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Abstract
Language acquisition by children and machines is remarkable. Yet while children learn
from hearing a relatively modest amount of language and by interacting with people and the
environment around them, neural language models require far more data and supervision,
struggle with generalizing to new domains and overwhelmingly learn from text alone. This
thesis explores how knowledge about child language acquisition – particularly the scale
and type of linguistic information children receive, how they use feedback, and how they
generalize in systematic ways beyond the language input they have been exposed to – can
be applied to multimodal language models. In particular, this work focuses on (1) training
language models with weak supervision using less data by grounding in vision and (2)
exploring the generalization abilities of models in multimodal domains. The first approach
trains a semantic parser to map from natural language to logical forms using captioned
videos, learning without parse trees or any other annotations. The second approach moves
from simply observing videos to a more dynamic setup using a robotic simulator and world
states to validate the generated logical forms. These approaches focus on evaluating weak
supervision, with training and inference data that are relatively similar; we lastly explore
evaluation where the inference data is quite different from training and requires systematic
generalizations. One approach tests the role of pretraining and a novel decoding strategy for
navigating in a grid world; inference commands and action sequences differ in systematic
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ways from training. The final approach tests the extent to which pretrained multimodal
Transformers models generalize when the demographics in the input images or text differ
from their learned social biases.

Thesis Supervisor: Boris Katz
Title: Principal Research Scientist
Computer Science & Artificial Intelligence Lab

3



This doctoral thesis has been examined by a Committee of the Department
of Electrical Engineering and Computer Science as follows:

Principal Research Scientist Boris Katz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thesis Supervisor

Department of Electrical Engineering and Computer Science

Research Scientist Andrei Barbu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thesis Supervisor

Department of Electrical Engineering and Computer Science

Professor Joshua Tenenbaum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thesis Committee

Department of Brain and Cognitive Sciences

Assistant Professor Jacob Andreas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thesis Committee

Department of Electrical Engineering and Computer Science



Acknowledgments

First, my committee – to Josh Tenenbaum and Jacob Andreas, I have deep respect for you

both as scientists and getting to have you on my committee means a lot to me. I can still

vividly remember my first time getting to interact with each of you in a smaller setting –

for Jacob, it was right after your CBMM talk when I hung back to introduce myself and

for Josh, it was at the Woods Hole summer course at one of the evening social sessions. In

both scenarios, I was definitely intimidated to start a conversation and yet in both scenarios,

you each were friendly and kind and made me so excited to just chat about science with

you. Thank you for contributing to my last chapter at MIT by serving on my committee.

To Boris, you are truly one of the kindest people I have ever met and having such a caring

advisor is an immeasurably important blessing during grad school. You allowed me explore

my interests, celebrated my successes and helped me to navigate through challenges. It’s

not an understatement to say that every time I meet someone who knows you, one of the

first things they say is how thoughtful and kind you are. I emphasize this because your

scientific contributions are evident; you also choose to demonstrate such a kind and caring

character and I’m very appreciative of that. For my final committee member Andrei, I could

likely write an entire section thanking you. I’m deeply grateful to the huge amount of time

and energy that you’ve invested in me and my growth as a researcher, from before I even

started grad school to the present day. From before I even started grad school to the present

day, you’ve been instrumental in my growth as a researcher. I can’t even count how many

evenings you stayed in Stata to help me debug, or to prep slides, or even just to brainstorm

about random topics (our office whiteboard reads like a very exciting NLP novel). I feel

confident that every person who has worked with you and with Boris would similarly attest

to the privilege of that experience.

In particular, a shoutout (with some duplicated names) to the people I’ve had the

pleasure of either sharing an office with over my time at MIT or just seeing each day in Stata

– Yevgeni Berzak, Andrei Barbu, Yen-Ling Kuo, Adam Yaari (and Mowgli of course!), Chris

Wang, Dylan Sleeper, Alvaro Morales, Matt Staib, Ignacio Cases, Battushig Myanganbayar

– and to those I’ve just generally engaged with either on a project or in Stata. You all have

5



been a wonderful bunch to work near. I’m a huge extrovert and pretty social and I’ve loved

having you all to talk to during our breaks. A bonus thanks to Adam for sharing your

Mowgli with us; my success at helping him learn English alongside his native Hebrew is

debatable, but I’d say the cuddles and endless treats he got from were definitely a success in

his eyes.

To the people in my field who aren’t represented in this thesis work formally but are

absolutely represented in my growth as a scientist and as a researcher – I’m deeply grateful

to have connected with three people in particular from whom I learned a lot of great skills.

To Michelle Vanni, who I got the opportunity to work with as a teenager; at the time, I was

a teenager a fresh six months out of from the Naval Academy, still learning how to be a

civilian. I don’t recall if I even knew what NLP stood for when I first arrived. Thank you for

welcoming me with open arms, for showing me your excitement about the field and igniting

that excitement in me as well. This really laid the foundation for what’s been a beautiful

time for me in the field. To Mark Yatskar, you were the first person I ever did a reserach

interview with and you were the first person I interned with in grad school. Thank you for

showing me kindness, for being knowledgeable and patient (I know I had a ton to learn)

and for your quintessential hoodie-over-the-head-while-indoors look that few others could

rock. Next, to Douwe Kiela, looking back I still remember how intimidated I felt coming

to FAIR as an intern and working with you. That intimidation I felt is funny in hindsight

because you’re a deeply caring person who I believe truly wants the people you work to feel

empowered. Thank you for projecting so much confidence onto me as a researcher; I’m

grateful for getting to chance to both work with you as a collaborator and connect with you

as a friend. I also got support from so many people who aren’t in my field but contributed

to my growth during my time at MIT. To Mandana Sassanfar, Gloria Anglón, Dean Staton,

Leslie Kolodziejski, Janet Fischer, Wes Harris, John Ross Campbell, Kat Howell – people

who I So to all of the wonderful researchers mentioned in the paragraphs above, thank you

for contributing to my career as a scientist and an extra hug to those of you I’ve grown to be

friends with as well. Being surrounded by people like you all makes the research experience

that much more special.

To the brotherhood of Chocolate City – I spent all but my first year of grad school

6



with the privilege serving as your graduate resident advisor. The thought of being a live-in

mentor for 30 undergrads felt intimidating before I started but you all welcomed me with

open arms. You all were a bonus family on campus and in many ways, you mentored me

just as much I mentored you. I’m also super grateful to MIT Gymnastics, ACME and the

Black Graduate Student Association as additional communities I got to connect with.

Next up, to my crew outside work! First, to my friends I met through MIT Summer

Research Program (MSRP), friends who I’ve become so close to. Lindsey Backman, Sheena

Vasquez and Chad Sauvola, what are the chances we’d meet as undergrads, attend the same

grad school and become so close though we came from such different walks of life. In more

detail: to Lindsey for being the friend that encourages all of the hilarity behind closed doors;

so glad we got to be roommate and GRAs in same building for so long. Your empanadas,

black beans and sangria are unforgettable and I look forward to being 80 years old and very

willingly waiting days for the meat to season because it’s well worth it. To Sheena, for

being the friend that channels the most caring vibes everywhere you go. You talk a lot about

people’s energy and I appreciate this for so many reasons; first, because it’s encouraged me

to reflect more on this as I meet people, and second, because it’s been a solid reminder to me

that you’re energy is unmatched and I’m so lucky to get to be around that energy every time

we hang out. To Chad for being my friend that will randomly walk around West Elm then

go get a beer then support me in buying a new duvet or randomly changing the layout of my

room; and for being the friend that I can call at 2am when I see a mouse in my apartment

(mostly just to drink wine while we avoid the mouse issue).

To Aubrey Dibello and Alex Berry, my best friends from high school and college

respectively; how lucky am I that, although we met hundreds of miles from Cambridge, we

lived only around a mile away from each other during my PhD. You two were both always

there any time I want to just vent, or celebrate exciting news, or just wanted to chat – or

when I needed my car started (thanks Aubs)! Aubrey, our running joke that we’ve known

each other since middle school and been friends since high school. I love that our journeys

have overlapped so much, from being 8 miles apart in college and then 1 mile apart in

grad school; our memories together go way back and there are some that still make me

laugh just thinking about them. Beyond just our memories, I really admire your deep deep

7



passions that have led you to some amazing accomplishments. I cannot wait to see you

MD-ing it up in New York; your patients will be lucky to have a doctor like you with so

much love in his heart. To Alex, my college best friend. I honestly am not even sure how to

encapsulate our ridiculous, playful, close friendship beginning from the Naval Academy

where we didn’t even get to use our first names to now, with both us in Cambridge pursing

PhDs at universities ten minutes apart.

To Ashley Hartwell, you’re a person I am so so grateful to have become so close to. It’s

almost funny to look back to our first time meeting each other at lunch in the BSU lounge

to being in the same grad orgs, to Martha’s Vineyard, randomly sitting in the parking lot

during the pandemic, and the many many memories to come, I’m so grateful to have become

friends with the funny, caring loving person that you are. Thank you for the wonderful

advice (you’re always one of the first people I call) and the hilarious laughs; and thank you

for being such a thoughtful and brilliant person and for being one of my close friends.

To Azin Saebi, for being so hilarious (my dad literally still talks about how funny

you are) while are being so thoughtful. Your impeccable fashion sense, awesome parties

(Canadian followed by Iranian trivia night, brunches, kickbacks, and so many others), you

have a bright and powerful energy. Here’s a shoutout to Beck for giving me one of my

besties! To Dominique Wright, for being the friend that brings friends together; you have

an indescribable way with people where folks really just gravitate toward you. From the

very first trip to San Diego where you called me and were like "yooo book a flight", to

LA, to Savannah, to driving from San Francisco to San Diego, to Vegas, to your visits to

Boston, to multiple Coachellas, I have so many wonderful memories with you. To Kelly

Holden, for being one of the most adventurous people I know. Not many people will just

decide they’re going on a trip and book a flight, or decide they want to change up their

career and start traveling, or decide to pet foster on a whim (yay for Feenie!) but these are

things that you do easily. It’s a real testament to your courage and how much you enjoy

new experiences. (Plus, you save babies for a living so that’s extra cool points). I’m also

so grateful this brought us so much time together in Boston. To the other people – Zach

Nelson, Dmitro Martynowych, Emily Toomey, Marie Shi Feng, Ari Anders, Leilani Gilpin,

Kenyon Williams – thank you all for the memories. To Zach in particular for making one of

8



my closest friends so happy. To Dmitro for the delicious eats (the unexpected homemade

pandemic bread was very exciting). And to Beck Holden, for being a constant for me for

over five years now. There’s so much I could say here as well, from our first time meeting in

my apartment during that snowstorm, to the many snow days binging Game of Thrones, to

our wildly fun whirlwind of a Christmas break where we went from Boston, to Kansas City,

to Vegas, to Tampa, to Orlando, to DC and back, to the number of days just laying around

ordering food and picking random horror or action films to watch, I could go on and on. I

truly believe the most beautiful relationships are those that lead to such fulfilment while

being so easy and natural; as I’ve said so many times so far and I’m sure will continue to

say, I am so so indescribably grateful for you.

Now to my loved ones’ loved ones; what a privilege I get to love on my friends’ families

too. To Jill and Anthony Berry, Alex’s parents, I always look forward to you coming to visit

Cambridge and thank you for inviting me to spend so much time spent on the Vineyard with

you. To Lindsey’s family, especially her parents Edie and Steve Backman, first thank you for

so kindly hosting me when I came to Tampa; The Columbia was delicious and just hanging

out downtown and getting to connect you was a beautiful evening. I’m grateful that extended

into many other wonderful memories with you (notably the return to The Columbia for the

big engagement!) And lastly to Beck’s family, Sandra, Mark and Kelly Holden, plus the

adorable pets Cane, Feenie and Timmy, I love how you’ve embraced me and welcomed me

in as a bonus family member. Raclette, salsa dancing, Poetry for Neanderthals, Just One,

Van Fulls of Nuns – just a small subset of the many wonderful things I attribute to you all. I

love having things that remind me of the people I care so much about.

Whew now to my own family! I’ve been blessed to have a huge extended family, with

16 aunts and uncles, 60+ first cousins, and countless other bonus cousins and loved ones.

This makes for an instant support network of people cheering you on and hyping you up-

thank you to you all for the endless love. In particular, big old hugs to my cousins Rickkia,

Shelby, Alton and Bria; you’re the ones closest in age and that I get to see and hang out with

the most. See y’all over the years between Disney World trips, huge family get-togethers for

birthdays, our upcoming reunion, it’s a privilege to have family events like this outside of

my daily grad school life. To Bette Lyn, Kenny, Ryan and Chris, for being a second family

9



to me growing up; I love you all so much. To my immediate family – my parents Cherise

and Ronald and siblings Camille and Ronald Jr. – I’m so blessed to have such a close, loving

and supportive group. I love how silly we are when we’re together, how we genuinely have

fun and enjoy each other’s company, and how, from my earliest memories, I’ve been raised

to believe I could achieve anything. I’m grateful to be more than just siblings with Camille

and Ronald Jr. but to also be friends. We enjoy being together, we joke together, I "borrow"

Camille’s clothes (thank again sis, I promise to return everything!). I could go on and on;

instead a quick few words with one of my favorite things about each of you. Dad, for your

confidence in the abilities of each of us, which pushes us to achieve so much; Mom, for

your kindness and empathy, where I always feel comfortable sharing literally anything with

you; Camille, for your drive and desire to be your best that encourages those are you to be

their best as well; and Ronald Jr., your deep passion about the things you care about (Sous

Chef in just one year?!) that leads you to achieve your dreams.passion and unique. Overall

just so much love for y’all. Growing up and thriving in this world as a Black woman can

be indescribably difficult at times. My family supported me in being outspoken, in being

confident and self-assured, in striving to have empathy and value treating others well. I

cannot imagine how different my grad school experience would have been had I not entered

with these traits baked into my being. So to my family, friends, mentors, to every person

I’ve mentioned explicitly and implicitly, this thesis is for you!

10



Contents

1 Introduction 14

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Research Contributions this Thesis . . . . . . . . . . . . . . . . . . . . . . 19

1.2.1 Weakly Supervised Semantic Parsing . . . . . . . . . . . . . . . . 19

1.2.2 Generalizations in Grounded Settings . . . . . . . . . . . . . . . . 20

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Semantic Parsing as a Model of Language Acquisition using Captioned Videos 24

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Rule-based & Fully Supervised Approaches . . . . . . . . . . . . . 28

2.2.2 Weakly Supervised Approaches . . . . . . . . . . . . . . . . . . . 29

2.3 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Semantic Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.2 Sentence Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

11



3 Learning a Semantic Parser using Temporal Logic for Robotic Planning 46

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Grammar-Generated Commands . . . . . . . . . . . . . . . . . . . 50

3.5.2 Human-Generated Commands . . . . . . . . . . . . . . . . . . . . 52

3.6 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6.1 Multitask Encoder-Decoder . . . . . . . . . . . . . . . . . . . . . 53

3.6.2 Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7.1 REINFORCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7.2 Iterative Maximum Likelihood (IML) . . . . . . . . . . . . . . . . 58

3.7.3 Reward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Learning Generalizable, Compositional Representations in a Grounded Set-

ting 67

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Notation and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.2 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Pretraining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Finetuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7.1 Setup & Model Details . . . . . . . . . . . . . . . . . . . . . . . . 77

12



4.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Measuring Social Bias in Multimodal Transformers 82

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Vision and Language Transformers . . . . . . . . . . . . . . . . . 85

5.2.2 Social Bias in Humans & Word and Image Embeddings . . . . . . 86

5.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 The Grounded WEAT/SEAT Dataset . . . . . . . . . . . . . . . . . . . . . 88

5.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Discussion 105

Bibliography 122

A Appendix 132

13



Chapter 1

Introduction

1.1 Motivation

Language acquisition is one of the most remarkable aspects of both human and machine

learning. Children learn their native language in just their first few years of life through

interacting with other speakers and perceiving the world around them. They learn without

needing a grammar book or a dictionary and without needing to be corrected when they

invariably make a linguistic error (Braine, 1971; Chouinard and Clark, 2003). In natural

language processing (NLP), neural language models also impressively acquire powerful

linguistic representations through simple training objectives paired with large-scale datasets.

Yet while children are robust and have near-universal success at learning their native tongue,

language models are brittle and sensitive to training data and hyper-parameters in ways that

child learners are not (Pierce, 1992; Rogers et al., 2020; Mosbach et al., 2021). Language

models require massive amounts of data (often billions of words) to learn important linguistic

concepts (Warstadt et al., 2020; Zhang et al., 2021b). And even with this scale of training

data, language models are often detached from perception and only see textual input despite

the importance of being grounded in other modalities (Harnad, 2007; Bisk et al., 2020; Lake

and Murphy, 2021). Given that children have effectively mastered this complex learning

problem, a natural question to ask is – should we incorporate more of what we know about

child language acquisition in NLP? While NLP and artificial intelligence in general are

not seeking to clone the human learning process, knowledge about how children learn can

14



motivate our work. This thesis considers three focal areas of language acquisition – the

type and scale input data, the means of receiving feedback, and the ability to systematically

generalize to unseen data – in our work on multimodal language models.

Focus 1: Linguistic & Extra-Linguistic Input

Children learn about 5-10 new words per day and hear around 3-11 million words per

year from just 15 months of age (Gleitman and Gleitman, 1992; Hart and Risley, 2003).

Language models are trained on orders of magnitude more data. BERT (Devlin et al.,

2019) and RoBERTa (Liu et al., 2019) for instance have 3 billion and 30 billion tokens

in their pretraining datasets, respectively. This number reaches around 130 billion tokens

for encoder-decoder models like T5 (Raffel et al., 2020) and continues to increase with

new language models being released. Recent work has shown that these large datasets

are in fact necessary with the current NLP architectures and learning frameworks for

acquiring linguistic generalizations that goes beyond surface-level semantic and syntactic

information. Zhang et al. (2021b) find that with 10-100 million words, which is in the range

of what children are exposed to during language acquisition, language models can learn

representations for syntactic and semantic features like parts of speech and semantic roles

but struggle to learn more commonsense or higher level linguistic knowledge. Other work

such as Liu et al. (2021) finds that this trend holds even when looking at the performance

across training (increasing number of iterations through the data) and across domains. Not

only is it the norm to train language models on huge datasets, it is a necessity at present to

learn the complex linguistic knowledge necessary for natural language understanding. In

Chapter 2 and Chapter 3, we therefore explore approaches that use fewer training examples

instead of large-scale datasets.

Extra-linguistic input plays perhaps as important a role as the linguistic input itself.

Harnad (2007) explains how our understanding of words and concepts requires perception

and cannot be grounded in text alone. Imageability, the ease with which a word can be

pictured, plays a key role in early word learning (McDonough et al., 2011). This partly

explains why nouns are easier for children to learn than verbs and why the more concrete or
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“groundable" nouns are learned before more abstract nouns (Gentner, 1982; Gillette et al.,

1999). The perceptual tie between what children see and what they hear also means there

are acquisition differences for blind children (Bigelow, 1987; Andersen et al., 1993) , again

demonstrating that visual perception does play a large role in language learning1. Language

models absolutely should be grounded and trained with perception (Bisk et al., 2020; Bender

and Koller, 2020; Tan and Bansal, 2020). Zhang et al. (2021b) even hypothesize that the

lack of grounding partially explains why language models trained with smaller training sets

perform poorly on commonsense tasks. While there are many vision and language models

(V&L) – VSE++ Faghri et al. (2017), ViLBERT (Lu et al., 2019), VILLA (Gan et al., 2020),

ViLT (Kim et al., 2021) to name just a few – these approaches rarely outperform language

models trained on text. (Yun et al., 2021) for instance directly compare representations

from language-only vs. vision and language and find that the V&L models do not produce

significant gains on linguistic tasks even though we know visual information makes a distinct

difference for children. Though we do not explicitly explore outperforming language models

trained only on text, all of the work in thesis focuses on visually grounded language models.

Focus 2: Feedback & Learning without Corrections

Beyond just differences in the linguistic and extra-linguistic information received, there

are also differences in how children receive corrections and update their beliefs about the

meaning and structure of the language they are hearing compared to how we train language

models. During child language acquisition, children interestingly do not appear to need

or even use negative feedback. This means that a child manages to learn that “Go to bed"

means it’s time for sleep and not time to play, that broke is grammatical while breaked is

not, and many other types of linguistic knowledge, all without being directly corrected by an

adult when they invariably make a mistake. Research has even found that children actually

tend to ignore linguistic corrections when received. This suggests there is not a practical

benefit of direct corrections for their model of learning language (Braine, 1971; Pinker,

1989).
1While acquisition patterns differ, the reader should note however blind children do converge learning their

native language (Landau et al., 2009).
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One theory that supports this finding is that children use indirect feedback to validate

their guesses about the language they are hearing and to correct errors in the language

they are generating. This indirect feedback is often nuanced, and children appear to take

a statistical approach to modeling their linguistic beliefs. For instance, adults sometime

respond to a child’s ungrammatical utterance by rewording it when responding (Chouinard

and Clark, 2003). This provides a cue to children that the language they produced may

have been erroneous. Regardless of what specifically is used as evidence, children do not

require direct feedback and ignore it when given. Indirect information – from other speakers

or from the environment – is one observed means of correcting a child’s understanding of

natural language.

NLP is largely in a pretrain-then-finetune framework, where pretraining uses self-

supervision and finetuning uses full supervision (requiring ground-truth, task-specific labels).

Full supervision gives the model access to input-output pairs for a given linguistic task –

e.g., commonsense questions and answers or sentences and parse trees – which is quite

different than the indirect supervision children receive. Full supervision is also expensive,

requiring gold labels for examples that are often gathered from human annotators. Adding

modalities like vision makes the process even more expensive, explaining in part why V&L

datasets tend to be much smaller than language-only datasets. Weak supervision, where

indirect information is used as a noisy signal, is much more similar to how children learn,

yet is not often used by large models and rarely if ever outperforms supervised methods. In

Chapters 2 and 3, in addition to exploring training with a smaller dataset, we also use weak

supervision where an executor provides feedback for a training example instead of using the

ground-truth answer.

Focus 3: Systematic Generalization & Seeing Beyond Input Data

Having explored the type and scale of linguistic input (the training data) and how feedback is

given and used (the level of supervision), the last area to discuss is systematic generalization.

We can think about successful systematic generalization where the representations learned

for words or concepts are reusable and abstract enough that they can be applied in novel
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settings. Children learn the word ball from a baseball, for instance, and can generalize the

concept to novel instances like a basketball, or a soccer ball, or a squeaky toy ball for a

pet. Beyond just word acquisition, children (and adults) must also perform higher-level

generalizations. One important societal instance is on the basis of demographics, where

social biases emerge when humans fail to systematically generalize concepts beyond the

racial or gender bounds they have seen. Even if every doctor a person has seen has a

been a man, and every reference they’ve heard spoken about doctors has referred to men,

that person still needs to be able to generalize the concept of a doctor to other genders.

Blair et al. (2001) show that humans are actually relatively good at generalizing beyond

implicit stereotypes; mental imagery – visually picturing evidence that counters a stereotype

– is enough to modulate biases. At course and fine-grained levels, children are able to

systemically generalize to novel data.

Language models tend to struggle at tasks that require systematic generalization.

Many benchmarks and datasets have been developed to explore this very failure in both

language and multimodal language models (Gershman and Tenenbaum, 2015; Lake et al.,

2017; Bastings et al., 2018; Kim and Linzen, 2020; Ruis et al., 2020). For instance, the

SCAN benchmarks that maps natural language commands to action sequences shows that

language models struggle to generalize when the commands seen at test time differ largely

and systematically from those seen during training (Lake and Baroni, 2018). The COGS

benchmark takes a similar approach, using semantic parse trees instead of actions sequences

and using more naturalist language (Kim and Linzen, 2020), again showing that language

models struggle during inference. This approach has been extended to multimodal models

as well, with the grounded SCAN (gSCAN) benchmark using a grid world and requiring an

agent to track its world state over time as well; similar to SCAN and COGS, the multimodal

models evaluated on gSCAN struggle to generalize during inference. The test time failures

are in spite of language models being trained with massive amounts of compute and linguistic

data. In Chapter 4, we explore ways to build upon and improve systematic generalization

in multimodal settings and in Chapter 5, we present metrics for measuring generalization

around demographics, specifically probing social biases in embeddings in multimodal

models. While we focus on vision and language models, these metrics for measuring biases
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can be applied to any model with two distinct modalities.

1.2 Research Contributions this Thesis

First in Chapters 2 and 3, we present two weakly supervised, visually grounded semantic

parsers that use small-scale training datasets and incorporate extra-linguistic information in

the learning process. These chapters contribute to the first and second focus points of using

using multimodal, small-scale data and learning without direct feedback. In Chapters 4

and 5, we explore multimodal models’ ability to generalize during inference from two

angles, which explores the third focal point of systematic generalization. Chapter 4 explores

whether flexible, grounded linguistic representations can be learning during pretraining that

can help better generalization. Chapter 5 presents metrics for evaluating generalization

failures of pretrained vision and language Transformers and exploring when they fail to

infer beyond their learned social biases. A detailed description of each approach is provided

below.

1.2.1 Weakly Supervised Semantic Parsing

Using Captioned Videos

First, we describe a weakly supervised semantic parser that is grounded in vision, learning

from real-world videos paired with English captions. This approach focuses on small-scale

training data that does not rely on ground-truth labels during training. The videos depict

agents carrying out a series of actions like picking things up, putting them down, passing

them to each other, etc; an example of a video from our dataset paired with a caption is

shown in Figure 1-1. The parser is trained to map these natural language captions to logical

forms, which are formulas representing the syntax and semantics of the sentence. These

logical forms are then executed in a visual system called a Sentence Tracker (Siddharth

et al., 2014; Yu et al., 2015) that computes the likelihood of the logical form being true

conditioned on the video. This likelihood is used as a supervision signal for the parser,

directly grounding the process of acquiring linguistic knowledge in vision. The model only
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has access to the likelihood computed by the tracker and does not use any other annotations

such as ground-truth formulas as supervision.

The woman walks by the table with a yellow cup.
λxyz.woman x,walk x, near x y, table y, hold x z, yellow z, cup z

Figure 1-1: An example from our dataset of video-sentence pairs. We show the target logical
form, though note that the model is trained without access to these ground truths.

Using a Robotic Executor

For the second approach, we extend the prior work by moving from observing the world

through videos to interacting with the world through a robotic simulator. This interactive

framework allows us to move from the relatively static language associated with videos to

more temporally constrained language. The parser is trained to map English sentences to

linear temporal logic (LTL) formulas over finite sequences. The generated LTL formulas

are then executed by a pretrained planner adapted from Kuo et al. (2020b); similar to the

sentence tracker described above, the output of the planner is used to supervise the parser.

These sentences represent complex temporal commands such as “Wash the apple before

bringing it to me" or “Go to the staircase avoiding the spill on the floor, or clean up the spill

first." An example from our dataset is shown in Figure 1-2.

1.2.2 Generalizations in Grounded Settings

We next move from exploring how to train models with less data in grounded settings

using semantic parsing as a framework to exploring how multimodal models systemically

generalize during inference. We consider two different angles. For the first angle, we

hypothesize that an encoder-decoder framework that focuses on learning strong, disentangled

representations during pretraining along with a shift in generating output during decoding
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grammar generated: Eventually, possess the pear and grab the apple and persist.
human annotation: Eventually, hold the apple and take the pear and do this repeatedly.

Figure 1-2: An example from our dataset used to train an LTL-based semantic parser. Each
command has three different corresponding environments, and each of these environments is
represented by an image above showing the initial state. The commands are shown in their
grammar-generated form and in the more linguistically diverse form generated by human
annotators on Amazon Mechanical Turk.

can lead to gains in generalization. We use the gSCAN benchmark (Ruis et al., 2020) for

this task, which pairs natural language commands and an agent in a grid world with target

action sequences.

To our knowledge, no prior work on gSCAN uses any form of pretraining to learn

reusable representations. We designed the pretraining objectives to be task-independent,

focusing on learning 1) robust visual representations of the grid world, 2) robust linguistic

representations for the commands, 3) a mapping between linguistic and visual concepts,

and 4) a general spatial and temporal understanding of the agent moving through the grid

world. Additionally, we present a new decoding strategy where, instead of predicting an

entire action sequence at once or predicting a single action at a time, the model first predicts

sub-sequences of tokens and then updates the world state after each predicted sub-sequence.

This process repeats until an end of sequence token is predicted. This approach balances the

model being able to plan out a trajectory of actions, as is done by the majority of approaches,

while also getting intermediate updates of the world state. It is also more efficient than

predicting a single token at a time, leading to much faster training.

Another component of generalization difficulties is that language models quickly

acquire biases and fail to recover from them in light of new data. We lastly investigate which
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kind of biases vision and language Transformers learn during their pretraining process. We

focus in particular on social biases, which are prejudices about groups of people on the

basis of demographic categories like race or gender. To examine this, we selected four

powerful pretrained models that differ architecturally and in their pretraining data. We adapt

the existing language-only bias metrics of the Word Embedding Association Test (WEAT)

(Caliskan et al., 2017) and the Sentence Encoder Association (SEAT) Test (May et al., 2019)

to a multimodal space to evaluate these approaches. With Grounded WEAT (GWEAT) and

Grounded SEAT (GSEAT), we ask three key questions. 1) Do multimodal embeddings from

pretrained vision and language Transformers contain social biases? This question seeks to

first establish whether embeddings from these pretrained architectures encode social bias

and if so, to what extent. 2) Does counterstereotypical visual evidence that goes against the

prejudice impact the encoded bias? This question seeks to answer what role is played by

evidence that goes against a particular stereotype. Humans are robust to changing their views

in light of new counterstereotypical evidence, so ideally we would see this in multimodal

models as well. 3) How much of the encoded bias comes from language input versus vision

input? This question seeks to answer how much of the bias measured by the first question

comes from the visual input versus the language input. It could be that language completely

dominates, or that the visual input is the strongest signal, or that both inputs contribute

relatively equally. Better understanding the contributions of each modality can be helpful

in deciding the best approaches to mitigating bias. We hope the metrics that answer these

questions can collectively help to improve our frameworks and reduce bias over time.

1.3 Thesis Outline

To explore the proposed research problems, this thesis is broken down into the following

chapters. In Chapter 2, we present a weakly supervised semantic parser that maps natural

language sentences to combinatory categorial grammar parses trained from captioned videos.

In Chapter 3, we present a more interactive semantic parser that is paired with a robotic

simulator. The input are highly temporal natural language commands that rely on the

agent understanding world states, mapped to linear temporal logic. Chapter 4 shows how
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a pretrained, multimodal encoder-decoder that makes its predictions iteratively leads to

improvements in generalization. Chapter 5 presents new metrics, Grounded WEAT and

Grounded SEAT, for probing social biases in multimodal embeddings. Lastly, Chapter 6

summarizes the contributions of each chapter and how they tie into our overall interests in

using theories from child language acquisition as inspiration and motivation for approaches

in NLP.
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Chapter 2

Semantic Parsing as a Model of

Language Acquisition using Captioned

Videos

Children learn language in naturalistic environments from receiving a relatively small

amount of linguistic input and without direct corrections. In this spirit, we present a weakly

supervised semantic parser trained on a dataset of captioned videos without any other

annotations or labels. The semantic parser learns a lexicon that maps tokens to syntactic

and semantic types, and then uses these types to build parse trees. The logical forms,

which are the root of the parse tree, are then executed by a visual system that computes

the likelihood of the parse being true given the video. With this supervision alone, the

semantic parser can successfully learn to map sentences to logical forms. It does so despite

the ambiguity inherent in vision, where a sentence may refer to any combination of objects,

object properties, relations or actions taken by an agent in a video. We also released the

dataset of sentences and videos paired with logical forms for training and evaluation along

with the code for reproducability.
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2.1 Motivation

Children learn language from observations that are very different in nature from what

semantic parsers are trained on. Rather than receiving direct feedback such as the part of

speech associated with the words they are hearing or corrections about incorrect grammatical

interpretations, children use interactions with speakers and their environment to update their

beliefs about the language they are hearing. This is a particularly impressive feat – children

learn the structure of the language they hear without ever seeing that structure overtly. This

weak and indirect supervision where most of the information is obtained through passive

observation poses a difficult disambiguation problem for learners: how do you know what

the speaker is referring to in the environment, i.e., what does the speaker mean? Speakers

can refer to actions, objects, the properties of actions and objects, relationships between

those actions and objects and other features in the environment and generally combine

multiple features into complex sentences. Moreover, speakers need not refer to the most

visually salient parts of a visual scene. Here, we induce a semantic parser by simultaneously

resolving visual ambiguities and grounding the semantics of language using a corpus of

sentences paired with videos without other annotations.

The goal of semantic parsing is to convert a natural language sentence into a repre-

sentation that encodes the sentence’s meaning and structure. These representations called

logical forms – expressed in lambda-calculus in our case – can be used for a variety of tasks

such as querying databases, understanding references in images and videos, and answering

questions. To train the parser presented here, we collected a dataset of real-world videos

paired with English captions generated from annotators on Mechanical Turk. We balanced

the dataset such that the raw statistics of the co-occurrences of objects and events are not

informative. Given these caption/video pairs as input, the parser hypothesizes potential

meanings for the captions as logical forms in lambda-calculus. We then used a modular

vision system that constructs a specific detector for each hypothesized logical form and then

determines the likelihood of the logical form being true of the video. This likelihood is used

as supervision for the parser. This approach is inspired by a child forming a hypothesis

about the meaning of language they’re hearing and then seeing how well this hypothesis
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fits their understanding of the objects and how they interact in the world. To evaluate our

trained parser, we manually annotated each caption with its ground-truth semantic parse.

These annotated parses are for evaluation only and are never used to train our model.

At training time, we jointly learn using both the semantic parser and the vision system;

at evaluation, we use the learned parser with the language input only and do not use or

need the videos. The semantic parser learns a set of weights θ and a lexicon Λ. For both

the parser and the associated language-vision component, the lexicon Λ is used to generate

and validate parses. To create new lexical entries, we employ a variant of GENLEX from

Artzi and Zettlemoyer (2013) that takes as input a validation function — in our case, the

validation function is the compatibility between a generated parse and the video. GENLEX

uses an ontology of predicates, a validation function, and templates from the current lexicon

to construct new syntactic and semantic forms.

The grounded semantic parser must learn these parameters despite three sources of

difficulty and noise. First, the vision system is the sole source of validation for whether

a parse is valid, but this component may fail because computer vision is far from perfect.

Notably, this component works in part by using bounding boxes from an object detector

run over frames of the video to compute the compatibility with the predicted parse. Many

objects in the video are small, partially occluded, and blurry given that we are taking still

frames from videos. Overcoming this noise in the process requires large beam widths and

a low confidence threshold for the detector to avoid falling into local minima due to these

errors.

Second, an infinite number of possibly-erroneous parses are true of a video. When

children learn language, they face this same challenge as they do not have access to bound-

ing boxes or to logical forms. The parse λx.person(x) as well as many other seemingly

reasonable parses are true for most videos and will therefore receive a high likelihood

score from the vision system. This and similar parses cannot be distinguished from the

ground-truth parse — which is not available — by the vision component. Our approach is a

less constrained environment than many other approaches to semantic parsing because our

validation function may be true when it should not be. Additionally, this leads to GENLEX

creating many special-purpose entries for words that just happen to fit the peculiarities of
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any video. Here, we find two different problems: 1) the assigning of empty semantics to

many words since the likelihood of a subset of a parse is always the same or higher than the

whole parse and 2) excessive polysemy where the meaning of a word is highly specific to

some irrelevant feature in a video. We therefore introduce two features to the parser inspired

by the Rational Speech Acts model (Frank and Goodman, 2012) that bias it against empty

semantics and against excessive polysemy when generating and selecting lexical entries for

the derivation.

A third difficulty is that computer vision models can be computationally expensive and

we need to run many evaluations of parse-video pairs to train the parser. To overcome this,

we construct a provably-correct cache that keeps track of failing sub-expressions. This is

possible because of a feature of this particular vision-language scoring function: the score

decreases monotonically with the number of constraints. Therefore, if any sub-expression

of a parse has been generated before for a given video and rejected, we know this parse can

be rejected as well. With these improvements, the grounded parser learns to map sentences

into semantic parses despite facing a challenging setting with limited examples and much

ambiguity.

This work makes several contributions. First, we show how to construct a semantic

parser that learns to represent the meaning and structure of language in a setting closer to

that of children by grounding in perception and using a modest amount of data. Additionally,

we demonstrate how to jointly resolve linguistic and visual ambiguities at training time in

a way that can be adapted to other semantic parsing approaches. The visual input plays a

crucial role in disambiguating sentences with multiple semantic interpretations; in many

cases, the true semantic meaning being conveyed by the speaker cannot be discerned without

this additional context. Next, we demonstrate how this and similar approaches can be

bootstrapped by using a small number of annotated sentences combined with a large number

of videos paired with unannotated sentences in order to improve performance. Annotating

just a handful of examples by hand serves as a helpful starting point for the model. Lastly,

we release a clean dataset systematically constructed and annotated on Mechanical Turk for

joint visual and linguistic learning tasks.
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2.2 Related Work

2.2.1 Rule-based & Fully Supervised Approaches

Early approaches to semantic parsing were largely rule-based (Winograd, 1971; Woods,

1973; Johnson, 1984). These rule-based approaches had the benefit of being quite inter-

pretable, yet suffered from being brittle as these rules were domain-specific and required

hand annotation. Later approaches moved from rule-based to statistical systems, using

fully supervised learning algorithms by training with pairs of sentences and meaning repre-

sentations (Zelle and Mooney, 1996; Zettlemoyer and Collins, 2005, 2007; Kwiatkowksi

et al., 2010; Andreas et al., 2013). Zettlemoyer and Collins (2005) present a probabilistic

approach to inducing a grammar for generating logical forms alongside a probabilistic model

for ranking the generations. Zettlemoyer and Collins (2007) relax the previous approach

by introducing new CCG combinators. These new combinators allow for more flexible

word order, e.g., flights one-way instead of one-way flights, reducing the rigidity of typical

CCG-based lexicons. Kwiatkowski et al. (2011) introduce factored lexicons, where lexical

entries are broken into lexemes, that represent the semantic meaning, and templates, that

represent the syntactic meaning. Approaches using factored lexicons learn with less data

and are better at learning to map to words that appear in polysemous contexts.

Neural approaches to semantic parsing alleviated the need to formally define rules or

the lexicon, often adapting approaches from neural machine translation. Dong and Lapata

(2016) present two variants of an LSTM-based encoder decoder, one with a hierarchical tree

decoder and another that uses soft attention to align the natural language and parse. Jia and

Liang (2016) take a data recombination approach, where they first induce a context-free

grammar to map sentences to newly generated samples, then train a RNN to map the samples

to semantic parses. They additionally employ an attention-based copying mechanism that

allows words from the input sentence to be directly copied to the parse.
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2.2.2 Weakly Supervised Approaches

Many prior approaches to semantic parsing have removed the need for labeled parses by

training in a weakly supervised setting. Matuszek et al. (2012) train a semantic parser for an

object selection task. Given an image of differently colored and shaped objects, the parser

generates logical forms that select the referenced objects described by the sentence. Our

work can be thought of as a variant of the object selection task where the objects and agents

are dynamic and an understanding of actions and interactions is necessary. This represents

one key difference of moving from static images to videos. Another approach is that of

Berant et al. (2013) who train a semantic parser by execution, in this instance using question-

answer pairs from the knowledge base Freebase. The questions are parsed to formulas

that are executed in Freebase and the feedback comes from whether the correct answer is

returned. Databases have far less ambiguity than videos; every question has (usually) a

single correct answer and that answer will be deterministically returned by the database

producing a binary response about the parse. Our model is noisy, producing likelihoods that

are more difficult to interpret than a single answer from a database. Additionally, databases

do not have a notion of perception.

In an approach grounded in a robotic simulator, Artzi and Zettlemoyer (2013) train

a weakly supervised semantic parser that maps robotic commands to executable formulas.

The validation function compares the world state after execution to the goal state. The

simulator, much like knowledge bases, is noiseless and deterministic; this makes for a

smoother validation function than our model’s validation, which relies on fallible perception.

In a slightly different approach, Berant and Liang (2014) learn to parse sentences using a

paraphrase model where candidate parses are mapped into canonical representations and

then paraphrased to choose the one that best matches the input sentence. One might consider

our approach concerned with visual and not just linguistic paraphrases, where the linguistic

representation best “paraphrased" by the video is the one selected by the model.

Learning to understand language in a multimodal environment is a well-developed task

in other frameworks outside of semantic parsing as well. Siddharth et al. (2014) and Yu et al.

(2015) focus on acquiring the meaning of a lexicon from videos paired with sentences. Their
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approach differs from our work in that they assume a fully-trained parser. Our approach

instead focuses on both inducing the lexicon and learning the parameters of a parser. Visual

question answering (VQA) is another similar area where models are trained on datasets like

Antol et al. (2015) to understand complex visual scenes alongside language. The goal of

our work is not to produce answers for any one set of questions, although this should be

possible with our approach. We instead learn to predict the structure of the sentences and

their meaning. This is a more general and difficult problem, in particular because at test time

we do not receive any visual input, only the sentence. The resulting approach is reusable,

generic and more similar to the kind of general-purpose linguistic knowledge that humans

have. For example, one could use it to guide robotic actions.

Other works in understanding language using vision are that of Wang et al. (2016),

who create a language game to learn a parser in a block world. This approach, similar to

Artzi and Zettlemoyer (2013), does not contain the noisy, fallible perception. Al-Omari et al.

(2017) acquire a grammar for a fragment of English and Arabic from videos paired with

sentences. They learn a small number of grammar rules for a language restricted to robotic

commands. Learning occurs mostly in simulation and with little visual ambiguity, and the

resulting model is not a parser but a means of associating n-grams with visual concepts. This

is a non-exhaustive overview of some approaches to weakly supervised semantic parsing

and the work being done in visually grounded language models.

2.3 Task

Given a dataset of captioned videos, D = {(s, v)}, where s is the caption of video v, we

train the parameters and lexicon, θ and Λ, of a semantic parser. At training time, we perform

gradient descent over the parameters θ and employ GENLEX (Zettlemoyer and Collins,

2005) to augment the lexicon Λ. The objective function of the semantic parser is written in

terms of a visual-linguistic compatibility between a generated parse p with corresponding

logical form z and video v. Recall that logical forms are the root of the parse tree. This

compatibility computes the likelihood of the logical form being true of the video, P (v|z).

At test time, we take as input a sentence without an associated video and produce a semantic
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parse. We could in principle also take as input the video and produce a targeted parse for

that visual scenario. This is a problem similar to that considered by Berzak et al. (2015), but

we do not do so here.

2.4 Model

2.4.1 Semantic Parser

We adopt a semantic parsing framework similar to that of Artzi and Zettlemoyer (2013)

using the Combinatory Categorial Grammar (CCG) formalism (Steedman, 1996, 2000),

although the general approach of using vision as weak supervision for semantic parsing

generalizes to other parsers as well. CCG is a powerful formalism that couples syntax and

semantics and represents language compositionally. CCG-based semantic parsing works by

learning a lexicon that maps tokens to syntactic and semantic types; a small number of fixed

unary and binary derivation rules then use the lexicon to build parse trees. These rules we

include are the forward and backward application define the direction, either right or left for

forward and backward application respectively, and type-raising (Carpenter, 1997), which

allows for a given syntactic type mapped to a token “raise” to a different type contextually.

So concretely, the parser takes as input a sentence as sequence of tokens and a (learned)

lexicon of potential syntactic and semantic types for each token and uses these types to

step through the derivation of a parse tree. Each step of the derivation works by using

the combinatory rules to combine the syntactic types; each time two syntactic types are

combined, the corresponding semantic types are compositionally combined as well. The

parser accepts a derivation when the tree reaches a single node; this single node represents

the logical form. Figure 2-2 shows a parse starting with tokens and their syntactic types

along with each rule being applied. Additionally, we use the following type system for our

semantic representations:

• e: entity; this can refer to any constant in our system

• p: people

• o: inanimate objects
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• a: actions such as pick up and drop

• t: truth-value

where p, o and a are new types differing from previous approaches.

Concretely, consider a case from Figure 2-2 where a determiner is attached to a noun,

the cup. The tokens the and cup are hypothesized to have syntactic types NP/N and N

(a function returning NP given an argument on the right side and a noun) and semantic

type λfx.fx and λx.cup(x) (the identity function and a function that adds a cup constraint).

These two derivations can be reduced by forward application, denoted by >. Both the

syntactic and semantic types are applied and reduced, which means the semantics helps

guide the syntax. Derivations that produce illegal operations, such as applying an argument

to a constant, are forbidden.

This process produces multiple hypotheses so following Zettlemoyer and Collins (2005)

and Curran et al. (2007), we adopt a weighted linear semantic parser. For each sentence

paired with its hypothesized derivation, this approach computes a feature vector φ and a

parameter vector θ. Given a sentence s, a parse p, a lexicon Λ, the set of all possible parses

for that sentence with that lexicon, P (s,Λ), and an n-dimensional feature vector computed

for that sentence and parse, φ(s, p), the parser finds the best parse p∗ by optimizing:

p∗ = argmax
p∈P

θ · φ(s, p) (2.1)

Using a fixed-width beam search, the parser enumerates derivations by choosing a potential

syntactic and semantic type for each token from the lexicon and choosing a set of derivation

rules to apply. For the i-th training sample di, consisting of a sentence si and a video vi in

dataset D and the feature function, the parser maps sentence si to the set of parses E. Using

the validation function to determine valid and invalid predictions, the set of margin-violating

positive, E+, and negative, E−, parses are used to update the parameters θ according to:

θ → θ +
1

|E+
i |
∑
e∈E+

i

φi(e, vi)−
1

|E−i |
∑
e∈E−i

φi(e, vi) (2.2)

. After each sweep through the dataset, the lexicon Λ is augmented using the modified

GENLEX from Artzi and Zettlemoyer (2013), which does not require the ground-truth
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logical form. At no point is the logical form needed for updating the lexicon or parameters;

we rely instead on a visual validation function to compute the margin-violating examples.

To further encourage the model to produce logical forms that convey semantic meaning

and do more than just satisfy the vision system, we introduce two new features. Models

of communication such as the Rational Speech Acts model (Frank and Goodman, 2012)

predict that speakers will avoid inserting meaningless words. Using this as motivation, one

feature counts the number of predicates mapped onto semantic forms which are empty that

occur in each parse. The other feature attempts to prevent excessive polysemy by counting

how many new semantic forms are introduced for existing tokens by the generated entries

from each parse. As the parser becomes more capable of handling sentences in the training

set, these features begin to bias it against adding empty semantics and new semantic forms.

Rather than attempting to learn a fixed lexicon that directly maps tokens to semantic

and syntactic parses, we use a factored lexicon like that of Kwiatkowski et al. (2011).

This represents tokens and any associated constants separately from potential syntactic and

semantic types. For example, the token chair is associated with a single constant chair;

chair ` [chair]. In addition to the token-constants pairs, there exists a list of pairs of

syntactic and semantic types along with placeholders for constants; in the case for chair, a

useful type might be λv.[N : λx.placeholder(x)]. When parsing, each token is applied to

a potential syntactic and semantic type and the derivation proceeds from there. The factored

lexical entries allow for far greater reuse; the model learns a small number of constants that

a word can imply separately from a small number of syntactic and semantic types for any

word. The lexicon is seeded with a small number of generic combinations of syntactic and

semantic types. We sampled a small number of captions (less than 1% of total examples)

and manually parse them; the components of the parse are used to populate the seed lexicon.

These sentences were excluded from both the training and test sets and were only used to

populate the seed. There are 100 unique lexical entries in the seed; other similar grounded

approaches have a similar number of seed lexical entries (e.g., Artzi and Zettlemoyer (2013)

provide 141 possible types).

In summary, we learn a weighted linear CCG-based parser searches over potential

lexical entries, applying the token to different syntactic and semantic types and over multiple
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hypotheses for which rule should be applied. At training time, in order to learn a reasonable

lexicon and set of parameters, a supervision signal is required to validate candidates. We

provide that supervision using the vision system described below in Section 2.4.2.

2.4.2 Sentence Tracking

To score a predicted logical form given a video, we employ a framework similar to that of

Yu et al. (2015). This approach constructs a model specific to the logical form by extracting

the number of participants in the scene described by a caption as well as the relationships

and properties of those participants. It builds a graphical model with components for each

participant and the relationships between them. First, each participant is localized by an

object tracker. Next, each relationship is encoded by Hidden Markov models (HMMs) that

model the temporal constraints of the relationships between the Viterbi-based trackers for

the participants. Recall that each logical form in the CCG formalism is a lambda expression

with a set of binders, whose domain are objects, and a conjunction of constraints that refer to

these binders. In essence, this notes which objects should be present in a scene (participants)

and what static and changing properties and relationships (temporal constraints) those

objects should have with respect to one another.

To make this work, first we use an object detector to generate a large number of

bounding boxes for the frames of the video. As noted earlier, we use a low confidence

threshold for the object detector erring on the side of over-detecting instead under-detecting

participants. To detect the objects in each frame of the video, we use two off-the-shelf object

detectors, OpenPose (Cao et al., 2017; Simon et al., 2017; Wei et al., 2016) for people and

YoLo (Redmon and Farhadi, 2018) for the remaining objects. We ran a few fine-tuning

iterations on YoLo for the specific objects in our video that did not overlap with YoLo. We

wanted to avoid overfitting the object detector to our specific dataset while also recognizing

the importance of high-quality detections for the Sentence Tracker.

The object trackers weave these bounding boxes into high-scoring object tracks and use

constraints to verify if the tracks have the desired properties and relations. Object trackers

are a maximum-entropy Markov model with a per-frame score f , the likelihood that any
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one object detection is true, as well as a motion-coherence score g, the likelihood that the

bounding boxes selected between frames refer to the same object instance. Given a logical

form z with L participants and a video v of length T , Equation (2.3) shows the optimization

where J is a set of L candidate tracks ranging over every hypothesis from the object detector

and b is a candidate object detection.

max
J

L∑
l=1

(
T∑
t=1

f(btjtl
) +

T∑
t=1

g(bt−1
jt−1
l

, btjtl
)

)
(2.3)

Next, the Sentence Tracker must determine if an object track is following the set of

behaviors implied by the logical form by using a collection of HMMs. Each HMM has a

per-frame score h that observes one or more objects tracks (depending on the number of

participants in the behavior being modeled) and a transition function a that determines the

temporal sequence of the behavior. Given a video v of T frames and logical form z with C

behaviors, also termed constraints, Equation (2.4) shows the optimization where K is a set

of states, one for each constraint, and γ is a linking function.

max
J,K

C∑
c=1

(
T∑
t=1

hc(b
t−1
jt−1

γ1c

, btjt
γ2c

, ktc) +
T∑
t=1

ac(k
t−1
c , ktc)

)
(2.4)

For clarity, we find the global optimum for a linear combination of Equation (2.3) and

Equation (2.4). The Sentence Tracker computes the likelihood that the logical form is true of

the video by jointly optimizing over the sum of Equations (2.3) and (2.4) where the linking

function γ connecting the two equations. The Viterbi algorithm carries out this optimization

in time linear in the length of the video and quadratic in the number of detections per frame.

The result is a likelihood of the logical form being true of a video. This is used to create

the visually grounded model that supervises the parser with vision. The tracker can also

produce a time series of bounding boxes that make explicit the groundings of the sentences,

though we do not use these directly here. Inference proceeds jointly between vision and the

logical form where the computed likelihood and gradient update steps guide the parser to

focus on events and properties that might otherwise be missed.
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2.5 Dataset

We collected and annotated a dataset of captioned videos alongside logical forms generated

by manually parsing the caption. The videos contain either one person or a group of people

carrying out one of 15 actions, such as pick up, put down, drop, with one of 20 objects

spanning 10 different colors. We control for 11 spatial relations between objects and actors.

Videos were filmed in multiple locations with multiple agents but care was taken to ensure

that the background and agents are not informative of the events depicted.

After filming the videos, we used Mechanical Turk to generate the captions. We asked

participants to provide sentences that describe something about the video. We intentionally

did not specify what participants should describe to avoid biasing them and to add richness

to the dataset. This did occasionally lead to sentences that referred to properties of the video

that are well beyond the capacities of the vision system, e.g., descriptions of an agent being

lazy or references to the camera’s movement. To ensure high-quality examples, two trained

annotators manually read through and flagged sentences that were either ungrammatical,

contained misspellings or outside of the scope of the vision system. Examples of excluded

sentences are shown in Table 2.1.

Grammatical Errors
One man is walking on the towards to another one.
A man holds a yellow chair at chest level was he walks towards a second man.
A guy in striped shirt cross across the room.
Another man is keep the green color bag on the floor.

Spelling Errors
Two men life the chairs at the same time.
One man is hodling green bag.
Both are wearing switers.
Two men walk up to a man in a plad shirt.

Outside of Vision Scope
She holds up the toy car and looks into the camera.
The man with no book bags is lazy and making his friend hold both.
A man who knows he is being stared at moves his bag to his other hand.
A man works out his right arm.

Table 2.1: These are a subset of sentences that were excluded from the final dataset, sorted
by the errors they contain. Some excluded sentences contain multiple errors.
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Two trained annotators additionally annotated each sentence with a logical form using

a set of 34 predicates. Recall that in our weakly supervised framework, the parser does not

receive these annotations; the ground-truth logical forms are solely used for evaluation and

for supervised benchmarks for comparison. Each logical form was additionally reviewed

and corrected by one other annotator. In total, the dataset contains 1200 captions from 401

videos. This is comparable to the size of other datasets used for semantic parsing such as

two datasets from Tang and Mooney (2001) with 880 and 640 examples respectively and

the navigation instruction dataset (Chen and Mooney, 2011) with 706 examples (containing

3236 single sentences). The sentences comprising our dataset contain 169 unique tokens

with an average of 7.93 tokens per caption. There are an average of 2.31 objects per caption.

2.6 Evaluation

2.6.1 Experimental Setup

We adapted the Cornell Semantic Parsing Framework (Artzi, 2016) to train and evaluate the

parser. The training, validation and test sets are 720, 120 and 360 examples respectively.

These fixed splits were used in all experiments. During training, each hypothesized parse

for each sentence is marked as either correct or incorrect, using either direct supervision

with the target parse or compatibility with the video, depending on the experiment. We use

beams of 80 for the CKY-parser and GENLEX. CCG-based semantic parsers are seeded

with a small number of generic combinations of syntactic and semantic types. We provide

98 seed lexical entries; to compare relative sizes, the weakly supervised approach of Artzi

(2016) seed with 141 lexical entries. The full seed lexicon is shown in Appendix A.

2.6.2 Results

Figures 2-3 and 2-4 summarize the experiments and ablation studies performed. The metrics

we use when reporting results are exact match, where the predicted logical forms must

perfectly match the target logical forms, and near miss, where a single predicate in the

predicted logical form is allowed to differ from the target. Experiments were averaged
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across 5 runs.

First as a baseline, we directly supervised the parser with the target logical forms. The

model achieved high performance as we exptected with F1 scores of 0.841 and 0.911 for the

exact match and near miss cases. This provides a helpful upper bound for comparing the

performance under weak supervision. We also evaluate the performance of direct supervision

as a function of training set size, shown in Figure 2-4. Performance expectedly decays

slightly as we use less training data; this provides a helpful metric for how much data we

should use if we want to bootstrap parsers in the future under direct supervision and it

provides a comparison for around how much supervised data in the framework produces

similar results to the perceptually grounded data.

Next, to establish chance-level performance, we trained the directly supervised ap-

proach on shuffled labels, where we assigning random logical forms to each sentence. This

is more powerful than a simple chance-level performance calculation as the parser can

still take advantage of any dataset biases. Even with the ability to exploit potential biases,

performance is very low with F1 scores of 0.136 and 0.349 for the exact and near miss

metrics. For our last baseline, we added noise to the directly supervised parser to simulate

the unreliable nature of vision and, to an extent, the ambiguities inherent in vision. A certain

percentage of the time, the compatibility function returned true or false randomly when

given a hypothesized logical form. Figure 2-4 shows performance of the noisy baseline as a

function of how much noise was introduced.

For the weakly supervised semantic parser, we train by parsing sentences describing

videos to logical forms and computing the compatibility between the predicted logical form

and the video. This approach produced 0.2 and 0.6 F1 scores for the exact and near miss

metrics. This is far beyond chance performance and corresponds to direct supervision with

around 55% noise (recall noisy performance here was 0.22 and 0.39 F1 for the exact match

and near miss cases). There are a number of reasons for why performance is not perfect

and is much lower than direct supervision with the full dataset. First, the evaluation metrics

cannot consider equivalences in meaning, just form. A hypothesized parse may carry the

same meaning as the target logical form yet it will be considered incorrect. This is less of a

problem with direct supervision where the preferences that annotators have for a particular
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way of encoding the meaning of a sentence can be easily learned by observing the target

forms. In the grounded case, this cannot be learned; visually equivalent parses are equally

likely. This is just one difficulty with using structured representations and unfortunately

exists in most formalisms used for parsing.

A second challenge that we’ve noted before is that computer vision is unreliable, i.e.,

object detectors fail. We find that in many of our videos while person detection is fairly

reliable, object detection is unreliable. The final challenge that makes this problem difficult

is that vision in the real world is very ambiguous. Predicates like hold are true in almost

every interaction in our videos. This makes learning the meanings of words much more

difficult resulting in the grounded parser often adding useless entries into the predicted

logical forms or substituted one predicate for a similar one. The near miss metric shows

that overall the parser learned reasonable logical forms. Figure 2-5 shows six examples

from our dataset along with expected and predicted parses. We note that while this approach

is a challenging setup, children do manage to learn and disambiguate word meaning by

observing the environment. And in spite of these difficulties, the parser still manages to

learn a lexicon encoding the meaning and structure of the sentences it was trained on.

Lastly, we ran an ablation to understand how much of the performance of the grounded

parser comes from visual correlations, like the presence or absence of particular objects, as

opposed to the more complex and cognitively relevant spatio-temporal relations like actions.

To do so, we removed the reliance on all visual features besides objects; this means actions

and spatial relationships between participants are ignored. The resulting grounded parser

for this ablation accepts any hypothesized parse as long as the objects mentioned in that

parse are present in the video. This led to a significant performance drop, near-chance level

performance on the exact metric, F1 0.05, and nearly half the F1 score on the near miss

metric, 0.37. This demonstrated that having a sophisticated vision system to infer about

agents and interactions is crucial for learning in this framework.
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2.7 Discussion

We present a semantic parser that learns a lexicon mapping words to representations of their

meaning and structure using weak supervision grounded in perception. During inference, the

model parses sentences without the need for visual input. Learning by passive observation

in this way extends the capabilities of semantic parsers and points the way to a more

cognitively plausible model of child language acquisition. Nonetheless, several limits still

remain. Evaluation metrics do not always capture how well predictions actually match

targets. This is because measures of correctness depend on a match to a human-annotated

logical form; this is an overly strict criterion that also plagues fully-supervised syntactic

parsing (Berzak et al., 2016). Since two different logical forms may still express the same

meaning, it is not yet clear what an effective evaluation metric is for these scenarios. Perhaps

other formalisms that focus on easily computing equivalence while still providing the

combinatory linguistic power of CCG will be helpful. In addition, learning in such a passive

scenario by observing videos is hard as correlations between events can be very difficult

to disentangle. For instance, e.g., every pick up event involves a touch event and it is not

immediately apparent which event is being referenced just by looking at the video. A more

sophisticated action recognition system might be useful, but the constraints are that the

system would still need to be computationally efficient.

Looking at the experimental results, an interesting source of error comes from visual

ambiguities from the object detector. At the level of relative motions of labeled bounding

boxes, the analysis performed by our vision system has difficulty distinguishing certain

parts of actions. For example, carrying a shirt and wearing a shirt appear very similar to

one another as they are actions that mostly involve moving alongside a person detection.

Moreover, since every agent is wearing a shirt it becomes more difficult to learn to distinguish

the two actions using positive evidence alone, i.e., a maximum likelihood approach. A

more robust vision system, perhaps including object segmentations, person pose, and weak

negative evidence for the occurrence of actions, would likely significantly improve the

results presented.

In the future, we intend to add a generative model along with a physical simulation
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allowing the learner to imagine scenarios where a predicate might not hold. This would help

mitigate systematic correlations between sentences and videos. The sentences selected here

were all chosen such that they are true of the video being shown, yet much of what people

discuss is ungrounded, or at least not grounded in the current visual scene. We additionally

intend to combine the weakly supervised parser with an ungrounded parser and learn to

determine whether a sentence should be grounded visually during training. This would

allow the model to handle sentences that do not refer to visual referents.
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Sentence: The woman walks by the table with a yellow cup.
Logical Form: λxyz.woman x,walk x, near x y, table y, hold x z, yellow z, cup z

Figure 2-1: An example from our dataset of video-caption pairs. We recorded real-world
videos of agents carrying out various actions while interacting with objects and used Amazon
Mechanical Turk to generate captions describing the events. Using these captioned videos,
we train a semantic parser on video-sentence pairs, without access to ground-truth parses.

She takes the cup

NP (S\NP)/NP NP/N N
λx. person x λfgxy. fx, take xy, gy λfx. fx λx. cup x

>

NP
λx.cup x

>

S\NP
λfxy. fx, take xy, cup y

<

S
λxy. person x, take xy, cup y

Figure 2-2: An example sentence parsed into a lambda-calculus expression using a CCG-based
grammar. The parse is determined by the lexicon that associates tokens with syntactic and semantic
types as well as the order of function applications. Here, we acquire this lexicon and a means to
score derivations.
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Precision Recall F1
Direct Supervision
exact match 85.1 84.0 84.6
near miss 94.6 93.3 93.9
Noisy supervision (60%)
exact match 23.5 20.1 21.7
near miss 42.3 36.2 39.0
Shuffled labels (direct supervision)
exact match 14.7 12.2 13.6
near miss 38.4 32.1 34.9
Shuffled videos (weak supervision)
exact match 00.0 00.0 00.0
near miss 10.6 10.3 10.4
Object-only vision
exact match 5.1 4.2 4.6
near miss 38.7 34.9 36.7
Our full vision-language system
exact match 22.3 18.3 20.1
near miss 66.3 55.3 59.1

Figure 2-3: Pairs of results for each condition. On the top, we show exact match results and
on the bottom, in italics, results for the near miss metric. In the case of direct supervision,
we train with the target parses. In the case of noisy supervision, a percentage of the time
(60% here) the parser randomly accepts or rejects a parse. In the case of shuffled labels, the
target logical forms are assigned to random sentences. For shuffled videos the sentences
are assigned to random videos. The likelihood of any sentence being true of a random
video is low. In the case of object-only vision, the vision system consists solely of an object
detector discarding any other predicates. The full vision-language approach learns to parse
a significant fraction of sentences, far outperforming the object-only approach, and usually
being within one predicate of the correct answer.
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Figure 2-4: Results from training the grounded semantic parser. In blue we show , direct
supervision as a function of the amount of training data. In dashed blue, we show noisy
supervision that uses the whole training set but accepts and rejects parses at random for a
given fraction of the time. The red cross is the full vision system while the green o is the
object detector ablation. The orange triangle represents shuffled videos and shows chance
performance. While direct supervision outperforms vision-only supervision, the grounded
parser closes the gap and operates like noisy direct supervision with roughly 55% noise.
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Sentence: The woman is picking up an apple.
(i) Ground-truth: λxy.woman x, pick_up x y, apple y

Prediction: λxy.woman x, pick_up x y, apple y

Sentence: A man walks across the hall holding a chair.
(ii) Ground-truth: λxyz.person x,walk x, across x y, hallway y, hold x z, chair z

Prediction: λxyz.person x, from x y, person y, hold x z, chair z

Sentence: A man is walking toward a chair.
(iii) Ground-truth: λxy.person x,walk x, toward x y, chair y

Prediction: λxy.person x,walk x, toward x y, chair y

Sentence: She places the toy car down on the table.
(iv) Ground-truth: λxyz.person x, put_down x y, toy y, car y, on y z, table z

Prediction: λxyz.person x, in x y, toy y, car y, on y z, table z

Sentence: A man is lifting the chair.
(v) Ground-truth: λxy.person x, pick_up x y, chair y

Prediction: λxy.person x, pick_up x y, chair y

Sentence: A woman reaches for a book on the table.
(vi) Ground-truth: λxyz.person x, pick_up x y, book y, on y z, table z

Prediction: λxyz.person x, stand x, in x y, book y, on y z, table z

Figure 2-5: Six examples of frames from videos in the dataset along with target and predicted logical
forms showing both successes and failures. Failures are highlighted in red. Note how incorrect parses
are usually similar to the correct semantic forms. The intended meaning is often preserved even in
these cases.
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Chapter 3

Learning a Semantic Parser using

Temporal Logic for Robotic Planning

In this chapter, we extend our earlier work by presenting a weakly supervised semantic

parser grounded in a grid world. Instead of natural language descriptions of videos, this

work moves into a stateful setup where natural language commands describe actions an

agent must take, conditioned on the world representation. The parser learns to map these

commands to an executable formula in linear temporal logic (LTL). Similar to the CCG-

based semantic parser, this parser is weakly supervised and does not have any access to the

labeled annotations. We pair the semantic parser with a pretrained planner that serves as our

validation function. This planner takes the generated LTL formulas and precomputed tracks

of the agent of completing the command and computes the likelihood of the formula given

the tracks. This work also focuses on a small dataset, at just a few thousand examples, in

lieu of large-scale training.

3.1 Motivation

Children learn language by observing their environment and interacting with the world

around them. In the previous chapter, we presented a semantic parser that focused on the

first component- a model that receives language alongside an observation of the environment.

In this chapter, we focus on the latter component- namely, interacting with and updating
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the world. We present a grounded semantic parser represented by a multitask encoder-

decoder that receives natural language commands and environments shown as RGB images

as input and produces executable formulas. The commands describe conditional, long-range

temporal constraints (e.g., “wash your hands before eating a snack; either eat grapes if

they’re already cut or a banana") that are easily understood by children but cannot be

represented by formalisms like are based on first-order logic. To this end, we represent

formulas in linear temporal logic (Pnueli, 1977), which can represent a wide range of

temporal language. The LTL formulas generated by the parser are then validated by a robotic

planner, which computes a compatibility between the formula and a set of predetermined

action trajectories. Notably, the parser only observes the language being used (i.e., what was

said, in this case the command) and how well this language fits the trajectory of the agent

(i.e., how well the formula matches observed tracks in a given environment).

Our model uses a few different sources of information to learn to map the commands

to LTL formulas. First, the formulas generated by the parser are verified to be syntactically

valid LTL formulas. This is a relatively common well-formedness constraint that simply

ensures parses, regardless of what they hypothesize semantically, will be executable. Second,

the parser has an incentive to create interpretations that are both generic enough to not overfit

certain idiosyncrasies of a given environment yet also specific enough to actually capture

the behavior that is observed. This is addressed through the planner, which uses three

different environments and respective action trajectories to compute the likelihood of the

formula. Lastly, we encourage the encoder to learn expressive encodings by using a multitask

framework; we include a second decoder that acts a language generator and attempts to

reconstruct the input sentence. The goal here is to maximize the knowledge conserved when

translating sentences into some formalism.

For our training and evaluation data, we use a grammar to generate sentences paired

with LTL formulas. We also use Mechanical Turk to get more linguistically challenging

sentences that capture the same meaning but are generated by human annotators. The

annotators saw a set of (disjoint) examples of commands and environments and then were

given a new set of environments and asked to describe a command for the agent. The

human-generated commands provide a larger vocabulary and more linguistic diversity than
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those from the grammar alone. Despite the human sentences being much more varied and

complex, including structures which our formalism cannot exactly represent, the semantic

parser still finds whatever latent structure is present and required to execute the natural-

language commands produced by humans with nearly the same accuracy as those produced

by machines.

Executing LTL commands and more broadly understanding temporal constraints in

natural language is a challenging task. LTL works well for our domain but is just a stepping

stone. It remains an important open question in grounded robotics: what representation will

be enough to capture the richness of how humans use language? For instance, notions such

as modal operators to reason about hypothetical futures will likely be required, but what

else we may need is unclear. Having a general-purpose mechanism for learning to execute

commands is extremely helpful under these conditions; we can experiment with different

logics and domains with the same agents by changing the priors and planners while leaving

the rest of the system intact.

Our contributions are as follows. First, we present a semantic parser that maps natural

language commands to formulas in linear temporal logic without access to any annotated

formulas. Next, we present a dataset of commands paired with environments that are a

variant of Craft (Andreas et al., 2017); this variant is suitable for grounded semantic parsing

experiments. Finally, we show a “recipe" for creating grounded semantic parsers for new

domains that results in executable knowledge without annotations for those domains.

3.2 Related Work

Many approaches to training weakly supervised models use an execution-based validator for

training. Berant et al. (2013) train a model on question-answer pairs using a knowledge base,

where the generated formula is executed and an answer is retrieved and used as supervision

instead of providing the ground-truth formula directly. Kwiatkowski et al. (2013) and Berant

and Liang (2014) use a paraphrasing-style approach, where questions are first mapped to a

domain-independent representation and then mapped to an executable form. The answer to

this executable form is used as the supervision. For Artzi and Zettlemoyer (2013), instead of
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using knowledge base or question-answer pairs, their approach uses a deterministic robotic

environment where commands are mapped to executable logical forms. The end state after

executed the generated logical form is compared to the goal state and this end state is used

as supervision. Our approach is similar, with a key difference being that our executor is

non-deterministic and therefore much noisier and the input commands in our framework are

highly temporal. Hermann et al. (2017) also ground their parser in an interactive world; their

approach focuses on object retrieval, grounding attributes in natural language to attributes of

the object. The commands are relatively straightforward, similar to Matuszek et al. (2012)

but in an interactive instead of static setting. Perhaps the most similar approach to our work

is that of Patel et al. (2019), who also map natural language commands to LTL formulas. A

key difference here is that their work requires domain-specific LTL knowledge, whereas

our model only rejects formulas that are not well-formed. The supervision for their parser

comes from executing the LTL formula and receiving feedback at each step whether the

agent has failed.

3.3 Notation

Natural language sentence is represented as series of N tokens, written as t1:N or t. A single

token at index i is referred to by symbol ti. In vector notation, the series of tokens is written

as t. Sequences generated by the model are written with a circumflex, for instance t̂. In

our framework, we denote the natural language input commands as x and reconstructed

commands as x̂. The list of k execution traces (which are demonstrations of the command)

are denoted E and a single execution trace as e or ei. Ground-truth LTL formulas are

denoted z and predicted formulas as ẑ. The output vocabulary Z refers the potential LTL

tokens that can be predicted at the parser decoder’s output layer. The action space Y refers

to the space of actions the agent can take in the environment (e.g., left, up, right, etc.).
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3.4 Task

Given a dataset D = {(x, E)} consists of English commands x paired with execution traces

E, we train a semantic parser to map commands to executable LTL formulas. The executions

E are comprised of k trace-environment pairs: E = {yi, ei}ki=1. A trace is a sequence of

actions e.g., yi = [left, right, grab, up] that the agent can take that satisfy the constraints of

the commands and environment. The goal of the model is map natural language commands

to LTL formulas that, when executed by the planner described in Section 3.6.2, satisfy the

constraints of within the command. As an additional task, the model must also reconstruct

the natural language command from the compressed encoded representation.

3.5 Dataset

We built a dataset of 1000 examples consisting of 100 natural language commands and 3000

environment traces to train and evaluate our parser. We generate commands and formulas

from a grammar and commands from paid human annotators. Each example is defined as

tuple (x, E), where x is the natural language command (either from the grammar or from

annotators) and E is list of k environments.

3.5.1 Grammar-Generated Commands

First, for the grammar-generated commands, we sample sentences and formulas from a

synchronous context-free grammar by following an approach similar to Jia and Liang (2016)

and Goldman et al. (2018). We use the six hierarchical partially overlapping properties

of LTL developed by Pnueli and Manna (1990) for diversity across LTL formulas. This

sampling process across the properties is important as most randomly generated LTL

formulas are uninteresting and do not express complex semantics. This parallels how

most instances of the Boolean satisfiability problem SAT are uninteresting as well (Horie

and Watanabe, 1997). These six categories are safety, guarantee, persistence, recurrence,

obligation, and reactivity. Safety ensures that a property will always hold; guarantee

ensures that a property will hold at least once; persistence ensures that a property will
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always hold after a certain point; and recurrence ensure a property will hold repeatedly

over time. Obligation and reactivity are compound classes formed by unrestricted Boolean

combinations of the safety and recurrence classes respectively. In our framework, we do not

include negation. We further detail the components of our logic in Figure 3-1.

Constituents Description
Logical operators ∧,∨ and, or

Temporal operators 2,3,∪ eventually, always, until
Objects APPLE, ORANGE, PEAR objects that can be held

Relations CLOSER APPLE, CLOSER ORANGE, CLOSER PEAR spatial relations
Destinations FLAG, HOUSE, TREE destinations

Figure 3-1: We show the logical constituents for the grammar and their generic descriptions.
We renamed predicates from the Craft domain for more human-readable labels. We also
exclude negation.

Next, to get the execution traces, each LTL formula is first converted to a Büchi

automaton using Spot (Duret-Lutz et al., 2016). Then, for each of the 1000 sampled

formulas, we sample three different environments represented as 7x7 grids. Our commands

and environments are given in the context of the Minecraft-like CRAFT adapted from

Andreas et al. (2017). These grids are randomly populated with objects and landmarks, of

which some are relevant for the commands and others are just distractors. The distractor

items are included in the environment with probability p = 0.5. We use an oracle to search

the action space and generate action sequences until we find a sequence that is accepted by

the automaton representing the LTL formula. In this work, we only consider LTL formulas

for our dataset that accept finite action sequences for horizon t = 15. This leads to three

execution pairs, where an execution pair defined as the environment and action sequence,

per natural language command, giving 3000 sentence/execution pairs total.

This process of sampling action sequences until they satisfy the command means the

trajectories in our data, unlike a lot of prior work, are not necessarily the gold trajectory.

Our paths are guaranteed to accept but are not guaranteed to be the most efficient, which

adds an additional interesting component to the validation function. Another aspect of note

is that during sampling, some commands were immediately violated by the start state for the

given environment. For example, the command “always hold the gem” can only be satisfied

if the initial sampled environment has agent holding the gem. A sampled environment that
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satisfies these initial constraints may never be found. To address this issue, we replace each

predicate p with closer(p) U p, where closer(p) means “closer to p”. This essentially

just softens the constraint that p immediately hold, instead constraining the agent to move

closer to p until p is satisfied. This does not change the semantics of the command and

instead allows the agent to use the first few actions to reach a satisfying state. We also

ensure the commands cannot be trivially solved and are not true from the initial state. For

instance, a command like Eventually go to the house would be solved from the initial state

if the agent were already at the house. We reject these examples.

3.5.2 Human-Generated Commands

While using the grammar is helpful efficiently generating commands and for creating LTL

formulas, we are also interested in more sentences from humans that are less systematic and

closer to what we expect children to hear. The way a human annotator might describe a

command will likely differ from one built from a grammar, both in efficiency and in how

systematic the sentences appear. We therefore took the three execution traces corresponding

to each command and asked annotators to write a command describing the agent’s actions

across all executions. To demonstrate command-centered language (e.g., “Go to the tree and

pick up the pear” instead of “an agent is going to the tree and then it picks up the pear”),

we showed a disjoint batch of examples to the annotators at the beginning of the task. We

collected another 1000 sentences from these annotators. Examples of environments and

commands are shown in Table 3.1 and statistics of the dataset are shown in Table 3.2.

We note this process did at least in part mildly skew the annotators’ vocabulary and

likely explains why some annotators using words like “ensure” that are LTL predicates and

may be less common in everyday language. Overall, the sentences from human annotators

were both shorter on average and comprised a larger lexicon. The shorter command length

could be because humans find more efficient means of communication, in line with the

Rational Speech Act (Frank and Goodman, 2012) model. There are also cases where the

human command does not fully capture the intended meaning from the executions. Looking

at the example on the bottom row of Table 3.1, the annotator didn’t grasp the concept of
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being near the tree before going to the house. The difficulty with fully capturing all of

the constraints from just three sampled environments and execution traces is an additional

point to note, meaning that our grammar-generated and human-generated commands will

sometimes slightly differ in meaning from the same execution sequences.

3.6 Model

3.6.1 Multitask Encoder-Decoder

Our model is an LSTM-based encoder-decoder trained in a multi-task manner over two

objective. We use a single encoder that maps the natural language command x to the hidden

representation and two decoders, the parser and the generator, that each take the hidden

representation as input. The parser is responsible for mapping the hidden representation

to the target LTL parse ẑ, while the generator is responsible for mapping the hidden

representation back to the original natural language command x̂, essentially acting as an

auto-encoder. A diagram of the model is shown in Figure 3-2.

Figure 3-2: An example of the model described above. On the left, the encoder-decoder
architecture is shown where the model takes a natural language command x as input and
produces both executable LTL formulas (output of the parser) ẑ and the reconstructed natural
language command (output of the generator) x̂. On the right is a depiction of the planner
from Kuo et al. (2020a) and described in more detail in Section 3.6.2.
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grammar generated: Eventually, possess the pear and grab the apple and
persist.
human annotation: Eventually, hold the apple and take the pear and do this
repeatedly.

grammar generated: At some point, start to be around the house or go to the
tree and keep doing it.
human annotation: Ensure that you visit the house.

Table 3.1: Two commands (top row and bottom row) alongside three sampled environments
each. For each command, we show the original grammar-generated sentence and the human
annotation from six human annotators. The human-generated command is much shorter than
the one from the grammar; the human generated commands were shorter on average. This
could be in part due to the efficiency of human communication or due to a misunderstanding
of the underlying semantics of some commands, whereby components necessary for the
execution were left out.

54



Total # sentences 2000
# Grammar-generated sentences 1000
# Guarantee 204
# Safety 264
# Recurrence 243
# Persistence 214
# Obligation 52
# Reactivity 23
Avg. words/sent. 17.7 ± 8.4
# Lexicon size 44
# Human sentences 1000
Avg. words/formula 5.2 ± 2.9
Avg. words/sent. 8.3 ± 3.3
# Tokens in lexicon 266

Table 3.2: General dataset statistics of both the grammar and human generated commands.
Note that the human-generated data is far more varied with a much larger lexicon.

Encoder

The encoder is a bidirectional LSTM with word embeddings initialized from pretrained

English GloVE embeddings (Pennington et al., 2014). The encoder maps the input sequence

of N tokens x1:N to the hidden representation h1:N , that can be viewed as a high-dimensional

feature representation of the input. Following the sequence-to-sequence framework, these

hidden states are passed to the two decoders.

Parser Decoder

The parser decoder, herein the decoder, takes hidden representation h and generates a hy-

pothesized LTL formula ẑ, where each token ẑi ∈ Z. Given context ci, hidden representation

hi and model weights W , the probability distribution for the next token is computed as:

p(ẑi | ˆz<i,x; θparse) = softmax(W [ ˆzi−1; ci;hi]) (3.1)

Following the approach of Guu et al. (2017), we use a stack that keeps track of the

generated tokens in postfix order based on the fixed arity of LTL operators. We use this stack

to constrain the valid next tokens, ensuring the generated LTL formulas are well-formed. No

other specific properties of LTL or knowledge about the semantics of language are included
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in this constraint; we are only ensuring syntactic correctedness at the generation step. An

alternative approach would be to instead reject syntactically invalid parses after generating

the entire sequence. We also use epsilon dithering to encourage greater exploration during

generation. Practically this means that at each time step ti, with probability p = ε, we

follow the normal sampling procedure of selecting the next token zi+1 according to the

softmax over output tokens. With probability p = 1− ε, the next token zi+1 is instead just

sampled uniformly over all valid output tokens in Z, where the valid tokens are again only

constrained to ensure well-formedness.

Parser Generator

The parser generator, herein the generator, decoder generates x̂, an attempt to reconstruct

the natural language command x from the hidden representation h. This is often used

in unsupervised neural machine translation (NMT) (e.g., in Artetxe et al. (2018)) and

semantic parsing can be framed as a form of NMT that maps between natural language and

a formalism instead of between two natural languages.

3.6.2 Planner

We adopt the planner introduced in Kuo et al. (2020b). In its original implementation, the

planner takes an LTL formula z and an environment e and produces action trajectories that

form a satisfying path of the agent. The planner extracts features from the environment

(represented as RGB image) in 5x5 patches around the agent using a CNN. These features

alongside the LTL formula are mapped to a hierarchical RNN and the output of the RNN is

used to predict the next most likely action. Given a potential execution trace y that is a series

of actions that satisfying the LTL formula z, the likelihood of the generated formula can be

computed according to ẑ, L(y|z, e). For our model, we focus on this, namely computing

a likelihood of our generated LTL formula ẑ given the set of k execution traces. This

likelihood L is likely to be noisier and weaker signal than if we were to use guaranteed

optimal paths, as our execution traces are just sampled until acceptance.
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3.7 Training

Our model receives a natural language command x and execution traces E as input and

generates both an LTL parse ẑ and a reconstruction of the natural language input x̂. We

refer to the learned parameters of the encoder, parser and generator as θenc, θparser and

θgen, respectively. For the objective function for the generator, we use a reconstruction loss

computed according to

L(z, ẑ) = −
∑
x

log p(x̂|x, θgen) (3.2)

For the objective function for the parser, we compare two different training schemes,

REINFORCE (Mnih et al., 2016) and iterative maximum likelihood. In both setups, we use

a reward based on the score from the planner. We jointly optimize both the generator and

decoder losses. For the encoder and decoder, we set the hidden dimension to 1000 and use a

dropout probability of p = 0.2. We train using the Adam optimizer (Kingma and Ba, 2015)

with a learning rate lr = 1e−3 and a batch size of 128. We set epsilon ε = 0.15 and use

k = 3 for the number of execution traces. During beam decoding at inference, we set the

beam width to 10.

3.7.1 REINFORCE

For the REINFORCE algorithm (Williams, 1992), we learn policy parameters and treat

the policy as the distribution over the output tokens. Here, since we are referencing the

parser, the output tokens are the LTL symbols. The expected reward for the policy gradient

is computed according to:

JRL =
∑

(x,E)∈D

∑
ẑ

R(ẑ, E)pθ (ẑ | x) (3.3)

We use Monte Carlo sampling to learn the parameters. We also use epsilon dithering by

randomly injecting noise into the distribution to encourage exploration.
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3.7.2 Iterative Maximum Likelihood (IML)

In the second approach of iterative maximum likelihood (IML), we directly learn the

parameters θenc and θparser following Liang et al. (2017) and Agarwal et al. (2019). IML

essentially works in two steps: first a sampling step where we find pseudo-gold examples

based on the high scoring generations and second, a gradient update step where treat the

generations as gold as use maximum likelihood. For the sampling step, we generate K

candidate formulas generated for input sentence x and compute the reward for each formula

using the planner. We keep the highest scoring generated formula for each sentence that

has a nonzero reward; e then train in a standard MLE framework. We repeat this process

iteratively, sampling candidates then doing 10 gradient update steps. We show pseudocode

for this process in Algorithm 1.

1 ∀x. Initialize z∗x = ∅ ;
2 for n = 1 to N do
3 for (x, E) ∈ D do
4 Ẑ ← {ẑi ∼ p(x; θ) | i ∈ 1..M};
5 for i = 1 to M do
6 if R(ẑi, E) > R(z∗x, E) then
7 z∗x ← ẑi
8 end
9 end

10 end
11 θ ← MLE({x}, {z∗x})
12 end
Algorithm 1: Pseudo-code implementation of our training using iterative maximum
likelihood. Recall that (x, E) is an example from the dataset where x is a natural
language command and E is a set of k executions. Generated LTL formulas are ẑ
and the set of generations across the entire dataset is Ẑ. M refers to the number of
execution steps for a given execution trace E that is used to normalize the reward R.

3.7.3 Reward

Recall that every formula can be represented by a Büchi automaton a. An example automaton

for the given command “Always move closer to the apple until you take the apple” and

corresponding LTL formula 2(CLOSER_APPLE ∪ APPLE) is shown in Figure 3-3. For a
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generated LTL formula z, corresponding automaton â and k execution sequences E, the

reward is computed according to

R(ẑ, E) =


1
k

∑
(ei,yi)

1
|yi|
∑

j L(yi,j | ẑ,yi,<j, ei) ∀(y, e) ∈ E.y ∈ â

0 otherwise
(3.4)

where L is the likelihood computed by the planner. The reward is the normalized across the

k executions and the number of steps in each execution trace e ∈ E. If any of the execution

sequences are rejected, the reward is zero. This helps to ensure that the generated formula

is actually capturing all of the constraints as represented different executions and not just

overfitting to a single execution. Because these sequences are just sampled, there is not a

guarantee that all constraints are covered so this still an imperfect metric.

q0start q2
C_APPLE ∧ ¬APPLE

APPLE

APPLE

C_APPLE ∧ ¬ APPLE

Figure 3-3: A nondeterministic finite state automaton for the LTL formula
2(CLOSER_APPLE ∪ APPLE) that corresponds to the natural language command “Al-
ways move closer to the apple until you take the apple”. LTL formulas can be automatically
converted to Büchi automaton using off-the-shelf algorithms; in this work, we use the Spot
(Duret-Lutz et al., 2016). For this example, the predicate APPLE is true when the agent is
holding the apple. The predicate C_APPLE is true when the robot is moving towards the
apple. Any execution that violates the “always” constraint by either moving away from the
apple or failing to pick it up will be rejected.

Equation (3.4) emphasizes two factors, namely permissiveness and efficiency, in com-

puting this reward. The formula needs to balance not being overly permissive, where

executions that do not actually satisfy the constraints are accepted, while also being effi-

cient, which means not including unnecessary predicates and operators. As a representative

example, take the natural language command “Go to the house and then go to the tree"

and a generated formula that essentially just encodes the meaning go to the house. This

generated LTL formula is efficient, by not encoding unnecessary semantics, but is also
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overly permissive and accepts any execution trace that goes to the house, even if it does

not go the tree. The planner therefore assigns a lower likelihood to this formula because a

simpler executions that do not go to the tree could have satisfied the constraints. For the

CCG parser, the equivalent concept would be CCG formulas like person(x) or even more

simply object(x) that are true of nearly every video and are therefore overly permissive. On

the other hand, efficient formulas that use as few symbols as necessary for conveying the

underlying meaning and do not include unnecessary components are also rewarded by the

planner by receiving a higher likelihood than a formula containing constraints not shown

in the traces. This similarly ties into the features implemented in Section 2.4 about the

Rational Speech Act (Frank and Goodman, 2012) regarding efficient communication. These

two factors, permissiveness and efficiency, provide opposite pressures and therefore work

together to encourage parser to generate optimal formulas.

Lastly, to more increase the efficiency of reward computation, we keep a cache of

previously computed scores for a given formula and execution. This is similar to the caching

described in Section 2.4. We also reject any formula that contains predicates that referred

to objects not observed in the environment. These two changes do not incorporate prior

knowledge about LTL or the specific environment and instead serve solely to speed up the

process of computing the reward.

3.8 Results

We present the parsing results for both the grammar-generated commands and the human-

generated commands. For the grammar generated commands, we show the results under full

supervision where the model has access to the gold formula, as well as the REINFORCE and

IML approaches, each with and without the generator reconstructing the original sentence.

We use a combination of metrics to estimate the model’s performance. First, the metric exec

shows what percentage of formulas accept all 3 execution traces; this is an overestimate of

true performance because accepting an execution trace doesn’t necessarily mean the model

fully understood the meaning of the command.

Plan shows how often the planner is able to produce an accepting trajectory of actions
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given our candidate formula. This is an underestimate of performance, given that there

are multiple ways to carry out commands and even two humans side-by-side may choose

different action sequences that are both equally valid and efficient. This is also evidenced by

the fact that the plan column’s performance is lower under supervision with the formula.

The next metric seq computes the F1 token match between the generated and ground-

truth LTL formulas. This is a relatively strict metric that even human annotators would

not perform perfectly on, because the same actions can be carried out for many different

reasons and many LTL formula are equivalent in context. Our last metric is exact, which

measures the percentage of predicted formulas that are perfectly equivalent to the ground

truth. This is similar to our exact match metric described in Section 2.6.2, just for the LTL

formalism instead of CCG. To compute the exact match, we convert both the generated

and ground-truth LTL formulas to an automaton and test whether they accept the same

languages. Like the seq metric, this is strict and does not necessarily test whether the two

formulas encode the same meaning. This is additionally apparent given that the conversion

from formula to automaton is not deterministic across different algorithms, showing that

different automata can encode the same formula.

For human-generated sentences, we show use the exec and plan metrics. Because we

don’t have ground-truth LTL formulas for these commands since they were not sampled

from an algorithm, we run a different baseline/ablation by supervising with random formu-

las. Again similar to the CCG-based parser project, the parser is able to still learn some

structures of the formalism even with random parses. This demonstrates that there is enough

systematicity in both the CCG and LTL formalism that the model can glean information

even from random parses totally uncorrelated with the language input. We also see that,

for both grammar-generated and human-generated sentences, having the generator does

provide a small performance boost. And even though the sentences differ between the

grammar-generated and human-generated sets, the performance is relatively comparable. In

both cases, the parser is able to produce LTL formulas that accept the execution sequences

and that the planner can leverage to make accepting action sequences. The full results are

shown in Table 3.3 and an example command and the model’s prediction for each training

scheme is shown is Table 3.4.
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grammar-generated human-generated

exec plan seq exact exec plan
supervised with formula 94.7 36.7 94.9 91.3 random 16.3 17.5
IML (no generator) 81.3 32.2 22.9 8.7 IML (no generator) 80.0 28.7
RL (no generator) 82.0 41.3 23.9 8.7 RL (no generator) 78.7 40.7
IML (full) 85.3 34.9 14.0 2.0 IML (full) 83.3 31.8

Table 3.3: A comparison of the results of our model trained using iterative maximum
likelihood and REINFORCE. We show the results for grammar-generated data (left) and
human-generated data (right) as well as the performance with and without the generator.
For the grammar-generated data, we show the baseline performance of training under full
supervision (maximum likelihood estimation) (labeled supervised with formula). We also
present an ablation that is the performance of the parser being trained on human-generated
using random formulas as supervision (labeled random).

natural language command either grab the apple or the pear and hold them forever
ground truth LTL formula 23Flag ∧ 23Orange
REINFORCE+generator 23(23Flag ∧3Orange)

IML+generator 23(Flag ∨ Orange)

Table 3.4: An example command from our dataset, alongside the ground-truth LTL formula
(as generated by the grammar) and the predictions from the REINFORCE + generator
and iterative maximum likelihood + generator training schemes. The predictions here
demonstrate some typical mistakes we found upon manual examination of the results. These
predicted formulas are difficult to differentiate from observations of the robot’s behavior,
which explains why erroneously generated formulas can still accept the observed traces.

We also run an ablation where we remove the planner and instead use a binary reward

that only indicates whether the automaton â representing the generated LTL formula ẑ

accepts the execution tracks E for actions y according to

R(ẑ, E) =

1 ∀(y, e) ∈ E.y ∈ â

0 otherwise
(3.5)

This is similar to the approach of Patel et al. (2019), where at each step the agent receives a

0/1 reward for whether the current step violates the LTL program. However, in this ablation

the model only receives a single binary reward instead of one at each time step. This

approach provides far less information than our likelihood-based approach that pressures the

model to produce both efficient and expressive formulas. We show the results in Table 3.5.
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For human-generated and grammar-generated data, for IML, we find a performance drop

of about 5-30% across the exec and seq metrics when we remove the planner and use the

binary reward. For exact and seq, we observe very small performance gains of around 1%.

IML relies on a continuous reward signal to rank generations and select the pseudo-gold

parses for maximum likelihood training, so this overall trend of large performance drop

when removing the planner is not unexpected. This highlights that, even if we were to use a

different planner, the important component is a continuous reward signal takes uses more

information than just an accept/reject.

For REINFORCE, we observe slightly different results. Only the plan metric shows a

consistent performance drop when removing the planner across all data. In exec the binary

reward occasionally outperforms, though it is inconsistent and widely variable. Given that

exec relies only on execution traces being accepted, and that the reward from a binary signal

and our planner will be the same in these instances, it is not surprising that the model is

able to and incentized to find the simplest formula that accepts the execution traces. The

plan metric instead relies on the formulas correctly encoding the underlying meaning so the

planner can generate an accepting action sequence. This again highlights why these two

metrics together are important for understanding behavior. We conclude that the planner

provides useful information that drives the parser to produce formulas that are not so general

that they fail to elicit the correct behavior.

3.9 Discussion

We present a grounded semantic parser that maps natural language commands to formulas in

linear temporal logic. Even with very minimal background knowledge about the environment

and essentially no prior knowledge about the LTL formalism, the model is able to learn

enough about the meaning and structure of the natural language to produce executable LTL

formulas for robotic execution. We train the model using weak supervision, with no access

to the ground-truth LTL formula at training time. Much like our work in Chapter 2, we

leverage external information – in this case, an interactive robotic executor – as supervision.

Even without any direct supervision in the form of ground truth LTL formulas, the model’s
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grammar-generated
exec plan seq exact

REINFORCE – binary reward 91.3 14.4 30.5 12.0
REINFORCE – full planner 82.0 41.3 22.9 8.7

Iterative Maximum Likelihood (IML) – binary reward 58.7 24.2 15.6 1.3
Iterative Maximum Likelihood (IML) – full planner 81.3 32.2 14.0 2.0

human-generated
exec plan

REINFORCE – binary reward 82.7 13.8
REINFORCE – full planner 78.7 40.7

Iterative Maximum Likelihood (IML) – binary reward 70.0 22.4
Iterative Maximum Likelihood (IML) – full planner 80.0 28.7

Table 3.5: Results of an ablation where we compare computing the reward from planner
described in Kuo et al. (2020b) versus a simpler binary reward. The binary reward is
computed based on whether the automaton â for the generated formula ẑ accepts the
execution traces. We show results for both the grammar-generated commands (top) and the
human-generated commands (bottom0.

performance under weak supervision is still competitive with supervised approaches as

shown in Table 3.3.

Learning under weak supervision presents both benefits and challenges. Weak su-

pervision removes the need for directly labels providing labels, paralleling children who

do not need or use direct feedback. Another large benefit is that labeling sentences with

logical forms can be expensive and laborious, especially when done by hand as required for

human-generated data. However, the challenges are in selecting the best mode of context for

the model. In our approach, we use an interactive framework where the model generates LTL

formulas and the planner computes the likelihood of the formula given observed execution

traces. We found that some concepts appear quite similar in the demonstrations and are

difficult to differentiate, leading to a noisy feedback signal. For instance, take the words

eventually and always; the execution sequences for these two commands might appear

similar (eventually going to the tree is encompassed by a demonstration that is always going

to the tree). This is similar to challenges faced in the parser presented in Chapter 2, where

visual concepts like pick up and move looked similar in the videos.

In our framework, we chose to incorporate the generator for reconstructing the original
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natural language command from the hidden representation from the encoder. This multi-task

training setup did improve performance, showing a 1-4% increase over training to just

decode into LTL alone. We could also consider other tasks that encourage the model to learn

an efficient intermediate representation. Lu et al. (2020) showed that training a vision and

language Transformer in a multitask setting improved performance; while we’re focused

less on transferring to multiple tasks, we are in a multimodal framework and may similarly

see gains in the parser if we incorporate other tasks into training.

We also present a challenging dataset for training and evaluation that includes two

sets of natural language commands for each given set of execution traces E. These sets

are grammar-generated sentences and more linguistically diverse sentences generated from

human annotators. For both sets of commands, the model is able to parse and generate

LTL formulas with success. Additionally, the process of sampling execution traces is not

particularly efficient as it requires sampling environments and actions until an accepting

sequence is found. This is partially why we opted to use 3 execution traces for each

command, though more traces would have provided more information to the model. Even

with a smaller number of execution traces, finding a formula to satisfy them all is still

nontrivial with chance performance being around 16%. This is an encouraging result with

respect to the trade-off between model performance and the labor required to produce

parallel corpora of sentence-formula pairs.

For our approach, we include a well-formedness constraint during generation. This is

the only syntactic knowledge we include in the model and it’s domain-independent, only

ensuring that the model has matching parentheses and the correct number of arguments

for a given predicate. We include no prior knowledge of the LTL formalism; this is an

improvement over our work in Chapter 2 where, while minimal, did provide some prior

knowledge in the form of the small seed lexicon. Ideally, we could also remove the well-

formedness constraint and the model could learn to reject these formulas on its own during

generation (i.e., by effectively assigning near-zero probability in the output distribution to

invalid continuations).

We could also experiment with trying different linguistic priors in the form of the

pretrained word embeddings. We use GloVE embeddings but could also consider using

65



deeper contextualized word embeddings from ELMo (Peters et al., 2018) or BERT (Devlin

et al., 2019). Kocmi and Bojar (2017) show pretrained word embeddings do outperform

random initialization for some tasks, and contextualized word embeddings outperform

GloVE (Liu et al., 2020), so this would be a logical approach for us to try.
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Chapter 4

Learning Generalizable, Compositional

Representations in a Grounded Setting

In this chapter we evaluate the role of pretraining in learning flexible disentangled represen-

tations for systematic generalization in an encoder-decoder framework. We first separately

pretrain two single-stream multimodal Transformers, (one for the encoder and one for

the decoder) using 5 task-agnostic pretraining objectives and then we jointly finetune the

encoder-decoder on gSCAN, a grounded navigation task. We select the pretraining tasks

to not be overly catered toward gSCAN, instead aiming to learn reusable representations

for the grid world, linguistic and action representation spaces. During finetuning, given

a natural language command and an initial world state, our approach iteratively decodes

a sequence of actions of length N by predicting a sub-sequence of actions of length M

where M << N The model updates and re-encodes the world state after each sub-sequence

until the EOS token has been reached. We find that the pretrain-then-finetune approach

with iterative decoding works well on gSCAN, performing comparably to prior work on

the evaluation splits that have been mostly solved and leading to solid improvements on the

novel direction and length generalization splits.
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4.1 Motivation

Language is inherently compositional, as components like words and phrases can be infinitely

combined to form novel meanings (Chomsky, 1965). This compositionality allows humans

to both generate and understand a nearly limitless number of sentences. Children as young as

preschool age have demonstrated the ability to generalize novel words and functions (Barner

and Snedeker, 2008; Piantadosi and Aslin, 2016). Though language models similarly learn

powerful linguistic representations, they still struggle at tasks requiring systematic and

compositional generalization (Glockner et al., 2018; Finegan-Dollak et al., 2018; Jha et al.,

2020; Bahdanau et al., 2019b; Hupkes et al., 2020). These struggles are apparent in pure

language tasks as well as multimodal approaches.

We present a framework where we separately pretrain two multimodal Transformers

– one encoder and one decoder – that we then finetune on gSCAN with a novel decoding

strategy that leads to improvements on systematic generalization. Taking encoder-only

checkpoints like BERT (Devlin et al., 2019) or decoder-only pretrained checkpoints like

GPT (Radford et al., 2018) and finetuning them for an encoder-decoder framework builds

on the work of Rothe et al. (2020). In our case, we pretrain models that we then finetune for

mapping from initial world states and natural language commands to a sequence of actions.

gSCAN is a synthetic navigation benchmark that focuses on rule-based and length-based

generalizations during inference. The world states are represented as grids that contain

both distractor objects and objects relevant to the target command. For pretraining the two

models, we use five total pretraining tasks – masked language modeling, object attribute

prediction, target object prediction, nearest object to the agent prediction, and masked

action prediction, which we detail in Section 4.5. The pretraining tasks were designed to

encourage the model to 1) learn visually grounded linguistic representations for words in the

commands 2) to learn disentangled representations for the objects and their attributes that can

be compositionally combined at later stages 3) to use cross-modal attention to understand

the relationship between the actions the agent takes and the words in the command and 5)

to learn identify the target object during the encoding stage to guide planning the action

sequence during the decoding stage.
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For the decoding strategy, we balance the runtime benefits of decoding the entire target

sequence in one forward pass with the benefits of having more world state information by

predicting a single action at each timestep and recursively re-encoding the world state. We

train the model to predict sub-sequences of actions of length M , re-encoding the world state

after each sub-sequence, instead of predicting the entire sequence of length N in one step.

This approach is much more efficient than predicting one action at each timestep, which

would require N total forward passes, and performs better than decoding all actions in a

single pass on certain splits of gSCAN. Our contributions are a multimodal encoder-decoder

Transformer framework that reaches state of the art performance on a number of splits

for gSCAN. We show how multimodal pretraining leads to learning reusable visual and

linguistic representations and to better systematic generalization.

4.2 Related Work

A number of benchmarks have been introduced to test generalization in language models.

Lake and Baroni (2018) introduce the SCAN benchmark, where models must learn to map

natural language commands to a sequence of actions. SCAN tests how well sequence-to-

sequence models perform when the test set requires a knowledge of systematic rules (e.g.,

being able to understand the meaning of run and slowly when training only had examples

combining walk and slowly), and their results show that sequence-to-sequence models

struggle to generalize on SCAN. Kim and Linzen (2020) similarly probe the systematic

generalization abilities of language models, instead testing models ability to map natural

language sentences to logical forms through their dataset COGS. They show that both

LSTMs and Transformers perform near-perfect when test data is in-domain with the training

yet struggle significantly on out-of-domain data requiring steeper generalizations.

There are also numerous benchmarks in the multimodal space. CLOSURE (Bahdanau

et al., 2019a), which builds on CLEVR (Johnson et al., 2017), is a visual question answering

(VQA) dataset of visual scenes containing objects with questions designed to minimize

dataset bias. In CLOSURE, the inference examples contain the same scene structure as

CLEVR but use novel linguistic constructions for the questions. CURI is another VQA
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benchmark where the questions at test time are out-of-domain and must be answered under

uncertainty Vedantam et al. (2021). Ruis et al. (2020) build on the generalization data

of SCAN, presenting grounded SCAN (gSCAN) that tests systematic generalization in

grounded command-following domain and is the dataset we use for training and inference

in this chapter. Heinze-Deml and Bouchacourt (2020) present a LSTM-based sequence-

to-sequence approach to gSCAN that encourages the agent to “think before acting", by

first identifying the target object before navigating to it. We use the same approach for

one of encoder pretraining tasks as well.Kuo et al. (2020a) take a structured approach of

using constituency, dependency and semantic parsers to produce formal representations of

the natural language command that they then use to build compositional networks based

on the parse as a graph. This approach requires access to pretrained parsers, limiting its

ability to generalize to ungrammatical commands or commands that are out of domain.

Gao et al. (2020) propose a language-conditioned representation for the objects in the grid

using message passing; in our framework, the representations of commands are always

conditioned on the world state as well. Ruis and Lake (2022) use data augmentation to

modify the training a set and a modular network to train on gSCAN; in their approach, they

are able to show noticable improvements, though only on two of the splits.

Qiu et al. (2021) present the first Transformer-based approach to gSCAN; of the prior

work approaching this problem, our model architectures are the most similar. They use

two-stream encoder, where the input command and world state are each encoded by separate

Transformers, then a single-stream decoder attends to the encoder outputs and the action

sequence. Instead of training from scratch on gSCAN, we use the pretrain-then-finetune

paradigm, using pretraining objectives designed to learn disentangled representations for

the language, actions and grid world. We also use a different decoding strategy, instead of

the traditional approach of predicting the entire sequence conditioned on the encoder output

in a single forward pass. Setzler et al. (2022) present an RNN-based approach that uses

recursive decoding, where at every timestep the model re-encodes the current world state

before decoding the next action. They also use random starting orientations for the agent

(instead of always facing east), whcih leads to large improvements on the novel direction

task; we implement this in our approach as well. We also train the model to recursively
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re-encode the world state, but do not re-encode at every timestep as this is time-intensive.

We instead predict sub-sequences of actions of length M for a full target sequence of length

N , where M << N . This is a different approach to decoding that is more efficient and

similar to the sequence-to-sequence approach Ruiz et al. (2021), who decode in sub-steps as

well.

4.3 Notation and Data

Each gSCAN example is defined as (x, {ai, Ei}), where x is a natural language command

and {ai} is the set of actions paired with grid world states {Ei}. The action space A is the

set of actions an agent can take can complete the command, where A = {turn left, turn

right, walk, stay, push, pull}. Each grid world state Ei can be represented as d × d × c

matrix, where d is the height/width of the grid and c is the total number of objects and

attributes. There are two training data splits, the compositional split and the target length

split. We provide further details on the type of generalization for each inference split in

Appendix A. For the compositional split, the grid world is 6× 6 and for the target length

split, the grid world is 12× 12. Objects in the grid world are defined by three attributes in

their shape (square, circle, cylinder), color (red, yellow, blue, green) and size (1,2,3,4). Each

object additionally has the latent of attribute of weight, which is either heavy (requiring two

push/pull actions) or light (requiring one push/pull action) based on their size. Examples

from both training splits are shown in Figure 4-1. We also detail each inference split in

Appendix A.

4.4 Model

We train a multimodal Transformer-based encoder-decoder that takes a natural language

input command, e.g., Go to the red square, and a corresponding grid world, and generates a

sequence of actions. We describe the architecture for the encoder and decoder, the specific

decoding strategy we use, and the pretraining objectives. A diagram of the full model is

shown in Figure 4-2.
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(a) compositional split, consisting
of 6×6 grids

(b) target length split, consisting of
12×12 grids

Figure 4-1: Examples of the grid world provided as input to the model, shown here as an
RGB image, for the compositional split (left) and target length split (right). The agent is
represented by the pink triangle.

4.4.1 Encoder

The encoder takes a tokenized natural language command x and grid world representation

Ei. The tokenized command is embedded by the command embedding module (see Figure 4-

2) in the same manner as BERT, using word and position embeddings. We exclude token

type embeddings as all tokens correspond to the same sentence. The world state Ei is a

d× d× c matrix that gets embedded by the grid embedding module, a multi-level CNN. A

learned image token [IMG], similar to the [CLS] token for the language side, is prepended to

the CNN output. The embedded command and world state are concatenated and then jointly

passed to the Transformer blocks. The output of the encoder, henc, is represented by NI

hidden states corresponding to the image tokens followed byNT hidden states corresponding

to the language tokens. The hidden states corresponding to the [IMG] and [CLS] tokens,

representing the image and text modality respectively, are used for classification tasks during

pretraining.

4.4.2 Decoder

Decoding Strategies used by Prior Work

In a conventional encoder-decoder framework, the decoder is conditioned on the encoder

hidden states henc and uses the previously generated tokens to predict the next token. This
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decoding in gSCAN is represented as a conditional distribution p(ai|a<i, henc) where ai

refers to the action at timestep i. For a BERT-style approach like that of Qiu et al. (2021),

the decoder uses unidirectional attention instead of bidirectional attention and generations

predictions autoregressively. Ruiz et al. (2021) modify the conventional approach and

instead use an iterative approach, where the model decodes by generating the output in

sub-steps. The conditional distribution is represented as p(ai:i+m|a<i, henc), where ai:i+m is

a predetermined sub-sequence of the full action sequence a. In their approach, the sub-steps

are task-specific and require being generated from the original training examples. The other

approach to decoding we’ll cover is the recursive approach of Setzler et al. (2022) where, at

every time step i, the decoder predicts a single action and then the world state is updated by

the encoder to produce new encoder hidden states hi+1
enc . The conditional distribution for an

action at ai is represented as p(ai|a<i, hienc). For an action sequence of length N , the model

makes N forward passes through both the encoder and the decoder. The model performs

better on certain inference tasks as it learns less entangled representations and treats each

prediction as a sub-task, but the trade-off is significantly less efficient decoding at both train

and inference time.

Our Decoding Strategy

Our approach is a hybrid of iterative and recursive approaches, where we first predict a sub-

sequence of actions, then update and re-encode the world state using the encoder and repeat

the process until the entire action sequence has been predicted. We differ from Ruiz et al.

(2021) in that we do not incorporate any task-specific priors into deciding sub-sequences,

instead just deciding on an arbitrary sub-sequence length M where 1 ≤M ≤ N . We refer

to a sub-sequence of actions starting at timestep i as asubi = ai:i+M , again of length M .

Concretely, at time step i, the decoder attends to the encoder hidden states from timestep i

conditioned on the command and world state Ei−1, the previous decoder hidden states from

timestep t− 1, and finally the previously predicted actions in the current sub-sequence asubi .

The conditional distribution is represented as p(aj|asub<j , h
i
enc, h

i−1
dec ). The model performs a

total of M
N

forward passes.

We also have one additional change that differ from prior work on gSCAN. In our

73



approach, the model receives a compressed representation of the previous world state at

every timestep alongside the previous actions. During training, the decoder receives ground-

truth actions and world states because we use teacher forcing; during inference, the model

receives the previously predicted actions and their corresponding world states. The world

states are encoded in the same way as the encoder, using a multi-scale CNN. We add an

additional linear layer to project from the d2 tokens produced by the CNN (for a d× d grid)

to a single token for each time step. This reduces the sequence size to make the approach

more computationally feasible.

4.5 Pretraining

We pretrain the encoder using 3 pretraining objectives and the decoder using 2 different

pretraining objectives. Recall that the encoder receives the tokenized input command

x and the image of the initial grid E0 as input and the decoder receives the grid world

paired with the (masked) actions for each timestep. We modify the data used for encoder

pretraining by randomly sampling a starting orientation for the agent; for the decoder data,

we sample random starting orientation and random action sequences that do not overlap at

all with the primary gSCAN training data. We have separate pretraining checkpoints for the

compositional and target length splits as they have different grid sizes. The action sequence

length is capped at 15 for the target length split.

Encoder Pretraining Tasks

Masked language modeling (MLM) with world state: This task is standard for vision and

language Transformer models and builds off MLM introduced in BERT. A subset of the

tokens in the natural language command x are randomly masked. Following the MLM

approach of BERT, masked tokens are replaced with the [MASK] token 80% of the time,

with another random word from the vocabulary 10% of the time, and are left unchanged the

rest of the time. The model uses the bidirectional context from the other tokens in x and

from the image tokens for the initial grid E0 to predict the masked tokens. We use whole

word masking, where if any masked token is a subtoken, the remaining subtokens for the
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(a) Model architecture for pretraining, with the encoder on the left and the decoder on the right. The
encoder and decoder are architecturally identical aside from the embedding layers.
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(b) Model architecture for finetuning (or training from scratch) on GSCAN.

Figure 4-2: Diagram of the multimodal encoder-decoder architecture used to map from
natural language commands to action sequences. While the pretraining and finetuning
diagrams are shown on the same example for ease of comparison, note that the actions
seen by the model during pretraining are completely random and never appear in any of the
gSCAN splits.
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word are also masked.

Image attribute prediction: This task focuses on learning disentangled representations

for the objects in the grid. For each image token, which after embedding corresponds to a

single grid cell, we classify the image representations from the final hidden layer to predict

the set of attributes (color, shape and size) contained within each cell containing an object.

Target object location prediction: This task is similar to that of Heinze-Deml and Boucha-

court (2020), where the agent must identify the target object before planning the sequence

of actions. We take the final hidden states corresponding to the [IMG] and [CLS] tokens

from the image and text inputs and predict the location of the target object.

Decoder Pretraining Tasks

Closest object prediction: This task focuses on learning disentangled representations for

the object attributes for the decoder, similar to the image attribute prediction task. Instead

of predicting the set of object attributes for every cell, the model is tasked with predicting

the attributes of the nearest object(s) to the agent. This also encourages the model to keep a

mapping of where the agent is and what it is moving toward.

Masked action prediction: This task is similar to MLM, where the model must predict the

masked actions using the surrounding context. However, instead of relying on the context of

language around the masked tokens as there is not an inherent linguistic structure amongst a

list of actions, we sample random actions given a starting environment, mask every action

and train the model to use the compressed grid representations to understand the actions that

took place.

4.6 Finetuning

The task-specific finetuning takes the command and pairs of actions and grids and learns to

map to the target sequence of actions. During training, we use teacher forcing where the

model has access to the ground truth action and grid at each timestep. During inference,

the model receives only the start token ([CLS]) and the initial world state as input; each

subsequent action and corresponding world state are produced auto-regressively. The model
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receives only the initial action (represented as the start token [CLS]) and the initial grid;

each predicted action ai updates the world state for the next grid Ei+1, which is then passed

as input to the model. The prediction continues until either the stop token [SEP] is predicted

or the model reaches the maximum sequence length.

4.7 Experiments

4.7.1 Setup & Model Details

We implement all code in PyTorch in the HuggingFace Transformer’s library (Wolf et al.,

2020). Both the encoder and decoder are 6 Transformer layers with 8 attention heads per

layer following Qiu et al. (2021). The hidden dimension is 128 and the intermediate size

is 256. We use the relative position embeddings introduced by Huang et al. (2020) for all

implementations, which generally perform better on long sequences than absolute position

embeddings. We use a single encoder for the command and world state of the encoder,

also making for a slightly smaller model totaling ∼2.3 parameters compared to the 3M

parameters of Qiu et al. (2021). The CNN kernel sizes are 1,5,7 and 9 for the 6x6 grids

and 1,7,9 and 13 for the 12x12 grids. For the compositional split, the batch sizes are 64

and 128 per device for the encoder and decoder during pretraining and 16 per device for

the finetuning with sub-sequence lengths of 20. For the length split, the batch sizes are 32

and 64 per device for the encoder and decoder during pretraining and 16 per device for the

finetuning with sub-sequence lengths of 3. For all pretraining runs, we use a learning rate of

1e-3 with a linear warmup for the first 10% of gradient update steps and a weight decay of

0.01. For finetuning, we use learning rate of 1e-3 for the compositional split for 10 epochs

and 2e-5 for the length split for 15 epochs. We train using 8 GPUs for all runs.

4.7.2 Results

Table 4.5 shows the results for the generalization splits in averaged across 3 runs with

different random seeds. For the compositional split, we trained the provided examples as

well as with examples modified with random starting orientations for the agent, similar
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A: Random B: Yellow Squares C: Red Squares
Ruis et al. (2020) 97.69 ± 0.22 54.96 ± 39.39 23.51 ± 21.82
Andreas (2020) 87.6 ± 1.19 34.92 ± 39.30 78.77 ± 6.63
Kuo et al. (2020a) 97.32 95.35 80.16
Heinze-Deml and Bouchacourt (2020) 94.19 ± 0.71 87.31 ± 4.38 81.07 ± 10.12
Gao et al. (2020) 98.6 ± 0.95 99.08 ± 0.69 80.31 ± 24.51
Qiu et al. (2021) 99.95 ± 0.02 99.90 ± 0.06 99.25 ± 0.91
Setzler et al. (2022) 99.22 ± 0.16 82.28 ± 11.5 56.29 ± 7.42
Setzler et al. (2022) (RO) 99.22 ± 0.16 82.28 ± 11.5 56.29 ± 7.42
Ruis and Lake (2022) 96.34 ± 0.28 59.66 ± 23.76 32.09 ± 9.79
Our Model 100.0 ± 0.0 99.5 ± 0.8 88.2 ± 14.9
Our Model (RO) 99.9 ± 0.0 99.8 ± 0.1 98.2 ± 0.4

Table 4.1: The results on gSCAN for our model compared to previous approaches across
the 3 generalization splits. “RO" refers to runs where the model saw a random starting
orientation for the agent.

to Setzler et al. (2022). Splits A, B, C, E and F are already “solved" splits with prior

work achieving near-perfect performance (notably Qiu et al. (2021)); we reached similar

performance using our approach on these splits as well. We observe the most noticeable

gains on split D, the novel direction split, which had the lowest performance by far on

previous approaches. Our model each 89.3% accuracy, nearly doubling the closest results

from Setzler et al. (2022), which along with Kuo et al. (2020a), were the only approaches to

get any examples correct during inference. For the target lengths, our model achieves high

performance of ∼94% on generalization split and perfect performance on the in-domain

split (sequences ≤ 15). It is well above the RNN baseline presented in the original gSCAN

paper and also outperforms the results of Setzler et al. (2022) by about 10%.

Ablations

To test the contribution of first pretraining the model on task-agnostic objectives and then

finetuning on the task-specific, command-to-action data, we compared the best approaches

for the compositional and target length splits in the previous section to models trained from

scratch. For a more fair comparison since pretrained models to converge more quickly,

we increased the train time to 20 epochs. For the compositional split, we do not observe

a distinct difference on the splits that are effectively solved. For some splits, the model
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D: Novel Direction E: Relativity F: Class Inference
Ruis et al. (2020) 0.00 ± 0.00 35.02 ± 2.35 92.52 ± 6.75
Andreas (2020) 0.00 ± 0.00 33.19 ± 3.69 85.99 ± 0.85
Kuo et al. (2020a) 5.73 75.19 98.63
Heinze-Deml and Bouchacourt (2020) - 52.8 ± 9.96 -
Gao et al. (2020) 0.16 ± 0.12 87.32 ± 27.38 99.33 ± 0.46
Qiu et al. (2021) 0.00 ± 0.00 99.92 ± 1.16 99.98 ± 0.01
Setzler et al. (2022) 3.11 ± 0.87 57.99 ± 7.21 98.51 ± 0.28
Setzler et al. (2022) (RO) 43.60 ± 6.05 53.89 ± 5.39 95.74 ± 0.75
Ruis and Lake (2022) 0.0 ± 0.0 49.34 ± 11.6 94.16 ± 1.25
Our Model 0.0 ± 0.0 99.9 ± 0.1 100 ± 0.0
Our Model (RO) 89.3 ± 15.5 99.8 ± 0.0 99.9 ± 0.0

Table 4.2: The results on gSCAN for our model on another 3 generalization splits. “RO"
refers to runs where the model saw a random starting orientation for the agent.

without pretraining performs slightly better but these splits are within a point. We do however

observe a major difference on split D, which tests commands that require going in a novel

direction. The difference between the model trained from scratch versus finetuned from

pretrained checkpoints is more distinct for the target length split. The performance differs

by 4% for target sequence lengths up to 17 and 20% overall. Recall that during pretraining

for this split the random action sequences are up to, but not longer than, 15 actions total to

ensure the model is not skewed by seeing long sequences before the finetuning stage.

4.8 Discussion

We present a framework for a pretrained multimodal encoder-decoder Transformer that

uses a novel decoding strategy and improves performance on two gSCAN splits. First,

we separately pretrain two models using 5 total pretraining tasks, inspired by the work of

Rothe et al. (2020) showing that individual checkpoints can be finetuned in an encoder-

decoder framework. Finetuning from pretrained checkpoints requires fewer iterations

than training from scratch, making it more computationally efficient to evaluate different

hyperparameters and other variations in training. Additionally, the pretraining tasks we

presented are transferable to over vision and language navigation domains as well. The

pretraining led to learning cross-modal, reusable representations that ground natural language
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G: Adverb k-shot, k=1 H: Adverb to Verb
Ruis et al. (2020) 0.00 ± 0.00 22.7 ± 4.59
Andreas (2020) 0.00 ± 0.00 11.83 ± 0.31
Kuo et al. (2018) 11.94 21.95
Heinze-Deml and Bouchacourt (2020) - -
Gao et al. (2020) - 33.6 ± 20.8
Qiu et al. (2021) 0.00 ± 0.00 22.16 ± 0.01
Setzler et al. (2022) 0.00 ± 0.00 21.94 ± 0.15
Setzler et al. (2022) (RO) 0.00 ± 0.00 21.95 ± 0.03
Ruis and Lake (2022) 80.04 ± 6.06 (k=5) 76.84 ± 26.94
Our Model 0.0 ± 0.0 22.2 ± 0.0
Our Model (RO) 0.0 ± 0.0 22.4 ± 0.3

Table 4.3: The results on gSCAN for our model on the remaining two generalization splits.
“RO" refers to runs where the model saw a random starting orientation for the agent. Note
that the Ruis and Lake (2022)’s k-shot results for split G for are reported for k=5, instead of
k=1.

I: Length
l ≤ 15 l ≤ 16 l ≤ 17 overall

Ruis et al. (2020) 94.98 ± 0.1 19.32 ± 0.02 1.71 ± 0.38 2.10 ± 0.05
Setzler et al. (2022) - - - 84.42 ± 3.24
Our Model 100.0 ± 0.0 98.2 ± 0.5 98.2 ± 0.4 94.2 ± 0.7

Table 4.4: The results on gSCAN for Ruis et al. and our model on the length generalization
split. The remaining models did not train or evaluate on this split and are therefore excluded
from this table.

in the grid world and map actions to changes in world states. We also use a different approach

to decoding than prior work, by generating subsequences of actions of length M and then re-

encoding the world state until we reach the full action sequence. This balances the efficiency

of generating entire sequences during training in one forward pass with the benefits of more

world knowledge through re-encoding the world state while generating the sequence.

We find our model performs particularly well on the novel direction split and the length

generalization split. For two of the splits involving generalizing an adverb to a novel verb

and perform k-shot learning, the performance is still low like most prior work except that of

Ruis and Lake (2022). In future work, we want to explore freezing portions of the model

and only finetuning lower layers. We also want to explore different model sizes and perhaps

using data augmentation to increase the size of the pretraining dataset. Using a random
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compositional split using random orientation
A B C D

w/o pretraining 99.6 ± 0.5 99.6 ± 0 5.1 ± 3
with pretraining 98.1 ± 0.4 98.2 ± 0.5 99.8 ± 0.1 89.3 ± 15.5

E F G H
w/o pretraining 1 ± 0 99.9 ± 0 0 ± 0 22.4 ± 0.4
with pretraining 99.8 ± 0 99.9 ± 0 0 ± 0 22.4 ± 0.3

target length split
l ≤ 15 l ≤ 16 l ≤ 17 overall

w/o pretraining 99.9 ± 0.0 94.7 ± 3.1 94.7 ± 3.1 74.01 ± 6.1
with pretraining 100.0 ± 0.0 98.2 ± 0.5 98.2 ± 0.4 94.2 ± 0.7

Table 4.5: We ran an additional ablation where we trained from scratch without the pretrained
checkpoints. We observe a performance drop of around 6% for lengths up to 17 and around
24% overall.

starting orientation during pretraining and finetuning already represents a modification to the

underlying data that shows the model more variety and demonstrates improved performance.

More specific to our model, we can investigate the role of the length of the sub-sequence;

there is an inherent trade-off between training and inference time and performance and

we can explore finding the optimal space. We chose sub-sequence lengths of 20 and 3 for

the compositional split and length splits, respectively, due to the overall sequence lengths

during training. A final limitation, as noted by Setzler et al. (2022), is that this approach is

able to be implemented because we can easily generate intermediate world states based on

ground-truth or predicted actions. This would be much more difficult in a framework that

requires significantly more time to compute the intermediate states. Co-training a model to

estimate world states based on the prediction could be interesting future work as well.
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Chapter 5

Measuring Social Bias in Multimodal

Transformers

In the previous chapter, we explore the role of fine-tuning and a modified decoding strategy

in systematic generalization. In this final work, we investigate generalization from a different

angle, notably the ability of pretrained vision and language (V&L) Transformers to see

beyond demographic associations in their training data. Prior work such as the Word

Embedding Association Test (WEAT) and Sentence Encoder Association Test (SEAT) and

has been introduced to probe the presence of social biases in word embeddings for language

models. We introduce metrics, Grounded WEAT and Grounded SEAT, for multimodal

models and demonstrate that three generalizations answer different yet important questions

about how language and vision interact in terms of social bias in models. Because these

metrics can be used to test any pretrained model, our goal is for them to be used as a

benchmark for bias mitigation in future work.

When considering models to probe, we focus on BERT-style architectures that have

been adapted into the vision and language domain. These models surpass previous state-of-

the-art results on V&L tasks like visual question answering and NLVR2 (Suhr et al., 2019)

achieved by RNN-based approaches. Similar to language tasks, these models become state-

of-the-art on multimodal tasks like visual question answering and NLVR2 (Suhr et al., 2019).

Alongside presenting new metrics, we also release a dataset for evaluating multimodal

bias created by augmenting standard linguistic bias benchmarks with over 10k images
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from MS-COCO, Conceptual Captions, and Google Image Search. Dataset construction is

challenging because image captioning datasets like MS-COCO and Conceptual Captions

that are used to train these vision and language Transformers are themselves skewed and

tend to lack diversity. This made the task of finding enough data to probe the space of

biases difficult. Using this dataset and the metrics we introduce, we show that 4 large-scale

pretrained models encode social bias, struggle to incorporate new evidence, and are impacted

by both the language and vision modalities when learning these biases. The presence of

these biases in systems will begin to have real-world consequences as they are deployed,

making carefully measuring bias and then mitigating it critical to building a fair society.

5.1 Motivation

Introduced by Greenwald et al. (1998), the Implicit Association Test (IAT) is a method

in psychology to measure implicit biases in humans. The IAT uses response times on a

classification task to measure the strength association between concepts (e.g., flowers and

insects) and attributes (e.g., pleasant and unpleasant). The IAT, alongside metrics derived

from it that test preschool and school-aged children, essentially demonstrates that humans

of all ages learn both benign and more harmful biases. To similarly probe biases in language

models, Caliskan et al. (2017) adapted the IAT for word embeddings by introducing the

Word Embedding Association Test (WEAT). Instead of measuring response times, WEAT

measures distances between words in the model’s embedding space. WEAT initially probed

then state-of-the-art word embedding model GloVE and found its embeddings do encode

social biases and that these biases parallel those of humans. Deep contextualized word

embeddings such as those from ELMo (Peters et al., 2018), BERT (Devlin et al., 2019) and

GPT (Radford et al., 2018) have been tested using WEAT as well and encode biases similar

to the GloVE embeddings. WEAT has also been extended to test the encodings of entire

sentences through the Sentence Encoder Association Test (SEAT) (May et al., 2019) and

to the encoding of specific words in context (Tan and Celis, 2019). Beyond just biases in

language, Steed and Caliskan (2021) present the Image Encoder Association Test (iEAT) for

probing biases in image representations; with a method and data similar to WEAT, iEAT
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analyzes deep representations from unsupervised vision models and has found that harmful

social biases are learned by these models too. What all of these approaches have in common

is that they build on the foundations laid by the IAT to probe the encodings from models in

either the language or vision domain.

We take the next step and demonstrate how to test visually grounded embeddings,

specifically embeddings from large-scale vision and language Transformers pretrained on

image captioning data, by extending prior work into what we term Grounded-WEAT and

Grounded-SEAT. We evaluate four multimodal BERT-based Transformer models, ViL-

BERT (Lu et al., 2019), VisualBERT (Li et al., 2019) , LXMert (Tan and Bansal, 2019)

and VL-BERT (Su et al., 2019), which we strategically selected for their architectural and

training differences. Grounded embeddings are used for many consequential tasks in natural

language processing, like visual dialog (Murahari et al., 2019) and visual question answer-

ing (Hu et al., 2020). Many real-world tasks such as scanning documents and interpreting

images in context employ joint embeddings as the performance gains are significant over

using separate embeddings for each modality. It is therefore important to measure the biases

of these grounded embeddings.

Specifically, we seek to answer three questions about embeddings obtained from

multimodal models. First, do multimodal embeddings encode social biases? As noted,

many prior works have demonstrated the presence of social biases in deep representations

trained from language-only input or image-only input. We are curious about multimodal

embeddings, where the two modalities interact and mutually inform one another. The data

used to train these multimodal models might differ enough that we find different types and

magnitudes of encoded bias. Using our metrics presented in this chapter, we find equal or

larger biases for grounded embeddings compared to the language-only embeddings reported

in May et al. (2019). We hypothesize that this may be because visual datasets used to train

multimodal models are much smaller and much less diverse than language datasets. For

our second question, we ask can grounded evidence that counters a stereotype alleviate

biases? The advantage to having multiple modalities is that one modality can demonstrate

that a learned bias is irrelevant to the particular task being carried out based on the other

modality. We find that the bias is largely not impacted, i.e., direct visual evidence against
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a bias helps little. Lastly, we ask to what degree are biases encoded in grounded word

embeddings from language or vision? It may be that grounded word embeddings derive

all of their biases from one modality, such as language. In this case, vision would be relevant

to the embeddings and downstream task, but might not impact the measured bias. We find

that, in general, both modalities contribute to encoded bias, but some model architectures

are more dominated by language.

To probe the models and answer the above question, we curated a dataset of images and

English captions, where the captions are drawn from prior bias tests for language models.

We first extracted images from COCO (Chen et al., 2015) and Conceptual Captions (Sharma

et al., 2018); the images and captions in these datasets lack diversity, making finding data

for most existing bias tests using these datasets alone nearly impossible. To address this, we

gathered additional data from Google Image Search that depicts the targets and attributes

required for all bias tests considered leading to around 10k total images.

Our contributions are as follows. We present two new metrics, Grounded-WEAT

and Grounded-SEAT, that are used to answer three questions about biases in grounded

embeddings. While we specifically focus on vision and language Transformers, these

metrics can be used for any model that has two distinct modalities that it encodes. Alongside

these metrics, we present a new vision and language bias probing dataset for testing these

biases in vision-and-language models. We demonstrate that grounded word embeddings

have social biases (Experiment 1), show that grounded evidence has little impact on social

biases (Experiment 2), and finally show that biases come from a mixture of language and

vision (Experiment 3).

5.2 Related Work

5.2.1 Vision and Language Transformers

Prior to the introduction of the Transformer, most vision and language models used fea-

tures extracted from a CNN, often VGG (Simonyan and Zisserman, 2015) or ResNet (He

et al., 2016), to encode the image and concatenated these features with text embeddings
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to pass through an RNN. Transformer-based architectures for language have been adapted

to multimodal frameworks by a wide range of works including VisualBERT (Li et al.,

2019), ViLBERT (Lu et al., 2019), LXMERT (Tan and Bansal, 2019), CLIP (Radford

et al., 2019), Unicoder-VL (Li et al., 2020a), VinVL (Zhang et al., 2021a), Oscar (Li et al.,

2020b), UNITER (Chen et al., 2020), and VILLA (Gan et al., 2020). The models differ by

architecture- either single stream where the two modalities are concatenated and then jointly

encoded by a single stack of Transformer blocks or two-stream where two Transformer

blocks seperately encode the modalities; by attention, which is either uni-modal, where

a given modality only attends to itself, or cross-modal, where each modality can attend

to the other; and lastly by pretraining objectives, with the most common being masked

language modeling, masked region modeling (either as a classification for a masked region

or a regression over masked features) and image-text alignment where an image or caption

is randomly sampled a given percentage of the time similar to the next-sentence prediction

objective introduced by BERT.

5.2.2 Social Bias in Humans & Word and Image Embeddings

Psychologists have developed methods to probe for intrinsic biases in humans. One such

metric is the Implicit Association Test (IAT) (Greenwald et al., 1998), which measures

participants’ response times using a classification task for two target concepts and two

attributes. These target concepts and attributes can cover relatively benign biases, like more

strongly associating pleasant words with flowers and unpleasant words with insects, as

well as harmful social biases, like associating women with being weak and men with being

strong. These social biases have negative implications for the most marginalized people.

For instance, biases based on someone’s name and therefore perceived race can impact job

prospects (Bertrand and Mullainathan (2004) showed applicants perceived to be Black are

much less likely to receive job interview callbacks than their white counterparts). These

prejudices present themselves early and have been found in preschool and elementary school

children (Cvencek et al., 2011; Baron and Banaji, 2006).

Models that train word embeddings are widespread, from simpler non-contextualized
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approaches like bag-of-words, skip-gram and GloVE (Mikolov et al., 2013; Pennington

et al., 2014) to deeper, contextualized models (Mikolov et al., 2013; McCann et al., 2017;

Devlin et al., 2019; Peters et al., 2018; Radford et al., 2018). Given their appeal as reusable

meaning representations, pretrained word embeddings are often used to initialize various

NLP systems. This widespread use is one reason it’s important to measure and ideally

mitigate the presence of harmful social biases in these embeddings.

Bolukbasi et al. (2016) probe the geometry of word2vec embeddings trained on Google

News for gendered stereotypes. Using a she-he subspace, the authors find gendered stereo-

types (e.g., an analogy to nurse-surgeon) and validate them using participants on Amazon

Mechanical Turk. While this work is not explicitly focused on identifying human-level

biases as validated by formal psychology experiments, the authors do use human participants

to validate that the analogies found using the geometry of the embedding space are indeed

stereotypical.

Around the same time, Caliskan et al. (2017) introduced the Word Embedding Asso-

ciation Test (WEAT). Instead of focusing on explicit analogies, WEAT measures implicit

biases by looking at the average distances in the vector space between target concepts, e.g.,

gender and attributes, e.g., careers and families. May et al. (2019) generalize WEAT by

introducing the Sentence Encoder Association Test (SEAT) to measure biases in sentence

embeddings. Contextual relationships like that of gender pronouns and career words, e.g.,

He is an engineer versus She is an engineer, can be measured using SEAT. Tan and Celis

(2019) adapt SEAT to probe the encoding of a word in context in the sentence; first they

use SEAT to encode a sentence, then they extract the representation at the model output for

a specific token of interest. For instance, assuming both He is an engineer and She is an

engineer are encoded by a language model, the encoding of he and she in context can be

extracted and compared using their method. They also explicitly probe for intersectional

biases, such as biases based on both a racial and gendered stereotype, which psychology

has shown often magnify individual effects. Zhao et al. (2019) evaluated gender bias in

contextual embeddings from ELMo, demonstrating that ELMo embeddings contain a bias

gendered subspace when projecting the embeddings of occupations into lower dimensions

and demonstrate the effects of the bias using these embeddings in a coreference resolu-
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tion system. Srinivasan and Bisk (2021) evaluate gender bias in VL-BERT, using masked

language modeling to probe its specific predictions given visual information.

Approaches have also been developed to analyze deep image representations and

image datasets. Wang et al. (2019) show that the popular image captioning datasets has

significant gender misbalance in the training data and that this misbalance is amplified by

vision models. The Image Encoder Association Test (iEAT), adapted from WEAT, probes

image representations obtained from unsupervised vision models Steed and Caliskan (2021).

Using images from previous IAT tests, CIFAR-100 (Krizhevsky, 2009) and Google Image

Search, the iEAT probes both valence (the association between two target concepts and

the general concepts of pleasant/unpleasant) and more concrete stereotypes where target

concepts are directly measured against strategically collected attributes. The iEAT finds that

image representations encode biases similar to both humans and word embeddings.

5.3 Notation

The model input is defined by a series of N tokens, written as t1:N or t1 t2 ...tN−1 tN .

Tokenized input sequences are padded by a [CLS] token and [SEP] token that indicate

the beginning and end of the sequence respectively. When we mention the embedding or

encoding of a word or a sentence, we take this to be the output of the last layer of the model

before any pretraining prediction heads (e.g., a language model head for masked language

models). To get the embedding of a word (for a non-contextualized metric) or sentence, we

take the embedding corresponding to the [CLS] token. For sets of word embeddings, we

use notation A. Subsets are indicated with subscripts, for instance Ax where Ax ⊂ A.

5.4 The Grounded WEAT/SEAT Dataset

Previous biases tests for word embeddings are made of single words or sentences describing

target concepts and attributes (Caliskan et al., 2017; May et al., 2019; Tan and Celis, 2019).

We augment these existing text-only tests to a grounded domain by pairing each word or

sentence with a corresponding image. To collect these images, we first started by searching
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the captions of MS-COCO (Chen et al., 2015) and Conceptual Captions (Sharma et al.,

2018) for the target and attribute words from the bias tests; we chose these two datasets as

they serve in some form as the pretraining data across the four Transformers we probe. We

then manually checked the returned images to ensure they matched the words we searched.

Note that for tests that use names for the target concepts (e.g., comparing men and women’s

names to careers), we instead searched captions instead for gendered terms (e.g., men,

women, she, he) as it’s extremely unlikely that names will be present in captions. All images

are selected from the validation splits.

For gender, we found perhaps unsurprisingly based on work like Wang et al. (2019)

that both MS-COCO and Conceptual Captions lacked widespread diversity with respect to

different labels being shown across genders. For race, we were effectively unable to collect

any images by searching the captions as race is rarely mentioned explicitly. When race is

mentioned, it almost exclusively refers to people who are not white; this is well supported

by the idea of reporting bias, that people are less likely to state properties that they don’t

deem novel or unusual (Gordon and Durme, 2013). For this reason, we could not build a full

dataset of images to pair with the words/sentences from using MS-COCO and Conceptual

Captions alone.

To compensate for their lack of diversity, we extended the dataset by gathering the

images using Google Image Search. Similar to searching captions, we searched keywords

and manually verified all images to ensure they were real-world images that matched the

keyword being searched, keeping the top 10. Our new dataset contains 10,228 images across

all sets of targets and attributes for all of the bias tests described. We show the number of

images per bias test by image source in Table 5.1.

Even with the lack of diverse and plentiful images from MS-COCO and Conceptual

Captions, results on these datasets are still important for two key reasons. First, we can

get an indication of where pretraining datasets are lacking: the fact that images cannot be

sourced for so many tests means these datasets particularly lack representation for these

identities. Pretraining data serves the important function of providing enough signal for

models to learn robust, reusable representations that can be fine-tuned for subsequent tasks.

Skewed, biased representations from pretraining will inherently impact downstream tasks.
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Second, probing using these images ensures that biases measured on the Google Image

Search images are not a property of poor out-of-domain generalization. We provide original

links to all collected images and scripts to download them.

Test Name Number of Images
C3: EA/AA, Pleasant/unpleasant 1648

C6: Men’s/women’s names (M/W), Career/Family 780
C8: Science/Arts, M/W 718

C11: M/W, Pleasant/unpleasant 1680
+C12: EA/AA, Career/Family 748
+C13: EA/AA, Science/Arts 522

+Occ: M/W, Occupation 960
+Occ: EA/AA, Occupation 928

Double Bind: M/W, Competent/incompetent 560
+Double Bind: EA/AA, Competent/incompetent 440

Double Bind: M/W, Likeable/unlikeable 480
+Double Bind: EA/AA, Likeable/unlikeable 360

Angry Black Woman (ABW) stereotype (intersectional) 760
(a) Number of images for all bias tests in the dataset collected from Google Images.

Test Name Number of Images
C6: M/W, Career/Family 254
+Occ: M/W, Occupation 229

(b) Number of images for bias tests in the dataset collected from COCO.

Test Name Number of Images
C6: M/W, Career/Family 203
+Occ: M/W, Occupation 171

(c) Number of images for bias tests in the dataset collected from Conceptual Captions.

Table 5.1: The number of images per bias test in our dataset. Tests prefixed by “C” are
from Caliskan et al. (2017); Angry Black Woman (ABW) and “DB” prefixes are from May
et al. (2019); tests prefixed by a plus sign “+” are from Tan and Celis (2019). Each class
contains an equal number of images per target-attribute pair. The abbreviation EA/AA
refers to European American/African American.The dataset sourced from Google Images is
complete, shown in (a). Datasets sourced from COCO and Conceptual Captions, shown in
(b) and (c) respectively, contain a subset of the tests because the lack of gender and racial
diversity in these datasets makes creating balanced data for grounded bias tests impractical.
We renamed previous tests from male/female to men/women to reflect gender instead of sex.
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black woman (top) or white woman (bottom), angry (left) or relaxed (right)

an image in Ax an image in Ax an image in Bx an image in Bx

an image in Ay an image in Ay an image in By an image in By

Figure 5-1: One example set of images for the bias class Angry black women stereo-
type (Collins, 2004), where the targets, X and Y , are typical names of black women and
white women, and the linguistic attributes are angry or relaxed. The top row depicts black
women; the bottom row depicts white women. The two left columns depict aggressive
stances while the two right columns depict more passive stances. The attributes for the
grounded experiment, Ax, Bx, Ay, and By, are images that depict a target and in the context
of an attribute. The images shown here were collected from Google Image Search.

5.5 Methods

Two sets of target words or sentences, X and Y , and two sets of attribute words or sentences,

A and B, are used to probe systems. For the embedding w of a given word, the average

cosine similarity between pairs of word embeddings is used as the basis of an indicator of

relative similarity, as in:

s(w,A,B) = mean
a∈A

cos(w, a)−mean
b∈B

cos(w, b) (5.1)

where the function s measures how close on average the embedding w is compared to the

embeddings of each attribute a ∈ A and each attribute b ∈ B. Being systematically closer

to the embeddings of A as opposed to B, or vice versa, is an indication that the concepts are

more closely related in the embedding space. Such relative distances between word vectors

indicate how related two concepts are and these distances are directly used in many natural

language processing tasks, e.g., analogy completion (Bolukbasi et al., 2016; Drozd et al.,

2016).

By incorporating both target classes X and Y and their relative distances between
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attributes A and B, the bias between can be measured. Measurable bias is defined as one of

the two targets being significantly closer to one set of stereotypical attribute words compared

to the other. The test in Equation (5.1) is computed for each set of targets, determining their

relative distance to the attributes. The difference between the target distances reveals which

target sets are more associated with which attribute sets:

s(X, Y,A,B) =
∑
x∈X

s(x,A,B)−
∑
y∈Y

s(y, A,B) (5.2)

To test for statistical significance, using two equal sized sets for X and Y, the permutation

test can be used to do determine the effect size, i.e., the number of standard deviations in

which the peaks of the distributions of embedding distances differ, of this metric is computed

as:

d =
mean
x∈X

s(x,A,B)−mean
y∈Y

s(y, A,B)

std_dev
w∈X∪Y

s(w,A,B)
(5.3)

We demonstrate how to extend these notions to a grounded setting, which requires new

metrics because vision adds new degrees of freedom to what we can measure.

To explain the intuition behind why multiple grounded tests are possible, consider a

trivial hypothetical dataset that measures only a single property as shown in Table 5.2. This

dataset is complete: it contains the cross product of every target category, i.e., gender, and

attribute category, i.e., occupation, that can happen in its minimal world. In the ungrounded

setting, only 4 embeddings can be computed because the attributes are independent of

the target category. In the grounded setting, by definition, the attributes are words and

images that correspond to one of the target categories. This leads to 12 possible grounded

embeddings1; see Table 5.2. We subdivide the attributes A and B into two categories, Ax

and Bx, which depict the attributes with the category of target X and Ay and By, with

the category of target Y . We shown an example of this split from our data for one of the

1An alternate way to construct such a dataset might have ambiguity about which of two agents a sentence
is referring to, more closely mirroring how language is used. This would require images that simultaneously
depict both targets, e.g., both a man and woman who are teachers. Finding such data is difficult and may be
impossible in many cases, but it would also be a less realistic measure of bias. In practice, systems built on top
of grounded embeddings will not be used with balanced images, and so while in a sense more elegant, this
construction may completely misstate the biases one would see in the real world.
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intersectional bias tests in Figure 5-1.

With these additional degrees of freedom, we can formulate many different grounded

tests in the spirit of Equation (5.2). We find that three such tests, described next, have intuitive

explanations and measure different but complementary aspects of bias in grounded word

embeddings. These questions are relevant for both measuring bias and to understanding the

quality of embeddings. For example, attempting to measure the impact of vision separately

from language on grounded word embeddings can indicate if there is an over-reliance on

one modality over another.

We evaluate bias tests on embeddings produced by Transformer-based vision and

language models which take as input an image and a caption. These models are used to

produce three kinds of embeddings (of single-word captions, of full sentence captions, and

of words in the context of a full sentence sentence) that are each tested for biases. These

embeddings correspond to the hidden states of the language output of each model. For

single-stream models that jointly encode the vision and language input like VisualBERT

and VL-BERT, these are the hidden states corresponding to the language token inputs.

For two-stream models like ViLBERT and LXMERT that have a separate language and

vision Transformer, these are the outputs of the language Transformer. Image features are

computed in the same manner as in the original publications. When computing word and

sentence embeddings, we follow May et al. (2019) and take the hidden state corresponding

to the [CLS] token (shown in blue in Figure 5-2). When computing contextual embeddings,

we follow Tan and Celis (2019) and take the embedding in the sequence corresponding to

the token for the relevant contextual word, e.g., for the sentence “The man is there”, we

take the embedding for the token “man” (shown in green in Figure 5-2). Note there can

be multiple contextual tokens when a contextual word is sub-word tokenized; we take the

sequence corresponding to the first sub-token. When we discuss ablating modalities in

Experiment 3, we use masking. To mask the language, every contextual token in the input

is set to the [MASK] token. To mask the image, every region of interest or bounding box

with a person label is masked. VisualBERT did not pretrain with masked regions, and is

therefore not discussed in our experiment requiring region masking.
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Model Output Sequence
VisualBERT [CLS] TOK0 ... TOK_CNXT ... TOKN [SEP] [IMG] IMG0 ... IMGN
VL-BERT [CLS] TOK0 ... TOK_CNXT ... TOKN [SEP] IMG0 ... IMGN [END]
ViLBERT [CLS] TOK0 ... TOK_CNXT ... TOKN [SEP]
LXMERT [CLS] TOK0 ... TOK_CNXT ... TOKN [SEP] [CROSS_MODAL]

Figure 5-2: Each row shows the output sequence corresponding to a given model’s output.
For ViLBERT and LXMERT, we only show the output of the language Transformer. For
word and sentence embeddings, we take the encoding corresponding to the [CLS] token;
for contextual embeddings, we take the encoding corresponding to the word in context,
[TOK_CNXT].

Experiment 1: Do joint embeddings encode social biases?

For our first experiment, as a proof of concept, we’re measuring whether multimodal

embeddings from vision and language Transformers contain social biases. This test is the

most similar to WEAT and SEAT. Similarly to Equation (5.2), we compute the association

between target concepts and attributes, except that we include all of the images:

s(X, Y,A,B) =
∑
x∈X

s(x,Ax ∪ Ay, Bx ∪By)−
∑
y∈Y

s(y, Ax ∪ Ay, Bx ∪By)

To be concrete, for the trivial hypothetical dataset in Table 5.2, this corresponds to

S(1, {5, 7}, {10, 12})−S(4, {5, 7}, {10, 12}), which compares the bias relative to man and

woman against lawyer or teacher across all target images. If no bias is present, we would

expect the effect size to be zero. Our hope would be that the presence of vision at training

time would help alleviate biases even if at test time any images are possible.

Experiment 2: Can grounded evidence that counters a stereotype alle-

viate biases?

An advantage of grounded embeddings is that we can readily show scenarios that clearly

counter social stereotypes. For example, the model may have a strong prior that men are

more likely to have some professions, but are the embeddings different when the visual

input provided shows women in those professions? Similarly to Equation (5.3), we compute

the association between the target concept and attributes, except that we include only the
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images that correspond to the target concept’s category:

s(X, Y,A,B) =
∑
x∈X

s(x,Ax, Bx)−
∑
y∈Y

s(y, Ay, By)

To be concrete, for the trivial hypothetical dataset in Table 5.2, this corresponds to

S(1, {5}, {10}) − S(4, {7}, {12}), which computes the bias of man and woman against

lawyer and teacher relative to only images that actually depict lawyers and teachers who

are men when comparing to target man and lawyers and teachers who are women when

comparing to target woman. If no bias was present, we would expect the effect size to be

zero. Our hope would be that even if biases exist, clear grounded evidence to the contrary

would overcome them.

Experiment 3: To what degree are biases encoded in grounded word

embeddings from language or vision?

Even if biases exist, one might wonder how much of the bias comes from language and how

much comes from vision? Perhaps all of the biases come from language and vision only

plays a small auxiliary role, or vice versa. We make use of the same test as in Experiment

2 with the addition of masking by taking advantage of how these models are pretrained

with masked language tokens and masked image regions. VisualBERT only uses masked

language modeling and never masks image regions during training; it therefore cannot be

probed using this method. For each test, we alternatively mask either the language tokens or

the image regions that are relevant to that specific test and then measure the encoded bias.

When masking image regions, we select the regions that contain people based on their labels

from an object detector. As a concrete example, in test C3, we mask every name and every

pleasant or unpleasant term while token masking and every person across all images while

image masking. This ablates the potential bias in one modality, allowing us to probe the

other.

95



Embedding index Word
1 Man
2 Woman
3 Lawyer
4 Teacher

(a) Possible embeddings for an ungrounded model

Embedding index Word What the image shows
1 Man Any Man
2 Man Any Woman
3 Woman Any Man
4 Woman Any Woman
5 Lawyer Man Lawyer
6 Lawyer Man Teacher
7 Lawyer Woman Lawyer
8 Lawyer Woman Teacher
9 Teacher Man Lawyer

10 Teacher Man Teacher
11 Teacher Woman Lawyer
12 Teacher Woman Teacher

(b) Possible embeddings for a visually grounded model

Table 5.2: The content of a trivial hypothetical grounded dataset to demonstrate the intuition
behind the three experiments. The dataset could be used to answer questions about biases
in association between gender and occupation. Each entry is an embedding that can be
computed with an ungrounded model, (a), and with a grounded model, (b), for this hypothet-
ical dataset. This demonstrates the additional degrees of freedom when evaluating bias in
grounded datasets. In the subsections that correspond to each of the experiments, Section 5.5,
we explain which parts of this dataset are used in each experiment. Our experiments only
use a subset of the possible embeddings, leaving room for new metrics that answer other
questions.

5.6 Results

We evaluate each model on images from MS-COCO and Conceptual Captions for the tests

where we could gather images and across all bias tests on images from Google Image

Search. We compute p-values using the updated permutation test described in May et al.

(2019). In each case, we evaluate the task-agnostic, pretrained base model without any

task-specific fine-tuning. We leave the effect of task-specific training on biases and the role

of different downstream tasks on magnifying or reducing measured biases as an interesting

open question for future work.

Overall, the results are consistent with prior work on biases in both humans, language

models, and unsupervised vision models. We report results for each experiment for three
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Experiment 1

Gender
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C6: M/W, Career/Fam
W 0.57 1.04 0.55 1.61
S -0.18 0.98 0.69 -0.02
C -0.61 0.76 0.17 0.46

C8: Science/Arts, M/W
W 0.77 0.59 0.43 -0.29
S 0.62 0.26 – 0.19
C 0.30 -0.32 0.13 0.26

C11: M/W, Pleasant
W -0.66 -0.91 -0.08 -1.20
S -0.74 -1.08 -0.20 0.01
C 0.42 -0.62 0.25 -0.18

Competent: M/W, Competent
W -0.23 -0.57 -1.18 -1.28
S -0.28 -0.29 -0.55 -1.35
C -0.67 0.20 -0.48 0.31

Likeable: M/W, Likeable
W -1.24 -1.26 -1.10 -0.91
S 0.10 -0.12 0.60 -0.03
C -0.42 1.25 -0.83 -0.19

Occupation: M/W, Occupation
W 0.02 0.86 1.56 1
S 0.77 0.95 1.32 -0
C 0.98 1.53 0.52 0.11
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C3: EA/AA, Pleasant
W 0.23 0.31 -0.16 1.37
S 0.31 0.25 0.19 0.93
C -0.01 -0.29 0.44 0.68

C12: EA/AA, Career/Family
W -0.29 0.04 -0.04 -1.45
S -0.54 0.05 -0.32 -0.96
C 0.36 0.92 0.88 0.08

C13: EA/AA, Science/Arts
W 0.04 0.61 0.58 -1.44
S 0.12 0.35 0.16 0.98
C 0.58 1.09 0.92 0.90

Double Bind: EA/AA, Competent
W 0.75 1.28 0.98 1.44
S 1 1.14 1.30 1.48
C 1.10 1.19 1.46 1.54

Double Bind: EA/AA, Likeable
W -0.25 0.41 0.93 0.87
S -0.09 0.73 -0.04 1.01
C 0.97 1.09 1.40 0.12

Occupation: EA/AA, Occupation
W -0.15 -0.41 -0.71 1.38
S -0.26 -0.26 -0.40 -0.06
C -0.70 -0.37 -1.11 0.12

Angry Black Woman Stereotype
W -0.07 0.41 -1.31 1.59
S -0.50 0.46 -0.12 -0.48
C 0.71 0.66 1.27 -0.13

Table 5.3: The results for all bias classes on Experiment 1 using Google Images that asks Do
joint embeddings encode social biases? Numbers represent effect sizes and p-values for the
permutation test described in Section 5.5. They are highlighted in blue when p-values are
below 0.05. Each bias type and model are tested three times against (W) word embeddings,
(S) sentence embeddings, and (C) contextualized word embeddings. The answer to the
question clearly appears to be yes. All models are biased. Note that out of domain, biases
appear to be amplified.
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Experiment 2

Gender
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C6: M/W, Career/Fam
W 1.05 1.09 -0.20 1.97
S -0.57 1.34 0.78 1.57
C -0.86 0.65 0.21 0.44

C8: Science/Arts, M/W
W 0.77 0.59 0.43 -0.29
S 0.62 0.26 – 0.19
C 0.30 -0.32 0.13 0.26

C11: M/W, Pleasant
W -1.48 -1.33 -0.13 -0.77
S -1.13 -1.17 -0.55 -0.21
C -0.15 -0.46 0.38 -0.17

Competent: M/W, Competent
W 0.23 0.23 -1.37 1.50
S -0.12 -0.35 -0.98 -1.14
C -0.60 -0.08 -1.11 0.44

Likeable: M/W, Likeable
W -1.31 -0.61 -0.93 -1.98
S 1.76 -0.16 -0.81 1.99
C -0.11 1.31 -1 -0.12

Occupation: M/W, Occupation
W -0.77 0.05 1.33 -1.74
S 0.33 0.22 0.58 -0.20
C 0.90 1.46 0.34 0.16
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C3: EA/AA, Pleasant
W 1.55 1.03 0.60 1.34
S 1.54 0.85 0.84 -0.08
C 0.26 -0.14 0.58 0.76

C12: EA/AA, Career/Family
W -0.04 0.88 0.93 -1.49
S 0.36 0.81 0.33 -1.27
C 0.84 1.02 0.98 0.18

C13: EA/AA, Science/Arts
W -1.74 1.27 -0.38 -1.51
S -0.08 1.04 -0.13 0.95
C 1 1.39 0.97 0.96

Double Bind: EA/AA, Competent
W 1.13 1.56 1.06 1.41
S 1.25 1.45 1.25 1.45
C 1.11 1.20 1.46 1.57

Double Bind: EA/AA, Likeable
W 0.29 1.13 1.29 0.90
S 0.42 1.04 0.43 1.29
C 0.93 1.12 1.40 0.06

Occupation: EA/AA, Occupation
W -0.04 -0.48 -0.33 -1.40
S 0.15 -0.18 0.22 -0.03
C -0.57 -0.19 -1.10 0.10

Angry Black Woman Stereotype
W 0.34 -0.28 -0.27 1.67
S 0.49 -0.53 0.31 0.03
C 1.71 1.44 1.34 -0.21

Table 5.4: The results for all bias classes on Experiment 2 using Google Images that asks
Can joint embeddings be shown grounded evidence that a bias does not apply? Numbers
represent effect sizes and p-values for the permutation test described in Section 5.5. They
are highlighted in blue when p-values are below 0.05. Each bias type and model are tested
three times against (W) word embeddings, (S) sentence embeddings, and (C) contextualized
word embeddings. The answer to the question appears to be no, although fewer tests are
statistically significant compared to Table 5.3 showing that visual evidence is helpful.
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Experiment 3

Gender
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C6
T 0.14 1 1.18 -0
I – 0.87 0.69 -0.03

C8
T 0.46 0.41 0.11 0.27
I – 0.39 0.04 0.18

C11
T -0.47 -1.21 -1.33 0.03
I – -1.11 -0.22 0.02

Competent
T -0.06 -0.40 -0.21 -1.99
I – -0.35 -0.55 -1.05

Likeable
T -0.07 -0.18 0.28 -1.99
I – -0.11 0.72 0.64

Occupation
T 0.05 1.08 0.92 -0.17
I – 0.91 1.32 0

Race

C3
T 0.33 0.34 0.33 -0.01
I – 0.31 0.21 0.95

C12
T -0.52 0.05 -0.39 0
I – 0.08 -0.36 -1.06

C13
T -0 0.33 -0.10 -0
I – 0.33 0.17 0.95

Competent
T -0.44 1.10 1.33 -1.99
I – 1.15 1.29 1.45

Likeable
T -0.68 0.58 0.11 -1.99
I – 0.73 -0.14 1.06

Occupation
T -0.27 -0.24 -0.65 -0.17
I – -0.30 -0.38 -0.25

ABW
T 0.76 0.54 -0.01 -0.42
I – 0.43 -0.13 -0.08

Table 5.5: The results for all bias classes on Experiment 3, using the second masking variant
of the experiment, with Google Images asking the question To what degree are biases
encoded in grounded word embeddings from language or vision? Numbers represent effect
sizes and p-values for the permutation test described in Section 5.5. All numbers were
measured over sentence-level encodings. They are highlighted in blue when p-values are
below 0.05. Biases are measured for masked tokens (T) and masked image regions (I). This
answer appears to be that both vision and language play a significant role, but this differs
across model architectures.
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Experiment 1 Experiment 2

Gender
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C6
W 0.13 0.94 0.92 -0.14 0.15 0.95 0.61 1.98
S 0.28 1.11 1.32 0 0.41 0.83 1.16 -1.17
C -0.20 0.80 1.53 0.61 -0.99 0.58 1.46 0

Occupation
W -0.07 0.75 0.39 -0.31 -0.64 -0.52 -0.66 1.99
S -0.23 0.73 -0.18 -0.01 0.09 -0.30 -1.14 0.69
C -0.32 0.58 -0.14 0.01 -0.35 1.96 -0.70 0.90

Experiment 3

M
as

k

ViLBERT
ConCap

LXMert
COCO

VLBERT
ConCap

C6 T 1.15 0.01 0
I 1.09 1.32 -0

Occupation T 0.74 -0.07 0
I 0.71 -0.17 0

Table 5.6: The results for two classes of bias on all three experiments using COCO and
Conceptual Captions. Images for other bias classes could not be found in these datasets.
These results are generally consistent with results on the Google Images dataset.

types of embeddings: word embeddings, sentence embeddings, and contextualized word

embeddings. While there is broad agreement between these different ways of using embed-

dings, they are not identical in terms of which biases are discovered. It is unclear which

of these methods is more sensitive, and which finds biases that are more consequential in

predicting the results of a larger system constructed from these models. Methods to mitigate

biases will hopefully address all three embedding types and all of the three questions we

restate below.

Experiment 1: Do joint embeddings encode social biases?

For Experiment 1, described in Section 5.5, we designed an experiment to probe whether

joint embeddings from multimodal Transformer-based models encode social biases. For this

experiment, the results presented in Table 5.3 and Table 5.6 show that the answer is yes,

joint embeddings encode social biases. For every model we tested, we found multiple

bias tests with statistically significant results. Numerous biases are uncovered with results
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Number of statistically significant tests out of 6 total gender bias tests
Experiment 1 Experiment 2 Experiment 3
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S 2 1 3 3 3 3 2 2 I - 2 3 3
C 3 3 3 4 2 3 3 4

Number of statistically significant tests out of 7 total race bias tests
Experiment 1 Experiment 2 Experiment 3
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W 2 4 4 3 3 4 5 4 T - 0 5 2
S 3 4 5 3 4 3 5 5 I - 4 5 3
C 5 7 5 6 6 4 5 6

Table 5.7: A summary of all previous results on the new image dataset derived from Google
searches showing the number of significant bias test partitioned by the type of test. There
are a total of 6 gender bias tests and 7 race bias test. Experiments 1 and 2 show no strong
differences between models while in Experiment 3 ViLBERT stands out.

that are broadly compatible with May et al. (2019) and Tan and Celis (2019). It appears that

more pronounced social biases exist in grounded compared to ungrounded embeddings.

Experiment 2: Can grounded evidence that counters a stereotype alle-

viate biases?

In humans, counterstereotypical evidence can impact implicit attitudes; we aimed to test the

same hypothesis in grounded models (see Section 5.5). The results presented in Table 5.4

and Table 5.6 indicate that the answer is no. Biases are somewhat attenuated when models are

shown evidence against them, but overall, preconceptions about biases tend to overrule

direct visual evidence to the contrary. This is worrisome for the applications of such

models. In particular, using such models to search or filter data in the service of creating

new datasets may well introduce new biases.
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Experiment 3: To what degree are encoded biases in joint embeddings

from language or vision?

Recall that Experiment 3 focused on selectively masking text tokens to evaluate the contribu-

tion of language and selectively masking image regions to evaluate the contribution of vision

(see Section 5.5). The results for Experiment 3 are presented in Table 5.5 and Table 5.6.

We report results for the word-level encoding and sentence-level encoding, observing com-

parable results. We did not measure contextual embeddings for this experiment as the

embeddings would include the encoding for the [MASK] token. The results indicates that

biases arise from both modalities, but this does differ by model architecture. For VL-BERT

language appears to dominate. For the other models, it is less conclusive if one modality

contributes significantly more than the other. It could be that the biases in language are so

powerful that vision does not contribute to them given that in any one example it appears

unable to override the existing biases (Experiment 2).

5.7 Discussion

Visually grounded embeddings have biases similar to language-only and vision-only em-

beddings and adding the visual modality does not appear to help eliminate these biases.

At inference time, vision has difficulty overcoming biases, even when presented counter-

stereotypical evidence. This is worrisome for deployed systems that use such embeddings,

as it indicates that they ignore visual evidence that a bias does not hold for a particular

interaction. Overall, language and vision each contribute to encoded bias, yet the means of

using vision to mitigate is not immediately clear. We enumerated the combinations of inputs

possible in the grounded setting and selected three interpretable questions that we answered

above. Other questions could potentially be asked using the dataset we developed, although

we did not find any others that were intuitive or non-redundant.

While we discuss joint vision and language embeddings, the methods introduced

here apply to any embeddings extracted from multimodal models, such as joint audio and

language embeddings (Kiela and Clark, 2015; Torabi et al., 2016; Iashin and Rahtu, 2020).
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Our work generally focuses on grounding in vision, but other modalities also play a role in

how humans learn and encode social biases and are therefore important to test in grounded

models as well. One potential drawback is that measuring bias in different grounding

frameworks would require collecting a new dataset; however our metrics, Grounded-WEAT

and Grounded-SEAT, can be used on any newly collected dataset to answer the same three

questions.

In the current pretrain-then-finetune paradigm, language models are pretrained on

large-scale dataset that are often scarcely curated, if at all Rogers (2021). This is common

given how expensive training large models can be and the ease with which pretrained model

checkpoints can be easily finetuned on downstream tasks. We demonstrate that going out-

of-domain into a new dataset amplifies biases in our comparison of biases from in-domain

pretraining data (i.e., COCO and Conceptual Captions) versus the images gathered from

Google Image Search. This need not be so: out-of-domain models have worse performance

that might result in fewer biases. We did not test task-specific fine-tuned models given the

large number of downstream tasks and the difficulty of comparison between them, but do

intend to do so in the future work. It would also be helpful to test the differences between

models instantiated from pretrained checkpoints (e.g., initializing the language encoder from

a BERT checkpoint) versus models that are randomly initialized.

As demonstrated by the wealth of psychology work, humans clearly have biases, not

just language and vision models. Approaches to “debiasing” humans, namely being more

inclusive and conscious of the way our implicit attitudes impact the way we receive and treat

others, is a hugely challenging task. The same is very much true in NLP and mitigating bias

in language models is a largely challenging problem. We do not address mitigation in this

chapter and instead hope these metrics can serve as a benchmark in debiasing techniques.

One approach that has shown a measurable reduction of prejudice in humans is that of

counterstereotypical evidence (Peck et al., 2013; Columb and Plant, 2016). Straightforward

applications of this idea are far from trivial. Though not exactly counterstereotypical, Wang

et al. (2019) show that merely balancing a dataset by a certain attribute is not enough to

eliminate bias. Perhaps artificially manipulating visual datasets to actively include more

diverse and representative data can play a role in bias reduction. We hope that these datasets
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and metrics will lead to understanding human biases in grounded settings as well as the

development of new methods to debias representations.

One final point we would like to note is the importance of understanding gender versus

sex and being thoughtful in our word choices as explore gender biases. We would like to urge

subsequent work to avoid a common ethical problem we have noticed while reviewing the

literature on bias in NLP. Much prior work refers about gender uses the phrases “male” and

“female”, thereby conflating gender and sex. Recent work in psychology has disentangled

these two concepts, and conflating them can cause harm to many people. As pointed out

by Blodgett et al. (2020), research in NLP analyzing social bias in models would benefit

from connecting with and grounding our work more broadly in the lived experiences of real

people.
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Chapter 6

Discussion

Natural language is complex and multifaceted, with the semantic meaning of words, and

the syntactic with many rules and examples that go against these rules, and nuances that

acquiring language remarkable. Where children are robust and essentially guaranteed to

learn their native language, neural language models can be quite brittle. This thesis explored

how what we know about children language acquisition -– particularly the scale and type of

linguistic information children receive, the type of indirect feedback they receive, and how

they generalize in light of new data – can motivate work in NLP. The contributions of this

work are recapped below.

Chapter 2 presents a semantic parser trained using only captioned videos without other

annotations by using a validation function based on the compatibility between the predicted

parse and the video. We show how linguistic and visual ambiguities can be solved by using

cues from one modality to disambiguate the other and how bootstrapping from a small

number of sentence-logical form pairs can be combined with un-annotated sentences to

further improve performance. We also designed and release a dataset of captioned videos,

where the videos are complex with multiple agents and objects and the captions are generated

from Amazon Mechanical Turk. This work highlights that using a vision system with an

understanding of agents and objects and the relationship between them is powerful enough

to learn a semantic parser without the need for labels or a large dataset.

An interesting source of error in the experimental results comes from visual ambiguities.

In evaluating where our model failed to correctly parse sentences, we found that many
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predictions uses an incorrect predicate that has a similar meaning to the target predicate.

Examples such as hold the apple and move the apple for instance are difficult to visually

disambiguate; the bounding boxes tracking the apple will look similar in both instances and

will therefore receive similar likelihoods from the Sentence Tracker. Improvements in the

visual representation – either from better object detectors or using a different approach like

semantic segmentation – could address this in the future. Another challenge comes while

evaluating the accuracy of parses; our framework depends on an exact match to a logical

form for a sentence parsed by a human, which is an overly strict criterion. This is a problem

that also plagues other approaches such as fully-supervised syntactic parsing (Berzak et al.,

2016). Two logical forms may express the same meaning but be written in different ways.

For example, if the sentence is The person walked toward the table, two different yet equally

valid logical forms are

(1) person(x) ∧ walk(x) ∧ toward(x, y) ∧ table(y)

(2) person(x) ∧ approach(x, y) ∧ table(y)

However, these logical forms differ significantly (differences shown in teal above). The

only overlapping predicates are the objects and, even using our near miss criterion, these

sentences still fail because they differ by more than a single predicate. Working with videos

can be challenging in general due to the sheer scale of information. In order to efficiently

encode the videos, we needed to pretrain the visual system and make thoughtful choices

like caching and evaluating sub-expressions for early stopping of invalid predictions. This

worked in our framework due to having an intentionally smaller dataset, but would have

been difficult with large-scale datasets currently used for most VL models.

In the second approach, we move into an interactive domain where we train a semantic

parser grounded in a robotic environment. We paired highly temporal, constrained natural

language with a robotic planner. The semantic parser hypothesizes executable formulas for

the commands and verifies them using the planner, which serves as the supervision. The

formalism, linear temporal logic (LTL), allows for more representational power in terms of

what concepts could be represented.

Much like the first semantic parser presented in this thesis, we do not rely on providing
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the model extensive prior knowledge about the formalism. This approach actually has even

less prior knowledge in that it is not provided with a seed lexicon and instead only knows

about well-formedness. Even without any built-in knowledge of LTL, the model was able to

learn the syntactic rules and semantic categories of the formalism. The learned knowledge

about LTL was enough to generate accurate formulas to be used downstream in the robotic

simulator. We again release the dataset of both grammar-generated and human-generated

sentences paired with multiple execution sequences.

We explored both grammar- and human-generated sentences in this work as well. To

get human-generated sentences, annotators were shown three execution traces and asked

to write a command. We did note that some commands did not fully capture the “ground-

truth" meaning as represented by the LTL formula because three execution traces is not

enough to enumerate all possibilities. Nonetheless, the human generated sentences had

far fewer constraints and appeared to more efficiently communicate the intent given their

shorter length on average. The grammar-generated commands, on the other hand, were

more systematic, using a smaller vocabulary. We do again note that one difficulty directly

comparing the two groups of sentences is that we do not have a guarantee of exactly

equivalent semantic meaning. Nonetheless, most commands did a good job of capturing the

meaning as evidenced by the high performance on human commands that is compared to

the grammar-generated commands. We hope this publicly available dataset will be useful

for other researchers engaged in using the LTL formalism in a robotic setting. In general,

the ability to process and comprehend temporal language is a challenging one yet largely

important as we move toward language models for robots that interact with humans.

In both of the above works, we places a large emphasis on natural language generated

by human annotators. We wanted to move beyond just relying on a grammar to generate our

sentences. While grammars are systematic and guaranteed to refer to the target content (take

for instance the commands generated directly from the LTL formulas versus the commands

from annotators just looking at the demonstrations), they do not have the linguistic diversity

seen in unconstrained language from humans. As we are interested in models of child

language acquisition, going a step further and using child-directed speech would be better.

Abend et al. (2017) used child-directed speech from the Eve dataset (Brown and Bellugi,
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1964) to train the semantic parser, though their approach only used natural language as

input. Corpora like CHILDES (MacWhinney, 2000) contain large amounts of annotated,

child-directed speech; however the data are not often couples with perceptual information.

Even videos are usually of interviews or children interacting with adults, so this does still

pose a challenge about how to acquire large scale, clean child-directed speech. In future

work, we aim to focus on directing annotators to provide sentences as if they were speaking

to a child as a soft proxy for child-directed speech.

We next focused on how the representations learned by multimodal models are used for

generalization from two angles. From the first angle, we looked at systematic generalization

using the gSCAN benchmark. We use the pretrain-then-finetune approach to focus on

flexible, reusable linguistic representations inspired by the flexibilty seen by children during

linguistic generalizations. Our model is a Transformer-based encoder-decoder model that

uses a novel decoding strategy and has demonstrable improvements on the gSCAN bench-

mark. The encoder and decoder are each separately pretrained and then jointly finetuned

on the gSCAN task of mapping natural language commands and an initial world state to a

sequence of actions. For the other angle, we focused on one tangible generalization failure

by models, which is that they learn social biases like children and adults yet fail to generalize

beyond these biases in light of new data. We contribute new metrics, Grounded-WEAT and

Grounded-SEAT, that are adapted from prior metrics in psychology and NLP. we use these

metrics address three specific questions about pretrained vision and language Transformers.

Namely, we find that vision and language Transformers do encode social bias, are not robust

to adjusting to new counterstereotypical evidence, and that the bias generally comes from

both language and vision.

Alongside these metrics, we also release a dataset of images paired with words and

sentences across 13 different tests for social bias. These web-scraped images are human-

verified and represent more diversity among people than found in existing image captioning

datasets. Using GWEAT and GSEAT, we find that visually grounded word embeddings do

in fact encode social biases, that counter stereotypical grounded evidence has little impact

on social biases, and that biases largely come from language, rather than being introduced

by vision. We probe four V&L Transformer – two single stream and two dual stream;
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in future work, we intend to test GWEAT/GSEAT on more VL models as well. It may

be that models like ViLT (Kim et al., 2021), which uses image patches instead of region

features from a CNN, are less biased or perhaps encode biases different; a pretraining

approach like VILLA (Gan et al., 2020) that uses adversarial noise to perturb images during

pretraining may be fairer in their visual features. A more in-depth, systematic study across

architectures, pretraining approaches and pretraining datasets is a natural next step based on

this work. Also, as more vision-and-language Transformer models are released, we hope

to see researchers utilizing these metrics as a benchmark for the implicit prejudices being

learned. Additionally, while we focused on vision and language, many other modalities can

and should be tested, such as audio and language embeddings (Kiela and Clark, 2015; Torabi

et al., 2016; Iashin and Rahtu, 2020). There are also known disparities in performance in

areas such a voice recognition (Tatman, 2017), making an audio a particularly interesting

next direction. We note again this is nontrivial as it does require a dataset that can specifically

probe biases, but the metrics we presented here can be used out-of-the-box.
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Appendix A

Appendix

Seed Lexicon for CCG

Below, we show the seed lexicon used for in Chapter 2. This seed lexicon was created by

randomly sampling 26 sentences ( 2% of all sentences in the dataset), manually parsing

these sentences, and adding the lexical entries they contain to the seed. These sentences

were excluded from the training and evaluation data.

token syntactic tag semantic tag

she NP λ x. person(x)

put (S\NP)/NP λf.λg.λx.λy. put_down(x, y) ∧ f(x) ∧ g(y)

the NP/N λfx. f(x)

orange N/N λ fx. orange(x) ∧ f(x)

car N car

on (NP\NP)/NP λw.λx ∧ on(y, z)

desk N table

there is S/NP λf.λx.λy. f(x, y)

a NP/N λfx. f(x)

green N/N λ fx. green(x) ∧ f(x)

backpack N bag

on (NP\NP)/NP λf.λg.λx.λy.on(x, y) ∧ f(x) ∧ g(y)
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yellow N/N λ fx. yellow(x) ∧ f(x)

chair N chair

both NP/N λf.λx two(x) ∧ f(x)

guys N person

set down (S\NP)/NP λf.λg.λx.λy. put_down(x, y) ∧ f(x) ∧ g(y)

man N person

is (S\NP)/(S\NP) λf.λg.λx.λy f(x) ∧ g(x)

is ((S\NP)/NP)/NP λf.λg.λh.λx.λy.λzf(x, y) ∧ g(y) ∧ h(x, z)

near PP/NP λf. λx. λy near(x, y) ∧ f(x)

on PP/NP λf. λx. λy on(x, y) ∧ f(x)

woman N person

grabs (S\NP)/NP λf. λx. λypick_up(x, y) ∧ f(x)

an NP/N λfx. f(x)

apple N apple

off (S\NP)/NP λf.λg.λx.λy.from(x, y) ∧ f(x) ∧ g(y)

table N table

guy N person

in (NP\NP)/NP λf.λg.λx.λy f(x) ∧ g(x) ∧ in(x, y)

plaid N/N λ fx. plaid(x) ∧ f(x)

shirt N shirt

walks (S\NP)/NP λf.λg.λx.λy.λz walk(x) ∧ f(x, y) ∧ g(x, z)

stands (S\NP)/NP λf.λg.λx.λy.λz stand(x) ∧ f(x, y) ∧ g(x, z)

towards PP/NP λf. λx. λy toward(x, y) ∧ f(x)

tan N/N λ fx. tan(x) ∧ f(x)

is (S\NP)/(S\NP) λf.λg.λx.λy f(x, y) ∧ g(x)

standing S\NP λx stand(x)

by (S\NP)/(S\NP) λf.λg.λx.λy. near(x, y) ∧ f(x) ∧ g(x)

lifting (NP\NP)/NP λf.λg.λx.λy. f(x) ∧ g(x) ∧ pick_up(x, y)

is (S\NP)/(S\NP) λf.λg.λx.λy.λz.f(x, y) ∧ g(x, z)

wearing (S\NP)/NP λf. λx. λywear(x, y) ∧ f(x)
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walks (S\NP)/NP λf. λg.λh.λx. λy.λz. walk(x) ∧ f(x) ∧ g(y, z)

over to (NP\NP)/NP λf. λg.λx. λy. to(x, y) ∧ f(x) ∧ g(y)

another NP/N λfx. f(x)

blue N/N λ fx. blue(x) ∧ f(x)

jacket N shirt

staring at (S\NP)/NP λf. λx. λylook_at(x, y) ∧ f(x)

office chair N chair

picks up (S\NP)/NP λf.λg.λx.λy.λz. pick_up(x, z) ∧ f(x, y) ∧ g(z)

is (S\NP)/NP λf.λx. f(x), g(x)

red N/N λ fx. red(x) ∧ f(x)

there is S/NP λf.λg.λx.λy.λz. f(x, y) ∧ g(x, z)

in the mid-

dle of

(NP\NP)/NP λf.λg.λx.λy. in(x, y) ∧ f(x) ∧ g(y)

lobby N lobby

picking up PP/NP λf. λx. λy pick_up(x, y) ∧ f(x)

is ((S\NP)/NP)/NP λf.λg.λh.λw.λx.λy.λz. f(w, x) ∧ g(w, z) ∧ h(y, z)

sliding PP/NP λf. λx. λy move(x, y) ∧ f(x)

to PP/NP λf.λg.λx.λyto(x, y) ∧ f(x, y)

his NP/N λfx. f(x)

right N right

placed S\NP λf.λx. put_down(x)

on ((S\NP)\(S\NP))/

NP

λf.λg.λw.λx.λy. f(x) ∧ g(x) ∧ on(x, y)

gives ((S\NP)/NP)/NP λf.λg.λh.λx.λy.λz. f(x) ∧ g(y) ∧ h(z) ∧ give(x, y, z)

pear N pear

grey N/N λ fx. gray(x) ∧ f(x)

walks ((S\NP)/NP)/NP λf.λg.λh.λw.λx.λy.λz. f(w, y)∧g(y, z)∧h(w, x)∧walk(w)

away from PP/NP λf.λx.λy. f(y) ∧ from(x, y)

hold PP/NP λf.λx.λy. f(x) ∧ hold(x, y)

moves (S\NP)/NP λf.λx.λx.λy.λz. f(x) ∧ g(y, z) ∧move(x, y)
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book N book

across (NP\NP)/NP λf.λx.λx.λy. f(x) ∧ g(y) ∧ across(x, y)

sets (S\NP)/NP λf.λx.λx.λy.λz. f(x) ∧ g(y, z) ∧ put_down(x, y)

scope N telescope

down on (NP\NP)/NP λf.λx.λx.λy. f(x) ∧ g(y) ∧ on(x, y)

one NP/N λf.λx two(x) ∧ f(x)

places (S\NP)/NP λf.λx.λx.λy.λz. f(x) ∧ g(y, z) ∧ put_down(x, y)

holds out (S\NP)/NP λf.λg.λx.λx.λy. f(x) ∧ g(y) ∧ hold(x, y)

swinging (S\NP)/NP λf.λx.λx.λy. f(y) ∧move(x, y)

two NP/N λf.λx two(x) ∧ f(x)

2 NP/N λf.λx two(x) ∧ f(x)
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Grammar for Generating Natural Language Commands Us-

ing LTL Formalism
Below, we detail the grammar described in Section 3.5 used to generated the natural lan-
guage commands for training the LTL-based parser.

BINOP → ‘and’ | ‘or’

UOP → ‘do not’ | ‘you should not’

ITEM → ‘apple’ | ‘orange’ | ‘pear’

LANDMARK → ‘flag’ | ‘house’ | ‘tree’

PREDICATE → ‘be around the’ LANDMARK | ‘be near the’ LANDMARK

| ‘go to the’ LANDMARK | ‘hold the’ Item

| ‘take the’ ITEM | ‘possess the’ ITEM

P → PREDICATE | UOP PREDICATE | PREDICATE BINOP PREDICATE | UOP P

S → SAFETY | GUARANTEE | OBLIGATION | RECURRENCE |
| PERSISTENCE | REACTIVITY

SPREFIX → ‘always’ | ‘at all times,’

SSUFFIX → ‘forever’ | ‘at all times’ | ‘all the time’

SAFETY → SPREFIX P | P SSUFFIX | SAFETY BINOP SAFETY

GPREFIX → ‘eventually’ | ‘at some point’

NOTPREDICATE → UOP PREDICATE

GUARANTEE → GPREFIX P | ‘guarantee that you will’ PREDICATE

| ‘guarantee that you’NOTPREDICATE | GUARANTEE BINOP GUARANTEE

OBLIGATION → SAFETY BINOP GUARANTEE | OBLIGATION BINOP SAFETY

| OBLIGATION BINOP GUARANTEE

RECURRENCE → ‘eventually,’ P ‘and do this repeatedly’ | RECURRENCE BINOP RECURRENCE

PERSISTENCE → ‘at some point, start to’ P ‘and keep doing it’

| PERSISTENCE BINOP PERSISTENCE

REACTIVITY → RECURRENCE BINOP PERSISTENCE | REACTIVITY BINOP RECURRENCE

| REACTIVITY BINOP PERSISTENCE
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Training & Inference Splits for gSCAN

GSCAN has a compositional split training set with 8 rule-based generalization splits and a

single length training set with a single length generalization split. We detail the generaliza-

tion splits below.

A: Random – For this split, examples from the training and test set are drawn from the

same distribution. There are not any systematic differences between the training and test

splits, which provides a baseline for model performance when no systematic generalization

is required.

B: Yellow Squares – This split tests how well the model can interpret novel combinations

of attributes. During training, whenever a yellow square is the target object, the color yellow

is never mentioned. The square can be referred to by its size or shape only. During inference,

the model must learn to ground the two known concepts of yellow and square together.

C: Red Squares – This split is a more difficult version split B in testing the model’s

ability to compose attributes. Red squares appear in training as distractor objects only and

are never mentioned as the target object. During inference, the model must generalize that

red squares can be also be targets.

D: Novel Direction – In this split, during training there are no examples where the

target object is south-west of the agent. The model must generalize being able to walk in

this direction to the target during inference.

E: Relativity – This split tests a model’s ability to understand that linguistic concepts

like size are relative to the other objects in the grid. During training, objects of a given

size are never referred to as small and only by other attributes such as their color or shape.

During inference, the model must generalize that objects of this size can be referred to as

small based on the other objects around them.

F: Class Inference – For this split, all examples where heavy objects of size 3 are

pushed are held out during training. The model must infer these objects are heavy for objects

and therefore requiring two pushes from examples of them being pulled only.

G: Adverb-k – This split tests the model’s few shot generalization ability. Of all of

the examples using the adverb cautiously, k examples are randomly selected to go in the
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training set. The remaining examples are used for inference.

H: Adverb to Verb – This split tests the models ability to generalize the adverb while

spinning to the verb pull because during training, while spinning is only ever used with the

verb push.

I: Novel Length – All examples in the length training set are up to but not longer than 15

target actions. During inference, the model must learn to generalize to commands requiring

longer action sequences. This split also uses a larger grid (12× 12 cells compared to 6× 6

cells used by the previous train/inference splits).
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