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Abstract

Datasets in the machine learning for health and biomedicine domain are often noisy,
irregularly sampled, only sparsely labeled, and small relative to the dimensionality of
the both the data and the tasks. These problems motivate the use of representation
learning in this domain, which encompasses a variety of techniques designed to
produce representations of a dataset that are amenable to downstream modelling tasks.
Representation learning in this domain can also take advantage of the significant
external knowledge in the biomedical domain. In this thesis, I will explore novel
pre-training and representation learning strategies for biomedical data which leverage
external structure or knowledge to inform learning at both local and global scales.
These techniques will be explored in 4 chapters: (1) leveraging unlabeled data to
infer distributional constraints in a semi-supervised learning setting; (2) using graph
convolutional neural networks over gene-gene co-regulatory networks to improve
modelling of gene expression data; (3) adapting pre-training techniques from natural
language processing to electronic health record data, and showing that novel methods
are needed for electronic health record timeseries data; and (4) asserting global
structure in pre-training applications through structure-inducing pre-training.

Thesis Supervisor: Peter Szolovits
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Challenges in Machine Learning for Health & Biomedicine

Machine learning for health and biomedicine is one of the most exciting areas of

machine learning research today, heavily evangelized both among academics [84, 145]

and industry leaders [212, 80]. Clinical and biomedical machine learning promises

to diagnose diseases [54, 73], forecast patient state [134, 139], build treatment plans

[159, 104], reduce healthcare spending by easing clinical operations [241, 142], or

augment biomedical research pipelines such as drug discovery or protein folding

prediction engines [183, 197].

However, modelling clinical and biomedical data is very challenging. Firstly,

the data modality itself is difficult to work with; it is composed of many disparate,

sporadically recorded modalities, has very high dimensionality relative to dataset

size, is rife with confounders and hidden biases, and suffers from both high rates of

noise and missingness [66, 28, 225]. Secondly, nuanced understanding of clinical and

biomedical data and tasks also requires significant human expertise. Unlike in an

image recognition model, where any human can simply inspect an image and identify

what objects are featured therein, in biomedical applications, understanding what a

model should predict (and why it should make that prediction) can be very challenging.
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As a result, it can be more difficult to identify and induce appropriate inductive bias

in health domains as compared to general domain machine learning—i.e.,, it can

be more difficult to identify the kinds of relationships we want the latent spaces of

models we train to satisfy. Finally, third, there are many instances within clinical

and biomedical machine learning where large datasets will never be available, making

solving few-shot learning problems absolutely necessary. For example, there simply

may not be enough patients suffering from certain rare or newly emerging diseases to

use highly data-intensive learning techniques.

One modelling strategy that can address all of these challenges is representation

learning. Representation learning is a general term for the process of automatically

learning how to represent (or featurize) data for a particular problem or a partic-

ular set of problems. Representation learning approaches encompass traditional,

unsupervised methods such as manual featurization, principal component analysis,

matrix factorization, or nonlinear autoencoders, as well as more recent approaches

using large-scale self- or distantly-supervised pre-training regimes, particularly with

self-attention or transformer architectures [154, 45, 91, 172, 4, 201]. Under these

pre-training algorithms, a model will be first trained to solve an auxiliary task on a

pre-training dataset, then transferred to the fine-tuning context and further special-

ized. Pre-training algorithms have been very effective in a variety of sub-specialties of

machine learning, most notably computer vision (CV) and natural language processing

(NLP). In part, these strategies can be so effective because they allow us to leverage

large, un- or weakly-labeled datasets that are task-independent to induce forms of

inductive bias and prior knowledge into our model.

Given their success in other domains, many researchers have explored representation

learning and pre-training techniques in biomedical contexts. However, adapting

approaches used in other domains naïvely to the biomedical context has not universally

achieved the same performance benefits in these new settings as was observed in the

original domains. One key reason that these methods have not performed as well

in this setting relates to how these methods make use of and impose structure and

knowledge over this data modality.
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1.1.2 Structure & Knowledge over Biomedical Data

To see why structure and knowledge are so critical in representation learning and

pre-training, we first need to define these terms. To that end, suppose we have a

dataset 𝑋 ∈ 𝒳𝑁 . In this thesis, we use structure to refer to both (1) local (e.g.,

per-sample) relationships that can be assumed to exist between individual features

or sets of features within a single sample 𝑥 ∈ 𝒳 and (2) global (e.g., cross-sample)

relationships between whole samples within the data domain 𝒳 . For example, if we

perform a property prediction task over proteins, we may wish to leverage the primary,

secondary, or tertiary structure of each individual protein in how we design our neural

network model (an example of local structure), or we may wish to regularize the latent

space of the model to reflect known relationships from a protein-protein interaction

network (global structure).

In this example, both of these forms of structural constraints are induced from

our external knowledge of the domain and problem. In particular, our knowledge of

the secondary and tertiary structure of a protein, and its known relationships in a

interaction network, are both based on external scientific research about this problem.

While we don’t always need to leverage external knowledge to impose structural

constraints (e.g.,, you can also learn structural constraints to impose from raw data

directly), it is particularly useful to leverage knowledge to inform structural constraints

in the health and biomedical domains because they allow us to induce meaningful

inductive biases into the learning processes, which can greatly aid in learning.

Note that in addition to structure and knowledge being great tools for representation

learning in these domains, they also pose unique challenges as compared to other

domains of machine learning. For example, we can note that the underlying local

structure of biomedical data is often very different than that of data in other domains.

For example, whereas images and text sequences are both well explored in machine

learning, biomedical data often comes in other, more complex representations, such as

graphs (e.g., molecular graphs, protein pathways or co-regulatory networks); multi-

dimensional dynamical systems (e.g., protein or molecular conformations in space,
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epigenetic exposure data, or pharmacodynamic systems); or higher-resolution, multi-

scale, or multi-modal data (e.g., ECG waveform data, pathology slides, clinical notes,

drug-gene-tissue interaction networks). Similarly, it is also more challenging in the

biomedical domain to identify and enforce appropriate forms of global structure during

modelling. Not only are the appropriate relationships between samples harder to

determine in general, due to the inherent uncertainty and complexity of the biomedical

domain, but also they may take on more varied relationships than we find in other

domains; for example, protein-protein relationships can be described by interactions,

pathway membership, and co-regulatory information. Overall, the effective use of

structure and knowledge in clinical and biomedical representation learning presents

both tremendous opportunities and significant challenges.

1.2 My Contributions

My thesis focuses on solving these challenges in designing pre-training and representa-

tion learning algorithms that leverage structure and knowledge for the clinical and

biomedical domains. In particular, in this thesis I will discuss four specific research

endeavors, each of which incorporates structure and knowledge into representation

learning in different ways. I describe each chapter below, and additionally include

in each description a citation for the underlying work driving the chapter, as well

as other related works I have co-authored that are not featured in the chapter but

are thematically related. At the end of this section, I also include a list of other

publications I have completed during my graduate studies that are not featured in

this thesis.

First, in Chapter 2, I explore leveraging distributional knowledge learned from

unlabeled data via a Cycle Wasserstein Regression Generative Adversarial Network

(CWR-GAN) for clinical and biomedical regression problems. We show that this

approach significantly outperforms traditional supervised learning alone in predicting

individual treatment response estimation in intensive care patients. This work further

motivates larger-scale self or semi-supervised pre-training systems, which similarly
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take advantage of unlabeled data, and in particular pre-training methods that impose

global structural constraints on neural network latent spaces. Main Work [134], Other

Related Publications [11]

Second, in Chapter 3, I show that using the graph structure inherent in genetic

co-regulatory information can significantly improve the modelling of gene expression

data. This shows that the use of local structure can offer higher quality representations

in non-traditionally structured biomedical domains, and further motivates my later

analyses of how to incorporate structure into pre-training systems at larger scales.

Main Work [136], Other Related Publications [59]

Third, in Chapter 4, I discuss adaptations of traditional pre-training algorithms to

electronic health record data, focusing specifically on structured physiological clinical

timeseries. This work highlights the limitations of traditional algorithms for this new

modality. In particular, we show that multi-class pre-training algorithms significantly

outperform imputation based approaches, highlighting that a naïve adaptation of

natural language processing methods does not offer success in this modality. This

failure thus motivates the development of new kinds of pre-training methods for

biomedical modalities. Main Work [129], Other Related Publications [7]

Finally, fourth, in Chapter 5, I explore a new theoretical framework for pre-training

algorithms highlighting the importance of inter-sample inductive biases in pre-training

algorithms. We introduce the framework Structure-inducing Pre-training (SIPT),

and provide both theoretical and empirical demonstrations that inducing global

structure into the pre-training latent space can offer significant benefits, which opens

up significant opportunities for developing new pre-training methods for biomedical

data specifically. Main Work [132], Other Related Publications [164, 131]

Overall, throughout this thesis, we will demonstrate that incorporating structure,

either directly learned from data or via external knowledge, can significantly improve

performance in clinical and biomedical machine learning.

Other Works I have also explored many other works during my academic career to

date which are not related to this thesis, including the following:
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Open & Effective ML4H Research [19, 133, 219, 147, 146, 135, 12]

Fairness & Bias [184, 185, 243]

Clinical Natural Language Processing [95, 89, 117, 27]

Conference Organization [8, 128, 41, 6, 179, 175, 55]

Other [38, 24, 127, 79, 10, 227]
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Chapter 2

Semi-supervised Biomedical

Translation with Cycle Wasserstein

Regression GANs

Abstract

In this thesis, I investigate clinical and biomedical representation learning. In this work,
originally published in [130], we explore these themes by examining how unlabeled
data can provide value via semi-supervised learning for biomedical regression tasks.
Note that interested readers may also read [11], which features similar themes but is
not included in this thesis.

The biomedical field offers many learning tasks that share unique challenges: large
amounts of unlabeled data, and a high cost to generate labels. In this work, we
develop a method to address these issues with semi-supervised learning in bidirectional
regression tasks. Our model uses adversarial signals to learn from unlabeled datapoints,
and imposes a cycle-loss reconstruction error penalty to further regularize the learned
regressors. We first evaluate our method on synthetic experiments, demonstrating two
primary advantages of the system: 1) distribution matching via the adversarial loss
and 2) regularization towards invertible mappings via the cycle loss. We then show
a regularization effect and improved performance when paired data is supplemented
by additional unpaired data on two real biomedical regression tasks: estimating
the physiological effect of medical treatments, and extrapolating gene expression
(transcriptomics) signals. Our proposed technique is a promising initial step towards
more robust use of adversarial signals in semi-supervised regression, and could be
useful for other tasks (e.g., causal inference or modality translation) in the biomedical
field.
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2.1 Introduction

Motivation

Relative to other fields which have seen recent interest in multi-modal translation

(e.g., images to text, or audio to video), the biomedical field lacks large datasets that

are “paired”—where two sets of data from the same subject are available (e.g., at

different times or in different modalities). Additionally, many biomedical translation

tasks involve regressions between source and target domains that are either both

representations of some shared, underlying state (e.g., modality translation), or

driven by real, bio-physical mechanisms. In either case, we expect both directions

of translation to have meaningful, approximately invertible solutions. This makes

“cycle” consistency—mapping a particular source example to the target domain and

back—desirable. It also means we can leverage the inferred cycle map to re-frame the

previously independent regression problems as a joint, multi-task learning problem.

Challenge

Learning from “extra” unpaired data is valuable in settings where acquiring a large

amount of paired data is not feasible. In many clinical settings, paired dataset

collection (e.g., patient data pre- and post-treatment) is impossible, as doctors have an

ethical imperative to intervene on patients at times inconvenient for dataset curation.

In gene expression tasks, obtaining expression levels for transcripts corresponding

to the entire genome is expensive, but there are large corpora of smaller snippets,

independently measured for the purposes of individual studies.

Goal

Our goal is a mechanism of semi-supervised learning for regression problems that

leverages large amounts of unpaired data to improve performance on tasks with a

scarcity of paired data, and provides an approximately invertible solution from source

to target domains. For example, in estimating medical treatment effect, a patient may

have data from only pre- or post- treatment rather than both. In gene expression
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tasks, the inherent intracorrelations within gene expression profiles implies that we

should be able to translate between different subsets of the transcriptome—the set of

all total gene transcription products in a cell—in an invertible, non-lossy manner [52].

Solution

We design a novel joint regression-adversarial model (CWR-GAN) that uses cycle-

consistent generative adversarial networks (GANs) for bidirectional regression tasks.

We demonstrate our method on synthetic datasets to illustrate its key points and

analyze its effects on two real-world biomedical datasets: individual treatment effect

(ITE) regression based on electronic health record (EHR) data, and transcriptomics

(gene expression) extrapolation.

Contributions

We develop an end-to-end differentiable architecture that uses adversarial signals for

semi-supervised bi-directional translation in the biomedical field. In doing so, we make

the following specific contributions:

• We design a cycle-consistent regression adversarial network for semi-supervised

regression learning.

• We demonstrate the regularization effect and discriminative performance boost

of our method on synthetic data in a semi-supervised setting.

• We evaluate our approach in two diverse real-world biomedical datasets: forecast-

ing the individual treatment effect of four ICU interventions on 29 signals in over

2,000 patients, and extrapolating a 978 dimensional subset of the transcriptome

to a 5000 dimensional subset.

2.2 Related works

The biomedical field is not alone in that bi-directional, approximately invertible

mappings (i.e., translation tasks) are desirable. For example, stacked autoencoders

have been used to learn a shared representation between audio and video signals, and

33



multi-modal conditional prediction frameworks have been used to “hallucinate” one

modality given another [149, 194].

Generative adversarial networks (GANs) have previously been used for translation

tasks. For instance, GANs were used to translate from captions to their associated

images, generating images of birds and flowers from text captions [169]. Previous work

in the imaging domain has explored using GANs for translation tasks by combining

adversarial losses with traditional regression losses [94], but these systems have since

been surpassed by adversarial-only systems, such as one which used a bidirectional

cycle-consistent adversarial network (Cycle GAN), to translate images from one style

to another [251]. No investigations that we know of have applied any adversarial

techniques, with or without regression losses, to biomedical translation tasks. GANs

have also been explored for semi-supervised learning, but such uses have examined

classification tasks in imaging domains, not regression, as we do here [177, 195].

Much prior work in the clinical setting focuses on single domain learning (text,

physiological data, etc.) in order to perform supervised prediction or retrieval tasks.

For example, predicting mortality given previously observed clinical notes, predicting

common billing codes given a portion of a patient’s record, or predicting interventions

based on an inferred physiological latent space [65, 116, 68, 229]. Adversarial models

have recently been used on clinical data to generate binary and count summarizations

of patient records, and to generate clinical time series [33, 53]. In both cases, GANs

were used principally for their generative capabilities, rather than modality translation

or semi-supervised learning.

2.3 Methods

In the present study, we develop a novel approach to semi-supervised, bi-directional

translation shown in Figure 2-1 using a Cycle Wasserstein Regression GAN (CWR-

GAN). The CWR-GAN is constructed from several architectures: GANs in general,

Wasserstein GANs, and cycle-consistent GANs.
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Figure 2-1: Overall architecture for the Cycle Wasserstein Regression GAN (CWR-GAN)
model.

2.3.1 Generative Adversarial Networks (GANs)

There are two parts to the traditional GAN: a generator 𝐺(z;𝜃𝑔) and a discriminator

𝐷(x;𝜃𝑑) [70]. 𝐷 and 𝐺 compete in a two-player minimax game, where 𝐷’s goal is to

discriminate between real and synthetic data, and 𝐺’s goal is to generate synthetic

data that can fool 𝐷. In their original formulation, the traditional GAN loss function,

at discriminator optimality, measures the Jensen-Shannon divergence between 𝐺(z)

and 𝑝data [69].

Traditionally, GANs are trained in turns: first the discriminator is trained for a

number of epochs, then the generator is trained for one epoch, using gradients from the

discriminator fixed at its value based on training thus far. This alternating training

procedure is repeated until convergence.

Wasserstein GAN (WGAN)

Recent work has proposed use of the Wasserstein (or Earth Mover’s/EM) distance

to formulate a “critic” in lieu of the traditional GAN discriminator [9]. Compared to

traditional discriminators, Wasserstein critics help stabilize GAN training because the

EM distance never saturates, and thus provides meaningful gradients to the generator

throughout training.

The best known implementation of such a WGAN is via the following loss, which
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we will use as our adversarial foundation throughout this work [72]:

min
𝐺

max
𝐷

E
x∼𝑝𝑋

[𝐷(𝑥)]− E
z∼𝒩 (0,𝐼)

[𝐷(𝐺(𝑧))]

−𝜆

(︂
E

x̄∼𝑝𝑋̄
[‖∇𝑥̄𝐷(𝑥̄)‖2 − 1]

)︂2

(2.1)

where 𝑝𝑋̄ is defined via x̄ = 𝜖x + (1 − 𝜖)𝐺(z), 𝜖 ∼ 𝑈([0, 1]). In this loss, 𝜆 is a

hyperparameter that should be set sufficiently high so as to insist the gradient loss

term remains small throughout training.

Cycle-consistent GAN (Cycle GAN)

Cycle GANs learn to translate points between two domains, 𝑋 and 𝑌 , using only

unsupervised, adversarial signals. To do this, they learn two “generators” 𝐺𝑋 : 𝑋 → 𝑌

and 𝐺𝑌 : 𝑌 → 𝑋, and two discriminators (or Wasserstein critics), 𝐷𝑋 and 𝐷𝑌 . Both

generators are trained not only according to an adversarial loss, but also to minimize

a cyclical reconstruction error penalty:

ℒCyc = E
x∼𝑝𝑋

[‖𝑥−𝐺𝑌 (𝐺𝑋(𝑥))‖1]

+ E
y∼𝑝𝑌

[‖𝑦 −𝐺𝑋(𝐺𝑌 (𝑦))‖1] . (2.2)

This loss regularizes both learned models towards being each others’ inverse, and

reframes the two isolated regression tasks as a single multi-task model [251].

2.3.2 Cycle Wasserstein Regression GAN (CWR-GAN)

We present a novel joint regression-adversarial model1 for biomedical translation

problems, where our goal is to learn mapping functions between two encoded domains

𝑋̂ and 𝑌 given training samples {𝑥̂𝑖}𝑁𝑖=1 ∈ 𝑋̂ and {𝑦𝑗}𝑀𝑗=1 ∈ 𝑌 .

Our model implements a Cycle Wasserstein GAN with the addition of a regression

loss on paired samples. Given a source domain 𝑋 and a target domain 𝑌 , with some

1Code available at https://github.com/mmcdermott/CWR-GAN.
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subsets 𝑃 ⊆ 𝑋 × 𝑌 consisting of paired observations, our full objective is as follows:

ℒCW-Crt = − E
x,y∼𝑝𝑋×𝑌

[𝐶𝑋(𝑥) + 𝐶𝑌 (𝑦)]

+ E
x,y∼𝑝𝐺𝑋 (𝑋)×𝐺𝑌 (𝑌 )

[𝐶𝑋(𝑥) + 𝐶𝑌 (𝑦)]

+ 𝜆 E
x̄∼𝑃𝑋̄

[‖∇𝐶𝑋(𝑥̄)‖2 − 1]2

+ 𝜆 E
ȳ∼𝑃𝑌

[‖∇𝐶𝑌 (𝑦̄)‖2 − 1]2 (2.3)

ℒCW-Gen = −ℒCW-Crt + 𝜈ℒCyc

+ 𝛼 E
x,y∼𝑝𝑃

[‖𝑥−𝐺𝑌 (𝑦)‖2 + ‖𝑦 −𝐺𝑋(𝑥)‖2] (2.4)

Components of this loss offer different training signals:

1. The traditional regression loss term directly trains the generator to perform

a low error translation based on the limited paired data available. If all data

available is paired, this will be the most direct loss term, and yield the best

training signals. This loss term is weighted by hyperparameter 𝛼.

2. The cycle loss term regularizes the learned models against those for the opposite

direction. This ties the two otherwise independent loss objectives (for 𝐺𝑋 and

𝐺𝑌 ) together, and is weighted by hyperparameter 𝜈.

3. The adversarial loss term (−ℒCW-Crt) helps regularize each model individually

by pushing predictions towards regions of high perceived likelihood.

Taken together, these components insist that the two learned maps 𝐺𝑋 and 𝐺𝑌 should

be approximately invertible, each able to learn well from unpaired data, and able to be

refined using paired examples. Traditionally, GANs can suffer from a problem known

as mode collapse, wherein the generator only generates a very small set of identical

examples, each of which is viewed as realistic by the critic. However, our system does

not suffer from this problem, as each component of our loss helps penalize this kind of

error. Standard regression losses obviously prohibit mode-collapse behavior, as does

our cycle consistency penalization, and the Wasserstein formulation of our adversarial
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Figure 2-2: The CWR-GAN system on a synthetic domain with only two paired examples.
Far Left: At initialization, no map is meaningful, and no loss has converged. Middle Left:
Training first locks both paired points (highlighted in white) to their correct values. Middle
Right: Training locks both maps into an invertible pair, but has yet to fine tune the output
distribution to the exact shape. Far Right: The adversarial loss has guided the model to the
correct shape. Cycle loss drives the mappings to be invertible before the final distributions
are correctly found. After the cycle loss falls to zero, both maps evolve in tandem until
convergence.

losses have also been shown independently to suffer much less from mode collapse

than a traditional discriminator [9].

2.3.3 Synthetic Experiments

We provide the simplest possible demonstration of the key aspects of our system on

synthetic datasets. We generate a source 𝑋 distributed about the 2D unit circle, and
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target 𝑌 affected by a simple affine transformation, defined as follows:

r ∼ 𝒩 (1, 0.01) 𝜃 ∼ 𝑈([0, 2𝜋])

𝑋 =

⎡⎣r cos(𝜃)
r sin(𝜃)

⎤⎦ 𝑌 =

⎡⎣0.2 0

0 4

⎤⎦𝑋 +

⎡⎣1
3

⎤⎦
We present results on the noiseless domain defined above for simplicity, but note that

these results hold with mild, independent Gaussian noise on both 𝑋 and 𝑌 .

We generated 10,000 total samples, with an 80%/20% train/test split, and offered

the system either no paired samples or only two paired samples following the train/test

split. In this domain, translators are affine transformations, and critics are 3-layer

deep, 300-neuron wide leaky rectified linear unit (Leaky ReLu). All networks in this

work use a Leaky ReLu activation, with 𝛼 = 0.3 (e.g., LeakyReLu(𝑥) = max(0.3𝑥,𝑥)).

networks. These depth/width settings were chosen to be similar to the 2D experiments

in earlier WGAN works [72]. Regression loss multipliers (𝛼) were set to 1 in this

experiment, cycle loss (𝜈) to 0.2, gradient loss (𝜆) to 3, and 3 critic epochs were

performed for every 1 translator epoch.

We highlight three aspects of the CWR-GAN observed on this synthetic dataset:

• Absent any paired data, the system learns the correct output distributions,

and a map consistent with the symmetries of the output distributions, thereby

demonstrating the value of adversarial signals in their own right.

• With two paired data points, the system learns not only the correct output

distribution, but the correct map, thereby demonstrating that adversarial signals

can complement paired examples to learn a map benefiting from both sources of

information (Figure 2-2).

• The cycle loss component serves to “snap” the maps together into an invertible

pair, thus helping each use the other for regularization.

In this synthetic verification and the two experiments on biomedical datasets that

follow, all models were implemented in Tensorflow [1]. We use the Adam optimizer [99],

with hyperparameters similar to those recommended in prior work [72] (𝛼 = 0.00005,
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𝛽1 = 0.5, 𝛽2 = 0.9) in the CWR-GAN for critics and generators.

2.4 Experiment 1: Individualized Treatment Effect

Prediction with ICU Patient EHRs

In this experiment, we focus on predicting individual patients’ responses to interven-

tions (i.e., from pre- to post-treatment). We examine 29 noisy timeseries derived from

the electronic health records (EHRs) of intensive care unit (ICU) patients. These

signals are recorded hourly; however, it is common for interventions to be applied near

the beginning or end of a patient’s stay. This limits the availability of paired training

examples because few records contain sufficiently large, equally sized windows both

pre- and post-intervention. A standard regression system can only use fully paired

examples, but our CWR-GAN model can also use those records that only have one

such window as an unpaired example of either the source (pre-intervention) domain

or the target (post-intervention) domain. This allows us to learn from additional data

that is inaccessible to traditional regressors.

Forecasting a patient’s response to a treatment—their individualized treatment

effect (ITE)— is an important task because the efficacy of clinical interventions can

vary drastically among patients. Further, unnecessarily administering an intervention

is expensive and potentially harmful. We target two interventions: invasive ventilation

and vasopressor use. While ventilation is a commonly used ICU treatment, there are

many potential complications and changes in ventilation settings can impact patient

outcomes [234, 211]. Similarly, vasopressors are a medication commonly used in the

ICU, but have been found to be harmful in certain populations [42].

2.4.1 Data Source & Preprocessing

We use data from the publicly available Multiparameter Intelligent Monitoring in

Intensive Care (MIMIC-III v1.4) database [96]. We consider the first ICU stay of

patients 15 and older whose stay duration was 12 to 240 hours, yielding 33,287 unique
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predict

Patient 1:

VENT24h 24h

Patient 2:

Figure 2-3: ITE regression task setup. Physiological series corresponding to some pre-
intervention window (VENT, highlighted in red) are summarized into a fixed-size encoding,
then translated to the corresponding post-intervention window. In this example, Patient 1
has sufficient data on both sides the intervention window to form a paired training example.
However, Patient 2 does have not sufficient time post-intervention, constituting an unpaired
“pre-” training example from the source domain.

ICU stays. For each patient, we extract the static variables gender and age, as well

as 29 time-varying vitals and labs, the same used by other work [209]. Vital and

lab measurements are given timestamps rounded to the nearest hour, and multiple

measurements within an hour were averaged. Measurements are only recorded for

hours in which they are taken, so missing measurements are common.

There have been several proposed encodings for physiological data [28, 68]. Here,

we use a fixed sized encoding formed by concatenating measurement counts (i.e., how

often a measurement was taken) with the average value observed for each measurement

during the time interval. If a measurement was never taken during the interval, we

fall back to the patient’s average for that measurement; if it was never taken for that

patient, we use the population average. Finally, we concatenate the patient’s age and

gender to this representation to enable our task to use static signals as well as the

summarized time series.
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Paired Pre- Post-

Ventilation 834 469 7973
Phenylephrine 510 568 3697
Norepinephrine 247 363 1931
Dopamine 159 135 960

Table 2.1: Population sizes for the intervention prediction tasks. Each intervention has
three distinct populations: 1) paired patients, 2) “pre-” unpaired records, obtained from
patients whose ICU stays did not contain a full 24-hour interval following intervention
application, and 3) “post-” unpaired records, obtained from patients whose ICU stays
did not contain a full 24-hour interval preceding intervention application.

2.4.2 Experimental Setup

Our primary prediction task is performed over 24-hour windows (Figure 2-3). These

yield a range of paired vs. unpaired splits, and our goal is to predict the physiological

signals post-treatment (target) given the patient’s physiological signals pre-treatment

(source). We examine four interventions: invasive ventilation (VENT), and the use of

three specific vasopressors—phenylephrine (PHEN), norepinephrine (NOREP), and

dopamine (DOP). Final population sizes for each intervention after extraction are

illustrated in Table 2.1.

We are primarily interested in the difference between a traditional regression neural

network and our semi-supervised system with respect to the natural regression loss

for the target domain (e.g., Euclidean distance loss in the post-intervention domain).

As such, we train and evaluate two models: 1) a traditional regression multi-layer

perceptron (MLP) for either direction of regression, and 2) our semi-supervised system,

which augments the traditional network with a Wasserstein critic and the cycle loss

penalty.

Models were tuned, then evaluated via nested cross-validation. All regression and

critic networks were 3-layer, bidirectional regressors using leaky ReLU activations,

dropout of 0.75, and L2 & L1 regularization of 1e−3. All hyperparameters were

chosen via nested cross-validation search, and results are reported in terms of median

Euclidean distance loss on the target domain across the same outer cross-validation

split. Loss multipliers were fixed independently of task at a multiplier of 10 for the
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Intervention Type

Model VENT NOREP DOP PHEN

MLP 3.780 2.829 2.719 3.186
CWR-GAN −0.50% −7.4% +2.7% −4.5%

Table 2.2: Comparison of median model performance on four targeted interventions.
The traditional MLP regression network performance is reported in Euclidean distance.
Our semi-supervised CWR-GAN results report the difference from the MLP’s loss,
as a percentage of that loss. Thus, a positive percentage is where the CWR-GAN
performed worse than the MLP (i.e., on the dopamine treatment effect task), and the
remaining negative losses on all other ITE tasks are where the CWR-GAN was better.
All models significantly outperformed a linear baseline.

regression component and 1 for both the adversarial and cycle reconstruction error

losses. The gradient loss multiplier was set to 10, but if a critic appeared to suffer from

gradient explosion during training, it was increased to 50. Models were trained for up

to 9 consecutive critic epochs, stopping after 3 critic epochs that did not improve the

adversarial loss, then 1 translator epoch.

2.4.3 Results

Results for the performance of our system are shown in Table 2.2. We see that on three

of the four interventions, our joint system yields an improvement over a traditional

regression system in terms of the overall loss by fractions ranging from 0.5% to 7.4%.

On the dopamine vasopressor prediction task (DOP), we underperform the traditional

system by 2.7%. This may be because dopamine has the smallest fraction of unpaired
paired

data of any of our sources (6.9 for dopamine vs. 8.4, 9.3, and 10.12 for phenylephrine,

norepinephrine, and ventilation, respectively), but could also be caused by other,

unforeseen complexities. Nevertheless, overall, these results demonstrate that even

with as few as 834 paired data points, or as few as ∼ 2500 total points, the CWR-GAN

can successfully learn from unpaired instances.

We also observed that during the majority of the cross-validation search, the

CWR-GAN system would outperform the traditional system across a majority of

tasks for a variety of reasonable, though sub-optimal, parameter settings. Upon closer
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Figure 2-4: Semi-supervised signals offer regularization to ITE regression. The thick,
horizontal line is attained by a ‘no-change’ prediction baseline; e.g., predicting that the
intervention does not alter the physiological signals. We demonstrate that appropriate
dropout is vital for the MLP (lower is better), but it is not necessary for the improved
CWR-GAN results.

inspection, this appeared to be due to additional regularization effects inherent in the

adversarial nature of our system’s learning, though this warrants additional study.

For example, Figure 2-4 shows that dropout is far more influential on the standard

predictor than on the CWR-GAN model. This figure is taken from our actual cross

validation results, and is thus using sub-optimal parameters; thus, the scale of the

losses shown here is not representative of our tuned losses. However, these results do

suggest that the adversarial signals and cyclic loss penalty may help to regularize the

model in a manner orthogonal to traditional methods of regularization.
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2.4.4 Discussion

Analyzing intervention effect is often hampered by the fact that many patients lack

sufficient pre-intervention and post-intervention signals to offer a full regression pair.

In such cases, the data collected in either their pre- or post- intervention would be

ignored by traditional, uni-directional regression approaches. However, our method

demonstrates these can still provide valuable signals independently.

Another potential medium for our approach is causal inference, i.e., characterizing

how a treatment tested on one cohort would affect a more general population. The

ability to use unpaired data that could not be included in standard regression studies

in this field would be extremely valuable.

During our experiments, we also considered shorter windows (6 and 12 hours)

which contained more paired training data. However, shorter time windows preclude

the inclusion of a full diurnal cycle, and it is well-established that circadian rhythm

influences most physiological parameters, including metabolic, endocrine and immune

functions [207]. This adds a dimension to the learning task which cannot be inferred

from the data, as it is not possible to know whether a patient will stop their intervention

during the evening or the morning. Additionally, missingness is more prevalent in the

12 and 6 hour periods, as less frequently performed tests are less likely to appear in

these shortened windows. As missingness increases, the imputed, average signals will

be more common, which induces a non-representative spike in the data distribution.

This predominantly penalizes the adversarial system, as it relies on distributional

signals. It is thus unsurprising that all model performance decreased on these tasks;

the CWR-GAN system in particular failing to ever outperform a traditional model.

However, we also note that the CWR-GAN performance consistently suffered more as

less data was available as unpaired vs. paired; this finding reinforces the transcriptomics

results we discuss next and indicates the model is learning from unpaired samples.

45



2.5 Experiment 2: Transcriptomics Extrapolation

Transcriptomics data give a view into a cell’s internal state by directly measuring the

expression levels of genes via their transcriptional byproducts. The full transcriptome

is extensive and contains many transcripts, each corresponding to unique proteins

with diverse functions. However, it is also redundant, and much can be learned about

the cell state from a small subset of the transcriptome. As such, high throughput

techniques may measure only a subset of transcripts, thereby saving money and time,

and attempt to infer the full gene expression profile [199].

2.5.1 Data Source & Preprocessing

The L1000 technique is commonly used to perform high throughput transcriptomics

assays. This technique only directly measures 978 transcripts, and then uses these to

infer those remaining [199]. The L1000 developers have released a dataset of 100,000

full transcriptomes, split between the 978 landmark genes and those remaining, to the

NCBI GEO database under series number GSE701382 [20]. We use this dataset for

our task, where the source domain is the 978 landmark genes, and the target domain

was restricted to the first 5000 genes for computational efficiency. Data were centered

and scale normalized.

2.5.2 Experimental Setup

In the intervention task, our unpaired samples were derived from the same source

as the paired examples. Thus, in that context, we could augment our model with

those unpaired examples and still fairly evaluate on only a subset of the available

paired records. In the context of transcriptomics extrapolation, however, this is not

possible; though many scientists have published external transcriptome subsets that we

could use as “unpaired” instances in training, we know that these are from a different

distribution than our main paired dataset because each individual study produces

gene expression datasets according to their own individual scientific prerogatives. This
2https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70138
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means that if we did use these unpaired sources, it would be difficult, if not impossible,

to evaluate our model; even if gains in inference occurred generally, they could be

negligible on the paired data alone, which is our only testable data source.

Instead, we randomly split our dataset into paired and unpaired datasets according

to four variants: 100%, 50%, 10%, and 3% paired. This allows us to not only effectively

evaluate our model in the context of unpaired data, but also to probe how the

relationship of our model to a standard regressor varies with the amount of unpaired

vs. paired data available.

As before, we are primarily interested in the difference between a traditional

regression system and our semi-supervised system in terms of the natural regression loss

for the target domain—i.e., the euclidean distance loss on the 5000-dim. transcriptome

subset. As such, we train and evaluate a traditional regression network, and our

semi-supervised system, and compare both of their regression (i.e., not adversarial)

losses in the target domain.

Translator networks were exclusively leaky ReLU networks with varyied hyper-

parameters and network configurations depending upon the specific variant. On the

100% or 50% paired variants, regression networks had three hidden layers and no

regularization. If 90% of the data were paired, regression networks had 2 hidden

layers, dropout of 0.6, and L2 regularziation of 1e−3. If 97% of the data were paired,

networks had 2 hidden layers, with dropout of 0.5, L2 regularization of 2e−3 and L1

regularization of 2e−5. Hidden layer dimensionality matched input dimensionality in

all cases. Critics were 2 hidden layer networks with dropout of 0.9, L2 regularization

of 2e−4 and L1 regularization of 1e−6 in all cases. Hyperparameters were chosen

according to a grid search with a randomly sampled 15% validation set. Models were

tested on a held out, randomly sampled 20% test set.

2.5.3 Results

On this dataset, if all data are paired, our system underperforms a traditional neural

network, attaining a loss 3.6% higher. This is expected, as the regression loss is the

most direct training objective in the fully paired case. However, as we increase the
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Figure 2-5: Performance (in Euclidean distance regression loss) of a linear model, standard
predictor, and our semi-supervised CWR-GAN as a function of the fraction of the data
that is paired. Lower is better. As we reduce the amount of paired data available, the
semi-supervised model gains ground in performance over both baselines, demonstrating that
it learns from the unpaired data sources.

fraction of data that are unpaired, our system gains more and more ground: the

CWR-GAN system yielding loss deltas of 1.4%,−0.3%,−1.6% at 50%, 90%, and 97%

unpaired, respectively. Thus, we see that the amount of unpaired data is perfectly

correlated with our model’s performance gain over a traditional system, which offers

strong support for the argument that the CWR-GAN is learning additional signals

from the unpaired samples. Both models significantly outperform a ridge regression

(𝜆 = 100) baseline. The total results in raw units are shown in figure 2-5.

2.5.4 Discussion

Transcriptomics is a promising and rapidly evolving area of computational and clinical

biology. It holds tremendous promise for disease subtyping, drug discovery, and

diagnostics. However, the expense of collecting a full transcriptome sample and the

inherent inter-experimental variability in these data mean there are often not enough

data to form generalizable conclusions. The ability to include unpaired or unlabeled

instances would aid in circumventing this boundary.
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Our results demonstrate that the addition of unpaired data does allow the model

to learn additional features from the data, which bodes well for the possibility of

using these ideas for real-world use cases, such as augmenting a broader inference

algorithm with unpaired data from more recent samples that reflect the full diversity

of transcriptomics analyses, as well as for modality translation within multi-omics

studies. Further, these results underscore those attained in the intervention task by

reiterating that the model can successfully learn from the unpaired data, now on a

dataset of total size 100,000, rather than approximately 8,000.

2.6 Conclusion

The ability to incorporate large amounts of unpaired data in a regressive translation

is critical in many tasks in the biomedical field. Because these tasks are bio-physically

driven, we also desire that any mappings we learn be invertible. These constraints

are also applicable in other fields, e.g., mapping pre- and post- trip behaviors from

ride-sharing data, or translating social media data pre- and post- an important event.

In these settings, the tasks would similarly benefit from the ability to integrate a large

amount of unpaired data.

The goal of this work was to create a model that used unpaired data to learn

invertible translations more accurately with fewer paired datapoints. We demonstrated

our method’s applicability to the biomedical field using two different experiments.

First, the CWR-GAN was able to use unpaired data pre- and post- treatment to

improve ICU patient ITE forecasts in three of four ICU interventions in real-world,

noisy physiological signals across more than 2,000 patients. Second, the CWR-GAN

was able to successfully extrapolate a 978 dimensional transcriptome fragment to a

much larger 5,000 dimensional subset of the transcriptome, and this ability improved

relative to traditional methods as the ratio of unpaired to paired data increased.

This approach has two main limitations. First, this method takes much longer

than standard predictors. Translator mappings do not typically require more epochs

to reach convergence, but because the critic must also be trained, and as more data
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can be used, they take much longer in terms of wall-clock time. Second, adversarial

networks remain a very active area of research, and they are notoriously difficult to

train and understand. Their use here, while offering many advantages, also means

that this method is inherently more high-maintenance than other strategies. We also

note that recent work has shown the EM distance metric (which is central to the

Wasserstein GAN critic loss) yields biased sample gradients, and thus is perhaps not

well suited to stochastic gradient descent [14].

There are many directions for future work building on these methods. Further

improvements to training stability, including automatically tuning some of the loss

multipliers as training evolves, or with newer variants of GANs, such as the Cramér

GAN, would make the training process much smoother. Additionally, further inves-

tigations into the contribution of each loss component alone, e.g., cycle loss, could

help determine what precise effect they offer. We have previously tried simply adding

a cycle loss component to a bi-directional traditional regressor, but this alone did

not offer any significant performance improvement. Finally, additional work could be

performed attempting to move beyond simple mode-matching via adversarial network

theory, and instead perform full distribution matching between the source and target

domains.

2.6.1 Relation to this Thesis

In this work, we augment a traditional regression learning setup with additional loss

terms designed to push the latent space of these models to conform with structural

constraints that are learned from larger, unlabeled datasets. In this way, we can see

that this work shows a method for imposing global structural constraints on neural

network latent spaces during representation learning. This is a theme that will be

revisited throughout the rest of this thesis, and formalized fully in Chapter 5, which

demonstrates a framework for inducing global structure during pre-training.

Unique from the rest of the thesis is that in this work the structural constraints

imposed are not drawn from external domain knowledge, but instead are learned

alongside the neural network models from unlabeled data directly. As this work
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features regression problems, this approach can still provide powerful inductive biases,

but as we move into other domains, where we can’t so precisely describe the desired

geometry of neural network latent spaces, the use of external knowledge to define

these structural constraints will become more important, and accordingly external

knowledge will feature more heavily in the later chapters of this thesis.
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Chapter 3

Leveraging Structure for

Transcriptomic Data Analysis

Abstract

In this thesis, I explore how we can leverage structure and knowledge to improve
biomedical pre-training and representation learning algorithms. Central to that goal
is the idea that incorporating prior knowledge can help improve the quality of even
high-capacity models. In this work, originally published in [136] and featured in
my S.M. thesis, we show for the first time (as of its publication) that incorporating
prior knowledge of genetic co-regulatory networks can improve representation learning
systems over transcriptomics data. Note that for further exploration of the themes of
this chapter, interested readers should also examine [59].

In this chapter, we compare the efficacy of traditional classifiers against graph
convolutional neural networks (GCNNs), which we augment with prior domain knowl-
edge via co-regulatory networks learned from the scientific literature. Furthermore,
we introduce three new classification tasks on multiple L1000 gene expression datasets.
In addition, on a private, smaller dataset, we profile per-subject generalizability to
provide a novel assessment of performance that is lost in many typical analyses. To
thoroughly benchmark the efficacy of this injection of prior knowledge, we compare
traditional classifiers, including feed-forward artificial neural networks (FF-ANNs),
linear methods, random forests, decision trees, and 𝑘-nearest neighbor classifiers
against our GCNNs. We find GCNNs offer performance improvements given sufficient
data, excelling at all tasks on our largest dataset. On smaller datasets, FF-ANNs offer
greatest performance. Linear models significantly under-perform on all dataset scales,
but offer the best per-subject generalizability. Ultimately, these results suggest that
the incorporation of prior knowledge can help even in high-capacity, large-data regimes,
and further motivates future work in the use of structure and domain knowledge in
representation learning algorithms.
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3.1 Introduction

Transcriptomics data are an increasingly important data modality within biomedicine,

and such data are widely used for connectivity mapping, drug development, and other

biological research [199]. Appropriately, given its high importance, biologists have

accrued significant domain knowledge regarding how gene expression is regulated

biologically, providing extensive, if complicated and uncertain, structure around these

data. The availability of large-scale, heterogeneous gene expression datasets is also

rapidly on the rise, fueled both by falling costs and development of new gene expression

profiling technologies [199].

Simultaneous with the increasing availability of gene expression data, deep learning

techniques have grown vastly more powerful and popular—showing advances in image

processing [73, 54, 98], natural language processing [106, 63, 190], and speech recogni-

tion/generation [150, 109], among other fields. In some limited areas, these advances

have also translated into the biomedical domain—for example, in analyzing mass

spectrometry spectra [213], DNA sequences [248], amino acid sequences [113, 218, 25],

or biomedical images [54, 73].

However, among non-sequential, non-imaging modalities, such as gene expression

data, “deep” learning methods generally remain limited to simple, unstructured, shallow

modeling techniques. In particular, while large-scale benchmarks such as the ImageNet

challenge1 and the existence of clear underlying mathematical structure to constrain

network architectures have fueled the development of convolutional neural networks

(CNNs) for image processing or recurrent neural network (RNNs) for sequential

analysis, bioinformaticians are limited to unstructured feed-forward artificial neural

networks (FF-ANNs), which are known to be relatively inefficient learners [102].

In this work, we aim to lay a foundation that will help deep learning succeed for

gene expression data as it has in these other domains by providing a fixed definition

of success via benchmarks and offering a potential avenue for using structure to

1ImageNet is a dataset containing millions of labeled images; its associated challenge tasks
computer vision researchers to design algorithms to identify the objects in these images among a fixed
set of categories. Many see ImageNet as a critical seed to the current deep learning boom [64, 176].
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create more intelligent modeling approaches. In particular, we define three biologically

motivated benchmarking tasks over two curated views2 of the public L1000 LINCS

dataset and one privately produced gene expression dataset. On each task, we profile

𝑘-nearest neighbor (𝑘-NN) classifiers, decision trees, random forests (RFs), linear

classifiers, and two neural network classifiers: feed-forward artificial neural networks

(FF-ANNs) and graph convolutional neural networks (GCNNs). GCNNs generalize the

notion of convolutional neural networks (CNNs) onto data structured over arbitrary

graphs and allow us to use prior biological knowledge, namely regulatory relationships

between pairs of genes, to more intelligently model these data.

We find that GCNNs can perform very well, but require large amounts of data; in

particular, they offer the strongest performance on all tasks over our largest dataset,

but under-perform FF-ANNs on our smaller datasets. Of other methods, FF-ANNs

perform best, followed consistently by linear classifiers, then random forests, then

decision trees. 𝑘-NN classifiers show less consistent relationships, as they perform

almost as well as FF-ANNs on our larger datasets, but they underwhelm on our

smaller datasets.

Gene expression datasets often contain many samples spanning a very small set

of subjects, as a single subject’s gene expression profile may be taken many times

under varying conditions (e.g., different drugs, etc.). As such, a pronounced risk

when modelling gene expression data is that one can learn a model specific to the

very limited population expressed in your data. With datasets such as the LINCS

data, which often only have the equivalent of one or two subjects (i.e., cell lines) per

tissue type, assessing the extent of this overfitting can be difficult, and many works

merely report per-sample performance metrics (allowing the model to train and test

on the same set of subjects). In this work, we use our private, smaller corpus to assess

per-subject generalizability by training on a restricted set of subjects and testing

on a held-out subject. We find that all methods struggle to generalize to unseen

subjects, showing performance drops ranging from 10 to 18 percent of their per-sample

accuracies.

2 See https://github.com/mmcdermott/LINCS_Deep_Learning_Benchmarks
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In sum, in this work we make the following contributions:

1. We establish biologically meaningful classification benchmarks at deep learning

scale on the largest publicly available gene expression dataset.

2. We profile a number of classifiers on these tasks, including non-neural methods

and two variants of neural networks, one of which incorporates prior biological

knowledge through the form of genetic co-regulatory networks. We show that

incorporating this form of local structure can offer significant benefits for large

datasets.

3. We profile these same classifiers on a similar task on a smaller, privately produced

gene expression corpus to assess which techniques work well in data-starved

environments.

4. We assess how well these techniques transfer to unseen subjects to assess

population-level generalizability.

3.1.1 Gene Expression Data

The Biology

The cellular system is governed at the root by the genome: the sequence of DNA

base pairs that encode all information necessary for the cell’s development and day

to day functioning. In order to transmute DNA into useful cellular work, the cell

first transcribes genes into messenger RNA (mRNA), which is then shuttled towards

cellular organelles that translate mRNA sequences into proteins: amino-acid built

macromolecules that carry out all of the necessary functions of the cell. In this way,

we can think of the genome as providing a function library for the cell system, and the

proteins present (i.e., the expressed genes) as the actual mechanisms behind cellular

functioning. A cell’s gene expression profile thus captures a view into the dynamic

state of the cell and offers insight far beyond the fixed picture of the DNA alone.

A single cell’s gene expression patterns will vary over time and in response to

environmental conditions, such as exposure to drugs. The expression of proteins coded
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Figure 3-1: Transcriptomics data is measured by quantifying the mRNA produced during
transcription. The output of this process is a vector with each dimension quantifying the
expression of a particular gene. Both technical (e.g., misplaced reads) and biological (e.g.,
tissue type) factors add variance to these data. Images: [50, 186].

by DNA is mediated by a host of factors, including other proteins in the cellular

environment and external factors, and is critical to cell function. Understanding the

genetic regulatory network (i.e., which factors govern what transcription and how) is

a topic of intense study.

Measuring Gene Expression/Transcriptomics

Gene expression can be quantified in many ways. Two broad categories of gene

expression data are proteomics, which directly measures the quantities of produced

proteins within the cell, and transcriptomics, which measures the quantities of produced

mRNA transcripts within the cell (Figure 3-1). Transcriptomic gene expression is far

more easily measured and we will focus on this modality in this work.

Note that there is not a direct correspondence between these two measurement

techniques. Protein production is heavily regulated post-transcription, and in using

transcriptomic data, we ignore these additional layers of biological processing in favor

of the increased availability of data.

Measurement Techniques

Transcriptomics data itself can be measured by many techniques, including RNA-Seq,

single-cell RNA-Seq (sc RNA-Seq), and the L1000 platform, which we focus on here.

The L1000 platform [199] is notably cheaper per-sample than other transcriptomics
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techniques, which has enabled the creation of large scale public datasets, such as

the LINCS dataset, which was produced with the L1000 platform and contains

approximately 1.3M samples, available on GEO at accession number GSE92742.3

However, this low price point sacrifices some data quality and coverage. Rather

than quantifying the full transcriptome, the L1000 platform only directly measures

the expression levels of 978 “landmark genes” and requires several additional layers

of processing which add their own sources of technical variability. From this directly

measured subset, the L1000 technique also uses a linear model to impute the remaining

genes’ expression levels, but we ignore those inferred genes in our analyses and use

only the landmark genes.

L1000 data is often used at one of two levels of pre-processing:

Level 4 (a.k.a. Roast) Level 4 data is fully normalized and z-scored, and presented

at the level of one profile per sample. From a machine learning perspective, this is

what you would expect to work with when thinking of “raw L1000 output.”

Level 5 (a.k.a. Brew) Level 5 data takes the Level 4 data and aggregates samples

under identical technical conditions into a single averaged view of that profile (see

[199] for full details). This process reduces variance, but also dataset size. Typically

datasets are reduced to roughly 1
3

of their original size (L1000 experiments are often

performed “in triplicate,” with three identical experimental plates being prepared so

that all samples are run under identical conditions at least three times). This variance

reduction is useful for traditional bioinformatics, but it is not clear how helpful it

should be for machine learning. We would like our classifiers to be able to fully account

for the technical variability inherent between repeated measurements, but using Level

5 data would deprive us of that opportunity while costing a significant number of

input samples. On the other hand, Level 5 data may be of higher quality.

See Figure 3-2 for a graphical representation of a subset of the L1000 technical

pre-processing pipeline.

3https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92742
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Figure 3-2: The L1000 technique is cheaper than other measurement technologies, but
requires novel additional technical pre-processing. Each step in this flow induces more
technical variability. In this work, the normalized, pre-aggregation data is referred to as
“Level 4” data, whereas the post-aggregation data is referred to as “Level 5” data. This
figure omits imputation of the full transcriptome as we never use imputed genes in this work.
See [199] for full details.

Experimental Pipelines

In general, experimental pipelines producing large corpora of gene expression data

work by acquiring some base cellular sample in pluripotent form, either patient derived

or via a stock cell line, cloning that cell line extensively, then perturbing a number of

samples and profiling them. In this way, these datasets often have many more samples

than cellular sources. This can lead to population-specific over-fitting, where a model

specializes only to the population within the corpus and, despite generalizing to unseen

samples within the corpus, the model will fail to generalize to unseen cellular sources.

3.1.2 Machine Learning on Gene Expression Data

Traditional Analyses

Traditional analyses on these data focus on statistical or geometric tests for differential

gene expression [36], gene set enrichment analyses (GSEA) [200], and (for the L1000

platform specifically) signature based analyses [5, 199]. Some have also used tensor

decomposition/completion to disentangle cell-type from perturbagen effects [85, 86],

and explored traditional classifiers for adverse drug event prediction [224].
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Neural Representation Learning

Other authors have used neural network models to build embeddings of gene expression

data. In [58], the authors use a twin network architecture to represent gene expression

profiles as 100 dimensional bar-codes. Comparing their representations to the standard

representation (raw z-scores) and a representation based on gene set enrichment analysis

(GSEA) they find that their perturbation barcodes consistently identify replicates,

samples generated from perturbagens with shared targets, and show better clustering

overlap with structural properties. Their architecture is a two layer feed-forward

neural network, and notably uses inter-replicate variability (a sign of the noise within

the technique) as a mechanism to help train their network to learn embeddings that

natively differentiate between meaningful biological variation and confounding noise.

However, their approach is aimed towards unsupervised representation learning, and

thus only can provide soft benchmarking utility, as compared to a supervised task

(though this may be more useful in some practical settings).

In [30], the authors use a 4 layer deep sparse autoencoder to analyze binarized

yeast differential gene expression microarray data (e.g., their model took as input

one feature per gene, with value 1 if that gene was differentially expressed in that

sample, and value 0 if not). Their 4 layer architecture is designed to map to known

biological levels of processing, and post-training analyses suggested good overlap

between transcription-factor mediated regulatory relationships and the connections

trained by their network between the first input layer and the first hidden layer.

In [115], the authors explore neural network mediated dimensionality reduction

for single cell RNA-Seq data, augmenting traditional networks by adding nodes to

the first hidden layer according to known transcription factor or protein-protein

interactions, and only connecting input gene nodes to those regulatory or interaction

nodes as dictated by prior biological knowledge. These augmentations allowed them to

significantly reduce the parameter space relative to a fully connected, dense network

of equal width.
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Neural Classification & Regression

In [3], authors use a FF-ANN to classify profiles into categories based on the therapeutic

effect of the generating perturbagen. Researchers have also explored neural techniques

for extrapolating the L1000 set of landmark genes to the full transcriptome. In [31]

and [134], the authors explore gene expression extrapolation, albeit in the latter work

as a test case for a semi-supervised model architecture rather than a goal in itself.

In both cases, FF-ANN models are able to realize significant performance gains over

linear models, again demonstrating that nonlinear relationships play a significant role

on this modality.

3.1.3 Structured Models via Graph Convolutional Networks

Regulatory Graphs

As stated in Section 3.1.1, gene expression is regulated by complex processes and is

a topic of intense study. What we do know of gene expression regulation is often

envisioned as a graph, with genes forming the vertices of this graph and edges between

genes representing regulatory relationships between those two genes. Regulatory graphs

are often represented as directed graphs, with direction representing the direction

of the regulatory interaction, but in this work we will simplify them to undirected

graphs, having them instead simply flag a regulatory relationship in either direction

between two genes. We visualize one such regulatory graph in Figure 3-3.

Many of these relationships are only suspected, and as biologists have yet to

study all possible interactions between sets of genes, these graphs are biased to-

wards representing commonly studied proteins. Additionally, regulatory relationships

themselves depend on cell type and, even within a single cell, they are dynamic,

changing in response to perturbations and environmental conditions, among other

factors. Nonetheless, these “regulatory graphs” present at least a partial encoding of

the biological understanding of relationships between different genes, and we use them

here to augment neural classifiers with domain knowledge via GCNNs.
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Figure 3-3: The regulatory relationships between L1000 landmark genes, as determined
according to [122]. Nodes (red dots) are genes and edges between them represent known
or suspected regulatory interactions. Note that many genes only have one known edge
connecting them to much denser clusters within the center of the graph. This may reflect
biological processes, or that some proteins are studied much more than others.
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Graph Convolutional Networks in Theory

GCNNs are extensions of CNNs onto data defined over arbitrary graphs. Qualitatively,

we can think of these networks as attempting to analyze data defined over a graph

by repeatedly featurizing the data over local neighborhoods within the graph, before

aggregating those features into higher level signals spanning larger regions of the graph.

This is directly analogous to how convolutional neural networks for image processing

learn featurizations of local patches of the image, then pool those signals over larger

windows.

There are two main strategies to generalize a CNN to other domains: the spectral

approach, which generalizes the notion of a Fourier transform onto a graph via the

graph Laplacian, and the locality approach, which uses the idea of processing data

defined in local patches via neighborhoods in the graph. GCNNs must also generalize

the notion of “pooling” onto graphs, which they generally do via graph clustering

algorithms, using the resulting node clusters to determine pooling neighborhoods.

GCNNs promise to bring the normalization obtained via weight sharing over

consecutive convolution and pooling operations to features defined over any arbitrary

graph, but they present their own challenges. Both local and spectral methods present

computational challenges, and efficient graph pooling algorithms run afoul of NP-hard

graph clustering algorithms. In practice, many operations are approximated, which

affects the power of these models.

Graph Convolutional Networks in Practice

Graph convolutional networks are often used in forming predictions at the node level,

or in classifying whole graphs. For example, [100] explored node classification on

knowledge and citation graphs. In this vein, GCNNs have also been used in several

biological tasks. For example, [77] classifies proteins viewed as nodes in varying tissue-

specific protein protein interaction graphs, [51] learns representations of molecular

compounds interpreted as unique graphs with vertices determined by atoms and edges

by bonds, and [61] learns representations of graphs defined by protein amino acid
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sequences for protein interface prediction.

Note that in these node classification tasks the authors are making predictions

about nodes in a graph, rather than making predictions about a graph (such as a gene

expression profile realized as a graph via a regulatory network, e.g., Figure 3-3). In

the latter context, spectral methods are enticing; in fact, this picture is so appealing

that many papers describing novel GCNN algorithms use this example to frame the

impact of their ideas [43, 110, 21, 83]. However, to the best of our knowledge, no work

yet has profiled how these ideas actually serve on gene expression data in practice.

We fill that lack here.

3.2 Methodology

Our principal goal here is to establish biologically meaningful benchmarking tasks

for gene expression data, and to demonstrate the potential utility of structured

methods that incorporate prior knowledge, across a variety of dataset sizes and levels

of heterogeneity. To that end, in this section we will first profile the two datasets we

will use and detail the benchmarking tasks we defined on each. Next, we will walk

through the methods we test, paying close attention to the structured method we

profile here, and finally we will detail our technical setup and experimental parameters.

3.2.1 Datasets

We will now detail the creation of both our views of the public LINCS corpus and

the private MGH NeuroBank corpus. Full details and summary statistics for both

corpora can also be found in Table 3.1.

Curated Views of the Public LINCS Corpus

The full Level 4 LINCS dataset contains approximately 1.3 M gene expression profiles

over 76 cell lines, ranging in frequency from VCAP, profiled over 200,000 times to

NCIH716 with only 43 samples. Each cell line is profiled in diverse conditions—for

example, within prostate tissue (the most frequently sampled tissue type) over 40,000
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unique perturbagens were tested (including both drugs and genetic knockout or over-

expression perturbagens), many sampled only a single time. To be clear, each sample

in this dataset is a complete gene expression profile over the landmark genes—i.e., it

is a 978 dimensional vector where each number quantifies the expression level of a

particular gene in the genome.

On this dataset, we formed three supervised learning tasks:

Primary Site Predicting primary site (e.g., “breast tissue” or “large-intestine”) forces

the classifier to examine deviations within a gene expression profile indicative of the

tissue type, and would have applications to quality control within cell differentiation

pipelines. Primary site is cell-line specific.

Subtype Subtype (e.g., “malignant melanoma” or “myoblast”) is also cell-line specific

and speaks to disease state and provides another way of aggregating the many disparate

cell lines within LINCS into useful predictive categories.

MOA Predicting drug mechanism of action (MOA, e.g., “ATPase inhibitor” or

“Sodium channel blocker”) speaks to drug re-purposing and discovery applications

and aggregates many disparate perturbagens into meaningful predictive categories.

However, note that though we treat this as a standard multi-class classification

problem, in reality many drugs have multiple known MOAs, a distinction we ignore

here for simplicity. To ensure this simplifying assumption adds minimal noise to our

classification task, we only include compounds with only a single known MOA.

Dataset Curation Procedure

We chose to reduce the LINCS dataset to a single curated view simultaneously suitable

for all three of these tasks rather than forming a separate view per task. This causes

us to lose some samples which only meet inclusion criteria for a subset of our tasks,

but it is much more convenient to work with and disseminate. In that pursuit, we

reduced the dataset to only those samples perturbed by compounds (not genetic

knock-out or over-expression perturbations), and further only those samples perturbed
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by compounds with a single known MOA. We further restricted the dataset to only

those samples corresponding to MOAs, primary sites, and subtypes that occurred

more than 1000 times within the overall dataset, to ensure sufficient training examples

for all classes for our classifiers. We performed these filtering steps independently—i.e.,

we removed all gene expression profiles belonging to a class in any of our three tasks

that lacked 1000 full examples at the start. This resulted in some few classes in some

of our tasks having fewer than 1000 examples (because, at the beginning of the process,

they had over 1000 measurements, but after removing some samples due to their class

membership for another task, the class then had fewer than 1000 measurements).

This formed one curated view of our data, and three classification tasks. One

qualm some might have with this dataset is that it is very heterogeneous in terms of

cell type—perhaps it is better to classify samples only derived from a single tissue type.

To that end, we also formed a dataset containing only samples from prostate tissue

(chosen as it was the most frequently sampled tissue type). As in our full dataset, here

we restrict the samples to only those perturbed by compounds with a single known

MOA that occurred at least 1000 times. This formed our “Prostate Only” dataset, on

which we predict MOA only.

Full final dataset sizes, heterogeneity (among cell type) statistics and task statistics

(e.g., class imbalance, number of classes) are shown in Table 3.1. Note that there is

significant class imbalance in this dataset—an unavoidable reflection of the corpus’s

original makeup—but by filtering to a baseline number of examples per class we assert

that there are at least a significant number of samples for every label, ensuring learning

power. We have made both of these datasets (though derived from fully public data),

along with the cross-validation folds used in all of our experiments, publicly available,4

so that others can most easily compare novel methodologies against our benchmarks.

We do not claim that these benchmark tasks or views of the data are the best

benchmarks available. But these are biologically meaningful benchmarks on an

important data modality that currently has none. We hope that as future methods

evolve to better suit this methodology, we can also derive better benchmark tasks.

4See https://github.com/mmcdermott/LINCS_Deep_Learning_Benchmarks
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Note here that we do not mean to claim that no machine learning tasks have been

used on this modality previously, but rather that no set of systematized, very large

sample size tasks for methodology development currently exist.

Given the very large ratio of samples to cellular sources (e.g., 156k to 36) and the

very large skew in perturbagen frequency (e.g., DMSO accounting for approximately

1/6th of all data), as well as the lack of independence between perturbagen and

cell type, we measure all accuracies on these datasets as per-sample accuracy, not

per-subject, per-drug, or even per-experimental condition (as different experimental

conditions are repeated to varying degrees). This means that our results on these

data should not be interpreted to speak to true generalization outside the LINCS

covariate space, but rather should be viewed only in their capacity to enable rigorous

methodological comparisons.

A flowchart of our dataset curation process can also be seen in Figure 3-4. Fur-

thermore, a visual description of our benchmark dataset can be found in Figure 3-5.

MGH NeuroBank Corpus

Our private corpus of L1000 data was measured on a collection of subject-derived

neural progenitor cells, which were perturbed with one of 60 different small-molecule

bioactives at varying doses. Some of these compounds are known to have consistent

gene-expression signatures (e.g., HDAC inhibitors), whereas others have known clinical

utility but a less well understood transcriptomic profile (e.g., clozapine), and still

others were unknown on all counts.

These cells come from a population of five individuals, two healthy control subjects,

one with Bipolar Disorder, and two with Schizophrenia (all diagnostic labels are

DSM-IV diagnoses confirmed by structured clinical interview). All individuals’ cells

were treated with the same compounds. On this data, we predict perturbagen identity.

Note that each perturbagen was profiled at one of several doses, which we ignore

here. We also use this dataset to profile how well classifiers do on Level 4 vs. Level 5

data and make a first attempt at assessing per-subject generalizability, by training a

model on only four of the five subjects, then testing on the data for the fifth subject.
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Figure 3-4: A flowchart representing the various decision points when curating our views of
the full LINCS corpus.
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Figure 3-5: A visual description of our three tasks, including upon which aspects of the
underlying data covariates they are dependent, sample applications motivating each task,
and a description of the relative class imbalance for each.
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Figure 3-6: The dataset creation pipeline for the MGH NeuroBank Corpus. These data were
created by our collaborators at the Center for Quantiative Health (dir. Professor Roy Perlis)
and Chemical Neurobiology Laboratory (dir. Professor Stephen Haggarty) at Massachusetts
General Hospital. Of particular note are Drs. Jennifer Wang, Wen-Ning Zhao, and Stephen
D. Sheridan.

Per-subject generalizability is an important, oft-overlooked element of performance in

this domain—many studies which rely only on data from the LINCS public corpora,

for example, are often working with only one to two subjects per tissue type, which

means their expected generalizability would likely be worse and the magnitude of the

problem is difficult to assess. Our experiments here will provide some estimate of the

performance delta that should be observed when generalizing to new subjects.

Figure 3-6 shows a graphical representation the data creation pipeline.

3.2.2 Models

We compare a variety of standard classifiers, all (save GCNNs) implemented via

scikit-learn [152] for maximal reproducibility and ease of use. GCNNs, as previously

stated, were implemented via the method of [43].

In the interest of space, we will not provide a primer on each of the standard
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Dataset Statistics:
Dataset Number of Samples # Cell Lines Most Frequent Cell Line Least Frequent Cell Line

Full LINCS 156,461 36 MCF7 (26,546) NCIH716 (8)
Prostate Only LINCS 25,565 2 PC3 (13,625) VCAP (11,940)
MGH NeuroBank (Level 4) 5602 5 N/A (1133) N/A (1109)
MGH NeuroBank (Level 5) 1894 5 N/A (380) N/A (377)

Task Statistics:
Dataset Task # Classes Most Frequent Class Least Frequent Class

LINCS (Full)
Primary Site 12 Prostate (43,686) Ovary (415)
Subtype 14 Adenocarcinoma (53,245) Embryonal Kidney (1384)
MOA 49 DMSO (25,638) IKK Inhibitor (828)

LINCS (Prostate Only) MOA 9 DMSO (8833) Serotonin Receptor Antagonist (1029)
MGH NeuroBank (Level 4) Perturbagen 60 DMSO (383) Ruboxistaurin (78)
MGH NeuroBank (Level 5) Perturbagen 60 DMSO (130) Ruboxistaurin (27)

Table 3.1: Population Statistics for our Datasets and Tasks.

methods mentioned below in this work, but instead make clear why they were chosen to

benchmark for this task and indicate which scikit-learn class was used to implement

them. For a description of GCNNs see Section 3.1.3.

Classifiers Tested

Feed-forward artificial neural network (FF-ANN) classifiers FF-ANNs are

a common, powerful, non-linear modelling technique, and were used in many of the

prior works on gene expression data. However, partly because they do not assume any

particular structure of their input and are thus least constrained, they are relatively

inefficient learners. Some postulate that this inefficiency is simply due to their larger

parameter overhead; however, the full reason is not yet known. Implemented via the

MLPClassifier class.

Linear classifiers Linear classifiers, subsuming both logistic regression (LR) and

support vector classifiers (SVCs), are extremely common across all domains, including

traditional bioinformatics analyses, and are interpretable. Implemented via the

SGDClassifier class.

Random forests Random forests are not as commonly used in traditional bioin-

formatics use cases, but are thought to often provide a compelling non-neural but

still non-linear baseline. They are composed of many bagged random decision trees.

Implemented via the RandomforestClassifier class.
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K nearest neighbors classifiers 𝑘-NN methods are commonly used in this do-

main for clustering analyses, and we hope that investigating their performance

here can help inform further choices for those and other analyses in these domains.

They also shed some light on appropriate distance metrics. Implemented via the

KNeighborsClassifier class. Index construction, often a computationally intensive

task on large datasets, was done via either brute force search, the construction of

a KDTree, or the construction of a Ball Tree, as determined by scikit-learn’s

‘algorithm=auto’ setting.

Decision trees Decision trees are low powered, but extremely mechanistically

interpretable. Implemented via the DecisionTreeClassifier class.

Graph Convolutional Neural Networks (GCNNs) GCNNs allow us to inject

prior biological knowledge in the form of a genetic regulatory network into a neural

network, offering structural efficiency improvements and domain appropriate bias.

In this work, our GCNN is built using the spectral approach defined by [43]. We

encourage interested readers to refer to the primary source for full details regarding

this algorithm, but we provide a brief explanation of the method here. In particular,

this method of graph convolutional processing approximates localized filters in the

graph Fourier space via polynomials of the graph Laplacian. As follows from the

graph theoretical nature of the Laplacian, restricting the order of these polynomials

yields a localized radius of effect when impacting on the featurization of each graph

node. These polynomials are realized in an efficient manner by relying on the stable

recurrence relation of the Chebyshev polynomials, which form an orthogonal basis

of a relevant Hilbert space and have been used historically in graph signal analysis

for approximate wavelet analysis. Ultimately, this yields a means of producing fast,

localized graph convolutional filters. Graph pooling is implemented via the coarsening

phase of the Gracus multilevel clustering algorithm [48].

We use the code of [43] with minor modifications to support multi-component

graphs. We considered a number of potential regulatory graphs, both tissue specific
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and tissue independent.

Other Classifiers Considered We also tested Naïve Bayes classifiers, Gaussian

Processes Classifiers, Quadratic Discriminant Analysis, Boosted methods via Adaboost,

and Kernel Support Vector Classifiers, but these classifiers were removed from our

experimental lineup for reasons varying from poor performance, non-insightful new

results, computational intensivity, or combinations thereof.

3.2.3 Genetic Regulatory Networks Considered

We considered a number of possible graphs, including those constructed from our data

(a gene-gene pairwise correlation graph) and graphs pulled from the literature. For

our literature sourced graphs, we will offer brief summaries of the source works here,

but interested readers should refer to the primary sources for full details of the graph

constructions—for our purposes it suffices to note that they are constructed to capture

known or suspected genetic regulatory relationships as in Figure 3-3.

Our tissue-independent regulatory network is a network of transcription-factor and

micro-RNA mediated regulatory relationships summarized from 25 literature defined

external datasets [122].5 This graph is unweighted.

Our tissue-dependent regulatory network is built from a probabilistic model of

tissue-specific gene-gene correlations [71].6 We considered a number of possible tissues,

profiling both relevant tissues (neuron for MGH NeuroBank and prostate gland for

the prostate specific LINCS dataset) and irrelevant tissues (tooth, pancreas, skin

fibroblast) to help differentiate whether any performance gains observed with these

graphs were due to the appropriate tissue specificity or simply due to this style

of graph construction being superior. These graphs were all weighted, with edge

weights estimating the confidence in the true existence of that edge, determined via

a probabilistic model. Ultimately, no tissue specific graph outperformed the tissue-

indepent graph of [122], so the distinction between relevant or irrelevant tissues proved

5Networks available for download here: http://www.regnetworkweb.org/download.jsp
6Networks available for download here: http://hb.flatironinstitute.org/download
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negligible.

Last but not least, we considered a learned graph, whose (weighted) adjacency

matrix was determined via correlation coefficients between genes in our data. This

graph is by default fully connected, so to induce effective sparsity, we removed all

edges corresponding to correlative relationships with a 𝑝 value of greater than 0.05.

This graph also offered no performance advantage over the tissue-independent network

in early experiments, so we removed it from our analyses and focused solely on the

literature-defined graphs.

When working with any weighted graphs, we culled all edges with confidence below

a cutoff threshold, which was tuned with all other hyperparameters. We treated

all graphs as undirected, allowing them to capture merely a notion of regulatory

interaction rather than any directed up- or down-regulation. This is certainly a

simplification, and exploring more complex representations of regulatory graphs is

definitely a promising area of future studies, but using undirected graphs here yields

significant technical simplifications for this work enabling these graphs to work natively

within our chosen graph convolutional framework.

3.2.4 Experiments

Hyperparameter Search & Technical Setup

Hyperparameters for all classifiers were determined by a random search [16] over all

possible parameters and tasks, including over the number and sizes of hidden layers

for FF-ANNs and number of graph convolution layers/filter sizes/pooling sizes, loss

types, etc. In addition to random search, we also rotated the discovered optimal

hyperparameters across tasks during various stages of the search procedure and made

certain manual tweaks in pursuit of obtaining strong performance metrics for all

models, particularly baseline methods. One notable disparity in the hyperparameter

space searched is that the Scikit Learn FF-ANNs do not support dropout (only

L2 regularization, which was included in our search), whereas the GCNNs do. To

compensate for this potential bias, we took the optimal FF-ANN models found via the
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hyperparameter search and re-implemented them in Keras, as identically as possible,

then performed a miniature grid-search over dropout within these models. This

procedure induced a mild performance gain, but not enough to upset the observed

model ordering on any tasks where GCNNs performed the best. We also did not

hyperparameter optimize over batch size for FF-ANNs, but we did optimize over

learning rate, a heavily related parameter, and we also tested several smaller batch

sizes with our final models to ensure that we were not biasing the results against this

baseline.

For GCNNs, we notably did not hyperparameter search over the number of epochs,

but rotated progressively through a very limited fixed set of number of epochs for

computational reasons. Additionally, GCNNs only supported a single optimizer,

whereas FF-ANNs offered several options. The search process was, however, run over

various considered graphs, as well as over the graph edge weight cutoff, which we used

to cull irrelevant edges from our graphs.

For our benchmarking tasks, a full list of all hyperparameters tested, the distri-

butions used to back our random search, and the final, chosen hyperparameters are

available with our provided code.7 Additionally, the optimal hyperparameters for all

methods across all datasets and tasks can be found in the Appendix.

This random search was performed over 10 fold cross validation on the full LINCS

dataset, and 15 fold cross validation on the private L1000 dataset (as that dataset is

smaller, it warrants additional folds to improve accuracy). In each case, one fold was

held out for testing, one for hyperparameter optimization, and the remaining used

for training. The hyperparameter search optimized for mean accuracy over all folds,

though we also report macro-F18 in our test set results below, as some tasks present

significant class imbalance. We chose these two metrics to offer, first, a comparatively

understandable metric (accuracy) which allows for a clear baseline measure (majority

class performance) but is often overly forgiving for tasks with large class imbalance,

7See https://github.com/mmcdermott/LINCS_Deep_Learning_Benchmarks
8The F1 score on a binary classifier is the harmonic mean of the classifier’s precision and recall.

The macro-F1 score is an unweighted average of the F1 score of each class separately. Generally,
macro-F1 will offer a more conservative measure of performance for tasks with strong class imbalance.
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and second, a less overt, but still commonly used, metric which compensates for class

imbalance. We chose not to use AUC as it is less immediately understandable than

accuracy while also not accounting for class imbalance as directly as macro-F1, and

to avoid having too many evaluation metrics and thereby diluting our comparisons.

For all results, statistical significance was assessed using paired t-test across all folds,

followed by Benjamini-Hochberg multiple tests FDR adjustment within experimental

conditions.

As different classifiers required different amounts of computational time to run, we

did not run all classifiers for the same number of samples—this induces a mild bias

towards the fastest running classifiers, as they will have had the opportunity to test

additional hyperparameter settings. We did, however, ensure that we measured at

least 60 samples for the standard FF-ANN classifier and linear models to ensure that

we did not conclude any model better than those traditionally strong baselines simply

due to lack of appropriate sampling. Graph convolutional networks, being highly

computationally intensive, in particular on the larger datasets, were under-sampled

compared to the other methods—it is possible that with more compute time their

performance would improve. Note the direction of this bias: were more samples

to improve the performance of the GCNN methods further, it would only strengthen

the performance gap observed on the largest datasets, and potentially cause them to

outperform the simpler models on our smaller datasets. Because this bias is in favor

of our baselines, rather than the more exotic, structured GCNN models, we feel

comfortable still reporting these results even though they may improve later.

For our data-flush regimes (the tasks over the full and prostate only LINCS

datasets), we used only the Level 4 data. This data is less processed, but presents 3

times as much data as the analogous Level 5 data. Note that had we used Level 5 data,

our filtering procedure eliminating classes with less than 1000 examples would have

eliminated many classes and made the overall task much easier. For our data-sparse

tests (the task on our private L1000 corpus), we tested methods on both datasets,

wondering whether in this data-sparse regime, the more processed data might prove

more valuable than the relatively small increase in dataset size. Additionally, as in
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neither dataset on the MGH corpus did we filter out infrequent classes (given the

dataset size, all classes are infrequent by our standards for the full LINCS data), this

change from Level 5 to Level 4 can be done more transparently than on the full LINCS

datasets.

Along with our code, the results of these hyperparameter searches are all publicly

available.9

3.3 Results & Discussion

3.3.1 LINCS Corpus

Full Corpus

Final results are shown in Table 3.2. Accuracies and macro F1s are reported averaged

across unseen test folds, using hyperparameters found via a separate validation fold.

Included in the results are those obtained using a majority class classifier, which

simply predicts the most frequent class with probability equal to that found in the

training set. This was tested across the same folds and is reported here to ground all

other reported results and variances. Observed differences between mean performance

of any pair of classifiers were statistically significant (𝑝 ≤ 0.05).

We note that on all of the tested tasks, GCNNs perform best, by notable margins

in accuracy and macro F1 on both primary site and subtype prediction. The margin

of accuracy in MOA prediction is smaller, but still statistically significant. 𝑘-NNs

performed surprisingly well on all three tasks, offering competitive performance even

with the FF-ANNs. Investigations of why they performed so well revealed two findings:

1. 𝑘-NN classifiers strongly prefer traditional distance metrics (e.g., Euclidean)

over correlative based “distance metrics.” This is notable because correlation

is often used as a signal of biological similarity on these data, which may be

contraindicated by these results.

9See https://github.com/mmcdermott/LINCS_Deep_Learning_Benchmarks
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Task Classifier Name Accuracy Macro F1

Primary Site

GCNN 93.9 ± 0.28 90.5 ± 0.82
FF-ANN 90.6± 0.44 85.6± 0.97
𝑘-NNs 89.6± 0.30 87.2± 0.61
Linear Classifier 60.9± 0.50 47.6± 0.63
Random Forest 57.2± 0.48 40.2± 0.77
Decision Tree 44.4± 0.70 24.7± 2.22
Majority Class 27.9± 0.16 3.63± 0.02

Subtype

GCNN 93.5 ± 0.34 91.7 ± 2.1
FF-ANN 90.5± 0.30 88.5± 0.54
𝑘-NNs 89.8± 0.13 90.2± 0.27
Linear Classifier 62.6± 0.62 56.3± 1.06
Random Forest 51.7± 0.37 22.3± 0.49
Decision Tree 41.1± 0.21 18.4± 0.62
Majority Class 34.0± 0.21 3.62± 0.02

MOA

GCNN 46.4 ± 0.35 31.6 ± 0.65
FF-ANN 45.9± 0.43 29.6± 0.60
𝑘-NNs 43.5± 0.50 29.5± 0.58
Linear Classifier 39.1± 0.29 20.6± 0.39
Random Forest 32.3± 0.40 11.5± 0.31
Decision Tree 28.7± 0.31 8.5± 0.29
Majority Class 16.4± 0.16 0.57± 0.005

Table 3.2: Performance (mean ± standard deviation) for the full, tissue-heterogenous
LINCS corpus.
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2. Our hyperparameter search method also changed the distance metric underlying

the 𝑘-NN method. Across all tasks and datasets, the optimal distance metric

was the “Canberra” distance, defined via

𝑑(𝑥,𝑦) =
∑︁
𝑖

|𝑥𝑖 − 𝑦𝑖|
|𝑥𝑖|+ |𝑦𝑖|

.

Using this distance metric induced performance gains over correlative and tradi-

tional, Euclidean distance measures. The Canberra distance is traditionally used

for integer valued vectors and we are unsure why it would be preferred here. The

𝑘-NN algorithm could choose uniformly between one of four classes of distance

metrics, independently across each of our six dataset/task combinations. This

means that if the choice of distance were independent of ultimate performance,

the repeated use of the Canberra distance as our highest performing distance

metric would be expected with somewhere between 0.02% chance (presuming

the ideal choice of parameters is independent from which dataset/task is under

consideration) and 25% chance (presuming the ideal choice of parameters shares

is totally deterministic across datasets/tasks). We have performed no deeper

analyses to determine if this apparent distance metric preference is statistically

significant, or to investigate why it might be so.

Linear classifiers robustly performed well. On the MOA task, hyperparameter

search selected a logistic regression model (via the log loss in scikit-learn), whereas

on the Subtype and Primary Site tasks, the optimal setting used a modified_huber

loss, which is a smooth loss that is tolerant to outliers.

Random forests and decision trees both yielded underwhelming results, particularly

with respect to Macro F1. One hypothesis as to why this may be is that random forests

were less sampled in the hyperparameter search than linear models. Alternatively,

these results may suggest that absolute feature values are less meaningful in our data

than are relationships between feature values—an idea that meshes well with the fact

that this dataset is very heterogenous with respect to cell (e.g., tissue) type, and

the same expression level of any individual gene may mean very different things in
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Classifier Name Accuracy Macro F1

GCNN 67.7± 0.76 46.0± 0.42
FF-ANN 68.3 ± 0.60 50.4 ± 0.71
𝑘-NNs 66.5± 0.71 46.2± 0.89
Linear Classifier 63.8± 0.52 42.6± 1.03
Random Forest 60.4± 0.48 37.4± 0.41
Decision Tree 53.2± 1.16 32.6± 0.91
Majority Class 34.54± 0.05 5.71± 0.01

Table 3.3: Performance (mean ± standard deviation) on the prostate LINCS corpus
and MOA prediction task.

different tissue types. Some might postulate that this is perhaps due to a poor search

space of some critical hyperparameters; we intentionally ensured our hyperparameter

search space was very broad, especially over these critical parameters. For number

of trees, we searched over an equal mixture of Poisson distributions centered at 50,

200, and 400, respectively, and the optimal hyperparameters (shown in the appendix)

showed a mix over this entire range. All regularization parameters were also included

in our search space.

Prostate Only Corpus

Final results for prediction of prostate MOA are shown in Table 3.3. All classifier com-

parisons were statistically significant (𝑝 = 0.05). Here, FF-ANNs perform best, though

GCNNs are quite competitive. Note that GCNNs still preferred tissue non-specific

regulatory graphs, rather than prostate specific graphs. Again, 𝑘-NNs perform well.

Here, RFs and decision trees still under-perform the other methods, but perform better

with respect to macro F1 than they do on the more heterogeneous full LINCS corpus,

suggesting again that perhaps they may be more appropriate on more homogeneous

data sources.

As indicated in Section 3.2.2, we tested both tissue-specific and tissue-independent

regulatory graphs. Surprisingly, on the prostate corpus, the GCNN performed better

using the tissue independent regulatory network than it did using the prostate specific

regulatory graph. This may indicate that our tissue-specific graphs suffer from some
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unknown problem, or that tissue-independent graphs simply perform better overall.

Similar to the full system MOA task, the optimal linear model here was a logistic

regression model.

3.3.2 MGH NeuroBank Corpus

Raw Performance Results

Final results for perturbagen identification on the MGH NeuroBank corpus are shown

in Table 3.4. Results were not statistically significantly different at 𝑝 = 0.05 between

the Level 5 data and Level 4 data for any classifier save the GCNN. All within-level

classifier comparisons were statistically significant (𝑝 = 0.05) save between Level 5

GCNNs and RF, GCNNs and 𝑘-NNs, and 𝑘-NNs and RFs.

Classifier Name Level 5 Level 4

Accuracy Macro F1 Accuracy Macro F1

GCNN 46.0± 9.90 44.0± 10.8 54.6± 3.94 56.4± 3.94
FF-ANN 63.2 ± 10.3 62.7 ± 10.8 57.3 ± 4.12 58.9 ± 4.00
𝑘-NNs 46.9± 8.13 44.7± 9.15 44.9± 3.74 45.7± 3.61
Linear Classifier 52.3± 9.61 51.4± 10.0 49.1± 3.98 50.2± 3.63
Random Forest 48.0± 8.96 44.7± 9.15 43.2± 4.87 42.7± 4.75
Decision Tree 26.7± 8.07 25.6± 7.45 27.0± 2.02 26.4± 1.79
Majority Class 7.56± 2.37 0.23± 0.07 6.88± 0.77 0.21± 0.02

Table 3.4: Performance (mean ± standard deviation) on the perturbagen identity task
on the MGH NeuroBank Corpus.

Here, FF-ANNs lead in performance by a wide margin compared to other methods.

We interpret their strong success here relative to GCNNs to be indicative of a strong

need for very large datasets for the GCNN models. Recall that this dataset is

significantly smaller than our other datasets (see Table 3.1). This intuition is supported

by two observations: 1) the apparent slope in GCNN performance relative to dataset

size is quite steep, exceeding at all tasks on the largest dataset, nearly matching on

the prostate only dataset, and failing by a large margin here, and 2) GCNNs show

a statistically significant preference for the larger Level 4 data, whereas no other

classifier cares between the two modalities in a statistically significant manner.
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It is also possible that GCNNs are less appropriate on this corpus than on the

larger corpora due to this dataset’s strong neural focus. Or, it may be that GCNNs

are most appropriate in heterogeneous datasets spanning many cell types.

Among the other classifiers, linear classifiers perform well, followed by 𝑘-NNs

and RFs, then, much worse, by decision trees. No classifier save GCNNs shows a

statistically significant preference for Level 5 data over Level 4 data, but all save

GCNNs do show a (again, statistically insignificant) preference for Level 5 data in

terms of absolute measure.

Generalization Experiments

We also used the MGH NeuroBank Corpus to assess population level generalizability,

by training on four of our subjects and testing on the fifth subject. As the MGH

NeuroBank Corpus contains only one subject with Bipolar Disorder, we do not

ever test on this subject’s data—absent more examples of any subject data in this

diagnostic category, we would not expect a classifier to generalize well to this subject.

Including their results causes a mild but consistent drop in mean generalization

accuracy across almost all classifiers tested. We report all results here using Level 4

data as no classifier statistically significantly preferred Level 5, but the relative drops

in performance observed were similar for that modality.

Results for this experiment are shown in Table 3.5. All methods showed a notable

drop in accuracy on unseen subjects, ranging from a 10.2% drop for linear classifiers to

an 18.5% drop for decision trees (percentages taken of per-sample accuracies, not raw

percentage points). This indicates a definite unmet need for either a) more diverse

datasets or b) novel methods able to better generalize to unseen subjects. Note,

though, that the MGH NeuroBank corpus only contains 5 total subjects to begin with,

so it may be the case that these numbers would improve significantly were we to have

even a only marginally larger subject pool. Note that on a dataset like LINCS, which

is much larger and thus more amenable to higher-capacity learning yet has relatively

fewer cellular sources (and with those cellular sources often differing by tissue type or

primary diagnosis no less), it is reasonable to imagine that this observed population
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Classifier Name Accuracy Macro F1

GCNN 47.7± 6.78 48.9± 7.40
FF-ANN 48.7 ± 7.85 50.1 ± 8.34
𝑘-NNs 37.9± 5.39 39.0± 6.68
Linear Classifier 44.1± 4.03 44.7± 4.21
Random Forest 38.8± 5.37 38.3± 6.76
Decision Tree 22.0± 3.85 21.8± 3.59

Table 3.5: Per (Non-BD) Subject Generalization Accuracy (mean ± standard deviation)
on the MGH NeuroBank Corpus.

specific overfitting could forseeably be even worse than what we observe on the MGH

dataset—this point is critical given that this dataset has been used historically for

many machine learning investigations with clinically generalizable aspirations, unlike

our work where the tasks are designed to aid primarily in method development.

3.4 Conclusion

3.4.1 Summary

In this work we aimed to make the following contributions:

Establish biologically meaningful benchmark tasks for gene expression data

With the curation of the full and prostate-specific views of the LINCS dataset and

specification of the Primary Site, Subtype, and MOA tasks, we meet this goal.

Provide robust benchmarks We provide benchmarks on the tasks defined above

for 6 different types of classifiers. We establish that graph convolutional neural

networks, which incorporate prior biological knowledge via genetic regulatory graphs,

perform very well when dataset size is very large, and feed-forward artificial neural

networks offer good performance across all dataset sizes. Additionally, we profile

non-neural classifiers, including K nearest neighbor methods, random forests, linear

classifiers and decision trees. K nearest neighbor methods provide surprisingly strong

performance in data rich environments using the Canberra distance.
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Assess how these classifiers function in data-scarce regimes We profile

these same classifiers on a similar task on the smaller, privately produced MGH

NeuroBank corpus. Here, we find that graph convolutional neural networks no longer

offer competitive performance, but feed-forward artificial neural networks continue to

perform well, as do linear models.

Assess population level generalizability We demonstrate that subject level

generalizability remains an important challenge in this domain. Linear classifiers

generalize best, losing only 10.2% of their per-sample accuracy, while decision trees

generalize worst, losing 18.5%. It is important to note that we were only able to

assess this on our smallest dataset, the MGH NeuroBank Corpus, as differing cell

lines represented too divergent demographic conditions in the full LINCS dataset,

so this may simply be a reflection of the small dataset size, or indicative of a more

chronic problem due to the fact that gene expression corpora contain many samples

per subject.

3.4.2 Future Work

There are several notable directions for future work. First, a notable absent classifier

is a self-normalizing neural network (SNNN) [102]. Introduced in late 2017, SNNNs

have demonstrated improvements in a battery of different tasks and warrant inclusion

here. Other types of classifiers capable of using graph structures would also warrant

inclusion. Additionally, there are other graph convolutional networks one could use,

[110, 77], as well as other sources for our regulatory graphs. One notable contender in

that domain is HuRI: The Human Reference Protein Interactome Mapping Project10

which has several large databases of protein-protein interactions found experimentally

through yeast two-hybrid screening methods [174, 61]. Additionally, incorporating

directional information in our regulatory graphs would also enable significantly more

nuanced processing. Finally, we would also like to establish other types of machine

learning benchmark tasks, most notably clustering tasks, or other tasks that can

10http://interactome.baderlab.org/about/
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better assess generalizability across subjects, drugs, or even measurement technologies.

More investigation into what drove the success of GCNNs here, perhaps by running

dataset size ablation experiments, would also help clarify their strengths. Similarly,

more investigations into the failings of random forest models or the relative strengths

of differing distance metrics would also be informative.

3.4.3 Relation to this Thesis

In Chapter 2, we showed that enforcing global structural constraints that were learned

from data directly can offer significant advantages in data-starved settings. Here, we

examine the opposite scenario, and show that we can offer significant improvements

even in data-rich modelling tasks via the incorporation of prior-knowledge inspired

local structure. The importance of local structure can be further seen in the models

used later in this work, such as the electronic health record timeseries models explored

in Chapter 4, which incorporate local structure in the form of temporal structure and

knowledge-driven feature aggregation methods, or in the various settings explored

in Chapter 5, where models leverage both local graph, sequential, or textual data

structures for optimal modelling.

Unique from the rest of the thesis is that in this work our focus is on offering gains

particularly in large-scale, data-rich settings. Whereas in the other chapters, we will

often focus more on settings where significantly more unlabeled data exists vs. labeled

data, here we show benefits for incorporating knowledge and structure at the largest

possible data scales, which shows that these techniques can offer benefits across a

variety of modelling scales.
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Chapter 4

Pre-training for Electronic Health

Record Data

Abstract

In this thesis, I argue that we should develop pre-training and representation learning
strategies specifically for the clinical and biomedical domains, and that we should
leverage structure and prior knowledge when doing so. In order to show that this
is a meaningful problem, we must first show that traditional pre-training strategies
don’t work sufficiently well on their own in this modality. In this work, originally
published in [129] we provide that demonstration, while simultaneously providing
valuable benchmarks to the community.

In particular, here we establish a pre-training (PT) benchmark dataset for EHR
timeseries data, establishing cohorts, a diverse set of fine-tuning tasks, and PT-focused
evaluation regimes across two public EHR datasets: MIMIC-III [96] and eICU [158].
This benchmark fills an essential hole in the field by enabling a robust manner of
iterating on PT strategies for this modality. We also profile two simple PT algorithms:
a self-supervised, masked imputation system (similar to the successful BERT models
explored in NLP) and a weakly-supervised, multi-task system. We find that weakly-
supervised PT methods can offer significant gains over both traditional learning and
masked imputation methods in few-shot settings, especially on tasks with strong
class imbalance. This suggests definitively that we cannot simply adapt successful
pre-training strategies from other domains to EHR data, and instead that new method
development is needed.

Note that one can also explore pre-training algorithms over unstructured clinical
text, rather than structured clinical timeseries. I served as senior author of one such
work, ClinicalBERT [7], one of the most prominent language models pre-trained
on clinical data available today. However, as that work relies solely on established
pre-training methods, and does not contribute to the broader themes of this thesis
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beyond exploring pre-training for clinical data, I don’t focus on it in this chapter.

4.1 Introduction

Pre-training (PT) methods are instrumental in the success of machine learning in

various domains, including examples such as ImageNet [44] PT in computer vision and

language-model PT (e.g., ELMO [155] or BERT [46]) in natural language processing.

PT has enabled ML researchers to use large, unlabelled or weakly-labeled datasets to

learn a representation of a data modality such that specific fine-tuning (FT) tasks can

be learned successfully even with minimal task-specific data.

One domain where PT would be particularly impactful is processing electronic

health record (EHR) data in machine learning for health (ML4H). ML4H presents

a prime use-case for PT in part because there are many clinical applications of ML

where the ability to leverage high-capacity models effectively even on relatively small,

task-specific datasets would be important. For example, clinicians at smaller health

systems could leverage public PT models produced on larger, more diverse populations

to produce improved models for their specific institutions via FT. Researchers could

also leverage PT models to aid in the study of rare [140] or novel (e.g., COVID-19, in

its early days) diseases, where there may not be enough data at any institution to

train a high-capacity model from scratch. Lastly, researchers can leverage PT models

to help reduce the need for annotating large, task-specific gold-standard datasets

for specific research cohorts. These examples are also shown visually in Figure 4-1.

Simultaneously, PT is eminently feasible in the clinical domain, as the large, EHR

datasets collected at the point of care serve as natural sources of PT data. While

these datasets are often only weakly labeled and noisy, making them challenging to

work with in the context of traditional, fully supervised ML [67], PT algorithms often

use self- or weakly-supervised algorithms and thus rely less on label availability and

quality.

Despite these important application areas, PT has been only minimally explored

in EHR timeseries data. In part, this may be because standardized sets of benchmarks

88



Figure 4-1: Pre-training (PT) an encoder ℰ on a general domain, then fine-tuning (FT)
it on a task specific problem fits naturally into many use-cases within ML4H. Examples
include transferring a model from a large health system to smaller, community hospitals (A),
specializing a model to a rare or novel disease sub-population (B), or supporting clinical
research efforts which produce fully annotated datasets for select cohorts within a health
system (C).
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for PT/FT paradigms do not exist for EHR data. While benchmarks do exist for

ML over clinical tasks in general [219, 81], these are focused on traditional supervised

learning, not PT/FT. In contrast to supervised learning, PT benchmarks are concerned

primarily with how a system can optimally leverage PT data to improve performance

in a disparate, secondary set of FT tasks. As one might not foresee all FT tasks at

PT time, any effective benchmark must assess PT algorithms across a broad variety of

tasks. Critically, we also cannot simply judge FT performance at a single FT dataset

size—PT methods are exciting particularly because they enable models to be leveraged

effectively even in few-shot settings, so we must judge PT algorithms over a variety

of FT dataset sizes. Additionally, for PT systems in particular within ML4H, where

many (though not all) use cases are multi-domain in nature, we should ensure we

analyze PT system performance across multiple datasets.

In this work, we introduce the first comprehensive PT benchmark for clinical EHR

timeseries data. We define a suite of FT tasks to consider across MIMIC-III [96]

and eICU [158], as well as evaluation procedures for model performance across a

variety of FT dataset sizes. In contrast with existing clinical benchmarks (e.g., [81]),

our system includes multiple datasets, more tasks, and few-shot evaluations, all of

which help support its use in analyzing PT algorithms. In addition, we provide

two baselines against which the field can compare—first, a weakly-supervised, multi-

task PT approach, and second, a masked-imputation based model reminiscent of a

continuous analog of the BERT NLP model [46]. Based on these results, we find that

while PT does not offer best-in-class performance for FT datasets at the full scale of

MIMIC-III or eICU, PT can indeed be very helpful in the small-data regime, showing

dramatic improvements in performance in particular on class-imbalanced, time-varying

tasks across both datasets. These baseline results suggest that the gains offered by

PT in clinical settings warrant future exploration, and we hope that this benchmark

will help prompt those gains by enabling iterative development of PT paradigms in

the clinical space.
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4.2 Related Works

PT over EHR timeseries data has been explored only minimally, but PT on other

clinical data modalities has been explored. Learning contextual representations of

clinical codes, for example, has been explored via a variety of methods, often leveraging

known biomedical hierarchies to improve performance [34, 187]. PT models for clinical

text have also been thoroughly explored [7, 192, 249] and are regularly used in the

context of clinical NLP.

Three recent examples do study topics closely related to PT over clinical timeseries

data, however. In particular, [237] explored PT on tabular data via a masked-

imputation based self- and semi-supervised algorithm, [230] explore using meta-

learning in a semi-supervised context to specialize PT to a specific downstream task

over MIMIC-III, and [196] explores a novel analog of language-modeling on discretized

clinical timeseries data. Each of these three cases have slightly different foci, and thus

are relevant to our work in different ways.

[237]’s work explores both self- and semi-supervised PT (of which only the self-

supervised PT is relevant to us as we do not allow FT data to be leveraged at PT

time); however, their primary improvements are demonstrated most soundly in semi-

supervised PT, and there is minimal evidence that their algorithm offers consistent

improvements in the self-supervised setting. Similarly, [230]’s work is exclusively

for semi-supervised learning. As a result, neither of these two works are directly

comparable to our benchmark or results. [196]’s work, however, is much more relevant.

It focuses squarely on self-supervised PT, using a different analog of language model

PT than our masked imputation model, and also studies clinical timeseries (albeit

discretized clinical timeseries). However, their approach is tested on a private dataset,

and thus is not suitable as a PT benchmark, which is our goal.

Beyond explicit PT systems, more general clinical representation learning has been

explored extensively in the literature. Multi-task learning (MTL) has been explored

significantly from this perspective [81, 191, 220, 49], as well as those focusing on

auto-encoding, imputation, or clustering approaches [208, 60].
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Benchmarks for PT paradigms are also growing in use in other domains. [167]

examines PT in the context of proteins, for example, and [114] defines a benchmark

for cross-lingual PT systems, a topic that is also of interest in clinical contexts such

as diagnosing speech pathologies [11].

4.3 Problem Formulation & Notation

Let 𝑋PT ∈ R𝑁PT×𝐷, paired with a collection of auxiliary tasks 𝒯PT with associated

labels 𝑌 PT ∈ R𝑁PT×|𝒯PT| be our “pre-training” (PT) dataset. In addition, let 𝒯FT denote

our set of downstream (fine-tuning/FT) tasks and 𝑋FT ∈ R𝑁FT×𝐷,𝑌 FT ∈ R𝑁FT×|𝒯FT|

denote the corresponding FT dataset. Note that 𝑋FT may intersect non-trivially with

𝑋PT (i.e., some data may overlap between the PT and the FT settings), but no tasks

overlap directly between 𝒯PT and 𝒯FT. Given this lack of overlap in tasks, 𝒯PT/𝑌 PT

can serve as a form of weak-supervision for the ultimate FT tasks. In most practical

scenarios, it will be the case that 𝑁FT ≪ 𝑁PT.

Let our pre-training model be given by ℳ(𝑥) = 𝒟PT(ℰ(𝑥)), where ℰ is an encoder

(which we will ultimately transfer during FT) and 𝒟PT is a PT specific decoder (which

will not be transferred). Then, the goal of PT is to use the dataset 𝑋PT (and possibly

𝑌 PT) to learn the parameters of the pre-training model ℳ such that ℰ offers strong

transfer performance for the tasks 𝒯FT, all without actually leveraging (or even knowing

about) the fine-tuning labels 𝑌 FT at any point during the PT process. Note that at

fine-tuning time we will also train a freshly initialized decoder 𝒟FT such that the full

FT model makes predictions 𝑦̂ = 𝒟FT(ℰ(𝑥)).

4.4 High-level Overview

Here, we will provide an overview of the rest of the chapter, to help provide a high-level

grounding for the more detailed content in Section 4.5, which defines the benchmark’s

data and usage, and Section 4.6, which details our baseline PT experiments.

Our benchmark defines two separate cohorts: one over MIMIC-III and one over
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eICU (Section 4.5.1). Cohorts consist of timeseries of labs, vitals, & treatments. In

addition, we also define a set of 10 clinically meaningful downstream tasks which we

use as FT tasks (Section 4.5.2) to judge PT algorithms within our benchmark.

PT systems using our benchmark must fall into one of two categories: self-

supervised, in which case they can only leverage the labs, vitals, and treatment

dataset during PT, or weakly-supervised, in which case they can also leverage “off-

target” tasks during PT as auxiliary labels (Section 4.5.4). After PT, models are

fine-tuned under two distinct transfer regimes (Section 4.5.5) and across datasets

ranging in size (Section 4.5.6) to simulate extreme 𝑁PT
𝑁FT

ratios.

Ultimately, PT systems are judged on their final FT scores across all tasks,

datasets, and 𝑁PT
𝑁FT

ratios. In particular, to profile a PT system on our benchmark, one

simply downloads the provided cohorts and the 5 standardized train/validation/test

splits, tunes hyperparameter and trains their PT model according to the appropriate

procedures (for either self- or weakly-supervised methods), then fine-tunes the model

against our 10 downstream tasks at all dataset sizes. This usage procedure is detailed

more in Section 4.5.7.

To demonstrate this use in practice, and establish baseline results for further

research, we profile one self-supervised and one weakly-supervised PT method against

our tasks in the manner described above (Section 4.6). Ultimately, even with simple

PT methods, we see important improvements in the few-shot context (Section 4.6.4).

4.5 Pre-training Benchmark

4.5.1 Data Cohorts & Pre-processing

MIMIC-III Cohort Selection Our MIMIC-III [96] cohort is extracted via the

MIMIC-Extract pipeline [219], with missingness threshold set to 2% and otherwise

default parameters. This pipeline extracts a cohort of ICU stay records corresponding

to the first ICU stay of patients over age 15, extracting labs, vitals, and treatments, with

labs & vitals aggregated into clinically meaningful buckets to produce a more robust
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representation [148]. ICD codes, comfort-measures-only (CMO)/do-not-resuscitate

(DNR) codes, and records of death, discharge, and readmission are also extracted via

novel extraction code primarily as task labels, not input signals, though CMO/DNR

codes that are present or added during an input window are incorporated as features as

well. Lastly, we also extract static, demographic data at a per-patient level. Appendix

Tables 4.6 & 4.7 reports the set of all labs & vitals we consider in this work along

with their relative measurement rate. Treatments studied include various forms of

ventilation, vasopressors, or fluid boluses (See Appendix Section 4.8.1 for a full list).

Static data includes age, gender, ethnicity, insurance type, admission type, and first

care unit. Basic dataset statistics are shown in Table 4.1.

eICU Cohort Selection To extract the eICU [158] data, we attempt to mimic

the structure of our MIMIC-III cohort wherever possible. This cohort also extracts

labs and vitals, as well as static demographic data (age, gender, ethnicity, and unit

type). We also extract records of death and discharge to form our downstream tasks.

This cohort contains only patients over age 15 and only labs & vitals measured for at

least 5% of all observed time-points are included. In addition, as the eICU dataset is

multi-institution, we also restrict our data to correspond only to institutions with at

least 500 patients in the dataset. Extraction code for our eICU extraction system will

be released publicly after publication. Basic dataset statistics are shown in Table 4.1.

Dataset Post-processing Both datasets are standardized to hourly granularity

and represented as numerical timeseries with missingness. Treatment records are

also standardized hourly and concatenated to the numerical series via a one-hot

encoding. Static data are duplicated and appended to each hour of the series. To

form a pre-training or fine-tuning sample, we first sample a random ICU stay from

the record, then a random end-time 𝑇 within that stay, and treat all data for that

stay prior to 𝑇 as the input window for this sample, and the task labels corresponding

either to the end of the patient’s overall stay (for static tasks) or within a prescribed

prediction window after 𝑇 (for time-varying tasks) as the labels for this sample (see
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Section 4.5.2 for more details on task labels). Users may choose to featurize this

input window however they like—in our baselines, for example, rather than processing

the entire input window [0, 𝑇 ], we use a fixed size window ranging from 12–96 hours

ending at 𝑇 for computational efficiency. Note that in evaluating rolling or time-

varying tasks, whose labels will vary throughout patients’ stays, we sample multiple

random endpoints and aggregate evaluation results in a per-patient manner across

those different endpoints to approximate the expected performance of such tasks at a

per-patient level.

Dataset Splits & Release To capture all relevant sources of variance, our bench-

mark consists of 5 random train/tuning/test splits (split by patient and ICU stay), so

that a given PT system can separately undergo hyperparameter tuning, training, and

evaluation (including fine-tuning training/hyperparameter tuning) across 5 different

data splits. These splits are publicly available with the rest of our benchmark.

4.5.2 Benchmark Fine-tuning Tasks

Our benchmark consists of 10 FT tasks that span a variety of traditional ML4H targets

as well as several new tasks. In the interest of ensuring our set of tasks is sufficiently

diverse so as to be as generalizable as possible over FT use cases, and in order to

capture the variety of task definitions commonly used in the literature, we formulate

many of our tasks in a multi-label format, with distinct labels within a single task

spanning different possible configurations of the task. For example, our “Imminent

Mortality” task encompasses a multi-label prediction of both mortality within 24 hours

and mortality within 48 hours, both with different gap times. We’ll use the term “task”

to refer to the overarching learning target (e.g., “Imminent Mortality”) and “label” to

refer to an individual prediction target (e.g., binary prediction of mortality within 24

hours, or, using an example target from a different task, the presence of a particular

ICD code in the record). In addition, we also will use the term “Rolling” to correspond

to tasks with time-varying labels (e.g., prediction of mortality within the next 24

hours), “Static” to correspond to tasks that have a single, fixed label corresponding to
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the end of the patient’s stay (e.g., predicting overall ICD codes), or “Autoregressive”

to correspond to a task that explicitly is involved with forecasting the future state

of the patient in the feature-space used by our model. Note that the focus in our

task selection is first on utility for an ML benchmark, and second on direct clinical

utility. Where the latter is certainly important, we choose to focus here on including a

broad variety of tasks, on examining tasks that are well represented in the current ML

literature, and on tasks can be defined at scale over MIMIC-III and/or eICU, such

that we can easily examine the performance of models across various dataset sizes

within MIMIC-III without anchoring ourselves to a particular set of clinical cohorts

that already have gold-standard labels.

A full table of the tasks we use, across both datasets, is given in Table 4.2. In the

remainder of this section, we will walk through each task in more detail. For each

task, we will report a formal definition, over which cohorts the task is defined in this

benchmark, over what input windows the task is predicted (e.g., either throughout the

patient’s stay or only based on the first 24 hours), a brief pointer to any relevant prior

literature for the task, and more detailed majority class statistics for the tasks/labels.

When reporting task definitions, we will frame our rolling tasks relative to the last

measured timepoint in the sample’s input window—e.g., if an input sample corresponds

to the ICU stay record of patient 𝑝 up to time 𝑇 , and the task is defined over a

prediction window of 24 hours, with a gap time of 2 hours, then the task will capture

instances of a label within the time window [𝑇 + 2, 𝑇 + 24] for patient 𝑝. Note that

we include the gap time to ensure both that the learning task isn’t biased by any

potential temporal leakage in the data and that any superficial signals that would be

already known to clinicians during the input window (which is more likely when the

task event, e.g., mortality, would take place just after 𝑇 ) don’t overwhelm the learning

objective. Task statistics will be reported at a per-patient level (i.e., rolling tasks will

have labels first aggregated within a patient’s record, then across patients, so as not

to be biased by the behavior of patients with longer overall stays), and aggregated

over the train set of all 5 standardized train/tuning/test splits in our benchmark. All

statistics (as well as some not reported here) are also available in table form in the

97



appendix, in Supplementary Tables 4.4, 4.5, 4.6, 4.7, and 4.8).

Imminent Mortality: MOR

Definition: We predict whether the patient’s recorded time of death is within the

subsequent 24/48 hours, with a 2/6 hour gap time.

Cohort: This task is available on both cohorts.

Input Window: Throughout the entire stay.

Prior Art: Prediction of imminent mortality has been studied extensively as a silver

learning signal for more general physiological decompensation [81].

Statistics: 24h/48h mortality is false for 97.6 ± 9.91%/95.4 ± 17.36% and 97.9 ±

10.26%/96.2± 16.41% of hours per-patient for MIMIC-III and eICU.

Comfort Measures: CMO

Definition: “Comfort Measures Only” (CMO) orders indicate that the (usually

terminally ill) patient has requested to receive care only designed to provide comfort,

not treatment, and otherwise the course of illness should be allowed to progress

(typically to mortality). We predict whether a patient will add a CMO flag to their

record over the next 24/48 hours, using a 2/6 hour gap time.

Cohort: This task is only available on MIMIC-III.

Input Window: Throughout the entire stay.

Prior Art: In the traditional ML4H community, CMO prediction is somewhat

understudied. The only work we know of to study this prediction task is [123], which

uses natural language processing over clinical notes and structured data to predict

CMO codes and do not resuscitate (DNR) codes.

Statistics: 24h/48h CMO status is false for 99.1 ± 5.55%/98.5 ± 9.59% of hours

per-patient.

DNR Ordered: DNR

Definition: “Do Not Resuscitate” (DNR) orders indicate that the patient has requested

to not receive resuscitation care (e.g., cardiopulmonary resuscitation a.k.a. CPR). We

predict whether a patient will add a DNR flag to their record over the next 24/48
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hours, using a 2/6 hour gap time.

Cohort: This task is only available on MIMIC-III.

Input Window: Throughout the entire stay.

Prior Art: To the best of our knowledge this task has only been studied within the

ML4H community in [123].

Statistics: 24h/48h DNR status is false for 96.6± 16.16%/96.1± 18.03% of hours

per-patient.

Imminent Discharge: DIS

Definition: We predict whether the patient will be discharged, and if so to where

(e.g., discharged home vs. to a skilled nursing facility), within the next 24/48 hours,

using a 2/6 hour gap time. Unlike the prior tasks, this task is both multi-label (across

prediction/gap windows) and multi-class (across discharge locations).

Cohort: This task is available on both MIMIC-III and eICU.

Input Window: Throughout the entire stay.

Prior Art: Imminent discharge has been primarily predicted in operational contexts,

rather than for use as a signal of acuity, e.g., [18].

Statistics: Within 24 hours, the patients are more commonly not discharged than

they are discharged to any other possible individual discharge location (57.7± 24.68%

and 48.2± 26.67% of hours per-patient for MIMIC-III and eICU). Within 48 hours,

MIMIC-III patients are again most commonly not discharged (27.6± 26.58%), but

eICU patients are most commonly discharged home (40.2 ± 35.95%). A full list of

possible discharge locations, and their prevalence per-hour, per-patient, is shown in

Appendix Tables 4.9,4.10 for the MIMIC-III and eICU cohorts.

ICD Code Prediction: ICD

Definition: We predict the multi-label presence of each of the 19 major ICD categories

under the categorization of [193].

Cohort: ICD codes are available only on the MIMIC-III dataset.

Input Window: The first 24 hours of data.
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Prior Art: Prediction of ICD codes is commonly studied in ML4H as a phenotyping

task [81, 49].

Statistics: Per-label majority class accuracies are shown in Supplementary Table 4.8.

Macro-averaged across all categories, the majority class accuracy of this task is

67.0± 18.07%.

Long Length-of-Stay: LOS

Definition: We predict via binary classification whether a patient’s total length-of-

stay will be longer than 3 days or not.

Cohort: LOS is available on both cohorts.

Input Window: The first 24 hours of data.

Prior Art: Long LOS has been predicted numerous times, both in a classification

sense for 3-day LOS [219] and 7-day LOS [81].

Statistics: Patient LOS is longer than 3 days 47.1± 0.11% and 33.3± 0.04% of the

time on MIMIC-III and eICU.

30 Day ICU Readmission: REA

Definition: We predict whether or not patients who are successfully discharged will

be readmitted to the ICU 1 within 30 days.

Cohort: This task is defined only on the MIMIC-III cohort. As MIMIC-Extract

extracts a cohort only of patients’ first ICU stays [219], this task also has the bias of

only being analyzed on the first ICU visit for a patient.

Input Window: 30-day ICU readmission is predicted over the entirety of the patient’s

data, up until discharge. In practice this often means that it will be predicted over a

fixed size window of, e.g., 48 hours prior to discharge.

Prior Art: Rajkomar et al. [165] examine overall hospital readmission in their work.

Statistics: 95.1± 0.09% of patients aren’t readmitted within 30 days.

1Hospital readmission would be both a more natural and more actionable task in practice; however,
the granularity of our input data only permits ICU readmission, so we use this as a proxy for the
more traditional hospital readmission task.
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Final Acuity: ACU

Definition: We predict, in a multi-class manner, whether the patient will die in the

hospital—and if so, when (e.g., In-ICU v. In-Hospital)—or be discharged—and if so,

to where (e.g., Home, a Skilled Nursing Facility)—at the end of their stay.

Cohort: This task is defined over both cohorts.

Input Window: The first 24 hours of data.

Prior Art: Various sub-forms of this task have been explored historically. In-ICU

and in-hospital mortality, for example, have been explored as separate, binary classifi-

cation tasks in numerous ways [81, 219, 28]. Challenging the model to predict death

(including location of mortality) and the final discharge location jointly is novel, to

the best of our knowledge.

Statistics: Prevalences of all classes for the final acuity task are shown in Supple-

mentary Tables 4.12 and 4.11, for the MIMIC-III and eICU cohorts. The macro

averaged majority class accuracy for this task, however, is 25.3± 0.24% of patients

being discharged to a home health care system and 59.7± 0.1% being discharged to

home for MIMIC-III and eICU.

Next Timepoint Will be Measured: WBM

Definition: We predict which labs & vitals will be measured in the next hour via

multi-label binary classification.

Cohort: This task is defined over both cohorts.

Input Window: Throughout the patient’s stay.

Prior Art: Imputation and forecasting over clinical data has been explored extensively

in the past, both as a necessary technical pre-processing step for large pipelines and

as a vehicle for direct use in other clinical tasks, such as anomaly detection [125]. The

classification formulation is somewhat less common than the regression formulation,

but the analysis of measurement observation patterns in clinical data in general has

been explored in a number of contexts beyond just prediction [26].

Statistics: The labs & vitals over which we predict, along with their observed

measurement rates, are shown in Appendix Tables 4.6 & 4.7 for both the MIMIC-III
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and eICU cohorts. Macro averaged majority class accuracy per-hour, per-patient for

this task is 92.1± 9.18% on MIMIC-III and 88.0± 19.61% on eICU.

Future Treatment Sequence: FTS

Definition: We predict the sequence of combinations of ventilation, vasopressor,

and fluid bolus treatments the patient will receive over the remainder of their stay

(bucketed to an hourly granularity), in a duration agnostic manner, meaning this task

does not differentiate between a patient who is ventilated for one hour, followed by

receiving vasopressors for two hours and a patient who is ventilated for two hours,

followed by receiving vasopressors for one hour—in both cases, the task labels would

simply be the sequence “ventilation, vasopressors.”

As this task is a sequential decoding task, predictions for FTS must use more

specialized prediction heads and training regimes than on our other tasks; our baselines,

for example, rely on LSTM RNN decoders and teacher forcing [105], but other users

may attempt different strategies. We evaluate this task in an autoregressive manner

also using teacher forcing [105].

Cohort: This task is defined only on the MIMIC-III cohort.

Input Window: Throughout the patient’s stay.

Prior Art: While this task formulation is novel, researchers have investigated

learning optimal control policies for applications of treatments, including ventilators

or vasopressors [228, 153, 88].

Statistics: We show the relative frequency of the various treatment combinations

in Appendix Figure 4-5. The majority class accuracy of this task at a per-patient,

per-hour level is 97.4± 2.77%.

4.5.3 Pre-training vs. Fine-tuning Data

For both cohorts, we leverage the full dataset (excluding separate hyperparameter

tuning and held-out sets) as our PT data 𝑋PT. Naturally, this also means that our

fine-tuning datasets 𝑋FT will overlap with our PT data. While this renders our

benchmark less reflective of cases where one would like to deploy a PT model on
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a disjoint FT dataset, there are also many use-cases where these two datasets will

overlap.

4.5.4 Pre-training Regimes

Our benchmark supports two styles of PT: self-supervised and weakly-supervised.

Under self-supervision, only a single PT model is pre-trained, which is then used

to assess FT performance directly on each downstream task (through separate FT

runs, all transferring from the single PT model). Under weak-supervision, we permit

the user to leverage a portion of our provided downstream tasks at pre-training time

while still ensuring there is no task leakage from PT to FT via a “leave-one-task-out”

(LOTO) framework. If our total set of downstream tasks is given by 𝒯 , then the LOTO

framework requires pre-training a separate encoder ℰ𝑡 per downstream task 𝑡 ∈ 𝒯

such that ℰ𝑡 is transferred only to FT task 𝒯FT = {𝑡} for evaluation and leverages

only tasks 𝒯PT = {𝑡′ ∈ 𝒯 |𝑡′ ̸= 𝑡} for PT weak supervision signals.

4.5.5 Fine-tuning Regimes

We analyzed two different styles of FT transfer: fine-tuning, decoder-only (FTD), and

fine-tuning, full (FTF).

In the fine-tuning decoder-only (FTD) setting, the encoder ℰ is frozen after PT,

and only the decoder 𝒟 is allowed to change during the FT stage. In the fine-tuning

full (FTF) setting, the entire model, including the PT encoder ℰ and the FT decoder

𝒟 (which is not initialized during PT), can be updated during FT. This setting allows

greater capacity, at the expense of a risk of over-fitting during FT. In addition, we

naturally also encourage users to profile traditional, non-PT, single-task (ST) models

of the same architectures over these tasks, to establish baseline performance levels.

4.5.6 Few-shot Analyses

In addition to comparing FTF vs. FTD performance, we also assess FT systems across

various FT dataset sizes to judge models across a wide range of 𝑁PT/𝑁FT disparities.
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Figure 4-2: We always pre-train on the full available dataset, but additionally assess our
models’ ability to fine-tune in a few-shot context by randomly subsampling (with replacement)
a variety of smaller FT datasets for each experiment.

These few-shot analysis datasets are formed by taking a series of random subsets (with

replacement) of our overarching dataset 𝑋PT corresponding to 14 different sampling

rates ranging on a logarithmic scale from 0.03% to 100%. This process is shown in

Figure 4-2. Note that as all samples are taken randomly, our benchmark currently

does not support PT/ FT in a setting with domain shift. This is obviously also an

important challenge as well, that we hope to explore in future work.

4.5.7 Benchmark Utilization Protocol

First, the encoder must be pre-trained on the MIMIC-III and eICU cohorts. For a

self-supervised PT system, hyperparameter tuning and pre-training are performed once

(per random train/test split). For a weakly-supervised PT system, a separate round

of pre-training must be performed per task 𝑡 such that the pre-trained encoder ℰ𝑡 is

trained to optimize task performance on all tasks except for task 𝑡, which is reserved

for fine-tuning evaluation. To ease the hyperparameter tuning burden for weakly-
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supervised systems, it also is possible to perform a single round of PT hyperparameter

tuning using the entire set of tasks, risking a small amount of task leakage at the gain

of a significant reduction in compute cost (though of course actual PT must still be

repeated for each model ℰ𝑡 with the proper subdivision of tasks after hyperparameter

tuning is complete).

Next, fine-tuning is performed on task-specific models across all cohorts, sub-

sampled datasets, and tasks. To assess the self-supervised system, all fine-tuning

models will transfer from the same pre-trained source model, whereas for the weakly-

supervised system, following LOTO, each encoder ℰ𝑡 must be fine-tuned on only task 𝑡

to ensure no overlap between PT and FT tasks. This fine-tuning procedure is repeated

across both the FTF and FTD transfer settings defined in Section 4.5.5.

Finally, fully-supervised, single-task (ST) models of the same base architecture are

hyperparameter tuned and trained from scratch for each task to provide a baseline

score.

The output of this process will yield one score per task, cohort, sub-sampled-

dataset, PT algorithm, and FT transfer regime. This process is then repeated across

the random splits within the benchmark to assess variance. Based on these results,

the user can judge if either of these PT algorithms offer robust benefits across all

cohorts and tasks, if one fine-tuning transfer style is preferred over another, or any

number of other questions.

4.6 Baseline Experiments

4.6.1 Baseline-specific Data Post-processing

Our baseline models featurize the timeseries into fixed-size input windows of anywhere

from 12–96 hours (chosen via hyperparameter search). Within these fixed input

windows (and not taking into account any data from the prediction windows), any

missing features are linearly interpolated between their previous and subsequent

measurements. If a measurement is only observed on one side of the value (e.g., there

106



are no future measurements or no previous measurements within the input window),

values are carried forward or backward, respectively, and if no measurements are

observed, they are imputed to the feature’s mean value over the train dataset. In

addition, time-since-last-measured ordinal indicators (up to 8 hours) are added to

capture how long it has been at any given time-point since a specific feature was last

measured. Both to simplify our shared code base, and as a form of data augmentation,

all training is done across random time-points throughout the patient’s stay, regardless

of the specific details of the task’s prescribed evaluation input window, though those

relationships are, of course, respected during evaluation. For example, though ICD

code prediction will only be evaluated using the first 24 hours of a patient’s stay,

during training we will train this model on inputs throughout the patient’s stay.

4.6.2 Models

Encoder Architecture

All models in this work use a GRU model [32] as their encoder ℰ . Early experiments

suggested this model outperformed other architectures, including a simpler, linear

baseline, a convolutional neural network architecture, and a transformer model, and

it is a commonly used model in the literature, so it is a reasonable choice for a

baseline architecture here. Input data is projected down to a unified numerical

representation, then run through a (potentially) multi-layer, bidirectional GRU (GRU

parameters are determined via hyperparameter tuning) to yield a final encoder.

This encoded representation is then passed through a task-specific decoder, which is

either (1) a LSTM based sequential decoder for the FTS task, or (2) a simple linear

layer up to the appropriate dimensionality of the task, followed by an appropriate

classification activation (e.g., sigmoid or softmax) for all other tasks. For multi-label

tasks, activations and losses are computed in a per-label manner and losses are then

averaged.
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Figure 4-3: We profile both a self-supervised, masked-imputation PT system and a weakly-
supervised multi-task PT system.

Supervised, Single-task (ST) Models

We perform fully supervised, single-task (ST) training, with no PT, on each task

separately, to provide baselines in comparisons with our PT/FT methods. These runs

use the same GRU architecture as our other experiments, and are hyperparameter

tuned separately for each downstream task.

Pre-training Algorithms

We profile two distinct PT systems on our benchmark: A weakly-supervised, multi-task

(MT) PT model, and a self-supervised, masked-imputation (MI) model. For a visual

overview of both of these methods, see Figure 4-3.

Weakly-supervised, Multi-task (MT) Pre-training In multi-task (MT) PT, we

use the “leave-one-task-out” method described in Section 4.5.4 to ensure our MT PT

approach does not leak task information between FT and PT contexts. Our multi-task

approach is very straightforward: all tasks in the learning ensemble (e.g., all tasks

save the eventual fine-tuning target) will be jointly trained via a model whose encoder

ℰ is shared across all tasks but with separate decoders 𝒟𝑡 per task. No loss weighting

or task-alignment is used.

Masked-Imputation (MI) Pre-training Masked-imputation (MI) PT is inspired

by the successes of models such as BERT [46] in NLP. To adapt the ideas of BERT to
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a continuous domain with missingness, we choose at random approximately 15% of the

time-points in the input window to “mask,” (replace with all zeros and augment with a

bit indicating masking took place). Then, the model is tasked with predicting within

this masked time-point which labs/vitals were actually measured via a classification

task and what their values were via a continuous regression task. At fine-tuning

time, the model is no longer asked to perform masked imputation, and no masking is

applied. For this PT task, we limit our GRU models to unidirectional GRUs to avoid

leaking information from future time-points2, and models are hyperparameter tuned

to maximize the mean of the classification task’s macro AUROC and the regression

task’s 𝑅2 value.

Fine-tuning For both PT systems, after PT is complete, the model is fine-tuned by

initializing an untrained decoder layer and training the system according to the loss

criteria appropriate to the type of task at hand (e.g., binary cross-entropy loss or a

negative log likelihood loss depending on the task type). Tasks that are multi-label

in nature are trained by averaging the losses together for all labels. As described in

Section 4.5.5, we profile both FTF and FTD transfer styles in this baseline, and we

report across all sub-sampled dataset sizes as described in Section 4.5.6.

4.6.3 Hyperparameter Tuning

Hyperparameter tuning was performed to optimize the underlying architecture via

the PT task with random search, via the Bayesian Hyperopt Library [17]. No FT

specific hyperparameter tuning was performed, as the majority of the details of the

architecture (e.g., the GRU depth and dimensionality) are fixed by the pre-training

algorithm. ST models were naturally tuned based on output task performance, as

there is no PT stage for these models.

Specific model hyperparameters were chosen to maximize the appropriate score

on the validation fold over a random search drawn from a customized hyperparam-

2This is especially important in the context of our imputation procedure, which directly encodes
how long it has been since any given lab/vital was measured.
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eter distribution. For MT PT models, this search was done once across all tasks

simultaneously in a MT manner, optimizing for the average AUROC across all tasks

in the ensemble, then used for all PT/FT experiments. This represents a possible

source of very mild task leakage, but yielded significant computational savings. For

MI models, hyperparameter tuning was done once in a task-independent manner (as

masked imputation is a self-supervised, rather than weakly-supervised PT method).

Final hyperparameters were chosen based on the full dataset, and were not repeated

at smaller training set sizes for the few-shot experiments, which may represent another

possible source of bias. Additional details on the hyperparameter search can be found

in Appendix Section 4.9.

4.6.4 Results

In this section, we will highlight a subset of the most relevant results found in our

baseline experiments. Figure 4-4 shows two things of interest: First, it shows a graph

cataloging over what fraction of tasks a particular PT/FT model type offers best

performance as a function of dataset size. This allows us to see quickly, for example,

that for a wide variety of dataset sizes, MT FTF offers significnat improvements over

other strategies on a significant portion of the tested tasks. To show these relationships

in more detail, Figure 4-4 also shows more complete results for 3 of our 10 tasks across

both cohorts and all dataset fractions, comparing specifically both varieties of the

FTF models and the ST model. In addition, the results corresponding to the 1%,

10%, and full-data scales for both cohorts are shown in Table 4.3. In this view, we

see that at the 1% setting, the Multi-task (MT) FTF setting performs best in 7/10

settings, whereas ST never offers best-in-class performance. At the 10% setting, MT

FTF excels 6/10 times, and ST performs best in only one task. Finally, at the 100%

(e.g., full) data scale, ST always performs best. This demonstrates a strong trend

between the performance benefit offered by MT-FTF PT and the severity of the 𝑁FT

v. 𝑁PT imbalance. Full results can be found in the Appendix, in Figures 4-6,4-7 for

MIMIC-III and 4-8,4-9 for eICU.
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Figure 4-4: (left column) For what % of tasks (𝑦-axis) does a given PT/FT regime (linestyle)
perform better than all other PT/FT regimes, as a function of dataset fraction (𝑥-axis).
(right 3 columns) Performance in macro-averaged AUROC (𝑦-axis) of various PT/FT models
(linestyle) across various FT dataset sub-sampling rates (𝑥-axis), over 3 sample FT tasks
(subplots).

4.6.5 Discussion

Pre-training does not offer benefits at full data scale Table 4.3 shows that

PT does not offer any gains over traditional supervised learning at full MIMIC or

eICU dataset scales. In some cases, PT actually harms the final results. This is not

necessarily surprising; while PT can help compensate for too little data and provide

(indirect) access to additional data in the case of larger 𝑁FT / 𝑁PT discrepancies, when

𝑋FT = 𝑋PT the risks that PT simply serves as a distraction from the (comparatively

direct) supervised learning signal is large.

Pre-training can offer significant benefits in few-shot settings Our benchmark

reveals that PT in few-shot settings is helpful. Figure 4-4 shows that across a significant

fraction of the dataset fractions for both the MIMIC-III and eICU cohorts, MT FTF

offers significant benefits over other approaches. In Table 4.3, we see more concretely

that in the 1% FT dataset setting, some form of PT/FT offers best in class performance

across all tasks in both cohorts except for LOS on the eICU cohort, with performance
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improvements ranging as high as an AUROC improvement of 0.2/0.24 for mortality

prediction in MIMIC-III/eICU. In the 10% dataset size setting, some form of PT/FT

still offers best-in-class performance on all tasks save LOS for the eICU cohort and

ICD for the MIMIC cohort. The margins of improvement are no longer as high,

but offer consistent gains across a variety of other tasks such as with CMO, DNR,

MOR, WBM, and FTS all offering AUROC improvements of up to 0.1 on MIMIC-III

(improvements are much smaller on eICU at this threshold). These findings provide

evidence to affirm that EHR PT/FT strategies could enable more effective modelling

even given only very small task-specific datasets, thus potentially offering a vehicle to

help train models for novel or rare diseases.

We also observe that the tasks which tend to show the largest improvements with

PT (MOR, WBM, CMO, DNR, and FTS) are all rolling tasks with substantial class

imbalance. Across both cohorts these tasks report majority class accuracies greater

than or equal to 88% (with most ≥ 95%). No other tasks in our benchmark meet

these criteria, suggesting there may be stronger benefits from PT (in particular, from

MT PT) on rolling, imbalanced tasks.

Weakly-supervised pre-training out-performs self-supervised pre-training

In general, MT PT is superior to MI, even at small data scales, suggesting that

simple adoption of the masked language modeling idea is not sufficient for the clinical

domain. Despite this, in the few-shot domain, MI FTF training still does outperform

traditional ST modelling, just not by as much as MT FTF does. For example, at 1%

on MIMIC-III, MI FTF outperforms ST in all but one case, and at 10% it does in all

but four cases (though on eICU the situation is murkier).

FTF is in general preferred over FTD Consistent across both MI and MT PT

is that FTF models are preferred to FTD models. This is true across datasets and

sub-sampling rate, and suggests that despite the increased risk of overfitting offered

by fine-tuning the encoder as well as the decoder, this strategy may be integral to

obtaining strong PT/FT results in this modality.
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4.7 Conclusion

In this work, we present a novel benchmark for PT systems over EHR time-series

data. We define a suite of FT task targets, including several novel tasks, over

both MIMIC-III and eICU, and establish evaluation procedures for examining a

PT system’s performance both across various FT dataset sizes. We then establish

three baseline systems on this benchmark, including a traditional, non-pre-trained

single-task baseline, a weakly-supervised multi-task PT baseline, and a fully self-

supervised masked-imputation based PT baseline. These baselines demonstrate that

weakly-supervised, multi-task PT can offer substantial improvements in few-shot

contexts for tasks suffering from significant class imbalance. In addition, they suggest

important findings on the viability of different styles of PT and FT; in particular that

masked-imputation based PT currently is not competitive with multi-task PT, and

that fine-tuning both model encoders and decoders is necessary for ensuring strong

FT performance.

While significant future work remains, including assessing additional PT systems on

this benchmark as well as augmenting this benchmark to assess the impact PT has on

fine-tuning under domain shift such as pre-training on one hospital and fine-tuning on

another, or subpopulation shift in fairness applications, we believe that this benchmark

can be an invaluable tool for the ML4H community. By standardizing PT/FT training

and evaluation procedures, including few-shot evaluation analyses and the inclusion

of a sufficiently diverse set of tasks to assess the utility of PT schemes in general,

rather than merely on a isolated, highly specific subset of tasks, this benchmark offers

the possibility of greatly increasing the efficiency of PT research on EHR data. This

benchmark will help enable iterative analysis and development of PT strategies in this

domain and lead to the release of PT encoders that enable easy specialization and

deployment in clinical settings.
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4.7.1 Relation to this Thesis

In this chapter, we focus our investigations to the question of pre-training (PT)

specifically, and show that naïve adaptations of existing PT strategies to clinical

data will not yield significant performance improvements over existing methods. In

particular, we can surpass these traditional, imputation-based pre-training approaches

with even just a simple, multi-task PT baseline. This work thus directly motivates

not only the development of new PT methods, but specifically PT methods that allow

us to better capture whole-sample signals such as those captured by our multi-task

tasks here. Such methodological development is exactly the focus of Chapter 5, next.

4.8 Appendix

4.8.1 Additional Data/Task Information

Additional Dataset Details

MIMIC-III Cohort Treatment Data In the MIMIC-III cohort, we incorporate

as inputs treatments including adenosine, colloid bolus, crystalloid bolus, dobutamine,

dopamine, epinephrine, isuprel, milrinone, nivdurations, norepinephrine, phenyle-

phrine, vaso (other vasopressor application), vasopressin, and vent (ventilation).

Task Details and Statistics

Imminent Discharge: DIS The below two tables (Table 4.9, 4.10) capture the

overall prevalence of all DIS classes observed across both cohorts and all labels.

Final Acuity: ACU The below two tables (Table 4.12, 4.11) capture the overall

prevalence of all ACU classes observed across both cohorts.

Next Timepoint: WBM Tables 4.6 & 4.7 shows the majority class accuracy for

all labs & vitals used in this work for the WBM task.
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Task Label Class Train Tuning Held-out Test

ICD Blood 0 52.5± 0.16% 54.3± 0.77% 54.7± 0.48%
Circulatory 1 72.0± 0.14% 78.8± 1.45% 78.7± 1.14%
Congenital 0 91.4± 0.15% 94.8± 0.51% 95.1± 0.56%
Defined 0 50.8± 0.41% 53.3± 1.30% 53.6± 1.17%
Digestive 0 51.2± 0.35% 54.0± 1.34% 54.0± 1.34%
Endocrine 1 63.5± 0.27% 67.6± 1.30% 67.1± 1.18%
Genitourinary 0 51.9± 0.10% 52.8± 1.77% 52.5± 1.26%
Infection 0 58.0± 0.24% 64.4± 0.70% 65.5± 1.61%
Injury 0 50.1± 0.04% 51.8± 0.10% 51.1± 0.63%

1 50.2± 0.13% 48.8± 1.16% 48.8± 1.05%
Mental 0 57.0± 0.19% 61.4± 0.88% 61.1± 0.80%
Musculoskeletal 0 66.7± 0.08% 73.5± 0.28% 73.8± 0.22%
Neoplasms 0 70.3± 0.32% 76.1± 1.03% 75.7± 0.32%
Nervous 0 59.3± 0.16% 63.9± 0.62% 64.0± 0.41%
Perinatal 0 100.0± 0.01% 100.0± 0.03% 100.0± 0.03%
Pregnancy 0 98.8± 0.04% 99.3± 0.30% 99.5± 0.24%
Respiratory 1 53.3± 0.15% 53.6± 0.87% 53.3± 0.81%
Skin 0 76.7± 0.25% 85.1± 1.50% 85.3± 1.13%
Unknown 0 100.0± 0.01% 100.0± 0.03% 100.0± 0.03%

Table 4.8: ICD task per-label majority class accuracies. As the ICD task is defined
only on MIMIC-III, this table is specific to that cohort.

120



C
la

ss
24

H
48

H

Tr
ai

n
Tu

ni
ng

H
el

d-
ou

t
Te

st
Tr

ai
n

Tu
ni

ng
H

el
d-

ou
t

Te
st

Lo
ng

Te
rm

C
ar

e
H

os
pi

ta
l

1.
0
±

6.
07
%

1.
0
±

5.
96
%

1.
0
±

5.
80
%

1.
9
±

10
.9
6%

1.
9
±

10
.6
8%

1.
8
±

10
.5
5%

R
eh

ab
/D

is
ti

nc
t

P
ar

t
H

os
p

3.
8
±

11
.0
4%

3.
8
±

11
.1
2%

3.
9
±

11
.2
3%

7.
0
±

20
.0
1%

7.
1
±

20
.0
6%

7.
1
±

20
.2
0%

H
om

e
H

ea
lt

h
C

ar
e

8.
6
±

16
.2
3%

8.
6
±

16
.2
3%

8.
6
±

16
.0
9%

15
.9
±

29
.4
1%

15
.9
±

29
.4
0%

15
.8
±

29
.2
2%

D
is

c-
Tr

an
C

an
ce

r/
C

hl
dr

n
H

0.
5
±

4.
25
%

0.
5
±

4.
16
%

0.
5
±

4.
14
%

0.
9
±

7.
58
%

0.
8
±

7.
40
%

0.
8
±

7.
37
%

Sh
or

t
Te

rm
H

os
pi

ta
l

0.
3
±

3.
66
%

0.
4
±

3.
73
%

0.
4
±

3.
83
%

0.
6
±

6.
55
%

0.
6
±

6.
61
%

0.
7
±

6.
75
%

Ic
f

0.
0
±
1.
50
%

0.
0
±

1.
33
%

0.
0
±

1.
47
%

0.
1
±

2.
61
%

0.
1
±

2.
26
%

0.
1
±

2.
48
%

D
is

c-
Tr

an
To

Fe
de

ra
lH

c
0.
0
±
0.
62
%

0.
0
±

0.
01
%

0.
0
±

𝑛
𝑎
𝑛
%

0.
0
±

1.
19
%

0.
0
±

0.
03
%

0.
0
±

𝑛
𝑎
𝑛
%

D
is

ch
-T

ra
n

To
P

sy
ch

H
os

p
0.
4
±
4.
20
%

0.
3
±

3.
86
%

0.
4
±

4.
13
%

0.
7
±

7.
29
%

0.
6
±

6.
80
%

0.
7
±

7.
22
%

O
th

er
Fa

ci
lit

y
0.
0
±
1.
30
%

0.
0
±

1.
19
%

0.
0
±

0.
01
%

0.
1
±

2.
36
%

0.
1
±

2.
13
%

0.
0
±

0.
03
%

H
om

e
W

it
h

H
om

e
Iv

P
ro

vi
dr

0.
0
±

1.
42
%

0.
1
±

1.
60
%

0.
1
±

1.
72
%

0.
1
±

2.
50
%

0.
1
±

2.
90
%

0.
1
±

3.
01
%

H
om

e
9.
1
±
17
.6
0%

9.
3
±

17
.7
6%

9.
2
±

17
.6
6%

16
.3
±

30
.9
0%

16
.6
±

31
.1
5%

16
.5
±

31
.0
5%

Le
ft

A
ga

in
st

M
ed

ic
al

A
dv

i
0.
2
±

2.
66
%

0.
2
±

2.
72
%

0.
2
±

2.
74
%

0.
3
±

4.
61
%

0.
3
±

4.
73
%

0.
3
±

4.
75
%

H
os

pi
ce

-M
ed

ic
al

Fa
ci

lit
y

0.
1
±

1.
86
%

0.
1
±

1.
65
%

0.
1
±

1.
66
%

0.
2
±

3.
36
%

0.
2
±

3.
06
%

0.
2
±

3.
02
%

N
o

D
is

ch
ar

ge
57
.7
±
24
.6
8%

57
.7
±

24
.5
7%

57
.7
±

24
.7
9%

27
.6
±

26
.5
8%

27
.5
±

26
.4
5%

27
.6
±

26
.6
0%

Sn
f

5.
5
±
13
.2
4%

5.
5
±

13
.3
2%

5.
3
±

13
.0
9%

10
.0
±

23
.9
5%

10
.1
±

24
.0
2%

9.
9
±

23
.7
9%

H
os

pi
ce

-H
om

e
0.
3
±

3.
18
%

0.
3
±

3.
04
%

0.
2
±

2.
97
%

0.
5
±

5.
73
%

0.
5
±

5.
52
%

0.
5
±

5.
47
%

Sn
f-M

ed
ic

ai
d

O
nl

y
C

er
ti

f
0.
0
±

0.
32
%

𝑛
𝑎
𝑛
±

𝑛
𝑎
𝑛
%

𝑛
𝑎
𝑛
±

𝑛
𝑎
𝑛
%

0.
0
±

0.
61
%

𝑛
𝑎
𝑛
±

𝑛
𝑎
𝑛
%

𝑛
𝑎
𝑛
±

𝑛
𝑎
𝑛
%

Ta
bl

e
4.

9:
A

ll
di

sc
ha

rg
e

lo
ca

ti
on

s
w

e
pr

ed
ic

t
on

th
e

M
IM

IC
-I

II
co

ho
rt

,a
lo

ng
w

it
h

th
e

pe
rc

en
t

of
pa

ti
en

t-
ho

ur
s

in
th

e
tr

ai
n

se
t

ac
ro

ss
al

l5
sp

lit
s.

121



C
lass

24H
48H

Train
Tuning

H
eld-out

Test
Train

Tuning
H

eld-out
Test

0.3
±

3.93%
0.3

±
3.88%

0.3
±

3.92%
0.5

±
5.74%

0.5
±

5.79%
0.5

±
5.81%

O
ther

1.4
±

8.63%
1.5

±
8.84%

1.4
±

8.75%
2.1

±
12.08%

2.2
±

12.18%
2.1

±
12.00%

O
ther

E
xternal

1.5
±
8.56%

1.5
±

8.47%
1.6

±
8.64%

2.4
±

12.55%
2.4

±
12.44%

2.5
±

12.63%
O

ther
H

ospital
0.9

±
6.68%

0.9
±

6.56%
0.9

±
6.53%

1.5
±

9.91%
1.4

±
9.68%

1.4
±

9.67%
Skilled

N
ursing

Facility
5.6

±
15.51%

5.6
±

15.52%
5.6

±
15.56%

8.8
±

22.67%
8.9

±
22.79%

8.8
±

22.71%
N

o
D

ischarge
48.2

±
26.67%

48.2
±

26.73%
48.2

±
26.71%

21.6
±

24.60%
21.7

±
24.74%

21.7
±

24.68%
N

ursing
H

om
e

0.4
±
4.20%

0.4
±

4.30%
0.4

±
4.22%

0.6
±

6.13%
0.6

±
6.38%

0.6
±

6.36%
H

om
e

27.8
±
28.14%

27.6
±

28.13%
27.6

±
28.06%

40.2
±

35.95%
39.9

±
36.03%

40.0
±

35.98%
R

ehabilitation
2.0

±
9.46%

1.9
±

9.30%
2.0

±
9.30%

3.2
±

14.15%
3.1

±
13.96%

3.2
±

14.00%

Table
4.10:

A
lldischarge

locations
w

e
predict

for
the

eIC
U

cohort,along
w

ith
the

percent
ofpatient-hours

in
the

train
set

across
all5

splits.

122



Label Class Train Tuning Held-out Test

0.8± 0.01% 0.8± 0.10% 0.8± 0.11%
Other 3.4± 0.04% 3.4± 0.14% 3.3± 0.33%
In-Hospital Mortality 3.5± 0.05% 3.6± 0.29% 3.6± 0.32%
Other External 4.1± 0.03% 4.1± 0.16% 4.2± 0.10%
Other Hospital 2.6± 0.06% 2.5± 0.31% 2.5± 0.31%
In-ICU Mortality 4.7± 0.01% 4.8± 0.15% 4.8± 0.17%
Skilled Nursing Facility 14.7± 0.03% 14.9± 0.47% 14.7± 0.56%
Home 59.7± 0.10% 59.2± 0.39% 59.4± 0.64%
Nursing Home 1.0± 0.01% 1.1± 0.12% 1.1± 0.12%
Rehabilitation 5.5± 0.01% 5.5± 0.31% 5.6± 0.30%

Table 4.11: The prevalence for the various classes for our “Final Acuity” (ACU) task
on the eICU cohort, averaged over all 5 rotations.

Label Class Train Tuning Held-out Test

Long Term Care Hospital 3.7± 0.07% 3.7± 0.41% 3.6± 0.38%
Rehab/Distinct Part Hosp 13.2± 0.08% 13.4± 0.84% 13.4± 0.59%
Disc-Tran Cancer/Chldrn H 1.5± 0.05% 1.5± 0.31% 1.5± 0.28%
Home Health Care 25.3± 0.24% 25.2± 1.34% 25.3± 1.15%
Short Term Hospital 1.1± 0.05% 1.1± 0.22% 1.1± 0.18%
Icf 0.1± 0.01% 0.1± 0.06% 0.1± 0.06%
Disc-Tran To Federal Hc 0.0± 0.00% 0.1± 0.03% 0.0± 𝑛𝑎𝑛%
Disch-Tran To Psych Hosp 1.0± 0.03% 0.9± 0.13% 1.0± 0.23%
In-Hospital Mortality 3.7± 0.07% 3.4± 0.23% 3.7± 0.55%
In-ICU Mortality 7.4± 0.05% 7.5± 0.48% 7.5± 0.42%
Home 24.0± 0.08% 24.3± 0.38% 24.0± 0.50%
Left Against Medical Advi 0.4± 0.03% 0.4± 0.16% 0.4± 0.16%
Home With Home Iv Providr 0.1± 0.01% 0.2± 0.11% 0.2± 0.08%
Other Facility 0.1± 0.01% 0.1± 0.06% 0.1± 0.04%
Hospice-Medical Facility 0.3± 0.03% 0.3± 0.16% 0.3± 0.16%
Snf 17.3± 0.12% 17.2± 0.75% 16.9± 0.53%
Hospice-Home 0.9± 0.03% 0.8± 0.14% 0.8± 0.19%
Snf-Medicaid Only Certif 0.0± 0.00% 𝑛𝑎𝑛± 𝑛𝑎𝑛% 𝑛𝑎𝑛± 𝑛𝑎𝑛%

Table 4.12: The prevalence for the various classes for our “Final Acuity” (ACU) task
on the MIMIC-III cohort, averaged over all 5 rotations.
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Figure 4-5: A sample Upset plot showing the frequency of relative combinations of our three
treatment types: Vasopressors (vaso), Ventilation (vent), and Fluid Bolus administration
(bolus) on the MIMIC-III cohort.

Future Treatment Sequence: FTS Figure 4-5 shows which combinations of

treatments are most commonly observed over MIMIC-III.

4.9 Hyperparameter Search Analysis

Search Space

For our hyperparameter search procedure, we searched over a wide variety of pa-

rameters, including number of epochs, batch size, learning rate, learning rate decay

paradigms, L2 regularization penalty, dropout, the maximum length of a patients

record included, the size, number, and configuration of various hidden layers, pooling

and fully connected stack parameters, and various other model-specific options. All

search distributions are shown in Table 4.13. Various numbers of samples were run

for each experiment. Universally, at least 100 random samples per search were run.

Runs that had more than 100 samples were almost universally single-task runs, not

PT/FT runs.
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Hyperparameter Search Space

# Epochs Uniform[10, 35]
Batch Size Uniform[8, 512]
Learning Rate (LR) Lognormal[-7, 0.5]
LR Decay Loguniform[-2.3, 0]
Hidden Dropout Uniform[0, 0.5]
Hidden Size Uniform[8, 256]
Weight Decay Uniform[0, 1]
Input Window Size (h) Uniform[12, 168]
Bidirectional Choice[True, False]
# Hidden Layers Uniform[1, 4]
Encoder Hidden Layer Size Uniform[8, 512]
GRU Pooling Method Choice[max, avg, last]
GRU FC Layer Base Size Uniform[8, 512]
GRU FC Layer Growth Loguniform[-1.1, 1.1]

Table 4.13: The Hyperopt search space we used in this work. Distributions are noted
in pseudocode, but typically refer directly to the appropriate analog in Hyperopt (e.g.,
a uniform distribution over an integral parameter maps to the quantized uniform
distribution that only outputs integers).

4.9.1 Final Results

In Figures 4-6,4-9 we show the absolute performance of all models on the MIMIC-III,

eICU cohorts, and Figures 4-7,4-9 show the relative performance of all model types

as compared to a ST baseline for the MIMIC-III, eICU cohorts. We note that the

eICU results for the ST LOS task appear anomalous—while all runs reported here

have gone through internal validation, this oddity warrants further investigation in

future work.

4.9.2 Samples Completed

Below are the full experiment counts for all results reported in this work. Note that

an extra rotation was also run on the MIMIC-III MT results. This was unintentional,

but as all rotations here are separate random train/test splits, we chose to retain the

result as it simply improves the quality of our estimates of variance and should add

no bias to the results or comparisons.
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Figure 4-6: Performance in macro-averaged AUROC (𝑦-axis) of various PT/FT models
(linestyle) across various FT dataset sub-sampling rates (𝑥-axis), over all FT tasks (subplots)
for MIMIC-III.
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Figure 4-7: The difference between various FT modes and ST results on MIMIC-III.

PT/FT Regime MI FTD MI FTF MT FTD MT FTF ST
Task

ACU 5 5 6 6 5
FTS 5 5 6 6 5
ICD 5 5 6 6 5
DIS 5 5 6 6 5
DNR 5 5 6 6 5
REA 5 5 6 6 5
MOR 5 5 6 6 5
LOS 5 5 6 6 5
CMO 5 5 6 6 5
WBM 5 5 6 6 5

Table 4.14: How many random train/test splits are used to produce each experimental
setting shown in this work for MIMIC-III. Unless otherwise stated, the same number
of samples are used across all few-shot fractions under a given setting.
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Figure 4-8: Performance in macro-averaged AUROC (𝑦-axis) of various PT/FT models
(linestyle) across various FT dataset sub-sampling rates (𝑥-axis), over all FT tasks (subplots)
for eICU.

PT/FT Regime MI FTD MI FTF MT FTD MT FTF ST
Task

ACU 5 5 5 5 5
DIS 5 5 5 5 5
MOR 5 5 5 5 5
LOS 5 5 5 5 5
WBM 5 5 5 5 5

Table 4.15: How many random train/test splits are used to produce each experimental
setting shown in this work for eICU. Unless otherwise stated, the same number of
samples are used across all few-shot fractions under a given setting.
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Figure 4-9: The difference between various FT modes and ST results on eICU.
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MIMIC-III eICU

ACU −0.02± 0.02 0.01± 0.02
CMO 0.02± 0.02
DIS 0.0± 0.01 0.0± 0.01
DNR 0.01± 0.03
FTS 0.0± 0.01
ICD −0.07± 0.04
LOS −0.02± 0.03 −0.0± 0.02
MOR −0.0± 0.01 0.01± 0.01
REA 0.01± 0.04
WBM −0.08± 0.03 −0.01± 0.02

Table 4.16: Difference between full multi-task hyperparameter search results and
single-task results across datasets and tasks. We see no systematic preference towards
either multi-task or single-task results.

4.9.3 Negative Transfer Analyses

We can also leverage these experiments to perform a robust analysis of negative

transfer within EHR timeseries multi-task learning. In particular, by comparing our

multi-task pre-training results, which are trained over all but one task (as one task

is withheld for use in fine-tuning) vs. our hyperparameter search results as well as

our single-task results vs. our full MT hyperparameter search results. First, at a

lgobal scale, we see in Table 4.16 that there is no general apparent preference between

ST and MT runs. This suggests that we see no evidence of either global positive or

negative transfer.

Examining the transfer utility on a local, per-task level, we can examine how the

performance on a particular task is affected by removing a single other task from

the full multi-task ensemble or, in a transpose fashion, how including a given task

in the learning ensemlbe effects the performance of other downstream tasks. These

results are shown visually in Figure 4-10. There, we see that, like our global finding,

there is minimal evidence of any universal positive or negative transfer; instead, we

see examples of both positive and negative transfer, which, in aggregate, offer no

consistent effect. These results suggest that negative transfer is quite likely in a generic

MT setting without careful consideration.
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Figure 4-10: We examine the value either for a downstream task or by a downstream task in
the context of multi-task ensemble makeup. On the left, we show, for each task on the 𝑥-axis,
the performance difference on that task (𝑦-axis) between a MT learning setting where a
single other task (colored dot) is omitted from the ensemble vs. a full MT learning ensemble.
This plot also shows an overall histogram of these discrepancies to its left. On the right, we
show the transpose view – for any given task (𝑥-axis), we plot how much performance on
other tasks (colored dots) is improved (𝑦-axis) by including the 𝑥-axis task in the learning
ensemble. The same numbers are summarized in both plots, just from differing perspectives
(in particular, the coordinates in the right plot are negated and transposed from those in the
left). We see that, like our global finding, there is minimal evidence of any general positive
or negative transfer here – instead, any relationships are highly task specific, and on average
no transfer is observed one way or another. Note that while these results suggest there is no
universal negative transfer, they do suggest that negative transfer is quite likely in a generic
MT setting without careful consideration.
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Chapter 5

Structure Inducing Pre-training

Abstract

In this thesis, I explore pre-training methods for clinical and biomedical data, and
in particular pre-training methods which can incorporate prior domain knowledge
and structure. This chapter, currently under review at JMLR, is the capstone of
these analyses, as it presents a unified framework for realizing global structure within
pre-training systems, and demonstrates through both theory and experiments why
that structure is important. Note that interested readers can refer to [164] or [131] for
other related works.

Language model derived pre-training has proven incredibly impactful in machine
learning. However, considerable uncertainty remains around when pre-training offers
improvement for novel fine-tuning tasks and what, if any, meaningful structure is
captured during pre-training. Here, we analyze this problem by exploring how existing
pre-training methods impose relational inductive biases, finding that the study of
how to constrain the per-sample latent space is significantly underdeveloped. Based
on these analyses, we introduce a descriptive framework for pre-training methods
that allows for a granular description of how global structure can be induced during
pre-training. We present a theoretical analysis of this framework from first principles
and establish a novel connection between relational inductive bias of pre-training
and fine-tuning performance. We build upon these findings with simulations and
empirical studies on benchmarks spanning 3 data modalities and 10 fine-tuning tasks.
These investigations validate our theoretical analyses and inform the design of novel
pre-training methods to incorporate provably richer inductive biases than existing
methods in line with user-specified relational graphs.
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5.1 Introduction

The pre-training (PT)/fine-tuning (FT) learning paradigm has had tremendous impact

on machine learning [47, 44, 22]. In PT/FT, we pre-train an encoder 𝑓𝜃 : 𝒳 → 𝒵

which maps our domain of interest 𝒳 into a latent space 𝒵. This encoder 𝑓𝜃 is then

transferred for use in various downstream tasks (which are not known at pre-training

time). We evaluate PT/FT systems via the transfer performance of 𝑓𝜃. This transfer

performance is inherently a question of whether or not the FT task can benefit from

the geometry of 𝒵 that is induced by the pre-training process.

Despite the importance of the latent space geometry, we posit that many recent

large-scale PT/FT models do not explicitly consider the latent space geometry during

pre-training. While we discuss this argument fully in Section 5.2, consider as a

motivating example the RoBERTa PT model [121]. This model pre-trains a transformer

neural network via a masked language modelling (MLM) task, in which the model is

fed input sequences of tokens, some of which are masked, and tasked to recover the

identity of the masked tokens. While language modelling imposes strong constraints

on how the representations of individual tokens relate to one another, nothing in this

task explicitly constrains how the representations of samples (e.g.,, sentences) relate to

one-another. Concretely, consider trying to use this model for sentiment analysis [126].

This task would be implemented via binary classification leveraging the pre-trained,

per-sample (e.g.,, [CLS]) embeddings; however, we can make no guarantees about

whether the PT process will have ensured these sample embeddings meaningfully

reflect positive vs. negative sentiment (Figure 5-1).1

Present work. In this work, we perform novel theoretical and empirical analyses

examining how existing PT methods do or do not constrain the per-sample latent

space geometry, and whether new methods that more aggressively constrain this

geometry offer any benefits over current models. Our analyses yield a new analytical

framework for describing PT methods, under which the PT objective is subdivided

1Note that in NLP, we can actually leverage the flexibility of natural language to sidestep this
problem; however, the same flexibility is not possible in other domains. See Section 5.2 for further
commentary.
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into two components: first, a pure language-model inspired imputation/denoising

objective that leverages the intra-sample/per-token relationships, and, second, a loss

term explicitly driven to regularize the geometry of the per-sample latent space 𝒵

and reflect the connectivity patterns of a user-specified PT graph, 𝐺PT. By relying on

graphs to capture the structure we wish to induce in 𝒵, this PT paradigm can capture

diverse relationships, such as those motivated by external knowledge (e.g.,, [252]), self-

supervised constraints extracted from the data (e.g.,, [215, 90]), or graphs summarizing

distances between samples in an alternate modality. Moreover, this new PT framework

is simultaneously specific enough to allow us to make theoretical guarantees about

how different PT graphs impact the FT performance; general enough to encompass a

variety of existing PT systems, including BERT [47], ALBERT [107], RoBERTa [121],

MT-DNN [119], and PLUS [138]; and expressive enough to motivate new PT methods

that have not been previously studied.

Our work advances PT/FT research through three major contributions. First, we

establish theoretical results quantifying how the structure of the graph 𝐺PT relates to

FT task performance. Crucially, this formalization in our new PT paradigm offers

insight into when PT will or won’t add value over supervised learning alone. Second,

we show that our new framework for PT provides a recipe for pre-training with rich,

per-sample latent space geometry constraints. Specifically, we profile three new PT

methods leveraging different kinds of PT graphs and demonstrate their utility on three

data modalities and 10 FT tasks, showing in all cases that these new methods perform

at or above the level of comparable baseline methods. Finally, third, we include a

discussion on how our framework prompts new research directions that are of interest

to the PT/FT research community.

The rest of our work proceeds as follows. In Section 5.2, we discuss the extent to

which existing language-model derived PT methods do or do not regularize per-sample

latent space geometry. Next, in Section 5.3, we formally define and examine our new

PT paradigm, detailing precisely how we decompose the PT loss and what constraints

we place on the different loss components. In Section 5.4, we illustrate theoretically

how we can formally relate PT graph structure to FT performance under our PT
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Figure 5-1: Language model pre-training methods typically constrain the per-token latent
space through the language modelling objective. However, they impose no or only much
weaker constraints on the per-sample latent space.

paradigm. Then, in Section 5.5 we further validate these theoretical findings in semi-

synthetic experiments. In Section 5.6, we empirically examine our theoretical model

on real-world datasets spanning 3 modalities and 10 FT tasks. Our analysis shows

that across all three data modalities leveraging per-sample latent space constraints

yields PT methods that match or outperform baselines. Finally, in Sections 5.7, 5.8,

and 5.9 we offer closing discussion, highlight related work, and conclude.

5.2 Pre-Training & Latent-Space Geometry

In this section, we offer more details on our motivating hypothesis introduced in

Section 5.1. First, we define both the per-token and per-sample latent spaces, and

offer commentary on why this distinction matters particularly outside of the NLP

domain. Second we present an analysis of over 27 different language model (LM) or

LM-derived PT methods exploring how their objective functions impose structure

across both types of latent space. This analysis crystallizes our claim that methods to
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regularize the per-sample latent space are under-explored, and motivates our new PT

paradigm in Section 5.3.

5.2.1 Per-Sample vs. Per-Token Latent Space

Consider a PT model 𝑓𝜃 trained using a masked language modelling objective (MLM),

under which certain tokens in the sentence are masked, and the encoder is trained to

recover the masked tokens. Given an input sentence 𝑠𝑗 = 𝑤
(𝑗)
1 , 𝑤

(𝑗)
2 , . . . , 𝑤

(𝑗)
𝑛 , 𝑓𝜃 will

output both per-token embeddings of the individual tokens 𝑤
(𝑗)
𝑖 and a whole-sample

embedding of the sentence/sample 𝑠. At a minor risk of ambiguous notation, we will

denote these via 𝑓𝜃(𝑤
(𝑗)
𝑖 |𝑠𝑗) denoting the per-token embedding of token 𝑖 and 𝑓𝜃(𝑠𝑗)

denoting the whole-sample embedding of 𝑠𝑗. For the BERT model [47], for example,

𝑓𝜃(𝑠𝑗) will be given by the output embedding of the [CLS] token and 𝑓𝜃(𝑤
(𝑗)
𝑖 |𝑠𝑗) will

be given by the output embedding of the 𝑖-th token.

There are two ways to interpret the “latent space” 𝒵 of 𝑓𝜃. First, we can take the

space induced by the embeddings of free-text tokens, 𝒵(T) = {𝑓𝜃(𝑤𝑖|𝑠𝑗)∀𝑖, 𝑗}. This is

the per-token latent space. Second, we can take the space induced by the embeddings

of the samples/sentences, 𝒵(S) = {𝑓𝜃(𝑠𝑗)∀𝑗}, which is the per-sample latent space. In

the rest of this paper, we will use 𝒵 in general to refer to 𝒵(S).

Both of these spaces are very different and are useful in different contexts; for a

task like named entity recognition, where the unit of classification is single or short

span of tokens, analyzing the per-token latent space will be more informative, whereas

for a task like sentiment analysis, where the unit of classification is an entire sample,

the per-sample latent space would be preferred [47].

5.2.2 NLP vs. Other Language Domains

In Figure 5-1, we illustrated that even while a PT objective like masked language

modelling will directly enrich the per-token space 𝒵(T), it will not necessarily similarly

constrain the per-sample latent space 𝒵(S), and that this lack of per-sample latent

space constraints could yield weaker models at FT time. One seeming contradiction to
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this is that methods like RoBERTa [121] succeed across both per-token and per-sample

tasks.

In fact, this observation does not contradict our hypothesis, but instead reflects

a unique advantage of the natural language modality that does not apply in other

domains. In particular, in the NLP domain, we can leverage the flexibility of language

to sidestep any deficit in 𝒵(S) by re-framing per-sample tasks as per-token, language

modelling tasks. Significant literature exists documenting this phenomenon, through

the lenses of both prompting, cloze-filling models, and general theory [22, 181, 178].

For example, [181] examine the efficacy of pre-trained language models on sentiment

analysis explicitly, and shows that the language modelling component alone can be

used in a per-token manner to indirectly solve a review sentiment analysis task by

judging the likelihood of following the review with a “:)” emoji vs. a “:(” emoji [181].

In this way, we shift the per-sample task of sentiment analysis to a per-token task

about an (inserted) final token.

However, language model pre-training has also inspired many derived methods to be

used in other, non-NLP domains as well. For example, in modelling graphs, [92] have

examined vertex or edge-masking strategies reminiscent of MLM, with vertices and

edges analogous to tokens, and entire graphs whole samples; in modelling timeseries

data, [129] have examined masked imputation models, with timepoints analogous to

tokens and whole timeseries to samples; and in modelling protein sequences [138] have

used masked language modelling directly, with individual amino acids representing

tokens and entire proteins representing samples. In all three of these domains, we

do not have NLP’s ability to re-frame per-sample tasks as “per-token” tasks, and

accordingly the problem of insufficient per-sample latent space regularization will likely

be much more severe on these domains. Accordingly, existing work, including the three

works referenced above, all find that augmenting the language model pre-training

task with additional, per-sample level supervised tasks can be beneficial, or even

instrumental, to improving performance [92, 236, 129, 138].
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5.2.3 Categorization of Language Model PT Methods

In Table 5.1 (and extended in Appendix Section 5.10.2), we survey 27 PT methods

and categorize how their objective functions constrain their respective latent spaces.

We find that a variety of methods for constraining the per-token latent space have

been explored, including direct LM, entity and relation masking, knowledge graph

(KG) alignment methods, joint token and entity embeddings, attention over external

knowledge bases, and embedding aggregation via known relations. Despite this breadth

of methods focused on improving modelling at the per-token level, across all methods

save for KEPLER [221], only single- or multi-task classification is used to regularize the

per-sample latent space. This disparity suggests that study on encoding per-sample

relational structure in PT is lacking.

5.3 Re-Framing the Pre-Training Paradigm

Given the limited prior research into regularizing the per-sample latent space for LM-

based PT methods (Section 5.2), we next introduce a new, descriptive PT framework

to explicitly separate per-token and per-sample latent space regularization. We begin

by outlining the PT problem formally, then introduce our new paradigm, clarify how

methods within our framework are constrained, and conclude with an overview of

existing methods that can be realized within our framing.

5.3.1 Pre-Training Problem Formulation

Given a dataset 𝑋PT ∈ 𝒳𝑁PT , a PT method aims to learn an encoder 𝑓𝜃 : 𝒳 → 𝒵

such that 𝑓𝜃 can be transferred to FT tasks that are unknown at pre-training time.

While we can leverage additional information at PT time to inform the training of

𝑓𝜃 (e.g.,, PT-specific labels 𝒴PT), the encoder 𝑓𝜃 must take only samples from 𝒳 as

input so it can be effectively used for fine-tuning. Pre-training methods attempt to

solve this problem by training 𝑓𝜃 via a pre-training loss ℒPT over the dataset 𝑋PT.

In language model (LM) or LM derived systems, ℒPT can be a masked imputation
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Per-token Per-sample

GPT-series [161, 162, 22] ✓
RoBERTa [121] ✓
BERT [47] ✓ ✓
ALBERT [107] ✓ ✓
MT-DNN [119] ✓ ✓
ERICA [160] ✓ ✓
COLAKE [202] ✓ ✓ ✓
LUKE [231] ✓ ✓
ERNIE [204] ✓ ✓
ERNIE 2.0 [205] ✓ ✓ ✓
ERNIE 3.0 [203] ✓ ✓ ✓ ✓
ERNIE [247] ✓ ✓ ✓ ✓
KnowBERT [156] ✓ ✓ ✓ ✓
KgPLM [82] ✓ ✓ ✓
KEPLER [221] ✓ ✓
JAKET [238] ✓ ✓ ✓
SMedBERT [245] ✓ ✓ ✓ ✓ ✓
KeBioLM [239] ✓ ✓ ✓ ✓
Coke [198] ✓ ✓ ✓ ✓ ✓
MG-BERT [13] ✓ ✓
EHR PT [129] ✓ ✓
Graph PT [92] ✓ ✓
MG-BERT [246] ✓
PLUS [138] ✓ ✓
TAPE [166] ✓

Table 5.1: A subset of existing pre-training methods, broken down by how they
constrain per-token and per-sample latent space geometries. This list excludes a
number of methods that augment LMPT with additional, fine-tuning time procedures
to incorporate knowledge, as they do not change the PT step but only the FT
step. † These models rely on entity identification from source text and on relation
incorporation. As such, they may struggle to generalize to FT tasks where relations
are unknown. 140



loss, which only explicitly regularizes the per-token latent space, not the per-sample

latent space (Section 5.2).

5.3.2 Our New Pre-Training Problem Formulation

To investigate PT methods, we re-cast the above problem as follows. As in the

established setting, our input is a dataset 𝑋PT ∈ 𝒳𝑁PT , we aim to learn an encoder

𝑓𝜃 : 𝒳 → 𝒵 that enables effective transfer performance to FT tasks, and 𝑓𝜃 will

be learned via a task defined with loss ℒPT. We differ from the established setting,

however, in two regards:

1. We assume that as an input to the PT problem we also have a pre-training

graph 𝐺PT = (𝑉,𝐸) where vertices denote pre-training samples within 𝑋PT

(e.g., {𝑥(𝑖)
PT|1 ≤ 𝑖 ≤ 𝑁PT} ⊆ 𝑉 ) and edges represent user-specified relationships.

2. We decompose the loss ℒPT into two components, weighted with hyperparameter

0 < 𝜆SI < 1 as follows: ℒPT = (1− 𝜆SI)ℒM + 𝜆SIℒSI. These components are a

traditional, per-token objective with loss ℒM (e.g.,, a language model) and a

structure-inducing objective with loss ℒSI designed to regularize the per-sample

latent space geometry in accordance with the relationships in 𝐺PT.

Beyond typical characteristics, such as continuity and differentiability, under our PT

formulation, we further constrain the form of the new loss term ℒSI via the following

constraints:

1. There must exist a distance function 𝑑 : 𝒵×𝒵 → R, radius 𝑟 ∈ R, and loss value

ℓ* ∈ R such that at any solution 𝜃* such that ℒSI(𝜃
*) < ℓ* the following property

holds. The learned embeddings 𝑧𝑖 = 𝑓𝜃*(𝑥𝑖) must recover the graph 𝐺PT under

a radius nearest neighbor connectivity algorithm via distance function 𝑑 and

radius 𝑟. More formally, it must be the case that (𝑥𝑖,𝑥𝑗) ∈ 𝐸 if and only if

𝑑(𝑓𝜃*(𝑥𝑖), 𝑓𝜃*(𝑥𝑗)) < 𝑟.

2. It must be possible to find a solution 𝜃* satisfying the above constraint. Assuming

that all input 𝑥𝑖 are distinct, this requirement is about the geometry of the graph
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Figure 5-2: We re-cast the PT formulation as taking in a pre-training graph 𝐺PT as an
auxiliary input. 𝐺PT is used to define a new structure-inducing objective ℒSI, which pushes
a pre-training encoder 𝑓𝜃 to embed samples via a contrastive loss such that closeness in the
latent space corresponds to edges in 𝐺PT.

𝐺PT and the feasibility of realizing embeddings for 𝐺PT within the latent space

𝒵—e.g.,, if 𝒵 = R𝑘, then with a very small 𝑘 it may be impossible to produce

embeddings that fully reflect the geometry of the graph 𝐺PT in the reduced

dimensionality of 𝒵, and we wish to exclude such cases from our consideration.

Importantly, while we take the graph 𝐺PT as an input to the PT problem, we

cannot use it as a direct input to 𝑓𝜃. Just like in traditional pre-training, 𝑓𝜃 must

take as input only samples from 𝒳 . This is because otherwise we can not apply 𝑓𝜃 to

the same, general class of FT tasks over domain 𝒳 . Thus, while there are methods

that operate over graphs directly, e.g.,, graph neural network methods [101], these are

outside our scope and cannot be used in place of the encoder 𝑓𝜃.

The outline of our pre-training problem formulation is shown in Figure 5-2. This

formulation does not constrain the architecture of 𝑓𝜃 or the form of the per-token

objective ℒM. As such, it is sufficiently general to encompass many existing PT

methods, which we show next.
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5.3.3 Examining Existing Pre-Training Methods via Our Re-

Framing

We can realize many existing PT methods within our re-framing. As we can see from

Table 5.1, there are two primary vehicles by which existing pre-training methods con-

strain the per-sample latent space geometry: Single-task and multi-task classification.

In each case, we show that there exist pre-training graphs 𝐺PT and losses ℒSI that

realize these methods under our re-framed PT problem formulation.2 After outlining

single and multi-task classification, we show how this re-framed PT problem allows us

to design new PT objectives by discussing two new ℒSI objectives that have not been

considering to date.

Masked language modeling with per-sample classification. The simplest

manner of augmenting PT to induce per-sample structure is to add a single-task

classification task at the level of the whole sample. This is the manner used by a

number of existing methods, including BERT [47], PLUS [138], and others. These

methods augment pre-training by adding a classification head that ingests the per-

sample latent space 𝒵 and uses a single linear layer to predict PT-specific labels

𝒴PT, training this process via, e.g.,, a cross entropy loss. In this setting, we can view

the matrix used in the linear layer of the classification head as a set of embeddings

for each class, and the cross entropy loss as a function that seeks to maximize the

inner product between the embedding of a sample 𝑧 ∈ 𝒵 and the embedding of its

associated class 𝑦 ∈ 𝒴, while minimizing the inner product between non-matching

pairs of samples and classes. Approaching optimality, the inner product of a matching

pair will be large while those of any non-matching pairs will be low, with a large

margin separating the two.

We construct a bipartite pre-training graph 𝐺PT where nodes represent samples

in 𝑋PT and class labels 𝑦 ∈ 𝒴PT, and edges (𝑥𝑖, 𝑦𝑖) connect samples with their class

labels. We can see then that the cross entropy loss produces embeddings that can

2Note this omits the unique case of KEPLER [221], which leverages whole-sample knowledge
graph alignment, which can only be realized by our loss subdivision when restricted to graphs with a
single edge type.
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recover this graph as we approach optimality using the cosine distance function. Thus,

a simple classification objective per-sample is a valid example of a method under our

restrictions, albeit using a highly constrained graph 𝐺PT.

Masked language modeling with multi-task classification. We construct a pre-

training graph 𝐺PT where nodes represent samples in 𝑋PT and class labels 𝑦 ∈ 𝒴PT,

and edges (𝑥𝑖, 𝑦𝑖) connect samples with their class labels (with each node 𝑥𝑖 being

connected to potentially many different labels 𝑦𝑗 corresponding to each of its tasks).

We can see that cross-entropy loss can produce embeddings that recover graph 𝐺PT

as we approach optimality using the cosine distance function. Thus, a multi-task

classification objective is a valid example of a method under our re-framed PT problem,

albeit one in which the graph 𝐺PT is constrained to reflect only label information in

(𝑥𝑖, 𝑦𝑖).

5.3.4 Defining New Pre-Training Methods via Our Re-Framing

In settings discussed so far, our pre-training graphs have had rigid structures defined

directly based on supervised labeled pairs given in (XPT,𝒴PT). Accordingly, the

methods described above do not apply to settings where pre-training graphs 𝐺PT are

not so constrained. Yet, our loss subdivision ℒ, and the notion that ℒSI must recover

the graph 𝐺PT as it approaches optimality immediately suggests new possibilities. In

particular, if we design a new loss function that pushes embeddings of samples to

be close to their 𝐺PT neighbors, then this loss function satisfies our constraints and

can help to induce the desired structure in 𝒵. To this end, we can build on existing

research, including graph embeddings [62], structure-preserving metric learning [76],

and topological data analysis [141], among others.

In this example (and for the concrete methods examined in Section 5.6), we

investigate two new losses drawn from metric learning: a contrastive loss [76], and a

multi-similarity loss [222], both of which we adapt to the setting where relationships

are determined via a graph rather than supervised labels.
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The multi-similarity loss, parameterized by 𝑤+, 𝑤−, and 𝑡, is given below:

ℒSI =
1

𝑁𝑤+

log

⎛⎝1 +
∑︁

(𝑖,𝑗)∈𝐸

𝑒−𝑤+(⟨𝑓𝜃(𝑥𝑖),𝑓𝜃(𝑥𝑗)⟩−𝑡)

⎞⎠+
1

𝑁𝑤−
log

⎛⎝1 +
∑︁

(𝑖,𝑗) ̸∈𝐸

𝑒𝑤−(⟨𝑓𝜃(𝑥𝑖),𝑓𝜃(𝑥𝑗)⟩−𝑡)

⎞⎠ ,

Our contrastive loss is modeled after [76]’s version. For this loss, we assume we are

given the following mappings: ‘pos’, which maps 𝑥 into a positive node (i.e.,, linked

to 𝑥 in 𝐺PT), and ‘neg’, which maps 𝑥 into a negative node (i.e.,, not linked to 𝑥 in

𝐺PT). The union of points 𝑥 and its images under ‘pos’ and ‘neg’ mappings form a

full minibatch. This loss is specified by the positive and negative margin parameters

𝜇+ and 𝜇−, as well as by a distance function 𝒟, as:

ℒ(CL)
SI =

1

𝑁

∑︁
𝑥𝑖∈𝑋

max(𝒟(𝑥𝑖, pos(𝑥𝑖))− 𝜇+, 0) +
1

𝑁

∑︁
𝑥𝑖∈𝑋

max(𝜇− −𝒟(𝑥𝑖, neg(𝑥𝑖)), 0).

In addition to a loss term, we can also use negative sampling strategies to improve

efficiency. Using the full graph 𝐺PT, which is not available in many contexts where

negative sampling is employed, we can leverage the distance between samples calculated

on 𝐺PT, which provides a complementary source of information beyond embedding

space distance alone. In practice, one could use this, for example, to limit negative

samples to occur within the same connected component, but more complex strategies

based on graph sampling [240] could also be used.

In our analyses in Sections 5.5 and 5.6, we refer to methods that leverage these

losses and more general graphs 𝐺PT than the simple graphs used for classification

tasks as “Structure-inducing Pre-training” (SIPT) methods, because these losses are

designed specifically to induce structure in the per-sample latent space.

5.4 Theoretical Analysis of Pre-Training Methods

Next, we theoretically investigate the formulation outlined in Section 5.3. In particular,

we examine how we can relate the structure of PT graph to FT task performance

under our paradigm. To this end, the following Theorem 1 provides our central claim.
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Informally, the theorem states that as a pre-trained embedder 𝑓 over graph 𝐺PT

approaches optimality, it produces an embedding space such that nearest-neighbor

performance for any downstream task is lower bounded by the performance that could

be obtained via a nearest neighbor algorithm over graph 𝐺PT.

Theorem 1. Let 𝑋PT be a PT dataset, 𝐺PT be a PT graph, and let 𝑓𝜃* be an encoder

pre-trained under a PT objective permissible under our framing that realizes a ℒSI

value no more than ℓ*. Then, under embedder 𝑓 , the nearest-neighbor accuracy for

a FT task 𝑦 converges as dataset size increases to at least the local consistency (see

Definition 1) of 𝑦 over 𝐺PT.

The full proof of Theorem 1 is in the Appendix. Here, we provide an outline of

the proof, starting with the definition of local consistency.

Definition 1 (Local Consistency). Let 𝑦 : 𝑋 → 𝒴 be a task over a domain 𝑋, and

let 𝐺 = (𝑉,𝐸) be a graph such that 𝑋 ⊆ 𝑉 . The local consistency LC𝐺(𝑦) is the

probability that a node’s label 𝑦(𝑥) agrees with the majority of labels of 𝑥’s neighbors

in 𝐺:

LC𝐺(𝑦) = P

⎛⎝𝑦(𝑥) = argmax
𝑐∈𝒴

∑︁
𝑥′∈𝑋|(𝑥,𝑥′)∈𝐸

1𝑦(𝑥′)=𝑐

⎞⎠ .

Note this is closely related to homophily [250, 93, 242].

With local consistency defined, proving Theorem 1 takes the following three steps.

First, we quantify what conditions yield a valid ℒSI and ℓ* (e.g.,, when approximately-

optimal embeddings exist). Second, noting that by definition of a “valid” ℒSI term,

we show that 𝐺PT is recoverable under a radius-nearest-neighbor algorithm in the

latent space as we approach optimality. Third, we conclude that local consistency is

reflected in fine-tuned embeddings via nearest-neighbor classifiers. This can be seen

by noting that if we use the same distance function 𝑑 and radius 𝑟 associated with

loss value ℓ* in our nearest neighbor classifier, our sets of neighbors exactly match

the neighbors in 𝐺PT. Therefore, local consistency translates directly into realizable

accuracy, establishing the guarantee.
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5.4.1 Consequences of Theorem 1

We can see the following two consequences of this theoretical result, both of which are

stated and proved in Appendix 5.10.5:

1. Pre-training graph 𝐺PT defined as a set of disconnected cliques or a star graph

makes minimal guarantees about local consistency of the FT task, even as the

dataset size increases.

2. Pre-training graph 𝐺PT defined as a nearest-neighbor graph on a manifold

over which the FT task label is continuous almost everywhere yields a local

consistency that approaches unity as the dataset size grows.

The above two properties show why the richness of pre-training graphs matters. In

particular, as discussed in Section 5.3.3, many existing PT methods can be realized as

methods where 𝐺PT is given by a set of disconnected cliques or a star graph. Therefore,

the extent to which existing PT methods provide theoretical guarantees about the

per-sample latent space structure is minimal. As such, moving to new PT methods

with richer graphs has the potential to markedly improve performance, as we will

demonstrate on synthetic datasets in Section 5.5 and real-world datasets in Section 5.6.

5.5 Empirical Analysis of Theoretical Properties

We can further validate the theoretical analyses of Section 5.4 via semi-synthetic

experiments. In particular, we create several datasets of natural language sentences

augmented with synthetic graphs with known relationships to certain FT tasks (e.g.,

low or high local consistency, low or high rates of noise). We then use these datasets

to validate three important properties of PT methods: First, do PT methods trained

with a ℒSI and 𝐺PT yield Nearest-neighbor FT performance in accordance with our

theory? In particular, do (a) FT tasks with high local consistency over the PT graph

offer better performance, and (b) those with very low local consistency offer worse

performance? Second, do PT methods trained with a ℒSI and 𝐺PT suffer significantly

when pre-training graphs are polluted with noise? Finally, third, do the latent space
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geometry regularizing properties of ℒSI yield methods whose embeddings more clearly

cluster than embeddings produced by traditional pre-training alone?

5.5.1 Datasets and Experimental Setup

While full experimental details are provided in the Appendix, we will first offer a brief

commentary on how we create the synthetic datasets in use here.

Pre-training & fine-tuning datasets. Across all experiments, our synthetic

datasets consist of free-text sentences3 labeled with LDA-produced topics used as our

FT labels. To test across various kinds of graphs, we produce a number of pre-training

graphs per experiment, as detailed below.

Pre-training graphs. We use graphs spanning 3 categories. (1) A graph (cliques)

consisting of disconnected cliques, where sentences are linked in the graph if they

share the same topic label. (2) Graphs composed of nearest-neighbor graphs defined

over simplicial manifolds built using topic probabilities to localize sentences onto

simplices. We explore manifolds with a range of topological complexity, including:

Plane, Möbius, Sphere, and Torus. Finally, (3) we define several graphs according

to a mechanistic process that allows us to control how topic labels relate to graph

structure. We build graphs in this setting that have the property that topic labels

associate with them in one of three ways: so that topics are maximally conserved

within local neighborhoods (Neighborhood), by assigning sentences to nodes in the

graph such that each graph motif corresponds to a unique topic (Motif), and such

that node topics are driven by non-local graph structural features, on the basis of

graphlet degree vectors (Structural). Of all these graphs, we expect that topics will

display a low local consistency over the Structural graph, a moderately high local

consistency over the Motif graph (as graph motifs are all connected components),

and high local consistency everywhere else.

Experimental setup. To answer our three questions, we will pre-train models under

both traditional LM pre-training alone and a new, structure-inducing PT (SIPT)

method within our paradigm that augments the loss with a contrastive learning loss
3Source: https://www.kaggle.com/mikeortman/wikipedia-sentences
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over 𝐺PT, with 𝜆SI = 0.1. Both models use a shallow transformer encoder for 𝑓𝜃 and

a character-level tokenization scheme. Final results are reported via the AUROC of

3-nearest-neighbor classifiers over the latent space, per-sample embeddings. In line

with our theoretical predictions, we expect to see higher NN FT performance in all

settings where the FT task (topic prediction) has high local consistency over the graph

𝐺PT (all graphs except Structural) and worse performance in the case where the

local consistency is very low (Structural).

We also assess the stability of our method as the graph 𝐺PT is noised using the

Cliques graph by randomly adding additional edges with varying rates.

5.5.2 Results

Across all expected settings, we see that our SIPT model, which augments LM PT

with the ℒSI objective and graph 𝐺PT as motivated by section 5.3.2 offers significant

improvements, is robust to noise in the PT graph, and performs in agreement with

our theoretical analyses.

SIPT improves performance over LM PT by 0.26± 0.13 AUROC on graphs

where the topic task has a high local consistency. As can be seen in Figure 5-3a,

SIPT offers significant improvements over LM PT in nearest-neighbor FT AUROC

across all graph types with strong topic local consistency.

SIPT’s empirical results are in agreement with theoretical analyses. In

line with our analyses in Section 5.4, SIPT only under-performs LM PT on the

Structural graph where the topic task (by design) does not have strong local

consistency. This validates our theoretical results by showing that local consistency is

a strong predictor of Nearest-neighbor FT performance.

SIPT is robust to incomplete and noisy pre-training graphs. Figure 5-3b

shows Nearest-neighbor FT AUROC as a function of noise rate on the Cliques graph.

For up to 15% noise, SIPT shows improvements over LM PT, and even at 50% noise,

the two approaches perform comparably.

SIPT pre-trained embeddings show stronger clustering than LM PT em-

beddings. Figure 5-3c-d shows embeddings produced under the Möbius graph either
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Figure 5-3: (a) Comparisons between nearest-neighbor FT AUROC (higher is better) of LM
PT models and SIPT models over various graphs with various forms of structural alignment.
𝐿𝐶 indicates the label consistency between FT task and 𝐺PT (see Section 5.4). (b) nearest-
neighbor FT AUROC vs. noise rate. Up to 10% noise SIPT dramatically outperforms LM
PT, and at 50% noise, the two approaches are equal. (c-d) Embedding space of MPT and
SIPT models on the Möbius dataset. Point colors indicate topic labels. SIPT’s embedding
space reflects the structure of pre-training graph whereas MPT does not.

by LM PT or SIPT, clustered via UMAP into 2 dimensions. It is clear visually from

these figures that SIPT embeddings show clear clusters strongly associated with the

topic-modelling FT task, whereas LM PT embeddings do not.

5.5.3 Conclusions

From these analyses, we see that augmenting PT with per-sample structure-inducing

objectives can both (1) offer significant advantages over existing PT architectures and

(2) permit analytical reasoning about over which FT tasks PT will offer improvements.

These findings are not surprising; in these semi-synthetic experiments, we designed

our graphs explicitly to have either high or low local consistency with respect to our

FT task so that we could probe exactly whether SIPT methods would behave in

accordance with theory in tightly controlled settings. In this way, the graphs 𝐺PT

used here may not be reflective of graphs in the real world, which will be chosen more

independently of specific FT tasks. To show that the gains observed here persist in

more realistic scenarios, we turn next to experiments over diverse real-world datasets

with real, FT-task-independent graphs, in Section 5.6.
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5.6 Real-World Experiments with SIPT Methods

In Section 5.4, we showed that our new PT framework permits meaningful theoretical

analyses of pre-training methods, and that those theoretical findings are validated in

semi-synthetic experiments. In this section, we instead demonstrate that we can use

our PT framework to design PT methods with rich, per-sample geometric constraints

which offer real-world performance benefits on standard benchmarks and meaningful

tasks.

In particular, we examine the efficacy of incorporating structural information across

three domains: Proteins, containing protein sequences; Abstracts containing free-

text biomedical abstracts; and Networks, containing sub-graphs of protein-protein

interaction (PPI) networks. In each data modality, we use different pre-training

datasets, test on different downstream FT tasks, leverage distinct graphs 𝐺PT, and

compare to baseline per-sample and/or per-token methods. In each case, we show

that methods leveraging rich per-sample constraints via a graph 𝐺PT as outlined in

Section 5.3 will match or exceed the performance of these baselines.

In the remainder of this section, we do the following. First, in Section 5.6.1, we

detail how we train models under our framework, and describe the datasets, pre-

training graphs, and per-token / per-sample baselines against which we compare.

Then, in Section 5.6.2 we will present results of these analyses, including comparisons

between new methods and existing per-token and per-sample baselines, qualitative

analyses into where structure is most useful, and ablation studies.

5.6.1 Datasets and Experimental Setup

We explore three different domains containing different data modalities in this work.

We describe each domain fully in Appendix Section 5.11.2, but all details are also

summarized in Table 5.2. Recall that our goal in these experiments is to probe whether

or not training PT systems augmented with rich per-sample latent space geometry

constraints offers improvements over traditional per-token or per-sample methods. To

that end, we perform the following steps.
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Baselines. First, for each domain, we identify an appropriate, published per-token

and/or per-sample PT baseline. For example, in our Proteins domain, we use the

TAPE Transformer model [166] (trained via LM) as our per-token baseline, and the

PLUS Transformer model [138] (trained via LM plus a supervised, per-sample task)

as our per-sample baseline.

PT graphs. Next, we identify a source dataset and graph 𝐺PT to train a new

structure-inducing pre-training (SIPT) method based on our PT paradigm. We

want these graphs to be simultaneously (1) rich sources of per-sample relationships,

(2) readily extractable from public data, and (3) of diverse types and forms across

data modalities to probe our framework in various circumstances. In our Proteins

experiments, we use the Tree-of-life dataset [252] and the associated multi-species

protein-protein interaction graph as our dataset 𝑋PT and graph 𝐺PT, respectively. In

this modality, then, our PT system is regularizing the per-sample latent space such

that proteins that interact with one another should yield similar embeddings.

Training structure-inducing models. Then, we need to train models leveraging

the structure inducing models directly. For our Proteins and Abstracts datasets,

in order to minimize computational burden, we do not pre-train a model from scratch

under our new framework. Instead, we initialize a model from the per-token baseline

directly, then perform additional pre-training for only a small number of epochs under

the new loss subdivision proposed in Section 5.3. In these settings, we assess both

the multi-similarity and contrastive ℒSI variants. On the Networks dataset, we pre-

train all models (including baselines) from scratch, and based on early experimental

results we only assess the contrastive loss variant. 𝜆SI is chosen on the Proteins

and Abstracts datasets to maximize the performance on an internal link-retrieval

task over 𝐺PT. This process suggests that 𝜆SI of 0.1 is a robust setting, and as such

0.1 was used directly for the Networks task. Finally, note that our warm-start

procedure allows a powerful ablation study: by additionally training a PT model from

the per-token baseline with 𝜆SI = 0, we can uniquely assess the impact of the new loss

term, rather than simply additional training or the different PT dataset. We perform

this ablation study for all applicable datasets.
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Proteins Abstracts Networks

Data Modal-
ity (𝑥𝑖 is a...)

Protein Sequence Biomedical Paper Abstract PPI Network Ego-
graph

PT Dataset Tree-of-life [252] Microsoft Academic Graph [215,
90]

[92]

FT Dataset TAPE [166] SciBERT [15] [92]

Per-token
baseline

TAPE [166] SciBERT [15] Attribute Masking [92]

Per-sample
baseline

PLUS [138] None Multi-task learning [92]

𝐺PT:
(𝑥𝑖,𝑥𝑗) ∈ 𝐸 iff

𝑥𝑖 interacts with 𝑥𝑗 𝑥𝑖’s paper cites 𝑥𝑗 ’s paper 𝑥𝑖’s central protein
agrees on all but 9 Gene
Ontology (GO) labels
with 𝑥𝑗 ’s central pro-
tein.

Table 5.2: A summary of our datasets, tasks, and benchmarks.

FT tasks and evaluation. Lastly, we need to evaluate these pre-training models

across FT task benchmarks. In all cases, we use established PT/FT benchmarks, and

compare to 10 tasks in total across all 3 modalities. FT models are, naturally, initialized

from the pre-trained encoders, and FT training procedures and hyperparameters

match those in the published literature, or are fit via minimal hyperparameter searches

performed across both baselines and novel methods on validation datasets. In the

Proteins dataset, for example, we use the TAPE benchmark of 5 FT tasks [166].

All fine-tuning tasks explored across all three of our domains are detailed in Table 5.3.

On all FT tasks save TAPE’s contact prediction task, which has a pairwise output

space and is thus very computationally expensive, FT evaluations were performed

over 3 random seeds to assess statistical significance of results.

5.6.2 Results

Incorporating ℒSI performs comparably to or improves over all baselines

across all 3 domains and 10 FT tasks. In Table 5.4, we show the relative
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FT Dataset FT Task Description Metric

Name Abbr.

TAPE
[166]

Remote Ho-
mology

RH A per-sequence classifica-
tion task to predict protein
fold category.

Accuracy

Secondary
structure

SS A per-token classification
task to predict amino acid
structural properties.

Accuracy

Stability ST A per-sequence, regression
task to predict stability.

Spearman’s 𝜌

Fluorescence FL A per-sequence, regression
task to predict fluorescence.

Spearman’s 𝜌

Contact Pre-
diction

CP An intra-sequence classifica-
tion task to predict which
pairs of amino acids are in
contact in the protein’s 3D
conformation.

Precision @ 𝐿/5

SciBERT
[15]

Paper Field PF A per-sentence classification
problem to predict a paper’s
area of study from its title.

Macro-F1

SciCite SC A per-sentence classification
problem to predict citation
intent

Macro-F1

ACL-ARC AA A per-sentence classification
problem to predict citation
intent

Macro-F1

SciERC SRE A per-sentence Relation Ex-
traction task.

Macro-F1

Networks [92] The multi-label binary
classification of 40 gene-
ontology term annotations

Macro-AUROC

Table 5.3: Fine-tuning tasks
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Domain Task Vs. Per-Token PT vs. Per-Sample

RRE ∆ RRE ∆

Proteins

RH 7.0%±1.2 ↑ 8.4%±2.4 ↑
FL -0.8%±1.3 ∼ 12.8%±1.1 ↑
ST 13.1%±2.5 ↑ 2.2%±2.8 ∼
SS 4.5%±0.2 ↑ 4.5%±0.2 ↑
CP 10.5% * ↑ N/A

Abstracts

PF 0.3%±0.2 ∼ N/A
SC 2.4%±4.1 ∼ N/A
AA 17.7%±6.5 ↑ N/A
SRE 6.7%±0.4 ↑ N/A

Networks 7.8%±5.2 ∼ 5.1%±2.7 ↑

Table 5.4: Relative reduction of error (RRE; defined to be [baseline error]−[𝐺PT model error]
[baseline error] )

of models trained under our framework vs. published per-token or per-sample baselines.
Higher numbers indicate models under our framework reduce error more, and thus
outperform baselines. The ∆ column indicates whether the model offers a statistically
significant improvement (↑), no significant change (∼), or a statistically significant
decrease (↓). Statistical significance is assessed via a 𝑡-test at significance level
𝑝 < 0.1. Per-sample analysis and variance estimates for CP were infeasible due to the
computational cost of this task.
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Figure 5-4: FT AUROC as a function of iteration over the Networks dataset. The SIPT
method converges faster and obtains better performance than does LM or multi-task PT.

reduction of error4 of the best performing model leveraging rich structural constraints

(i.e.,, maximal over the multi-similarity loss or contrastive loss) vs. the per-token or

per-sample baselines. We can see that in 10/15 cases, incorporating per-sample latent

space regularization improves over existing methods, and in no case does it do worse

than either baseline. Furthermore, In some cases, the gains in performance are quite

significant, with improvements of approximately 17% (0.05 macro-F1 raw change)

on AA, 6% on SRE (0.01 macro-F1 raw change), and 4% on RH (2% accuracy raw

change). We further establish a new SOTA on AA and RH, and match SOTA on FL,

ST, & PF.

We also see in Figure 5-4 how performance evolves over FT iterations for the

Networks dataset, to determine if the improvements observed at the final converged

values are present throughout training. We see that methods using per-sample structure

inducing losses converge faster to better performance than do other methods.

Note that raw results across all settings are presented in Appendix Section 5.12.1,

Tables 5.7,5.8.

4RRE = (1−baseline)−(1−SIPT)
(1−baseline) . RRE is unitless and suitable for comparing across tasks.
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These performance gains are present across diverse modalities and 𝐺PTs.

Note that these performance gains persist over all three data modalities and all

different 𝐺PT types we use here. This shows that explicitly regularizing the per-

sample latent space geometry offers value across NLP, non-language sequences, and

networks domains, as well as while leveraging graphs including those defined by

external knowledge, those inferred from self-supervised signals in the data directly,

and those defined by nearest-neighbor methods over multi-task label spaces.

Observed performance improvements are consistent with theory. Hyperpa-

rameter tuning finds that far less structure-inducing is necessary on our Abstracts

dataset (𝜆SI = 0.01) than on our Proteins dataset (𝜆SI = 0.1). This agrees with our

guiding hypothesis that per-sample latent space regularization is much more necessary

on non-NLP domains than it is on NLP domains. Further details on these analyses

are in the Appendix, Section 5.12.2

Observed gains are uniquely attributable to the novel loss ℒSI. As outlined in

Section 5.6.1, we also perform ablation studies to determine how much of the observed

gains in Table 5.4 are due to the novel loss component, as opposed to, for example,

continued training, new PT data, or the batch selection procedures used in our method

which also indirectly leverage the knowledge inherent in 𝐺PT. Unsurprisingly, there

are some gains observed due to these other factors, and performance gains shrink as

compared to continued training of per-token models alone over the new PT dataset.

However, these gains do not change the direction of the observed relationships, and

more generally comparing against the maximal performance baseline overall, including

the ablation study, does not effect the statistically significant relationships at all at

𝑝 < 0.1. Full ablation study results, along with all other raw results, can be found in

Appendix Section 5.12.1, Tables 5.7,5.8.

5.7 Discussion

Here, we provide unifying commentary and emphasize key strengths of our work. In

particular, we crystallize the distinction between enforcing per-token and per-sample
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latent space structure and highlight why the distinction is essential via theory and

experiments. We then offer a new framework for understanding and developing PT

methods. This framework permits a natural vehicle to associate PT task structure

with FT performance, which is especially relevant in non-NLP domains. Finally,

we identify the question of effective modeling of per-sample structure as a fruitful

direction for future PT method development. This direction is empirically illustrated

in Section 5.6, where we show that taking into account richer notions of per-sample

structure consistently improves existing methods.

Per-token vs. per-sample latent space structure. Table 5.1 shows how a battery

of existing LMPT methods leverage and enforce structure in their learned embeddings.

We find an apparent lack of attempts to enrich the latent structure at a per-sample

level. In NLP, this discrepancy is not so problematic because many downstream

tasks can be realized as per-token tasks and implemented using prompting. However,

prompting is unlikely to offer such advantages in non-NLP domains, such as protein

sequences, graphs, time series, and tabular data. For these reasons, we conclude

that leveraging the per-sample structure is critical. Our experiments show that these

differences matter in practice. On Proteins, Abstracts, and Networks, we show

that augmenting LMPT methods with per-sample structural regularization via ℒSI

defined on a variety of pre-training graphs can consistently improve performance on

downstream tasks.

Alignment of PT task structure to FT performance. Through a simple modifi-

cation of established PT problem formulation, we can realize a learning framework

in which PT task structure is directly related to FT task suitability (as measured

by nearest-neighbor accuracy in the PT latent space). This framework allows us to

sidestep the traditional theoretical difficulties identifying when and why PT can offer

advantages for FT [182]. Our synthetic experiments confirm this theory and establish

that metric-learning motivated structure-inducing losses can be resilient to graph

noise.

Future research directions. Our work highlights novel directions for research

relating to how we can best pre-train models to capture per-sample latent space
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structure. Are there novel losses better suited than metric learning losses used here for

pre-training graphs—e.g.,, can we leverage the graph-distance alongside the intra-batch

distance to develop improved negative sampling strategies? What adaptations of

our restrictions allow a PT system to simultaneously capture multiple graphs (or

multiple edge types) through embeddings? Can we (and do we ever need to) reflect

forms of structure beyond nearest neighbor relationships used in this work—e.g.,, such

as by leveraging higher-order topological considerations or by matching a distance

function rather than a discrete graph? Can we refine theoretical results to consider

better the convergence properties of trained models and understand when and how to

effectively converge to solutions that recover 𝐺PT? Our PT framework prompts all

these questions and more.

5.8 Related Work

This paper builds upon a wealth of previous research at the intersection of PT/FT,

neural language models, graph representation learning, and theoretical analysis of

metric learning.

5.8.1 Pre-Training Strategies With Explicit Consideration of

Geometry

Per-token latent space. As outlined in Section 5.2 and Table 5.1, a significant

amount of research in pre-training language models explored ways to incorporate

structure into the per-token latent space. For example, prior work considered selectively

masking named entities [202, 231, 204, 205, 203, 247, 82, 198], aligning per-token

representations to KG embeddings [160, 245], performing named entity recognition [156,

239], and producing joint token-entity embeddings [247, 156, 238, 245, 239, 198].

Per-sample latent space. As outlined in Section 5.2 and Table 5.1, incorporating

structure at the per-sample level in language model pre-training remains under-explored

or neglected research area. The most common approach by far is to leverage additional
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classification tasks at the per-sample level [47, 107, 247, 82, 245, 198, 138, 119, 205,

203, 129, 92]. Further, KEPLER [221] aligns per-sample embeddings of free-text

descriptions of entities to KG embeddings of those entities to match trans-E [143].

Methods with geometrically motivated auxiliary FT/pre-FT stages. Beyond

the methods discussed above and in Section 5.2 and Table 5.1, there are also a number

of works that do not explicitly change the PT stage of language-model pre-training.

Instead, those methods add additional stages between PT and FT to impose geometric

constraints at either a per-token or per-sample level. This includes studies that add

“knowledge adapters” to incorporate KG embeddings into a pre-trained language model

at a per-token level [216, 137, 124], adapting input text or embeddings to incorporate

KG information [118, 56, 232, 157], or adapting sample embeddings via metric learning

techniques based on either self-supervised spatial tasks or on FT tasks [170, 74].

5.8.2 Pre-Training Strategies With No Explicit Consideration

of Geometry

Pre-training using language models has been extensively studied in NLP. To this end,

researchers have explored autoregressive approaches [23, 161, 162, 22], masked language

modelling approaches [154, 121], and discriminative modelling approaches [35]. These

methods have also been adapted to non-NLP domains where masked imputation can

still be employed, including networks [92, 217], tabular data [236], time series [129],

and protein sequences [166].

5.8.3 Pre-Training Theory

Prior theoretical analyses found that pre-trained language models reflect properties

consistent with domain knowledge [37, 210, 168]. Additionally, [108] suggests that

masked-based PT transfers positively to downstream tasks that obey certain con-

ditional independence relationships with PT learning. Further, [182] posits that

masked-based PT works because one can re-frame most NLP tasks as language

modelling tasks.
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5.8.4 Graph Representation Learning

Attributed graph embedding and knowledge graphs. Our work reflects topics

in deep attributed graph embedding (DAGE), in which an embedding model 𝑓 is

learned for a graph 𝐺 equipped with node attributes 𝑋 such that the connectivity

structure of 𝐺 is reflected in the image of 𝑓 [62, 40, 112]. DAGE algorithms are

typically not adaptable to contexts in which the graph is not known at inference time,

and so it does not directly apply to our setting.

Graph neural networks (GNNs). There is also a wide variety of research on

graph neural networks [111], including, e.g.,, work on semi-supervised graph classifica-

tion [101], inductive representation learning on graphs [78], and many others. While

relevant to our study in principle, these methods are not directly applicable in either

the original or our revised PT setting. As we state in Section 5.3, although we take as

input the graph 𝐺PT, this cannot be processed with a standard GNN. This is because

we still want to apply the encoder 𝑓𝜃 at fine-tuning time to contexts with no associated

graph, using only the input 𝑥 itself (e.g.,, the sentence or protein sequence).

Structure-preserving metric learning. A sub-field within metric learning that our

analyses rely on is structure-preserving metric learning (SPML) [214, 189, 188]. In

SPML, rather than using supervised labels, a graph 𝐺 defines when samples should be

close together, such that 𝐺 can be recovered in the embedding space via a connectivity

algorithm [188].

5.9 Conclusion

This work provides a novel perspective on the established pre-training (PT)/fine-

tuning (FT) learning framework. Under our formulation, the PT loss is subdivided

into two components: one which is designed to capture per-token, i.e.,, intra-sample,

relationships, and one which is designed to regularize the per-sample latent space to

capture relationships between samples given by a user-specified pre-training graph

𝐺PT. To show that this new PT perspective offers considerable value, we carry out

a theoretical analysis of existing PT methods and perform comprehensive empirical
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analysis on semi-synthetic and real-world datasets spanning three modalities and

10 FT tasks. Our results provide new insights into the shortcomings of existing

methods and establish a theoretical connection between the PT task formulation and

FT task performance. Further, we illustrate that new methods designed to follow our

formulation can outperform existing per-sample and per-token PT/FT methods. We

envision that this work can provide a methodological pathway for future research on

pre-training.

5.9.1 Relation to this Thesis

In this chapter, we bring together the various pieces explored in prior chapters into

a unified framework (Structure Inducing Pre-training; SIPT) for leveraging external

knowledge to induce global structure in the latent space of pre-training models. Much

like in Chapter 2, SIPT leverages imposing global structural constraints on model

latent spaces during training, and via the pre-training paradigm makes significant

use of unlabeled data. Building on Chapter 3, the various PT encoders in SIPT each

individually make use of local structure in various ways, be it through sequential

transformer models or local graph convolutional neural network models. Finally, SIPT

is a direct response to the observations of Chapter 4, where we showed that traditional

pre-training algorithms do not yield the same quality of benefits over the clinical

domain as they do in natural language processing, and further showed that this deficit

is likely due specifically to how these algorithms do (or fail to) encode per-sample

structure. Ultimately, we show that the SIPT approach is particularly impactful

in clinical and biomedical domains, and provide extensive theoretical and empirical

justification for the SIPT framework.
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5.10 Appendix

5.10.1 Code and Data Availability

Our code, synthetic datasets, and pointers to real-world datasets are available here:

https://github.com/mmcdermott/structure_inducing_pre-training

5.10.2 Existing Language Model Pre-training Methods - Free-

text Descriptions

In this section, we describe all of the 27 models featured in Table 5.1, highlighting on

which domain they operate and other key details of their approach. We will break

these models down into categories, and also include some additional models in this

section not included in Table 5.1 that do not fit into the paradigm we explore here.

Language modelling alone.

[121] General domain NLP; RoBERTa includes only a masked language modelling

objective.

[161, 162, 22] General domain NLP; The GPT series of models use autoregressive

language modelling alone, and focus on generative language tasks, not general

PT/FT, though GPT-III does show that by reframing many classical NLP fine-

tuning tasks as generative language tasks, GPT-III can still offer a compelling

zero and few-shot solution to these tasks using only the pre-trained embedder [22].

[166] Protein sequences; the TAPE benchmark profiles various language-model based

PT models against a benchmark of PT/FT tasks.

[246] Molecular Graphs; Molecular Graph BERT (MG-BERT; no relation to MG-

BERT [13]) uses masked atom prediction to pre-train a GNN over molecular

graphs.

Language modelling & Per-token KG Integration.
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[204] General domain NLP; ERNIE 1 augments traditional MLM with entity-specific

masking (e.g., masking the word “Mozart” from the sentence “Mozart was a

musician”) to force the model to recover common-sense knowledge about named

entities.

[82] General domain NLP; KgPLM adapts the discriminative training ideas of ELEC-

TRA [35] alongside the idea of entity masking explored previously. They perform

both entity masking and a discriminative loss identifying which tokens were

replaced focused on entity replacements.

[160] General domain NLP; ERICA presents a mechanism for leveraging contrastive

learning and distant supervision to incorporate external knowledge into a PLM

for improving language understanding. They augment MLM with two per-token

tasks aimed at ensuring the per-token representations within a document reflect

the structure of the KG; first by ensuring that the pooled representations of

head and tail entities are similar conditioned on a relation (which is prepended

to the document prior to embedding) and second that relation embeddings

(defined as concatenated head, tail per-token entity embeddings) are similar

within and across documents. As both tasks are done on per-token embeddings,

and never at a per-sample level, this approach induces minimal constraints on

the per-sample latent space.

[239] Biomedical domain NLP; KeBioLM integrates a per-token KG into a biomedical

language model by augmenting token entity representations with attention

look-ups into a biomedical KG (regardless of whether the attended to entities

actually match a given entity mention in the source text, though they do

only apply this on recognized entities). In order to ensure this attention is

meaningful, they further perform named entity linking and recognition auxiliary

PT objectives, leveraging the same KG embeddings used during the attention

calculation (thereby incentivizing per-token representations to be similar to

their associated entities representations thus ensuring that those entities are

reflected in the attention over the KG, modulo the fact that the loss is applied
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after the final layer, rather than the layer directly used to do the search). KG

embeddings are initialized using Trans-E [143]. Their usage of automatically

attending over entities within their language model (without explicit constraints

on those matches) is motivated by [57]’s work in [57] and has similarities to

Know-BERT [156].

[231] General domain NLP; LUKE performs pre-training using MLM and an entity-

specific masking/recognition scheme that is a slight variation on the traditional

entity-specific masking [204] proposed. At FT time, they have other knowledge-

specific integrations, including specialized query matrices in KQV attention

based on attending to either traditional tokens or entities, but at PT time their

only modulation over a ROBERTA [121] baseline is their entity masking task.

[156] General domain NLP; Know-BERT integrates per-token entity information

into an MLM pre-training scheme by performing unconstrained attention over

a per-entity knowledge graph (only on pre-identified candidate entity spans),

alongside any available entity linking supervision information via direct Named

Entity Linking. This has similarities with [239] and [57].

[202] General domain NLP; COLAKE performs a priori entity linking on the source

text, then replaces per-token mentions with entity embeddings, and appends to

the input text sub-graphs from a (relational) knowledge graph, including both

neighboring mentions and relations in the augmented input text block. This

input is then encoded via a variant of a transformer which limits attention flow

between tokens of different types and trains the entire ensemble with masked

language, entity, and relation modelling.

Language modelling, Per-token KG Integration, & Supervised Classifica-

tion.

[205, 203] General domain NLP; ERNIE 2.0 & 3.0 augments traditional MLM with

entity-specific masking (e.g., masking the word “Mozart” from the sentence
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“Mozart was a musician”) as well as a multi-task per-sample task, largely moti-

vated at classifying a block of text on the basis of internal text cohesion (predict

the true order of the sentences within an input sample & identify whether the

sentences within the input sample are spatial neighbors, come from the same

document, or come from different documents). ERNIE 3.0 additionally augments

pre-training with a per-token relation-embedding task using cloze-filling as a

vehicle to perform relation extraction on pre-specified per-token KGs.

[247] General domain NLP; ERNIE (no relation to [204, 205]) uses both architectural

and objective-function changes to inject per-token knowledge into PT. Specifically,

they separately embed all named entities in a sample, use a specific architecture

to join contextualized entity embeddings alongside the embeddings of tokens

that realize that entity in the span, and perform entity-specific masking (through

both entity replacement and entity-token relationship masking). In addition,

they simultaneously perform standard MLM and next-sentence prediction in the

manner of BERT [47].

[13] General domain NLP; MG-BERT introduces a GCNN layer after BERT token

which aggregates token embeddings together over a unified graph consisting

both of co-occurrence relationships and knowledge graph relationships. Note

that as the KG layer is used during pre-training as well, this model may have

difficulty adapting to settings at FT time where the KG is unavailable, which

limits flexibility.

[238] General domain NLP; JAKET embeds entities by extracting per-token represen-

tations of entity texts inside per-entity descriptions, then produces updated KG

embeddings via a graph convolutional neural network. Those embeddings are

then fed back into a language model alongside per-token embeddings correspond-

ing to those entities in the raw text. The entire system is trained according to

an MLM objective, plus entity category prediction and relation prediction (only

on the entity embeddings extracted from entity descriptions and fed through the

GCNN—not on the raw entities within the contextualized text). Notably, unlike
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many other methods, this approach does leverage relations in the formation of

individual per-sample and per-token embeddings, so can’t be used at inference

time without that level of information as well.

[198] General domain NLP; Coke is similar to ERNIE [247] and JAKET [238] in that

it aggregates entity information by leveraging a GCNN over a restricted dynamic

context KG based on token-entity mentions then integrates those augmented

embeddings into the per-token embeddings of a BERT-style pretrained model

(similar to JAKET), but also leverages the denoising entity autoencoder task of

ERNIE [247]. By leveraging a GCNN over entity relationships to directly inform

per-token embeddings, relations must be known about per-token entities at FT

time as well.

[245] Medical domain NLP; SMedBERT leverages a complex, multi-faceted loss

including MLM, Sentence-order prediction SOP (as introduced in, e.g., AL-

BERT [107]), and includes per-token KG information by aggregating token

embeddings across KG embeddings (produced via trans-H [223]) corresponding

to matching entities and the neighbors of matching entities in the KG. They also

include variations on relation and entity masking to ensure the PT model learns

per-token information corresponding to the KG. This method bares similarity

to Coke [198] and JAKET [238].

Language modelling & Single-task Classification.

[47] General domain NLP; Masked language model plus binary classification of

whether text block is sequentially consistent, with samples chosen via true

positive pairs vs. randomly joined sentences.

[107] General domain NLP; Masked language model plus binary classification of

whether text block is sequentially consistent, with samples chosen via true

positive pairs vs. re-ordered positive sentence pairs.

[138] Protein sequences; Masked language model plus multi-class classification of
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to which protein family an input sequence belongs. Uses non-standard whole-

sequence embedding procedure (no [CLS] token).

Language modelling & Multi-task Classification.

[119] General domain NLP; Masked language model plus multi-task classification

across a variety of NLP tasks.

[92] Graph data; This model uses a masked imputation task similar to a masked

langauge model and a highly multi-task supervised whole-graph level prediction.

On this non-NLP domain, [92] finds that the multi-task whole-graph level task

is essential for performance.

[129] EHR Timeseries data; This model uses a masked imputation task similar to

a masked language model over timeseries data and a multi-task supervised

whole-sequence prediction task. On this non-NLP domain, [129] finds that the

multi-task whole-sequence level task is essential for performance.

Language modelling & Whole-sample KG Constraints via Entity-descriptions.

[221] General domain NLP; KEPLER leverages the most complex inter-sample

geometric constraint observed in existing methods. It augments traditional MLM

on generic text samples with a constraint ensuring the (per-sample) embeddings

of entity descriptions pulled from pre-specified knowledge graphs (KGs) reflect

geometric constraints in accordance with the underlying relations in the KG

(in particular leveraging the [206] geometric constraints). As we will see in our

theoretical analyses, these constraints are much more restrictive on the latent

space geometry, and thus imply a greater encoding of domain knowledge in the

model. Note that JAKET [238] also leverages entity descriptions in its per-token

encoding, but these descriptions are (1) extracted via per-token embeddings,

using the first mention of the token, not whole-sample embeddings, and (2)

integrated back into the original text in a per-token manner, not optimized over

directly via geometric constraints as in KEPLER.
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Methods not natively captured in our framework as they leverage relation

information during encoding directly.

[238] As outlined above, JAKET isn’t natively captured in our framework as it actively

leverages the relationships in a KG to produce KG-contextualized per-token

entity embeddings during processing. Thus, this system cannot be fine-tuned on

KG-free data without significant domain shift, unlike the PT methods we focus

on.

[198] CokeBERT leverages both entities and relatonships, summarizing KG-contextualized

embeddings at a per-token level. Similar to JAKET and Graphformer, the use

of relationships here means that at FT time, if the per-token knowledge cannot

be embedded similar to at PT time, the model will face a domain shift burden.

[245] Given SMedBERT leverages (per-token) relational information in producing

unified token embeddings, it is not natively realizable within our framework

which assumes that the input to the model is the raw data domain.

[203] By leveraging relational data via their relational masking task, ERNIE3 may

also have limited generalizability to other contexts.

[202] Given COLAKE leverages (per-token) relational information to construct the

augmented inputs to the model, it requires per-token relational data about the

source inputs at both PT and FT time.

Methods orthogonal to our framework.

[120] KG-BART is a text-generation model that leverages per-token knowledge after a

text-encoder to enrich generated text with information from a textual knowledge

graph (in a per-token manner). It is neither used for general pre-training nor

does it leverage any additional per-sample constraints.

[233] Text-based Knowledge Graphs; This work produces embeddings of nodes in

KGs by combining transformer based text encodings with graph convolutional

network KG embedding methods, leveraging link prediction as the pre-training
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task. The individual nodes are represented by entity descriptions / textual

features, and link prediction can be seen as inducing a geometric constraint via

the connectivity of the knowledge graph on whole-sample embeddings. However,

given that relationships are used in encoding the data as well, GraphFormer

can’t be used in a context where KG links may not be observed at FT time

and should be seen not as a general text PT method but instead simply as

an advanced KG embedding mechanism, so it does not directly fall under our

framework.

[2] KeLM (unrelated to KELM [124]) is a method for converting a free-text KG

into textual nodes so language modelling can be used over that corpus, and is

orthogonal to the methods of pre-training.

[171] This paper is a method for populating a KG from free-text via BERT; it has

no bearing on incorporating structure or knowledge into PT itself and as such is

not relevant to our system.

[244] This paper presents a method to drop redundant triples from a knowledge graph

and a regularization technique to limit the impact of added irrelevant knowledge

to per-token knowledge-enhanced PT methods such as ERNIE [247].

[235] Text-based Knowledge Grpahs; KG-BERT is a method for which knowledge

graph completion in which textual representations of entities and relations in

KGs are embedded by fine-tuning a pre-trained BERT style transformer for link

prediction over a given KG. As this is only for knowledge graph completion, it

is orthogonal to our study of pre-trained models in general.

Methods that only change things at FT time.

[137] Biomedical domain NLP; MOP doesn’t change anything at PT time, but further

trains sub-KG adapters on entity recognition tasks prior to FT to infuse entity

knowledge into the PT system. This is also still per-token. This is similar in

spirit to the K-Adapters work which introduced the notion of KG adapters [216].
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[118] General domain NLP; K-BERT, at PT time, is actually equivalent to BERT [47].

However, it does do other, interesting things at FT time, including augmenting

the sentence flow with injected per-token knowledge graphs and limiting self-

attention to only flow along links supported either by the original sentence or

the injected knowledge. But, as this is only true at FT time, at PT time it is

equivalent to BERT.

[170] General domain NLP; This model, at PT time, is also actually equivalent

to BERT [47]. Like [118], however, it specializes a fine-tuning procedure for

sentence information retrieval tasks, which is actually similar to how PT is

adapted in this framework.

[124] General domain NLP; KELM doesn’t modify PT objective explicitly, but

insteads enhances a model at FT time by injecting per-token knowledge via

a GNN module atop the pre-trained LM embeddings via a unified text-entity

graph. It is similar to KBERT [118] in this way, but resolves other issues with

that approach relating to knowledge ambiguity and by supporting multi-hop

reasoning, again over the per-token embeddings.

[56] General domain NLP; KI-BERT augments BERT with KG specific information

via joint token-entity embeddings and information fusion, but does this only at

FT time.

[232] General domain NLP; K-XLNet introduces a secondary FT stage in which

knowledge injectors throughout an XL-Net architecture are further trained to

leverage knowledge (encoded via free-text entity descriptions) that is injected

into input sentences alongside matched tokens. It does not modify the XL-Net

PT stage at all.

[216] General domain NLP; K-Adapter proposes to also pre-train various knowledge

adapters that can be used alongside a pre-trained language model at fine-tuning

time. Thus, while there is a pre-training process for the adapters, this process

does not modulate the original pre-trained language model at all. In addition,
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both adapters pre-trained in this work are based on per-token knowledge graphs;

one leverages concatenated entity embeddings to perform relation classification,

another predicts which token in the sentence is the “head” in a dependency parse

tree, so no per-sample constraints are applied.

[157] General domain NLP; E-BERT injects per-token knowledge into BERT by first

aligning embeddings of a knowledge grpah with the input wordpiece embedding

space of a (fixed, pre-trained) BERT model, then using various strategies to

input them alongside their source mentions in FT text. They do no additional

pre-training of this system, and so this model only affects the model at FT time.

[74] General domain NLP; [74] augment LMPT systems with an additional, pre-FT

procedure in which the model is further trained using a supervised, per-sample

metric learning task leveraging FT labels directly to form the classes used

for metric learning. They do not materially change the task-independent PT

procedure at all, though their FT metric learning procedure does induce some

structure at the per-sample level.

5.10.3 Language Model Pre-training on Natural Language vs.

General Domains

In this section, we explore the hypothesis introduced in Section 5.2.2 more fully;

namely, that language model (LM) Pre-training (PT) methods have limited ability to

reflect inter-sample relationships in domains outside of NLP. We break this hypothesis

down into 3 claims:

1. LM PT natively captures intra-sample relationships.

2. LM PT is not guaranteed to capture inter-sample information in general domains.

3. LM PT (in particular, language modelling or masked language modelling at a

per-word level) does capture inter-sample information in NLP, via a mechanism

that is unlikely to generalize to other domains.
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In the remainder of this section, we first define “intra-” vs. “inter-” sample relation-

ships formally, then expand each of these 3 claims to argue our overall hypothesis.

Establishing each of these claims will ultimately suggest that just because LM PT

methods work well in NLP does not mean they do not need modification to better

capture inter-sample associations on more general domains.

Intra- vs. inter-sample relationships. We use the terms sample to refer to an

individual datapoint in a dataset. Intra-sample relationships thus refer to information

that helps model one part of a single sample vs. other parts of that same sample.

Inter-sample, on the other hand, reflects information that models an entire sample vs.

other samples in the same dataset. For example, if we have a dataset of sentences such

as in a NLP context, then (1) a sample refers to a single sentence, (2) masked language

modelling, where we occlude a word in the sentence and try to infer it from the rest of

the words in the sentence is an intra-sample modelling task, as it relates the occluded

word to the observed words within a single sample, and (3) sentence classification,

natural language inference, or question answering tasks would all refer to inter-sample

tasks, as they relate entire sentences either to each other either directly or indirectly.

(1) LM PT-derived PT natively captures intra-sample relationships. This

claim is clear from the definitions above—any form of intra-sample imputation is

directly formulating an intra-sample task. While we do not claim that LM PT will

necessarily capture every intra-sample association (e.g.,, most LM PT methods will

have some limit on how much of the input they are allowed to mask at once, which

precludes the model from learning to impute given very sparse input features), it is

clear that it naturally reflects a rich subset of intra-sample associations natively.

(2) LM PT-derived PT does not need to capture inter-sample relationships..

Though it is clear that LM PT-derived PT natively captures intra-sample relationships,

this does not preclude it in general from capturing inter-sample relationships. However,

for any style of LM PT-derived PT, we can quickly design a synthetic dataset that

shows that inter-sample relationships need not be reflected. For example given a

dataset 𝑋, simply appending an extra, categorical feature to each sample in 𝑋 that

has no dependence on the existing features in 𝑋 induces an inter-sequence relation
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between elements of 𝑋 (sharing the same appended feature) that is not capture-able

by imputation PT (because the appended feature, having no dependence on the other

features, is neither impute-able nor informative in imputing other tokens, and thus is

not relevant to the imputation task).

LM PT does capture inter-sample information in NLP, but is unlikely to in

other real-world domains. The fact that LM PT-derived PT is not guaranteed to

capture inter-sequence information in general, yet simultaneously is very effective as a

PT strategy on NLP suggests that in either NLP-specifically or real-world domains in

general LM PT-derived PT actually will regardless reflect inter-sample information.

Here, we argue that this property holds only for NLP-specifically, due to unique

properties of NLP that allow one to consistently re-formulate inter-sample tasks

as intra-sample tasks, which is not possible in other domains. This reformulation

argument has received significant attention in the literature. In particular, [181]

shows through both theoretical and empirical analysis how LM PT performance on

inter-sample tasks can be directly related to their intra-sample performance through

this reformulation argument presented above. More indirectly, [23] has shown that

language models are effective few-shot learners, even in inter-sample tasks. Concretely,

they show that GPT-3 achieves strong performance on question-answering tasks

even in the zero-shot setting—thus showing clearly that LM PT (here, in particular,

autoregressive language-model pre-training) explicitly captures the inter-sample task of

question-answering simply through language modeling alone. [163] has also leveraged

this reformulation trick explicitly to form a unified PT objective to great effect.

Critical to this argument is the fact that not only is it possible to perform this

reformulation, but that these reformulated examples qualify both as (1) valid NLP

samples themselves and (2) sufficiently reasonable NLP samples that they may be

observed in large PT datasets. For example, the reformulation trick leveraged for the

“review sentiment analysis” task in [182] is to append the tokens “:)” after the end of

positive-sentiment reviews and “:(” after negative-sentiment reviews. This addition of

an emoji indicating sentence sentiment is very plausible in real-world datasets.

Other domains do not permit this inter- to intra-sample reformulation, at least
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not while maintaining validity and plausibility. For example, protein sequences do not

permit arbitrary modifications to amino acid sequence to still remain valid, plausible

proteins, and even if they did there is no way to naturally encode the outcome to all

inter-sample tasks of interest. Thus, this argument suggests strongly that the efficacy

of LM PT for inter-sample tasks on NLP is not guaranteed, and possibly not even

likely, to extend to other domains of interest.

5.10.4 Further Theoretical Analysis of SIPT

We proceed with additional theoretical analysis of SIPT and formal proofs of the

claims made in the main paper. Note that throughout all results, we will assume

that the PT and FT datasets are iid, that FT tasks, though they may be unobserved

over PT samples, are well defined over the entire PT and FT domain and thus true

labels (if unknown) do exist for PT samples, and that the sampling distribution of

the PT/FT data has full support over the label-space of any considered task.

How do we define “optimal” embeddings?

Let 𝐺 = (𝑉,𝐸) be an arbitrary graph, 𝑑𝑒 ∈ N be an embedding dimension, 𝒟 be a

distance function.

Definition 2 (SI-optimal embedding). We will say that there exists a SI-optimal

embedding of 𝐺 if there exists a positive radius 𝑟 ∈ R+ and mapping 𝑓 : 𝑉 → R𝑑𝑒

such that 𝒟(𝑓(𝑣1), 𝑓(𝑣2)) < 𝑐 if and only if (𝑣1, 𝑣2) ∈ 𝐸.

Note that this is a specialization of the idea that we can leverage a connectivity

algorithm to recover 𝐺 from an optimal embedding; in particular, here we take

the connectivity algorithm used to be a radius nearest neighbor algorithm with

distance 𝒟. Note that any SI-optimal embedding also yields a margin parameter

𝑚 = min(𝑣𝑖,𝑣𝑗) ̸∈𝐸(𝐷(𝑓(𝑣𝑖), 𝑓(𝑣𝑗)) −max(𝑣𝑖,𝑣𝑗)∈𝐸(𝐷(𝑓(𝑣𝑖), 𝑓(𝑣𝑗)) where 𝑚 ∈ R+ given

𝐺 is finite and 𝑓 is an optimal embedding.

175



SI-optimal embeddings determine SIPT-optimal embeddings

Suppose we have PT dataset 𝑋PT, 𝐺PT. We will consider some encoder 𝑓 optimal

(and its embeddings optimal as well) provided that 𝑓 produces optimal embeddings

both according to the LM PT objective and the SI objective. Note that this definition

is not contradictory—the LM PT objective does not constrain the global embedding

space geometry of 𝑓 at all, and the SI objective is focused exclusively on the overall

geometry. Given our primary interest in this work is on the properties of the SI loss,

we will operate from the perspective of only considering that loss.

When do optimal embeddings exist?

The study of when optimal embeddings exist for SIPT problems covers many topics of

existing interest within graph embedding, metric learning, and other fields of machine

learning. Various results are already known about when optimal embeddings will exist

for certain kinds of graphs; however, in full generality typically 𝑑𝑒 ∈ Θ(|𝑉 |) may be

required. We will highlight several results here that will be of particular relevance

for our purposes. Note that, throughout, we will assume that 𝐺PT is fully inferrable

from 𝑋PT—in other words, there exists a function 𝑓 : 𝒳 × 𝒳 → {0, 1} that correctly

predicts whether or not there will be an edge between two nodes 𝑥 and 𝑥′. In the

case that this is not possible, then there will not exist optimal embeddings. Our focus

in the rest of this section focuses around when, given that relationship exists, we will

be able to efficiently (relative to the necessary embedding dimension 𝑑𝑒) produce such

embeddings given various graph structures.

Disconnected Cliques. If the graph 𝐺PT contains a series of disconnected cliques,

then it is trivial to see that optimal embeddings do exist, as we can simply assign each

clique a single point and map all elements within that clique to that single point. This

embedding schema works in arbitrary dimensions, and enforces minimal geometry

over the latent space.

Manifolds. Let ℳ be a manifold of dimension 𝑁 embedded in R2𝑁 , where such an

embedding is guaranteed to exist by the Whitney Embedding Theorem [226, 144].
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Note that for any point 𝑥 ∈ ℳ, with its corresponding embedding 𝜋(𝑥) ∈ R2𝑁 , there

exists a radius 𝑟𝑥 ∈ R+ such that the ball of radius 𝑟 around 𝜋(𝑥) in R2𝑁 intersection

𝐵𝑟𝑥(𝜋(𝑥)) ∩ 𝜋(ℳ) is isomorphic both to some ball around 𝑥 in ℳ and to a ball of

radius 𝑟′ in the copy of R𝑁 isomorphic to the neighborhood of 𝑥 on ℳ. Let us call

the manifold ℳ valid if inf𝑥∈ℳ(𝑟𝑥) > 0.

Theorem 2. Let 𝑋PT ∈ 𝒳𝑁PT be our PT dataset as usual, and let ℳ be a valid

manifold. Suppose there exists some (potentially unknown) isomorphism 𝑓 : 𝒳 → ℳ.

If we then set 𝐺PT to be a radius nearest-neighbor graph over ℳ, then there exist

𝑆𝐼𝑃𝑇 -optimal embeddings with as few as 𝑑𝑒 = 2𝑑𝑚 dimensions.

Proof. This a direct consequence of the definition (above) of a valid manifold. As

𝑟* = inf𝑥∈ℳ𝑟𝑥 > 0, we know that we can select some strictly positive 𝑐 ≤ 𝑟* such

that all neighborhoods within 𝑐 of any point in the embedding of the manifold only

intersect the manifold in a manner that preserves geodesic distance. Then, on the

basis of the Whitney embedding theorem, SIPT-optimal embeddings do exist.

Proofs for Section 5.4

Theorem 3. Let 𝑋PT, 𝐺PT be a PT dataset and graph, respectively, such that SIPT-

optimal embeddings exist and are realized by an embedder 𝑓 . Then, under embedding 𝑓

and given sufficient data, the nearest-neighbor accuracy for a FT task 𝑦 will converge

as dataset size increases to at least the local consistency of 𝑦 over 𝐺PT.

Proof. Given 𝑓 realizes SIPT-optimal embeddings, we know that if we define a 𝑟-NN

predictor via the same radius 𝑟* at which 𝑓 achieves optimality, then this predictor

will be correct exactly as often as the label of a given node in the graph 𝐺PT agrees

with the labels of its neighbors—which is precisely LC𝐺PT(𝑦). This classifier may

not be well defined for small FT dataset sizes, however, as if data is not sufficiently

dense there may be no data-points within radius 𝑟 of a given query. Similarly, without

sufficient PT data then the LC computed over the empirical distribution of the graph

𝐺PT may be a poor proxy for the true distribution. As PT and FT dataset sizes

increase, however, we know that we can always achieve at least this performance. We
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may be able to achieve even higher performance if other effects motivate stronger

performance at radii smaller than 𝑟*, but this is not guaranteed.

5.10.5 Proofs for Section 5.4.1

In this section, we give formal theorem statements and proofs for the 3 findings

reported in Section 5.4.1.

Finding 1. Multi-class or supervised metric learning PT methods corre-

spond to cliques.

Supervised metric learning PT is when we are given a PT dataset 𝑋PT, 𝑦PT ∈ 𝒴𝑁

and attempt to pre-train an encoder 𝑓 such that (potentially in addition to other

constraints), 𝑓(𝑥𝑖) is similar to 𝑓(𝑥𝑗) if 𝑦𝑖 = 𝑦𝑗. From that definition, it is clear that

this is identical to a SI objective if 𝐺PT = (𝑋PT, 𝐸) such that (𝑥𝑖,𝑥𝑗) ∈ 𝐸 if and

only if 𝑦𝑖 = 𝑦𝑗 . This corresponds to a graph of disconnected cliques, one for each label

ℓ ∈ 𝒴 .

In supervised classification PT, we have a PT dataset 𝑋PT and labels 𝑦PT ∈ 𝒴𝑁 ,

and attempt to pre-train an encoder 𝑓 and predictor ℎ such that (potentially in

addition to other constraints), ℎ(𝑓(𝑥𝑖)) = 𝑦𝑖. We can realize an analogous SI objective

with an identical construction as that for supervised metric learning. If 𝐺PT has edges

(𝑥𝑖,𝑥𝑗) such that 𝑦𝑖 = 𝑦𝑗, then finding SIPT-optimal embeddings under 𝐺PT will

also solve the supervised classification objective natively, through nearest-neighbor

methods. Thus, SIPT with a graph of disconnected cliques encompasses the supervised

classification objective.

Finding 2. The local consistency of any downstream task w.r.t. such a

graph rapidly tends to a fixed, sub-optimal constant as PT dataset size

increases.

Finding 2 is formally described in Theorem 4.

Theorem 4. Let 𝑋PT ∈ 𝒳𝑁 , be a PT dataset with corresponding labels 𝑦 ∈ 𝒴𝑁
PT.

Define 𝐺PT = (𝑋PT, 𝐸) such that (𝑥𝑖,𝑥𝑗) ∈ 𝐸 if and only if 𝑦𝑖 = 𝑦𝑗. Let 𝑦FT :

𝒳 → 𝒴FT correspond to a FT downstream task. Further, define MC(𝑥𝑖, 𝑦FT) =
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argmaxℓFT∈𝒴FT

∑︀
𝑥𝑗∈𝑋PT|𝑦𝑖=𝑦𝑗

1𝑦FT(𝑥𝑖)=ℓFT to be the majority class label for the clique

containing 𝑥𝑖 in 𝐺PT. Then,

LC𝐺PT(𝑦FT) =
∑︁

ℓPT∈𝒴PT

P(𝑦𝑖 = ℓPT)P(𝑦FT(𝑥𝑖) = MC(𝑥𝑖, 𝑦FT)|𝑦𝑖 = ℓ).

Proof. This follows directly from the definition of Local Consistency, 𝐺PT, and the

law of total probability. In particular,

LC𝐺PT(𝑦FT) = P

⎛⎝𝑦FT(𝑥𝑖) = argmax
ℓ∈𝒴FT

∑︁
𝑥𝑗∈𝑋PT|(𝑥𝑖,𝑥𝑗)∈𝐸(𝐺PT)

1𝑦FT(𝑥𝑖)=ℓ

⎞⎠
= P (𝑦FT(𝑥𝑖) = MC(𝑥𝑖, 𝑦FT))

=
∑︁

ℓPT∈𝒴PT

P(𝑦𝑖 = ℓPT)P(𝑦FT(𝑥𝑖) = MC(𝑥𝑖, 𝑦FT)|𝑦𝑖 = ℓ),

as desired.

Note that this has dependence on the PT dataset size as the probabilities P are

taken over the empirical distribution induced by the dataset 𝑋PT and graph 𝐺PT

inherent in local consistency — if 𝑋PT is too small, these empirical distributions will

be poor proxies for the true distribution and this property will not hold as cleanly.

However, once saturation is reached it will not improve beyond this fixed upper bound

relating to task correlation.

Finding 3. In contrast, manifold nearest neighbor representations yields

nearest-neighbor FT performance that converges to optimality.

Finding 3 is formally described in Theorem 5.

Theorem 5. Let 𝑋PT be a PT dataset which can be realized over a valid manifold

ℳ. Assume 𝑋PT is sampled with full support over ℳ. Let 𝐺PT(𝑋PT, 𝐸) be an 𝑟-

nearest-neighbor graph over ℳ (e.g.,, (𝑥1,𝑥2) ∈ 𝐸 if and only if the geodesic distance

between the two points on ℳ is less than 𝑟: 𝒟ℳ(𝑥1,𝑥2) < 𝑟).

Let 𝑦FT be a FT classification task that is almost everywhere smooth on the manifold
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(as 𝑦FT is a classification task, this means that almost everywhere 𝑦FT(𝑥1) = 𝑦FT(𝑥1+𝜀)

where 𝜀 is a sufficiently small transformation along ℳ. Note this requirement is merely

stating more formally that 𝑦FT is “piecewise constant” along ℳ, such that compact

regions of ℳ correspond to individual labels of 𝑦FT and only on points at the boundary

between two labels does 𝑦FT show non-constant behavior.

Then, as PT dataset size (and thus size of 𝐺PT) tends to ∞ and 𝑟 tends to zero,

the local consistency of 𝑦FT over 𝐺PT will likewise tend to 1.

Proof. As 𝑟 → 0, provided PT dataset size increases at a sufficient associated rate

so as to maintain constant minimum degree of 𝐺, we have the property that the

total diameter over ℳ contained in a node’s local neighborhood within 𝐺PT likewise

decreases. Given some fixed node 𝑥 ∈ ℳ that is within the interior of a set of constant

𝑦FT label, this implies that, eventually, it will grow sufficiently small that all of 𝑥’s

neighbors share the same label as 𝑥 under 𝑦FT.

More concretely, it is clear that this point will occur exactly when 𝑟 is the

geodesic distance between 𝑥 and the boundary of the surrounding constant-label patch

containing 𝑥. But, it is clear that this implies that the only sections of ℳ will not

have the property that neighborhoods around points will be constant w.r.t. 𝑦FT labels

will almost everywhere be patches within distance 𝑟 of the points where 𝑦FT changes.

This implies that as 𝑟 → 0, then almost everywhere will the neighborhoods around

a node 𝑥 be constant w.r.t. 𝑦FT. However, this implies that almost everywhere would

𝑦FT display perfect local consistency, as desired.

5.11 Full Experimental Details

5.11.1 Full Details for Synthetic Experiments

Details on Dataset & Graph Construction

General Setup. All our synthetic datasets leverage free-text sentences from https:

//www.kaggle.com/mikeortman/wikipedia-sentences (CC BY-SA 4.0 License).

Topics were assigned to these sentences by running Latent Dirichlet Allocation via
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Scikit-learn [151] over a Bag-of-words representation to 100 topics, with otherwise

default parameters.

Given the probabilities over all 100 topics, we treated the prediction of the most

probable topic as a 100-class multi-class classification problem for our FT task in these

experiments.

Cliques Graph Setup. To construct the Cliques graph setting, we choose a random

subset of sentences as 𝑋PT and define 𝐺PT = (𝑋PT, 𝐸) such that (𝑥𝑖,𝑥𝑗) ∈ 𝐸 if and

only if 𝑥𝑖 and 𝑥𝑗 share the same topic label.

Plane, Möbius, Sphere, & Torus Graphs. For these graphs, we take a

more involved practice to localize sentences onto specifiable simplicial manifolds, then

construct pre-training graphs via radius nearest neighbor graphs on those manifolds.

This involves several steps:

Localizing Sentences on Simplices We can localize any sentence in our overall

dataset onto a 2-simplex by mapping them onto the (re-normalized) probabilities

associated with their top-3 topics. Doing this in this way means that the simplex

on which they are localized has vertices that correspond to possible topics among

our set of 100 total topics.

Stitching Topic-simplices Into Manifolds Given these topic-simplex localized

sentences, we need to construct our manifolds. To do so, we first produce

any arbitrary simplicial tiling of a 2-manifold. With this tiling, all that remains

to localize sentences onto the manifold is to find a self-consistent mapping of

topics to simplex vertices (in the tiling) such that all topic-simplices induced

by this mapping have sufficiently many associated samples to enable roughly

uniform sampling.

Sampling points After finding a self-consistent mapping of topics to simplicial tiling

vertices that satisfies density requirements, we can then sample sentences onto

the manifold. To make this process more uniform, we also calculate the relative

entropy of each sentence (over the re-normalized probabilities of the top-3

topics), bin those entropies into buckets, then sample first what entropy bucket
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we wish to draw from such that the induced distribution of sentence entropies is

approximately uniform, then sample within that entropy bucket.

Calculating on-Manifold Distances Finally, with sentences sampled and localized

onto a simplicial manifold, we then need to compute approximate geodesic

distances to enable building radius-nearest-neighbor graphs over these sentences.

To do so, we use an approximate algorithm that considers only on-simplex

distance (e.g.,, it does not consider any curvature penalties) which is equivalent to

calculating the distance between any pair of points over the simplices presuming

they were flattened onto a plane (this flattening naturally does not preserve

manifold topology, but along only the shortest path between any particular set

of two points it is always possible to do so with a 2-manifold).

The above process describes how to produce a radius-nearest-neighbor graph for

any specifiable manifold using our topic-model outputs. We do this for simplicial

manifolds that correspond topologically to a simple plane (Plane), a möbius strip

(Möbius), a sphere (Sphere), and a torus (Torus).

Structural, Neighborhood, & Motifs Graphs. In order to form these

examples, we must (1) define our overall graphs, (2) featurize these graphs in a manner

that is reflective of different forms of graph structure, then (3) use these featurizations

to assign sentences to graph nodes to form our pre-training dataset.

Graph Construction We sample graphs as described in the main body, with a base

cycle and motifs distributed along that cycle evenly.

Node Featurization Nodes in this graph are then assigned internal features based

on three notions of graph topology. For the “Homophily” label, a node 𝑛 is

identified according to an index-vector indicating which nodes in the graph

are within shortest-path distance 3 of 𝑛. For the “Motif” label, 𝑛 is identified

based on its membership either in the base cycle or any of the attached random

subgraphs. For the “Structural” label, 𝑛 is identified based on its graphlet degree

vector (of order 4). For structural and homophily features, categorical labels are
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then produced by feeding these raw representations through a 𝑘-means clustering

algorithm.

Sentence Assignment We assign sentences to nodes in multiple ways, so that we

can produce datasets that reflect each of the notions of graph structure discussed

previously. In particular, for either the homophily, motif, or structural labels,

each sentence topic is matched to a node label, then sentences are assigned

randomly to nodes in the graph with a matching topic label. Note that this

produces a dataset where the graph structure is only partially reflected by the

node’s features, which is itself another useful test of the SIPT system, as it

would not be useful if SIPT could only capture data in contexts where the graph

was perfectly reflected by the node features themselves.

Network Architecture & Hyperparameters

The Cliques and Mechanistic experiments in this domain use a shallow Transformer

model with 2 layers and 10 hidden units. The Manifold experiments use a 3-layer

Transformer model with 256 hidden units. Hyperparameters were not tuned, but

were chosen by-hand to produce as small a network as possible while still permitting

reasonable learning dynamics.

5.11.2 Full Details for Real-world Experiments

PT Datasets

The Proteins PT data (the Stanford tree-of-life dataset) lists no license on their

download page (https://snap.stanford.edu/tree-of-life/data.html), though

the associated github repository lists an MIT license. The Abstracts PT data

(the Microsoft Academic Graph dataset) is licensed with a Open Data Commons

Attribution License (ODC-By) v1.0 license. The Networks PT dataset, released

in the relevant source article [92] lists no specific data license but releases the code

(which contains the dataset files) under an MIT license.
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Proteins

PT Dataset. We use a dataset of ∼1.5M protein sequences from the Stanford

Tree-of-life dataset [252].

PT Graph. Two proteins are linked in 𝐺PT if and only if they are documented in

the scientific literature to interact, according to the tree-of-life dataset. This is an

external knowledge graph.

FT Dataset/Tasks. We use the TAPE FT benchmark tasks [166], including Remote

homology (RH), a per-sequence classification task to predict protein fold category

(metric: accuracy); Secondary structure (SS), a per-token classification task to predict

amino acid structural properties (metric: accuracy); Stability (ST) & Fluorescence

(FL), per-sequence, regression tasks to predict a protein’s stability and fluorescence,

respectively (metric: Spearman’s 𝜌); and Contact prediction (CP), an intra-sequence

classification task to predict which pairs of amino acids are in contact in the protein’s

3D conformation (metric: Precision at 𝐿/5).

Baselines. We compare against the published TAPE model [166], which uses a LM

task alone, as our per-token comparison point and the PLUS [138] model, which

optimizes for LM and supervised classification jointly, for our per-sample comparison

point.

Abstracts

PT Dataset. We use a dataset of ∼650K free-text scientific article abstracts from

the Microsoft Academic Graph (MAG) dataset [215, 90].

PT Graph. Two abstracts are linked in 𝐺PT if and only if their corresponding papers

cite one another. This is a self-supervised graph.

FT Dataset/Tasks. We use the SciBERT benchmark tasks [15], including Paper

field (PF), SciCite (SC), ACL-ARC (AA), and SciERC Relation Extraction (SRE),

all of which are per-sentence classification problems (metric: Macro-F1). PF tasks

models to predict a paper’s area of study from its title, SC & AA tasks both are to

predict an “intent” label for citations, and SRE is a relation extraction task.
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Baselines. We compare against the published SciBERT model [15] as our per-token

comparison, and lack an associated per-sample comparison as we don’t know of any

published per-sample models in the academic papers modality.

Networks

PT Dataset. We use a dataset of ∼70K protein-protein interaction (PPI) ego-

networks here, sourced from [92]. Each individual sample here describes a single

protein, realized as a biological network (i.e.,, an attributed graph) corresponding

to the ego-network about that protein (i.e.,, a small subgraph containing all nodes

within the target protein) in a broader PPI graph. Unlike our other domains, this

domain does not contain sequences.

PT Graph. The dataset from [92] is labeled with the presence or absence of any of

4000 protein gene ontology terms associated with each the central protein in each PPI

ego-network. Leveraging these labels, two PPI ego-networks are linked in 𝐺PT if and

only if the hamming distance between their observed label vectors is no more than 9.

This is an alternate-representation nearest-neighbor graph.

FT Dataset/Tasks. Our FT task is the multi-label binary classification of the 40

gene-ontology term annotations (metric: macro-AUROC) used in [92]. We use the PT

set for FT training, and evaluate the model on a held-out random 10% split.

Baselines. We compare against both attribute-masking [92] and multi-task PT.

Fine-tuning Task Descriptions

Proteins. The tasks in the TAPE benchmark [166] on which we test are described

more fully below. All these datasets are publicly available. All datasets can be obtained

directly on TAPE’s github (https://github.com/songlab-cal/tape#data) which

lists no licenses for these datasets, though the overall github is released under a BSD

3-Clause "New" or "Revised" License.

Remote Homology This is a per-sequence, multi-class classification problem, eval-

uated using accuracy, which tasks a model to predict a protein fold category at
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a per-sequence level. This task’s dataset contains 12,312/736/718 train/val/test

proteins, and is originally sourced from [87].

Secondary Structure This is a per-token, multi-class classification problem, evalu-

ated using accuracy, which tasks a model to predict the structural properties

of each amino acid in the final, folded protein. This task’s dataset contains

8,678/2,170/513 train/val/test proteins, and is originally sourced from [103].

Stability This is a per-sequence, continuous regression problem, evaluated using

Spearman correlation coefficient, which tasks a model to predict the protein’s

stability in response to environmental conditions. This task’s dataset contains

53,679/2,447/12,839 train/val/test proteins, and is originally sourced from [173].

Fluorescence This is a per-sequence, continuous regression problem, evaluated

using Spearman correlation coefficient, which tasks a model to predict how

brightly a protein will fluoresce. This task’s dataset contains 21,446/5,362/27,217

train/val/test proteins, and is originally sourced from [180].

Abstracts. The tasks in the SciBERT benchmark [15] on which we test are

described more fully below. All tasks here are per-sentence, multi-class classification

problems (i.e., we do not study any per-token tasks), and all are evaluated in Macro-

F1 (out of 1). All FT datasets can be obtained from the SciBERT github (https:

//github.com/allenai/scibert), which lists no dataset specific licenses but is itself

released with an Apache-2.0 license.

Paper Field This problem tasks models to predict a paper’s area of study given its

title. This task’s dataset contains 84,000/5,599/22,399 train/val/test sentences.

Though original derived from the MAG [215], it was to the best of our knowledge

formulated into this task format by SciBERT directly [15].

SciCite This problem tasks models to predict an “intent” label for sentences that

cite other scientific works within academic articles. This task’s dataset contains

7,320/916/1,861 train/val/test sentences, and is originally sourced from [39].
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ACL-ARC This problem tasks models to predict an “intent” label for sentences that

cite other scientific works within academic articles. This task’s dataset contains

1,688/114/139 train/val/test sentences, and is originally sourced from [97].

Networks. The Networks FT task is a multi-task, binary classification task that

is defined as follows. Recall that the dataset here consists of PPI ego-networks,

which means more concretely that an individual sample input to the model is an

attributed graph 𝑥 which contains a central node, corresponding to a protein, along

with the ego-graph surrounding that node in a larger PPI graph. This ego-graph

can thus be seen to correspond to the central protein, and the FT and PT tasks

leverage this association, as both of which flag whether or not that central protein is

associated with particular gene-ontology (GO) terms (annotations relating to protein

properties or function applied in the literature). The PT tasks contain 4000 possible

GO annotations, but the FT tasks correspond to a smaller set of only 40 GO terms,

chosen as they were of greater interest than the full set. See the original source ([92])

for more information and full details.

Architecture & Hyperparameters

The architectures of our encoders for the Proteins and Abstracts domains are fully

determined from our source models in TAPE [166] and SciBERT [15]. In particular,

for proteins and scientific articles, we use a 12-layer Transformer with a hidden size of

768, intermediate size of 3072, and 12 attention heads. Provided TAPE and SciBERT

tokenizers are also used. A single linear layer to the output dimensionality of each

task is used s the prediction head, taking as input the output of the final layer’s [CLS]

token as a whole-sequence embedding. We also tested either pre-training for a single

or for four additional epochs, based on validation set performance, and ultimately

used a single epoch for proteins and four for scientific articles.

For the Networks domain, we match the architecture used in the original

source [92] for the mask model runs, save that for computational efficiency we scale

the batch-size up as high as it can go, then proportionally scale up the learning rate

to account for the larger batch size. This corresponds to a batch size of 1024, learning
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rate of 0.01, a GCNN encoder type of GIN, embedding dimensions of 300, 5 layers,

10% dropout, mean pooling, and a JK strategy of “last”.

Fine-tuning hyperparameters (learning rate, batch size, and number of epochs)

were determined based on a combination of existing results, hyperparameter tuning,

and machine limitations. On proteins, most hyperparameters were set to follow those

reported for a LM PT model in [131], though additional limited hyperparameter

searches were performed to validate that these choices were adequate. As the original

source for these hyperparameters was an LM PT model, any bias here should be

against SIPT, meaning this is a conservative choice. Early stopping (based on the

number of epochs without observing improvement in the validation set performance)

was employed and batch size was set as large as possible given the limitations of

the underlying machine. For the PLUS reproduction, we additionally compared

hyperparameters analogous to the reported PLUS hyperparameters for other tasks as

well as analogous to our hyperparameters for other tasks and used those that performed

best on the validation set. For scientific articles, we performed grid search to optimize

downstream task performance on the validation set, with learning rate varying between

5e-6 and 5e-5 and number of epochs between 2 and 5. The same grid search was

used in original SciBERT system. We additionally match the SciBERT benchmark by

applying dropout of 0.1, using the Adam optimizer with linear warm-up and decay, a

batch size of 32, and no early stopping. For the Networks, FT hyperparameters

were again chosen to match the original source model [92] save the increase in batch

size and learning rate. No additional hyperparameter search was performed.

Final hyperparameters for each downstream task are shown in Tables 5.5 for

proteins and 5.6 for scientific articles.

5.11.3 Implementation and Compute Environment

We leverage PyTorch for our codebase. FT Experiments and Networks PT were

run over various ubuntu machines (versions ranged from 16.04 to 20.04) with a variety

of NVIDIA GPUs. Proteins and Abstracts PT runs were performed on a Power 9

system, each run using 4 NVIDIA 32 GB V100 GPUs with InfiniBand at half precision.
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Task Batch Size LR

Remote Homology 16 1e-5
Fluorescence 128 5e-5
Stability 512 1e-4
Secondary Structure 16 1e-5

Table 5.5: Final hyperparameters for our Proteins domain. All tasks used 200 total
epochs and performed early stopping after 25 epochs of no validation set improvement.
LR, learning rate.

Task # Epochs LR

Paper Field 2 5e-5
ACL-ARC 4/5 5e-5
SciCite 3/2 1e-5

Table 5.6: Final hyperparameters for our Abstracts dataset. All models used a
batch size of 32 and no early stopping, to match the original SciBERT paper [15]. LR,
learning rate. A / B = [LM PT Hyperparameter] / [SIPT Hyperparameter].

5.12 Further Empirical Results

5.12.1 Raw Results

In Tables 5.7 and 5.8, we show the raw FT results for all tasks in the Proteins and

Abstracts domains, respectively.

Model RH FL ST SS CP

TAPE 21% 0.68 0.73 73% 0.32
PLUS 19.8%±1.7* 0.63 0.76 73% N/A
LM PT 23.8%±1.1 0.67±0.00 0.76±0.02 73.9%±0.0 0.38

SIPT-C 25.1%±0.6 0.68±0.00 0.77±0.01 73.9%±0.0 0.38
SIPT-M 26.6%±1.0 0.68±0.00 0.76±0.01 74.2%±0.1 0.39

Table 5.7: Results of the TAPE Transformer [166], the PLUS Transformer [138] (*:
our measurements), our LM PT baseline, and two SIPT variants (“-C” indicates the
contrastive loss, “-M” the multisimilarity loss). Higher is better.
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Model PF SC AA SRE

SciBERT 0.66 0.85 0.71 0.80
LM PT 0.66±0.0 0.85±0.01 0.70±0.05 0.80±0.01

SIPT-C 0.66±0.0 0.86±0.01 0.76±0.02 0.81±0.00

SIPT-M 0.66±0.0 0.85±0.00 0.73±0.05 N/A

Table 5.8: Results of the original SciBERT [15] model, our own LM PT baseline, and
two SIPT variants (“-C” indicates the contrastive loss, “-M” the multisimilarity loss).
Higher is better.

5.12.2 A deeper dive into Proteins vs. Abstracts

For the Proteins and Abstracts dataset, to choose the optimal value of 𝜆SI for use

at PT time, we pre-trained several models and evaluated their efficacy in a link retrieval

task on 𝐺PT = (𝑉,𝐸). In particular, we score a node embedder 𝑓 by embedding all

nodes 𝑛 ∈ 𝑉 as 𝑓(𝑛), then rank all other nodes 𝑛′ by the euclidean distance between

𝑓(𝑛) and 𝑓(𝑛′), and assess this ranked list via IR metrics including label ranking

average precision (LRAP), normalized discounted cumulative gain (nDCG), average

precision (AP), and mean reciprocal rank (MRR), where a node 𝑛′ is deemed to be

a “successful” retrieval for 𝑛 if (𝑛, 𝑛′) ∈ 𝐸. In this way, note that we choose 𝜆SI in

a manner that is independent of the fine-tuning task, and can be determined solely

based on the PT data. Final results for these experiments are shown in Table 5.9 for

the proteins dataset and Table 5.10 for scientific articles.

In both settings, we compare the following models.

Random Nodes are embedded with random vectors, to assess chance performance.

Initial Model Nodes are embedded with the base pre-trained model we build on in

our experiments without further modifications. This model is TAPE [166] for

proteins and SciBERT [15] for scientific articles.

LM PT Nodes are embedded with the final encoder after additional pre-training on

our graph-augmented datasets, but without any SIPT (i.e., 𝜆SI = 0).

CS RoBERTa (for scientific articles only) Nodes are embedded via [75]’s DAPT

CS RoBERTa model, which is another LM PT model over scientific abstracts
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which performed very well on ACL-ARC, the task on which SIPT does best in

scientific articles.

SIPT (for various values of 𝜆SI). Nodes are represented via SIPT PT models at the

specified weighting. For proteins, all SIPT models are initialized from TAPE,

but for scientific articles, we test against both initializing from SciBERT and

from CS RoBERTa (as both are just different, domain-specific LM PT models).

Note that in addition to the discrepancy in the magnitude of improvement (over

scientific articles, average precision goes from 12.9% to 14.2%, vs. 2.4% to 3.5% on

proteins, which is proportionally much more significant), we can also see that SIPT

improves retrieval performance over the baselines for proteins much more than it does

for scientific articles. This is, admittedly, largely due to [75]’s CS RoBERTa model’s

surprisingly good performance without any modifications, however as we also compare

SIPT pre-trained from a CS RoBERTa model and it does not demonstrate significant

improvements, we still feel this is a fair comparison. These findings are consistent

with our hypothesis that SIPT will offer more significant advantages on non-natural

language domains.
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Method 𝜆SI LRAP nDCG AP MRR

Random Baseline N/A 0.88% 27.1% 0.88% 0.003
TAPE [166] N/A 8.50% 34.9% 2.41% 0.226
LM PT Baseline 0 8.92% 38.0% 2.33% 0.238

SIPT (TAPE Initialized)

0.01 9.69% 39.1% 2.56% 0.254
0.10 10.95% 39.4% 3.46% 0.260
0.50 10.54% 40.3% 3.43% 0.246
0.90 10.12% 39.0% 3.16% 0.237
0.99 14.50% 37.5% 3.13% 0.236

Table 5.9: PT set link-retrieval performance for a random baseline, the raw TAPE
model, and SIPT for various weighting parameters 𝜆SI on the dataset of protein
sequences. LRAP, label ranking average precision; nDCG, normalized discounted
cumulative gain; AP, average precision; MRR, mean reciprocal rank. Higher values
indicate better performance. Highlighted in grey are realizations of SIPT framework
that yield better results than the strongest baseline, providing evidence that incorpo-
rating sequence-level relational information into PT (i.e., 𝜆SI > 0) leads to improved
performance.
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Method 𝜆SI LRAP nDCG AP MRR

Random Baseline N/A 0.89% 26.0% 0.27% 0.016
SciBERT [15] N/A 17.22% 52.8% 5.16% 0.272
LM PT Baseline (SciBERT initialized) 0 16.79% 35.4% 5.00% 0.271
DAPT CS RoBERTa [75] N/A 32.56% 50.3% 12.86% 0.459
LM PT Baseline (CS RoBERTa initialized) 0 30.58% 48.3% 12.36% 0.438

SIPT (SciBERT initialized)

0.01 42.26% 58.7% 14.23% 0.536
0.10 34.73% 52.5% 9.39% 0.457
0.50 32.85% 50.8% 8.37% 0.438
0.90 31.61% 49.8% 7.82% 0.426
0.99 30.72% 49.0% 6.80% 0.415

SIPT (CS RoBERTa initialized)

0.01 33.32% 51.2% 8.61% 0.448
0.10 25.46% 44.4% 5.88% 0.359
0.50 25.08% 44.0% 6.08% 0.355
0.90 22.43% 41.6% 4.27% 0.317
0.99 22.38% 41.5% 4.68% 0.316

Table 5.10: PT set link-retrieval performance for a random baseline, the raw SciBERT
model, and SIPT for various weighting parameters 𝜆SI on the scientific articles dataset.
LRAP, label ranking average precision; nDCG, normalized discounted cumulative gain;
AP, average precision; MRR, mean reciprocal rank. Higher values indicate better
performance. Highlighted in grey are realizations of SIPT framework that yield better
results than the strongest baseline, providing evidence that incorporating sequence-
level relational information into PT (i.e., 𝜆SI > 0) leads to improved performance.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, I’ve explored how we can leverage structure and knowledge in clinical

and biomedical representation learning tasks.

In particular, in Chapter 2, we showed that leveraging additional, unlabeled data to

learn global distributional statistics can produce richer representations in the context

of biomedical regression tasks. These ideas naturally promote the practice of leveraging

unlabeled data more generally, which we explore in detail in later chapters through

pre-training architectures. In addition, the use of our cycle regularization penalty and

the learned distributional signals via adversarial models represents a form of global

structural regularization in the latent space of these models, which we will also revisit

in our Structure Inducing Pre-Training framework.

Next, in Chapter 3, we explored the use of local structure to refine model frameworks

for biomedical data. In particular, we introduce the use of graph convolutional neural

networks (GCNNs) to model transcriptomic gene expression data. We find that

using GCNNs augmented with prior knowledge in the form of genetic co-regulatory

networks mined from the scientific literature offers significant advantages over other

modelling technologies. This shows that even in the high-capacity, large data regimes

that dominate modern machine learning, the use of prior knowledge/structure can be

invaluable in high-performance representation learning.
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In Chapter 4, we focus more squarely on pre-training techniques, a subset of

representation learning methods focused on using additional un- or weakly-labeled

datasets to initialize a model prior to separate fine-tuning across diverse downstream

techniques. We show that when adapting successful pre-training methods from general

machine learning is insufficient for clinical timeseries data. In contrast, a simple

approach of multi-task pre-training offers significant improvements in the few-shot

regime. The central salient difference between the multi-task pre-training approach

and the BERT-inspired masked imputation approach is that the former imposes

greater structural constraints on the induced pre-training latent space. We believe

that this phenomena is exactly why it outperforms the comparatively less restrictive

BERT-inspired approach.

Finally, in Chapter 5, we cement this observation by introducing a new pre-training

framework that solidifies the role global structure plays in pre-training success. In

particular, we introduce Structure-inducing Pre-training, a framework which re-casts

pre-training tasks as graph embedding problems, and pre-training learning objectives

as associated metric learning tasks. Doing this allows us to use the structure of the pre-

training graph to infer properties about the geometry of the output latent space, and

thus about overall suitability of the pre-training process to eventual downstream tasks.

We demonstrate the power of this approach through both theory and experimental

analyses, and motivate several new directions for future work.

Ultimately, these works come together to paint a compelling picture for the

promise of incorporating structure and external knowledge into clinical and biomedical

representation learning, specifically through pre-training algorithms.

6.2 Unifying Perspectives & Future Work

My work identifies several key findings in the area of representation learning for clinical

and biomedical data, and promotes several important directions for future work.
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Structure and Knowledge Provide Value, but Research on Identifying the

Right Structure is Still Needed My research in this thesis consistently shows that

leveraging data structure and external knowledge can offer significant advantages over

unstructured approaches. Be this in the improvements offered leveraging unlabeled

data to build distributional signals (Chapter 2), leveraging external knowledge to

inform model architecture at a per-sample level (Chapter 3), by showing that even weak

structural regularization through multi-task pre-training offers advantages (Chapter 4),

or in providing theoretical guarantees and empirical performance improvements by

leveraging global dataset structure in pre-training tasks (Chapter 5). However, it is

also clear that such approaches are neither catch-all solutions nor operate fully within

expected bounds. For example, when leveraging gene expression co-regulatory networks

to inform gene expression modelling in [136], we found that generic, literature-sourced

networks were better than data-driven tissue-specific networks, which disagreed with

our preliminary hypothesis. Similarly, in [129], while our pre-training approaches

offer advantages in the few-shot regime, they fail to outperform single-task learning

in the full-data setting, suggesting they are underpowered compared to pre-training

solutions in the general domain. These findings suggest that while there is clear

value in employing data structure and external knowledge, identifying the right kind

of structure/knowledge is still a difficult challenge, though the theoretical analyses

in [132] do offer some options to intelligently search for identifying such structure.

Biomedical Data Requires Specialized Approaches to Take Full Advantage

of its Structure While traditional domains have well-established models to reflect

expected mathematical structures (e.g.,, convolutional neural networks for images

and other spatial domains, recurrent neural networks & Transformers for sequential

domains), biomedical data reflect more varied forms of structure and thus may require

additional forms of modelling to reflect these other structures (e.g., graph structured

data, dynamical systems, causal models, mechanistic models, etc.). My work in this

thesis shows that different forms of structure require different kinds of modeling,

and generic techniques from traditional ML domains may not work as well in the
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biomedical domain. In particular, in Chapter 3, we show that graph convolutional

neural networks leveraging co-regulatory networks offer significant advantages when

modelling gene expression data. Further, Chapters 4 and 5 both show that naïve

applications of generic pre-training methods to clinical and biomedical domains don’t

realize the same performance gains those methods offer in general modalities.

“Structure” is not All-Encompassing, and more Nuanced Notions of what we

want to capture and why we want to capture it are necessary In this thesis,

I postulate that we should make use of “structure” to aid in biomedical representation

learning, much as others have proposed in the literature previously. However, I (and

many others) do so without providing a clear definition of what exactly we mean

by “structure” in these contexts. This flexibility can be useful; different notions of

structure help models in different ways, and make different theoretical guarantees.

However, it also serves to mask what inductive biases are actually being learned. For

example, as we show in Chapter 5, traditional pre-training and representation learning

works often make minimal guarantees about the per-sample geometry of the induced

latent spaces, yet these same models are often used for analogical reasoning tasks

and other knowledge discovery processes which rely on assumptions about that latent

geometry being meaningful.

While the SIPT framework introduced in that chapter takes steps to alleviate this

issue by providing a unified theoretical framing to undestand how structure is being

imposed and to realize new methods that can realize richer forms of structure, the

notion of “structure” used in that work is still narrow. In particular, SIPT captures

only tasks that can be realized as metric learning tasks over a pre-training graph.

While this limited form of structure is useful for many tasks, it is insufficient to capture

the variety of kinds of structure we encounter within biomedical domains, and further

work remains to adapt, refine, and extend this framework to handle these cases.
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