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Abstract

The proliferation of digitally-available medical data has enabled a new paradigm of decision-
making in medicine. Machine learning allows us to glean large-scale insights directly from data,
systematizing the heuristic risk assessment process that physicians use on a local scale. Optimiza-
tion similarly adds rigor to decision-making, providing a quantitative framework for optimizing
decisions under certain constraints. The rise in data, coupled with methodological and compu-
tational advancements in these fields, presents both opportunities and challenges. In this thesis,
we leverage machine learning and optimization to learn from data and drive better decisions in
healthcare. We propose novel approaches motivated by current methodological gaps, and we use
analytics to tackle clinically-driven problems. This thesis develops methods and applied models to
bridge the gap between research and clinical practice, with interpretability and impact as guiding
principles.

The first part of the thesis focuses on the development of new approaches for data-driven in-
sights and decision-making. Chapter 2 introduces a constraint learning framework that embeds
trained machine learning models directly into mixed-integer optimization formulations. We train
machine learning models to approximate functional relationships between decisions and outcomes
of interest and subsequently optimize decisions under these data-driven learned constraints and/or
objectives. We also highlight an application of this framework in chemotherapy regimen design.
In Chapter 3, we propose an interpretable clustering algorithm which learns a tree-based data par-
tition in which each leaf comprises a distinct cluster. We recover high-quality clusters that can be
explicitly described by their decision paths.

The second part of the thesis leverages machine learning and optimization to improve risk
prediction and treatment decisions in various domains. We present three such applications. In
Chapter 4, we study neutropenic events in chemotherapy patients. We propose a risk prediction
model based on a patient’s dynamic clinical trajectory over the course of multiple chemotherapy
cycles. Chapter 5 demonstrates the use of analytics to address the COVID-19 pandemic. We
curate a multi-center, international database of COVID-19 patients and their outcomes, which
forms the basis for a COVID-19 mortality risk model for hospitalized patients. Finally, Chapter 6
examines the effectiveness of in-person vs. virtual care from a causal inference lens, considering
the effect of visit modality on both operational and clinical outcomes. The resultant machine
learning models inform an optimization formulation for allocating telehealth and in-person visits
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for diabetic patients.
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Chapter 1

Introduction

Machine learning (ML) and optimization have the potential to transform medicine. In the past

decade, as medical data has become increasingly digitized, an opportunity has emerged for data-

driven healthcare decisions. Patient care has traditionally been driven by formal medical training

and personal experience; predictions about patient outcomes and treatment decisions evolve based

on a physician’s previous patients and those of their colleagues. ML introduces a new paradigm of

evidence-based medicine, scaling the best practices generated from physician knowledge and expe-

rience across sites and diverse populations. Optimization similarly systematizes decision-making,

providing a quantitative framework for optimizing decisions under various imposed constraints.

Coupled with data, these fields can shape future medical care with more accurate risk predictions,

better treatment personalization, earlier detection of disease, and ultimately preventative interven-

tion [119, 136].

This opportunity is not limited to the clinical domain. Healthcare organizations are complex

systems with numerous stakeholders and operational challenges. Efficient appointment schedul-

ing, employee staffing, and patient flow require accurate predictions of patient needs to inform

resource allocation. In the policy domain, policymakers similarly grapple with multi-objective,

complex decisions. Analytics can be used to identify effective community-level interventions, de-

velop clinical guidelines, and audit systems for disparate impact. Once again, a combination of

predictive modeling and optimization presents an opportunity to improve decision-making.

Despite the power of ML and optimization to derive data-driven insights and prescriptions,

and the growing availability of clinical data to inform models, there are challenges to realizing
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this vision [64, 95, 162]. Electronic medical record (EMR) data are notoriously noisy and often

consist of several sources and modalities, requiring extensive data curation. Furthermore, there are

obstacles to applying analytics in healthcare that necessitate the development of new methods. For

example, state-of-the-art methods often lack interpretability, which is critical to gaining credibility

with clinical audiences. Additionally, in order to leverage optimization, models require explicit

functions that tie decisions to their predicted outcomes, which are frequently unknown and must

be learned from data.

In this thesis, we harness the power of ML and optimization to glean insights from data and

improve both clinical and operational decision-making. In the chapters that follow, we develop

methods and applied models to bridge the gap between research and clinical practice, with inter-

pretability and impact as guiding principles.

1.1 The intersection of optimization and machine learning

The first part of the thesis focuses on the development of novel approaches for data-driven decision-

making. We first propose a framework for mixed-integer optimization (MIO) with constraint learn-

ing. In this work, we leverage ML within a broader MIO formulation. We train ML models to

approximate functional relationships between decisions and outcomes of interest and subsequently

optimize decisions under these data-driven learned constraints and/or objectives.

We then take an optimization perspective to ML in the development of an interpretable clus-

tering algorithm. We introduce ICOT, interpretable clustering via optimal trees, which learns a

decision tree in which each leaf comprises a distinct cluster. We propose an MIO formulation for

this tree partitioning problem, and implement a fast local search algorithm with scaling heuristics.

We recover high-quality clusters that can be explicitly described by their decision paths. ICOT adds

interpretability to unsupervised learning, which is particularly relevant in exploratory analysis such

as subgroup identification.

Both of these chapters bring together optimization and ML to more effectively learn from data

and use data to inform decisions. We address problems that have natural application in healthcare,

but their relevance is quite broad to settings with complex decisions and those in which inter-

pretability is crucial. A key goal of these works is the development of tools that are useful in
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practice. The constraint learning framework is implemented as a Python package, OptiCL, which

allows end-users to flexibly incorporate ML models in MIO problems. ICOT is also implemented

in Julia and freely available to academic users.

1.1.1 Outline and main contributions

Mixed-integer optimization with constraint learning In Chapter 2, we propose a combined

ML and optimization framework for learning constraints and objectives from data. MIO is a valu-

able tool for modeling and optimizing decisions, but the challenge lies in translating the real-world

problem into a mathematical formulation. We often have no deterministic functions relating the

decision variables to the outcomes of interest. Critically, however, we generally do have data. In

healthcare, this consists of data about patients, care decisions, and their outcomes, whether from

EMR, registries, or clinical trials. We can thus use ML to learn predictive models for various

outcomes that we may want to constrain or optimize, and subsequently embed these models in

an MIO formulation to generate the desired prescriptions. We exploit the MIO-representability of

many classes of ML methods, including linear models, decision trees, ensembles, and multi-layer

perceptron networks. Our learning process is therefore able to capture quite general relationships

between the patient features, treatments, and outcomes. We are also able to flexibly include addi-

tional explicit constraints or objectives, such as a limit on the total cost of the treatment regimen or

on the number of drugs included in the treatment. Finally, we characterize the feasible region us-

ing a trust region to avoid model extrapolation and obtain reasonable decisions based on previous

observations. By combining ML with optimization, we are able to integrate both data-driven and

context-driven constraints and objectives to generate prescriptive recommendations.

We further demonstrate the power of our proposed constraint learning framework through a

case study on chemotherapy regimen design. Chemotherapy regimen selection involves complex

decisions: plans generally include multiple drugs given at different doses, making it impossible

to enumerate and explore all treatment options. This is a natural setting for constraint learning:

we have outcomes of interest (survival and multiple toxicities) that have complex dependencies

on patient characteristics and selected treatment regimens. We leverage a database of nearly 500

Phase II/III clinical trials for advanced gastric cancer for this task [28]. For a cohort with specified
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features (𝑤), we seek to identify the optimal treatment regimen (𝑥) that maximizes overall survival

under multiple toxicity constraints. Our framework is amenable to different model specifications,

allowable toxicity risks, and alternative measures of survival. This provides an actionable tool for

the medical community to quantify the clinical benefit of various treatment options and to evaluate

tradeoffs between toxicity and survival.

We also provide a software package, OptiCL, that implements the end-to-end constraint learn-

ing pipeline. Given data (𝑥,𝑤) and a set of outcomes to constrain or optimize (𝑦), we train

various ML models, perform automated model selection using a validation criterion, embed the

selected models within a single MIO formulation, incorporate other known constraints, and return

the optimal treatment prescription. OptiCL offers an easy interface for model development and

experimentation, equipping users with a powerful toolkit and bridging the gap to practice.

This is joint work with Donato Maragno, Dimitris Bertsimas, Ilker Birbil, Dick den Hertog,

and Ade Fajemisin, and is under review at Operations Research (Major Revision) [117].

Interpretable clustering Clustering is a popular tool for exploratory analysis, revealing under-

lying patterns or subgroups in data. Clustering can be used on its own to gain insight into a dataset

or to partition a population for a downstream predictive task. For these aims, it is desirable, and

sometimes necessary, to explicitly characterize subgroup membership. This is a challenge in the

clustering literature: existing popular methods, such as K-means, provide no explanation of cluster

membership. While there is a significant body of literature on interpretable supervised learning

methods, this area is relatively unexplored in the unsupervised learning setting.

In Chapter 3, we introduce Interpretable Clustering via Optimal Trees (ICOT), an algorithm

that partitions data into clusters through a single decision tree. This representation yields an explicit

characterization of cluster membership, providing a more intuitive view of the resultant subgroups

and their differentiating features. ICOT constructs clusters that are inherently interpretable, rather

than considering cluster interpretation as a post-processing step. We formulate the tree construction

as an MIO problem seeking to maximize a measure of cluster quality and implement it using a local

search procedure that leverages the geometric structure of the clustering setting. ICOT performs

comparably to state-of-the-art methods on benchmark clustering tasks, showing almost no loss in

cluster quality while obtaining a significant gain in interpretability and practical utility. Scaling
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heuristics allow ICOT to scale to large real-world datasets in tasks such as identifying bikesharing

rider profiles and heart attack patterns.

We also implement ICOT within the InterpretableAI software [90]. Given a feature matrix

X , the algorithm returns a decision tree that partitions observations into clusters and can be used

to assign clusters to new observations. We include optional user-specified parameters used in tree

construction (cluster quality metric, tree size limit, and the weight of categorical vs. numerical fea-

tures) as well as optional scaling heuristics. The implementation is freely available to all academic

users.

This is joint work with Dimitris Bertsimas and Agni Orfanoudaki, and appears in Machine

Learning [31].

1.2 Analytics for clinical and operational decisions

While there is great interest in ML-driven healthcare [136], a gap remains between this research

area and clinical practice. There are many hurdles involved in translating models into practical

decision support tools, including technical hurdles (implementation barriers, inconsistent EMR

structures), organizational hurdles (lack of clinical buy-in), and a disconnect between models and

the clinical questions that they intend to address.

The second part of my thesis focuses on leveraging ML and optimization to improve risk pre-

diction and treatment decisions in various domains. These works seek to bridge the gap between

research and practice, balancing quantitative and clinically-oriented perspectives to derive data-

driven insights. The following chapters include representative papers from a broad set of clinical

application areas, including cancer [33, 26, 167], pediatric trauma [27], diabetes care, and COVID-

19 [21, 22, 25]. While spanning diverse application areas, this body of work is unified by common

themes: the problems were identified in collaboration with medical partners; the data curation and

modeling were guided by clinical utility; and the models have led to the development of practical

tools.

These goals have manifested in several ways. We worked closely with collaborators in clinical

problem definition to ensure that we are answering a clinically relevant question. Clinical decisions

are complex, involving many assessment points over time and many data inputs. By identifying
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end-user stakeholders in the and engaging them from the outset, we define precise problems that

make our models useful to their daily practice. Our data curation process is oriented towards the

point-of-care, ensuring that the feature space accurately encodes the patient’s condition at the time

of interest. We develop data mappings and ontologies to synthesize disparate data sources, which

remain as artifacts in their respective institutions to accelerate new research endeavors. Finally,

we prioritize interpretability in model selection. Our development of user-friendly interfaces has

proved critical in establishing credibility with clinicians and validating models.

1.2.1 Outline and main contributions

Prediction of neutropenic events in chemotherapy patients Severe and febrile neutropenia

pose significant hazards to patients undergoing chemotherapy. A better assessment of neutropenic

risk at the initiation of a chemotherapy cycle enables better care management and potential inter-

vention. In Chapter 4, we train and validate a neutropenia prediction model using data from nearly

18,000 chemotherapy cycles from Hartford HealthCare. We obtain a sparse logistic regression risk

prediction model that accurately predicts neutropenia onset within a 4 week window (test AUC =

0.87, 95% CI 0.83-0.91) and only requires 20 clinical features. These features reflect a patient’s

dynamic clinical state, allowing for repeated evaluation over subsequent chemotherapy cycles. Our

resultant model is both sparse and interpretable, providing transparency for clinical validation and

lowering barriers to future implementation and adoption. This work addresses a pressing clinical

question and provides a tool to aid oncologists in assessing their patients and designing care plans.

This is joint worth with Dimitris Bertsimas and our clinical collaborators at Hartford Health-

Care, Peter Yu, Pat Montanaro, Jeff Mather, Suzi Birz, and Michelle Schneider, and appears in

JCO Clinical Cancer Informatics [167].

COVID-19 mortality risk assessment As the COVID-19 pandemic emerged in spring 2020, it

raised many clinical, operational, and epidemiological questions. Researchers were eager to tackle

these questions, yet the novelty of the disease and its rapid onset posed an immense challenge. In

particular, efforts to understand risk factors and treatment effectiveness were hindered by a lack of

large-scale clinical data. We set out to address several problems, starting with COVID-19 mortal-

ity prediction for hospitalized patients, which is the focus of Chapter 5. In this work, we develop

20



and validate a COVID-19 mortality risk calculator (CMR). The model derivation and validation

are performed using a manually curated dataset of detailed clinical features and outcomes. We

established several collaborations with international institutions, generating a database of 4,000

COVID-19 patients across 33 sites. The final CMR model demonstrates strong quantitative perfor-

mance (test AUC 0.90, 95% CI, 0.87–0.94) and identifies risk factors consistent with the literature,

such as hypoxemia and elevated renal function lab values. This tool offers an accurate and inter-

pretable model for understanding COVID-19 severity upon hospital admission, with implications

on patient management and triage. In particular, it allows users to calculate risk scores based on

demographics, vitals, comorbidities, and (optionally) lab values. We also surface personalized

insights into risk drivers, adding interpretability and allowing for clinical collaborators to engage

with and validate the model findings. In addition to the public interface, CMR was subsequently

implemented in one of our external validation sites, a hospital system serving Seville, Spain.

This is joint work with Dimitris Bertsimas, Galit Lukin, Luca Mingardi, Omid Nohadani, Agni

Orfanoudaki, and Bartolomeo Stellato, as well as our clinical collaborators, and appears in PLOS

One [25].

Optimizing virtual care for chronic disease patients In partnership with the Hartford Health-

Care Medical Group, we investigate the effectiveness of virtual and in-person care for diabetic

patients. This is a timely issue in the wake of the COVID-19 pandemic, which has significantly

accelerated telehealth adoption. Policymakers and hospital systems must now determine how to

best utilize telehealth in patient care beyond the pandemic. Chapter 6 tackles this question from

a causal ML and optimization approach. We consider the visit modality, virtual vs. in-person, as

a treatment and use causal inference methods to estimate individual treatment effects. These ef-

fects inform a scheduling model that optimizes a provider’s virtual/in-person visit mix given their

patient characteristics. We vary the problem to prioritize operational (no-show rate) and clinical

(A1C control) outcomes, and consider various upper bounds on the overall virtual appointment

rate. Overall, our findings suggest a benefit to increasing virtual care and can be extended to other

chronic care settings.
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Chapter 2

Mixed-integer Optimization with

Constraint Learning

Abstract

We establish a broad methodological foundation for mixed-integer optimization with learned con-
straints. We propose an end-to-end pipeline for data-driven decision making in which constraints
and objectives are directly learned from data using machine learning, and the trained models
are embedded in an optimization formulation. We exploit the mixed-integer optimization repre-
sentability of many machine learning methods, including linear models, decision trees, ensembles,
and multi-layer perceptrons. The consideration of multiple methods allows us to capture various
underlying relationships between decisions, contextual variables, and outcomes. We also charac-
terize a decision trust region using the convex hull of the observations, to ensure credible recom-
mendations and avoid extrapolation. We efficiently incorporate this representation using column
generation and clustering. In combination with domain-driven constraints and objective terms,
the embedded models and trust region define a mixed-integer optimization problem for prescrip-
tion generation. We implement this framework as a Python package (OptiCL) for practitioners. We
demonstrate the method in both chemotherapy optimization and World Food Programme planning.
The case studies illustrate the benefit of the framework in generating high-quality prescriptions, the
value added by the trust region, the incorporation of multiple machine learning methods, and the
inclusion of multiple learned constraints.

2.1 Introduction

Mixed-integer optimization (MIO) is a powerful tool that allows us to optimize a given objective

subject to various constraints. This general problem statement of optimizing under constraints is
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nearly universal in decision-making settings. Some problems have readily quantifiable and explicit

objectives and constraints, in which case MIO can be directly applied. The situation becomes more

complicated, however, when the constraints and/or objectives are not explicitly known.

For example, suppose we deal with cancerous tumors and want to prescribe a treatment regimen

with a limit on toxicity; we may have observational data on treatments and their toxicity outcomes,

but we have no natural function that relates the treatment decision to its resultant toxicity. We may

also encounter constraints that are not directly quantifiable. Consider a setting where we want to

recommend a diet, defined by a combination of foods and quantities, that is sufficiently “palatable."

Palatability cannot be written as a function of the food choices, but we may have qualitative data

on how well people “like" various potential dietary prescriptions. In both of these examples, we

cannot directly represent the outcomes of interest as functions of our decisions, but we have data

that relates the outcomes and decisions. This raises a question: how can we consider data to learn

these functions?

In this work, we tackle the challenge of data-driven decision making through a combined ma-

chine learning (ML) and MIO approach. ML allows us to learn functions that relate decisions

to outcomes of interest directly through data. Importantly, many popular ML methods result in

functions that are MIO-representable, meaning that they can be embedded into MIO formulations.

This MIO-representable class includes both linear and nonlinear models, allowing us to capture

a broad set of underlying relationships in the data. While the idea of learning functions directly

from data is core to the field of ML, data is often underutilized in MIO settings due to the need

for functional relationships between decision variables and outcomes. We seek to bridge this gap

through constraint learning; we propose a general framework that allows us to learn constraints

and objectives directly from data, using ML, and to optimize decisions accordingly, using MIO.

Once the learned constraints have been incorporated into the larger MIO, we can solve the problem

directly using off-the-shelf solvers.

The term constraint learning, used several times throughout this work, captures both con-

straints and objective functions. We are fundamentally learning functions to relate our decision

variables to the outcome(s) of interest. The predicted values can then either be incorporated as

constraints or objective terms; the model learning and embedding procedures remain largely the

same. For this reason, we refer to them both under the same umbrella of constraint learning. We
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describe this further in Section 2.2.2.

2.1.1 Literature review

Previous work has demonstrated the use of various ML methods in MIO problems and their utility

in different application domains. The simplest of these methods is the regression function, as the

approach is easy to understand and easy to implement. Given a regression function learned from

data, the process of incorporating it into an MIO model is straightforward, and the final model does

not require complex reformulations. As an example, Bertsimas et al. [28] use regression models

and MIO to develop new chemotherapy regimens based on existing data from previous clinical

trials. Kleijnen [98] provides further information on this subject.

More complex ML models have also been shown to be MIO-representable, although more

effort is required to represent them than simple regression models. Neural networks which use the

ReLU activation function can be represented using binary variables and big-M formulations [7, 76,

8, 48, 150, 163]. Where other activation functions are used [79, 110, 144], the MIO representation

of neural networks is still possible, provided the solvers are capable of handling these functions.

With decision trees, each path in the tree from root to leaf node can be represented using one

or more constraints [38, 164, 81]. The number of constraints required to represent decision trees

is a function of the tree size, with larger trees requiring more linearizations and binary variables.

The advantage here, however, is that decision trees are known to be highly interpretable, which

is often a requirement of ML in critical application settings [155]. Random forests [36, 120] and

other tree ensembles [52] have also been used in MIO in the same way as decision trees, with one

set of constraints for each tree in the forest/ensemble along with one or more additional aggregate

constraints.

Data for constraint learning can either contain information on continuous data, feasible and

infeasible states (two-class data), or only one state (one-class data). The problem of learning

functions from one-class data and embedding them into optimization models has been recently

investigated with the use of decision trees [100], genetic programming [128], local search [151],

evolutionary strategies [127], and a combination of clustering, principal component analysis and

wrapping ellipsoids [129].
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The above selected applications generally involve a single function to be learned and a fixed

ML method for the model choice. Verwer et al. [164] use two model classes (decision trees and

linear models) in a specific auction design application, but in this case the models were deter-

mined a priori. Some authors have presented a more general framework of embedding learned ML

models in optimization problems [110, 20], but in practice these works are restricted to limited

problem structures and learned model classes. Recently, Bergman et al. [20] introduced a software

to embed neural networks and logistic and linear regression models as objective terms in an MIO

formulation. These works can be viewed as special cases of our framework and cannot be directly

applied in our case studies. We take a broader perspective, proposing a comprehensive end-to-

end pipeline that encompasses the full ML and optimization components of a data-driven decision

making problem.

Our work falls under the umbrella of prescriptive analytics. Bertsimas and Kallus [24] and

Elmachtoub and Grigas [63] leverage ML model predictions as inputs into an optimization prob-

lem. Our approach is distinct from existing work in that we directly embed ML models rather

than extracting predictions, allowing us to optimize our decisions over the model. In the broadest

sense, our framework relates to work that jointly harnesses ML and MIO, an area that has garnered

significant interest in recent years in both the optimization and machine learning communities [19].

2.1.2 Contributions

Our work unifies several research areas in a comprehensive manner. Our key contributions are as

follows:

1. We develop an end-to-end framework that takes data and directly implements model training,

model selection, integration into a larger MIO, and ultimately optimization. We make this

available as an open-source software, OptiCL (Optimization with Constraint Learning) to

provide a practitioner-friendly tool for making better data-driven decisions. The code is

available at https://github.com/hwiberg/OptiCL.

2. We implement a model selection procedure that allows us to capture quite general func-

tional relationships between contextual variables, treatments, and outcomes. We use cross-

validation to select from a broad set of ML methods, assuming no single model’s dominance,
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and further allow for the combined use of different algorithms for different outcomes. Our

framework supports models for both regression and classification functions, and handles

constraint learning in cases with both one-class and two-class data. Additionally, we give

mathematical representations of the ML functions to enable their use in MIO applications.

3. Due to the uncertainty associated with learning from data, we introduce a concept which

we call a trust region. This allows us to restrict the solution of the optimization problem to

be consistent with the domain of the predictive models. Defining this trust region in cases

where there is a huge amount of data to learn from can be computationally intensive, so we

also provide a column selection algorithm that significantly improves the computation time.

We furthermore propose a clustering heuristic for a general MIO formulation that shows

significant computational gains while obtaining near-optimality. These approaches allow us

to reduce the computational burden of our approach while keeping the benefits of the trust

region.

4. We demonstrate the power of our method in two real-world case studies, using data from

the World Food Programme and chemotherapy clinical trials. We pose relevant questions

in the respective areas and formalize them as constraint learning problems. We implement

our framework and subsequently evaluate the quantitative performance and scalability of our

methods in these settings.

2.2 Methodology

Suppose we have data D = {(𝑥̄i,𝑤̄i,𝑦i)}N
i=1, with observed treatment decisions 𝑥̄i, contextual

information 𝑤̄i, and outcomes of interest 𝑦i for sample i. Following the guidelines proposed in

[67], we present a framework that, given data D , learns functions for the outcomes of interest (𝑦)

that are to be constrained or optimized. These learned representations can then be used to generate

predictions for a new observation with context 𝑤. Figure 2-1 outlines the complete pipeline, which

is detailed in the sections below.
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Conceptual model (Section 2.1)
- Decision variables
- Contextual variables
- Parameters
- Known constraints
- Unknown constraints

Data pre-processing (Sections 3&4)
- Data cleaning
- Feature scaling
- Feature engineering

Trust region (Section 2.3)
- Clustering
- Convex hull
- Column selection

Optimization (Sections 3&4)
MIO with learned predictive models 
and trust region constraints.

Evaluation (Sections 3&4)
Analyses of the optimal solution and 
the embedded predictive models’ 
performance.

Predictive models (Section 2.2)
- Linear regression
- Support vector machines
- Decision trees
- Ensemble methods
- Neural networks

Figure 2-1: Constraint learning and optimization pipeline.
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2.2.1 Conceptual model

Given the decision variable 𝑥 ∈ Rn and the fixed feature vector 𝑤 ∈ Rp, we propose model M(𝑤)

min
𝑥∈Rn,𝑦∈Rk

f (𝑥,𝑤,𝑦) (2.1)

s.t. 𝑔(𝑥,𝑤,𝑦)≤ 0, (2.2)

𝑦 = ℎ̂D(𝑥,𝑤), (2.3)

𝑥 ∈X (𝑤), (2.4)

where f (.,𝑤, .) : Rn+k 7→ R, 𝑔(.,𝑤, .) : Rn+k 7→ Rm, and ℎ̂D(.,𝑤) : Rn 7→ Rk. Explicit forms of f

and 𝑔 are known but they may still depend on the predicted outcome 𝑦. Here, ℎ̂D(𝑥,𝑤) represents

the predictive models, one per outcome of interest, which are ML models trained on D . Although

our subsequent discussion mainly revolves around linear functions, we acknowledge the significant

progress in nonlinear (convex) integer solvers. Our discussion can be easily extended to nonlinear

models that can be tackled by those ever-improving solvers.

We note that the embedding of a single learned outcome may require multiple constraints and

auxiliary variables; the embedding formulations are described in Section 2.2.2. For simplicity, we

omit D in further notation of ℎ̂ but note that all references to ℎ̂ implicitly depend on the data

used to train the model. Finally, the set X (𝑤) defines the trust region, i.e., the set of solutions for

which we trust the embedded predictive models. In Section 2.2.3, we provide a detailed description

of how the trust region X (𝑤) is obtained from the observed data. We refer to the final MIO

formulation with the embedded constraints and variables as EM(𝑤).

Model M(𝑤) is quite general and encompasses several important constraint learning classes:

1. Regression. When the trained model results from a regression problem, it can be constrained

by a specified upper bound τ , i.e., g(y) = y−τ ≤ 0, or lower bound τ , i.e., g(y) =−y+τ ≤ 0.

If 𝑦 is a vector (i.e., multi-output regression), we can likewise provide a threshold vector 𝜏

for the constraints.

2. Classification. If the trained model is obtained with a binary classification algorithm, in

which the data is labeled as “feasible" (1) or “infeasible" (0), then the prediction is generally

a probability y ∈ [0,1]. We can enforce a lower bound on the feasibility probability, i.e.,
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y ≥ τ . A natural choice of τ is 0.5, which can be interpreted as enforcing that the result is

more likely feasible than not. This can also extend to the multi-class setting, say k classes,

in which the output 𝑦 is a k-dimensional unit vector, and we apply the constraint yi ≥ τ for

whichever class i is desired. When multiple classes are considered to be feasible, we can add

binary variables to ensure that a solution is feasible, only if it falls in one of these classes

with sufficiently high probability.

3. Objective function. If the objective function has a term that is also learned by training an

ML model, then we can introduce an auxiliary variable t ∈ R, and add it to the objective

function along with an epigraph constraint. Suppose for simplicity that the model involves

a single learned objective function, ĥ, and no learned constraints. Then the general model

becomes

min
𝑥∈Rn,y∈R,t∈R

t

s.t. 𝑔(𝑥,𝑤)≤ 0,

y = ĥ(𝑥,𝑤),

y− t ≤ 0,

𝑥 ∈X (𝑤).

Although we have rewritten the problem to show the generality of our model, it is quite

common in practice to use y in the objective and omit the auxiliary variable t.

We observe that constraints on learned outcomes can be applied in two ways depending on the

model training approach. Suppose that we have a continuous scalar outcome y to learn and we

want to impose an upper bound of τ ∈R (it may also be a lower bound without loss of generality).

The first approach is called function learning and concerns all cases where we learn a regression

function ĥ(𝑥,𝑤) without considering the feasibility threshold (τ). The resultant model returns a

predicted value y ∈ R. The threshold is then applied as a constraint in the optimization model

as y ≤ τ . Alternatively, we could use the feasibility threshold τ to binarize the outcome of each

sample in D into feasible and infeasible, that is ȳi := I(ȳi ≤ τ), i = 1, . . . ,N, where I stands for

the indicator function. After this relabeling, we train a binary classification model ĥ(𝑥,𝑤) that
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returns a probability y ∈ [0,1]. This approach, called indicator function learning, does not require

any further use of the feasibility threshold τ in the optimization model, since the predictive models

directly encode feasibility.

The function learning approach is particularly useful when we are interested in varying the

threshold τ as a model parameter. Additionally, if the fitting process is expensive and therefore

difficult to perform multiple times, learning an indicator function for each potential τ might be

infeasible. In contrast, the indicator function learning approach is necessary when the raw data

contains binary labels rather than continuous outcomes, and thus we have no ability to select or

vary τ .

2.2.2 MIO-representable predictive models

Our framework is enabled by the ability to embed learned predictive models into an MIO formu-

lation with linear constraints. This is possible for many classes of ML models, ranging from linear

models to ensembles, and from support vector machines to neural networks. In this section, we

detail the embedding procedure. In all cases, the model has been pre-trained; we embed the trained

model ĥ(𝑥,𝑤) into our larger MIO formulation to allow us to constrain or optimize the resultant

predicted value. Consequently, the optimization model is not dependent on the complexity of the

model training procedure, but solely the size of the final trained model. Without loss of generality,

we assume that y is one-dimensional; i.e., we are learning a single model, and this model returns a

scalar, not a multi-output vector.

All of the methods below can be used to learn constraints that apply upper or lower bounds to

y, or to learn y that we incorporate as part of the objective. We present the model embedding proce-

dure for both cases when ĥ(𝑥,𝑤) is a continuous or a binary predictive model, where relevant. We

assume that either regression or classification models can be used to learn feasibility constraints,

as described in Section 2.2.1.

Linear Regression. Linear regression (LR) is a natural choice of predictive function given its

inherent linearity and ease of embedding. A regression model can be trained to predict the outcome

of interest, y, as a function of 𝑥 and 𝑤. The algorithm can optionally use regularization; the

embedding only requires the final coefficient vectors 𝛽x ∈Rn and 𝛽w ∈Rp (and intercept term β0)
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to describe the model. The model can then be embedded as

y = β0 +𝛽⊤x 𝑥+𝛽⊤x 𝑤.

Support Vector Machines. A support vector machine (SVM) uses a hyper-plane split to gen-

erate predictions, both for classification [51] and regression [58]. We consider the case of linear

SVMs, since this allows us to obtain the prediction as a linear function of the decision variables

𝑥. In linear support vector regression (SVR), which we use for function learning, we fit a linear

function to the data. The setting is similar to linear regression, but the loss function only penalizes

residuals greater than an ε threshold [58]. As with linear regression, the trained model returns a

linear function with coefficients 𝛽x, 𝛽w, and β0. The final prediction is

y = β0 +𝛽⊤x 𝑥+𝛽⊤w𝑤.

For the classification setting, linear support vector classification (SVC) identifies a hyper-plane

that best separates positive and negative samples [51]. A trained SVC model similarly returns

coefficients 𝛽x, 𝛽w, and β0, where a sample’s prediction is given by

y =

1, if β0 +𝛽⊤x 𝑥+𝛽⊤w𝑤 ≥ 0;

0, otherwise.

In SVC, the output variable y is binary rather than a probability. In this case, the constraint can be

embedded as y≥ 1.

Decision Trees. Decision trees partition observations into distinct leaves through a series of fea-

ture splits. These algorithms are popular in predictive tasks due to their natural interpretability and

ability to capture nonlinear interactions among variables. [40] first introduced Classification and

Regression Trees (CART), which constructs trees through parallel splits in the feature space. Deci-

sion tree algorithms have subsequently been adapted and extended. [23] propose an alternative de-

cision tree algorithm, Optimal Classification Trees (and Optimal Regression Trees), that improves
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Node 1
A⊤1 x≤ b1

Node 2
A⊤2 x≤ b2

Node 3
Prediction = p3

Node 4
Prediction = p4

True

Node 5
A⊤5 x≤ b5

Node 6
Prediction = p6

Node 7
Prediction = p7

False

Figure 2-2: A decision tree of depth 2 with four terminal nodes (leaves).

on the basic decision tree formulation through an optimization framework that approximates glob-

ally optimal trees. Optimal trees also support multi-feature splits, referred to as hyper-plane splits,

that allow for splits on a linear combination of features [34].

A generic decision tree of depth 2 is shown in Figure 2-2. A split at node i is described by an

inequality A⊤i 𝑥 ≤ bi. We assume that A can have multiple non-zero elements, in which we have

the hyper-plane split setting; if there is only one non-zero element, this creates a parallel (single

feature) split. Each terminal node j (i.e., leaf) yields a prediction (p j) for its observations. In the

case of regression, the prediction is the average value of the training observations in the leaf, and in

binary classification, the prediction is the proportion of leaf members with the feasible class. Each

leaf can be described as a polyhedron, namely a set of linear constraints that must be satisfied by

all leaf members. For example, for node 3, we define P3 =
{

x : A⊤1 x≤ b1,A⊤2 x≤ b2
}

.

Suppose that we wish to constrain the predicted value of this tree to be at most τ , a fixed

constant. After obtaining the tree in Figure 2-2, we can identify which paths satisfy the desired

bound (pi ≤ τ). Suppose that p3 and p6 do satisfy the bound, but p4 and p7 do not. In this

case, we can enforce that our solution belongs to P3 or P6. This same approach applies if

we only have access to two-class data (feasible vs. infeasible); we can directly train a binary

classification algorithm and enforce that the solution lies within one of the “feasible" prediction

leaves (determined by a set probability threshold).

If the decision tree provides our only learned constraint, we can decompose the problem into

multiple separate MIOs, one per feasible leaf. The conceptual model for the subproblem of leaf i
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then becomes

min
𝑥

f (𝑥,𝑤)

s.t. 𝑔(𝑥,𝑤)≤ 0,

(𝑥,𝑤) ∈Pi,

where the learned constraints for leaf i’s subproblem are implicitly represented by the polyhedron

Pi. These subproblems can be solved in parallel, and the minimum across all subproblems is

obtained as the optimal solution. Furthermore, if all decision variables 𝑥 are continuous, these

subproblems are linear optimization problems (LOs), which can provide substantial computational

gains. This is explored further in Appendix A.1.

In the more general setting where the decision tree forms one of many constraints, or we are

interested in varying the τ limit within the model, we can directly embed the model into a larger

MIO. We add binary variables representing each leaf, and set y to the predicted value of the as-

signed leaf. An observation can only be assigned to a leaf, if it obeys all of its constraints; the

structure of the tree guarantees that exactly one path will be fully satisfied, and thus, the leaf as-

signment is uniquely determined. A solution belonging to P3 will inherit y = p3. Then, y can be

used in a constraint or objective. The full formulation for the embedded decision tree is included

in Appendix A.1.

Ensemble Methods. Ensemble methods, such as random forests (RF) and gradient-boosting ma-

chines (GBM) consist of many decision trees that are aggregated to obtain a single prediction for a

given observation. These models can thus be implemented by embedding many “sub-models” [39].

Suppose we have a forest with P trees. Each tree can be embedded as a single decision tree (see

previous paragraph) with the constraints from Appendix A.1, which yields a predicted value yi.

RF models typically generate predictions by taking the average of the predictions from the

individual trees:

y =
1
P

P

∑
i=1

yi.

This can then be used as a term in the objective, or constrained by an upper bound as y≤ τ; this can
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be done equivalently for a lower bound. In the classification setting, the prediction averages the

probabilities returned by each model (yi ∈ [0,1]), which can likewise be constrained or optimized.

Alternatively, we can further leverage the fact that unlike the other model classes, which return

a single prediction, the RF model generates P predictions, one per tree. When constraining the

prediction, we can optionally impose a violation limit, enforcing that the constraint must hold for

most of the trees within the forest, but can be violated by a proportion α ∈ [0,1]. This allows for

a degree of robustness to individual model predictions by discarding a small number of potential

outlier predictions:
1
P

P

∑
i=1

I(yi ≤ τ)≥ 1−α.

Note that α = 0 enforces the bound for all trees within the forest, yielding the most conservative

estimate, whereas α = 1 removes the constraint entirely.

In the case of GBM, we have an ensemble of base-learners which are not necessarily decision

trees. The model output is then computed as

y =
P

∑
i=1

βiyi,

where yi is the predicted value of the i-th regression model ĥi(𝑥,𝑤), βi is the weight associated

with the prediction. Although trees are typically used as base-learners, in theory we might use any

of the MIO-representable predictive models discussed in this section.

Neural Networks. We implement multi-layer perceptrons (MLP) with a rectified linear unit

(ReLU) activation function, which form an MIO-representable class of neural networks [76, 8].

These networks consist of an input layer, L− 2 hidden layer(s), and an output layer. In a given

hidden layer l of the network, with nodes Nl , the value of a node i ∈ Nl , denoted as vl
i , is calcu-

lated using the weighted sum of the previous layer’s node values, followed by the ReLU activation

function, ReLU(x) = max{0,x}. The value is given as

vl
i = max

{
0,β l

i0 + ∑
j∈Nl−1

β
l
i jv

l−1
j

}
,
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where 𝛽l
i is the coefficient vector for node i in layer l. This nonlinear transformation of the in-

put space over multiple nodes (and layers) allows MLPs to capture complex functions that other

algorithms cannot adequately encode, making them a powerful class of models.

Critically, the ReLU operator, v = max{0,x}, can be encoded using linear constraints, as de-

tailed in Appendix A.1. The constraints for an MLP network can be generated recursively start-

ing from the input layer, with a set of ReLU constraints for each node in each internal layer,

l ∈ {2, . . . ,L−1}. This allows us to embed a trained MLP with an arbitrary number of hidden

layers and nodes into an MIO. In a regression setting, the output layer L consists of a single node

that is a linear combination of the node values in layer L−1, so it can be encoded directly as

y = vL = β
L
0 + ∑

j∈NL−1

β
L
j vL−1

j .

In the binary classification setting, the output layer requires one neuron with a sigmoid activa-

tion function, S(x) = 1
1+e−x . The value is given as

vL =
1

1+ e−(β
L
0 +𝛽L⊤𝑣L−1)

with vL ∈ (0,1). This function is nonlinear, and thus, cannot be directly embedded into our

formulation. However, if τ is our desired probability lower bound, it will be satisfied when

β L
0 +𝛽L⊤𝑣L−1 ≥ ln

(
τ

1−τ

)
. Therefore, the neural network’s output, binarized with a threshold

of τ , is given by

y =


1, if β

L
0 +𝛽L⊤𝑣L−1 ≥ ln

(
τ

1− τ

)
;

0, otherwise.

For example, at a threshold of τ = 0.5, the predicted value is 1 when β L
0 +𝛽L⊤𝑣L−1 ≥ 0. Here, τ

can be chosen according to the minimum necessary probability to predict 1. As for the SVC case,

y is binary and the constraint can be embedded as y≥ 1. We refer to Appendix A.1 for the case of

neural networks trained for multi-class classification.
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2.2.3 Convex hull as trust region

As the optimal solutions of optimization problems are often at the extremes of the feasible region,

this can be problematic for the validity of the trained ML model. Generally speaking the accuracy

of a predictive model deteriorates for points that are farther away from the data points in D [74].

To mitigate this problem, we use a so-called trust region that prevents the predictive model from

extrapolating. According to [62], when data is enclosed by a boundary of convex shape, the region

inside this boundary is known as an interpolation region. This interpolation region is also referred

to as the convex hull, and by excluding solutions outside the convex hull, we prevent extrapolation.

If Z = {𝑧i}N
i=1 is the set of observed input data with 𝑧i = (𝑥̄i,𝑤̄i), we define the trust region as the

convex hull of this set and denote it by CH(Z ). Recall that CH(Z ) is the smallest convex polytope

that contains the set of points Z . It is well-known that computing the convex hull is exponential

in time and space with respect to the number of samples and their dimensionality [147]. However,

since the convex hull is a polytope, explicit expressions for its facets are not necessary. More

precisely, CH(Z ) is represented as

CH(Z ) =
{
𝑧

∣∣∣∣ ∑
i∈I

λi𝑧i = 𝑧, ∑
i∈I

λi = 1, 𝜆≥ 0
}
, (2.5)

where 𝜆 ∈ RN , and I = {1, . . . ,N} is the index set of samples in Z .

In situations such as the one shown in Figure 2-3a, CH(Z ) includes regions with few or no data

points (low-density regions). Blindly using CH(Z ) in this case can be problematic if the solutions

are found in the low-density regions. We therefore advocate the use of a two-step approach. First,

clustering is used to identify distinct high-density regions, and then the trust region is represented

as the union of the convex hulls of the individual clusters (Figure 2-3b).

We can either solve EM(𝑤) for each cluster, or embed the union of the |K | convex hulls into the

MIO given by

⋃
k∈K

CH(Zk) =
{
𝑧

∣∣∣∣ ∑
i∈Ik

λi𝑧i = 𝑧, ∑
i∈Ik

λi = uk ∀k ∈K , ∑
k∈K

uk = 1, 𝜆≥ 0, 𝑢 ∈ {0,1}|K |
}
,

(2.6)

where Zk ⊆Z refers to subset of samples in cluster k ∈K with the index set Ik ⊆I . The union
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(a) CH(Z ) with single region. (b) CH(Z ) with clustered regions.

Figure 2-3: Use of the two-step approach to remove low-density regions.

of convex hulls requires the binary variables uk to constrain a feasible solution to be exactly in

one of the convex hulls. More precisely, uk = 1 corresponds to the convex hull of the k-th cluster.

As we show in Section 2.3, solving EM(𝑤) for each cluster may be done in parallel, which has a

positive impact on computation time. We note that both formulations (2.5) and (2.6) assume that 𝑧

is continuous. These formulations can be extended to datasets with binary, categorical and ordinal

features. In the case of categorical features, extra constraints on the domain and one-hot encoding

are required.

In addition to embedding the trust region for predictive models, this approach offers indepen-

dent value in one-class constraint learning, which is an often studied problem in the literature

[127, 129]. Here, data is composed of only feasible samples, so the predictive models discussed

in Section 2.2.2 (which require both feasible and infeasible samples) are no longer suitable. A

typical example occurs in real-world business processes like machine scheduling. Most of the

schedules created by the machine shop supervisor are feasible, even if they may not be optimal.

Thus, infeasible schedules are so infrequent that they may not be part of the dataset. We handle

this one-class constraint learning task by employing the two-step approach, where we first cluster

to identify separate high-density regions, and then use the union of convex hulls to represent the

trust region.

Although the convex hull can be represented by linear constraints, the number of variables in

EM(𝑤) increases with the increase in the dataset size, which may make the optimization process

prohibitive when the number of samples becomes too large. We therefore provide a column selec-
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Figure 2-4: Visualization of the column selection algorithm. Known and learned constraints define
the infeasible region. The column selection algorithm starts using only a subset of data points (red
filled circles), Z ′ ⊆Z to define the trust region. In each iteration a vertex of CH(Z ) is selected
(red hollow circle) and included in Z ′ until the optimal solution (star) is within the feasible region,
namely the convex hull of Z ′. Note that with column selection we do not need the complete dataset
to obtain the optimal solution, but rather only a subset.

tion algorithm that selects a small subset of the samples. This algorithm can be used for EM(𝑤)

when all variables are continuous. Figure 2-4 visually demonstrates the procedure; we begin with

an arbitrary sample of the full data, and use column selection to iteratively add samples 𝑧i until no

improvement can be found. In Appendix A.2, we provide a full description of the approach, as well

as a formal lemma which states that in each iteration of column selection, the selected sample from

Z is also a vertex of CH(Z ). In synthetic experiments, we observe that the algorithm scales well

with the dataset size. The computation time required by solving the optimization problem with the

algorithm is near-constant and minimally affected by the number of samples in the dataset. The

experiments in Appendix A.2 show optimization with column selection to be significantly faster

than a traditional approach, which makes it an ideal choice when dealing with massive datasets.

2.3 Case study: a palatable food basket for the World Food

Programme

In this case study, we use a simplified version of the model proposed by [132], which seeks to

optimize humanitarian food aid. Its extended version aims to provide the World Food Programme
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(WFP) with a decision-making tool for long-term recovery operations, which simultaneously opti-

mizes the food basket to be delivered, the sourcing plan, the delivery plan, and the transfer modality

of a month-long food supply. The model proposed by [132] enforces that the food baskets address

the nutrient gap and are palatable. To guarantee a certain level of palatability, the authors use a

number of “unwritten rules” that have been defined in collaboration with nutrition experts. In this

case study, we take a step further by inferring palatability constraints directly from data that re-

flects local people’s opinions. We use the specific case of Syria for this example. The conceptual

model presents an LO structure with only the food palatability constraint to be learned. Data on

palatability is generated through a simulator, but the procedure would remain unchanged if data

were collected in the field, for example through surveys. The structure of this problem, which is

an LO and involves only one learned constraint, allows the following analyses: (1) the effect of

the trust-region on the optimal solution, and (2) the effect of clustering on the computation time

and the optimal objective value. Additionally, the use of simulated data provides us with a ground

truth to use in evaluating the quality of the prescriptions.

2.3.1 Conceptual model

The optimization model is a combination of a capacitated, multi-commodity network flow model,

and a diet model with constraints for nutrition levels and food basket palatability.

The sets used to define the constraints and the objective function are displayed in Table 2.1.

We have three different sets of nodes, and the set of commodities contains all the foods available

for procurement during the food aid operation.

Sets

NS Set of source nodes
NT Set of transshipment nodes
ND Set of delivery nodes
K Set of commodities (k ∈K )
L Set of nutrients (l ∈L )

Table 2.1: Definition of the sets used in the WFP model.

The parameters used in the model are displayed in Table 2.2. The costs used in the objective

function concern transportation (pT ) and procurement (pP). The amount of food to deliver depends
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on the demand (d) and the number of feeding days (days). The nutritional requirements (nutreq)

and nutritional values (nutrval) are detailed in Appendix A.3. Here, the parameter γ is needed to

convert the metric tons used in the supply chain constraints to the grams used in the nutritional

constraints. The parameter t is used as a lower bound on the food basket palatability.

Parameters

γ Conversion rate from metric tons (mt) to grams (g)
di Number of beneficiaries at delivery point i ∈ND

days Number of feeding days
nutreql Nutritional requirement for nutrient l ∈L (grams/person/day)
nutvalkl Nutritional value for nutrient l ∈L per gram of commodity k ∈K
pP

ik Procurement cost (in $ / mt) of commodity k from source i ∈NS

pT
i jk Transportation cost (in $ / mt) of commodity k from node i ∈NS ∪NT to node j ∈NT ∪ND

t Palatability lower bound

Table 2.2: Definition of the parameters used in the WFP model.

The decision variables are shown in Table 2.3. The flow variables Fi jk are defined as the metric

tons of a commodity k transported from node i to j. The variable xk represents the average daily

ration per beneficiary for commodity k. The variable y refers to the palatability of the food basket.

Variables

Fi jk Metric tons of commodity k ∈K transported between node i and node j
xk Grams of commodity k ∈K in the food basket
y Food basket palatability

Table 2.3: Definition of the variables used in the WFP model.
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The full model formulation is as follows:

min
𝑥,y,𝐹

∑
i∈NS

∑
j∈NT ∪ND

∑
k∈K

pP
ikFi jk + ∑

i∈NS ∪NT

∑
j∈NT ∪ND

∑
k∈K

pT
i jkFi jk (2.7a)

s.t. ∑
j∈NT

Fi jk = ∑
j∈NT

Fjik, i ∈NT , k ∈K , (2.7b)

∑
j∈NS ∪NT

γFjik = dixkdays, i ∈ND , k ∈K , (2.7c)

∑
k∈K

Nutvalklxk ≥ Nutreql, l ∈L , (2.7d)

xsalt = 5, (2.7e)

xsugar = 20, (2.7f)

y≥ t, (2.7g)

y = ĥ(𝑥), (2.7h)

Fi jk,xk ≥ 0, i, j ∈N , k ∈K . (2.7i)

The objective function consists of two components, procurement costs and transportation costs.

Constraints (2.7b) are used to balance the network flow, namely to ensure that the inflow and the

outflow of a commodity are equal for each transhipment node. Constraints (2.7c) state that flow

into a delivery node has to be equal to its demand, which is defined by the number of beneficiaries

times the daily ration for commodity k times the feeding days. Constraints (2.7d) guarantee an

optimal solution that meets the nutrition requirements. Constraints (2.7e) and (2.7f) force the

amount of salt and sugar to be 5 grams and 20 grams respectively. Constraint (2.7g) requires

the food basket palatability (y), defined by means of a predictive model (2.7h), to be greater than

a threshold (t). Lastly, non-negativity constraints (2.7i) are added for all commodity flows and

commodity rations.

2.3.2 Dataset and predictive models

To evaluate the ability of our framework to learn and implement the palatability constraints, we

use a simulator to generate diets with varying palatabilities. Each sample is defined by 25 features

representing the amount (in grams) of all commodities that make up the food basket. We then
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use a ground truth function to assign each food basket a palatability between 0 and 1, where 1

corresponds to a perfectly palatable basket, and 0 to an inedible basket. This function is based

on suggestions provided by WFP experts. The data is then balanced to ensure that a wide variety

of palatability scores are represented in the dataset. The final data used to learn the palatability

constraint consists of 121,589 samples. Two examples of daily food baskets and their respective

palatability scores are shown in Table 2.4. In this case study, we use a palatability lower bound (t)

of 0.5 for our learned constraint.

The next step of the framework involves training and choosing the predictive model that best

approximates the unknown constraint. The predictive models used to learn the palatability con-

straints are those discussed in Section 2.2, namely LR, SVM, CART, RF, GBM with decision trees

as base-learners, and MLP with ReLU activation function.

Commodity Basket 1 Amount (g) Basket 2 Amount (g)

Dried skim milk 31.9 33.9
Chickpeas – 75.7
Lentils 41 –
Maize meal 48.9 –
Meat – 17.2
Oil 22 28.6
Salt 5 5
Sugar 20 20
Wheat 384.2 131.2
Wheat flour – 261.3
Wheat soya blend 67.3 59.8

Palatability Score 0.436 0.741

Table 2.4: Two examples of daily food baskets.

2.3.3 Optimization results

The experiments are executed using OptiCL jointly with Gurobi v9.1 [78] as the optimization

solver. Table 2.5 reports the performances of the predictive models evaluated both for the validation

set and for the prescriptions after being embedded into the optimization model.The table also

compares the performance of the optimization with and without the trust region. Runtimes are

reported using an Intel i7-8665U 1.9 GHz CPU, 16 GB RAM (Windows 10 environment).
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The column “Validation MSE" gives the Mean Squared Error (MSE) of each model obtained

in cross-validation during model selection. While all scores in this column are desirably low,

the MLP model significantly achieves the lowest error during this validation phase. The column

“MSE" gives the MSE of the predictive models once embedded into the optimization problem to

evaluate how well the predictions for the optimal solutions match their true palatabilities (computed

using the simulator). It is found using 100 optimal solutions of the optimization model generated

with different cost vectors. The MLP model exhibits the best performance (0.055) in this context,

showing its ability to model the palatability constraint better than all other methods.

Model Validation MSE MSE MSE-TR Time (SD) Time-TR (SD)

LR 0.046 0.256 0.042 0.003 (0.0008) 1.813 (0.204)
SVM 0.019 0.226 0.027 0.003 (0.0006) 1.786 (0.208)
CART 0.014 0.273 0.059 0.012 (0.0030) 7.495 (5.869)
RF 0.018 0.252 0.025 0.248 (0.1050) 30.128 (13.917)
GBM 0.006 0.250 0.017 0.513 (0.4562) 60.032 (41.685)
MLP 0.001 0.055 0.001 14.905 (41.764) 28.405 (23.339)

Table 2.5: Predictive models performances for the validation set (“Validation MSE"), and for the
prescriptions after being embedded into the optimization model with (“MSE-TR") and without the
trust region (“MSE"). The last two columns show the average computation time in seconds and its
standard deviation (SD) required to solve the optimization model with (“Time-TR") and without
the trust region (“Time").

Benefit of trust region. Table 2.5 shows that when the trust region is used (“MSE-TR"), the

MSEs obtained by all models are now much closer to the results from the validation phase. This

shows the benefit of using the trust region as discussed in Section 2.2.3 to prevent extrapolation.

With the trust region included, the MLP model also exhibits the lowest MSE (0.001). The improved

performance seen with the inclusion of the trust region does come at the expense of computation

speed. The column “Time-TR" shows the average computation time in seconds and its standard

deviation (SD) with trust region constraints included. In all cases, the computation time has clearly

increased when compared against the computation time required without the trust region (column

“Time"). This is however acceptable, as significantly more accurate results are obtained with the

trust region.
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Benefit of clustering. The large dataset used in this case study makes the use of the trust region

expensive in terms of time required to solve the final optimization model. While the column

selection algorithm described in Section 2.2.3 is ideal for significantly reducing the computation

time, optimization models that require binary variables, either for embedding an ML model or to

represent decision variables, cannot use the column selection algorithm. However, in this more

general MIO case, it is possible to divide the dataset into clusters and solve in parallel an MIO for

each cluster. By using parallelization, the total solution time can be expected to be equal to the

longest time required to solve any single cluster’s MIO. Contrary to column selection, the use of

clusters can result in sub-optimal solutions; the trust region gets smaller with more clusters and

prevents the model from finding solutions that are convex combinations of members of different

clusters. However, as described in Section 2.2.3, optimal solutions that lie between clusters may in

fact reside in low-density areas of the feature space that should not be included in the trust region.

In this sense, the loss in optimality might actually coincide with more trustable solutions.

Figure 2-5 shows the effect of clusters in solving the model (2.7a-2.7i) with GBM as the pre-

dictive model used to learn the palatability constraint. K-means is used to partition the dataset into

K clusters, and the reported values are averaged over 100 iterations. In the left graph, we report

the maximum runtime distribution across clusters needed to solve the different MIOs in parallel.

In the right graph, we have the distributions of optimality gap, i.e., the relative difference between

the optimal solution obtained with clusters compared to the solution obtained with no clustering.

In this case study, the use of clusters significantly decreases the runtime (89.2% speed up with

K = 50) while still obtaining near-optimal solutions (less then 0.25% average gap with K = 50).

We observe that the trends are not necessarily monotonic in K. It is possible that a certain choice

of K may lead to a suboptimal solution, whereas a larger value of K may preserve the optimal

solution as the convex combination of points within a single cluster.

2.4 Case study: chemotherapy regimen design

In this case study, we extend the work of Bertsimas et al. [28] in the design of chemotherapy reg-

imens for advanced gastric cancer. Late stage gastric cancer has a poor prognosis with limited

treatment options [174]. This has motivated significant research interest and clinical trials [124].
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Figure 2-5: Effect of the number of clusters (K) on the computation time and the optimality gap
across clusters, with bootstrapped 95% confidence intervals.

In Bertsimas et al. [28], the authors pose the question of algorithmically identifying promising

chemotherapy regimens for new clinical trials based on existing trial results. They construct a

database of clinical trial treatment arms which includes cohort and study characteristics, the pre-

scribed chemotherapy regimen, and various outcomes. Given a new study cohort and study char-

acteristics, they optimize a chemotherapy regimen to maximize the cohort’s survival subject to a

constraint on overall toxicity. The original work uses linear regression models to predict survival

and toxicity, and it constrains a single toxicity measure. In this work we leverage a richer class of

ML methods and more granular outcome measures. This offers benefits through higher performing

predictive models and more clinically-relevant constraints.

Chemotherapy regimens are particularly challenging to optimize, since they involve multiple

drugs given at potentially varying dosages, and they present risks for multiple adverse events that

must be managed. This example highlights the generalizability of our framework to complex

domains with multiple decisions and learned functions. The treatment variables in this problem

consist of both binary and continuous elements, which are easily incorporated through our use of

MIO. We have several learned constraints which must be simultaneously satisfied, and we also

learn the objective function directly as a predictive model.
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2.4.1 Conceptual model

The use of clinical trial data forces us to consider each cohort as an observation, rather than an in-

dividual, since only aggregate measures are available. Thus, our model optimizes a cohort’s treat-

ment. The contextual variables (𝑤) consist of various cohort and study summary variables. The

inclusion of fixed, i.e., non-optimization, features allows us to account for differences in baseline

health status and risk across study cohorts. These features are included in the predictive models

but then are fixed in the optimization model to reflect the group for whom we are generating a

prescription. We assume that there are no unobserved confounding variables in this prescriptive

setting.

The treatment variables (𝑥) encode a chemotherapy regimen. A regimen is defined by a set of

drugs, each with an administration schedule of potentially varied dosages throughout a chemother-

apy cycle. We characterize a regimen by drug indicators and each drug’s average daily dose and

maximum instantaneous dose in the cycle:

𝑥d
b = I(drug d is administered),

𝑥d
a = average daily dose of drug d,

𝑥d
i = maximum instantaneous dose of drug d.

This allows us to differentiate between low-intensity, high-frequency and high-intensity, low-

frequency dosing strategies. The outcomes of interest (𝑦) consist of overall survival, to be included

as the objective (yOS), and various toxicities, to be included as constraints (yi, i ∈ YC).

To determine the optimal chemotherapy regimen 𝑥 for a new study cohort with characteristics
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𝑤, we formulate the following MIO:

min
𝑥,𝑦

yOS

s.t.yi ≤ τi, i ∈ YC,

yi = ĥi(𝑥,𝑤), i ∈ YC,

yOS = ĥOS(𝑥,𝑤),

∑
d
𝑥d

b ≤ 3,

𝑥 ∈X (𝑤).

In this case study, we learn the full objective. However, this model could easily incorporate de-

terministic components to optimize as additional weighted terms in the objective. We include one

domain-driven constraint, enforcing a maximum regimen combination of three drugs.

The trust region, X (𝑤), plays two crucial roles in the formulation. First, it ensures that the

predictive models are applied within their valid bounds and not inappropriately extrapolated. It

also naturally enforces a notion of “clinically reasonable" treatments. It prevents drugs from being

prescribed at doses outside of previously observed bounds, and it requires that the drug combi-

nation must have been previously seen (although potentially in different doses). It is nontrivial

to explicitly characterize what constitutes a realistic treatment, and the convex hull provides a

data-driven solution that integrates directly into the model framework.

2.4.2 Dataset

Our data consists of 495 clinical trial arms from 1979-2012 [28]. We consider nine contextual

variables, including the average patient age and breakdown of primary cancer site. We include

several “dose-limiting toxicities" (DLTs) for our constraint set: Grade 3/4 constitutional toxicity,

gastrointestinal toxicity, and infection, as well as Grade 4 blood toxicity. As the name suggests,

these are chemotherapy side effects that are severe enough to affect the course of treatment. There

are 28 unique drugs that appear in multiple arms of the training set, yielding 84 decision variables.

We apply a temporal split, training the predictive models on trial arms through 2008 and gen-

erating prescriptions for the trial arms in 2009-2012. The final training set consists of 320 obser-
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vations, and the final testing set consists of 96 observations. The full feature set, inclusion criteria,

and data processing details are included in Appendix A.4.

To define the trust region, we take the convex hull of the treatment variables (𝑥) on the training

set. This aligns with the temporal split setting, in which we are generating prescriptions going

forward based on an existing set of past treatment decisions. In general it is preferable to define

the convex hull with respect to both 𝑥 and 𝑤 as discussed in Appendix A.2, but this does not apply

well with a temporal split. Our data includes the study year as a feature to incorporate temporal

effects, and so our test set observations will definitionally fall outside of the convex hull defined

by the observed (𝑥,𝑤) in our training set.

2.4.3 Predictive models

Several ML models are trained for each outcome of interest using cross-validation for parameter

tuning, and the best model is selected based on the validation criterion. We employ function

learning for all toxicities, directly predicting the toxicity incidence and applying an upper bound

threshold within the optimization model.

Based on the model selection procedure, overall DLT, gastrointestinal toxicity, and overall

survival are predicted using GBM models. Blood toxicity and infection are predicted using linear

models, and constitutional toxicity is predicted with a RF model. This demonstrates the advantage

of learning with multiple model classes; no single method dominates in predictive performance. A

complete comparison of the considered models is included in Appendix A.4.

2.4.4 Evaluation framework

We generate prescriptions using the optimization model outlined in Section 2.4.1, with the embed-

ded model choices specified in Section 2.4.3. In order to evaluate the quality of our prescriptions,

we must estimate the outcomes under various treatment alternatives. This evaluation task is notori-

ously challenging due to the lack of counterfactuals. In particular, we only know the true outcomes

for observed cohort-treatment pairs and do not have information on potential unobserved combina-

tions. We propose an evaluation scheme that leverages a “ground truth" ensemble (GT ensemble).

We train several ML models using all data from the study. These models are not embedded in an
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MIO model, so we are able to consider a broader set of methods in the ensemble. We then predict

each outcome by averaging across all models in the ensemble. This approach allows us to capture

the maximal knowledge scenario. Furthermore, such a “consensus" approach of combining ML

models has been shown to improve predictive performance and is more robust to individual model

error [21]. The full details of the ensemble models and their predictive performances are included

in Appendix A.4.

2.4.5 Optimization results

We evaluate our model in multiple ways. We first consider the performance of our prescrip-

tions against observed (given) treatments. We then explore the impact of learning multiple sub-

constraints rather than a single aggregate toxicity constraint. All optimization models have the

following shared parameters: toxicity upper bound of 0.6 quantile (as observed in training data)

and maximum violation of 25% for RF models. We report results for all test set observations with

a feasible solution.

Table 2.6 reports the predicted outcomes under two constraint approaches: (1) constraining

each toxicity separately (“All Constraints"), and (2) constraining a single aggregate toxicity mea-

sure (“DLT Only"). For each cohort in the test set, we generate predictions for all outcomes of

interest under both prescription schemes and compute the relative change of our prescribed out-

come from the given outcome predictions.

Benefit of prescriptive scheme. We begin by evaluating our proposed prescriptive scheme (“All

Constraints") against the observed actual treatments. For example, under the GT ensemble scheme,

84.7% of cohorts satisfied the overall DLT constraint under the given treatment, compared to 94.1%

under the proposed treatment. This yields an improvement of 11.10%. We obtain a significant

improvement in survival (11.40%) while also improving toxicity limit satisfaction across all in-

dividual toxicities. Using the GT ensemble, we see toxicity satisfaction improvements between

1.3%-25.0%.

Benefit of multiple constraints. Table 2.6 also illustrates the value of enforcing constraints on

each individual toxicity rather than as a single measure. When only constraining the aggregate
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All Constraints DLT Only

Given (SD) Prescribed (SD) % Change Prescribed (SD) % Change

Any DLT 0.847 (0.362) 0.941 (0.237) 11.10% 0.906 (0.294) 6.90%
Blood 0.812 (0.393) 0.824 (0.383) 1.40% 0.706 (0.458) -13.00%
Constitutional 0.953 (0.213) 1.000 (0.000) 4.90% 1.000 (0.000) 4.90%
Infection 0.882 (0.324) 0.894 (0.310) 1.30% 0.800 (0.402) -9.30%
Gastrointestinal 0.800 (0.402) 1.000 (0.000) 25.00% 1.000 (0.000) 25.00%

Overall Survival 10.855 (1.939) 12.092 (1.470) 11.40% 12.468 (1.430) 14.90%

Table 2.6: Comparison of outcomes under given treatment regimen, regimen prescribed when only
constraining the aggregate toxicity, and regimen prescribed under our full model.We report the
mean and standard deviation (SD) of constraint satisfaction (binary indicator) and overall survival
(months) across the test set. The relative change is reported against the given treatment.

toxicity measure (“DLT Only"), the resultant prescriptions actually have lower constraint satisfac-

tion for blood toxicity and infection than the baseline given regimens. By constraining multiple

measures, we are able to improve across all individual toxicities. The fully constrained model ac-

tually improves the overall DLT measure satisfaction, suggesting that the inclusion of these “sub-

constraints" also makes the aggregate constraint more robust. This improvement does come at the

expense of slightly lower survival between the “All" and “DLT Only" models (-0.38 months) but

we note that incurring the individual toxicities that are violated in the “DLT Only" model would

likely make the treatment unviable.

2.5 Discussion

Our experimental results illustrate the benefits of our constraint learning framework in data-driven

decision making in two problem settings: food basket recommendations for the World Food Pro-

gramme and chemotherapy regimens for advanced gastric cancer. The quantitative results show

the improvement in predictive performance when incorporating the trust region and learning from

multiple candidate model classes. We also see a benefit in incorporating multiple learned con-

straints over a single aggregate measure. Our framework scales to large problem sizes, enabled

by efficient formulations and tailored approaches to specific problem structures. Our approach for

efficiently learning the trust region also has broad applicability in one-class constraint learning.

We recognize several opportunities to further extend this framework. Our work naturally re-
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lates to the causal inference literature and individual treatment effect estimation [11, 146]. These

methods do not directly translate to our problem setting; existing work generally assumes highly

structured treatment alternatives (e.g., binary treatment vs. control) or a single continuous treat-

ment (e.g., dosing), whereas we allow more general decision structures. In future work, we are

interested in incorporating ideas from causal inference to relax the assumption of unobserved con-

founders.

Additionally, our framework is dependent on the quality of the underlying predictive models.

We constrain and optimize point predictions from our embedded models. This can be problem-

atic in the case of model misspecification, a known shortcoming of “predict-then-optimize" meth-

ods [63]. We mitigate this concern in two ways. First, our model selection procedure allows us

to obtain higher quality predictive models by capturing several possible functional relationships.

Second, our inclusion of the violation limit in constrained ensemble models allows us to directly

parametrize how conservative our predictions are and our robustness to the predictions of individ-

ual learners. This concept could be extended to a more general ensemble, in which we embed

multiple separate models for an outcome of interest and enforce the constraint over some subset of

these models. In future work, there is an opportunity to incorporate ideas from robust optimization

to directly account for prediction uncertainty in the constraints.

In this work, we present a unified framework for optimization with learned constraints that

leverages both ML and MIO for data-driven decision making. Our work flexibly learns problem

constraints and objectives with supervised learning, and incorporates them into a larger optimiza-

tion problem of interest. We also learn the trust region, providing more credible recommendations

and improving predictive performance, and accomplish this efficiently using column generation

and unsupervised learning. The generality of our method allows us to tackle quite complex deci-

sion settings, such as chemotherapy optimization, but also includes tailored approaches for more

efficiently solving specific problem types. Finally, we implement this as a Python software pack-

age (OptiCL) to enable practitioner use. We envision that OptiCL’s methodology will be added to

state-of-the-art optimization modeling software packages.
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Chapter 3

Interpretable clustering: an optimization

approach

Abstract
State-of-the-art clustering algorithms provide little insight into the rationale for cluster member-
ship, limiting their interpretability. In complex real-world applications, the latter poses a barrier to
machine learning adoption when experts are asked to provide detailed explanations of their algo-
rithms’ recommendations. We present a new unsupervised learning method that leverages Mixed
Integer Optimization techniques to generate interpretable tree-based clustering models. Utilizing a
flexible optimization-driven framework, our algorithm approximates the globally optimal solution
leading to high quality partitions of the feature space. We propose a novel method which can opti-
mize for various clustering internal validation metrics and naturally determines the optimal number
of clusters. It successfully addresses the challenge of mixed numerical and categorical data and
achieves comparable or superior performance to other clustering methods on both synthetic and
real-world datasets while offering significantly higher interpretability.

3.1 Introduction

Clustering is the unsupervised classification of patterns, observations, data items, or feature vec-

tors, into groups. The clustering problem has been addressed in many machine learning contexts

where there is no clear outcome of interest, such as data mining, document retrieval, image seg-

mentation, and pattern classification; this reflects its broad appeal and usefulness in exploratory

data analysis [84]. In many such problems, there is little prior information available about the

data, and the decision-maker must make as few assumptions about the data as possible. It is un-
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der these restrictions that clustering methodology is particularly appropriate for the exploration of

relationships between observations to make an assessment, perhaps preliminary, of their structure.

Unlike supervised classification, there are no class labels and thus no natural measure of ac-

curacy. Instead, the goal is to group objects into clusters based only on their observable features,

such that each cluster contains objects with similar properties and different clusters have distinct

features. There have been numerous approaches to generating these clusters. Partitional methods

such as K-means [114] provide a single partition of the data into a fixed number of clusters; these

methods have been improved by new initialization methods in recent decades [9]. Hierarchical

methods produce a nested series of partitions [149] based on a distance metric. Other more sophis-

ticated methods include model-based clustering [84] and density-based clustering [65] which are

better able to capture clusters of irregular shape or varied density.

The end product of a clustering algorithm is a partition of the dataset. In some cases, this

final cluster assignment is sufficient for the machine learning purpose, such as when one wants to

simply assess the separability of the data points into distinct clusters or use it as a preprocessing

step in certain prediction tasks. However, in many other decision-making applications, there is a

need to interpret the resulting clusters and characterize their distinctive features in a compact form

[70]. For example, consider a medical setting in which we seek to group similar patients together

to understand subgroups within a patient base. In this application, it is critical to understand how

the resulting clusters differ, whether by demographics, diagnoses, or other factors.

While the importance of cluster interpretability is well-understood, there has been limited

success in addressing the issue [57]. None of the clustering algorithms described above were

constructed with a goal of interpretability in the original feature space. They therefore require a

post-processing step to synthesize the cluster meanings. The notion of cluster representation was

introduced by Duran and Odell [61] and was subsequently studied by Diday and Simon [55] and

Stepp and Michalski [152]. The representation of a cluster of points by its centroid has been popu-

lar across various applications [135]. This works well when the clusters are compact or isotropic,

but fails when the clusters are elongated or non-isotropic [91]. These clusters can be better char-

acterized computing additional metrics, such as the variance in each dimension. However, this

increases the number of summary statistics used for each cluster and creates a high burden in inter-

pretation, especially when the number of features grows large. Another common approach is the
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visualization of clusters on a two-dimensional graph using Principle Component Analysis (PCA)

projections [93, 137]. However, in reducing the dimensionality of the feature space, PCA obscures

the relationship between the clusters and the original variables.

Tree-based supervised learning methods, such as CART, [40] are a natural fit for problems that

prioritize interpretability, since their feature splits and decision paths offer insight into the differ-

entiating features between members in each leaf. Most recursive partitioning algorithms generate

trees in a top-down, greedy manner, which means that each split is selected in isolation without

considering its effect on subsequent splits in the tree. Bertsimas and Dunn [23], Bertsimas, D. and

Dunn, J. [34] have proposed a new algorithm which leverages modern mixed-integer optimization

(MIO) techniques to form the entire decision tree in a single step, allowing each split to be deter-

mined with full knowledge of all other splits. The Optimal Classification Trees (OCT) algorithm

enables the construction of decision trees for classification and regression that have performance

comparable with state-of-the-art methods such as random forests and gradient boosted trees with-

out sacrificing the interpretability offered by a single tree.

A general hybrid approach can leverage such methods by first running a partitional or hierar-

chical clustering method and using the resulting assignments as class labels. The data can then be

fit using a classification tree, in which each leaf is given a cluster label based on the most common

assignment of observations in that leaf, and the decision paths leading to each cluster’s leaves give

insight into the differentiating features [91]. Hancock et al. [83] use decision trees to interpret and

refine hierarchical clustering results for global sea surface temperatures. While these trees give an

explicit delineation of cluster attributes, the methods involve a two-step process of first building

the clusters and subsequently identifying their differentiating features. Thus, the main clustering

mechanism utilizes a different architecture compared to the decision tree which might be hard to

capture with univariate feature splits.

Several algorithms have been proposed to build interpretable clusters, where interpretability is

a consideration during cluster creation rather than considered as a later analysis step. Chavent

et al. [44] presented a method that constructs binary clustering trees characterized by a novel

transformation of the feature space. Further efforts focused on alternative measures for feature

selection in the transformation function as well as new algorithmic implementation schemes [16].

In both of these cases, the feature space transformation involved in these methods takes a toll
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on interpretability. Other researchers have proposed methods to construct decision trees in the

original feature space, which more closely matches our objective. Liu et al. [108] introduced the

idea of translating a clustering problem to a supervised problem that is amenable to decision tree

construction. A modified purity criterion is used to evaluate splits in a way that identifies dense

regions as well as sparse regions. However, this method requires additional pre-processing through

the introduction of synthetic data in order to create a binary classification setting. Blockeel et al.

[37] also proposed a general top-down tree induction framework with applicability to clustering

(“Predictive Clustering Trees”) as well as other supervised learning tasks. Fraiman et al. [72]

developed another clustering algorithm, “Clustering using unsupervised binary trees” (CUBT),

which forms greedy splits to optimize a cluster heterogeneity measure. Though these algorithms

make progress towards the goal of constructing clusters directly using trees, they both employ a

greedy splitting approach and do not offer flexibility in the choice of cluster validation criterion.

The need for accurate and interpretable machine learning methods is undoubtedly present, be-

ing voiced even from regulatory organizations such as the European Union [75]. Even though

tree-based methods have been introduced, no existing interpretable unsupervised learning algo-

rithm can accurately partition the feature space both for numerical and categorical data.

3.1.1 Contributions

Motivated by the limitations of existing solutions to interpretable clustering, we develop a novel

tree-based unsupervised learning method that leverages traditional optimization and machine learn-

ing techniques to obtain interpretable clusters with comparable or superior performance when com-

pared to existing algorithms. Our contributions are as follows:

1. We provide an MIO formulation of the unsupervised learning problem that leads to the cre-

ation of globally optimal clustering trees, motivating our new algorithm Interpretable Clus-

tering via Optimal Trees (ICOT). Our method builds upon the OCT algorithm and extends

it to the unsupervised setting. In ICOT, interpretability is taken into consideration during

cluster creation rather than considered as a later analysis step.

2. We provide an implementation of our method with an iterative coordinate-descent approach

that scales to larger problems, well-approximating the globally optimal solution. We use
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widely two established validation criteria, the Silhouette Metric [141] and the Dunn Index

[59], as the algorithm’s objective function. We propose additional techniques that leverage

the geometric principles of cluster creation to improve the algorithm’s efficiency. Further-

more, we introduce sampling heuristics that recover fast, high-quality solutions in our em-

pirical experiments and provide a complexity analysis of the local search procedure for one

iteration of the algorithm.

3. We develop our algorithm in a way such that tuning of the tree’s complexity is redundant.

This is enabled by the fact that our loss functions take into account both intra-cluster density

as well as inter-cluster separation. The user can optionally tune the algorithm by selecting

the maximum depth of the tree and the minimum number of observations in each cluster.

4. We propose a solution to the incorporation of both mixed numerical and categorical data. Our

re-weighted distance measure prevents a single variable type from dominating the distance

calculation and allows users to optionally tune the balance the two types of covariates.

5. We evaluate the performance of our method against various clustering approaches across

synthetic datasets from the Fundamental Clustering Problems Suite (FCPS) [159] which

offer different levels of variance and compactness. We demonstrate ICOT’s superior perfor-

mance against a two-step supervised learning method across both the Silhouette Metric and

Dunn Index, offering a 27.8% and 352.7% score improvement respectively. We also compare

ICOT against several state-of-the-art methods that represent various clustering approaches,

namely partitional, hierarchical, model-based, and density-based clustering. We find that

ICOT is competitive against these methods across multiple internal validation criteria.

6. We provide examples of how the algorithm can be used in real-world settings. We perform

clustering on patients at risk of cardiovascular disease from the Framingham Heart Study

(FHS) dataset [54, 69] to identify similar patient profiles and group economic profiles of

European countries during the Cold War [99]. Through these experiments, we illustrate the

effect of varying key parameters in the ICOT algorithm. We also compare ICOT to other

state-of-the-art algorithms in the FHS experiment and to CUBT in the economic profile

experiment. We discuss the interpretability of the methods as well as their performance on
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the internal validation criteria.

7. Finally, we test the capability of the algorithm to scale to large problem instances using

both the FCPS as well as real-world data from a Boston-based bike sharing program. We

demonstrate that our suggested heuristic techniques do not significantly impact the quality

of the recovered solutions. In addition, our experiments illustrate that ICOT can efficiently

handle datasets of sizes up to hundreds of thousands of observations.

The structure of the paper is as follows. In Section 3.2, we formulate the problem of optimal

tree creation within an MIO framework. Section 3.3 provides a comprehensive description of

the algorithm implementation. In Sections 3.4 and 3.5, we conduct a range of experiments using

synthetic and real-world datasets to evaluate the performance and interpretability of our method

compared to other state-of-the-art algorithms. In Section 3.6, we investigate the effect of our

scaling methods on runtime and solution quality. In Section 3.7, we discuss the key findings from

our work and in Section 3.8 we include our concluding remarks.

3.2 MIO formulation

In this section, we present an MIO approach which allows us to construct globally optimal tree-

based models in an unsupervised learning setting. In Section 3.2.1, we provide an overview of the

MIO framework introduced by Bertsimas and Dunn [23], Bertsimas, D. and Dunn, J. [34]. Sec-

tion 3.2.2 introduces the validation criteria that are used as objective functions in the optimization

problem. In Section 3.2.3, we outline the complete ICOT formulation for one of the loss functions

considered.

3.2.1 The OCT framework

The OCT algorithm formulates tree construction using MIO which allows us to define a single

problem, as opposed to the traditional recursive, top-down methods that must consider each of the

tree decisions in isolation. It allows us to consider the full impact of the decisions being made at

the top of the tree, rather than simply making a series of locally optimal decisions, avoiding the

need for pruning and impurity measures.
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We are given the training data (X,Y), containing n observations (xi,yi), i = 1, . . . ,n, each with

p features and a class label yi ∈ {1, . . . ,K} as an indicator of which of the K potential labels is

assigned to point i. We assume without loss of generality that the values of each training vector are

normalized such that xi ∈ [0,1]p. A decision tree recursively partitions the feature space to identify

a set of distinct, hierarchical regions that form a classification tree. The final tree T is comprised

of nodes that can be categorized in:

• Branch Nodes: Nodes t ∈TB apply a split with parameters a and b. For observation i, if the

corresponding vector xi satisfies the relation aT xi < b, the point will follow the left branch

from the node. Otherwise it takes the right branch.

• Leaf Nodes: Nodes t ∈TL assign a class to all the points that fall into them. Each leaf node

is characterized by one class which is generally determined by the most frequently occurring

class among the observations that belong to it.

First, we formally define the constraints that construct the decision tree. We use the notation p(t)

to refer to the parent node of node t, and A(t) to denote the set of ancestors of node t. We define

the split applied at node t ∈ TB with variables at ∈ Rp and bt ∈ R. The vector at indicates which

variable is chosen for the split, meaning that a jt = 1 for the variable j used at node t. bt gives the

threshold for the split, which is between [0,1] after normalization of the feature vector. If a branch

node does not apply a split, then we model this by setting at = 0 and bt = 0. Together, these form

the constraint aT
t x < bt . The indicator variables dt are set to 1 for branch nodes and 0 for leaf

nodes. Using the above variables, we introduce the following constraints that allows us to model

the tree structure (for a detailed analysis of the constraints, see Bertsimas and Dunn [23]):

p

∑
j=1

a jt = dt , ∀t ∈TB, (3.1)

0≤ bt ≤ dt , ∀t ∈TB, (3.2)

a jt ∈ {0,1}, j = 1, . . . , p, ∀t ∈TB (3.3)

We next enforce the hierarchical structure of the tree. Branch nodes are allowed to apply a split
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only if their parent nodes apply a split:

dt ≤ dp(t), ∀t ∈TB\{1} (3.4)

Next we present the corresponding constraints that track the allocation of points to leaves. For this

purpose, we introduce the indicator variables zit = 1{xi is in node t} and lt = 1{leaf t contains any

points}. We let Nmin be a constant that defines the minimum number of observations required in

each leaf. We apply the following constraints:

zit ≤ lt , ∀t ∈TL , (3.5)
n

∑
i=1

zit ≥ Nminlt , ∀t ∈TL (3.6)

We also enforce each point to belong to exactly one leaf:

∑
t∈TL

zit = 1, i = 1, . . . ,n (3.7)

Finally, we introduce constraints that force the assignments of observations to leaves to obey the

structure of the tree given by the branch nodes. We want to apply a strict inequality for points

going to the lower leaf. To accomplish this, we define the vector ε ∈ Rp as the smallest separation

between two observations in each dimension p, and εmax as the maximum over this vector.

a⊺mxi ≥ bt− (1− zit), i = 1, . . . ,n, ∀t ∈TB, ∀m ∈ AR(t) (3.8)

a⊺m(xi + ε)≤ bt +(1+ εmax)(1− zit), i = 1, . . . ,n, ∀t ∈TB, ∀m ∈ AL(t) (3.9)

In the classification setting the objective function of MIP formulation is comprised of two com-

ponents, prediction accuracy and tree complexity. The tradeoff between those two parameters is

controlled by the complexity parameter α . Given the training data (xi,yi), i = 1 . . .n, a general

formulation of the objective function is the following:
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minimize
T

Rxy(T )+α|T |

where Rxy(t) is a loss function assessed on training data and |T | is the number of branch nodes in

the tree T .

The above model can be used as an input for an MIO solver. Empirical results suggest that

such a model leads to optimal solutions in minutes when the maximum depth of the tree is small

(approximately 4). Effectively, the rate of finding solutions is directly dependent to the number of

binary variables zit and therefore a faster implementation was needed for more complex problems.

For this reason, the authors introduced the idea of warm starts as the initial starting point of the

method. Using a high-quality integer feasible solution as a warm start increases the speed of the

algorithm and provides a strong initial upper bound on the final solution. In addition, heuristics,

like local search, allow a further speed up as shown in Bertsimas and Dunn [23], Bertsimas, D. and

Dunn, J. [34] that leads to a good approximation of the optimal solution.

3.2.2 Loss functions for cluster quality

Clustering validation, the evaluation of the quality of a clustering partition [118], has long been

recognized as one of the vital issues essential to the success of a clustering application [109].

External clustering validation and internal clustering validation are the two main categories of

clustering quality metrics. The main difference lies in whether or not external labels are used to

assess the clusters; internal measures evaluate the goodness of a clustering structure without respect

to ground-truth labels [102]. An example of external validation measure is entropy, which evaluates

the “purity” of clusters based on the given class labels [171]. True class labels are not present in

real-world datasets, and thus these cases necessitate the use of internal validation measures for

cluster validation.

We will consider two internal validation measures as loss functions for our MIO formulation of

our problem. The chosen loss functions consider the global assignment of observations to clusters.

The score of a clustering assignment depends on both the compactness of the observations within a

single cluster, as well as its separation from observations in other clusters. Compactness measures

how closely related the objects in a cluster are. Separation measures how distinct a cluster is
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from other clusters. Several internal validation metrics have been proposed to balance these two

objectives [109]. Two common criteria, the Silhouette Metric and Dunn Index, are outlined below.

Silhouette Metric The Silhouette Metric introduced by Rousseeuw [141] compares the distance

from an observation to other observations in its cluster relative to the distance from the observation

to other observations in the second closest cluster. The Silhouette Metric for observation i is

computed as follows:

s(i) =
b(i)−a(i)

max(b(i),a(i))
, (3.10)

where a(i) is the average distance from observation i to the other points in its cluster, and b(i) is

the average distance from observation i to the points in the second closest cluster. In other words,

b(i) = mink b(i,k) where b(i,k) is the average distance of i to points in cluster k, minimized over

all clusters k other than the cluster that point i is assigned to. From this formula it follows that

−1≤ s(i)≤ 1.

When s(i) is close to 1, one may infer that the ith sample has been “well-clustered”, i.e. it was

assigned to an appropriate cluster. If observation i has score close to 0, it suggests that it could also

be assigned to the nearest neighboring cluster with similar quality. If s(i) is close to -1, one may

argue that such a sample has been assigned to the wrong partition. These individual scores can be

averaged to reflect the quality of the global assignment.

SM =
1
n

n

∑
i=1

s(i), (3.11)

Dunn Index The Dunn Index [59] characterizes compactness as the maximum distance between

observations in the same cluster, and separation as the minimum distance between two observations

in different clusters. The metric is computed as the ratio of the minimum inter-cluster separation

to the maximum intra-cluster distance.

DI =
min

1≤i< j≤m
δ (Ci,C j)

max
1≤k≤m

∆k
, (3.12)
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where we let the maximum distance of cluster C be denoted by ∆C and the distance between clusters

i and j be denoted by δ (Ci,C j). If the dataset contains compact and well-separated clusters, the

distance between the clusters is expected to be large and the diameter of the clusters is expected

to be small. Thus, large values of the metric correspond to better partitions and signify that the

distance between clusters is large relative to the distance between points within a cluster.

We provide an example to illustrate how an internal validation criterion can be used to geo-

metrically partition the space through a decision tree. In Figure 3-1, we cluster observations from

the Ruspini dataset [143] using the Silhouette Metric. In Figure 3-1a, the algorithm identifies the

best candidate splits on both features, x1 and x2, at the root node, and then compares their resultant

cluster scores, as measured by the Silhouette Metric. The x2 split provides a better cluster assign-

ment, so this split is chosen as denoted by the solid line. After the first data partition, splits are

considered for each of the child nodes, which corresponds to further separating the lower and upper

halves of the graph. Upon identification of candidate x1 and x2 splits on the left child node, the x1

split is chosen based on the Silhouette Metric of the global cluster assignment, as shown in Figure

3-1b. The process is then completed for the right child node, and an x1 split is also chosen here in

Figure 3-1c. Now, each of the four leaves is evaluated, which corresponds to exploring splits in the

four quadrants defined by the solid blue lines. There are no splits within any of these four leaves

that improve the overall score of the clustering assignment, so the tree construction is complete.

The final tree is shown in Figure 3-1d. The resultant tree provides a final partition which clearly

elucidates the distinguishing features of each group. We note that this example demonstrates a

greedy tree construction. In the ICOT algorithm, all splits would be subsequently reoptimized with

respect to the overall tree. However, in this case the greedy tree is able to provide the optimal

partition.

Note that both of our considered criteria require the definition of at least two clusters since they

both involve a pairwise distance computation between clusters to measure separation. As a result,

calculations for the null-case are not considered. The determination of the best internal validation

criterion for a given dataset remains an open question in the field of unsupervised learning theory

[109]. As stated in [82], the Dunn Index is more computationally expensive and more sensitive

to noisy data compared to the Silhouette Metric. It is also less robust to outliers compared to the
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(a) Root Node (b) Left Child Node (c) Right Child Node

(d) Final Tree

Figure 3-1: An example of a clustering tree built on the Ruspini dataset.

Silhouette Metric which averages an observation-based score for the global assignment. How-

ever, empirical results suggest that the Dunn Index has superior performance in returning intuitive

partitions of the data when they are well-separated.

3.2.3 The ICOT formulation

The OCT framework needs to be modified to address an unsupervised learning task. We present

changes in the original MIO formulation of OCT to be able to partition the data space into distinct

clusters following the same structure and notation as in Section 3.2.1. We outline in detail the

model for the Silhouette Metric loss function. The Dunn Index formulation follows closely and is

thus omitted. There are two primary modifications in the ICOT formulation compared to the OCT:

1. The objective function is comprised solely by the chosen cluster quality criterion, such as the

Silhouette Metric, and does not include any penalty for the tree complexity. The separation

component of the validation criterion naturally controls the complexity of the tree and thus

for the ICOT formulation the complexity parameter is rendered redundant.
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2. Each leaf of the tree is equivalent to a cluster. Observations in different leaves are not allowed

to belong to the same cluster.

The objective of the new formulation is to maximize the Silhouette Metric (SM) of the overall

partition. The Silhouette Metric quantifies the difference in separation between a point and points

in its cluster, versus the separation between that point and points in the second closest cluster.

Let di j be the distance (i.e. Euclidean) of observation i from observation j. We define Kt to be

number of points assigned assigned to cluster t.

Kt =
n

∑
i=1

zit , ∀t ∈TL (3.13)

We define cit to be the average distance of observation i from cluster t:

cit =
1
Kt

n

∑
j=1

di jz jt , ∀i = 1, . . . ,n, t ∈TL . (3.14)

We define ri to be the average distance of observation i from all the points assigned in the same

cluster:

ri = ∑
t∈TL

citzit , ∀i = 1, . . . ,n. (3.15)

We then let qi denote the minimum average distance of observation i to the observations from the

next closest cluster. We define auxiliary variables γit to enforce this constraint, such that γit an

indicator of whether t is the second closest cluster for observation i.

qi ≥ ∑
t∈TL

γitcit , i = 1, . . . ,n. (3.16)

∑
t∈TL

γit = 1, i = 1, . . . ,n. (3.17)

γit ≤M(1− zit), i = 1, . . . ,n, ∀t ∈TL . (3.18)

Finally, to define the Silhouette Metric of observation i, we will need the maximum value between

ri and qi which normalizes the metric.

mi ≥ ri, i = 1, . . . ,n. (3.19)
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mi ≥ qi, i = 1, . . . ,n. (3.20)

The score for the Silhouette Metric for each observation is computed as s(i) and the overall score

for the clustering assignment is then the average overall all the Silhouette Metric scores from the

training population:

si =
qi− ri

mi
, i = 1, . . . ,n. (3.21)

SM =
1
n

n

∑
i=1

si. (3.22)

Putting all of this together gives the following MIO formulation for the ICOT model:
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minimize
x

− 1
n

n

∑
i=1

si

subject to si =
qi− ri

mi
, i = 1, . . . ,n,

mi ≥ qi, i = 1, . . . ,n,

mi ≥ ri, i = 1, . . . ,n,

qi ≥ ∑
t∈TL

γitcit , i = 1, . . . ,n,

∑
t∈TL

γit = 1, i = 1, . . . ,n,

γit ≤M(1− zit), i = 1, . . . ,n, ∀t ∈TL ,

ri = ∑
∀t∈TL

citzit , i = 1, . . . ,n,

cit =
1
Kt

n

∑
j=1

di jz jt , i = 1, . . . ,n,∀t ∈TL ,

Kt =
n

∑
i=1

zit ∀t ∈TL ,

p

∑
j=1

a jt = dt , ∀t ∈TB,

0≤ bt ≤ dt , ∀t ∈TB,

dt ≤ dp(t), ∀t ∈TB\{1},

zit ≤ lt , ∀t ∈TL ,

n

∑
i=1

zit ≥ Nminlt , ∀t ∈TL ,

∑
t∈TL

zit = 1, i = 1, . . . ,n,

a⊺mxi ≥ bt− (1− zit), i = 1, . . . ,n, ∀t ∈TB, m ∈ AR(t),

a⊺m(xi + ε)≤ bt +(1+ εmax)(1− zit), i = 1, . . . ,n, ∀t ∈TB, ;m ∈ AL(t),

a jt ,dt ∈ {0,1}, j = 1, . . . , p, ∀t ∈TB,

zit , lt ∈ {0,1}, i = 1, . . . , p, ∀t ∈TL ,

γit ∈ {0,1}, i = 1, . . . ,n, ∀t ∈TL .
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Figure 3-2 illustrates the benefit of an optimization framework over greedy tree construction.

The synthetic dataset seen in the figure has two dense lower regions and one less dense upper

region. In a greedy approach, the first split separates the lower clusters and cuts through the upper

cluster. While it is clearly better to split horizontally first (since it does not split a region), a greedy

algorithm chooses the split without consideration of the possibility of future splits. Therefore, if

the tree can only make one split, it is better to separate the lower clusters since they have such high

density. ICOT’s optimization approach considers the global tree structure, avoiding such pitfalls

and identifying the true optimal partition. It starts by making a horizontal split and subsequently

separates the high-density lower regions without cutting through the upper cluster. A globally

optimal partition has Silhouette Metric score equal to 0.758 whereas the greedy tree yields only

0.688.

(a) Greedy Tree Approach (b) ICOT Approach

Figure 3-2: An illustration in a synthetic example of a local optimum that might be identified by a
greedy unsupervised learning algorithm.

3.3 Algorithm overview

In this section, we outline the practical details of the algorithm implementation. Section 3.3.1

describes ICOT’s coordinate-descent algorithm that approximates the globally optimal solution in

an efficient and intuitive manner. Section 3.3.2 addresses the challenge of computing distance

scores in the presence of mixed numerical and categorical variables and introduces a solution for

appropriately handling distance in this setting. Finally, in Section 3.3.3 we propose heuristics in
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our algorithm implementation which leverage the underlying structure of the data to more quickly

traverse the search space and identify high-quality solutions.

3.3.1 Coordinate-descent implementation

The MIO formulation provides the optimization framework for our problem solving approach. In

practice, the algorithm is implemented using a coordinate-descent procedure which allows it to

scale to much higher dimensions than directly solving the optimization problem. The implemen-

tation provides a good approximation of the optimal solution while still abiding by the same core

principles of the original formulation.

ICOT initializes a greedy tree and subsequently runs a local search procedure until the objective

value, a cluster quality measure, converges. This process is repeated from many different starting

greedy trees, generating many candidate clustering trees. The final tree is chosen as the one with

the highest cluster quality score across all candidate trees. This single tree is returned as the output

of the algorithm.

The initial greedy tree is constructed from a single root node. A split is made on a randomly

chosen feature by scanning over all potential thresholds for splitting observations into the lower and

upper leaves. At each candidate split, we compute the global score for the potential assignment.

We choose the split threshold that gives the highest score and update the node to add the split if

this score improves upon the global score of the current assignment. We perform the same search

for each leaf that gets added to the tree, continuing until either the maximum tree depth is reached

or no further improvement in our objective value is achieved through further splitting on a leaf.

Following the creation of the greedy tree, a local search procedure is performed to optimize the

clustering assignment. Tree nodes are visited in a randomly chosen order, and various modifica-

tions are considered. A branch node has two options; it can be deleted, in which case it is replaced

with either its lower or upper subtree, or a new split can be made at the node using a different

feature and threshold. A leaf node can be further split into two leaves. At each considered node,

the algorithm finds the best possible change and updates the tree structure only if it improves the

objective from its current value. All nodes get added back to the list of nodes to search once an

improvement has been found. The algorithm terminates when the objective value converges. The
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algorithm is explained further in Algorithm 1.

Algorithm 1 ICOT Algorithm.
Input: Feature vectors x1, . . . ,xn

Output: Cluster assignments y1, . . . ,yn

1: Initialize a greedy tree, with clusters c1, . . . ,cK and loss l0.
2: Indices to search: S = {1, . . . ,K}; Loss: l = l0.
3: while S not empty do
4: for all k ∈ S do
5: if Ck is leaf node then
6: Find best possible new split with loss l̂.
7: else
8: Find best possible node modification, either through a different split or split dele-

tion, with loss l̂.
9: end if

10: if l̂ < l then
11: Update tree and add all leaves to S. l← l̂.
12: else
13: Remove k from S.
14: end if
15: end for
16: end while

The user can specify to optimize either the Silhouette Metric or Dunn Index described in Sec-

tion 3.2.2. These metrics penalize low separation, which naturally limits the depth of the tree.

In traditional tree-based algorithms such as CART or OCT, the loss function improves with suc-

cessive tree splits. Thus, these methods require a pruning step or additional parameter, such as a

complexity penalty of maximum depth, to control the tree size. ICOT does not require the explicit

control of tree size due to this natural balance between separation and compactness in the cluster

quality metrics. This eliminates the need for setting an explicit K parameter, which is typically

required in both partitional and hierarchical clustering methods. The tree continues to split until

further splits no longer improve the quality of the overall assignment, and so the final number of

leaves represents the optimal number of clusters.

The user can enforce further structure on the tree through setting the optional minimum bucket

parameter, NC. This controls the minimum number of observations that are required in each leaf

and effectively in each cluster. Note that there is not a monotonic relationship between the mag-

nitude of NC and the number of leaves (clusters) generated by the algorithm. Smaller minimum
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buckets may lead to smaller cluster counts due to the positive effect of isolated outlier clusters on

the metrics; overfitting is difficult to quantify in an unsupervised learning setting because there is

no ground truth to compare against, and thus the metrics do not naturally penalize single outliers.

Thoughtful choice of the minimum bucket parameter allows ICOT to avoid creating clusters of

single or small sets of outliers, which often lack meaning and generalizability in grouping tasks.

Traditional methods, such as K-means, deal with outliers by increasing the K parameter and forc-

ing the algorithm to provide with a higher number of clusters. NC can significantly affect the

clustering solution and should be cross-validated or experimented on in order to get accurate and

intuitive results from ICOT. The maximum depth can be used to impose an upper bound on the

number of clusters if desired, although this parameter does not address potential outlier issues.

The ICOT algorithm is implemented in Julia [35] and is available to academic researchers

under a free academic license.1

3.3.2 Mixed-variable handling

Both the Silhouette Metric and Dunn Index assess the quality of a given cluster assignment using

the pairwise distance matrix of the observations. Distance is quantified differently for numerical

and categorical variables and thus must be adjusted appropriately in the presence of mixed variable

types. In the case of continuous features, the data are first normalized to be in the [0,1] range. The

pairwise numerical distance matrix dN is computed using the Euclidean distance between each pair

of normalized variables. In the case of categorical features, distance is defined based on whether

the observations take on different values. For example, if one observation takes on category A and

another observation takes on category B on a given feature, the distance on this feature will be 1.

The distance is zero if the observations take on the same value. For each pair of observations, these

indicators are summed over all categories to define the categorical feature distance matrix dC.

When the feature space includes both numerical and categorical variables, special consideration

must be given to avoid over-weighting the categorical variables. In particular, categorical variables

are often one-hot encoded (i.e. converted to binary 0/1 columns) to allow them to be treated as

numerical in machine learning methods. This adjustment is insufficient in our case as it will result

in placing too high of an importance on the categorical distance.
1Please email icot@mit.edu to request an academic license for the ICOT package.
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We handle this issue by taking a linear combination of the two separate distance matrices for

numerical and categorical variables. We first compute separate distance matrices for the numerical

and categorical features. We let SN denote the set of indices for the numerical features, and SC

denote the categorical indices. The computations for dN and dC are explicitly defined in Equa-

tions 3.23 and 3.24.

dN
i j =

√
∑

k∈SN

(xi
k− x j

k)
2 (3.23)

dC
i j = ∑

k∈SC

1{xi
k ̸= x j

k} (3.24)

We then compute the final distance matrix by taking a linear combination of these two matrices,

given in Equation 3.25.

di j = αdN
i j +(1−α)dC

i j (3.25)

By default, the two distances are weighted according to their proportion of all covariates, so

α =
|SN|
|SN|+|SC| . The user can also specify an alternative α parameter. At α = 1, the distance matrix

only accounts for numerical covariates, whereas α = 0 only considers disagreements in categorical

variables.

3.3.3 Scaling methods

Our coordinate-descent procedure is more computationally intensive than the original OCT algo-

rithm due to unique characteristics of clustering. In particular, we must compute a global clustering

quality score at each split threshold evaluation, unlike classification tasks in which the loss change

for a potential split can be assessed locally at the node. This global score assessment involves

higher computational effort per split evaluation and thus motivates the development of more ef-

ficient search procedures. We introduce two scaling methods to take advantage of the geometric

intuition behind cluster creation as well as existing clustering methods. We furthermore propose a

subsampling approach to allow the algorithm to scale to much larger problems.
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Restricted geometric search space

ICOT leverages the geometric structure of the feature space by restricting the set of candidate splits

to those with sufficient separation. An exhaustive search of candidate splits on a given numerical

feature requires nk− 1 threshold evaluations, where nk is the number of observations in a given

node. This is due to the fact that there are exactly nk−1 different possible partitions of the data on

the given feature at node k (less if multiple observations have the same value on this feature).

To improve the efficiency of our algorithm, we only consider a subset of these thresholds. For

any feature, we refer to a threshold’s gap as the separation between the observations directly below

and above it. Since the quality of a clustering assignment is directly tied to the distance separating

distinct clusters, the cluster quality will be superior when considering thresholds with large gaps.

We take advantage of this intuition by skipping over thresholds with small gaps.

We control the extent of search space restriction through the parameter T . When considering a

numerical feature split at node k, all threshold gaps for observations in the node are sorted (nk−1

values). Only thresholds above the T th percentile of gap size are considered. For example, if T = .9

and nk = 100, only the thresholds with the 10 largest gaps are considered, reducing the number of

computations per node by 90%.

Figure 3-3 provides an illustration of how the Restricted Geometric Search would be applied

in a simple example. When T = 0.7, ICOT will investigate only the top 30% of the gaps between

observations. Thus only the larger, bold, gaps would be potential splits for a branch node that

considers the covariate corresponding to the horizontal axis.

Figure 3-3: An example of the Restricted Geometric Search Function.

73



K-means warm start

We also employ warm starts to more efficiently identify high-quality clustering trees. We lever-

age the K-means algorithm to partition the data into clusters and use OCT to generate a tree that

reasonably separates these clusters. This becomes the starting point of ICOT’s coordinate descent

algorithm. The algorithm first runs K-means on the original data across various K parameters and

selects the assignment that optimizes our chosen cluster quality criterion. The resulting assign-

ments are used as class labels for the construction of a supervised classification tree using OCT.

ICOT’s coordinate-descent procedure then begins from the resultant OCT tree rather than a greedy

tree. Each leaf from the OCT tree becomes a separate cluster when initializing the ICOT algorithm,

even though the predicted class labels may match between multiple leaves. Overall, the K-means

warm start expedites tree initialization and improves the efficiency of the search procedure.

Bootstrapping

We introduce bootstrapping on the number of input observations, N. Our goal is to make the al-

gorithm amenable to solve problems of larger sample size. This procedure involves subsampling a

reduced population of size Nr and solving smaller problems Nrep times. This allows the algorithm

to scale linearly with respect to the number of repetitions. It can be easily parallelized as it contains

multiple independent sub-problems. Each iteration samples Nr observations without replacement

and runs ICOT, returning a tree model which is then evaluated on a validation population. Upon

completion of all Nrep iterations, the algorithm selects the best performing tree model on the val-

idation criterion. Beyond improving the speed of the algorithm, bootstrapping provides a lot of

flexibility to the user. The choice of Nr and Nrep may vary depending on the time constraints and

the required quality of the final solution. We explore the latter in greater detail in Sections 3.6.2-

3.6.2.

Complexity analysis

We provide a brief analysis of the worst-case complexity for each iteration of the coordinate-

descent implementation of the algorithm. The argument is an extension of the complexity analysis

for Optimal Classification Trees [60]. First, we consider the complexity of calculating our cluster
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quality criteria.

An initial step for the computation of any score is the construction of a distance matrix that

contains all the distances between each point i, j ∈ [N], the training population. The matrix creation

involves n(n−1)
2 calculations, which has complexity O(n2).

Silhouette Metric (SM): For each observation i, we must compute the average distance between

i and the members of each cluster. If we have T nodes, and each cluster contains at most n points,

this has complexity O(nT ). We need to find the distance to the next-closest cluster for which i is

not a member. As we iterate through each of the clusters, we track the closest distance found so far

and update if it improves. We note that the number of clusters is O(T ) and is upper bounded by the

total number of nodes. This computation is repeated for all n observations. Thus, the complexity

of computing the Silhouette Metric is

cpSM = O(n(nT )) = O(n2T )

.

Dunn Index (DI): For each cluster, we must find the largest distance between any two points

within the cluster and the smallest distance between a point in the cluster and outside of the cluster.

This involves sorting at worst all pre-computed pairwise distances of which there are n(n−1)
2 , giving

complexity O(T n2 log(n)). As we iterate through the sorted values, we track the highest intra-

cluster and lowest inter-cluster distances and update if we find a value that improves either metric.

In total, this yields complexity

cpDI = O(T n2 log(n)) = O(T n2 log(n))

.

We now move on to the calculation of the algorithm’s complexity in each iteration. Once an initial

tree is constructed, each inner iteration of ICOT’s local search consists of identifying the best

potential split change at a given node. For each of the p features, there are at most n−1 potential

split thresholds (if all observations are in this node). At each of these thresholds, we must (1) find
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the assignment of all points to clusters (i.e. tree leaves), which has complexity O(nT ), where T is

the total number of nodes in the tree and (2) calculate the cluster quality criterion cp, either cpSM

or cpDI . Thus, the inner iteration has complexity O(np(nT + cp)). We must repeat this for each

leaf, which adds a factor of T .

Ultimately, one iteration of ICOT when trained on the Silhouette Metric has worst-case com-

plexity:

O(npT (nT +n2T )) = O(n2 pT 2 +n3 pT 2) = O(n2 pT 2 +n3 pT 2)

When optimizing the Dunn Index, ICOT’s complexity is:

O(npT (nT +n2T log(n))) = O(n2 pT 2 +n3 pT 2 log(n))

Both of these results demonstrate that each iteration of ICOT is highly sensitive to scaling with

respect to n, with a higher cost when training on the Dunn Index (by a factor of log(n). Through the

geometric search in Section 3.3.3, we are able to reduce the number of splits considered by a con-

stant factor; with a threshold of 0.99, rather than considering np splits, we only consider 0.01∗np

splits. Additionally, the warm-starts explained in Section 3.3.3 provide higher quality starting so-

lutions which reduces the number of iterations required to reach convergence and thus reduces

runtime. This is demonstrated empirically in Section 3.6. Finally, the sub-sampling method intro-

duced in Section 3.3.3 allows us to leverage ICOT for arbitrarily large problems; Section 3.6 also

shows empirical evidence that the resultant trees still generalize well to the larger datasets despite

only being trained on a subset.

3.4 Experiments based on synthetic datasets

In this section, we present results of ICOT across various synthetic datasets. We use these exper-

iments to assess the quality of the algorithm’s solution on both validation criteria. Section 3.4.2

compares ICOT to other popular clustering alternatives in terms of their ability to recover high-

quality clustering assignments when training on both the Silhouette Metric and Dunn Index. We

also examine the tradeoff between the two metric scores when training on one and evaluating on
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the other.

3.4.1 Experimental setup

We evaluated ICOT on the Fundamental Clustering Problems Suite datasets (FCPS) [159], a stan-

dard set of synthetic datasets for unsupervised learning evaluation. These datasets have ground

truth cluster labels, which allow for an objective comparison of cluster quality. Our experiments

only consider nine of the 10 FCPS datasets, as the tenth contains no true clusters and thus does not

offer insight into clustering algorithms.

The ICOT experiments use the “fully scaled" version of the algorithm, with a K-means warm

start and a geometric threshold of 0.99. We left the minimum bucket size at its default value (1

observation) and restricted the maximum depth of the tree to depth 3. We left the α parameter at

its default value. We ran 100 random restarts of the algorithm in each experiment.

We consider six alternative clustering algorithms which span a range of methodological ap-

proaches and interpretations. The following methods are compared:

1. Optimal Classification Trees Hybrid Method (OCT): A two-step K-means and OCT hybrid

approach, in which K-means clusters serve as class labels for a supervised multi-class clas-

sification problem. Each observation is assigned a label based on the predicted class of its

leaf. OCT is implemented using the InterpretableAI package in Julia [23, 34].

2. K-means++: We run K-means with a K-means++ initialization, which was introduced by

Arthur and Vassilvitskii [9] and has been shown to improve upon a standard K-means im-

plementation. K-means++ has been incorporated in the ClusterR R package [123]. We run

the method with 100 random restarts and a maximum of 100 clustering iterations.

3. Hierarchical Clustering (Hclust): Hierarchical clustering is the most popular agglomerative

clustering method. It combines individual points into clusters using a linkage measure until

all points end up in a single cluster, returning a single dendogram that exhaustively links all

individual points [84]. While this is a tree-based method, it does not have binary splits and

cannot be explicitly represented as a function of the features. Hclust is implemented in R

using average linkage.
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4. Gaussian Mixture Models (GMM): GMM assigns observations to clusters characterized by Gaus-

sian distributions. The algorithm uses expectation-maximization (EM) to find the parame-

ters for each of K Gaussian distributions, each representing a cluster [84]. This approach

has a key advantage of accounting for cluster variance in assignment, which is a deficiency

of traditional methods such as K-means. For each observation, this method returns a soft-

assignment, which gives a probability of belonging to each cluster. To make this assignment

amenable to our quantitative comparison which requires an explicit assignment, we assign

observations to their most likely cluster. GMM is implemented in the ClusterR R package

[123]. We run the method with 20 EM and K-means iterations and confirmed that the results

stabilize by this point. We compute observation distances using Euclidean distance.

5. Density-based Spatial Clustering of Applications with Noise (DBSCAN): DBSCAN is a popu-

lar method that constructs clusters based on the highest density regions of a dataset [65].

DBSCAN does not return a complete assignment; outliers in low-density areas are left out of

any clusters. While this exclusion approach makes the method robust to outliers, it com-

plicates quantitative evaluation. To allow for a fair comparison on the internal validation

metrics, we assign each outlier point to the most common cluster of its five nearest neigh-

bors. If all neighbors are also unassigned, we assign the point to its own cluster. This method

is implemented in the DBSCAN package in R [80], with additional post-processing to complete

the outlier assignment.

6. Predictive Clustering Trees (PCT): Predictive clustering trees build recursive binary decision

trees for clustering tasks [37]. The methodology is implemented in Java through the Clus

package. We adopt the default “VarianceReduction" splitting heuristic.

We are unable to present synthetic comparisons to other recent work in interpretable clustering,

such as CUBT, as there are no available implementations of the algorithms. We present results of

ICOT against the CUBT experiments presented by Fraiman et al. [72] in Section 3.5.3.

We run all of the comparison methods on normalized data. ICOT normalizes the distance ma-

trix within the algorithm, and we input a normalized dataset into the other comparison method

functions. For each of the comparison methods, we tune key parameters to optimize the Silhou-

ette Metric (or Dunn Index). In K-means++, Hclust, and GMM, we tune the number of clusters
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K ∈ [2,10]. DBSCAN does not have an explicit K parameter, but the ε parameter informs the neigh-

borhood size when constructing clusters; larger ε values generally translate to larger clusters (and

lower K). We tune ε ∈ [0.1,0.11,0.12 . . . ,1.0]. Finally, PCT matches our methodology most closely

and does not require an explicit cluster number (K) or density threshold (ε); for this algorithm, we

simply tune the maximum depth from 1 to 3. In all cases, we select the parameter value that yields

the best internal validation score on the metric of interest.

In the following experiments, all results are averaged over five experiments per algorithm and

parameter combination. All experiments were conducted on two CPUs of type 2 socket Intel E5-

2690 v4 2.6 GHz/35M Cache; 16GB of NUMA enabled memory were used per CPU.

3.4.2 Solution quality

In these experiments, we look to assess various clustering methods in terms of their recovery

of high-quality solutions, as measured by both the Silhouette Metric and the Dunn Index. We

additionally investigate the performance of the “true" cluster labels on both of these criteria.

Tables 3.1 and 3.2 show the results of these methods along with the true FCPS labels, evaluated

with both the Silhouette Metric and Dunn Index.

Data (N,P) ICOT OCT K-means++ Hclust GMM DBSCAN PCT Truth

Atom (800,2) 0.503 0.433 0.611* 0.593 0.565 0.540 0.516 0.311
Chainlink (1000,2) 0.396 0.28 0.479 0.496* 0.409 0.357 0.312 0.158
EngyTime (4096,2) 0.573* 0.4 0.439 0.379 0.433 0.450 0.377 0.398
Hepta (212,3) 0.453 0.332 0.702* 0.702* 0.608 0.702* 0.368 0.702*
Lsun (400,2) 0.549 0.534 0.569* 0.554 0.537 0.439 0.564 0.439
Target (770,2) 0.629* 0.409 0.593 0.619 0.578 0.533 0.516 0.295
Tetra (400,3) 0.504* 0.266 0.504* 0.504* 0.504* 0.504* 0.307 0.504*
TwoDiamonds (800,2) 0.486* 0.486* 0.486* 0.485 0.412 0.266 0.486* 0.486*
WingNut (1070,2) 0.422 0.393 0.426* 0.418 0.407 0.384 0.422 0.384

Count Best/Tie 4 1 6 3 1 2 1 3
Average Score 0.502 0.393 0.534 0.528 0.495 0.464 0.430 0.409
Std. Dev Score 0.074 0.089 0.091 0.101 0.081 0.126 0.095 0.153

Table 3.1: Comparison of methods across the FCPS datasets, when trained and evaluated on the
Silhouette Metric.

The asterisks indicate the best score across all algorithms for each criterion.

ICOT dominates the two-step supervised learning method in all cases for both metrics, offer-

ing an average Silhouette Metric improvement of 27.8% and Dunn Index improvement of 352.7%
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Data (N,P) ICOT OCT K-means++ Hclust GMM DBSCAN PCT Truth

Atom (800,2) 0.137 0.035 0.052 0.097 0.048 0.371* 0.064 0.371*
Chainlink (1000,2) 0.028 0.013 0.038 0.037 0.016 0.265* 0.018 0.265*
EngyTime (4096,2) 0.064* 0.002 0.005 0.014 0.004 0.029 0.002 0.000
Hepta (212,3) 0.357 0.162 1.080* 1.080* 0.482 1.080* 0.293 1.080*
Lsun (400,2) 0.077 0.027 0.056 0.071 0.117* 0.117* 0.026 0.117*
Target (770,2) 0.550* 0.011 0.029 0.550* 0.113 0.117 0.013 0.253
Tetra (400,3) 0.200* 0.044 0.200* 0.200* 0.200* 0.200* 0.046 0.200*
TwoDiamonds (800,2) 0.044 0.022 0.031 0.049* 0.021 0.030 0.022 0.022
WingNut (1070,2) 0.063* 0.020 0.026 0.036 0.016 0.063* 0.063* 0.063*

Count Best/Tie 4 0 2 4 2 6 1 6
Average Score 0.169 0.037 0.169 0.237 0.113 0.253 0.061 0.264
Std. Dev Score 0.176 0.048 0.347 0.358 0.153 0.330 0.090 0.330

Table 3.2: Comparison of methods across the FCPS datasets, when trained and evaluated on the
Dunn Index.

The asterisks indicate the best score across all algorithms for each criterion.

over OCT. This demonstrates the advantage of building clusters directly through a tree-based ap-

proach rather than using a hybrid supervised learning method that applies a tree to cluster labels a

posteriori.

ICOT matches or outperforms the best alternative clustering method in 4/9 cases with both

the Silhouette Metric and with the Dunn Index. ICOT ties or beats K-means++ in 7/9 cases on

the Dunn Index and 4/9 on the Silhouette Metric, attesting to its competitiveness against the most

widely-used clustering technique. We also note that when measured against our most interpretable

alternative, PCT, ICOT ties or wins in all cases on the Dunn Index and 7/9 on the Silhouette Metric.

When considering performance by the ranked wins/ties of each method, K-means++ is the best

method for the Silhouette Metric and DBSCAN is the best method for the Dunn Index. No method

dominates ICOT in the win/tie ranking; namely, there is no method that performs better on both

the Silhouette Metric and Dunn Index. When looking at the average score across all nine datasets,

Hclust is the only method to dominate ICOT on both training metrics. However, we note that

Hclust also has a significantly higher standard deviation on both metrics, indicating a lack of

consistency in solution recovery quality.

Our method is weakest when the underlying clusters are non-separable with parallel splits,

since ICOT places hard constraints on an observation’s cluster membership based on splits in

feature values. In these cases, such as with the Hepta dataset, ICOT is unable to recover the true
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structure. The flexibility offered by alternative methods is advantageous in these cases. Overall,

our results demonstrate that despite the highly constrained setting that we impose on the solution

structure, we are still able to perform competitively with far less constrained (and less interpretable)

methods.

Cluster quality evaluation is highly dependent on the chosen metric; the ground truth assign-

ment is only the “best" method in 3/9 cases with the Silhouette Metric and 6/9 cases with the Dunn

Index. ICOT identifies strictly “better" clusters than the ground truth in 6/9 cases for the Silhouette

Metric and 3/9 cases for the Dunn Index, as measured by their scores on the respective metrics.

This phenomenon raises the broader question of how to assess cluster quality, as recovering known

labels in synthetic data does not necessarily translate to meaningful cluster assignments.

Sensitivity to training criterion choice

Table 3.3 shows the ICOT scores on the FCPS datasets as measured by each validation crite-

rion, broken down by training loss function. The values refer to the average score across all nine

datasets. As expected, both metrics have their best performance when they are used as the training

criterion to optimize for ICOT. The choice to train on the Silhouette Metric results in a 12.4%

loss in Dunn Index score as compared to when training on the Dunn Index. Similarly, training

originally on the Dunn Index results in a loss of 15.8% in the Silhouette Metric. This quantifies

the sensitivity to the choice of training criterion. Both metrics incur a cost in terms of performance

loss on other internal validation criteria, with a slightly lower loss on the Dunn Index.

Training Criterion Silhouette Metric Dunn Index

Silhouette Metric 0.475 0.149

Dunn Index 0.416 0.177

Table 3.3: Comparison of internal validation scores by choice of training criterion in the ICOT
algorithm.
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3.5 Experiments based on real-world datasets

In this section, we present results for two real-world examples. We address two important ques-

tions often encountered in practice and demonstrate the value of clustering in their analysis; inter-

pretability and performance on internal validation criteria. We illustrate models produced by ICOT,

OCT, K-means++, Hclust, GMM, DBSCAN, PCT, and the CUBT algorithm. We also consider the im-

pact of tuning key user-defined parameters on the ICOT model. Section 3.5.2 outlines a patient

similarity case study utilizing data from the well-known Framingham Heart Study (FHS). In these

models we consider results across several minimum bucket sizes which offer different levels of

granularity in the final output. We also experiment with various α parameters, allowing us to con-

trol the weight of numerical vs. categorical features in the distance matrix. Section 3.5.3 focuses

on grouping economic profiles of European countries during the Cold War using only tree-based

unsupervised learning techniques.

3.5.1 Experimental setup

We adopted a similar experimental setup to the one described in Section 3.4.1 for the synthetic

experiments. In particular, the ICOT experiments use the “fully scaled" version of the algorithm,

with a K-means warm start and a geometric threshold of 0.99. We ran 100 random restarts of the

algorithm in each experiment. The α and minimum bucket parameters are varied as part of the

experiments. We ran all of the experiments on normalized data, which is particularly relevant in

this setting where features vary greatly in magnitude.

We consider the same six alternative clustering algorithms: OCT, K-means++, Hclust, GMM,

DBSCAN, and PCT. The latter four methods cannot integrate both categorical and numerical features,

so we updated the feature space to one-hot encode the categorical variables as binary features. We

used the same fixed algorithm parameters for all methods as outlined in Section 3.4.1. We tuned

the K parameter over the range of 2 to 10 clusters for all methods other than DBSCAN. We tuned

ε ∈ [1,5] for DBSCAN. All experiments were conducted on two CPUs of type 2 socket Intel E5-2690

v4 2.6 GHz/35M Cache; 16GB of NUMA enabled memory were used per CPU.
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3.5.2 Patient similarity for the Framingham Heart Study

Patient similarity is the concept of identifying groups of individuals with comparable health pro-

files from their electronic medical records, often with the goal of assessing treatment receptivity

and outcomes. The goal is to cluster patients in compact groups without any particular outcome

of interest and to study the health progression for those individuals over time. Clustering methods

have been particularly popular in this application as they do not require an independent covariate

in model creation.

We provide an illustration of our method using data from the Offspring Cohort from the FHS,

a large-scale longitudinal clinical study. It started in 1948 with the goal of observing a large pop-

ulation of health adults over time to better understand cardiovascular disease risk factors. Over

80 variables were collected for 5,209 people over the course of more than 40 years. The FHS is

arguably one of the most influential longitudinal studies in the field of cardiovascular and cere-

brovascular research. This data has now been used in more than 2,400 studies and is considered

one of the top 10 cardiology advances of the twentieth century alongside the electrocardiogram

and open-heart surgery [54].

Our dataset consists of 1,200 observations from distinct participants of the Offspring Cohort

and 11 covariates (age, gender, presence of diabetes, levels of HDL, BMI status, Blood Pressure

(BP) status, blood glucose levels, hematocrit levels, history of myocardial infarction, history of

stroke, and current smoking habits) [54, 69]. We explore how the ICOT model is impacted as we

vary the α parameter and the minimum bucket parameter, NC (Sections 3.5.2,3.5.2). Subsequently,

we compare the results of ICOT with other clustering methods in terms of interpretability and

quantitative performance on the validation criteria (Sections 3.5.2-3.5.2).

The effect of the α parameter

In this set of experiments, we focus on the impact of the α parameter on the creation of the ICOT

model. The FHS dataset contains mixed numerical and categorical attributes and thus the deter-

mination of this parameter clearly affects the feature selection process during tree construction as

well as the final number of clusters. We fix the minimum bucket parameter, NC = 50, requiring at

least 50 patients in each cluster to ensure that groups are not skewed by outliers in the data.
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Figure 3-4 shows the model output when α = 0.3. The number of observations in each group is

indicated by the numbers in the leaves. When the distance matrix places 70% weight on categorical

features, the algorithm partitions the feature space based only on those. As a result, only BP status

and gender appear as splits in the tree. ICOT identifies eight groups of patients: (1) 100 women

with Elevated BP; (2) 175 men with Elevated BP; (3) 96 women with Hypertensive Status I; (4)

163 women with Hypertensive Status II; (5) 163 men with Hypertensive Status I; (6) 172 men with

Hypertensive Status II; (7) 135 women with normal BP; (8) 196 men with normal BP.

When α = 0.6 the output model contains variables from both types of data, balancing better the

numerical and categorical feature space. Due to the distance metric re-weighting, the new model

is now able to incorporate both numerical and categorical features, yielding intuitive groups of

participants by cardiovascular risk. Figure 3-5 illustrates the final tree with five split nodes and six

clusters. Given these parameters, ICOT distinguishes between female and male participants in the

presence or absence of diabetes. Moreover, it highlights the importance of smoking solely for the

diabetic subgroup.

Finally, when α = 0.9, ICOT only distinguishes the FHS population based on numeric features

such as smoking and diabetes. These results highlight the importance of the algorithm tuning

process when leveraging data with mixed features. In the absence of a ground truth, the decision

maker is called to select the most appropriate model depending on the application or a potential

downstream predictive task. The ability to directly parametrize the distance matrix provides the

user with higher flexibility and clarity during the model development process. We discuss the

implications of categorical features in the quantitative performance evaluation in Section 3.5.2.

The effect of the minimum bucket parameter

In these experiments, we set α = 0.6 to balance the distance between numerical and categorical

features and we vary the minimum number of observations required to form a distinct cluster.

Figures 3-5, 3-7, and 3-8 show the models produced by the algorithm for different values of the

minimum bucket, NC, when training on the Silhouette Metric. Note that varying this constraint

directly affects the end model, changing the structure of the final tree. Even though our empirical

results may suggest that there is a monotonic relation between the size of the minimum bucket and

the number of clusters identified, this assumption is not necessarily a general rule.
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Comparing between Figures 3-5 and 3-7, we see that the output is stable given the minimum

bucket restrictions. Both models share the same features in the splits. In the latter model, splits

that already had at least 100 members in both leaves (the leftmost two clusters) remained intact

and new ones were created in order to closely match the tree with NC = 50. When we increase

the minimum sample size to 200 participants, the resulting model only separates the population by

gender.

Notice that across all the experiments presented, three variables appear to bear the highest

importance in the clustering task: smoking habits, diabetic status, and gender. The results appeared

to be stable in the feature selection process, confirming the intuition behind the effect of both the

minimum bucket and α . ICOT’s interpretable structure allowed us to specify the key differentiating

characteristics between the participants and contextualize them in the medical setting.

16396 172163

BP =
“Hypertensive I”

BP =
“Hypertensive I”

196135

BP in [Elevated, Hypertensive, Hypertensive I, Hypertensive II]

Gender = “Female”BP = “Elevated”

Gender = “Female”Gender = “Female”

175100

True False

Figure 3-4: ICOT tree for minimum bucket = 50 and α = 0.3.
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15697

11266

Diabetes < 0.5

Gender = “Female”Smoking < 0.5

Gender = “Female”Gender = “Female”

438331

True False

Figure 3-5: ICOT tree for minimum bucket = 50 and α = 0.6.

178

Diabetes < 0.5

Smoking < 0.5

253769

True False

Figure 3-6: ICOT tree for minimum bucket = 50 and α = 0.9.

179106

Smoking < 0.5

Gender = “Female”Diabetes < 0.5

146Gender = “Female”

438331

True False

Figure 3-7: ICOT tree for minimum bucket = 100 and α = 0.6.
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706

Gender = “Female”

494

True False

Figure 3-8: ICOT tree for minimum bucket = 200 and α = 0.6.

Results on interpretability

In this section, we compare the interpretability of partitions from different clustering algorithms.

For tree based approaches, such as the two step OCT method and PCT, we present the final model.

For the rest of the algorithms, we outline the centroids of each cluster. Since these methods also

do not allow us to directly control the minimum number of observations per cluster, we present

the results of each algorithm for the number of clusters that maximizes the Silhouette Metric. We

present detailed results for K-means++.

Figures 3-4-3-8 demonstrate different ICOT models when we vary the algorithm’s hyperpa-

rameters. Note that the trees provide meaningful categorizations that clinicians frequently use and

think about in stratifying patient risk. Elevated BP measurements, gender, smoking are all com-

monly used categories that determine future health trajectories, such as the risk of cardiovascular

events or potential interventions for managing chronic diseases (i.e., blood pressure). The role of

these variables has been widely recognized in medical literature [94, 169, 125, 66].
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Variable Names
Cluster 1 Cluster 2 Cluster 3

Mean Std. Deviation Mean Std. Deviation Mean Std. Deviation

Gender: female 0.367 0.485 0.376 0.485 0.487 0.5

Gender: male 0.633 0.485 0.624 0.485 0.513 0.5

Diabetes 0.922 0.269 0.054 0.227 0.142 0.35

Smoking 0.2 0.402 0.249 0.433 0.226 0.419

Age 64 7.114 61.102 9.976 65.335 9.156

HDL 39.497 12.679 46.681 14.592 46.547 14.663

Blood Glucose Levels 198.901 39.916 98.792 10.908 103.898 15.428

Myocardial Infarction 0.333 0.519 0.337 0.632 0.239 0.518

Hematocrit Levels 44.929 3.163 43.942 3.866 43.409 3.634

Blood Pressure Status: Elevated 0.211 0.41 0.358 0.48 0 0

Blood Pressure Status: Hypertensive Crisis 0.044 0.207 0 0 0.066 0.249

Blood Pressure Status: Hypertensive Status 1 0.256 0.439 0.239 0.427 0.165 0.372

Blood Pressure Status: Hypertensive Status 2 0.356 0.481 0 0 0.769 0.422

Blood Pressure Status: Normal 0.133 0.342 0.404 0.491 0 0

BMI Category: Normal 0.1 0.302 0.263 0.44 0.246 0.431

BMI Category: Obese 0.489 0.503 0.296 0.457 0.305 0.461

BMI Category: Overweight 0.411 0.495 0.44 0.497 0.447 0.498

BMI Category: Underweight 0 0 0.001 0.037 0.003 0.05

Number of Observations 90 716 395

Table 3.4: The centroid mean, standard deviation values, and number of observations for all iden-
tified clusters from the K-means++ algorithm on the one-hot encoded dataset.

Table 3.4 shows the covariate values of the cluster centroids created by the K-means++ algorithm.

Notice that there is no clear distinction of features that characterize each cluster. For the categorical

ones, the centroid value depends on the relative frequency of the classes in the particular covariate

and not only on its predominance in the cluster. For example, the fact that the Smoking value for

Centroid 1 is equal to 0.2 does not provide deep insights in the smoking habits of the participants

in that group. There is a similar proportion of smokers in this cluster compared to Clusters 2 and 3.

It is difficult to provide intuitive labels for the groups with clinical implications by only studying

Table 3.4. Furthermore, analyzing the centroid means and standard deviations to gain intuition into

the distinctive attributes and spread of each cluster becomes increasingly harder as the number of

features increases. Relative ranking of the centroid values could be used in the FHS case, where

p = 18 (after one-hot encoding) and the number of clusters is small. In a high dimensional dataset,
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delving into such a table would be practically impossible.

853

BP in [Hypertensive Status II, Hypertensive Crisis]

365

True False

Figure 3-9: Two-step OCT tree, optimized with respect to the Silhouette Metric.

Figure 3-9 shows the result of the hybrid OCT tree. The model contains just one split, resulting

in two clusters providing limited insights regarding the data. In this setting, changing the minimum

bucket did not affect the final solution. Figure 3-10 shows the final PCT tree. This method proposes

a deeper tree involving four features: Gender, Diabetes status, BMI, and Systolic Blood Pressure.

It suggests that diabetes status is a differentiator only in obese patients (BMI above 30). It also

suggests that the relevant Systolic Blood Pressure threshold is higher for “less healthy" patients,

namely those who are diabetic or have higher BMI.

Gender = “Female"

BMI > 30.0

Diabetes = Yes

40 SBP > 138

44 81

BMI > 19.1

BMI > 25.0

181 170

2

True

BMI > 30.0

Diabetes = Yes

SBP > 173

3 43

SBP > 129

94 87

BMI > 25.0

SBP > 129

190 198

SBP > 118

100 44

False

Figure 3-10: PCT Tree for FHS patients.

Results on quantitative performance

Although interpretability is our primary objective in cluster development, we also want to ensure

that our resultant groupings are reasonable from the perspective of the internal validation criteria

which provide a quantitative evaluation. Table 3.5 shows the metric scores obtained for both the
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Silhouette Metric and the Dunn Index. For each method, we use the Silhouette Metric to cross-

validate and find the optimal number of clusters. We then report the score on both metrics for the

entire population.

ICOT dominates all competing algorithms in the Dunn Index (0.509) and has the second to best

performance in the Silhouette Metric (0.296) after DBSCAN (0.511). In particular, we note that it has

an advantage over PCT in both metrics, consistent with our findings in the synthetic experiments.

Overall these results suggest that ICOT’s advantage in interpretability does not come at the expense

of identifying well-separated and compact clusters. The gains over OCT also attest to the value

of ICOT’s ability to train directly on the cluster quality criterion over simply applying a two-step

method where K-means clusters are used as class labels for a supervised problem.

Metric ICOT OCT K-means++ Hclust GMM DBSCAN PCT

Silhouette Metric 0.296 0.131 0.264 0.270 0.224 0.511 0.249

Dunn Index 0.561 0.256 0.150 0.469 0.503 0.448 0.503

Table 3.5: The validation criteria results for ICOT, K-means++, Hclust, GMM, DBSCAN, PCT and
the two-step hybrid OCT method when trained on each metric.

3.5.3 Economic profiles of European countries

In this section we consider European countries by their employment statistics during the Cold War

to develop groupings of similar economic profiles. We present this example to offer a comparison

to the CUBT algorithm [72] as this is the primary real-world experiment offered in their work.

Our dataset [99] provides the breakdown of where citizens were employed in 1979 across

major industry sectors: agriculture (Agr), mining (Min), manufacturing (Man), power supplies

services (PS), construction (Con), service industries (SI), finance (Fin), social and personal services

(SPS), and transportation and communication (TC). Thus our feature space includes nine covariates

(p = 9) observed for 26 distinct European countries (n = 26).
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Results on interpretability: ICOT

We trained a clustering tree using the Silhouette Metric, the default α parameter, and a minimum

bucket size of 3 to prevent individual outlier countries from dominating the tree in a single split.

The final tree is shown in Figure 3-11, and the resulting groupings are shown in Table 3.6.

ICOT’s chosen partition is highly intuitive given the economic and political climate of the Cold

War. With the exception of Yugoslavia, all Eastern Bloc countries are placed in Cluster 1 due to

their particularly low percentage of workers in the financial sector. This split reflects the broader

political setting for those countries that were under a Communist regime. Greece, Turkey and

Yugoslavia are grouped together due to their notably high agricultural sector employment. They

are also located in the same geographical region and thus their economy similarity is justified. The

rest of the countries form Cluster 2, which is composed of all the Western European countries.

3

Agriculture < 38.5%

Finance < 1.45%

7 16

True False

Figure 3-11: Visualization of the ICOT tree for the European Jobs dataset.

Cluster 1 Cluster 2 Cluster 3
Bulgaria Austria Belgium Greece
Czechoslovakia Denmark Finland Turkey
E. Germany France Ireland Yugoslavia
Hungary Italy Luxembourg
Poland Netherlands Norway
Romania Portugal Spain
USSR Sweden Switzerland

United Kingdom W. Germany

Table 3.6: European country clusters from the ICOT algorithm.
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Agriculture > 29.45

Agriculture > 57.75

1 4

True

Agriculture > 18.20

6 15

False

Figure 3-12: CUBT tree with four clusters.

Agriculture > 29.45

Agriculture > 57.75

1 4

True

Agriculture > 16.2

7 Manufacturing > 23.45

11 SI > 16.2

2 1

False

Figure 3-13: CUBT tree with five clusters.

Results on interpretability: CUBT

Fraiman et al. [72] provide two alternative clustering partitions using their proposed CUBT algo-

rithm, one with four clusters and the other with five clusters. The resultant tree for K = 4 is shown

in Figure 3.7 with the groupings listed in Table 3.7. The corresponding results for K = 5 and

Table 3.8, respectively. Due to inconsistencies between the trees and country groups listed in the

paper [72], we report results based on the tree models presented. It is possible to select a minimum

bucket size in the CUBT algorithm, but the authors chose to omit it in these experiments, resulting

in isolated clusters with single outlier countries. While this provides insight on its own, we chose

to enforce a sufficiently large leaf size to make our results more generalizable and insightful for

the full set of European countries.

The tree with four clusters splits only on agriculture sector employment through a series of

recursive splits, providing less insight into the differentiating characteristics of the countries. The
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tree with five clusters splits on high agriculture employment first to separate out the first two clus-

ters, but then further differentiates the low agriculture countries on both manufacturing and service

industry employment. The bulk of the countries fall into the third cluster, which is characterized

by a manufacturing-heavy workforce. Note that CUBT allows for cluster re-joining in the algo-

rithm, which results in multiple leaves being assigned to the same cluster (indicated by a single

color). Overall, while the CUBT algorithm provides high interpretability as with ICOT, a qual-

itative analysis of the resulting clusters suggests that there is a slight loss in meaningful cluster

separation.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Turkey Greece Bulgaria Austria Belgium

Poland Hungary Czechoslovakia Denmark
Romania Ireland E. Germany Finland
Yugoslavia Portugal France Italy

Spain Luxembourg Netherlands
USSR Norway Sweden

Switzerland United Kingdom
W. Germany

Table 3.7: European country clusters from the CUBT algorithm, with K = 4.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Greece Bulgaria Austria Belgium Netherlands Denmark
Poland Czechoslovakia E. Germany Finland Norway
Romania Hungary France Italy
Turkey Ireland Luxembourg Sweden
Yugoslavia Portugal Switzerland United Kingdom

Spain W. Germany
USSR

Table 3.8: European country clusters from the CUBT algorithm, with K = 5.

Results on the validation criteria

The quantitative performance of these models on our two key internal validation criteria are shown

in Table 3.9. ICOT obtains significantly better clusters as quantified by both the Dunn Index and

Silhouette Metric. We note that ICOT has an advantage in the Silhouette Metric due to the fact

that it was trained to optimize this criterion, whereas the CUBT results were trained via a different
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method. However, the Dunn Index provides a neutral evaluation criterion and shows a preference

towards ICOT’s results as well.

Metric ICOT CUBT (K = 4) CUBT (K = 5)

Silhouette Metric 0.344 0.140 0.044
Dunn Index 0.346 0.262 0.259

Table 3.9: Comparison of ICOT (trained on the Silhouette Metric) and the CUBT algorithm on the
internal validation criterion.

3.6 Scaling experiments

In this section, we present results regarding the effect of scaling techniques on ICOT with respect

to both the quality of the final solutions as well as the degree to which the algorithm is able to

scale. In Section 3.6.1, we discuss the impact of algorithm heuristics, such as the K-means warm

start and the geometric threshold, using the FCPS suite. We use real-world data from Hubway for

testing the scalability and quantitative performance of bootstrapping in Section 3.6.2.

3.6.1 Scaling via algorithm heuristics

In this section, we evaluate the impact of implementing the scaling methods described in Sec-

tion 3.3.3. We first consider how the heuristics affect solution recovery in Section 3.6.1. Sec-

tion 3.6.1 then examines the runtime reductions that we obtain as we vary the scaling parameters.

Experimental setup

We evaluated the impact of our scaling methods on algorithm speed through a comparison of

the average runtime across eight datasets in the FCPS suite with various parameters. The ninth

dataset (EngyTime) was omitted as the experiment size was intractable on the unscaled method.

We ran experiments over restricted geometric search thresholds of T = 0 (scan all thresholds),

T = 0.9 and T = 0.99. We also repeated the experiments with and without the K-means warm

start. The parameter pair (T = 0, no warm start) represents the original “baseline" method, and the
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pair (T = 0.99, K-means warm start) represents the fully scaled method. We ran each dataset and

parameter combination across five seeds and present the averaged results.

All experiments were conducted on two CPUs of type 2 socket Intel E5-2690 v4 2.6 GHz/35M

Cache; 16GB of NUMA enabled memory were used per CPU.

Scaling runtimes

The runtimes for the Silhouette Metric and Dunn Index are shown in Figure 3-14. The geometric

search alone reduces the runtime by 77.6% (60.6%) at the T = 0.99 threshold for the Silhouette

Metric (Dunn Index). When combining the geometric search (T = .99) with the K-means warm

start, our fully scaled method offers a 96.0% (95.7%) reduction in algorithm runtime for Silhouette

(Dunn). We observe that the baseline method actually has a slight runtime advantage over the

K-means warm start when there is no restriction on the search space (T = 0). The apparent shorter

runtime with the baseline method at T = 0 can be explained by the possibility of getting caught in

a locally optimal solution with a naive start, which can lead the algorithm to terminate faster.

(a) Silhouette Metric Runtimes (b) Dunn Index Runtimes

Figure 3-14: Average runtimes across FCPS datasets with varied scaling parameters for the geo-
metric search threshold (T) and choice to use a warm start.

Due to the speedups from these two scaling techniques, ICOT is able to scale to handle datasets

with a number of observations (N) in the thousands and the number of covariates (p) in the hun-

dreds. The scaled algorithm solves within several hours for problems of this magnitude.
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High quality solution recovery

The scores of the baseline model and our fully scaled version are shown in Table 3.10. The scaled

method yields an average loss of -0.28% over the baseline when trained on the Silhouette Metric,

and gives an average improvement of 0.64% with the Dunn Index. Of the eight datasets considered

using the Silhouette Metric (Dunn Index), three (five) have identical cluster recovery in both the

original and fully scaled experiments; three (two) have a slight loss when using scaling heuristics,

and two (one) actually improve with the scaling methods. These results suggest that the scaled

ICOT algorithm still yields high quality results.

Silhouette Metric Dunn Index
Dataset Baseline Fully Scaled % Change Baseline Fully Scaled % Change
Atom 0.521 0.503 -3.45% 0.137 0.137 0.00%
Chainlink 0.391 0.396 1.28% 0.032 0.028 -12.62%
Hepta 0.455 0.453 -0.44% 0.357 0.357 0.00%
Lsun 0.567 0.549 -3.17% 0.117 0.077 -34.10%
Target 0.629 0.629 0.00% 0.362 0.550 51.93%
Tetra 0.504 0.504 0.00% 0.200 0.200 0.00%
TwoDiamonds 0.486 0.486 0.00% 0.044 0.044 0.00%
WingNut 0.406 0.422 3.94% 0.063 0.063 0.00%
Average Score 0.495 0.493 -0.23% 0.164 0.182 0.65%

Table 3.10: Comparison of cluster quality scores with the original vs. fully scaled ICOT versions.

The differences in the score between the baseline and scaled versions are largely attributable

to the warm start rather than the choice of geometric threshold. The score improves in the scaled

version when the baseline algorithm was caught in a local optimum, but the K-means warm start

enabled it to avoid this. This score improvement offered by the K-means warm starts further

supports the use of this heuristic beyond runtime improvements.

3.6.2 Scaling via bootstrapping

In Section 3.6.2, we introduce the Hubway dataset, a real-world collection of user ride data from

a Boston-based bike sharing program. Section 3.6.2 outlines the experimental setup, providing

details on the parameters of the method. Sections 3.6.2 and 3.6.2 explore the effect of the boot-

strapping methodology on the quality of the final solution and the algorithm runtime respectively.
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The Hubway dataset

In this setting, our goal is to identify similar groups of registered users of the Hubway bike-sharing

program [29]. This Boston-based company allows citizens to rent bicycles from any of their 140

stations and ride to any other station in the city. The platform has emerged as a popular form of

transportation for daily commuters and leisure riders alike. Our dataset includes 194,301 obser-

vations from Hubway trips taken from June 2012 through September 2012. The dataset contains

nine mixed numerical and categorical attributes, including the duration of the trip, the age and the

gender of the rider, the time period of the ride and whether it took place during the week or the

weekend.

This experiment illustrates an application of clustering for market segmentation. This is a

strategy that divides a broad target market into smaller groups of similar customers. It can then

be used to tailor marketing strategies to individual groups through means such as promotions or

differentiated pricing. Unsupervised learning is often employed for this task since it naturally

identifies similar groups within a given dataset.

Experimental setup

In these experiments, we aim to quantify the benefit of using bootstrapping as a wrapper function

over the ICOT algorithm. We explore the effect of three key parameters that might affect both the

quality and runtime of the solutions.

1. Sample Size (N): The number of observations included in the training set. Since the Hubway

dataset contains 194,301 data points, we sub-sample randomly without replacement to create

a sample of size N. We follow the same process to create a different testing set that is used

for the evaluation of the validation criterion. We restrict N to numbers that can be efficiently

solved by ICOT, N ∈ [2500,5000,10000], to allow us to compare to the algorithm’s solutions

on the full input data.

2. Size of reduced data (Nr): The number of observations included in each iteration of the

bootstrap algorithm. Each sub-sample is randomly created from the training set without re-

placement, but the iteration samples are constructed independently. Thus, different iterations

can contain the same observation. We let Nrep ∈ [250,500].
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3. Number of repetitions (Nrep): The number of iterations of the bootstrapping method. We test

the quality and runtime of the final model by letting Nrep ∈ [25,50,75,100,200,500,1000].

All results presented for ICOT use a version of the algorithm that includes the K-means warm

start and a geometric threshold of 0.99. The minimum bucket size is set to one and the maximum

depth of the tree to depth four. We assigned to the α parameter its default value. Similarly to the

FCPS experiments, we ran 100 random restarts of the algorithm in each round. Results summarize

the outcomes of five randomized repetitions of each experiment.

In the following experiments, all results are averaged over 50 experiments per algorithm and

parameter combination. All experiments were conducted on two CPUs of type 2 socket Intel E5-

2690 v4 2.6 GHz/35M Cache; 30GB of NUMA enabled memory were used per CPU.

Scaling performance

The purpose of introducing bootstrapping into the ICOT framework is to extend its application to

problems of larger size that the fully scaled version was not able to efficiently manage. Bootstrap-

ping provides a lot of flexibility to the user and thus can be easily adapted to the speed requirements

of a specific case study. In this section, our aim is to demonstrate how choices regarding the param-

eters affect the overall running time and compare the outcomes with and without bootstrapping.

Figure 3-15 provides an overview of the results when the algorithm was trained on the Sil-

houette Metric. We report the log(time) to render the y-scale more comprehensible to the reader,

especially for higher instances of N. The average runtime scales linearly with respect to Nrep and

exponentially to Nr. As we include additional repetitions, the method sequentially runs more iter-

ations of the same “reduced” experiment. However, as we increase the Nr, the runtime scales at

the same rate as the original ICOT method. When Nrep > 500, bootstrapping starts improving on

the original algorithm only for instances of N > 2500. Nevertheless, in cases of larger sample size

(N = 10,000), bootstrapping can achieve the same solution quality (Nr = 250,Nrep = 500) in 27.65

minutes instead of 554.693. When N = 5,000, the discrepancy is not as high but still considerable,

13.095 and 96.529 minutes respectively.

These results indicate the value of adding bootstrapping into the ICOT framework, as it solves

in reasonable time problems of much larger size that otherwise would have been out of the algo-

rithm’s scope.
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High quality solution recovery

The bootstrapping approach constructs trees on a sub-group of the overall population and thus

does not access the full input data. We sought to ensure that the speed-up in runtime would not

come at a high toll with respect to solution quality. Thus, we performed a direct comparison of

the two methods over the validation criteria for different ranges of the parameters described above.

Figure 3-16 provides a results summary for the Silhouette Metric. The shaded region around ICOT

indicates the standard deviation of the metric. Similarly, the error bars illustrate the same measure

for each combination of the tuning parameters. As expected, larger sample sizes are positively

correlated with the validation score. The graphs show that increasing the number of repetitions can

significantly improve the quality of the solution. We notice that for Nrep > 500, bootstrapping can

achieve equivalent performance to ICOT, with minor losses in some cases. The effect of the Nr

parameter is less evident, though, as the results indicate minor discrepancies between Nr = 250 and

Nr = 500. In conclusion, these experiments provide evidence that bootstrapping does not result in

a high toll on the quality of suggested feature partitions.

3.7 Discussion

ICOT builds trees that provide explicit separations of the data on the original feature set, creating

interpretable models with real-world applicability to a wide range of settings. From healthcare to

revenue management to macroeconomics, our algorithm can significantly benefit practitioners that

may find value in unsupervised learning techniques in their work.

Our empirical results on the FCPS dataset offer insight into ICOT’s performance against ex-

isting methods, including traditional approaches such as K-means, density-based, and hierarchical

algorithms. We also report results with respect to other interpretable methods, including the Pre-

dictive Clustering Trees framework and the hybrid two-step supervised approach. Overall, our

proposed method is superior to the majority of the algorithms for both validation criteria. Specif-

ically, in Section 3.4, we show that when assessing clusters with the Silhouette Metric, ICOT is

the second best method after K-means++ while on the Dunn Index ICOT is only outperformed by

DBSCAN. Essentially, our experiments demonstrate that our newly proposed framework is able to

achieve comparable performance to the state-of-the-art clustering algorithms while enabling the
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explicit characterization of cluster membership. We thus accept a slight decrease in the validation

criteria for the gain in interpretability, which is critical in many settings.

We also observe significant improvements in ICOT over other interpretable approaches. The

relatively poor performance of the two-step OCT approach validates the utility of a method that

simultaneously builds clusters and identifies a tree-based structure rather than simply employing

existing tree-based methods on clustered data a posteriori. Additionally, ICOT offers a consider-

able advantage over PCT and CUBT, suggesting that our algorithmic approach improves upon on

existing interpretable clustering work and offers a novel contribution to the space.

Most clustering methods, including ICOT, identified data partitions with higher cluster qual-

ity scores than the true FCPS data labels, highlighting the subjectivity of what constitutes good

clusters. We leave the choice of cluster quality metric to the user, since both criterion have their

respective merits and perform well in different data contexts. In general, the Dunn Index excels

on well-separated datasets but is not robust to outliers. In contrast, the Silhouette Metric is often

better at accounting for mixed densities and identifying meaningful separation in less structured

data settings.

The additional scaling experiments on the FCPS dataset demonstrate substantial runtime re-

ductions offered by both the restricted geometric search space and K-means warm start. Overall

these empirical results suggest that the scaling methods are successful at significantly decreasing

runtime while maintaining high-quality cluster identification. The geometric search heuristic is

particularly useful for problems with a high number of observations as it lowers the computational

load per node evaluation by a factor of T . We note that despite the efficiency gains offered by

our scaling methods, our current implementation of ICOT does not scale beyond 1000s of obser-

vations and 100s of covariates. However, using the Hubway dataset we were able to demonstrate

that the ICOT algorithm coupled with bootstrapping is able to scale to even hundreds of thou-

sands of observations at a reasonable time without a considerable toll on the solution quality. This

functionality broadens the method’s applicability to even high-dimensional settings; for example,

bootstrapping might be particularly useful when clustering a large company’s customer transaction

records (n in the millions). This is a case where we would recommend the subsampling approach.

A similar technique could be applied for cases where the number of features is very high (p in

the 10000s), such as when using genomic profiles for patients. Additionally, variables could be
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preprocessed to restrict to the most significant subset, either using traditional statistical tests or the

variable importance ranking provided in the K-means algorithm output.

Therefore, we believe that ICOT is the best performing alternative for interpretable clustering

although computationally more intensive. PCTs are more efficient but in many cases lead to lower

quality solutions. Our method has an edge over K-means++ and DBSCAN due to the transparency

it offers, although these alternatives sometimes show a slight edge on the Silhouette Metric and the

Dunn Index. ICOT is most appropriate in applications where the user values both interpretation of

the cluster labels and high performance on clustering metrics, and the efficiency of the algorithm

is not a bottleneck. These conditions are generally true in the exploratory analysis contexts where

clustering is most often applied.

Our work’s handling of numerical and categorical features offers a contribution beyond the

realm of clustering. The issue of mixed-type attributes is considered among specialists as one

of the most important challenges in machine learning [133, 175]. The overwhelming majority

of state-of-the-art clustering algorithms are restricted to numerical objects, like vectors or metric

objects, which does not correspond to datasets usually found in practice. This problem extends

more broadly to algorithms that rely on distance computations, such as k-Nearest Neighbors. In

contrast, our solution gives a comprehensive answer to this problem by introducing a novel distance

metric for the algorithm.

We note that the algorithm’s single-variable splits are unable to represent all possible cluster

shapes and could potentially cut through clusters. This structure allows us to maintain the direct in-

terpretation of a tree leaf representing a single cluster. In many applications, a simple interpretation

of the tree partition is highly valued, which was a key motivation behind this method’s develop-

ment. In order to capture more complex structures, one could consider the possibility of “rejoining"

leaves, namely allowing multiple leaves to be considered as a single cluster. Rejoining can occur

between two adjacent leaves coming from a single parent node through the local search’s consider-

ation of split deletions. However, we do not consider the possibility of joining other leaves. While

ICOT does not natively support this, it could easily be incorporated as a post-processing step. After

obtaining the final ICOT tree, one can consider the effect of merging different node combinations

on the chosen metric.

We finally observe that despite the tree structure of our algorithm output, our model does not
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obey a hierarchical structure. Namely, truncating the tree to a lower depth does not necessarily

represent the optimal clustering solution at this depth. Our coordinate-descent algorithm allows for

nodes to be re-optimized with knowledge of deeper nodes. In contrast, a hierarchical interpretation

only holds in cases where the tree grows greedily since the shallow truncated tree cannot be affected

by deeper levels.

The application of ICOT to real-world datasets reveals the significant benefit on both inter-

pretability and performance in the unsupervised learning field. The combination of the OCT mech-

anism, the employment of established internal validation criteria as well as the systematic handling

of mixed numerical and categorical attributes allow ICOT to provide complete partitions of the fea-

ture space with actionable insights to practitioners. Moreover, the flexibility of the method to user

specific constraints with respect to the minimum bucket size, the maximum depth of the tree and

the α parameter render the algorithm particularly amenable to a wide range of applications from

various fields.

3.8 Conclusion

In this paper, we have introduced a new methodology of cluster construction that addresses the

issue of cluster interpretability. We propose a novel unsupervised learning tree-based algorithm

that yields high-quality solutions via an optimization approach. Through computational exper-

iments with benchmark and real-world datasets, we show that ICOT offers significant gains in

interpretability over state-of-the-art clustering methods while achieving comparable or even better

performance as measured by well-established internal validation criteria. This makes ICOT an

ideal tool for exploratory data analysis as it reveals natural separations of the data with intuitive

reasoning.
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Figure 3-15: Results regarding the impact of bootstrapping on the runtime (Log of Minutes) as
the number of repetitions (Nrep), sub-sample size (Nr), and sample size (N) change. Both methods
were trained on the Silhouette Metric. The error bars express the standard deviation of the metric.
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Figure 3-16: Results regarding the impact of bootstrapping on the Silhouette Metric as the number
of repetitions (Nrep), sub-sample size (Nr), and sample size (N) change. The error bars express the
standard deviation of the metric.
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Chapter 4

Prediction of neutropenic events in

chemotherapy patients: a machine learning

approach

Abstract

Severe and febrile neutropenia present serious hazards to cancer patients undergoing chemother-
apy. We seek to develop a machine learning-based neutropenia prediction model that can be used to
assess risk at the initiation of a chemotherapy cycle. We leverage rich electronic medical records
data from a large healthcare system and apply machine learning methods to predict severe and
febrile neutropenic events. We outline the data curation process and challenges posed by electronic
medical records data. We explore a range of algorithms with an emphasis on model interpretabil-
ity and ease-of-use in a clinical setting. Our final proposed model demonstrates an out-of-sample
AUC of 0.865 (95% CI 0.830-0.891) in the prediction of neutropenic events based on only 20 clin-
ical features. The model validates known risk factors and offers insight into potential novel clinical
indicators and treatment characteristics that elevate risk. It relies on factors that are directly ex-
tractable from electronic medical records, providing a tool can be easily integrated into existing
workflows. A cost-based analysis provides insight into optimal risk thresholds and offers a frame-
work for tailoring algorithms to individual hospital needs. A better understanding of neutropenic
risk on an individual level enables a more informed approach to patient monitoring and treatment
decisions.
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4.1 Introduction

Severe and febrile neutropenia (SN/FN) pose severe risks to cancer patients receiving chemother-

apy. ASCO guidelines recommend the use of granulocyte colony stimulating-factor (G-CSF) pro-

phylaxis when the risk of SN/FN exceeds 20%[148]. A model of SN/FN risk for chemotherapy

patients over the course of multiple cycles of chemotherapy and adjustable for economic consider-

ations can provide more personalized insights into patient risk throughout their treatment. In this

work, we propose a highly accurate and interpretable machine learning (ML) model for predicting

neutropenic events using electronic medical record (EMR) data from a large healthcare system.

Neutropenia risk models have been introduced previously by several independent research

groups. Most existing models rely on logistic regression [113, 89, 45, 96, 130] or ML methods

that lack interpretability [50, 87]. Our proposed model differs from existing works in several

ways: we assess the risk of SN/FN at the initiation of any chemotherapy cycle, not only the pa-

tient’s first cycle; we consider a broad set of cancers and drugs, rather than focusing on targeted

populations or treatment regimens; and we restrict our dataset to discrete EMR fields, allowing for

direct integration into oncology workflows without manual data manipulation.

In this work, we present an end-to-end analytical pipeline, from data extraction to model im-

plementation considerations. We develop a neutropenia risk score using Optimal Feature Selection

(OFS), a novel approach that trains sparse additive models with strong performance and high us-

ability. The final model provides clinical insight into neutropenic risk, both validating risk factors

from existing models and identifying additional clinical indicators.

4.2 Materials and methods

4.2.1 Study population

This retrospective, observational study was carried out at Hartford HealthCare (HHC), an inte-

grated healthcare system composed of 7 acute care hospitals in Connecticut with over 6,000 an-

alytic cases per annum. The study consists of antineoplastic chemotherapy encounters between

May 2016 and October 2019. Leukemia was excluded because often the goal of chemotherapy is

to produce profound and prolonged neutropenia through bone marrow suppression; all other can-
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cers were included. Each cycle start date is considered as a separate observation, which implies

that a single patient can appear multiple times within the dataset. The full criteria used in querying

the database are included in Appendix B.1.

4.2.2 Data curation

Data Extraction All data used in this study were curated from HHC’s EMR (Epic Systems,

WI). Only data directly extractable from the EMR were included. This approach makes it feasible

to directly run the model off of the EMR and improves the transferability of our model to other

institutions. With these same advantages in mind, unstructured data, such as free-text notes on

patient condition, detailed information about regimen adjustments, and imaging results, were not

selected for the dataset.

Clinical Features The outcome of interest was the occurrence of either SN or FN within 4 weeks

(28 days) of a chemotherapy encounter [154]. We defined SN as Absolute Neutrophil Count (ANC)

below 500 cells/uL and FN as ANC < 1000 cells/uL, accompanied by a fever (> 101 F) [154]. We

curated discrete EMR data elements reflecting the patient’s demographics, medical features, and

cancer treatment information. By incorporating both static and temporal components, we captured

how these factors change over time. Table 4.1 lists the data elements and sources. In total, each

encounter was represented by 107 distinct clinical features.

Category Source Sample Features

Demographics Patient data Age, gender
Comorbidities Problem list Cerebrovascular disease, diabetes, hypertension
Other procedures Procedure charges Indicator of concurrent radiation

Treatment Information Cancer patient history
Cancer site, treatment intent (e.g., curative,
maintenance)

Drugs administered Medication charges
Chemotherapy drugs (individual and combinations),
indicator of G-CSF administration

Vitals Measurements Flowsheets BMI, Pulse, Systolic Blood Pressure
Lab Measurements Lab order results Complete Blood Count results

Table 4.1: Overview of clinical features and sources.

While the data we selected from the EMR are more highly structured than free-text notes, there

is still significant variability in data capture that hinders the creation of a unified dataset. For
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example, a single clinical entity such as temperature might be captured in different ways based on

hospital department and equipment, or lab results may be a mix of numeric and text data (10, 15,

<5, >100). We standardized our data elements through close collaboration with clinical experts,

creating data mappings and common vocabularies in the process. These can serve as artifacts for

future projects to facilitate meaningful information extraction.

Data Imputation Missing data present a challenge in developing a comprehensive feature space,

particularly for vital and lab features. Many measurements are not recorded at all visits, resulting in

missing data for some encounters. Any features that were missing in more than 40% of encounters

were fully excluded. For the remaining features, imputation was performed using MedImpute [30],

a novel method that estimates missing values based on the known values of similar observations.

The imputation balances the known values from proximal encounters of the same patient with data

from other patients; this is formalized through an optimization algorithm.

4.2.3 Machine learning methods

The prediction of whether an encounter will be followed by SN/FN is a binary classification prob-

lem. Table 4.2 outlines the methods considered, which offer various levels of interpretability and

complexity. The models were trained using a common training set of 80% of the data. 5-fold

cross-validation was employed on the training set to tune the relevant internal parameters for each

method. The final models were then evaluated on the remaining out-of-sample data (20%). The

training and testing data were split by patient, meaning that no patient can have encounters in both

the training and testing set, to prevent bias in model evaluation. We additionally report results on

a temporal split of the data in Appendix B.2.3. In both cases, the training and testing sets were

imputed independently.

4.2.4 Model evaluation

When evaluating candidate models, we considered two primary criteria: quantitative performance

and model interpretability.
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Method Reference Description

Logistic regression
(LR)

[85] Fits an additive model. Regularization is employed to limit
model complexity and control over-fitting. This serves as a
benchmark traditional statistical method.

Optimal Feature
Selection (OFS)

[32] Fits an additive model using a sparse set of features. For
example, OFS20, with a maximum sparsity of 20, would fit
a model with at most 20 features having non-zero coeffi-
cients. In this study, three maximum sparsity parameters,
20, 30, and 50, are considered.

Classification and
Regression Trees
(CART)

[40] Partitions data using a single decision tree. The tree is com-
prised of binary feature splits, and each leaf yields a pre-
dicted risk probability.

Optimal Classification
Trees (OCT)

[23, 34] Constructs a single decision tree, as with CART. In contrast
to traditional greedy tree-based models such as CART, OCT
uses an optimization framework when fitting the tree which
generally demonstrates superior performance.

Random Forests (RF) [39] Fits many decision trees each using a subset of features and
data, forming an ensemble of models. Final predictions ag-
gregate the “votes” of the individual trees.

Gradient Boosted
Machines (XGB)

[73, 47] Another ensemble approach which trains many decision
trees but employs a weighting scheme to better account for
errors in individual learners.

Table 4.2: Overview of ML methods used for binary classification.

Quantitative Performance A model must provide accurate predictions to be useful in a clinical

setting. Binary classification models output a probability of a positive response; in this setting, a

“positive response” is defined as the occurrence of a neutropenic event. We used out-of-sample

Area Under the ROC Curve (AUC) as the primary performance metric. Given the low incidence

of SN/FN, we also considered the average precision for each model. Average precision provides a

threshold-independent measure of the precision-recall curve, like AUC for the ROC curve, that is

particularly useful when the outcomes are highly imbalanced. We report these metrics for our final

models along with bootstrapped 95% confidence intervals.

While the model returns a probability of SN/FN, in practice a probability threshold is often

used to label high-risk patients. For a fixed threshold τ , all encounters with probabilities greater

than τ would be categorized as having a high risk of an SN/FN event. This is useful in making the

outcomes of the predictive tool actionable; for example, the threshold could be used to determine

when to surface EMR alerts. For a fixed threshold, we can assess the number of false negatives
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(FNτ ) and false positives (FPτ ) incurred by the model. Lower thresholds predict more neutropenic

events: this increases sensitivity at the expense of specificity. The opposite is true as the threshold

increases.

The desirable threshold is user-determined and driven by the relative costs of mistaken pos-

itive and negative events. To determine an optimal risk cutoff threshold, we must quantify the

cost of a false positive (CFP) and false negative (CFN). From a financial perspective, the negative

consequence of a false positive is unnecessary intervention and for a false negative, hospitaliza-

tion. For this estimate, we assume that the intervention for high-risk patients would be G-CSF

administration. For a given threshold τ , the cost incurred is then given as:

Cτ =CFP ∗FPτ +CFN ∗FNτ

The optimal threshold minimizes this cost.

Interpretability The methods considered vary in their inherent interpretability. Linear mod-

els and single decision trees explicitly tie clinical inputs to the resultant predictions. Ensemble

methods, such as Random Forests (RF) and gradient boosted machines (XGB), aggregate many

individual models which limits their interpretability. Models that lack clinical interpretation make

it difficult to justify predictions and assess their validity, hindering clinician trust [156].

An additional aspect of interpretability is model sparsity, namely the number of features used

to generate a prediction. For example, a decision tree with six splits would use a maximum of 6

features to output a prediction. While the input feature space contains 107 unique features, it is

desirable for the final model to rely on a subset of these features for clinical interpretability.

4.3 Results

4.3.1 Study population

The final population consists of 17,513 encounters across 2,806 patients. 449 (2.6%) of the en-

counters had a neutropenic event within 28 days of the encounter. 421 encounters had SN and 77

had FN; outcomes that met the criteria for both SN and FN count as a single neutropenic event. The
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most common cancers observed in the data are breast, lung, colon, rectal/anal cancer and multiple

myeloma, which comprise more than 60% of the encounters.

4.3.2 Model performance

Table 4.3 reports the test AUC and average precision for the various models. The methods have

out-of-sample AUCs ranging from 0.789–0.869 and average precisions ranging from 0.080–0.148.

Given the significant class imbalance in our data (2.6% positives), the baseline precision is 0.026.

Therefore, the best performing models offer a roughly five-fold increase from the baseline preci-

sion. The additive models, Optimal Feature Selection (OFS) and logistic regression (LR), demon-

strate strong performance. OFS with 20 features (OFS20) is able to achieve the second-best AUC

(0.865, 95% CI 0.830-0.891) and the highest average precision (0.148, 95% CI 0.117-0.188) with

fewer features than other linear models. RF performs comparably but at the price of lower inter-

pretability. Overall, the strength of the linear models suggests that nonlinear feature interactions

are not highly significant in this prediction problem.

Of the models considered, OFS20 offers the most insight given its balance of both quantitative

performance and model interpretability. This is therefore our proposed final model.

Model AUC Avg. Precision

OFS20 (20 Features) 0.865 (0.830-0.891) 0.148 (0.117-0.188)
OFS30 (30 Features) 0.866 (0.836-0.894) 0.136 (0.107-0.173)
OFS50 (50 Features) 0.854 (0.824-0.893) 0.131 (0.104-0.170)
LR 0.858 (0.818-0.893) 0.146 (0.117-0.195)
OCT 0.805 (0.773-0.841) 0.112 (0.089-0.154)
CART 0.789 (0.749-0.828) 0.104 (0.078-0.138)
RF 0.869 (0.842-0.889) 0.145 (0.117-0.193)
XGB 0.819 (0.799-0.848) 0.080 (0.064-0.110)
No Skill 0.5 0.026

Table 4.3: AUC and average precision (with 95% confidence intervals) reported on the test set.

4.3.3 Threshold-based analysis

An optimal decision threshold can be found after estimating the costs and probabilities associated

with false positives and false negatives. To illustrate threshold selection, we consider an example
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for non-small cell lung cancer (NSCLC) patients. Based on analysis by Li et al. [103], we estimate

the cost of G-CSF administration as $2580 and the cost of a neutropenia-related hospitalization for

an NSCLC patient at $21822.50, $5075 per day with an average length of 4.3 days. Figure 4-1

shows the total expected cost incurred across all thresholds τ ∈ [0,1] for the OFS20 model on the

test set. The cost-minimizing threshold is τ = 0.16. At this threshold, the model obtains out-of-

sample specificity of 95.7% and sensitivity of 42.9%.
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Figure 4-1: The cost incurred by false positives and false negatives as a function of the risk cutoff
threshold (τ), assuming CFP=$2580 and CFN=$21822.50. The optimal threshold that minimizes
the total cost is displayed in dark gray.

To obtain a more general characterization of the tradeoffs between false positives and false

negatives, we compute the optimal threshold as a function of the ratio between CFN and CFP. The

optimal threshold is determined purely by the cost ratio. The example above demonstrates the

computation for a cost ratio of 8.5 (CFN/CFP = $21822.50/$2580). Figure 4-2 shows the optimal

thresholds for varied cost ratios using the OFS20 model on the test set. As the ratio increases,

the optimal threshold decreases; model sensitivity (identification of true positives) becomes more

valuable, and so the model flags more patients as high risk. The optimal threshold begins to

decrease above a ratio of 5. This implies that when the cost of hospitalization is more than five

times as expensive as G-CSF intervention, it is economically advantageous to lower the decision

threshold, which allows the model to recover true positives despite the risk of over-treatment of
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Figure 4-2: Optimal cutoff threshold as the ratio of hospitalization cost to G-CSF cost (CFN/CFP)
varies.

false positives. The optimal threshold stabilizes at 16% for ratios between 5-10 and lowers to 8%

for higher cost ratios between 15-30.

4.3.4 Model interpretation

The OFS20 coefficients are shown in Table 4.4. Positive coefficients indicate an increase in risk

as the value increases (e.g., risk increases with the number of drugs given in recent weeks), while

negative coefficients represent an inverse relationship (risk decreases as the cumulative infusion

count increases). Individual drugs have varied risk impacts. Since a patient can receive multiple

drugs in a single encounter, the net contribution of the drugs is determined by the sum of these

coefficients.

4.4 Discussion

In this work, we have developed a practical tool for assessing SN/FN risk in patients upon initiation

of a chemotherapy cycle. We leveraged discrete EMR data and used state-of-the-art algorithms to

synthesize clinical features into a single risk score. The resultant model enables a personalized

approach to patient care based on an individual’s cancer characteristics, vitals, lab values, and
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Category Feature Coefficient

Intercept -2.460

Treatment
Antineoplastic Drug Count (previous 3 weeks) 0.139
Cumulative Number of Chemo Cycles -0.021
Filgrastim (G-CSF) Administered? (1 = Yes) -0.142

Labs/Vitals
Hematocrit (%) -0.03
Platelet Count (Thou/uL) -0.001
Pulse 0.004

Comorbidities
Relative change in Weight (Lbs) from previous cycle -3.065
Diseases of the genitourinary system? (1 = Yes) 0.147

Drugs

Atezolizumab? (1 = Yes) -0.696
Carboplatin? (1 = Yes) 0.369
Cisplatin? (1 = Yes) 0.374
Cyclophosphamide? (1 = Yes) 0.787
Dacarbazine? (1 = Yes) 0.469
Docetaxel? (1 = Yes) 0.485
Doxorubicin? (1 = Yes) 0.839
Etoposide? (1 = Yes) 1.353
Pertuzumab? (1 = Yes) -0.321
Trastuzumab? (1 = Yes) -0.217
Vinblastine? (1 = Yes) 0.469
Vinorelbine? (1 = Yes) 0.791

Table 4.4: OFS coefficients with sparsity of 20 features.

course of treatment.

We compared various ML algorithms but ultimately selected the OFS20 model due to its high

interpretability and competitive quantitative performance. Our final model has an out-of-sample

AUC of 0.865. This model outperforms the proposed neutropenia risk model by Lyman et al. [113]

(out-of-sample AUC of 0.81), while also using a smaller feature set that is directly extractable from

the EMR. Cho et al. [50] report an AUC of 0.908 in their proposed ML model for FN prediction,

although this model addresses a narrower clinical question of neutropenic risk for Korean breast

cancer patients.

The OFS20 model coefficients provide insights into the risk contributions of individual features.

Risk increases when more drugs are involved in the regimen, which could indicate more aggressive

treatments. G-CSF administration leads to lower risk, consistent with its use as an intervention to
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mitigate SN/FN risk, as other models have found [96, 113]. Genitourinary comorbidities, which

includes renal diseases, increase risk; this aligns with findings of increased risk associated with

kidney dysfunction [96, 113]. Higher blood counts (hematocrit and platelets) are associated with

lower risk, as is a lower pulse. Finally, our model is the first to incorporate temporal elements.

Risk decreases as patients are further along in treatment, i.e. as they have more previous cycles.

We also see that the change in clinical features over time, particularly a decrease in weight, implies

higher risk. We note that as with any retrospective study using observational data, we cannot

establish causation of the observed risk factors or rule out the significance of unobserved factors.

Nevertheless, the proposed final model provides highly accurate characterizations of patient risk

based on the included features.

It is also informative to observe the features that were not selected in the model. While the

feature space included cancer site and drug combination, rather than just individual drugs, neither

of these features were selected in the final model. Certain clinical elements identified in other

models, such as age [89, 96, 113], also do not appear in our model. This suggests that these factors

are less significant in determining a patient’s risk, or that their risk contribution can be explained

through other observed clinical characteristics. We note that the commitment to the exclusive use

of structured EMR data requires the omission of other potentially relevant data elements, such as

relative dose intensity or qualitative assessments of patient health, in exchange for portability and

reproducible results.

Our proposed approach to determining an optimal cutoff threshold for flagging high risk pa-

tients can be adapted to inform reasonable site-specific cutoffs for new populations and cost esti-

mates. ASCO and NCCN guidelines recommend primary use of G-CSF at a threshold risk level

of 20%. NCCN guidelines recommend consideration of G-CSF depending upon patient risk as-

sessment for intermediate risk levels between 10-20% [18, 148]. Previously published models are

specific to a chemotherapy regimen, cancer type or first cycle of treatment and thus lack gener-

alizability. Our model finds that the cost analysis supports a threshold risk level of 8-16%. Our

framework allows for tuning the performance specifications of the predictive model relative to the

economic costs of treatment inherent to a healthcare delivery system and can be used to guide

payer reimbursement policy.

Our threshold modeling provides a framework for determining an appropriate risk threshold
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that can be extended to incorporate other factors. We did not attempt to model the positive eco-

nomic benefits of true positives and negatives. An economic model of clinical decision support

should ideally minimize unnecessary costs while also maximizing healthcare benefits. Addition-

ally, while our analysis defines cost as financial costs incurred by either hospitalization or unnec-

essary intervention, there are also non-financial health economic costs that cannot be measured by

this model. We remain cognizant of the burden of false positives which could lead to alarm fa-

tigue [145], while also recognizing that false negatives associated hospitalization carry a quality of

life cost which in economic terms are disutilities of care. The analysis can be modified to capture

additional financial and quality-of-life costs.

A central goal of this paper was to create a frictionless point-of-care tool for assessing neu-

tropenic risk while patients are undergoing treatment. This motivated the creation of a feature

space using only discrete data elements. While individual health systems have distinct ways of

recording patient data, all of the features included in the model should be available as structured

data within the EMR. After establishing a mapping of a hospital’s data elements to our feature

space, the model can be integrated into a new EMR system to provide real-time insights in clinical

encounters. Our selection of a model that relies on a relatively small subset of clinical features

reduces the burden of creating such a data mapping; only 20 features need to be extracted from

the EMR to calculate the risk score. These considerations lower the barrier to model validation

and adoption at external sites. The ultimate test of any risk prediction model is its performance

on external populations, and we hope to continue this work through prospective validation both

within HHC and at external sites.

4.5 Conclusion

This work presents the development of a neutropenia risk prediction tool, from data curation to

practical implementation considerations. This tool offers the potential to improve patient care,

providing personalized insights for chemotherapy patients that enable more informed treatment

planning and care decisions.
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Chapter 5

COVID-19 mortality risk assessment: an

international multi-center study

Abstract

Timely identification of COVID-19 patients at high risk of mortality can significantly improve
patient management and resource allocation within hospitals. This study seeks to develop and val-
idate a data-driven personalized mortality risk calculator for hospitalized COVID-19 patients. De-
identified data was obtained for 3,927 COVID-19 positive patients from six independent centers,
comprising 33 different hospitals. Demographic, clinical, and laboratory variables were collected
at hospital admission. The COVID-19 Mortality Risk (CMR) tool was developed using the XG-
Boost algorithm to predict mortality. Its discrimination performance was subsequently evaluated
on three validation cohorts. The derivation cohort of 3,062 patients has an observed mortality rate
of 26.84%. Increased age, decreased oxygen saturation (≤ 93%), elevated levels of C-reactive
protein (≥ 130 mg/L), blood urea nitrogen (≥ 18 mg/dL), and blood creatinine (≥ 1.2 mg/dL)
were identified as primary risk factors, validating clinical findings. The model obtains out-of-
sample AUCs of 0.90 (95% CI, 0.87-0.94) on the derivation cohort. In the validation cohorts, the
model obtains AUCs of 0.92 (95% CI, 0.88-0.95) on Seville patients, 0.87 (95% CI, 0.84-0.91) on
Hellenic COVID-19 Study Group patients, and 0.81 (95% CI, 0.76-0.85) on Hartford Hospital pa-
tients. The CMR tool is available as an online application at covidanalytics.io/mortality_calculator
and is currently in clinical use. The CMR model leverages machine learning to generate accurate
mortality predictions using commonly available clinical features. This is the first risk score trained
and validated on a cohort of COVID-19 patients from Europe and the United States.

The ongoing coronavirus disease pandemic (COVID-19) caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) has led to an alarming number of casualties across the

world [56]. As the pandemic progresses globally, much remains unknown about the disease dy-

namics and risk factors. A better understanding of the clinical determinants of disease severity can
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improve patient management throughout the healthcare system. This task is challenging due to the

rapid spread of the disease and the lack of detailed patient data.

Leveraging machine learning (ML) methods enables the rapid discovery of insights across large

populations of heterogeneous patients. An algorithmic approach provides an objective evaluation

and can often capture nonlinear interactions that are not obvious from pure observation of the pop-

ulation. Researchers have recognized the potential of these data-driven approaches across various

facets of the effort to combat COVID-19 [5].

In this work, we present the COVID-19 Mortality Risk (CMR) tool, a novel ML model for pre-

dicting mortality in hospitalized COVID-19 patients. It enables physicians to better triage patient

care in a resource-constrained system through a personalized mortality risk score. The CMR model

synthesizes various clinical data elements from multiple European and US centers, including de-

mographics, lab test results, symptoms, and comorbidities. We use the XGBoost algorithm [47], a

leading ML method, to predict mortality probabilities. This score is able to capture nonlinearities

in risk factors, resulting in strong predictive performance with an out-of-sample area under the

receiver operating characteristic curve (AUC) of 0.90 (95% CI, 0.87-0.94). It also validates com-

monly accepted risk factors, such as age and oxygen saturation, while discerning novel insights.

The CMR tool leverages an international cohort from three hospital systems in Italy, Spain, and

the United States. The model is subsequently validated on hospitalized patients in a consortium

of six hospitals from Greece, Spain, and the United States. Each region presents a diverse set of

patient profiles and mortality rates for the model. By considering severely ill populations from

different countries and healthcare systems, the final dataset captures a wide array of features.

In recent months, ML scores have been proposed to predict COVID-19 mortality [134, 105] as

well as disease severity [173]. Existing literature largely focuses on Chinese hospitals due to the

disease’s emergence in Wuhan [105, 173]. However, it is instrumental to understand the clinical

characteristics for more recent and diverse cases, considering that the virus strain may have mutated

since surfacing in Wuhan [153]. Pourhomayoun and Shakibi [134] proposed a model based on a

large international dataset, yet this model lacks comprehensive patient data and is thus limited in

its ability to derive personalized insights. In this work, we study patients in Europe and the US,

offering a new lens into the clinical characteristics of this disease.
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5.1 Methods

5.1.1 Study population

The study comprises 33 different hospitals, spanning across three countries in southern Europe as

well as the US. The collaborating institutions were split into derivation and validation cohorts, as

summarized in Table 5.1. The derivation cohort includes the healthcare systems of ASST Cremona

(Northern Italy), HM Hospitals (Spain), and Hartford HealthCare affiliate hospitals (United States).

The broad geographic spread of data sources offers a comprehensive sample of some of the most

severely impacted regions in the world. To further validate the results, we partnered with Hospital

Universitario Virgen del Rocío (Spain), the Hellenic COVID-19 Study Group (Hellenic CSG),

a consortium of Greek hospitals, and Hartford HealthCare’s main hospital (CT, USA). The study

population consists of adult patients who were admitted to the hospital with confirmed SARS-CoV-

2 infection by polymerase chain reaction testing of nasopharyngeal samples. The time horizon of

admissions is displayed in Table 5.1.

All independent organizations and the Massachusetts Institute of Technology institutional re-

view boards approved this protocol as minimal-risk research using data collected for standard

clinical practice and waived the requirement for informed consent. The survey was anonymous

and confidentiality of information was assured.

5.1.2 Clinical features

Data is collected using the electronic medical record (EMR) databases and COVID-19 specific

registries of the collaborating hospitals. We compile 22 features, including patient demographic

information, comorbidities, vitals upon admission, and laboratory test results. The full set of fea-

tures is outlined in Table 5.2. The outcome of interest, mortality during the hospital admission,

is derived from discharge records. Only the first recorded laboratory test results are considered,

typically within 24 hours of admission. Comorbidities are identified using the International Clas-

sification of Diseases, 9th and 10th revision, codes of hospital discharges and are aggregated into

four categories using the Clinical Classifications Software [2]. Missing values are imputed using

k-nearest neighbors imputation [158](Appendix C.2). We exclude risk factors that are not consis-
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tently recorded in the derivation cohort, thereby omitting features whose values are more than 40%

missing.

Feature All (N=3,062) Survivor (N=2,302) Non-Survivor (N=760) P-Value 1

Age 68.0 (57.0-79.0) 64.0 (54.0-74.0) 80.0 (73.0-85.0) <1.0E-04
Female* 1207.0 (39.42%) 958.0 (41.62%) 249.0 (32.76%) <1.0E-04
Heart Rate (bpm) 90.0 (80.0-102.0) 91.0 (80.0-102.0) 88.0 (79.0-100.25) 7.7E-03
Oxygen Saturation (%) 94.0 (91.0-96.0) 94.4 (92.0-96.0) 90.55 (85.5-94.0) <1.0E-04
Temperature (°F) 98.6 (97.7-99.86) 98.42 (97.59-99.86) 98.79 (97.7-100.08) 9.3E-04
Alanine Aminotransferase (U/L) 27.0 (17.0-43.0) 27.0 (17.22-44.53) 26.0 (16.12-41.0) 7.9E-02
Aspartate Aminotransferase (U/L) 35.9 (25.3-54.5) 34.0 (24.55-50.2) 44.0 (30.0-68.0) <1.0E-04
Blood Glucose (mg/dL) 118.35 (105.0-142.0) 115.0 (103.4-134.0) 134.0 (113.0-170.55) <1.0E-04
Blood Urea Nitrogen (mg/dL) 17.0 (12.62-25.56) 15.0 (11.61-20.96) 29.0 (20.0-46.0) <1.0E-04
C-Reactive Protein (mg/L) 73.37 (28.88-146.43) 58.62 (22.74-117.83) 137.93 (69.81-214.13) <1.0E-04
Creatinine (mg/dL) 0.95 (0.77-1.22) 0.9 (0.74-1.08) 1.25 (0.95-1.75) <1.0E-04
Hemoglobin (g/dL) 13.9 (12.6-14.9) 13.9 (12.8-15.0) 13.4 (11.9-14.6) <1.0E-04
Mean Corpuscular Volume (fL) 88.0 (85.0-91.2) 87.7 (84.9-90.7) 89.4 (85.93-92.9) <1.0E-04
Platelets (103/µL) 202.0 (157.0-259.75) 205.0 (160.0-263.0) 187.0 (146.5-248.5) 2.0E-04
Potassium (mmol/L) 4.05 (3.7-4.4) 4.0 (3.7-4.4) 4.1 (3.7-4.6) <1.0E-04
Prothrombin Time (INR) 1.11 (1.02-1.25) 1.11 (1.02-1.23) 1.13 (1.02-1.31) <1.0E-04
Sodium (mmol/L) 137.1 (135.0-140.0) 137.0 (135.0-139.5) 138.0 (135.0-141.0) <1.0E-04
White Blood Cell Count (103/µL) 6.73 (5.13-9.09) 6.51 (5.05-8.59) 7.92 (5.57-11.0) <1.0E-04
Cardiac dysrhythmias* 201.0 (6.56%) 128.0 (5.56%) 73.0 (9.61%) 5.8E-04
Chronic kidney disease* 72.0 (2.35%) 40.0 (1.74%) 32.0 (4.21%) 1.5E-03
Heart disease* 125.0 (4.08%) 80.0 (3.48%) 45.0 (5.92%) 9.2E-03
Diabetes* 384.0 (12.54%) 263.0 (11.42%) 121.0 (15.92%) 2.5E-03
1 P-value reports significance of a two-sided T-test between the survivor and non-survivor populations.

Table 5.2: Summary statistics of all patient characteristics for the total sample, the survivor, and
non-survivor cohorts. Median (IQR) is reported for continuous variables, and count (proportion)
is reported for binary variables.

5.1.3 Modeling approach

We train a binary classification model in which the outcome is patient mortality: 1, if the patient

was deceased, or 0, if discharged. Specifically, we use the XGBoost algorithm [47] for the train-

ing process, described further in Appendix C.2. For comparison, we also present the predictive

performance of other ML methods in Appendix C.3. The derivation population is randomly di-

vided into training (85%) and testing (15%) sets, ensuring that mortality prevalence was consistent

between the two. We tune seven model parameters by maximizing the K-fold cross-validation

AUC using the Optuna optimization framework [4]; more details are provided in Appendix C.2.

This technique provides a more accurate parameter search compared to grid search by efficiently

pruning suboptimal parameter combinations and continuously refining the search space. We apply
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SHapley Additive exPlanations (SHAP) to generate importance plots for transparency of the model

predictions and risk drivers [112, 111]; more details are provided in Appendix C.3. All statistical

analysis is conducted using version 3.7 of the Python programming language.

5.1.4 Performance evaluation

All predictive models are evaluated based on their ability to discriminate between outcomes for

each population. We report results for the training and testing sets of the derivation cohort, as well

as for each independent institution in the validation cohort, with the corresponding confidence in-

tervals (CI). The AUC, accuracy, specificity, precision, and negative predictive value are computed

for all patient subpopulations across different thresholds. Receiver operating characteristic (ROC)

curves were created for each of the cohorts.

5.2 Results

5.2.1 Patient characteristics

The CMR model is created using a derivation population of 3,062 patients, of which 1,441 are

from ASST Cremona, 1,390 from HM Hospitals, and 231 from Hartford Affiliates. The validation

population consists of 865 patients: 219 patients from Seville, 323 from the Hellenic CSG, and

323 from Hartford Hospital. The clinical characteristics of the derivation population are outlined

in Table 5.2. The average observed mortality rate in this population is 26.84%. In comparison to

survivors, non-survivors tend to be older (median age 80 vs. 64) and more commonly men (67.2%

vs. 58.4% of cohort). Moreover, the prevalence of comorbidities such as cardiac dysrhythmias,

chronic kidney disease, and diabetes is higher in the non-survivor population (9.61%, 4.21% and

15.92% versus 5.56%, 1.74%, and 11.42%, respectively). The clinical characteristics for each

participating study site are reported in Appendix C.1.

5.2.2 Performance metrics

The final mortality model exhibits an out-of-sample AUC of 0.90 (95% CI, 0.87-0.94) on the

derivation testing set; see Table 5.3. The AUC for the Seville cohort is slightly higher at 0.92 (95%
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CI, 0.88-0.95). For the other two validation centers, there is a decrease in AUC. In the Hellenic

CSG cohort, the model performs 0.87 (95% CI, 0.84-0.91) and in the Hartford Hospital population

0.81 (95% CI, 0.76-0.85). The corresponding ROC curves are included in Appendix Figure C-1.

Cohort N AUC Threshold Accuracy Specificity Precision Negative
predictive value

Training Set 2755
94.7

(93.87,95.54)
38.44

(36.62,40.25)
89.62

(88.48,90.76)
92.76

(91.79,93.73)
78.51

(76.98,80.04)
93.39

(92.46,94.32)

Testing Set 307
90.19

(86.86,93.52)
28.3

(23.26,33.34)
85.02

(81.02,89.01)
86.58

(82.77,90.39)
66.3

(61.02,71.59)
93.02

(90.17,95.87)

Hellenic CSG 323
87.45

(83.83,91.06)
20.23

(15.85,24.61)
74.92

(70.2,79.65)
74.23

(69.46,79.0)
25.74

(20.97,30.51)
97.3

(95.53,99.07)

Seville 219
91.62

(87.95,95.29)
33.21

(26.98,39.45)
86.76

(82.27,91.25)
87.43

(83.04,91.82)
48.94

(42.32,55.56)
97.09

(94.87,99.32)

Hartford 323
80.66

(76.36,84.97)
29.74

(24.75,34.72)
61.3

(55.99,66.61)
58.12

(52.74,63.5)
24.18

(19.51,28.85)
94.71

(92.26,97.15)

Table 5.3: AUC performance (%) and threshold-based metrics for training, testing, and validation
population.

A different threshold is selected for each cohort to enforce a minimum sensitivity of 80%.

Given the implications of these predictions, we report conservative risk estimates in order to ensure

that all critically ill patients are accounted for. This comes at the expense of specificity, i.e., it

increases the number of patients whom we may incorrectly flag as high risk of mortality. For the

fixed sensitivity requirement, we achieve a classification accuracy of 0.85 (95% CI, 0.81-0.89) in

the testing set with specificity of 0.87 (95% CI, 0.83-0.90); see Table 5.3. The model generalizes

better in the Seville cohort with an accuracy of 0.87 (95% CI, 0.82-0.91) and specificity of 0.87

(95% CI, 0.83-0.92). The necessary threshold for a sensitivity of 80% is lower for the Hellenic

CSG compared to the other populations. This is due to the low baseline incidence of mortality

in this sample when compared to the derivation and other validation cohorts. The model achieves

lower performance in this set of patients, with an accuracy of 0.75 (95% CI, 0.7-0.8) and specificity

of 0.74 (95% CI, 0.69-0.79). For Hartford Hospital, the accuracy of CMR is 0.61 (95% CI, 0.56-

0.67) with a specificity of 0.58 (95% CI, 0.53-0.64).

5.2.3 Model results

Through the SHAP framework, we identified the most important drivers of mortality risk and the

interplay between individual features. For a particular patient, SHAP values indicate the feature
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contributions towards the risk. The patient risk normalized between 0 and 1 is the sum of the SHAP

values of all the features. Figure 5-1a displays the risk contributions of the 10 most important

features. For example, higher values of age (red) yield higher SHAP values, suggesting that older

patients are at higher risk. In contrast, the SHAP value increases with lower values (blue) of

Oxygen Saturation, suggesting an inverse relationship with this feature.

When BUN is below 20 mg/dL, the mortality risk decreases, particularly for ages below 55

years. On the other hand, BUN values greater than 25 mg/dL for older patients increase the risk

(Figure 5-1b). A C-reactive protein (CRP) between 50 and 130 mg/L does not affect the risk,

independent of age. As CRP goes below 50 mg/L, the mortality risk decreases. For a CRP above

160 mg/L, the elevated risk does not change and is higher for older patients (Figure 5-1c). An

oxygen saturation below 93% increases the mortality risk rapidly and this trend is accelerated by

growing age (Figure 5-1d). A blood creatinine level greater than 1.2 mg/dL increases the risk

moderately, specifically for older patients. Levels above 3 mg/dL rapidly escalate the mortality

risk (Figure 5-1e). Figure 5-1f illustrates that while a blood glucose less than 130 mg/dL lowers

the risk, it can increase the risk for levels above 180 mg/dL, in particular for older patients. An

aspartate aminotransferase (AST) level above 65 U/L increases the risk, while a level below 25

U/L sharply decreases the risk, independent of age (Figure 5-1g). A platelet count in 103/µL

affects the risks in 4 distinct ranges: (i) below 50 the risk is elevated, (ii) between 50 and 180 the

risk is marginally increased (more for older patients), (iii) between 180 and 330 the risk is slightly

decreased, and (iv) above 330 the risk is sizably decreased (Figure 5-1h). Figure 5-1i shows that a

mean corpuscular volume (MCV) between 90 and 94 fL increases the risk moderately, while other

values have only small effects. Lastly, an increased risk is observed when white blood cell (WBC)

count is above 10 in 103/µL, in particular for older patients (Figure 5-1j).

5.3 Discussion

The CMR calculator predicts mortality with high accuracy using clinical measurements collected

early within a patient’s hospital admission. An early risk assessment of patient mortality allows

physicians to triage patients and prioritize resources in a highly congested system. It uses com-

monly available laboratory results and does not require imaging results or advanced testing. The
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Figure 5-1: SHAP importance plots for final model.
SHAP importance plots: (a) for order of the top 10 features in the model; (b-j) for impact of each feature’s values on

risk and the interaction with age. Gray shaded area highlight the reference range.
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presented tool can be particularly useful in lower acuity facilities or remote hospitals with con-

strained diagnostic capabilities.

Age is the most important determinant of mortality in the model: older patients have higher

mortality risk, which has been observed in retrospective patient analysis [176] and subsequently

reflected in public health guidance [43]. Predicted mortality also increases for patients with low

oxygen saturation, corroborating findings that link hypoxemia to mortality [172], as well as the

observed prevalence of shortness of breath in severe patients [166]. This measurement additionally

serves as signal of respiratory distress, and respiratory failure has been found clinically as one of

the major mortality causes of COVID-19 [142]. This can also appear in cases of silent hypoxia

where shortness of breath is not observed [168].

Our study finds that elevated BUN, CRP, creatinine, glucose, AST, and platelet counts are

highly significant laboratory features. Several of these biomarkers have been identified in other

retrospective analyses of mortality outcomes of COVID-19 [142, 46]. Prior work has also uncov-

ered the critical role of these biomarkers in identifying severe cases of patients with community

acquired pneumonia [101]. The PSI, CURB-65, and SCAP scores are also based on similar risk

factors such as glucose levels≥ 250 mg/dL and BUN > 19 mg/dL [106, 68]. Moreover, CRP levels

have been recognized to characterize severity for H1N1 patients [3].

CRP is a widely available inflammatory marker which has been independently observed as

a biomarker of COVID-19 severity [173, 165]. Our findings show that CRP values outside the

reference ranges do not necessarily increase the risk of mortality. In fact, CRP has a negative effect

on mortality until approximately 50 mg/L, it has a negligible effect between approximately 50mg/L

and 130 mg/L, and it significantly increases the mortality risk above 130mg/L. Elevated BUN

and creatinine levels are both indicative of impaired kidney function, which has been associated

with poor prognosis [49]. The individual feature plots indicate a clear transition from low to

high risk when BUN exceeds approximately 18 mg/dL and creatinine exceeds approximately 1.2

mg/dL. These values are slightly lower than reference ranges for these values, providing data-

driven validation of the ranges [161] targeted for COVID-19. The increase in mortality risk for

patients with elevated glucose levels is consistent with the reports in other studies of diabetes

as a risk factor [176, 53]. Elevated AST levels have been observed due to liver dysfunction in

severe COVID-19 cases [77]. Finally, low platelets are associated with increased risk, which match
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findings of thrombocytopenia in critical COVID-19 patients [107].

We recognize that the derivation populations may differ from other populations based both on

hospital conditions and inherent demographic differences. An external validation using Seville,

Greece, and US populations allows us to assess the broader clinical utility of our findings. The

CMR model performs well on these patients, with the strongest performance observed in Seville.

Seville consists of a South European population similar to the majority of the derivation cohort.

However, it did not face the same capacity challenges as ASST Cremona and HM Hospitals during

the study period. Greece had a significantly lower disease spread, resulting in a lower mortality rate

compared to the derivation population. Nevertheless, the model yields comparable results in this

cohort to the other European hospitals. Hartford has the weakest validation performance, which

may suggest inherent differences between Europe and the US in disease dynamics, treatment pro-

tocols, or underlying population susceptibility. This attests to the need for training and validation

on a diverse set of populations. We observe that the thresholds needed for obtaining 80% sensitiv-

ity differ across the external validation cohorts. When applying the CMR tool to a new hospital,

the threshold should be calibrated to the severity of this population. A sample of historical patients

at the hospital can be used to validate the model. Using the risk predictions and true outcomes

of this sample, various risk thresholds can be evaluated for sensitivity and specificity. Clinicians

can determine the relevant threshold for their hospital’s needs. For example, highly constrained

systems may employ a higher threshold (lower sensitivity) due to capacity limits, whereas other

centers may use this tool as an initial screening tool where sensitivity is required to be very high.

Risk models are most useful when they are readily available for healthcare clinicians. For

this reason, a dynamic online application has been created as the interface of the CMR model for

use by clinical providers. Figure 5-2 provides a visualization of the application that is available

at covidanalytics.io/mortality_calculator. After entering a patient’s clinical features, the model

returns a predicted mortality risk. It additionally produces a SHAP plot to elucidate the major

factors contributing to an individual patient’s risk score. Features in blue decrease risk from the

population baseline, whereas features in red increase risk. The contribution is proportional to the

width of the feature’s bar. In the example, we see that the patient’s age and oxygen saturation

levels increase his risk assessment, but his temperature and glucose lower his risk. The CMR tool

is currently undergoing prospective validation at two of the collaborating institutions in the study:
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the application is in use in the emergency room of ASST Cremona to prioritize hospitalizations

on higher risk patients, and the model also interoperates with the EMR of the Virgen del Rocío

University Hospital in Seville, Spain.

5.3.1 Limitations

Limited hospital capacity can impose potential biases in the training population. Only severe pa-

tients were able to be treated, particularly in Europe, and some hospitals were forced to turn away

patients deemed too critically ill during the peak of the virus. Thus, hospital admissions data may

exclude patients on both ends of the acuity spectrum. Additionally, the scarcity of hospital re-

sources may have led patients to receive insufficient care, increasing mortality risk due to lack of

treatment. While this warrants further investigation, initial validation results suggest that the CMR

tool generalizes well to less congested systems in Greece and the United States. The differences

related to Hartford Hospital might also be related to the timing of the virus. The virus affected

Europe before the US. This provided an opportunity to learn from the experience in Europe, which

may have resulted in different or more effective treatment decisions as well as governmental poli-

cies in the US. This is an opportunity for further study through validation on additional US cohorts.

Our clinical features are limited by the data that was commonly available across all sites in

the derivation population. We expect that a more comprehensive set of clinical features such as

D-Dimer and IL-6 levels, Body Mass Index, radiographic diagnosis, symptoms, and time elapsed

between the disease and treatment onset will yield more accurate results. A broader set of comor-

bidities, including hypertension, cancer, chronic obstructive pulmonary disease, and others could

be included when available. Recent reports on racial disparities and socio-economic determinants

of COVID-19 severity [1, 97] could be addressed through the incorporation of additional demo-

graphic data and external data sources.

Additionally, there is significant variability in treatment protocols across countries and indi-

vidual organizations. In future work, we hope to expand the set of captured clinical features and

incorporate treatments to disentangle some of the observed heterogeneity in outcomes and clinical

characteristics.
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5.4 Conclusion

This international study provides a mortality risk calculator of high accuracy for hospitalized pa-

tients with confirmed COVID-19. The CMR model validates several reported risk factors and

offers insights through a user-friendly interface. Validation on external data shows strong general-

ization to unseen populations in both Europe and the United States and offers promise for adoption

by clinicians as a support tool.
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Figure 5-2: Visualization of the Calculator interface. Using the SHAP package, personalized
interpretations of the predicted score are provided to the user.
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Chapter 6

Optimizing virtual care for chronic disease

patients: a case study in diabetes

Abstract
Telemedicine has ushered in a new era of healthcare delivery. The incorporation of virtual care can
benefit patients and providers, enabling more frequent touchpoints and lowering geographic barri-
ers to access. However, these benefits must be weighed against potential competing effects, such as
lower patient engagement or the introduction of technological barriers. The COVID-19 pandemic
accelerated the adoption of virtual care. In its aftermath, healthcare providers and policymakers
must devise a long-term strategy for how to leverage telehealth in combination with traditional care
modalities. In this work, we propose an integrated machine learning and optimization framework
for scheduling virtual and in-person visits. We take a causal inference perspective to visit modality
decisions, considering this as a treatment with potential effects on clinical and operational out-
comes. We obtain treatment effect estimates through machine learning models, which are then
used as inputs into an optimization model for patient scheduling. We study the endocrinology
practice of a large medical center, with A1C control and no-shows as the two outcomes of interest.
We find that increasing telehealth utilization is beneficial with respect to both maximizing A1C
control and minimizing no-shows, with greater increases in telehealth recommended as the no-
show objective is prioritized. Overall, our machine learning models provide personalized insights
into virtual care effectiveness for diabetic patients, and the optimization model yields a tactical tool
for jointly harnessing both visit types.

6.1 Introduction

Virtual care offers an opportunity to improve patient engagement, access, and provider efficiency

within a healthcare system. The COVID-19 pandemic led to widespread adoption of virtual
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care [88, 157]. As the pandemic recedes, the healthcare industry must determine the long-term

vision for telehealth’s role in patient care. While virtual care has garnered interest in recent years,

it had not been used widely due to technology gaps and insurance reimbursement policies. The

high utilization of virtual visits in the past two years provides, for the first time, large-scale data

on telehealth visits and outcomes. This enables an investigation of the effectiveness and tradeoffs

involved in virtual care across a variety of specialties.

In this work, we consider virtual care in the endocrinology division of a large medical group.

Diabetic patients are often treated over long periods of time, involving a combination of clinical

interventions and monitoring or follow-up visits. Many patients also receive other forms of care,

such as diabetes education or behavioral health. This chronic care setting is well-suited for ex-

panding virtual care, given the frequency of visits and incorporation of non-clinical interventions.

Both frequent touch points [121] and auxiliary services [126] have been shown to be effective in-

tervention strategies. Additionally, technological advancements have enabled remote monitoring

of patient A1C values, a key indicator of diabetic status. Continuous glucose monitors provide

real-time A1C measurements for patients and are able to transmit reports to providers. This gives

providers visibility into their patients’ progress without requiring point-of-care testing [42, 116].

There are various considerations involved in virtual vs. in-person care [115]. From an opera-

tional perspective, visit types differ in allowable schedule density, overhead for setting up appoint-

ments, and potential no-show rates. There are also patient access implications: virtual care gen-

erally lowers barriers to access (e.g. by geography). However, there is also a potential competing

effect of technology barriers that can increase disparities for under-served populations [115, 140].

Finally, different policies of in-person and virtual care can affect clinical outcomes through their

impact on patient engagement, care continuity, and appointment quality. A recent study of diabetes

management in COVID-19 found no adverse clinical effect of shifting to telehealth [13], although

there is no conclusive guidance on how to best leverage both modalities. Ashrafzadeh and Hamdy

[10] provide a comprehensive review of the telehealth utilization and effectiveness in diabetic care.

The potential benefits–and competing drawbacks–of telehealth motivate further study of the

effectiveness of virtual vs. in-person care modalities. We pose this as a treatment effect estimation

problem, where we represent the visit type as a treatment and estimate its impact on outcomes

based on the patient and appointment characteristics. While causal frameworks have been applied
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to study the impact of various COVID-19 interventions [104], this is, to our knowledge, the first

study that takes a causal approach to understanding telehealth vs. in-person visit outcomes and

optimal appointment assignment.

The combined use of telehealth and in-person visits has received limited attention in the op-

erations research community. While schedule optimization has been long-studied, existing work

generally assumes that all visits occur in-person. In recent years, telehealth schedule optimization

has gained interest. Ayca Erdogan et al. [14] propose a two-stage stochastic linear programming

model for scheduling remote patient visits with no-show and provider idle time considerations.

Ji et al. [92] consider a two-stage robust optimization approach for telehealth scheduling that in-

corporates uncertainty in provider behavior. These works operate in a pure telehealth setting and

thus fundamentally differ from the present work, in which we seek to inform the choice between

encounter modalities. Our work is also distinct in how outcome estimates (e.g., no-shows) are

obtained. We take a data-driven, nonparametric approach, using machine learning (ML) models in

a causal inference framework to estimate outcomes under both encounter types.

In this work, we compare care effectiveness for virtual and in-person visits, as measured by

both clinical and operational metrics, and propose an scheduling model that optimizes the use of

both visit types. Our contributions are as follows:

• We conduct a retrospective analysis of virtual and in-person endocrinology care in a large

regional medical group. Virtual care was introduced in March 2020 as a result of the COVID-

19 pandemic and has continued to be utilized. This provides us with data to compare treat-

ment modalities and obtain insights regarding clinical outcomes, system utilization, and de-

partment operations.

• We propose a causal approach to estimating the effect of visit modality on the outcomes of

interest. We model the visit modality, virtual vs. in-person, as a binary treatment decision.

We train causal ML models for each outcome and implement a rigorous model selection and

evaluation pipeline.

• We use the treatment effect estimates as inputs to a scheduling model, linking the ML models

to decisions through a prescriptive optimization model. Our framework can flexibly incor-

porate multiple clinical and operational outcomes that depend on treatment modality, and
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these outcomes can appear as objective or constraint terms. The scheduling model addition-

ally captures various system constraints, integrating a traditional optimization model with

learned treatment effects to inform decision-making.

This work allows departments to quantify the efficiency and clinical impact of various care

delivery models that jointly leverage virtual and in-person care. We provide a data-driven approach

to tackle questions such as: how effective is virtual care, and what is the ideal balance between

in-person and virtual visits?

6.2 Data overview

We study the patients of two high-volume endocrinology providers in Hartford HealthCare’s Med-

ical Group (HHCMG). We consider patients with established endocrinology care, defined by the

completion of at least two endocrinology visits recorded in HHCMG’s EMR, which was imple-

mented in 2017. We further restrict to patients with a history of diabetes, excluding patients who

have never been active on HHCMG’s diabetes registry. We restrict to encounters for which the

patient has both a previous and future A1C reading, as this is the primary clinical metric of in-

terest. We consider encounters that occur between April 2020 through December 2021 with a

status of completed, no-show, or same-day cancellation. We exclude all other cancellations, since

COVID-19 posed a major disruption to pre-existing scheduled visits. We identify completed visits

by matching encounters to claims based on the patient identifier and service date. We perform a

temporal split of the data. Encounters from April - December 2020 comprise our training data;

encounters from January - March 2021 are used as our validation data for model selection; and

encounters from April - December 2021 are used to test the models.

Encounter Features Our feature space consists of static patient features, time-varying features

that reflect a patient’s current health state, and appointment schedule characteristics. We represent

patients by their demographics (age, sex, race, and ethnicity), registration status for HHCMG’s

patient portal (“MyChart”), and whether they have Medicaid or Medicare as their primary insur-

ance payor. The MyChart variable acts as a proxy for technology use and access, and the Medicaid

indicator as a socioeconomic status proxy. For clinical features, we include indicators of common
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encounter diagnoses (diabetes without complication, diabetes with complication, thyroid disorders,

other endocrine disorders, and osteoporosis), cumulative completed appointment counts for each

specialty in HHCMG (e.g., internal medicine, endocrinology, nephrology), and the patient’s most

recent recorded A1C value. We also record a provider identifier, the appointment day of week,

and appointment time. Finally, each visit is scheduled as either “in-person" or “virtual"; this is our

treatment variable. Throughout this work, “virtual" care and telehealth are used interchangeably,

referring to encounters that are conducted remotely by video call or telephone. “In-person" and

office visits, refer to traditional appointments where a patient travels to the provider’s office.

Outcomes We consider two outcomes of interest.

• Visit Completion: We predict whether a scheduled appointment is completed (y = 1) vs. a

no-show or same-day cancellation (y = 0). Visit completion provides a metric of operational

efficiency for the provider. It also indirectly reflects accessibility and patient engagement.

• A1C Control: We predict whether the patient’s next A1C value is controlled. We define

A1C control using an upper bound of 7.0%, as recommended by the American Diabetes

Association [6]. Formally, y = 1 if the patient’s next A1C value is ≤ 7.0%; y = 0 otherwise.

This outcome quantifies clinical effectiveness of the visit modality.

6.3 Methods

Our modeling pipeline has two key components. First, we use causal ML to derive insights from

data over the past year, allowing us to quantitatively define the impact of care type on the above

outcomes. These models help answer questions about how telehealth vs. in-person care affects

the outcomes of interest, and how other patient attributes (like baseline health, demographics,

insurance type, etc.) contribute as well. Next, we then apply an optimization framework that uses

the resultant ML models to optimize care according to HHCMG’s priorities and constraints.
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6.3.1 Problem notation

The encounter features available at encounter i, including both static and time-varying features, are

represented as Xi. The visit modality is considered a treatment; this is the decision that we have

control over in optimizing care. The treatment received at visit i is encoded as:

Zi =

1 if visit i is virtual

0 if visit i is in-person

For visit i, Y a
i indicates whether the patient’s next A1C value is controlled, i.e., at most 7%. Y c

i

indicates whether the visit is completed.

6.3.2 Causal models

We train models to estimate the treatment effect of a virtual vs. in-person visit at encounter i,

given information available prior to the appointment. We use a doubly robust (DR) estimator to

estimate outcomes under each treatment alternative [15, 139]. This method combines both direct

estimation and inverse-propensity weighting. The direct estimation component predicts outcomes

as a function of features X and treatment Z, namely fY (X ,Z). As an alternative approach, inverse-

propensity weighting trains a model to predict the probability that an observation was assigned each

treatment and then estimates potential outcomes by reweighting each observation X’s outcome

under treatment Z by the probability that they received this treatment [86, 138].

A DR estimator combines the two approaches. Suppose we have an observation Xi with treat-

ment zi and observed outcome yi. For each treatment t, the direct estimator provides us with an

outcome estimates fY (X , t), and the treatment classifier fZ(X) yields a probability P(zi = t). The

estimate yi,t is then computed as:

ŷi,t = fY (X , t)+1[zi = t]∗ yi− fY (X , t)
P(zi = t)

(6.1)

Informally, ŷi,t is a corrected version of the direct estimator, where the actual observed outcome,

adjusted by treatment propensity, is incorporated for predicting the outcome under the observed

treatment. When predicting ŷi,t for unobserved treatments, i.e., t ̸= zi, the direct estimator is used.
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This treatment effect estimator is consistent if either the outcome model or propensity model are

correctly specified [139]. This robustness to to potential misspecification of either modeling com-

ponent is particularly relevant when learning treatment effects from observational data, as in this

virtual care setting.

The DR estimator is obtained through the outcome and treatment prediction models, which

are trained using standard supervised learning methods given. We train a classification model for

treatment propensity, where the binary treatment assignment is a function of X , i.e., fZ(X). We

train a regression model for the outcome prediction, where Y is a function of X and T , i.e., fY (X ,T ).

As in OptiCL [117], we employ a model selection pipeline with five-fold cross-validation to train

and select ML models for fY (X ,T ) and fZ(X), considering linear models, decision trees, and

ensemble methods. The models for the treatment and outcome tasks are not restricted to lie in

the same class. This nonparametric approach allows us to capture potential nonlinearities in the

predictive tasks.

Once the estimated rewards have been obtained, we train a causal model to predict individual

treatment effects, where the outcome targets for the causal model are estimated by the DR estima-

tor. We denote the estimated effect of a virtual (vs. in-person) appointment on visit completion for

patient k as ỹc
k and the estimated effect on A1C control as ỹa

k . The effect is defined as:

ỹk = ŷk,1− ŷk,0.

We train multiple such models and select between them by scoring their performance on the valida-

tion set. We consider causal forests [12] as well as a regularized linear regression model [71]. The

modeling pipeline is implemented in Python v3.7.4 using scikit-learn [131] and econml [17].

We repeat the effect estimation for both outcomes of interest, A1C control and visit completion.

6.3.3 Mixed-integer optimization model

We next apply the causal models developed in Section 6.3.2 to optimize the weekly schedule for

a single endocrinologist. We frame the following problem: given an existing schedule, which

visits should be “flipped" from in-person to virtual, or vice versa, to improve the outcomes of

interest? This can be viewed as a modified scheduling problem, where we incorporate learned
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effects for A1C ccontrol (ỹa
k) and visit completion (ỹc

k). Note that in this setting, we consider a

binary treatment, so each patient decision has two potential outcomes. This stands in contrast to the

more general OptiCL setting, in which decisions are multi-dimensional. In this case, we are able to

pre-compute the estimated treatment effects and do not need to directly embed the trained models.

This significantly reduces the problem dimensionality and allows us to incorporate causality into

our estimates, but it also reduces the richness of the decisions that we can optimize.

A schedule is defined by slots, which are day-time pairs (i, j) where the day is in set Sday and

appointment time is in set Stime. We also have a set of patients to schedule, given by set P . Our

decision variables are defined as:

zv
i jk =

1 if slot (i, j) is assigned to patient k for a virtual visit

0 otherwise

zo
i jk =

1 if slot (i, j) is assigned to patient k for an in-person visit

0 otherwise

for all i ∈Sday, j ∈Stime,k ∈P .

Given the schedule assignment, we can compute the average effect of the visit modality on

each outcome of interest. For A1C control, the estimated treatment effect for a patient scheduled

in slot (i, j) is given as:

ỹa
k(z

v
i jk− zo

i jk).

This follows from the fact that ỹa
k gives the estimated effect of a virtual visit over an in-person

visit. Suppose that ỹa
k = 0.1. Then the chosen visit modality will have an estimated effect of

+0.1, improving the likelihood A1C control, if the patient is scheduled for a virtual visit (zv
i jk = 1),

or an estimated effect of −0.1, reducing the likelihood of A1C control, if the visit is in-person.

By averaging over all patients and slots, we obtain an average treatment effect of the assigned

schedule.

We begin with an existing schedule, (Z̄v, Z̄o), with indicators for the current allocation of visits

and slots to patients, i.e. z̄v
i jk = I{slot (i, j) is currently assigned to patient k for a virtual visit}, and
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likewise for z̄o
i jk. This schedule provides a baseline for the model and informs several key param-

eters defined in Table 6.1. In the absence of an existing schedule, or in the presence of additional

context, these parameters can be set in other ways. For example, we assume that a provider’s avail-

ability corresponds exactly to their current schedule, but a provider could submit their availability

through a preference form to determine their open slots. Similarly, we propose lower bounds on

the average effect of visit completion and A1C control to ensure that the proposed solution does no

worse than the existing schedule. This reflects the schedule re-optimization setting, in which we

assume there is a baseline that we are amending, rather than constructing a schedule from scratch.

These could be replaced by department-level benchmarks, or the corresponding constraints in the

optimization model could be removed entirely.

Parameter Definition Calculation

D Total visit demand for week ∑i, j,k(z̄v
i jk + z̄o

i jk)

Ai j Indicator of provider availability in slot (i, j) ∑k(z̄v
i jk + z̄o

i jk)

Lc Lower bound on visit completion effect ∑i, j,k

[
ỹc

k(z̄
v
i jk− z̄o

i jk)
]

La Lower bound on A1C control effect ∑i, j,k

[
ỹa

k(z̄
v
i jk− z̄o

i jk)
]

∑i, j,k implies a sum over i ∈Sday, j ∈Stime,k ∈P .

Table 6.1: Input data for scheduling model.

We further enforce some patients’ visits to remain fixed to their original modality. These pa-

tients comprise the sets Pv and Po, which are defined through the following rules:

• Any new patient k must be seen in person (k ∈Po).

• Any non-diabetic patient k on the schedule must remain fixed to their original modality. If

z̄v
i jk = 1 for some (i, j), then k ∈Pv; otherwise, k ∈Po.

• If a patient k does not have data available for causal estimates, their visit modality must

remain fixed. For example, if a patient does not have a previous A1C value available, we

are unable to estimate the treatment effects of in-person vs. virtual care and thus keep their

original appointment.

Each of these sets Pv,Po are subsets of the patient base P . Furthermore, Pv∩Po = /0. These

sets could be modified based on other factors, such as patient preference or transportation ability.
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Finally, there are user-specified parameters that inform the model. Vmax denotes the maximum

allowable proportion of visits that can be held virtually. α controls the relative weight of A1C

control and visit completion in the objective; the objective only optimizes for A1C control if α = 1,

and only for visit completion if α = 0.

Given the model inputs and selected parameters, we propose the following optimization model:

max
𝑧v,𝑧o

α

D ∑
i, j,k

[
ỹa

k(z
v
i jk− zo

i jk)
]
+

1−α

D ∑
i, j,k

[
ỹc

k(z
v
i jk− zo

i jk)
]

(6.2a)

s.t. ∑
i, j,k

[
ỹa

k(z
v
i jk− zo

i jk)
]
≥ La (6.2b)

∑
i, j,k

[
ỹc

k(z
v
i jk− zo

i jk)
]
≥ LC (6.2c)

∑
i, j,k

zv
i jk ≤ D∗Vmax (6.2d)

zo
i jk = 1, k ∈Po, i ∈Sday, j ∈Stime (6.2e)

zv
i jk = 1, k ∈Pv, i ∈Sday, j ∈Stime (6.2f)

∑
i, j

[
zv

i jk + zo
i jk

]
= 1 k ∈P (6.2g)

∑
k∈P

[
zv

i jk + zo
i jk

]
≤ Ai j i ∈Sday, j ∈Stime (6.2h)

zv
i, j,k ∈ {0,1} k ∈P, i ∈Sday, j ∈Stime (6.2i)

zo
i, j,k ∈ {0,1} k ∈P, i ∈Sday, j ∈Stime. (6.2j)

Constraints 6.2b and 6.2c enforce lower bounds on the average effects, as described in Ta-

ble 6.1. Constraint 6.2d imposes a maximum allowable proportion of virtual visits, which might

be guided by department-level or payer mandates. This is applied at the weekly level, although it

could easily be enforced daily.

The remaining constraints ensure schedule feasibility. Constraints 6.2e and 6.2f fix the visit

modality for any patients in Po or Pv. Constraint 6.2g ensures that the demand is met: every

patient must be scheduled. Constraint 6.2h imposes that a visit can only be scheduled in slot (i, j)

if the provider is available.

This formulation optimizes a provider’s schedule for a fixed set of patients. In its general form,
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the appointment day, time, and modality are all determine by the model. In our case study, we

apply a final additional constraint that all patients must be seen in their original slot. In other

words, the visit modality is the only decision lever.

6.4 Results

In this section, we present the results from our case study on HHCMG’s endocrinology group.

We first examine the data scope and key features. We then quantitatively evaluate the models

used to generate treatment effect estimates, namely the DR estimator component models and final

causal model. Finally, we generate proposed schedules for several weeks of data according to the

estimated treatment effects. We perform a sensitivity analysis of the proposed schedules to the

Vmax and α parameters. We also compare the proposals to the true observed schedules in terms of

virtual care utilization and outcomes.

6.4.1 Data scope

There are 2546 encounters that meet the inclusion criteria, across 721 unique patients, of which

30.79% were virtual. A descriptive summary of all encounters, split by visit modality, is included

in Table 6.2. Significance tests are performed for each feature, using a Wilcoxon rank-sum test

for continuous features and Chi-square test for binary features. There are significant differences

in patient demographics for virtual and in-person visits. Patients being seen through virtual vis-

its tend to be younger (p < 0.001) and have different racial (p < 0.001) and ethnic (p = 0.046)

backgrounds than patients seen in person. These patients also generally have fewer cumulative

endocrinology appointments (p < 0.001) and more cumulative internal medicine appointments

(p = 0.033), indicating more consistent established primary care and potentially lower complexity

or more recent endocrinology needs. Appointments earlier in the week (p < 0.001) and earlier in

the day (p < 0.001) are also more likely to be virtual. For the outcomes of interest, virtual visits

have lower A1C control rates than in-person visits (54.85% vs. 57.32%, p = 0.263) but higher

visit completion (95.41% vs. 92.68%, p = 0.013).

Our temporal split yields the following partition: the training data (April - December 2020)

consists of 1239 observations, with 49% virtual; the validation data (January - March 2021) con-
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Feature All (N = 2,546) Office (N = 1,762) Virtual (N = 784) P-Value

Sex = Female 1560 (61.27%) 1065 (60.44%) 495 (63.14%) 0.213
Age 63.00 (53.00-71.00) 64.00 (54.00-71.00) 61.00 (50.00-69.00) <0.001
Race <0.001

White or Caucasian 2046 (80.36%) 1456 (82.63%) 590 (75.26%)
Asian 144 (5.66%) 106 (6.02%) 38 (4.85%)
Black or African American 127 (4.99%) 65 (3.69%) 62 (7.91%)
American Indian or Alaska Native 3 (0.12%) 1 (0.06%) 2 (0.26%)
Other 152 (5.97%) 85 (4.82%) 67 (8.55%)
Unknown 94 (3.69%) 62 (3.52%) 32 (4.08%)

Ethnicity 0.046
Not Hispanic or Latino 2315 (90.93%) 1616 (91.71%) 699 (89.16%)
Hispanic or Latino 130 (5.11%) 80 (4.54%) 50 (6.38%)
Unknown 101 (3.97%) 66 (3.75%) 35 (4.46%)

MyChart Status 0.326
Activated 2194 (86.17%) 1510 (85.70%) 684 (87.24%)
Pending Activation 209 (8.21%) 146 (8.29%) 63 (8.04%)
Inactivated 93 (3.65%) 68 (3.86%) 25 (3.19%)
Patient Declined 50 (1.96%) 38 (2.16%) 12 (1.53%)

Primary Insurance <0.001
Medicare 555 (21.80%) 402 (22.81%) 153 (19.52%)
Medicaid 225 (8.84%) 129 (7.32%) 96 (12.24%)

Appointment Diagnosis 0.027
Diabetes mellitus with complications 1242 (48.78%) 859 (48.75%) 383 (48.85%)
Diabetes mellitus without complication 757 (29.73%) 530 (30.08%) 227 (28.95%)
Thyroid Disorders 143 (5.62%) 105 (5.96%) 38 (4.85%)
Other endocrine disorders 88 (3.46%) 51 (2.89%) 37 (4.72%)
Osteoporosis 15 (0.59%) 9 (0.51%) 6 (0.77%)

Last A1C 7.00 (6.30-8.00) 7.00 (6.23-7.90) 7.10 (6.30-8.00) 0.128
Cumulative endocrinology appointments 7.00 (4.00-11.00) 8.00 (4.00-12.00) 5.00 (3.00-8.00) <0.001
Cumulative internal medicine appointments 2.00 (0.00-11.00) 1.00 (0.00-11.00) 3.00 (0.00-12.00) 0.033
Appointment day of week 2.00 (1.00-4.00) 2.00 (2.00-4.00) 2.00 (1.00-3.00) <0.001
Appointment time (Hour) 13.00 (10.00-14.00) 13.00 (10.00-15.00) 11.00 (9.00-14.00) <0.001

A1C control 1440 (56.56%) 1010 (57.32%) 430 (54.85%) 0.263
Visit complete 2381 (93.52%) 1633 (92.68%) 748 (95.41%) 0.013

Table 6.2: Descriptive summary of encounter characteristics, split by visit modality.

tains 485 visits, with 25% virtual; the testing data (April - December 2021) contains 825 visits,

with 7% virtual.

6.4.2 Treatment effect estimation

To assess the performance of the ML models, we first consider the predictive performance of

the component models in the DR estimator, trained with the training set. The reward estimation

involves both a treatment propensity and outcome prediction model. Given that the treatment

decision and outcomes of interest (A1C control and visit completion) are binary, we evaluate the

142



quality of each of these predictive models using area under the ROC curve (AUC).

Table 6.3 shows the results of the model selection procedure for the three predictive models,

derived from the training data (“Training Model"): treatment (virtual = 1, vs. in-person = 0), A1C

control (0/1), and visit completion (0/1). The outcome models have strong predictive performance

(test AUCs 0.875-0.959), while the treatment model has moderate results (test AUC 0.693). The

selection of tree-based ensemble methods, random forests (RF) and gradient boosting machines

(GBM), suggests nonlinear dependence on the input variables. With the predictive models fixed, a

causal forest (CF) model was selected for both treatment effect estimation problems, outperforming

the regularized linear model on the validation set by 0.5% in the A1C control model and 13.7% in

the visit completion model.

Task Model Train AUC Test AUC

Treatment GBM 0.774 0.693
Outcome - A1C Control GBM 0.979 0.875
Outcome - Visit Completion RF 0.928 0.959

Table 6.3: Selected predictive models for treatment and outcome classification tasks.

We repeat this procedure to derive models from our testing data (“Testing Model"), which

are used in model evaluation. The test set models allow us to approximate the rewards that are

observed in the test set, independent of the training set, which provides an objective evaluation of

the optimization model’s prescriptions on out-of-sample treatment outcomes. The models exhibit

strong quantitative performance, with AUCs of 0.944 for treatment (GBM model), 0.956 for A1C

control (GBM model), and 0.980 for visit completion (RF model).

6.4.3 Optimization results

We next turn to evaluation of the schedule optimization model. The causal models from Sec-

tion 6.3.2 are used to estimate the treatment effect parameters, ỹa
k and ỹc

k, for each patient visit k. We

generate optimized schedules obtained over a range of objective weights, α ∈ {0, .1, .2, . . . ,1.0}
and maximum virtual visit proportions, Vmax ∈ {0.2,0.3,0.4,0.5}. We repeat this procedure for

five weeks of appointments in our test window (April 2021 onwards). We compare the average

treatment effect under alternative schedules, including the baseline policy. In all cases, we report
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Figure 6-1: Tradeoffs as α and Vmax vary. The black square represents the baseline effects obtained
from the implemented schedules.

the average effect estimates for encounters that are not fixed, meaning that they are candidates for

optimizing the visit modality.

Effect of Vmax and α parameters. Figure 6-1 shows the tradeoffs in the two objective terms,

A1C control and visit completion, as Vmax and α vary. Both objective terms improve as Vmax

increases, as this relaxes the upper bound on virtual visits and thus broadens the feasible region.

The average optimized effects significantly outperform the average baseline effects for 0.0 A1C

control and -0.01 visit completion across all parameter combinations. This is necessarily true, as

it is enforced by constraints 6.2b and 6.2c in the model formulation. For a fixed Vmax, there is a

tradeoff between the two objective terms which favors A1C control as α increases.

We further explore a single week’s solution to gain insight into the structure of the optimal

schedules as priorities shift between A1C control and visit completion. We fix Vmax = 0.5, which

renders the virtual proportion limit non-binding, and compare the optimized schedules for α ∈
[0.0,0.5,1.0]. The resultant schedules are displayed in Figure 6-2, and the average effects on A1C

control and visit completion are shown in Table 6.4. At α = 0, the model switches all flexible

appointments to virtual, leaving only the forced office visits to occur in person (overall virtual rate

of 44.4%). As α increases, some flexible visits flip to in-person, reflecting that in-person visits

offer a benefit when A1C control gets prioritized. However, even at the highest value of α = 1.0,

there is still a 29.6% virtual visit rate, exceeding the 18.5% baseline rate.
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Figure 6-2: Visualization of a single week’s schedule.

Comparison to baseline current schedule. Finally, with Vmax = 0.5 and α = 0.5 fixed, we

compare the performance of our prescription model across all five test weeks against the true

schedule. We perform this evaluation using the original trained effect estimation model (“Training

Model") as well as the models derived from the test set (“Testing Model"). The results are displayed

in Table 6.5. Across the test weeks, the true modality assignment has a slight negative effect in both

the training and testing models, while the optimized schedule has a positive effect in all cases. The

benefit estimated from the independent testing model is similar to the training model’s estimate for

visit completion (+0.025, vs. +0.029), and actually higher than the training model’s estimate for

A1C control (+0.097, vs. +0.020). This suggests that the training model’s effect estimates are

consistent with the trends seen in the test set, providing a robustness check.
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Alpha Virtual Proportion A1C Control Effect Visit Completion Effect

0 0.444 0.009 0.023
0.5 0.370 0.016 0.018
1 0.296 0.028 0.004

Baseline 0.185 0.001 -0.007

Table 6.4: Treatment effect for various optimized schedules.

A1C Control Effect Visit Completion Effect

Training Model Testing Model Training Model Testing Model
True Schedule 0.000 -0.036 -0.013 -0.012
Optimized Schedule 0.020 0.061 0.016 0.013

Benefit (Absolute) 0.020 0.097 0.029 0.025

Table 6.5: Comparison of average outcome effects across five test weeks. The true schedule indi-
cates the visit modalities implemented in practice, and the optimized schedule reflects the recom-
mended modalities with Vmax = 0.5 and α = 0.5.

6.5 Discussion

The optimization results suggest that increasing virtual care utilization for diabetic patients can

improve both operational (visit completion probability) and clinical (A1C control) outcomes. For

a given candidate schedule, the optimal allocation of visit modalities depends on how these two

objectives are weighted. In general, the proportion of virtual visits increases as visit completion is

prioritized. However, the recommended virtual visit rate increases above the baseline level even

when the objective purely maximizes A1C control. This suggests that incorporating virtual care

to some degree is beneficial for both outcomes. While virtual care was heavily utilized at the

beginning of the pandemic, it decreased significantly over the course of 2021. The results motivate

further study of virtual visits as a long-term care strategy. We focus on diabetic patients being seen

in endocrinology practices but note that the framework can be applied to other specialties.

As with OptiCL [117], the integration of ML and optimization allows us to both learn the

relationship between decisions and outcomes and to optimize these decisions. The critical dif-

ference in this work is the use of causal models rather than standard supervised learning models

to estimate the decision-outcome relationship. We obtain outcome estimates using a DR estima-

tor, and further train a CF model to predict treatment effects. Causal models are a natural fit for
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learning decision-outcome relationships in optimization settings, as they are tailored to estimating

the effect of a certain treatment, rather than focused on predictive accuracy. This aligns with the

downstream task, which is ultimately to prescribe decisions. Furthermore, the DR estimator pro-

vides safeguards against potential misspecification of either the propensity or outcome model. The

descriptive analysis in Table 6.2 reveals differences in treatment propensity across several char-

acteristics, including demographics and clinical status, attesting to the value of propensity-based

reweighting.

However, the use of causal models also restricts the richness of the decisions that can be op-

timized. The causal approach is enabled by the presence of a binary decision (Z ∈ {0,1}, repre-

senting visit modality). Causal effect estimation compares outcomes between different treatment

alternatives, and existing methods generally rely on discrete treatment alternatives (e.g., two drug

options) or a single continuous treatment (e.g., drug dose). For example, the CF model loss is based

on the treatment effect, namely the difference between treatments, which fundamentally assumes a

binary treatment decision. Additionally, the DR estimator that we employ in this work requires di-

rect estimation outcome models and a propensity model. The constraint learning approach is a form

direct estimation, where Y is predicted using a joint feature space of features and treatments that

naturally handles multi-dimensional decision settings. However, the treatment propensity model

requires a discrete set of treatment alternatives and thus cannot be directly applied to an arbitrary

multi-dimensional decision setting with combination treatments.

In future work, we look to bridge the gap between causal approaches and multi-dimensional

decision settings, allowing us to leverage treatment effect estimation in the more general constraint

learning framework. This would allow us to consider a much broader space of decisions for care

optimization. At the weekly level, provider, day, and time assignment could be treated as additional

decision variables. To make such a model practical, it would require additional data on patient

and provider availability outside of the existing appointments. Additionally, a multi-dimensional

representation of decisions would allow us to more holistically optimize a patient’s care plan, rather

than a single visit. For example, a care plan “decision" could be represented by visit frequency of

each modality, referrals to auxiliary services (e.g., nutrition, diabetes education), and provider team

composition (e.g., primary endocrinologist, medical assistants).

An MIO approach also allows for the flexible incorporation of additional model constraints.
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The treatment effect terms that appear in the objective and constraints could also be modified

to enforce group-level fairness. Currently, we maximize the average effect across all flexible

appointments and enforce that this average is no worse than the baseline schedule, but this can

result in worsening at the individual and group level. A modified objective could maximize the

minimum average effect across groups (i.e., the average effect of the group that benefits least

from the proposed schedule), or likewise constrain the minimum group-level average effect. Given

the connection between visit modality and care access, a group-level perspective would add an

important safeguard against disparate impact.

Finally, as with all retrospective studies involving observational data, we are limited by the

data collected. We make a standard assumption of no unobserved confounders, which relies on a

sufficiently rich feature space. While the existing feature space captures a variety of demographic,

clinical, and access metrics, there are other factors that could be relevant as features or additional

outcomes to optimize. Going forward, we plan to collect additional clinical features (e.g., other

lab results, comorbidities), patient-reported data (e.g., satisfaction, social determinants of health),

and provider features (e.g., provider preferences, availability). These will populate a prospective

database for ongoing monitoring of virtual health utilization and care effectiveness.

6.6 Conclusion

In this work, we establish a prescriptive framework for virtual care utilization in endocrinology. We

consider this problem from a causal inference lens, modeling the visit modality as a treatment lever

with impact on both operational and clinical outcomes. We integrate causal ML methods with MIO

to bridge the gap between data and decision-making. The resultant model offers a timely policy

analysis tool, with potential implications for both local healthcare systems and national guidelines.
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Chapter 7

Conclusions

This thesis tackles data-driven decision-making in healthcare. The chapters address both domain-

specific clinical questions, such as assessing chemotherapy patients for neutropenia risk, and more

general challenges, such as learning constraints in mixed-integer optimization (MIO) formulations.

We recognize the enormous opportunity presented by digitized health data, as well as the gaps that

hinder this opportunity from being fully realized. In this thesis, we take steps towards closing these

gaps.

Chapters 2 and 3 present new approaches to more effective learning from data. Chapter 2 pro-

vides a data-to-decisions pipeline that integrates machine learning-driven constraints and objec-

tives into MIO formulations. This framework allows us to address complex problems with multi-

dimensional decisions, such as identifying combination chemotherapy regimens for advanced gas-

tric cancer or designing palatable food baskets for humanitarian aid efforts. In Chapter 3, we

propose an interpretable clustering algorithm for more informative exploratory data analysis or

subgroup identification. The work in both of these chapters have been made accessible through

software tools, OptiCL and ICOT, for broader use by researchers and practitioners.

Chapters 4, 5, and 6 put analytics into practice, tackling three clinically-driven problems. These

problems span oncology, COVID-19, and chronic disease care, developing both predictive and pre-

scriptive models to improve risk assessment and inform patient care. As with the methodological

contributions, a central goal of these works has been the development of useful tools. The works

discussed in this thesis are oriented towards impact. The COVID-19 mortality model has been

deployed in practice and the neutropenia prediction model is undergoing a follow-up study with
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Hartford HealthCare. The virtual health project is an area of active work with our clinical collabo-

rator, and the model is being used to guide discussions with hospital leaders to inform future care

strategies.

Future Directions Healthcare analytics is a rich space, and the questions that this thesis has

answered have prompted new questions and future areas to explore.

Our constraint learning framework introduces a new lens for decision making, which has broad

applicability to treatment personalization as well as hospital operations and care delivery. It is

particularly relevant in the setting of multi-dimensional decisions in complex environments, which

describes many healthcare problems. There is a natural tie between constraint learning and causal

inference, as decision optimization relies on distilling the effect of such decisions on the outcomes

of interest. While causal inference methods address treatment effect estimation, such methods

significantly restrict the richness of decision space that can be considered. The integration of these

two fields is of great interest as a future direction. The virtual health effort forms a strong basis for

this work, given its use of causal models within a larger optimization framework.

There is also an opportunity to delve further into the failure points that hinder adoption of clin-

ical decision support systems. This includes further development of interpretable methods, which

become increasingly important–and challenging–in the presence of multi-modal data. Another

barrier is the tension between clinical knowledge and machine learning (ML) models: while much

can be learned from data, there is also much to learn from practitioners who see patients every

day. The balance between domain knowledge and algorithms is typically struck in an ad hoc man-

ner. Predictive and prescriptive tools would benefit from a unified approach to jointly harnessing

these two valuable information sources. Finally, perhaps the most significant obstacle to clinical

decision support tools is their lack of validation on external populations. The burden of data cura-

tion and standardization prevents models from being tested on other sites, and without evidence of

generalizability, these models rightfully remain unused. There is need for further work in auditing

ML models, particularly with a lens towards disparate impacts on underrepresented populations.

This includes characterizing the “trust limits" of a model and quantifying the representativeness of

a training population.
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Appendix A

Appendix for Chapter 2

A.1 Methodology

Embedding a decision tree

Consider the leaves in Figure 2-2. We can then encode the leaf assignment of an observation 𝑥

through the following constraints:

A⊤1 𝑥−M(1− l3)≤ b1, (A.1a)

A⊤2 𝑥−M(1− l3)≤ b2, (A.1b)

A⊤1 𝑥−M(1− l4)≤ b1, (A.1c)

−A⊤2 𝑥−M(1− l4)≤−b2− ε, (A.1d)

−A⊤1 𝑥−M(1− l6)≤−b1− ε, (A.1e)

A⊤5 𝑥−M(1− l6)≤ b5, (A.1f)

−A⊤1 𝑥−M(1− l7)≤−b1− ε, (A.1g)

−A⊤5 𝑥−M(1− l7)≤−b5− ε, (A.1h)

l3 + l4 + l6 + l7 = 1, (A.1i)

y− (p3l3 + p4l4 + p6l6 + p7l7) = 0, (A.1j)

where l3, l4, l6, l7 are binary variables associated with the corresponding leaves.
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An observation will be assigned to the leftmost leaf (node 3) if A⊤1 𝑥 ≤ b1 and A⊤2 𝑥 ≤ b2. An

observation would be assigned to node 4 if A⊤1 𝑥≤ b1 and A⊤2 𝑥> b2, or equivalently,−A⊤2 𝑥<−b2.

Furthermore, we can remove the strict inequalities using a sufficiently small ε parameter, so that

−A⊤2 𝑥 ≤ −b2− ε . For a given 𝑥, if A⊤1 𝑥 ≤ b1, Constraints (A.1e) and (A.1h) will force l6 and l7

to zero, respectively. If A⊤2 𝑥 ≤ b2, constraint (A.1d) will force l4 to 0. The assignment constraint

(A.1i) will then force l3 = 1, assigning the observation to leaf 3 as desired. Finally, constraint

(A.1j) sets y to the prediction of the assigned leaf (p3). We can then constrain the value of y using

our desired upper bound of τ (or lower bound, without loss of generality).

More generally, consider a decision tree ĥ(𝑥,𝑤) with a set of leaf nodes L each described by

a binary variable li and a prediction score pi. Splits take the form (Ax)
⊤𝑥+(Aw)

⊤𝑤 ≤ b, where

Ax gives the coefficients for the optimization variables 𝑥 and Aw gives the coefficients for the non-

optimization (fixed) variables 𝑤. Let S l be the set of nodes that define the splits that observations

in leaf i must obey. Without loss of generality, we can write these all as (Āx)
⊤
j 𝑥+(Āw)

⊤
j 𝑤−M(1−

li) ≤ b̄ j, where Ā is A if leaf i follows the left split of j and −A otherwise. Similarly, b̄ equals b

if the leaf falls to the left split, and −b− ε otherwise, as established above. This decision tree can

then be embedded through the following constraints:

(Āx)
⊤
j 𝑥+(Āw)

⊤
j 𝑤−M(1− li)≤ b̄ j, i ∈L , j ∈S l, (A.2a)

∑
i∈L

li = 1, (A.2b)

y− ∑
i∈L

pili = 0. (A.2c)

Here, M can be selected for each split by considering the maximum difference between (Āx)
⊤
j 𝑥+

(Āw)
⊤
j 𝑤 and b j. A prescription solution 𝑥 for a patient with features 𝑤 must obey the constraints

determined by its split path, i.e. only the splits that lead to its assigned leaf i. If li = 0 for some

leaf i, the corresponding split constraints need not be considered. If li = 1, constraint (A.2a)

will enforce that the solution obeys all split constraints leading to leaf i. If li = 0, no constraints

related to leaf i should be applied. When li = 0, constraint (A.2a) will be nonbinding at node j if

M ≥ (Āx)
⊤
j 𝑥+(Āw)

⊤
j 𝑤− b̄ j. Thus we can find the minimum necessary value of M by maximizing

these expressions over all possible values of 𝑥 (for the patient’s fixed 𝑤). For a given patient with
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features 𝑤 for whom we wish to optimize treatment, EM(𝑤) is the solution of

max
𝑥

(Āx)
⊤
j 𝑥+(Āw)

⊤
j 𝑤− b̄ j (A.3a)

s.t. 𝑔(𝑥,𝑤)≤ 0, (A.3b)

𝑥 ∈X (𝑤). (A.3c)

Note that the non-learned constraints on 𝑥, namely constraint (A.3b), and the trust region constraint

(A.3c) allow us to reduce the search space when determining M.

MIO vs. LO formulation for decision trees

In Section 2.2, we proposed two ways of embedding a decision tree as a constraint. The first uses

an LO to represent each feasible leaf node in the tree, while the second directly uses the entire MIO

representation of the tree as a constraint. To compare the performance of these two approaches,

we learn the palatability constraint using a decision tree (CART) grown to various depths (from a

maximum depth of 3 to 20) and solve the optimization model with both approaches. Figure A-1

shows that as the maximum allowable tree depth is increased, the number of LOs to be solved

also increases. This is because there are more feasible leaves which need to be represented using

LOs. Once the tree has reached the optimal depth (selected via cross-validation), increasing the

maximum allowable depth of the tree does not cause the tree to grow any further. At this point,

the number of LOs to be solved remains constant. When comparing the solution times (averaged

over 10 runs), the right graph in Figure A-1 shows that the MIO approach is relatively consistent in

terms of solution time regardless of the tree depth. With the LO approach however, as the depth of

the tree grows, the number of LOs to be solved also grows. While the solution time of a single LO

is very low, solving multiple LOs sequentially might be heavily time consuming. A way to speed

up the process is to solve the LOs in parallel. A tree of depth 3 requires only one LO to be solved,

which takes 1.8 seconds in this problem setting. By parallelizing the solution of the LOs, the total

solution time can be expected to take only as long as it takes for the slowest LO to be solved.
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Figure A-1: Comparison of MIO and multiple LO approach to tree representation, as a function of
allowable tree depth.

MIO representation of the ReLU activation function

We can represent the ReLU operator, v = max{0,x} the following way:

v≥ x, (A.4a)

v≤ x−ML(1− z), (A.4b)

v≤MU z, (A.4c)

v≥ 0, (A.4d)

z ∈ {0,1} , (A.4e)

where ML < 0 is a lower bound on all possible values of x, and MU > 0 is an upper bound. While

this embedding relies on a big-M formulation, it can be improved in multiple ways. The model can

be tightened by careful selection of ML and MU . Furthermore, [8] recently proposed an additional

iterative cut generation procedure to improve the strength of the basic big-M formulation.

Embedding a multi-layer perceptron for multi-class classification

In multi-class classification, the outputs are traditionally obtained by applying a softmax activation

function, S(𝑥)i = exi/
(
∑

K
k=1 exk

)
, to the final layer. This function ensures that the outputs sum to

one and can thus be interpreted as probabilities. In particular, suppose we have a K-class classifi-

cation problem. Each node in the final layer has an associated weight vector 𝛽i, which maps the
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nodes of layer L− 1 to the output layer by 𝛽⊤i 𝑣
L−1. The softmax function rescales these values,

so that class i will be assigned probability

vL
i =

e𝛽
⊤
i 𝑣L−1

∑
K
k=1 e𝛽

⊤
k 𝑣L−1 .

We cannot apply the softmax function directly in an MIO framework with linear constraints. In-

stead, we use an argmax function to directly return an indicator of the highest probability class,

similar to the approach with SVC and binary classification MLP. In other words, the output 𝑦 is

the identity vector with yi = 1 for the most likely class. Class i has the highest probability if and

only if

β
L
i0 +𝛽L⊤

i 𝑣L−1 ≥ β
L
k0 +𝛽L⊤

k 𝑣L−1, k = 1, . . . ,K.

We can constrain this with a big-M constraint as follows:

β
L
i0 +𝛽L⊤

i 𝑣L−1 ≥ β
L
k0 +𝛽L⊤

k 𝑣L−1−M(1− yi), k = 1, . . . ,K, (A.5a)
K

∑
k=1

yk = 1. (A.5b)

Constraint (A.5a) forces yi = 0, if the constraint is not satisfied for some k ∈ {1, . . . ,K}. Con-

straint (A.5b) ensures that yi = 1 for the highest likelihood class. We can then constrain the pre-

diction to fall in our desired class i by enforcing yi = 1.

A.2 Trust region

As we explain in Section 2.2.3, the trust region prevents the predictive models from extrapolating.

It is defined as the convex hull of the set Z = {(𝑥̄i,𝑤̄i)}N
i=1, with 𝑥̄i ∈ Rn observed treatment

decisions, and 𝑤̄i ∈ Rp contextual information. In Section A.2, we explain the importance of

using both 𝑥̄ and 𝑤̄ in the formulation of the convex hull. When the number of samples (N) is too

large, the optimization model trust region constraints may become computationally expensive. In

this case, we propose a column selection algorithm which is detailed in Section A.2.
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(a) Solutions lie within trust region. (b) Solutions may lie outside the trust region.

Figure A-2: Effect of 𝑤̄ on the trust region.

Defining the convex hull

We characterize the feasible decision space using the convex hull of our observed data. In general,

we recommend defining the feasible region with respect to both 𝑥̄ and 𝑤̄. This ensures that our

prescriptions are reasonable with respect to the contextual variables as well. Note that for different

values of 𝑤, the convex hull in the 𝑥 space may be different. In Figure A-2, the shaded region

represents the convex hull of Z formed by the dataset (blue dots), and the red line represents the

set of trusted solutions when 𝑤 is fixed to a certain value. In Figure A-2a, we see that the set

of trusted solutions (red line) lies within CH(Z ) when we include 𝑤̄. If we leave out 𝑤̄ in the

definition of the trust region, then we end up with the undesired situation shown in Figure A-2b,

where the solution may lie outside of CH(Z ). We observe that in some cases we must define the

convex hull with a subset of variables. This is true in cases where the convex hull constraint leads

to excessive data thinning, in which case it may be necessary to define the convex hull on treatment

variables only.

Column selection

Let PI be a convex and continuously differentiable model consisting of an objective function and

constraints that may be known a priori as well as learned from data. Like in Section 2.2.3, we

denote the index set of samples by I . As part of the constraints, the trust region is defined on the

entire set Z . We start with the matrix 𝑍 ∈ RN×(n+p), where each row corresponds to a given data
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point in Z . Then, model PI is given as

min
𝜆

f (𝑍⊤𝜆) (A.6a)

s.t. g j(𝑍
⊤𝜆)≤ 0, j = 1, . . . ,m, ⊥ 𝜇, (A.6b)

∑
i∈I

λi = 1, ⊥ ρ, (A.6c)

λi ≥ 0, i ∈I , ⊥ 𝜐, (A.6d)

where the decision variable 𝑥 is replaced by 𝑍⊤𝜆. Constraints (A.6b) include both known and

learned constraints, while constraints (A.6c) and (A.6d) are used for the trust region. The dual

variables associated with with constraints (A.6b), (A.6c), and (A.6d) are 𝜇 ∈ Rm,ρ ∈ R, and 𝜐 ∈
RN , respectively. Note that for readability, we omit the contextual variables (𝑤) without loss of

generality.

When we deal with huge datasets, solving PI may be computationally expensive. Therefore,

we propose an iterative column selection algorithm (Algorithm 2) that can be used to speed up the

optimization while still obtaining a global optima.

Algorithm 2 Column Selection
Require: I ▷ Index set of columns of 𝑍⊤

Ensure: 𝜆∗ ▷ Optimal solution
1: I ′←I 0 ▷ Initial column pool
2: while TRUE do
3: 𝜆∗, (𝜇∗,ρ∗,𝜐∗)← PI ′

4: Ī ←WOLFEDUAL(𝜆∗, (𝜇∗,ρ∗,𝜐∗), I ′,I ) ▷ Column(s) selection
5: if Ī ̸= /0 then
6: I ′←I ′∪ Ī
7: else
8: Break
9: end if

10: end while

The algorithm starts by initializing I ′ ⊆I with an arbitrarily small subset of samples I 0 and

iteratively solves the restricted master problem PI ′ and the WOLFEDUAL function. By solving

PI ′ , we get the primal and dual optimal solutions 𝜆∗ and (𝜇∗,ρ∗,𝜐∗), respectively. The primal

and dual optimal solutions, together with I and I ′, are given as input to WOLFEDUAL which
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returns a set of samples Ī ⊆I \I ′ with negative reduced cost. If Ī is not empty it is added to

I ′ and a new iteration starts, otherwise the algorithm stops, and 𝜆∗ (with the corresponding 𝑥∗) is

returned as the global optima of PI . A visual interpretation of Algorithm 2 is shown in Figure 2-4.

In function WOLFEDUAL, samples Ī are selected using the Karush–Kuhn–Tucker (KKT)

stationary condition which corresponds to the equality constraint in the Wolfe dual formulation of

PI [170]. The KKT stationary condition of PI ′ is

∇𝜆 f (𝑍̃⊤𝜆∗)+
m

∑
i=1

µ
∗
i ∇𝜆gi(𝑍̃

⊤𝜆∗)−𝑒ρ
∗−𝜐∗ = 0, (A.7)

where 𝑍̃ is the matrix constructed with samples in I ′, and 𝑒 is an N′-dimensional vector of ones

with N′ = |I ′|. Equation (A.7) can be rewritten as

𝑍̃∇𝑥 f (𝑍̃⊤𝜆∗)+
m

∑
i=1

µ
∗
i 𝑍̃∇𝑥gi(𝑍̃

⊤𝜆∗)−𝑒ρ
∗−𝜐∗ = 0. (A.8)

Equation (A.8) is used to evaluate the reduced cost related to each sample 𝑧 ∈ Z which is not

in matrix 𝑍̃. Consider a new sample 𝑧 in (A.8), with its associated λN′+1 set equal to zero.

(λ ∗1 , . . . ,λ
∗
N′,λN′+1) is still a feasible solution of the restricted master problem PI ′ , since it does

not affect the value of 𝑥. As a consequence, 𝜇 and ρ will not change their value, nor will f and 𝑔.

The only unknown variable is υN′+1, namely the reduced cost of 𝑧. However, we can write it as

 𝜐∗

υN′+1

=

 𝑍̃

𝑧⊤

∇𝑥 f (𝑍̃⊤𝜆∗)+
t

∑
i=1

µ
∗
i

 𝑍̃

𝑧⊤

∇𝑥gi(𝑍̃
⊤𝜆∗)−𝑒ρ

∗. (A.9)

If υN′+1 is negative it means that we may improve the incumbent solution of PI ′ by including the

sample 𝑧 in 𝑍̃.

Lemma A.2.1. After solving the convex and continuously differentiable problem PI ′ , the sample

in I \I ′ with the most negative reduced cost is a vertex of the convex hull CH(Z ).

Proof. From equation (A.9) we have

υN′+1 = 𝑧⊤∇𝑥 f (𝑍̃⊤𝜆∗)+𝑧⊤∇𝑥𝑔(𝑍̃
⊤𝜆∗)𝜇∗−ρ

∗. (A.10)
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The problem of finding 𝑧, such that its reduced cost is the most negative one, can be written as a

linear program where equation (A.10) is being minimized, and a solution must lie within CH(Z ).

That is,
min
𝑧,𝜆

𝑧⊤∇𝑥 f (𝑍̃⊤𝜆∗)+𝑧⊤∇𝑥𝑔(𝑍̃)𝜇∗−ρ
∗

s.t. 𝑍⊺𝜆= 𝑧,

∑
j∈I

λ j = 1,

λ j ≥ 0, j ∈I ,

(A.11)

where 𝑧 and 𝜆 are the decision variables, and 𝜇∗, 𝜆∗, ρ∗ are fixed parameters. Since the objective

function is linear with respect to 𝑧, the optimal solution of (A.11) will necessarily be a vertex of

CH(Z ).

To illustrate the benefits of column selection, consider the following convex optimization prob-

lem that we shall refer to as Pexp:

min
𝑥

𝑐⊤𝑥 (A.12a)

s.t. log(
n

∑
i=1

exi)≤ t, (A.12b)

𝐴𝑥≤ b, (A.12c)
N

∑
i=1

λi𝑧i = 𝑥, (A.12d)

N

∑
j=1

λ j = 1, (A.12e)

λ j ≥ 0, j = 1 . . .N. (A.12f)

Without a loss of generality, we assume that the constraint (A.12b) is known a priori, and con-

straints (A.12c) are the linear embeddings of learned constraints with 𝐴 ∈ Rk×n and 𝑏 ∈ Rk.

Constraints (A.12d-A.12f) define the trust region based on N datapoints. Figure A-3 shows the

computation time required to solve Pexp with different values of n, k, and N. The “No Column

Selection” approach consists of solving Pexp using the entire dataset. The “Column Selection”

approach makes use of Algorithm 2 to solve the problem, starting with |I 0|= 100, and selecting
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Figure A-3: Effect of column selection on computation time. Solution times are reported for three
different sizes of problem Pexp. Small-scale: n = 5, k = 10. Medium-scale: n = 10, k = 50. Large-
scale: n = 20, k = 100. The number of samples goes from 500 to 5× 105. In each iteration, the
sample with most negative reduced cost is selected. The same problem is solved using [122] with
conic reformulation for 10 different instances where c, A, and b are randomly generated.

only one sample at each iteration, i.e., the one with the most negative reduced cost. It can be seen

that in all cases, the use of column selection results in significantly improved computation times.

This allows us to more quickly define the trust region for problems with large amounts of data.

A.3 WFP case study

Table A.1 and Table A.2 show the nutritional value of each food and our assumed nutrient re-

quirements, respectively. The values adopted are based on the World Health Organization (WHO)

guidelines [160].

Effect of ensemble violation limit

Figure A-4 reports the effect of the ensemble violation limit (α) on the objective (Total Cost) and

constraint (Palatability) in the WFP case study. As expected, we see a tradeoff between the total

cost of the recommended WFP food baskets and the achieved palatability. Higher violation limits

(larger α) obtain lower costs at the expense of lower palatability. Lower α values result in more

conservative solutions with higher cost but better palatability. This parametrization of individual

model violation tolerance allows us to directly quantify this tradeoff and can provide a useful tool
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Food Eng(kcal) Prot(g) Fat(g) Cal(mg) Iron(mg) VitA(ug) ThB1(mg) RibB2(mg) NicB3(mg) Fol(ug) VitC(mg) Iod(ug)
Beans 335 20 1.2 143 8.2 0 0.5 0.22 2.1 180 0 0
Bulgur 350 11 1.5 23 7.8 0 0.3 0.1 5.5 38 0 0
Cheese 355 22.5 28 630 0.2 120 0.03 0.45 0.2 0 0 0
Fish 305 22 24 330 2.7 0 0.4 0.3 6.5 16 0 0
Meat 220 21 15 14 4.1 0 0.2 0.23 3.2 2 0 0
Corn-soya blend 380 18 6 513 18.5 500 0.65 0.5 6.8 0 40 0
Dates 245 2 0.5 32 1.2 0 0.09 0.1 2.2 13 0 0
Dried skim milk 360 36 1 1257 1 1,500 0.42 1.55 1 50 0 0
Milk 360 36 1 912 0.5 280 0.28 1.21 0.6 37 0 0
Salt 0 0 0 0 0 0 0 0 0 0 0 1000000
Lentils 340 20 0.6 51 9 0 0.5 0.25 2.6 0 0 0
Maize 350 10 4 13 4.9 0 0.32 0.12 1.7 0 0 0
Maize meal 360 9 3.5 10 2.5 0 0.3 0.1 1.8 0 0 0
Chickpeas 335 22 1.4 130 5.2 0 0.6 0.19 3 100 0 0
Rice 360 7 0.5 7 1.2 0 0.2 0.08 2.6 11 0 0
Sorghum/millet 335 11 3 26 4.5 0 0.34 0.15 3.3 0 0 0
Soya-fortified bulgur wheat 350 17 1.5 54 4.7 0 0.25 0.13 4.2 74 0 0
Soya-fortified maize meal 390 13 1.5 178 4.8 228 0.7 0.3 3.1 0 0 0
Soya-fortified sorghum grits 360 360 1 40 2 0 0.2 0.1 1.7 50 0 0
Soya-fortified wheat flour 360 16 1.3 211 4.8 265 0.66 0.36 4.6 0 0 0
Sugar 400 0 0 0 0 0 0 0 0 0 0 0
Oil 885 0 100 0 0 0 0 0 0 0 0 0
Wheat 330 12.3 1.5 36 4 0 0.3 0.07 5 51 0 0
Wheat flour 350 11.5 1.5 29 3.7 0 0.28 0.14 4.5 0 0 0
Wheat-soya blend 370 20 6 750 20.8 498 1.5 0.6 9.1 0 40 0

Table A.1: Nutritional contents per gram for different foods.
Eng = Energy, Prot = Protein, Cal = Calcium, VitA = Vitamin A, ThB1 = ThiamineB1, RibB2 = RiboflavinB2, NicB3
= NicacinB3, Fol = Folate, VitC = Vitamin C, Iod = Iodine

Type Eng(kcal) Prot(g) Fat(g) Cal(mg) Iron(mg) VitA(ug) ThB1(mg) RibB2(mg) NicB3(mg) Fol(ug) VitC(mg) Iod(ug)
Avg person day 2100 52.5 89.25 1100 22 500 0.9 1.4 12 160 0 150

Table A.2: Nutrient requirements used in optimization model.
Eng = Energy, Prot = Protein, Cal = Calcium, VitA = Vitamin A, ThB1 = ThiamineB1, RibB2 = RiboflavinB2, NicB3
= NicacinB3, Fol = Folate, VitC = Vitamin C, Iod = Iodine

in assessing solution alternatives.

A.4 Chemotherapy regimen design

Data Processing

The data for this case study includes three components, study cohort characteristics (𝑤), treatment

variables (𝑥), and outcomes (𝑦). The raw data was obtained from Bertsimas et al. [28], in which

the authors manually curated data from 495 clinical trial arms for advanced gastric cancer. Our

feature space was processed as follows:

Cohort Characteristics. We included several cohort characteristics to adjust for the study con-

text: fraction of male patients, median age, primary site breakdown (Stomach vs. GEJ), fraction

of patients receiving prior palliative chemotherapy, and mean ECOG score. We also included vari-
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Figure A-4: Effect of violation limit on objective (total cost) and constraint (palatability). The
average is reported over 100 problem instances.

ables for the study context: the study year, country, and number of patients. Missing data was

imputed using multiple imputation based on the other contextual variables; 20% of observations

had one missing feature and 6% had multiple missing features.

Treatment Variables. Chemotherapy regimens involve multiple drugs being delivered at poten-

tially varied frequencies over the course of a chemotherapy cycle. As a result, multiple dimensions

of the dosage must be encoded to reflect the treatment strategy. As in Bertsimas et al. [28], we

include three variables to represent each drug: an indicator (1 if the drug is used in the regimen),

instantaneous dose, and average dose.

Outcomes. We use Overall Survival (OS) as our survival metric, as reported in the clinical trials.

Any observations with unreported OS are excluded. We consider several “dose-limiting toxicities"

(DLTs): Grade 3/4 constitutional, gastrointestinal, infection, and neurological toxicities, as well

as Grade 4 blood toxicities. The toxicities reported in the original clinical trials are aggregated

according to the CTCAE toxicity classes [41]. We also include a variable for the occurrence of any
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of the four individual toxicities (ti for each toxicity i ∈ T , called DLT proportion; we treat these

toxicity groups as independent and thus define the DLT proportion as

DLT = 1−∏
i∈T

(1− ti).

We define Grade 4 blood toxicity as the maximum of five individual blood toxicities (related to

neutrophils, leukocytes, lymphocytes, thrombocytes, anemia). Observations missing all of these

toxicities were excluded; entries with partial missingness were imputed using multiple imputa-

tion based on other blood toxicity columns. Similarly, observations with no reported Grade 3/4

toxicities were excluded; those with partial missingness were imputed using multiple imputation

based on the other toxicity columns. This exclusion criteria resulted in a final set of 461 (of 495)

treatment arms.

We split the data into training/testing sets temporally. The training set consists of all clinical

trials through 2008, and the testing set consists of all 2009-2012 trials. We exclude trials from the

testing set if they use new drugs not seen in the training data (since we cannot evaluate these given

treatments). We also identify sparse treatments (defined as being only seen once in the training set)

and remove all observations that include these treatments. The final training set consists of 320

observations, and the final testing set consists of 96 observations.

Predictive Models

Table A.3 shows the out-of-sample performance of all considered methods in the model selection

pipeline. We note that model choice is based on the 5-fold validation performance, so it does not

necessarily correspond to the highest test set performance.

Prescription Evaluation

Table A.4 shows the performance of the models that comprise the ground truth ensemble used in

the evaluation framework. These models trained on the full data. We see that the ensemble models,

particularly RF and GBM, have the highest performance. These models are trained on more data

and include more complex parameter options (e.g., deeper trees, larger forests) since they are not
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Outcome Linear SVM CART ORT-H RF GBM

Any DLT 0.268 -0.094 -0.016 0.000 0.152 0.202
Blood 0.196 -1.102 0.012 0.026 0.153 0.105
Constitutional 0.106 0.144 0.157 -0.179 0.194 0.136
Infection 0.082 -0.511 -0.222 0.000 0.070 0.035
Gastrointestinal 0.141 -0.196 -0.023 -0.067 0.066 0.083

Overall Survival 0.448 0.385 0.474 0.505 0.496 0.450

Table A.3: Comparison of out-of-sample R2 all considered models for learned outcomes in
chemotherapy regimen selection problem.

required to be embedded in the MIO and are rather used directly to generate predictions. For this

reason, the GT ensemble could also be generalized to consider even broader method classes that

are not directly MIO-representable, such as neural networks with alternative activation functions,

providing an additional degree of robustness.

outcome Linear SVM CART RF GBM XGB

Any DLT 0.301 0.330 0.250 0.573 0.670 0.323
Blood 0.287 0.351 0.211 0.701 0.813 0.446
Constitutional 0.139 0.224 0.246 0.602 0.682 0.285
Infection 0.217 0.303 0.139 0.514 0.588 0.247
Gastrointestinal 0.201 0.328 0.238 0.563 0.733 0.475

Overall Survival 0.528 0.469 0.421 0.815 0.827 0.756

Table A.4: Performance (R2) of individual models in ground truth ensemble for model evaluation.
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Appendix B

Appendix for Chapter 4

B.1 Data processing

The Hartford Hospital Institutional Review Board (Assurance number: FWA000000601) approved

the study and certified that it met the criteria for a waiver of the requirement to obtain informed

consent. Algorithm training and testing were completed on servers at MIT. For these purposes,

HHC served as the honest broker, de-identifying the data prior to transmission through a recoded

patient identifier that was only accessible by HHC. Data were transferred to MIT through a secure

file transfer protocol and remained stored on a secure virtual machine for the duration of the project.

B.1.1 Encounter inclusion criteria

Our eligible patient population was comprised of people with chemotherapy infusion encounters

that were recorded in Epic between May 2016 and mid-October 2019. Clinical data were not

available from prior to HHC’s transition to Epic in May 2016. As a consequence, a patient’s

historical record begins with the first Epic encounter. A chemotherapy encounter is defined as:

• Encounter Type: “Infusion”

• Appointment Status: “Completed”

• CPT Charge: charge description contains: “CHEMOTHERAPY - IV”, “CHEMOTHER-

APY - INJECTED”, or “IV THERAPY”

165



• Beacon Regimen: Patient on an active Beacon chemotherapy regimen at the time of en-

counter.

• Meds Administered: Patient has at least one of our identified chemotherapy drugs adminis-

tered in the encounter.

After identifying the set of all chemotherapy encounters, we further restrict to the start date of

each chemotherapy cycle. The day 1 encounter of each cycle is included as an observation, and

subsequent visits within the cycle are not included. As a result, a patient can appear multiple times

in the data. We exclude patients with Leukemia, as identified through the cancer site listed in the

patient’s Beacon regimen, given that it is a known elevated risk group. With this filtering criteria,

we have 2,806 unique patients with 17,513 chemotherapy infusion encounters.

B.1.2 Chemotherapy drugs

Our goal was to assess neutropenia risk in the weeks following a chemotherapy encounter. In order

to identify these encounters, we needed a list of all relevant chemotherapy drugs. Our database

included drug class information, but many drugs were missing class mapping information. We

instead compiled the drugs from four sources:

• Beacon protocols: The HHC Care Connect team has assembled descriptions for all Beacon

protocols, including the names of the individual drugs administered in the protocol. We

parsed the free text descriptions of these protocols to pull any potential chemotherapy drugs.

• Wikipedia: List of antineoplastic agents.

• Manual curation: Literature review of individual regimens that appear in our data and their

relevant drugs.

• Antineoplastic drugs in medications table: All drugs matching therapeutic class (theraClass)

of “Antineoplastic Agents.”

By using multiple sources, we were able to cross-check the drug lists and decrease the reliance

on any single source. We manually investigated all drugs that appeared in only 1 of 4 sources and
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removed any that were erroneously included. In the end, our drug set contained 187 candidate

drugs.

B.1.3 Clinical features

All clinical features were obtained directly from structured fields in the EMR. Although Hartford

HealthCare Cancer Registry contains curated patient data collected for reporting to the CDC Na-

tional Program of Cancer Registries, NCI SEER, and Commission on Cancer NCDB registries, the

data abstraction into these registries is retrospective with a greater than six-month delay and not

suitable for use for point of care calculations.

Demographics We include static patient features (race, ethnicity, sex), as well as the patient’s

age (calculated based on the encounter date).

Cancer site Cancer site is identified using the cancer regimen table. Each active regimen has

an associated with a diagnosis identifier and name. These identifiers map to ICD10 codes which

can then be aggregated into cancer types using the CCS mapping. We modified the mapping given

by CCS slightly based on clinical chart review, merging together certain rare cancers and drawing

distinctions between clinically distinct diseases. Cancer site has 26 distinct values in our dataset.

To make it amenable to ML algorithms, it is then “one-hot” encoded, meaning that it is converted

from a single column with many potential values to many binary columns indicating which value

the feature takes.

Labs/Vitals Common lab test results and vitals readings are included in the model to incorporate

a time-varying dimension to patient status. Our lab and vitals features were curated with guidance

from the HHC teams. Clinical experts helped us manually group together clinically identical fields

(e.g. combining multiple field names that all indicate Glucose readings) to further complete our

feature space. For example, a single clinical concept such as temperature might be captured as

different entities based on hospital department and equipment. When constructing a dataset for

large-scale analysis, these various entities must be harmonized to reflect the clinically meaningful

field.
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For each vital/lab, we pull in the patient’s most recent reading for that feature (“most recent”:

recorded on or before the first chemo drug is administered for the appointment). We apply different

lookback periods based on the type of reading and its medical window of relevance:

• Labs - Blood Count: 2 days

• Labs - Other Chemistry: 7 days

• Vitals: 30 days

After pulling all relevant labs and vitals by encounter, we eliminated features that had more than

50% missingness. Our final feature space includes 12 lab features and 12 vitals features. We

also compute the relative change in values for all labs and vitals between encounters. These de-

rived variables are calculated after data imputation due to the potential missingness of individual

labs/vitals values in certain encounters. We report the percentage increase or decrease of the feature

to incorporate a notion of trend into the feature space.

Chemotherapy regimen information We want to capture the individual drugs administered

since this gives us the most unfiltered look at the treatment setting and captures potential modifica-

tion or deviance from a prescribed plan. Drug information is pulled directly from the Medications

Administered table, restricting to medication entries with an action of either “Given” or “New

Bag.” We encode the drugs as separate columns (e.g. Doxorubicin = “Yes”, “No”) since a patient

may have multiple drugs administered. We also create a single column for the name of the pa-

tient’s drug combination (e.g. “Cyclophosphamide-Doxorubicin”). The inclusion of regimens in

addition to individual drug indicators was recommended by pharmaceutical collaborators, since of-

ten individual drugs have low toxicity but can be risky when administered in certain combinations.

Regimens (in addition to individual drugs) also appear in risk models throughout the literature.

To limit the dimensionality to drugs and regimens with meaningful rates of occurrence, we

only include drugs and regimens that occur in at least 100 encounters across at least 25 patients.

We confirmed that no patient has multiple active regimens. As with cancer site, drug combination

is a categorical feature and thus is one-hot encoded in the final feature space.
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Other treatment information We have added an indicator of whether a patient receives G-CSF

injections within 3 days following her chemotherapy appointment. The time window was selected

to reflect the clinical setting based on insight from the pharmacy team. Generally, a G-CSF injec-

tion is given in association with chemotherapy, within 3 days of the infusion. We have separated

the indicator into two types of G-CSF drugs: filgrastim and pegfilgrastim. Pegfilgrastim is longer

acting (longer half-life) and thus has different prescription patterns and potentially different impact

on FN risk.

We have also added a radiation treatment history feature, which indicates whether a patient is

receiving radiation therapy concurrently with chemotherapy. This is queried from the diagnosis

and procedure charge table, identifying all encounters with a CPT charge including “RADIATION

THERAPY” within three days of the infusion encounter. This [-3,3] day window captures the days

in which radiation is generally administered when given concurrently with chemotherapy. We had

previously considered the inclusion of a radiation history indicator but found this is unreliable.

Therapy history is obtained from procedure charges; since this table is only populated from the

Epic launch onwards, it only captures patients with a history of radiation from roughly mid-2017

onwards.

Other medical conditions We have also added indicators of whether a patient has other ongo-

ing medical conditions. We aggregate these conditions using the CCS Classification System [2].

A patient’s active problems are found using active problems on the problem list. We consider a

problem active if the noted date is prior to the encounter, and the resolved date is either after the

encounter or undefined. Most comorbidities are grouped to CCS Level 1, although circulatory dis-

eases were kept at a higher granularity (CCS Level 2) due to their higher prevalence and relevance

in this problem setting.

B.1.4 Incorporating temporal effects

For this study, we defined an observation as a single chemotherapy encounter beginning a treatment

cycle. Each chemotherapy encounter for each patient became a unique entry in the dataset, and

thus a patient can appear as multiple observations in the dataset. This enables the desired prediction

task, namely the prediction of neutropenia within four weeks of any chemotherapy cycle initiation,
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not only the first. It also increases the sample size.

In order to capture the patient’s changing health condition across visits, temporal features are

encoded for vital and lab values. Both the raw value and the relative change since the beginning

of the last cycle appear as features. For example, a patient with a BMI of 23.0 at their first cycle

and 23.5 at her next cycle would have a +2.2% change in BMI encoded in the second cycle. This

allows for the identification of important trends; weight loss, rather than actual weight, may be

significant as a predictor. We also record cumulative treatment history, such as the total number of

cycles that a patient has had through the current encounter.

B.2 Machine learning models

B.2.1 Model selection

A model selection procedure is also used to determine the feature space for each method. For each

method, we train models using four variants of the clinical features and three alternate encodings

of the temporal features. The clinical feature space variations intend to see the effect of excluding

highly granular categorical features, either drug combination or cancer site, which could poten-

tially lead to overfitting. The features indicating value changes over time are considered either as

continuous (raw percentage change) or discretized (indicator of loss or increase beyond a thresh-

old) at 10% or 25%. Within each algorithm, the variant that yields the best validation AUC is

selected as the final model.

Figure B-1 shows the Receiver Operating Characteristic (ROC) Curve and precision-recall

curve across all considered methods. The baseline ROC and precision-recall curves are denoted

by the dotted lines.

B.2.2 Model interpretation

Given the lack of natural interpretability in ensemble methods, we interpret the Random Forests

(RF) model using SHapley Additive eXplanations (SHAP), an algorithm that estimates the risk

impact of individual features through a game theoretic framework [111, 112]. The SHAP feature

importance plot for the RF model is shown in Figure B-2. A variable’s importance is measured
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Figure B-1: Receiver Operating Characteristic (ROC) Curve and Precision-Recall Curve evaluated
on the test set.

as its mean absolute SHAP value, which quantifies the magnitude (but not directionality) of the

feature’s impact on resultant risk scores. For further investigation, SHAP dependence plots could

be used to visualize the directionality of these relationships.

The 20 most important features are displayed with bars proportional to their importance, start-

ing with Doxorubicin as the most significant predictor. The significant variables in this model are

consistent with the main OFS20 model. Similar treatment factors appear important in both the

OFS20 and RF models: the number of drugs administered and cumulative treatment history both

appear, although RF also includes an indicator of curative treatment intent. Of the important drugs

in the RF model, doxorubicin, cyclophosphamide, etoposide, and carboplatin overlap with the

OFS model. The RF model also identifies the combination of doxorubicin and cyclophosphamide

as an important predictor, although the OFS model did not identify the interaction beyond their

individual risk contributions as significant.
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Figure B-2: SHAP feature importance plot for RF model.

B.2.3 Temporal split results

While the main model is trained and evaluated using a patient-wise split, where patients are as-

signed to either the training or testing set, we also consider a temporal split of the data. A patient-

wise split provides insight into how well the model might perform at another institution, where the

model is applied to an entirely new set of patients. The temporal split provides insight into how

the model might perform prospectively at HHC, when trained on historical data and then applied

to patients going forward. In a temporal split, patients can appear in both the training and testing

sets since their encounters may span both time windows. This analysis provides an alternative

performance evaluation that allows us to assess the robustness of the ML methods.

For our temporal split, we train the models on all encounters prior to 2019, and test the models

on all encounters from January 2019 onwards. We follow the same model training, tuning, and se-

lection procedures outlined for the patient-wise split. The 2019 test set AUC and average precision

results are reported in Table B.1 across all ML methods, along with bootstrapped 95% confidence

intervals. The models have similar out-of-sample performance compared to the patient-wise split

(Table 4.3), with the best performing methods demonstrating AUCs of 0.857 (RF) and average pre-

cision of 0.173 (XGB). The OFS20 model has a slight loss in out-of-sample AUC (-0.03) but offers

nearly identical average precision (-0.003). These results suggest that the model performance is ro-

bust to the split type (either patient-wise or temporal) and indicate strong generalizability to unseen
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data.

Model AUC Avg. Precision

OFS20 (20 Features) 0.837 (0.818-0.857) 0.145 (0.108-0.201)
OFS30 (30 Features) 0.821 (0.801-0.846) 0.153 (0.121-0.207)
OFS50 (50 Features) 0.822 (0.799-0.852) 0.126 (0.104-0.178)
LR 0.842 (0.819-0.869) 0.139 (0.108-0.191)
OCT 0.815 (0.782-0.849) 0.094 (0.076-0.120)
CART 0.788 (0.755-0.812) 0.085 (0.066-0.110)
RF 0.857 (0.833-0.882) 0.150 (0.119-0.190)
XGB 0.851 (0.830-0.870) 0.173 (0.134-0.227)

No Skill 0.5 0.023

Table B.1: AUC and average precision (with 95% confidence intervals) reported on the test set,
using a temporal split.
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Appendix C

Appendix for Chapter 5

C.1 Population characteristics

The clinical features of each derivation and validation cohort are described in Tables C.1 and C.2.

We observe differing rates of comorbidities in the populations: our identification of comorbidities

was limited by how they were captured in an admission’s diagnosis list. Chronic conditions that

did not appear in the diagnosis list are considered to not be present in the patient, which could lead

to under-reporting of comorbidities. While this is a limitation, these features are not significant in

the model on their own and thus do not greatly affect the model predictions. As we expand our

models to incorporate richer medical history and treatment information, we will revisit this topic.

C.2 Method details

C.2.1 Missing data imputation

Missing values were encountered in the majority of the included risk factors since the electronic

health records of many patients were not complete. Employing imputation techniques instead

of complete case analysis allows the inclusion of a wider set of features which otherwise would

have been omitted by the model. The k-Nearest Neighbors algorithm [158] is a machine learn-

ing technique that can be applied to both supervised and unsupervised learning problems. In the

missing data imputation setting, given a missing value for a patient, the algorithm searches for k
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Cremona (N = 1441) HM Hospitals (N = 1390) Hartford Affiliates (N = 231)

Median (IQR) Missing % Median (IQR) Missing % Median (IQR) Missing %

Age 70.0 (58.0-80.0) 1.60% 67.0 (56.0-78.0) 1.60% 68.0 (55.5-79.0) 1.70%
Female ∗ 558.0 (38.7%) 0.00% 537.0 (38.6%) 0.00% 112.0 (48.5%) 0.00%

Heart Rate (bpm) 89.0 (79.1-100.0) 11.00% 90.0 (80.0-102.0) 8.80% 99.0 (88.0-110.0) 4.80%
Oxygen Saturation (%) 93.9 (90.2-96.0) 36.80% 94.0 (92.0-96.0) 10.60% 93.0 (89.0-95.0) 4.80%
Temperature (°C) 37.2 (36.6-37.9) 3.30% 36.6 (36.2-37.2) 9.50% 37.8 (37.0-38.6) 1.30%

ALT (U/L) 26.0 (17.0-43.0) 4.90% 27.8 (17.2-44.7) 19.60% 25.0 (16.0-41.0) 15.20%
AST (U/L) 37.0 (26.0-56.0) 10.10% 34.7 (25.0-52.9) 18.70% 34.0 (24.0-51.8) 17.70%
Blood Glucose (mg/dL) 119.0 (106.0-144.0) 6.20% 116.0 (104.0-137.5) 10.60% 122.0 (102.0-159.5) 5.20%
BUN (mg/dL) 18.0 (14.0-29.0) 7.80% 15.5 (12.0-22.3) 11.10% 19.0 (12.0-31.0) 6.10%
CRP (mg/L) 76.3 (28.5-158.6) 3.70% 70.9 (29.0-132.5) 6.80% 77.3 (30.4-124.0) 46.80%
Creatinine (mg/dL) 1.0 (0.8-1.3) 4.10% 0.9 (0.7-1.1) 5.70% 1.0 (0.8-1.4) 6.50%
Hemoglobin (U/g) 13.5 (12.4-14.7) 22.30% 14.2 (13.1-15.2) 1.90% 12.6 (11.2-13.9) 3.90%
MCV (µm3) 87.3 (84.6-90.5) 23.60% 88.2 (85.5-91.4) 1.30% 90.0 (86.0-94.0) 6.50%
Platelets (103/µL) 198.0 (154.0-261.5) 22.90% 204.5 (159.0-259.2) 2.40% 204.0 (162.5-250.0) 6.90%
Potassium (mEq/L) 3.9 (3.6-4.3) 9.60% 4.2 (3.9-4.6) 6.50% 4.0 (3.7-4.4) 6.50%
Prothrombin Time (INR) 1.0 (1.0-1.1) 22.30% 1.2 (1.1-1.3) 29.60% 1.1 (1.1-1.4) 67.50%
Sodium (mEq/L) 138.0 (136.0-140.0) 4.20% 136.6 (134.6-139.0) 8.30% 136.0 (134.0-140.0) 4.30%
WBC (/µL) 6900 (5300-9400) 22.80% 6600 (5100-8900) 2.90% 6500 (4800-8700) 3.50%

Cardiac dysrhythmias ∗ 60.0 (4.2%) 0.00% 140.0 (10.1%) 0.00% 1.0 (0.4%) 0.00%
Chronic kidney disease ∗ 16.0 (1.1%) 0.00% 49.0 (3.5%) 0.00% 7.0 (3.0%) 0.00%
Heart disease ∗ 48.0 (3.3%) 0.00% 77.0 (5.5%) 0.00% 0.0 (0.0%) 0.00%
Diabetes ∗ 138.0 (9.6%) 0.00% 207.0 (14.9%) 0.00% 39.0 (16.9%) 0.00%

Mortality ∗ 472.0 (32.8%) 0.00% 239.0 (17.2%) 0.00% 49.0 (21.2%) 0.00%

Table C.1: Descriptive summary of derivation population broken down by study site.
∗ Count (proportion) is reported for binary variables.

observations in the population that are nearest in feature space, where k = 5 in our analysis. The

observation is then imputed to the average of the values of its neighbors belong. Though the k-NN

algorithm is a simple technique, it often has powerful empirical performance. Its simplicity is also

an advantage in terms of interpretability – one can assess the imputed value of a certain point by

looking at its neighbors and in which features they are most similar. The training set was imputed

independently of the testing set to avoid any bias in the resulting data.

C.2.2 The XGBoost algorithm

The XGBoost algorithm is one of the most popular ensemble methods for binary classification in

the machine learning field [47]. It is based on a large number of trees that are built in an iterative

fashion. Later trees are constructed based on the errors that existed in earlier trees, giving the

model more power to handle “harder" cases. This error correction ability often gives XGBoost a

performance edge over other linear or tree-based methods. There is multitude of hyperparameters

that need to be tuned for this algorithm. Three of them are particularly important: number of
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Hellenic CSG (N = 323) Seville (N = 219) Hartford Hospital (N = 323)

Median (IQR) Missing % Median (IQR) Missing % Median (IQR) Missing %

Age 59.0 (47.0-72.0) 0.31% 64.0 (54.0-78.5) 0.00% 73.0 (57.0-84.0) 0.00%
Female ∗ 125.0 (38.7%) 0.00% 91.0 (41.55%) 0.00% 176.0 (54.49%) 0.00%

Heart Rate (bpm) 88.0 (80.0-98.0) 4.95% 88.0 (77.0-100.0) 37.44% 98.0 (86.0-112.75) 0.31%
Oxygen Saturation (%) 95.0 (92.0-97.0) 16.72% 95.0 (92.0-97.0) 8.22% 93.0 (90.0-95.0) 0.31%
Temperature (°C) 38.0 (37.2-38.5) 5.57% 38.5 (38.0-38.9) 42.01% 37.8 (37-38.4) 0.31%

ALT (U/L) 27.0 (18.0-40.0) 1.86% 24.0 (16.5-39.5) 10.96% 24.0 (16.0-39.0) 12.69%
AST (U/L) 29.0 (22.0-41.0) 0.62% 28.0 (21.0-39.75) 11.42% 38.0 (29.0-58.0) 11.76%
Blood Glucose (mg/dL) 106.0 (95.0-124.0) 1.86% 111.5 (95.0-129.0) 21.46% 127.0 (107.0-165.5) 4.02%
BUN (mg/dL) 24.0 (14.56-33.8) 1.55% 16.82 (12.15-24.53) 21.46% 20.0 (13.0-33.0) 4.64%
CRP (mg/L) 53.7 (13.0-130.7) 1.86% 66.9 (23.45-138.45) 7.31% 67.85 (33.9-129.38) 35.60%
Creatinine (mg/dL) 0.9 (0.7-1.1) 1.55% 0.9 (0.76-1.15) 0.00% 1.0 (0.8-1.5) 4.33%
Hemoglobin (U/g) 13.3 (12.2-14.5) 3.10% 13.4 (11.8-14.88) 2.28% 12.2 (10.8-13.7) 3.41%
MCV (µm3) 86.9 (83.9-89.9) 2.48% 91.1 (88.25-94.18) 2.28% 90.0 (86.0-95.0) 3.72%
Platelets (103/µL) 193.0 (156.0-245.0) 0.93% 204.5 (163.75-261.75) 2.28% 183.5 (140.0-241.5) 4.02%
Potassium (mEq/L) 4.1 (3.9-4.4) 1.24% 3.9 (3.6-4.3) 0.91% 4.1 (3.8-4.5) 4.95%
Prothrombin Time (INR) 1.03 (0.96-1.11) 4.95% 1.08 (1.01-1.2) 73.52% 1.2 (1.1-1.4) 53.87%
Sodium (mEq/L) 138.0 (135.0-140.0) 1.55% 139.0 (136.0-141.0) 0.91% 138.0 (135.0-140.0) 4.64%
WBC (/µL) 5710 (4380-7430) 1.55% 7180 (5200-10050) 2.28% 6800 (5000-9500) 3.72%

Cardiac dysrhythmias ∗ 45.0 (13.98%) 0.31% nan (nan%) 100.00% 0.0 (0.0%) 0.00%
Chronic kidney disease ∗ 16.0 (4.97%) 0.31% 21.0 (9.95%) 3.65% 10.0 (3.1%) 0.00%
Heart disease ∗ 60.0 (18.63%) 0.31% 55.0 (25.82%) 2.74% 0.0 (0.0%) 0.00%
Diabetes 42.0 (13.04%) 0.31% 32.0 (15.02%) 2.74% 61.0 (18.89%) 0.00%

Mortality ∗ 32.0 (9.91%) 0.00% 28.0 (12.79%) 0.00% 46.0 (14.24%) 0.00%

Table C.2: Descriptive summary of validation population broken down by study site.
∗ Count (proportion) is reported for binary variables.

trees, depth of trees and learning rate. In this study, we tune the parameters: learning rate, γ , λ ,

α , minimum child weight, maximum tree depth, number of estimators. The learning rate, also

called shrinkage factor or η , controls the weighting factor for corrections by new trees added in

the model: it takes values between 0 and 1, with values closer to 1 having more corrections for each

tree and higher risk of overfitting on the training data. Gamma (γ) is a regularization parameter

controlling the minimum loss reduction required to make a further partition on a leaf node of

a tree: it takes positive values, with larger ones defining a more conservative model. Lambda

(λ ) is the L2 regularization parameter on the feature weights: it takes positive values, with the

larger ones encouraging smaller weights, thus making the model more conservative. Alpha (α)

is the L1 regularization parameter on the feature weights: it takes positive values, with the larger

ones driving to 0 the weights, defining a more conservative model. Minimum child weight is

the minimum Hessian weight required to create a new node, with a role similar to that of γ , i.e.

regularization at the splitting step: it takes positive values, with higher values making the model

more conservative. The maximum depth of a tree controls the maximum number of nodes that can

exist between the root node and the farthest leaf in the tree: it is a positive integer, and large values
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usually lead to overfitting on the training data. The number of estimators determines the number

of trees to fit in the model: it is a positive integer, and large values usually lead to overfitting on

the training data. All remaining parameters are set to their default values.

C.2.3 SHAP methodology

SHapley Additive exPlanations (SHAP) are useful tools to interpret model predictions and risk

drivers [112, 111]. The SHAP methodology explains a patient risk prediction (normalized be-

tween 0 and 1) by computing the contribution of each feature. This is obtained by approximating

the nonlinear XGBoost prediction model as a linear model around the patient prediction. The co-

efficients of the linear approximation are estimated by introducing every feature one at a time and

comparing the model output variations. We use the SHAP Python package [111], featuring an

efficient algorithm to compute the SHAP values and the plot generation functions, to interpret the

outcomes of XGBoost model in Figure 5-1.

C.3 Model comparison

We compared three different machine learning methods in the development of our model. In all

cases, we formulate a binary classification problem to predict mortality (1) or discharge (0) as

the endpoint of a patient’s hospitalization. Predictive models are trained using XGBoost, Logis-

tic Regression, and Classification And Regression Trees (CART); all methods are implemented

in Scikit-learn [131]. Logistic Regression assumes an additive relationship between risk factors,

whereas CART and XGBoost are able to capture non-linearities and feature interactions. While

CART forms a single decision tree, XGBoost is an ensemble method: it constructs a set of decision

trees which are then combined to yield a single prediction for a given patient.

We leverage the hyperparameter optimization framework Optuna [4] as follows. We first iden-

tify the corresponding parameter spaces for the Scikit-Learn implementations of XGBoost, Logis-

tic Regression and CART [131]. Second, we define the objective function as the 300-folds cross

validation area under the curve (AUC). Finally, we employ a pipeline to maximize the objective

over 500 maximum iterations on multiple cores.

Table C.3 reports the AUC and various threshold-based metrics for the three algorithms. For
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each method, we select the threshold that yields a sensitivity of at least 80% to reflect the priority of

correctly identifying mortality. Of the three methods, XGBoost is able to capture the most sophis-

ticated interactions between features and subsequently demonstrates the strongest performance.

Logistic Regression reports a strong test set AUC but indicates a loss in specificity and precision

for the chosen thresholds. CART has the highest negative predictive value but is outperformed by

both other models on all other metrics.

Method AUC Threshold Accuracy Specificity Precision NPV

XGBoost 90.19 (86.86,93.52) 28.3 (23.26,33.34) 85.02 (81.02,89.01) 86.58 (82.77,90.39) 66.3 (61.02,71.59) 93.02 (90.17,95.87)
Logistic Regression 88.45 (84.87,92.02) 21.99 (17.36,26.62) 80.46 (76.02,84.89) 80.52 (76.09,84.95) 57.55 (52.02,63.08) 92.54 (89.6,95.48)
CART 85.85 (81.95,89.75) 23.4 (18.67,28.14) 79.8 (75.31,84.3) 77.49 (72.82,82.16) 55.93 (50.38,61.49) 94.71 (92.2,97.21)

Table C.3: AUC performance and threshold-based metrics for different machine learning methods,
evaluated on the test set from the derivation cohort.
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Figure C-1: Receiver operator curves (ROC) evaluating the model’s performance on the testing set
for patient subgroups.
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