

Ant
Settings Normalized ABC
Oracle opponent 1.0
Ensemble opponent 0.0
Reg_bc_rl 0.37
Bc_rl 1.07
Reg_rl 0.11
Reg_bc 0.58
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6.5 Summary

This work investigates safe adaptation which is an important problem in competi-

tive MARL. In contrast to the widely-studied fast adaptation problem, our focus is

on maintaining low exploitability during the adaptation. Our key innovation is the

derivation of a novel ensemble regularization term from a Bayesian formulation of

the MARL objective function. We show empirically that our proposed approach is

effective both at adaptation to a previously unseen opponent given experience from

a few interaction episodes and at maintaining low exploitability against an adver-

sarial opponent that actively exploits the weakness of the ego-agent. Our ablation

study and analysis reveal the effect of each term in our proposed loss function, as

well as verify the well-known trade-off between exploitation and exploitability. Our

work contributes to an important step towards building reliable intelligent robots that

are able to operate safely in competitive multiagent scenarios against ever-changing

adversarial opponents.
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Chapter 7

Conclusion and Future Directions

7.1 Conclusions

This thesis focuses on robust and scalable MARL in adversarial scenarios. The ap-

proaches presented in this thesis answer the following questions: 1) How to robustly

identify the intent of an opponent agent in adversarial scenarios? 2) How to scale up

MARL for learning near-optimal joint policy in scenarios involving more than two,

possibly many agents? 3) How to reduce the computation complexity of ensemble

training to achieve efficient robust policy learning? 4) How to safely adapt to an

opponent while maintaining low exploitability during the adaptation?

Chapter 3 presents our approach for addressing the problem of robust intent recog-

nition against a previously unseen opponent, using a game-theoretic opponent model-

ing approach that captures sophisticated adversarial behaviors and a diversity-driven

ensemble training approach that captures a wide spectrum of possible adversarial be-

haviors including deception. The experiment on an urban security game shows that

our approach significantly improves the intent recognition accuracy, and as a result,

enables robust decision-making against a deceptive adversarial opponent.

Chapter 4 presents our approach for learning near-optimal joint policy in scenar-

ios with a large number of agents. We proposed a novel sparse attention mechanism,

which enables selective attention to small subset of peer agents’ information that

is critical to the ego-agent’s decision-making. This sparse attention, together with
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a GNN architecture that exploits the permutation-invariance of those scenarios in-

volving symmetry, leads to significantly improved sample-efficiency. As a result, we

managed to scale up MARL to scenarios with many agents without significant com-

promise on optimality. We demonstrated learning of joint policy that achieves high

performance with this new approach in scenarios with 20-30 agents, which increases

the success rate from ∼ 20% to ∼ 80% in cooperative settings, and achieves a high

winning rate in competitive settings compared against the state of the art baselines.

Chapter 5 presents our approach for computationally-efficient robust multiagent

learning. We proposed a novel multi-tasking deep generative model for representing

a policy distribution implicitly within a single network architecture, which preserves

the policy diversity achieved from ensemble approaches while improving the sample-

efficiency due to parameter-sharing. In contrast to the previous ensemble training

approach that suffers from a trade-off between parameter-efficiency and diversity, our

new approach achieves both parameter-efficiency and diversity. Experiment results

on both board game domains and robotic domains show that our approach learns the

most robust policy with much less computation, compared with baseline ensemble

training. With this new approach, we are able to learn robust policy within hours

which would have taken weeks using previous ensemble training approaches.

Chapter 6 presents our approach for safe adaptation in adversarial scenarios

against a previously unseen, possibly evolving, opponent. We proposed a novel

Bayesian formulation of MARL and an ensemble-regularized opponent modeling ap-

proach. Training against this regularized opponent results in learning of robust ego-

agent policy that stays close to an equilibrium policy distribution, which minimizes

the exploitability. Meanwhile, the learned ego-agent policy also exploits a sub-optimal

opponent. This new approach enables continuous adaption safely to new opponents.

Experiment results show that our approach achieves both effective adaptation and

high robustness against an actively exploiting adversary.

Collectively, these four approaches enable computationally-efficient learning of

intelligent agents that can make reliable decisions based on the understanding of the

intents of peer agents as well as adapting safely to newly-encountered agents.
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7.2 Future Directions

We discuss a few future directions to extend our approaches.

7.2.1 Modeling Agent Intent with Continuous Intent Space

and Approximate Inference

Our robust intent recognition adopts a belief-space approach, which relies on the

exact Bayesian update of the belief over possible intent variable. This approach

works well for problems that involve a few discrete intents. However, in some real-

world applications, we might want to capture a continuous spectrum of agent’s latent

preferences. For example, in autonomous driving scenarios, most drivers should not

be simply classified as conservative or aggressive, since there might not exist a clear

boundary between these two driving styles. Instead, a more appropriate way to

model the driving style is a continuous latent variable that might be interpreted

as the degree of aggressiveness of the driving style. However, it is difficult for the

current framework to learn this latent space and do inference over this continuous

latent space. Variational inference is one approach for learning and inference over a

latent space. There has been some initial work on using variational auto-encoder to

represent agent policy [124]. This approach could be potentially extended for joint

learning of a latent space of agent intent and a conditional policy conditioned on the

intent variable in this latent space so as to minimize the sub-optimality introduced

by hand-crafting a discrete intent space with a finite (possibly very few) number of

intents.

7.2.2 Scalable Heterogeneous Multiagent Policy Learning with

Heterogeneous GNN

One of the key techniques that leads to the high sample-efficiency of our sparse at-

tentional GNN approach is exploiting the permutation-invariance through the GNN

architecture. This technique, however, can only be applied to homogeneous multi-
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agent system, while a lot of real-world multiagent scenarios involves heterogeneous

agents. Extending this technique to scale up the joint policy learning within homo-

geneous multiagent system is therefore a very desirable capability. Heterogeneous

graph attentional neural network [134, 135] is a natural extension of GNN to en-

code heterogeneity. In typical heterogeneous multiagent systems, although agents

are heterogeneous in general, the sub-system of different agents might share some

common property. For example, two robot arms with different numbers of joints and

links are heterogeneous but the joints and links could be homogeneous. A heteroge-

neous GNN could capture the homogeneity within this heterogeneous system through

node embedding and edge embedding to model the homogeneous property of and the

heterogeneous semantics and structure of the sub-system so that sample-efficiency

can be preserved through homogeneous sharing, without significant compromise on

optimality which could be a result of blindly sharing between heterogeneous agents.

7.2.3 Diversity-aware Implicit Ensemble Training

Our current implicit ensemble training approach has the capacity of representing a

diverse set of policies attributed to the deep generative model architecture. However,

policy diversity is achieved in a passive way in the sense that there is no explicit

loss function or mechanism to encourage the exploration of the policy space. The-

oretical studies [8, 136] suggest that many real-world games exhibit a spinning top

structure, which implies that behavioral diversity is critical for learning strong pol-

icy. Therefore, it is desirable to extend our implicit ensemble training approach with

diversity-awareness. The first question is how to characterize the diversity of the

policy distribution parameterized by an implicit ensemble. There are a few choices

for quantifying the difference between two policies, for example, KL-divergence [126],

total variance distance [127], and maximal mean discrepancy metric [128], but there

is no clear answer to which one of these metrics, if at all, is appropriate for measur-

ing diversity. More studies need to be done towards a better understanding of how

to measure diversity, how to generate diversity-aware implicit ensemble and how to

shape an implicit ensemble to induce diverse and strong policies.
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7.2.4 Meta-learning for safe adaptation

Our safe adaptation approach addresses the problem of adapting to an opponent

without increasing one’s exploitability. It is desirable to enable safe and fast adapta-

tion by combining our approach with meta-learning. However, as we have discussed

in Section 6.1.1, the difficulty of applying meta-learning in adversarial settings is

the lack of information on the distribution of the opponent policy, while our ap-

proach uses an equilibrium distribution to achieve robustness. A natural question

to ask is whether there exists an equivalent equilibrium task distribution for robust

meta-learning. There have been works on task-robust meta-learning [137], Bayesian

meta-learning [138], adversarially-robust few-shot learning [139] which minimizes per-

formance degradation due to shift in the task distribution in supervised learning do-

mains. One interesting research problem MARL is how to characterize the sensitivity

of the meta-learned policy performance with respect to adversarial exploitation from

a previously unseen opponent and how to shape the task distribution to minimize

this sensitivity metric for achieving safe and fast adaptation.

7.2.5 Extension to real-world multiagent systems

The techniques developed in the thesis have been demonstrated in simulations where

the simulator provides an ideal environment with an unlimited amount of data for

training and evaluation. One desirable future direction is to enable the application of

the decision-making policy learned in simulation to real-world physical systems. The

challenges in this setting include hard safety constraints and the distributional shift

between simulation and the real world.

There are quite a few related research fields for ensuring safety in real-world mul-

tiagent decision-making, including safe RL with certifiably robustness [140], inter-

pretable RL [141] and hybrid planning [142]. Safe RL focuses on respecting safety

constraints during the learning and/or deployment processes while learning policies

that maximize the expected returns [143]. In the context of learning decision-making

for real-world physical systems, it is reasonable to require that a deep RL policy
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leads to collision-free trajectories. This requirement can be certified by finding the

forward-reachable set [140] following the deep RL policy and making sure that this

set does not intersect with obstacles. However, in real-world scenarios, the environ-

ment involves other agents that are not under the control of the deep RL policy, and

they are treated as dynamic obstacles. A high accuracy agent trajectory prediction

module is required to check feasibility, which is itself a challenging prediction task.

Control and planning-based approaches have better theoretical guarantees of safety

but do not scale as well as RL-based approaches in multiagent systems. One promising

direction is to combine the advantages of both through a hybrid approach where RL is

combined with an online look-ahead planner to check for safety [142]. This approach

also results in better interpretability of the decision-making, which is important in

safety-critical domains.

Distributional shift between simulation and the real world is another challenge for

deploying the decision-making policy learned in simulation to real-world physical sys-

tems, where sensing/perception, system dynamics, and actuation can be the source

of domain mismatches [144]. Transfer learning/domain adaptation [144] attempts to

reduce this domain gap by pre-training on the source domain (simulation) and then

fine-tuning on the target domain (real-world physical systems). This transfer can be

achieved through matching the latent feature representation [145, 146], which can ac-

count for the domain mismatch of sensing/perception. Robust RL can explicitly take

into account the uncertainty in sensing, system dynamics, and actuation during the

training on the source domain. This uncertainty can be modeled as random pertur-

bations [147] (a.k.a. domain randomization) or adversarial perturbations [148]. The

policy learned through robust RL in simulation mitigates performance degradation

when deployed in real-world physical systems. Combining transfer learning/domain

adaptation and robust RL in a multiagent decision-making framework is a promis-

ing way to efficiently and effectively reduce the sim-to-real gap, which is another

interesting future direction of this work.
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