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ABSTRACT

For a certain class of real analytic varieties with the real Lie group action we define a t-
structure on the category of equivariant-monodromic sheaves and develop the theory of tilting
sheaves. In case of a quasi-split real form of an algebraic group acting on the flag variety we
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1. INTRODUCTION

The present thesis is based on the joint work with Zhiwei Yun.

The formalism of Koszul duality in representation theory were intro-
duced in [21] and [5] and were further developed in subsequent works.
Since then it was one of the most important concepts and tools. The
classical results establish that the category O of representations is con-
trolled by a quadratic Koszul self-dual algebra. The category O of rep-
resentations is well known to be equivalent to the category of Harish-
Chandra bimodules as well as the certain category of perverse sheaves
or D-module over the flag variety of the corresponding algebraic group.
Such duality sends irreducible objects of the category to projective ob-
jects.

The central step of this theory is constructing the aforementioned
Koszul algebra. The key ingredient of the original approaches is the
category of the Soergel bimodules, which forms a full subcategory of the
category of coherent sheaves on the so called block variety t* Xy t*,
where t is the abstract Cartan subalgebra of the Lie algebra of the
algebraic group and W is its Weyl group. There is a Soergel functor V
between category O and the Soergel bimodules category. Its essential
property that allows the construction of the model algebra is that it is
fully faithful on the additive subcategory of projective objects.

Another important duality namely the Ringel duality were intro-
duced in [19]. In the context of the highest weight categories this is
an equivalence of categories, which sends standard objects to costan-
dard objects and projective objects to tilting objects. In the geometric
setting the theory of tilting perverse sheaves were developed in [3]. In
particular, it is proved that the long intertwining functor provide a
Ringel self-duality of the category of the perverse sheaves on the flag
variety of the algebraic group. The composition of these Koszul du-
ality and Ringel duality were first studied in [4]. It sends irreducible
objects to the tilting objects and, moreover, preserves the convolution
monoidal structure on the category. The last property also stands for

the composition of the Soergel functor V with the Ringel duality.
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The category of free-monodromic perverse sheaves was considered in
[9] to establish the dualities for Kac-Moody groups and the techniques
were further developed in |7]. In these papers the authors work with
the tilting version of Koszul duality mentioned above.

In [22] W. Soergel conjectured the Koszul duality for real groups. In
[8] it was verified for quasi-split groups. Namely, let Gr be a quasi-split
real semisimple algebraic group and let M be a block of its represen-
tations. Let G be the Langlands dual group of the complexification of
Gr. Passing through Vogan’s duality (|25]) one associates to M a full
subcategory D in the K-equivariant derived category of the flag variety
of G for a certain K C G.

Theorem 1.1. ([8, Theorem 5.1]). There is a Koszul duality equiva-
lence of triangulated categories D*(M)—D.

Once again an important role is played by the analog of the Soergel
functor. In [8] it is constructed in representation theoretic terms via
the translation functor to the singular central character and the real
block variety is a* /Wy X t*, where a is the complexification of the
Lie algebra of the maximal split torus of Gg and W}, C W is a certain
subgroup of the Weyl group associated to M.

The last (but not the least) result that we bring in is the Matsuki
correspondence for sheaves proved in [18]. The result states that in
the above notations we have an equivalence between the derived cat-
egories of K-equivariant and Gg-equivariant constructible sheaves on
the flag variety of G. The same holds for the categories of monodromic
constructible sheaves. Notably, the equivalence takes perverse stan-
dard objects to costandard objects up to shift and in the special case
of Gr being a complex Lie group coincides with the long intertwining
endofunctor.

1.2. In the present paper. We put together the ideas above in the
following way. For a certain class of spaces X with a left action of a
real group Gr and a right action of a torus 7" we define a t-structure
on the category Mg, x = DbGR (X)7—mon of Ggr-equivariant, T-free-
monodromic sheaves constructible with respect to Gr-orbit stratifica-
tion. It is defined by a perversity function, which in a way generalizes
the middle perversity function defined only for complex stratifications,
but takes into account not only the dimension of the stratum but also
the size of its fundamental group. We then develop the theory of tilting

sheaves for the heart of this t-structure.
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We consider the special case associated to the real form Gy of a
connected semisimple complex Lie group G. Let T, U C G be a max-
imal torus and a maximal unipotent subgroup inside the same Borel
subgroup. We put X = G/U for the enhanced flag variety of G. We
have a right Gr and left T-action on X, for which we check that it
fits into our general setting. The verification involves the results and
constructions of [18]. Moreover, we observe that

Theorem 1.3. (Theorem 5.6) The Matsuki correspondence for sheaves
of [18] is a Ringel duality between the category of perverse K-
equivariant T-free-monodromic sheaves on the enhanced flag variety
X and the heart of the t-structure on Mg, x.

We then study the convolution properties of the tilting sheaves in
Mg, x under the action of the free-monodromic Hecke category.

It is worth noting that the common approach to the representa-
tion theory of G passes to the Harish-Chandra (g, K')-modules, which
could be studied by algebraic methods. Similarly, in geometry it is
more common to look at the orbits of K rather then orbits of G, par-
tially because the perverse t-structure is a well-developed tool in the
K-setting, while in Ggr-setting the t-structure was missing until now.
Our approach works with the real group more directly and provides
a more direct geometric flavour to the representation theory of Gg.
The category Mg, x is related to the category of Gg-representations
by globalization functors of [16] (see also [23]), so the developed the-
ory could be transferred to the representation theoretic setting. The
constructed t-structure for the real group orbit stratifications is also of
independent geometric interested and should be further investigated as
we hope it should be applicable in various other situations.

Assume further that Gy is quasi-split. In this case we define a real
Soergel functor Vi as a generic vanishing cycles functor to the closed
Gr-orbit. We check the compatibility between the convolution action
of the Hecke category and the functors Vi and the classical Soergel
functor V. This allows us to prove a generalization of Struktursatz
and Endomorphismensatz of [21]. Namely, let B be the algebra of
functions on the union of completions at the origin of block varieties
a* /W3¢ X pw £ for all different blocks. For simplicity here we give
formulation of our result only with the additional assumption of G
being adjoint.

Theorem 1.4. (Theorem 9.2, Theorem 9.17). 1) The algebra of endo-
morphisms of the functor Vg restricted to the full additive subcategory

of tilting sheaves Tilt(Mg, x) is isomorphic to B.
2) The functor Vg: Tilt(Mg, x) — B — mod is fully-faithful.
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This theorem then allows us to reprove Theorem 1.1. We hope that
our techniques and results could be further generalized in order to
prove Soergel’s conjecture in the general case, with the quasi-splitness
assumption dropped. The key tool used in the proof of Theorem 1.4
is the technique of the localization of the free-monodromic categories,
which we develop. It could be viewed as parallel to the equivariant
localization (see [12]).

In Section 2 we recall some background on complex Lie groups with
antiholomorphic involution. In Section 3 we recall some background on
completed monodromic categories with focus on real analytic setting.
In Section 4 we study real equivariant-monodromic sheaves in general
case, define the t-structure on them and develop the tilting theory. In
Section 5 we study the tilting sheaves on flag varieties with the real orbit
stratifications. In Section 6 we investigate the relationships with the
Hecke action. In Section 7 we develop the technique of the localization
of the free-monodromic categories. In Section 8 in the case of a quasi-
split real form we define the real Soergel functor. In Section 9 we proof
our version of Struktursatz and Endomorphismensatz. In Section 10
for a quasi-split real form we construct an explicit dg-model for the
category M, x, which allows for the proof the Soergel conjecture.

1.5. Conventions and notations. Let k be an algebraically closed
field. All sheaves will be assumed to be the sheaves of k-vector spaces.
All (co)homology groups are taken with k coefficients unless otherwise
stated.

1.6. Acknowledgements. The author is grateful to Roman
Bezrukavnikov and Zhiwei Yun for mentoring me through the years of
graduate school and suggesting the projected. The author thanks Kari
Vilonen and David Vogan for answering our questions and providing
useful comments. The author is grateful to Alexandra Utiralova and
Kostiantyn Tolmachov for useful discussions and support.

2. COMPLEX LIE GROUPS WITH AN ANTIHOLOMORPHIC
INVOLUTION

2.1. Abstract Cartan and abstract Weyl group. Let GG be a con-

nected reductive complex Lie group. Let X be the flag variety of G.

Let W be the abstract Weyl group of G. As a set, it is defined as the

set of G-orbits on X x X. For w € W let X2 C X x X be the corre-

sponding G-orbit. Simple reflections in W are those s € W such that

dim X2 = dim X 4+ 1. When (B, B") € X2, we write pos(B, B') = w.
7



Consider the space Y of pairs T" C B where T' is a maximal torus
of G and B is a Borel subgroup containing it. Let .7 be the space
of maximal tori in GG. If we choose a maximal torus 7' C G, we may
identify YV with G/T and . with G/Ng(T'). We get the following
diagram where the maps are forgetting 7" or B:

(2.1) x2 vy 2 .g

Both maps 3, are G-equivariant. For each (T'C B) € Y and w € W,
there is a unique (7" C B™) € Y such that pos(B,B") = w. This
defines a group structure on W so that + becomes a G-equivariant
W-torsor.

For different choices of Borel subgroups B and B’ of @, their re-
ductive quotients are canonically identified, which we call the abstract
Cartan T of G. There is a canonical right action of W characterized
as follows: for any (T' C B) € Y, and w € W, the following diagram
is commutative

(2.2) T~ BT
| o
T( Bw can T

where the maps “can” are the canonical quotients.

For each (T' C B) € Y we have the based root system ®(G, B,T)
where positive roots are those appearing in B. For different choices of
(T' C B) €Y these based root systems are canonically identified with
one another. We denote the resulting canonical based root system by
®. It can be viewed as a based root system for the abstract Cartan T
with Weyl group W. Let @ be the underlying root system of ® (i.e.,
without the basis).

2.2. Real form. Let 0: G — G be an antiholomorphic involution on
G compatible with the group structure. We put Gg = G° for the
corresponding real form. Put g = Lie(G) and gg = Lie(Ggr) = ¢°.

Lemma 2.3. (1) Each Borel subgroup B C G contains a o-stable
maximal torus T
(2) Any two o-stable maximal tori in B are conjugate under GgNB.

Proof. (1) The subgroup H := BN o(B) of G is stable under o, hence
is the complexification of a real group Hg C Ggr. Note that H is
solvable and contains a maximal torus of G. By [10, Proposition 7.10],
H contains a maximal torus 7" defined over R, then T" C H C B is

o-stable and is a maximal torus of G.
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(2) If T, T" are two o-stable maximal tori in B, then they are both in
H, hence they are conjugate by some u € H* (the unipotent radical of
H). This implies u™'o(u) € Ng(T)NH" = {1} hence u € H C GrNB.

O

2.4. Real orbits on the flag variety. Let I be the set of Ggr-orbits
on X by left translation. For A € I, we denote the corresponding orbit
by OF, so that

(2.3) xX=[Jok
rel
Let .77 C Z be the set of o-stable maximal tori in G. Let
Y, C Y =~ 1(79) whose points are pairs (' C B) € Y where T
is o-stable. Both .77 and Y, carry left actions of Gg by conjugation.
We have the following diagram where the maps are forgetting 7" or B:

(2.4) xLy 0 g

Both maps f,, 7, are Gg-equivariant. The map 7, is a Ggr-equivariant
W -torsor.

Lemma 2.5. (1) The map B, : Yo — X is surjective and it induces
a bijection on Ggr-orbits ﬁo : Gr\Y, < Gr\X.
(2) The map 7, : Y, — 77 is a W-torsor. It induces a surjective
map 7, : Gr\Y, > Gg\-77 whose fibers are W -orbits.
(3) The right W action on Gg\Y, defines a right W-action
on I = Gg\X via the bijection By, and the composition
Yoo By LT — Gr\ 77 is the quotient map by W. We denote
the right W-action on I by A\ XA-w (A€ I, w e W).

Proof. (1) follows from Lemma 2.3. (2) and (3) are clear. O

Lemma 2.6. Let A\ € I,B € O and T C B be a o-stable maximal
torus. Consider the isomorphism of tori

(2.5) up: T CB—»T.
We have:

(1) The real structure o|r induces via tp a real structure opcp
(anti-holomorphic involution) on T. Then orcp depends only
on the orbit \. We denote it by oy.

(2) The real points T?* under o, is the image of the canonical
projection Gg "' B C B — T (which is then independent of
B e O}). .



Proof. (1) By Lemma 2.5(1), any two such (7' C B) (with B € O}) are
Gr-conjugate. For g € Gr, we have a commutative diagram

(2.6) T = T
lAd(g) id
Ad(g)T —229% 1

From this we conclude that opcp is the same as oaq(g)7cAd(g)B-

(2) We use the notation H from the proof of part (1) of Lemma 2.3.
We have Gg N B = Hg. Moreover, Tk is a maximal torus in the
solvable real group Hg. Since the kernel of the projection Hg — T
is unipotent, its image is the reductive quotient of Hg. Therefore Ty
maps isomorphically to the image of Hg — T. By definition, T also
maps isomorphically via 1z to T?*. The statement follows. O

Definition 2.7. Let T be a o-stable maximal torus of G with real
points Tg. We say that an orbit OF is attached to T' (or Tr) if v, 0 B,
maps A to the Gg-orbit of T. In other words, Of is attached to T if
there exists a T-fixed point in OF.

2.8. Roots. Fix a o-stable maximal torus ' C G. Let ®(G,T) be the
set of roots of G with respect to T
Note that o atcs on the set of roots (G, T): if « € ®(G,T) viewed

as a homomorphism 7" — G, over C, then oo : T' — G,,, is defined as
t — a(ot).
Definition 2.9. A root a € ®(G,T) is called

(1) complex if oo # +a;

(2) real if ca = a;

(3) compact imaginary if cae = —« and for nonzero r € g, the
Cartan-Killing pairing between x and o(x) is negative.
(4) noncompact imaginary if cae = —« and for nonzero x € g, the

Cartan-Killing pairing between x and o(x) is positive.

Remark 2.10. This definition is compatible with the definition for a
root system invariant under the corresponding Cartan involution (see,
for example, |25, Section 2|.

2.11. Based root system attached to a real orbit. Recall we have
the absrtact based root system ® on T with Weyl group W. To each
point (1" C B) € Y, we have a canonical isomorphism of based root sys-
tems ®(G, B,T) = &, under the isomorphism 7" C B — T. Since T is
o-stable, o acts on the root system ®(G, T') without necessarily preserv-
ing the positive roots. In particular, we get an involution ¢ on the un-

derlying root system ® of ®. The assignment Y, 3 (T' C B) — Inv(®)
10



(the set of involutions on @) is Gr-invariant, hence it induces a map
Gr\Y, — Inv(®). Using the bijection B in Lemma 2.5, we get a map
Gr\X = I — Inv(®). For A € I, we denote by ®, the based root
system ® equipped with the involution constructed above on .

For a € &), we can talk about whether it is real, complex or imagi-
nary according to Definition 2.9.

For a simple root o € @, let X, be the partial flag variety parametriz-
ing parabolic subgroups conjugate to P, (generated by a Borel B and
root subgroup of —«). Let 7,: X — X, be the projection which is a
P!-fibration. o

There is a partial order on 7: p < X if and only if O}f c O%}.

The following statement is analogous to the results of [24, Lemma
5.1] and |20, Sections 2.2, 2.3].

Lemma 2.12. Let A € [. Let a € &) be a simple root and s, € W
be the corresponding simple reflection.

(1) If o is a complex root, then X\ - s, # A and
T T (0F) = O UOX,. .

e Ifoaw > 0, then A < \- s, and m,|OY is an isomorphism
onto its image.

o If oav < 0, then X - s, < X and 7,|OY is an Al-fibration
over its image.

(2) If«is a real root, then A-s, = \. Moreover, one of the following
happens:

e Type I: there are two orbits put,u~ > X such that
po = pt - se, and ', (0X) = O U Of, UO. More-
over, m,|Oy is an S'-fibration, and 7|0}, and 7|0} are
D?-fibrations (D? is an open real 2-dimensional disk).

e Type II: there is ;4 > X such that u-s, = p and
75 ' 1o (OX) = O U OF, and m,|O is an S'-fibration over
its image.

(3) If o is compact imaginary, then \-s, = A and 7, 'm,(O}) = OX.
(4) If « is noncompact imaginary, then there is a unique j < A with
I+ Sq = p such that one of the following happens:

e Type I. XN - s, # A pu < X - s and
o' 1o (0F) = O U OF, U Op.  Moreover, 4|0}
is an S'-fibration, and w,|OY and w,|O%, are
D?-fibrations (D? is an open real 2-dimensional disk).

o Type II: X 54 = A, m'm,(0X) = OX U Of, and m,|O}; is
an S'-fibration over its image.

Proof. See loc.cit. 0
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2.13. Real Weyl groups. Let T" be a o-stable maximal torus. Let
Tk = T°. We denote the Weyl group of T' by W, which carries an
action of 0. Let Wg = W? C W be the fixed point subgroup of o.
On the other hand we have the Weyl group W (Gg, Tr) = Ng, (Tr)/Tk.
Clearly we have W (Gg, Tr) C Wk.

Lemma 2.14. (1) We have Wg = Staby (TR).
(2) Suppose T is a o-stable maximal torus that is maximally split,

then the inclusion W (Gg, Tg) C Wy Is an equality.

Proof. (1) The inclusion Wg C Staby (Tk) is clear. Note that W com-
mutes with the real involution 0., whose fixed points are the maximal
compact subgroup. Then Wg also commute with the Cartan involution
0 = oo, and we have Staby (T%) = Staby, (Tr). For the opposite inclu-
sion it is sufficient to check that Staby (T?) preserves the eigenspace
decomposition of 8 on t. By definition it preserves the +1-eigenspace.
It is also compatible with the Cartan-Killing form and, hence, also
preserves the —1-eigenspace as it equals to the orthogonal of 7.

(2) follows from [25, Propositions 3.12 and 4.16] as there are no
noncompact imaginary roots for maximally split torus. U

If T € 7 and B is a Borel subgroup containing 7', we get a canonical
identification T'= T and W = W compatible with the actions.

Lemma 2.15. In the above situation, suppose B € OF. Then under
the isomorphism W = W (induced by B), W (Gg, Tr) is identified with
the stabilizer W of \ under the right action of W on 1.

Proof. Let ¢ : W = W be the canonical isomorphism. If @ € Ng, (Tk)
has image w € W, then B and Ad(w)B are both in OF and both contain
T. By definition ¢(w) = pos(B, Ad(w)B). By the definition of the W-
action, we see that X - ¢(w) = A\. This proves «(W(Gg, Tr)) C W,.
Conversely, suppose v € W is such that A\-v = A, then BY (the unique
Borel containing T' such that pos(B, BY) = v) lies in OF. Therefore
there exists g € Gg such that B* = Ad(g)B. Now T and Ad(g)T
are both o-stable maximal tori in BY, by Lemma 2.3, there exists
h € GgNBY such that Ad(hg)T =T, i.e., hg € GRNNg(T) = Ng, (TRr).
Since Ad(hg)B = Ad(h)(B") = B", we see that the image w of hg in
W satisfies ¢(w) = v. Therefore v € «(W(Gg,Tr)). This finishes the
proof. O

3. COMPLETED MONODROMIC CATEGORY

3.1. The setup. Let X be a real analytic variety (for example the real
points of a scheme of finite type over R). Let T° be a compact torus.

Let 7: X — X be a principal right T°-bundle.
12



Let H be a Lie group with an analytic action on X from the left
commuting with 7°. Then there is an induced H-action on X such
that 7 is H-equivariant.

In [9, Appendix A], a completed monodromic category is introduced
in the context of Q,-sheaves over stratified schemes over a field. In [7],
this construction has been adapted to the topological contex allowing
an arbitrary coefficient field k. The rough idea in both cases is to
take certain pro-objects in D?(X,k) that include local systems with
unipotent monodromy with infinite Jordan block along the fibers of 7.

For the purpose of this paper we need to extend the known con-
struction of completion to the case of the equivariant derived category
DY% (X, k). The new issue here is that the “size” of the monodromy will
vary on different strata. We will show that the completion construction
still gives a well-behaved category of sheaves.

Remark 3.2. In application, we consider X = G/B to be the flag
manifold of a complex reductive group G. Let Y = G/U (where
U is the unipotent radical of B), then ¥ — X is a T-torsor, where
T = B/U is the abstract Cartan of G. The canonical decomposition
C* = R>% x S! gives a canonical decomposition T' = T>° x T where
770 = R>% ®@7 X,(T) and T° = S* @z X.(T), a compact torus. We
then let X = Y/T>°. Since T™° is contractible, the pullback functor
DY(X) — D(Y) is fully faithful, so if we are interested only in sheaves
on Y monodromic under the right T-action, we may equivalently con-

sider sheaves on X monodromic under the right A-action.

3.3. Completion. Consider the adjoint functors

(3.1) Dly(X) == Dly(X)

!

Let D% (X) ¢ _mon C D%(X) be the full subcategory generated by the
image of 7'

Let R be the completion of the group algebra k[m (7°)] at the
augmentation ideal. Equip R with the adic topology coming from
the augmentation ideal. Then R is a complete regular local ring
with residue field k and its cotangent space canonically isomorphic
to Hi(T¢ k) = m(T¢) ®z k. The monodromy action along the fibers
of 7 gives a R-linear structure on Dﬂ’q()? )Te—mon, Namely R acts on the
identity functor of D% (X )rc_mon-

Following [9, A.3], let D%(X)7c_mon be the category of pro-

objects in D% (X)pe_mon indexed by positive integers. Let
13



5%()? )Te—mon C proDi’q()? )Te—mon be the full subcategory consisting
of pro-objects (F,)n>0 that satisfy two conditions:

(1) (m-constancy) The pro-object (mT,), € proD%(X) lies in the
essential image of the natural functor D% (X) — proD% (X)
consisting of constant pro-objects.

(2) (uniform boundedness) (F,), is isomorphic to a pro-object
(F"),, in proD% (X )re_mon where each F7 has perverse degrees
n [—N, N] for some N > 0 independent of n.

It is proved in [9, Theorem A.3.2] that D% (X)ze_mon is an R-linear

triangulated category. By the m-constancy of objects in D’}{()Af )Te —mon
we have an adjunction induced from the adjunction (m, ')

~ ~ E

(32) D?-](X>chmon <TD1}-I<X)

It will be convenient to introduce adjunctions (y, 7) between the same
categories:

(33) T = i [dlm TC], al= [ dim TC] o o

Moreover, given an H-equivariant map f : X — Y that lifts to an
H-equivariant map fv X — Y of T°-torsors over X and Y, under the
assumption that H has finitely many orbits on X and Y, the functors
f f*, fn f and their adjunctions induce functors f f*, fu f between
the completed categories DH(X )Te—mon and DH(Y)Tp mon-

3.4. Situation over a point. Consider the special case where X = pt,
X = T¢ and H = T7 is a closed subgroup of T acting on X by left
translatlon We shall give an algebraic description of the completed
category lA)blc (T) 7 _mon-

Let (T€)° be the neutral component of T¢, and let T° = T¢/(T¢)°,
the quotient torus. Then mo(T€) = T¢/(T¢)° is a finite subgroup of T".

For each character x : mo(77) — k*, let k, be the one-dimensional
k-vector space with an 7Tf-equivariant structure via x. Let Dbf(pt)x
be the full subcategory of Dbf(pt) consisting of objects F such that the
action of T¢ on H'F (an k-vector space) is via y (pulled back to T7).
Then we have a decomposition

(3.4) Dbe(pt) = @ D%f(pt)x

x:mo (T )—kX

Tensoring with £, gives an equivalence D%lc (pt); — D%f(pt)x.
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Similarly, let Dbe(T Vre—mon be the full triangulated subcat-
egory generated by the image of Drc¢(pt), under the pullback
T Dre(pt) — Dlec (T°)re—mon- Again we have a decomposition

(3.5) Dhe(T)remon = €D Dhe(T)re—mony-
x:mo (TF)—kX

Let k, be the rank one T{-equivariant local system on 7T with mon-
odromy action given by x (whose underlying local system is trivial).

Lemma 3.5. (1) The forgetful functor
D%f(TC)Tc,mon — D?Tc)f(TC)Tc,mon induces an equiva-
lence

(3.6) Dipe(T) e —monx —+ Digeye (T)7e mon-

2) Let o : T¢ — T° be the projection. Then o* induces an equiva-
proj q
lence of categories

(3.7 7" Dl (T) 1o = D(T)

Tc—mon'
(3) Let R be the completion of k[m; (T°)] at the augmentation ideal.
We have an equivalence
(3.8) D*(R-modyi) = D*(T )7 on-

Here R-mod,y is the category of continuous R-modules of finite
dimension over k. It sends M € R-mod,y to the local system
Ly on T whose stalk at 1 € T° is M and the monodromy
representation of m; (TC) is given by the R-module structure on

M.
(4) Combining (1)(2)(3) we get an equivalence
(39) D%f (TC)TC—mon = @ Db(i‘mOdnil)

x:mo(T§)—kX

For a collection of finite-dimensional continuous R-modules (M, ),

indexed by characters x : mo(Tf) — k*, the equivalence (3.9) sends
©M, on the right side to ®(c* Ly, @k, ) € Dblc(TC)Tc_mon.

Proof. For (3) see [9, Corollary A.4.7(1)] or [7, Lemma 4.1]. The rest

of the lemma is clear. O

We also have a description of Dbf(pt) following [12] as modules over
the homology algebra of the torus (77)°. Let
(3.10) Ao = H.((T7)%, k)

as a graded algebra in degrees 0, —1,--- , —dim77.
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Lemma 3.6. (1) The forgetful functor Dlec (pt) — D?Tc)f(pt) re-
stricts to an equivalence for each :

(3.11) D?pf(Pt)x = D(be)o(Pt)'
(2) Assume ch(k) = 0. Taking the stalk induces an equivalence
(3.12) RI(pt, —) : Dfpeye (pt) 22 D] (Au-mod).

Here DY (A,-mod) denotes the full subcategory of the bounded
below derived category of dg A.-modules with cohomology
finitely generated over A,.

(3) Assume ch(k) = 0. Combining (1)(2), there is an equivalence

(3.13) Di(pt)= €  D'(Avmod).

x:mo(TF)—kX

Proof. (2) follows from [12, Theorem 11.2]. The rest of the statements

are clear. 0

Lemma 3.7. (1) The equivalence (3.9) extends to a canonical
equivalence

(3.14) Do (T°) 7 —smon DY (R-mod)

x:mo (T )—k*

where Df(R-mod) is the bounded derived category of finitely
generated continuous R-modules.

(2) When ch(k) = 0, under the equivalences (3.14) and (3.13),
the adjunction (m;,m') (see (3.3)) can be identified with the
composition of adjunctions

_ k®*(
(3.15) €@, D!(R-mod) —= &P, D’ (k—mod) @ DY (Ay-mod)
forg forg
Here both right adjoints are the forgetful functors for the ring
homomorphisms R — k (augmentation) and k — A,.

Proof. (1) Let 0 : T — T" be the projection. Combining the equiva-
lences in Lemma 3.5(1)(2) we have an equivalence

b b c
(3.16) P : EBD V7 mom — Dipe(T) e —mon

given by sending (?X) to ®0*F, ®k, . Passing to pro-objects we get an
equivalence pro(®). We claim that pro(®) restricts to an equivalence
16



of full subcategories

5 - N (7Y _ ~ b (e
(3.17) ®: @ D(T")zeon = Dl (T°)r—mon-
X

Note here the completions on the two sides are with respect to differ-
ent torus actions. Let Ty, = (Fyn)nso € proD? (T )ze_,.... We need to

show that each J, satisfies the two conditions defining ﬁb(Tc)Tc_mon
if and only if the pro-object &, k, ® 0*F, ,, satisfies the two conditions

defining ﬁbf(Tc)Tc_mon. This easily reduces to check the same state-
ment for y = 1: ie., (¥,), satisfies T-constancy (where 7 : T° — pt)
and if and only if (6*5,), satisfies m-constancy and uniform bound-

edness. Since ¢* is t-exact up to a shift, the equivalence of uniform
boundedness is clear. Now

(318) W!U*?n :f!O'!O'*gjn = (ﬁ,gfn)@)H:((Tf)o’k)
Therefore, (mo*F,), is isomorphic to a constant object in proDé’,,f(pt)

if and only if (m,F,,), is isomorphic to a constant object in proD®(pt).
By [9, Corollary A.4.7(2)] or [7, Corollary 4.6] , we have
DYT%)ze_ . =~ D/(R-mod). Combining with ® it gives the equiv-
alence (3.14).
(2) By tensoring with k the case for general x reduced to the case

of trivial character y. In this case we need to describe the functor
(3.19) mp = A[dim T : Dyeye (T°) = Do (pt).
]/3\y Lemma 3.5, for M € D/(R-mod), the corresponding object in
DE’TIC)O(TC) is 0*L . Then (3.18) implies
mo Ly = Mo Ly [dim T

= (ML)l dim T ® H;((T7)°, k)[dim ]

= Tl ® A,
Here 7Ly € DP(pt) = Df(k-mod). It is well-known that
Tl =k éﬁ M. Therefore

L
(320) WTJ*LM = (k ®§ M)@A.

4. REAL TILTING EXCERCISES

4.1. The setting. We are back to the setup of Section 3.1. Namely, let
X be areal analytic variety. Let T be a compact torus. Let 7: X — X

be a principal right T°-bundle. Let H be a Lie group with an analytic
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action on X from the left commuting with 7. We assume additionally
that the action of H on X has finitely many orbits {X,}es, which
then gives a Whitney stratification of X. We put X, = 7 1(X,). Let
ir: X» — X and iy: X, — X be the inclusions. We say A < p if
X, C 7#. Put d) := dim X,.

Let X, C X be an H-orbit, and X = 7 '(X,). We choose a
point xy € X,. Let H,, be its stabilizer in . Then H acts on
the fiber m7=!(x)) commuting with the right T°-action. This defines a
homomorphism ¢,, : H,, — T such that the action of h € H on
7~ (xy) is by right translation by ¢,, (h)~". Let T C T° be the image
of pz,. Changing the choice of x) changes ., by H-conjugation. Since
T is abelian, T} stays the same. Therefore T} is independent of the
choice of x,, and we denote it by T%.

The irreducible H-equivariant local systems on X, with k-coefficients
are in bijection with characters mo(7%) — k*. Let

I ={(A\ )A€, x: m(T5) = kK is a character}.

For (A, x) € I, let k, , be the corresponding rank one local system on
X
We assume:
(4.1) The subgroup Ty C T¢ is closed, and ker(H,, — T%) is
contractible.

In particular, the identity component (7%5)° of 7§ is a compact torus.
We put

T\ =TS/(T5)°, dy=dimX,, ny=dimT°—dimT{=dimTy, A€l
We impose the following parity condition:

The parity of the numbers dy) + n, is the same for all
(4.2) Nel

For A < € I and x) € X, let LgX be the link of X, in X, at x,.
More precisely, let D,, be a sufficiently small transversal slice to X
at xy, and take L = D,, N X,. Then L% is a smooth manifold of
dimension d,, — dy, well-defined up to diffeomorphism.

We assume there is a weakly increasing function p : I — Z, denoted
A — py, such that for any (u, x) € I and any A < pu, we have
(4.3) H'(L" k, )=0fori> %(du+nu—d,\—n,\).

T X

Here we use l—{u,x to denote the resic;iction of l—<u7x to LE. .



Since Lf, is a smooth manifold of dimension d,, —d,, by Poincaré du-
ality (4.3) is equivalent to the following bound for all x : mo(7};) — k*

Ty’

. 1
(4.4) H(LL k) =0fori< §(d“ —n, —dy+ny).

Remark 4.2. If ny = n,, a typical situation where the bounds (4.3)
and (4.4) hold is when L# is diffeomorphic to a Stein manifold (e.g.
smooth affine complex algebraic variety) of complex dimension p, — p,.

If n, > ny, then there is a possible overlap of length n, —n, for the non-
vanishing degrees of H) (L%, .k, ) and H*(L% ,k, ), which can happen
if L fibers over a Stein manifold of complex dimension p,,—px—mn,+ny
with fibers compact manifolds of real dimension n, —n, (e.g. compact
torus fibration). On the other hand, if n, < n,, then there is a gap
of length at least ny — n, between the lowest nonvanishing degree of

HY(LE k, ) and the highest nonvanishing degree of H*(LL k),
which can happen if L% admits a fiber bundle whose total space is
diffeomorphic to a Stein manifold complex dimension p, —px —n,, +n,
and whose fibers are compact manifolds of real dimension ny —n,. In
our applications, the cohomological bounds hold essentially for these

reasons.

4.3. Standard and costandard sheaves. We define a perversity
function p : I — Z by

(4.5) Px = L%(d,\ +ny)].

As in [2, Section 2.1|, it defines a t-structure on D% (X) using the
perversity function p, whose heart we denote by ? Py (X).

For (A, x) € I, let Ay, and V,, € D% (X) be the ! and * extensions
of the local system k,  [pA] on X.

Lemma 4.4. For (pu,x) € [ and A < w, i\A,, lies in degrees
> —px +ny —n,, and i,V lies in degrees < —p,. In particular
V. lies in the heart of the t-structure P Py (X).

Proof. We first show the statement about V. The stalk of i}V,
at wy € Xy is H*(L4, ,k,  )[pu). By the cohomological bound (4.3), it
is concentrated in degrees < —p, + p, — pr» = —py. Since V,, has
vanishing costalks, it lies in the heart of the t-structure ? Py (X).

For i\ A, ,, we note that A, is Verdier dual to V, /[d, — 2p,] for
some Y. Therefore i\ A, , is Verdier dual to i}V, /[d, — 2p,]. Since
i3V ux[d,—2p,] lies in degrees < —py —d,, +2p,,, i\ A, lies in degrees
> —d)\ +p>\+d# —2p# = —px + N — Ny,

O
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4.5. Free-monodromic local systems on an orbit. We apply re-
sults from Section 3.4 to the situation of a single orbit H\ X,. We have
adjoint functors

~ ~ Tt
(46) D?L[(X)\>Tc—mon <T D?{<X/\)

T

Let Ry be the completion of the group algebra k[m (T’ )] at the aug-
mentation ideal. Let Ay o = H,((7%)°, k) be the homology of the torus
(T¥)°, viewed as a graded algebra in degrees 0, —1,--- , —dim T%.

Corollary 4.6. For A € I, we have canonical equivalences

A7) oy Dy(X)remn = P D (Ry-mod),
x:mo(T5)—k>
(4.8) DXy = P Di(Asemod).

X:T0 (Tf)—>k><

Under these equivalences, the adjunction (s, WI\) takes the form
(4.9)

k®92 (=)
@, D! (Ry-mod) —= — -, Df(k-mod) @ DY (Ay.e-mod)
for
Proof. Let x) € X, with image r) € X). Then 77 !(z,) & T given
by the base point T. Restricting to 7~1(z)) gives an equivalence
@+ Dy(Xy) = Dy, (T)re—mon, Which extends to the completions
it ﬁl}{(Xa) = ﬁ?{” (T°)7e—mon- Since ker(y,,) is contractible, we
have D?{” (T°)7e—mon = DbT; (T°)7e_mon Which also extends to comple-
tions. Similarly, D% (X)) = D%;(Tc). It remains to apply Lemma 3.7.

It is easy to check that the equivalence thus defined is independent of
the choice of 7. O

In the situation of Corollary 4.6, for each (A, x) € [ we have a free-
monodromic local system £ A € DH(X A)Te—mon that corresponds to

the free rank one Ry-module R, placed in the y-summand on the right
side of (4.7).

4.7. Free-monodromic sheaves. For the triangulated category of
free-monodromic sheaves we put My x = 5’}{()( )Te—mon for short,
whenever it does not provide an ambiguity. Define the a t-structure on
My x using the same perversity function p as in (??), whose heart we

denote by Pp x.
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For \ € I let M, := ZA)H()?,\)TC_mOH. We have adjunctions

; ~
! 5N

(4.10) M, : Mux  My=—=Mpux

iy I3

For (A, x) € I, we have the free-monodromic local system £ ax € My
as defined in Section 4.5. We define standard and costandard objects
Ay and V) of My x as, respectively, the |- and *-extensions under

ix of Ly [pal-

Lemma 4.8. For any (), x) € I, we have

(4.11) Tiloy 2 Are ® Axyy, T Vay = Ase ® Vs

Proof. By Corollary 4.6 we have

(4.12) Tatlay 2 Are @K,y .

Shift by py, and apply ¢y to the above we get

(4.13) 7TTK,\,X = inTaLax[Pa] Zin(Are @Ky [pa]) = Ao ® Ay

The argument for the costandard sheaf is the same, using that
T+ixe =2 9\ Tat because T = 7, (since 7 is proper). O

Lemma 4.9. Let (11, x) € I and A < p.

(1) The restriction Zf\ﬁu,x lies in degrees < —pj.

(2) Under the equivalence ®), the corestriction ?,\gux corresponds
to a collection M, € Df(Ry-mod) (where X' : mo(T) — k*)
where each M, can be represented by a complex of free R, in
degrees > —p,.

(3) The standard and costandard objects Au,x and 6#% lie in the
heart of the t-structure Py x.

Proof. (1) By Lemma 4.8, m5iiiV,y = 37 Vy = Ao ® i3V, B
Lemma 4.4, 13V, lies in degrees < —p,, hence mﬂj@u lies in degrees

< —Da (note A, . is in non-positive degrees) From the description of
mat given in Corollary 4.6 we see that z/\Vﬂ is in degrees < —pj.

(2) Note the statement is stronger than saying that M,/ lies in coho-
mological degrees — > p,, but saying that it admits a free resolution
(as Ry-modules) in degrees > —Px-_

By Lemma 4.8, we have WATZAA RV i!/\mﬁ%x > Ao ®BAL.
By Lemma 4.4, A, lies in degrees > —py + nyn — n,.

Ao ® iZA,, lies in degrees
= —py +ny —dim7T° = —py — dim7¥.
21
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o~ L
By Corollary 4.6, myiyA,, corresponds to @,/Aye @ (k ®z, My),

L
hence k ®z, M,/ lies in degrees —py — dim Ty + dim T} = —py (the
lowest degree of Ay, is —dim 7%). This implies that M,, admits a free

resolution (as Ry-modules) in degrees > —p,.
(3) The statement follows from (1)(2) and the observation that

Zf\ﬁ ux = 0 and ZAVNX = 0.
O

4.10. Tilting sheaves. We are in the situation of Section 4.1.

Definition 4.11. An object T of My x is called a free-monodromic

tilting sheaf, if for each A € I, both complexes ;’;‘I and ;')\‘.T are free-
monodromic local systems in degree —pj.

From the definition, we see that an object T of My x is a free-
monodromic tilting sheaf if and only if T € Py x and T has a A- flag and
V- flag, i.e. it is both a successive extension of A,\ ~ S and a successive

extension of VA,X sin Py x.
We will denote by Tilt(My x) C Mg x the full additive subcategory
free-monodromic tilting sheaves.

Proposition 4.12. 1) For each (\,x) € I there exists an indecompos-
able free-monodromic tilting sheaf T, whose restriction to X A s Ly
and whose support is the closure of )?A.

2) If T € Tilt(My.x) is supported on the closure of X, and the
restriction ZX‘J' is a decomposable local system, then T is decomposable.

Proof. 1) Proceeding by the descending induction on strata we may
assume that Z = X, is a minimal stratum of X and on the preimage
U =7 YU) of its complement U = X — Z there is a free-monodromic
tilting sheaf Ty, satisfying the required conditions. Let 3 U— X and
=7 '(Z) — X be the inclusions.

Let € = "7, Ty and (My)y = ®,(€) € D/(R,-mod). Since Ty
has a %—ﬂag, by Lemma 4.9, M,/ is in degrees < —p,,. Since Ty has
a A-flag and €[—1] 2 7,7y, then by Lemma 4.9, cach M,/[—1] can
be represented by a complex of free ﬁu—modules in degrees > —p,,
therefore M,/ can be represented by a complex of Ry-modules in degrees
> —p, — 1. Combining these we get that € can be represented by a
two-step complex [A 2 B] of free-monodromic local systems on Z in

degrees —p, — 1 and —p,, respectively.
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As in [3] we now put T € Py x to be the extension
(4.14) 0= iAp) =T = 5.Ty =0
defined by the map E*TU I CRN Lﬂ[pu + 1]. From this we see that
(4.15) T2 Alp,).

Applying 7* to the exact sequence (4.14) we see that A[p,] — ©*T — €
is a distinguished triangle hence

(4.16) T = Blp,).
Therefore we also have an exact sequence
(4.17) 0= 3Ty =T —0,B =0

in Py x. From (4.15) and (4.16) and the fact that Ty is free-
monodromic tilting on U we conclude that T is a free-monodromic
tilting sheaf on X.

2) Proof repeats the argument of [3, 1.2 and 1.4]. O

We next prove the functoriality of free-monodromic tilting sheaves
under proper pushforward. Let X — X and Y — Y be H-equivariant
T°-torsors satisfying the conditions of Section 4.1 .

Proposition 4.13. In the above situation, assume f: X - Y is an
H x T“-equivariant proper map. Then for any free-monodromic tilting
sheaf T € My x, [T € Mpyy is also a free-monodromic tilting sheaf.

Proof. Since fis proper, ﬁ commutes with restriction and corestriction
to H x T*“orbits, it suffices to assume that both X and Y has a single
stratum, so that X = H/H,,Y = H/H, and y = f(x), H, C H,. Let
Ty C T, C T° be the images of H, and H,.

Let ny = dimT¢/T;, ny = dimT¢/T;, dx = dim X, dy = dimY/,
px = L—dX;”XJ and py = L—dYJQF"YJ.

We claim that
(4.18) Px —nx =Py — Ny.
Indeed, let U, = ker(H, — T¢) and U, = ker(H, — TY), which are con-
tractible Lie groups by assumption. Since f : X — Y is proper, H,/H,
is compact. On the other hand, H,/H, is a fibration over T /T with
contractible fiber U, /U,. This implies U, = U,, and H,/H, = T /T.
Hence dx — dy = dim H, — dim H, = dimT; —dim 7Ty = nx — ny.
Therefore dx — ny = dy — ny, which implies (4.18).

n fact we don’t need to assume the cohomological bounds for links in X and

Y.
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Restricting to the fibers over x and y respectively we have a commu-
tative diagram

;*

(4.19) Mz x —= Do (T) e smon

‘}; lip*
;*

MY _j) Dljj“lj (TC)TC—mon

where ¢, is the induction functor for the inclusion 7¢ C Tyc. In this
situation, we may assume ;;‘J' € DbIC(TC)Tc_mon is the shifted free-
monodromic local system £, [px]| for some x : mo(7T<) — k*. The fiber
of the quotient map p : TA\T¢ — Ty\T¢ is isomorphic to TA\Ty, a
compact Lie group whose neutral component is a torus of dimension
nx — ny. Therefore p,.L, is a direct sum of free-monodromic local

systems in degree nx — ny. This implies that ]Z(I is a direct sum of
free-monodromic local systems in degree —px + nxy — ny. By (4.18),
—px +nx —ny = —py, therefore f.T is a free-monodromic tilting sheaf
onY. U

5. MATSUKI CORRESPONDENCE AND REAL TILTING SHEAVES ON
FLAG VARIETY

5.1. Setup. Let G be a connected semisimple complex Lie group to-
gether with the antiholomorphic involution 0. We put Gg = G° C G
be the corresponding real form and 7" C B C G for a maximal torus
and a Borel subgroup. Put U C B for the unipotent radical. Let
Kr C Ggr be a maximal compact subgroup of Gg and K C G be the
complexification of Kg.

Let T = T>% x T¢ be the decomposition of the C-points of the
abstract Cartan T into the neutral component T>? and the maximal
compact subgroup T*°.

Consider the flag variety X of G. Choose a Borel subgroup
B C G with unipotent radical U, and consider the T“torsor
m: X = (G/U)/T>° - X. When G is adjoint, we can define X as
the space of (B, {x,}) where B is a Borel subgroup and for each sim-
ple root o € P, x,, is basis of the a-weight space of U/[U, U] under the
T-action. For general GG, we need to choose a base point B € X in
order to define X. We will consider the left action of H = G on X.

5.2. The cross action of W on I. Recall from Lemma 2.6(1) the
real form oy on T for A € I. Let T C T¢ be the image of the real

points T?* under the projection T — T¢. By Lemma 2.6(2), T is the
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image of Gg N B — T —» T¢ for any B € OF, therefore this notation is
consistent with that of Section 4.1.

If T is a o-stable maximal torus and O is attached to T, then by
Lemma 2.6, via a choice of B € (O)T, TS can be identified with the
compact part of Tr. In particular, we have an isomorphism

(51) LB . WQ(TR) :> 7T0(T§\)

Recall the right action of W on T, which induces a right action on
T¢. From the commutative diagram (2.2) we see that

(5.2) TS - w=T5, YAel,weW

as subgroups of T¢. _

In |25, Definition 4.1], Vogan defines a cross action of W on I that
lifts the action of W on [ from Lemma 2.5. We will turn the cross
action w X (—) into a right action and denote it by

(5.3) A x)-wi=wx (\x), YweW,(\y) el

By [24, Definition 6.3], for a simple reflection s € W, its action on
(A, x) € 1 is as follows:

(1) If « is a complex root for OF, then there is a canonical iso-
morphism m(TS) = m(T$,) (both are identified with the
Gr-equivariant fundamental group of the image of OF in the
partial flag variety X;. Under this isomorphism, we have
(A, x) s = (A-5,x).

(2) If a is type I noncompact imaginary, then there is a canonical
isomorphism my(T§) = mo(T$.,) for the same reason as above.
Under this isomorphism, we have (A, x) - s = (A-s,x).

(3) If ay is type II real, and the local system k, on OF extends
to 'y (OF). Let p > X be as in Lemma 2.12. Then
T}, NT§ C T has index 2, which induces a sign character

(5.4) sgn, : mo(TS) — TS/TSNT), = {£1} C k™.

Then (A, x) - s = (A, x ® sgn,).
(4) In all other cases, (A, x) - s = (A, x).

5.3. Matsuki correspondence. Let us recall some of the results and
constructions of [18].

The Matsuki correspondence is a canonical order-reversing bijection
between the Ggr-orbits and K-orbits on X. This bijection is realized
by a Kg-invariant flow ®;: X — X (¢ € R), such that

(1) The fixed point set of @, is a finite union of Kg-orbits {C)}res

indexed a finite set I.
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(2) For any A € I set Of (resp. OX) to be the Gg-
orbit (resp. K-orbit) of X containing C),. Then
we have Of = {z € X|limy, oo®(x) € Cy} and
O¥ = {x € X|lim;, o, ®;(z) € C\}. The bijection OF +» OF
gives an order reversing bijection between the Gg-orbits and
K-orbits on X which is called the Matsuki correspondence for
orbits.

(3) The orbits {O}} and {OX} intersect pairwise transversally. The
natural projections O — Cy and OF — C) given by the limits
of the flow ®, are fibrations with contractible fibres.

For A € I, let OF be the preimage of OF in X.

Lemma 5.4. Let x € C) and Kgr, be the stabilizer of x under C\.
Then the projection Ky, — T is injective and its image is Ty. More-
over, the Ggr-action on X satisfies the condition (4.1).

Proof. Since Kgr, is compact and solvable (as an algebraic group
over R), its neutral component is a compact torus. The projection
Kgr, — T¢ is injective with closed image.

By definition, 7% is the image of the projection v, : Gg, — 1T — T°.
The square of the projection T" — T is real algebraic, hence
2 : Gr, — T°¢ is real algebraic, and its image is therefore a real
algebraic subgroup of 7, hence closed with finitely many components.
This implies that the image 77 is a closed subgroup of 7 with finitely
many components. The kernel ker(,) is an extension of a closed sub-
group of 77% and the unipotent real algebraic group ker(7,), hence
ker(7,) is contractible, and Gg, — T¥ is a homotopy equivalence.

Since x lies in the critical Kg-orbit C'y, which is homotopy equivalent
to OF, the inclusion Kg, < G is a homotopy equivalence. Therefore
Kg, — T¥ is also a homotopy equivalence. Now T5/Kg, is both a
compact manifold and contractible, it must be a point. We conclude
that K, maps isomorphically to Ty C T*.

O

We will now observe that

Proposition 5.5. The T*-torsor 7: X — X with the action of H = Gy
satisfies the conditions of Section 4.1.

Proof. (4.1) is already checked in Lemma 5.4.
We check the parity condition (4.2). From the transversality of O
and OF we get

(5.5) dy + 2dime OF = 2dime X + dim C,.
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By Lemma 5.4,

(5.6) dim Cy = dim K — dim 7§ = dim Kg — dim T 4 n,.
These imply

(5.7) dy —ny = 2 codime OF + dim Kp — dim 7°.

Since the right side is independent of A, (4.2) holds.

We check the cohomological bound of links (4.3). Suppose A < p and
consider now the intersection O;f N O, The limit maps limy_, 1o ®;(p)
provide a diagram

Y = 05 nox¥
/ \
Ci Cyu

with the maps being the fibrations. For x), € C), the fiber of Of\{ — C)
over z is a transversal slice to OF, therefore the fiber h'(z,) is diffeo-
morphic to the link L/ , which we shall denote by RLZA to emphasize
it is the link for Gg-orbits. Similarly, for z, € C,, h;'(z,) is diffeo-
morphic to the link * L} for the K-orbit O/ in Of. Let

(5.8) F = Rhalk, . Fi:=Rhuh'k, .
Since h) is Kr-equivariant, 9’; is a Kr-equivariant local system on C.
We need to show that

1
(5.9) F,=0, i>A:= §(du—|—nu—dk—n)\).

As a Kg-equivariant local system on C), 9’; is determined by its stalk
at z) and the monodromy action of mo(Kg ,) = mo(75) (by Lemma 5.4)
on F|,,. Then F. = 0 if and only if H™(Cy,F. @ k, 4) = 0 for
any character 6 : mo(7T5) — k*.

Now we introduce Kg-equivariant complexes and local systems on
C,, for any character 0 : mo(75) — k*

(5.10) G0 = Rhyuhyky g, S = Rihu*hilﬁx,e-
Note that
(5.11)  H*(Cr.F, @k, ) = H'(Y, k) = H'(C,, S ©k, ).

Here gkx) is the local system hik, o ® h;ku,x onY.
Let N be the largest number such that ffiv # 0. We need to show

N < A. By the first isomorphism in (5.11) and the Leray spectral
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sequence, HIMOHTN(Y gk )) = HI™O(C,, FY @ k, »). Therefore it
suffices to show that

(5.12) HImOTN(Y, ok, ), for i > dimCy + A, V(6, x).

Reversing the argument using the second equality in (5.11), we see that
(5.12) holds if and only if

(5.13) G, =0, i>dimCy+A—dimC,,Vé.

Since G} is a local system whose stalks calculate link cohomology for
K-orbits, (5.13) holds if and only if

(5.14) H' ("L} kyp) =0, i>dimCy+ A —dimC,, V0.
By (5.6) and (5.7), we have

1 1
(5.15)  dimCy — 5(dA +ny) = 5(dim Kg — dim T°) — codim¢ O

Therefore
(5.16) dimC\ + A —dimC),

1 1
= (dimC’ — i(d,\—kn)\)) — (dimCM— §(du+”u))
= codimc Off — codimg Of = dim¢ Of — dim¢ Off

Let i : OF < X be the inclusion of the K-orbits. Then
H*(FL} ,k, ) is the stalk of i{,k, 4 at x,. By [13, Proposition 4.1] (a
result due to Beilinson and Bernstein), i§ is an affine map. Therefore
i Ky gldime OF] is perverse, and the stalk of i{, k) , vanishes in degrees
> dimg OFf —dimg O = dim Cy + A —dim C,, (by (5.16)). This proves
(5.14) and confirms (4.3). O

In this present setting, we further contract the notation by putting
Mg, = Mg, x. We denote the t-structure on Mg, given by the per-
versity function p by (Még, Mgﬂg), and denote its heart by Pg,.

The Matsuki equivalence functors of [18, Theorem 6.6 (2)] are com-
patible with passing to the completion. By the general argument of

2.3 in [3] the following result is now also a formal consequence of [18,
Theorems 5.7 and 6.6].

Theorem 5.6. The Matsuki correspondence for sheaves is a Ringel
duality between the category of perverse K-equivariant B-free-
monodromic sheaves on G' and Pg,, i.e. it is an equivalence of derived
categories, which sends standard objects to costandard. In particular,

it takes projective perverse sheaves to the tilting sheaves in P, .
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5.7. Quasisplit, split rank 1 case. The follow-
ing  three cases  together  with the complex  group
cases G = SLy(C) x SLy(C),Gr = SLy(C) and
G = PGLy(C) x PGLy(C),Gg = PGLy(C) are the only qua-
sisplit real forms, whose maximally split torus has rank 1. The latter
complex case is well understood and fits into the classical theory for
complex groups. We will omit its detailed discussion.

1) Let G = SLy(C) and Gg = SL2(R). Respectively, we
have K = SO5(C) and Kg = SO2(R). The flag variety is
X=P'=P(C)=8%and X =5*CC*-0=G/U.

There are three Gg-orbits on P!': upper and lower half planes
H,,H_ and the real flag variety P*(R) = S'. We will label them by
I = {+,—,0}. The stabilizer of a point in H, or H_ is conjugated to
SO2(R) and n, = n_ = 0. The constant local systems are the only Gg-
equivariant free-monodromic local systems on 7' (H, ) and 7= '(H_).
The stablizer of a point in P*(R) is conjugated to the group of real

points of the Borel subgroup B(R) := { 8 ab1> la € R*)b € R}.

Since mo(B(R)) = Z/2Z and 7 (B(R)) = 0, we have ny = 1 and there
are two indecomposable Gg-equivariant free-monodromic local systems
Lo triv and Lo gen on the closed orbit, corresponding to the trivial and
sign characters of my(B(R)) = Z/27Z.

We see that p; = p_ = pp = 1 and the abelian category Pg, is (up
to a shift) the category of constructible free-monodromic sheaves in the
orbit stratification.

The category Mg, is the direct sum of two blocks: Mg, © Mg

The block Mngg is generated by the standard object Zgysgn (extension

by zero of Lgsem), and the other standard objects A, A_ and Ag iy
generate the other block Mg, . Correspondingly Pe;, = Pg, @ P&

Below we focus on the block Pg, . We represent an object in P, by
the following diagram

m

A

Vo<V Vo,

where V., Vo and V_ are the vector spaces of stalks on
7 YHy), 7w ' (PY(R)) and 7 *(H,), m: Vo — Vj is the prounipotent
monodromy operator along the fibers of 7, and sy : Coker(m—1) — V4
are the cospecialisation maps. In these terms we have

A= (k0 0), A= (00" ).
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80:%0270: 0<—k[[l‘]]ﬁ0

We see that the following are the tilting extensions of the local systems
on the open orbits

2) Let G = PGLy(C) and Gg = PGLy(R). Respectively, we have
K = 0y5(C)/{£l,} and Kg = Oy(R)/{£l}. The flag variety is
X =P =P{C) = $? and X = P¥R) = (C2 — 0)/R* = G/U.

There are two Gg-orbits on P!': the real flag variety P!(R)
and its complement H, = H,[JH._. We label them by
I = {0,h}. The stablizer of a point in PYR) is con-
jugated to the group of real points of the Borel subgroup

B(R) = {(8 i) a,c € RX,b € R}/{(g 2) d € R¥}. Since

mo(B(R)) = Z/27 and m (B(R)) = 0, we have nyg = 1, there are two
indecomposable Gr-equivariant free-monodromic local systems Lo triy
and Lgsn on the closed orbit corresponding to the trivial and sign
characters of mo(B(R)). The stabilizer of a point in H is conjugated to
SOy(R)/{£1} and ny = 0.

We see that p, = pp = 1 and the abelian category Pg, is (up to
a shift) the category of constructible free-monodromic sheaves in the
orbit stratification. We represent an object of this category by the
following diagram

Meriv Msgn

Striv Ssgn
Viriv —s Vi ~— ‘/sgn )
where V, is the stalk on 77! (HL.), Vi and Vi, are eigenspaces of the
stalk at a point of 77! (P!(R)) corresponding, respectively, to the trivial

and sign characters of mo( B(R)) = Z/27Z. The maps myiy : Viriv — Viriv
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and Mggn @ Vign — Vign are the prounipotent monodromy automor-
phisms along the fibers of 7, and suiyv: Coker(myy, — 1) — Vi,
Ssgn: Coker(mgg, — 1) — V, are the cospecialization maps. In these
terms we have

(14+z)-
N ~ (Y )
Noriv = Voriv = Tomiv = | K[[z]] —=0<—0 [,
(14=x)-
- _ ) Cy
AO,Sgn - VO,Sgn - (J'O,sgn - 0—0~<~—— k[[l’]] )

id

id
_ N [ T
An=(0—>k~—0),V,=| k"L k-2 x

We see that the following is the tilting extensions of the local system
on the open orbit

(14x)- (14x)-

a2 LY
Th = | kll2]] =k ~——K][[z]]

3) Let G = SL3(C) and Gg = SU(2,1) or G = PGL3(C) and
Gr = PU(2,1). These cases have an identical geometry and, so we
will discuss only the first one.

The six orbits are defined by the signature of the hermit-
ian form on each vector space in the flag.  Namely, we put
I = {0 +0,00 + —,+|+0,—| + =, 4| + —, 4| + +}, where to the
left of | we have a signature of the hermitian form restricted to V; and

to the right restricted on V5 for a given flag V; C V5. The poset of the
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orbits is

0+0
0] +— +[+0
-+ - +[ + - +[ + +.
We have
Noj+0 = NMoj4— = Nyjr0 = Lo =nyp- =ngpy =0
and

d0|+0 =3, do\+f = d+|+0 =9, d—\+— = d+\+f = d+\++ = 6.

The stabilizer of a point in each orbit is connected.
Closures 55 4+ and aﬁ 4o are smooth and are tangent to each
other along the closed orbit O(ﬂ)ﬁ 1o- We conclude that the stalks of

A_4+—, Ay 4+ vanish on the nonopen orbits, the stalks of V_| _, V1
are one dimensional at the point of orbits in the closure of the corre-
sponding open orbit with the stalks at the points of the closed orbit
being at perverse degree —1 and other being at perverse degree 0. The
stalks of V,_ are one dimensional at perverse degree 0 at points of
OE‘ s Oﬂoﬁ Y Oﬂ 40 and at points of Oélﬁ 40 the stalks are one dimen-
sional at degree 0 and one dimensional at degree —1. The stalks of
Ay|4+— vanish at the points of OélﬁJrf, OEHO and at points of Oﬂoﬁw the
stalks are one dimensional at perverse degree 0.

For A € I put €, := Cone(T, — i0|+0,*z’3|+07,\). It follows that we

have the exact triangles:

(517) A_H__ — G_H__ — AOH__ —>,
(5.18) £+|++ = Chppq — £+|+0 -
(519) £+|+7 — GJF‘JF, — £0|+, b £+|+0 — .

6. HECKE ACTION

6.1. Hecke category. If we view the complex group G as a real group,
i.e., RerG, its complexification (Re/rG)c is G x G', where G’ is G
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equipped with the opposite complex structure. Similarly, the flag va-
riety of (Re/rG)c is X x X' (where X' is X equipped with the op-
posite complex structure). We can identify Mz, G With the (free-
monodromic) Hecke category

(6.1) He = DX % X)qexre_mon-

It is equivalent to the triangulated category ﬁ(bj(f( )T¢—mon, Which was
studied in [9] and [7].

Note that in this case we have I = [ = W, where W is the Weyl
group of GG, which we consider equipped with the Bruhat order. For
w € W let X2 C X? be the corresponding G-orbit, and X2 be its
oreimage in X2 In particular, for w = e (identity in W), )fo is the
preimage of the diagonal A(X) C X? in X2,

For any w € W, we have that T, C 7T° x T° is the graph
of the w-action on T¢  In particular, n, = r = dim7T*
Also dimg X2 = 2(dim¢ X + ¢(w)). The perversity function is
pw = dime X + 6(w) + |r/2]. We will use a slightly different perversity
function p' : W — Z

(6.2) pl, = l(w) +r
to define a t-structure on Hg. Denote its heart by ng.

We have the free-monodromic standard orbjects and costandard
objects Aw,ﬁw € 9{2 being the !- and x- extensions of the free-
monodromic G-equivariant local system on )?Z, placed in degree —p/,,.
In particular, we denote Z 6 by 5. This is a free-monodromic local
system on the closed stratum X 2 placed in degree —r. If we identify
X2 with X x T¢ such that (Z,t) € X x T¢ * corresponds to (Z,zt), then
§ is the extension by zero of k X £[r] on X x T°.

We define a monoidal structure on Hg by convolution.  Let
pry; : X3 — X2 be the projection to the (i, j)-factors. The convo-
lution product on Hy is defined using

(6.3) Ky * Ky 1= pryg, (prip Ki @ priz Ko)

for K1, Xy € Hg. This equips He Wlth a monoidal structure with
monoidal unit 6. If we identify Hs with Db (X )T¢—mon, this monoidal
structure is the same as the one defined in [9, Section 4.3] and [7,
Section 7.

6.2. Hecke action. We define a right action of Hg on Mg, as follows.
For a Gg-equivariant, T°-monodromic sheaf F; on X and an U-

equivariant T°-monodromic sheaf F5 on X we have a Ggr-equivariant,
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T“-monodromic sheaf F; X F, on the fibered product G xT7°U X We
push it forward with respect to the action map G x7°°U X — X to
define a Gg-equivariant, T°monodromic sheaf F; x F5 on X. Asin
Lemma 4.3.1 in [9] or Lemma 7.4 in [7] the operation is compatible with
passing to the limit and we have an action of the monoidal category
He on Me,:
*: MG]R X HG — MGR-
Let € Mg, and X € Hg. Consider the two projections

(6.4) pry, pry X x X = X.
Define
(6.5) Fx XK = pry, (pr] F @ X).

More precisely, we start with the above definition for the uncompleted
monodromic categories and pass to the limit as in [9, Lemma 4.3.1] or
[7, Lemma 7.4]. This defines a right action of the Hecke category Hg
on Mg,:

*: MGR X Hg — MGR~

We now compute the action of some (co)standard objects in Hg on
some (co)standard objects of M¢,. The calculation is parallel to [17,
Lemma 3.5| (which is for K-orbits on X).

Lemma 6.3. Let (A, x) € I and s € W be a simple reflection. Let c,
be the corresponding simple root in the based root system ®,. We will
use the notations from Lemma 2.12 and Section 5.2.

Suppose OF is closed inside 7 '74(OX). Then we have the following
cases:

(1) If ag is a complex root and cov > 0. Let u = A-s > X be
such that O} = n;'m,(OY) — O. Then there is a canonical
isomorphism 7y(TS) = mo(T5,), through which we may view x
as a character of mo(T,). We then have

~ < A x ~ = S
A&x * Ay = Auvxa v/\,x * Vs = Vu,xv

Aux* V= Ay, Vi x A=V,
(2) If oy is a compact imaginary root. Then

&;VX *Es = AA:X[_lL KA:X *65 = 3)\%[1],

6)\0{*&5 g%)\,x[—l], €A7X*€5 g%,\x[l].
(3) If ag is a real root. Then exactly one of the following options

holds:
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e The local system k, , on Oy does not extend to 7 ' (O5).
2 Then

AA,X *AS = AA,X *Vs = A/\»X7

6)\&( * 65 = %%X * AS = %,\»(.

e The local system k, , on Oy extends (uniquely) to a Gg-
equivariant local system k, , on 7 'w,(OY), and a is type
IT real.

Let yu > X be such that O = n;'w,(OY) — OY. Let k,,
be the restrictions of k, , to Off. There are distinguished
triangles

ﬁlw — Z/\’X*zs — Z()\,X)'S —,
Viuwrs = Vax* Vi = Vi =,

A,“p[—l] — ﬁ,w * 65 — KA7X @& z()\7x).5 —,
Vax ® Vs = Vi * Ay = V1] — .

e The local system k, , on Of extends (uniquely) to a Gg-
equivariant local system k, ,, on 7, 'w (OY), and a is type
I real.
Let u*, = > X be such that Oﬁlﬁ 11 Off_ =1, (OF)-OF.
Letk,+ 4+ andk, , be the restrictions ofg; to Oilﬁ and
Off_. There are distinguished triangles

(6.10) Ayt ® Dy = Ay x Ay = Ay =,
(6.11) Ay g1 = Apz it * Vo = Ay —,
(6.12) %A,x — ﬁA,x * 63 — €M+,¢+ 3] %,f,qpf -,
(6.13) Viax = Vit gt x Ay = Vir yr[1] —

Proof. In the proof we will compute the non-monodromic versions
Ay *A;. Here A, € Dg(X x X) is the l-extension of k[l{(w)]
on the G-orbit X2, and for F € Dg,(X), X € Dg(X x X),
FxK = pry, (priF ® K). Note the degree shift for A, differs from

the one for A, by p = dim7T*°. Using Lemma 4.8 we have
(6.14) (A xA,) 2 (A JFA, = Ay e® (A, FA,), V(A x) € 1.

2 This happens if and only if the composition
\%

+1} = mR*) 2 7 Tr) = m(TS¢) 2 kX is nontrivial, where OF is
{£1} o 0 oL ) by
attached to Tg.

35



In order to recover stalks of E,\X * 35 from that of Ay, *xA,, we will
use the following simple observation which follows from Corollary 4.6.

Suppose (Nﬂb) S -[7 Fe MG]R:
IfiimF = A, o2k, ,®V asafree A, ,-module (where

(6.15) V is a complex of k-vector spaces), then ;Z? =L@V,

Choose a point z € OF corresponding to a Borel B,, and let
P! = 7 'my(x). Let P, be the parabolic containing B, with nega-
tive root —a,. Note that Gr N P, acts on IP’;. The stalk of Ay \*xA; at
yePlis

H(OF NP, —{y}. ky)lor+1] y € OF;

6.16) 1, (Ax *A,) =
(6.16) 7, (Ar,*A) {H*(0§HP;,3A,X)[pA+1] y ¢ O5.

Moreover, in the case y ¢ OF (corresponding to a Borel B,), the inclu-
sion B, < P, induces an isomorphism mo(GrNB,) = mo(GrNFP;), and
the isomorphism above is equivariant under the actions of mo(Gr N By)
on the left and mo(Gg N P,) on the right via this isomorphism.

Moreover, we have the triangule § — A; — IC; — in Dg(X x X)
gives a distinguished triangle

(617) A/\X — A)\7X;AS — 7T:7T5*A)\7X[1] —
(1) In this case, O N P! = {z}. By (6.16), Ay, FA,
has nonzero (l-dimemsional) stalk only at y € P! — {z},

and 7w(Gr N B,) acts via x via the natural isomorphisms
mo(Gr N By) = mo(Gr N Py) = mo(Gr N B,) = m(TS). We conclude
that

(6.18) Ay *As = Ay

By (6.15), this implies ﬁ,\,x*ﬁs & guvx- The formula %,\,X*ﬁs = 6/1»(
follows from the same argument from V,, »V, =V, , which follows
from (6.18) by Verdier duality. The third and the forth isomorphsims
now follow from the fact that

(6.19) A+ V2V, x A, 20 € Hg

(see |7, Lemma 7.7 (1)]).

(2) In this case P! C OF. From (6.16) we see that Ay, *A; has stalk
H(P\{y}, k)[pxr + 1] = k[py — 1] at every point y € P.. Moreover,
the first map in (6.17) induces an isomorphism on degree 1 — p, stalks,
and the monodromy on 77, Ay, is given by the same character ¥,
we conclude that the same is true for the monodromy of Ay, *A,, i.e.,
Ay FA, = Ay, [—1]. By (6.15), this implies Ay, x A, = A, [—1].
The other formulae are proved similarly.
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(3) Fix a o-stable maximal torus T' C B,. Let L be the Levi subgroup
of G generated by T" and root spaces +a;. Then L is o-stable with real
form Ly = L?. We have an L-equivariant isomorphism X & 7~ !(P).
Therefore we may assume G = L. Note that the derived group of Ly
is either SLy(R) or PGLy(R). The flag variety X = P! is defined over
R with real points the real projective line P!(R) = OF.

In the first option, k, X|]p1 ) has nontrivial monodromy, hence
sy = 0. By (6.17) we have an 1somorphlsm Ayy = Ay FAS.
By (6.14), we conclude that A, X*A >~ A, - The other isomorphisms
follow from this one by Verdier duality and (6.19).

In the second option, we have Of = P} — P'(R). We first com-
pute ;’;\(ﬁ,\x « A,). Using (6.16), the stalk of Ay *Ag at a point
y € PY(R) is H(PYR) — {y}, k,,)[px + 1] = k[py]. Moreover, the
action of mo(Gr N By) on H}(PYR) — {y},k, ) is x twisted by the
sign character sgn, (see (5.4)) through which my(Gr N B,) acts on
H!(PY(R) — {y}) & H'(P'(R)). We conclude that

(620) i;(A)\,X;AS> = l—{)\,x®sgns [p)\]
By (6.15) we conclude that

(6.21) (A *x Ay) = Ly yagn. [P2] = Lonyslpal-

Next we show that

(6.22) (AA x * A s) = Ly ylpul

For this, computing 4},(Ax,*A;) as a local system is not enough, since

we need to keep track of the A, ,-action in order to recover ZZ(& ,\,X*As).
Nevertheless we first use (6.16) to see the stalk of Ay ,*A; at a point
y € P, —P'(R) is equal to H*(P'(R),k, ,)[px + 1]. Using the long
exact sequence attached to the triangle jik,, — E/\,x — uk,, — on
7, 'mg(OX), we see that the action of mo(Gr N By) = mo(T¢) on the
stalk iy (Ax *A;) is via . To show (6.22), it remains to show that
(6.23)

7;(&,\% * ﬁs) is free-monodromic of rank 1 in degree —p, = —pa.

Let A = (ZG)°, then we have an isogeny A x SLy; — G defined over
R with kernel either trivial or of order two. It is then sufficient to
prove (6.23) for A x SLy (by pullback from X), and eventually for
Gr = SLy(R) (just for the statement (6.23)). In the rest of this para-
graph we assume G = SLs. In this case, the statement (6.23) becomes

(6.24) For § € 7=} (P' — PY(R)), (A eriv * Ay) Z k[1].
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We identify G/U = A?\{0} hence G/UT>° = S3 (unit sphere in C?).
The preimage OF C 3 consists of (21, z) € C? with |z,|2 + |22 = 1
and z/z € RU {oo}. It is easy to sce that OF is a 2-dimensional
torus. Let ¥ = (y1,y2) € S®. Then

(6.25) (A * A,) 2 H(OF, £, [1] ® €°£[2)).

Here £ is the rank one free-monodromic local system on S, and
€: OF — S'sends (21,22) to (2192 — 22y1)/|2192 — 29u1|, and €*L[2]
is the contribution of AS to the the fiber of the convolution. Consider
the G(R)-equivariant embedding 0 : ST — O} sending u + iv — (u,v).
Then 6*L, , is trivial since G(R) acts transitively on S'. However,
calculation shows that e o6 : S' — S! is a homeomorphism. These
facts combined imply that £, ® €L is a rank one free-monodromic
local system on the 2-dimensional torus 6§ Using (6.25) we see that
(6.24) holds. Now (6.22) is proved.

Combining (6.21) and (6.22) we get the distinguished triangle (6.6).

The same argument for showing (6.21) shows

(6.26) (Axy * Vi) 2 Ly Ipa + 1],

Here we are using that for € PY(R),
iy (A *Vs) = H*(PY(R) — {y}. ky,)lpx + 1] = k[px +1]. On
the other hand, we have

(6.27) T(Boy* A,) 205 (s, + V),

which is isomorphic to £, 4[p,] by (6.22). This together with (6.26)
imply a distinguished triangle

(628) A,u,,d; — ZA,X *68 — ZA,x[l] —
Replacing (A, x) by (A, x) - s, and shift by [—1], we get
(6.29) Auwl=1] = Aoy * Va[—1] = Ap s —

Now we convolve (6.6) with V, rotating it and using (6.19) we obtain
a distinguished triangle

A(NX)'S * 63[—1] — A/M/) * 65 — A(A,x)s — .

Combined with (6.29), observing that there is nontrivial nonzero ex-

tension between Ay, and A, ,).s, we get the asserted distinguished
triangle (6.8).

To prove (6.7), we take the Verdier dual of (6.20)
to get 3 (Va xVe) = Ko slal- Using (6.15) we get

?A<6/\x * V,) = Lonyslpal. - The calculation of ZL(ﬁ,\X * V)
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boils down to the same thing as ’ZZ(A/\X * ﬁs), and we have

7”(6,\)( * V,) = L,ppy).  Combining these facts we get the
distinguished triangle (6.7). Then the same deduction from (6.6) to
(6.8) allows us to deduce (6.9) from (6.7).

Finally consider the third option. In this case Oﬁi and Oﬁlﬁ are the
two hemispheres of P* — P*(R), which we denote by H' and H~. The
calculations made for (6.6) shows (6.10); the argument for (6.8) gives
a distinguished triangle
(6.30)

Ayt gt =1 DA - [-1] = Apr s * Ve @A - - x V= Ai’ii —.

To deduce (6.11), it remains to show that 7;} (ﬁw,w *V,) =0, or
s (B g+xVs) = 0. For y € HY, iy (Ay+ p+*Vy) = HI(HT, j.k)[2]
where j : H" — {y} < H" is the inclusion. The vanishing of
H:(H*, j.k) is clear.

The proofs of (6.12) and (6.13) are similar to those of (6.7) and (6.9).
We omit details. U

Let Tilt(Hg) C He be the additive subcategory of free-monodromic
tilting objects. The category Tilt(He) is closed under convolution. See
|9, Proposition 4.3.4] and [7, Lemma 7.8, Remark 7.9]. Hence Tilt(H¢)
(as an additive category) inherits a monoidal structure from Hg.

Proposition 6.4. For T; in Tilt(Mg, ) and Ty in Tilt(H¢) the convo-
lution product Ty = Ty is in Tilt(Mg, ). In other words, Tilt(M¢,) is a
module category for Tilt(Hq) under convolution.

Proof. Every object T € Tilt(Hg) is a direct summand of successive
convolutions of T for simple reflections s € W (see [9, Corollary 5.2.3]
and |7, Remark 7.9]). Hence, it is sufficient to assume that T, = T.
We start by checking that for any (A, x) € I , the convolution product
A Ay * Js 18 a successive extension of the objects of the form zmw[—n]
with (u,¢) € I and n > 0.

If A and s are in position of one of the options of Lemma 6.3 we use
the exact traingle 5 — T, — Asa — and the calculation of E/\,x * ES
in Lemma 6.3 to obtain needed filtration. Otherwise, we consider the
exact triangle Vy — T3 — 0 — and use the calculation of Ay, x V, in
Lemma 6.3 to conclude.

It follows that Ay, % T is a successive extension of the objects of

the form Zwﬁ[—n], n > 0. By considering a standard filtration on 77,
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we see that the same is true for T; x J,. In particular,

For each p € I, the restriction 7;(‘.]’1 * Ts) is a bounded
(6.31) complex of free-monodromic local systems concentrated
in degrees > —p,.
Similarly, using the calculations in Lemma 6.3, the convolution prod-
uct Vy, x Js is a successive extension of the objects of the form

ﬁwp[z 0] and (u,v) € I. By considering the costandrad filtration
on T7, we see that the same is true for J; x T,. In particular,

6.32 For each p € I, 7 (T; % T,) is in degrees < —p,,.
2 o H

By Lemma 4.9(1), ?;?Mgw lies in degrees < —p,,. Since J; x T, is a
successive extension of V4[> 0], i% (T1xT;) also lies in degrees < —p,,.
Combined with (6.31), we conclude that ZZ(‘L * T,) is concentrated in
degree —p,, and is free-monodromic.

By Lemma 4.9(2), ;Lﬁuw is a complex of free-monodromic local
systems in degrees > —p,. Since T; x T, is a successive extension
of K,M,[g 0], %(‘J’l * T) is also a complex of free-monodromic local
systems in degrees > —p,. Combined with (6.32), we conclude that
;L(‘J'l * T,) is concentrated in degree —p,, and is free-monodromic.

Combining the last two paragraphs, we conclude that T, x T, is a
free-monodromic tilting sheaf.

O

Lemma 6.5. Recall the assumptions and notations of Lemma 6.3.
Then

(1) If oy is complex and oo > 0, then Ty, * Ty contains Ty, as a
direct summand with multiplicity one.
(2) If a, is real and k, , extends to a Gg-equivariant local system
on 7, 'm (OF). Then
o If o is type Il real, then T, x T, contains T, , as a direct
summand with multiplicity one.
o If o, is type I real, then T, x T, contains T+ y+ ® T~ 4~
as a direct summand with multiplicity one.

Proof. Let OFf = w7 'm,(OX)— Oy (which is a union of two orbits in type
[ real case), and let O?f be its preimage under m. Let ZM : O}f — X be
the inclusion. Then 55 is the open stratum in the support of T}, * Ts.

By support considerations, we have

(6.33) (Tan * To) 2 05(A  x Ay).
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By Lemma 6.3, the above is £, [p,] in case (1), £, 4[p,] in case (2)
type I, and £+ o+ [pu+ | ©L - - [pu-] in case (2) type 1. The conclusion
follows. O

The Hecke action on Tilt(M¢,) enjoys the following self-adjunction
property.

Proposition 6.6. Let s € W be a simple reflection and Ty the cor-
responding tilting object of H. Then the convolution endo-functor
—x T on Tilt(Mg, ) is self-adjoint. Namely for Ty, Ty in Tilt(Mg,) we
have a canonical isomorphism functorial in T, and T

I{I‘IOIHMG]R (Tl * 757 TQ) = ].:{I‘IOIHJ\/[G]R ((.Tl, TQ * {.Ts) .

Proof. To construct a unit and counit of the adjunction it suffices to
construct maps u: 0 — Ty, x T, and ¢: T, x T, — 6 in Hg, such that
both compositions

(6.34) T, M g T T, A T

idxu cxid
Ty —= T x Ty x Ty, ——= T,

are equality to the identity of Ts.

It is known that the Soergel’s functor V (recalled in Section 8.6)
provides a fully-faithful embedding of Tilt(H¢) into the category of
Soergel bimodules (i.e. |7, Proposition 11.2] in the present setting). It is
thus sufficient to construct u and ¢ in the category of Soergel bimodules,
where we have V(T;) = R ®zs R. Note that R*="1 as an R*-bimodule,
is isomorphic to the regular bimodule. Let us fix an element z, € R=1
such that multiplication by z, gives an isomorphism R* = R*="1 of
Rs-bimodules. We get a splitting R = R* ® z,R® as R*-bimodules.

We then have a splitting

V(TS *TS) =R R Rps R R ps R=R R ps (IRS D l’szS> R Rps R=

= .{R, ®ys RS ®ys R @ R ®.{RS .’I:SRS ®fRs R

We put ¢: R ®@gps R®@xs R — R for a composition of the projection onto
the second summand R®gxs 2,R°* @z R ~ RRxs R and the multiplication
map R®xs R — R. We put u: R = R®xs R ®@zs R for the composition
of the map R — R®xs R given by 1 — ., 14+ 1®x, and the inclusion
of the first summand R @3zs R* Qqs R ~ R Qqs R. The verification of
the adjunction identities is now straightforward.

O
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The following generation property for the Tilt(Hg)-module
Tilt(Me, ) will play an important role later.
Recall there is a unique closed Ggr-orbit Oﬂfo in X and its preimage

5]1;0 =7 1(O%) in X.

Proposition 6.7. The category Tilt(Mg,) is generated under taking
direct sums and summands and applying the convolution action of
Tilt(H¢) by the free-monodromic local systems supported on O .

Proof. Let Tilt" C Tilt(Mg,) be the full subcategory generated un-
der taking direct sums and summands and the convolution action of
Tilt(Hg) by the free-monodromic local systems supported on X),.
Suppose for purpose of contradiction that Tilt" is not the whole
Tilt(Mgg ), let (X, x) € I be such that Ty, ¢ Tilt" and that dim OF is
minimal among such (A, x).

Let B be a Borel corresponding to a point in OF and let b be its
Lie algebra and t C b its o-invariant subtorus. Let a be a simple root
of t in g positive with respect to b. Lemma 6.5 implies that if « is
noncompact imaginary or « is complex and o« is negative, there is
(p,7) € I with g < X such that Ty, is a direct summand in T, x T, .
This would contradict the minimality assumption.

From the above we conclude that any simple root « of (b, t) either
satisfies ca > 0, or « is compact imaginary. The next lemma shows

that in this situation O is closed and finishes the proof.
O

Lemma 6.8. Let A € I. The orbit OF is closed if and only if any simple
root a € &), is either complex and oo > 0 or compact imaginary:.

Proof. The "only if" part follows from Lemma 2.12 as the intesections
with the a-lines has to be closed subvarieties of P!.

Let us proof the "if" part. Under the Matsuki correspondence, the
closed GR-orbit corresponds to the unique open K-orbit in X. Consider
now the corresponding K-orbit OF under the Matsuki correspondence.
Let € be the Lie algebra of K and let 6 be the corresponding Cartan
involution. We choose B € C\ = OF N OF. We would like to prove
that b + € = g, which then implies that O is open and OY is closed.

Translating the constraints on the roots in terms of 8, we see that for
each simple root « of (b, t), either v < 0, or « is compact imaginary
(i.e., b = v and g, C B).

We want to show that for each root a we have g, C £+b. We proceed
by downward induction on the height of a. If ht(a)) > 0 then o > 0

and g, C b. If ht(o) < 0 and suppose gz C €+ b for all ht(8) > ht(a).
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Write a as a sum of simple roots «;, and each «; either satisfies fa; < 0
or Oay; = ;. Therefore ht(6a) < ht(a).

If ht(a) < ht(a) then by inductive hypothesis we have
goa C €+ b. On the other hand, (g, @ g¢a)? C € Therefore
Oa C 060 + (80 D g00)? C b+ E.

If ht(fa) = hit(«), then this can happen only when « is compact
imaginary. In this case, g, C £. This completes the induction.

L]

7. LOCALIZATIONS OF FREE-MONODROMIC CATEGORIES

7.1. Preliminary on invariant theory. Let V' = SpecR. The for-
mal version Spf R of V' can be identified with the formal completion of
the dual torus T (defined over k) at the identity element. We have a
natural W-action on V.

For any A € I we have the subscheme V) := Spec R, C V. Again the
formal version Spf R, of V) can be identified with the formal completion
of a subtorus of TV at the identity element.

Let 8 = Ry, be the completion of the group ring k[ (Tio)] at the
augmentation ideal (recall \g € I indexes the closed Ggr-orbit). We
have V), = Spec§ C V. We consider the projection map

(7.1) pry : Vi, Xyyw V. = V.

Let V. be the scheme-theoretic image of pry,; this is a W-stable closed
subscheme of V. It is easy to see that the reduced structure of V, is
the union

(7.2) vied= | wh, c V.

weWw

Equivalently, V**d is the union of V) for those \ attached to a fixed
maximally split o-stable torus 7.
Let A C T be the maximal split subtorus. Consider the completion

8 = k[m(A)]. Note that Wg := W(G,Ty)? € W(G,Tp) fixes A and so
acts on 8. Let K be the field of fractions of 8. We also put Q := K"
for the field of fractions of 8"%. Consider the natural composition
RW — 8§We 5 K 3. Note that § @gw Q = K.

The category Tilt(Mg, ) is linear over R, i.e., R acts on the identity
functor idTilt(MGR).

3As was proved in [14] the first map is surjective outside 4 exceptional cases for

G of type E.
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Lemma 7.2. The action of R on idTﬂt(MGR) factors through the quo-
tient O(V,) (regular functions on V,). The action of R" on idTi]t(MGR)
factors through O(V,)"', which coincides with the image of R" in §"%.

Proof. By Proposition 6.7, it suffices to check that the action of R
on T % J" (via right monodromy on J’) factors through O(V}), for
T € Tilt(Mg,) supported on )?AO, and T’ € Tilt(Hg). The action of
R®@R on T’ by the left and right monodromy factors through R @g¢w R
by Proposition 8.7, and the first copy of R-action is the same as the
right monodromy on J. For T € Tilt(Mg,) supported on the closed
orbit, R acts on T through the quotient §, hence the R @qw R-action on
T x T’ factors through 8 ®gw R. Therefore the second copy of R-action
factors through the image of R — 8 ®gw R (r — 1®r), which is O(V})
by definition.

The second assertion follows immediately from the first. O

7.3. Localization. For any orbit A € I, the universal Cartan T carries
a real form (anti-holomorphic involution) oy from Lemma 2.6(1). Let
@, be the Cartan involution on T corresponding to the real form o (so
0, is the composition of o, with the compact real form o,).

Let TV = Hom(X.(T), G, x) = Hom(m1(T¢), G,,,x) be the dual torus
of T over k. Then V can be canonically identified with the formal
completion of TV at the identity element. The Cartan involution 6y
acts on TV hence on V. Write —0), to be 6, composed with inversion.
We may identify V) with the fixed point formal scheme V=9,

Let A C T be the neutral component of T=%o. Then V}, is canoni-
cally identified with the formal completion of the dual torus A at the
identity.

We fix a Borel By € Oﬂfo and a o-stable maximal torus Ty C By. Let
Py D By be the minimal o-stable parabolic subgroup containing Bj.
Let Ay C Tp be the subtorus corresponding to the split part of Tjg.
Via the isomorphism ¢p, : Ty C By — T, A, gets identified with A.

Consider the restricted root system ®(G, Ay), with basis given by By.
Via the isomorphism tp, : Ag = A, we view a € ®(G, Ag) as characters
on A, and the corresponding coroot o as characters on AY. Let J
be a subset of simple roots in (G, Ag). Let A; C A and A; C Ay
be the neutral component of Njcsker(a). Similarly, let Ay C AY be
the neutral component of Njc; ker(a}/). Let V; C V), be the formal
completion of AY at the identity.

Let L := L; = Cg(Ay) € G and P := P; D By be the unique
parabolic subgroup of G containing F, with L as a Levi subgroup.

Then L and P are also o-stable hence defined over R.
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Let X} be the flag variety of L; and let X 1, be the T torsor over
Xr. We have the monodromic category My, and the subcategory of
free-monodromic tilting sheaves Tilt(Mp, ).

Lemma 7.4. The map Ly — L& is surjective.

Proof. Consider the roots of T" in L. They are permuted by o. The
center Z (L) inside T is defined by vanishing of all other roots, which
are also permuted by o. We conclude that Z(Lg) is the product of
the copies of C*, corresponding to nontrivial orbits of ¢ and R* cor-
responding to the fixed points of o. 0

Let pr: P — L be the projection. We have a closed embedding
(73) ip: XL — X

sending B’ € X to p;'(B’) € X. The image of ip is the set of Borel
subgroups of G contained in P. Similarly we have a closed embedding
of enhanced flag varieties

(74) Zp : )’ZVL — )’5
covering ip.

Lemma 7.5. Recall J is a subset of simple roots of ®(G, Ay) that cut
out Ay, Ay, AY and V. For a fixed \ € I we have V; C V) if and only
if the intersection O N ip(Xy) is nonempty, i.e. if and only if there
exists a Borel subgroup B’ C P C G contained in OF as a point of X.

Proof. Note that the following are equivalent:
(7.5) ViCVy <= AYCT" " «—= A;cT ™

Suppose B C P is a Borel subgroup and B, = BNL. Let T' C By, be
a o-stable torus. Note that A; is the split center of L, hecne A; C T
Consider the image of A; under 1z : T"C B — T. On the one hand,
tp and g, restricts to the same map A; — T (because they differ by
W), hence t5(Ay) = A;. On the other hand, A; is contained in com-
plexification of the split part of Tk, hence 15(A;) C T~%. Therefore
A; C Tﬁek, and V; C V) by (75)

Conversely, suppose V; C Vy, hence A; C T7% by (7.5). Let
B € Of and T C B be a o-stable maximal torus. Let A; C T be
the complexification of the split part of Tg. Changing (7, B) by Gg-
conjugacy, we may assume A; C Ag. Under 1p : T C B — T, we have
LB(AI) = T_GA’O D) AJ. Let Af] = L_l(AJ> C Al-

Now we have two subtori A, A’; of Ay, which is in turn in 7y. Via g,
and ¢p respectively, they map isomorphically to A ;. Let o/, € A, be a

generic element, and let a; € A; such that tz(a;) = tp,(as). Both d
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and ay are in Ty and they are in the same conjugacy class of GG, there
exists w € W(G, Tp) such that w(a’;) = ay. Since @/; is generic in A’}
—1

w restricts to the isomorphism A’; By A L—BO—> Aj. Since ay,a’; € Ay
are the same W (G, Tp)-orbit, they are also in the same W (G, Ap)-orbit.
Let u € W(G, Ag) be such that u(a);) = a;y, then u|a;, = w|a,. Since
W(G, Ay) = W(Gr, Tor), we can lift u to & € Gg normalizing 7;,. We

have a commutative diagram/—\\

\ L“i/
LAd(u)B LBg
T

By Lemma 7.6 below, By and Ad(4)B are in the same L = Cg(Ay)-
orbit of X. Now By € ip(X), which is the L-orbit through By, we
have Ad(4)B € ip(Xp) N OX. O

Lemma 7.6. Let A C G be a torus. Consider the map
Kk : X* — Hom(A,T) sending B € X# (i.e., a Borel subgroup B
containing A) to the map tp : A C B — T. Then each non-empty
fiber of k is stable under the Levi subgroup Cg(A) of G, and is Cg(A)-
equivariantly isomorphic to the flag variety of Cg(A).

Proof. The map k is equivariant under Ng(A), therefore each fiber has
an action by Cg(A).

Let By, By € X* with the same image under k. Let T, C B; be a
maximal torus containing A, ¢ = 1,2. Let ¢; : T; C B; — T be the
isomorphisms induced by B;. The fact that x(B;) = k(Bs) implies
t1la = t2]a. Let g € G be such that Ad(B;) = By and Ad(T}) = Ts.
Then 13 0 Ad(g) = ¢1 € Hom(T3,T). Restricting to A we get that
12(Ad(g)a) = t1(a), which is ty(a) for all a € A. Therefore Ad(g)a = a
hence g € Cg(A). This shows that each non-empty fiber of x is a
homogeneous space for C(A).

The stabilizers of C(A) on X4 are clearly Borel subgroups of Cg(A).
Hence each non-empty fiber of x is isomorphically to the flag variety
of Ce(A). O

Let K, be the localization of V' at the generic point of V;. The
category Tilt(Mg,) is linear over R. We define the localization of
Tilt(Mey) at the generic point of V; as the K j-linear additive category
Tilt (Mg, ) @ K; whose objects are the same as those in Tilt(Mg, ),
and the morphisms are defined as

Homie,)@nx, (T1: T2) := Homricovg, ) (T1, T2) ®@= K.
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Applying Lemma 7.2 to Lg we see that the action of R on idpyg Lg)
also factors through O(V}.) (in fact we can replace V, by a further sub-
scheme, which is the image of Vi, xy w, V — V). Therefore it makes
sense to define the localization Tilt(M, ) @z K.

Proposition 7.7. Under the above notations, The restriction map
along ip : X1, — X induces an equivalence.

(7.7) i Tilt(Me,) @z Ky = Tilt(My,) @ K.
Moreover the equivalence is equivariant under the actions of Tilt(H).

Proof. We claim that the inverse functor is given by the composition
Avg, 0 ip., Where Avg, is the averaging functor with respect to G-
action. It is clear that i% o Ave, ozp,* is an identity (even before the
localization) and we need to verify that Avg, oZR* o?}, is an identity
on the localised categories. By Lemma 7.5 the orbits intersecting the
image of ip are exactly the OF such that V; C Vj. These are exactly the
orbits that have the local systems not vanishing after the localization
and the statement follows.
The convolution product commutes with Ave,, which implies the
compatibility with Tilt(Hy)-action.
O

7.7.1. Localization of the Hecke category. We keep working in the above
setting. Consider the map

pr;: VJ XV//WV—>V

and let V;, be its scheme-theoretic image. Let R; be the localization
of V' at the generic points of the irreducible componenent of V;,. It is
isomorphic to the product of the copies of X ; numbered by the WW-orbit
of V; as a subspace of V.

Recall that the Hecke category is a R ®@qw R-linear category. We
define the localization of the Hecke category R; ®4 Tilt(Hg) @x Ry
to be a R; ®qw R ;-linear category whose objects are the same as the
objects of Tilt(H¢) and the morphisms are given by

Homap, o, mitt(3tc)@xk, (T15 T2) := Ry @z Hommpiie ey (T1, T2) @2 Ry

Note that R; ®¢ Tilt(Hg) @5 Ry splits into the direct product of cat-
egories numbered by a pair of elements in the W-orbit of V;. The
*-action of Tilt(Hs) on Tilt(Mg,) passes to a functor

(78) * Tﬂt(MGR)Q@ngRJ XRJ@RTilt(}CG)@R:R,J — Tﬂt(MGR)(@y:RJ.

The action is compatible with the direct product decompositions.
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7.7.2. Localization at codimension 0. Consider the localisation
Mg, @xw Q of the category Mg, over the monodromy action of
R C R, whose objects are the same as the objects of Mg, and the
morphisms are given by

HomMGR®RWQ(fﬂ, ?2) = HomMGR (f_fl, ?2) ®RW Q
We have Rg := R @gw Q = [],.;, K and, therefore,

Mg, @qw Q = H Mg, @r Ky

PYSIN)

We say that an orbit OF is attached to T if it contains a T-fixed
point. Note that for an orbit attached to T" we have ny = dim A and
for each orbit not attached to T" we have n), < dimA. Let Iy C I
be the set of orbits attached to 7', and IO be the preimage of I in I.
For A € Iy, let Xy = Frac(R,). Then Spec Ry = w(Spec8) C SpecR
for some w € W. We have an isomorphism X = XK, unique up to
precomposing with the action of Wg. We have Ry @gw Q = K.

Proposition 7.8. (1) If (\,x) € I — Iy, then z,\X and 6,\% are
zero in Me, Qrw Q.
(2) For (A x) € Iy, we have Endyy, ®RWQ(A/\X7A)\ v) =K.
(3) The functor

(7.9) P D'(Ks-mod) = Mg, @gw Q
()‘7X)€TO

sending (th)()\,x)efo to @(A,x)efo My, ®x, Ay Is an equiva-
lence.

Proof. (1) If X\ ¢ Iy, the action of R on ﬁ,\,x and 6A7X factor through
R, but Spec Ry has dimension n, which is smaller than the dimension
of Spec 8We. Therefore the actions of RW on A Ay and Y Ay also fac-
tor through a quotient with smaller dimension than Spec 8"%, hence
localizing to the generic point of Spec 8% kills A/\x and %,\%

(2) If (A, x) and (X, ) € I, then by Lemma 3.7,

ﬁ)ﬂ X = Ib’

RHomagg, (Aax Baw) = {o XU

Tensoring with Q we get

g<>\a X = wu

RHomy @, 0(Bry, Ary) = {0 A
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(3) Since the {A/\vx}(/\,x)e'f generate Mg, ®g¢w Q, in view of part (1)
and (2), it remains to show that RHomMGRQ%WQ(AA’X, A, ) = 0 for dis-
tinct orbits A, u € Iy. Note that the support of RHomMGR(z,\,X, Zu,d))

as an R-module is contained in Spec Ry NSpec ﬁﬂ. By Lemma 2.14 and
[1, Proposition 12.9 and 12.14], that (7%)° # (T})° as subtori of T°,

hence the intersection Spec R, N Spec ﬁu has smaller dimension than
a, which is the dimension of Spec 8"& . The same holds for the support
of RHomy, (Axy, Ayy) as an RW-module. Therefore tensoring with

Q kills RHomy,, (Ayy, A,).
O

By Proposition 7.8, indecomposable objects in the localized category
Tilt(Mg, )o = Tilt(Mg, ) @xw Q are of the form A, where (A, x) € Iy
(these are objects in the localized tilting category because they are di-
rect summands of Ty, after localization). On the other hand, for the
base-changed Hecke category Tilt(Hg)o := Tilt(Hg)@qw Q, the assign-
ment w ﬁw (now A, is a direct summand of T,, after base change
to Q) gives a monoidal functor from W (viewed as a category with
objects W and only identity morphisms) to Tilt(Hg)o. In particular,
the Tilt(Hq)o-action on Tilt(Mg, )o induces a right W action on the
set of isomorphisms classes of indecomposable objects in Tilt(Meg, )o,

and hence induces a right action of W on Ij.

Lemma 7.9. Assume that Gy is quasi-split. The action of W on INO
defined above is the same as the restriction of the cross action. In
other words, in Mg, o we have an isomorphism Ay, x Ay = Apy )

for (A\,x) € Iy and w € W.

Proof. When Gy is quasi-split and A\ € I, all simple roots in ®, are in
case (1) or (3) in Lemma 6.3. For (\,x) € Iy, by Lemma 6.3 we have
E,\%*ﬁs o ﬁ(,\x).s in Mg, o (the contribution of orbits y or u* become
zero after localization). Writing any w € W as a product of simple
reflections, we see that ﬁ,\,x * A, and ﬁ( Ax)w become isomorphic in

Me, 0. This implies the lemma. O

8. REAL SOERGEL FUNCTOR

In this section we assume that Gy is quasi-split. Let B be the Borel
defined over R and let A C T' C B be a maximally split with respect

to o torus inside a o-fixed torus. Note that Wg acts on A.
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8.1. Regular covector. Let N* C g* be the nilcone. Also we have a
decomposition g* = gp @ igp. Let

(8.1) iNg == N"Nigg.
Let Oeg C N* be the regular nilpotent orbit.

Lemma 8.2. (1) We have iN;NO,e, if and only if Gy is quasi-split.
(2) Suppose & € iNy N Oyeq, then the Springer fiber B¢ is a single
point, and is contained in the closed Ggr-orbit of X.

Proof. Suppose £ € iNg N O,e, then the Springer fiber B, C X is a
single point, hence a real point of the flag variety X since & is pure
imaginary. In particular, the point B¢ gives a Borel subgroup of G
defined over R. Since the closed Ggr—-orbit in X parametrizes Borel
subgroups that are defined over R, B, is contained in the closed Gg-
orbit of X.

Conversely, assume G is quasi-split and Bg C G is a Borel sub-
group defined over R. Let ng be the nilpotent radical of LieBg. Then a
generic element £ € ing (i.e., its projection to each simple root space is
nonzero), viewed as an element in igj using the Killing form, is regular.

4

8.3. Generic vanishing cycles. In the rest of the section we assume
G is quasi-split. In this case, the closed G orbit Oﬂfo C X is the set
of real points of X. N

Consider the moment map of X = G/UT">" for the left action of G:

(8.2) p:T*X — g*.

For T¢-monodromic sheaves & € D°(X)pc_men, its singular support

SS(F) is contained in the image of the pullback T*X xx X — T*X,
which is equal to ,u:l(N*) (here N* is the nilcone in g*). On the other

hand, if ¥ € DY (X), then SS(F) C ™' (igy) (note ). Let
(8.3) Ap = p 1(iNE) € T*X.

Then the above discussion shows that for F € DbGR()N( )Te—mons
SS(F) C Ap. Also, since Gg x T¢ has finitely many orbits on X,
Ag is the union of conormals of the orbits {OF}:

(8.4) Ap = JT5X.

Let £ € iNR N O, and let
(8.5) == p N (¢) c T*X.



Then by Lemma 8.2, the Springer fiber B, is a single point = contained
in the closed Gg-orbit OF C X that is a real form of X. Hence
projection to X is an isomorphism = = 771(z) C X (a single T°-
orbit). Moreover, = C T (i)ﬂf X but is disjoint from the conormals of
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For a manifold M and a submanifold N C M, and F € D*(M), we
use unF € DY(T3 M) to denote the microlocalization of F along N.
See [15, Definition 4.3.1].

For & S DZ’G]R (X)Te—mon, denote the microlocalization
1oy, (F) € Db(T(i)]IE X)re—mon along OX  simply by g s); it is

0

locally constant on the generic part of TgR . Restricting to = gives a

A0
functor

(8.6)
DYy (X) 1 mon —% DT X)re—mon = D*(E)re—mon = D*(1(@)) 72 mon
0

Passing to completions, we get a functor
(8.7) Vie : Ma, = DY (X)7e—mon = D*(Z)7¢_mon
4

If we choose a point # € 7 (z) and let & = (7,€) € Z, the
base point ¢ trivializes = as a T“torsor, and gives an equivalence
D*(Z)re_mon = D’(mod-R). Then Vg ¢ induces a functor

(8.8) Vig: Mg, — D’(mod-R)

that depends on the choice of E € T*X over the regular &.
When ¢ is fixed, we also write the functor as V.

Proposition 8.4. Let (), y) € I.

(1) Vr(Vay) is concentrated in degree 0
(2) Vgr(Ay,) is concentrated in degree ny, — ny.

Proof. (1) We argue by induction on d) = dimg OF. If A = Ay cor-
responds to the closed orbit, then Vg(V, ) is the stalk of £, along
X, (up to a shift), and it is normalized to be in degree 0. Otherwise,
choose a point z € OF (corresponding to a Borel ) such that B con-
tains a o-stable maximal torus 7', and we can talk about the based
root system ®(G,T) with positive roots defined by B. Since O is

4There is an action of Cg,(£) on Og¢. This gives lifts Vg ¢ to take values in

D% (T°)pe—_mon, Where Z§ is the image of Zr = Z(Gr) — T°. Hence there is a

decomposition of this enhanced Vg ¢ according to characters of mo(Zg) = mo(Zr).
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not closed, there is a simple root a € ®(G,T) and p < A, such that
7o (OF) = WQ(OE) for the projection 7,: X — X, = G/P,. Since O}
is not closed, we have the following cases according to Lemma 6.8:

e o is complex and oo < 0. In this case, we have py — p, = 1,
and an exact triangle 77V, — Vi — V4 — for some
¥ mo(T5) — k*.

e «vis noncompact imaginary and w7, (0X) = OYUO};. We have
Px = Py, and an exact triangle 7m0V, = Vay = Vg —
for some ¢ : mo(T;) — k*.

e « is noncompact imaginary and 7 ', (O}) = OX U OF U Oy,
with ¢ < XA and g < X. Then p\ = py = p,, and we have an
exact triangle 7m0V = Vay @ Vv — V, — for some
X' mo(Ty) — k> and ¥ mo(T5) — k*.

We have Vg(7%(3)) = 0 for any § € D2 (X,), as the covector
¢ does not lie in the image of the pullback of cotangent bundles
dry @ (T*X,) xx, X — T*X. From the exact triangles above we
see that Vg(Vy,) is a direct summand of Vg(V, ). Since d, < dy, by
inductive hypothesis Vg(V, ) is concentrated in degree 0, therefore
the same is true for Vg(Vy ).

(2) The argument is similar to the costandard case. In the induction
step, we have the following cases

e o is complex and oo < 0. In this case, we have py —p, = 1, and
an exact triangle A, , — Ay, — W;ﬂa!AM —. We conclude
that Vr(Ay ) = Vr(A, ). Note that n, = n, in this case.

e o is noncompact imaginary and 7 17, (OY) = OE\RUOE. We have
P = pu, and an exact triangle Ay, — T TwAy, — ALy —.
We conclude that Vg(Ay,) = Vg(A,,)[—1]. Note that
n, —ny = 1 in this case.

e « is noncompact imaginary and 7', (Oy) = OX U O3 U Oy,
with ¢ < A and ¢ < X. Then py = py = p,, and we have
an exact triangle Ay, & Ay v — ToTalry — ALy —. We
conclude that Vg (A, ) is a summand of Vg(A, ,)[—1]. Again
n, —ny = 1 in this case.

O

Corollary 8.5. For any free-monodromic tilting sheaf T € Tilt(Mg, ),
Vr(T) is concentrated in degree 0.

8.6. Soergel functor for the Hecke category. Consider the Hecke
category Hg = D%(X X X)7esre_mon- The construction of the Soergel
functor can be applied to the complex group G viewed as a real group

Rc/rG and giving a Soergel functor for Hg. We spell this out.
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Consider the doubled moment map (% : T*X xT*X — g dg*. Let
A~(N*) C A~ (g*) C g* @ g* be the anti-diagonally embedded nilcone.
Let

(8.9) A= BT AT(N).

It is well-known that

(8.10) A= Ts, (X°).
weW

Let € € NN O and consider ({,—§) € A~ (N*). Let
= pH(=£) and consider

(8.11) PPN =€, 6) =2 x 2 c T*(X?).
Since the Springer fiber B¢ is a single point z € X, p®1(=¢£,¢)
projects isomorphically onto 771(x)? C X?, which is a T x T°-torsor.
In particular, 2~ X = is contained in the conormal bundle of X? C X?
and not in the closure of the conormals of X2 for e # w € W (i.e., it
is contained in the generic part of the T%,(X?)).

For X € Hg, its microlocalization along X 2 is locally constant on
the generic part of ¢, (X?) and T x T-unipotently monodromic. Re-
stricting to =~ x = gives a functor
(8.12) Vi_ee) : Ha = DY(E™ X E)rexre mon

If we choose 7 € = '(z) hence € = (7,§) € = and
—€ = (7,-€) € =7, we can then identify D*(Z~ X Z)pexre_mon With
DP(T X T¢)pexre—mon = D?(mod-R® R). Then V(_¢ ¢ induces a func-
tor
(8.13) 'V
5

(&8 Ha — ﬁb(TC X T)resre —mon = Db(mod_jz ® R).

It will be more convenient to turn right R ® R-modules into R-
bimodules. Let ¢ : R — R be the involution given by the inversion
on 71 (7). We consider the equivalence

(8.14) 7 :mod-R ® R = R-mod-R

SThere is a natural map Cq(£) — T — T¢ by noting Cg(£) C YB (the Borel
corresponding to y). Then V(fg’g) lifts to ﬁé‘c(&) (T° X T)rexre—mon. Note
Cg(€) — T° has contractible kernel and image is Z¢ = Im(Zg — T°). There-
fore V(,g,g) lifts to DbA(ZC)(TC X T)pex e _mon- A priori this allows us to refine V
to a sum of functors indexed by characters of mo(Z¢). However, only the functor
corresponding to the trivial character is nonzero, as one can check on the monoidal

unit.
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given by sending M € mod-R ® R to the same underlying vector space
M equipped with the left and right actions of R defined by

(8.15) riomerg=m- (t(r)) ®ry), ri,re € R,m € M.
Composing (8.13) with the equivalence (8.14), we get a functor
(8.16) _Vz: Hg = D°(R-mod-R).

When ¢ is understood from the context we simply denote 7£~V£~ by V.
Recall in [9, §4.5] (in the (-adic setting), a similar functor V was
defined using the action of Hg on a certain Whittaker category. A
topological analogue has been constructed in |7, §11.1].
We summarize the main properties of V in the following proposition.
Most of the assertions are proved in the literature with an a priori
different definition of V.

Proposition 8.7. (1) Let P, € 5{2 % be a projective cover of the
constant sheaf on the preimage of A(X) € X x X in X x X.
Then V = RHom(P,, —).

(2) P, is isomorphic to the free-monodromic indecomposable tilt-
ing sheaf T,, with full support.  Therefore the functor
V = RHom(Ty,, —)-

(3) We have an isomorphism of R-bimodules
Endy,(Twy) = R Qzw R In particular, if we let
(R-mod-R)gw be the category of R-bimodules where the
actions of R" through the left and right copies of R coincide,
then V takes values in D°((R-mod-R)gw ).

(4) V is fully faithful on free-monodromic tilting sheaves.

(5) For T € Tilt(H¢), V(T') is a Soergel bimodule. Therefore V|
(shorthand for the restriction of V to Tilt(Hq)) upgrades to a
monoidal functor

(8.17) V# . Tilt(He) — SBim.

Proof. (1) (this uses the U\G/U model). We only need to check that
V(IC,) = 0 for w # e and V(IC,) = k. If w # e, then IC,, when
viewed as an object in D°(B\G/B), is pulled back from a partial flag
variety GG/ P;, hence the generic vanishing cycle along the closed orbit
vanishes. The isomorphism V(IC,) 2 k is clear since IC, is supported
on the closed orbit. U

63—(2 denotes the heart of the t-structure defined by p for the complex group,
which is essentially the middle perversity.
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Proposition 8.8. The functor V carries a canonical monoidal struc-
ture with respect to the convolution product on Hq and the tensor

product (—) ®@% (—) on D’(R-mod-R).

Proof. First we construct a functorial isomorphism

(8.18) cxxcr: V(K xK') =2 V(K) @F V(X)
for K, X" € Hg. Recall X x XK' = pryg,(pri, K @ prz; K').  Let
5 = pripX @ pry K. Let Ay = priz (X2) C X3 Let

T3 TilS(X3) — T)*?Q()?Q) be the natural projection. By Proposi-
tion 8.11(1), we have

(8.19) 7T13*(M5139) = M2 Prisy g.

Recall that A C T*()z %) is the union of conormals of )A(:i Now observe
that SS(9) C (A x 0g) + (05 x A) (here we apply [15, Proposition
5.4.14(i)|, using that (Ax05)N (0% xA) is contained in the zero section).
This implies that 713 (£~ X ) NSS(G) CE™ X 014 X EC Ti(X?’),
where A C X3 is the preimage of the small diagonal A(X) — X3.
Therefore

(8.20)

13,24 (15 (9)2-x0, -1, x2) = (Hg2 Priz. §)lz-xz = V(—g ) (K + K').
Here mi3= : 27 X Op-1(;) X 2 — E7 X E is the projection.

Let da3 : X? < X* be the diagonal embedding of the middle two
factors. Then G = 65,(K X K'). Note 653 (X2 x X2) = A and dy3 is
transversal to X? x X?2. There is a canonical embedding induced from
d23 (which is a pullback of vector bundles)

(8.21) 0%y TL(X®) — T

X2x X2

(X*)

By Proposition 8.11(2), we have

(8.22) 553(#;?;%% X /ﬁ)?ggc,) = 552#}?ng3 (KRX') = pz(9).
Restricting both sides to =7 X 0;-1(,) X = we get

(&%(V(,&g) () WV(_e)(X) = 553,5(#5(3%’5*@ X M;}gjcl|5_xg)

~

(8.24) — M5(9)|E*x0ﬂ,1(z)><5'

—__
—

where 55375 P27 X Op-1(p) X 2= E7 X E X 27 x E is the restriction of
83,. Combined with (8.20) we get a canonical isomorphism

(8.25) Vicee) (K +K') 2 3205 2(Vice e (K) BV (e 6 (K)).
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Identifying -, = and 7~ (z) with T¢ using the base points +¢ and
T, (8.25) becomes

(8.26) \%

(—£.8) (K *K') = pr13*5§3(v(_§,§) (K) X V&g (X))
where 853 : (T°) < (T°* is the diagonal embedding of the
middle factors and prj; : (7€) — (T°)? the projection. If we
write M =V _z5(X) and M’ = V(_g@(ﬂc) viewed as objects in
D’(mod-R®R), then the right side of (8.26) becomes (M @ M') ®%, k,
where the notation ®% k means ®gk taken using the R-action on
M ® M’ given by (m,m’) -r = (m,m') - (1 ® §(r) ® 1), where
0: R — R® R is the comultiplication induced by the diagonal map
m(T¢) — m(T°) x 1 (T°). Finally note canonical isomorphism of right
R @ R-modules (recall 7 from (8.14))

(8.27) (Mo M) %, k= May M.
which induces a canonical isomorphism of right R-bimodules
(8.28) (M@ M) @5, k) =M egTM.

Plugging into (8.26) we get the desired isomorphism cx 4. We omit
the verification that cx g satisfies the axioms of a monoidal structure
on Hg. ]

8.9. Module structure on Vi. We now establish the relation be-
tween V, Vg and the x-action.

Choose £ € iNg N Oyeq, and let z € Oﬂfo be the unique point in the
Springer fiber B¢. Choose alifting 7 € 7~ *(z) and let E: (z,€) € T*X.
We use € to define the functor Vg := Vi as in (8.8). On the other
hand, we use (—¢,€) € T*(X?) to defined the functor V := ¢Vzasin
(8.16).

Proposition 8.10. Under the above notations, the functor Vg in-
tertwines the right Hg-action on Mg, by * and the right action of
D*(R @ R-mod) on D’(R-mod) given by (M,N) — M ®% N (for
M € Db(mod-R) and N € D’(R-mod-R)).

Proof. We first construct a natural isomorphism
(8.29) agx : Ve(F) @F V(K) — Ve (F* X).
for F € Mg, and X € He.
Let § = priF @ KX € DY(X x X)rexre—mon-  We know that
SS(F) C Ag (hence SS(pr;F) C Ap x 05 C T*(X?)), and SS(K) C A.

One checks that (Ag x05)NA is contained in the zero section of T* (X2).
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By [15, Proposition 5.4.14(i)], SS(G) = SS(pr; F ® K) is contained in

the pointwise addition A’ := (Ag x 05) + A C T+*(X?). The cone A’

consists of ((T1,v—w), (T, w)) € T*(X)? (where 71, 7, € X with image

11,79 € X, v,w € g*) such that w € *1b+ N*2b+ and v € iNj N *1bt.
By definition, Vg(F + K) is the restriction of the microlocalization

re (Pro, G) to 2 = p=1(€) C Tg§ X. By Proposition 8.11(1), we con-

0
sider

(8.30) T

X><6§0

2

(X2) <= 05 x Ty (X) T (K)

0%,
Let my= : 05 X Z — = be the second projection, then we have
(8:31)  Vee(F*X) = (ma(pg oy )z = mz(hzxog Glogxz):
Now SS(G) € A’. We claim that

(8.32) = :=NnN(0g x Z) = {(71,0), (72,8))|71,72 € 7' (2)}.

Indeed, a point in A’ takes the form ((z1,v — w), (T2, w)). Intersecting
with 05 x E means imposing w = § and v = w, which also forces
T, = Ty = x since w = £ € 1o+ N*2b. The projection to X? gives an
isomorphism =’ = 7= 1(z)2.

Now (/LXX@EOS)]O)}@ is supported in Z'. Let AT C X? be the preim-

age of the diagonal A(OY ) C X* under the projection 72 : X2 X2,
By (8.32) we have =" C T, (X?). Therefore
Ao

(8.33) (1555 e = (13 9)l=
0 0
and (8.31) gives an isomorphism
(8.34) Vas(T %) = proc (g 9)l=)
where pry = : = — = is the projection.
To compute (ugﬂi §)|z;, we consider the diagonal embedding
0

512 : )’52 — )’53 given by (51,52) — (51,51,%2). Then G = 5;2(?& J{)
We have 675 (OF x X2) = A} C X2, and 0y, is transversal with respect

to fOVH/\QO X )?62 We have a canonical map induced by d;5 (which is an
isomorphism on conormal fibers):

* oy O *
(8.35) T3, (89 2 75

R o Y2
O)\0><Xe

(X?)
By Proposition 8.11(2), we have a canonical isomorphism

(8.36) 012 (3o B poK) = O 2 (FBIK) = pzs
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Recall == =
b =

Olpg = &=

to Z' we get

(8.37) 0122 (130 F) = B (5 K) 2-x2) = (zg 9=

p(=€). Then 6%(Z) = (2 x5 E7) x Z, and let
X 7 x = be the induced embedding. Restricting (8.36)

Combined with (8.34) we get a canonical isomorphism in ﬁb(E)Tc_mon
(8.38) Vire(F*XK) = pryz, 0t = (12, F)|z B (Hz2%K)|z-x=)
(8.39) = pryz, 0t = (Ve (F) BV (e g (K)).

If we identify = and =~ with 7° using the liftings £ = (z,§) € =
and —€ = (Z,—¢) € =, then 6%, becomes the diagonal embedding
512 :TexTe — T°xT°xT* into the first two factors, and Pry = becomes
the second projection pry : T¢ X T — T°. Then (8.38) becomes a
canonical isomorphism in D*(T¢)7e_mon = D?(mod-R)

(8.40) '

VR,E(‘?*IK) = Pry.Oiy (VR{(?)@V(_gg) (X)) = prg*(PTTVR,g(?)‘@V(_gg) (X))

Let M = Vg (F) € D*(mod-R), N € Vi eyXK) € Db(mod-R @ R),
hecne TN = _Vi(X) € D°(R-mod-R) (see (8.14) for 7). Then
pry, (PriM @ N') = (M @ N') ®%,, k where ®% k means the functor
®%k taken using the following right R-module structure on M ® N':
(m®n')-r = (m®n)-i(r), where § : R — R®R is the comultiplication
induced by the diagonal map m1(7°) — m(7°) x 7, (7). Here we are
using the fact that the pushforward 7° — pt of monodromic sheaves
corresponds to the functor (=) ®% k : D’(mod-R) — D’(mod-k). It is
easy to see there is a canonical isomorphism of right R-modules (using
the second R-action on N and the right R-action on 7N)

(8.41) (M®N)k k=M% N.

Therefore the right side of (8.40) is canonically isomorphic to
M @% TN = Vg () Q% _§V(X) as a right R-module. This completes
the construction of ag .

One needs to check that ag « is compatible with the monoidal struc-
ture on V constructed in Proposition 8.8. The argument is similar and
we omit it.

O

We record here the functoriality properties of microlocalization from

[15] that we used in the above proof. Let f : Y — X be a map of
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manifolds, M C X a closed submanifold and N = f~!(M). Then
there is a natural correspondence between the conormals

b
(8.42) ToY <N s (T5,X) LT, X

We have the microlocalization functors s : D*(X) — D®(T;,X) and
pn : DY) — DY(T%Y).
Proposition 8.11. Assume that f is transversal to M (i.e. dfy above
is an isomorphism).
(1) (|15, Proposition 4.3.4]) Let § € D®(Y) and suppose that
flsupp(g) 1s proper, then there is a canonical isomorphism

(8.43) pr(£.9) = fleudfiun(9).

(2) (|15, Proposition 4.3.5]) Let F € D*(X). Then there is a canon-
ical isomorphism

(8.44) Afna [ 10 (F) S pun (FF).
9. STRUCTURE THEOREM FOR REAL TILTING SHEAVES

9.1. The algebras A and A,. We choose £ € iN3N Oy and € € T*X
over ¢, and define the functor Vg = Vre

We put A := End(Vg|Ti) for the endomorphism ring of the functor
Vg|Tie (shorthand for the restriction of Vg to Tilt(Mg,)). For an
element a € A and a tilting sheaf T we put ay € End(V(T)) for the
action of a on Vg(7T). Then Vg upgrades to an exact functor

(9.1) V4 Tilt(Mg, ) — A-mod.
The goal of the rest of the section is to prove the following theorem.

Theorem 9.2. The functor Vf‘R is fully faithful.

—

Recall R = Rpe := k[m(T°)] is the group algebra of the fundamental
group of T° completed at the augmentation ideal. The monodromy
action along the fibers of 7 induces a ring map

(9.2) xR — Z(A)

to the center of A.

Let Ay C A be the subalgebra of endomorphisms of Vg|ry, com-
muting with the Hecke action. More precisely, a € Aq if for any
T € Tilt(Mg,) and T € Tilt(Hg), the endomorphism ag,q of
Vr(T*T") =2 Vr(T) @z V(T') is equal to ag @ idy(g).

Lemma 9.3. (1) The image of R" under the map g lies in A,.
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(2) Recall the big tilting object T, € Tilt(Hs). Let a € A. Then
a € Ay if and only if for any T € Tilt(Mg,), the endomorphism
747,y OF VR(T*T ) = VR(T) @2V (T, ) is equal to ag@idy(g,, )-

Proof. (1) Let b € R and a = ¢x(b) € Z(A). Let T € Tilt(M¢,) and
T € Tilt(Hg). Then agg is induced from the action of b on T * T’
by right 7°-monodromy on J’. We know that the left and right mon-
odromy actions on T € Tilt(Hq) factor through R ®@qw R (as it is
so for V(T") (Proposition 8.7(3)) and V|ry is fully faithful (Proposi-
tion 8.7(4))). Therefore, if b € RV, then the right monodromy action
of b on T’ is the same as left monodromy, and the induced action on
T x J' is the same as the action of b on T by (right) 7°-monodromy.
Therefore, both ag,y and ag ® idy(gy on V(T xT") = Vi(T) @z V(T')
are given by the action of b € R" on the first factor Vg (7). This shows
a € .Ao.

(2) Suppose a € A satisfies agy, = ag @ idye,,) for all
T e Tilt(Mg,). Let T € Tilt(Hg), we want to show that
A7, = A3 & idv(g'/) as endomorphisms of VR(T* (I,) = VR((I> KRR V(‘.T/)
We have a canonical map

(9.3) ¢ : Hom(T,, T') @ V(Ty,) — V(T')

sending f ® v to the image of v € V(T,,) under the map
V(f) : V(Tu,) — V(T'). By Proposition 8.7(2), Hom(T,,,T") = V(T’)
and V(Ty,) = End(T,,). Take idy, € End(Ty,) = V(T,), we have
e(f ®idg, ) = f for any f € Hom(T,,,T") = V(T’). This shows that €
is surjective. The similarly defined map

ex : Hom (T, T) @ VR(T * Tyy) — Vr(T* T7)
can be identified with
€R idVR(g') . Hom(‘.TwO, (.T/) X VR((.T) KRR V((.Two) — V]R{CT) R V((I,),

hence is also surjective. By the definition of A, we have a commutative
diagram

(9.4) Hom(Tuy, T') @ V(T % Ty) —= Vr(T + T')

lid@a?ﬁwo lair*‘r’

Hom(To,, T') @ V(T * Ty ) —— V(T + T)
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Rewriting Vg(T x T,) as Vg(T) ®@x V(T,,) and Vg(T x T) as
Vr(T) @z V(T’), we similarly we have a commutative diagram

6®idV]R (T

(9.5)  Hom(Tuy, T) @ Vi(T) @x V(Tuy) — Vi (T) @g V(T
l 1d®as®id 6®idVR(T L ar®id
Hom (Toy, T) ® Vi (T) @5 V(T,) — Vi (T) @ V(T)

Now compare (9.4) and (9.5), the left vertical maps are equal in the
two diagrams by assumption. Since the horizontal maps are equal and
surjective, the right vertical maps are also equal in the two diagrams,
i.e., A7, = AF @ idV(‘J’/). ]

By Lemma 9.3, we have a ring homomorphism
(9.6) 0 : A Qgw R — A
where the image of R is central.
Proposition 9.4. The ring map ¢ is an isomorphism.

Proof. We construct a map in the other direction as follows. Let
wo € W be the longest element, and T,, € Tilt(Hs) be the in-
decomposable free-monodromic tilting object with full support. It
is known (Theorem 9.1 in [7|, Proposition 4.7.3 1) in [9]) that
V(Twy) = R ®@qw R. Consider the functor Ug : Tilt(Mg,) — R-mod-R
given by Ug(7) := Vg(T x T,,), with the two R-actions given by the
left and right monodromy actions on T,,,. Using Proposition 8.7(3)

(9.7) Ur(T) = Vr(T) @2 V(Tu,) = Vr(T) Qv R

with the first copy of R acting on Vg(7) and the second copy acting on
the second tensor factor R by multiplication. From (9.7) we see that
End(Ug) 2 A Q@zw R.

We have an action of A on Ug: for a € A and T € Tilt(Mg, ), a acts
on Ug(7) by ags,,- Lhis gives a ring map

(9.8) Y A — End(Ug) 2 A Qqw R.
Claim. The image of ' is contained in Ag @gqw R.

Proof of Claim. Using the characterization of Ay given in
Lemma 9.3(2), Ay ®xw R consists exactly of those b € End(Ug) such
that by,7,, = by ® idy(g,,). Therefore, to show ¢/ (a) € Ay @gw R for
a € A, we need to check for any T € Tilt(Mg, ),

(99) ag'*g'iuo*g'go = ag'*g'go X idV(T{uo) € End(VR(‘J'* (‘T;uo * (.TZ}O))
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Here, to distinguish two copies of Ty, we denote them by T, and Ty, .
Consider the map 3 : T, — T, T, such that V(3) is given by

(910) R Qgpw R = R Qgw R Qgw R
(9.11) a®b = a®1®b.
Then g induces idg x 3 : Tx T, — T T, x T, , hence a commutative
diagram
(9.12) V(T T ) — 0 o (Tx T, T )
l el L YTxT0*Tiho
V(T T ) — 0 o (T+ T, T )

Using the description of V(f3), we see that the above diagram can be
written as

(913) VR(‘.T) QW R d®16id VR<T) Qgw R Qpw R

a a
l ‘J’*‘J’{f,o l fr*irgjo*“f{,@o

Vi (T) @ R —2 Yo (T) @gw R @qw R

This ~ shows  that (9.9) holds  on  the  subspace
Ve(T) ® 1 ® R C Vg(T) @zw R @zw R = Ve(T x T, * T ).
Since both AT4Tt, 570 and agary, ® idw(%o) are linear with repsect
to the three R-actions on Vg(T % T, * T, ), we conclude that (9.9)
holds. 0

By the Claim, we have a map
(914) 1/1 A — Ay Kpw R.

Note that this map is R-linear. We check that ¢ and 1) are inverse
to each other. If a € Ay, then ¢¥p(a) acts on Ur(T) = V(T % Tyy,)
by ATST - Since a € Ay, ags7,, = 07 ® idv(g'wo), which implies
vola) =a®1 € Ay @gw R. By R-linearity, this implies ¢ = id.

On the other hand, to check ¢ = idy, it suffices to show that the
composition

(9.15) AL Aogw R A

is the identity, where m is the multiplication map. We have a
canonical map € : T,, — ¢ that induces the multiplication map

V(Twy) = R Qgw R — R = V(§). It induces a natural transforma-

tion of functors v : Ug — Vg (R-linear with respect to the second
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R-action on Ug). Under the isomorphism Ugr = Vi ®@qw R, 7 corre-
sponds to the multiplication map Vg ®qw R — Vgr. Therefore for any
b € End(Ur) = A ®gw R, we have a commutative diagram for any
T e Tilt(Mg,)

(9.16) Ur(T) ——= Vg(7)
lbv Lm(b)fr
Up(T) — Ve (7)

On the other hand, by the definition of A we have a commutative
diagram

(9.17) V(T 5 Tuy) — 979y (T)
l ATxTw lag‘

V(idge)
Ur(7) - Vr(7T)

Now taking b = 1//(a) in (9.16), it becomes the same diagram as (9.17),
from which we conclude that m(¢/(a)) = m(b) = a. This implies
m’ = idy hence o) = idy and finishes the proof. O

Now we define an action of Soergel bimodules SBim on A-mod as
follows: M € A-mod and N € SBim, the action of N on M is the tensor
product M ®x N. Now M ® N is naturally a Ag @qw R-module using
the Ag-action on M and the right R-action on N. Since Ag®qw R = A
by Proposition 9.4, we may view M ®¢ N as an A-module.

The following is an immediate consequence of Proposition 8.10, and
the action defined above.

Corollary 9.5. The functors V% in (9.1) and V* in (8.17) intertwine
the convolution action of Tilt(Hg) on Tilt(Mg,) and the action of
SBim on A-mod defined above.

The following is parallel to Proposition 6.6.

Lemma 9.6. Let B, = R ®3s R € SBim for each simple reflection
s € W. Then the action of By on A-mod is self-adjoint: there is an
isomorphism functorial in M, M, € A-mod

(918) HomA(Ml X Bs? M2) = HomA(Mla My ®@x Bs)

Proof. As in the proof of Proposition 6.6, it suffices to give unit and
counit maps u : R — B, ®¢ B, and B, ®x By, — R in SBim satisfying
identities analogous to (6.34). The maps u and c are given in the proof

of Proposition 6.6 because V(T;) = B,. O
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9.7. Real Soergel functor on localized categories. The real So-
ergel functor Vg is R-linear and so we can define

Vr Q= fKJZ Tﬂt(MGR) KRR fKJ — IIlOd—gCJ

. Its endomorphism algebra is isomorphic to A ®¢ K ; and we also get
the functor

V4 @x Ky Tilt (Mg, ) @2 Ky — A @z K-mod.
They enjoy the following properties.

Lemma 9.8. The equivalence of Proposition 7.7 intertwines the local-
ized real Soergel functors on both sides.

Proof. We put p D pr and [ D Ig for the relevant Lie algebras. Let
x € X be a point in the closed orbit and let a regular nilpotent
¢ € N Nigp be the generic conormal to the closed orbit at x inside
X. Since x lies in X, the corresponding Borel is contained in P and
& € NNp we conclude that £ is orthogonal to the nilpotent radical pp
of p and, thus, pr(§) lands in il};. Moreover, py () is regular inside il5.
Indeed, for a nonregular element ey € Ny, the elements in ey + np are
also not regular. By construction we can also match the fibers 7—!(z)
and 7' () together with the compact part of the stabilizers of x inside
G and L. We conclude that for a sheaf F we have an isomorphsim

(9.19) L) (AVGy 014 (F)) 22 1 pr 0 (F)

of free-monodromic local systems on 7.

0

Proposition 9.9. Let V; C V,,. Assume that the localized Soergel
functor Vﬁ% ®x K is fully faithful on Tilt(Mg, ) @2 K. Then Vﬁg Rz Ry
is fully faithful on Tilt(Mg,) @ R;.

Proof. By Proposition 6.7 and the assumption V; C V), the subcate-
gory Tilt(Mg, ) ®x K generates Tilt(Mg, ) ®x Ry under the localized
action (7.8). Therefore, by Proposition 6.6 it is sufficient to check that
the map

I%HOI“HMGJR ((.Tl, (IQ) KRp RJ — RHOIHA@)RRJ (VR(‘JH) KRR RJ, V]R (72) RR fRJ)

is an isomorphism for T, €  Tilt(Mg,) ®x K; and
T € Tilt(Meg,) @z w(K;), where w(K;) # K, is the localiza-
tion of V at the generic point of w(V;) # V;. As an R-module
RHomyy, (71, T2) is supported on V; Nw(V;) and, therefore, vanishes
after applying — ®x R;. Since Mg, ®x R; decomposes into the
direct sum, so does A ®5 R;. Since T; and T, belong to the different

summands of Mg, ®¢ Ry, the algebra A ®x R, acts on Vg(T;)
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and Vg(Ty) through different direct summands. It follows that
RHomg,x, (Vr(T1) @x Ry, VR(T2) ®% R;) = 0 and we are done. [

In the codimension 0 case recall that Rg = R @qw Q = H)\Elo Xy
and consider the localized functors

(920) VRVQ : Tﬂt(MGR>Q — Rg—mod
and
(9.21) V5 o : Tilt(Mg, )a — A ®zw Q-mod

We observe that
Lemma 9.10. For any (\, x) € TO, VI&Q(&)\’X) =~ K, as an Ro-module.

Proof. The statement is clear for A\ = Xg. For general A\ € I
we have (A, x) = (Ao,x') - w for some w € W. By Lemma 7.9,
V]R7Q(Z)\7x) = VR,Q(K,\M/ * ﬁw) is the translation under w of
V]I&Q(A)\O’X/) =~ X, which is K, as an Ro-module. d

We can now check the version of Theorem 9.2 for the localized cat-
egories.

Lemma 9.11. The functor Vg&g is fully-faithful.

Proof. We need to check that for J1, 5y € Mg, the map
(9.22)
I%I‘IOIHMG]R (3'1, ?2)®RW Q— RHomA(@ng(VR(ffl)@g{w Q, VR(?Q)@:RW Q)

is an isomorphism. Since the image of Tilt(Mg,) — Mg, ®x Q
generates Mg, ®x Q by taking direct summands (for &A,x is a di-
rect summand of T, after localization), it suffices to check the case
F1,Fy € Tilt(Mg,). By Proposition 6.7, Proposition 6.6 and Corol-
lary 9.5 we can reduce to the case where Fy is supported on X o (Preim-
age of the closed orbit), hence we may assume Fy = A Aostb-

Now instead of assuming J; is a free-monodromic tilting sheaf, by
Proposition 7.8 it suffices to treat the case F; = A Ay for some A € I.
If X # Ao, then the left side of (9.22) is zero by Proposition 7.8(2), and
the right side vanishes for the same reason: the action of R on Vg ()
and Vg(Fs) has support contained in Spec Ry N Spec 3_Q,\O, which has
dimension less than dim 8"®. If A = )\ then V(&) is just the stalk of
F; at a point in )Z',\O. If x = 4, then both sides of (9.22) are isomorphi-
cally equal to K. If x # ¢, then the left side is zero by Proposition 7.8.
By Lemma 9.10 we have Vg o(Ay, ) = Vro(Axw) = Ky,. Since
by Proposition 7.8 the objects &,\O’X and &,\Mb are two different sim-

ple objects of the semisimple category Tilt(Meg,)o we have an element
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a € A®qw Q acting on VRQ(E,\O,X) and VR,Q<£A07¢) by different ele-
ments of K. This implies that the right hand side also vanishes. The
statement now follows.

O

9.12. Proofs of Theorem 9.2. The following lemma will allow us to
transfer the results from the localised category to the original category.

Lemma 9.13. For a free-monodromic tilting object T € Tilt(Mg,),
the RW -action on Vg(T) factors through the quotient 8"* and Vg(T)
is torsion free as an §"*-module.

Proof. By Lemma 7.2, the action of R" on T factors through 8",
therefore so does its action on Vg (7).

_If £ is a free-monodromic local system supported on the closed orbit
Of, and extended by zero to X, then Vg(£) is the same as the stalk of

L along vaﬂfo, hence a free 8-module. Since 8 is torsion free over $"&,
Vg(L) is torsion free over 8=,

Now for any T’ € Tilt(H¢g), Vr(L * T') = V(L) @5 V(T’). Since
V(7") is a Soergel bimodule, it is free as a left R-module. Therefore,
Vr(L) ®5 V(T’) is again torsion free over 8"®. Finally, by Proposi-
tion 6.7 each free-monodromic tilting object is the direct summand
of one of £ x 7', the statement holds for all free-monodromic tilting
objects. O

We can now prove Theorem 9.2.

Proof of Theorem 9.2. Once again by Proposition 6.7, Proposition 6.6
and Lemma 9.6 it is sufficient to check that Vg induces and isomor-
phism

HomMGR (71,72) = HomA(VR(Tl),VR(Tg))

for Ty supported on the preimage )},\0 of the closed orbit. Let

1 : Xy, = X be the inclusion. We may assume Ty = 6,\0% = Ay, for
some character y of mo(75 ).
By adjunction we have

Homag,, (T1, Vagn) = Homagg, (1:4°T1, Vi) = Homog, (12.(i*T1) ., Vag)-

Here (*T}), is the direct summand of 7*T; where mo(Ty,) acts by x.
We claim that the natural map

Homag,, (i (1" T1)x, Vagy) = Homa (Ve (i (7°T1)x ), Vi (Vagn)

is an isomorphism. Indeed, it suffices to replace i, (Z*Tl)x by V Aoy and

show End(%ko,x) = HomA(VR(6A07X)). Now the left side is 8. As Vg
66



is the stalk functor when restricted to local systems on X \os the right
side is End4(8) where 8 is viewed as an A-module via the R-algebra
homomorphism

(9.23) evy A — Ry, = 8.

given by the action of A on Vg(Vy,,) = 8. Since R — 8, ev, is
surjective, hence End4(8) = 8, which coincides with the left side.

We denote Vg(V M) DY 8y to emphasize that it is isomorphic to 8
as an R-module, and A acts on it via ev,. Therefore, it remains to
check that the map

(9.24) Hom (Vi (2.(i*T1)y ), 8y) — Homu (Ve (T1),8,)
induced by the unit map u : T; — LT — Z*(Z*TI)X is an isomor-
phism. The left side of (9.24) is

Homg (Vi (i, (1*T1)y ), 8)

since the action of A on Vg(i.(i*T7),) factors through 8 via ev,. The
right side of (9.24) can be identified with

Homg(VR(71) ®A,evx 87 8)

Therefore (9.24) comes from the map of 8-modules

P Vr(T1) Quev, 8 = V(i (¢ T1)y)

by taking the S-linear dual. Since 8 is regular, to show (9.24) is an
isomorphism, it suffices to show

(9.25) ker(p) is a torsion S-module;
(9.26) coker(p) has support of codimension > 2 in Spec8 = V).

To check (9.25), we localize Mg, at the generic point of
Vi, = SpecS C SpecR =V as in Section 7.7.2 and use Lemma 9.11.
We conclude that both ker(p) and coker(p) are torsion S-modules.

To check (9.26), we first observe that the cokernel of p is supported
on Uyer, (VAN Vy,) as an S-module, where

(927) I, = {)\ S ]|7’L)\ =Ny, — 1}

Indeed, let X € Mg, fit into the distinguished triangle
X — T — i.(i*T1)y, — K[1]. Then X is a successive extension of

Ay where (X, 1) # (Ao, x). Taking Vg, using that Vg(7T7) is concen-
trated in degree 0, we get an exact sequence

0 — H'Vg(X) = Vi(T1) = Ve(i.(*T1)y) = H'VR(X) — 0.
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We have coker(p) = H'Vg(X). As an R-module, the support of
H'Vg(X) is contained in the union of supports of H*Vg(A, ), which
is nonzero only when A € I; by Proposition 8.4 and supported on
Vy as an R-module. Therefore, suppy(H'Vg(X)) C Uxer, Va. Since
H'Vg(X) is also a quotient of Vi (7, (i*T)) which is supported on Vy,
as an R-module, we conclude that coker(p) = H'Vg(X) is supported
on Uyer, (VAN V) as an S-module.

Therefore, to show (9.26), it suffices to show that for any A € I; such
that V), C V),, letting n) be the generic point of V), C V,, and gm be
the completed local ring of § at n,, the map

(9.28) By = p@sidg, 1 VR(T1) @pev, Sy = VR(B(FT1)) @58,

is surjective. We start by verifying that p is surjective in case of G of
split rank 1.

Lemma 9.14. Let Gg be (adjoint) of split rank 1 then p is surjective.

Proof. We should go over the cases of Section 5.7. In the complex case
of Gg = PGLy(C) it is well known that the map is an isomorphism.

If Gg = PGLy(R) the functor Vg is equal to ker(Syiy + Ssgn) in
the notations of Section 5.7. We should consider the case T1 = T,.
Then we have i, (i5Th) = Toriv © Tosen- For x = triv,sgn we have
Vr(To,) = k[[z]] and Vg(Ty ) = ker(k[[z]] @ k[[z]] — k) and the map
p is induced by projection on one of the summands. We conclude that
it is indeed surjective.

Let Gg = PU(2,1). We may assume that OF is open. Short exact
sequences (5.17), (5.18), (5.19) after applying Vg yield long exact se-
quences of cohomology. For A = —| + — +| + + the statement then
follows form the vanishings H'Vg(A_, ) = H'Vg(A;;4) = 0. In
case of A = 4| + — we get the exact sequence:

HOVe(A 10 ® Agpy ) = H'WVg(A ) = H'Vx(X) — 0.

It is, therefore, sufficient to verify the surjectivity of the first map. Note
that H'Vg(A4 1) = k and, hence, we can verify the surjectivity of
the map

HOVr(Ay 10 © Agpy ) — H' V(A ),
i.e. after pushing forward to X. The latter map coincide with the
boundary homomorphism obtained by applying Vg to the standard fil-

tration of V4, which we know to be surjective as H'Vg(Vi ;) = 0.
O

Proposition 7.7, Lemma 9.8 and Proposition 9.9 allow to reduce the

local statement to the case of Levi subgroup L = L; with J defining
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Vi C Vy,. Such Levi is quasisplit of split rank 1, but is not necessary
adjoint. However, Lemma 7.4 holds, which will allow us further to
reduce the statement to Lemma 9.14.

Let Z C L be the center subgroup. We have the decomposition

MLR = @ ML[R,O.M

w: mo(Zgr)—k*

with respect to the characters of the group of real points of Z. Note
that if there exists a character §: Lg — k*, such that 0|z, = w, then
tensoring with the corresponding local system Ly on X L provides an
equivalence

- ® LH : ML]R,triv —>MLR,w

compatible with the real Soergel functor. In cases of L& = PU(2,1) or
LY = PGLy(C) such @ always exists.

If L% = PGLy(R) and such 6 does not exist we claim that the
sheaves in My, ,, are supported on the orbits with A € Iy and so these
summands are not relevant for our consideration. Taking into account
Lemma 7.4 we have G = (Z x SLy(C))/pa, where Z is a commuta-
tive group defined over R and the subgroup ps restricts to {£1} inside
SLy(C) and via some fixed map py — Z defined over R to the first
factor. Put L C Lg for the subgroup of elements preserving the hemi-
spheres H; and H_ on P!. The character w could not be extended to 6
if and only if it is nontrivial on the kernel of the map mo(Zgr) — mo(Lg).
Our block is supported on the closed orbit if and only if w is nontrivial
on the kernel of the map mo(Zg) — mo(Lg ) for a point x in the closed
orbit. But the kernel of both of them is exactly the image of s in Z.

It remains to treat the case My, iv. Fixing the trivial character of
mo(Zr) gives us the functor

~
ML%d — DLR (XLad)Tad,c,mon’triv.
There is also the functor

-®Ly

split

N
: ‘DL]R (XLad)T’ldvc—mon,triV — ML]R,triv

given by the external tensor product with the free monodromic local
system Lz . on the split part of the center Zy,;; C Z of L. By
Lemma 7.4 Lg-orbits on X, are in the bijection with L&-orbits on X,
i.e. I = I Moreover, the natural map Ied - T is surjective as for
each strata it induces in view of (5.1) the map dual to the injective map
7o(Tr) /m0(Zr) — mo(T2%). We conclude that the composition of the
two functors above sends indecomposable tiltings to indecomposable

tiltings and is surjective on this set. Since — ® Lz . pulls out of the
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real Soergel functor as — ®kk[7rjzs\pnt)] the surjectivity of p for Ly now
follows from the surjectivity of p for L&, which is given by Lemma 9.14.
This finishes the proof of (9.26), and completes the argument for

Theorem 9.2.
O

9.15. The algebras B and By. Let LSy, = {x : mo(T5,) — k*}, the
set of rank one Gg-equivariant local systems on the closed orbit OF
We have an action of W), on LS,, by the cross action. The group
W,, acts on LS,, via the cross action. It also acts on § compatibly
with the action of W on R. Define an action of W), on @XGLSAOS as
follows: for f € 8 put in summand ¥, denoted f,, w(fy) := (Wf)yw-
for w € Wy,. Let

(9.29) By=( P 8.
X€LSx,
By Lemma 2.14 and Lemma 2.15, with the choice of B € OF and a
o-stable maximal torus T' C B, we have an isomorphism

(9.30) W (Gr, T) = W,

By definition, By is an §W»-algebra. View it as an RW-algebra via
the natural map RW — §W». Define another algebra

Remark 9.16. The algebra B is related to the block variety of [§] in
the following way. The orbits of LSy, under the cross action of W,
are called blocks. This coincides with the notion of blocks for (g, K)-
modules with a fixed regular integral infinitesimal character, see [8,
Claim 2.2|. Then B defined above is the direct product of formal
completions of the block varieties B,,,, from [8, Remark 2.3] for all
blocks.

The action of A on Vg(£y, ) for x € LSy, gives a homomorphism
(9.32) acty, : A — @D Enda(Ve(Lyy) = €D 8.

XELS/\O XELS)\O
Here we use that Endg (Vg (L), )) = Endx(8) = 8.
Recall from Proposition 9.4 that we have A = Ay ®qw R, where the
subalgebra Ay C A is exactly the endomorphisms commuting with the
Hecke action.

Theorem 9.17. The map acty, restricts to an §W*o-algebra isomor-
phism Ay—=By. In particular, we have an isomorphism of R-algebras
A= B.
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Proof. By Proposition 6.7 the map acty, restricted to Ay is injective:
if a € Ay acts by zero on Vg(£y,,) for all x € LS,,, it will act by
zero on all Vg(Ly, , * Tyy) for all w € W, which contain Vg(T) ) as
a direct summand for all (A, v) € I , hence a = 0. In particular, Ag is
torsion-free as an $W*o-module.

Let us prove that acty, sends Aj to the W -invariants of @XELSAOS'
Since Aj is $Wro-torsion free, it suffices to show the statement after
tensoring with Q. In fact we will show that act), induces an isomor-
phism

(933) act,\o,g . .A(LQ = -AO ®RW Q — (@XELSAO Q)W/\O = BO,Q'
Consider the localized category Tilt(Mg, )q under the action of the
base-changed Hecke category Tilt(Hg)o. Then Ag := A®@.w, Q is the

endomorphism ring of the functor Vg : Tilt(MGR)Q — Rg-mod, and
Ap,o is the subalgebra of Aq commuting with the Hecke action. By
Lemma 9.10 we can compute Ag explicitly as

(9.34) A P K,

where the (A, x)-factor is the action of Aq on Vg o(Ay,) = K. By
Lemma 7.9, the part of A that commutes with the Hecke action cor-
responds to the W-invariants of the right side of (9.34) under the
cross action. Since W acts transitively on [y, we may rewrite the W-

invariants of the right side as (@XGLS)\OZK:>W>‘O = Bpo. This proves
(9.33). In particular, acty, restricts to a ring homomorphism
(935) actl)\o : ‘AO — BO

that is injective and becomes an isomorphism after tensoring with Q.
It remains to show that act) is surjective. Given a collection
b = (bX)XeLsAO € By, we would like to construct a € Ay that acts
on Vr(Ty,y) = Vr(Axx) by by. For x € LS,, and w € W, de-
fine an endomorphism a,,, of Vr(Ty,y * Tw) = Vr(Ty,y) @x V(Ty)
by by ® idy(g,). For any morphism ¢ : Ty, x Ty — Ty * Ty in
Tilt(Mg, ), we claim that the following diagram is commutative

Ax,w

(936) VR(T/\[),X * ‘J'w) —— VR(T/\O,X * ‘Tw)
jVR(W) LVR(W)
VR(‘T)\O,X’ * ‘Tw’) = VR(‘T)\O,X’ * ‘Tw’)

Indeed, after tensoring with Q the above diagram is commutative since

Ao.o = Bo,o. Since Vg(Ty, * Tyr) is torsion-free as an SWro-module
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by Lemma 9.13, the diagram is commutative. Let Tilt" C Tilt(Mg, ) be
the full subcategory whose objects are finite direct sums of Ty, , * Ty,
for various x € LS,, and w € W. By the commutativity of (9.36),
the collection {awa}XELSAO wew gives an endomorphism of Vg|ye. By
Proposition 6.7, all objects in Tilt(Mg,) are direct summands of ob-
jects in Tilt’, therefore the {a, .} defines an endomorphism of Vg,
i.e., an element a € A. By construction, a acts on Vg(7Ty, ) by by,
and a commutes with the Hecke action. Therefore a € A, satisfies
acty,(a) = b.

O

Combining Theorem 9.2 and Theorem 9.17, we get:

Corollary 9.18. Suppose G is adjoint and Gy is quasi-split. The
enhanced real Soergel functor gives a fully faithful embedding

(9.37) V2 Tilt(Mg, ) — B-mod.

9.19. Non-adjoint group case. Now let GG be a connected reductive
group over C with real form Gg. Let X, X be defined in terms of G.

Let G be the adjoint form of G, which carries a real form G
compatible with Gg. Let X “d,)};“d be defined as in Section 4.1 in
terms of G*. In particular, 7% : X% — X is a (T)°-torsor.

Put G} for the subgroup of G generated by Gy and the center of G.
We put éﬁgi for the preimage of G& under the projection G — G,
The quotient G24/Gl = G2/ Im(Gy) is finite abelian and we denote
by & the abelian group dual to G&/Im(Gg), so that

(9.38) G /Gr = G/ Im(GR) = &,
By definition we have an equivalence of categories
(9.39) (DL (X)e—mon)® =~ D%, (X)Te—mon-
R Gg

9.19.1. De-equivariantization. We recall the procedure of de-
equivariantization, as explained in [11, 21 and 22|. Let T be a
finite abelian group such that || is prime to ch(k). Assume k
contains enough roots of unity such that I'* = Hom(I',k*) has the
same cardinality as I Assume [' acts on a k-linear idempotent
complete category C. Let D = @€' be the category of I'-equivariant
objects in C: an object d € D is tuple (c,{c,},er) where X € C
and a, : v(c) = c are isomorphisms indexed by v € I' satisfying
a; =id, and a,,,, = @, 0 ¥1(a,,). Then there is an action of the dual
group I'* on D as follows: for x € I'" and d = (¢, {a,}) € D, define
x(d) = (¢,{al}) where o/ is a, multiplied by (x,7) € k*. Then we
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can recover C as the category of [™-equivariant objects in D. We
give the functors as follows. There is a functor avr : € — D sending
c to the object avp(c) = @.ery(c) with its obvious I'-equivariant
structure. Then avp(c) € D in fact carries a canonical I"*-equivariant
structure and hence lifts to an object avy(c)® € DI". The assignment
c — avp(c)f gives a functor € — DT, On the other hand, let
(d,{ay}yer-) € D, with d = (c,{ay},er) € D. The data of
«, means automorphisms 3, € Aut(c) that form a I™-action on ¢
compatible with {a,},er. In particular, we can extract the direct
summand ¢; = ¢!” C ¢ corresponding to the trivial character of
['*. The assignment (d,{a,}yer<) + ¢ gives a functor D" — C.
These two functors are inverse to each other and give an equivalence
cx=D.

Applying the above remarks to the I' := G*-action on
Bgﬁg (X )T _mon, We have an action of I'* = & on ﬁ%ﬁéd (X)Te_mon and a

canonical equivalence

(9.40) Dy (X)Te-mon > (ﬁgﬁd (X)e—mon)®.
__Pullback  along A)? - Xoad gives an  equivalence
Dbéﬂid (X)Tc—mon ~ Dgﬂ%d (Xad) (Ted)e—mon — MGD‘?) hence the lat-

ter also carries an action of &. Combining this equivalence with (9.40)
we get an equivalence

(9.41) DYy (X)7e—mon = MS

Ggd-
Let
(9.42) Tilt(Mey) € Dey, (X)1e-mon

be the full subcategory of free-monodromic tilting sheaves. Thus we
get an equivalence

(9.43) Tilt(Mey,) = Tilt(Mgga)®.
By Corollary 9.18, the enhanced real Soergel functor
(9.44) Vi Tilt(Mgea) — B*-mod

is fully-faithful. Here B = Bl @geaw R is the algebra B for the
group G&.

For a point z in the closed orbit we have a short exact sequence of
abelian groups

0 — mo(Stabim(gy) (%)) = mo(Stabgei(z)) — &* — 0.
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It follows that we have an action of & on the set of the lo-
cal systems on the closed G&-orbit on X%. This yields a &-
action on B such that the functor V& respects the & action on

Dbéﬂ%d()?)’j‘c_mon o~ Dbc,ﬁd(jzad)(Tad)c_mon and B @qw R — mod. As a

result we obtain a fully-faithful composition functor

~ ~ ~ ~ ~ ad
Vi Dy (X)7e—mon— (Dl X) e mmon)® — (B @ R — mod)°.
R
The following proposition relates Vi and the vanishing cycles func-
tors for the conormals to the closed Gg-orbit on X.

Proposition 9.20. The composition of Vg with the functor
(B @qw R — mod)® — (B*)® @quw R — mod is equivalent to the
sum of vanishing cycles functor for a collection of conormals to the
closed orbit, one towards each of the open Ggr-orbit.

Proof. Note that we have 7o(G%) = mo(Ng ), where Ni™? is the regular
elements of the real nilpotent cone. Its components correspond to the
generic conormals to the closed orbit. Those conormals are identified
under the action of Im(Gg) and, respectively, &* permute the classes.

On the resulting composition there is a G-action and, which we can
turn in &*-grading decomposing by characters of &. To define V&
we have fixed a choice of the conormal and with the G*-grading at
trivial character we have the vanishing cycle at the fixed conormal. We
conclude that the grading is the sum over generic conormals to the
closed orbit of the vanishing cycles functors.

O

10. KoszuL DUALITY

We can now reproof the main result of [8] (Theorem 1.1). To do this
we need to construct an explicit dg-model for category Mg, .

The following constructions and results make sense in the general
setting of Section 4.1.

Lemma 10.1. For 71,7, in Tilt(My x) we have Exti&x(‘.]],‘.]'g) =0.

Proof. Recall that T; has a standard flag and Ty has a costandard flag.
It suffices to check that Extfg{vx(A axo Vi) = 0 for any pair of stan-
dard and costandard object. If A\ # u the vanishing follows by adjunc-

tion. If A = p the vanishing follows by adjunction and Corollary 4.6.
O

Put

Te = P Ton

(Ax)el
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for the sum of all indecomposible free-monodromic tilting sheaves in
Mg x and let E = End(Tg)®. Also, put K°(Tilt(Mg,)) for the homo-
topy category of bounded complexes in Tilt(Mcg, ).

Proposition 10.2. (1) Let Proj(E-mod) be the category of
finitely generated projective E-modules. Then the functor
Hom(Tg, —) : Tilt(Mpgx) — Proj(E-mod) is an equivalence
of categories.

(2) The natural functor K°(Tilt(Mg x)) — My x is an equivalence
of triangulated categories.

(3) Combining (1) and (2), there is a canonical equivalence of tri-
angulated categories

(10.1) My x = Perf(E-mod) := K®(Proj(E-mod))

under which indecomposable free-monodromic tilting sheaves
correspond to indecomposable projective E-modules.

Proof. (1) The functor lands in projective E-modules because all ob-
jects in Tilt(Mpy x) are direct summands of Tg for some n. The left
adjoint of the functor is given by M +— T4 ®p M. One checks that
these functors are inverse to each other.

(2) Follows from Proposition 4.12 and Lemma 10.1 as in [3] 1.5 (see
also Proposition B.1.7 in [9]). O

We now return to X = G/B, X = G/UT>" and H = Gp. In this case
we now define the graded version of category Meg,. By Theorem 9.2
and Theorem 9.17 we have M = Endy(e)« (3o ,w®) (Vr(Tg)). We assign
the grading 2 to the generators of R and S§. There is a compatible
grading on Vg(Tg), which turns M into a graded algebra. We put
Mg, = Perf(M — grmod).

Remark 10.3. It would be interesting to define the grading on M with-
out appealing to Theorem 9.2 and Theorem 9.17 and in the more gen-
eral setting. It would be sufficient to define a compatible gradings on
the stalks and costalks of the tilting sheaves. We refer to [26] where
this approach were used in the case of B-action on X = G/B and
raise a question of whether there is a way to define the grading on M
explicitly.
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