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Abstract

Many important problems from the operations research and statistics literatures ex-
hibit either (a) logical relations between continuous variables 𝑥 and binary variables
𝑧 of the form “𝑥 = 0 if 𝑧 = 0”, or (b) rank constraints. Indeed, start-up costs in
machine scheduling and financial transaction costs exhibit logical relations, while im-
portant problems such as reduced rank regression and matrix completion contain rank
constraints. These constraints are commonly viewed as seperate entities and stud-
ied by seperate subfields—integer and global optimization respectively—who propose
entirely different strategies for optimizing over them.

In this thesis, we adopt a different perspective on logical and rank constraints. We
interpret both constraints as purely algebraic ones: logical constraints are nonlinear
constraints of the form 𝑥 = 𝑧 ∘ 𝑥 for 𝑥 continuous and 𝑧 binary (meaning 𝑧2 = 𝑧),
while rank constraints, Rank(𝑋) ≤ 𝑘, are nonlinear constraints of the form 𝑋 = 𝑌 𝑋
intersected with a linear constraint tr(𝑌 ) ≤ 𝑘 for an orthogonal projection matrix
𝑌 (meaning 𝑌 2 = 𝑌 ). Under this lens, we show that regularization drives the
computational tractability of problems with both logical and rank constraints.

The first three chapters propose a unified framework to address a class of mixed-
integer problems. In numerical experiments, we establish that a general-purpose
strategy which combines cutting-plane, rounding, and local search methods, solves
these problems faster and at a larger scale than state-of-the-art methods. Our ap-
proach solves network design problems with 100s of nodes and provides solutions up
to 40% better than the state-of-the-art; sparse portfolio selection problems with up
to 3, 200 securities; and sparse PCA problems with up to 5, 000 covariates.

The last two chapters extend this framework to model rank constraints via or-
thogonal projection matrices. By leveraging regularization and duality, we design
outer-approximation algorithms to solve low-rank problems to certifiable optimality,
compute lower bounds via their semidefinite relaxations, and provide near optimal so-
lutions through rounding and local search techniques. By invoking matrix perspective
functions, we also propose a new class of semidefinite-representable convex relaxations
for low-rank problems which outperform the popular nuclear norm penalty.
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Chapter 1

Introduction

Many important problems from the operations research, machine learning, and statis-

tics literatures exhibit either (a) logical relations between continuous variables 𝑥 and

binary variables 𝑧 of the form “𝑥 = 0 if 𝑧 = 0”, or (b) rank constraints. Among

others, start-up costs in machine scheduling, financial transaction costs, cardinal-

ity constraints, and fixed costs in facility location problems exhibit logical relations.

Moreover, important problems such as factor analysis, optimal control, and matrix

completion, which model notions of minimal complexity, low dimensionality, or or-

thogonality in a system, contain rank constraints. These constraints are commonly

viewed as seperate entities and studied by seperate subfields of the optimization com-

munity—integer and global optimization respectively—who propose entirely different

strategies for optimizing over them.

Since the work of Glover [123], logical relations have been well studied by the

integer optimization community. They are typically enforced through a linear “big-

𝑀 ” constraint of the form −𝑀𝑧 ≤ 𝑥 ≤𝑀𝑧 for a sufficiently large constant 𝑀 > 0,

and optimized over via branch-and-bound or branch-and-cut. Glover’s work has been

so influential that big-𝑀 constraints are now considered as intrinsic components of

the initial problem formulations themselves, to the extent that textbooks in the field

introduce facility location, network design or sparse portfolio problems with big-𝑀

constraints by default [see, e.g., 28], although they are actually reformulations of

logical constraints.
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On the other hand, rank constraints are commonly regarded as intractable by

the global optimization and machine learning communities, since they cannot be

represented using mixed-integer convex optimization [162], and there do not exist any

generic codes which solve low-rank optimization problems to certifiable optimality at

even moderate problem sizes. This state of affairs has led influential works on low-rank

optimization such as [62, 198] to characterize low-rank optimization as intractable

and advocate convex relaxations or heuristics which do not enjoy assumption-free

optimality guarantees.

In this thesis, we question this state of affairs by proposing one unified ap-

proach which addresses both classes of constraints, and solves both sparsity and

rank-constrained problems to certifiable optimality or near optimality faster and more

accurately than via existing state of the art methods. Eventually, we propose the use

of a judicious combination of cutting-plane methods, convex relaxations and greedy

rounding techniques. The key insight which facilitates this is an algebraic one, which

we lay out in the next section of the chapter. We hope that this approach gives

rise to exciting new challenges for the optimization community to tackle, beyond the

problems addressed in this thesis.

In this chapter, we outline the contributions of the thesis and provide a chapter

by chapter outline. We also introduce the notation we use throughout this thesis.

1.1 Algebraic Formulation and Main Contributions

In this thesis, we adopt a different perspective on both logical and rank constraints.

Namely, we interpret both types of constraints as purely algebraic constraints: logical

constraints are nonlinear constraints of the form 𝑥 = 𝑧 ∘ 𝑥 for 𝑥 continuous and 𝑧

binary, while rank constraints, Rank(𝑋) ≤ 𝑘, are a nonlinear constraint of the form

𝑋 = 𝑌 𝑋 intersected with a linear constraint tr(𝑌 ) ≤ 𝑘 for an orthogonal projection

matrix 𝑌 . Under this lens, we show that regularization drives the computational

tractability of problems with logical or rank constraints, and propose an efficient

algorithmic strategy which exploits regularization to solve a broad class of problems
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with logical or rank constraints to certifiable optimality at scale. We also explore

efficient alternatives to the big-𝑀 paradigm for both logical and rank constraints,

and derive a new class of valid and often very strong convex relaxations for rank-

constrained optimization problems. By doing so, we argue that even though sparsity

constraints and rank constraints arise in different applications, and are addressed by

different research communities using different algorithms, they are really two different

aspects of the same unified story. In particular, algorithms which have been known

to the mixed-integer community in one form or another for almost 50 years can,

if adapted appropriately, solve both classes of problems more accurately and more

efficiently than algorithms that are currently considered to be state-of-the-art.

Remark 1. From a theoretical perspective, the framework proposed in this thesis

exhibits an interesting connection to the theory of Euclidean Jordan algebras. Indeed,

to model both sparsity and rank constraints, we work with idempotent elements 𝑧𝑖

contained in a Jordan algebra such that 𝑧2𝑖 = 𝑧𝑖, 𝑧𝑖𝑧𝑗 = 0 if 𝑖 ̸= 𝑗 and
∑︀𝑛

𝑖=1 𝑧𝑖 = 𝑒,

where 𝑒 denotes an identity of appropriate dimension; see Faraut and Koranyi [98]

for an introduction to analysis over symmetric cones. Moreover, we can interpret

both the cardinality of a vector 𝑥 and the rank of a matrix 𝑋 as a special case of the

Jordan-algebraic rank, i.e., the minimum number of idempotents required to provide a

spectral decomposition of 𝑥 =
∑︀𝑛

𝑖=1 𝜆𝑖𝑧𝑖 for a binary unit vector 𝑧𝑖 or 𝑋 =
∑︀𝑛

𝑖=1 𝜆𝑖𝑌𝑖

for orthogonal projection matrices 𝑌𝑖.

The thesis comes in two parts: in the first part–consisting of Chapters 2-4–we

explore how our framework applies to logically constrained problems, and undertake

detailed studies of its scalability for sparse portfolio selection and sparse principal

component analysis problems. In the second part–consisting of Chapters 5-6–we

explore its implications for low-rank problems, by proposing a technique for solving

low-rank problems exactly and undertaking a detailed study of the convex relaxations

of a class of low-rank problems.

The main contributions of the first part of the thesis are as follows:

• In Chapter 2, we provide four main contributions: First, we reformulate the
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logical constraint “𝑥𝑖 = 0 if 𝑧𝑖 = 0” in a non-linear way, by substituting 𝑧𝑖𝑥𝑖

for 𝑥𝑖 in Problem (1.1). Second, we leverage the regularization term Ω(𝑥) to

derive a tractable reformulation of (1.1). Third, by invoking strong duality, we

reformulate (1.1) as a mixed-integer saddle-point problem, which is solvable via

outer approximation. Finally, we demonstrate that algorithms derived from our

framework can outperform state-of-the-art solvers. On network design problems

with 100s of nodes and binary quadratic optimization problems with 100s of

variables, we improve the objective value of the returned solution by 5 to 40%

and 5 to 85% respectively, and our edge increases as the problem size increases.

• In Chapter 3, we provide two main contributions. First, we propose augment-

ing sparse portfolio selection problems with a ridge regularization term. This

yields a more practically tractable problem for two reasons. First, the duality

gap between a sparse porfolio selection problem and its second-order cone re-

laxation decreases as we increase the amount of regularization and becomes 0 at

with a sufficiently large but finite amount of regularization. Second, as we nu-

merically establish in computational experiments, the algorithms developed in

this chapter converge more rapidly with more regularization. Our second main

contribution is specializing the outer-approximation method developed in the

previous chapter to sparse portfolio selection problems, and demonstrating that

this allows us to solve large-scale sparse portfolio selection problems with up to

3, 200 securities to certifiable optimality in hundreds or thousands of seconds.

• In Chapter 4, we provide two main contributions. First, we reformulate sparse

PCA exactly as a mixed-integer semidefinite optimization problem; a refor-

mulation which is, to the best of our knowledge, novel. Second, we leverage

this MISDO formulation to design efficient algorithms for solving non-convex

mixed-integer quadratic optimization problems, such as sparse PCA, to certifi-

able optimality or within 1− 2% of optimality in practice at a larger scale than

existing state-of-the-art methods.

The main contributions of the second part of the thesis are as follows:
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• The key contributions of Chapter 5 are threefold. First, we propose using

orthogonal projection matrices which satisfy 𝑌 2 = 𝑌 to model low-rank con-

straints via the non-linear equation 𝑋 = 𝑌 𝑋. Under this lens, low-rank prob-

lems admit reformulations as optimization problems where some decision vari-

ables comprise a projection matrix. We term this family of problems Mixed-

Projection Conic Optimization (MPCO), in reference to mixed-integer opti-

mization. Second, by leveraging regularization and strong duality we rewrite

low-rank optimization problems as saddle-point problems over the space of

orthogonal projection matrices that can be solved to optimality via outer-

approximation, and propose an outer-approximation method to solve the saddle-

point problem to certifiable optimality. Third, by analyzing the saddle-point

problem, we derive new convex relaxations and rounding schemes which provide

certifiably near-optimal solutions in polynomial time in theory and rapidly in

practice. Using a generic spatial branch-and-bound code, we are already able

to solve low-rank optimization problems exactly for matrices with 30 rows and

columns, and find near-exact solutions for matrices with up to 600 rows and

columns. To our knowledge, our approach is the first mathematical framework

that solves low-rank optimization problems to certifiable (near-)optimality.

• The main contributions of Chapter 6 are twofold. First, we propose a general

reformulation technique for obtaining high-quality relaxations of low-rank op-

timization problems: introducing an orthogonal projection matrix to model a

low-rank constraint, and strengthening the formulation by taking the matrix

perspective of an appropriate substructure of the problem. Second, by applying

this technique, we obtain explicit characterizations of convex hulls of low-rank

sets which frequently arise in low-rank problems.

1.2 Overview and Structure of the Thesis

We now provide a high-level overview and section-by-section summary of each chapter.
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Chapter 2 In this chapter, we consider optimization problems which unfold over

two stages. In the first stage, a decision-maker activates binary variables, while

satisfying budget constraints and incurring activation costs. In the second stage, the

decision-maker optimizes over the continuous variables. Formally, we consider:

min
𝑧∈𝒵,𝑥∈R𝑛

𝑐⊤𝑧 + 𝑔(𝑥) + Ω(𝑥) s.t. 𝑥𝑖 = 0 if 𝑧𝑖 = 0 ∀𝑖 ∈ [𝑛], (1.1)

where 𝒵 ⊆ {0, 1}𝑛, 𝑐 ∈ R𝑛 is a cost vector, 𝑔(·) is a generic convex function which

possibly models convex constraints 𝑥 ∈ 𝒳 for a convex set 𝒳 ⊆ R𝑛 implicitly—by

requiring that 𝑔(𝑥) = +∞ if 𝑥 /∈ 𝒳 , and Ω(·) is a convex regularization function;

in spirit either a big-𝑀 regularizer Ω(𝑥) = 0 if ‖𝑥‖∞ ≤ 𝑀 and +∞ otherwise, or a

ridge regularizer Ω(𝑥) = 1
2𝛾
‖𝑥‖22.

This chapter is structured as follows:

• In Section 2.1, we provide some background and perform a literature review on

existing methods for addressing Problem (1.1).

• In Sections 2.2-2.3, we identify a general class of mixed-integer optimization

problems, which encompasses sparse regression, sparse portfolio selection, sparse

principal component analysis, unit commitment, facility location, network de-

sign and binary quadratic optimization as special cases. For this class of

problems, we discuss how imposing either big-𝑀 or ridge regularization ac-

counts for non-linear relationships between continuous and binary variables in

a tractable fashion. We also establish that regularization controls the convexity

and smoothness of Problem (1.1)’s objective function.

• In Sections 2.4-2.7, we propose a conjunction of general-purpose numerical al-

gorithms to solve Problem (1.1). The backbone of our approach is an outer ap-

proximation framework, enhanced with first-order methods to solve the Boolean

relaxations and obtain improved lower bounds, certifiably near-optimal warm-

starts via randomized rounding, and a discrete local search procedure. We also

connect our approach to the perspective cut approach [110] from a theoretical

and implementation standpoint.
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• Finally, in Section 2.8, we demonstrate empirically that algorithms derived from

our framework can outperform state-of-the-art solvers. On network design prob-

lems with 100s of nodes and binary quadratic optimization problems with 100s

of variables, we improve the objective value of the returned solution by 5 to

40% and 5 to 85% respectively, and our edge increases as the problem size

increases. We then analyze the benefits of the different ingredients in our nu-

merical recipe on facility location problems, and discuss the relative merits of

different regularization approaches on unit commitment instances.

The work in this chapter is based on the article [33], authored with Dimitris

Bertsimas and Jean Pauphilet.

Chapter 3 Since the Nobel-prize winning work of Markowitz [173], the problem

of selecting an optimal portfolio of securities has received an enormous amount of

attention from practitioners and academics alike. In a universe containing 𝑛 distinct

securities with expected marginal returns 𝜇 ∈ R𝑛 and a variance-covariance matrix

Σ ∈ 𝑆𝑛
+, the Markowitz model selects a portfolio which provides the highest expected

return for a given amount of variance, by solving

min
𝑥∈R𝑛

+

𝜎

2
𝑥⊤Σ𝑥− 𝜇⊤𝑥 s.t. 𝑒⊤𝑥 = 1, (1.2)

where 𝜎 ≥ 0 controls the trade-off between the portfolios risk and return. To improve

its realism, Bienstock [42] augmented Problem (1.2) with two sets of inequalities.

The first set is a generic system of linear inequalites 𝑙 ≤ 𝐴𝑥 ≤ 𝑢 which ensures that

various real-world constraints such as allocating an appropriate amount of capital

to each market sector hold. The second inequality limits the number of non-zero

positions held to 𝑘 ≪ 𝑛, by requiring that the portfolio is 𝑘-sparse, i.e., ‖𝑥‖0 ≤ 𝑘.

By introducing a ridge regularization term, this yields the following portfolio model:

min
𝑥∈R𝑛

+

𝜎

2
𝑥⊤Σ𝑥− 𝜇⊤𝑥+

1

2𝛾
‖𝑥‖22 s.t. 𝑙 ≤ 𝐴𝑥 ≤ 𝑢, 𝑒⊤𝑥 = 1, ‖𝑥‖0 ≤ 𝑘, (1.3)

where 𝛾 > 0 is a hyperparameter which controls the models robustness to noise.
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This chapter is structured as follows:

• In Section 3.1, we provide some background and perform a literature review on

existing methods for addressing Problem (1.3).

• In Section 3.2, we propose an efficient numerical strategy for solving Problem

(1.3). By observing that Problem (1.3)’s inner dual problem supplies subgra-

dients with respect to the positions held, we design an outer-approximation

procedure which solves Problem (1.3) to provable optimality. We also discuss

practical aspects of the procedure, including a computationally efficient sub-

problem strategy and a prepossessing technique for decreasing the bound gap

at the root node. In addition, we study the problems sensitivity to 𝛾, and es-

tablish theoretically that the support of an optimal portfolio (although not the

amount allocated to each security) is stable under small changes in 𝛾.

• In Section 3.3, we propose techniques for obtaining certifiably near-optimal

solutions quickly. First, we introduce a heuristic which supplies high-quality

warm-starts. Second, we observe that Problem (1.3)’s continuous relaxation

supplies a near-exact second-order cone representable lower bound, and exploit

this observation by deriving a sufficient condition for the bound to be exact.

• In Section 3.4, we apply the cutting-plane method to the problems described

in [69], [110], and three larger scale data sets: the S&P 500, Russell 1000, and

Wilshire 5000. We also explore Problem (3.4)’s sensitivity to its hyperparam-

eters, and establish empirically that optimal support indices tend to be stable

for reasonable hyperparameter choices.

The work in this chapter is based on [24], authored with Dimitris Bertsimas.

Chapter 4 In the era of big data, interpretable methods for compressing a high-

dimensional dataset into a lower dimensional set which shares the same essential

characteristics are imperative. Principal component analysis (PCA) is one of the most

popular approaches for completing this task. Given data 𝐴 ∈ R𝑛×𝑝 and its sample

covariance matrix Σ := 1
𝑛−1

𝐴𝐴⊤ ∈ R𝑝×𝑝, PCA selects the leading eigenvectors, or
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principal components, of Σ and subsequently projects 𝐴 onto these eigenvectors, by

multiplying 𝐴 by the leading principal components. In principal component analysis,

one commonly desired property is that the PCs are interpretable, since they are

usually a linear combination of all 𝑝 original features.

One common method for obtaining interpretable principal components is to stip-

ulate that they are sparse. This leads to the following mixed-integer quadratically

constrained problem:

max
𝑥∈R𝑝

𝑥⊤Σ𝑥 s.t. 𝑥⊤𝑥 = 1, ||𝑥||0 ≤ 𝑘, (1.4)

where the constraint ||𝑥||0 ≤ 𝑘 forces variance to be explained in a simple fashion.

The structure of the chapter is as follows:

• In Section 4.1, we provide some background and perform a literature review on

existing methods for addressing Problem (1.4).

• In Section 4.2-4.3, we reformulate Problem (1.4) as a mixed-integer SDO under

big-M and ridge regularization respectively, and demonstrate that the subprob-

lems which arise from this formulation under Section 2’s decomposition scheme

are actually solvable in closed form. This is significant because sparse PCA is

traditionally treated as a low-rank optimization problem, which as we show in

the next chapter is likely a harder class of problems to address.

• The Gershgorin Circle theorem has been empirically successful for deriving

upper-bounds on the objective value of (1.4) [20]. We theoretically analyze

the quality of such bounds in Section 4.4 and show that even tighter bounds

derived from Brauer’s ovals of Cassini theorem can also be imposed via mixed-

integer second-order cone constraints.

• In Section 4.5, we analyze the semidefinite reformulation’s convex relaxation,

and introduce a greedy rounding scheme which supplies high-quality solutions

to Problem (1.4) in polynomial time, together with a sub-optimality gap. To

further improve the quality of rounded solution and the optimality gap, we in-
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troduce strengthening inequalities. While solving the strengthened formulation

exactly would result in an intractable MISDO problem, solving its relaxation

and rounding the solution appears as an efficient strategy to return high-quality

solutions with a numerical certificate.

• In Section 4.6, we apply the cutting-plane and random rounding methods to

derive optimal and near optimal sparse principal components for problems in the

UCI data set. We also compare our method’s performance against the method of

Berk and Bertsimas [20], and find that our exact cutting-plane method performs

comparably, while our relax+round approach successfully scales to problems an

order of magnitude larger and often returns solutions which outperform the

exact method at sizes which the exact method cannot currently scale to. A key

feature of our numerical success is that we sidestep the computational difficulties

in solving SDOs at scale by proposing semidefinite-free methods for solving the

convex relaxations, i.e., solving second-order cone relaxations.

The work in this chapter is based on the article [37], authored with Dimitris

Bertsimas and Jean Pauphilet.

Chapter 5 In this chapter, we consider the problem:

min
𝑋∈R𝑛×𝑚

⟨𝐶,𝑋⟩+ 𝜆 · Rank(𝑋) s.t. 𝐴𝑋 = 𝐵, Rank(𝑋) ≤ 𝑘, 𝑋 ∈ 𝒦,

(1.5)

where 𝜆 (resp. 𝑘) prices (bounds) the rank of 𝑋, (𝐴,𝐵) ∈ Rℓ×𝑛 × Rℓ×𝑚 defines an

affine subspace, and 𝒦 is a proper cone, i.e., closed, convex, solid and pointed.

This chapter is structured as follows:

• In Section 5.1, we provide some background and perform a literature review on

existing methods for addressing Problem (1.5).

• In Section 5.2, we show that projection matrices are a natural generalization

of binary vectors to matrices. Inspired by a common tactic in cardinality con-

strained optimization, namely introducing binary variables to encode the sup-

port of the decision vector, we propose introducing a projection matrix to encode
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the image of the decision matrix and thereby model rank. We also investigate

the complexity of low-rank optimization problems and show that rank mini-

mization is in PSPACE.

• In Section 5.3, we derive the MPCO formulations of the aforementioned rank

optimization problems. By introducing a constraint on the spectral norm of 𝑋

or a penalty on its Frobenius norm - the matrix analogs of big-𝑀 constraints

and perspective formulations [126] respectively, we leverage strong duality, re-

formulate Problem (1.5) as a saddle-point problem, and prove the resulting

optimization problem admits a convex objective.

• We propose numerical algorithms to solve these MPCO problem to provable

(near) optimality in Section 5.4-5.6, by extending some of the most successful

techniques from MICO. First, we propose an outer-approximation scheme for

solving Problem (1.5) exactly. Then, we obtain valid lower-bounds from solving

its convex relaxations and propose an alternating minimization algorithm to do

so. In addition, we prove that a singular value decomposition (SVD) followed

by greedily rounding the eigenvalues provides certifiably near-optimal solutions

in polynomial time.

• In Section 5.7, we implement and numerically evaluate our proposed algorithms.

On examples from matrix completion and sensor location, we demonstrate that

methods proposed in this paper solve instances of Problem (1.5) to certifiable

optimality in minutes for 𝑛 in the tens. To our knowledge, our work is the

first to demonstrate that moderately sized rank constrained problems can be

solved to provable optimality in a tractable fashion. For 𝑛 in the hundreds, our

proposal scales and provides in minutes solutions of higher quality than existing

heuristics, such as nuclear norm minimization.

The work in this chapter is based on the article [34], authored with Dimitris

Bertsimas and Jean Pauphilet.
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Chapter 6 In this chapter, we develop strong convex relaxations for the following

low-rank optimization problem:

min
𝑋∈𝒮𝑛

+

⟨𝐶,𝑋⟩+ Ω(𝑋) + 𝜇 · Rank(𝑋) (1.6)

s.t. ⟨𝐴𝑖,𝑋⟩ = 𝑏𝑖 ∀𝑖 ∈ [𝑚], 𝑋 ∈ 𝒦, Rank(𝑋) ≤ 𝑘,

where 𝐶,𝐴𝑖, . . .𝐴𝑚 ∈ 𝒮𝑛 are 𝑛 × 𝑛 symmetric matrices, 𝑏1, . . . 𝑏𝑚 ∈ R are scalars,

[𝑛] denotes the set of running indices {1, ..., 𝑛}, and 𝜇 ∈ R+, 𝑘 ∈ N are parameters

which controls the complexity of 𝑋 by respectively penalizing and constraining its

rank. The set 𝒦 is a proper—i.e., closed, convex, solid and pointed—cone, and

Ω(𝑋) = tr(𝑓(𝑋) is the trace of a matrix-convex function.

The structure of the chapter is as follows:

• In Section 6.1, we provide some background and perform a literature review on

existing methods for addressing Problem (1.6).

• In Section 6.2 we supply some background on perspective functions and review

their role in developing tight formulations of mixed-integer problems.

• In Section 6.3-6.4, we introduce the matrix perspective function and its proper-

ties, extend the function’s definition to allow semidefinite in addition to positive

definite arguments, and propose a matrix perspective reformulation technique

(MPRT) which successfully obtains high-quality relaxations for low-rank prob-

lems which commonly arise in the literature.

• In Section 6.5-6.6, we connect the matrix perspective function to the convex

hulls of epigraphs of simple matrix convex functions under rank constraints.

• In Section 6.7, we illustrate the utility of this connection by deriving tighter

relaxations of low-rank problems than are currently available in the literature.

• Finally, in Section 6.8, we numerically verify the utility of our approach on rank

regression, D-optimal design and non-negative matrix problems.

The work in this chapter is based on the preprint [35], authored with Dimitris
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Bertsimas and Jean Pauphilet. The preprint has benefited from one round of major

revisions at Math. Programming and is currently under a second round of review.

1.3 Notation

Throughout this thesis, ordinary lowercase letters (𝑥, 𝑦) denote scalars, boldfaced

lowercase letters (𝑥,𝑦, . . .) denote vectors, boldfaced capital letters (𝑋,𝑌 , . . .) denote

matrices, and boldface Euler script letters (X,Y, . . .) denote higher-order tensors.

Calligraphic type (𝒮,𝒰 , . . .) denotes sets. The notation [𝑛] denotes the set of running

indices {1, . . . , 𝑛}.

Given a vector 𝑥 ∈ ℜ𝑝, the set supp(𝑥) ≜ {𝑖 : 𝑥𝑖 ̸= 0, 𝑖 ∈ [𝑝]} denotes the support

of 𝑥. ‖𝑥‖0 ≜ |supp(𝑥)| =
∑︀

𝑖∈[𝑝] ℐ{𝑥𝑖 ̸= 0} counts the number of nonzero entries

of 𝑥. If 𝑓(𝑥) is a convex function then its perspective function 𝜙(𝑥, 𝑡), defined as

𝜙(𝑥, 𝑡) = 𝑡𝑓(𝑥/𝑡) if 𝑡 > 0, 𝜙(0, 0) = 0, and ∞ elsewhere, is also convex [54, Chapter

3.2.6.]. We let relint(𝒳 ) denote the relative interior of a convex set 𝒳 , i.e., the set of

points on the interior of the affine hull of 𝒳 [see 54, Section 2.1.3]. Finally, we let 𝒵𝑛
𝑘

denote the set of 𝑘-sparse binary vectors, i.e, 𝒵𝑛
𝑘 := {𝑧 ∈ {0, 1}𝑛 : 𝑒⊤𝑧 ≤ 𝑘}.

Given a matrix 𝑋, 𝜎𝑖(𝑋) denotes the 𝑖th largest singular value of a matrix 𝑋,

⟨·, ·⟩ denotes the Euclidean inner product between two vectors or matrices of the same

size, 𝑋† denote the Moore-Penrose pseuedoinverse of a matrix 𝑋, ‖ · ‖𝐹 denote the

Frobenius norm of a matrix, ‖ · ‖𝜎 denote the spectral norm of a matrix, and ‖ · ‖*
denote the nuclear norm of a matrix.

We also use a variety of convex cones. We let 𝑆𝑛 denote the 𝑛 × 𝑛 cone of

symmetric matrices, 𝑆𝑛
+ denote the 𝑛 × 𝑛 positive semidefinite cone, 𝐶𝑛

+ = {𝐶 ∈

R𝑛×𝑛 : 𝐶 = 𝐷𝐷⊤,𝐷 ∈ R𝑛×𝑛
+ } denote the 𝑛 × 𝑛 completely positive cone and

𝐷𝑁𝑁𝑛 = 𝑆𝑛
+ ∩ R𝑛×𝑛

+ ⊆ 𝐶𝑛
+ denote the doubly non-negative cone.
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Part I

Logical and Sparsity Constraints
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Chapter 2

A Unified Approach to MIO With

Logical Constraints

In this chapter, we consider optimization problems that unfold over two stages. In

the first stage, a decision-maker activates binary variables while satisfying resource

budget constraints and incurring activation costs. Subsequently, in the second stage,

the decision-maker optimizes over the continuous variables. Formally, we consider:

min
𝑧∈𝒵,𝑥∈R𝑛

𝑐⊤𝑧 + 𝑔(𝑥) + Ω(𝑥) s.t. 𝑥𝑖 = 0 if 𝑧𝑖 = 0 ∀𝑖 ∈ [𝑛], (2.1)

where 𝒵 ⊆ {0, 1}𝑛, 𝑐 ∈ R𝑛 is a cost vector, 𝑔(·) is a convex function which possibly

models convex constraints 𝑥 ∈ 𝒳 for a convex set 𝒳 ⊆ R𝑛 implicitly—by requiring

that 𝑔(𝑥) = +∞ if 𝑥 /∈ 𝒳 , and Ω(·) is a convex regularizer which drives the theoretical

and practical tractability of the problem; we state its structure in Assumption 2.1.

Observe that the structure of Problem (2.1) is quite general, as the feasible set 𝒵

can capture known lower and upper bounds on 𝑧, relationships between different 𝑧𝑖’s,

or a cardinality constraint 𝑒⊤𝑧 ≤ 𝑘. Moreover, constraints of the form 𝑥 ∈ 𝒳 , for

some convex set 𝒳 , can be encoded within the domain of 𝑔, by defining 𝑔(𝑥) = +∞ if

𝑥 /∈ 𝒳 . As a result, Problem (2.1) encompasses a large number of problems from the

Operations Research and Machine Learning literatures, such as the network design

problem described in Example 2.1. These problems are typically studied separately.
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However, the techniques developed for each problem are actually different facets of

a single unified story, and can be applied to a much more general class of problems

than is often appreciated.

In this chapter, we provide three main insights: First, we reformulate the logical

constraint “𝑥𝑖 = 0 if 𝑧𝑖 = 0” in a non-linear way, by substituting 𝑧𝑖𝑥𝑖 for 𝑥𝑖 in

Problem (2.1). Second, we leverage the regularization term Ω(𝑥) to derive a tractable

reformulation of (2.1). Finally, by invoking strong duality, we reformulate (2.1) as a

mixed-integer saddle-point problem, which is solvable via a cutting-plane approach.

2.1 Background and Literature Review

Our work falls into two areas of the mixed-integer optimization literature which are

often considered in isolation: (𝑎) modeling forcing constraints which encode whether

continuous variables are active and can take non-zero values or are inactive and forced

to 0, and (𝑏) decomposition algorithms for mixed-integer optimization problems.

Formulations of forcing constraints

The most popular way to impose forcing constraints on continuous variables is to

introduce auxiliary discrete variables which encode whether the variables are active,

and relate the discrete and continuous variables via the big-𝑀 approach of [123].

This approach was first applied to mixed-integer optimization (MIO) in the context

of portfolio selection by [42]. With the big-𝑀 approach, the original MINLO admits

bounded relaxations and can therefore be solved via branch-and-bound. Moreover, be-

cause the relationship between discrete and continuous variables is enforced via linear

constraints, a big-𝑀 reformulation has a theoretically low impact on the tractability

of the MINLOs continuous relaxations. However, in practice, high values of 𝑀 lead

to numerical instability and provide low-quality bounds [see 14, Section 5].

This observation led [110] to propose a class of cutting-planes for MINLO prob-

lems with indicator variables, called perspective cuts, which often provide a tighter

reformulation of the logical constraints. Their approach was subsequently extended
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by [4], who, building upon the work of [17, pp. 88, item 5], proved that MINLO prob-

lems with indicator variables can often be reformulated as mixed-integer second-order

cone problems (see [127] for a survey). More recently, a third approach for coupling

the discrete and the continuous in MINLO was proposed independently for sparse

regression by [193] and [36]: augmenting the objective with a strongly convex term

of the form ‖𝑥‖22, called a ridge regularizer.

In the present chapter, we synthesize the aforementioned and seemingly unre-

lated three lines of research under the unifying lens of regularization. Notably, our

framework includes big-𝑀 and ridge regularization as special cases, and provides an

elementary derivation of perspective cuts.

Numerical algorithms for mixed-integer optimization

A variety of “classical” general-purpose decomposition algorithms have been proposed

for general MINLOs. The first such decomposition method is known as Generalized

Benders Decomposition, and was proposed by [122] as an extension of [19]. A sim-

ilar method, known as outer-approximation was proposed by [92], who proved its

finite termination. The outer-approximation method was subsequently generalized

to account for non-linear integral variables by [107]. These techniques decompose

MINLOs into a discrete master problem and a sequence of continuous separation

problems, which are iteratively solved to generate valid cuts for the master problem.

Though slow in their original implementation, decomposition schemes have ben-

efited from recent improvements in mixed-integer linear solvers in the past decades,

beginning with the branch-and-cut approaches of [187, 195], which embed the cut

generation process within a single branch-and-bound tree, rather than building a

branch-and-bound tree before generating each cut. We refer to [105, 106] for recent

successful implementations of “modern” decomposition schemes. From a high-level

perspective, these recent successes require three key ingredients: First, a fast cut

generation strategy. Second, as advocated by [105], a rich cut generation process at

the root node. Finally, a cut selection rule for degenerate cases where multiple valid

inequalities exist (e.g., the Pareto optimality criteria of [168]).
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In this chapter, we connect the regularization used to reformulate logical con-

straints with the aforementioned key ingredients for modern decomposition schemes.

Hence, instead of considering a MINLO formulation as a given and subsequently

attempt to solve it at scale, our approach view big-𝑀 constraints as one of many

alternatives. We argue that regularization is a modeling choice that impacts the

tractability of the formulation and should be made accordingly.

2.2 Framework and Examples

In this section, we present the family of problems to which our analysis applies, discuss

the role of regularization, and provide some examples from the Operations Research,

machine learning, and statistics literatures.

Problem (2.1) has a two-stage structure which comprises first “turning on” some

indicator variables 𝑧, and second solving a continuous optimization problem over

the active components of 𝑥. Precisely, Problem (2.1) can be viewed as a discrete

optimization problem:

min
𝑧∈𝒵

𝑐⊤𝑧 + 𝑓(𝑧), (2.2)

where the inner minimization problem

𝑓(𝑧) := min
𝑥∈R𝑛

𝑔(𝑥) + Ω(𝑥) s.t. 𝑥𝑖 = 0 if 𝑧𝑖 = 0 ∀𝑖 ∈ [𝑛], (2.3)

yields a best choice of 𝑥 given 𝑧. As we illustrate in this section, a number of problems

of practical interest exhibit this structure.

Example 2.1. Network design is an important example of problems of the form (2.1).

Given a set of 𝑚 nodes, the network design problem consists of constructing edges to

minimize the construction plus flow transportation cost. Let 𝐸 denote the set of all
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potential edges and let 𝑛 = |𝐸|. Then, the network design problem is given by:

min
𝑧∈𝒵,𝑥∈R𝑛

+

𝑐⊤𝑧 +
1

2
𝑥⊤𝑄𝑥+ 𝑑⊤𝑥 s.t. 𝐴𝑥 = 𝑏,

𝑥𝑒 = 0 if 𝑧𝑒 = 0 ∀𝑒 ∈ 𝐸,

(2.4)

where 𝒵 ⊆ {0, 1}𝑛, 𝐴 ∈ R𝑚×𝑛 is the flow conservation matrix, 𝑏 ∈ R𝑚 is the vector

of external demands and 𝑄 ∈ R𝑛×𝑛, 𝑑 ∈ R𝑛 define the quadratic and linear costs of

flow circulation. We assume that 𝑄 ⪰ 0 is a positive semidefinite matrix. Inequalities

of the form ℓ ≤ 𝑧 ≤ 𝑢 can be incorporated within 𝒵 to account for existing/forbidden

edges in the network. Problem (2.4) is of the same form as Problem (2.1) with

𝑔(𝑥) + Ω(𝑥) :=

⎧⎨⎩
1
2
𝑥⊤𝑄𝑥+ 𝑑⊤𝑥, if 𝐴𝑥 = 𝑏,𝑥 ≥ 0,

+∞, otherwise.

Within our two-stage structure, this gives the formulation

𝑓(𝑧) := min
𝑥∈R𝑛

+:𝐴𝑥=𝑏

1
2
𝑥⊤𝑄𝑥+ 𝑑⊤𝑥 s.t. 𝑥𝑒 = 0 if 𝑧𝑒 = 0 ∀𝑒 ∈ 𝐸.

Example 2.1 illustrates that the single-commodity network design problem is a

special case of Problem (2.1). We now formulate the 𝑘-commodity network design

problem with directed capacities as minimizing over 𝒵 = {0, 1}𝑛 the function:

𝑓(𝑧) := min
𝑥,𝑓𝑗∈R𝑛

+

𝑐⊤𝑧 + 1
2
𝑥⊤𝑄𝑥+ 𝑑⊤𝑥 s.t. 𝐴𝑓 𝑗 = 𝑏𝑗 ∀𝑗 ∈ [𝑘],

𝑥 =
𝑚∑︁
𝑗=1

𝑓 𝑗, 𝑥 ≤ 𝑢,

𝑥𝑒 = 0 if 𝑧𝑒 = 0 ∀𝑒 ∈ 𝐸.

(2.5)

Facility location

Given a set of 𝑛 facilities and 𝑚 customers, the facility location problem consists

of constructing facilities 𝑖 ∈ [𝑛] at cost 𝑐𝑖 to satisfy demand at minimal cost, i.e.,
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minimizing over 𝒵 = {0, 1}𝑛 the function:

𝑓(𝑧) := min
𝑋∈R𝑛×𝑚

+

𝑐⊤𝑧 +
𝑚∑︁
𝑗=1

𝑛∑︁
𝑖=1

𝐶𝑖𝑗𝑋𝑖𝑗

s.t.
𝑚∑︁
𝑗=1

𝑋𝑖𝑗 ≤ 𝑈𝑖 ∀𝑖 ∈ [𝑛],

𝑛∑︁
𝑖=1

𝑋𝑖𝑗 = 𝑑𝑗 ∀𝑗 ∈ [𝑚],

𝑋𝑖𝑗 = 0 if 𝑧𝑖 = 0 ∀𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚].

(2.6)

In this formulation, 𝑋𝑖𝑗 corresponds to the quantity produced in facility 𝑖 and shipped

to customer 𝑗 at a marginal cost of 𝐶𝑖𝑗. Each facility 𝑖 has a maximum output

capacity of 𝑈𝑖 and each customer 𝑗 has a demand of 𝑑𝑗. In the uncapacitated case

where 𝑈𝑖 =∞, the inner minimization problems decouple into independent knapsack

problems for each customer 𝑗.

Sparse portfolio selection

Given an expected marginal return vector 𝜇 ∈ R𝑛, estimated covariance matrix

Σ ∈ 𝒮𝑛
+, uncertainty budget parameter 𝜎 > 0, cardinality budget parameter 𝑘 ∈

{2, . . . , 𝑛 − 1}, linear constraint matrix 𝐴 ∈ R𝑛×𝑚, and right-hand-side bounds

𝑙,𝑢 ∈ R𝑚, investors determine an optimal allocation of capital between assets by

minimizing over 𝒵 =
{︀
𝑧 ∈ {0, 1}𝑛 : 𝑒⊤𝑧 ≤ 𝑘

}︀
the function

𝑓(𝑧) = min
𝑥∈R𝑛

+

𝜎

2
𝑥⊤Σ𝑥− 𝜇⊤𝑥

s.t. 𝑙 ≤ 𝐴𝑥 ≤ 𝑢, 𝑒⊤𝑥 = 1, 𝑥𝑖 = 0 if 𝑧𝑖 = 0 ∀𝑖 ∈ [𝑛].

(2.7)

We apply the algorithms derived in this chapter to sparse empirical risk minimization

problems in Chapter 3.
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Sparse empirical risk minimization

Given a matrix of covariates 𝑋 ∈ R𝑛×𝑝 and a response vector 𝑦 ∈ R𝑛, sparse empir-

ical risk minimization seeks a vector 𝑤 which explains the response in a compelling

manner, i.e., minimizes over 𝒵 = {𝑧 ∈ {0, 1}𝑝 : 𝑒⊤𝑧 ≤ 𝑘} the function:

𝑓(𝑧) := min
𝑤∈R𝑝

𝑛∑︁
𝑖=1

ℓ
(︀
𝑦𝑖,𝑤

⊤𝑥𝑖

)︀
s.t. 𝑤𝑗 = 0 if 𝑧𝑗 = 0 ∀𝑗 ∈ [𝑝], (2.8)

where ℓ is an appropriate convex loss function; we provide examples of suitable loss

functions in Table 2.1.

Table 2.1: Loss functions and Fenchel conjugates for ERM problems.

Method Loss function Domain Fenchel conjugate

OLS 1
2
(𝑦 − 𝑢)2 𝑦 ∈ R ℓ⋆(𝑦, 𝛼) = 1

2
𝛼2 + 𝛼𝑦

SVM max(1− 𝑦𝑢, 0) 𝑦 ∈ {±1} ℓ⋆(𝑦, 𝛼) =

{︃
𝛼𝑦, if 𝛼𝑦 ∈ [−1, 0],
∞, otherwise.

Sparse principal component analysis (PCA)

Given a covariance matrix Σ ∈ 𝑆𝑝
+, the sparse PCA problem is to select a vector

𝑧 ∈ {0, 1}𝑝 : 𝑒⊤𝑧 ≤ 𝑘 which maximizes over {𝑧 ∈ {0, 1}𝑝 : 𝑒⊤𝑧 ≤ 𝑘} the function:

𝑓(𝑧) = max
𝑥∈R𝑝

𝑥⊤Σ𝑥 s.t. ‖𝑥‖22 = 1, 𝑥𝑖 = 0 if 𝑧𝑖 = 0 ∀𝑖 ∈ [𝑝]. (2.9)

This function is non-concave in 𝑧, because 𝑓(𝑧) is the optimal value of a non-convex

quadratic optimization problem. Fortuitously however, the leading eigenvalue of a

positive semidefinite matrix Σ can be expressed as the optimal value of the following

semidefinite problem:

𝜆max(Σ) = max
𝑋∈𝒮𝑛

+

⟨Σ,𝑋⟩ s.t. tr(𝑋) = 1, (2.10)
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which implies that, since 𝑓(𝑧) is simply the leading eigenvalue of a submatrix of Σ

induced by 𝑧, Problem (2.9) admits an exact mixed-integer semidefinite reformulation:

𝑓(𝑧) = max
𝑋∈𝑆𝑝

+

⟨Σ,𝑋⟩ s.t. tr(𝑋) = 1, 𝑋𝑖,𝑗 = 0 if 𝑧𝑖 = 0 ∀𝑖, 𝑗 ∈ [𝑝]. (2.11)

We apply the algorithms derived in this chapter to sparse principal component anal-

ysis problems in Chapter 4.

Unit commitment

In the DC-load-flow unit commitment problem, each generation unit 𝑖 incurs a cost

given by a quadratic cost function 𝑓 𝑖(𝑥) = 𝑎𝑖𝑥
2 + 𝑏𝑖𝑥 + 𝑐𝑖 for its power generation

output 𝑥 ∈ [0, 𝑢𝑖]. Let 𝒯 denote a finite set of time periods covering a time horizon

(e.g., 24 hours). At each time period 𝑡 ∈ 𝒯 , there is an estimated demand 𝑑𝑡. The

objective is to generate sufficient power to satisfy demand at minimum cost, while

respecting minimum time on/time off constraints.

By introducing binary variables 𝑧𝑖,𝑡, which denote whether generation unit 𝑖 is

active in time period 𝑡, requiring that 𝑧 ∈ 𝒵, i.e., 𝑧 obeys physical constraints such

as minimum time on/off, the unit commitment problem admits the formulation:

min
𝑧

𝑓(𝑧) +
∑︁
𝑡∈𝒯

𝑛∑︁
𝑖=1

𝑐𝑖𝑧𝑖,𝑡 s.t. 𝑧 ∈ 𝒵 ⊆ {0, 1}𝑛×|𝒯 |,

where: 𝑓(𝑧) = min
𝑥

∑︁
𝑡∈𝒯

(︃
𝑛∑︁

𝑖=1

1
2
𝑎𝑖𝑥

2
𝑖,𝑡 + 𝑏𝑖𝑥𝑖,𝑡

)︃

s.t.
𝑛∑︁

𝑖=1

𝑥𝑖,𝑡 ≥ 𝐷𝑡 ∀𝑡 ∈ 𝒯 ,

𝑥𝑖,𝑡 ∈ [0, 𝑢𝑖,𝑡] ∀𝑖 ∈ [𝑛],∀𝑡 ∈ 𝒯 ,

𝑥𝑖,𝑡 = 0 if 𝑧𝑖,𝑡 = 0 ∀𝑖 ∈ [𝑛],∀𝑡 ∈ 𝒯 .

(2.12)
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Binary quadratic optimization

Given a symmetric cost matrix 𝑄, the binary quadratic optimization problem consists

of selecting a vector of binary variables 𝑧 which minimizes over 𝒵 = {0, 1}𝑛:

𝑓(𝑧) = 𝑧⊤𝑄𝑧. (2.13)

This formulation is non-convex and does not include continuous variables. How-

ever, introducing auxiliary continuous variables yields the equivalent formulation [109]

of minimizing over 𝒵 = {0, 1}𝑛 the function:

𝑓(𝑧) := min
𝑌 ∈R𝑛×𝑛

+

⟨𝑄,𝑌 ⟩ s.t. 𝑌𝑖,𝑗 ≤ 1 ∀𝑖, 𝑗 ∈ [𝑛],

𝑌𝑖,𝑗 ≥ 𝑧𝑖 + 𝑧𝑗 − 1 ∀𝑖 ∈ [𝑛],∀𝑗 ∈ [𝑛]∖{𝑖},

𝑌𝑖,𝑖 ≥ 𝑧𝑖 ∀𝑖 ∈ [𝑛],

𝑌𝑖,𝑗 = 0 if 𝑧𝑖 = 0 ∀𝑖, 𝑗 ∈ [𝑛],

𝑌𝑖,𝑗 = 0 if 𝑧𝑗 = 0 ∀𝑖, 𝑗 ∈ [𝑛].

Union of ellipsoidal constraints

We now demonstrate that an even broader class of problems than MIOs with logical

constraints can be cast within our framework. Concretely, we demonstrate that con-

straints 𝑥 ∈ 𝒮 :=
⋃︀𝑘

𝑖=1(𝑄𝑖 ∩ 𝑃𝑖), where 𝑄𝑖 := {𝑥 ∈ R𝑛 : 𝑥⊤𝑄𝑖𝑥 + ℎ⊤
𝑖 𝑥 + 𝑔𝑖 ≤ 0},

with 𝑄𝑖 ⪰ 0, is an ellipsoid and 𝑃𝑖 := {𝑥 : 𝐴𝑖𝑥 ≤ 𝑏𝑖} is a polytope, can be refor-

mulated as a special case of our framework. We remark that the constraint 𝑥 ∈ 𝒮

is very general. Indeed, if we were to omit the quadratic constraints then we obtain

a so-called ideal union of polyhedra formulation, which essentially all mixed-binary

linear feasible regions admit [see 217].

To derive a mixed-integer formulation with logical constraints of 𝒮 that fits within

our framework, we introduce 𝑥𝑖 ∈ R𝑛 and 𝛿𝑖 ∈ {0, 1}𝑛, such that 𝑥𝑖 ∈ 𝑄𝑖 ∩ 𝑃𝑖 if

𝛿𝑖 = 1, 𝑥𝑖 = 0 otherwise, and 𝑥 =
∑︀

𝑖 𝑥𝑖. We enforce 𝑥𝑖 ∈ 𝑄𝑖 ∩ 𝑃𝑖 by introducing

slack variables 𝜉𝑖, 𝜌𝑖 for the linear and quadratic constraints respectively, and forcing
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them to be zero whenever 𝛿𝑖 = 1. Formally, 𝒮 admits the following formulation

𝑥 =
𝑘∑︁

𝑖=1

𝑥𝑖,

𝑘∑︁
𝑖=1

𝛿𝑖 = 1, (2.14)

𝐴𝑖𝑥𝑖 ≤ 𝑏𝑖 + 𝜉𝑖 ∀𝑖 ∈ [𝑘],

𝑥⊤
𝑖 𝑄𝑖𝑥𝑖 + ℎ⊤

𝑖 𝑥𝑖 + 𝑔𝑖 ≤ 𝜌𝑖 ∀𝑖 ∈ [𝑘],

𝑥𝑖 = 0 if 𝛿𝑖 = 0 ∀𝑖 ∈ [𝑘],

𝜉𝑖 = 0 if (1− 𝛿𝑖) = 0 ∀𝑖 ∈ [𝑘],

𝜌𝑖 = 0 if (1− 𝛿𝑖) = 0 ∀𝑖 ∈ [𝑘].

A Regularization Assumption

When we stated Problem (2.1), we assumed that its objective function consists of a

convex function 𝑔(𝑥) plus a regularization term Ω(𝑥). We now formalize this:

Assumption 2.1. In Problem (2.1), the regularization term Ω(𝑥) is one of:

• a big-𝑀 penalty function, Ω(𝑥) = 0 if ‖𝑥‖∞ ≤𝑀 and ∞ otherwise,

• a ridge penalty, Ω(𝑥) =
1

2𝛾
‖𝑥‖22.

This decomposition often constitutes a modeling choice in itself. We now illustrate

this idea via the network design example.

Example 2.2. In the network design example (2.4), given the flow conservation

structure 𝐴𝑥 = 𝑏, we have that 𝑥 ≤ 𝑀𝑒, where 𝑀 =
∑︀

𝑖:𝑏𝑖>0 𝑏𝑖. In addition,

if 𝑄 ≻ 0 then the objective function naturally contains a ridge regularization term

with 1/𝛾 equal to the smallest eigenvalue of 𝑄. Moreover, it is possible to obtain a

tighter natural ridge regularization term by solving the following auxiliary semidefinite

optimization problem apriori

max
𝑞≥0

𝑒⊤𝑞 s.t. 𝑄−Diag(𝑞) ⪰ 0,

and using 𝑞𝑖 as the ridge regularizer for each index 𝑖 [112].
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Big-𝑀 constraints are often considered to be a modeling trick. However, our

framework demonstrates that imposing either big-𝑀 constraints or a ridge penalty

is a regularization method, rather than a modeling trick. Interestingly, ridge regu-

larization accounts for the relationship between the binary and continuous variables

just as well as big-𝑀 regularization, without performing an algebraic reformulation

of the logical constraints.

Conceptually, both regularization functions are equivalent to a soft or hard con-

straint on the continuous variables 𝑥. However, they admit practical differences: For

big-𝑀 regularization, there usually exists a finite value 𝑀0, typically unknown a pri-

ori, such that if 𝑀 < 𝑀0, the regularized problem is infeasible. Alternatively, for

every value of the ridge regularization parameter 𝛾, if the original problem is feasible

then the regularized problem is also feasible. Consequently, if there is no natural

choice of 𝑀 then imposing ridge regularization may be less restrictive than impos-

ing big-𝑀 regularization. However, for any 𝛾 > 0, the objective of the optimization

problem with ridge regularization is different from its unregularized limit as 𝛾 →∞,

while for big-𝑀 regularization, there usually exists a finite value 𝑀1 above which the

two objective values match.

2.3 Duality to the Rescue

In this section, we derive Problem (2.3)’s dual and reformulate 𝑓(𝑧) as a maximization

problem. This reformulation is significant for two reasons: First, as shown in the

proof of Theorem 2.1, it leverages a non-linear reformulation of the logical constraints

“𝑥𝑖 = 0 if 𝑧𝑖 = 0” by introducing additional variables 𝑣𝑖 such that 𝑣𝑖 = 𝑧𝑖𝑥𝑖. Second,

it proves that the regularization term Ω(𝑥) drives the convexity and smoothness of

𝑓(𝑧), and thereby drives the computational tractability of the problem. To derive

Problem (2.3)’s dual, we require:

Assumption 2.2. For each subproblem generated by 𝑓(𝑧), where 𝑧 ∈ 𝒵, either the

optimization problem is infeasible, or strong duality holds.

Note that all seven examples stated in this chapter satisfy Assumption 2.2, as their
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inner problems are either convex quadratics with linear constraints or linear semidef-

inite problems which satisfy Slater’s condition [54, Section 5.2.3]. More generally,

the assumption may fail to hold if the inner problem is feasible but fails to satisfy a

constraint qualification which guarantees strong duality (e.g., Slater’s condition [54,

Section 5.2.3], which requires that the problem has non-empty relative interior). A

classic example of this [54, Exercise 5.21] is the optimization problem

min
𝑥∈R,𝑤∈R+

exp(−𝑥) s.t.
𝑥2

𝑤
≤ 0

with optimal objective 1, which has the dual problem max𝜆≥0 0 s.t.𝜆 ≥ 0 with optimal

objective 0. Augmenting this problem with a logical constraint results in an (artificial)

logically-constrained problem which violates Assumption 2.2.

Noting however that constraint qualification failures are usually artificial and in-

dicate modeling errors rather than real phenomena [see 177, Section 8.4, for a dis-

cussion], let us suppose that Assumption 2.2 holds. Then, the following theorem

reformulates Problem (2.2) as a saddle-point problem:

Theorem 2.1. Under Assumption 2.2, Problem (2.2) is equivalent to:

min
𝑧∈𝒵

max
𝛼∈R𝑛

𝑐⊤𝑧 + ℎ(𝛼)−
𝑛∑︁

𝑖=1

𝑧𝑖 Ω
⋆(𝛼𝑖), (2.15)

where ℎ(𝛼) := inf𝑣 𝑔(𝑣)− 𝑣⊤𝛼 is, up to a sign, the Fenchel conjugate of 𝑔, and

Ω⋆(𝛽) := 𝑀 |𝛽| for the big-𝑀 penalty,

Ω⋆(𝛽) := 𝛾
2
𝛽2 for the ridge penalty.

Proof. Let us fix some 𝑧 ∈ {0, 1}𝑛, and suppose that strong duality holds for the

inner minimization problem which defines 𝑓(𝑧). Then, after introducing additional

variables 𝑣 ∈ R𝑛 such that 𝑣𝑖 = 𝑧𝑖𝑥𝑖, we have

𝑓(𝑧) = min
𝑥,𝑣

𝑔(𝑣) + Ω(𝑥) s.t. 𝑣 = Diag(𝑧)𝑥.
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Let 𝛼 denote the dual variables associated with the coupling constraint 𝑣 = Diag(𝑧)𝑥.

The minimization problem is then equivalent to its dual problem, which is given by:

𝑓(𝑧) = max
𝛼

ℎ(𝛼) + min
𝑥

[︀
Ω(𝑥) +𝛼⊤Diag(𝑧)𝑥

]︀
,

Since Ω(·) is decomposable, i.e., Ω(𝑥) =
∑︀

𝑖Ω𝑖(𝑥𝑖), we obtain:

min
𝑥

[︀
Ω(𝑥) +𝛼⊤Diag(𝑧)𝑥

]︀
=

𝑛∑︁
𝑖=1

min
𝑥𝑖

[Ω𝑖(𝑥𝑖) + 𝑧𝑖𝑥𝑖𝛼𝑖]

=
𝑛∑︁

𝑖=1

−Ω⋆(−𝑧𝑖𝛼𝑖) = −
𝑛∑︁

𝑖=1

𝑧𝑖Ω
⋆(𝛼𝑖),

where the last equality holds as 𝑧𝑖 > 0 for the big-𝑀 and 𝑧2𝑖 = 𝑧𝑖 for the ridge penalty.

Alternatively, if the inner minimization problem defining 𝑓(𝑧) is infeasible, then

its dual problem is unbounded by weak duality1.

Remark 2. Without regularization, i.e., Ω(𝑥) = 0, a similar proof shows that Prob-

lem (2.2) admits an interesting saddle-point formulation:

min
𝑧∈𝒵

max
𝛼∈R𝑛

𝑐⊤𝑧 + ℎ(𝛼) s.t. 𝛼𝑖 = 0, if 𝑧𝑖 = 1 ∀𝑖 ∈ [𝑛],

since Ω⋆(𝛼) = min𝑥 [𝑥𝛼− Ω(𝑥)] =0 if 𝛼 = 0, and +∞ otherwise. Consequently, the

regularized formulation can be regarded as a relaxation of the original problem where

the hard constraint 𝛼𝑖 = 0 if 𝑧𝑖 = 1 is replaced with a soft penalty term −𝑧𝑖Ω⋆(𝛼𝑖).

Remark 3. The proof of Theorem 2.1 exploits three attributes of the regularizer Ω(𝑥).

Namely, (1) decomposability, i.e., Ω(𝑥) =
∑︀

𝑖 Ω𝑖(𝑥𝑖), for appropriate scalar functions

Ω𝑖, (2) the convexity of Ω(𝑥) in 𝑥, and (3) the fact that Ω(·) regularizes towards

0, i.e., 0 ∈ argmin𝑥 Ω(𝑥). However, the proof does not explicitly require that Ω(𝑥)

is either a big-𝑀 or a ridge regularizer. This suggests that our framework could be

extended to other regularization functions.
1Weak duality implies that the dual problem is either unfeasible or unbounded. Since the feasible

set of the maximization problem does not depend on 𝑧, it is always feasible, unless the original
problem (2.1) is itself infeasible. Therefore, we assume without loss of generality that it is unbounded.
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Example 2.3. For the network design problem (2.4), we have

ℎ(𝛼) = min
𝑥≥0:𝐴𝑥=𝑏

1
2
𝑥⊤𝑄𝑥+ (𝑑−𝛼)⊤𝑥,

= max
𝛽0≥0,𝑝

𝑏⊤𝑝− 1
2

(︀
𝐴⊤𝑝− 𝑑+𝛼+ 𝛽0

)︀⊤
𝑄−1

(︀
𝐴⊤𝑝− 𝑑+𝛼+ 𝛽0

)︀
.

Introducing 𝜉 = 𝑄−1/2
(︀
𝐴⊤𝑝− 𝑑+𝛼+ 𝛽0

)︀
, we can further write

ℎ(𝛼) = max
𝜉,𝑝

𝑏⊤𝑝− 1
2
‖𝜉‖22 s.t 𝑄1/2𝜉 ≥ 𝐴⊤𝑝− 𝑑+𝛼.

Hence, Problem (2.4) is equivalent to minimizing over 𝑧 ∈ 𝒵 the function

𝑐⊤𝑧 + 𝑓(𝑧) = max
𝛼,𝜉,𝑝

𝑐⊤𝑧 + 𝑏⊤𝑝− 1
2
‖𝜉‖22 −

𝑛∑︁
𝑗=1

𝑧𝑗 Ω
⋆(𝛼𝑗)

s.t 𝑄1/2𝜉 ≥ 𝐴⊤𝑝− 𝑑+𝛼.

Theorem 2.1 reformulates 𝑓(𝑧) as an inner maximization problem, namely

𝑓(𝑧) = max
𝛼∈R𝑛

ℎ(𝛼)−
𝑛∑︁

𝑖=1

𝑧𝑖 Ω
⋆(𝛼𝑖), (2.16)

for any feasible binary 𝑧 ∈ 𝒵. The regularization term Ω will be instrumental in our

numerical strategy for it directly controls both the convexity and smoothness of 𝑓 .

Note that (2.16) extends the definition of 𝑓(𝑧) to the convex set Bool(𝒵), obtained

by relaxing the constraints 𝑧 ∈ {0, 1}𝑝 to 𝑧 ∈ [0, 1]𝑝 in the definition of 𝒵.

Convexity

𝑓(𝑧) is convex in 𝑧 as a point-wise maximum of linear function of 𝑧. In addition,

denoting 𝛼⋆(𝑧) a solution of (2.16), we have the lower-approximation:

𝑓(𝑧̃) ≥ 𝑓(𝑧) +∇𝑓(𝑧)⊤(𝑧̃ − 𝑧) ∀𝑧̃ ∈ 𝒵, (2.17)

where [∇𝑓(𝑧)]𝑖 := −Ω⋆(𝛼⋆(𝑧)𝑖) is a sub-gradient of 𝑓 at 𝑧.
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We remark that if the maximization problem in 𝛼 defined by 𝑓(𝑧) admits multiple

optimal solutions then the corresponding lower-approximation of 𝑓 at 𝑧 may not be

unique. This behavior can severely hinder the convergence of cutting-plane schemes

such as Benders’ decomposition. Since the work of [168] on Pareto optimal cuts, many

strategies have been proposed to improve the cut selection process in the presence of

degeneracy [see 105, Section 4.4 for a review]. However, the use of ridge regularization

ensures that the objective function in (2.15) is strongly concave in 𝛼𝑖 such that 𝑧𝑖 > 0,

and therefore guarantees that there is a unique optimal choice of 𝛼⋆
𝑖 (𝑧). In other

words, ridge regularization naturally inhibits degeneracy.

Smoothness

𝑓(𝑧) is smooth, in the sense of Lipschitz continuity, which is a crucial property for

deriving bounds on the integrality gap of the Boolean relaxation, and designing local

search heuristics in Section 2.4. The following proposition follows from Theorem 2.1:

Proposition 2.1. For any 𝑧, 𝑧′ ∈ Bool (𝒵),

(a) With big-𝑀 regularization, 𝑓(𝑧′)− 𝑓(𝑧) ≤𝑀
𝑛∑︁

𝑖=1

(𝑧𝑖 − 𝑧′𝑖)|𝛼⋆(𝑧′)𝑖|.

(b) With ridge regularization, 𝑓(𝑧′)− 𝑓(𝑧) ≤ 𝛾

2

𝑛∑︁
𝑖=1

(𝑧𝑖 − 𝑧′𝑖)𝛼
⋆(𝑧′)2𝑖 .

Proof. By Equation (2.15),

𝑓(𝑧′)− 𝑓(𝑧) = max
𝛼′∈R𝑛

(︃
ℎ(𝛼′)−

𝑛∑︁
𝑖=1

𝑧′𝑖Ω
⋆(𝛼′

𝑖)

)︃
− max

𝛼∈R𝑛

(︃
ℎ(𝛼)−

𝑛∑︁
𝑖=1

𝑧𝑖Ω
⋆(𝛼𝑖)

)︃
,

= ℎ(𝛼⋆(𝑧′))−
𝑛∑︁

𝑖=1

𝑧′𝑖Ω
⋆(𝛼⋆(𝑧′)𝑖)− ℎ(𝛼⋆(𝑧′)) +

𝑛∑︁
𝑖=1

𝑧𝑖Ω
⋆(𝛼⋆(𝑧′)𝑖),

≤
𝑛∑︁

𝑖=1

(𝑧𝑖 − 𝑧′𝑖)Ω
⋆(𝛼⋆(𝑧′)𝑖),

where the inequality holds as an optimal 𝛼′ is a feasible choice of 𝛼.

Proposition 2.1 demonstrates that, when the coordinates of 𝛼⋆(𝑧) are uniformly
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bounded2 with respect to 𝑧, 𝑓(𝑧) is Lipschitz-continuous, with a constant proportional

to 𝑀 (resp. 𝛾) in the big-𝑀 (resp. ridge) case.

Theoretical Merits of Ridge, Big-𝑀 Regularization

In this section, we proposed a framework to reformulate MINLOs with logical con-

straints, which comprises regularizing MINLOs via either the widely used big-𝑀

modeling paradigm or the less popular ridge regularization paradigm. We summarize

the advantages and disadvantages of each regularizer in Table 2.2. However, note that

we have not yet established how these characteristics impact the numerical tractabil-

ity and quality of the returned solution; this is the topic of the following two sections.

Table 2.2: Summary of advantages (+) /disadvantages (−) of both techniques.

Regularization Characteristics

Big-𝑀
(+) Linear constraints
(+) Supplies same objective if 𝑀 > 𝑀1, for some 𝑀1 <∞
(−) Leads to infeasiblity if 𝑀 < 𝑀0, for some 𝑀0 <∞

Ridge
(+) Strongly convex objective
(−) Leads to a different objective for any 𝛾 > 0
(+) Preserves the feasible set

2.4 An Efficient Numerical Approach

We now present an efficient numerical approach to solve Problem (2.15). The back-

bone is a cutting-plane strategy, embedded within a branch-and-bound procedure

to solve the problem exactly. We also propose local search and rounding heuristics

to find good feasible solutions, and use information from the Boolean relaxation to

improve the duality gap.

2Such a uniform bound always exists, as 𝑓(𝑧) is only supported on a finite number of binaries.
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Overall Cutting-Plane Scheme

Theorem 2.1 reformulates the function 𝑓(𝑧) as an inner maximization problem, and

demonstrates that 𝑓(𝑧) is convex in 𝑧, meaning a linear lower approximation provides

a valid underestimator of 𝑓(𝑧), as outlined in Equation (2.17). Consequently, a valid

numerical strategy for minimizing 𝑓(𝑧) is to iteratively minimize a piecewise linear

lower-approximation of 𝑓 and refining this approximation at each step until some

approximation error 𝜀 is reached, as described in Algorithm 2.1. Note that this

scheme converges in a finite, yet exponential in the worst case, number of iterations,

because there are finitely many binary solutions.

Algorithm 2.1 Cutting-plane scheme
Require: Initial solution 𝑧1

𝑡← 1
repeat

Compute 𝑧𝑡+1, 𝜂𝑡+1 solution of

min
𝑧∈𝒵,𝜂

𝑐⊤𝑧 + 𝜂 s.t. ∀𝑠 ∈ {1, . . . , 𝑡}, 𝜂 ≥ 𝑓(𝑧𝑠) +∇𝑓(𝑧𝑠)⊤(𝑧 − 𝑧𝑠)

Compute 𝑓(𝑧𝑡+1) and ∇𝑓(𝑧𝑡+1)
𝑡← 𝑡+ 1

until 𝑓(𝑧𝑡+1)− 𝜂𝑡+1 ≤ 𝜀 return 𝑧𝑡

As suggested in the pseudocode, this strategy can be integrated within a single

branch-and-bound procedure using lazy callbacks to avoid solving a mixed-integer

linear optimization problem at each iteration. Lazy callbacks are now standard tools

in commercial solvers such as Gurobi and CPLEX and provide significant speed-ups

for cutting-plane algorithms. With this, the commercial solver constructs a single

branch-and-bound tree and generates a new cut at a feasible solution 𝑧.

We remark that the second-stage minimization problem may be infeasible at some

𝑧𝑡. In this case, we generate a feasibility cut. In particular, the constraint
∑︀

𝑖 𝑧
𝑡
𝑖(1−

𝑧𝑖)+
∑︀

𝑖(1−𝑧𝑡𝑖)𝑧𝑖 ≥ 1 excludes the iterate 𝑧𝑡 from the feasible set. Stronger feasibility

cuts can be obtained by leveraging problem specific structure. For instance, when

the feasible set satisfies 𝑧𝑡 /∈ 𝒵 =⇒ ∀𝑧 ≤ 𝑧𝑡, 𝑧 /∈ 𝒵,
∑︀

𝑖(1 − 𝑧𝑡𝑖)𝑧𝑖 ≥ 1 is a valid

feasibility cut. Alternatively, one can invoke conic duality if 𝑔(𝑥) generates a conic
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feasibility problem. Formally, assume

𝑔(𝑥) =

⎧⎪⎨⎪⎩𝑐⊤𝑥, if 𝐴𝑥 = 𝑏, 𝑥 ∈ 𝒦,

+∞, otherwise,

where 𝒦 is a closed convex cone. Assuming that 𝑔(𝑥) is of the prescribed form, we

have the dual conjugate

ℎ(𝛼) = inf
𝑥

𝑥⊤𝛼− 𝑔(𝑥) = max
𝜋

𝑏⊤𝜋 +

⎧⎪⎨⎪⎩0, if 𝑐−𝛼−𝐴⊤𝜋 ∈ 𝒦⋆,

+∞, otherwise,

where 𝒦⋆ is the dual cone to 𝒦. In this case, if some binary vector 𝑧 gives rise to an

infeasible subproblem, i.e., 𝑓(𝑧) = +∞, then the conic duality theorem implies3 that

there is a certificate of infeasibility (𝛼,𝜋) such that

𝑐−𝛼−𝐴⊤𝜋 ∈ 𝒦⋆, 𝑏⊤𝜋 >
𝑛∑︁

𝑖=1

𝑧𝑖Ω
⋆(𝛼𝑖). (2.18)

Therefore, to restore feasibility, we simply impose the following cut:

𝑏⊤𝜋 ≤
𝑛∑︁

𝑖=1

𝑧𝑖Ω
⋆(𝛼𝑖). (2.19)

We now provide some guidelines for accelerating the convergence of Algorithm 2.1:

1. Fast cut generation strategy: To generate a cut, one solves the second-stage

minimization problem (2.3) (or its dual) in 𝑥, which contains no discrete vari-

ables and is usually orders of magnitude faster to solve than the original mixed-

3We should note that this statement is, strictly speaking, not true unless we impose regularization.
Indeed, the full conic duality theorem [17, Theorem 2.4.1] allows for the possibility that a problem
is infeasible but asymptotically feasible, i.e.,

∄𝑥 : 𝐴𝑥 = 𝑏,𝑥 ∈ 𝒦 but ∃{𝑥𝑡}∞𝑡=1 : 𝑥𝑡 ∈ 𝒦 ∀𝑡 with ‖𝐴𝑥𝑡 − 𝑏‖ → 0.

Fortunately, the regularizer Ω(𝑥) alleviates this issue, because it is coercive (i.e., “blows up” to +∞
as ‖𝑥‖ → ∞) and therefore renders all unbounded solutions infeasible and ensures the compactness
of the level sets of 𝑔(𝑥) + Ω(𝑥).
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integer problem (2.1). Moreover, the minimization problem in 𝑥 needs to be

solved only for the coordinates 𝑥𝑖 such that 𝑧𝑖 = 1. In practice, this approach

yields a sequence of subproblems of much smaller size than the original problem,

especially if 𝒵 contains a cardinality constraint. For this reason, we recommend

generating cuts at binary 𝑧’s, which are often sparser than continuous 𝑧’s. This

recommendation can be relaxed when the separation problem can be solved

efficiently, even for dense 𝑧’s; for instance, in uncapacitated facility location

problems, each subproblem is a knapsack problem that can be solved by sort-

ing [106]. If possible, we recommend theoretically analyzing the sparsity of the

optimal solution a priori, to derive an explicit cardinality or budget constraint

on 𝑧, and ensure the sparsity of each incumbent solution.

2. Cut selection rule in the presence of degeneracy: In the presence of degener-

acy, selection criteria, such as Pareto optimality [168], have been proposed to

accelerate convergence. However, these criteria are numerous, computationally

expensive, and all in all can do more harm than good [188]. In an opposite

direction, we recommend alleviating the burden of degeneracy by design by

imposing a ridge regularizer whenever degeneracy hinders convergence.

3. Rich root node analysis: As suggested in [105], providing the solver with as

much information as possible at the root node can drastically improve conver-

gence of cutting-plane methods. This is the topic of the next two sections.

These ingredients, and especially the ability to generate cuts efficiently, dictate

which problems could benefit the most from our approach and which regularizer to

use. Problems with an explicit cardinality constraint, for instance, would require a

small subproblem to be solved at each iteration. For network design problems, the

network flow structure of the feasible set is a key numerical asset, so we intuit that

ridge regularization, which leaves the feasible set unchanged, would be very efficient.

On the other hand, for uncapacitated facility location, sub-problems with big-𝑀

regularization boils down to a knapsack problem and can be solved efficiently via

sorting, as discussed in [106, Section 3.1].
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2.5 Improving the Lower-Bound: A Relaxation

To certify optimality, high-quality lower bounds are of interest and can be obtained

by relaxing the integrality constraint 𝑧 ∈ {0, 1}𝑛 in the definition of 𝒵 to 𝑧 ∈ [0, 1]𝑛.

In this case, the Boolean relaxation of (2.2) is:

min
𝑧∈Bool(𝒵)

𝑐⊤𝑧 + 𝑓(𝑧),

which can be solved via Kelley’s method [146], a continuous analog of Algorithm 2.1.

Alternatively, the continuous minimization problem admits a reformulation

min
𝑧∈Bool(𝒵)

max
𝛼∈R𝑚

𝑐⊤𝑧 + ℎ(𝛼)−
𝑛∑︁

𝑖=1

𝑧𝑖 Ω
⋆(𝛼𝑗). (2.20)

analogous to Problem (2.15). Under Assumption 2.2, we can further write the min-

max relaxation formulation (2.20) as a non-smooth maximization problem

max
𝛼∈R𝑛

𝑞(𝛼), with 𝑞(𝛼) := ℎ(𝛼) + min
𝑧∈Bool(𝒵)

𝑛∑︁
𝑖=1

(𝑐𝑖 − Ω⋆(𝛼𝑖)) 𝑧𝑖

and apply a projected sub-gradient ascent method.

The benefit from solving the Boolean relaxation with these algorithms is threefold.

First, it provides a lower bound on the objective value of the discrete optimization

problem (2.2). Second, it generates valid linear lower approximations of 𝑓(𝑧) to ini-

tiate the cutting-plane algorithm with. Finally, it supplies a sequence of continuous

solutions that can be rounded and polished to obtain good binary solutions. Indeed,

the Lipschitz continuity of 𝑓(𝑧) suggests that high-quality feasible binary solutions

can be found in the neighborhood of a solution to the Boolean relaxation. We for-

malize this observation in the following theorem; a formal proof is available in [33]:

Theorem 2.2. Let 𝑧⋆ denote a solution to the Boolean relaxation (2.20), ℛ denote

the indices of 𝑧⋆ with fractional entries, and 𝛼⋆(𝑧) denote a best choice of 𝛼 for a

given 𝑧. Suppose that for any 𝑧 ∈ 𝒵, |𝛼⋆(𝑧)𝑗| ≤ 𝐿. Then, a random rounding 𝑧 of
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𝑧⋆, i.e., 𝑧𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑧⋆𝑗 ), satisfies 0 ≤ 𝑓(𝑧) − 𝑓(𝑧⋆) ≤ 𝜖 with probability at least

𝑝 = 1− |ℛ| exp
(︁
− 𝜖2

𝜅

)︁
, where

𝜅 := 2𝑀2𝐿2|ℛ|2 for the big-𝑀 penalty,

𝜅 := 1
2
𝛾2𝐿4|ℛ|2 for the ridge penalty.

This result calls for multiple remarks:

• For 𝜀 >
√︀
𝜅 ln(|ℛ|), we have that 𝑝 > 0, which implies the existence of a

binary 𝜀-optimal solution in the neighborhood of 𝑧⋆, which in turn bounds the

integrality gap by 𝜀. As a result, lower values of 𝑀 or 𝛾 typically make the

discrete optimization problem easier.

• A solution to the Boolean relaxation often includes some binary coordinates,

i.e., |ℛ| < 𝑛. In this situation, it is tempting to fix 𝑧𝑖 = 𝑧⋆𝑖 for 𝑖 /∈ ℛ and

solve the master problem (2.2) over coordinates in ℛ. In general, this approach

provides sub-optimal solutions. However, Theorem 2.2 quantifies the price of

fixing variables and bounds the optimality gap by
√︀
𝜅 ln(|ℛ|).

• In the above high-probability bound, we do not account for the feasibility of the

randomly rounded solution 𝑧. Accounting for 𝑧’s feasibility marginally reduces

the probability given above, as shown for general discrete problems by [196].

• Rather than performing random rounding, one could also perform greedy round-

ing, i.e., round the 𝑘 largest 𝑧⋆𝑖 ’s to 1 under a cardinality constraint, or otherwise

round all 𝑧⋆𝑖 ’s above some threshold to 1. By the probabilistic method, greedy

rounding yields solutions which are roughly as suboptimal as random rounding.

However, it is deterministic, and therefore may be preferable in instances where

evaluating the objective is expensive.

Proof. We only detail the proof for the big-𝑀 regularization case, as the ridge regu-

larization case follows mutatis mutandis. From Proposition 2.1,

0 ≤ 𝑓(𝑧)− 𝑓(𝑧⋆) ≤𝑀𝐿|ℛ| max
𝛼≥0:‖𝛼‖1≤1

∑︁
𝑖∈ℛ

(𝑧⋆𝑖 − 𝑧𝑖)𝛼𝑖.
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The polyhedron {𝛼 : 𝛼 ≥ 0, ‖𝛼‖1 ≤ 1} admits |ℛ|+ 1 extreme points. However, if

max
𝛼≥0:‖𝛼‖1≤1

∑︁
𝑖∈ℛ

(𝑧⋆𝑖 − 𝑧𝑖)𝛼𝑖 > 𝑡,

for some 𝑡 > 0, then the maximum can only occur at some 𝛼 > 0 so that we can

restrict our attention to the |ℛ| positive extreme points. Applying tail bounds on

the maximum of sub-Gaussian random variables over a polytope [see 203, Theorem

1.16], since ‖𝛼‖2 ≤ ‖𝛼‖1 ≤ 1, we have for any 𝑡 > 0,

P

(︃
max

𝛼≥0:‖𝛼‖1≤1

∑︁
𝑖∈ℛ

(𝑧⋆𝑖 − 𝑧𝑖)𝛼𝑖 > 𝑡

)︃
≤ |ℛ| exp

(︂
−𝑡2

2

)︂
,

so that

P

(︃
𝑀𝐿|ℛ| max

𝛼≥0:‖𝛼‖1≤1

∑︁
𝑖∈ℛ

(𝑧⋆𝑖 − 𝑧𝑖)𝛼𝑖 > 𝜀

)︃
≤ |ℛ| exp

(︂
− 𝜀2

2𝑀2𝐿2|ℛ|2

)︂
.

Under specific problem structure, other strategies might be more efficient than

Kelley’s method or the subgradient algorithm. For instance, if Bool (𝒵) is a poly-

hedron, then the inner minimization problem defining 𝑞(𝛼) is a linear optimization

problem that can be rewritten as a maximization problem by invoking strong duality.

2.6 Improving the Upper-Bound

To improve the quality of the upper-bound, i.e., the cost associated with the best

feasible solution found so far, we implement two rounding and local-search strategies.

Our first strategy is a randomized rounding strategy, which is inspired by Theorem

2.2. Given 𝑧0 ∈ Bool(𝒵), we generate randomly rounded vectors 𝑧 by sampling 𝑧

according to 𝑧𝑖 ∼ Bernoulli(𝑧0𝑖) until 𝑧 ∈ 𝒵, which happens with high probability

since E[𝑧] = 𝑧0 satisfies all the constraints which describe 𝒵, besides integrality [196].
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Our second strategy is a sequential rounding procedure, which is informed by the

lower-approximation on 𝑓(𝑧), as laid out in Equation (2.17). Observing that the

𝑖th coordinate ∇𝑓(𝑧0)𝑖 provides a first-order indication of how a change in 𝑧𝑖 might

impact the overall cost, we proceed in two steps. We first round down all coordinates

such that ∇𝑓(𝑧0)𝑖(0 − 𝑧0𝑖) < 0. Once the linear approximation of 𝑓 only suggests

rounding up, we round all coordinates of 𝑧 to 1 and iteratively bring some coordinates

to 0 to restore feasibility.

If 𝑧0 is binary, we implement a comparable local search strategy. If 𝑧0𝑖 = 0, then

switching the 𝑖th coordinate to one increases the cost by at least ∇𝑓(𝑧0)𝑖. Alterna-

tively, if 𝑧0𝑖 = 1, then switching it to zero increases the cost by at least −∇𝑓(𝑧0)𝑖.

We therefore compute the one-coordinate change which provides the largest potential

cost improvement. However, as we only have access to a lower approximation of 𝑓 ,

we are not guaranteed to generate a cost-decreasing sequence. Therefore, we termi-

nate the procedure as soon as it cycles. A second complication is that, due to the

constraints defining 𝒵, the best change sometimes yields an infeasible 𝑧. In practice,

for simple constraints such as ℓ ≤ 𝑧 ≤ 𝑢, we forbid switches which break feasibility;

for cardinality constraints, we perform the best switch and then restore feasibility at

minimal cost when necessary.

2.7 Relationship With Perspective Cuts

In this section, we connect the perspective cuts introduced by [110] with our frame-

work and discuss the merits of both approaches, in theory and in practice. To the best

of our knowledge, a connection between Boolean relaxations of the two approaches

has only been made in the context of sparse regression, by [226]. That is, the general

connection we make here between the discrete problems, as well as their respective

cut generating procedures, is novel.

We first demonstrate that imposing the ridge regularization term Ω(𝑥) = 1
2𝛾
‖𝑥‖22

naturally leads to the perspective formulation of [110]:

Theorem 2.3. Suppose that Ω(𝑥) = 1
2𝛾
‖𝑥‖22 and that Assumption 2.2 holds. Then,
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Problem (2.15) is equivalent to the following optimization problem:

min
𝑧∈𝒵

min
𝑥∈R𝑛

𝑐⊤𝑧 + 𝑔(𝑥) +
1

2𝛾

𝑛∑︁
𝑖=1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑥2
𝑖

𝑧𝑖
, if 𝑧𝑖 > 0,

0, if 𝑧𝑖 = 0 and 𝑥𝑖 = 0,

∞, otherwise.

(2.21)

Proof. Let us fix 𝑧 ∈ 𝒵. Then, we have that:

max
𝛼

ℎ(𝛼)− 𝛾

2

𝑛∑︁
𝑗=1

𝑧𝑗𝛼
2
𝑗 = max

𝛼,𝛽
ℎ(𝛼)− 𝛾

2

𝑛∑︁
𝑗=1

𝑧𝑗 𝛽
2
𝑗 s.t. 𝛽 = 𝛼,

= max
𝛼,𝛽

min
𝑥

ℎ(𝛼)− 𝛾

2

𝑛∑︁
𝑗=1

𝑧𝑗 𝛽
2
𝑗 − 𝑥⊤(𝛽 −𝛼),

= min
𝑥

max
𝛼

[︀
ℎ(𝛼) + 𝑥⊤𝛼

]︀
⏟  ⏞  

(−ℎ)⋆(𝑥)=𝑔(𝑥)

+
𝑛∑︁

𝑖=1

max
𝛽𝑖

[︁
−𝛾

2
𝑧𝑖 𝛽

2
𝑖 − 𝑥𝑖𝛽𝑖

]︁
.

Finally, observing that

max
𝛽𝑖

[︁
−𝛾

2
𝑧𝑖 𝛽

2
𝑖 − 𝑥𝑖𝛽𝑖

]︁
=

⎧⎪⎪⎨⎪⎪⎩
𝑥2
𝑖

2𝛾𝑧𝑖
if 𝑧𝑖 > 0,

max
𝛽𝑖

𝑥𝑖𝛽𝑖 if 𝑧𝑗 = 0,

concludes the proof.

Note that the equivalence stated in Theorem 2.3 also holds for 𝑧 ∈ Bool(𝒵).

Problem (2.21) can be formulated as a mixed-integer second-order cone problem

min
𝑥∈R𝑛,𝑧∈𝒵,𝜃∈R𝑛

𝑐⊤𝑧 + 𝑔(𝑥) +
𝑛∑︁

𝑖=1

𝜃𝑖 s.t.

⃦⃦⃦⃦
⃦⃦
⎛⎝√︁ 2

𝛾
𝑥𝑖

𝜃𝑖 − 𝑧𝑖

⎞⎠⃦⃦⃦⃦⃦⃦
2

≤ 𝜃𝑖 + 𝑧𝑖 ∀𝑖 ∈ [𝑛]. (2.22)

and solved by linearizing the SOCP constraints into so-called perspective cuts, i.e.,

𝜃𝑖 ≥ 1
2𝛾
𝑥̄𝑖(2𝑥𝑖 − 𝑥̄𝑖𝑧𝑖) ∀𝑥̄ ∈ 𝒳 , which have been extensively studied in the literature in

the past fifteen years [110, 127, 89, 114, 7]. Observe that by separating Problem (2.21)

into master and subproblems, their cutting-plane algorithm yields the same cut (2.17)
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as in our scheme. In this regard, our approach supplies a new and insightful derivation

of the perspective cut approach. It is worth noting that our proposal can easily be

implemented within a standard integer optimization solver such as CPLEX or Gurobi

using callbacks, while existing implementations of the perspective cut approach have

required tailored branch-and-bound procedures [see, e.g., 110, Section 3.1].

Algorithmic Merits of Ridge, Big-𝑀 Regularization

We now summarize the relative merits of applying either ridge or big-𝑀 regularization

from an algorithmic perspective:

• As noted in our randomized rounding guarantees in Section 2.5, the two reg-

ularization methods provide comparable bound gaps when 2𝑀 ≈ 𝛾𝐿, while if

2𝑀 ≪ 𝛾𝐿, big-𝑀 regularization provides smaller gaps, and if 2𝑀 ≫ 𝛾𝐿, ridge

regularization provides smaller gaps.

• For linear problems, ridge regularization limits dual degeneracy, while big-𝑀

regularization does not. This benefit, however, has to be put in balance with

the extra runtime and memory requirements needed for solving a quadratic,

instead of linear, separation problem.

In summary, the benefits of applying either big-𝑀 or ridge regularization are largely

even and depend on the specific instance to be solved. In the next section, we perform

a sequence of numerical experiments on the problems studied in this chapter, to

provide empirical guidance on which regularization approach works best when.

2.8 Numerical Experiments

In this section, we evaluate our single-tree cutting-plane algorithm, implemented in

Julia 1.0 using CPLEX 12.8.0 and the Julia package JuMP.jl version 0.18.4 [91].

We compare our method against solving the natural big-𝑀 or MISOCP formulations

directly, using CPLEX 12.8.0. All experiments were performed on one Intel Xeon

E5− 2690 v4 2.6GHz CPU core and using 32 GB RAM.
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Overall Empirical Performance Versus State-of-the-Art

In this section, we compare our approach to state-of-the-art methods, and demon-

strate that our approach outperforms the state-of-the-art for several problems.

Network design

We begin by evaluating the performance of our approach for the multi-commodity

network design problem (2.5). We adapt the methodology of [126] and generate

instances where each node 𝑖 ∈ [𝑚] is the unique source of exactly one commodity

(𝑘 = 𝑚). For each commodity 𝑗 ∈ [𝑚], we generate demands according to 𝑏𝑗𝑗′ =

⌊𝒰(5, 25)⌉ for 𝑗′ ̸= 𝑗 and 𝑏𝑗𝑗 = −
∑︀

𝑗′ ̸=𝑗 𝑏
𝑗
𝑗′ , where ⌊𝑥⌉ is the closest integer to 𝑥 and

𝒰(𝑎, 𝑏) is a uniform random variable on [𝑎, 𝑏]. We generate edge construction costs,

𝑐𝑒, uniformly on 𝒰(1, 4), and marginal flow circulation costs proportionally to each

edge length4. The discrete set 𝒵 contains constraints of the form 𝑧0 ≤ 𝑧, where 𝑧0

is a binary vector which encodes existing edges. We generate graphs which contain

a spanning tree plus 𝑝𝑚 additional randomly picked edges, with 𝑝 ∈ [4], so that the

initial network is connected with 𝑂(𝑚) edges. We also impose a cardinality constraint

𝑒⊤𝑧 ≤ (1 + 5%)𝑧⊤
0 𝑒, which ensures that the network size increases by no more than

5%. For each edge, we impose a capacity 𝑢𝑒 ∼ ⌊𝒰(0.2, 1)𝐵/𝐴⌉, where 𝐵 = −
∑︀𝑚

𝑗=1 𝑏
𝑗
𝑗

is the total demand and 𝐴 = (1 + 𝑝)𝑚. We penalize the constraint 𝑥 ≤ 𝑢 with a

penalty parameter 𝜆 = 1, 0005. For big-𝑀 regularization, we set 𝑀 =
∑︀

𝑗 |𝑏
𝑗
𝑗|, and

take 𝛾 = 2
𝑚(𝑚−1)

for ridge regularization.

We apply our approach to large networks with 100s nodes, i.e., 10, 000s edges,

which is ten times larger than the state-of-the-art [132, 126], and compare the quality

of the incumbent solutions after an hour, since no approach could terminate up to a

satisfiable optimality gap within this time limit. Note that we define the quality of a

solution as its cost in absence of regularization, although we might have augmented

4Nodes are uniformly distributed over the unit square [0, 1]2. We fix the cost to be ten times the
Euclidean distance.

5We do so to allow for a fair comparison between big-𝑀 and ridge regularization. By penalizing
the capacity constraint, we remove a natural big-𝑀 regularization term and no regularization can
be considered as more natural than the other.
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the original formulation with a regularization term to compute the solution. As a

result, we can compare the performance big-𝑀 and ridge regularization directly, de-

spite the fact that the optimization problems they solve are actually different. On

the other hand, performance metrics that depend on the function being minimized,

such as the optimality gap, would not permit such a comparison. In 100 instances,

our cutting plane algorithm with big-𝑀 regularization provides a better solution 94%

of the time, by 9.9% on average, and by up to 40% for the largest networks. For

ridge regularization, the cutting plane algorithm scales to higher dimensions than

plain mixed-integer SOCP, returns solutions systematically better than those found

by CPLEX (in terms of unregularized cost), by 11% on average. Also, ridge regular-

ization usually outperforms big-𝑀 regularization, as reported in Table 2.3.

Given how numerically challenging these optimization problems are, the optimal-

ity gaps returned by all methods are often uninformative (> 100%). Still, we observe

that, with big-𝑀 regularization, CPLEX systematically returns tighter optimality

gaps that the cutting-plane approach, while with ridge regularization, the gaps ob-

tained by the cutting-plane algorithm are tighter 86% of the times. Even artificially

added, ridge regularization improves the tractability of outer approximation.

Binary quadratic optimization

We study some of the binary quadratic optimization problems collated in the BQP

library by [223]. Specifically, the bqp-{50, 100, 250, 500, 1000} instances generated by

[13], which have a cost matrix density of 0.1, and the be-100 and be-120.8 instances

generated by [44], which respectively have cost matrix densities of 1.0 and 0.8. Note

that these instances were generated as maximization problems, and therefore we con-

sider a higher objective value to be better. We warm-start the cutting-plane approach

with the best solution found after 10, 000 iterations of Goemans-Williamson rounding

[see 124]. We also consider imposing triangle inequalities [85] via lazy callbacks, for

they substantially tighten the continuous relaxations.

Within an hour, only the bqp-50 and bqp-100 instances could be solved by any

approach considered here, in which case cutting-planes with big-𝑀 regularization
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Table 2.3: Best solution found after one hour on network design instances
with 𝑚 nodes and (1 + 𝑝)𝑚 initial edges. We report improvement, i.e., the
relative difference between the solutions returned by CPLEX and the cutting-
plane. Values are averaged over five randomly generated instances. For ridge
regularization, we report the “unregularized” objective value, that is we fix 𝑧 to
the best solution found and resolve the corresponding sub-problem with big-𝑀
regularization. A “−” indicates that the solver could not finish the root node
inspection within the time limit (one hour), and “Imp.” is an abbreviation of
improvement.

Big-𝑀 Ridge Overall
𝑚 𝑝 unit CPLEX Cuts Imp. CPLEX Cuts Imp. Imp.

40 0 ×109 1.17 1.16 0.86% 1.55 1.16 24.38% 1.74%
80 0 ×109 8.13 7.52 6.99% 9.95 7.19 26.74% 10.85%
120 0 ×1010 3.03 2.10 29.94% − 1.94 −% 35.30%
160 0 ×1010 5.90 4.32 26.69% − 4.07 −% 30.91%
200 0 ×1010 11.45 7.78 31.45% − 7.50 −% 32.32%

40 1 ×108 5.53 5.47 1.07% 5.97 5.45 8.74% 1.41%
80 1 ×109 2.99 2.94 1.81% 3.16 2.95 6.78% 1.89%
120 1 ×109 8.38 7.82 6.69% − 7.82 −% 6.86%
160 1 ×1010 1.64 1.54 5.98% − 1.54 −% 6.03%
200 1 ×1010 2.60 2.54 2.33% − 2.26 −% 12.98%

40 2 ×108 4.45 4.38 1.62% 4.76 4.36 8.27% 2.06%
80 2 ×109 2.44 2.31 5.39% 2.46 2.31 5.97% 5.40%
120 2 ×109 6.23 5.89 5.55% − 5.89 −% 5.75%
160 2 ×1011 1.22 1.16 4.74% − 0.71 −% 19.33%
200 2 ×1010 2.06 1.43 30.46% − 1.01 −% 73.43%

40 3 ×108 3.91 3.85 1.58% 4.13 3.85 6.73% 1.78%
80 3 ×109 2.06 1.94 5.76% 2.04 1.94 5.44% 5.85%
120 3 ×109 5.43 5.15 5.31% − 4.2 −% 12.35%

40 4 ×108 3.32 3.28 1.35% 3.53 3.26 7.71% 1.85%
80 4 ×109 1.88 1.77 5.59% − 1.77 −% 5.64%
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Table 2.4: Average runtime in seconds on binary quadratic optimization prob-
lems from the Biq-Mac library [223, 44]. Values are averaged over 10 instances.
A “−” denotes an instance which was not solved because the approach did not
respect the 32GB peak memory budget.

Instance 𝑛 Average runtime (s)/Average optimality gap (%)

CPLEX-M CPLEX-M-Triangle Cuts-M Cuts-M-Triangle

bqp-50 50 29.4 0.6 30.6 0.4
bqp-100 100 122.3 51.7 25.3% 38.6
bqp-250 250 1108.1% 83.5% 87.0% 46.1%
bqp-500 500 2055.8% 1783.3% 157.3% 410.7%
bqp-1000 1000 − − 260.9% −
be100 100 79.7% 208.0% 249.4% 201.2%
be120.8 120 146.4% 225.8% 264.1% 220.3%

is faster than CPLEX (see Table 2.4). For instances which cannot be solved to

optimality, although CPLEX has an edge in producing tighter optimality gaps for

denser cost matrices, as depicted in Table 2.4, the cutting-plane method provides

tighter optimality gaps for sparser cost matrices, and provides higher-quality solutions

than CPLEX for all instances, especially as 𝑛 increases (see Table 2.5).

We remark that the cutting plane approach has low peak memory usage compared

with the other methods: For the bqp-1000 instances, cutting-planes without triangle

inequalities was the only method which respected the 32GB memory budget. This is

another benefit of decomposing Problem (2.1) into master and sub-problems.

Table 2.5: Average incumbent objective value (higher is better) after 1 hour
for medium-scale binary quadratic optimization problems from the Biq-Mac
library [223, 44]. “−” denotes an instance which was not solved because the
approach did not respect the 32GB peak memory budget. Values are averaged
over 10 instances. Cuts-Triangle includes an extended formulation in the master
problem.

Instance 𝑛 Average objective value

CPLEX-M CPLEX-M-Triangle Cuts-M Cuts-M-Triangle

bqp-250 250 9920.8 41843.4 43774.9 43701.5
bqp-500 500 19417.1 19659.0 122879.3 122642.4
bqp-1000 1000 − − 351450.7 −
be100 100 16403.0 16985.0 17152.1 17178.5
be120.8 120 17943.2 19270.3 19307.7 19371.2
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Evaluation of Different Ingredients in Numerical Recipe

We now consider the capacitated facility problem (2.6) on 112 real-world instances

available from the OR-Library [13, 133], with the natural big-𝑀 and the ridge regu-

larization with 𝛾 = 1. In both cases, the algorithms return the true optimal solution.

Compared to CPLEX with big-𝑀 regularization, our cutting plane algorithm with

big-𝑀 regularization is faster in 12.7% of instances (by 53.6% on average), and in

23.85% of instances (by 54.5% on average) when using a ridge penalty. This observa-

tion suggests that ridge regularization is better suited for outer-approximation, most

likely because, as discussed in Section 2.4, a strongly convex ridge regularizer breaks

the degeneracy of the separation problems. Note that our approach could benefit

from multi-threading and restarting.

We take advantage of these instances to breakdown the independent contribution

of each ingredient in our numerical recipe in Table 2.6. Although each ingredient

contributes independently, jointly improving the lower and upper bounds provides

the greatest improvement.

Table 2.6: Proportion of wins and relative improvement over CPLEX in terms
of computational time on the 112 instances from the OR-library [13, 133] for
different implementations of our method: an outer-approximation (OA) scheme
with cuts generated at the root node using Kelley’s method (OA + Kelley), OA
with the local search procedure (OA + Local search) and OA with a strategy
for both the lower and upper bound (OA + Both). Relative improvement is
averaged over all “win” instances.

Big-𝑀 Ridge
Algorithm % wins Relative improvement % wins Relative improvement

OA + Kelley 1.8% 36.6% 30.1% 91.6%
OA + Local search 1.9% 49.5% 19.4% 73.8%
OA + Both 12.7% 53.6% 92.5% 91.7%

Big-𝑀 Versus Ridge Regularization

In this section, our primary interest is in ascertaining conditions under which it is

advantageous to solve a problem using big-𝑀 or ridge regularization, and argue that

ridge regularization is preferable over big-𝑀 regularization as soon as the objective
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is sufficiently strongly convex.

To illustrate this point, we consider large instances of the thermal unit commit-

ment problem originally generated by [111], and multiply the quadratic coefficient 𝑎𝑖

for each generator 𝑖 by a constant factor 𝛼 ∈ {0.1, 1, 2, 5, 10}. Table 2.7 depicts the

average runtime for CPLEX to solve both formulations to certifiable optimality, or

provides the average bound-gap whenever CPLEX exceeds a time limit of 1 hour.

Observe that when 𝛼 ≤ 1, the big-𝑀 regularization is faster, but, when 𝛼 > 1 the

MISOCP approach converges fast while the big-𝑀 approach does not converge within

an hour. Consequently, ridge regularization performs more favorably whenever the

quadratic term is sufficiently strong.

Table 2.7: Average runtime in seconds per approach, on data from [111]
where the quadratic cost are multiplied by a factor of 𝛼. If the method did
not terminate in one hour, we report the bound gap. 𝑛 denotes the number of
generators, each instances has 24 trade periods.

𝛼 0.1 1 2 5 10

𝑛 Big-𝑀 Ridge Big-𝑀 Ridge Big-𝑀 Ridge Big-𝑀 Ridge Big-𝑀 Ridge

100 93.6 299.0 16.2 229.4 0.32% 47.9 1.68% 4.6 2.76% 6.0
150 35.6 352.1 6.2 28.3 0.25% 33.4 1.69% 6.4 2.82% 8.0
200 56.3 138.1 3.3 239.7 0.24% 112.9 1.62% 16.7 2.81% 21.2

Relative Merits of Big-𝑀 , Ridge Regularization: Experimental

We now conclude our comparison of big-𝑀 and ridge regularization, as initiated in

Sections 2.3 and 2.7, by indicating the benefits of big-𝑀 and ridge regularization,

from an experimental perspective:

• Big-𝑀 and ridge regularization play fundamentally the same role in reformu-

lating logical constraints. This echoes our theoretical analysis in Section 2.2.

• As observed in the unit commitment problems studied in Section 2.8, ridge

regularization should be the method of choice whenever the objective function

contains a naturally occurring strongly convex term, which is sufficiently large.

• As observed for network design and capacitated facility location problems, ridge
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regularization is usually more amenable to outer-approximation than big-𝑀

regularization, because it eliminates most degeneracy issues associated with

outer-approximating MINLOs.

• The efficiency of outer-approximation schemes relies on the speed at which

separation problems are solved. In this regard, special problem-structure or

cardinality constraints on the discrete variable 𝑧 drastically help. This has

been the case in network design, sparse empirical risk minimization and sparse

portfolio selection problems in Section 2.8.

2.9 Concluding Remarks

In this chapter, we proposed a new interpretation of the big-𝑀 method, as a regular-

ization term rather than a modeling trick. By expanding this regularization interpre-

tation to include ridge regularization, we considered a wide family of relevant prob-

lems from the Operations Research literature and derived equivalent reformulations as

mixed-integer saddle-point problems, which naturally give rise to theoretical analysis

and computational algorithms. Our framework provides provably near-optimal solu-

tions in polynomial time via solving Boolean relaxations and performing randomized

rounding as well as certifiably optimal solutions through an efficient branch-and-

bound procedure, and, as we shall see in subsequent chapters of this thesis, indeed

frequently outperforms the state-of-the-art in numerical experiments.

2.10 Appendix: Bounding the Lipschitz Constant

In our results, we relied on the observation that there exists some constant 𝐿 > 0

such that, for any 𝑧 ∈ 𝒵, ‖𝛼⋆(𝑧)‖ ≤ 𝐿. Such an 𝐿 always exists, since 𝒵 is a finite

set. However, as our rounding results depend on 𝐿, explicit bounds are desirable.

We remark that while our interest is in the Lipschitz constant with respect to “𝛼”

in a generic setting, we have used different notation for some of the problems which

fit in our framework, in order to remain consistent with the literature. In this sense,
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we are also interested in obtaining a Lipschitz constant with respect to 𝑤 for the

portfolio selection problem (2.7), among others.

In this appendix, we bound the magnitude of 𝐿 in a less conservative manner. Our

first result provides a bound on 𝐿 which holds whenever the function ℎ(𝛼) in Equation

(2.15) is strongly concave in 𝛼, which occurs for the sparse ERM problem (2.8)

with ordinary least-squares loss, the unit commitment problem (2.12), the portfolio

selection (2.7), and network design problems whenever Σ (resp. 𝑄) is full-rank:

Lemma 2.1. Let ℎ(·) be a strongly concave function with parameter 𝜇 > 0 [see 54,

Chapter 9.1.2 for a general theory of strong convexity], and suppose that 0 ∈ dom(𝑔)

and 𝛼⋆ := argmax𝛼 ℎ(𝛼). Then, for any choice of 𝑧, we have

‖𝛼⋆(𝑧)‖22 ≤ 8
ℎ(𝛼⋆)− ℎ(0)

𝜇
,

i.e., ‖𝛼⋆(𝑧)‖∞ ≤ 𝐿, where 𝐿 := 2
√︁

2ℎ(𝛼⋆)−ℎ(0)
𝜇

.

Proof. By the definition of strong concavity, for any 𝛼 we have

ℎ(𝛼) ≤ ℎ(𝛼⋆) +∇ℎ(𝛼⋆)⊤(𝛼−𝛼⋆)− 𝜇

2
‖𝛼−𝛼⋆‖22,

where ∇ℎ(𝛼⋆)⊤(𝛼 − 𝛼⋆) ≤ 0 by the first-order necessary conditions for optimality,

leading to

‖𝛼−𝛼⋆‖22 ≤ 2
ℎ(𝛼⋆)− ℎ(𝛼)

𝜇
.

In particular for 𝛼 = 0, we have

‖𝛼⋆‖22 ≤ 2
ℎ(𝛼⋆)− ℎ(0)

𝜇
,

and for 𝛼 = 𝛼⋆(𝑧),

‖𝛼⋆(𝑧)−𝛼⋆‖22 ≤ 2
ℎ(𝛼⋆)− ℎ(0)

𝜇
,

since

ℎ(𝛼⋆(𝑧)) ≥ ℎ(𝛼⋆(𝑧))−
𝑛∑︁

𝑗=1

𝑧𝑗Ω
⋆
𝑗(𝛼

⋆(𝑧)𝑗) ≥ ℎ(0).
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The result then follows by the triangle inequality.

An important special case of the above result arises for the sparse ERM problem,

as we demonstrate in the following corollary to Lemma 2.1:

Corollary 2.1. For the sparse ERM problem (2.8) with OLS loss and a cardinality

constraint 𝑒⊤𝑧 ≤ 𝑘, a valid bound on the Lipschitz constant is

‖𝛽⋆(𝑧)‖∞ = ‖Diag(𝑍)𝑋⊤𝛼⋆(𝑧)‖∞ ≤ ‖Diag(𝑍)𝑋⊤‖∞‖𝛼⋆(𝑧)‖∞

≤ max
𝑖

𝑋𝑖,[𝑘]‖𝛼‖2 ≤ 2max
𝑖

𝑋𝑖,[𝑘]‖𝑦‖2,

where 𝑋𝑖,[𝑘] is the sum of the 𝑘 largest entries in the column 𝑋𝑖,[𝑘].

Proof. Applying Lemma 2.1 yields the bound

‖𝛼‖2 ≤ 2‖𝑦‖2,

after observing that we can parameterize this problem in 𝛼, and for this problem:

1. Setting 𝛼 = 0 yields ℎ(𝛼) = 0.

2. 0 ≤ ℎ(𝛼⋆) ≤ 𝑦⊤𝛼⋆ − 1
2
𝛼⋆⊤𝛼⋆ ≤ 1

2
𝑦⊤𝑦.

3. ℎ(·) is strongly concave in 𝛼, with concavity constant 𝜇 ≥ 1.

The result follows by applying the definition of the operator norm, and pessimizing.
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Chapter 3

Sparse Portfolio Selection

Since the Nobel-prize winning work of Markowitz [173], the problem of selecting an

optimal portfolio of securities has received an enormous amount of attention from

practitioners and academics alike. In a universe containing 𝑛 distinct securities with

expected marginal returns 𝜇 ∈ R𝑛 and a variance-covariance matrix of the returns

Σ ∈ 𝒮𝑛
+, the scalarized Markowitz model selects a portfolio which provides the highest

expected return for a given amount of variance, via:

min
𝑥∈R𝑛

+

𝜎

2
𝑥⊤Σ𝑥− 𝜇⊤𝑥 s.t. 𝑒⊤𝑥 = 1, (3.1)

where 𝜎 ≥ 0 is a parameter that controls the trade-off between the portfolios risk and

return, and 𝑒 ∈ R𝑛 denotes the vector of all ones.

To improve its realism, many authors have proposed augmenting Problem (3.1)

with minimum investment, maximum investment, and cardinality constraints among

others [see, e.g., 137, 192, 69]. Unfortunately, these constraints are disparate and

imply each other, which makes defining a canonical portfolio model challenging.

Bienstock [42], Bertsimas et al. [30] defined a realistic portfolio selection model

by augmenting Problem (3.1) with two sets of inequalities. The first set is a generic

system of linear inequalites 𝑙 ≤ 𝐴𝑥 ≤ 𝑢 which, through an appropriate choice of

data 𝑙 ∈ R𝑚,𝑢 ∈ R𝑚,𝐴 ∈ R𝑚×𝑛, ensures that various real-world constraints such

as allocating an appropriate amount of capital to each market sector hold. The
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second inequality limits the number of non-zero positions held to 𝑘 ∈ N, by requiring

that the portfolio is 𝑘-sparse, i.e., ‖𝑥‖0 ≤ 𝑘. The sparsity constraint is important

because (a) managers incur monitoring costs for each non-zero position, and (b)

investors believe that portfolio managers who do not control the number of positions

held perform index-tracking while charging active management fees [see 30, for an

implementation of portfolio selection with sparsity constraints at a real-world asset

management company]. Imposing the real-world constraints yields the following NP-

hard—even without linear inequalities; see Gao and Li [120, Section E.C.1] for a

proof—model:

min
𝑥∈R𝑛

+

𝜎

2
𝑥⊤Σ𝑥− 𝜇⊤𝑥 s.t. 𝑙 ≤ 𝐴𝑥 ≤ 𝑢, 𝑒⊤𝑥 = 1, ‖𝑥‖0 ≤ 𝑘. (3.2)

By introducing binary variables 𝑧𝑖 which model whether 𝑥𝑖 takes non-zero values by

requiring that 𝑥𝑖 = 0 if 𝑧𝑖 = 0, we rewrite the above problem as a mixed-integer

quadratic optimization problem:

min
𝑧∈{0,1}𝑛:𝑒⊤𝑧≤𝑘, 𝑥∈R𝑛

+

𝜎

2
𝑥⊤Σ𝑥− 𝜇⊤𝑥 (3.3)

s.t. 𝑙 ≤ 𝐴𝑥 ≤ 𝑢, 𝑒⊤𝑥 = 1, 𝑥𝑖 = 0 if 𝑧𝑖 = 0 ∀𝑖 ∈ [𝑛].

In the past 20 years, a number of authors have proposed approaches for solving

Problem (3.2) to certifiable optimality. However, no method has been shown to

scale to real-world problem sizes where 20 ≤ 𝑘 ≤ 50 and 500 ≤ 𝑛 ≤ 3, 200. This

lack of scalability presents a challenge for practitioners and academics alike, because

a scalable algorithm for Problem (3.2) has numerous financial applications, while

algorithms which do not scale to this problem size are less practically useful.
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Problem Formulation and Main Contributions

In this chapter, we provide two main contributions. Our first contribution is aug-

menting Problem (3.2) with a ridge regularization term to yield:

min
𝑥∈R𝑛

+

𝜎

2
𝑥⊤Σ𝑥+

1

2𝛾
‖𝑥‖22 − 𝜇⊤𝑥 (3.4)

s.t. 𝑙 ≤ 𝐴𝑥 ≤ 𝑢, 𝑒⊤𝑥 = 1, ‖𝑥‖0 ≤ 𝑘.

This problem is more practically tractable than Problem (3.2), for two reasons.

First, as we formally establish in Section 3.3, the duality gap between Problem (3.4)

and its second-order cone relaxation decreases as we decrease 𝛾 and becomes 0 at

some finite 𝛾 > 0. Second, as we numerically establish in Section 3.4, the algorithms

developed here converge more rapidly when 𝛾 is smaller.

In addition to being more practically tractable, Problem (3.4) is a computationally

useful surrogate for (3.2). Indeed, as we formally establish in Section 3.2, any optimal

solution to Problem (3.4) is a 1/(2𝛾)-optimal solution to (3.2). Moreover, one can

find a solution to Problem (3.2) which is—often substantially—better than this, by

(a) solving (3.4) and (b) solving a simple quadratic optimization problem over the set

of securities with the same support as (3.4)’s solution and an unregularized objective.

Indeed, since there are finitely many 𝑘-sparse binary support vectors, this strategy

recovers an optimal solution to (3.2) for any sufficiently large 𝛾.

Our second main contribution is a scalable outer-approximation algorithm for

Problem (3.4). By utilizing Problem (3.4)’s regularization term, we question the

modeling paradigm of writing the logical constraint “𝑥𝑖 = 0 if 𝑧𝑖 = 0” as 𝑥𝑖 ≤

𝑧𝑖 in Problem (3.4), by substituting the equivalent but non-convex term 𝑥𝑖𝑧𝑖 for

𝑥𝑖 and invoking strong duality and that 𝑧2𝑖 = 𝑧𝑖 to obtain a convex mixed-integer

quadratic reformulation of the problem. This allows us to propose a new outer-

approximation algorithm in the spirit of the methods of [92, 107] but applied to a

perspective reformulation [110, 127] of the problem which solves large-scale sparse

portfolio selection problems to certifiable optimality.
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Connection between regularization and robustness:

While we have introduced ridge regularization as a device which improves the prob-

lem’s tractability in practice, one can actually interpret the regularizer as a robus-

tification technique which improves the overall quality of the selected portfolio in

an out-of-sample setting. Indeed, Ledoit and Wolf [155] [see also 66] have demon-

strated that, in mean-variance portfolio selection problems, the largest eigenvalues of

the sample covariance matrix Σ are systematically biased upwards and the smallest

eigenvalues of Σ are systematically biased downwards. As a result, imposing a ridge

regularization term (with a properly cross-validated 𝛾) leads to portfolios which per-

form better out-of-sample. In a similar vein, DeMiguel et al. [83] has shown that

the strategy of allocating an identical amount of capital to each security outperforms

13 other popular investment strategies. Since a ridge regularization term encourages

investing a more equal amount in each security, DeMiguel et al. [83]’s work can be

interpreted to imply that a ridge regularization term is beneficial.

3.1 Background and Literature Review

Our work touches on three different strands of the mixed-integer non-linear optimiza-

tion literature, each of which propose certifiably optimal methods for solving Problem

(3.2): (a) branch-and-bound methods which solve a sequence of relaxations, (b) de-

composition methods which separate the discrete and continuous variables in Problem

(3.2), and (c) perspective reformulation methods which obtain tight relaxations by

linking the discrete and the continuous in a non-linear manner.

Branch-and-bound algorithms

A variety of branch-and-bound algorithms have been proposed for solving Mixed-

Integer Nonlinear Optimization problems to certifiable optimality since the work of

Glover [123], who proposed linearizing logical constraints “𝑥 = 0 if 𝑧 = 0” by rewriting

them as −𝑀𝑧 ≤ 𝑥 ≤𝑀𝑧 for some 𝑀 > 0. This is known as the big-𝑀 method.

74



The first branch-and-bound algorithm for solving Problem (3.2) to certifiable op-

timality was proposed by Bienstock [42]. This algorithm does not make use of binary

variables. Instead, it reformulates the sparsity constraint implicitly, by recursively

branching on subsets of the universe of buyable securities and obtaining relaxations

by imposing constraints of the form
∑︀

𝑖
𝑥𝑖

𝑀𝑖
≤ 𝐾, where 𝑀𝑖 is an upper bound on 𝑥𝑖.

Similar branch-and-bound schemes (which make use of binary variables) are studied

in Bertsimas and Shioda [25], Bonami and Lejeune [48], who solve instances of Prob-

lem (3.2) with up to 50 (resp. 200) securities to certifiable optimality. Unfortunately,

these methods do not scale well, because reformulating a sparsity constraint via the

big-M method often yields weak relaxations in practice1

Motivated by the need to obtain tighter relaxations, more sophisticated branch-

and-bound schemes have since been proposed, which obtain higher-quality bounds by

lifting the problem to a higher-dimensional space. The first lifted approach was pro-

posed by Vielma et al. [218], who successfully solved instances of Problem (3.2) with

up to 100 securities to certifiable optimality, by taking efficient polyhedral relaxations

of second order cone constraints. This approach has since been improved by Gao and

Li [120], Cui et al. [76], who derive non-linear branch-and-bound schemes which use

even tighter second order cone and semi-definite relaxations to solve problems with

up to 300 securities to certifiable optimality.

Decomposition algorithms

A well-known method for solving MINLOs such as (3.2) is called outer approximation

(OA), which was first proposed by Duran and Grossmann [92] (building on the work

of Kelley [146], Benders [19], Geoffrion [122]), who prove its finite termination. OA

separates a difficult MINLO into a finite sequence of master mixed-integer linear

problems and non-linear subproblems (NLOs). This is often a good strategy, because

linear integer and continuous conic solvers are more powerful than MINLO solvers.

1Indeed, if all securities are i.i.d. then investing 1
𝑘 in 𝑘 randomly selected securities constitutes

an optimal solution to Problem (3.2), but, as proven in [43], branch-and-bound must expand 2
𝑛
10

nodes to improve upon a naive sparsity-constraint free bound by 10%, and expand all 2𝑛 nodes to
certify optimality.
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Unfortunately, OA has not yet been successfully applied to Problem (3.2), because

it requires informative subgradient inequalities from each subproblem to attain a fast

rate of convergence. Among others, Borchers and Mitchell [50], Fletcher and Leyffer

[108] have compared OA to branch-and-bound, and found that branch-and-bound

outperforms OA for Problem (3.2).

In the present chapter, by invoking strong duality, we derive a new subgradient

inequality, redesign OA using this inequality, and solve Problem (3.4) to certifiable

optimality via OA. The numerical success of our decomposition scheme can be ex-

plained by two ingredients: (a) the strength of the subgradient inequality, and (b)

the tightness of our non-linear reformulation of a sparsity constraint, as further in-

vestigated in a more general setting in the previous chapter.

Perspective reformulation algorithms

An important aspect of solving Problem (3.2) is understanding its objective’s convex

envelope, since approaches which exploit the envelope perform better than approaches

which use looser approximations of the objective [148]. An important step in this di-

rection was taken by [110], who built on the work of Ceria and Soares [67] to derive

Problem (3.2)’s convex envelope under an assumption that Σ is diagonal, and re-

formulated the envelope as a semi-infinite piecewise linear function. By splitting a

generic covariance matrix into a diagonal matrix plus a positive semidefinite matrix,

they subsequently derived a class of perspective cuts which provide bound gaps of

< 1% for instances of Problem (3.2) with up to 200 securities. This approach was sub-

sequently refined by [112, 113], who solved auxiliary SDOs to extract larger diagonal

matrices, and thereby solve instances of Problem (3.2) with up to 400 securities.

The perspective reformulation approach has also been extended by other authors.

An important work in the area is Aktürk et al. [4], who, building on the work of Ben-

Tal and Nemirovski [17, p. 88, item 5], prove that if Σ is positive definite, i.e., Σ ≻ 0,

then after extracting a diagonal matrix 𝐷 ≻ 0 such that 𝜎Σ−𝐷 ⪰ 0, Problem (3.2)
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is equivalent to the following mixed-integer second order cone optimization problem:

min
𝑧∈𝒵𝑛

𝑘 , 𝑥∈R𝑛
+, 𝜃∈R𝑛

+

𝜎

2
𝑥⊤Σ𝑥+

1

2

𝑛∑︁
𝑖=1

𝐷𝑖,𝑖𝜃𝑖 − 𝜇⊤𝑥

s.t. 𝑙 ≤ 𝐴𝑥 ≤ 𝑢, 𝑒⊤𝑥 = 1, 𝑥2
𝑖 ≤ 𝜃𝑖𝑧𝑖 ∀𝑖 ∈ [𝑛].

(3.5)

In light of the above MISOCO, a natural question to ask is what is the best ma-

trix 𝐷 to use? This question was partially2 answered by Zheng et al. [235], who

demonstrated that the matrix 𝐷 which yields the tightest continuous relaxation is

computable via semidefinite optimization, and invoked this observation to solve prob-

lems with up to 400 securities to optimality [see also 89, who derive a similar per-

spective reformulation of sparse regression problems]. We refer the reader to Günlük

and Linderoth [127] for a survey of perspective reformulation approaches.

Connection to our approach

An unchallenged assumption in all perspective reformulation approaches is that Prob-

lem (3.2) must not be modified. Under this assumption, perspective reformulation ap-

proaches separate Σ into a diagonal matrix 𝐷 ⪰ 0 plus a positive semidefinite matrix

𝐻 , such that 𝐷 is as diagonally dominant as possible. Recently, this approach was

challenged by Bertsimas and van Parys [27]. Following a standard statistical learning

theory paradigm, they imposed a ridge regularizer and set 𝐷 equal to 1/𝛾 · I, where

I denotes an identity matrix of appropriate dimension. Subsequently, they derived

a cutting-plane method which exploits the regularizer to solve large-scale sparse re-

gression problems to certifiable optimality. In the present chapter, we join Bertsimas

and van Parys [27] in imposing a ridge regularizer, and derive a cutting-plane method

which solves convex MIQOs with constraints. We also unify their approach with the

perspective reformulation approach, in two steps. First, we note that Bertsimas and

van Parys [27]’s algorithm can be improved by setting 𝐷 equal to 1/𝛾 · I plus a

perspective reformulation’s diagonal matrix, and this is particularly effective when

Σ is diagonally dominant. Second, we observe that the cutting-plane approach also

2Weaker continuous relaxations may perform better after branching, as discussed by [87].
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helps solve the unregularized problem, indeed, as mentioned previously it successfully

supplies a 1/(2𝛾)-optimal solution to Problem (3.2).

3.2 A Cutting-Plane Method

In this section, we present an efficient outer-approximation method for solving Prob-

lem (3.4), via its reformulation (3.8), as outlined in Chapter 2. To achieve this, we

first take a Cholesky decomposition of Σ and complete the square. This is justified,

because Σ is positive semidefinite and rank-𝑟, meaning there exists an 𝑋 ∈ R𝑟×𝑛 :

Σ = 𝑋⊤𝑋. Therefore, by scaling Σ← 𝜎Σ and letting:

𝑦 :=
(︀
𝑋𝑋⊤)︀−1

𝑋𝜇, (3.6)

𝑑 :=
(︁
𝑋⊤ (︀𝑋𝑋⊤)︀−1

𝑋 − I
)︁
𝜇, (3.7)

be the projection of the return vector 𝜇 onto the span and nullspace of 𝑋, completing

the square yields the following equivalent problem, where we add the constant 1
2
𝑦⊤𝑦

without loss of generality:

min
𝑥∈R𝑛

+

1

2𝛾
‖𝑥‖22 +

1

2
‖𝑋𝑥− 𝑦‖22 + 𝑑⊤𝑥

s.t. 𝑙 ≤ 𝐴𝑥 ≤ 𝑢, 𝑒⊤𝑥 = 1, ‖𝑥‖0 ≤ 𝑘.

We can then rewrite Problem (3.4) as the following MIO:

min
𝑧∈𝒵𝑛

𝑘

[︁
𝑓(𝑧)

]︁
, (3.8)

where 𝑓(𝑧) := min
𝑥∈R𝑛

1

2𝛾
𝑥⊤𝑥+

1

2
‖𝑋𝑥− 𝑦‖22 + 𝑑⊤𝑥 (3.9)

s.t. 𝑙 ≤ 𝐴𝑥 ≤ 𝑢, 𝑒⊤𝑥 = 1, 𝑥 ≥ 0, 𝑥𝑖 = 0 if 𝑧𝑖 = 0 ∀𝑖 ∈ [𝑛].

After performing this reformulation, we follow Chapter 2 in rewriting Problem
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(3.8) as a saddle-point problem, in the following theorem:

Theorem 3.1. Suppose Problem (3.8) is feasible. Then, it is equivalent to:

min
𝑧∈𝒵𝑛

𝑘

max
𝛼∈R𝑟, 𝑤∈R𝑛,

𝛽𝑙, 𝛽𝑢∈R𝑚
+ , 𝜆∈R

− 1

2
𝛼⊤𝛼− 𝛾

2

∑︁
𝑖

𝑧𝑖𝑤
2
𝑖 + 𝑦⊤𝛼+ 𝛽⊤

𝑙 𝑙− 𝛽⊤
𝑢 𝑢+ 𝜆

s.t. 𝑤 ≥𝑋⊤𝛼+𝐴⊤ (𝛽𝑙 − 𝛽𝑢) + 𝜆𝑒− 𝑑.

(3.10)

Theorem 3.1 supplies objective function evaluations 𝑓(𝑧𝑡) and subgradients 𝑔𝑡

after solving a single convex quadratic optimization problem. We formalize this ob-

servation in the following corollary:

Corollary 3.1. Let 𝑤⋆(𝑧) be an optimal choice of 𝑤 for a particular subset of secu-

rities 𝑧. Then, a valid subgradient 𝑔𝑧 ∈ 𝜕𝑓(𝑧) has components given by the following

expression for each 𝑖 ∈ [𝑛]:

𝑔𝑧,𝑖 = −
𝛾

2
𝑤⋆

𝑖 (𝑧)
2. (3.11)

Corollary 3.1 shows that evaluating 𝑓(𝑧̂) yields a first-order underestimator:

𝑓(𝑧) ≥ 𝑓(𝑧̂) + 𝑔⊤
𝑧̂ (𝑧 − 𝑧̂) (3.12)

at no additional cost. Consequently, a numerically efficient strategy for minimizing

𝑓(𝑧) is the outer-approximation (OA) method discussed in Chapter 2.

As Algorithm 2.1’s rate of convergence for sparse portfolio selection problems

depends heavily upon its implementation, we now discuss some practical aspects of

implementing the method.

Practical Aspects of the Cutting-Plane Method

A computationally efficient subproblem strategy

For computational efficiency, we would like to solve subproblems which only involve

active indices, i.e., indices where 𝑧𝑖 = 1, since 𝑘 ≪ 𝑛. At a first glance, this does
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not appear to be possible, because we must supply an optimal choice of 𝑤𝑖 for all 𝑛

indices in order to obtain valid subgradients. Fortunately, we can in fact supply a full

OA cut after solving a subproblem in the active indices, by exploiting the structure

of the saddle-point reformulation. Specifically, we optimize over the 𝑘 indices where

𝑧𝑖 = 1 and set 𝑤𝑖 = max
(︀
𝑋⊤

𝑖 𝛼
⋆ +𝐴⊤

𝑖 (𝛽
⋆
𝑙 − 𝛽⋆

𝑢) + 𝜆⋆ − 𝑑𝑖, 0
)︀

for the remaining 𝑛−𝑘

𝑤𝑖’s. This procedure yields an optimal choice of 𝑤𝑖 for each index 𝑖, because it is a

feasible choice and the remaining 𝑤𝑖’s have a weight of 0 in the objective.

Extracting diagonal dominance:

In problems where Σ is diagonally dominant in the sense of Barker and Carlson [11],

i.e., Σ𝑖,𝑖 ≥
∑︀

𝑗 ̸=𝑖 |Σ𝑖,𝑗| ∀𝑖 ∈ [𝑛], , the performance of Algorithm 2.1 can often be sub-

stantially improved by boosting the regularizer, i.e., selecting a diagonal matrix 𝐷 ⪰ 0

such that 𝜎Σ−𝐷 ⪰ 0, replacing 𝜎Σ with 𝜎Σ−𝐷, and using a different regularizer

𝛾𝑖 :=
(︁

1
𝛾
+𝐷𝑖,𝑖

)︁−1

for each index 𝑖. In general, selecting such a 𝐷 involves solving

a semidefinite optimization problem (SDO) [112, 235], which is fast when 𝑛 is in the

hundreds, but requires a prohibitive amount of memory when 𝑛 is in the thousands.

In the latter case, we recommend taking a second-order cone inner approximation of

the SD cone and improving the approximation via column generation. Indeed, this

approach provides high-quality solutions to large-scale SDOs [see 3, 23].

Copy of variables

In problems with complicating constraints, many feasibility cuts may be generated,

which can hinder convergence greatly. If this occurs, we recommend introducing a

copy of 𝑥 in the master problem, and imposing the following master problem con-

straints:

𝑙 ≤ 𝐴𝑥 ≤ 𝑢, 𝑒⊤𝑥 = 1, 𝑥 ≥ 0, 𝑥 ≤ 𝑧 (3.13)

while keeping the subproblem the same. This approach performs well on the highly

constrained problems studied in Section 3.4.

80



Modeling Minimum Investment Constraints

A frequently-studied extension to Problem (3.2) is to impose minimum investment

constraints, which control transaction fees by requiring that 𝑥𝑖 ∈ {0}∪ [𝑥𝑖,min, 𝑢𝑖]. We

now extend our saddle-point reformulation to cope with them.

By letting 𝑧𝑖 be a binary indicator variable which denotes whether we hold a non-

zero position in the 𝑖th asset, we model these constraints via 𝑧𝑖𝑥𝑖 ≥ 𝑧𝑖𝑥𝑖,min ∀𝑖 ∈ [𝑛].

Moreover, we incorporate the upper bounds 𝑢𝑖 within our algorithmic framework by

“disappearing” the constraints 𝑥𝑖 ≤ 𝑢𝑖 into the general constraint set 𝑙 ≤ 𝐴𝑥 ≤ 𝑢.

Moreover, by letting 𝜌𝑖 be the dual multiplier associated with the 𝑖th minimum

investment constraint, and repeating the steps of our saddle-point reformulation, we

retain efficient objective function and subgradient evaluations in the presence of these

constraints. Specifically, including the constraints is equivalent to adding the term∑︀𝑛
𝑖=1 𝜌𝑖 (𝑧𝑖𝑥𝑖,min − 𝑧𝑖𝑥𝑖) to Problem (3.4)’s Lagrangian, which implies the saddle-point

problem becomes:

min
𝑧∈𝒵𝑛

𝑘

max
𝛼∈R𝑟, 𝑤∈R𝑛,𝜌∈R+

𝑛
𝛽𝑙, 𝛽𝑢∈R𝑚

+ , 𝜆∈R

− 1

2
𝛼⊤𝛼− 𝛾

2

∑︁
𝑖

𝑧𝑖𝑤
2
𝑖 + 𝑦⊤𝛼+ 𝛽⊤

𝑙 𝑙− 𝛽⊤
𝑢 𝑢+ 𝜆+

∑︁
𝑖

𝜌𝑖𝑧𝑖𝑥𝑖,min

s.t. 𝑤 ≥𝑋⊤𝛼+𝐴⊤ (𝛽𝑙 − 𝛽𝑢) + 𝜆𝑒+ 𝜌− 𝑑.

(3.14)

Moreover, the subgradient with respect to each index 𝑖 becomes

𝑔𝑧,𝑖 = −
𝛾

2
𝑤⋆

𝑖 (𝑧)
2 + 𝜌𝑖𝑥𝑖,min. (3.15)

Finally, if 𝑧𝑖 = 0 then we can certainly set 𝜌𝑖 = 0 without loss of optimality.

Therefore, we recommend solving a subproblem in the 𝑘 variables for which 𝑧𝑖 > 0 and

subsequently setting 𝜌𝑖 = 0 for the remaining variables, in the manner discussed in the

previous subsection. Indeed, setting 𝑤𝑖 = max
(︀
𝑋⊤

𝑖 𝛼
⋆ +𝐴⊤

𝑖 (𝛽⋆
𝑙 − 𝛽⋆

𝑢) + 𝜆⋆ + 𝜌⋆𝑖 − 𝑑𝑖, 0
)︀

for each index 𝑖 where 𝑧𝑖 = 0, as discussed in the previous subsection, supplies the

minimum absolute value of 𝑤𝑖.
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Sensitivity Analysis

In this section, we study (3.8)’s dependence on the regularization parameter 𝛾. This

is an important issue in practice, because if we are interested in solving the unreg-

ularized problem, we can solve the regularized problem to obtain a support vector

𝑧, and subsequently resolve the unregularized problem with the support fixed to 𝑧.

Therefore, we are interested in the suboptimality of 𝑧⋆, an optimal solution to (3.4),

if we perturb 𝛾. We remark that the results in this section rely on basic sensitivity

analysis proof techniques which can be found in most good optimization textbooks

[e.g., 26, 205]. Nonetheless, we have included them, due to the central importance of

regularization in this work, and because these results are not widely known.

Our first result demonstrates that the optimal support 𝑧 for a larger value of 𝛾

can serve as a high-quality warm-start for a problem with less regularization:

Proposition 3.1. Suppose that 𝑘 is a fixed cardinality budget. Let 𝑧⋆(𝛾) denote an

optimal solution to Problem (3.8) for a fixed regularizer 𝛾, 𝑓𝛾(𝑧) denote the optimal

objective of Problem (3.9) for a fixed 𝛾. Then, for any ∆ > 0:

0 ≤ 𝑓𝛾+Δ(𝑧
⋆(𝛾))− 𝑓𝛾+Δ(𝑧

⋆(𝛾 +∆)) ≤ 1

2𝛾
− 1

2(𝛾 +∆)
. (3.16)

Proof. We have that

𝑓𝛾+Δ(𝑧
⋆(𝛾))− 𝑓𝛾+Δ(𝑧

⋆(𝛾 +∆)) ≤𝑓𝛾(𝑧⋆(𝛾))− 𝑓𝛾+Δ(𝑧
⋆(𝛾 +∆)),

≤
(︂

1

2𝛾
− 1

2(𝛾 +∆)

)︂
‖𝑥⋆(𝑧⋆(𝛾 +∆))‖22,

≤
(︂

1

2𝛾
− 1

2(𝛾 +∆)

)︂
,

where the first inequality holds because decreasing the amount of regularization can

only lower the optimal objective value, the second inequality holds because 𝑥⋆(𝑧⋆(𝛾+

∆)), an optimal choice of 𝑥 with support indices 𝑧⋆(𝛾 + ∆), is a feasible solution

with regularization parameter 𝛾, specifically and the last inequality holds because all

solutions 𝑥 lie on the unit simplex.
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Observe that, by setting ∆ → ∞, Proposition 3.1 supplies a formal proof of

Section 1.1’s claim that 𝑧⋆(𝛾) is a 1/(2𝛾)-optimal solution for 𝛾 → +∞.

Our next result justifies our claim in the introduction that for a sufficiently large

𝛾 we recover the same optimal support from Problem (3.4) as the unregularized (3.2):

Proposition 3.2. Let 𝑧⋆(𝛾) denote an optimal solution to Problem (3.8) for a fixed

regularizer 𝛾, and 𝑓𝛾(𝑧) denote the optimal objective of Problem (3.9) for a fixed 𝛾.

Then, there exists some parameter 𝛾0 > 0 such that for any 𝛾 ≥ 𝛾0:

𝑓𝛾(𝑧
⋆(𝛾0)) = 𝑓𝛾(𝑧

⋆(𝛾)). (3.17)

Proof. Let us observe that, for each 𝑧 ∈ 𝒵𝑘
𝑛, 𝑓𝛾(𝑧) is concave in 1/𝛾 as the pointwise

minimum of functions which are linear in 1/𝛾, and moreover 𝑓𝛾 := min𝑧∈𝒵𝑘
𝑛
𝑓𝛾(𝑧) is

also a concave function in 1/𝛾. By this concavity, it is a standard result from sensitivity

analysis [see, e.g., 26, Chapter 5.6] that the set of all 𝛾’s for which a particular 𝑧 is

optimal must form a (possibly open) interval. The result then follows directly from

the finiteness of 𝒵𝑘
𝑛.

Our final result in this section shows that the optimal support of the portfolio

remains unchanged for sufficiently small 𝛾’s (proof omitted, follows in the same fashion

as Proposition 3.2):

Corollary 3.2. Let 𝑧⋆(𝛾) denote an optimal solution to Problem (3.8) for a fixed

regularizer 𝛾, and 𝑓𝛾(𝑧) denote the optimal objective of Problem (3.9) for a fixed 𝛾.

Then, there exists some parameter 𝛾1 > 0 such that for any 𝛾 ≤ 𝛾1, we have:

𝑓𝛾(𝑧
⋆(𝛾1)) = 𝑓𝛾(𝑧

⋆(𝛾)). (3.18)

3.3 Improving the Cutting-Plane Method

In portfolio rebalancing applications, practitioners often require a high-quality so-

lution to Problem (3.4) within a fixed time budget. Unfortunately, Algorithm 2.1

is ill-suited to this task: while it always identifies a certifiably optimal solution, it
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does not always do so within a time budget. In this section, we propose alternative

techniques which sacrifice some optimality for speed, and discuss how they can be

applied to improve the performance of Algorithm 2.1. In Section 3.3 we propose a

warm-start heuristic which supplies a high-quality solution to Problem (3.4) a priori,

and in Section 3.3 we derive a second order cone representable lower bound which is

often very tight in practice. Taken together, these techniques supply a certifiably near

optimal solution quickly, which can often be further improved by running Algorithm

2.1 for a short amount of time.

An ADMM Warm-Start Heuristic

In branch-and-cut methods, a frequently observed source of inefficiency is that solvers

explore highly suboptimal regions of the search space in considerable depth. To

discourage this behavior, optimizers frequently supply a high-quality feasible solution,

which is installed as an incumbent by the solver. Warm-starts are beneficial for

two reasons. First, they improve Algorithm 2.1’s upper bound. Second, they allow

Algorithm 2.1 to prune vectors of partial solutions which are provably worse than the

warm-start, which in turn improves Algorithm 2.1’s bound quality, by reducing the

set of feasible binaries which can be selected at each subsequent iteration. Indeed,

by pruning suboptimal solutions, warm-starts encourage branch-and-cut methods to

focus on regions of the search space which contain near-optimal solutions.

We now describe a heuristic which supplies high-quality solutions for Problem

(3.4), inspired by a heuristic due to Bertsimas et al. [38, Algorithm 1]. The heuristic

works under the assumption that 𝑓(𝑧) is 𝐿-Lipschitz continuous in 𝑧, with Lipschitz

continuous gradient 𝑔𝑧 such that

‖𝑔𝑧1 − 𝑔𝑧2‖2 ≤ 𝐿‖𝑧1 − 𝑧2‖2 ∀𝑧1, 𝑧2 ∈ Conv (𝒵𝑛
𝑘 ) . (3.19)

This assumption is justified whenever the optimal dual variables are bounded. Under

this assumption, the heuristic approximately minimizes 𝑓(𝑧) by iteratively minimizing

a quadratic approximation of 𝑓(𝑧) at 𝑧old, namely 𝑓(𝑧) ≈ ‖𝑧 − 𝑥⋆(𝑧old)− 1
𝐿
𝑔𝑧old‖22.
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This idea is algorithmized as follows: given a sparsity pattern 𝑧old ∈ 𝒵𝑛
𝑘 and

an optimal sparse portfolio for this given sparsity pattern 𝑥⋆(𝑧old), the method itera-

tively solve the following problem, which ranks the differences between each security’s

contribution to the portfolio, 𝑥⋆
𝑖 (𝑧old), and its subgradient 𝑔𝑧old,𝑖:

𝑧new := arg min
𝑧∈𝒵𝑛

𝑘

⃦⃦⃦⃦
𝑧 − 𝑥⋆(𝑧old) +

1

𝐿
𝑔𝑧old

⃦⃦⃦⃦2
2

. (3.20)

Note that, given 𝑧old, 𝑧new can be obtained by setting 𝑧𝑖 = 1 for 𝑘 of the indices where⃒⃒
−𝑥⋆

𝑖 (𝑧old) +
1
𝐿
𝑔𝑧old,𝑖

⃒⃒
is largest [cf. 38, Proposition 3]. We formalize this warm-start

procedure in Algorithm 3.1.

Algorithm 3.1 A discrete ADMM heuristic
𝑡← 1
𝑧1 ← randomly generated 𝑘-sparse binary vector.
while 𝑧𝑡 ̸= 𝑧𝑡−1 and 𝑡 < 𝑇 do

Set 𝑤𝑡 optimal solution to:

max
𝛼∈R𝑟, 𝑤∈R𝑛,

𝛽𝑙, 𝛽𝑢∈R𝑚
+ , 𝜆∈R

− 1

2
𝛼⊤𝛼− 𝛾

2

∑︁
𝑖

𝑧𝑖,𝑡𝑤
2
𝑖 + 𝑦⊤𝛼+ 𝛽⊤

𝑙 𝑙− 𝛽⊤
𝑢 𝑢+ 𝜆

s.t. 𝑤 ≥𝑋⊤𝛼+𝐴⊤ (𝛽𝑙 − 𝛽𝑢) + 𝜆𝑒− 𝑑.

Average multipliers via 𝑤⋆ ← 1
𝑡
𝑤𝑡 +

𝑡−1
𝑡
𝑤⋆.

Set 𝑔𝑧,𝑖 =
−𝛾
2
𝑤⋆2

𝑖 ∀𝑖 ∈ [𝑛], 𝑥𝑖,𝑡 = 𝛾𝑤⋆
𝑖 ∀𝑖 ∈ [𝑛] : 𝑧𝑖,𝑡 = 1,

𝑧𝑡+1 = arg min
𝑧∈𝒵𝑛

𝑘

⃦⃦
𝑧 − 𝑥𝑡 +

1
𝐿
𝑔𝑧𝑡

⃦⃦2
2

𝑡← 𝑡+ 1
return 𝑧𝑡

Some remarks on Algorithm 3.1 are now in order:

• In our numerical experiments, we run Algorithm 3.1 from five different randomly

generated 𝑘-sparse binary vectors, to increase the probability that it identifies

a high-quality solution.

• Averaging the dual multipliers across iterations, as suggested in the pseudocode,

improves the method’s performance. Observe that the contribution of each 𝑤𝑡

to 𝑤⋆ is 1
𝑡

∏︀𝑇𝑓𝑖𝑛𝑎𝑙

𝑖=𝑡+1
𝑖−1
𝑖

= 1
𝑇𝑓𝑖𝑛𝑎𝑙

, where 𝑇𝑓𝑖𝑛𝑎𝑙 is the total number of iterations

completed by Algorithm 3.1 and we initially set 𝑤⋆ = 0 in order that 𝑤⋆ is
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defined when we perform the averaging step at the first iteration. Also, note

that when 𝑡 = 1 we have (𝑡− 1)/𝑡 = 0 so the initialization is unimportant.

• Each 𝑤𝑡 is the optimal solution of a convex quadratic optimization problem

which can be reformulated as a (rotated) second-order cone program. Therefore,

each 𝑤𝑡 can be obtained via a standard second-order cone solver such as CPLEX,

Gurobi or Mosek.

• The Lipschitz constant 𝐿 is motivated as an upper bound on an entry in a sub-

gradient of 𝑓(𝑧), 𝛾
2
𝑤2

𝑖 . However, Algorithm 3.1 is ultimately a heuristic method.

Therefore, we recommend picking 𝐿 by cross-validating to minimize the objec-

tive obtained by Algorithm 3.1. In practice, setting 𝐿 = 10 was sufficient to

reliably obtain high-quality solutions in Section 3.4, because Algorithm 3.2 in-

vokes a judicious combination of outer-approximation cuts and this warm-start

to convert this warm-start into an optimal solution within seconds. There-

fore, we set 𝐿 = 10 throughout Section 3.4, although it may be appropriate to

cross-validate 𝐿 if running the method on new data.

A Second-Order Cone Relaxation

In financial applications, we sometimes require a certifiably near-optimal solution

quickly but do not have time to certify optimality. Therefore, we now derive near-

exact lower bounds which can be computed in polynomial time. Immediately, we see

that we obtain a valid lower bound by relaxing the constraint 𝑧 ∈ 𝒵𝑛
𝑘 to 𝑧 ∈ Conv(𝒵𝑛

𝑘 )

in Problem (3.4). By invoking strong duality, we now demonstrate that this lower

bound can be obtained by solving a single second order cone problem.

Theorem 3.2. Suppose that Problem (3.4) is feasible. Then, the following three

optimization problems attain the same optimal value:

min
𝑧∈Conv(𝒵𝑛

𝑘 )
max

𝛼∈R𝑟, 𝑤∈R𝑛,
𝛽𝑙, 𝛽𝑢∈R𝑚

+ , 𝜆∈R

− 1

2
𝛼⊤𝛼− 𝛾

2

∑︁
𝑖

𝑧𝑖𝑤
2
𝑖 + 𝑦⊤𝛼+ 𝛽⊤

𝑙 𝑙− 𝛽⊤
𝑢 𝑢+ 𝜆

s.t. 𝑤 ≥𝑋⊤𝛼+ 𝜆𝑒+𝐴⊤(𝛽𝑙 − 𝛽𝑢)− 𝑑.

(3.21)
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max
𝛼∈R𝑟, 𝑣∈R𝑛

+, 𝑤∈R𝑛,
𝛽𝑙, 𝛽𝑢∈R𝑚

+ , 𝜆∈R, 𝑡∈R+

− 1

2
𝛼⊤𝛼+ 𝑦⊤𝛼+ 𝛽⊤

𝑙 𝑙− 𝛽⊤
𝑢 𝑢+ 𝜆− 𝑒⊤𝑣 − 𝑘𝑡

s.t. 𝑤 ≥𝑋⊤𝛼+ 𝜆𝑒+𝐴⊤(𝛽𝑙 − 𝛽𝑢)− 𝑑,

𝑣𝑖 ≥
𝛾

2
𝑤2

𝑖 − 𝑡 ∀𝑖 ∈ [𝑛].

(3.22)

min
𝑧∈Conv(𝒵𝑛

𝑘 )
min

𝑥∈R𝑛
+,𝜃∈R𝑛

+

1

2
‖𝑋𝑥− 𝑦‖22 +

1

2𝛾
𝑒⊤𝜃 + 𝑑⊤𝑥

s.t. 𝑙 ≤ 𝐴𝑥 ≤ 𝑢, 𝑒⊤𝑥 = 1, 𝑥2
𝑖 ≤ 𝑧𝑖𝜃𝑖 ∀𝑖 ∈ [𝑛].

(3.23)

Remark 4. We recognize Problem (3.23) as a perspective relaxation of Problem (3.4)

[see 127, for a survey]. As perspective relaxations are often near-exact in practice

[110, 113] this explains why the second-order cone bound is high-quality.

Proof. Problem (3.21) is strictly feasible, since the interior of Conv(𝒵𝑛
𝑘 ) is non-empty

and 𝑤 can be increased without bound. Therefore, the Sion-Kakutani minimax the-

orem [17, Appendix D.4.] holds, and we can exchange the minimum and maximum

operators in Problem (3.21), to yield:

max
𝛼∈R𝑟, 𝑤∈R𝑛,

𝛽𝑙, 𝛽𝑢∈R𝑚
+ , 𝜆∈R

− 1

2
𝛼⊤𝛼+ 𝑦⊤𝛼+ 𝛽⊤

𝑙 𝑙− 𝛽⊤
𝑢 𝑢+ 𝜆− 𝛾

2
max

𝑧∈Conv(𝒵𝑛
𝑘 )

∑︁
𝑖

𝑧𝑖𝑤
2
𝑖

s.t. 𝑤 ≥𝑋⊤𝛼+ 𝜆𝑒+𝐴⊤(𝛽𝑙 − 𝛽𝑢)− 𝑑.

(3.24)

Next, fixing 𝑤 and applying strong duality between the inner primal problem

max
𝑧∈Conv(𝒵𝑛

𝑘 )

∑︁
𝑖

𝛾

2
𝑧𝑖𝑤

2
𝑖 = max

𝑧

∑︁
𝑖

𝛾

2
𝑧𝑖𝑤

2
𝑖 s.t. 0 ≤ 𝑧 ≤ 𝑒, 𝑒⊤𝑧 ≤ 𝑘,

and its dual problem

min
𝑣∈R𝑛

+,𝑡∈R+

𝑒⊤𝑣 + 𝑘𝑡 s.t. 𝑣𝑖 + 𝑡 ≥ 𝛾

2
𝑤2

𝑖 ∀𝑖 ∈ [𝑛]
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proves that strong duality holds between Problems (3.21)-(3.22).

Next, we observe that (3.22)-(3.23) are dual, as can be seen by applying

𝑏𝑐 ≥ 𝑎2, 𝑏, 𝑐 ≥ 0 ⇐⇒

⃦⃦⃦⃦
⃦⃦
⎛⎝ 2𝑎

𝑏− 𝑐

⎞⎠⃦⃦⃦⃦⃦⃦ ≤ 𝑏+ 𝑐

to rewrite Problem (3.22) as an SOCO in standard form, and applying SOCO duality

[see, e.g., 54, Exercise 5.43]. Moreover, since Problem (3.22) is strictly feasible (as 𝑣,

𝑤 are unbounded from above) strong duality must hold between these problems.

Having derived Problem (3.4)’s bidual, namely Problem (3.23), it follows from

a direct application of convex analysis that the duality gap between Problem (3.4)

and (3.23), ∆𝛾, decreases as we decrease 𝛾 and becomes 0 at some finite 𝛾 > 0.

Note however that this ∆𝛾 will, in general, depend upon the problem data [see 131,

Theorem XII.5.2.2]. This observation justifies our claim in the introduction that

decreasing 𝛾 makes Problem (3.4) easier.

We now derive conditions under which Problem (3.22) provides an optimal solution

to Problem (3.4) a priori.

Corollary 3.3. Let there exist some 𝑧 ∈ 𝒵𝑛
𝑘 and set of dual multipliers

(𝑣⋆,𝑤⋆,𝛼⋆,𝛽⋆
𝑙 ,𝛽

⋆
𝑢, 𝜆

⋆) which solve Problem (3.22), such that these two quantities col-

lectively satisfy the following conditions:

𝛾
∑︁
𝑖

𝑧𝑖𝑤
⋆
𝑖 = 1, 𝑙 ≤ 𝛾

∑︁
𝑖

𝐴𝑖𝑤
⋆
𝑖 𝑧𝑖 ≤ 𝑢, 𝑧𝑖𝑤𝑖 ≥ 0 ∀𝑖 ∈ [𝑛], 𝑣⋆𝑖 = 0 ∀𝑖 ∈ [𝑛] : 𝑧𝑖 = 0.

(3.25)

Then, Problem (3.22)’s lower bound is exact. Moreover, let |𝑤⋆|[𝑘] denote the 𝑘th

largest entry in 𝑤⋆ by absolute magnitude. If |𝑤⋆|[𝑘] > |𝑤⋆|[𝑘+1] in Problem (3.22)

then setting

𝑧𝑖 = 1 ∀𝑖 : |𝑤⋆
𝑖 | ≥ |𝑤⋆|[𝑘], 𝑧𝑖 = 0 ∀𝑖 : |𝑤⋆

𝑖 | < |𝑤⋆|[𝑘]
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supplies a 𝑧 ∈ 𝒵𝑛
𝑘 which satisfies the above condition and hence solves Problem (3.4).

Proof. Let there exist some (𝑣⋆,𝑤⋆,𝛼⋆,𝛽⋆
𝑙 ,𝛽

⋆
𝑢, 𝜆

⋆) which solve Problem (3.22), and

binary vector 𝑧 ∈ 𝒵𝑛
𝑘 , such that these two quantities collectively satisfy the conditions

encapsulated in Expression (3.25). Then, this optimal solution to Problem (3.22)

provides the following lower bound for Problem (3.4):

−1

2
𝛼*⊤𝛼⋆ + 𝑦⊤𝛼⋆ + 𝛽*⊤

𝑙 𝑙− 𝛽*⊤
𝑢 𝑢+ 𝜆⋆ − 𝑒⊤𝑣⋆ − 𝑘𝑡⋆.

Moreover, let 𝑥̂ be a candidate solution to Problem (3.4) defined by 𝑥̂𝑖 := 𝛾𝑤𝑖𝑧𝑖.

Then, 𝑥̂ is feasible for Problem (3.4), since 𝑙 ≤ 𝐴𝑥̂ ≤ 𝑢, 𝑒⊤𝑥̂ = 1, 𝑥̂ ≥ 0 and

‖𝑥̂‖0 ≤ 𝑘 by Expression (3.25) and the definition of 𝑧. Additionally, since an optimal

choice of 𝑡 is the 𝑘th largest value of 𝛾
2
𝑤2

𝑖 , i.e., 𝛾
2
𝑤2

[𝑘] [see 229, Lemma 1], at optimality

we have that 𝑒⊤𝑣 + 𝑘𝑡 = 1
2𝛾
𝑥̂⊤𝑥̂. Therefore, Problem (3.4)’s objective when 𝑥 = 𝑥̂

is given by:

−1

2
𝛼*⊤𝛼⋆ + 𝑦⊤𝛼⋆ + 𝛽*⊤

𝑙 𝑙− 𝛽*⊤
𝑢 𝑢+ 𝜆⋆ − 1

2𝛾
𝑥̂⊤𝑥̂,

which is less than or equal to (3.22)’s objective, since 𝑣⋆𝑖 = 0 ∀𝑖 ∈ [𝑛] : 𝑧𝑖 = 0.

Finally, let |𝑤⋆|[𝑘] > |𝑤⋆|[𝑘+1] and let 𝑆 denote the set of indices such that |𝑤⋆
𝑖 | ≥

|𝑤⋆|[𝑘]. Then, as the primal-dual KKT conditions for max-𝑘 norms [see, e.g., 229,

Lemma 1] imply that an optimal choice of 𝑡 is given by 𝑡⋆ = 𝛾
2
𝑤⋆2

[𝑘], we can set 𝑡⋆ = 𝛾
2
𝑤⋆2

[𝑘]

without loss of generality. Note that, in general, this choice is not unique. Indeed,

any 𝑡 ∈ [𝛾
2
𝑤⋆

[𝑘+1],
𝛾
2
𝑤⋆

[𝑘]] constitutes an optimal choice [229].

We then have that 𝑣⋆𝑖 = 0 ∀𝑖 /∈ 𝑆, which implies that the constraint 𝑣𝑖 + 𝑡 ≥ 𝛾
2
𝑤2

𝑖

holds strictly for any 𝑖 /∈ 𝑆. Therefore, the dual multipliers associated with these

constraints must take value 0. But these constraints’ dual multipliers are precisely

𝑧 ∈ Conv(𝒵𝑛
𝑘 ), which implies that 𝑧𝑖 = 1∀𝑖 ∈ 𝑆 gives a valid set of dual multipliers.

Moreover, setting 𝑥𝑖 = 𝛾𝑧𝑖𝑤
⋆
𝑖 supplies an optimal (and thus feasible) choice of 𝑥 for

this fixed 𝑧. Therefore, this primal-dual pair satisfies (3.25).

We now apply Theorem 3.2 to prove that if Σ is a diagonal matrix, 𝜇 is a multiple
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of the vector of all ones and the matrix 𝐴 is empty then Problem (3.4) is solvable in

closed-form. Let us first observe that under these conditions (3.4) is equivalent to

min
∑︁
𝑖

1

2𝛾𝑖
𝑥2
𝑖 s.t. 𝑒⊤𝑥 = 1,𝑥 ≥ 0, ‖𝑥‖0 ≤ 𝑘.

We now have the following result:

Corollary 3.4. Let 0 < 𝛾𝑛 ≤ 𝛾𝑛−1 ≤ ...𝛾1. Then, strong duality holds between

min
∑︁
𝑖

1

2𝛾𝑖
𝑥2
𝑖 s.t. 𝑒⊤𝑥 = 1,𝑥 ≥ 0, ‖𝑥‖0 ≤ 𝑘 (3.26)

and its second-order cone relaxation:

max
𝑣∈R+

𝑛 , 𝑤∈R𝑛,
𝜆∈R, 𝑡∈R+

𝜆− 𝑒⊤𝑣 − 𝑘𝑡

s.t. 𝑤 ≥ 𝜆𝑒, 𝑣𝑖 ≥
𝛾𝑖
2
𝑤2

𝑖 − 𝑡 ∀𝑖 ∈ [𝑛].

(3.27)

Moreover, an optimal solution to (3.26) is 𝑥𝑖 =
𝛾𝑖∑︀𝑘
𝑖=1 𝛾𝑖

for 𝑖 ≤ 𝑘, 𝑥𝑖 = 0 for 𝑖 > 𝑘.

Proof. By Theorem 3.2, a valid lower bound to Problem (3.26) is given by the SOCO

max
𝑣∈R+

𝑛 , 𝑤∈R𝑛,
𝜆∈R, 𝑡∈R+

𝜆− 𝑒⊤𝑣 − 𝑘𝑡

s.t. 𝑤 ≥ 𝜆𝑒, 𝑣𝑖 ≥
𝛾𝑖
2
𝑤2

𝑖 − 𝑡 ∀𝑖 ∈ [𝑛].

(3.28)

Let us assume that 𝜆⋆ ≥ 0 (otherwise the objective value cannot exceed 0, which

is certainly suboptimal). Then, we can let the constraint 𝑤𝑖 ≥ 𝜆 be binding without

loss of optimality for each index 𝑖, i.e., set 𝑤 = 𝜆𝑒 for some 𝜆. This allows us to

simplify this problem to:

max
𝑣∈R+

𝑛 , 𝜆∈R, 𝑡∈R+
𝜆− 𝑒⊤𝑣 − 𝑘𝑡

s.t. 𝑣𝑖 ≥
𝛾𝑖
2
𝜆2 − 𝑡 ∀𝑖 ∈ [𝑛].

(3.29)

The KKT conditions for max-𝑘 norms [see, e.g., 229, Lemma 1] then reveal that
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an optimal choice of 𝑡 is given by the 𝑘th largest value of 𝛾𝑖
2
𝜆2, i.e., 𝑡⋆ = 𝛾𝑘

2
𝜆2 and an

optimal choice of 𝑣𝑖 is given by 𝑣𝑖 = max
(︀
𝛾𝑖
2
𝜆2 − 𝑡, 0

)︀
, i.e.,

𝑣⋆𝑖 =

⎧⎪⎨⎪⎩
𝛾𝑖−𝛾𝑘

2
𝜆2 ∀𝑖 ≤ 𝑘,

0 ∀𝑖 > 𝑘.

Substituting these terms into the objective function gives an objective of

𝜆−
𝑘∑︁

𝑖=1

𝛾𝑖
2
𝜆2,

which implies that an optimal choice of 𝜆 is 𝜆 = 1/
∑︀𝑘

𝑖=1 𝛾𝑖. Next, substituting the

expression 𝜆 = 1/
∑︀𝑘

𝑖=1 𝛾𝑖 into the objective function gives an objective value of 𝜆/2,

which implies that a lower bound on Problem (3.26)’s objective is 1/2
∑︀𝑘

𝑖=1 𝛾𝑖.

Finally, we construct a primal solution via 𝑧𝑖 = 1 ∀𝑖 ≤ 𝑘, and the primal-dual

KKT condition 𝑥𝑖 = 𝛾𝑖𝑧𝑖𝑤𝑖 = 𝛾𝑖𝑧𝑖𝜆 = 𝛾𝑖𝑧𝑖/
∑︀𝑘

𝑖=1 𝛾𝑖. This is feasible, by inspection.

Moreover, it has an objective of

𝑘∑︁
𝑖=1

1

2𝛾𝑖
(𝛾𝑖𝜆)

2 =
𝜆

2

𝑘∑︁
𝑖=1

𝛾𝑖𝜆 =
𝜆

2
,

and therefore is optimal.

An Improved Cutting-Plane Method

We close this section by combining Algorithm 2.1 with the improvements discussed

in this section, to obtain an efficient numerical approach to Problem (3.4), which we

present in Algorithm 3.2. Note that we use the larger of 𝜃𝑡 and the second-order cone

lower bound in our termination criterion, as the second-order cone gap is sometimes

less than 𝜖.

Figure 3-1 depicts the algorithm’s convergence on the problem port2 with a car-

dinality value 𝑘 = 5 and a minimum return constraint, as described in Section 3.4.

Note that we did not use the second-order cone lower bound when generating this
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Algorithm 3.2 A refined cutting-plane method for Problem (3.4).
Require: Initial warm-start solution 𝑧1

𝑡← 1
Set 𝜃SOCO optimal objective value of Problem (3.22)
repeat

Compute 𝑧𝑡+1, 𝜃𝑡+1 solution of:

min
𝑧∈𝒵𝑛

𝑘 ,𝜃
𝜃 s.t. 𝜃 ≥ 𝑓(𝑧𝑖) + 𝑔⊤𝑧𝑖(𝑧 − 𝑧𝑖) ∀𝑖 ∈ [𝑡].

Compute 𝑓(𝑧𝑡+1) and 𝑔𝑧𝑡+1 ∈ 𝜕𝑓(𝑧𝑡+1)
𝑡← 𝑡+ 1

until 𝑓(𝑧𝑡)−max(𝜃𝑡, 𝜃SOCO) ≤ 𝜀 return 𝑧𝑡

plot; the second-order cone lower bound is 0.009288 in this instance, and Algorithm

3.2 requires 1225 cuts to improve upon this bound.
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Figure 3-1: Convergence of Algorithm 3.2 on the OR-library problem port2
with a minimum return constraint and a cardinality constraint ‖𝑥‖0 ≤ 5. The
behavior shown here is typical.

3.4 Experiments on Real-World Data

In this section, we evaluate our outer-approximation method, implemented in Julia

1.1 using the JuMP.jl package version 0.18.5 and solved using CPLEX version 12.8.0 for

the master problems, and Mosek version 9.0 for the continuous quadratic subproblems.
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We compare the method against big-𝑀 and MISOCO formulations of Problem (3.4),

solved in CPLEX. To bridge the gap between theory and practice, we have made our

code freely available on Github3

All experiments were performed on a MacBook Pro with a 2.9GHz i9 Intel®CPU

and 16GB DDR4 Memory. For simplicity, we ran all methods on one thread, using

default CPLEX parameters.

In all experiments, we solve the following optimization problem, which places a

multiplier 𝜅 on the return term but is mathematically equivalent to (3.4):

min
𝑥∈R𝑛

+

1

2
𝑥⊤Σ𝑥+

1

2𝛾
‖𝑥‖22 − 𝜅𝜇⊤𝑥 (3.30)

s.t. 𝑙 ≤ 𝐴𝑥 ≤ 𝑢, 𝑒⊤𝑥 = 1, ‖𝑥‖0 ≤ 𝑘.

Note that we only consider cases where 𝜅 = 0 or 𝜅 = 1, depending on whether

we are penalizing low expected return portfolios in the objective or constraining the

portfolios expected return.

We aim to answer the following questions:

1. How does Algorithm 3.2 compare to existing codes such as CPLEX?

2. How do constraints affect Algorithm 3.2’s scalability?

3. How does Algorithm 3.2 scale as a function of the number of securities 𝑛?

4. How sensitive are optimal solutions to (3.4) to the hyperparameters 𝜅, 𝛾, 𝑘?

Comparison Between Algorithm 3.2, Existing Codes

We now present a direct comparison of Algorithm 3.2 with CPLEX version 12.8.0, where

CPLEX uses the MISOCO formulations of Problem (3.4). Note that the MISOCO

3github.com/ryancorywright/SparsePortfolioSelection.jl.
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formulation which we pass directly to CPLEX is [cf. 17, 4]:

min
𝑧∈𝒵𝑛

𝑘 ,𝑥∈R𝑛
+,𝜃∈R𝑛

+

1

2
𝑥⊤Σ𝑥+

1

2𝛾
𝑒⊤𝜃 − 𝜅𝜇⊤𝑥 (3.31)

s.t. 𝑙 ≤ 𝐴𝑥 ≤ 𝑢, 𝑒⊤𝑥 = 1, 𝑥2
𝑖 ≤ 𝑧𝑖𝜃𝑖 ∀𝑖 ∈ [𝑛].

We compare the approaches in two distinct situations. First, when no constraints

are applied and the system 𝑙 ≤ 𝐴𝑥 ≤ 𝑢 is empty, and second when a minimum

return constraint is applied, i.e., 𝜇⊤𝑥 ≥ 𝑟. In the former case we set 𝜅 = 1, while

in the latter case we set 𝜅 = 0 and as suggested by Cesarone et al. [68], Zheng et al.

[235] we set 𝑟 in the following manner: Let

𝑟min = 𝜇⊤𝑥min where 𝑥min = argmin
𝑥

1

2
𝑥⊤
(︂
1

𝛾
I+Σ

)︂
𝑥 s.t. 𝑒⊤𝑥 = 1,𝑥 ≥ 0,

𝑟max = 𝜇⊤𝑥max where 𝑥max = argmax
𝑥

𝜇⊤𝑥− 1

2𝛾
𝑥⊤𝑥 s.t. 𝑒⊤𝑥 = 1,𝑥 ≥ 0,

and set 𝑟 = 𝑟min + 0.3(𝑟max − 𝑟min).

Table 3.1 (resp. Table 3.2) depicts the time required for both approaches to de-

termine an optimal allocation of funds without (resp. with) the minimum return

constraint. The problem data is taken from the 5 mean-variance portfolio optimiza-

tion problems described by [69] and included in the OR-library test set by Beasley

[13]. Note that we turned off the second-order cone lower bound for these tests, and

ensured feasibility in the master problem by imposing
∑︀

𝑖∈[𝑛]:𝜇𝑖≥𝑟 𝑧𝑖 ≥ 1 when running

Algorithm 3.2 on the instances with a minimum return constraint.

Table 3.2 indicates that some instances of port2-port4 cannot be solved to certifi-

able optimality by any approach within an hour, in the presence of a minimum return

constraint. Nonetheless, both Algorithm 3.2 and CPLEX’s MISOCO method obtain

solutions which are certifiably within 1% of optimality very quickly. Indeed, Table

3.3 depicts the bound gaps of all 3 approaches at 120s on these problems; Algorithm

3.2 never has a bound gap larger than 0.5%.

The experimental results illustrate that our approach is typically more efficient

than the MISOCO approach. Moreover, our approach’s edge over CPLEX increases
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Table 3.1: Runtime in seconds per approach with 𝜅 = 1, 𝛾 = 100√
𝑛

and no
constraints in the system 𝑙 ≤ 𝐴𝑥 ≤ 𝑢. We impose a time limit of 300s and run
all approaches on one thread. If a solver fails to converge, we report the number
of explored nodes at the time limit.

Problem 𝑛 𝑘 Algorithm 3.2 CPLEX MISOCO

Time Nodes Cuts Time Nodes

port 1 31 5 0.17 0 4 0.03 0
10 0.16 0 4 0.01 0
20 0.14 0 4 0.03 0

port 2 85 5 0.01 0 4 0.11 0
10 0.01 0 4 0.12 0
20 0.01 0 4 0.29 0

port 3 89 5 0.01 0 8 0.38 0
10 0.01 0 4 0.41 0
20 0.02 0 4 0.11 0

port 4 98 5 0.03 0 8 0.41 0
10 0.02 0 8 2.74 3
20 0.03 0 9 0.38 0

port 5 225 5 0.15 0 9 11.17 9
10 0.02 0 4 3.04 0
20 0.03 0 7 2.88 0

with the problem size.

Our main findings from this set of experiments are as follows:

1. MISOCO approaches perform competitively, and are often a computationally

reasonable approach for small to medium sized instances of Problem (3.4), as

they are easy to implement and typically have bound gaps of < 1% in instances

where they fail to converge within the time budget.

2. Varying the cardinality of the optimal portfolio does not affect solve times sub-

stantially without a minimum return constraint, although it has a nonlinear

effect with this constraint.

Benchmarking With Threshold Constraints

In this section, we explore Algorithm 3.2’s scalability in the presence of minimum

investment constraints, by solving the problems generated by Frangioni and Gentile
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Table 3.2: Runtime in seconds per approach with 𝜅 = 0, 𝛾 = 100√
𝑛

and a
minimum return constraint 𝜇⊤𝑥 ≥ 𝑟. We impose a time limit of 3600s and run
all approaches on one thread. If a solver fails to converge, we report the number
of explored nodes at the time limit.

Problem 𝑛 𝑘 Algorithm 3.2 CPLEX

Time Nodes Cuts Time Nodes

port 1 31 5 0.22 161 32 0.83 47
10 0.20 159 28 0.84 44
20 0.16 0 7 0.05 0

port 2 85 5 48.29 73, 850 1, 961 91.98 1, 163
10 807.3 243, 500 6, 433 82.44 902
20 10.52 12, 260 1, 224 24.54 210

port 3 89 5 175.2 132, 700 3, 187 213.3 2, 528
10 > 3, 600 439, 400 9, 851 531.3 5, 776
20 119.5 65, 180 4, 473 21.32 170

port 4 98 5 2,690 479, 700 11, 320 2, 779 25, 180
10 > 3, 600 311, 200 12, 400 > 3, 600 30, 190
20 1, 638 241, 600 10, 710 148.9 1, 115

port 5 225 5 0.85 1, 489 202 28.3 22
10 0.60 73 41 3.33 0
20 0.39 63 52 115.02 90

[110] and subsequently solved by [112, 113, 235] among others4. These problems

have minimum investment, maximum investment, and minimum return constraints,

which render many entries in 𝒵𝑛
𝑘 infeasible. Therefore, to avoid generating an exces-

sive number of feasibility cuts, we use the copy of variables technique when running

Algorithm 3.2.

Additionally, as the covariance matrices in these problems are highly diagonally

dominant (with much larger on-diagonal entries than off-diagonal entries), the method

does not converge quickly if we do not extract any diagonal dominance. Therefore,

we first preprocess the covariance matrices to extract more diagonal dominance. Note

that we need not actually solve any SDOs to preprocess the data, as high quality di-

agonal matrices for this problem data have been made publicly available by Frangioni

et al. [115]. After reading in their diagonal matrix 𝐷, we replace Σ with Σ−𝐷 and

use the regularizer 𝛾𝑖 for each index 𝑖, where 𝛾𝑖 =
(︁

1
𝛾
+𝐷𝑖,𝑖

)︁−1

.

We now compare the times for Algorithm 3.2 and CPLEX’s MISOCO routines to
4This problem data is available at www.di.unipi.it/optimize/Data/MV.html
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Table 3.3: Bound gap at 120s per approach with 𝜅 = 0, 𝛾 = 100√
𝑛

and a
minimum return constraint 𝜇⊤𝑥 ≥ 𝑟. We run all approaches on one thread.

Problem 𝑛 𝑘 Algorithm 3.2 CPLEX MISOCO

Gap (%) Nodes Cuts Gap (%) Nodes

port 2 85 5 0 73, 850 1, 961 0 1, 163
10 0.26 90, 670 3, 463 0 902
20 0 12, 260 1, 224 0 210

port 3 89 5 0.1 123, 100 2, 308 0.27 1, 247
10 0.29 65, 180 4, 473 0.19 1, 246
20 0 60, 090 3, 237 0 170

port 4 98 5 0.18 55, 460 3, 419 0.60 888
10 0.46 51, 500 3, 704 0.29 977
20 0.17 57, 990 3, 393 0.05 846

solve the diagonally dominant instances in the dataset generated by Frangioni and

Gentile [110], along with a variant of Algorithm 3.2 where we use the in-out method

at the root node. In all cases, we take 𝛾 = 1000
𝑛

, which ensures that 𝛾𝑖 ≈ 1
𝐷𝑖,𝑖

, since

on this dataset 1
2𝛾

is around 5 orders of magnitude smaller than 𝐷𝑖,𝑖 and thus the

net contribution of the regularization term to the objective is negligible. Table 3.4

depicts the average time taken by each approach, and demonstrates that Algorithm

3.2 substantially outperforms CPLEX, particularly for problems without a cardinality

constraint.

Our main findings from this experiment are as follows:

• Algorithm 3.2 outperforms CPLEX in the presence of minimum investment con-

straints, possibly because the master problems solved by Algorithm 3.2 are

cardinality constrained LOs, rather than SOCOs, and therefore the method can

quickly expand larger branch-and-bound trees.

• With a cardinality constraint, Algorithm 3.2’s solve times are comparable to

those reported by Zheng et al. [235], Frangioni et al. [114]. This can be explained

by the fact that all three methods solve these problems in 10s of seconds, and

thus these problems can be viewed as “easy”. Without an explicit cardinality

constraint (but with minimum investment constraints which impose an implicit

cardinality constraint), our solve times are two orders of magnitude faster than

97



Table 3.4: Average runtime in seconds per approach with 𝜅 = 0, 𝛾 = 1000
𝑛 for

the problems generated by Frangioni and Gentile [110]. We impose a time limit
of 600s and run all approaches on one thread. If a solver fails to converge, we use
600s in lieu of the solve time. Note that the minimum investment constraints
impose an implicit cardinality constraint with 𝑘 ≈ 20.

Problem 𝑘 Algorithm 3.2 Algorithm 3.2 + in-out CPLEX MISOCO

Time Nodes Cuts Time Nodes Cuts Time Nodes

200+ 6 1.55 1,298 236.3 1.77 1,262 209.4 87.74 95.3
200+ 8 1.95 1,968 260.3 2.30 1,626 217 73.42 79.8
200+ 10 7.74 7,606 509.7 4.33 3,686 298.9 161.9 184
200+ 12 25.57 28,830 203.8 2.06 1,764 71.6 353.1 398.1
200+ 200 18.71 23,190 208.4 2.79 2,288 92 599.3 735.1

300+ 6 16.83 9,141 974.2 23.59 8,025 864.1 434.5 157.6
300+ 8 44.68 21,050 1,577 64.46 19,682 1457.8 489.5 174.0
300+ 10 88.57 44,160 1,901 78.05 33,253 1438.4 472.0 171.9
300+ 12 16.16 13,880 262.7 4.65 3,181 127.4 401.5 158.2
300+ 300 21.36 18,140 262.1 9.24 6,288 191.9 600.0 219.2

400+ 6 54.47 13,330 1,717 66.52 12,160 1,619 531.7 84.0
400+ 8 173.8 35,390 2,828 160.9 32,930 2,709 534.0 80.8
400+ 10 158.0 55,490 1,669 104.5 32,314 1369.7 517.9 74.8
400+ 12 3.97 4,324 116.6 1.9 1,214 48.6 478.0 75.3
400+ 400 8.68 7,540 120.5 5.19 3,539 88.8 600.0 74.2

those reported by Zheng et al. [235]’s (an average of 580s for 400+), and an order

of magnitude faster than those reported by Frangioni et al. [114] (an average of

52s for 400+).

Exploring the Scalability of Algorithm 3.2

In this section, we explore Algorithm 3.2’s scalability with respect to the number of

securities in the buyable universe, by measuring the time required to solve several

large-scale sparse portfolio selection problems to provable optimality: the S&P 500,

the Russell 1000, and the Wilshire 5000. In all three cases, the problem data is

taken from daily closing prices from January 3 2007 to December 29 2017, which

are obtained from Yahoo! Finance via the R package quantmod (see [207]), and

rescaled to correspond to a holding period of one month. We apply Singular Value

Decomposition to obtain low-rank estimates of the correlation matrix, and rescale the

low-rank correlation matrix by each asset’s variance to obtain a low-rank covariance
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matrix Σ. We also omit days with a greater than 20% change in closing prices when

computing the mean and covariance for the Russell 1000 and Wilshire 5000, since

these changes occur on low-volume trading and typically reverse the next day.

Tables 3.5–3.6 depict the times required for Algorithm 3.2 and CPLEX MISOCO to

solve the problem to provable optimality for different choices of 𝛾, 𝑘, and Rank(Σ).

In particular, they depict the time taken to solve a constrained problem where 𝜅 = 0,

and containing a minimum return constraint computed in the same fashion as in

Section 3.4.

Table 3.5: Runtimes in seconds per approach for the S&P 500 with 𝜅 = 0
and a minimum return constraint, a one-month holding period and a runtime
limit of 600s. For instances with a minimum return constraint where 𝛾 = 100√

𝑛
,

we run the in-out method at the root node before running Algorithm 3.2. We
run all approaches on one thread. When a method fails to converge, we report
the bound gap at 600s.

𝛾 Rank(Σ) 𝑘 Algorithm 3.2 CPLEX MISOCO

Time Nodes Cuts Time Nodes
1√
𝑛

50 10 0.01 0 3 73.28 210

50 0.28 108 45 78.59 499
100 0.05 7 7 0.97 0
200 0.08 1 5 53.53 300

1√
𝑛

200 10 5.20 2, 804 450 345.0 171

50 0.49 86 47 337.7 210
100 0.15 5 8 104.2 40
200 0.10 0 3 46.18 10

100√
𝑛

50 10 0.09% 70, 200 3, 855 0.10% 1, 600

50 0.77 309 113 268.5 841
100 0.09 0 8 1.66 0
200 0.16 0 4 15.26 10

100√
𝑛

200 0 0.45% 56, 100 4, 336 0.36% 280

50 0.20 1 19 0.35% 256
100 0.15 0 5 104.2 40
200 0.18 0 4 76.80 10

Our main finding from this set of experiments is that Algorithm 3.2 is substantially

faster than CPLEX’s MISOCO routine, particularly as the rank of Σ increases. The

relative numerical success of Algorithm 3.2 in this section, compared to the previous

section, can be explained by the differences in the problems solved: (a) in this section,

we optimize over a sparse unit simplex, while in the previous section we optimized
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Table 3.6: Runtimes in seconds per approach for the Wilshire 5000 with 𝜅 = 0
and a minimum return constraint, a one-month holding period and a runtime
limit of 600s. For instances with a minimum return constraint where 𝛾 = 100√

𝑛
,

we run the in-out method at the root node before running Algorithm 3.2. We
run all approaches on one thread. When a method fails to converge, we report
the bound gap at 600s (using the symbol “−” to denote that a method failed to
produce a feasible solution).

𝛾 Rank(Σ) 𝑘 Algorithm 3.2 CPLEX MISOCO

Time Nodes Cuts Time Nodes
1√
𝑛

100 10 1.95 0 2 50.0% 122

50 2.32 0 2 32.0% 132
100 0.59 10 9 62.0% 127
200 0.27 0 6 44.5% 100

1√
𝑛

1, 000 10 0.01% 40, 500 1, 130 − 2

50 0.02% 56, 800 937 − 2
100 0.02% 25, 040 523 − 2
200 2.61 1 12 − 2

100√
𝑛

100 10 0.28% 24, 870 1, 178 50.1% 91

50 0.38% 45, 810 636 62.1% 82
100 0.12% 55, 700 912 45.1% 80
200 0.49 0 10 22.1% 91

100√
𝑛

1, 000 10 1.02% 6, 7600 1, 108 − 2

50 0.26 33, 930 1, 122 − 0
100 1.85% 53, 500 804 − 2
200 1.28 1 7 − 2

over minimum-return and minimum-investment constraints, (b) in this section, we

use data taken directly from stock markets, while in the previous section we used less

realistic synthetic data, which evidently made the problem harder.

Exploring Sensitivity to Hyperparameters

Our next set of experiments explores Problem (3.4)’s stability to changes in its hy-

perparameter 𝛾. We first explore optimizing over a rank–200 approximation of the

Russell 1000 with a one month holding period, a sparsity budget 𝑘 = 5 and a weight

𝜅 = 1, using either the ridge regularization term proposed in this chapter or the

big-𝑀 regularizer explored in Chapter 2.

Figure 3-2 depicts the relationship between the optimal allocation of funds 𝑥⋆

and the regularization parameter 𝑀 (left) and 𝛾 (right), and Figure 3-3 depicts the
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magnitude of the gap between the optimal objective and the Boolean relaxation’s

objective, normalized by the unregularized objective. The two investment profiles

are comparable, selecting the same stocks. Yet, we observe two main differences:

First, setting 𝑀 < 1
𝑘

renders the entire problem infeasible, while the problem remains

feasible for any 𝛾 > 0. This is a serious practical concern in cases where a lower bound

on the value of 𝑀 is not known apriori. Second, the profile for ridge regularization

seems smoother than its equivalent with big-𝑀 .
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(b) Ridge regularization

Figure 3-2: Optimal allocation of funds between securities as the regular-
ization parameter (𝑀 or 𝛾) increases. Data is obtained from the Russell 1000,
with a cardinality budget of 5, a rank−200 approximation of the covariance
matrix, a one-month holding period and an Arrow-Pratt coefficient of 1, as in
[24]. Setting 𝑀 < 1

𝑘 renders the entire problem infeasible.
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(b) Ridge regularization

Figure 3-3: Magnitude of the normalized absolute bound gap as the regular-
ization parameter (𝑀 or 𝛾) increases, for the portfolio selection problem studied
in Figure 3-2
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Our final experiment studies the impact of the regularizer 𝛾 on both solve times

and the number of cuts generated, in order to justify our assertion in the introduction

that increasing the amount of regularization in the problem makes the problem easier.

In this direction, we solve the ten 300+ and 400+ instances with minimum investment

and minimum return constraints studied in Section 3.4 for different values of 𝛾 (with

the copy of variables technique and in-out method on). We report the average runtime

and number of cuts generated by Algorithm 3.2 across the 10 instances for each 𝑛 in

Figures 3-4 (𝑛 = 300) and 3-5 (𝑛 = 400).

Observe that the average runtime is essentially non-decreasing in 𝛾, and for both

values of 𝑛 there exists a finite 𝛾 > 0 at which all instances can be solved using a

single cut. This empirically verifies Section 3.2’s sensitivity analysis findings.

Figure 3-4: Average runtime (left) and number of cuts (right) vs. log(𝛾)
for the 300+ instances with buy-in and minimum return constraints with a
cardinality budget of 𝑘 = 10.

Figure 3-5: Average runtime (left) and number of cuts (right) vs. log(𝛾)
for the 400+ instances with buy-in and minimum return constraints with a
cardinality budget of 𝑘 = 10.
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Summary of Findings From Numerical Experiments

We are now in a position to answer the four questions introduced at the start of this

section. Our findings are as follows:

1. In the absence of complicating constraints, Algorithm 3.2 is substantially more

efficient than state-of-the-art MIQO solvers such as CPLEX. This efficiency im-

provement can be explained by (a) our ability to generate stronger and more

informative lower bounds via dual subproblems, and (b) our dual representa-

tion of the problems’ subgradients. Indeed, the method did not require more

than one second to solve any of the constraint-free problems considered here,

although this phenomenon can be partially attributed to the problem data used.

2. Although imposing complicating constraints, such as minimum investment con-

straints, slows Algorithm 3.2, the method performs competitively in the presence

of these constraints. Moreover, running the in-out cutting-plane method at the

root node substantially reduces the initial bound gap, and allows the method to

supply a certifiably near-optimal (if not optimal) solution in seconds. This sug-

gests that running the in-out method at the root node should be considered as

a viable and more scalable alternative to existing root node techniques, partic-

ularly in the presence of complicating constraints such as minimum investment

constraints, or if the cardinality budget is at least 10 (although it can do more

harm than good for easier problems).

3. Algorithm 3.2 scales to solve real-world problem instances which comprise se-

lecting assets from universes with thousands of securities, such as the Russell

1000 and the Wilshire 5000, while existing state-of-the-art approaches such as

CPLEX either solve these problems much more slowly or do not successfully solve

them, because they cannot attain sufficiently strong lower bounds quickly.

4. Solutions to Problem (3.4) are stable with respect to 𝛾.
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3.5 Conclusion and Extensions

This chapter describes a scalable algorithm for solving quadratic optimization prob-

lems subject to sparsity constraints, and applies it to the problem of sparse portfolio

selection. Although sparse portfolio selection is NP-hard, and therefore considered

to be intractable, our algorithm provides provably optimal portfolios even when the

number of securities is in the thousands.

Our algorithm, which solves ridge-regularized sparse portfolio selection problems

with mean-variance objectives, could be generalized to incorporate other risk mea-

sures, such as mean-CVaR risk measures, as developed in [150].

3.6 Appendix: Supplementary Material

In this section, we present supplementary experimental results pertaining to the ex-

periments conducted in Section 3.4, in the order in which the experiments were con-

ducted. For the sake of conciseness, further supplementary material regarding these

experiments can be found in the online supplement to [24].

We first present the aggregate runtimes (in seconds) for all instances generated by

Frangioni and Gentile [110], when we run CPLEX’s MISOCP solver after first supplying

the cuts generated by the in-out method in Table 3.7. Note that, to allow CPLEX

to benefit from the in-out cuts, we introduce an auxiliary variable 𝜏 , change the

objective to minimizing 𝜏 , impose the constraint 𝜏 ≥ 1
2
𝑥⊤Σ𝑥 + 1

2𝛾
𝑒⊤𝜃 − 𝜅𝜇⊤𝑥 to

model the MISOCO objective, and impose the cuts from the in-out method using the

epigraph variable 𝜏 .

Next, we present the instance-wise runtimes (in seconds) for the smallest instances

generated by Frangioni and Gentile [110], with the diagonal matrix extraction tech-

nique proposed by Zheng et al. [235], and 𝑘 ∈ {10, 𝑛} (we restrict the values 𝑘 can

take to use the diagonal matrices pre-computed by Frangioni et al. [115]). Table 3.8

demonstrates that using the diagonal matrix extraction technique proposed by Zheng

et al. [235] substantially slows our approach; the results for 𝑛 ∈ {300, 400} are similar.
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Indeed, this technique is only faster for the pard200-1 problem with 𝑘 = 10, and is

slower in the other 95% of instances (sometimes substantially so).

Table 3.7: Average runtime in seconds per approach with 𝜅 = 0, 𝛾 = 1000
𝑛

for the problems generated by Frangioni and Gentile [110]. We impose a time
limit of 600s and run all approaches on one thread. If a solver fails to converge,
we report the number of explored nodes at the time limit, use 600s in lieu of
the solve time, and report the number of failed instances (out of 10) next to the
solve time in brackets. Note that the minimum investment constraints impose
an implicit cardinality constraint with 𝑘 ≈ 13.

Problem 𝑘 CPLEX MISOCO in-out

Time Nodes

200+ 6 255.5 (1) 92.3
200+ 8 272.2 (1) 98.4
200+ 10 375.2 (3) 116.4
200+ 12 447.8 (6) 216
200+ 200 > 600 (10) 332.1

300+ 6 573.4 (9) 92
300+ 8 578.4 (9) 89.2
300+ 10 > 600 (10) 92.1
300+ 12 575.65 (9) 117.3
300+ 200 > 600 (10) 108.5

400+ 6 569.4 (9) 43.3
400+ 8 563.3 (9) 45.1
400+ 10 562.4 (9) 45.7
400+ 12 593.8 (9) 58.3
400+ 200 > 600 (10) 41.4
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Table 3.8: Performance of the outer-approximation method on the 200+ in-
stances generated by Frangioni and Gentile [110], with a time budget of 600s
per approach, 𝜅 = 0, 𝛾 = 1000

𝑛 , and the diagonal matrix extraction technique
proposed by Zheng et al. [235]. We run all approaches on one thread. Note that
“nc” refers to an instance without an explicit cardinality constraint.

Problem 𝑘 Algorithm 3.2 Algorithm 3.2 + in-out Algorithm 3.2 + in-out + 50

Time Nodes Cuts Time Nodes Cuts Time Nodes Cuts

pard200-1 10 0.74 130 30 0.03 0 4 0.03 0 4
pard200-1 nc > 600 887,400 1,386 > 600 539,900 1,070 > 600 369,500 675

pard200-2 10 234.3 239,500 875 57.14 45,230 193 78.88 39,000 196
pard200-2 nc > 600 995,900 823 > 600 157,100 135 > 600 226,100 66

pard200-3 10 245.1 207,200 1,195 71.95 55,050 365 76.64 30,910 249
pard200-3 nc > 600 903,500 888 > 600 357,200 246 > 600 268,400 259

pard200-4 10 > 600 442,500 1,967 344.7 223,700 1,053 228.9 135,500 760
pard200-4 nc 535.1 913,500 1,092 > 600 297,600 94 529.8 212,600 94

pard200-5 10 > 600 439,900 4,965 48.87 70,200 206 69.71 52,300 204
pard200-5 nc > 600 1,340,000 1,314 > 600 531,400 1,408 > 600 573,200 1,358

pard200-6 10 > 600 311,800 4,922 6.54 6,382 116 36.29 12,370 107
pard200-6 nc > 600 1,280,000 1,016 > 600 479,900 789 > 600 557,600 580

pard200-7 10 549.8 389,000 2,542 515.6 228,100 1,336 292.4 105,900 743
pard200-7 nc > 600 1,245,000 522 > 600 496,200 183 > 600 502,600 119

pard200-8 10 > 600 399,200 3,419 2.32 1,638 46 20.19 1,716 45
pard200-8 nc > 600 1,337,000 862 > 600 674,300 552 > 600 507,900 420

pard200-9 10 589.7 576,100 1,756 6.31 8,746 122 26.53 8,290 143
pard200-9 nc > 600 1,264,000 1,941 > 600 703,900 1,977 > 600 498,000 1,970

pard200-10 10 > 600 416,200 3,798 288.4 160,300 1,070 422.0 192,800 1,002
pard200-10 nc > 600 974,400 1,584 > 600 498,100 1,513 > 600 313,400 1482
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Chapter 4

Sparse Principal Component Analysis

In the era of big data, interpretable methods for compressing a high-dimensional

dataset into a lower dimensional set which shares the same essential characteristics

are imperative. Principal component analysis (PCA) is one of the most popular

approaches for completing this task. Given data 𝐴 ∈ R𝑛×𝑝 and its sample covariance

matrix Σ := 1
𝑛−1

𝐴𝐴⊤ ∈ R𝑝×𝑝, PCA selects the leading eigenvectors, or principal

components, of Σ and subsequently projects 𝐴 onto these eigenvectors, by multiplying

𝐴 by the leading principal components in order to obtain a lower-dimensional matrix.

The mathematically simplest approach to PCA is an iterative process. First, the

leading eigenvector, or principal component, can be found by solving the following

quadratic optimization problem, which can be addressed in a number of ways includ-

ing via the power method [227]:

max
𝑥∈R𝑝:‖𝑥‖2=1

𝑥⊤Σ𝑥.

After obtaining 𝑥1, an optimal solution to this problem which explains the most

variance in Σ of any vector, we “project out” this direction from the covariance matrix

by setting Σnew := (I− 𝑥1𝑥
⊤
1 )Σ(I− 𝑥1𝑥

⊤
1 ), and resolve the quadratic problem to

explain the optimal amount of variance once 𝑥1 is accounted for. Repeating this

process iteratively 𝑑 times, where 𝑑 ≤ 𝑛, supplies an orthogonal basis {𝑥1, . . .𝑥𝑑}.

Moreover, this basis explains the most variance in Σ of any basis with 𝑑 components,
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and therefore multiplying 𝐴 by this basis supplies a lower-dimensional dataset which

shares the same essential characteristics.

A popular and unified approach for performing principal component analysis is

via the singular value decomposition. Indeed, PCA can be achieved in 𝑂(𝑝3) time

by taking a singular value decomposition Σ = 𝑆Λ𝑆⊤, and projecting 𝐴 onto the 𝑑

leading eigenvalues of 𝑆, 𝑆[1:𝑘], via 𝐴new := 𝑆[1:𝑑]𝐴.

A common criticism of PCA is the columns of 𝑆 are not interpretable, since each

eigenvector is a linear combination of all features. This causes difficulties because:

• In medical diagnostic applications such as cancer detection, downstream deci-

sions taken using principal component analysis need to be interpretable.

• In scientific applications such as protein folding, each original co-ordinate axis

has a physical interpretation, and the reduced set of co-ordinate axes should

also have this property.

• In financial applications such as investing capital across a set of index funds,

each non-zero entry in each eigenvector incurs a transaction cost.

One common method for obtaining interpretable principal components is to stip-

ulate that they are sparse. This leads to the following problem:

max
𝑥∈R𝑝

𝑥⊤Σ𝑥 s.t. 𝑥⊤𝑥 = 1, ||𝑥||0 ≤ 𝑘, (4.1)

where the constraint ||𝑥||0 ≤ 𝑘 forces variance to be explained in a compelling way.

In this chapter, we demonstrate that Problem (4.1) can be reformulated as a

mixed-integer semidefinite optimization problem. This is significant because prior

works characterizes (4.1) as a low-rank—rather than mixed-integer semidefinite—problem,

and the framework developed in Chapter 2 can handle integer but not low-rank con-

straints. After casting (4.1) as a MISDO, we adapt the framework from Chapter 2

to solve this problem to certifiable optimality in a tractable fashion. In addition, we

propose eigenvalue bounds which improve the quality of the master problem formu-

lation, and scalable semidefinite and second-order cone relaxations and randomized
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rounding methods which supply certifiably near-optimal solutions when 𝑝 = 1000s.

4.1 Background and Literature Review

Owing to sparse PCA’s fundamental importance in a variety of applications including

best subset selection [81], natural language processing [233], compressed sensing [61],

and clustering [165] among others, three distinct classes of methods for addressing

Problem (4.1) have arisen. Namely, (a) heuristic methods which obtain high-quality

sparse PCs in an efficient fashion but do not supply guarantees on the quality of

the solution, (b) convex relaxations which obtain certifiably near-optimal solutions

by solving a convex relaxation and rounding, and (c) exact methods which obtain

certifiably optimal solutions, albeit in exponential time.

Heuristic approaches

The importance of identifying a small number of interpretable principal components

has been well-documented in the literature since the work of Hotelling [136] [see

also 139], giving rise to many distinct heuristic approaches for obtaining high-quality

solutions to Problem (4.1). Two interesting such approaches are to rotate dense

principal components to promote sparsity [144, 201, 140], or apply an ℓ1 penalty term

as a convex surrogate to the cardinality constraint [141, 236]. Unfortunately, the

former approach does not provide performance guarantees, while the latter approach

still results in a non-convex optimization problem.

More recently, motivated by the need to rapidly obtain high-quality sparse princi-

pal components at scale, a wide variety of first-order heuristic methods have emerged.

The first such modern heuristic was developed by Journée et al. [143], and involves

combining the power method with thresholding and re-normalization steps. By pur-

suing similar ideas, several related methods have since been developed [see 224, 130,

202, 166, 228]. Unfortunately, while these methods are often very effective in practice,

they sometimes badly fail to recover an optimal sparse principal component, and a

practitioner using a heuristic method typically has no way of knowing when this has
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occurred. Indeed, Berk and Bertsimas [20] recently compared 7 heuristic methods,

including most of those reviewed here, on 14 instances of sparse PCA, and found

that none of the heuristic methods successfully recovered an optimal solution in all

14 cases (i.e., no heuristic was right all the time).

Convex relaxations

Motivated by the shortcomings of heuristic approaches on high-dimensional data sets,

and the successful application of semi-definite optimization in obtaining high-quality

approximation bounds in other applications [see 124, 225], a variety of convex re-

laxations have been proposed for sparse PCA. The first such convex relaxation was

proposed by d’Aspremont et al. [79], who reformulated sparse PCA as the rank-

constrained mixed-integer semidefinite optimization problem (MISDO)

max
𝑋⪰0

⟨Σ,𝑋⟩ s.t. tr(𝑋) = 1, ‖𝑋‖0 ≤ 𝑘2, Rank(𝑋) = 1, (4.2)

where 𝑋 models the outer product 𝑥𝑥⊤. Note that, for a rank-one matrix 𝑋, the

constraint ‖𝑋‖0 ≤ 𝑘2 in (4.2) is equivalent to the constraint ‖𝑥‖0 ≤ 𝑘 in (4.1),

since a vector 𝑥 is 𝑘-sparse if its outer product 𝑥𝑥⊤ is 𝑘2-sparse. After performing

this reformulation, d’Aspremont et al. [79] relaxed both the cardinality and rank

constraints and instead solved

max
𝑋⪰0

⟨Σ,𝑋⟩ s.t. tr(𝑋) = 1, ‖𝑋‖1 ≤ 𝑘, (4.3)

which supplies a valid upper bound on Problem (4.1)’s objective.

The semidefinite approach has since been refined in a number of follow-up works.

Among others, d’Aspremont et al. [81], building upon the work of Ben-Tal and Ne-

mirovski [18], proposed a different semidefinite relaxation which supplies a sufficient

condition for optimality via the primal-dual KKT conditions, and d’Aspremont et al.

[82] analyzed the quality of the semidefinite relaxation in order to obtain high-quality

approximation bounds. A common theme in these approaches is that they require
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solving large-scale semidefinite optimization problems. This presents difficulties for

practitioners because state-of-the-art implementations of interior point methods such

as Mosek require 𝑂(𝑝6) memory to solve Problem (4.3), and therefore currently can-

not solve instances of Problem (4.3) with 𝑝 ≥ 300 [see 23, for a recent comparison].

Techniques other than interior point methods, e.g., ADMM or augmented Lagrangian

methods as reviewed in [169] could also be used to solve Problem (4.3), although they

tend to require more runtime than IPMs to obtain a solution of a similar accuracy

and be unstable for problem sizes where IPMs run out of memory [169].

A number of works have also studied the statistical estimation properties of Prob-

lem (4.3), by assuming an underlying probabilistic model. Among others, Amini and

Wainwright [6] have demonstrated the asymptotic consistency of Problem (4.3) under

a spiked covariance model once the number of samples used to generate the covari-

ance matrix exceeds a certain threshold; see [219, 21, 221] for further results in this

direction, [175] for a recent survey.

In an complementary direction, Dey et al. [84] has recently questioned the mod-

eling paradigm of lifting 𝑥 to a higher dimensional space by instead considering the

following (tighter) relaxation of sparse PCA in the original problem space

max
𝑥∈R𝑝

𝑥⊤Σ𝑥 s.t. ‖𝑥‖2 = 1, ‖𝑥‖1 ≤
√
𝑘. (4.4)

Interestingly, Problem (4.4)’s relaxation provides a
(︁
1 +

√︁
𝑘

𝑘+1

)︁2
-factor bound

approximation of Problem (4.1)’s objective, while Problem (4.3)’s upper bound may

be exponentially larger in the worst case [6]. This additional tightness, however,

comes at a price: Problem (4.4) is NP-hard to solve—indeed, providing a constant-

factor guarantee on sparse PCA is NP-hard [167]—and thus (4.4) is best formulated

as a MIO, while Problem (4.3) can be solved in polynomial time.

More recently, by building on the work of Kim and Kojima [147], Bertsimas and

Cory-Wright [23] introduced a second-order cone relaxation of (4.2) which scales to

𝑝 = 1000𝑠, and matches the semidefinite bound after imposing a small number of

cuts. Moreover, it typically supplies bound gaps of less than 5%. However, it does
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not supply an exact certificate of optimality, which is often desirable.

A fundamental drawback of existing convex relaxation techniques is that they are

not coupled with rounding schemes for obtaining high-quality feasible solutions. This

is problematic, because optimizers are typically interested in obtaining high-quality

solutions, rather than certificates. In this chapter, we take a step in this direction,

by deriving new convex relaxations that naturally give rise to greedy and random

rounding schemes. The fundamental point of difference between our relaxations and

existing relaxations is that we derive our relaxations by rewriting sparse PCA as a

MISDO and dropping an integrality constraint, rather than using ad-hoc techniques.

Exact methods

Motivated by the successful application of mixed-integer optimization for solving sta-

tistical learning problems such as best subset selection [27] and sparse classification

[36], several exact methods for solving sparse PCA to certifiable optimality have been

proposed. The first branch-and-bound algorithm for solving Problem (4.1) was pro-

posed by Moghaddam et al. [176], by applying norm equivalence relations to obtain

valid bounds. However, Moghaddam et al. [176] did not couple their approach with

high-quality initial solutions and tractable bounds to prune partial solutions. Conse-

quently, they could not scale their approach beyond 𝑝 = 40.

A more sophisticated branch-and-bound scheme was recently proposed by Berk

and Bertsimas [20], which couples tighter Gershgorin Circle Theorem bounds [135,

Chapter 6] with a fast heuristic due to [228] to solve problems up to 𝑝 = 250. However,

their method cannot scale beyond 𝑝 = 100s, because the bounds obtained are too weak

to avoid enumerating a sizeable portion of the tree.

In Chapter 2, we developed a framework for reformulating convex mixed-integer

optimization problems with logical constraints, and demonstrated that this frame-

work allows a number of problems of practical relevance to be solved to certifiably

optimality via a cutting-plane method. In this chapter, we build upon this work

by reformulating Problem (4.1) as a convex mixed-integer semidefinite optimization

problem, and leverage this reformulation to design a cutting-plane method which
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solves sparse PCA to certifiable optimality. A key feature of our approach is that we

need not solve any semidefinite subproblems. Rather, we use concepts from SDO to

design a semidefinite-free approach which uses simple linear algebra techniques.

Concurrently to our initial submission of the paper this chapter is based upon (see

[37]), Li and Xie [158] also attempted to reformulate sparse PCA as an MISDO, and

proposed valid inequalities for strengthening their formulation and local search algo-

rithms for obtaining high-quality solutions at scale. Our work differs in the following

two ways. First, we propose strengthening the MISDO formulation using the Ger-

shgorin circle theorem and demonstrate that this allows our MISDO formulation to

scale to problems with 𝑝 = 100s of features, while they do not, to our knowledge, solve

any MISDOs to certifiable optimality where 𝑝 > 13. Second, we develop tractable

second-order cone relaxations and greedy rounding schemes which allow practitioners

to obtain certifiably near optimal sparse principal components even in the presence of

𝑝 = 1, 000s of features. More remarkable than the differences between the works how-

ever is the similarities: more than 15 years after d’Aspremont et al. [79]’s landmark

paper first appeared, both works proposed reformulating sparse PCA as an MISDO

less than a week apart. In our view, this demonstrates that the ideas contained in

both works transcend sparse PCA, and can perhaps be applied to other problems in

the optimization literature which have not yet been formulated as MISDOs.

4.2 A Mixed-Integer Semidefinite Reformulation

In this section, we reformulate Problem (4.1) as a convex mixed-integer semidefinite

convex optimization problem, before supplying a formal proof that our reformulation

is indeed equivalent to Problem (4.1). Let us introduce a rank one positive semidef-

inite matrix 𝑋 which models the outer product 𝑥𝑥⊤, and rewrite Problem (4.1) as

the following non-convex problem:

max
𝑋∈𝑆𝑝

+

⟨Σ,𝑋⟩ s.t. tr(𝑋) = 1, Card(𝑋) ≤ 𝑘2, Rank(𝑋) = 1.
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Starting from the rank-constrained SDO formulation (4.2), we introduce binary vari-

ables 𝑧𝑖 to model whether 𝑋𝑖,𝑗 is non-zero, via the logical constraint 𝑋𝑖,𝑗 = 0 if 𝑧𝑖 = 0;

note that we need not require that 𝑋𝑖,𝑗 = 0 if 𝑧𝑗 = 0, since 𝑋 is a symmetric matrix.

By enforcing the logical constraint via −𝑀𝑖,𝑗𝑧𝑖 ≤ 𝑋𝑖,𝑗 ≤ 𝑀𝑖,𝑗𝑧𝑖 for sufficiently large

𝑀𝑖,𝑗 > 0, Problem (4.2) becomes

max
𝑧∈{0,1}𝑝:𝑒⊤𝑧≤𝑘

max
𝑋∈𝑆𝑝

+

⟨Σ,𝑋⟩

s.t. tr(𝑋) = 1, −𝑀𝑖,𝑗𝑧𝑖 ≤ 𝑋𝑖,𝑗 ≤𝑀𝑖,𝑗𝑧𝑖 ∀𝑖, 𝑗 ∈ [𝑝], rank(𝑋) = 1.

To obtain a MISDO, we omit the rank constraint. In general, omitting a rank

constraint generates a relaxation and induces a loss of optimality. Remarkably, this

omission is without loss of optimality in this case. Indeed, the objective is convex

and therefore some rank-one extreme matrix 𝑋 is optimal. We formalize this obser-

vation in the following theorem; note that a similar result—although in the context

of computing Restricted Isometry constants and with a different proof—exists [117]:

Theorem 4.1. Problem (4.1) attains the same optimal objective value as the following

problem, where we associate a dual multiplier with each constraint in square brackets:

max
𝑧∈{0,1}𝑝:𝑒⊤𝑧≤𝑘

max
𝑋∈𝑆𝑝

+

⟨Σ,𝑋⟩

s.t. tr(𝑋) = 1 [𝜆],

𝑋𝑖,𝑗 ≤𝑀𝑖,𝑗𝑧𝑖 [𝛼+
𝑖,𝑗] ∀𝑖, 𝑗 ∈ [𝑝],

−𝑋𝑖,𝑗 ≤𝑀𝑖,𝑗𝑧𝑖 [𝛼−
𝑖,𝑗] ∀𝑖, 𝑗 ∈ [𝑝],

(4.5)

and 𝑀𝑖,𝑖 = 1, 𝑀𝑖,𝑗 =
1
2

if 𝑗 ̸= 𝑖.

Remark 5. If we set 𝑀𝑖,𝑗 = 1 ∀𝑖, 𝑗 ∈ [𝑝] in Problem (4.5) then the optimal value of

the continuous relaxation is 𝜆max(Σ), i.e., the same value as if we did not impose a

cardinality constraint. Indeed, letting 𝑥 be a leading eigenvector of the unconstrained

problem (where ‖𝑥‖2 = 1), we can set 𝑧𝑖 = |𝑥𝑖| ≥ |𝑥𝑖||𝑥𝑗| and 𝑋𝑖,𝑗 = 𝑥𝑖𝑥𝑗, meaning∑︀
𝑖 𝑧𝑖 = ‖𝑥‖1 ≤ 𝑘 and thus (𝑋, 𝑧) solves this continuous relaxation. Therefore,
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setting 𝑀𝑖,𝑗 =
1
2

if 𝑗 ̸= 𝑖 is a necessary condition to obtain non-trivial relaxations.

Proof. It suffices to demonstrate that for any feasible solution to (4.1) we can con-

struct a feasible solution to (4.5) with an equal or greater payoff, and vice versa.

• Let 𝑥 ∈ R𝑝 be a feasible solution to (4.1). Then, since ‖𝑥‖1 ≤
√
𝑘, (𝑋 :=

𝑥𝑥⊤, 𝑧) is a feasible solution to (4.5) with equal cost, where 𝑧𝑖 = 1 if |𝑥𝑖| > 0,

𝑧𝑖 = 0 otherwise.

• Let (𝑋, 𝑧) be a feasible solution to Problem (4.5), and let 𝑋 =
∑︀𝑝

𝑖=1 𝜎𝑖𝑥𝑖𝑥
⊤
𝑖

be a Cholesky decomposition of 𝑋, where 𝑒⊤𝜎 = 1,𝜎 ≥ 0, and ‖𝑥𝑖‖2 =

1 ∀𝑖 ∈ [𝑝]. Observe that ‖𝑥𝑖‖0 ≤ 𝑘 ∀𝑖 ∈ [𝑝], since we can perform the Cholesky

decomposition on the submatrix of 𝑋 induced by 𝑧, and “pad” out the remaining

entries of each 𝑥𝑖 with 0s to obtain the decomposition of 𝑋. Therefore, let us

set 𝑥̂ := argmax𝑖[𝑥
⊤
𝑖 Σ𝑥𝑖]. Then, 𝑥̂ is a feasible solution to (4.1) with an equal

or greater payoff.

Finally, we let 𝑀𝑖,𝑖 = 1, 𝑀𝑖,𝑗 =
1
2

if 𝑖 ̸= 𝑗, as the 2×2 minors imply 𝑋2
𝑖,𝑗 ≤ 𝑋𝑖,𝑖𝑋𝑗,𝑗 ≤ 1

4

whenever 𝑖 ̸= 𝑗 [c.f. 117, Lemma 1].

Theorem 4.1 reformulates Problem (4.1) as a mixed-integer SDO. Therefore, we

can solve Problem (4.5) using general branch-and-cut techniques for semidefinite op-

timization problems [see 118, 149]. However, this approach is not scalable, as it

comprises solving a large number of semidefinite subproblems and the community

does not know how to efficiently warm-start IPMs for SDOs.

We now invoke Theorem 2.1 to propose a saddle-point reformulation of Problem

(4.5) which avoids the computational difficulty in solving a large number of SDOs

by exploiting problem structure, as we will show in Theorem 4.2. Our reformulation

allows us to propose a branch-and-cut method which solves each subproblem using

linear algebra techniques. We have the following result:

Proposition 4.1. Problem (4.5) attains the same optimal value as:
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max
𝑧∈{0,1}𝑝: 𝑒⊤𝑧≤𝑘

𝑓(𝑧) (4.6)

where 𝑓(𝑧) := min
𝜆∈R,𝛼∈R𝑝×𝑝

𝜆+

𝑝∑︁
𝑖=1

𝑧𝑖

(︃
|𝛼𝑖,𝑖|+

1

2

𝑝∑︁
𝑗=1,𝑗 ̸=𝑖

|𝛼𝑖,𝑗|

)︃

s.t. 𝜆I+𝛼 ⪰ Σ,

where the variables in the inner minimization problem precisely correspond to the dual

multipliers associated with the maximization problem (4.5).

Proof. Let us introduce auxiliary variables 𝑈𝑖,𝑗 to model the absolute value of 𝑋𝑖,𝑗

and rewrite the inner optimization problem of (4.5) as

𝑓(𝑧) := max
𝑋⪰0,𝑈

⟨Σ,𝑋⟩

s.t. tr(𝑋) = 1, [𝜆]

𝑈𝑖,𝑗 ≤𝑀𝑖,𝑗𝑧𝑖 ∀𝑖, 𝑗 ∈ [𝑝], [𝜎𝑖,𝑗]

|𝑋𝑖,𝑗| ≤ 𝑈𝑖,𝑗 ∀𝑖, 𝑗 ∈ [𝑝], [𝛼𝑖,𝑗]

𝑝∑︁
𝑗=1

𝑈𝑖,𝑗 ≤
√
𝑘𝑧𝑖 ∀𝑖 ∈ [𝑝], [𝛽𝑖]

(4.7)

where we associate dual constraint multipliers with primal constraints in square brack-

ets. For 𝑧 such that 𝑒⊤𝑧 ≥ 1, the maximization problem induced by 𝑓(𝑧) satisfies

Slater’s condition [see, e.g., 54, Chapter 5.2.3], strong duality applies and leads to

𝑓(𝑧) = min
𝜆

𝜎,𝛼,𝛽≥0

𝜆+
∑︁
𝑖,𝑗

𝜎𝑖,𝑗𝑀𝑖,𝑗𝑧𝑖 +

𝑝∑︁
𝑖=1

𝛽𝑖

√
𝑘𝑧𝑖

s.t. 𝜆I+𝛼 ⪰ Σ, |𝛼𝑖,𝑗| ≤ 𝜎𝑖,𝑗 + 𝛽𝑖.

We eliminate 𝜎 above by optimizing over 𝜎𝑖,𝑗 and setting 𝜎⋆
𝑖,𝑗 = max(0, |𝛼𝑖,𝑗| − 𝛽𝑖).

For 𝑧 = 0, the primal subproblem is infeasible and the dual subproblem has

objective −∞, but this can safely be ignored since 𝑧 = 0 is certainly suboptimal.
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Proposition 4.1 reformulates (4.1) as a special case of the framework developed in

Chapter 2. Therefore, we can solve this problem to certifiable optimality using the

cutting-plane method laid out in Algorithm 2.1 (this is a maximization, rather than

a minimization, problem, so the algorithm needs to be adjusted accordingly).

A key drawback in applying Algorithm 2.1 “out-of-the-box” is that it involves solv-

ing a large number of semidefinite subproblems. This is not a good idea in practice,

because semidefinite optimization problems are expensive to solve. Therefore, we

now derive a computationally efficient subproblem strategy which crucially does not

require solving any semidefinite programs. Formally, we have the following result, a

proof of which can be found in [37]:

Theorem 4.2. For any 𝑧 ∈ {0, 1}𝑝, optimal dual variables in (4.6) are

𝜆 = 𝜆max (Σ1,1) ,𝛼 =

⎛⎝𝛼1,1 𝛼1,2

𝛼⊤
1,2 𝛼2,2

⎞⎠ =

⎛⎝0 0

0 Σ2,2 − 𝜆I+Σ⊤
1,2 (𝜆I−Σ1,1)

†Σ1,2

⎞⎠ ,

(4.8)

where 𝜆max(·) denotes the leading eigenvalue of a matrix, 𝛼 =

⎛⎝𝛼1,1 𝛼1,2

𝛼⊤
1,2 𝛼2,2

⎞⎠ is a

decomposition such that 𝛼1,1 (resp. 𝛼2,2) denotes the entries of 𝛼 where 𝑧𝑖 = 𝑧𝑗 = 1

(𝑧𝑖 = 𝑧𝑗 = 0); Σ is similar.

Remark 6. By Theorem 4.2, we can obtain an optimal set of dual variables by com-

puting the leading eigenvalue of Σ1,1 and solving a linear system. This justifies our

claim that we need not solve any SDOs in our implementation of Algorithm 2.1.

4.3 Sparse PCA Under Ridge Regularization

In this section, we explore enforcing the logical relation 𝑋𝑖,𝑗 = 0 if 𝑧𝑖 = 0 using ridge,

rather than big-M regularization, as proposed in Chapter 2.

By following the analysis in Chapter 2, and also imposing the constraint 𝑋𝑖,𝑗 = 0

if 𝑧𝑗 = 0 (unlike the big-M case, imposing both logical constraints is helpful for
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developing our subproblem strategy) we obtain the following problem:

max
𝑧∈{0,1}𝑝:𝑒⊤𝑧≤𝑘

max
𝑋∈𝑆𝑝

+

⟨Σ,𝑋⟩ − 1

2𝛾
‖𝑋‖2𝐹

s.t. tr(𝑋) = 1, 𝑋𝑖,𝑗 = 0 if 𝑧𝑖 = 0 or 𝑧𝑗 = 0 ∀𝑖, 𝑗 ∈ [𝑝],

(4.9)

which, by strong semidefinite duality—which holds for the inner maximization prob-

lem for any 𝑧 ̸= 0 since the inner problem has non-empty relative interior with

respect to the non-affine constraints [see, e.g, 54, Chapter 5.2.3]—is equivalent to the

saddle-point problem

max
𝑧∈{0,1}𝑝: 𝑒⊤𝑧≤𝑘

𝑓(𝑧) (4.10)

where 𝑓(𝑧) := min
𝜆∈R,𝛼∈R𝑝×𝑝,𝛽∈R𝑝×𝑝

𝜆+
𝛾

2

𝑝∑︁
𝑖=1

𝑧𝑖

𝑝∑︁
𝑗=1

(𝛼𝑖,𝑗 + 𝛽𝑗,𝑖)
2 (4.11)

s.t. 𝜆I+𝛼+ 𝛽 ⪰ Σ,

and can be addressed by a cutting-plane method such as Algorithm 2.1.

It should be noted however that Problem (4.9) does not supply a rank-one matrix

𝑋⋆, due to the ridge regularizer. Therefore, under Frobenius norm regularization,

we first solve Problem (4.10) to obtain an optimal set of indices 𝑧, and subsequently

solve for an optimal 𝑋 for this 𝑧 in (4.5).

This perturbation strategy necessarily gives rise to some loss of optimality. How-

ever, this loss can be bounded. Indeed, the difference in optimal objectives between

Problems (4.5) and (4.9) is at most 1
2𝛾
‖𝑋⋆‖2𝐹 , where 𝑋⋆ is an optimal 𝑋 in Problem

(4.5). Moreover, since

1

2𝛾
‖𝑋‖2𝐹 =

1

2𝛾

∑︁
𝑖

∑︁
𝑗

𝑋2
𝑖,𝑗 ≤

1

2𝛾

∑︁
𝑖

𝑋𝑖,𝑖

∑︁
𝑗

𝑋𝑗,𝑗 =
1

2𝛾
,

where the inequality follows from the 2 × 2 minors in 𝑋 ⪰ 0 [c.f. 23, Proposition

3], the difference in objectives between Problems (4.5) and (4.9) is at most 1
2𝛾

and

becomes negligible as 𝛾 →∞.
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We will make use of both types of regularization in our algorithmic results, and

therefore derive an efficient subproblem strategy under ridge regularization as well:

Theorem 4.3. For any 𝑧 ∈ {0, 1}𝑝 : 𝑒⊤𝑧 ≤ 𝑘, optimal dual variables in (4.10) are

𝜆 =argmin
𝜆

{︁
𝜆+

𝛾

2
‖(Σ1,1 − 𝜆I)+‖2𝐹

}︁
, (4.12)

𝛼 =

⎛⎝𝛼1,1 𝛼1,2

𝛼2,1 𝛼2,2

⎞⎠ =
1

2

⎛⎝(Σ1,1 − 𝜆I)+ 0

2Σ2,1 Σ2,2 − 𝜆I

⎞⎠ ,𝛽 = 𝛼⊤

where (𝑋)+ denotes the positive semidefinite component of 𝑋, i.e., if 𝑋 =
∑︀𝑝

𝑖=1 𝜎𝑖𝑥𝑖𝑥
⊤
𝑖

is an eigendecomposition of 𝑋 then (𝑋)+ =
∑︀𝑝

𝑖=1max(𝜎𝑖, 0)𝑥𝑖𝑥
⊤
𝑖 , 𝛼 =

⎛⎝𝛼1,1 𝛼1,2

𝛼⊤
1,2 𝛼2,2

⎞⎠
is a decomposition of 𝛼 such that 𝛼1,1 (resp. 𝛼2,2) denotes the entries of 𝛼 where

𝑧𝑖 = 𝑧𝑗 = 1 (resp. 𝑧𝑖 = 𝑧𝑗 = 0), and 𝛽, Σ are similar.

Proof. Observe that if 𝑧𝑖 = 0 then 𝛼𝑖,𝑗 does not contribute to the objective, while

if 𝑧𝑗 = 0, 𝛽𝑖,𝑗 does not contribute to the objective. Therefore, if 𝑧𝑖 = 0 and 𝑧𝑗 = 1

we can set 𝛽𝑖,𝑗 = 0 and 𝛼𝑖,𝑗 to be any dual-feasible value, and vice versa. As a

result, it suffices to solve 𝛼1,1, 𝛽1,1, 𝜆, as we can subsequently pick the remaining

components of 𝛼,𝛽 in order that they are feasible and satisfy the aforementioned

condition. Moreover, observe that we can set 𝛼 = 𝛽⊤ without loss of generality,

since, in the derivation of the dual problem, 𝛼 is a matrix of dual variables associated

with a constraint of the form 𝑉 = Diag(𝑧)𝑋, while 𝛽 is a matrix of dual variables

associated with a constraint of the form 𝑉 = 𝑋Diag(𝑧) [c.f. 33, Theorem 1].

Let us substitute 𝛼̂← 𝛼1,1 + 𝛽1,1 and consider the reduced inner dual problem

min
𝛼̂,𝜆

𝜆+
𝛾

2
‖𝛼̂‖2𝐹 s.t. 𝜆I+ 𝛼̂ ⪰ Σ1,1.

In this problem, for any 𝜆, an optimal choice of 𝛼̂ is given by projecting (with respect

to the Frobenius distance) onto a positive semidefinite cone centered at Σ1,1 − 𝜆I.

Therefore, an optimal choice of 𝛼̂ is given by 𝛼̂ = (Σ1,1 − 𝜆I)+ [see 54, Chapter

8.1.1]. Moreover, we have verified that an optimal choice of 𝜆 is indeed given by
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solving (4.12), and therefore the result follows.

We now derive an efficient technique for computing an optimal 𝜆 in (4.12):

Corollary 4.1. Let Σ1,1 be a submatrix containing the entries of Σ where 𝑧𝑖 = 𝑧𝑗 = 1,

and let 𝜎1 ≥ . . . ≥ 𝜎𝑘 denote the ordered eigenvalues of Σ1,1. Then, any 𝜆 which solves

the following optimization problem is an optimal dual variable in (4.12):

min
𝜆∈R,𝜃∈R𝑘

+

𝜆+
𝛾

2

𝑘∑︁
𝑖=1

𝜃2𝑖 s.t. 𝜃 ≥ 𝜎 − 𝜆𝑒.

Moreover, suppose 𝜎𝑙 ≥ 𝜆 ≥ 𝜎𝑙+1, where 𝜆 := 1
𝛾𝑙
+ 1

𝑙

∑︀𝑙
𝑖=1 𝜎𝑖. Then 𝜆 is optimal.

Proof. Recall from Theorem 4.3 that any 𝜆 solving argmin𝜆

{︀
𝜆+ 𝛾

2
‖(Σ1,1 − 𝜆I)+‖2𝐹

}︀
is optimal. Since ‖ (Σ1,1 − 𝜆I)+ ‖

2
𝐹 =

∑︀𝑘
𝑖=1(𝜎𝑖 − 𝜆)2+, this is equivalent to solving

argmin
𝜆

{︃
𝜆+

𝛾

2

𝑘∑︁
𝑖=1

(𝜎𝑖 − 𝜆)2+

}︃
.

The result follows by solving the latter problem.

As the quadratic optimization problem has a piecewise convex objective, some

optimal choice of 𝜆 is either an endpoint of an interval [𝜎𝑖, 𝜎𝑖+1] or a solution of the

form 𝜆 := 1
𝛾𝑙

+ 1
𝑙

∑︀𝑙
𝑖=1 𝜎𝑖 for some 𝑙. Therefore, we need only check at most 2𝑘

different values of 𝜆. Moreover, since the objective function is convex in 𝜆, we can

check these points via bisection search, in 𝑂(log 𝑘) time. Alternatively, we can cast

the subproblem as a second-order cone problem and invoke a conic solver, e.g., Mosek.

Observe that the value of the regularization term is always at least 1
2𝛾𝑘

, since

min
𝑋⪰0

1

2𝛾
‖𝑋‖2𝐹 s.t. tr(𝑋) = 1

is minimized by setting 𝑋 = 1
𝑛
𝑒𝑒⊤, and we have the constraint 𝑋𝑖,𝑗 = 0 if 𝑧𝑖 = 0,

𝑒⊤𝑧 ≤ 𝑘. Therefore, we can subtract 1
2𝛾𝑘

from our bound under ridge regularization.
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4.4 Strengthening the Master Problem

As Algorithm 2.1’s rate of convergence rests heavily upon its implementation, we now

propose a practical technique for accelerating Algorithm 2.1. Namely, we strengthen

the master problem by imposing bounds from the Gershgorin circle theorem. For-

mally, we have the following result, which can be deduced from [134, Theorem 6.1.1]:

Theorem 4.4. For any vector 𝑧 ∈ {0, 1}𝑝 we have the following upper bound:

𝑓(𝑧) ≤ max
𝑖∈[𝑝]:𝑧𝑖=1

∑︁
𝑗∈[𝑝]

𝑧𝑗|Σ𝑖,𝑗|.

Observe that this bound cannot be used to directly strengthen Algorithm 2.1’s

master problem, since the bound is not convex in 𝑧. Nonetheless, it can be successfully

applied if we (a) impose a big-M assumption on Problem (4.1)’s optimal objective

and (b) introduce 𝑝 additional binary variables 𝑠 ∈ {0, 1}𝑝 : 𝑒⊤𝑠 = 1 which model

whether the 𝑖th Gershgorin disc is active; recall that each eigenvalue is contained in

the union of the discs. Formally, we impose the following valid inequalities:

∃𝑠 ∈ {0, 1}𝑝 : 𝜃 ≤
∑︁
𝑖∈[𝑝]

𝑧𝑖|Σ𝑖,𝑗|+𝑀(1− 𝑠𝑗) ∀𝑗 ∈ [𝑝], 𝑒⊤𝑠 = 1, 𝑠 ≤ 𝑧, (4.13)

where 𝜃 is the epigraph variable maximized in the master problem stated in Algorithm

2.1, and 𝑀 is an upper bound on the sum of the 𝑘 largest absolute entries in any

column of Σ. Note that we set 𝑠 ≤ 𝑧 since if 𝑧𝑖 = 0 the 𝑖th column of Σ does not

feature in the relevant submatrix of Σ. In the above inequalities, a valid 𝑀 is given

by any bound on the optimal objective. Since Theorem (4.4) supplies one such bound

for any given 𝑧, we can compute

𝑀 := max
𝑗∈[𝑝]

max
𝑧∈{0,1}𝑝:𝑒⊤𝑧≤𝑘

∑︁
𝑖∈[𝑝]

𝑧𝑖|Σ𝑖,𝑗|, (4.14)

which can be done in 𝑂(𝑝2) time.

To further improve Algorithm 2.1, we also make use of the Gershgorin circle
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theorem before generating each cut. Namely, at a given node in a branch-and-bound

tree, there are indices 𝑖 where 𝑧𝑖 has been fixed to 1, indices 𝑖 where 𝑧𝑖 has been

fixed to 0, and indices 𝑖 where 𝑧𝑖 has not yet been fixed. Accordingly, we compute

the worst-case Gershgorin bound—by taking the worst-case bound over each index 𝑗

such that 𝑧𝑗 has not yet been fixed to 0, i.e.,

max
𝑗:𝑧𝑗 ̸=0

⎧⎨⎩ max
𝑠∈{0,1}𝑝:𝑒⊤𝑠≤𝑘

⎧⎨⎩∑︁
𝑖∈[𝑝]

𝑠𝑖|Σ𝑖,𝑗| s.t. 𝑠𝑖 = 0 if 𝑧𝑖 = 0, 𝑠𝑖 = 1 if 𝑧𝑖 = 1

⎫⎬⎭
⎫⎬⎭ .

If this bound is larger than our incumbent, then we generate an outer-approximation

cut, otherwise the entire subtree rooted at this node does not contain an optimal

solution and we use instruct the solver to avoid exploring this node via a callback.

Our numerical results in Chapter 4.6 echo the empirical findings of Berk and

Bertsimas [20] and indicate that Algorithm 2.1 performs substantially better when

the Gershgorin bound is supplied in the master problem. Therefore, it is interesting to

theoretically investigate the tightness, or at least the quality, of Gershgorin’s bound.

We supply some results in this direction in the following proposition:

Proposition 4.2. Suppose that Σ is a scaled diagonally dominant matrix as defined

by [47], i.e., there exists some vector 𝑑 > 0 such that

𝑑𝑖Σ𝑖,𝑖 ≥
∑︁

𝑗∈[𝑝]:𝑗 ̸=𝑖

𝑑𝑗|Σ𝑖,𝑗| ∀𝑖 ∈ [𝑝].

Then, letting 𝜌 := max𝑖,𝑗∈[𝑝]{ 𝑑𝑖𝑑𝑗 }, the Gershgorin circle theorem provides a (1 + 𝜌)-

factor approximation, i.e.,

𝑓(𝑧) ≤ max
𝑗∈[𝑝]
{
∑︁
𝑖∈[𝑝]

𝑧𝑖|Σ𝑖,𝑗|} ≤ (1 + 𝜌)𝑓(𝑧) ∀𝑧 ∈ {0, 1}𝑝. (4.15)

Proof. Scaled diagonally dominant matrices have scaled diagonally dominant princi-
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pal minors—this is trivially true because

𝑑𝑖Σ𝑖,𝑖 ≥
∑︁

𝑗∈[𝑝]:𝑗 ̸=𝑖

𝑑𝑗|Σ𝑖,𝑗| ∀𝑖 ∈ [𝑝] =⇒ 𝑑𝑖Σ𝑖,𝑖 ≥
∑︁

𝑗∈[𝑝]:𝑗 ̸=𝑖

𝑑𝑗𝑧𝑗|Σ𝑖,𝑗| ∀𝑖 ∈ [𝑝] : 𝑧𝑖 = 1

for the same vector 𝑑 > 0 and therefore the following chain of inequalities holds

𝑓(𝑧) ≤max
𝑗∈[𝑝]
{
∑︁
𝑖∈[𝑝]

𝑧𝑖|Σ𝑖,𝑗|} = max
𝑗∈[𝑝]
{𝑧𝑗Σ𝑗,𝑗 +

∑︁
𝑖∈[𝑝]:𝑗 ̸=𝑖

𝑧𝑖|Σ𝑖,𝑗|}

≤ max
𝑗∈[𝑝]
{𝑧𝑗Σ𝑗,𝑗 +

∑︁
𝑖∈[𝑝]:𝑗 ̸=𝑖

𝜌
𝑑𝑖
𝑑𝑗
𝑧𝑖|Σ𝑖,𝑗|}

≤ (1 + 𝜌)max
𝑗∈[𝑝]
{𝑧𝑗Σ𝑗,𝑗} ≤ (1 + 𝜌)𝑓(𝑧) ∀𝑧 ∈ {0, 1}𝑝,

where the second inequality follows because 𝜌 ≥ 𝑑𝑖
𝑑𝑗

, the third follows from the scaled

diagonal dominance of the principal submatrices of Σ, and the fourth holds because

the leading eigenvalue of a PSD matrix is at least as large as each diagonal entry.

To make clear how our numerical success depends upon Theorem 4.4, our results

in Section 4.6 present implementations of Algorithm 2.1 with and without the bound.

Beyond Gershgorin: Strengthening via Brauer’s Ovals of Cassini

Given the relevance of Gershgorin’s bound, we propose, in this section, a stronger

—yet more expensive to implement— upper bound, based on an generalization of the

Gershgorin Circle theorem, namely Brauer’s ovals of Cassini.

First, we derive a new upper-bound on 𝑓(𝑧) that is at least as strong as the one

presented in Theorem 4.4 and often strictly stronger [135, Chapter 6]:

Theorem 4.5. For any vector 𝑧 ∈ {0, 1}𝑝, we have the following upper bound:

𝑓(𝑧) ≤ max
𝑖,𝑗∈[𝑝]:𝑖>𝑗,𝑧𝑖=𝑧𝑗=1

{︃
Σ𝑖,𝑖 + Σ𝑗,𝑗

2
+

√︀
(Σ𝑖,𝑖 − Σ𝑗,𝑗)2 + 4𝑅𝑖(𝑧)𝑅𝑗(𝑧)

2

}︃
, (4.16)

where 𝑅𝑖(𝑧) :=
∑︀

𝑗∈[𝑝]:𝑗 ̸=𝑖 𝑧𝑗|Σ𝑖,𝑗| is the absolute sum of off-diagonal entries in the 𝑖th

column of the submatrix of Σ induced by 𝑧.
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Proof. Let us first recall that, per Brauer [56]’s original result, all eigenvalues of a

matrix Σ ∈ 𝑆𝑝
+ are contained in the union of the following 𝑝(𝑝−1)/2 ovals of Cassini:

⋃︁
𝑖∈[𝑝],𝑗∈[𝑝]:𝑖<𝑗

{𝜆 ∈ R+ : |𝜆− Σ𝑖,𝑖||𝜆− Σ𝑗,𝑗| ≤ 𝑅𝑖𝑅𝑗} ,

where 𝑅𝑖 :=
∑︀

𝑗∈[𝑝]:𝑗 ̸=𝑖 |Σ𝑖,𝑗| is the absolute sum of off-diagonal entries in the 𝑖th

column of Σ. Next, let us observe that, if 𝜆 is a dominant eigenvalue of a PSD matrix

Σ then 𝜆 ≥ Σ𝑖,𝑖 ∀𝑖 and, in the (𝑖, 𝑗)th oval, the bound reduces to

𝜆2 − 𝜆(Σ𝑖,𝑖 + Σ𝑗,𝑗) + Σ𝑖,𝑖Σ𝑗,𝑗 −𝑅𝑖𝑅𝑗 ≤ 0, (4.17)

which, by the quadratic formula, implies an upper bound is Σ𝑖,𝑖+Σ𝑗,𝑗

2
+

√
(Σ𝑖,𝑖−Σ𝑗,𝑗)2+4𝑅𝑖𝑅𝑗

2
.

The result follows because if 𝑧𝑖 = 0 the 𝑖th row of Σ cannot be used to bound 𝑓(𝑧).

Theorem 4.5’s inequality can be enforced numerically as mixed-integer second

order cone constraints. Indeed, the square root term in (4.16) can be modeled using

second-order cone, and the bilinear terms only involve binary variables and can be

linearized. Completing the square in Equation (4.17), (4.16) is equivalent to the

following system of 𝑝(𝑝− 1)/2 mixed-integer second-order cone inequalities:

(︂
𝜃 − 1

2
(Σ𝑖,𝑖 + Σ𝑗,𝑗)

)︂2

≤
∑︁

𝑠,𝑡∈[𝑝]:𝑠 ̸=𝑖,𝑡 ̸=𝑗

𝑊𝑠,𝑡|Σ𝑖,𝑠Σ𝑗,𝑡| −
3

4
Σ𝑖,𝑖Σ𝑗,𝑗 +𝑀(1− 𝑠𝑖,𝑗),

∑︁
𝑖,𝑗∈[𝑝]:𝑖<𝑗

𝑠𝑖,𝑗 = 1, 𝑠𝑖,𝑗 ≤ min(𝑧𝑖, 𝑧𝑗),

𝑠𝑖,𝑗 ∈ {0, 1} ∀𝑖, 𝑗 ∈ [𝑝] : 𝑖 < 𝑗.

where 𝑊𝑖,𝑗 = 𝑧𝑖𝑧𝑗 is a product of binary variables which can be modeled using, e.g.,

the McCormick inequalities max(0, 𝑧𝑖 + 𝑧𝑗 − 1) ≤ 𝑊𝑖,𝑗 ≤ min(𝑧𝑖, 𝑧𝑗), and 𝑀 is an

upper bound on the right-hand-side of the inequality for any 𝑖, 𝑗 : 𝑖 ̸= 𝑗, which can be

computed in 𝑂(𝑝3) time in much the same manner as a big-𝑀 constant was computed

in the previous section. Note that we do not make use of these inequalities directly

in our numerical experiments, due to their high computational cost. However, an
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interesting extension would be to introduce the binary variables dynamically, via

branch-and-cut-and-price [12].

Since the bound derived from the ovals of Cassini (Theorem 4.5) is at least as

strong as the Gershgorin circle’s one (Theorem 4.4), it satisfies the same approxima-

tion guarantee (Proposition 4.2). In particular, it is tight when Σ is diagonal and

provides a 2−factor approximation for diagonally dominant matrices. Actually, we

now prove a stronger result and demonstrate that Theorem 4.5 provides a 2−factor

bound on 𝑓(𝑧) for doubly diagonally dominant matrices—a broader class of matrices

than diagonally dominant matrices [see 157, for a general theory]:

Proposition 4.3. Let Σ ∈ 𝑆𝑝
+ be a doubly diagonally dominant matrix, i.e.,

Σ𝑖,𝑖Σ𝑗,𝑗 ≥ 𝑅𝑖𝑅𝑗 ∀𝑖, 𝑗 ∈ [𝑝] : 𝑖 > 𝑗,

where 𝑅𝑖 :=
∑︀

𝑗∈[𝑝]:𝑗 ̸=𝑖 |Σ𝑖,𝑗| is the sum of the off-diagonal entries in the 𝑖th column of

Σ. Then, we have that

𝑓(𝑧) ≤ max
𝑖,𝑗∈[𝑝]:𝑖>𝑗,𝑧𝑖=𝑧𝑗=1

{︃
Σ𝑖,𝑖 + Σ𝑗,𝑗

2
+

√︀
(Σ𝑖,𝑖 − Σ𝑗,𝑗)2 + 4𝑅𝑖(𝑧)𝑅𝑗(𝑧)}

2

}︃
≤ 2𝑓(𝑧).

(4.18)

Proof. Observe that if Σ𝑖,𝑖Σ𝑗,𝑗 ≥ 𝑅𝑖𝑅𝑗 then

√︁
(Σ𝑖,𝑖 − Σ𝑗,𝑗)2 + 4𝑅𝑖𝑅𝑗 ≤

√︁
(Σ𝑖,𝑖 − Σ𝑗,𝑗)2 + 4Σ𝑖,𝑖Σ𝑗,𝑗 = Σ𝑖,𝑖 + Σ𝑗,𝑗.

The result then follows in essentially the same fashion as Proposition 4.2.

4.5 Convex Relaxations and Rounding Methods

For large-scale instances, high-quality solutions can be obtained by solving a convex

relaxation of Problem (4.5) and rounding the optimal solution. Therefore, we first

propose relaxing 𝑧 ∈ {0, 1}𝑝 in (4.5) to 𝑧 ∈ [0, 1]𝑝 and applying a greedy rounding
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scheme. We then further tighten this relaxation using second-order cone constraints.

A Boolean relaxation and a greedy rounding method

We first consider a Boolean relaxation of (4.5), which we obtain by relaxing 𝑧 ∈ {0, 1}𝑝

to 𝑧 ∈ [0, 1]𝑝. This gives max
𝑧∈[0,1]𝑝:𝑒⊤𝑧≤𝑘

𝑓(𝑧), i.e,

max
𝑧∈[0,1]𝑝:𝑒⊤𝑧≤𝑘

max
𝑋⪰0

⟨Σ,𝑋⟩ s.t. tr(𝑋) = 1, |𝑋𝑖,𝑗| ≤𝑀𝑖,𝑗𝑧𝑖 ∀𝑖, 𝑗 ∈ [𝑝]. (4.19)

A useful strategy for obtaining a high-quality feasible solution is to solve (4.19) and

set 𝑧𝑖 = 1 for 𝑘 indices corresponding to the largest 𝑧𝑗’s in (4.19). We formalize this

in Algorithm 4.1.

Algorithm 4.1 A greedy rounding method for Problem (4.1)
Require: Covariance matrix Σ, sparsity parameter 𝑘

Compute 𝑧⋆ solution of (4.19) or (4.20)
Construct 𝑧 ∈ {0, 1}𝑝 : 𝑒⊤𝑧 = 𝑘 such that 𝑧𝑖 ≥ 𝑧𝑗 if 𝑧⋆𝑖 ≥ 𝑧⋆𝑗 .
Compute 𝑋 solution of

max
𝑋∈𝑆𝑝

+

⟨Σ,𝑋⟩ s.t. tr(𝑋) = 1, 𝑋𝑖,𝑗 = 0 if 𝑧𝑖𝑧𝑗 = 0 ∀𝑖, 𝑗 ∈ [𝑝].

return 𝑧,𝑋.

Remark 7. Our numerical results in Chapter 4.6 reveal that explicitly imposing a

PSD constraint on 𝑋 in the relaxation (4.19)—or the ones derived later in the fol-

lowing section—prevents our approximation algorithm from scaling to larger problem

sizes than the exact Algorithm 2.1 can already solve. Therefore, to improve scalability,

the semidefinite cone can be safely approximated via its second-order cone relaxation,

𝑋2
𝑖,𝑗 ≤ 𝑋𝑖,𝑖𝑋𝑗,𝑗 ∀𝑖, 𝑗 ∈ [𝑝], plus a small number of cuts of the form ⟨𝑋,𝑥𝑡𝑥

⊤
𝑡 ⟩ ≥ 0 as

presented in [23].

Remark 8. Rather than relaxing and greedily rounding 𝑧, one could consider a higher

dimensional relax-and-round scheme where we let 𝑍 model the outer product 𝑧𝑧⊤ via

𝑍 ⪰ 𝑧𝑧⊤, max(0, 𝑧𝑖 + 𝑧𝑗 − 1) ≤ 𝑍𝑖,𝑗 ≤ min(𝑧𝑖, 𝑧𝑗) ∀𝑖, 𝑗 ∈ [𝑝], 𝑍𝑖,𝑖 = 𝑧𝑖, and require
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that
∑︀

𝑖,𝑗∈[𝑝] 𝑍𝑖,𝑗 ≤ 𝑘2. Indeed, a natural “round” component of such a relax-and-

round scheme is precisely Goemans-Williamson rounding [124, 29], which performs

at least as well as greedy rounding in both theory and practice. Unfortunately, some

preliminary numerical experiments indicated that Goemans-Williamson rounding is

not actually much better than greedy rounding in practice, and is considerably more

expensive to implement. Therefore, we do not consider it any further in this thesis.

Valid inequalities for convex relaxation

We now propose valid inequalities which allow us to improve the quality of the convex

relaxations discussed previously. Note that as convex relaxations and random round-

ing methods are two sides of the same coin [10], applying these valid inequalities also

improves the quality of the randomly rounded solutions.

Theorem 4.6. Let 𝒫𝑠𝑡𝑟𝑜𝑛𝑔 denote the optimal objective value of the problem:

max
𝑧∈[0,1]𝑝:𝑒⊤𝑧≤𝑘

max
𝑋∈𝑆𝑝

+

⟨Σ,𝑋⟩ s.t. tr(𝑋) = 1, |𝑋𝑖,𝑗| ≤𝑀𝑖,𝑗𝑧𝑖 ∀𝑖, 𝑗 ∈ [𝑝], (4.20)∑︁
𝑗∈[𝑝]

𝑋2
𝑖,𝑗 ≤ 𝑋𝑖,𝑖𝑧𝑖, ‖𝑋‖1 ≤ 𝑘.

Then, (4.20) is a stronger relaxation than (4.19), i.e., the following holds:

max
𝑧∈[0,1]𝑝:𝑒⊤𝑧≤𝑘

𝑓(𝑧) ≥ 𝒫𝑠𝑡𝑟𝑜𝑛𝑔 ≥ max
𝑧∈{0,1}𝑝:𝑒⊤𝑧≤𝑘

𝑓(𝑧). (4.21)

Moreover, suppose that an optimal solution to (4.20) is of rank one. Then:

𝒫𝑠𝑡𝑟𝑜𝑛𝑔 = max
𝑧∈{0,1}𝑝:𝑒⊤𝑧≤𝑘

𝑓(𝑧),

i.e., the relaxation is tight.

Proof. The first inequality max𝑧∈[0,1]𝑝:𝑒⊤𝑧≤𝑘 𝑓(𝑧) ≥ 𝒫𝑠𝑡𝑟𝑜𝑛𝑔 is trivial. The second

inequality holds because 𝒫𝑠𝑡𝑟𝑜𝑛𝑔 is indeed a valid relaxation of Problem (4.1). Indeed,

‖𝑋‖1 ≤ 𝑘 follows from the cardinality and big-M constraints. The semidefinite
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constraint 𝑋 ⪰ 0 impose second-order cone constraints on the 2 × 2 minors of 𝑋,

𝑋2
𝑖,𝑗 ≤ 𝑧𝑖𝑋𝑖,𝑖𝑋𝑗,𝑗, which can be aggregated into

∑︀
𝑗∈[𝑝] 𝑋

2
𝑖,𝑗 ≤ 𝑋𝑖,𝑖𝑧𝑖 [see 23].

Finally, suppose that an optimal solution to Problem (4.20) is of rank one, i.e., the

optimal matrix 𝑋 can be decomposed as 𝑋 = 𝑥𝑥⊤. Then, the SOCP inequalities

imply that
∑︀

𝑗∈[𝑝] 𝑥
2
𝑖𝑥

2
𝑗 ≤ 𝑥2

𝑖 𝑧𝑖. However,
∑︀

𝑗∈[𝑝] 𝑥
2
𝑗 = tr(𝑋) = 1, which implies that

𝑥2
𝑖 ≤ 𝑥2

𝑖 𝑧𝑖, i.e., 𝑧𝑖 = 1 for any index 𝑖 such that |𝑥𝑖| > 0. Since 𝑒⊤𝑧 ≤ 𝑘, this implies

that ‖𝑥‖0 ≤ 𝑘, i.e., 𝑋 also solves Problem (4.2).

As our numerical experiments demonstrate and despite the simplicity of our round-

ing mechanism in Algorithm 4.1, the relaxation (4.20) provides high-quality solutions

to the original sparse PCA problem (4.1), without introducing additional variables.

4.6 Numerical Results

We now assess the numerical behavior of the algorithms proposed in Chapter 4.2

and 4.5. To bridge the gap between theory and practice, we present a Julia code

which implements the described convex relaxation and greedy rounding procedure on

GitHub1. The code requires a conic solver such as Mosek and several open source

Julia packages to be installed.

Performance of exact methods

In this section, we apply Algorithm 2.1 to medium and large-scale sparse PCA prob-

lems, with and without Gershgorin circle theorem bounds in the master problem. All

experiments were implemented in Julia 1.2, using CPLEX 12.10 and JuMP.jl 0.18.6,

and performed on a standard Macbook Pro laptop, with a 2.9GHz 6-Core Intel i9

CPU, using 16 GB DDR4 RAM. We benchmark our approach on the UCI pitprops,

wine, miniboone, communities, arrythmia and micromass datasets, both in terms

of runtime and the number of nodes expanded; we refer to [20, 23] for descriptions

of these datasets. Note that we normalized all datasets before running the method

1https://github.com/ryancorywright/ScalableSPCA.jl
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(i.e., we compute the leading sparse principal components of correlation matrices).

Additionally, we warm-start the methods with the solution from the method of [228].

Table 4.1 reports the time for Algorithm 2.1 (with and without Gershgorin circle

theorem bounds in the master problem) to identify the leading 𝑘-sparse principal

component for 𝑘 ∈ {5, 10, 20}, along with the number of nodes expanded, and the

number of outer approximation cuts generated.

Table 4.1: Runtime in seconds (T), Nodes expanded (N) and cuts generated
(C) per approach. We run all approaches on one thread, and impose a time
limit of 600s. If a solver fails to converge, we report the relative gap (%) at
termination in brackets, and the no. explored nodes and cuts at the time limit.

Dataset 𝑝 𝑘 Alg. 2.1 Alg. 2.1+ Circle Thm.

T. (s) N. C. T. (s) N. C.

Pitprops 13 5 0.38 2, 211 4, 359 0.06 38 27
10 0.08 304 763 0.02 18 127

Wine 13 5 0.53 2, 952 6, 043 0.02 46 31
10 0.12 319 797 0.08 418 965

Miniboone 50 5 0.01 0 8 0.02 1 84
10 0.01 0 74 0.01 0 0
20 0.02 1 26 0.01 0 5

Communities 101 5 (2.87%) 23, 329 22, 393 0.20 297 730
10 (13.3%) 23, 427 22, 010 0.32 406 117
20 (39.6%) 26, 270 24, 020 (10.8%) 42, 780 9, 176

Arrhythmia 274 5 (18.1%) 35, 780 10, 449 3.67 1, 287 3, 020
10 (32.6%) 27, 860 12, 670 (2.47%) 15, 115 18, 422
20 (74.4%) 33, 773 12, 374 (24.2%) 27, 507 61, 915

Micromass 1300 5 33.99 1, 000 509 163.48 2, 189 6, 285
10 (107%) 4, 380 33, 660 241.6 4, 603 16, 898
20 (35.9%) 4, 945 10, 330 (35.9%) 5, 085 1, 210

Our main findings from these experiments are as follows:

• For smaller problems, the strength of Algorithm 2.1’s cuts allows it to obtain

certifiably optimal solutions in seconds.

• For larger problem sizes, our method obtains certifiably near-optimal—yet not

always optimal—solutions in hundreds of seconds, which suggests that running

the method for a short period of time and returning the best solution found

could be a powerful heuristic for problem sizes where Algorithm 2.1 fails to
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converge in a reasonable amount of time.

• Generating outer-approximation cuts and upper bounds from the Gershgorin

circle theorem are both powerful ideas, but the greatest aggregate power arises

from intersecting these bounds, rather than using one bound alone.

• The aggregate time in user callbacks did not exceed 0.1 seconds in any problem

instance considered, which suggests the subproblem strategy is very efficient.

Convex relaxations and rounding methods

In this section, we apply Algorithm 4.1 to obtain high quality convex relaxations and

feasible solutions for the datasets studied in the previous subsection, and compare

the relaxation to a difference convex relaxation developed by d’Aspremont et al.

[81], in terms of the quality of the upper bound and the resulting greedily rounded

solutions. All experiments were implemented using the same specifications as the

previous section. Note that [81]’s upper bound which we compare against is:

max
𝑧∈[0,1]𝑝:𝑒⊤𝑧≤𝑘

max
𝑋⪰0,𝑃𝑖⪰0 ∀𝑖∈[𝑝]

∑︁
𝑖∈[𝑝]

⟨𝑎𝑖𝑎
⊤
𝑖 ,𝑃𝑖⟩ (4.22)

s.t. tr(𝑋) = 1, tr(𝑃𝑖) = 𝑧𝑖, 𝑋 ⪰ 𝑃𝑖 ∀𝑖 ∈ [𝑝],

where Σ =
∑︀𝑝

𝑖=1 𝑎𝑖𝑎
⊤
𝑖 is a Cholesky decomposition of Σ, and we obtain feasible

solutions from this relaxation by greedily rounding an optimal 𝑧 in the bound a la

Algorithm 4.1. To allow for a fair comparison, we also consider augmenting this for-

mulation with the inequalities derived in the previous section to obtain the following

stronger yet more expensive to solve relaxation:

max
𝑧∈[0,1]𝑝:𝑒⊤𝑧≤𝑘

max
𝑋⪰0,

𝑃𝑖⪰0 ∀𝑖∈[𝑝]

∑︁
𝑖∈[𝑝]

⟨𝑎𝑖𝑎
⊤
𝑖 ,𝑃𝑖⟩ (4.23)

s.t. tr(𝑋) = 1, tr(𝑃𝑖) = 𝑧𝑖, 𝑋 ⪰ 𝑃𝑖 ∀𝑖 ∈ [𝑝],∑︁
𝑗∈[𝑝]

𝑋2
𝑖,𝑗 ≤ 𝑋𝑖,𝑖𝑧𝑖, ‖𝑋‖1 ≤ 𝑘.
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We first apply these relaxations on datasets where Algorithm 2.1 terminates, hence

the optimal solution is known and can be compared against. We report the quality of

both methods with and without the additional inequalities discussed in the previous

section, in Tables 4.2-4.3 respectively.

Table 4.2: Quality of relaxation gap (upper bound vs. optimal solution-
denoted R.), objective gap (rounded solution vs. optimal solution-denoted O.)
and runtime in seconds per method.

Dataset 𝑝 𝑘 Alg. 4.1 with (4.19) Alg. 4.1 with (4.22)

R. (%) O. (%) T. (s) R. (%) O. (%) T. (s)

Pitprops 13 5 23.8 0.00 0.02 23.8 16.1 0.46
10 1.10 0.30 0.03 1.10 1.33 0.46

Wine 13 5 36.8 0.00 0.02 36.8 40.4 0.433
10 2.43 0.26 0.03 2.43 15.0 0.463

Miniboone 50 5 781 236 7.37 781 34.7 1, 191
10 341 118 7.50 341 44.9 1, 103
20 120.3% 38.08% 6.25 120.3% 31.9% 1, 140.2

Table 4.3: Quality of relaxation gap (upper bound vs. optimal solution-
denoted R.), objective gap (rounded solution vs. optimal solution-denoted O.)
and runtime in seconds, with additional inequalities from Chap. 4.5.

Dataset 𝑝 𝑘 Alg. 4.1 with (4.20) Alg. 4.1 with (4.23)

R. (%) O. (%) T. (s) R. (%) O. (%) T. (s)

Pitprops 13 5 0.71 0.00 0.17 1.53 0.00 0.55
10 0.12 0.00 0.27 1.10 0.00 3.27

Wine 13 5 1.56 0.00 0.24 2.98 15.0 0.95
10 0.40 0.00 0.22 2.04 0.00 1.15

Miniboone 50 5 0.00 0.00 163 0.00 0.01 501
10 0.00 0.00 149 0.00 0.02 490
20 0.00% 0.00% 194.5 0.00% 0.00% 776.3

Observe that applying Algorithm 4.1 without the additional inequalities (Table

4.2) yields rather poor relaxations and randomly rounded solutions. However, by

intersecting our relaxations with the additional inequalities from Chapter 4.5 (Table

4.3), we obtain extremely high quality relaxations. Indeed, with the additional in-

equalities, Algorithm 4.1 (using Problem (4.20)) identifies the optimal solution in all

instances, and always supplies a bound gap of less than 2%. Moreover, in terms of
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obtaining high-quality solutions, the new inequalites allow Problem (4.20) to perform

as well or better as Problem (4.22), despite optimizing over one semidefinite matrix,

rather than 𝑝+1 semidefinite matrices. This suggests that Problem (4.20) should be

considered as a viable, more scalable and more accurate alternative to existing SDO

relaxations such as Problem (4.22). For this reason, we shall only consider using

Problem (4.20)’s formulation for the rest of the chapter.

We remark however that the key drawback of applying these methods is that, as

implemented in this section, they do not scale to sizes beyond which Algorithm 2.1

successfully solves. This is a drawback because Algorithm 2.1 supplies an exact cer-

tificate of optimality, while these methods do not. In the following set of experiments,

we investigate numerical techniques to improve the scalability of Algorithm 4.1.

Scalable dual bounds and rounding methods

To improve the scalability of Algorithm 4.1, we relax the PSD constraint on 𝑋 in

(4.19) and (4.20). With these enhancements, we demonstrate that Algorithm 4.1 can

be successfully scaled to generate high-quality bounds for 1000𝑠×1000𝑠 matrices. As

discussed in Remark 7, we can replace the PSD constraint 𝑋 ⪰ 0 by requiring that

the 𝑝(𝑝− 1)/2 two by two minors of 𝑋 are non-negative: 𝑋2
𝑖,𝑗 ≤ 𝑋𝑖,𝑖𝑋𝑗,𝑗. Second, we

consider adding 20 linear inequalities of the form ⟨𝑋,𝑥𝑡𝑥
⊤
𝑡 ⟩ ≥ 0, for some vector 𝑥𝑡

[see 23, for a discussion]. Table 4.4 reports the performance of Algorithm 4.1 (with

the relaxation (4.20)) with these two approximations of the positive semidefinite cone,

“Minors” and “Minors + 20 inequalities” respectively. Note that we report the entire

duality gap (i.e., do not break the gap down into its relaxation and objective gap

components) since, as reflected in Table 4.1, some of these instances are currently too

large to solve to optimality.

Observe that if we impose constraints on the 2 × 2 minors only then we obtain

a solution within 1% of optimality and provably within 15% of optimality in sec-

onds (resp. minutes) for 𝑝 = 100s (resp. 𝑝 = 1000s). Moreover, adding 20 linear

inequalities, we obtain a solution within 0.3% of optimality and provably within 2%

of optimality in minutes (resp. hours) for 𝑝 = 100s (resp. 𝑝 = 1000s).
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Table 4.4: Quality of bound gap (rounded solution vs. upper bound) and
runtime of Algorithm 4.1 with (4.20), outer-approximation of the PSD cone.

Dataset 𝑝 𝑘 Minors Minors + 20 inequalities

Gap (%) Time(s) Gap (%) Time(s)

Pitprops 13 5 1.51% 0.02 0.72% 0.36
10 5.29% 0.02 1.12% 0.36

Wine 13 5 2.22% 0.02 1.59% 0.38
10 3.81% 0.02 1.50% 0.37

Miniboone 50 5 0.00% 0.11 0.00% 0.11
10 0.00% 0.12 0.00% 0.12
20 0.00% 0.39 0.00% 0.39

Communities 101 5 0.07% 0.67 0.07% 14.8
10 0.66% 0.68 0.66% 14.4
20 3.32% 1.84 2.23% 33.5

Arrhythmia 274 5 3.37% 27.2 1.39% 203.6
10 3.01% 25.6 1.33% 184.0
20 8.87% 21.8 4.48% 426.8

Micromass 1300 5 0.04% 239.4 0.01% 4, 639
10 0.63% 232.6 0.32% 6, 392
20 13.1% 983.5 5.88% 16, 350

To conclude this section, we explore Algorithm 4.1’s ability to scale to even higher

dimensional datasets in a high performance setting, by running the method on one

Intel Xeon E5–2690 v4 2.6GHz CPU core using 600 GB RAM. Table 4.5 reports the

methods scalability and performance on the Wilshire 5000, and Arcene UCI datasets.

For the Gisette dataset, we report on the methods performance when we include the

first 3, 000 and 4, 000 rows/columns (as well as all 5, 000 rows/columns). Similarly,

for the Arcene dataset we report on the method’s performance when we include the

first 6, 000, 7, 000 or 8, 000 rows/columns. We do not report results for the Arcene

dataset for 𝑝 > 8, 000, as computing this requires more memory than was available

(i.e. > 600 GB RAM). We do not report the method’s performance when we impose

linear inequalities for the PSD cone, as solving the relaxation without them is already

rather time consuming. Moreover, we do not impose the 2 × 2 minor constraints to

save memory, do not impose |𝑋𝑖,𝑗| ≤𝑀𝑖,𝑗𝑧𝑖 when 𝑝 ≥ 4000 to save even more memory,

and report the overall bound gap, as improving upon the randomly rounded solution

is challenging in a high-dimensional setting.
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Table 4.5: Quality of bound gap (rounded solution vs. upper bound).

Dataset 𝑝 𝑘 Algorithm 4.1 (SOC relax)+Inequalities

Bound gap (%) Time(s)

Wilshire 5000 2130 5 0.38% 1, 036
10 0.24% 1, 014
20 0.36% 1, 059

Gisette 3000 5 1.67% 2, 249
10 35.81% 2, 562
20 10.61% 3, 424

Gisette 4000 5 1.55% 1, 402
10 54.4% 1, 203
20 11.84% 1, 435

Gisette 5000 5 1.89% 2, 169
10 2.22% 2, 455
20 7.16% 2, 190

Arcene 6000 5 0.01% 3, 333
10 0.06% 3, 616
20 0.14% 3, 198

Arcene 7000 5 0.03% 4, 160
10 0.05% 4, 594
20 0.25% 4, 730

Arcene 8000 5 0.02% 6, 895
10 0.17% 8, 479
20 0.21% 6, 335

These results suggest that if we solve the SOC relaxation using a first-order method

rather than an interior point method, our approach could successfully generate certi-

fiably near-optimal PCs when 𝑝 = 10, 000s.

Performance of Methods on Synthetic Data

We now compare the exact and approximate methods against existing state-of-the-art

methods in a spiked covariance matrix setting. We use the experimental setup laid out

in d’Aspremont et al. [81, Section 7.1]. We recover the leading principal component

of a test matrix Σ ∈ 𝑆𝑝
+, where 𝑝 = 150, Σ = 1

𝑛
𝑈⊤𝑈 + 𝜎

‖𝑣‖22
𝑣𝑣⊤, 𝑈 ∈ [0, 1]150×150 is
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a noisy matrix with i.i.d. standard uniform entries, 𝑣 ∈ R150 is a vector of signals:

𝑣𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if 𝑖 ≤ 50,

1
𝑖−50

, if 51 ≤ 𝑖 ≤ 100,

0, otherwise,

(4.24)

and 𝜎 = 2 is the signal-to-noise ratio. The methods which we compare are:

• Exact: Algorithm 2.1 with Gershgorin inequalities and a time limit of 600s.

• Approximate: Algorithm 4.1 with Problem (4.20), the SOC outer approxima-

tion of the PSD cone, no PSD cuts, and the additional SOC inequalities.

• Greedy: as proposed by [176] and laid out in [81, Algorithm 1], start with a

solution 𝑧 of cardinality 1 and iteratively augment this solution vector with the

index which gives the maximum variance contribution. Note that [81] found this

method outperformed the 3 other methods (approximate greedy, thresholding

and sorting) they considered in their work.

• Truncated Power Method: as proposed by [228], alternate between applying

the power method to the solution vector and truncating the vector to ensure

that it is 𝑘-sparse. Note that [20] found that this approach performed better

than five other state-of-the-art methods across the real-world datasets studied

in the previous section of this chapter and often matched the performance of

the method of [20]—indeed, it functions as a warm-start for the later method.

• Sorting: sort the entries of Σ𝑖,𝑖 by magnitude and set 𝑧𝑖 = 1 for the 𝑘 largest

entries of Σ, as studied in [81]. This naive method serves as a benchmark for

the value of optimization in the more sophisticated methods considered here.

Figures 4-1 depicts the ROC curve (true positive rate vs. false positive rate for

recovering the support of 𝑣) over 20 synthetic random instances, as we vary 𝑘 for

each instance. We observe that among all methods, the sorting method is the least

accurate, with a substantially larger false detection rate for a given true positive

rate than the remaining methods (AUC= 0.7028). The truncated power method and
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our exact method2 then offer a substantial improvement over sorting, with respective

AUCs of 0.7482 and 0.7483. The greedy method then offers a modest improvement

over them (AUC= 0.7561) and the approximate relax+round method is the most

accurate (AUC= 0.7593).

In addition to support recovery, Figure 4-2 reports average runtime (left panel)

and average optimality gap (right panel) over the same instances. Observe that

among all methods, only the exact and the approximate relax+round methods provide

optimality gaps, i.e., certificate of near optimality. On this metric, relax+round

supplies average bound gaps of 1% or less on all instances, while the exact method

typically supplies bound gaps of 30% or more. Moreover, the relax+round method

converges in less than one minute on all instances. All told, the relax+round method

is the best performing method overall, although if 𝑘 is set to be sufficiently close to 0

or 𝑝 all methods behave comparably. In particular, the relax+round method should

be preferred over the exact method, even though the exact method performs better

at smaller problem sizes.

Figure 4-1: ROC curve over 20 instances where 𝑝 = 150, 𝑘true = 100 is
unspecified.

2The exact method would dominate the remaining methods if given an unlimited runtime budget.
Its poor performance reflects its inability to find the true optimal solution within 600 seconds.
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Figure 4-2: Average time to compute solution, optimality gap and in-sample
variance ratio over 20 instances where 𝑝 = 150, 𝑘true = 100 unspecified.

4.7 Conclusion and Extensions

In this chapter, we developed a MISDO formulation of sparse PCA and provided

techniques for solving it to certifiable optimality or near optimality at scale. We have

also demonstrated that our relaxations are both more scalable and more accurate than

existing state-of-the-art relaxations such as the relaxation of [81]. We now conclude

by discussing three extensions of sparse PCA where our methodology applies.

Non-Negative Sparse PCA

One potential extension to this chapter would be to develop a certifiably optimal

algorithm for non-negative sparse PCA [see 230, for a discussion], i.e., develop a

tractable reformulation of

max
𝑥∈R𝑝

⟨𝑥𝑥⊤,Σ⟩ s.t. 𝑥⊤𝑥 = 1,𝑥 ≥ 0, ‖𝑥‖0 ≤ 𝑘.

Unfortunately, we cannot develop a MISDO reformulation of non-negative sparse

PCA mutatis mutandis Theorem 4.1. Indeed, while we can set 𝑋 = 𝑥𝑥⊤ and relax

the rank-one constraint, if we do so then, by the non-negativity of 𝑥, lifting yields

max
𝑧∈{0,1}𝑝:𝑒⊤𝑧≤𝑘

max
𝑋∈𝒞𝑛

⟨Σ,𝑋⟩

s.t. tr(𝑋) = 1, 𝑋𝑖,𝑗 = 0 if 𝑧𝑖 = 0, 𝑋𝑖,𝑗 = 0 if 𝑧𝑗 = 0 ∀𝑖, 𝑗 ∈ [𝑝].

(4.25)
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where 𝒞𝑛 := {𝑋 : ∃ 𝑈 ≥ 0,𝑋 = 𝑈⊤𝑈} denotes the completely positive cone,

which is NP-hard to separate over and cannot currently be optimized over tractably

[88]. Nonetheless, we can develop relatively tractable mixed-integer conic upper and

lower bounds for non-negative sparse PCA. Indeed, we can obtain a fairly tight upper

bound by replacing the completely positive cone with the larger doubly non-negative

cone 𝒟𝑛 := {𝑋 ∈ 𝑆𝑝
+ : 𝑋 ≥ 0}, which is a high-quality outer-approximation of 𝒞𝑛,

indeed exact when 𝑘 ≤ 4 [60].

Unfortunately, this relaxation is strictly different in general, since the extreme

rays of the doubly non-negative cone are not necessarily rank-one when 𝑘 ≥ 5 [60].

Nonetheless, to obtain feasible solutions which supply lower bounds, we could in-

ner approximate the completely positive cone with the cone of non-negative scaled

diagonally dominant matrices [see 2, 51].

Sparse PCA on Rectangular Matrices

A second extension would be to extend our methodology to the non-square case:

max
𝑥∈R𝑚,𝑦∈R𝑛

𝑥⊤𝐴𝑦 s.t. ‖𝑥‖2 = 1, ‖𝑦‖2 = 1, ‖𝑥‖0 ≤ 𝑘, ‖𝑦‖0 ≤ 𝑘. (4.26)

Observe that computing the spectral norm of a matrix 𝐴 is equivalent to

max
𝑋∈R𝑛×𝑚

⟨𝐴,𝑋⟩ s.t.

⎛⎝ 𝑈 𝑋

𝑋⊤ 𝑉

⎞⎠ ⪰ 0, tr(𝑈) + tr(𝑉 ) = 2, (4.27)

where, in an optimal solution, 𝑈 stands for 𝑥𝑥⊤, 𝑉 stands for 𝑦𝑦⊤ and 𝑋 stands

for 𝑥𝑦⊤—this can be seen by taking the dual of [198, Equation 2.4].

Therefore, by using the same argument as in the positive semidefinite case, we
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can rewrite sparse PCA on rectangular matrices as the following MISDO:

max
𝑤∈{0,1}𝑚,𝑧∈{0,1}𝑛

max
𝑋∈R𝑛×𝑚

⟨𝐴,𝑋⟩

s.t.

⎛⎝ 𝑈 𝑋

𝑋⊤ 𝑉

⎞⎠ ⪰ 0, tr(𝑈) + tr(𝑉 ) = 2,

𝑈𝑖,𝑗 = 0 if 𝑤𝑖 = 0 ∀𝑖, 𝑗 ∈ [𝑚],

𝑉𝑖,𝑗 = 0 if 𝑧𝑖 = 0 ∀𝑖, 𝑗 ∈ [𝑛], 𝑒⊤𝑤 ≤ 𝑘, 𝑒⊤𝑧 ≤ 𝑘.

(4.28)

Sparse PCA with Multiple Principal Components

A third extension where our methodology is applicable is the problem of obtaining

multiple principal components simultaneously, rather than deflating Σ after obtaining

each principal component. As there are multiple definitions of this problem, we now

discuss the extent to which our framework encompasses each case.

Common Support: Perhaps the simplest extension of sparse PCA to a multi-

component setting arises when all 𝑟 principal components have common support. By

retaining the vector of binary variables 𝑧 and employing the Ky-Fan theorem [c.f. 225,

Theorem 2.3.8] to cope with multiple principal components, we obtain the following

formulation in much the same manner as previously:

max
𝑧∈{0,1}𝑝:𝑒⊤𝑧≤𝑘

max
𝑋∈𝑆𝑝

+

⟨𝑋,Σ⟩ s.t. 0 ⪯𝑋 ⪯ I, tr(𝑋) = 𝑟, 𝑋𝑖,𝑗 = 0 if 𝑧𝑖 = 0 ∀𝑖 ∈ [𝑝].

(4.29)

The logical constraint 𝑋𝑖,𝑗 = 0 if 𝑧𝑖 = 0, which formed the basis of our subproblem

strategy, still successfully models the sparsity constraint. This suggests that (a)

one can derive an equivalent subproblem strategy under common support, and (b) a

cutting-plane method for common support should scale as well as a single component.
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Disjoint Support: In a sparse PCA problem with disjoint support [219], simulta-

neously computing the first 𝑟 principal components is equivalent to solving

max
𝑧∈{0,1}𝑝×𝑟:𝑒⊤𝑧𝑡≤𝑘 ∀𝑡∈[𝑟],

𝑧𝑒≤𝑒

max
𝑊∈R𝑝×𝑟

⟨𝑊𝑊⊤,Σ⟩

𝑊⊤𝑊 = I𝑟, 𝑊𝑖,𝑗 = 0 if 𝑧𝑖,𝑡 = 0 ∀𝑖 ∈ [𝑝], 𝑡 ∈ [𝑟],

(4.30)

where 𝑧𝑖,𝑡 is a binary variable denoting whether feature 𝑖 is a member of the 𝑡th

principal component. By applying the technique used to derive Theorem 4.1 mutatis

mutandis, and invoking the Ky-Fan theorem [c.f. 225, Theorem 2.3.8] to cope with

the rank-𝑟 constraint, we obtain

max
𝑧∈{0,1}𝑝:𝑒⊤𝑧≤𝑘

max
𝑋∈𝑆𝑝

⟨𝑋,Σ⟩

0 ⪯𝑋 ⪯ I, tr(𝑋) = 𝑟, 𝑋𝑖,𝑗 = 0 if 𝑌𝑖,𝑗 = 0 ∀𝑖 ∈ [𝑝],

(4.31)

where 𝑌𝑖,𝑗 =
∑︀𝑟

𝑡=1 𝑧𝑖,𝑡𝑧𝑗,𝑡 is a binary matrix denoting whether features 𝑖 and 𝑗 are

members of the same principal component; this problem can be addressed by a

cutting-plane method in much the same manner as when 𝑟 = 1.
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Part II

Rank Constraints
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Chapter 5

Mixed-Projection Conic Optimization

Many problems in optimization, machine learning, and control theory are equivalent

to optimizing a low-rank matrix over a convex set. For instance, rank constraints

successfully model notions of minimal complexity, low dimensionality, or orthogonality

in a system. However, while rank constraints offer unparalleled modeling flexibility, no

generic code currently solves these problems to certifiable optimality at even moderate

sizes. This state of affairs has led influential works on low-rank optimization [62, 198]

to characterize low-rank optimization as intractable and advocate convex relaxations

or heuristics which do not enjoy assumption-free optimality guarantees.

The manner in which low-rank optimization is regarded today is reminiscent of

how mixed-integer optimization (MIO), which can model NP-complete problems, was

originally considered. After decades of research effort, however, algorithms and soft-

ware for MIO are now widely available [see, e.g., 49, 73] and solve large instances

of disparate non-convex problems such as best subset selection [27] or the Traveling

Salesperson Problem [187] to optimality. Unfortunately, rank constraints cannot be

represented using MIO [161, Lemma 4.1] and do not benefit from these advances.

In this chapter, we characterize the complexity of rank constrained optimization

and propose a new, more general framework, which we term Mixed-Projection Conic

Optimization (MPCO). Our proposal generalizes MICO, by replacing binary variables

𝑧 which satisfy 𝑧2 = 𝑧 with symmetric orthogonal projection matrices 𝑌 which satisfy

𝑌 2 = 𝑌 , and offers the following advantages over existing state-of-the-art methods:
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First, it supplies certificates of (near) optimality for low-rank problems. Second, it

demonstrates that some of the best ideas in MICO, such as decomposition methods,

cutting-planes, relaxations, and random rounding schemes, admit straightforward

extensions to MPCO. Finally, we implement a near-optimal rounding strategy and a

globally optimal cutting-plane algorithm that improve upon the state-of-the-art for

matrix completion and sensor location problems. We hope that MPCO gives rise to

exciting new challenges for the optimization community to tackle.

Scope of the Framework

Formally, we consider the problem:

min
𝑋∈R𝑛×𝑚

𝜆 · Rank(𝑋) + ⟨𝐶,𝑋⟩ s.t. 𝐴𝑋 = 𝐵, Rank(𝑋) ≤ 𝑘, 𝑋 ∈ 𝒦, (5.1)

where 𝜆 (resp. 𝑘) prices (bounds) the rank of 𝑋, (𝐴,𝐵) ∈ Rℓ×𝑛 × Rℓ×𝑚 defines

an affine subspace, and 𝒦 is a proper cone in the sense of [54], i.e., closed, convex,

solid and pointed. Observe that Problem (5.1) offers significant modeling flexibility,

as it allows arbitrary conic constraints on 𝑋. As a result, linear, convex quadratic,

semidefinite, exponential, and power constraints and objectives can be captured by

letting 𝒦 be an appropriate product of different cones.

We now present some problems from the optimization and machine learning lit-

erature which admit low-rank formulations and fall within our framework.

Low-rank matrix completion

Given a sub-sample (𝐴𝑖,𝑗 : (𝑖, 𝑗) ∈ ℐ ⊆ [𝑛] × [𝑝]) of a matrix 𝐴 ∈ R𝑛×𝑝, the ma-

trix completion problem is to recover the entire matrix, by assuming 𝐴 is low rank

and seeking a rank-𝑘 matrix 𝑋 which approximately fits the observed values. This

problem arises in recommender system applications and admits the formulation:

min
𝑋∈R𝑛×𝑝

1

2

∑︁
(𝑖,𝑗)∈ℐ

(𝑋𝑖,𝑗 − 𝐴𝑖,𝑗)
2 s.t. Rank(𝑋) ≤ 𝑘. (5.2)
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Minimum dimension Euclidean distance embedding

Given a set of pairwise distances 𝑑𝑖,𝑗, the Euclidean Distance Embedding (EDM)

problem is to determine the lowest dimensional space which the distances can be em-

bedded in, such that the distances correspond to Euclidean distances. This problem

arises in protein folding, network sensor location, and satellite ranging applications

among others [45, 159]. By Blekherman et al. [46] Theorem 2.49, a set of distances

𝑑𝑖,𝑗 can be embedded in a Euclidean space of dimension 𝑘 if and only if there exists

some Gram matrix 𝐺 ⪰ 0 of rank 𝑘 such that 𝑑2𝑖,𝑗 = 𝐺𝑖,𝑖 + 𝐺𝑗,𝑗 − 2𝐺𝑖,𝑗, on all pairs

(𝑖, 𝑗) where 𝑑𝑖,𝑗 is supplied. Denoting 𝐷𝑖,𝑗 = 𝑑2𝑖,𝑗, we write these constraints in matrix

form, 𝐷 = Diag(𝐺)𝑒⊤ + 𝑒Diag(𝐺)⊤ − 2𝐺, where the equality is implicitly imposed

only for pairs (𝑖, 𝑗) where 𝑑𝑖,𝑗 is supplied. This is equivalent to:

min
𝐺∈𝑆𝑛

+

Rank(𝐺) s.t. Diag(𝐺)𝑒⊤ + 𝑒Diag(𝐺)⊤ − 2𝐺 = 𝐷. (5.3)

Given a solution 𝐺, we can obtain the matrix of coordinates of the underlying points

𝑋 (up to a rotation and translation of the points) by performing a Cholesky decom-

position of 𝐺, 𝐺 = 𝑋𝑋⊤. Post decomposition, 𝑋 is a 𝑛 × 𝑘 rectangular matrix

which contains the coordinates of the underlying points.

Quadratically constrained quadratic optimization

Quadratically constrained quadratic optimization (QCQO) seeks an 𝑥 ∈ R𝑛:

min
𝑥∈R𝑛

𝑥⊤𝑄0𝑥+ 𝑞⊤
0 𝑥 s.t. 𝑥⊤𝑄𝑖𝑥+ 𝑞⊤

𝑖 𝑥 ≤ 𝑟𝑖 ∀𝑖 ∈ [𝑚], (5.4)

where 𝑄0, 𝑄𝑖 ,𝑞0 𝑞𝑖, 𝑟𝑖 are given problem data. This problem is non-convex, and en-

compasses binary quadratic optimization [124] and alternating current optimal power

flow problems [154]. The fundamental difficulty in Problem (5.4) is the potential

non-convexity of the outer product 𝑥𝑥⊤. However, we can isolate this non-convexity

by introducing a rank-one matrix 𝑋 to model the outer product 𝑥𝑥⊤. This leads to:
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min
𝑥∈R𝑛,𝑋∈𝑆𝑛

⟨𝑄0,𝑋⟩+ ⟨𝑞0,𝑥⟩ s.t. ⟨𝑄𝑖,𝑋⟩+ ⟨𝑞𝑖,𝑥⟩ ≤ 𝑟𝑖 ∀𝑖 ∈ [𝑚], Rank

⎛⎝1 𝑥⊤

𝑥 𝑋

⎞⎠ = 1.

We have established that QCQOPs are rank constrained problems. Notably how-

ever, the converse is also true: rank constrained problems with linear, second-order

cone, or semidefinite constraints are QCQOPs. Indeed, the constraint Rank(𝑋) ≤ 𝑘

is equivalent to requiring that 𝑋 = 𝑈𝑉 ⊤ : 𝑈 ∈ R𝑛×𝑘,𝑉 ∈ R𝑚×𝑘, i.e., imposing

𝑚 × 𝑛 non-convex quadratic equalities. As modern solvers such as Gurobi can now

solve non-convex QCQOPs to global optimality, this QCQOP formulation can be

used to solve low-rank problems, although it is not particularly scalable; we expand

on this point in this chapter’s numerical experiments.

Minimal degree sum-of-squares decomposition of a polynomial

Many central problems in optimization and control can be addressed by optimizing

over the space of globally non-negative polynomials. As separating over this space

exactly is NP-hard [178] and requires invoking computationally expensive results from

real algebraic geometry such as Stengle’s Positivstellensatz [see, e.g., 46, Section 3.4.3],

non-negative polynomial optimization is typically addressed by taking a safe inner

approximation, namely the set of polynomials which are a sum of squares [153, 189].

For the sake of both interpretability and tractability, a desirable attribute is to obtain

a polynomial composed of a sum of at most 𝑘 squares, where 𝑘 is small. Recalling that

a polynomial 𝑝(𝑧) of degree 2𝑑 is a sum-of-squares (SOS) if and only if 𝑝(𝑥) = 𝑧⊤𝑄𝑧,

where 𝑧 = [1, 𝑥1, . . . , 𝑥𝑛, 𝑥1𝑥2, . . . , 𝑥
𝑑
𝑛] and 𝑄 is a PSD matrix [189], the minimal SOS

decomposition of a polynomial is given by:

min
𝑄⪰0

Rank(𝑄) s.t. 𝑝(𝑥) = 𝑧⊤𝑄𝑧, (5.5)

where 𝑧 = [1, 𝑥1, . . . , 𝑥𝑛, 𝑥1𝑥2, . . . , 𝑥
𝑑
𝑛]. (5.6)

This allows us to optimize over the space of low-complexity SOS polynomials.
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5.1 Background and Literature Review

Our work arises at the intersection of three complementary areas of the low-rank op-

timization literature: (a) global optimization algorithms for non-convex quadratically

constrained problems, (b) the interplay of convex relaxations and their dual side, ran-

domized rounding methods, and (c) heuristics which provide high-quality solutions

to non-convex problems in an efficient fashion.

Global optimization techniques

Branch-and-bound A broad class of global optimization algorithms have been

proposed for QCQOs, since [174] observed that convex envelopes of non-convex re-

gions supply globally valid lower bounds. This gives rise to a numerical strategy

where one recursively partitions the QCQO’s feasible region into subregions, con-

structs convex envelopes for each subregion and uses these envelopes to construct

iteratively improving bounds. This approach is known as spatial branch-and-bound;

see [156] for a scheme which decomposes a matrix into a sparse matrix plus a low-rank

matrix, [151] for a modern implementation in alternating current optimal power flow,

and [31] for an exact branch-and-bound approach to low-rank factor analysis.

Branch-and-cut In a complementary direction, several branch-and-cut methods

[8, 160] have been proposed for solving non-convex QCQOs, by borrowing decompo-

sition schemes from the mixed-integer nonlinear optimization literature [92]. While

often efficient in practice, a common theme in these methods is that the more efficient

decomposition schemes used for MINLOs cannot be applied out-of-the-box, because

they may fail to converge to a globally optimal solution [see 125, for a counterex-

ample]. As a result, non-convex problems need to be preprocessed in an expensive

fashion. This preprocessing step has inhibited the use of global optimization methods

for low-rank problems; indeed, we are not aware of any works which apply branch-

and-cut techniques to solve low-rank problems to certifiable optimality.
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Complementarity In an opposite direction, several authors have proposed apply-

ing general nonlinear optimization techniques to address low-rank problems, since

Ding et al. [86] observed that a low-rank constraint is equivalent to a complemen-

tarity constraint over the positive semidefinite cone, and thus can be addressed by

general techniques for mathematical programs with equilibrium constraints [see 163].

Among others, Bai et al. [9] invoked the complementarity observation to design a

completely positive reformulation of low-rank SDOs, and Bi et al. [41] developed a

multi-stage convex relaxation of the complementarity constraint.

Algebraic By taking an algebraic view of rank constraints, several algebraic geom-

etry techniques have been proposed for addressing low-rank SDOs. Among others,

[78] proposed reformulating low-rank constraints as systems of polynomial equations

which can be addressed via the sum-of-squares hierarchy [153]. More recently, Naldi

[180] proposed a semi-algebraic reformulation of rank-constrained SDOs, which can

be optimized over via Gröbner basis computation [75]. Unfortunately, algebraic ap-

proaches do not scale well in practice. Indeed, as observed by Recht et al. [198], it

seems unlikely that algebraic approaches can solve low-rank SDOs when 𝑛 > 10.

Convex relaxations and rounding methods

Convex relaxations A number of authors have studied convex relaxations of low-

rank problems, since [103] observed that the nuclear norm of a matrix is the convex

envelope of a rank constraint on the matrices with spectral norm at most 𝑀 , i.e.,

Conv

(︂{︀
𝑋 ∈ R𝑛×𝑚 : ‖𝑋‖𝜎 ≤𝑀,Rank(𝑋) ≤ 𝑘

}︀)︂
(5.7)

=
{︀
𝑋 ∈ R𝑛×𝑚 : ‖𝑋‖𝜎 ≤𝑀, ‖𝑋‖* ≤ 𝑘𝑀

}︀
.

Because the epigraph of a nuclear norm is semidefinite representable [198], this gives

rise to semidefinite relaxations which can be computed in polynomial time.
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Rounding methods A complementary line of work aims to supply certifiably near-

optimal solutions to low-rank problems, by rounding their semidefinite relaxations.

Initiated by Goemans and Williamson [124] in the context of binary quadratic op-

timization, who established that randomly rounding an SDO relaxation supplies a

0.878-approximation, it has evolved into a successful framework for solving rank-one

optimization problems; see Nemirovski et al. [183] for a unified approach in the rank-

one case. However, this line of work has a key drawback. Namely, existing rounding

methods do not address rank-𝑘 problems such as matrix completion, due to the ana-

lytic difficulty of constructing a rounding mechanism which preserves both feasibility

and near-optimality in the rank-𝑘 case.

Heuristic methods

Due to the computational difficulty of solving Problem (5.1) to optimality, a variety

of heuristic methods have been proposed for solving (5.1), originating with methods

for solving low-rank linear matrix inequalities in the optimal control literature [55].

Although slow and somewhat ad-hoc in their original implementations, heuristic

methods were moved front-and-center by the works of Fazel [103], Burer and Mon-

teiro [58, 59]. [103] observed that low-rank positive semidefinite matrices lie on the

boundary of the PSD cone, and used this observation to justify a “log-det” heuristic,

where a rank minimization objective is replaced with the function log det(𝑋 + 𝛿I).

[58, 59] proposed implicitly modeling a rank constraint Rank(𝑋) ≤ 𝑘 by applying

the non-linear reformulation 𝑋 = 𝑈𝑉 ⊤, where 𝑈 ,𝑉 ∈ R𝑛×𝑘 and eliminating 𝑋, to

obtain a problem which is non-convex in (𝑈 ,𝑉 ).

Although originally solved using augmented Lagrangian techniques, subsequent

implementations of the Burer-Monterio heuristic typically used alternating minimiza-

tion [138], successive over-relaxations [222] (stochastic) gradient descent [234, 197,

214] and manifold methods [52, 53]. This popularity has been driven by the fact

that, under particular assumptions, the problem has no spurious local optima [see

40, 121, 52, 72] and the Burer-Monterio approach recovers a globally optimal solu-

tion; see Udell et al. [215], Nguyen et al. [184] for reviews of heuristic approaches.

149



5.2 From Cardinality to Rank: Unifying Perspective

Low rank constraints Rank(𝑋) ≤ 𝑘 are a natural generalization of cardinality con-

straints ‖𝑥‖0 ≤ 𝑘 from vectors to matrices. Indeed, if 𝑋 is a diagonal matrix then

Rank(𝑋) ≤ 𝑘 if and only if ‖𝑋‖0 ≤ 𝑘, and more generally Rank(𝑋) ≤ 𝑘 if and only

if ‖𝜎(𝑋)‖0 ≤ 𝑘, where 𝜎(𝑋) is the vector of singular values of 𝑋. However, while

cardinality and rank constraints are intimately linked, they are addressed using differ-

ent algorithms. Namely, we can solve cardinality constrained problems with 100, 000s

of variables to optimality [27], while low-rank problems are dramatically harder and

have not yet been solved to certifiable optimality for 𝑛 > 10 [180].

In our opinion, the difference between the community’s understanding of cardi-

nality and rank constraints has arisen because of two algorithmic barriers. The first

barrier is that rank constraints belong to a harder complexity class, namely they are

as hard to optimize over as deciding whether an arbitrary system of polynomial in-

equalities admits a solution; see [34]. The second barrier arises because cardinality

constraints can be represented using binary variables, while rank constraints cannot

[161, Corollary 4.1]. This presents a challenge for researchers, who have developed

scalable methods for cardinality constraints by exploiting advances in mixed-integer

conic optimization (MICO), but cannot use these advances to address rank con-

straints. In this section, we question these barriers by characterizing the complexity

of low-rank problems and proposing a new framework for modeling rank.

Complexity of Rank-Constrained Optimization

Existing studies of Problem (5.1) typically claim that it is intractable, and support

this claim by proving that it is NP-hard, by reduction from an NP-complete problem

such as Boolean linear programming [see, e.g., 216, Section 7.3]. In our opinion, this

argument needs to be revisited, for two separate reasons. First, NP-hardness is a

worst-case analysis statement. In practice, NP-hard problems are often tractable.

For instance, sparse regression can usually be solved to certifiable optimality with

100, 000s of features in minutes [27]. Second, there is no evidence that Problem (5.1)
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is even in NP. Indeed, Problem (5.1) cannot be represented using mixed-integer convex

optimization [161, Corollary 4.1], while all 21 of Karp’s NP-complete problems can,

and the best known algorithms for Problem (5.1) run in EXPTIME [71, 180].

We now provide a more complete characterization of Problem (5.1)’s complexity

than is currently available in the literature. First, we demonstrate that it belongs

to a different class than NP. In particular, it is existential theory of the reals-hard

(∃R-hard; see Renegar [199] for a general theory), i.e., as hard as any polynomial

optimization problem, which implies that, if NP⫋ ∃R, Problem (5.1) is strictly harder

than NP-complete problems. Second, we prove that Problem (5.1) is actually in ∃R.

We now demonstrate that Problem (5.1) is existential theory of the reals complete

(i.e., ∃R-complete). We begin by reminding the reader of the definition of the ∃R

complexity class [c.f. 208]:

Definition 5.1. A decision problem belongs to the existential theory of the reals com-

plexity class if it reduces to deciding whether a statement

(∃𝑥1, ..., 𝑥𝑛)𝜑(𝑥1, ..., 𝑥𝑛)

is true or false, where 𝜑(·) is a quantifier-free Boolean formula involving polynomials

equalities and inequalities, e.g., deciding the emptiness of a semi-algebraic set. We

say a problem is ∃R-hard if any problem in ∃R reduces to it.

Note that 3-SAT ∈ ∃R, so NP⊆ ∃R, and any statement in ∃R can be decided

in PSPACE [64], so ∃R ⊆ PSPACE. To establish that Problem (5.1) is ∃R hard, we

require the following proposition, which is essentially a restatement of [208, Theorem

3.1] in the language of optimization.

Proposition 5.1. Let 𝐺 := (𝑉,𝐸) be a graph, and ℓ(𝑒) be the length of edge 𝑒. Then,

deciding if 𝐺 can be embedded in R2 is ∃R complete, even if all edges have unit length.

By reducing Proposition 5.1’s planar embedding problem to a Euclidean Distance

Embedding problem, we obtain (see [34], for a proof):

Theorem 5.1. Problem (5.1) is ∃R-hard.
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Theorem 5.1 demonstrates that Problem (5.1) is, from a traditional complexity

theory perspective, at least as hard as any problem in ∃R. However, its complexity

remains unresolved. Indeed, while [62] have observed that Problem (5.1) is in EXP-

TIME, it seems likely that ∃R ⊂ EXPTIME. We now address this, by proving that

if 𝒦 represents the semidefinite cone then Problem (5.1) is in ∃R, and hence ∃R-

complete; note that the examples listed in Chapter 5 can all be rewritten as low-rank

SDOs, so this result applies to all aforementioned examples (see [34] for a proof):

Theorem 5.2. Let 𝒦 = 𝑆𝑛
+ denote the 𝑛 × 𝑛 positive semidefinite cone. Then,

Problem (5.1) is in ∃R, and hence ∃R-complete.

Remark 9. Since ∃R ⊆ PSPACE ⊆ EXPTIME, this upper bound improves upon the

EXPTIME bound on Problem (5.1)’s complexity stated by Recht et al. [198], Candes

and Plan [62] among others. Moreover, it seems unlikely to us that this bound can

be further improved without settling fundamental questions in complexity theory (e.g.

characterizing NP vs. ∃R vs. PSPACE vs. EXPTIME).

Projection Matrices for Modeling Rank

As previously discussed, rank constraints can be seen as a generalization to the matrix

case of cardinality constraints. For a vector 𝑥 ∈ R𝑛, the cardinality constraint ‖𝑥‖0 ≤

𝑘 ensures that at most 𝑘 coordinates of 𝑥 are non-zero, and can be modeled by

introducing a vector of binary variables since

‖𝑥‖0 ≤ 𝑘 ⇐⇒ ∃𝑧 ∈ {0, 1}𝑛 : 𝑒⊤𝑧 ≤ 𝑘, 𝑥 = 𝑧 ∘ 𝑥. (5.8)

Unfortunately, rank constraints cannot be modeled using mixed-integer convex

optimization [161, Corollary 4.1] and therefore MICO techniques cannot be applied

“out-of-the-box” to address rank constraints. Therefore, we now propose a new frame-

work to model rank in optimization problems. Instead of a binary vector 𝑧 to encode

the support of 𝑥, we introduce a projection matrix 𝑌 to capture the column space

of 𝑋 and obtain a similar non-linear reformulation.
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Definition 5.2. A matrix 𝑌 ∈ R𝑛×𝑛 is an projection matrix if it satisfies 𝑌 2 = 𝑌 .

Moreover, if 𝑌 is symmetric, 𝑌 is an orthogonal projection matrix.

As symmetric matrices, orthogonal projections are diagonalizable and their eigen-

values satisfy 𝜆2
𝑖 = 𝜆𝑖, i.e., are binary. As a result, the pseudoinverse of an orthogonal

projection 𝑌 is 𝑌 itself (𝑌 = 𝑌 †). In addition, since its eigenvalues are binary, the

trace of 𝑌 equals the number of non-zero eigenvalues, i.e., Rank(𝑌 ) = tr(𝑌 ).

We are now in a position to link projection matrices and rank constraints.

Proposition 5.2. For any 𝑋 ∈ R𝑛×𝑚, Rank(𝑋) ≤ 𝑘 ⇐⇒ ∃𝑌 ∈ 𝒴𝑛 : tr(𝑌 ) ≤

𝑘, 𝑋 = 𝑌 𝑋, where 𝒴𝑛 := {𝑃 ∈ 𝑆𝑛 : 𝑃 2 = 𝑃 } is the set of orthogonal projections.

Proof. We prove the two implications successively.

• Let 𝑋 = 𝑈Σ𝑉 ⊤, with 𝑈 ∈ R𝑛×𝑘, Σ ∈ R𝑘×𝑘, 𝑉 ∈ R𝑚×𝑘, be a singular

value decomposition of 𝑋 and define 𝑌 = 𝑈
(︀
𝑈⊤𝑈

)︀−1
𝑈⊤ = 𝑈𝑈⊤. By

construction, 𝑋 = 𝑌 𝑋, since 𝑈⊤𝑈 = I. Moreover, tr(𝑌 ) = rank(𝑌 ) =

rank(𝑋) ≤ 𝑘.

• Since 𝑋 = 𝑌 𝑋, rank(𝑋) ≤ rank(𝑌 ) = tr(𝑌 ) ≤ 𝑘.

Remark 10. In Proposition 5.2, the rank constraint is expressed via a trace constraint

on 𝑌 , the orthogonal projection onto the image or column space of 𝑋. Alternatively,

one could model the rank constraint via a matrix 𝑌 ′ ∈ 𝒴𝑚 such that tr(𝑌 ′) ≤ 𝑘 and

𝑋 = 𝑋𝑌 ′. In this case, 𝑌 ′ encodes the projection onto the row space of 𝑋. In

practice, one could introduce both 𝑌 and 𝑌 ′ and obtain tighter formulations, at the

price of introducing additional notation.

Proposition 5.2 suggests that projection matrices are to rank constraints what

binary variables are to cardinality constraints. Indeed, similarities between the two

are evident: binary variables 𝑧 are idempotent scalars which solve 𝑧2 = 𝑧, while

projection matrices 𝑌 are idempotent matrices which solve 𝑌 2 = 𝑌 . Also, if 𝑋 and

𝑌 are diagonal, Proposition 5.2 recovers cardinality constrained optimization.

Over the past decades, extensive efforts have been devoted to improving the scal-

ability of mixed-integer optimization. We believe that similar achievements can be

153



obtained for rank constrained problems by adapting techniques from MICO to MPCO.

In this direction, Table 5.1 establishes a dictionary linking cardinality and rank, and

demonstrates many of the techniques developed for binary convex optimization admit

generalizations to MPCO, including the main results from Chapter 2. Note that we

have not yet established most of the connections claimed in Table 5.1; this is the

focus of the next two sections of the chapter.

Table 5.1: Analogy between mixed-integer and mixed-projection.

Framework Chapter 2 This chapter

Parsimony concept cardinality rank
Non-convex outer set binaries projection matrices
Strongly convex regularizer ℓ22 Frobenius squared
Boundedness regularizer ℓ∞ spectral
Non-linear formulation 𝑥 = 𝑥 ∘ 𝑧; 𝑧 ∈ {0, 1}𝑛 𝑋 = 𝑌 𝑋, 𝑌 ∈ 𝒴𝑛

Big-M formulation −𝑀𝑧 ≤ 𝑥 ≤𝑀𝑧

(︂
𝑀𝑌 𝑋
𝑋⊤ 𝑀I

)︂
⪰ 0

Perspective formulation
(︂
𝜃𝑖 𝑥𝑖

𝑥𝑖 𝑧𝑖

)︂
⪰ 0

(︂
𝜃 𝑋

𝑋⊤ 𝑌

)︂
⪰ 0

Convex relaxation complexity linear/second-order cone semidefinite
Greedy rounding mechanism coordinate-wise SVD

5.3 Regularization and a Reformulation

In this section, we prove that (5.10) can be reformulated as a saddle-point mixed-

projection problem by leveraging regularization terms analogous to the big-𝑀 and

ridge regularization techniques from MICO, and derive their semidefinite relaxations,

as summarized in Table 5.1.

Throughout this chapter, we let 𝒴𝑛 := {𝑃 ∈ 𝑆𝑛 : 𝑃 2 = 𝑃 } denote the set of 𝑛×𝑛

orthogonal projection matrices and 𝒴𝑘
𝑛 := {𝑃 ∈ 𝑆𝑛 : 𝑃 2 = 𝑃 , tr(𝑃 ) ≤ 𝑘} denote

projection matrices with rank at most 𝑘. Although 𝒴𝑛 and 𝒴𝑘
𝑛 do not commonly

appear in the optimization literature, their convex hulls are well-studied, as we now

remind the reader, by restating [185, Theorem 3]:
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Lemma 5.1. Let 𝒴𝑛 denote the 𝑛× 𝑛 orthogonal projection matrices and 𝒴𝑘
𝑛 denote

the low-rank orthogonal projection matrices. Then, Conv(𝒴𝑛) = {𝑃 : 0 ⪯ 𝑃 ⪯ I}

and Conv(𝒴𝑘
𝑛) = {𝑃 : 0 ⪯ 𝑃 ⪯ I, tr(𝑃 ) ≤ 𝑘}. Moreover, the extreme points of

Conv(𝒴𝑛) are 𝒴𝑛, the extreme points of Conv(𝒴𝑘
𝑛) are 𝒴𝑘

𝑛.

A Regularization Assumption

By invoking Proposition 5.2, we rewrite (5.1) as a mixed-projection conic problem:

min
𝑌 ∈𝒴𝑘

𝑛

min
𝑋∈R𝑛×𝑚

⟨𝐶,𝑋⟩+ 𝜆 · tr(𝑌 ) s.t. 𝐴𝑋 = 𝐵, 𝑋 = 𝑌 𝑋, 𝑋 ∈ 𝒦. (5.9)

Observe that Problem (5.9) has a two-stage structure which involves first selecting

a low-rank projection matrix 𝑌 and second selecting a matrix 𝑋 under the constraint

𝑋 = 𝑌 𝑋. Moreover, selecting an optimal 𝑋 given 𝑌 is easy, because it involves

solving a conic optimization problem under the linear constraint 𝑋 = 𝑌 𝑋, while

selecting an optimal 𝑌 is hard, because 𝒴𝑘
𝑛 is a non-convex set. Therefore, our

modeling framework isolates the hardness of Problem (5.9) in 𝒴𝑘
𝑛.

To cope with the non-linear constraints 𝑋 = 𝑌 𝑋 in a tractable fashion, we

augment the objective function in (5.9) with a regularization term. Namely:

min
𝑌 ∈𝒴𝑘

𝑛

min
𝑋∈R𝑛×𝑚

⟨𝐶,𝑋⟩+ Ω(𝑋) + 𝜆 · tr(𝑌 ) s.t. 𝐴𝑋 = 𝐵, 𝑋 = 𝑌 𝑋, 𝑋 ∈ 𝒦,

(5.10)

where the regularization term Ω(𝑋) satisfies the following assumption:

Assumption 5.1. In Problem (5.10), the regularization term Ω(𝑋) is one of:

• A spectral norm penalty, Ω(𝑋) = 0 if ‖𝑋‖𝜎 ≤𝑀 , Ω(𝑋) = +∞ otherwise.

• A Frobenius norm penalty, Ω(𝑋) = 1
2𝛾
‖𝑋‖2𝐹 .

As we demonstrate in Section 5.3, Assumption 5.1 is crucial for developing effi-

cient low-rank algorithms, for the regularizer drives the convexity (see Theorem 5.3)

and smoothness of the problem, and also make computationally cheap to evaluate
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subgradients readily accessible (Table 5.2). We remark however that after we wrote

[34], upon which this chapter is based, we discovered in [35] that this assumption can

be relaxed to Ω(𝑋) = tr(𝑓(𝑋)) for a matrix-convex function 𝑓 ; we invite the reader

to read Chapter 6 for more details on this.

The two regularizers are matrix analogues of the popular big-M constraints (con-

straints on the ℓ∞ norm of the continuous variables) and ridge regularization (penalty

on the ℓ22 norm) for vectors. In mixed-integer optimization, such regularization terms

can efficiently cope with non-linear constraints between continuous and binary vari-

ables [33] and motivate our current approach. Practically speaking, regularization

can be a natural component of the original problem (5.9), otherwise we advocate for

introducing it artificially, for it leads to tractable algorithms with moderate impact

on the resulting solution. For instance, if 𝑀 is large enough so that the optimal

solution to Problem (5.9), 𝑋⋆, satisfies ‖𝑋⋆‖𝜎 ≤ 𝑀 , Problems (5.10) and (5.9) are

equivalent. With the Frobenius norm penalty, the gap between Problem (5.10)’s and

(5.9)’s objective is at most 1
2𝛾
‖𝑋⋆‖2𝐹 , which can certainly be bounded whenever tr(𝑋)

is bounded, as often occurs in practice.

For ease of notation, we let

𝑔(𝑋) = ⟨𝐶,𝑋⟩+

⎧⎪⎨⎪⎩0, if 𝐴𝑋 = 𝐵, 𝑋 ∈ 𝒦,

+∞, otherwise,

denote the unregularized second-stage cost for a given 𝑋. Therefore, Problem (5.10)

can be written as:

min
𝑌 ∈𝒴𝑘

𝑛

𝑓(𝑌 ) + 𝜆 · tr(𝑌 ), (5.11)

where 𝑓(𝑌 ) := min
𝑋∈R𝑛×𝑚

𝑔(𝑋) + Ω(𝑋) s.t. 𝑋 = 𝑌 𝑋 (5.12)

yields a best choice of 𝑋 given 𝑌 . As we establish in this section, this turns out to

be a computationally useful reformulation, for 𝑓 is convex in 𝑌 (see Theorem 5.3),

156



and therefore the non-convexity in the problem has been isolated within the set 𝒴𝑘
𝑛.

Observe that both regularizers are coercive (i.e., “blow up” to +∞ as ‖𝑋‖ → ∞),

and therefore render all unbounded solutions infeasible and ensure the compactness

of the level sets of 𝑋 ↦→ 𝑔(𝑋) + Ω(𝑋). This alleviates two of the major issues

with conic duality [17, Theorem 2.4.1]. First, regularization ensures that optimal

solutions to conic problems are attained [see 46, Example 2.27, for a regularization-free

counterexample]. Second, regularization ensures that infeasibility of a conic system

is certifiable1, i.e., there is either a feasible solution or a certificate of infeasibility. In

general, such a procedure is not possible because a conic system could be infeasible

but asymptotically feasible, i.e.,

∄𝑋 : 𝐴𝑋 = 𝐵,𝑋 ∈ 𝒦 but ∃{𝑋𝑡}∞𝑡=1 : 𝑋𝑡 ∈ 𝒦 ∀𝑡 with ‖𝐴𝑋𝑡 −𝐵‖ → 0.

Here, the regularization term ensures that the set of feasible 𝑋 (with objective at

most 𝜃0 ∈ R) is a closed convex compact set. Therefore, 𝑓(𝑌 ) cannot generate an

asymptotically feasible problem.

Finally, the two regularization functions in Assumption 5.1 satisfy a non-trivial

property which turns out to be crucial in both proving that 𝑓(𝑌 ) is convex and

deriving our overall algorithmic strategy (see [34] for a proof):

Lemma 5.2. Consider a regularization function Ω(𝑋) satisfying Assumption 5.1.

There, there exists a Fenchel conjugate Ω⋆ [see, e.g., 54, Chap. 3.3.1] such that, for

any projection matrix 𝑌 ∈ 𝒴𝑛 and any matrix 𝛼, we have

min
𝑋
{Ω(𝑌 𝑋) + ⟨𝛼,𝑌 𝑋⟩} = max

𝑉11,𝑉22

−Ω⋆(𝛼,𝑌 ,𝑉11,𝑉22),

and Ω⋆ is linear in 𝑌 (see Table 5.2 for its explicit definition).

1Unless the conic dual is also infeasible, this case is unimportant for our purposes, because it
only arises when the original problem is itself infeasible for any 𝑌 , which can be checked a priori.

157



Table 5.2: Regularizers and conjugates, as defined in Lemma 5.2.

Ω(𝑋) Ω⋆(𝛼,𝑌 ,𝑉11,𝑉22)
𝜕

𝜕𝑌𝑖,𝑗
Ω⋆(𝛼,𝑌 ,𝑉11,𝑉22){︃

0, if ‖𝑋‖𝜎 ≤𝑀,

+∞, o.w.,
𝑀
2
⟨𝑌 ,𝑉11⟩+ 𝑀

2
⟨𝐼𝑚,𝑉22⟩ 𝑀

2
𝑉11,𝑖,𝑗.

s.t.
(︂
𝑉11 𝛼
𝛼⊤ 𝑉22

)︂
⪰ 0,{︃

0, if ‖𝑋‖𝜎 ≤𝑀,

+∞, o.w.,
𝑀⟨𝑌 ,𝑉11 + 𝑉22⟩ 𝑀(𝑉11 + 𝑉22)𝑖,𝑗.

s.t. 𝛼 = 𝑉11 − 𝑉22,

𝑉11,𝑉2,2 ⪰ 0,

1
2𝛾
‖𝑋‖2𝐹

𝛾
2
⟨𝛼,𝑌 𝛼⟩ 𝛾

2
⟨𝛼𝑖,𝛼𝑗⟩

Proof. We start with the Frobenius regularization case, Ω(𝑋) = 1
2𝛾
‖𝑋‖𝐹 and

min
𝑋
{Ω(𝑌 𝑋) + ⟨𝛼,𝑌 𝑋⟩} = 1

2𝛾
‖𝑌 𝑋‖𝐹 + ⟨𝛼,𝑌 𝑋⟩.

Any solution to the minimization problem satisfies the first-order condition 1
𝛾
𝑌 𝑋 +

𝑌 𝛼 = 0. Hence, since 𝑌 2 = 𝑌 , 𝑋⋆ = −𝛾𝑌 𝛼 satisfies the first-order condition and

the optimal objective value is −Ω⋆(𝛼,𝑌 ,𝑉11,𝑉22) = −𝛾
2
⟨𝛼,𝑌 𝛼⟩.

The spectral case is technically more challenging and detailed proofs are deferred

to [Section E.C.2 34]. In the rectangular case, one can show that

min
𝑋
{Ω(𝑌 𝑋) + ⟨𝛼,𝑌 𝑋⟩} = max

𝑉11,𝑉22

−𝑀

2
⟨𝑌 ,𝑉11⟩+

𝑀

2
⟨𝐼𝑚,𝑉22⟩ s.t.

⎛⎝𝑉11 𝛼

𝛼⊤ 𝑉22

⎞⎠ ⪰ 0.

In the symmetric case, one can show that

min
𝑋
{Ω(𝑌 𝑋) + ⟨𝛼,𝑌 𝑋⟩} = max

𝑉11,𝑉22⪰0
−𝑀⟨𝑌 ,𝑉11 + 𝑉22⟩ s.t. 𝛼 = 𝑉11 − 𝑉22.
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A Saddle-Point Reformulation

We now reformulate Problem (5.10) as a saddle-point problem. This reformulation is

significant for two reasons. First, it leverages the nonlinear constraint 𝑋 = 𝑌 𝑋 by

introducing a new matrix of variables 𝑉 ∈ R𝑛×𝑚 such that 𝑉 = 𝑌 𝑋, giving:

𝑓(𝑌 ) = min
𝑉 ,𝑋
{𝑔(𝑉 ) + Ω(𝑌 𝑋) : 𝑉 = 𝑌 𝑋}.

a substitution reminiscent of the Douglas-Rachford splitting technique for composite

convex optimization problems [90, 94]. Second, it proves the regularizer Ω(𝑋) drives

the convexity and smoothness of 𝑓(𝑌 ). To derive the problem’s dual, we require:

Assumption 5.2. For each subproblem (5.12) generated by 𝑓(𝑌 ) where 𝑌 ∈ 𝒴𝑘
𝑛,

either the optimization problem is infeasible, or strong duality holds.

Assumption 5.2 holds under Slater’s condition [54, Section 5.2.3]. By invoking

Assumption 5.2, the following theorem reformulates (5.11) as a saddle-point problem:

Theorem 5.3. Suppose Assumption 5.2 holds and Ω(·) is either the spectral or Frobe-

nius regularizer. Then, the following two optimization problems are equivalent:

𝑓(𝑌 ) := min
𝑋∈R𝑛×𝑚

𝑔(𝑋) + Ω(𝑋) s.t. 𝑋 = 𝑌 𝑋, (5.13)

= max
𝛼,𝑉11,𝑉22

ℎ(𝛼)− Ω⋆(𝛼,𝑌 ,𝑉11,𝑉22), (5.14)

where ℎ(𝛼) := max
Π:𝐶−𝛼−𝐴⊤Π∈𝒦⋆

⟨𝑏,Π⟩, 𝒦⋆ := {𝑊 : ⟨𝑊 ,𝑋⟩ ≥ 0 ∀𝑋 ∈ 𝒦} denotes

the dual cone to 𝒦, and Ω⋆(𝛼,𝑌 ,𝑉11,𝑉22) is defined in Table 5.2.

Proof. Let us fix 𝑌 ∈ 𝒴𝑘
𝑛, and suppose that strong duality holds for the inner mini-

mization problem which defines 𝑓(𝑌 ). To progress, we introduce a matrix 𝑉 ∈ R𝑛×𝑚

such that 𝑉 = 𝑌 𝑋 and obtain the relaxation:

min
𝑋,𝑉

𝑔(𝑉 ) + Ω(𝑌 𝑋) s.t. 𝑉 = 𝑌 𝑋. (5.15)
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Let us verify that this relaxation is a valid substitution, i.e., that Problems (5.13)

and (5.15) have the same optimal objective, 𝑓(𝑌 ). If 𝑋 is feasible for (5.13), then

(𝑉 = 𝑋,𝑋) is obviously feasible for (5.15) with same objective value. Similarly, let

(𝑉 ,𝑋) be feasible for (5.15). 𝑌 𝑉 = 𝑌 2𝑋 = 𝑌 𝑋 = 𝑉 since 𝑌 2 = 𝑌 . Hence, 𝑉 is

feasible for (5.13) with same objective value.

Now, let 𝛼 denote the dual variables associated with the coupling constraints

𝑉 = 𝑌 𝑋. The minimization problem is then equivalent to its dual, which is:

𝑓(𝑌 ) = max
𝛼

ℎ(𝛼) + min
𝑋

[Ω(𝑌 𝑋) + ⟨𝛼,𝑌 𝑋⟩] ,

where ℎ(𝛼) := inf𝑉 𝑔(𝑉 )− ⟨𝑉 ,𝛼⟩ is, up to a sign, the Fenchel conjugate of 𝑔. By a

standard application of Fenchel duality, it follows that

ℎ(𝛼) = max
Π
⟨𝑏,Π⟩+

⎧⎪⎨⎪⎩0, if 𝐶 −𝛼−𝐴⊤Π ∈ 𝒦⋆,

+∞, otherwise.

Finally, from Lemma 5.2 we have

min
𝑋
{Ω(𝑌 𝑋) + ⟨𝛼,𝑌 𝑋⟩} = max

𝑉11,𝑉22

−Ω⋆(𝛼,𝑌 ,𝑉11,𝑉22),

which concludes the proof. Alternatively, under either penalty, if the inner problem

defining 𝑓(𝑌 ) is infeasible, then its dual problem is unbounded by weak duality.

Remark 11. In the unregularized case Ω(𝑋) = 0, we can derive the reformulation:

min
𝑌 ∈𝒴𝑘

𝑛

max
𝛼∈R𝑛×𝑚

ℎ(𝛼) + 𝜆 · tr(𝑌 ) s.t. 𝑌 𝛼 = 0. (5.16)

Under this lens, regularization of the primal problem is equivalent to a relaxation in the

dual formulation: the hard constraint 𝑌 𝛼 = 0 is penalized by −Ω⋆(𝛼,𝑌 ,𝑉11,𝑉22).

Remark 12. By Theorem 5.3 and Lemma 5.2, 𝑓(𝑌 ) is convex as the point-wise

maximum of functions which are linear in 𝑌 .
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By Theorem 5.3, when we evaluate 𝑓(𝑌 ), one of two alternatives occur. The first

is that we have 𝑓(𝑌 ) < +∞ and there is some optimal (𝛼,𝑉11,𝑉22). In this case, we

construct the lower approximation

𝑓(𝑌 ) ≥ 𝑓(𝑌 ) + ⟨𝐻 ,𝑌 − 𝑌 ⟩,

where 𝐻𝑖,𝑗 =
𝜕

𝜕𝑌𝑖,𝑗
Ω⋆(𝛼,𝑌 ,𝑉11,𝑉22) (see Table 5.2 for closed-form expression of the

partial derivatives.The second alternative is that 𝑓(𝑌 ) = +∞, in which case, by the

conic duality theorem [see 17, Chapter 2] there exists a (𝛼,Π) such that

𝐶 −𝛼−𝐴⊤Π ∈ 𝒦⋆, and ⟨𝑏,Π⟩ > ⟨−𝐻 ,𝑌 ⟩. (5.17)

Under this alternative, we can separate 𝑌 from the set of feasible 𝑌 ’s by imposing

the cut 0 ≥ ⟨𝑏,Π⟩ + ⟨𝐻 ,𝑌 ⟩. Under either alternative, we obtain a globally valid

first-order underestimator of the form

𝑧𝑓(𝑌 ) ≥ ℎ+ ⟨𝐻 ,𝑌 − 𝑌 ⟩, (5.18)

where 𝑧, ℎ are defined as

𝑧 =

⎧⎪⎨⎪⎩1, if 𝑓(𝑌 ) < +∞,

0, if 𝑓(𝑌 ) = +∞,

and ℎ =

⎧⎪⎨⎪⎩𝑓(𝑌 ), if 𝑓(𝑌 ) < +∞,

⟨𝑏,Π⟩+ ⟨𝐻 ,𝑌 ⟩, if 𝑓(𝑌 ) = +∞.

(5.19)

This observation suggests that a valid numerical strategy for minimizing 𝑓(𝑌 ) is to

iteratively minimize and refine a piecewise linear underestimator of 𝑓(𝑌 ) defined by

the pointwise supremum of a finite number of underestimators of the form 𝑧𝑓(𝑌 ) ≥

ℎ+ ⟨𝐻 ,𝑌 − 𝑌 ⟩. Indeed, as we will see in Section 5.4, this strategy gives rise to the

global optimization algorithm known as outer-approximation.
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Smoothness We now demonstrate that 𝑓(𝑌 ) is smooth, in the sense of Lipschitz

continuity, under a boundedness assumption on the size of the dual variables, which

is a crucial property for ensuring the convergence of our global optimization methods

and bounding the quality of our semidefinite relaxation and greedy rounding methods.

Formally, the following result follows directly from Theorem 5.3.

Lemma 5.3. Let 𝑌 ,𝑌 ′ ∈ Conv(𝒴𝑘
𝑛) be on the convex hull of orthogonal projections.

Then

𝑓(𝑌 )− 𝑓(𝑌 ′) ≤ Ω⋆(𝛼⋆(𝑌 ),𝑌 ′ − 𝑌 ,𝑉 ⋆
11(𝑌 ),𝑉 ⋆

22(𝑌 )).

Moreover, suppose 𝛼⋆(𝑌 ),𝑉 ⋆
11(𝑌 ),𝑉 ⋆

22(𝑌 ) can be bounded independently from 𝑌 ,

i.e., ‖𝛼⋆(𝑌 )‖𝜎 ≤ 𝐿1, ‖𝑉 ⋆
11(𝑌 )‖𝜎 ≤ 𝐿2, ‖𝑉 ⋆

22(𝑌 )‖𝜎 ≤ 𝐿2. Then, under spectral

regularization we have

𝑓(𝑌 )− 𝑓(𝑌 ′) ≤𝑀⟨𝑉 ⋆
11(𝑌 ),𝑌 ′ − 𝑌 ⟩ ≤𝑀𝐿2‖𝑌 ′ − 𝑌 ‖*, (5.20)

and under Frobenius regularization we have

𝑓(𝑌 )− 𝑓(𝑌 ′) ≤ 𝛾

2
⟨𝛼⋆⊤(𝑌 )𝛼⋆(𝑌 ),𝑌 ′ − 𝑌 ⟩ ≤ 𝛾

2
𝐿2
1‖𝑌 ′ − 𝑌 ‖*, (5.21)

where the bounds involving 𝐿1, 𝐿2 follow from Holder’s inequality2.

Remark 13. In the paper this chapter is based upon, we develop disciplined techniques

for computing an 𝑀 such that the constraint ‖𝑋‖𝜎 ≤ 𝑀 does not alter the optimal

objective [34, Section E.C.5.1]. The same technique, applied to the dual, yields explicit

bounds on 𝐿1. Moreover, since there exists an optimal pair (𝑉11, 𝑉22) which is an

explicit functions of an optimal 𝛼, this translates into explicit bounds on 𝐿2.

2Namely, |⟨𝑋,𝑌 ⟩| ≤ ‖𝑋‖𝜎‖𝑌 ‖*, since the ‖ · ‖𝜎 and ‖ · ‖*, as the matrix analogs of the ℓ∞ and
ℓ1 norms, are dual.
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Semidefinite Relaxations

To bound (5.11), we invoke Lemma 5.1 to relax the non-convex constraint 𝑌 ∈ 𝒴𝑘
𝑛 to

𝑌 ∈ Conv
(︀
𝒴𝑘

𝑛

)︀
= {𝑌 ∈ 𝑆𝑛 : 0 ⪯ 𝑌 ⪯ I, tr(𝑌 ) ≤ 𝑘}.

This yields the saddle-point problem

min
𝑌 ∈Conv(𝒴𝑘

𝑛)
max

𝛼,𝑉11,𝑉22∈𝑆𝑚
ℎ(𝛼)− Ω⋆ (𝛼,𝑌 ,𝑉11,𝑉22) + 𝜆 · tr(𝑌 ). (5.22)

Problem (5.22) can in turn be reformulated as an SDO. Indeed, under Assumption

5.2, we obtain a semidefinite formulation by taking Problem (5.22)’s dual with respect

to 𝛼. Formally, we have the following results:

Lemma 5.4. Suppose Assumption 5.2 holds. Then, strong duality holds between:

min
𝑌 ∈Conv(𝒴𝑘

𝑛)
max

𝛼∈R𝑛×𝑚
ℎ(𝛼)− 𝛾

2
⟨𝛼,𝑌 𝛼⟩+ 𝜆 · tr(𝑌 ), (5.23)

min
𝑌 ∈Conv(𝒴𝑘

𝑛)
min

𝑋∈R𝑛×𝑚,𝜃∈𝑆𝑛
𝑔(𝑋) +

1

2𝛾
tr (𝜃) + 𝜆 · tr(𝑌 ) s.t.

⎛⎝ 𝜃 𝑋

𝑋⊤ 𝑌

⎞⎠ ⪰ 0. (5.24)

Proof. Let us fix 𝑌 ∈ Conv (𝒴𝑛). Then, we have that:

max
𝛼

ℎ(𝛼)− 𝛾

2
⟨𝛼,𝑌 𝛼⟩ = max

𝛼,𝛽
ℎ(𝛼)− 𝛾

2
⟨𝛽,𝑌 𝛽⟩ s.t. 𝛽 = 𝛼,

= max
𝛼,𝛽

min
𝑋

ℎ(𝛼)− 𝛾

2
⟨𝛽,𝑌 𝛽⟩ − ⟨𝑋,𝛽 −𝛼⟩ ,

= min
𝑋

max
𝛼

[ℎ(𝛼) + ⟨𝑋,𝛼⟩]⏟  ⏞  
(−ℎ)⋆(𝑋)=𝑔(𝑋)

+max
𝛽

[︂
−𝛾
2
⟨𝑌 𝛽,𝛽⟩ − ⟨𝑋,𝛽⟩

]︂
.

Finally, the optimality condition with respect to 𝛽 is 𝑌 𝛽 = −1
𝛾
𝑋, which implies

max
𝑊

[︂
1

2𝛾
⟨𝑋,𝑌 †𝑋⟩ − 1

2
⟨𝑋, (I− 𝑌 †𝑌 )𝑊 ⟩

]︂
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=max
𝑊

[︂
1

2𝛾
⟨𝑋,𝑌 †𝑋⟩ − 1

2
⟨𝑊 , (I− 𝑌 †𝑌 )𝑋⟩

]︂

=

⎧⎪⎨⎪⎩
1

2𝛾

⟨︀
𝑋,𝑌 †𝑋

⟩︀
if 𝑌 ∈ Span(𝑋),

+∞ otherwise.

We therefore conclude that the later term is equal to 1
2𝛾

⟨︀
𝑋,𝑌 †𝑋

⟩︀
whenever the

constraint 𝑌 †𝑌 𝑋 = 𝑋 holds. By the generalized Schur complement lemma, this

expression is equivalent to introducing a new matrix 𝜃, imposing the term 1
2𝛾
tr(𝜃)

and requiring that

⎛⎝ 𝜃 𝑋

𝑋⊤ 𝑌

⎞⎠ ⪰ 0.

Lemma 5.5. Suppose Assumption 5.2 holds. Then, strong duality holds between:

min
𝑌 ∈Conv(𝒴𝑘

𝑛)
max

𝛼∈𝑆𝑛,𝑉11,𝑉22⪰0
ℎ(𝛼)−𝑀⟨𝑌 ,𝑉11 + 𝑉22⟩+ 𝜆 · tr(𝑌 ) (5.25)

s.t. 𝛼 = 𝑉11 − 𝑉22,

min
𝑌 ∈Conv(𝒴𝑘

𝑛)
min
𝑋∈𝑆𝑛

𝑔(𝑋) + 𝜆 · tr(𝑌 ) (5.26)

s.t. −𝑀𝑌 ⪯𝑋 ⪯𝑀𝑌 .

Proof. Let us fix 𝑌 ∈ Conv (𝒴𝑛). Then, we have that:

max
𝛼∈𝑆𝑛,𝑊+,𝑊−⪰0

ℎ(𝛼)−𝑀 ⟨𝑌 ,𝑊+ −𝑊−⟩ s.t. 𝛼 = 𝑊+ −𝑊−

= max
𝛼∈𝑆𝑛,𝑊+,𝑊−⪰0

min
𝑋∈𝑆𝑛

ℎ(𝛼)−𝑀 ⟨𝑌 ,𝑊+ −𝑊−⟩+ ⟨𝑋,𝛼−𝑊+ +𝑊−⟩

= min
𝑋∈𝑆𝑛

max
𝛼∈𝑆𝑛,𝑊+,𝑊−⪰0

ℎ(𝛼)−𝑀 ⟨𝑌 ,𝑊+ −𝑊−⟩+ ⟨𝑋,𝛼−𝑊+ +𝑊−⟩

= min
𝑋∈𝑆𝑛

max
𝛼∈𝑆𝑛

[ℎ(𝛼) + ⟨𝑋,𝛼⟩]⏟  ⏞  
(−ℎ)⋆(𝑋)=𝑔(𝑋)

+ max
𝑊+,𝑊−⪰0

[−𝑀 ⟨𝑌 ,𝑊+ −𝑊−⟩+ ⟨𝑋,−𝑊+ +𝑊−⟩] .

Finally, the optimality conditions with respect to 𝑊+,𝑊− imply

−𝑀𝑌 ⪯𝑋 ⪯𝑀𝑌 .
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We now offer some remarks on these bi-dual problems:

• We can derive a more general version of Lemma 5.5 without the symmetry

assumption on 𝑋 in much the same manner, via the Schur complement lemma.

• Problem (5.24)’s formulation generalizes the perspective relaxation from vectors

to matrices. This suggests that (5.24) is an efficient formulation for address-

ing rank constraints, as perspective formulations efficiently address cardinality

constrained problems with conic quadratic [126] or power cone [4] objectives,

indeed, they provide a theoretical basis for scalable algorithms for sparse re-

gression [36, 129], sparse portfolio selection [235, 24] and network design [106]

problems among others..

Convex Penalty Interpretations of Relaxations

In this section, we consider instances where rank is penalized in the objective and

interpret the convex relaxations as penalty functions, in the tradition of [103, 198].

With a spectral regularizer, the convex relaxation is equivalent to using the pop-

ular nuclear norm penalty. However, Zhang et al. [232] show that the nuclear norm

cannot encourage low-rank solutions for problems with constraints 𝑋 ⪰ 0, tr(𝑋) = 𝑘,

such as sparse PCA [80], 𝑘-means clustering [191]. In the presence of the Frobenius

penalty, Lemma 5.6 exhibits an alternative to the nuclear norm penalty that can

encourage low-rank solutions in these situations. Our result generalizes the reverse

Huber penalty of [193, 89] from cardinality to rank objectives.

Lemma 5.6. Let Assumption 5.2 hold. Then, the following problems are equivalent:

min
𝑌 ∈Conv(𝒴𝑛)

min
𝑋∈R𝑛×𝑚,𝜃∈𝑆𝑛

𝑔(𝑋) +
1

2𝛾
tr (𝜃) + 𝜆 · tr(𝑌 ) s.t.

⎛⎝ 𝜃 𝑋

𝑋⊤ 𝑌

⎞⎠ ⪰ 0, (5.27)

min
𝑋∈R𝑛×𝑚

𝑔(𝑋) +
𝑛∑︁

𝑖=1

min

(︃√︃
2𝜆

𝛾
𝜎𝑖(𝑋), 𝜆+

𝜎𝑖(𝑋)2

2𝛾

)︃
. (5.28)
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Remark 14.

Since min
0≤𝜃≤1

[︂
𝜆𝜃 +

𝑡2

𝜃

]︂
=

⎧⎪⎨⎪⎩2
√
𝜆|𝑡|, if |𝑡| ≤

√
𝜆,

𝑡2 + 𝜆, otherwise,

Problems (5.27)-(5.28) are equivalent to minimizing

min
𝑋∈R𝑛×𝑚,𝜃∈R𝑛: 0≤𝜃≤𝑒

𝑔(𝑋) +
𝑛∑︁

𝑖=1

(︂
𝜆𝜃𝑖 +

𝜎𝑖(𝑋)2

2𝛾𝜃𝑖

)︂
, (5.29)

which applies the smooth penalty 𝑡 → 𝜆𝜃 + 𝑡2

2𝛾𝜃
: 0 ≤ 𝜃 ≤ 1 to model the non-

convex cost 𝑡→ 𝜆‖𝑡‖0+ 𝑡2

2𝛾
incurred by each singular value of 𝑋. Indeed, this smooth

penalty is precisely the convex envelope of the non-convex cost function [see, e.g., 126].

Compared to other penalties for rank problems [97, 231], this generalized Huber penalty

is convex and could be of independent interest to the statistical learning community.

Proof. Observe that, by the Generalized Schur Complement Lemma, an optimal

choice of 𝜃 in Problem (5.27) is 𝜃 = 𝑋𝑌 †𝑋⊤. Therefore, we can eliminate 𝜃 from

Problem (5.27), to obtain the equivalent objective:

min
𝑌 ∈Conv(𝒴𝑛)

min
𝑋∈R𝑛×𝑚

𝜆 · tr(𝑌 ) + 𝑔(𝑋) +
1

2𝛾
⟨𝑋𝑋⊤,𝑌 †⟩.

Moreover, by the rank-nullity theorem [see, e.g., 134, Chapter 0.2.3], we can split the

columns of 𝑌 into columns in the span of the columns of 𝑋 and columns orthogonal

to the columns of 𝑋. Since the columns orthogonal to the columns of 𝑋 do not affect

the objective value, it follows that we can write 𝑌 † =
∑︀𝑛

𝑖=1
1
𝜃𝑖
𝑢𝑖𝑢

⊤
𝑖 without loss of

optimality, where 𝑋𝑋⊤ = 𝑈Σ𝑈⊤ is an SVD of 𝑋𝑋⊤, and 0 ≤ 𝜃𝑖 ≤ 1 for each 𝜃𝑖,

because 𝑌 ∈ Conv(𝒴𝑛). Problem (5.27) then becomes:

min
𝑋∈R𝑛×𝑚,𝜃∈R𝑛: 0≤𝜃≤𝑒

𝑔(𝑋) +
𝑛∑︁

𝑖=1

(︂
𝜆𝜃𝑖 +

𝜎𝑖(𝑋)2

2𝛾𝜃𝑖

)︂
.

The result then follows because, for any 𝜆 > 0, [c.f. 193, Equation (30)]
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min
0≤𝜃≤1

[︂
𝜆𝜃 +

𝑡2

𝜃

]︂
=

⎧⎪⎨⎪⎩2
√
𝜆|𝑡|, if |𝑡| ≤

√
𝜆,

𝑡2 + 𝜆, otherwise.

Lemma 5.6 proposes an alternative to the nuclear norm penalty for approximately

solving low-rank problems. This is significant, as many low-rank problems have con-

straints 𝑋 ⪰ 0, tr(𝑋) = 𝑘 (e.g. sparse PCA [80], 𝑘-means clustering [191]), and

under these constraints a nuclear norm cannot encourage low-rank solutions [232].

Our next results relate rank minimization problems with a spectral regularizer to

the nuclear norm penalty, in both the square symmetric and the rectangular case:

Lemma 5.7. Suppose Assumption 5.2 holds. Then, the following are equivalent:

min
𝑌 ∈Conv(𝒴𝑛)

min
𝑋∈𝑆𝑛

𝑔(𝑋) + 𝜆 · tr(𝑌 ) s.t. −𝑀𝑌 ⪯𝑋 ⪯𝑀𝑌 , (5.30)

min
𝑋∈𝑆𝑛

𝑔(𝑋) +
𝜆

𝑀
‖𝑋‖* s.t. ‖𝑋‖𝜎 ≤𝑀. (5.31)

Proof. In Problem (5.30), it is not too hard to see that for any 𝑋 an optimal choice of

𝑌 is 𝑌 = 1
𝑀
𝑋++

1
𝑀
𝑋−, where 𝑋+,𝑋− are orthogonal positive semidefinite matrices

such that 𝑋 = 𝑋+ −𝑋−. The result follows as tr(𝑋+ +𝑋−) = ‖𝑋‖*.

Lemma 5.8. Suppose Assumption 5.2 holds. Then, the following are equivalent:

min
𝑌 ∈Conv(𝒴𝑛),𝑌 ′∈Conv(𝒴𝑚)

min
𝑋∈R𝑛×𝑚

𝑔(𝑋) +
𝜆

2
tr(𝑌 ) +

𝜆

2
tr(𝑌 ′) (5.32)

s.t.

⎛⎝𝑀𝑌 𝑋

𝑋⊤ 𝑀𝑌 ′

⎞⎠ ⪰ 0,

min
𝑋∈R𝑛×𝑚

𝑔(𝑋) +
𝜆

𝑀
‖𝑋‖* s.t. ‖𝑋‖𝜎 ≤𝑀. (5.33)

Proof. In (5.32), for any feasible 𝑋 we have ‖𝑋‖𝜎 ≤ 𝑀 . It follows that for any 𝑋

an optimal choice of 𝑌 ,𝑌 ′ is 𝑌 = 𝑈Σ𝑈⊤, 𝑌 ′ = 𝑉 Σ𝑉 ⊤, where 𝑋 = 𝑈Σ𝑉 ⊤ is an

SVD of 𝑋. The result follows as tr(𝑌 ) = tr(Σ) = ‖𝑋‖*.
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5.4 Efficient Algorithmic Approaches

In this section, we present an efficient numerical approach to solve Problem (5.1) and

its relaxations. The backbone is an outer-approximation strategy, embedded within

a non-convex QCQO branch-and-bound procedure to solve the problem exactly. We

also propose rounding heuristics to find good feasible solutions, and semidefinite free

methods for optimizing over (5.1)’s relaxations.

The primary motivations for developing an outer-approximation procedure and

solving mixed-projection problem as saddle-point problems are twofold. First, we are

not aware of any solvers which address mixed-projection problems with semidefinite

constraints. Instead, a decomposition strategy like outer-approximation can be read-

ily implemented using Gurobi (to solve non-convex quadratically constrained master

problems) and Mosek (to solve conic subproblems). Second, decomposition schemes

for mixed-integer semidefinite problems typically outperform one-shot strategies [16],

so we expect - and observe in Section 5.7 - a similar comparison for mixed-projection

optimization, hence connecting the frameworks in theory (see Table 5.1) and practice.

A Globally Optimal Cutting-Plane Method

The analysis in the previous section reveals that evaluating 𝑓(𝑌 ) yields a globally

valid first-order underestimator of 𝑓(·). Therefore, a numerically efficient strategy for

minimizing 𝑓(𝑌 ) is to iteratively minimize and refine a piecewise linear underestima-

tor of 𝑓(𝑌 ). This strategy is known as outer-approximation (OA), and was originally

proposed by Duran and Grossmann [92]. OA iteratively constructs underestimators

of the following form at each iterate 𝑡+ 1:

𝑓𝑡+1(𝑌 ) = max
1≤𝑖≤𝑡

{𝑓(𝑌𝑖) + ⟨𝐻𝑖,𝑌 − 𝑌𝑖⟩} . (5.34)

By iteratively minimizing 𝑓𝑡+1(𝑌 ) and imposing the resulting cuts when constructing

the next underestimator, we obtain a non-decreasing sequence of underestimators

168



𝑓𝑡(𝑌𝑡) and non-increasing sequence of overestimators min𝑖∈[𝑡] 𝑓(𝑌𝑖) which converge to

an 𝜖-optimal solution within a finite number of iterations; see also Section 5.3 for

details on cut generation. Indeed, since Conv
(︀
𝒴𝑘

𝑛

)︀
is a compact set and 𝑓(·) is an

𝐿-Lipschitz continuous function in 𝑌 , OA never visits a ball of radius 𝜖
𝐿

twice.

We now formalize this procedure in Algorithm 5.1, and state its properties:

Algorithm 5.1 An outer-approximation method for Problem (5.11)
Require: Initial solution 𝑌1

𝑡← 1
repeat

Compute 𝑌𝑡+1, 𝜃𝑡+1 solution of

min
𝑌 ∈𝒴𝑘

𝑛,𝜃
𝜃 + 𝜆 · tr(𝑌 ) s.t. 𝑧𝑖𝜃 ≥ ℎ𝑖 + ⟨𝐻𝑖,𝑌 − 𝑌𝑖⟩ ∀𝑖 ∈ [𝑡].

Compute 𝑓(𝑌𝑡+1), 𝐻𝑡+1, 𝑧𝑡+1, 𝑑𝑡+1

until 𝑓(𝑌𝑡)− 𝜃𝑡 ≤ 𝜀 return 𝑌𝑡

Theorem 5.4. Suppose Assumptions 5.1-5.2 hold, and that there exists some Lip-

schitz constant 𝐿 such that for any feasible 𝑌 ,𝑌 ′ ∈ Conv(𝒴𝑘
𝑛) we have: |𝑓(𝑌 ) −

𝑓(𝑌 ′)| ≤ 𝐿‖𝑌 − 𝑌 ′‖𝐹 , and for any feasibility cut ⟨𝐻𝑖,𝑌 − 𝑌𝑖⟩ + ℎ𝑖 ≤ 0 we have

|⟨𝐻𝑖,𝑌 − 𝑌 ′⟩| ≤ 𝐿‖𝑌 − 𝑌 ′‖𝐹 . Let 𝑌𝑡 ∈ 𝒴𝑘
𝑛 be a feasible solution returned by the 𝑡th

iterate of Algorithm 5.1, where

𝑡 ≥
(︂
𝐿𝑘

𝜖
+ 1

)︂𝑛2

.

Then, 𝑌𝑡 is an 𝜖-optimal and 𝜖-feasible solution to Problem (5.10). Moreover, suppose

that we set 𝜖→ 0. Then, any limit point of {𝑌𝑡}∞𝑡=1 solves (5.10).

Proof. We detail the 𝜖-optimality case; the proof of 𝜖-feasibility is identical [179].

Suppose that at some iteration 𝑘 > 1, Algorithm 5.1 has not converged. Then,

𝜃𝑘 − 𝑓(𝑌𝑘) < −𝜖, and 𝜃𝑘 ≥ 𝑓(𝑌𝑖) + ⟨𝐻𝑖,𝑌𝑘 − 𝑌𝑖⟩ ∀𝑖 < 𝑘.

But 𝜃𝑘 ≤ 𝑓(𝑌𝑖), since 𝜃𝑘 and 𝑓(𝑌𝑖) are respectively valid lower and upper bounds on

the optimal objective. Therefore, ⟨𝐻𝑖,𝑌𝑘 − 𝑌𝑖⟩ ≥ 0. Putting the two inequalities
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together then implies that

𝑓(𝑌𝑘)−𝑓(𝑌𝑖) > 𝜖+⟨𝐻𝑖,𝑌𝑘−𝑌𝑖⟩ ≥ 𝜖, or equivalently 𝜖 < 𝑓(𝑌𝑘)−𝑓(𝑌𝑖) ≤ 𝐿‖𝑌𝑖−𝑌𝑘‖𝐹 ,

where the second inequality holds by Lipschitz continuity. Rearranging this inequality

implies that ‖𝑌𝑖 − 𝑌𝑘‖𝐹 > 𝜖
𝐿
, i.e., Algorithm 5.1 never visits any point within a ball

of radius 𝜖
𝐿

(with respect to the Frobenius norm) twice. Moreover, by iteration 𝑘,

Algorithm 5.1 visits 𝑘 points within non-overlapping balls with combined volume

𝑘
𝜋

𝑛2

2

Γ(𝑛
2

2
+ 1)

(︁ 𝜖

𝐿

)︁𝑛2

,

and these balls are centered at feasible points, i.e., contained within a ball of radius

𝐾 + 𝜖
𝐿

with volume

𝜋
𝑛2

2

Γ(𝑛
2

2
+ 1)

(︁
𝐾 +

𝜖

𝐿

)︁𝑛2

.

That is, if Algorithm 5.1 has not converged at iteration 𝑘, we have: 𝑘 <
(︀
𝐿𝐾
𝜖

+ 1
)︀𝑛2

,

which implies we converge to an 𝜖-optimal solution in 𝑘 ≤
(︀
𝐿𝐾
𝜖

+ 1
)︀𝑛2

iterations.

Optimizing over orthogonal projection matrices

To successfully implement Algorithm 5.1, we need to repeatedly solve optimization

problems of the form

min
𝑌 ∈𝒴𝑘

𝑛,𝜃
𝜃 + 𝜆 · tr(𝑌 ) s.t. 𝑧𝑖𝜃 ≥ ℎ𝑖 + ⟨𝐻𝑖,𝑌 − 𝑌𝑖⟩ ∀𝑖 ∈ [𝑡], (5.35)

which requires a tractable representation of 𝒴𝑘
𝑛. Fortunately, Gurobi 9.0 contains a

globally optimal spatial branch-and-bound method for general QCQOs which recur-

sively partitions the feasible region into boxes and invokes the ubiquitous McCormick

inequalities to obtain valid upper and lower bounds on each box—see Achterberg

and Towle [1] for a discussion of Gurobi’s bilinear solver, Belotti et al. [16] for a

general theory of spatial branch-and-bound. Therefore, we represent 𝑌 by intro-

ducing a matrix 𝑈 ∈ R𝑛×𝑘 and requiring that 𝑌 = 𝑈𝑈⊤ and 𝑈⊤𝑈 = I. This
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allows Algorithm 5.1 to be implemented by iteratively solving a sequence of QCQOs

and conic optimization problems. Moreover, to decrease the amount of branching

required in each iteration of Algorithm 5.1, we impose an outer-approximation of the

valid constraint 𝑌 ⪰ 𝑈𝑈⊤. Specifically, we strengthen the formulation by imposing

second-order cone relaxations of the PSD constraint. First, we require that the 2× 2

minors in 𝑌 are non-negative , i.e., 𝑌 2
𝑖,𝑗 ≤ 𝑌𝑖,𝑖𝑌𝑗,𝑗 ∀𝑖, 𝑗 ∈ [𝑛], as proposed in [2, 23].

Second, we require that the on-diagonal entries of 𝑌 ⪰ 𝑈𝑈⊤ are non-negative i.e.,

𝑌𝑖,𝑖 ≥
∑︀𝑘

𝑖=1 𝑈
2
𝑖,𝑡 ∀𝑖 ∈ [𝑛]. Finally, we follow Atamtürk and Gomez [7, Proposition 5]

in taking a second-order cone approximation of the 2 × 2 minors in 𝑌 ⪰ 𝑈𝑈⊤ i.e.,

0 ≥ ‖𝑈𝑖 ±𝑈𝑗‖22 ± 2𝑌𝑖,𝑗 − 𝑌𝑖,𝑖 − 𝑌𝑗,𝑗, ∀𝑖, 𝑗 ∈ [𝑛]. All told, we have3:

min
𝑌 ∈𝑆𝑛,𝑈∈R𝑛×𝑘,𝜃

𝜃 + 𝜆 · tr(𝑌 ) s.t. 𝑧𝑖𝜃 ≥ ℎ𝑖 + ⟨𝐻𝑖,𝑌 − 𝑌𝑖⟩ ∀𝑖 ∈ [𝑡],

𝑌 = 𝑈𝑈⊤,𝑈⊤𝑈 = I, 𝑌𝑖,𝑖𝑌𝑗,𝑗 ≥ 𝑌 2
𝑖,𝑗 ∀𝑖, 𝑗 ∈ [𝑛],

𝑌𝑖,𝑖 ≥
𝑘∑︁

𝑡=1

𝑈2
𝑖,𝑡 ∀𝑖 ∈ [𝑛], tr(𝑌 ) = 𝑘,

0 ≥ ‖𝑈𝑖 +𝑈𝑗‖22 − 2𝑌𝑖,𝑗 − 𝑌𝑖,𝑖 − 𝑌𝑗,𝑗,

0 ≥ ‖𝑈𝑖 −𝑈𝑗‖22 + 2𝑌𝑖,𝑗 − 𝑌𝑖,𝑖 − 𝑌𝑗,𝑗 ∀𝑖, 𝑗 ∈ [𝑛].

(5.36)

Finally, for a given 𝑌 ,𝑈 , we strengthen this formulation by imposing second-

order cone cuts of the form ⟨𝑌 − 𝑈𝑈⊤,𝑢𝑢⊤⟩ ≥ 0, where 𝑢 is the most negative

eigenvector of 𝑌 −𝑈𝑈⊤, as proposed by [209].

As described, a linear optimization problem over the set of orthogonal projection

matrices is solved at each iteration, hence building a new branch-and-bound tree

each time. We refer to this implementation as a “multi-tree” method. Although inef-

ficient if implemented naively, multi-tree methods benefit from gradually tightening

the numerical tolerance of the solver as the number of cuts increases.

To improve the efficiency of Algorithm 5.1, one can integrate the entire procedure

3It should be noted that this formulation is rather complicated because non-convex QCQO solvers
such as Gurobi currently do not model PSD constraints. If they did, we would supplant the second-
order cone constraints with 𝑌 ⪰ 𝑈𝑈⊤ and thereby obtain a simpler master problem.
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within a single branch-and-cut tree using lazy callbacks, as originally proposed in

the context of MICO by [195]. Henceforth, we refer to this implementation as a

“single-tree” method. However, the benefit from using multi-tree over single-tree is

not straightforward for it depends on how the method is engineered. We benchmark

both implementations in Section 5.7.

5.5 Lower bounds via Semidefinite Relaxations

To certify optimality, high-quality lower bounds are of interest and can be obtained by

relaxing the non-convex constraint 𝑌 ∈ 𝒴𝑘
𝑛 to 𝑌 ∈ Conv

(︀
𝒴𝑘

𝑛

)︀
to obtain a semidefinite

relaxation as discussed in Lemma 5.1. In addition to a valid lower bound on (5.11)’s

objective, the optimal solution to the relaxation 𝑌 ⋆ is a natural candidate for a

random rounding strategy, for stronger convex relaxations lead to superior random

rounding strategies. We explore such strategies in detail in the next section.

The convex relaxation yields the optimization problem (5.22) which can be solved

using a cutting-plane method (see Section 5.5), an alternating minimization method

(see Section 5.5) or reformulated as an SDO and solved as such. Since Algorithm 5.1

is an outer-approximation scheme, solving the convex relaxation via a cutting-plane

method has the additional benefit of producing valid linear lower-approximations of

𝑓(𝑌 ) to initialize Algorithm 5.1 with.

Cutting-plane methods for improving the root node bound

As mentioned previously, Problem (5.22) can be solved by a cutting-plane method

such as Kelley’s algorithm [see 146], which is a continuous analog of Algorithm 5.1

that solves Problem (5.11) over Conv(𝒴𝑘
𝑛), rather than 𝒴𝑘

𝑛. The main benefit of such

a cutting-plane method is that the cuts generated are valid for both Conv(𝒴𝑘
𝑛) and

𝒴𝑘
𝑛, and therefore can be used to initialize Algorithm 5.1 and ensure that its initial

lower bound is equal to the semidefinite relaxation. As demonstrated by Fischetti

et al. [106] in the context of MICO and facility location problems, this approach

often accelerates the convergence of decomposition schemes by orders of magnitude.
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Figure 5-1’s left panel illustrates the convergence of Kelley’s method and the

in-out method for solving the semidefinite relaxation of a noiseless matrix completion

problem4. Note that in our plot of the in-out method on the continuous relaxation

we omit the time required to first solve the SDO relaxation; this is negligible (38.4s)

compared to the time required for either approach to solve the relaxation using cutting

planes. Observe that the in-out method’s lower bound is both initially better and

converges substantially faster to the optimal solution than Kelley’s method. This

justifies our use of the in-out method over Kelley’s method for a stabilizing cut loop

in numerical experiments.

Once the relaxation is solved, the generated cuts are used to initialize Algorithm

5.1. Figure 5-1’s right panel displays the convergence profile of the lower bound

of Algorithm 5.1 initialized with cuts from Kelley’s or the in-out method (with a

limit of 100 cuts). We use a single-tree implementation of Algorithm 5.15 and again

a noiseless matrix completion setting6. We also consider the impact of using the

SOC inequalities 𝑌 2
𝑖,𝑗 ≤ 𝑌𝑖,𝑖𝑌𝑗,𝑗 in the master problem formulation. Using the in-out

method and imposing the SOC inequalities are both vitally important for obtaining

high-quality lower bounds from Algorithm 5.1. Accordingly, we make use of both

ingredients in our numerical experiments.

Solving the semidefinite relaxation at scale

In preliminary numerical experiments, we found that modern IPM codes such as

Mosek 9.0 cannot optimize over the Frobenius/nuclear norm penalties when 𝑛 > 200

on a standard laptop. As real-world low-rank problems are often large-scale, we now

explore more scalable alternatives for optimizing over these penalties. As scalable

alternatives for the nuclear norm penalty have been studied, we focus on the Frobenius

4The data generation process is detailed in Section 5.7. Here, 𝑛 = 100, 𝑝 = 0.25, 𝑟 = 1, 𝛾 = 20
𝑝 .

5We warm-start the upper bound with greedy rounding and the Burer-Monterio local improve-
ment heuristic described in Section 5.6. To mitigate against numerical instability, we opted to be
conservative with our parameters, and therefore turned Gurobi’s heuristics off, set FuncPieceError
and FuncPieceLength to their minimum possible values (10−5 and 10−6), set the MIP gap to 1%
and the time limit for each solve to one hour.

6Here, 𝑛 = 10, 𝑝 = 0.25, 𝑟 = 1, and 𝛾 = 5
𝑝 .
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Figure 5-1: Convergence behavior of Kelley’s method and the in-out method
for solving the semidefinite relaxation of a synthetic matrix completion instance
where 𝑛 = 100 (left), and lower bounds generated by a single-tree implementa-
tion of Algorithm 5.1 for a synthetic matrix completion instance where 𝑛 = 10
(right).

penalty, and refer to [198] for nuclear norm minimization. We begin our analysis with

the following result (proof deferred to [34]):

Lemma 5.9. Let us fix 𝑋𝑡 and consider the following optimization problem:

min
𝑌 ∈Conv(𝒴𝑘

𝑛)
min
𝜃∈𝑆𝑛

𝑔(𝑋𝑡) +
1

2𝛾
tr (𝜃) + 𝜆 · tr(𝑌 ) s.t.

⎛⎝ 𝜃 𝑋𝑡

𝑋⊤
𝑡 𝑌

⎞⎠ ⪰ 0. (5.37)

Then, an optimal choice of 𝜃 is given by 𝜃⋆ = 𝑋⊤
𝑡 (𝑌

⋆)†𝑋𝑡, where 𝑌 ⋆ =
∑︀𝑛

𝑖=1 𝜌
⋆
𝑖𝑢𝑖𝑢

⊤
𝑖 ,

𝑋𝑡 = 𝑈Σ𝑉 ⊤ is an SVD of 𝑋𝑡, and 𝜌⋆ is an optimal solution to the following second

order cone problem:

min
𝜌∈[0,1]𝑛: 𝑒⊤𝜌≤𝑘

𝜆 · 𝑒⊤𝜌+
𝑛∑︁

𝑖=1

𝜎(𝑋𝑡)
2

2𝛾𝜌𝑖
. (5.38)

As optimizing over 𝑋 for a fixed 𝑌𝑡 is straightforward, Lemma 5.9 suggests a viable

approach for optimize over the Frobenius norm penalty is alternating minimization

[AM; see 15, for a modern implementation]. By specializing [15]’s implementation

of AM to the Frobenius norm penalty, we obtain an efficient numerical strategy for

obtaining an optimal solution to (5.24), which we present in Algorithm 5.2; we note

that since ⟨𝑋𝑋,𝑌 †⟩ is jointly convex in 𝑋,𝑌 (this follows directly from Lemma

5.4), alternating minimization converges to an optimal solution to the semidefinite
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relaxation under standard convergence conditions for block coordinate descent tech-

niques for convex programs [see, e.g., 22, Section 3.7] such as the introduction of a

proximal term.

We discuss some enhancements to Algorithm 5.2 which improve its convergence.

• Imposing a proximal regularization term in the objective, namely + 𝜏
2
‖𝑋−𝑋𝑡‖2𝐹 ,

improves the rate of convergence of the method by stabilizing the iterates; we

make use of this in our experiments.

• The method stalls when the eigenvalues of 𝑌𝑡 are near zero (a) due to numerical

instability and (b) because 𝑌𝑡 is near the boundary of Conv(𝒴𝑘
𝑛). Therefore, to

accelerate convergence, we require that 𝜆min(𝑌 ) ≥ 𝐾
𝑡

at the 𝑡th iterate, where

𝐾 ≊ 10−2. In practice, this introduces very little error.

• We solve for 𝑉 𝑡+1 via the first-order optimality condition using a successive

over-relaxation technique, or in rare instances where the linear system solver

fails to converge we use Ipopt to solve the QP’s first-order optimality condition.

Algorithm 5.2 An Accelerated Alternating Minimization Algorithm [c.f. 15]
Require: Initial solution 𝑋1, 𝜏1 ← 1
𝑡← 1, 𝑇max

repeat
Compute 𝑊 𝑡+1 solution of argmin𝑌 ∈Conv(𝒴𝑘

𝑛)
𝑔(𝑋𝑡) +

1
2𝛾
⟨𝑋𝑡𝑋

⊤
𝑡 ,𝑌

†⟩
Set 𝑌 𝑡+1 = 𝑊 𝑡 + 𝜏𝑡−1

𝜏𝑡+1
(𝑊𝑡 −𝑊𝑡−1)

Compute 𝑉 𝑡+1 solution of argmin𝑋∈R𝑛×𝑚 𝑔(𝑋) + 1
2𝛾
⟨𝑋𝑋⊤,𝑌 †

𝑡 ⟩
Set 𝑋 𝑡+1 = 𝑉 𝑡 + 𝜏𝑡−1

𝜏𝑡+1
(𝑉𝑡 − 𝑉𝑡−1)

Set 𝜏𝑡+1 =
1+
√

1+4𝜏2𝑡
2

If 𝑡 mod 20 = 0 compute dual bound at 𝑌 𝑡+1 via Equation (5.40).
𝑡← 𝑡+ 1

until 𝑡 > 𝑇max or duality gap ≤ 𝜖 return 𝑋𝑡,𝑌𝑡

To confirm that Algorithm 5.2 has indeed converged (at least approximately) to

an optimal solution, we require a dual certificate. As optimizing over the set of dual

variables 𝛼 for a fixed 𝑌𝑡 does not supply such a bound, we now invoke strong duality

to derive a globally valid lower bound. Formally, we have the following result:
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Lemma 5.10. Suppose Assumption 5.2 holds. Then, strong duality holds between:

min
𝑌 ∈Conv(𝒴𝑘

𝑛)
max

𝛼∈R𝑛×𝑚
ℎ(𝛼)− 𝛾

2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑌𝑖,𝑗⟨𝛼𝑖,𝛼𝑗⟩, (5.39)

max
𝛼∈R𝑛×𝑚,
𝑈⪰0,𝑡≥0

ℎ(𝛼)− tr(𝑈)− 𝑘𝑡 s.t. 𝑈 + I𝑡 ⪰ 𝛾

2
𝛼𝛼⊤. (5.40)

Proof. As Assumption 5.2 holds, we can exchange the minimization and maximization

operators in Problem (5.39). Therefore, (5.39) has the same optimal objective as:

max
𝛼

ℎ(𝛼)− max
𝑌 ∈Conv(𝒴𝑘

𝑛)

𝛾

2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑌𝑖,𝑗⟨𝛼𝑖,𝛼𝑗⟩. (5.41)

Therefore, to establish the result, it suffices to show that we obtain Problem (5.40)

after taking the dual of Problem (5.41)’s inner problem. This is indeed the case,

because Conv(𝒴𝑘
𝑛) is a convex compact set with non-empty relative interior, and

therefore strong duality holds between the following two problems:

max
𝑌 ⪰0

𝛾

2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑌𝑖,𝑗⟨𝛼𝑖,𝛼𝑗⟩ s.t. 𝑌 ⪯ I, [𝑈 ] ⟨I,𝑌 ⟩ ≤ 𝑘, [𝑡],

min
𝑈⪰0,𝑡≥0

tr(𝑈) + 𝑘𝑡 s.t. 𝑈 + I𝑡 ⪰ 𝛾

2
𝛼𝛼⊤.

Note that Lemma 5.10 supplies a valid dual bound for a given 𝑌𝑡, by fixing 𝑌𝑡,

partially maximizing for 𝛼 in (5.39), and evaluating this 𝛼’s objective value in (5.40).

Lemma 5.10 demonstrates that Problem (5.1)’s semidefinite relaxation is equiva-

lent to maximizing the dual conjugate ℎ(𝛼), minus the 𝑘 largest eigenvalues of 𝛾
2
𝛼𝛼⊤.

Moreover, as proven in the special case of sparse regression by Bertsimas et al. [32],

one can show that if the 𝑘th and 𝑘 + 1th largest eigenvalues of 𝛼𝛼⊤ in a solution to

(5.39) are distinct then Problem (5.39)’s lower bound is tight.

Despite superficial similarities, we should emphasize the difference between Algo-

rithm 5.2 and the Burer-Monterio (BM) heuristic method discussed in the introduc-

tion. BM decomposes 𝑋 into 𝑋 = 𝑈𝑉 ⊤ and iteratively optimizes over 𝑈 and 𝑉 .

Although the problem is usually convex in 𝑈 for a fixed 𝑉 (and vice versa), it is not
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jointly convex and BM is only guaranteed to converge to a stationary point. In our

setting, we decompose 𝑋 into 𝑋 = 𝑌 𝑋, leading to semidefinite relaxation that is

jointly convex in (𝑌 ,𝑋). In short, BM returns a stationary solution to the original

problem, while Algorithm 5.2 solves its semidefinite relaxation exactly.

5.6 Upper Bounds via Greedy Rounding

We now propose a greedy rounding method for rounding 𝑌 ⋆, an optimal 𝑌 in a

semidefinite relaxation of Problem (5.10), to obtain near-optimal solutions to Problem

(5.10) quickly. Rounding schemes for approximately solving low-rank optimization

problems by rounding their SDO relaxations have received a great deal of attention

since they were first proposed by Goemans and Williamson [124]. Our analysis is,

however, more general than typically conducted when solving low-rank problems, as

it involves rounding a projection matrix 𝑌 , rather than rounding 𝑋, and therefore

generalizes to the rank-𝑘 case for 𝑘 > 1, which has historically been challenging.

Observe that for any feasible 𝑌 ∈ Conv(𝒴𝑛), 0 ≤ 𝜆𝑖(𝑌 ) ≤ 1 for each eigenvalue of

𝑌 , and 𝑌 is a projection matrix if and only if its eigenvalues are binary. Combining

this observation with the Lipschitz continuity of 𝑓(𝑌 ) in 𝑌 suggests that high-quality

feasible projection matrices can be found in the neighborhood of a solution to the

semidefinite relaxation, and a good method for obtaining them is to greedily round

the eigenvalues of 𝑌 . Namely, let 𝑌 ⋆ denote a solution to the semidefinite relaxation

(5.22), 𝑌 ⋆ = 𝑈Λ⋆𝑈⊤ be a singular value decomposition of 𝑌 ⋆ such that Λ is a diag-

onal matrix with on-diagonal entries Λ𝑖,𝑖, and Λ𝑔𝑟𝑒𝑒𝑑𝑦 be a diagonal matrix obtained

from rounding up (to 1) 𝑘 of the highest diagonal coefficients of Λ⋆, and rounding

down (to 0) the 𝑛 − 𝑘 others, with diagonal entries Λ𝑖,𝑖 := (Λ𝑔𝑟𝑒𝑒𝑑𝑦)𝑖,𝑖. We then let

𝑌𝑔𝑟𝑒𝑒𝑑𝑦 = 𝑈Λ𝑔𝑟𝑒𝑒𝑑𝑦𝑈
⊤. We now provide guarantees on the quality of the rounding:

Theorem 5.5. Let 𝑌 ⋆ denote a solution to the relaxation (5.22), 𝑌 ⋆ = 𝑈Λ𝑈⊤

be a singular value decomposition of 𝑌 ⋆, ℛ denote the indices of strictly fractional
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diagonal entries in Λ, and 𝛼⋆(𝑌 ) denote an optimal choice of 𝛼 for a given 𝑌 , i.e.,

𝛼⋆(𝑌 ) ∈ argmax
𝛼

{︂
max
𝑉11𝑉22

ℎ(𝛼)− Ω⋆ (𝛼,𝑌 ,𝑉11,𝑉22)

}︂
.

Suppose that for any 𝑌 ∈ 𝒴𝑘
𝑛, we have 𝜎max(𝛼

⋆(𝑌 )) ≤ 𝐿. Then, any valid rounding

of 𝑌 ⋆ which preserves the relaxation’s eigenbasis, i.e., 𝑌𝑟𝑜𝑢𝑛𝑑𝑒𝑑 = 𝑈Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑𝑈
⊤ where

𝑌 ⋆ = 𝑈Λ𝑈⊤ and Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑 is a diagonal matrix with binary diagonal entries Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑
𝑖,𝑖

such that tr(Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑) ≤ 𝑘, satisfies

𝑓(𝑌𝑟𝑜𝑢𝑛𝑑𝑒𝑑)− 𝑓(𝑌 ⋆) ≤ 𝛾

2
𝐿2|ℛ| max

𝛽≥0:‖𝛽‖1≤1

∑︁
𝑖∈ℛ

(Λ⋆
𝑖,𝑖 − Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑

𝑖,𝑖 )𝛽𝑖, (5.42)

under the Frobenius penalty and

𝑓(𝑌𝑟𝑜𝑢𝑛𝑑𝑒𝑑)− 𝑓(𝑌 ⋆) ≤𝑀𝐿|ℛ| max
𝛽≥0:‖𝛽‖1≤1

∑︁
𝑖∈ℛ

(Λ⋆
𝑖,𝑖 − Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑

𝑖,𝑖 )𝛽𝑖, (5.43)

for the spectral penalty. Moreover, let 𝑌𝑔𝑟𝑒𝑒𝑑𝑦 = 𝑈Λ𝑔𝑟𝑒𝑒𝑑𝑦𝑈
⊤ be an instance of 𝑌𝑟𝑜𝑢𝑛𝑑𝑒𝑑

obtained by setting Λ𝑖,𝑖 = 1 for 𝑘 of the highest diagonal coefficients in Λ⋆. Then, the

above bounds imply that 0 ≤ 𝑓(𝑌𝑔𝑟𝑒𝑒𝑑𝑦) − 𝑓(𝑌 ⋆) ≤ 𝜖, where 𝜖 = 𝑀𝐿min(|ℛ|, 𝑛 − 𝑘)

for the spectral penalty and 𝜖 = 𝛾
2
min(|ℛ|, 𝑛− 𝑘)𝐿2 for the Frobenius penalty.

This result calls for multiple remarks:

• When the relaxation gap 𝑓(𝑌greedy) − 𝑓(𝑌 ⋆) = 0, and the optimal solution to

the relaxation, 𝑌 ⋆, is unique, |ℛ| = 0. This justifies retaining ℛ in the bound,

rather than replacing it with 𝑛.

• The rounding technique is robust, because it minimizes the worst-case Lipschitz

upper bound, under the assumption 𝜎max(𝛼
⋆) ≤ 𝐿 (i.e., we have no information

about which coordinate7 has the largest Lipschitz upper bound). For instance,

7If we had this information then, as the proof of Theorem 5.5 suggests, we would greedily round
to one 𝑘 of the indices with the largest values of 𝐿𝑖Λ

⋆
𝑖,𝑖.
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under Frobenius regularization the bound is

𝑓(𝑌𝑟𝑜𝑢𝑛𝑑𝑒𝑑)− 𝑓(𝑌 ⋆) ≤ 𝛾

2
𝐿2|ℛ| max

𝛽≥0:‖𝛽‖1≤1

∑︁
𝑖∈ℛ

(Λ⋆
𝑖,𝑖 − Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑

𝑖,𝑖 )𝛽𝑖, (5.44)

which is minimized over Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑 : tr(Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑) ≤ 𝑘 by solving:

min
𝜆∈𝒮𝑘

𝑛

max
𝛽≥0:‖𝛽‖1≤1

𝛾

2
𝐿2|ℛ|

∑︁
𝑖∈ℛ

(Λ⋆
𝑖,𝑖 − 𝜆𝑖)𝛽𝑖, (5.45)

i.e., rounding greedily. Therefore, greedy rounding never performs too badly.

Proof. Since tr(Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑) ≤ 𝑘 < 𝑛, the vector (Λ⋆
𝑖,𝑖 − Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑

𝑖,𝑖 )𝑖 has at least one non-

negative entry and

max
𝛽≥0:‖𝛽‖1≤1

∑︁
𝑖∈ℛ

(Λ⋆
𝑖,𝑖 − Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑

𝑖,𝑖 )𝛽𝑖 = max
{︁
0,max

𝑖
(Λ⋆

𝑖,𝑖 − Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑
𝑖,𝑖 )

}︁
= max

𝑖
(Λ⋆

𝑖,𝑖 − Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑
𝑖,𝑖 ).

Consequently, to establish the result, we need only establish the following inequalites:

𝑓(𝑌𝑟𝑜𝑢𝑛𝑑𝑒𝑑)− 𝑓(𝑌 ⋆) ≤ 𝛾

2
𝐿2 max

𝛽≥0:‖𝛽‖∞≤1

∑︁
𝑖∈ℛ

(︀
Λ⋆

𝑖,𝑖 − Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑
𝑖,𝑖

)︀
𝛽𝑖

≤ 𝛾

2
𝐿2|ℛ| max

𝛽≥0:‖𝛽‖1≤1

∑︁
𝑖∈ℛ

(Λ⋆
𝑖,𝑖 − Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑

𝑖,𝑖 )𝛽𝑖,

under the Frobenius penalty and

𝑓(𝑌𝑟𝑜𝑢𝑛𝑑𝑒𝑑)− 𝑓(𝑌 ⋆) ≤𝑀𝐿 max
𝛽≥0:‖𝛽‖∞≤1

∑︁
𝑖∈ℛ

(︀
Λ⋆

𝑖,𝑖 − Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑
𝑖,𝑖

)︀
𝛽𝑖

≤𝑀𝐿|ℛ| max
𝛽≥0:‖𝛽‖1≤1

∑︁
𝑖∈ℛ

(Λ⋆
𝑖,𝑖 − Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑

𝑖,𝑖 )𝛽𝑖,

for the spectral penalty. The second half of both inequalities follows readily from

the fact that ‖𝛽‖1 ≤ |ℛ|‖𝛽‖∞ ≤ |ℛ| which allows us to replace ‖𝛽‖∞ ≤ 1 with

‖𝛽‖1 ≤ |ℛ| and move |ℛ| outside the bound, so we focus our attention to the first

half. After establishing these inequalities, the result follows by observing that 𝑌𝑔𝑟𝑒𝑒𝑑𝑦
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minimizes the right-hand-side of (5.42)-(5.43) over the projection matrices 𝑌𝑟𝑜𝑢𝑛𝑑𝑒𝑑.

Under a Frobenius penalty, by Lipschitz continuity, we have

𝑓(𝑌𝑟𝑜𝑢𝑛𝑑𝑒𝑑)− 𝑓(𝑌 ⋆) ≤ 𝛾

2
⟨𝛼⋆(𝑌 )𝛼⋆(𝑌 )⊤,𝑈(Λ⋆ −Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑)𝑈

⊤⟩

=
𝛾

2
⟨𝑈⊤𝛼⋆(𝑌 )𝛼⋆(𝑌 )⊤𝑈 ,Λ⋆ −Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑⟩.

Moreover, since Λ⋆−Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑 is a diagonal matrix we need only include the diagonal

terms in the inner product. Therefore, since

(𝑈⊤𝛼⋆(𝑌 )𝛼⋆(𝑌 )⊤𝑈)𝑖,𝑖 = ⟨𝛼⋆(𝑌 )⊤𝛼⋆(𝑌 ),𝑈𝑖𝑈
⊤
𝑖 ⟩ ≤ 𝜆max(𝛼

⋆(𝑌 )⊤𝛼⋆(𝑌 )) ≤ 𝐿2,

where the inequality holds as ‖𝑈𝑖‖2 = 1, the bound on 𝑓(𝑌𝑟𝑜𝑢𝑛𝑑𝑒𝑑)− 𝑓(𝑌 ⋆) holds.

Alternatively, under spectral norm regularization, by Lipschitz continuity we have

𝑓(𝑌𝑟𝑜𝑢𝑛𝑑𝑒𝑑)− 𝑓(𝑌 ⋆) ≤𝑀⟨𝑉 ⋆
11(𝑌 ) + 𝑉 ⋆

22(𝑌 ),𝑈(Λ⋆ −Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑)𝑈
⊤⟩

= 𝑀⟨𝑈⊤(𝑉 ⋆
11(𝑌 ) + 𝑉 ⋆

22(𝑌 ))𝑈 ,Λ⋆ −Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑⟩.

Moreover, Λ⋆ −Λ𝑟𝑜𝑢𝑛𝑑𝑒𝑑 is a diagonal matrix and therefore

(𝑈⊤(𝑉 ⋆
11(𝑌 ) + 𝑉 ⋆

22(𝑌 ))𝑈)𝑖,𝑖 = ⟨𝑈𝑖𝑈
⊤
𝑖 ,𝑉

⋆
11(𝑌 ) + 𝑉 ⋆

22(𝑌 )⟩ ≤ 𝜆max(𝛼
⋆(𝑌 )) ≤ 𝐿,

where the last inequality follows since 𝑉11,𝑉22 are orthogonal at optimality, meaning

𝑉11+𝑉22’s leading eigenvalue equals 𝛼⋆’s leading singular value. Therefore, the bound

on 𝑓(𝑌𝑟𝑜𝑢𝑛𝑑𝑒𝑑)− 𝑓(𝑌 ⋆) holds.

To improve the greedily rounded solution, we implement a local search strategy

which obtains even higher quality warm-starts. Namely, a variant of the popular

Burer-Monterio (BM) heuristic [58], which seeks low-rank solutions 𝑋 by applying

a non-linear factorization 𝑋 = 𝑈𝑉 ⊤, where 𝑈 ∈ R𝑛×𝑙,𝑉 ∈ R𝑚×𝑘 and iteratively

optimizing over 𝑈 for a fixed 𝑉 (resp. 𝑉 for a fixed 𝑈) until convergence to a

local optima occurs. This strategy improves our greedily rounded solution because
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we initially set 𝑈 to be the square root of 𝑌𝑔𝑟𝑒𝑒𝑑𝑦 and optimize over 𝑉 ; recall that

if 𝑌 is a projection matrix we have 𝑌 = 𝑈𝑈⊤ and 𝑋 = 𝑈Σ𝑉 ⊤ for some singular

value decomposition 𝑈 ,Σ,𝑉 ⊤.

5.7 Numerical Experiments

In this section, we evaluate the algorithmic strategies derived in the previous sec-

tion, implemented in Julia 1.3 using JuMP.jl 0.20.1, Gurobi 9.0.1 to solve the

non-convex QCQO master problems8, and Mosek 9.1 to solve the conic subprob-

lems/continuous relaxations. Except where indicated otherwise, all experiments were

performed on a Intel Xeon E5—2690 v4 2.6GHz CPU core using 32 GB RAM. To

bridge the gap between theory and practice, we have made our code available at

github.com/ryancorywright/MixedProjectionSoftware.

We evaluate the different ingredients of our numerical strategy on a matrix com-

pletion example: First, we solve the semidefinite relaxation by implementing Algo-

rithm 5.2 and demonstrate its increased scalability over Mosek’s IPM in Section 5.7.

From the solution of the relaxation, our rounding and local search heuristics then

provide near-optimal solutions that outperform state-of-the-art heuristic methods, as

discussed in Section 5.7. We implement Algorithm 5.1, benchmark its performance

and, for the first time, solve low-rank matrix completion to certifiable optimality in

Section 5.7. In Section 5.7, we explore the role which regularization plays in our nu-

merical strategy, by showing that increasing the amount of regularization in Problem

(5.1) decreases the relative gap, the problem’s complexity, and the amount of time

required to solve the problem to optimality.

Exploring the Scalability of the Convex Relaxations

In this section, we explore the relative scalability of Mosek’s and Algorithm 5.2.
8We remark that Gurobi solves the non-convex QCQO master problems by translating them to

piecewise linear optimization problems. Since rank constraints are not MICO representable, this
introduces some error. To mitigate against this error, we set the Gurobi parameters FuncPieceError
and FuncPieceLength to their minimum possible values (10−6 and 10−5 respectively). Additionally,
we set NonConvex to 2, and otherwise use default Gurobi/Mosek parameters.
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We consider relaxations of matrix completion. Similarly to [62], we generate two

matrices 𝑀𝐿,𝑀𝑅 ∈ R𝑛×𝑟 with i.i.d. 𝒩 (0, 1) entries, and attempt to recover the

matrix 𝑀 = 𝑀𝐿𝑀
⊤
𝑅 given a proportion 𝑝 of its observations. Here, we fix 𝑝 = 0.25

and 𝑘 = 𝑟 = 5, vary 𝑛, and set 𝛾 = 20
𝑝

where we scale 𝛾 proportionally to 1/𝑝 so that

the relative importance of ‖𝑋‖2𝐹 and
∑︀

(𝑖,𝑗)∈Ω(𝑋𝑖,𝑗 − 𝐴𝑖,𝑗)
2 remains constant with 𝑝.

We solve the continuous relaxation

min
𝑋∈R𝑛×𝑛,𝑌 ∈Conv(𝒴𝑘

𝑛),𝜃∈𝑆𝑛

1

2𝛾
tr(𝜃) +

∑︁
(𝑖,𝑗)∈Ω

(𝑋𝑖,𝑗 − 𝐴𝑖,𝑗)
2 s.t.

⎛⎝ 𝜃 𝑋

𝑋⊤ 𝑌

⎞⎠ ⪰ 0. (5.46)

Table 5.3 reports the time required by Algorithm 5.2 to obtain a solution with a

relative duality gap of 0.1%. To evaluate numerical stability, we also report the

relative MSE of the greedily rounded solution; experiments where 𝑛 ≤ 250 were run

on a standard MacBook pro with 16GB RAM, while larger experiments were run on

the previously described cluster with 100GB RAM.

Table 5.3: Scalability of convex relaxations, averaged over 5 matrices. Prob-
lem is regularized with Frobenius norm and 𝛾 = 20

𝑝 . “-” indicates an instance
could not be solved with the supplied memory budget.

𝑛 Mosek Algorithm 5.2 𝑛 Algorithm 5.2

Rel. MSE Time (s) Rel. MSE Time (s) Rel. MSE Time (s)

50 0.429 2.28 0.438 17.28 350 0.058 6, 970
100 0.138 47.20 0.139 79.01 400 0.056 8, 096
150 0.082 336.1 0.081 228.7 450 0.055 26, 350
200 0.0675 1, 906 0.067 841.7 500 0.054 28, 920
250 - - 0.062 1, 419 550 0.0536 39, 060
300 - - 0.059 2, 897 600 0.0525 38, 470

Our results demonstrate the efficiency of Algorithm 5.2: the relative MSE is com-

parable to Mosek’s, but computational time does not explode with 𝑛. Since it does

not require solving any SDOs and avoids the computational burden of performing the

Newton step in an IPM, Algorithm 5.2 scales beyond 𝑛 = 600 (1, 440, 000 decision

variables), compared to 𝑛 = 200 for IPMs (80, 000 decision variables).
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Numerical Evaluation of Greedy Rounding

In this section, we compare the greedy rounding method with state-of-the-art heuristic

methods, and demonstrate that, by combining greedy rounding with the local search

heuristic of [58], our approach outperforms state-of-the-art heuristic methods and

therefore should be considered as a viable and efficient warm-start for Algorithm 5.1.

We consider the previous matrix completion problems and assess the ability to

recover the low-rank matrix 𝑀 (up to a relative MSE of 1%), for varying fraction of

observed entries 𝑝 and rank 𝑟, with 𝑛 = 100 fixed. Note that, other than the inclusion

of a Frobenius regularization term, this is the same experimental setup considered by

[63, 198] among others.

We compare the performance of four methods: the greedy rounding method, both

with and without the local improvement heuristic from [58], against the local improve-

ment heuristic alone (with a thresholded-SVD initialization point) and the nuclear

norm approach. Specifically, the greedy rounding method takes the solution of the

previous convex relaxation with 𝛾 = 500
𝑝

and rounds its singular values to generate a

feasible solution 𝑌𝑔𝑟𝑒𝑒𝑑𝑦. For the local improvement heuristic, we solve:

min
𝑋∈R𝑛×𝑛,𝑈 ,𝑉 ∈R𝑛×𝑘

1

2𝛾
‖𝑋‖22 +

∑︁
(𝑖,𝑗)∈Ω

(𝑋𝑖,𝑗 − 𝐴𝑖,𝑗)
2 s.t. 𝑋 = 𝑈𝑉 ⊤,

for 𝛾 = 500
𝑝

and 𝑘 = 𝑟, and iteratively optimize over 𝑈 and 𝑉 using Mosek. We

provide an initial value for 𝑈 by either taking the first 𝑘 left-singular vectors of

a matrix 𝐴 where unobserved entries are replaced by 0, or taking the square root

of 𝑌𝑔𝑟𝑒𝑒𝑑𝑦. For the nuclear norm regularization strategy, since our observations are

noiseless, we solve: min𝑋∈R𝑛×𝑛 ‖𝑋‖* s.t. 𝑋𝑖,𝑗 = 𝐴𝑖,𝑗 ∀(𝑖, 𝑗) ∈ Ω.

Figure 5-2 depicts the proportion of times the matrix was recovered exactly (av-

eraged over 25 samples per tuple of (𝑛, 𝑝, 𝑟)). As in [63, 198], we vary 𝑝 between 0

and 1 and consider all possible ranks 𝑟 such that 𝑟(2𝑛 − 𝑟) ≤ 𝑝𝑛2. From this set

of experiments, we make several observations: First, greedy rounding and the local

improvement heuristic outperform nuclear norm minimization both in terms of av-

erage relative MSE and amount of data required to recover the matrix. Second, the
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Figure 5-2: Prop. matrices recovered with ≤ 1% relative MSE (higher is
better), for different values of 𝑝 (x-axis) and 𝑟(2𝑛− 𝑟)/𝑝𝑛2 ∝ 1/𝑛 (y-axis),
averaged over 25 rank-𝑟 matrices.

local improvement heuristic improves upon greedy rounding. In terms of its ability to

recover the underlying matrix exactly, it performs equally well with either initializa-

tion strategy. However, initialization with the greedy rounding supplies dramatically

lower average MSEs in instances where no approach recovers the true matrix exactly.

This suggests that initialization strategies for the Burer-Monterio heuristic should be

revisited and greedy rounding considered as a viable and more accurate alternative

than selecting a random feasible point.

Benchmarking Algorithm 5.1 on Matrix Completion Problems

We now benchmark Algorithm 5.1 on matrix completion problems where 𝑛 ∈ {10, 20, 30}.

We first compare the two different implementations of Algorithm 5.1, single- and

multi-tree. In Algorithm 5.1, the lower bounds are warm-started with 200 cuts from
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the in-out method, and greedy rounding with local search improvement is used for

the upper bounds; if a single-tree instance fails to find a feasible solution (due to

numerical instability in Gurobi) we return the gap between the warm-start and the

semidefinite relaxation. At the 𝑡th iteration, we impose a time limit of 10𝑡 seconds for

generating the new cut so as to increase numerical precision as the solver progresses.

We also impose a limit of 20 cuts for the multi-tree approach, a time limit of 30, 000s

for the single-tree approach, and an optimality gap of 1%9. Average runtime, number

of nodes, and optimality gap are reported in Table 5.4. Note that the same random

instances were solved by all three approaches (by fixing the random seeds), to facilitate

a less noisy comparison.

We observe that multi-tree dominates single-tree and Gurobi in terms of runtime

and the quality of the solution found, although single-tree occasionally has a smaller

gap at termination. Moreover, multi-tree consistently finds high-quality feasible so-

lutions earlier than single tree and accepts our warm-start more consistently, which

suggests it may scale better to high-dimensional settings.

Next, we evaluate the performance of the multi-tree implementation of Algorithm

5.1 on a more extensive test-set, including instances where Rank(𝑀 ) > 1, in Table

5.5. Note that when 𝑟 = 1 we use the same experimental setup (although we impose

a time limit of 30𝑡 seconds, or 7200 seconds if there has been no improvement for

two consecutive iterations, a cut limit of 50 cuts when 𝑛 > 20), and when 𝑟 > 1 we

increase the time limit per iteration to 300t seconds (or 7200 seconds if there has been

no improvement for two consecutive iterations), and allow up to 100 PSD cuts per

iteration to be added at the root node via a user cut callback, in order to strengthen

the approximation of the PSD constraint 𝑌 ⪰ 0. We observe that the problem’s

complexity increases with the rank, although not too excessively. Moreover, when

𝑟 > 1 the bound gap is actually smaller when 𝛾 = 100
𝑝

than when 𝛾 = 20
𝑝
. We

9We report the absolute gap between the better of Gurobi’s lower bound and the semidefinite
lower bound, compare to the objective value which we evaluate directly; this is sometimes 1 − 2%
even when Gurobi reports that it has found an optimal solution, due to numerical instability in
Gurobi. Note that we report the absolute, rather than relative, gap since the relative gap depends
on the quality of Gurobi’s approximation of 𝒴𝑘

𝑛, which is controlled by the parameter FuncPieceError
and cannot be set lower than 10−6; also note that the objective values are on the order of 0.5-5.0
for the problems reported in Table 4.
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Table 5.4: Scalability of Algorithm 5.1 for solving rank-1 matrix completion
problems to certifiable optimality, averaged over 20 random matrices per row.
In multi-tree, Nodes (t) denotes the number of nodes expanded over all trees
for the multi-tree implementation.

Algorithm 5.1 (single-tree) Algorithm 5.1 (multi-tree)

𝑛 𝑝 𝛾 Time(s) Gap Cuts Time(s) Gap Cuts

10 0.1 20/𝑝 10, 310 0.0004 23, 460 252.3 0.0019 2.95
10 0.2 20/𝑝 19, 440 0.0229 19, 370 1, 672 0.0104 11.0
10 0.3 20/𝑝 20, 368 0.0433 20, 290 2, 319 0.0317 15.4

10 0.1 100/𝑝 18, 580 0.0015 42, 200 239.5 0.0003 3.20
10 0.2 100/𝑝 27, 990 0.0492 31, 060 1, 269 0.0042 8.40
10 0.3 100/𝑝 25, 750 0.0434 23, 390 2, 472 0.0098 19.6

20 0.1 20/𝑝 > 30, 000 0.741 13, 070 2, 917 0.0166 18.5
20 0.2 20/𝑝 > 30, 000 0.1816 7, 008 3, 512 0.247 20.0
20 0.3 20/𝑝 28, 700 0.1066 6, 828 3, 287 0.253 19.6

20 0.1 100/𝑝 > 30, 000 0.7714 13, 799 6, 152 0.0072 17.6
20 0.2 100/𝑝 > 30, 000 0.0543 6, 395 3, 106 0.0903 17.6
20 0.3 100/𝑝 29, 530 0.0271 6, 510 2, 910 0.1368 17.0

believe this is because Gurobi cannot represent the SDO constraint 𝑌 ⪰ 0 and its

SOC approximation is inexact (even with PSD cuts), and in some cases refining this

approximation is actually harder than refining our approximation of 𝑔(𝑋).

Note that the main bottleneck inhibiting solving matrix completion problems

where 𝑛 ≥ 50 is Gurobi, as the non-convex solver takes increasing amounts of time

to process warm-starts (sometimes in the 100s or 1000s of seconds) when 𝑛 increases.

We believe this may be because of the way Gurobi translates orthogonal projection

matrices to a piecewise linear formulation. Encouragingly, this suggests that our ap-

proach may successfully scale to 100× 100 matrices as Gurobi improves their solver.

Finally, we compare the solution from the exact formulation (5.10) solved using

Algorithm 5.1 (multi-tree) with the initial warm-start we proposed and two state-

of-the-art heuristics, namely nuclear norm minimization and the Burer-Monterio ap-

proach, as in Section 5.7. Here, we take 𝑛 ∈ {25, 50}, 𝑟 = 1, 𝑝 ranging from 0 to

0.4, and 𝛾 = 100
𝑝

. Figure 5-3 depicts the average relative MSE over the entire matrix,

averaged over 25 random instances per value of 𝑝. When 𝑝 ≥ 0.2, the exact method

supplies an out-of-sample relative MSE around 0.6% lower than Burer-Monterio10.
10Because we ran all methods on the same random instances, this difference is statistically signif-
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(b) 𝑛 = 50

Figure 5-3: Average relative MSE for nuclear norm (NN), greedy rounding
(GD), Burer-Monterio (BM), and outer-approximation (OA) when imputing a
rank-1 𝑛× 𝑛 matrix. All results are averaged over 25 matrices.

Impact of Regularization on Problem Complexity

We now examine the impact of the regularization term 1
2𝛾
‖𝑋‖2𝐹 on the problem com-

plexity, as captured by the relative in-sample duality gap between the semidefinite

relaxation and the objective value of the greedy solution with a BM local improve-

ment heuristic. We generate the problem data in the same manner as the previous

experiment, and display results for four values of 𝛾 in Figure 5-4. Observe that as 𝛾

increases, both the duality gap and the problem’s complexity increase. This obser-

vation confirms similar results on the impact of regularization in mixed-integer conic

optimization problems [24, 33, c.f.]. Additionally, when 𝛾 = 500
𝑝

in Figure 5-4(d), the

region where the in-sample duality gap is zero corresponds to exactly recovering the

underlying matrix with high probability, while a strictly positive duality gap corre-

sponds to instances with partial recovery only (see Figure 5-2). This suggests a deep

connection between relaxation tightness and statistical recovery.

While the relative in-sample semidefinite relaxation gap is a theoretical measure of

problem difficulty, it does not indicate how fast Algorithm 5.1 converged in practice.

In this direction, we solve the 20 synthetic matrix completion problems considered

in Table 5.4 where 𝑛 ∈ {10, 20}, 𝑟 = 1, 𝑝 ∈ {0.2, 0.3} for 20 different values of 𝛾 ∈

icant, with a p-value of 2 × 10−51 (resp. 2 × 10−129) that the relative MSE is lower for the exact
method when 𝑛 = 25 (resp. 𝑛 = 50).
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Figure 5-4: Average relative in-sample bound gap (%), averaged over 25 rank-
𝑟 matrices.

[100, 104] (distributed uniformly on a log-scale), and compare the relative in-sample

semidefinite gap (greedily rounded solution vs. semidefinite bound) with Algorithm

5.1’s runtimes in Figure 5-5, for the single-tree (left panel) and multi-tree (right panel)

implementation. Results are averaged over 20 random synthetic instances per value of

𝛾. We observe that the relaxation gap does correlate with runtime for single-tree. Yet,

the relationship between the relaxation gap and runtime is less straightforward for

multi-tree, as it depends on how Gurobi balances cut generation and node expansion,

and the conditioning of the problem.

The regularizer 𝛾 also impact the bias term 1
2𝛾
‖𝑋‖2𝐹 added to the objective func-

tion, hence the suboptimality of the solution. To further illustrate the impact of the

regularizer 𝛾 on solve times and the trade-off between tractability and sub-optimality,

Figure 5-6 reports the average runtime and MSE for the previously solved instances,

as a function of 𝛾. Figure 5-6 illustrates how 𝛾 balances tractability (runtime, top

row) and optimality of the solution (MSE, bottom row). Also, single-tree (left panel)

is one order of magnitude slower than multi-tree (right panel), and is also more nu-
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Figure 5-5: Average runtime against relative semidefinite relaxation gap for
Algorithm 5.1 single-tree (left) and multi-tree (right) over 20 synthetic matrix
completion instances per data point, where 𝑝 ∈ {0.2, 0.3}, 𝑟 = 1, 𝑛 ∈ {10, 20}.

merically instable when 𝛾 increases, largely because of the difficulty of combining a

non-convex master problem and lazy constraint callbacks (which imposes many cuts,

without processing the implications of these cuts as quickly). Echoing our findings in

the previous section, this suggests that, while in MICO single-tree typically outper-

forms multi-tree, at the current state of technology multi-tree should be considered

as a viable and potentially more efficient alternative for matrix completion problems

which have non-convex master problems. However, as the algorithmic implementa-

tions of non-convex QCQOP solvers mature, this finding should be revisited.

Algorithm 5.1 on Coordinate Recovery Problems

We now benchmark the performance of Algorithm 5.1 on anchor-free synthetic coor-

dinate recovery problems, as previously studied by [45, 164] among others.

Specifically, we sample 𝑛 coordinates 𝑥𝑖 uniformly over [−0.5, 0.5]𝑘 for 𝑘 ∈ {2, 3},

and attempt to recover a noisy Gram matrix 𝐺 ∈ 𝑆𝑛
+ of the 𝑥𝑖’s, given a subset of

observations of the underlying matrix. Similarly to Biswas and Ye [45], we supply the

distance between the points 𝐷𝑖,𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖22 + 𝑧, where 𝑧 ∼ 𝒩 (0, 0.01), if and only

if the radio range between the two points is such that 𝐷𝑖,𝑗 ≤ 𝑑2𝑟𝑎𝑑𝑖𝑜. Note that we

solve these problems in precisely the same fashion as the largest matrix completion

problems solved in the previous section (multi-tree, with a limit of 50 cut passes etc.)

Formally, in order to account for noise in the observed entries, we solve the fol-
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Figure 5-6: Average runtime (top) and MSE (bottom) vs. 𝛾 for Algorithm
5.1 single-tree (left) and multi-tree (right) implementations over 20 synthetic
matrix completion instances where 𝑝 ∈ {0.2, 0.3}, 𝑟 = 1 and 𝑛 ∈ {10, 20}. The
same random seeds were used to generate random matrices completed by single-
tree and multi-tree.

lowing problem:

min
𝑌 ∈𝒴𝑘

𝑛

min
𝐺∈𝑆𝑛

+

1

2𝛾
‖𝐺‖2𝐹 + tr(𝐺) + 𝜆 · ‖𝜉‖1

s.t. 𝐺𝑖,𝑖 +𝐺𝑗,𝑗 − 2𝐺𝑖,𝑗 + 𝜉𝑖,𝑗 = 𝐷𝑖,𝑗 ∀(𝑖, 𝑗) ∈ Ω, 𝐺 = 𝑌 𝐺,

where 𝜆 > 0 is a penalty term which encourages robustness, and the Frobenius norm

objective likewise encourages robustness against noise in 𝐺. The performance of

Algorithm 5.1 (multi-tree) on various synthetic instances is reported in Table 5.6, for

𝛾, 𝑛, 𝑑𝑟𝑎𝑑𝑖𝑜, 𝑘 varying.

We observe that the problem’s complexity increases with the rank and with the

dimensionality of the Gram matrix, although not too excessively. Indeed, Algorithm

5.1 can solve coordinate recovery problems with tens of data points to certifiable

optimality in hours.
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Table 5.6: Scalability of Algorithm 5.1 (multi-tree) for solving sensor location
problems to certifiable optimality, averaged over 20 random instances per row.
A “-” denotes an instance that cannot be solved within the time budget, because
Gurobi fails to accept our warm-start and cannot find a feasible solution. We
let 𝜆 = 𝑛2 for all instances.

Rank-2 Rank-3

𝑛 𝑑𝑟𝑎𝑑𝑖𝑜 𝛾 Time(s) Nodes Gap Cuts Time(s) Nodes Gap Cuts

10 0.1 1/𝑝 135.3 6, 926 0.0001 1.00 45.14 0.02 0.0000 1.00
10 0.2 1/𝑝 3, 189 5, 249 0.0024 11.5 216.8 7, 819 0.0022 1.00

10 0.1 100/𝑝 76.2 1, 155 0.0000 1.00 140.6 950 0.0000 1.00
10 0.2 100/𝑝 480.6 0.05 0.0001 21.7 92.6 139 0.0000 1.14

20 0.1 1/𝑝 3, 475 4, 548 0.0007 13.0 3, 090 9, 740 0.0001 1.00
20 0.2 1/𝑝 73, 000 0.50 0.0149 50.0 7, 173 5, 313 0.0038 1.20

20 0.1 100/𝑝 1, 878 0.00 0.0000 3.91 64.9 0.00 0.0000 1.07
20 0.2 100/𝑝 67, 530 0.20 0.0044 50.0 55.7 0.00 0.0002 1.00

Summary of Findings from Numerical Experiments

Our main findings from the numerical experiments are as follows:

• Algorithm 5.2 successfully solves convex relaxations of low-rank problems where

𝑛 = 100s, in a faster and more scalable fashion than state-of-the-art interior

point codes such as Mosek.

• Increasing the amount of regularization in a low-rank problem by decreasing 𝛾

decreases the duality gap between a low-rank problem with Frobenius or spectral

norm problem, and its convex relaxation. Therefore, increasing the amount

of regularization makes the problem easier in a practical sense (although not

necessarily in a complexity-theoretic sense).

• Algorithm 5.1 scales to solve problems where 𝑛 is in the tens, i.e., hundreds

or thousands of decision variables, in hours. Moreover, the main bottleneck

inhibiting solving problems where 𝑛 is in the hundreds or thousands is that we

solve our master problems using Gurobi, a QCQO solver which translates the

orthogonal projection matrix constraint into many piecewise linear constraints.

This suggests that a custom branch-and-bound solver which explicitly models

orthogonal projection matrices constitutes a promising area for future work.
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5.8 Conclusion

In this chapter, we introduced Mixed-Projection Conic Optimization, a new frame-

work for modeling rank constrained optimization problems that, for the first time,

solves low-rank problems to certifiable optimality at moderate problem sizes. We

also provided a characterization of the complexity of rank constraints, and proposed

new convex relaxations and rounding methods that lead to viable and more accurate

solutions than those obtained via existing techniques such as the log-det or nuclear

norm heuristics. Inspired by the collective successes achieved in mixed-integer opti-

mization, we hope that MPCO constitutes an exciting new research direction for the

optimization community. For instance, we believe that custom branch-and-bound

solvers that explicitly model orthogonal projection matrices could further enhance

the scalability of the MPCO framework.
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Chapter 6

A New Perspective on Low-Rank

Optimization

Over the past decade, a considerable amount of attention has been devoted to low-

rank optimization, resulting in theoretically and practically efficient algorithms for

problems as disparate as matrix completion, reduced rank regression, or computer

vision. In spite of this progress, almost no equivalent progress has been made on

developing strong lower bounds for low-rank problems. Accordingly, this chapter

proposes a procedure for obtaining strong lower bounds.

We consider the following low-rank optimization problem:

min
𝑋∈𝒮𝑛

+

⟨𝐶,𝑋⟩+ Ω(𝑋) + 𝜇 · Rank(𝑋) (6.1)

s.t. ⟨𝐴𝑖,𝑋⟩ = 𝑏𝑖 ∀𝑖 ∈ [𝑚], 𝑋 ∈ 𝒦, Rank(𝑋) ≤ 𝑘,

where 𝐶,𝐴1, . . .𝐴𝑚 ∈ 𝒮𝑛 are 𝑛×𝑛 symmetric matrices, 𝑏1, . . . 𝑏𝑚 ∈ R are scalars, [𝑛]

denotes the set of running indices {1, ..., 𝑛}, 𝒮𝑛
+ denotes the 𝑛×𝑛 positive semidefinite

cone, and 𝜇 ∈ R+, 𝑘 ∈ N are parameters which controls the complexity of 𝑋 by

respectively penalizing and constraining its rank. The set 𝒦 is a proper—i.e., closed,

convex, solid and pointed—cone [c.f. 54, Section 2.4.1], and Ω(𝑋) = tr(𝑓(𝑋)) for

some matrix convex function 𝑓 ; see definitions and assumptions in Chapter 6.3.
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For problems with logical constraints, strong relaxations can be obtained by for-

mulating them as mixed-integer optimization (MIO) problems and applying the per-

spective reformulation technique [see 110, 126]. In this chapter, we develop a matrix

analog of the perspective reformulation technique to obtain strong yet computation-

ally tractable relaxations of low-rank optimization problems of the form (6.1).

Motivating Example

In this section, we illustrate the implications of our results on a statistical learning

example. To emphasize the analogy with the perspective reformulation technique in

MIO, we first consider the best subset selection problem and review its perspective

relaxations. We then consider a reduced-rank regression problem – the rank-analog

of best subset selection – and provide new relaxations that naturally arise from our

Matrix Perspective Reformulation Technique (MPRT).

Best Subset Selection: Given a data matrix 𝑋 ∈ R𝑛×𝑝 and a response vector

𝑦 ∈ R𝑝, the ℓ0 − ℓ2 regularized best subset selection problem is to solve:

min
𝑤∈R𝑝

1

2𝑛
‖𝑦 −𝑋𝑤‖22 +

1

2𝛾
‖𝑤‖22 + 𝜇‖𝑤‖0, (6.2)

where 𝜇, 𝛾 > 0 are parameters which control 𝑤’s sparsity, sensitivity to noise.

Early attempts at solving (6.2) exactly relied upon weak implicit or big-𝑀 formu-

lations of logical constraints which supply low-quality relaxations and do not scale well

[see 129, for a discussion]. However, very similar algorithms now solve these problems

to certifiable optimality with millions of features. The key ingredient in modernizing

these (previously inefficient) algorithms was invoking the perspective reformulation

technique—a technique for obtaining high-quality convex relaxations of non-convex

sets—first stated in Stubbs [212] PhD thesis [see also 213, 67] and popularized by

Frangioni and Gentile [110], Aktürk et al. [4], Günlük and Linderoth [126].
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Relaxation via the Perspective Reformulation Technique: By applying the

perspective reformulation technique [110, 4, 126] to the term 𝜇‖𝑤‖0 + 1
2𝛾
‖𝑤‖22, we

obtain the following reformulation:

min
𝑤,𝜌∈R𝑝,𝑧∈{0,1}𝑝

1

2𝑛
‖𝑦 −𝑋𝑤‖22 +

1

2𝛾
𝑒⊤𝜌+ 𝜇 · 𝑒⊤𝑧 s.t. 𝑧𝑖𝜌𝑖 ≥ 𝑤2

𝑖 ∀𝑖 ∈ [𝑝]. (6.3)

Interestingly, this formulation can be represented using second-order cones [126,

193] and optimized over efficiently using projected subgradient descent [36]. Moreover,

it reliably supplies near-exact relaxations for most practically relevant cases of best

subset selection [193, 36]. In instances where it is not already tight, one can apply

a refinement of the perspective reformulation technique to the term ‖𝑦 −𝑋𝑤‖22 and

thereby obtain the following (tighter yet more expensive) relaxation [89]:

min
𝑤∈R𝑝,𝑧∈[0,1]𝑝,𝑊∈𝑆𝑝

+

1

2𝑛
‖𝑦‖22 −

1

𝑛
⟨𝑦,𝑋𝑤⟩+ 1

2
⟨𝑊 ,

1

𝛾
I+

1

𝑛
𝑋⊤𝑋⟩+ 𝜇𝑒⊤𝑧 (6.4)

s.t. 𝑊 ⪰ 𝑤𝑤⊤, 𝑧𝑖𝑊𝑖,𝑖 ≥ 𝑤2
𝑖 ∀𝑖 ∈ [𝑝].

Recently, a class of even tighter relaxations were developed by [7, 128, 116]. As they

were developed by considering multiple binary variables simultaneously and therefore

do not generalize readily to the low-rank case, we do not discuss them here.

Reduced Rank Regression: Given 𝑚 observations of a response vector 𝑌𝑗 ∈ R𝑛

and a predictor 𝑋𝑗 ∈ R𝑝, an important problem in high-dimensional statistics is to

recover a low-complexity model which relates 𝑋,𝑌 . A popular choice for doing so is

to assume that 𝑋,𝑌 are related via 𝑌 = 𝑋𝛽 +𝐸, where 𝛽 ∈ R𝑝×𝑛 is a coefficient

matrix which we assume to be low-rank, 𝐸 is a matrix of noise and we require that the

rank of 𝛽 is small in order that the linear model is parsimonious [181]. Introducing

Frobenius regularization gives rise to the problem:

min
𝛽∈R𝑝×𝑛

1

2𝑚
‖𝑌 −𝑋𝛽‖2𝐹 +

1

2𝛾
‖𝛽‖2𝐹 + 𝜇 · Rank(𝛽), (6.5)

where 𝛾, 𝜇 > 0 control the robustness to noise and the complexity of the estimator,
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and we normalize the OLS loss by dividing by 𝑚, the number of observations.

Existing attempts at solving this problem generally involve replacing the low-rank

term with a nuclear norm term [181], which succeeds under some strong assumptions

on the problem data but not in general. However, in Chapter 5, we proposed a new

framework to model rank constraints, using orthogonal projection matrices which

satisfy 𝑌 2 = 𝑌 instead of binary variables which satisfy 𝑧2 = 𝑧. By building on

this idea, in this chapter we propose a generalization of the perspective function to

matrix-valued functions with positive semidefinite arguments and develop a matrix

analog of the perspective reformulation technique from MIO which uses projection

matrices instead of binary variables.

Relaxations via the Matrix Perspective Reformulation Technique: By ap-

plying the matrix perspective reformulation technique (Theorem 6.1) to the term
1
2𝛾
‖𝛽‖2𝐹 + 𝜇 · Rank(𝛽), we will prove that the following problem is a valid—and nu-

merically high-quality—relaxation of (6.5):

min
𝛽∈R𝑝×𝑛,𝑊∈𝒮𝑛

+,𝜃∈𝑆𝑝
+

1

2𝑚
‖𝑌 −𝑋𝛽‖2𝐹 +

1

2𝛾
tr(𝜃) + 𝜇 · tr(𝑊 ) (6.6)

s.t. 𝑊 ⪯ I,

⎛⎝ 𝜃 𝛽

𝛽⊤ 𝑊

⎞⎠ ⪰ 0.

The analogy between problems (6.2)-(6.5) and their relaxations (6.3)-(6.6) is striking.

The goal of the present chapter is to develop the corresponding theory to support

and derive the relaxation (6.6). Interestingly, the main argument that led [89] to

the improved relaxation (6.4) for (6.2) can be extended to reduced-rank regression.

Combined with our MPRT, it leads to the relaxation:

min
𝜃∈𝒮𝑛

+,𝛽∈R𝑝×𝑛,
𝐵∈𝒮𝑛

+,𝑊∈𝒮𝑛
+

1

2𝑚
‖𝑌 ‖2𝐹 −

1

𝑚
⟨𝑌 ,𝑋𝛽⟩+ 1

2
⟨𝐵,

1

𝛾
I+

1

𝑚
𝑋⊤𝑋⟩+ 𝜇 · tr(𝑊 ) (6.7)

s.t.

⎛⎝𝐵 𝛽

𝛽 𝑊

⎞⎠ ⪰ 0,𝑊 ⪯ I.
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It is not too hard to see that this is a valid semidefinite relaxation: if 𝑊 is a

rank-𝑘 projection matrix then, by the Schur complement lemma [see 55, Equation

2.41], 𝛽 = 𝛽𝑊 , and thus the rank of 𝛽 is at most 𝑘. Moreover, if we let 𝐵 = 𝛽𝛽⊤

in a solution, we recover a low-rank solution to the original problem. Actually, as we

show in Section 6.4, a similar technique can be applied to any instance of Problem

(6.1), for which the applications beyond matrix regression are legion.

6.1 Literature Review

Three classes of approaches have been proposed for solving Problem (6.1): (a) heuris-

tics, which prioritize computational efficiency and obtain typically high-quality solu-

tions to low-rank problems efficiently but without optimality guarantees [see 184, for

a review]; (b) relax-and-round approaches, which balance computational efficiency

and accuracy concerns by relaxing the rank constraint and rounding a solution to

the relaxation to obtain a provably near-optimal low-rank matrix [34, Section 1.2.2];

and (c) exact approaches, which prioritize accuracy over computational efficiency and

solve Problem (6.1) exactly in exponential time [34, Section 1.2.1].

Of the three classes of approaches, heuristics currently dominate the literature,

because their superior runtime and memory usage allows them to address larger-scale

problems. However, recent advances in algorithmic theory and computational power

have drastically improved the scalability of exact and approximate methods, to the

point where they can now solve moderately sized problems which are relevant in

practice [34]. Moreover, relaxations of strong exact formulations often give rise to

very efficient heuristics (via tight relaxations of the exact formulation) which outper-

form existing heuristics. This suggests that heuristic approaches may not maintain

their dominance going forward, and motivates the exploration of tight yet affordable

relaxations of low-rank problems.
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6.2 Background on Perspective Functions

In this section, we review perspective functions and their interplay with tight formu-

lations of logically constrained problems. This prepares the ground for and motivates

our study of matrix perspective functions and their interplay with tight formulations

of low-rank problems. Many of our subsequent results can be viewed as (nontrivial)

generalizations of the results in this section, since a rank constraint is a cardinality

constraint on the singular values.

Preliminaries

Consider a proper closed convex function 𝑓 : 𝒳 → R, where 𝒳 is a convex subset of

R𝑛. The perspective function of 𝑓 is commonly defined for any 𝑥 ∈ R𝑛 and any 𝑡 > 0

as (𝑥, 𝑡) ↦→ 𝑡𝑓(𝑥/𝑡). Its closure is defined by continuity for 𝑡 = 0 and is equal to [c.f.

131, Proposition IV.2.2.2 ]:

𝑔𝑓 (𝑥, 𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑡𝑓(𝑥/𝑡) if 𝑡 > 0,𝑥/𝑡 ∈ 𝒳 ,

0 if 𝑡 = 0,𝑥 = 0,

𝑓∞(𝑥) if 𝑡 = 0,𝑥 ̸= 0,

+∞ otherwise,

where 𝑓∞ is the recession function of 𝑓 , as originally stated in [204, p. 67]:

𝑓∞(𝑥) = lim
𝑡→0

𝑡𝑓
(︁
𝑥0 − 𝑥+

𝑥

𝑡

)︁
= lim

𝑡→+∞

𝑓(𝑥0 + 𝑡𝑥)− 𝑓(𝑥0)

𝑡
,

for any 𝑥0 in the domain of 𝑓 .

The perspective function was first investigated by Rockafellar [204], who made

the important observation that 𝑓 is convex in 𝑥 if and only if 𝑔𝑓 is convex in (𝑥, 𝑡).

Among other properties, we have that, for any 𝑡 > 0, (𝑥, 𝑡, 𝑠) ∈ epi(𝑔𝑓 ) if and only if

(𝑥/𝑡, 𝑠/𝑡) ∈ epi(𝑓) [131, Proposition IV.2.2.1]. We refer to the review by Combettes

[74] for further properties of perspective functions.

200



Throughout this work, we refer to 𝑔𝑓 as the perspective function of 𝑓 –although

it technically is the closure of the perspective. We also consider a family of convex

functions 𝑓 which satisfy:

Assumption 6.1. The function 𝑓 : 𝒳 → R is proper, closed, and convex. 0 ∈ 𝒳

and for any 𝑥 ̸= 0, 𝑓∞(𝑥) = +∞.

The condition 𝑓∞(𝑥) = +∞,∀𝑥 ̸= 0 means that, asymptotically, 𝑓 increases to

infinity faster than any affine function. In particular, it is satisfied if the domain of

𝑓 is bounded or if 𝑓 is strictly convex. Under Assumption 6.1, the definition of the

perspective function of 𝑓 simplifies to

𝑔𝑓 (𝑥, 𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑡𝑓(𝑥/𝑡) if 𝑡 > 0,

0 if 𝑡 = 0,𝑥 = 0,

+∞ otherwise.

(6.8)

The Perspective Reformulation Technique

A number of authors have observed that optimization problems over binary and con-

tinuous variables admit tight reformulations involving perspective functions of appro-

priate substructures of an MIO, since Ceria and Soares [67], building upon the work

of Rockafellar [204, Theorem 9.8], derived the convex hull of a disjunction of convex

constraints. To motivate our study of the matrix perspective function in the sequel,

we now demonstrate that a class of logically-constrained problems admit reformu-

lations in terms of perspective functions. We remark that this development bears

resemblance to other works on perspective reformulations including [33, 128, 116].

Consider a logically-constrained problem of the form

min
𝑧∈𝒵,𝑥∈R𝑛

𝑐⊤𝑧 + 𝑓(𝑥) + Ω(𝑥) s.t. 𝑥𝑖 = 0 if 𝑧𝑖 = 0 ∀𝑖 ∈ [𝑛], (6.9)

where 𝒵 ⊆ {0, 1}𝑛, 𝑐 ∈ R𝑛 is a cost vector, 𝑓(·) is a generic convex function which

possibly models convex constraints 𝑥 ∈ 𝒳 for a convex set 𝒳 ⊆ R𝑛 implicitly—by
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requiring that 𝑔(𝑥) = +∞ if 𝑥 /∈ 𝒳 , and Ω(·) is a regularization function which

satisfies the following assumption:

Assumption 6.2. Ω(𝑥) =
∑︀

𝑖∈[𝑛] Ω𝑖(𝑥𝑖), where each Ω𝑖 satisfies Assumption 6.1.

Since 𝑧𝑖 is binary, imposing the logical constraint “𝑥𝑖 = 0 if 𝑧𝑖 = 0” plus the term

Ω𝑖(𝑥𝑖) in the objective is equivalent to 𝑔Ω(𝑥𝑖, 𝑧𝑖)+(1−𝑧𝑖)Ω𝑖(0) in the objective, where

𝑔Ω𝑖
is the perspective function of Ω𝑖, and thus Problem (6.9) is equivalent to:

min
𝑧∈𝒵,𝑥∈R𝑛

𝑐⊤𝑧 + 𝑓(𝑥) +
𝑛∑︁

𝑖=1

(︂
𝑔Ω𝑖

(𝑥𝑖, 𝑧𝑖) + (1− 𝑧𝑖)Ω𝑖(0)

)︂
. (6.10)

Notably, while Problems (6.9)-(6.10) have the same feasible regions, (6.10) often has

substantially stronger relaxations, as frequently noted in the perspective reformula-

tion literature [110, 126, 106, 33].

For completeness, we provide a formal proof of equivalence between (6.9)-(6.10);

note that a related (although dual, and weaker as it requires Ω(0) = 0) result can be

found in [33, Thm. 2.5]:

Lemma 6.1. Suppose (6.9) attains a finite optimal value. Then, (6.10) attains the

same value.

Proof. It suffices to establish that the following equality holds:

𝑔Ω𝑖
(𝑥𝑖, 𝑧𝑖) + (1− 𝑧𝑖)Ω𝑖(0) = Ω𝑖(𝑥𝑖) +

⎧⎪⎨⎪⎩0 if 𝑥𝑖 = 0 or 𝑧𝑖 = 1,

+∞ otherwise.

Indeed, this equality shows that any feasible solution to one problem is a feasible

solution to the other with equal cost. We prove this by considering the cases where

𝑧𝑖 = 0, 𝑧𝑖 = 1 separately.

• Suppose 𝑧𝑖 = 1. Then, 𝑔Ω𝑖
(𝑥𝑖, 𝑧𝑖) = 𝑧𝑖Ω𝑖(𝑥𝑖/𝑧𝑖) = Ω𝑖(𝑥𝑖) and 𝑥𝑖 = 𝑧𝑖 · 𝑥𝑖, so the

result holds.
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• Suppose 𝑧𝑖 = 0. If 𝑥𝑖 = 0 we have 𝑔Ω𝑖
(0, 0) + Ω𝑖(0) = Ω𝑖(0), and moreover the

right-hand-side of the equality is certainly Ω𝑖(0). Alternatively, if 𝑥𝑖 ̸= 0 then

both sides equal +∞.

In Table 6.1, we present examples of penalties Ω for which Assumption 6.1 holds

and the perspective reformulation technique is applicable.

We remind the reader that the exponential cone is [c.f. 70]:

𝒦exp = {𝑥 ∈ R3 : 𝑥1 ≥ 𝑥2 exp(𝑥2/𝑥3), 𝑥2 > 0} ∪ {(𝑥1, 0, 𝑥3) : 𝑥1 ≥ 0, 𝑥3 ≤ 0},

while the power cone is defined for any 𝛼 ∈ (0, 1) as:

𝒦𝛼
pow = {𝑥 ∈ R3 : 𝑥𝛼

1𝑥
1−𝛼
2 ≥ |𝑥3|}.

Table 6.1: Convex substructures which frequently arise in MIOs and their
perspective reformulations.

Penalty Ω(𝑥) 𝑔Ω(𝑥, 𝑧)

Big-𝑀

{︃
0 if |𝑥| ≤𝑀,

+∞ otherwise

{︃
0 if |𝑥| ≤𝑀𝑧

+∞ otherwise

Ridge 1
2𝛾𝑥

2

⎧⎪⎨⎪⎩
𝑥2/2𝛾𝑧 if 𝑧 > 0

0 if 𝑥 = 𝑧 = 0

+∞ otherwise

Ridge + Big-𝑀 1
2𝛾𝑥

2 +

{︃
0 if |𝑥| ≤𝑀

+∞ otherwise

⎧⎪⎨⎪⎩
𝑥2/2𝛾𝑧 if 𝑧 > 0, |𝑥| ≤𝑀𝑧

0 if 𝑥 = 𝑧 = 0

+∞ otherwise

Power |𝑥|𝑝, 𝑝 > 1

⎧⎪⎨⎪⎩
|𝑥|𝑝𝑧1−𝑝 if 𝑧 > 0,

0 if 𝑥 = 𝑧 = 0

+∞ otherwise

Logarithm+Big-M − log(𝑥+ 𝜖) : 0 ≤ 𝑥 ≤𝑀

⎧⎪⎨⎪⎩
−𝑧 log(𝑥/𝑧 + 𝜖) if 𝑥 ≤𝑀𝑧

0 if 𝑥 = 𝑧 = 0

+∞ otherwise

Entropy 𝑥 log 𝑥

⎧⎪⎨⎪⎩
𝑥 log(𝑥/𝑧) if 𝑥, 𝑧 > 0

0 if 𝑥 = 𝑧 = 0

+∞ otherwise
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Perspective Cuts

Another computationally useful application of the perspective reformulation tech-

nique has been to derive a class of cutting-planes for MIOs with logical constraints

[110]. To motivate our generalization of these cuts to low-rank problems, we now

briefly summarize their main result. Consider the following problem:

min
𝑧∈𝒵

min
𝑥∈R𝑛

𝑐⊤𝑧 + 𝑓(𝑥) +
𝑛∑︁

𝑖=1

Ω𝑖(𝑥𝑖) s.t. 𝐴𝑖𝑥𝑖 ≤ 𝑏𝑖𝑧𝑖 ∀𝑖 ∈ [𝑛], (6.11)

where {𝑥𝑖 : 𝐴
𝑖𝑥𝑖 ≤ 0} = {0}, which implies the set of feasible 𝑥 is bounded, Ω𝑖(𝑥𝑖)

is a closed convex function, we take Ω𝑖(0) = 0 as in [110] for simplicity, and 𝑓(𝑥) is

a convex function. Then, letting 𝜌𝑖 model the epigraph of Ω𝑖(𝑥𝑖) + 𝑐𝑖𝑧𝑖 and 𝑠𝑖 be a

subgradient of Ω𝑖 at 𝑥̄𝑖, i.e., 𝑠𝑖 ∈ 𝜕Ω𝑖(𝑥̄𝑖), we have the following result [110, 126]:

Proposition 6.1. The following cut

𝜌𝑖 ≥ (𝑐𝑖 + Ω𝑖(𝑥̄𝑖))𝑧𝑖 + 𝑠𝑖(𝑥𝑖 − 𝑥̄𝑖𝑧𝑖) (6.12)

is valid for the equivalent MINLO:

min
𝑧∈𝒵

min
𝑥,𝜌∈R𝑛

𝑓(𝑥) +
𝑛∑︁

𝑖=1

𝜌𝑖 s.t. 𝐴𝑖𝑥𝑖 ≤ 𝑏𝑖𝑧𝑖 ∀𝑖 ∈ [𝑛], 𝜌𝑖 ≥ Ω𝑖(𝑥𝑖) + 𝑐𝑖𝑧𝑖 ∀𝑖 ∈ [𝑛].

Remark 15. In the special case where Ω𝑖(𝑥𝑖) = 𝑥2
𝑖 , the cut reduces to:

𝜌𝑖 ≥ 2𝑥𝑖𝑥̄𝑖 − 𝑥̄2
𝑖 𝑧𝑖 + 𝑐𝑖𝑧𝑖 ∀𝑥̄𝑖. (6.13)

The class of cutting planes defined in Proposition 6.1 are commonly referred to

as perspective cuts, because they define a linear lower approximation of the perspec-

tive of Ω𝑖(𝑥𝑖), 𝑔Ω𝑖
(𝑥𝑖, 𝑧𝑖). Consequently, Proposition 6.1 implies that a perspective

reformulation of (6.11) is equivalent to adding all (infinitely many) perspective cuts

(6.12). This may be helpful where the problem is nonlinear, as a sequence of linear

MIOs can be easier to solve than one nonlinear MIO [see 113, for a comparison].
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6.3 A Matrix Perspective and Applications

In this section, we generalize the perspective function from vectors to matrices, and

invoke the matrix perspective function to propose a new technique for generating

strong yet efficient relaxations of a diverse family of low-rank problems, which we call

the matrix perspective reformulation technique (MPRT).

A Matrix Perspective Function

To generalize the ideas from the previous section to low-rank constraints, we re-

quire a more expressive transform than the perspective transform, which introduces

a single (scalar) additional degree of freedom and cannot control the eigenvalues of

a matrix. Therefore, we invoke a generalization from quantum mechanics—the ma-

trix perspective function defined in [93, 95], building upon the work of [96]; see also

[170, 171, 172, 77] for a related generalization of perspective functions to functionals.

Definition 6.1. For a matrix-valued function 𝑓 : 𝒳 → 𝒮𝑛
+ where 𝒳 ⊆ 𝒮𝑛 is a convex

set, the matrix perspective function of 𝑓 , 𝑔𝑓 , is defined as

𝑔𝑓 (𝑋,𝑌 ) =

⎧⎪⎨⎪⎩𝑌
1
2𝑓
(︁
𝑌 − 1

2𝑋𝑌 − 1
2

)︁
𝑌

1
2 if 𝑌 − 1

2𝑋𝑌 − 1
2 ∈ 𝒳 ,𝑌 ≻ 0,

∞ otherwise.

Remark 16. If 𝑋 and 𝑌 commute and 𝑓 is analytic, then Definition 6.1 simplifies

into 𝑌 𝑓 (𝑌 −1𝑋), which is the analog of the usual definition of the perspective function

originally stated in [96]. Definition 6.1, however, generalizes this definition to the

case where 𝑋 and 𝑌 do not commute by ensuring that 𝑌 − 1
2𝑋𝑌 − 1

2 is nonetheless

symmetric, in a manner reminiscent of the development of interior point methods

[see, e.g., 5]. In particular, if 𝑌 is a projection matrix such that 𝑋 = 𝑌 𝑋–as occurs

for the exact formulations of the low-rank problems we consider in this paper–then it

is safe to assume that 𝑋,𝑌 commute. However, when 𝑌 is not a projection matrix,

this cannot be assumed in general.
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Properties of the Matrix Perspective Function

The matrix perspective function generalizes the definition of the perspective trans-

formation to matrix-valued functions and satisfies analogous properties:

Proposition 6.2. Let 𝑓 be a matrix-valued function and 𝑔𝑓 its matrix perspective

function. Then:

(a) 𝑓 is matrix convex, i.e.,

𝑡𝑓(𝑋) + (1− 𝑡)𝑓(𝑊 ) ⪰ 𝑓(𝑡𝑋 + (1− 𝑡)𝑊 ) ∀𝑋,𝑊 ∈ 𝒮𝑛, 𝑡 ∈ [0, 1], (6.14)

if and only if 𝑔𝑓 is matrix convex in (𝑋,𝑌 ).

(b) 𝑔𝑓 is a positive homogeneous function, i.e., for any 𝜇>0 we have

𝑔𝑓 (𝜇𝑋, 𝜇𝑌 ) = 𝜇𝑔𝑓 (𝑋,𝑌 ). (6.15)

(c) Let 𝑌 be a positive definite matrix. Then, letting the epigraph of 𝑓 be

epi(𝑓) := {(𝑋,𝜃) : 𝑋 ∈ dom(𝑓), 𝑓(𝑋) ⪯ 𝜃}, (6.16)

we have (𝑋,𝑌 ,𝜃) ∈ epi(𝑔𝑓 ) if and only if (𝑌 − 1
2𝑋𝑌 − 1

2 ,𝑌 − 1
2𝜃𝑌 − 1

2 ) ∈ epi(𝑓).

Proof. We prove the claims successively:

(a) This is precisely the main result of Ebadian et al. [93, Theorem 2.2].

(b) For 𝜇 > 0, 𝑔𝑓 (𝜇𝑋, 𝜇𝑌 ) = 𝜇𝑌
1
2𝑓
(︁
(𝜇𝑌 )−

1
2𝜇𝑋(𝜇𝑌 )−

1
2

)︁
𝑌

1
2 = 𝜇𝑔𝑓 (𝑋,𝑌 ).

(c) By generalizing the main result in [54, Chapter 3.2.6], for any 𝑌 ≻ 0 we have

(𝑋,𝑌 ,𝜃) ∈ epi(𝑔𝑓 ) ⇐⇒ 𝑌
1
2𝑓(𝑌 − 1

2𝑋𝑌 − 1
2 )𝑌

1
2 ⪯ 𝜃,

⇐⇒ 𝑓(𝑌 − 1
2𝑋𝑌 − 1

2 ) ⪯ 𝑌 − 1
2𝜃𝑌 − 1

2 ,

⇐⇒ (𝑌 − 1
2𝑋𝑌 − 1

2 ,𝑌 − 1
2𝜃𝑌 − 1

2 ) ∈ epi(𝑓).
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We now specialize our attention to matrix-valued functions defined by a scalar

convex function, as suggested at the start of this chapter.

Matrix Perspectives of Operator Functions

From any function 𝜔 : R → R, we define its extension to the set of symmetric

matrices, 𝑓𝜔 : 𝒮𝑛 → 𝒮𝑛 as

𝑓𝜔(𝑋) = 𝑈 Diag(𝜔(𝜆𝑥
1), . . . , 𝜔(𝜆

𝑥
𝑛))𝑈

⊤, (6.17)

where 𝑋 = 𝑈 Diag(𝜆𝑥
1 , . . . , 𝜆

𝑥
𝑛)𝑈

⊤ is an eigendecomposition of 𝑋. Functions of

this form are called operator functions [see 39, for a general theory]. In particular,

one can show that the trace of operator functions is invariant under an orthogonal

rotation, i.e., tr(𝑓𝜔(𝑋)) = tr(𝑓𝜔(𝑈
⊤𝑋𝑈)) for any orthogonal rotation 𝑈 . Also, if 𝜔

is analytical, then 𝑓𝜔 is also analytical with the same Taylor expansion.

In our analysis, we will use the following bound on 𝑣⊤𝑓𝜔(𝐴)𝑣 when 𝜔 is convex:

Lemma 6.2. Consider a convex function 𝜔 : R→ R and a symmetric matrix 𝐴 ∈ 𝒮𝑛.

Consider a unit vector 𝑣. Then,

𝑣⊤𝑓𝜔(𝐴)𝑣 ≥ 𝜔
(︀
𝑣⊤𝐴𝑣

)︀
.

Proof. Consider a spectral decomposition of 𝐴, 𝐴 =
∑︀𝑛

𝑖=1 𝜆𝑖𝑢𝑖𝑢
⊤
𝑖 . Then, 𝑓𝜔(𝐴) =∑︀𝑛

𝑖=1 𝜔(𝜆𝑖)𝑢𝑖𝑢
⊤
𝑖 and

𝑣⊤𝑓𝜔(𝐴)𝑣 =
𝑛∑︁

𝑖=1

𝜔(𝜆𝑖)𝑣
⊤𝑢𝑖𝑢

⊤
𝑖 𝑣 ≥ 𝜔

(︃
𝑛∑︁

𝑖=1

𝜆𝑖𝑣
⊤𝑢𝑖𝑢

⊤
𝑖 𝑣

)︃
= 𝜔

(︀
𝑣⊤𝐴𝑣

)︀
,

where the inequality comes from the convexity of 𝜔 since 𝑣⊤𝑢𝑖𝑢
⊤
𝑖 𝑣 = (𝑢⊤

𝑖 𝑣)
2 ≥ 0

and
∑︀𝑛

𝑖=1 𝑣
⊤𝑢𝑖𝑢

⊤
𝑖 𝑣 = 𝑣⊤ (︀∑︀𝑛

𝑖=1 𝑢𝑖𝑢
⊤
𝑖

)︀
𝑣 = ‖𝑣‖2 = 1.

Central to our analysis is that we can explicitly characterize the closure of the

matrix perspective of 𝑓𝜔 under some assumptions on 𝜔, i.e., define by continuity

𝑔𝑓𝜔(𝑋,𝑌 ) for rank-deficient matrices 𝑌 :
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Proposition 6.3. Consider a function 𝜔 : R→ R satisfying Assumption 6.1. Then,

the closure of the matrix perspective of 𝑓𝜔 is, for any 𝑋 ∈ 𝒮𝑛, 𝑌 ∈ 𝒮𝑛
+,

𝑔𝑓𝜔(𝑋,𝑌 ) =

⎧⎪⎨⎪⎩𝑌
1
2𝑓𝜔(𝑌

− 1
2𝑋𝑌 − 1

2 )𝑌
1
2 if Span(𝑋) ⊆ Span(𝑌 ),𝑌 ⪰ 0,

∞ otherwise,

where 𝑌 − 1
2 denotes the pseudo-inverse of the square root of 𝑌 .

Remark 17. Note that in the expression of 𝑔𝑓𝜔 above, the matrix 𝑌 − 1
2𝑋𝑌 − 1

2 is un-

ambiguously defined if and only if Span(𝑋) ⊆ Span(𝑌 ) (otherwise, its value depends

on how we define the pseudo-inverse of 𝑌
1
2 outside of its range). Accordingly, in the

remainder of the paper, we omit the condition Span(𝑋) ⊆ Span(𝑌 ) whenever the

analytic expression for 𝑔𝑓𝜔 explicitly involves 𝑌 − 1
2𝑋𝑌 − 1

2 .

Proof. Fix 𝑋 ∈ 𝒮𝑛. For 𝑌 ≻ 0, the perspective of 𝑓𝜔 is well-defined according to

Definition 6.1. Now, consider an arbitrary 𝑌 ⪰ 0 and define 𝑃 as the orthogonal

projection onto the kernel of 𝑌 , which is orthogonal to Span(𝑌 ). Then, 𝑌𝜀 := 𝑌 +𝜀𝑃

for 𝜀 > 0 is invertible. The closure of the matrix perspective of 𝑓𝜔 is defined by

continuity as the limit of 𝑀𝜀 := 𝑌
1
2

𝜀 𝑓𝜔

(︁
𝑌

− 1
2

𝜀 𝑋𝑌
− 1

2
𝜀

)︁
𝑌

1
2

𝜀 for 𝜀→ 0.

Since the ranges of 𝑌 and 𝑃 are orthogonal (𝑌 𝑃 = 𝑃𝑌 = 0), we have 𝑌
− 1

2
𝜀 =

𝑌 − 1
2 + 𝜀−

1
2𝑃 , and

𝑌
− 1

2
𝜀 𝑋𝑌

− 1
2

𝜀 = 𝑌 − 1
2𝑋𝑌 − 1

2 + 𝜀−
1
2𝑃𝑋𝑌 − 1

2 + 𝜀−
1
2𝑌 − 1

2𝑋𝑃 + 𝜀−1𝑃𝑋𝑃 .

Note that lim
𝜀→0

𝑌
1
2

𝜀 = 𝑌
1
2 but lim

𝜀→0
𝑌

− 1
2

𝜀 ̸= 𝑌 − 1
2 . We now distinguish two cases.

Case 1: If span(𝑋) ⊆ span(𝑌 ), 𝑋𝑃 = 𝑃𝑋 = 0 so

𝑌
− 1

2
𝜀 𝑋𝑌

− 1
2

𝜀 = 𝑌 − 1
2𝑋𝑌 − 1

2 ,

𝑀𝜀 = 𝑌
1
2

𝜀 𝑓𝜔

(︁
𝑌 − 1

2𝑋𝑌 − 1
2

)︁
𝑌

1
2

𝜀 →𝜀→0 𝑌
1
2𝑓𝜔

(︁
𝑌 − 1

2𝑋𝑌 − 1
2

)︁
𝑌

1
2 .

Case 2: If span(𝑋) ̸⊆ span(𝑌 ), consider an orthonormal basis of R𝑛 such that

𝑢1, . . . ,𝑢𝑘 is an eigenbasis of Span(𝑌 ) (with respective eigenvalues 𝜆𝑦
1, . . . 𝜆

𝑦
𝑘) and
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𝑢𝑘+1, . . . ,𝑢𝑛 is a basis of Span(𝑌 )⊥ = Ker(𝑌 ). By assumption, 𝑘 < 𝑛 and there

exists 𝑗 > 𝑘 such that 𝑢⊤
𝑗 𝑋𝑢𝑗 ̸= 0. Without loss of generality, we shall assume

𝑢⊤
𝑛𝑋𝑢𝑛 ̸= 0. We show that the matrix 𝑀𝜀 goes to infinity as 𝜀→ 0 by showing that

𝑢⊤
𝑛𝑀𝜀𝑢𝑛 diverges.

Since 𝑌
± 1

2
𝜀 𝑢𝑛 = 𝜀±

1
2𝑢𝑛, we have

𝑢⊤
𝑛𝑀𝜀𝑢𝑛 = 𝜀 𝑢⊤

𝑛 𝑓𝜔

(︁
𝑌

− 1
2

𝜀 𝑋𝑌
− 1

2
𝜀

)︁
𝑢𝑛 ≥ 𝜀 𝜔

(︁
𝑢⊤

𝑛𝑌
− 1

2
𝜀 𝑋𝑌

− 1
2

𝜀 𝑢𝑛

)︁
= 𝜀 𝜔

(︀
𝜀−1𝑢⊤

𝑛𝑋𝑢𝑛

)︀
,

where the inequality follows by convexity of 𝜔 and Lemma 6.2. By Assumption 6.1,

lim
𝜀→0

𝜀𝜔
(︀
𝜀−1𝑢⊤

𝑛𝑋𝑢𝑛

)︀
= 𝜔∞(𝑢⊤

𝑛𝑋𝑢𝑛) = +∞,

because 𝑢⊤
𝑛𝑋𝑢𝑛 ̸= 0 and 𝜔 is coercive.

We now provide a simple extension of Proposition 6.3 that will prove useful later.

Corollary 6.1. Consider a function 𝜔 : R→ R satisfying Assumption 6.1 and denote

its associated operator function 𝑓𝜔. Consider a closed set 𝒳 ⊆ 𝒮𝑛 and define

𝑓(𝑋) =

⎧⎪⎨⎪⎩𝑓𝜔(𝑋) if 𝑋 ∈ 𝒳 ,

+∞ otherwise.

Then, the closure of the matrix perspective of 𝑓 is, for any 𝑋 ∈ 𝒮𝑛, 𝑌 ∈ 𝒮𝑛
+,

𝑔𝑓 (𝑋,𝑌 ) =

⎧⎪⎨⎪⎩𝑌
1
2𝑓𝜔(𝑌

− 1
2𝑋𝑌 − 1

2 )𝑌
1
2 if 𝑌 ⪰ 0,𝑌 − 1

2𝑋𝑌 − 1
2 ∈ 𝒳 ,

∞ otherwise,

where 𝑌 − 1
2 denotes the pseudo-inverse of the square root of 𝑌 .

Proof. Fix 𝑋 ∈ 𝒮𝑛 and 𝑌 ∈ 𝒮𝑛
+. From Proposition 6.3, we know that 𝑔𝑓 (𝑋,𝑌 ) =

+∞ if Span(𝑋) ̸⊆ Span(𝑌 ). Let us assume that Span(𝑋) ⊆ Span(𝑌 ). Following

the same construction as in the proof of Proposition 6.3, we obtain a sequence 𝑌𝜀

that converges to 𝑌 as 𝜀→ 0 and such that 𝑌
− 1

2
𝜀 𝑋𝑌

− 1
2

𝜀 = 𝑌 − 1
2𝑋𝑌 − 1

2 .
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To gain intuition on how the matrix perspective function transforms 𝑋 and 𝑌 ,

we now provide an interesting connection between the matrix perspective of 𝑓𝜔 and

the perspective of 𝜔 in the case where 𝑋 and 𝑌 commute.

Proposition 6.4. Consider two matrices 𝑋 ∈ 𝒮𝑛,𝑌 ∈ 𝒮𝑛
+ that commute and such

that Span(𝑋) ⊆ Span(𝑌 ). Hence, there exists an orthogonal matrix 𝑈 which jointly

diagonalizes 𝑋 and 𝑌 . Let 𝜆𝑥
1 , . . . , 𝜆

𝑥
𝑛 and 𝜆𝑦

1, . . . , 𝜆
𝑦
𝑛 denote the eigenvalues of 𝑋

and 𝑌 respectively, ordered according to this basis 𝑈 . Consider an operator function

𝑓𝜔 with 𝜔 satisfying Assumption 6.1. Then, we have that:

𝑔𝑓𝜔(𝑋,𝑌 ) = 𝑈 Diag (𝑔𝜔(𝜆
𝑥
1 , 𝜆

𝑦
1), . . . , 𝑔𝜔(𝜆

𝑥
𝑛, 𝜆

𝑦
𝑛))𝑈

⊤

Proof. By simultaneously diagonalizing 𝑋 and 𝑌 , we get

𝑌 − 1
2𝑋𝑌 − 1

2 = 𝑈Diag (𝜆𝑥
1/𝜆

𝑦
1, . . . , 𝜆

𝑥
𝑛/𝜆

𝑦
𝑛)𝑈

⊤,

𝑓𝜔

(︁
𝑌 − 1

2𝑋𝑌 − 1
2

)︁
= 𝑈Diag (𝜔(𝜆𝑥

1/𝜆
𝑦
1), . . . , 𝜔(𝜆

𝑥
𝑛/𝜆

𝑦
𝑛))𝑈

⊤,

𝑌
1
2𝑓𝜔

(︁
𝑌 − 1

2𝑋𝑌 − 1
2

)︁
𝑌

1
2 = 𝑈Diag (𝜆𝑦

1𝜔(𝜆
𝑥
1/𝜆

𝑦
1), . . . , 𝜆

𝑦
𝑛𝜔(𝜆

𝑥
𝑛/𝜆

𝑦
𝑛))𝑈

⊤.

Note that if 𝑌 is a projection matrix such that Span(𝑋) ⊆ Span(𝑌 ) then we

necessarily have that 𝑋 = 𝑌 𝑋 = 𝑋𝑌 and the assumptions of Proposition 6.4 hold.

In contrast with Proposition 6.4, in the general case where 𝑋 and 𝑌 do not com-

mute, we cannot simultaneously diagonalize them and connect 𝑔𝑓𝜔 with 𝑔𝜔. However,

we can still project 𝑌 onto the space of matrices that commute with 𝑋 and obtain

the following result when 𝑔𝑓𝜔 is matrix convex:

Lemma 6.3. Let 𝑋 ∈ 𝒮𝑛 and 𝑌 ∈ 𝒮𝑛
+ be matrices, and define 𝒳 := {𝑀 : 𝑀𝑋 =

𝑋𝑀} as the set of matrices which commute with 𝑋. For any matrix 𝑀 , denote

𝑀|𝒳 the orthogonal projection of 𝑀 onto 𝒳 . Then, since 𝑀 ↦→𝑀|𝒳 is a projection

operator, we have that

𝑌|𝒳 ∈ 𝒮𝑛
+, and tr

(︀
𝑌|𝒳
)︀
= tr (𝑌 ) .
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Moreover, if 𝑌 ↦→ 𝑔𝑓𝜔(𝑋,𝑌 ) is matrix convex, then we have

tr
[︀
𝑔𝑓𝜔(𝑋,𝑌|𝒳 )

]︀
≤ tr [𝑔𝑓𝜔(𝑋,𝑌 )] .

Proof. First, let us observe that 𝒳 is a closed subset of 𝒮𝑛, contains the identity,

and is closed under multiplication and transposition, also know as a Von Neumann

subalgebra [see 65, Section 4 for a detailed treatment of projections onto subalgebras].

The orthogonal projection of a semidefinite matrix onto 𝒳 is also semidefinite and

has the same trace [65, Theorem. 4.13], so tr
(︀
𝑌|𝒳
)︀
= tr (𝑌 ) . Furthermore, since

𝑌 ↦→ 𝑔𝑓𝜔(𝑋,𝑌 ) is matrix convex, Carlen [65, Theorem 4.16] yields

𝑔𝑓𝜔(𝑋,𝑌|𝒳 ) ⪯ 𝑔𝑓𝜔(𝑋,𝑌 )|𝒳 .

Taking the trace on both sides and using that tr
(︀
𝑔𝑓𝜔(𝑋,𝑌 )|𝒳

)︀
= tr (𝑔𝑓𝜔(𝑋,𝑌 ))

concludes the proof.

In other words, taking the projection of 𝑌 onto the commutant of 𝑋 is a trace

preserving operation that can only reduce the value of tr (𝑔𝑓𝜔(𝑋, ·)). In this paper,

we invoke the projection onto 𝒳 (a non-convex set) for theoretical purposes, not

computational ones. So we are not interested in how to compute 𝑌|𝒳 in practice.

Note that, according to Proposition 6.2(a), Lemma 6.3 holds if 𝑓𝜔 is matrix convex.

6.4 The Matrix Perspective Reformulation Technique

Definition 6.1 and Proposition 6.2 supply the necessary language to lay out our Ma-

trix Perspective Reformulation Technique (MPRT). Therefore, we now state the tech-

nique; details regarding its implementation become clearer throughout the chapter.

Let us revisit Problem (6.1), and assume that the term Ω(𝑋) satisfies:

Assumption 6.3. Ω(𝑋) = tr (𝑓𝜔(𝑋)), where 𝜔 is a function satisfying Assumption

6.1 and whose associated operator function, 𝑓𝜔, is matrix convex.
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Assumption 6.3 implies that the regularizer can be rewritten as operating on the

eigenvalues of 𝑋, 𝜆𝑖(𝑋), directly: Ω(𝑋) =
∑︀

𝑖∈[𝑛] 𝜔(𝜆𝑖(𝑋)). As we discuss in the

next section, a broad class of functions satisfy this property. For ease of notation,

we refer to 𝑓𝜔 as 𝑓 in the remainder of the paper (and accordingly denote by 𝑔𝑓 its

matrix perspective function).

After letting a projection matrix 𝑌 model the rank of 𝑋—as per Chapter 5—Prob-

lem (6.1) admits the mixed-projection reformulation:

min
𝑌 ∈𝒴𝑘

𝑛

min
𝑋∈𝒮𝑛

+

⟨𝐶,𝑋⟩+ 𝜇 · tr(𝑌 ) + tr(𝑓(𝑋)) (6.18)

s.t. ⟨𝐴𝑖,𝑋⟩ = 𝑏𝑖 ∀𝑖 ∈ [𝑚], 𝑋 = 𝑌 𝑋, 𝑋 ∈ 𝒦,

where 𝑌 ∈ 𝒴𝑘
𝑛 is the set of 𝑛× 𝑛 orthogonal projection matrices with trace 𝑘:

𝒴𝑘
𝑛 :=

{︀
𝑌 ∈ 𝒮𝑛

+ : 𝑌 2 = 𝑌 , tr(𝑌 ) ≤ 𝑘
}︀
.

Note that for 𝑘 ∈ N, the convex hull of 𝒴𝑘
𝑛 is given by

Conv(𝒴𝑘
𝑛) = {𝑌 ∈ 𝑆𝑛

+ : 𝑌 ⪯ I, tr(𝑌 ) ≤ 𝑘},

which is a well-studied object in its own right [185, 186].

Since 𝑌 is an orthogonal projection matrix, imposing the nonlinear constraint

𝑋 = 𝑌 𝑋 plus the term Ω(𝑋) = tr(𝑓(𝑋)) in the objective is equivalent to imposing

tr(𝑔𝑓 (𝑋,𝑌 )) + (𝑛 − tr(𝑌 ))𝜔(0), where 𝑔𝑓 is the matrix perspective of 𝑓 , and thus

Problem (6.18) is equivalent to:

min
𝑌 ∈𝒴𝑘

𝑛

min
𝑋∈𝒮𝑛

+

⟨𝐶,𝑋⟩+ 𝜇 · tr(𝑌 ) + tr(𝑔𝑓 (𝑋,𝑌 )) + (𝑛− tr(𝑌 ))𝜔(0) (6.19)

s.t. ⟨𝐴𝑖,𝑋⟩ = 𝑏𝑖 ∀𝑖 ∈ [𝑚], 𝑋 ∈ 𝒦,

Let us formally state and verify the equivalence between (6.18)-(6.19) via:

Theorem 6.1. Problems (6.18)-(6.19) attain the same optimal objective value.
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Proof. It suffices to show that for any feasible solution to (6.18) we can construct a

feasible solution to (6.19) with an equal or lower cost, and vice versa:

• Let (𝑋,𝑌 ) be a feasible solution to (6.18). Since 𝑋 = 𝑌 𝑋 ∈ 𝒮𝑛, 𝑋 and 𝑌

commute. Hence, by Proposition 6.4, we have:

tr (𝑔𝑓 (𝑋,𝑌 )) =
∑︁
𝑖∈[𝑛]

𝑔𝜔 (𝜆
𝑥
𝑖 , 𝜆

𝑦
𝑖 ) =

∑︁
𝑖∈[𝑛]

1{𝜆𝑦
𝑖 > 0}𝜔(𝜆𝑥

𝑖 ),

where 1{𝜆𝑦
𝑖 > 0} is an indicator function which denotes whether the 𝑖th eigen-

value of 𝑌 (which is either 0 or 1) is strictly positive. Moreover, since 𝑋 = 𝑌 𝑋,

𝜆𝑦
𝑖 = 0 =⇒ 𝜆𝑥

𝑖 = 0 and

tr (𝑓(𝑋)) =
∑︁
𝑖∈[𝑛]

𝜔(𝜆𝑥
𝑖 ) = tr (𝑔𝑓 (𝑋,𝑌 )) +

∑︁
𝑖∈[𝑛]

1{𝜆𝑦
𝑖 = 0}𝜔(0)

= tr (𝑔𝑓 (𝑋,𝑌 )) + (𝑛− tr(𝑌 ))𝜔(0). (6.20)

This establishes that (𝑋,𝑌 ) is feasible in (6.19) with the same cost.

• Let (𝑋,𝑌 ) be a feasible solution to (6.19). Then, it follows that 𝑋 ∈ Span(𝑌 ),

which implies that 𝑋 = 𝑌 𝑋 since 𝑌 is a projection matrix. Therefore, (6.20)

holds, which establishes that (𝑋,𝑌 ) is feasible in (6.18) with the same cost.

Remark 18. Note that, based on the proof of Theorem 6.1, we could replace 𝑔𝑓 (𝑋,𝑌 )

in (6.19) by any function 𝑔(𝑋,𝑌 ) such that 𝑔𝑓 (𝑋,𝑌 ) = 𝑔(𝑋,𝑌 ) for 𝑋,𝑌 that

commute, with no impact on the objective value. However, it might impact tractability

if 𝑔(𝑋,𝑌 ) is not convex in (𝑋,𝑌 ).

Remark 19. Under Assumption 6.3, the regularization term Ω(𝑋) penalizes all

eigenvalues of 𝑓𝜔(𝑋) equally. The MPRT can be extended to a wider class of regu-

larization functions that penalize the largest eigenvalues more heavily, at the price of

additional notation. For brevity, we lay out this extension in Section 6.10.

Theorem 6.1 only uses the fact that 𝑓 is an operator function with 𝜔 satisfying

Assumption 6.1, not the fact that 𝑓 is matrix convex. In other words, (6.19) is always
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an equivalent reformulation of (6.18). An interesting question is to identify the set

of necessary conditions for the objective of (6.19) to be convex in (𝑋,𝑌 )–𝑓 being

matrix convex is clearly sufficient. The objective in (6.19) is convex only as long as

tr (𝑔𝑓 ) is. Interestingly, this is not equivalent to the convexity of tr(𝑓). See the next

section for a counter-example. It is, however, an open question whether a weaker

notion than matrix convexity could ensure the joint convexity of tr(𝑔𝑓 ).

Non joint convexity of trace matrix perspective of cube

In this section, we demonstrate by counterexample that if 𝜔 is a convex and continuous

function then, even though the trace of its matrix extension, tr(𝑓𝜔), is convex [c.f. 65,

Theorem 2.10], the trace of its matrix perspective need not be convex.

Specifically, let us consider 𝜔(𝑥) = 𝑥3. In this case, 𝜔 is convex on R+, 𝑓𝜔 is not

matrix convex, but tr(𝑓𝜔) is matrix convex. We have that

tr(𝑔𝑓𝜔(𝑋,𝑌 )) = tr
(︀
𝑋𝑌 †𝑋𝑌 †𝑋

)︀
for 𝑋 ∈ Span(𝑌 ),𝑋,𝑌 ∈ 𝒮𝑛

+. Let us now consider

𝑌1 =

⎛⎝0.160378 0.343004

0.343004 0.764592

⎞⎠ , 𝑌2 =

⎛⎝0.0859208 0.181976

0.181976 0.52666

⎞⎠ ,

𝑋1 =

⎛⎝0.242865 0.543321

0.543321 1.26604

⎞⎠ , 𝑋2 =

⎛⎝0.0595215 0.241702

0.241702 1.0596

⎞⎠ .

Then, some elementary algebra reveals that

tr
[︀
𝑔𝑓𝜔
(︀
1
2
𝑋1 +

1
2
𝑋2,

1
2
𝑌1 +

1
2
𝑌2

)︀]︀
= 6.248327,

1
2
tr [𝑔𝑓𝜔 (𝑋1,𝑌1)] +

1
2
tr [𝑔𝑓𝜔 (𝑋2,𝑌2)] = 6.23977,

which verifies that tr(𝑔𝑓𝜔(𝑋,𝑌 )) is not midpoint convex in (𝑋,𝑌 ).
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6.5 Convex Hulls of Low-Rank Sets and the MPRT

We now show that, for a general class of low-rank sets, applying the MPRT is equiva-

lent to taking the convex hull of the set. This is significant, because we are not aware

of any general-purpose techniques for taking convex hulls of low-rank sets. Formally,

we have the following result:

Theorem 6.2. Consider an operator function 𝑓 satisfying Assumption 6.3. Let

𝒯 = {𝑋 ∈ 𝒮𝑛 : tr(𝑓(𝑋)) + 𝜇 · Rank(𝑋) ≤ 𝑡,Rank(𝑋) ≤ 𝑘} (6.21)

be a set where 𝑡, 𝑘 are fixed. Then, an extended formulation of the convex hull is:

𝒯 𝑐 =

{︂
(𝑋,𝑌 ) ∈ 𝒮𝑛 × Conv(𝒴𝑘

𝑛) : (6.22)

tr(𝑔𝑓 (𝑋,𝑌 )) + 𝜇 · tr(𝑌 ) + (𝑛− tr(𝑌 ))𝜔(0) ≤ 𝑡

}︂
.

Where Conv(𝒴𝑘
𝑛) = {𝑌 ∈ 𝒮𝑛

+ : 𝑌 ⪯ I, tr(𝑌 ) ≤ 𝑘} is the convex hull of trace-𝑘

projection matrices, and 𝑔𝑓 is the matrix perspective function of 𝑓 .

Remark 20. Since linear optimization problems over convex sets admit extremal

optima, Theorem 6.2 demonstrates that unconstrained low-rank problems with spectral

objectives can be recast as linear semidefinite problems, where the rank constraint is

dropped without loss of optimality. This suggests that work on hidden convexity in low-

rank optimization, i.e., deriving conditions under which low-rank linear optimization

problems admit exact relaxations where the rank constraint is omitted [see, e.g., 190,

220], could be extended to incorporate spectral functions.

Proof. We prove the two directions sequentially:

• Conv (𝒯 ) ⊆ 𝒯 𝑐: let 𝑋 ∈ 𝒯 . Then, since the rank of 𝑋 is at most 𝑘, there

exists some 𝑌 ∈ 𝒴𝑘
𝑛 such that 𝑋 = 𝑌 𝑋 and tr(𝑌 ) = Rank(𝑋). Moreover,

by the same argument as in the proof of Theorem 6.1, it follows that (6.20)
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holds and tr(𝑔𝑓 (𝑋,𝑌 )) + 𝜇 · tr(𝑌 ) + (𝑛− tr(𝑌 ))𝜔(0) ≤ 𝑡, which confirms that

(𝑋,𝑌 ) ∈ 𝒯 𝑐. Since 𝒯 𝑐 is a convex set, we therefore have Conv (𝒯 ) ⊆ 𝒯 𝑐.

• 𝒯 𝑐 ⊆ Conv (𝒯 ): let (𝑋,𝑌 ) ∈ 𝒯 𝑐. Our proof uses Proposition 6.4, which

requires 𝑋 and 𝑌 to commute. Let 𝒳 denote the set of matrices that commute

with 𝑋: 𝒳 := {𝑀 : 𝑋𝑀 = 𝑀𝑋}. Denote 𝑌|𝒳 the projection of 𝑌

onto 𝒳 . By Lemma 6.3, we have that 𝑌|𝒳 ∈ Conv(𝒴𝑘
𝑛), and tr

(︀
𝑔𝑓 (𝑋,𝑌|𝒳 )

)︀
≤

tr (𝑔𝑓 (𝑋,𝑌 )) <∞ so (𝑋,𝑌|𝒳 ) ∈ 𝒯 𝑐 as well. Hence, without loss of generality,

by renaming 𝑌 ← 𝑌|𝒳 , we can assume that 𝑋 and 𝑌 commute. Then, it

follows from Proposition 6.4 that the vectors of eigenvalues of 𝑋 and 𝑌 (ordered

according to a shared eigenbasis 𝑈), (𝜆(𝑋),𝜆(𝑌 )) belong to the set

{︃
(𝑥,𝑦) ∈ R𝑛 × [0, 1]𝑛 :

∑︁
𝑖

𝑦𝑖 ≤ 𝑘,
𝑛∑︁

𝑖=1

𝑦𝑖𝜔
(︁

𝑥𝑖

𝑦𝑖

)︁
+ 𝜇

∑︁
𝑖

𝑦𝑖 + (𝑛−
∑︁
𝑖

𝑦𝑖)𝜔(0) ≤ 𝑡

}︃
,

which, by [126, Lemma 6], is the convex hull of

𝒰 𝑐 :=

{︂
(𝑥,𝑦) ∈ R𝑛 × {0, 1}𝑛 :

∑︁
𝑖

𝑦𝑖 ≤ 𝑘,
𝑛∑︁

𝑖=1

𝜔 (𝑥𝑖) + 𝜇
∑︁
𝑖

𝑦𝑖 ≤ 𝑡,

𝑥𝑖 = 0 if 𝑦𝑖 = 0 ∀𝑖 ∈ [𝑛]

}︂
.

Let us decompose (𝜆(𝑋),𝜆(𝑌 )) into 𝜆(𝑋) =
∑︀

𝑘 𝛼𝑘𝑥
(𝑘), 𝜆(𝑌 ) =

∑︀
𝑘 𝛼𝑘𝑦

(𝑘),

with 𝛼𝑘 ≥ 0,
∑︀

𝑘 𝛼𝑘 = 1, and (𝑥(𝑘),𝑦(𝑘)) ∈ 𝒰 𝑐. By definition,

𝑇 (𝑘) := 𝑈Diag(𝑥(𝑘))𝑈⊤ ∈ 𝒯

and 𝑋 =
∑︀

𝑘 𝛼𝑘𝑇
(𝑘). Therefore, we have that 𝑋 ∈ Conv(𝒯 ), as required.

6.6 Examples of the Matrix Perspective Function

Theorem 6.2 demonstrates that, for spectral functions under low-rank constraints,

taking the matrix perspective is equivalent to taking the convex hull. To highlight

the utility of Theorems 6.1-6.2, we therefore supply the perspective functions of some
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spectral regularization functions which frequently arise in the low-rank matrix litera-

ture, and summarize them in Table 6.2. We also discuss how these functions and their

perspectives can be efficiently optimized over. Note that all functions introduced in

this section are either matrix convex or the trace of a matrix convex function, and

thus supply valid convex relaxations when used as regularizers for the MPRT.

Spectral constraint: Let 𝜔(𝑥) = 0 if |𝑥| ≤𝑀 , +∞ otherwise. Then,

𝑓(𝑋) =

⎧⎪⎨⎪⎩0 if ‖𝑋‖𝜎 ≤𝑀,

+∞ otherwise,

for 𝑋 ∈ 𝒮𝑛, where ‖ · ‖𝜎 denotes the spectral norm, i.e., the largest eigenvalue in

absolute magnitude of 𝑋. Observe that the condition ‖𝑋‖𝜎 ≤ 𝑀 can be expressed

via semidefinite constraints−𝑀I ⪯𝑋 ⪯𝑀I. The perspective 𝑔𝑓 is

𝑔𝑓 (𝑋,𝑌 ) =

⎧⎪⎨⎪⎩0 if −𝑀𝑌 ⪯𝑋 ⪯𝑀𝑌 ,

+∞ otherwise.

If 𝑋 and 𝑌 commute, 𝑔𝑓 (𝑋,𝑌 ) requires that |𝜆𝑗(𝑋)| ≤ 𝑀𝜆𝑗(𝑌 ) ∀𝑗 ∈ [𝑛]–the

spectral analog of a big-𝑀 constraint. This constraint can be modeled using two

semidefinite cones, and thus handled by semidefinite solvers.

Convex quadratic: For 𝜔(𝑥) = 𝑥2, 𝑓(𝑋) = 𝑋⊤𝑋. Then, the perspective 𝑔𝑓 is

𝑔𝑓 (𝑋,𝑌 ) =

⎧⎪⎨⎪⎩𝑋⊤𝑌 †𝑋 if 𝑌 ⪰ 0,

+∞ otherwise.

Observe that this function’s epigraph is semidefinite-representable. Indeed, by the

Schur complement lemma, minimizing the trace of 𝑔𝑓 (𝑋,𝑌 ) is equivalent to solving
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min
𝜃∈𝒮𝑛,𝑌 ∈𝒮𝑛,𝑋∈𝒮𝑛

tr(𝜃) s.t.

⎛⎝ 𝜃 𝑋

𝑋⊤ 𝑌

⎞⎠ ⪰ 0.

Interestingly, this perspective function allows us to rewrite the rank-𝑘 SVD

min
𝑋∈R𝑛×𝑚

‖𝑋 −𝐴‖2𝐹 : Rank(𝑋) ≤ 𝑘

as a linear optimization problem over the set of orthogonal projection matrices, which

implies that the orthogonal projection constraint can be relaxed to its convex hull

without loss of optimality. This is significant, because while rank-𝑘 SVD is com-

monly thought of as a non-convex problem which “surprisingly” admits a closed-form

solution, the MPRT shows that it actually admits an exact convex reformulation:

min
𝑋,𝑌 ,𝜃

1

2
tr(𝜃)− ⟨𝐴,𝑋⟩+ 1

2
‖𝐴‖2𝐹 s.t. 𝑌 ⪯ I, tr(𝑌 ) ≤ 𝑘,

⎛⎝ 𝜃 𝑋

𝑋⊤ 𝑌

⎞⎠ ⪰ 0.

Note that we extended our results for symmetric matrices to rectangular matrices

𝑋 ∈ R𝑛×𝑚 without justification. We rigorously derive this extension for 𝑓(𝑋) =

𝑋⊤𝑋 in Chapter 6.11, and defer the general case to future research.

Spectral plus convex quadratic: Let

𝑓(𝑋) =

⎧⎪⎨⎪⎩𝑋2 if ‖𝑋‖𝜎 ≤𝑀,

+∞ otherwise,

for 𝑋 ∈ 𝒮𝑛. Then, the perspective function 𝑔𝑓 is

𝑔𝑓 (𝑋,𝑌 ) =

⎧⎪⎨⎪⎩𝑋⊤𝑌 †𝑋 if −𝑀𝑌 ⪯𝑋 ⪯𝑀𝑌 ,

+∞ otherwise.

This is the spectral analog of combining a big-𝑀 and a ridge penalty.
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Convex quadratic over completely positive cone: Consider the problem

min
𝑋∈𝒮𝑛

𝑋⊤𝑋 s.t. 𝑋 ∈ 𝒞𝑛+,

where 𝒞𝑛+ = {𝑋 : 𝑋 = 𝑈𝑈⊤,𝑈 ∈ R𝑛×𝑛
+ } ⊆ 𝒮𝑛

+ denotes the completely positive

cone. Then, by denoting 𝑓(𝑋) = 𝑋⊤𝑋 and 𝑔𝑓 its perspective function we obtain

a valid relaxation by minimizing tr(𝑔𝑓 ), which, by the Schur complement lemma [see

55, Equation 2.41], can be reformulated as

min
𝜃∈𝒮𝑛,𝑌 ∈𝒮𝑛,𝑋∈𝒮𝑛

tr(𝜃) s.t.

⎛⎝ 𝜃 𝑋

𝑋⊤ 𝑌

⎞⎠ ∈ 𝒮2𝑛
+ ,𝑋 ∈ 𝒞𝑛+.

Unfortunately, this formulation cannot be tractably optimized over, since separating

over the completely positive cone is NP-hard. However, by relaxing the completely

positive cone to the doubly non-negative cone—𝒮𝑛
+ ∩ R𝑛×𝑛

+ —we obtain a tractable

and near-exact relaxation. Indeed, as we shall see in our numerical experiments,

combining this relaxation with a state-of-the-art heuristic supplies certifiably near-

optimal solutions in both theory and practice.

Power: Let 𝑓(𝑋) = 𝑋𝛼 for 𝛼 ∈ [0, 1], 𝑋 ∈ 𝒮𝑛
+. The matrix perspective is:

𝑔𝑓 (𝑋,𝑌 ) =

⎧⎪⎨⎪⎩𝑌
1−𝛼
2 𝑋𝛼𝑌

1−𝛼
2 if 𝑌

−1
2 𝑋𝑌

−1
2 ∈ 𝒮𝑛

+,𝑌 ⪰ 0,

+∞ otherwise.

Remark 21 (Matrix Power Cone). This function’s epigraph, the matrix power cone:

𝒦pow,𝛼
mat = {(𝑋1,𝑋2,𝑋3) ∈ 𝒮𝑛

+ × 𝒮𝑛
+ × 𝒮𝑛 : 𝑋

1−𝛼
2

2 𝑋𝛼
1 𝑋

1−𝛼
2

2 ⪰𝑋3,+ +𝑋3,−}

is a closed convex cone which is semidefinite representable for any rational 𝑝 [100].

Consequently, it is a tractable object which successfully models the matrix power func-

tion (and its perspective) and we shall make repeated use of it when we apply the

MPRT to several important low-rank problems in Section 6.6.
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Logarithm: Let 𝑓(𝑋) = − log(𝑋) be the matrix logarithm. We have

𝑔𝑓 (𝑋,𝑌 ) =

⎧⎪⎨⎪⎩−𝑌
1
2 log

(︁
𝑌 − 1

2𝑋𝑌 − 1
2

)︁
𝑌

1
2 if 𝑋,𝑌 ≻ 0,

+∞ otherwise.

Observe that when 𝑋 and 𝑌 commute, 𝑔𝑓 (𝑋,𝑌 ) can be rewritten as 𝑌 (log(𝑌 ) −

log(𝑋)), which is the quantum relative entropy function [see 101, for a general the-

ory]. We remark that the domain of log(𝑋) requires that 𝑋 is full-rank, which at

a first glance makes the use of this function problematic for low-rank optimization.

Accordingly, we consider the 𝜖−logarithm function, i.e., log𝜖(𝑋) = log(𝑋 + 𝜖I) for

𝜖 > 0, as advocated by Fazel et al. [104] in a different context.

Observe that tr(log(𝑋)) = log det(𝑋) while tr(𝑔𝑓 ) = tr(𝑋(log(𝑋) − log(𝑌 )).

Thus, the matrix logarithm and its trace verify the concavity of the logdet func-

tion—which has numerous applications in low-rank problems [104] and interior point

methods [200] among others—while the perspective of the matrix logarithm provides

an elementary proof of the convexity of the quantum relative entropy: a task for

which perspective-free proofs are technically demanding [96].

Von Neumann entropy: Let 𝑓(𝑋) = 𝑋 log(𝑋) denote the von Neumann quan-

tum entropy of a density matrix 𝑋. Then, its perspective function is 𝑔𝑓 (𝑋,𝑌 ) =

𝑋𝑌 − 1
2 log(𝑌 − 1

2𝑋𝑌 − 1
2 )𝑌

1
2 . When 𝑋 and 𝑌 commute, this perspective can be

equivalently written as

𝑔𝑓 (𝑋,𝑌 ) =

⎧⎪⎨⎪⎩𝑋
1
2 log(𝑌 − 1

2𝑋𝑌 − 1
2 )𝑋

1
2 if 𝑋,𝑌 ≻ 0,

+∞ otherwise.

which is referred to as the Umegaski relative entropy or the matrix Kullback-Leibler

divergence in the literature.
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Remark 22 (Quantum relative entropy cone). Note the epigraph of 𝑔𝑓 , namely,

𝒦op, rel
mat =

{︂
(𝑋1,𝑋2,𝑋3) ∈ 𝒮𝑛 × 𝒮𝑛

++ × 𝒮𝑛
++ :

𝑋1 ⪰ −𝑋
1
2
2 log(𝑋

− 1
2

2 𝑋3𝑋
− 1

2
2 )𝑋

1
2
2

}︂
,

is a closed convex cone which can be approximated using semidefinite cones and op-

timized over using either the Matlab package CVXQuad (see [101]), or optimized over

directly using an interior point method for asymmetric cones [145]1. Consequently,

this is a tractable object which models the matrix log and Von Neumann entropy.

Finally, Table 6.2 relates the matrix perspectives with their scalar analogs.

Table 6.2: Analogy between perspectives of scalars and perspectives of matrix
convex functions.

Perspective of function Matrix perspective of function

Type 𝑓(𝑥) : R→ R 𝑔𝑓 (𝑥, 𝑡) 𝑓 𝑔𝑓

Quadratic 𝑥2 𝑥2/𝑡 𝑋⊤𝑋 𝑋⊤𝑌 †𝑋

Power −𝑥𝛼 : 0 < 𝛼 < 1 −𝑥𝛼𝑡1−𝛼 −𝑋𝛼 −𝑌 1−𝛼
2 𝑋𝛼𝑌

1−𝛼
2

Log − log(𝑥) −𝑡 log(𝑥𝑡 ) log(𝑋) −𝑌 1
2 log

(︁
𝑋− 1

2𝑌 𝑋− 1
2

)︁
𝑌

1
2

Entropy 𝑥 log(𝑥) 𝑥 log(𝑥𝑡 ) 𝑋 log(𝑋) 𝑋
1
2 log(𝑌 − 1

2𝑋𝑌 − 1
2 )𝑋

1
2

Matrix Perspective Cuts

We now generalize the perspective cuts of [110, 126] from vectors to matrices and car-

dinality to rank constraints. Let us reconsider the previously defined mixed-projection

optimization problem:

min
𝑌 ∈𝒴𝑘

𝑛

min
𝑋∈𝒮𝑛

+

⟨𝐶,𝑋⟩+ 𝜇 · tr(𝑌 ) + tr(𝑓(𝑋))

s.t. ⟨𝐴𝑖,𝑋⟩ = 𝑏𝑖 ∀𝑖 ∈ [𝑚], 𝑋 = 𝑌 𝑋,𝑋 ∈ 𝒦,

1Specifically, if we are interested in quantum relative entropy problems where we minimize the
trace of 𝑋1, as occurs in the context of the MPRT, we may achieve this using the domain-driven
solver developed by [145]. However, we are not aware of any IPMs which can currently optimize
over the full quantum relative entropy cone.
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where similarly to [110] we assume that 𝑓(0) = 0 to simplify the cut derivation

procedure. Letting 𝜃 model the epigraph of 𝑓 via 𝜃 ⪰ 𝑓(𝑋) and 𝑆 be a subgradient:

𝜃 ⪰ 𝑓(𝑋̄)𝑌 + 𝑆⊤(𝑋 − 𝑋̄𝑌 ), (6.23)

which if 𝑓(𝑋) = 𝑋2 —as discussed previously—reduces to

𝜃𝑖 ⪰ 𝑋̄(2𝑋 − 𝑋̄𝑌 ),

which is precisely the analog of perspective cuts in the vector case. Note however that

these cuts require semidefinite constraints to impose, which suggests they may not be

as practically useful. For instance, Chapter 5’s outer-approximation scheme for low-

rank problems has a non-convex QCQOP master problem, which can only be currently

solved using Gurobi, while Gurobi does not support semidefinite constraints.

We remark however that the inner product of Equation (6.23) with an arbitrary

PSD matrix supplies a valid linear inequality. Two interesting cases arise when we

take the inner product of the cut with a rank-one matrix or the identity matrix.

Taking an inner product with the identity matrix supplies the inequality:

tr(𝜃) ≥ ⟨𝑓(𝑋̄),𝑌 ⟩+ ⟨𝑆,𝑋 − 𝑋̄𝑌 ⟩ ∀𝑌 ∈ 𝒴𝑘
𝑛. (6.24)

Moreover, by analogy to Chapter 2, if we “project out” the 𝑋 variables by decom-

posing the problem into a master problem in 𝑌 and subproblems in 𝑋 then this cut

becomes the cut derived in Chapter 5.

Alternatively, taking the inner product with a rank-one matrix 𝑏𝑏⊤ gives:

𝑏⊤𝜃𝑏 ≥ 𝑏⊤
(︀
𝑓(𝑋̄)𝑌 + 𝑆⊤(𝑋 − 𝑋̄𝑌 )

)︀
𝑏.

The analysis in this section suggests that applying a perspective cut decomposition

scheme out-of-the-box may be impractical, but leaves the door open to adaptations

of the scheme which account for the projection matrix structure.
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6.7 Examples and Perspective Relaxations

In this section, we apply the MRPT to several important low-rank problems, in

addition to the previously discussed reduced-rank regression problem. We also recall

Theorem 6.2 to demonstrate that applying the MPRT to spectral functions which

feature in these problems actually gives the convex hull of substructures.

Matrix Completion Revisited

Given a sample (𝐴𝑖,𝑗 : (𝑖, 𝑗) ∈ ℐ ⊆ [𝑛]×[𝑛]) of a matrix 𝐴 ∈ 𝒮𝑛
+, the matrix completion

problem is to reconstruct the entire matrix, by assuming 𝐴 is approximately low-rank

[63]. Letting 𝜇, 𝛾 > 0 be penalty multipliers, this problem admits the formulation:

min
𝑋∈𝒮𝑛

+

∑︁
(𝑖,𝑗)∈ℐ

(𝑋𝑖,𝑗 − 𝐴𝑖,𝑗)
2 +

1

2𝛾
‖𝑋‖2𝐹 + 𝜇 · Rank(𝑋). (6.25)

Applying the MPRT to the ‖𝑋‖2𝐹 = tr(𝑋⊤𝑋) term demonstrates that this prob-

lem is equivalent to the mixed-projection problem:

min
𝑋,𝜃∈𝒮𝑛

+,𝑌 ∈𝒴𝑛
𝑛

∑︁
(𝑖,𝑗)∈ℐ

(𝑋𝑖,𝑗 − 𝐴𝑖,𝑗)
2 +

1

2𝛾
tr(𝜃) + 𝜇 · tr(𝑌 )

s.t.

⎛⎝𝑌 𝑋

𝑋 𝜃

⎞⎠ ⪰ 0,

and relaxing 𝑌 ∈ 𝒴𝑛
𝑛 to 𝑌 ∈ Conv(𝒴𝑛

𝑛 ) = {𝑌 ∈ 𝒮𝑛 : 0 ⪯ 𝑌 ⪯ I} supplies a valid

relaxation. We now argue that this relaxation is often high-quality, by demonstrating

that the MPRT supplies the convex envelope of 𝑡 ≥ 1
2𝛾
‖𝑋‖2𝐹 + 𝜇 · Rank(𝑋), via the

following corollary to Theorem 6.2:

Corollary 6.2.

Let 𝒮 =
{︀
(𝑌 ,𝑋,𝜃) ∈ 𝒴𝑘

𝑛 × 𝒮𝑛
+ × 𝒮𝑛 : 𝜃 ⪰𝑋⊤𝑋, 𝑢𝑌 ⪰𝑋 ⪰ ℓ𝑌

}︀
223



be a set where ℓ, 𝑢 ∈ R+. Then, this set’s convex hull is given by:

𝒮𝑐 =

{︂
(𝑌 ,𝑋,𝜃) ∈ 𝒮𝑛

+ × 𝒮𝑛
+ × 𝒮𝑛 :

𝑌 ⪯ I, tr(𝑌 ) ≤ 𝑘, 𝑢𝑌 ⪰𝑋 ⪰ ℓ𝑌 ,

⎛⎝ 𝑌 𝑋

𝑋⊤ 𝜃

⎞⎠ ⪰ 0

}︂
.

Tensor Completion

A central problem in machine learning is to reconstruct a 𝑑-tensor X given a subsam-

ple of its entries (𝐴𝑖1,...𝑖𝑑 : (𝑖1, . . . 𝑖𝑑) ∈ ℐ ⊆ [𝑛1]×[𝑛2]×. . .×[𝑛𝑑]), by assuming that the

tensor is low-rank. Since even evaluating the rank of a tensor is NP-hard [152], a pop-

ular approach for solving this problem is to minimize the reconstruction error while

constraining the ranks of different unfoldings of the tensor [see, e.g., 119]. After im-

posing Frobenius norm regularization and letting ‖ · ‖𝐻𝑆 =
√︁∑︀𝑛1

𝑖1=1 . . .
∑︀𝑛𝑑

𝑖𝑑=1𝑋
2
𝑖1,...,𝑖𝑑

denote the (second-order cone representable) Hilbert-Schmidt norm of a tensor, this

leads to optimization problems of the form:

min
X∈R𝑛1×...×𝑛𝑑

∑︁
(𝑖1,...𝑖𝑑)∈ℐ

(A𝑖1,...𝑖𝑑 − X𝑖1,...𝑖𝑑)
2 +

𝑛∑︁
𝑖=1

‖X(𝑖)‖2𝐹 (6.26)

s.t. Rank(X(𝑖)) ≤ 𝑘 ∀𝑖 ∈ [𝑛].

Similarly to low-rank matrix completion, it is tempting to apply the MRPT to model

the 𝑋⊤
(𝑖)𝑋(𝑖) term for each mode-𝑛 unfolding. We now demonstrate this supplies a

tight approximation of the convex hull of the sum of the regularizers, via the following

lemma (proof omitted, follows in the spirit of [126, Lemma 4]):

Lemma 6.4.

Let 𝒬 =

{︂
(𝜌,𝑌1, . . . ,𝑌𝑚,𝑋1, . . . ,𝑋𝑚,𝜃1, . . . ,𝜃𝑚) :

𝜌 ≥
𝑚∑︁
𝑖=1

𝑞𝑖tr(𝜃𝑖), (𝑋𝑖,𝑌𝑖,𝜃𝑖) ∈ 𝒮 𝑖 ∀𝑖 ∈ [𝑚]

}︂
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be a set where 𝑙𝑖, 𝑢𝑖, 𝑞𝑖 ∈ R𝑛
+ ∀𝑖 ∈ [𝑚], and 𝒮𝑖 is a set of the same form as 𝒮, but 𝑙, 𝑢

are replaced by 𝑙𝑖, 𝑢𝑖. Then, an extended formulation of the convex hull is given by:

𝒬𝑐 =

{︂
(𝜌,𝑌1, . . . ,𝑌𝑚,𝑋1, . . . ,𝑋𝑚,𝜃1, . . . ,𝜃𝑚) :

𝜌 ≥
𝑚∑︁
𝑖=1

𝑞𝑖tr(𝜃𝑖), (𝑋𝑖,𝑌𝑖,𝜃𝑖) ∈ 𝒮𝑐
𝑖 ∀𝑖 ∈ [𝑚]

}︂
.

Lemma 6.4 suggests that the MPRT may improve algorithms which aim to recover

tensors of low slice rank. For instance, in low-rank tensor problems where (6.26)

admits multiple local solutions, solving the convex relaxation coming from 𝒬𝑐 and

greedily rounding may give a high-quality initial point for an alternating minimization

method such as the method of [99], and indeed allow such a strategy to return better

solutions than if it were initialized at a random point.

Note however that Lemma 6.4 does not necessarily give the convex hull of the sum

of the regularizers, since the regularization terms involve different slices of the same

tensor and thus interact; see also [206] for a related proof that the tensor trace norm

does not give the convex envelope of the sum of ranks of slices.

Low-Rank Factor Analysis

An important problem in statistics, psychometrics and economics is to decompose a

covariance matrix Σ ∈ 𝒮𝑛
+ into a low-rank matrix 𝑋 ∈ 𝒮𝑛

+ plus a diagonal matrix

Φ ∈ 𝒮𝑛
+, as explored by [31] and references therein. This corresponds to solving:

min
𝑋,Φ∈𝒮𝑛

+

‖Σ−Φ−𝑋‖𝑞𝑞 s.t. Rank(𝑋) ≤ 𝑘, Φ𝑖,𝑗 = 0,∀𝑖, 𝑗 : 𝑖 ̸= 𝑗, ‖𝑋‖𝜎 ≤𝑀 (6.27)

where 𝑞 ≥ 1, ‖𝑋‖𝑞 = (
∑︀𝑛

𝑖=1 𝜆𝑖(𝑋)𝑞)
1
𝑞 denotes the matrix 𝑞 norm, and we constrain

the spectral norm of 𝑋 via a big-𝑀 constraint for the sake of tractability.

This problem’s objective involves minimizing tr (Σ−Φ−𝑋)𝑞, and it is not imme-

diately obvious how to either apply the technique in the presence of the Φ variables

or alternatively seperate out the Φ term and apply the MPRT to an appropriate
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(Φ-free) substructure. To proceed, let us therefore first consider its scalar analog,

obtaining the convex closure of the following set:

𝒯 = {(𝑥, 𝑦, 𝑧, 𝑡) ∈ R× R× {0, 1} × R+ : 𝑡 ≥ |𝑥+ 𝑦 − 𝑑|𝑞, |𝑥| ≤𝑀,𝑥 = 𝑧𝑥},

where 𝑑 ∈ R and 𝑞 ≥ 1 are fixed constants, and we require that |𝑥| ≤𝑀 for the sake

of tractability. We obtain the convex closure via the following proposition:

Proposition 6.5. The convex closure of the set 𝒯 , 𝒯 𝑐, is given by:

𝒯 𝑐 =

{︂
(𝑥, 𝑦, 𝑧, 𝑡) ∈ R× R× [0, 1]× R+ : ∃𝛽 ≥ 0 :

𝑡 ≥ |𝑦 − 𝛽 − 𝑑(1− 𝑧)|𝑞

(1− 𝑧)𝑞−1
+
|𝑥+ 𝛽 − 𝑑𝑧|𝑞

𝑧𝑞−1
, |𝑥| ≤𝑀𝑧

}︂
.

Remark 23. To check that this set is indeed a valid convex relaxation, observe that

if 𝑧 = 0 then 𝑥 = 0 and 𝑥 = −𝛽 =⇒ 𝛽 = 0 and 𝑡 ≥ |𝑦 − 𝑑|𝑞, while if 𝑧 = 1 then

𝑦 = 𝛽 and 𝑡 ≥ |𝑥+ 𝑦 − 𝑑|𝑞.

Proof. We use the proof technique laid out in [128, Section 3.1], namely writing 𝒯

as the disjunction of two convex sets driven by whether 𝑧 is active and applying

Fourier-Motzkin elimination. That is, we have 𝒯 = 𝒯 1 ∪ 𝒯 2 where:

𝒯 1 = {(0, 𝑦1, 0, 𝑡1) : 𝑡1 ≥ |𝑦1 − 𝑑|𝑞} ,

𝒯 2 = {(𝑥2, 𝑦2, 1, 𝑡2) : 𝑡2 ≥ |𝑥2 − 𝑦2 − 𝑑|𝑞, |𝑥2| ≤𝑀} .

Moreover, a point (𝑥, 𝑦, 𝑧, 𝑡) is in the convex hull 𝒯 𝑐 if and only if it can be written as

a convex combination of points in 𝒯 1, 𝒯 2. Letting 𝜆1, 𝜆2 denote the weight of points

in this system, we then have that (𝑥, 𝑦, 𝑧, 𝑡) ∈ 𝒯 𝑐 if and only if the following system
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admits a solution:
𝜆1 + 𝜆2 = 1,

𝑥 = 𝜆2𝑥2,

𝑦 = 𝜆1𝑦1 + 𝜆2𝑦2,

𝑡 = 𝜆1𝑡1 + 𝜆2𝑡2,

𝑧 = 𝜆2,

𝑡1 ≥ |𝑦1 − 𝑑|𝑞,

𝑡2 ≥ |𝑥2 + 𝑦2 − 𝑑|𝑞,

𝜆1, 𝜆2 ≥ 0,

|𝑥2| ≤𝑀.

(6.28)

For ease of computation, we now eliminate variables. First, one can substitute 𝑡1, 𝑡2

for their lower bounds in the definition of 𝑡 and replace 𝜆2 with 𝑧 to obtain

𝜆1 + 𝑧 = 1,

𝑥 = 𝑧𝑥2,

𝑦 = 𝜆1𝑦1 + 𝑧𝑦2,

𝑡 ≥ 𝜆1|𝑦1 − 𝑑|𝑞 + 𝑧|𝑥2 + 𝑦2 − 𝑑|𝑞,

𝜆1, 𝑧 ≥ 0,

|𝑥2| ≤𝑀.

(6.29)

Next, we substitute 𝑥/𝑧 for 𝑥2 and (𝑦 − 𝑧𝑦2)/𝜆1 for 𝑦1 to obtain

𝜆1 + 𝑧 = 1, 𝜆1, 𝑧 ≥ 0, |𝑥| ≤𝑀𝑧

𝑡 ≥ 1

𝜆𝑞−1
1

|𝑦 − 𝑦2𝑧 − 𝑑(1− 𝑧)|𝑞 + 1

𝑧𝑞−1
|𝑥+ 𝑦2𝑧 − 𝑑𝑧|𝑞.

(6.30)

Finally, we let 𝑧𝑦2 be the free variable 𝛽 and set 𝜆1 = 1 − 𝑧 to obtain the required

convex set.

Observe that 𝒯 𝑐 can be modeled using two power cones and one inequality.

Proposition 6.5 suggests that we can obtain high-quality convex relaxations for
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low-rank factor analysis problems via a judicious use of the matrix power cone.

Namely, introduce an epigraph matrix 𝜃 to model the eigenvalues of (Σ −Φ −𝑋)𝑞

and an orthogonal projection matrix 𝑌2 to model the span of 𝑋. This then leads to

the following matrix power cone representable relaxation:

min
𝑋,Φ,𝜃,𝑌1,𝑌2∈𝒮𝑛

+,𝛽∈𝒮𝑛
tr(𝜃)

s.t. 𝜃 ⪰ 𝑌
1−𝑞
2

1 (𝑌
1
2

1 Σ𝑌
1
2

1 − 𝛽 −Φ)𝑌
1−𝑞
2

1

+ 𝑌
1−𝑞
2

2 (𝑌
1
2

2 Σ𝑌
1
2

2 + 𝛽 −𝑋)𝑌
1−𝑞
2

2 ,

𝑌1 + 𝑌2 = I, tr(𝑌 ) ≤ 𝑘,Φ𝑖,𝑗 = 0,∀𝑖, 𝑗 ∈ [𝑛] : 𝑖 ̸= 𝑗,

Φ ⪯𝑋,𝑋 ⪯𝑀𝑌2,−𝑋 ⪯𝑀𝑌2.

Optimal Experimental Design

Letting 𝐴 ∈ R𝑛×𝑚 where 𝑚 ≥ 𝑛 be a matrix of linear measurements of the form

𝑦𝑖 = 𝑎⊤
𝑖 𝛽 + 𝜖𝑖 from an experimental setting, the D-optimal experimental design

problem (a.k.a. the sensor selection problem) is to pick 𝑘 ≤ 𝑚 of these experiments

in order to make the most accurate estimate of 𝛽 possible, by solving [see 142, 210,

for a modern approach]:

max
𝑧∈{0,1}𝑛:𝑒⊤𝑧≤𝑘

log det
𝜖

⎛⎝∑︁
𝑖∈[𝑛]

𝑧𝑖𝑎𝑖𝑎
⊤
𝑖

⎞⎠ , (6.31)

where we define log det𝜖(𝑋) =
∑︀𝑛

𝑖=1 log(𝜆𝑖(𝑋) + 𝜖) for 𝜖 > 0 to be the pseudo log-

determinant of a rank-deficient PSD matrix, which can be thought of as imposing

an uninformative prior of importance 𝜖 on the experimental design process. Since

log det(𝑋) = tr(log(𝑋)) and log det(𝑋 + 𝜖I) = log det𝜖(𝑋) for 𝑋 ⪰ 0 and 𝜖 > 0, a

valid convex relaxation is given by:

max
𝑧∈[0,1]𝑛,𝜃∈𝒮𝑛

+

tr(𝜃) s.t. log
(︀
𝐴Diag(𝑧)𝐴⊤ + 𝜖I

)︀
⪰ 𝜃,
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which can be modeled using the quantum entropy cone: (−𝜃, I,𝐴Diag(𝑧)𝐴⊤ + 𝜖I) ∈

𝒦rel, op
mat . This is equivalent to perhaps the most common relaxation of D-optimal

design, as proposed by Boyd and Vandenberghe [54, Eqn. 7.2.6]. By formulating in

terms of the quantum relative entropy cone, the identity term suggests this relaxation

leaves something “on the table”.

In this direction, let us apply the MPRT. Observe that 𝑋 :=
∑︀

𝑖∈[𝑛] 𝑧𝑖𝑎𝑖𝑎
⊤
𝑖 is

a rank-𝑘 matrix and thus at an optimal solution to the original problem there is

some orthogonal projection matrix 𝑌 such that 𝑋 = 𝑌 𝑋. Therefore, we can take

the perspective function of 𝑓(𝑋) = log(𝑋 + 𝜖I), and thereby obtain the following

valid—and potentially much tighter when 𝑘 < 𝑛—convex relaxation:

max
𝑧∈[0,1]𝑛,𝜃,𝑌 ∈𝒮𝑛

+

tr(𝜃) + (𝑛− tr(𝑌 )) log(𝜖) (6.32)

s.t. 𝑌
1
2 log

(︁
𝑌 − 1

2 (𝐴Diag(𝑧)𝐴⊤ + 𝜖𝑌 )𝑌 − 1
2

)︁
𝑌

1
2 ⪰ 𝜃,

𝑌 ⪯ I, tr(𝑌 ) ≤ 𝑘,

which can be modeled via the quantum relative entropy cone:

(−𝜃,𝑌 ,𝐴Diag(𝑧)𝐴⊤ + 𝜖𝑌 ) ∈ 𝒦rel, op
mat .

We now argue that this relaxation is high-quality, by demonstrating that the MPRT

supplies the convex envelope of 𝑡 ≥ − log det𝜖(𝑋) under a low-rank constraint, via

the following corollary to Theorem 6.2:

Corollary 6.3.

Let 𝒮 =
{︁
𝑋 ∈ 𝒮𝑛

+ : 𝑡 ≥ − log det
𝜖
(𝑋),Rank(𝑋) ≤ 𝑘

}︁
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be a set where 𝜖, 𝑘, 𝑡 are fixed. Then, this set’s convex hull is:

𝒮𝑐 =

{︂
(𝑌 ,𝑋) ∈ 𝒮𝑛

+ × 𝒮𝑛
+ :0 ⪯ 𝑌 ⪯ I, tr(𝑌 ) ≤ 𝑘,

𝑡 ≥ −tr(𝑌
1
2 log𝜖(𝑋

1
2𝑌 †𝑋

1
2 )− (𝑛− tr(𝑌 )) log(𝜖)

}︂
.

Remark 24. Observe that (6.32)’s relaxation is not useful in the over-determined

regime where 𝑘 ≥ 𝑛, since setting 𝑌 = I recovers (6.31)’s Boolean relaxation, which

is considerably cheaper to optimize over. Accordingly, we only consider the underde-

termined regime in our experiments.

Non-Negative Matrix Optimization

Many important problems in combinatorial optimization, statistics and computer

vision [see, e.g., 57] reduce to optimizing over the space of low-rank matrices with

non-negative factors. An important special case is when we would like to find the low-

rank completely positive matrix 𝑋 which best approximates (in a least-squares sense)

a given matrix 𝐴 ∈ 𝒮𝑛
+, i.e., perform non-negative principal component analysis.

Formally, we have the problem:

min
𝑋∈𝒞𝑛

+:Rank(𝑋)≤𝑘
‖𝑋 −𝐴‖2𝐹 , (6.33)

where 𝒞𝑛+ := {𝑈𝑈⊤ : 𝑈 ∈ R𝑛×𝑛
+ } is the cone of completely positive matrices.

Applying the MPRT to the strongly convex 1
2
‖𝑋‖2𝐹 term in the objective therefore

yields the following completely positive program:

min
𝑋∈𝒞𝑛

+,𝑌 ,𝜃∈𝒮𝑛

1

2
tr(𝜃)− ⟨𝑋,𝐴⟩+ 1

2
‖𝐴‖2𝐹 (6.34)

s.t. 𝑌 ⪯ I, tr(𝑌 ) ≤ 𝑘,

⎛⎝ 𝑌 𝑋

𝑋⊤ 𝜃

⎞⎠ ∈ 𝑆2𝑛
+ . (6.35)

Interestingly, since (6.34)’s reformulation has a linear objective, some extreme point

in its relaxation is optimal, which means we can relax the requirement that 𝑌 is
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a projection matrix without loss of optimality and the computational complexity of

the problem is entirely concentrated in the completely positive cone. Unfortunately

however, completely positive optimization itself is intractable. Nonetheless, it can be

approximated by replacing the completely positive cone with the doubly non-negative

cone, 𝒮𝑛
+ ∩ R𝑛×𝑛

+ . Namely, we instead solve

min
𝑋∈𝒮𝑛

+∩R𝑛×𝑛
+ ,𝑌 ,𝜃∈𝒮𝑛

1

2
tr(𝜃)− ⟨𝑋,𝐴⟩+ 1

2
‖𝐴‖2𝐹 (6.36)

s.t.

⎛⎝ 𝑌 𝑋

𝑋⊤ 𝜃

⎞⎠ ∈ 𝑆2𝑛
+ , 𝑌 ⪯ I, tr(𝑌 ) ≤ 𝑘. (6.37)

Remark 25. If 𝑋 = 𝐷Π is a monomial matrix, i.e., decomposable as the product of

a diagonal matrix 𝐷 and a permutation matrix Π, as occurs in binary optimization

problems such as 𝑘-means clustering problems among others [c.f. 191], then it follows

that (𝑋⊤𝑋)† ≥ 0 [see 194] and thus 𝑌 := 𝑋(𝑋⊤𝑋)†𝑋⊤ is elementwise non-

negative. In this case, the doubly non-negative relaxation (6.36) should be strengthened

by requiring that 𝑌 ≥ 0.

6.8 Numerical Results

In this section, we evaluate the algorithmic strategies derived in the previous section,

implemented in Julia 1.5 using JuMP.jl 0.21.6 and Mosek 9.1 to solve the conic

problems considered here. Except where indicated otherwise, all experiments were

performed on a Intel Xeon E5—2690 v4 2.6GHz CPU core using 32 GB RAM. To

bridge the gap between theory and practice, we have made our code available at

github.com/ryancorywright/MatrixPerspectiveSoftware.

Reduced Rank Regression

In this section, we compare our convex relaxations for reduced rank regression devel-

oped in the introduction and laid out in (6.6)-(6.7)—which we refer to as “Persp” and

“DCL” respectively—against the nuclear norm estimator proposed by [181] (“NN”),
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who solve

min
𝛽∈R𝑝×𝑛

1

2𝑚
‖𝑌 −𝑋𝛽‖2𝐹 +

1

2𝛾
‖𝛽‖2𝐹 + 𝜇‖𝛽‖*. (6.38)

Similarly to [181], we attempt to recover rank−𝑘𝑡𝑟𝑢𝑒 estimators 𝛽true = 𝑈𝑉 ⊤,

where each entry of 𝑈 ∈ R𝑝×𝑘𝑡𝑟𝑢𝑒 ,𝑉 ∈ R𝑛×𝑘𝑡𝑟𝑢𝑒 is i.i.d. standard Gaussian 𝒩 (0, 1),

the matrix 𝑋 ∈ R𝑚×𝑝 contains i.i.d. standard Gaussian𝒩 (0, 1) entries, 𝑌 = 𝑋𝛽+𝐸,

and 𝐸𝑖,𝑗 ∼ 𝒩 (0, 𝜎) injects a small amount of i.i.d. noise. We set 𝑛 = 𝑝 = 50, 𝑘 = 10,

𝛾 = 106, 𝜎 = 0.05 and vary 𝑚. To ensure a fair comparison, we cross-validate 𝜇

for both of our relaxations and [181]’s approach so as to minimize the MSE on a

validation set. For each 𝑚, we evaluate 20 different values of 𝜇 which are distributed

uniformly in logspace between 10−4 and 104 across 50 random instances for our convex

relaxations and report on 100 different random instances with the “best” 𝜇 for each

method and each 𝑝.

Rank recovery and statistical accuracy: Figures 6-1a-6-1c report the relative

accuracy (‖𝛽est − 𝛽true‖𝐹/‖𝛽true‖𝐹 ), the rank (i.e., number of singular values of 𝛽est

which exceed 10−4), and the out-of-sample MSE2 ‖𝑋new𝛽est−𝑦new‖2𝐹 (normalized by

the out-of-sample MSE of the ground truth ‖𝑋new𝛽true − 𝑦new‖2𝐹 ). Results are aver-

aged over 100 random instances per value of 𝑚. We observe that—even though we did

not supply the true rank of the optimal solution in our formulation—Problem (6.7)’s

relaxation returns solutions of the correct rank (𝑘𝑡𝑟𝑢𝑒 = 10) and better MSE/accuracy,

while our more “naive” perspective relaxation (6.6) and the nuclear norm approach

(6.38) return solutions of a higher rank and lower accuracy. This suggests that (6.7)’s

formulation should be considered as a more accurate estimator for reduced rank prob-

lems, and empirically confirms that the MPRT can lead to significant improvements

in statistical accuracy.

2Evaluated on 𝑚 = 1000 new observations of 𝑋𝑗 ,𝑌𝑘 generated from the same distribution.
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Scalability w.r.t. 𝑚: Figure 6-1d reports the average time for Mosek to converge3

to an optimal solution (over 100 random instances per 𝑚). Surprisingly, although

(6.7) is a stronger relaxation than (6.6), it is one to two orders of magnitude faster

than (6.6) and (6.38)’s formulations. The relative scalability of (6.7)’s formulation

as 𝑚—the number of observation— increases can be explained by the fact that (6.7)

considers a inner product of the Gram matrix 𝑋⊤𝑋 with a semidefinite matrix 𝐵

(the size of which does not vary with 𝑚) while Problems (6.6)-(6.38) have a quadratic

inner product ⟨𝛽𝛽⊤,𝑋⊤𝑋⟩ which must be modeled using a rotated second-order

cone constraint (the size of which depends on 𝑚), since modern conic solvers such

as Mosek do not allow quadratic objective terms and semidefinite constraints to be

simultaneously present (if they did, all three formulations would scale similarly).

Scalability w.r.t 𝑝: Next, we evaluate the scalability of all three approaches in

terms of their solve times and peak memory usage (measured using the slurm com-

mand MaxRSS), as 𝑛 = 𝑝 increases. Fig. 6-2 depicts the average time to converge to

an optimal solution (a) and peak memory consumption (b) by each method as we

vary 𝑛 = 𝑝 with 𝑚 = 𝑛, 𝑘 = 10, 𝛾 = 106, each 𝜇 fixed to the average cross-validated

value found in the previous experiment, a peak memory budget of 120GB, a runtime

budget of 12 hours, and otherwise the same experimental setup as previously (aver-

aged over 20 random instances per 𝑛). We observe (6.7)’s relaxation is dramatically

more scalable than the other two approaches considered, and can solve problems of

nearly twice the size (4 times as many variables), and solves problems of a similar

size in substantially less time and with substantially less peak memory consumption

(40s vs. 1000s when 𝑛 = 100). All in all, the proposed relaxation (6.7) seems to be

the best method of the three considered.

3We model the convex quadratic ‖𝑋𝛽−𝑌 ‖2𝐹 using a rotated second order cone for formulations
(6.6) and (6.38) (the quadratic term doesn’t appear directly in (6.7)), model the nuclear norm term

in (6.38) by introducing matrices 𝑈 ,𝑉 such that
(︂
𝑈 𝛽
𝛽⊤ 𝑉

)︂
⪰ 0 and minimizing tr(𝑈) + tr(𝑉 ),

use default Mosek parameters for all approaches.
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(a) Accuracy (b) Rank

(c) Relative MSE (d) Runtime

Figure 6-1: Comparative performance, as the number of samples 𝑚 increases,
of formulations (6.6) (Persp, in blue), (6.7) (DCL, in orange) and (6.38) (NN,
in green), averaged over 100 synthetic reduced rank regression instances where
𝑛 = 𝑝 = 50, 𝑘𝑡𝑟𝑢𝑒 = 10. The hyperparameter 𝜇 was first cross-validated for all
approaches separately.

(a) Runtime (b) Peak Memory

Figure 6-2: Average time to compute an optimal solution (left panel) and
peak memory usage (right panel) vs. dimensionality 𝑛 = 𝑝 for Problems (6.6)
(Persp, in blue), (6.7) (DCL. in orange) and (6.38) (NN, in green) over 20
synthetic reduced rank regression instances where 𝑘𝑡𝑟𝑢𝑒 = 10.
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Non-Negative Matrix Factorization

In this section, we benchmark the quality of our dual bound for non-negative matrix

factorization laid out in Section 6.7 by using the non-linear reformulation strategy

proposed by [58] (alternating least squares or ALS) to obtain upper bounds. Namely,

we obtain upper bounds by solving for local minima of the problem

min
𝑈∈R𝑛×𝑘

+

‖𝑈𝑈⊤ −𝐴‖2𝐹 . (6.39)

In our implementation of ALS, we obtain a local minimum by introducing a dummy

variable 𝑉 which equals 𝑈 at optimality and alternating between solving the following

two problems

𝑈𝑡+1 = arg min
𝑈∈R𝑛×𝑘

+

‖𝑈𝑉 ⊤
𝑡 −𝐴‖2𝐹 + 𝜌𝑡‖𝑈 − 𝑉𝑡‖2𝐹 , (6.40)

𝑉𝑡+1 = arg min
𝑉 ∈R𝑛×𝑘

+

‖𝑈𝑡𝑉
⊤ −𝐴‖2𝐹 + 𝜌𝑡‖𝑈𝑡 − 𝑉 ‖2𝐹 , (6.41)

where we set 𝜌𝑡 = min(10−4 × 2𝑡−1, 105) at the 𝑡th iteration in order that the final

matrix is positive semidefinite, as advocated in [22, Section 5.2.3] (we cap 𝜌𝑡 to avoid

numerical instability). We iterate over solving these two problems from a random

initialization point 𝑉0—where each 𝑉0,𝑖,𝑗 is i.i.d. standard uniform—until either the

objective between iterations does not change by 10−4 or we exceed the maximum

number of allowable iterations, which we set to 100.

To generate problem instances, we let 𝐴 = 𝑈𝑈⊤ +𝐸 where 𝑈 ∈ R𝑛×𝑘𝑡𝑟𝑢𝑒 , each

𝑈𝑖,𝑗 is uniform on [0, 1], 𝐸𝑖,𝑗 ∼ 𝒩 (0, 0.0125𝑘𝑡𝑟𝑢𝑒), and set 𝐴𝑖,𝑗 = 0 if 𝐴𝑖,𝑗 < 0. We set

𝑛 = 50, 𝑘𝑡𝑟𝑢𝑒 = 10. We use the ALS heuristic to compute a feasible solution 𝑋 and an

upper-bound on the problem’s objective value. By comparing it with the lower bound

derived from our MPRT, we can assess the sub-optimality of the heuristic solution,

which previously lacked optimality guarantees.

Figure 6-3 depicts the average in-sample MSE of the heuristic (‖𝑋−𝐴‖𝐹/‖𝐴‖𝐹 )

and the relative bound gap—(UB-LB)/UB— as we vary the target rank, averaged
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over 100 random synthetic instances. We observe that the method is most accurate

and has the lowest MSE when 𝑘 is set to 𝑘𝑡𝑟𝑢𝑒 = 10, which confirms that the method

can recover solutions of the correct rank. In addition, by combining the solution from

OLS with our lower-bound, we can compute a duality gap and assert that the heuristic

solution is 0% − 3%-optimal, with the gap peaking at 𝑘 = 𝑘𝑡𝑟𝑢𝑒 and stabilizing as

𝑘 → 𝑛. This echoes similar findings in 𝑘-means clustering and alternating current

optimal power flow problems, where the SDO relaxation need not be near-tight in

theory but nonetheless is nearly exact in practice [191, 154]. Further, this suggests our

convex relaxation may be a powerful weapon for providing gaps for heuristics for non-

negative matrix factorization, and particularly detecting when they are performing

well or can be further improved.

(a) Relative MSE (b) Bound gap

Figure 6-3: Average relative MSE and duality gap vs. target rank 𝑘 using the
ALS heuristic (UB) and the MPRT relaxation (LB). Results are averaged over
100 synthetic completely positive matrix factorization instances where 𝑛 = 50,
𝑘𝑡𝑟𝑢𝑒 = 10.

Figure 6-4 reports the time needed to compute both the upper bound and a lower

bound solution as we vary the target rank.

Optimal Experimental Design

In this section, we benchmark our dual bound for D-optimal experimental design

(6.32) against the convex relaxation (6.31) and a greedy submodular maximization

approach, in terms of both bound quality and the ability of all three approaches

236



Figure 6-4: Computational time to compute a feasible solution (ALS) and
solve the relaxation (Semidefinite bound) vs. target rank 𝑘, averaged over
100 synthetic completely positive matrix factorization instances where 𝑛 = 50,
𝑘𝑡𝑟𝑢𝑒 = 10.

to generate high-quality feasible solutions. We round both relaxations to generate

feasible solutions greedily, by setting the 𝑘 largest 𝑧𝑖’s in a continuous relaxation to

1, while for the submodular maximization approach we iteratively set the 𝑗th index

of 𝑧 to 1, where 𝒮 is initially an empty set and we iteratively take

𝒮 ← 𝒮 ∪ {𝑗} : 𝑗 ∈ arg max
𝑖∈[𝑛]∖𝒮

{︃
log det

𝜖

(︃∑︁
𝑙∈𝒮

𝑧𝑙𝑎𝑙𝑎
⊤
𝑙 + 𝑎𝑖𝑎

⊤
𝑖

)︃}︃
.

Interestingly, the greedy rounding approach enjoys rigorous approximation guaran-

tees [see 142, 210], while the submodular maximization approach also enjoys strong

guarantees [see 182].

We benchmark all methods in terms of their performance on synthetic 𝐷-optimal

experimental design problems, where we let 𝐴 ∈ R𝑛×𝑚 be a matrix with i.i.d.

𝒩 (0, 1√
𝑛
) entries. We set 𝑛 = 20,𝑚 = 10, 𝜖 = 10−6 and vary 𝑘 < 𝑚 over 20 ran-

dom instances. Table 6.3 depicts the average relative bound gap, objective values,

and runtimes for all 3 methods (we use the lower bound from (6.31)’s relaxation to

compute the submodular bound gap). Note that all results for this experiment were

generated on a standard Macbook pro laptop with a 2.9GHZ 6-core Intel i9 CPU us-

ing 16GB DDR4 RAM, CVX version 1.22, Matlab R2021a, and Mosek 9.1. Moreover,

we optimize over (6.32)’s relaxation using the CVXQuad package developed by [101].
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Table 6.3: Average runtime in seconds and relative bound gap per approach,
over 20 random instances where 𝑛 = 10,𝑚 = 20.

Problem (6.31)+round Submodular Problem (6.32)+round

𝑘 Time(s) Gap (%) Time(s) Gap (%) Time(s) Gap (%)

1 0.52 88.8 0.00 88.9 347.0 0.00
2 0.63 93.7 0.00 93.7 338.5 0.01
3 0.59 97.1 0.00 97.0 320.8 0.06
4 0.63 100.2 0.00 100.2 338.7 0.18
5 0.53 103.8 0.00 103.9 331.1 0.37
6 0.53 109.0 0.00 109.0 287.5 1.40
7 0.55 117.7 0.00 117.7 255.1 2.39
8 0.60 136.9 0.00 138.5 236.1 5.25
9 0.54 260.9 0.00 287.5 235.9 28.43

Relaxation quality: We observe that (6.32)’s relaxation is dramatically stronger

than (6.31), offering bound gaps on the order of 0% − 3% when 𝑘 ≤ 7, rather than

gaps of 90% or more. This confirms the efficacy of the MPRT, and demonstrates the

value of taking low-rank constraints into account when designing convex relaxations,

even when not obviously present.

Scalability: We observe that (6.32)’s relaxation is around two orders of magnitude

slower than the other proposed approaches, largely because semidefinite approxima-

tions of quantum relative entropy are expensive, but is still tractable for moderate

sizes. We believe that the relaxation would scale significantly better if it were opti-

mized over using an interior point method for non-symmetric cones [see, e.g., 211, 145],

or an alternating minimization approach [see 102]. As such, (6.32)’s relaxation is po-

tentially useful at moderate problem sizes with off-the-shelf software, or at larger

problem sizes with problem-specific techniques such as alternating minimization.

6.9 Conclusion

In this chapter, we introduced the Matrix Perspective Reformulation Technique, or

MPRT, a new technique for deriving tractable and often high-quality relaxations of

a wide variety of low-rank problems. We also invoked the technique to derive the

convex hulls of some frequently-studied low-rank sets, and provided examples where
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the technique proves useful in practice. This is significant and potentially useful to

the community, because substantial progress on producing tractable upper bounds

for low-rank problems has been made over the past decade, but until now almost no

progress on tractable lower bounds has followed.

6.10 Appendix: Generalizing MPRT to Functions

We now demonstrate the MPRT can be extended to incorporate a different separa-

bility of eigenvalues assumption, at the price of (a possibly significant amount of)

additional notations. For any symmetric matrix 𝑋, let us denote 𝜆↓
𝑖 (𝑋) the 𝑖th

largest eigenvalue of 𝑋. Before proceeding any further, we recall the following re-

sult, due to [17, Example 18.c], which provides a semidefinite representation of the

sum of the 𝑘 largest eigenvalues:

Lemma 6.5. Let 𝑆𝑘(𝑋) :=
∑︀𝑘

𝑖=1 𝜆
↓
𝑖 (𝑋) denote the sum of the 𝑘 largest eigenvalues

of a symmetric matrix 𝑋 ∈ 𝒮𝑛. Then, the epigraph of 𝑆𝑘, 𝑆𝑘(𝑋) ≤ 𝑡𝑘, admits the

following semidefinite representation:

𝑡𝑘 ≥ 𝑘𝑠𝑘 + tr(𝑍𝑘), 𝑍𝑘 + 𝑠𝑘I ⪰𝑋,𝑍𝑘 ⪰ 0.

Based on this result, we can relax the assumption that the penalty term Ω(𝑋)

corresponds to the trace of an operator function. Instead, we can assume:

Assumption 6.4. Ω(𝑋) =
∑︀

𝑖∈[𝑛] 𝑝𝑖𝜆
↓
𝑖 (𝑓𝜔(𝑋)), where 𝑝1 ≥ . . . ≥ 𝑝𝑛 ≥ 0 and where

𝜔 is a function satisfying Assumption 6.1 and whose associated operator function, 𝑓𝜔,

is matrix convex.

This assumption is particularly suitable for Markov Chain problems [see, e.g.,

54, Chapter 4.6], where we are interested in controlling the behaviour of the largest

eigenvalue (which always equals 1) plus the second largest eigenvalue of a matrix.

However, it might appear to be challenging to model, since, e.g., 𝜆↓
2(𝑋) is a non-

convex function. By applying a telescoping sum argument reminiscent of the one in
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[17, Prop. 4.2.1], namely

Ω(𝑋) =
𝑛∑︁

𝑖=1

𝑝𝑖𝜆
↓
𝑖 (𝑓(𝑋)) =

𝑛∑︁
𝑖=1

(𝑝𝑖 − 𝑝𝑖+1)𝑆𝑖(𝑓(𝑋))

with the convention 𝑝𝑛+1 = 0, Lemma 6.5 allows us to rewrite low-rank problems

where Ω(𝑋) satisfies Assumption 6.4 in the form:

min
𝑌 ∈𝒴𝑘

𝑛

min
𝑋∈𝒮𝑛

+,

𝑍𝑖∈𝒮𝑛
+,𝑠𝑖,𝑡𝑖∈R+ ∀𝑖∈[𝑛]

⟨𝐶,𝑋⟩+ 𝜇 · tr(𝑌 ) +
𝑛∑︁

𝑖=1

(𝑝𝑖 − 𝑝𝑖+1)𝑡𝑖 (6.42)

s.t. ⟨𝐴𝑖,𝑋⟩ = 𝑏𝑖 ∀𝑖 ∈ [𝑚], 𝑋 = 𝑌 𝑋, 𝑋 ∈ 𝒦,

𝑡𝑖 ≥ 𝑖𝑠𝑖 + tr(𝑍𝑖), 𝑍𝑖 + 𝑠𝑖I ⪰ 𝑓(𝑋),𝑍𝑖 ⪰ 0 ∀𝑖 ∈ [𝑛],

where 𝑡𝑖 models the sum of the 𝑖 largest eigenvalues of 𝑓(𝑋). Applying the MPRT

then yields the following extension to Theorem 6.1:

Proposition 6.6. Suppose Problem (6.42) attains a finite optimal value. Then, the

following problem attains the same value:

min
𝑌 ∈𝒴𝑘

𝑛

min
𝑋∈𝒮𝑛

+,

𝑍𝑖∈𝒮𝑛
+,𝑠𝑖,𝑡𝑖∈R+ ∀𝑖∈[𝑛]

⟨𝐶,𝑋⟩+ 𝜇 · tr(𝑌 ) +
𝑛∑︁

𝑖=1

(𝑝𝑖 − 𝑝𝑖+1)𝑡𝑖 (6.43)

s.t. ⟨𝐴𝑖,𝑋⟩ = 𝑏𝑖 ∀𝑖 ∈ [𝑚], 𝑌 − 1
2𝑋𝑌 − 1

2 ∈ 𝒦,

𝑡𝑖 ≥ 𝑖𝑠𝑖 + 𝑖− tr(𝑌 ) + tr(𝑍𝑖) ∀𝑖 ∈ [𝑛],

𝑍𝑖 + 𝑠𝑖I ⪰ 𝑔𝑓 (𝑋,𝑌 )+𝜔(0)(I− 𝑌 ),𝑍𝑖 ⪰ 0 ∀𝑖 ∈ [𝑛].

The proof of this reformulation is almost identical to the proof of Theorem 6.1,

after observing that (6.20) holds not only for the traces but for the matrices directly,

i.e., if 𝑋 and 𝑌 ∈ 𝒴𝑘
𝑛 commute, we have

𝑓(𝑋) = 𝑔𝑓 (𝑋,𝑌 ) + 𝜔(0)(I− 𝑌 ).

Problem (6.43) involves 𝑛 times as many variables as (6.18) and therefore supplies
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substantially less tractable relaxations. Nonetheless, it could be useful in specific

instances. In the aforementioned Markov Chain mixing problem, 𝑝𝑖−𝑝𝑖+1 = 0 ∀𝑖 ≥ 𝑘

with 𝑘 = 2, so we omit the variables which model the eigenvalues larger than 2 .

6.11 Appendix: Extension to the Rectangular Case

In this section, we extend the MPRT to the case where 𝑋 is a generic 𝑛×𝑚 matrix and

𝑓(𝑋) is the convex quadratic penalty 𝑓(𝑋) = 𝑋⊤𝑋. In this case, tr(𝑓(𝑋)) = ‖𝑋‖2𝐹
is the squared Frobenius norm of 𝑋.

First, observe that 𝑓 : R𝑛×𝑚 → 𝒮𝑚
+ . Alternatively, one could have considered

𝑔(𝑋) = 𝑋𝑋⊤ ∈ 𝒮𝑛
+ and obtain the same penalty, i.e., tr(𝑓(𝑋)) = tr(𝑔(𝑋)). In other

words, one can arbitrarily choose whether 𝑓 preserves the row or the column space of

𝑋. By the Schur complement lemma, the epigraph is semidefinite representable via

epi(𝑓) :=

⎧⎨⎩(𝑋,𝜃) ∈ R𝑛×𝑚 × 𝒮𝑚
+ :

⎛⎝ 𝜃 𝑋⊤

𝑋 I

⎞⎠ ⪰ 0

⎫⎬⎭ ,

so 𝑓 is matrix convex.

In the symmetric case, we considered the matrix perspective of 𝑓 at (𝑋,𝑌 ), where

𝑌 ⪰ 0 is a matrix controlling the range of 𝑋. When 𝑋 is no longer symmetric, it is

natural to consider a matrix perspective which involves two projection matrices, one

of which models the row space and one which models the column space, as proposed

in our prior work [34]. More precisely, for 𝑌 ,𝑍 ≻ 0 we define a perspective of 𝑓 as

𝑔𝑓 (𝑋,𝑌 ,𝑍) = 𝑍
1
2𝑓(𝑌 − 1

2𝑋𝑍− 1
2 )𝑍

1
2 . (6.44)

For 𝑓(𝑋) = 𝑋⊤𝑋, this function actually does not depend on 𝑍. Hence, we consider

𝑔𝑓 (𝑋,𝑌 ) = 𝑔𝑓 (𝑋,𝑌 ,𝑍) = 𝑋⊤𝑌 −1𝑋.

Extending this function to positive semidefinite 𝑌 using the same proof technique as
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in Proposition 6.3, we then obtain

𝑔𝑓 (𝑋,𝑌 ) =

⎧⎪⎨⎪⎩𝑋⊤𝑌 †𝑋 if 𝑌 ⪰ 0, Span(𝑋) ⊆ Span(𝑌 ),

∞ otherwise.

Proof. Fix 𝑋 ∈ 𝒮𝑛 and 𝑌 ⪰ 0. As in the proof of Proposition 6.3 denote 𝑃 the

orthogonal projection onto the kernel of 𝑌 , and define 𝑌𝜀 := 𝑌 + 𝜀𝑃 for 𝜀 > 0.

Hence,

𝑋⊤𝑌 −1
𝜀 𝑋 = 𝑋⊤𝑌 †𝑋 + 𝜀−1𝑋⊤𝑃𝑋.

The right-hand side admits a finite limit if and only if

𝑋⊤𝑃𝑋 = 0 ⇐⇒ Span(𝑋) ⊆ Ker(𝑃 ) = Span(𝑌 ).

Furthermore, using the Schur complement lemma as in [34], one can show that 𝑔𝑓

is SDP-representable:

epi(𝑔𝑓 ) =

⎧⎨⎩(𝑋,𝑌 ,𝜃) ∈ R𝑛×𝑚 × 𝒮𝑛
+ × 𝒮𝑚 :

⎛⎝ 𝜃 𝑋⊤

𝑋 𝑌

⎞⎠ ⪰ 0

⎫⎬⎭ ,

and hence matrix convex.

Finally, we can easily check that Theorem 6.1 still holds in the symmetric case

because (6.20) –which simplifies to tr(𝑓(𝑋)) = tr(𝑔𝑓 (𝑋)) in this case– holds for any

𝑌 ∈ 𝒴𝑘
𝑛 such that 𝑋 = 𝑌 𝑋.
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Chapter 7

Conclusion and Extensions

In this thesis, we adopted a different perspective on logical and rank constraints, by

treating both constraints as purely algebraic ones. Namely, logical constraints are

nonlinear constraints of the form 𝑥 = 𝑧 ∘ 𝑥 for 𝑥 continuous and 𝑧 binary, while

rank constraints, Rank(𝑋) ≤ 𝑘, are a nonlinear constraint of the form 𝑋 = 𝑌 𝑋

intersected with a linear constraint tr(𝑌 ) ≤ 𝑘 for an orthogonal projection matrix

𝑌 . By doing so, we built a bridge between mixed-integer and low-rank optimization,

and demonstrated that although both types of constraints are typically addressed

by different research communities using different algorithms, they are actually two

different facets of the same unified story. Moreover, we demonstrated that algorithms

which have been used for mixed-integer optimization problems for nigh on 50 years

can actually be used to solve low-rank problems more accurately and faster than via

state-of-the-art heuristic methods.
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