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Abstract

The purpose of this research is to create an alarm threshold algorithm for use in 
an autonomous unmanned aerial vehicle (UAV) for radiation mapping purposes in 
the event of a nuclear disaster or use of nuclear weapons. Information from this 
alarm could feed into real time decision making on the UAV system, so the alarm is 
based on data from 1 second collection windows. All data collection was done with a 
Cs2LiLa(Br,Cl)6 detector. The testing included both laboratory experiments and full 
scale flight testing with the UAV system. Several alarm methods were devised and 
tested, attempting to take advantage of assumptions about the isotopes that would 
be present in a nuclear disaster and the known properties and gamma ray energies 
of these isotopes. Most data collection used either 137Cs or 60Co sources. Receiver 
operating characteristic (ROC) curve analysis demonstrated that alarm methods set-
ting a threshold on narrower energy bins were less sensitive than methods using the 
full spectrum count rate, while the most sensitive method was to use bins containing 
all spectrum data up to the full peak energy of the isotopes of interest but ignoring 
higher energies. Similar ROC curve results were found with a simulated 131I source, 
indicating this method would also work with other isotopes. This method was then 
testing with lab and flight test data using a three standard deviation threshold. The 
median false alarm rate in the background flights was 0.19%, and sources could be 
successfully detected at high rates from relatively long distances. For example in one 
flight a 90% detection probability was attained for an 8 mCi cesium source from a 
total distance of 22±2 m. The probabilities of finding anomalous sources of radiation 
and false alarm appear to be sufficient based on the observed data, and this method 
had the best performing ROC curve of those tested.
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Title: Associate Professor of Nuclear Science and Engineering

Thesis Reader: Won Kim
Title: Nuclear Engineer, The Charles Stark Draper Laboratory, Inc.
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Chapter 1

Introduction

The goal of this thesis is to analyze potential solutions to the issue of determining

if a radiation source has been found when conducting aerial radiation search and

mapping using a drone. Radiation mapping is a process to find anomalous sources

of radiation which elevate the count rate above typical background levels. It is an

important part of nuclear security as a tool in responding to nuclear disasters in order

to find the hazardous areas. Finding a radiation source using an unmanned aerial

vehicle (UAV) guided by the radiation detector it is carrying is more complicated

because of the changing background radiation, and the speed the drone flies at. The

research was done supporting a project at The Charles Stark Draper Laboratory,

Inc. to integrate a UAV, radiation/chemical detector, and sensor driven mapping

algorithm to map both radiation and chemical hazards. The flight motion of the

UAV is directed by the sensor driven contour mapping algorithm developed by The

Charles Stark Draper Laboratory, Inc., part of this algorithm is a radiation alarm

which the radiation detector updates each second with the spectra and count rate

measurements. This alarm takes values of 1 or 0 to indicate that there is or is not an

external source of radiation above background present at that time. The purpose of

this research is to find the optimal method for the UAV to decide this alarm value

given the data it is collecting from the radiation detector.
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1.1 Radiation Mapping

The purpose of this thesis is to test alarm methods for use in radiation mapping. De-

tecting radiaton anomalies involves finding a suspected but unknown radiation source

or sources in an area and determining where the radiation hot-spots are. Radiation

mapping is an important part of the response to nuclear disasters and can be used

to find the fallout. It can also be used in response to potential radiation or nuclear

based attacks. This mapping typically produces a visual representation of radiation

data from the detector on a map. These maps are an effective and easy to use tool

to visualize the distribution of radiation in the contaminated areas, and therefore see

which areas are unsafe. Separating signal from background is an important part of

radiation mapping, and this is the central challenge of this research. This is also

the topic of other radiation mapping research. An example would be recent research

done at Berkley using a truck carrying 24 HPGe detectors and a 10x10 array of

10 cm x 10 cm x 5 cm sodium iodide detectors, driving around the San Francisco Bay

area. It was found that the background noise was greater and more spread out than

noise predicted by Poisson statistics, and a simple first order background estimate

was used to overcome this. It was also found that detection rates could be improved

significantly by using a linear interpolation for the estimate, and even better perfor-

mance was found when using measured background data to train the model and fit

the coefficients [1].

There are several different platforms that can be used for radiation mapping, each

with different advantages and disadvantages. These platforms include cars or vans

which have a high payload capacity and power supply and can therefore carry large

detectors, but are limited to roads or other light terrain which is easy to drive in [2].

This is what the group at Berkley used and the van had the capacity to carry more

and larger detectors than what could be used in this research. However it also meant

the areas they were operating in were different than most of the locations where the

UAVs could be tested. Detectors can also be carried by people, which can access

places vehicles can not but puts the operators at increased risk [2]. Manned aircraft
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can cover very large search areas and move fast, but usually fly at higher altitude and

the crew can still be put at risk if the radiation levels in the contaminated area are high

[2]. The safest way to map radiation is to use unmanned vehicles, since the operators

can stay a safe distance away from the area. UAV’s can also cover relatively large

areas, though not typically as large as larger manned aircraft, and can fly closer to

the ground where the radioactive contamination is expected to deposit. The radiation

mapping platform selected for the autonomous radiation mapping in this project was

a UAV.

1.1.1 UAV Radiation Mapping

As stated previously, the primary advantage of using a UAV for radiation mapping is

safety since people do not need to go into an area with dangerous levels of radiation.

Some other advantages include the speed and maneuverability of small UAVs and their

ability to fly closer to the ground than conventional manned aircraft [2]. However,

there are a few disadvantages of using a UAV for radiation mapping. One of the

most important current limiting factors on UAVs is battery life. Batteries are heavy

and have a limited supply of power, so the endurance and range of UAVs can be

very limited compared to ground vehicles, human carried detectors, or conventional

aircraft. The UAV used for testing in this project had approximately 20 minutes

of battery life; or approximately enough to transit 3 km then search a 1 km2 area,

complete the mission, and return. If the UAV does not need to return it can transit

6 km, search, then land in place. UAVs also have limited payload capacity, which

limits the weight of the detector. The detector used in this project has a 45 cm3

crystal, weighing about 2 lbs. Most of the UAV test flights have been between 10

to 30 of altitude, because of the solid angle the radiation counts fall with distance

squared so detector efficiency is important to get enough data. A visual representation

of example radiation mapping missions can be found in figure 1-1.
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Figure 1-1: Aerial UAV Radiation Mapping. Including a mapping mission with 2
UAVs searchign an area over 1 km away (left). The other is a smaller scale mapping
test at Briggs Field at MIT in which the contour pattern is more easily visible (right).
Both using real radiation sources of 7.8 mCi 137Cs (right) and a mixed source totalling
approximately 98 mCi of mostly 60Co (left).

1.2 Background Radiation

There is always radiation in any given location from natural and celestial sources.

Most background radiation encountered in this scenario comes from Naturally Oc-

curring Radioactive Material (NORM). Some of the most common and well known

examples of NORM are the uranium and thorium isotopes, products of their decay

chains such as radon, and potassium-40. Background radiation is location depen-

dent, both the count rate and the relative fractions of the sources that make up the

background radiation spectrum can change. Some common examples of background

radiation changing by location are elevated background count rates near buildings

because concrete contains small amounts of uranium, or reduced count rates over

bodies of water.

1.2.1 Radiation Sources of Interest

In addition to understanding the background radiation, it is also crucial to understand

the radiation sources which are being mapped and how they differ from background

radiation. This thesis will focus on a few select isotopes that could be of importance

during a nuclear disaster or attack scenario. 60Co is an isotope that emits two rela-

tively high energy gamma rays on nearly every decay, which makes it a useful isotope

for industrial and research uses. This also means that 60Co could be a plausible con-

taminant from industrial accidents. It could also possibly be used for a crudely made

16



radiological dispersal device (RDD), also known as a ’dirty bomb’. Another isotope

of interest is 137Cs, which is a daughter product of a common fission product of 235U.

This cesium isotope emits a 662 keV gamma. This isotope contributes greatly to the

activity of waste from nuclear reactors. It was widely spread over Eastern and North-

ern Europe during the Chernobyl disaster, contributing greatly to the environmental

and health impacts. Another important fission product and component of fallout is
131I, this isotope is a particularly concerning component of fallout because of its bio-

logical properties which lead to thyroid cancer. The EPA’s list of monitored isotopes

related to nuclear weapons testing include both 137Cs and 131I, but also 241Am and
90Sr [3]. For the purpose of UAV radiation mapping the americium and strontium

isotopes will be difficult to find because at distances of 10 or more meters the low en-

ergy gamma and beta radiation will not stand out much from background. The mean

free path of beta radiation is much less than the minimum altitude a UAV would

reasonably fly at during a search mission. For this reason, americium and strontium

are not among the list of isotopes this thesis will focus on.

1.3 Radiation Detection

1.3.1 CLLBC Detector

All of the experimentation done for this project used a Cs2LiLa(Br,Cl)6, or CLLBC,

scintillation detector from Radiation Monitoring Devices, Inc. (RMD). The crystal

volume of the CLLBC detector used in this project is 45 cm3. CLLBC detectors also

have significantly higher resolution compared to other scintillators such as sodium

iodide detectors, they can achieve better than 3.5 % full width at half maximum

(FWHM) at 662 keV [4]. The density is 4 g/cm3, which is more dense than typical

sodium iodide scintillators. This higher density helps to stop more radiation but the

CLLBC is also still lightweight enough for the UAV [4]. The scintillation light output

is also relatively high at 45 000 photons/MeV, and the detector typically registers

in the range of 9 to 15 cps/µR/h [4]. This translates to background count rates of
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approximately 100 to 150 cps in most locations where data was collected for this

research. RMD uses an array of silcon photomultiplier (SiPM) to collect scintillation

light for further weight reduction.

This detector was selected for the project because of the advantages it provides. It

can detect both gamma and neutron radiation while also having higher light output

and resolution than most other scintillation detectors. The most important con-

straints that influence the choice in radiation detectors are the weight limit for the

UAV and the limited collection time while moving. While the UAV is mapping radi-

ation counts and a full spectrum are recorded every second and this data drives the

search algorithm. A 1 second long measurement has limited counts and statistics so it

important the detector be sensitive and high resolution. Since this detector has high

energy resolution and sensitivity for a scintillator, there are more counts in the peaks

of the energy spectrum so gamma spectroscopy can be used to determine isotope

data. The entire detector assembly which attaches to the UAV weighs approximately

3 pounds.

1.3.2 Counting Statistics

A common and simple method of a radiation alarm is to use the statistical properties

of radioactive decay with the measured counts. Even in a specific area for a time short

relative to the half life of sources where the radiation may be considered "constant",

radiation is still a random process and inherent fluctuations will be seen in the data.

Radioactive decay, and therefore the count rate recorded by a detector follows a

Poisson distribution.

The Poisson distribution is a special case of the binomial distribution described by

equation 1.1. In the Poisson distribution the probability of success can be modelled as

constant and small [5]. In radiation detection this equation describes the probability

of observing a specific number of counts during a measurement.

𝑃 (𝑥) =
𝑥̄𝑥 × 𝑒−𝑥

𝑥!
(1.1)
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An important property of the Poisson distribution is that the standard deviation and

mean are related by 1.2.

𝜎2 = 𝑥̄ (1.2)

This property is useful for experiments because it allows for easy calculations of the

error on count rates when detecting radiation.

Also important is the central limit theorem. This theorem can be applied to

further simplify the Poisson distribution when the mean is sufficiently large. A typical

rule of thumb for sufficiently large is greater than 30[5]. The central limit theorem

applies to any sequence of independent identically distributed random variables with

a common finite mean and variance[6]. The theorem states the convergence to a

standard normal cumulative density function (CDF) for 𝑍𝑛 which is defined in terms

of 𝑛 random variables 𝑋1, 𝑋2, ...𝑋𝑛, the mean 𝜇 and standard deviation 𝜎 by equation

1.3[6].

𝑍𝑛 =
𝑋1 + ... + 𝑋𝑛 − 𝑛× 𝜇

𝜎 ×
√
𝑛

(1.3)

By definition, a Poisson distribution describes a sum of independent binomial random

variables. Therefore if the number of counts is sufficient, then the number of counts

detected is described by a Poisson distribution which the central limit theorem also

applies to. This means a standard normal CDF can also be applied, which simplifies

calculations for the probability of finding a number of counts above or below a specified

number of standard deviations from the mean. This allows the use of standard normal

tables for probability calculations and the well known rule of thumb that in a normal

distribution there is 68 % probability of being within 1 standard deviation of the mean,

95 % for 2 and 99.7 % for 3 standard deviations. When the central limit theorem

applies to a sum of independent identically distributed random variables, the sum

can be treated as what is called a normal approximation, applied to the Poisson

distribution this would be a normal approximation to the Poisson distribution[6].

Assuming the data follows a normal distribution or normal approximation as es-

tablished by the central limit theorem, a Chi-squared test can be performed. The

point of this test is to determine if multiple measurements have fluctuation consis-
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tent with the expected distribution[5]. The Chi-squared parameter, 𝜒2, is defined by

equation 1.4.

𝜒2 =
1

𝑥̄𝑒

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝑥̄𝑒)
2 (1.4)

The reduced Chi-squared parameter, defined as 𝜒2 divided by the degrees of freedom

and can be calculated as the ratio of the sample variance to the mean, can indicate

the data has either too much or too little fluctuation to be from the same Poisson

distribution. If the value is not close to or less than 1 then it does not match a normal

approximation to the Poisson distribution well[5]. The 𝜒2 value and the degrees of

freedom can also be used to calculate the p value. The p value indicates the probability

that a random sample from a true normal approximation to the Poisson distribution

would result in a larger 𝜒2 value than the value calculated from the data[5].

When these properties are applied to measured radiation counts or count rates,

it allows for easy use of statistics as a radiation alarm. If a measurement is several

standard deviations above the previously measured mean count rate in a fixed area,

then it is reasonable to conclude that some external radiation source has entered

the area. In practice this limit is typically set at 3 or 5 standard deviations. This

is a simple, yet powerful tool for stationary radiation monitoring. However it can

be problematic for radiation mapping over large areas because it relies on certain

assumptions that are not necessarily true when the detector is moving. The use of

this simple statistical alarm relies on the assumption of constant mean background

count rate. This assumption is most likely invalid for most realistic search areas, and

the Chi squared test can be used with moving background measurements to prove so.

Background radiation is dependent on the environment and can be higher or lower in

some areas. It could be possible for the UAV to have a false negative in an area of

lower background, or report false positives in an area of higher background than the

location it had previously been moving through.
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Receiver Operating Characteristic Curves

The receiver operating characteristic curve (ROC curve) is another concept that is

important to radiation detection and related to statistics. The ROC curve character-

izes the performance of a detection system by plotting the relationship between the

probability of detecting a relatively weak source and the probability of a false alarm

caused by statistical fluctuations in the background count rate[5]. A well perform-

ing detection and alarm system will have a ROC curve that sharply increases before

hitting an inflection point as close as possible towards the point (1,0) then flattens

out, with an area under the curve as close as possible to 1. It is physically impossible

to get an area under the ROC curve of 1. However the are under the curve can be

used to compare real systems, an area under the ROC curve of closer to 1 indicates

a better detection system.

1.3.3 GADRAS

Gamma Detector Response and Analysis Software (GADRAS) from Sandia National

Laboratory (SNL) has functions that can be used in a radiation mapping scenario

as an alarm. GADRAS isotope ID algorithm can be used for isotope identification

and confidences from an input spectra. The GADRAS function rate-not-norm can

also be used to track the count rate above what is estimated to be background from

NORM[7]. GADRAS isotope ID algorithm is an example of gamma ray spectroscopy,

in which energy information in the spectrum collected by the detector is used to

determine information about the gamma source. This algorithm determines which

isotope(s) match the collected spectra and outputs a numerical confidence indicat-

ing how strong the spectra fits. The GADRAS Stuff-of-Interest (SOI) function was

specifically designed as a radiation search alarm, and has a preset list of isotopes to

search for which can be toggled by the user. SOI returns a value ranging from 0 to 10,

with values of 3 or more indicating a reasonable level of confidence that a radiation

source above background is present[7]. The level of confidence increases with the SOI

value.
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GADRAS can also be used to create computed spectra of a desired source with

a specified detector[8]. Along with some other modelling and simulation capability.

Computed source spectra can be useful when there is no real source of a radionuclide

to measure in the lab or field.
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Chapter 2

Methods

2.1 Data Collection

Developing and determining the efficacy of a radiation alarm requires a large amount

of radiation data to be collected. Both background data and data with radiation

sources were required. The background data was necessary to characterize typical

NORM and to determine the probability of a false positive alarm, or a type I error in

statistical terms. The data with radiation sources was used to create the alarm deci-

sion criteria for the presence of an anomalous radiation source, and also to determine

the type II error rates, or false negative alarms.

2.1.1 Background Measurements

As a standard practice radiation background was measured at the location before

most flight tests and the small scale laboratory experiment. The background count

rates and energy spectra are important information for a few purposes. This data is

necessary to fully analyze the data collected with a radiation source present. This

background data is also helpful in measuring the performance of the radiation alarm

algorithm. Using the background data can help to find performance metrics such as

the type I error rate, how many counts above background the alarm is triggered at,

etc.. It is also important to have background measurements from a wide variety of
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locations to ensure that the algorithm will work in different locations regardless of

the different NORM isotopic abundances encountered in different areas of the world.

In addition to the flight testing locations listed in section 2.1.3, background mea-

surements were also taken in a basement laboratory at MIT, in an apartment in

Cambridge, and while moving through the cities of Boston and Cambridge as de-

scribed in section 2.1.2. Overall the background collection spanned a wide variety

of terrain including open fields, forested areas, desert, and urban environments. The

background data also comes from 3 different states, including Utah. This is useful

since the dose rates from terrestrial radiation can vary widely from location to loca-

tion and the Rocky Mountain region has some of the highest background in the North

American continent [9].

Urban Environment Background

Additional background measurements were done throughout the Boston and Cam-

bridge area. The motivation for these measurements was twofold: longer background

collections while moving were helpful to get accurate type I error rates since the flights

were typically less than 15 minutes and the only long background measurements were

static; also it was desired to have background data from a more complex environment

with more fluctuation in the background count rate. As will be explained later in

the results section, some of the flight test sites were too small and uniform to see

noticeable changes in the background radiation within the search area. One of the

critical goals of the alarm algorithm is for it to work in a large area search up to

1 km2 and to minimize the negative impact of changing background count rates as

the detector moves.

These measurements were done on three dates: the 14th, 17th, and 20th of

September 2021. The measurements on the 14th and 17th were taken while walking.

On the 14th the detector and computer were carried by hand, while on the 17th the

detector and computer were carried in a backpack. The measurement on the 20th

was done with the detector and computer in a backpack while on a bicycle. All three

background measurement routes are depicted in figure 2-1. In total these measure-
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Figure 2-1: Maps of the routes taken through Cambridge and Boston for the back-
ground radiation measurements. In order from the 9/14/2021 measurement (top) to
the 9/20/2021 measurement (bottom).
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ments provided an additional 3 h 5 min 17 s of background radiation data. The routes

went over some areas of higher radiation such as near hospitals and construction, and

areas of lower radiation such as bridges over water. The route taken on the 20th also

passed the MIT research reactor but no elevated count rates were observed in the

vicinity.

2.1.2 Laboratory Experimentation

Experimentation was done in a laboratory setting to provide radiation data for the

design of the alarm in addition to the flight testing. This was done in order to have

more precise and controlled detection conditions than what is possible during flight

testing. In a laboratory, distances from source to detector can be measured and

controlled more easily than when flying a UAV carrying the detector. The distance

also remains constant through the entire measurement while UAVs can drift while

hovering. Also battery is not an issue so the time for the measurements is less

constrained. Two separate experiments were done in the laboratory with small scale

sources, one for 137Cs and one for 60Co. The 137Cs experiment started on December

15th 2021 when a background measurement of approximately 2 h 8 min was taken on

the table in the NW14-069 basement lab where the detector would be placed for all

subsequent measurements. Data collection also took place on December 16th, 17th,

20th, and the final measurements on January 6th 2022.

The materials used for this were the CLLBC detector, a linux computer to run

the ROS commands to operate the detector and record data, a measuring tape, a

thin metal table, a chair, and a 137Cs source. The cesium source was reported as

5 µCi in January 2006, according to the exponential properties of radioactive decay

and the 30.07 half life of 137Cs the source was approximately 3.46 µCi during these

measurements. The source was placed on the chair so that it could be at a similar

height to the detector and the chair could be moved to position the source at various

distances from the detector. The chair where the source was placed was 2.25 in lower

than the table the detector was placed on. Measurements were taken ranging from

directly underneath the detector to a 30 in horizontal distance between the source
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and detector. The total distance from source to detector for each trial can be seen in

either table 3.7 or 3.6 in the results section.

The 60Co experiment took place on March 9th of 2022. It used the same ma-

terials in a similar setup however the vertical distance between detector and source

was changed to 2.75 in from the previous setup. This testing began with a 20 min

background collection followed by three 10 min trials with the source present. The
60Co source was labelled as 0.933 µCi. The source was not labelled with a date but an

estimate based on the count rate, geometry, and detector efficiency gave an activity

of 0.14±0.07 µCi. The three trials were done at vertical distances of 4 in, 6.5 in, and

1.5 in between source and detector in that order. For this isotope the total distance

from source to detector for each trial can be seen in either table 3.8 or 3.5 in the

results section.

2.1.3 Flight Testing

Flight testing locations where radiation data was recorded include Briggs Field on

MIT campus in Cambridge, Massachussetts; a softball field near Laurel, Maryland; a

clearing in a wooded area at Olin College of Engineering in Needham, Massachusetts;

Texas; and a high altitude dessert in Utah. A wide variety of radiation sources were

used in these tests. The MIT testing used two 137Cs sources with activities of 7.8 mCi

and 7.6 mCi, and a 73 mCi 241Am source. The flight test in Maryland used a 85 mCi

60Co source. The testing in Texas used 26 mCi and 8 mCi 137Cs sources. The sources

in Utah included: 73 mCi 60Co, 21 mCi 60Co, 0.5 mCi 60Co, a mixed 0.12 mCi 60Co

and 1.7 mCi 137Cs source, ten 137Cs check sources totalling 0.9 mCi, two 133Ba sources

of 0.3 mCi and 0.29 mCi, 0.18 mCi 252Cf, and 19 mCi depleted uranium. The smaller

sources were not strong enough to be seen individually at the altitude the UAV flew

at so they were all placed together or with the two large 60Co sources. The flight

testing at Olin was only background radiation, no other sources were used. Examples

of some of the maps generated during flight tests can be seen in 1-1.

The 137Cs, 133Ba, and 241Am sources are the most useful for determining the

function of the alarm in a fallout or nuclear waste scenario. Although the barium
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sources were small and both barium and americium are more difficult to detect when

flying because of their decay methods as described in section 1.2.1. However, the
60Co sources were also consistently detected and could be a plausible contaminant in

a radiation dispersion device or industrial accident.

2.2 Data Analysis

2.2.1 Chi Squared Test For Poisson Distribution

An important assumption in the process creating some of the alarm methods was that

traditional Poisson counting statistics were not valid for solving this problem because

there would be more fluctuation in background count rates while moving across the

search area. It is assumed that Poisson statistics should only be valid in a stationary

location with no changes to the radiation sources present during the measurement.

However, it is important to test this assumption with data. The Chi Squared test

as described in section 1.3.2 by equation 1.4 was applied to both moving background

data and data from the lab experiment. The goal of performing the Chi squared test

was to verify that the assumption of the count rate being a normal approximation to

a Poisson distribution was valid for the count rate in a static controlled environment

but invalid when the UAV is performing a realistic radiation mapping mission. The

reduced Chi-squared parameter was calculated for simplicity.

2.2.2 Spectra Data and Plotting

The spectra data is recorded from the detector by a ROS (Robot Operating System)

code developed by engineers at The Charles Stark Draper Laboratory, Inc. to allow

the UAV computer to communicate with both the detector and the flight controller.

The data is initially recorded in a rosbag format, the rosbag message containing the

spectra data can then be wrote into a comma-seperated values (csv) file format to

be more easily handled using a computer with Windows operating system. A series

of various python scripts were written to read the spectra data from these csv files,

28



perform analysis, and write pertinent output files.

One python script was created to read the spectra data from the csv in the original

format and reformat the data to write a file following the N42 file format standard.

This was necessary for collaboration between The Charles Stark Draper Laboratory,

Inc. and Sandia National Labs so that the data was in a format used at Sandia. The

N42 file format also allowed the use of GADRAS to plot spectra and count rate time

histories from collected data, GADRAS was used to produce many of these plots.

However, the plots related to the alarm methods and spectra plots displaying the

energy bin setup were created in python.

2.2.3 ROC Curves

ROC curves were generated from the detector data. This was done in python by

reading the spectra data from two excel files, one was a background measurement

and the other was a measurement with a specific source at a certain distance. Both

the files were from the same location for each ROC curve generated. A loop was

used to iterate through thresholds to generate a false alarm rate from the background

data and probability of detection from the radiation source data. These rates are

calculated by finding the proportion of all one second measurement windows which

fell above or below the threshold in both files respectively. The false alarm rate and

probability of detection for each threshold make up the points that were used to

plot the ROC curves. The integrals of the ROC curves were approximated using a

trapezoidal sum numerical approach with the data points used to plot the curves.

The results of the ROC curves and areas under the curves were used to optimize the

alarm methods and thresholds.

An additional complication needed to be addressed when creating ROC curves

from flight data. During the flight testing the distance between the source and de-

tector changes rapidly, unlike in a stationary laboratory environment. However, to

make a proper ROC curve the data used to make it must have the same source in the

same location. Within the same data file from flight testing the source is the same

and only the distance to the source changes. To resolve this a check was added to the
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python coding so that when generating the probability of detection and false alarm

rates, only the measurements taken within a tolerance of a specified input distance

would be used. This gives a collection of data points which are approximately the

same distance to the source to use to create the ROC curve. The distance data was

calculated in python using the Pythagorean theorem with three inputs: GPS data

taken by the GPS on the UAV when in flight, GPS location of the source recorded

when the tests were set up, and altitude data from the UAV.

2.2.4 Energy Bin and Alarm Methodology

Analysis of the spectra data from the flight testing done in April of 2021 in Texas lead

to the use of energy bins to analyze spectra data and an alarm method based on that.

The idea was to take advantage of the differences in the energy spectrum of typical

background and the sources used in flight testing. NORM and 60Co or 137Cs clearly

have very different energy spectra, the goal was to find those differences in a 1 second

measurement. A typical spectra from a 1 s measurement has very limited counts in

each channel, making it difficult to distinguish peaks and other features important

to gamma spectroscopy. Statistical analysis techniques can be used to overcome this

challenge and find the small differences in the spectra data. The initial idea was to

divide the spectra into 8 energy bins which were all an equal number of channels

wide.

This model of 8 energy bins each 128 channels wide was a starting point for

developing other alarm methods based on energy bins because it was simple, easy to

implement, and also gave a reliable indication of whether a flight had an anomalous

radiation source. The bins were made wide since in a 1 second measurement the

number of counts in any specific channel is typically very small. A count rate for

each bin was found by summing the counts in every channel. The data was then

analyzed both by number of counts in each bin and also the proportion of the total

counts in each bin. A visual depiction of what the division of the spectra into these

8 bins can be seen in 2-2. The alarm was created from the results of statistical

analysis on the energy bins. Two different alarm methods based on the energy bins
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Figure 2-2: Energy spectrum displaying the division of the spectrum into 8 bins, the
alternating red and blue regions are the bins. This spectrum data comes from a 30
minute measurement of a 3.46 µCi 137Cs source at a distance of 18.7 cm.

were attempted. The first relies on the fraction of total counts found in the lowest

energy bin. Below a certain threshold percentage, the alarm is triggered to indicate

the detection of an anomalous radiation source. The second method uses the total

counts in each of the bins beyond the lowest energy bin. This was done assuming

that counts in these higher energy bins would be less likely to come from background

because of observations in the data. Counts above a certain threshold in a bin that

is not the lowest energy bin trigger the alarm.

It was recognized that the 8 energy bin alarm method was overly simplistic and not

optimized to solve the problem of detecting the isotopes of interest. In an attempt

to take advantage of knowledge about the isotopes, a new method was created by

reducing the number of bins to 2 and centering the bins around the full energy peaks

of the gamma rays emitted by 60Co or 137Cs. These were selected as the primary

isotopes of interest for reasons explained in section 1.2.1, but also because all of the

measurements used either of the two isotopes. Based on the typical energy calibration

of the detector and the resolution, capturing the full peak reliably within the bins

required the cesium bin to be channels 168 to 228 and the cobalt bin to be channels
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340 to 440, this can be seen in 2-3. The 60Co bin was set to be wide enough to include

both the 1332 keV and 1173 keV peaks. These bin centers approximately translate

to the energies for the cesium and cobalt peaks because the gain of the detector is

3372 keV over 1024 channels. The energy calibration has slight deviations for each

measurement but the gain of the detector stays the same.
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Figure 2-3: Energy spectrum displaying the 2 full peak energy bin setup, the red
region is the cesium bin and the orange is the cobalt bin. The spectrum data on
the top comes from a flight test with 26 mCi and 8 mCi 137Cs sources, the spectrum
on the bottom comes from a flight test with a 85 mCi 60Co. Both flights were at an
altitude of 10 m.
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Figure 2-4: Energy spectrum displaying the energy bins from 0 to the full energy
peak, the red region is the bin. The top graph displays the cesium bin in red and the
second displays the cobalt bin in orange. The spectrum data on the top comes from
a flight test with 26 mCi and 8 mCi 137Cs sources, the spectrum on the bottom comes
from a flight test with a 85 mCi 60Co. Both flights were at an altitude of 10 m.

One major flaw of the previous 2 bin method is that it only uses a small fraction

of the spectra data near the full energy peaks. This would miss other significant

features of the spectrum such as the Compton continuum. With the UAV being tens

of meters from the source there are non-negligible interactions between the gamma

rays and air, meaning more counts will be found in the Compton continuum and less

33



in the full energy peak. For example at a distance of 50 m only about half of 137Cs

gamma rays are completely unattenuated. To address this an additional change to the

previous 2 bin method created a third version of the energy bin alarm method. For

this version the cesium and cobalt bins were expanded to include the entire Compton

continuum and the full energy peak, but none of the high energy background above

the full energy peak. For cesium this is channels 0 to 228 and for cobalt channels

0 to 440, this is displayed in 2-4. These three different energy bin alarm methods

would be compared to each other and a more basic full spectrum count rate counting

statistics approach.

All of the collected data was used to determine the thresholds and to evaluated

the performance of the different alarm methods. First, the ROC curves and the area

under the curve were used to compare the different methods in the same scenarios

in order to determine which alarm method is best. Once the optimal method was

selected, the evaluation of performance included the type I error probability and the

distance from a known source that the alarm would reliably trigger at. The thresholds

were decided after analysis of the ROC curve data.

2.3 Computed Spectra

The isotope 131I was considered to be a possible isotope of interest for the UAV

radiation mapping mission because of its abundance in fallout and well known health

risks. However, this source was not available for any of the flight testing or the lab

experiment. Therefore, computed spectra data from GADRAS was generated for 131I.

Simulated data was used to demonstrate how these alarm methods could be applied

to iodine or other isotopes of interest. Though the lack of any real flight data means

that the performance in a realistic scenario is not as well understood as for 60Co and
137Cs. The majority of analysis was based on collected cesium and cobalt data from

flights and the lab. A computed spectra was also made for cesium in order to compare

to real data and determine how well the real and computed spectra match. For the

iodine spectrum, the bin for the primary full energy peak at 364 keV was channels 100
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to 120, the bin containing the Compton continuum and peak was channels 0 to 120.
131I also emits two other gamma energies but the 364 keV gamma is produced over

ten times as frequently as the other energies, this peak was also the most prominent

in the computed spectra.
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Chapter 3

Results

3.1 Chi Squared Test Results

The Chi squared test results are displayed in tables 3.1 and 3.2. The values of the

reduced Chi squared parameter indicate that the data collected during the moving

urban background testing could not possibly be from the same normal approximation

to the Poisson distribution. This fact is even obvious in the large discrepency between

the observed standard deviation and the theoretical standard deviation of a Poisson

distribution with the observed mean, the measured data had much too high variance.

This finding is consistent with what was observed in previous studies such as[1]. This

is also seen in the p values which are approximately zero. This was expected, since

the background count rate distribution should be changing gradually while moving.

Also as expected the data collected during the different trials of the lab experiment

and all static background measurements were each found to be consistent with data

from a the expected distribution.

The most interesting finding in the results is that some test flights for background

radiation were found to not violate the Chi squared test. As seen in table 3.2, two

of the flights had p values which would not be statistically significant to reject the

null hypothesis, and another flight was close to the borderline case at 0.022. This is

assuming the common practice of statistically significant referring to 𝑝 < 0.05. These

background flights with higher p values tended to be in small and relatively uniform
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Table 3.1: Results of the Chi-squared test for a Poisson distribution for the the
background measurements collected across the Cambridge-Boston area, listed by date
of collection. Maps of the corresponding routes can be found in figure 2-1. P values
below 0.00001 are rounded to 0.

Date Total Time (s) Mean Standard deviation 𝜎 if Poisson Reduced 𝜒2 p Value
14-Sep 5071 105 24.98147 10.235263 5.957144576 0
17-Sep 2330 105 23.31467 10.243935 5.179941082 0
20-Sep 3716 103 27.00457 10.126102 7.111969621 0

Table 3.2: Results of the Chi-squared test for a Poisson distribution for various back-
ground flights. P values below 0.00001 are rounded to 0.

Location Total Time (s) Mean Standard Deviation 𝜎 if Poisson Reduced 𝜒2 p Value
Maryland 443 106 10.78666 10.303739 1.09593449 0.080
MIT 1 81 108 9.896002 10.405957 0.904389465 0.716
MIT 2 140 116 12.07543 10.773314 1.256338077 0.022
Texas 1030 87.5 12.10957 9.352327 1.676556248 0.000
Utah 160 107 12.12256 10.360683 1.369027675 0.001

areas such as the softball field in Maryland, or MIT Briggs Field. The results for

these specific flights suggest that the variation found in the data was not too high

compared to what would be expected in data from a single normal approximation

to the Poisson distribution. This result seems surprising at first since it is expected

that the background distribution should be changing as the UAV moves. However,

it does make sense for a few reasons. First, these flight testing areas were small, and

relatively uniform. The background distribution is unlikely to change much when

moving from one end of a soccer field to another. Also in general the changes in

background levels are typically very gradual, abrupt sharp changes are usually rare

or unnatural. The sharp changes in the urban background seem to be unique to that

more challenging and complex environment.

3.2 Bin Analysis and Alarm Results

3.2.1 ROC Curves
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Figure 3-1: ROC curves for all of the alarm methods attempted, and the hypothetical
random line for reference. The top ROC curve uses data collected 76.4 cm from a
3.46 µCi137Cs source. The curve on the bottom was measured 17.9 cm from a 0.14 µCi
60Co source.

The ROC curve analysis indicated that the most sensitive alarm design is to use

the two bins from 0 to the full energy peak of the target isotopes of cobalt and cesium.

This method maximized the integral under the ROC curve for all curves generated

regardless of isotope or location. This is slightly more sensitive than using the full

spectrum, which goes approximately from 0 to 3300 keV. This is because high energy

background is cut out while retaining all data coming from the cobalt or cesium
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source(s). ROC curves from a laboratory environment can be seen in 3-1 and curves

made from flight test data can be seen in 3-2. A few extra steps were involved in

making the ROC curves from flight test data, and the curves in 3-2 were plotted

using only the data points that were collected at a distance of 100±2 m from the

source. The two bins capturing only the cesium and cobalt peak energies performed

worse, and the gap was wider when using flight data. This makes sense since in the

flight testing the distance from the source is much larger, giving more opportunity

for attenuation in air which would cause more of the spectrum to be concentrated

in the Compton continuum. The eight bin method also had worse performance than

the two bins which captured the entire Compton continuum and full energy peak,

as expected. Surprisingly the eight bin method had comparable ROC curve results

to the two bins capturing only the full energy peak. Thresholds based off ratios of

energy bins proved to be inferior to count based thresholds by a significant margin

in most cases. The alarm setup with the best ROC curve results will be the focus of

the rest of the analysis.
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Figure 3-2: ROC curves created from flight test data, only the full spectrum, and
2 bin methods were plotted. The ROC curve uses data collected from a flight at
25 m altitude with several sources placed together totalling approximately 98 mCi of
mostly 60Co. The curve was made with data selected to be approximately 110 m from
the source.
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3.2.2 Type I Error Rates

With the selected alarm method described in the previous section, the type I error

rates were determined. This was done by finding the percentage of individual 1 s

measurements during the total measurement time during which the alarm was trig-

gered for several background measurements. The threshold selected for this analysis

was 3𝜎 over the mean background counts in either bin. The means and standard

deviations used for this can be found in 3.3 for several background flights in various

locations, and in 3.4 for the urban background measurements. False alarm rates were

also calculated for the static lab background measurements, the means and standard

deviations for every trial of those two experiments are in 3.5 and 3.6.

Table 3.3: Statistical analysis summary for the counts found in each energy bin for
the UAV flights measuring background at various locations. The background data
from Utah was not a dedicated background flight, but data selected from a long flight
during transit over an area far from any sources.

Location Cs Bin Co Bin Cs Bin Co Bin Cs Bin Co Bin Cs Bin Co Bin
Mean Mean Standard Deviation Standard Deviation 1 Percentile 1 Percentile 99 percentile 99 percentile

Maryland 97.6 103.1 10.5 10.6 75 78 124 129
MIT 1 100.4 105.8 9.2 9.7 81 86 122 130
MIT 2 107.9 113.1 11.6 11.9 82 85 135 140
Texas 79.3 84.6 11.3 11.8 55 60 105 112
Utah 96.8 103.5 11.2 11.8 73 81 123 130

Table 3.4: Statistical analysis summary for the counts found in each energy bin for
the background measurements collected across the Cambridge-Boston area, listed by
date of collection. Maps of the corresponding routes can be found in figure 2-1.
Date Cs Bin Co Bin Cs Bin Co Bin Cs Bin Co Bin Cs Bin Co Bin

Mean Mean Standard Deviation Standard Deviation 1 Percentile 1 Percentile 99 percentile 99 percentile
14-Sep 94.4 101.3 81.0 81.3 41 45 160 172
17-Sep 95.4 102.2 21.8 22.9 62 67 171 181
20-Sep 95.2 102.2 23.4 24.6 49 54 174 184

Table 3.5: Statistical analysis summary for the counts found in each energy bin for
the experiment in the MIT laboratory with a 0.14±0.07 µCi 60Co source.

Trial Distance to Source (cm) Cs Bin Co Bin Cs Bin Co Bin Cs Bin Co Bin Cs Bin Co Bin
Mean Mean Standard Deviation Standard Deviation 1 Percentile 1 Percentile 99 percentile 99 percentile

Background N/A 116.8 125.5 10.6 11.1 91 99 142 151
1 2.5 150.4 178.7 12.1 13.2 125 150 183 212
2 5.1 132.5 150.9 11.1 12.0 110 123 159 180
3 7.6 183.7 232.5 14.4 16.0 153 197 219 274
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Table 3.6: Statistical analysis summary for the counts found in each energy bin for
measurements from the MIT laboratory with a 3.46 µCi 137Cs source.

Trial Distance to Source (cm) Cs Bin Co Bin Cs Bin Co Bin Cs Bin Co Bin Cs Bin Co Bin
Mean Mean Standard Deviation Standard Deviation 1 Percentile 1 Percentile 99 percentile 99 percentile

Background N/A 115.5 124.0 10.8 11.2 91 99 142 151
1 5.7 1316.9 1327.9 36.5 36.7 1237 1247 1397 1407
2 5.9 942.2 951.8 29.5 29.6 872 883 1015 1025
3 6.3 757.9 767.0 26.6 26.8 700 709 819 828
4 6.9 631.3 640.1 24.1 24.4 577 586 688 699
5 7.6 557.0 565.7 23.6 23.8 505 513 611 622
6 8.5 470.0 478.6 22.2 22.4 522 532 420 429
7 9.5 407.0 415.6 20.6 20.7 457 466 361 369
8 10.6 378.6 387.0 20.4 20.7 330 338 426 436
9 11.7 338.7 347.2 18.1 18.4 299 306 383 391
10 12.8 306.7 315.5 17.6 18.0 267 274 350 360
11 13.9 279.6 288.3 16.5 16.7 241 249 318 326
12 15.1 263.0 271.8 15.5 15.8 229 237 299 308
13 16.3 245.2 253.9 15.2 15.4 210 220 279 290
14 17.5 232.5 241.2 15.2 15.6 198 205 268 278
15 18.7 217.4 225.9 14.7 14.9 183 192 252 260
16 19.9 211.7 220.4 14.5 14.9 179 188 246 257
17 21.1 198.7 207.5 14.1 14.4 168 176 232 241
18 23.6 188.6 197.5 13.6 14.0 157 164 222 231
19 26.0 175.3 184.1 13.0 13.4 146 154 205 215
20 28.5 167.4 176.1 12.9 13.2 137 146 196 207
21 31.0 161.9 170.7 12.8 13.2 134 142 191 201
22 38.5 148.8 157.6 12.2 12.6 122 130 177 187
23 46.1 140.8 149.7 11.6 11.9 116 124 168 177
24 53.6 134.6 143.3 11.6 12.0 109 117 164 173
25 61.2 132.2 141.0 11.5 11.9 106 113 160 169
26 36.0 153.6 162.2 12.7 13.0 126 133 185 195
27 33.5 157.0 165.6 12.6 12.9 128 135 186 196
28 41.0 143.9 152.9 12.2 12.5 116 124 173 184
29 43.6 142.4 151.2 11.7 12.1 117 124 170 180
30 76.4 127.0 135.8 11.2 11.7 101 109 154 164

The false positive rates, determined as described in the previous paragraph, were

very low in the laboratory data. As seen in tables 3.7 and 3.8, the type I error rates

for both experiments were in agreement at just over 3 per 1000. The probabilities of

false alarm were more inconsistent with flight data, shown in table 3.9. Some flights

had no false alarms, some had similar false alarm rates to lab data. Interestingly,

two background flights at MIT Briggs field on the same day gave very different false

alarm rates. One of the flights had no false alarms while the other appeared to

have an exceptionally high false alarm rate of 1.23%, making it an outlier point

in the background flight data. An important note is that this flight was only 81 s

and there was a single false alarm. A weighted average of both MIT background

flights accounting for the different duration of each flight gives a reasonable false

alarm rate of 0.45%. The median background flight had a false alarm rate of only

0.19%. Alternatively, the background measurements collected walking and biking

across Boston and Cambridge did tend to produce significantly higher false alarm

rates than the lab and flight data, and this was not merely a product of short detection

times. These false alarm rates are in table 3.10. The higher false alarm rates in the
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larger and more complex areas were expected, and are in agreement with the increased

variability in background count rates found in the Chi squared test analysis. The

September 14th measurement only had a low false alarm rate because of the higher

observed standard deviations in the counts in the bins.

Table 3.7: Alarm rates from the MIT laboratory with a 3.46 µCi 137Cs source.
Trial Distance to Source (cm) Alarm Rate (%)

Background N/A 0.33%
1 5.7 100.00%
2 5.9 100.00%
3 6.3 100.00%
4 6.9 100.00%
5 7.6 100.00%
6 8.5 100.00%
7 9.5 100.00%
8 10.6 100.00%
9 11.7 100.00%
10 12.8 100.00%
11 13.9 100.00%
12 15.1 100.00%
13 16.3 100.00%
14 17.5 100.00%
15 18.7 100.00%
16 19.9 100.00%
17 21.1 100.00%
18 23.6 99.89%
19 26.0 98.75%
20 28.5 94.09%
21 31.0 87.80%
22 38.5 56.17%
23 46.1 30.36%
24 53.6 14.99%
25 61.2 10.32%
26 36.0 69.32%
27 33.5 79.44%
28 41.0 39.61%
29 43.6 35.43%
30 76.4 4.27%
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Table 3.8: Alarm rates for the experiment in the MIT laboratory with a 0.14±0.07 µCi
60Co source.
Trial Distance to Source (cm) Alarm Rate (%)
Background N/A 0.34%
1 4.9 94.19%
2 7.1 26.28%
3 3.1 100.00%

Table 3.9: False alarm rates for the UAV flights measuring background at various
locations. The background data from Utah was not a dedicated background flight,
but data selected from a long flight during transit over an area far from any sources.

Location Alarm Rate (%)
Maryland 0.45%
MIT 1 1.23%
MIT 2 0.00%
Texas 0.19%
Utah 0.00%

Table 3.10: False alarm rates for the background measurements collected across the
Cambridge-Boston area, listed by date of collection. Maps of the corresponding routes
can be found in figure 2-1.
Date Alarm Rate (%)
14-Sep 0.05%
17-Sep 1.59%
20-Sep 1.40%

3.2.3 Distance from Source of Alarm

The distances from the radiation source(s) of each 1 s measurement were calculated

for several flights using the method described in section 2.2.3. This could not be done

for all data files because certain criteria had to be met. The flights for which these

distance calculations were made needed: GPS data saved from the flight, altitude

data saved in the data files, a recorded GPS location for the radiation source(s), and

the rows of GPS data needed to be matched with the rows of spectrum data. Most

collected flight data met at least one or a few of these requirements but only eleven

flights met all of them. The thresholds used for this were the same as what was used

in the false alarm calculations for the same locations. This section will focus on the

flight testing data, however in 3.8 and 3.7 reported alarm rates at specified distances
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from the lab data are reported. The lab data is more controlled and precise, but less

realistic for a UAV radiation mapping mission.

In both flights with the single 85 mCi cobalt source, the alarm was triggered

during every second of both flights. This is because of the large source and small

area, with the UAV taking off only about 71 m horizontal distance from the source.

The maximum total distance between source and detector was 72 m in the first flight

and 74 m in the second. The other flights gave more interesting information since the

UAV was able to start far enough away from the source to not immediately trigger

the alarm. A 1207 s long test flight in Utah using just the 73 mCi Cobalt source was

able to still alarm at a nearly 75% rate at distances of over 150 m from the source.

This flight also had only one measurement closer than 130 m to the source that did

not alarm. Two other flights in Utah used all of the gamma sources piled together

totalling approximately 98 mCi of mostly 60Co. In the flight at 15 m altitude the

alarm rate was 100% for all data point collected less than 147 m from the source. The

flight at 25 m with the same source had a 91% alarm rate in the 70 data points that

were 110±2 m from the source. One of the test flights in Texas was done with only

the 26 mCi cesium source, the alarm rate was 7 out of 9 for data points between 40

and 52 m from the source and a few alarms were even observed at distances just over

55 m.

Some of the flight were more complicated with sources in multiple locations. This

required additional check to ensure that the distances for the alarm values correspond

correctly to the source that most likely caused the alarm. For example, if the detector

is 30 m away from two sources of relatively equal strength they cannot be easily

isolated, but if the detector is 20 m from an 8 mCi source and 100 m from a 15 mCi

source it can be assumed which source caused the alarm. This also depends on the

relative strength of the sources. In the Texas flights it was found that the probability

of detection was over 90% for the 8 mCi cesium source at distances between 20 and

24 m in the setup with the sources most isolated to ensure no overlap. While in the

same flight the alarm was successfully triggered for every measurement under 52 m

from the larger 26 mCi cesium source. During the test in Utah a few flights were done
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with the 73 mCi cobalt source placed 60 m from the 21 mCi cobalt source, then all

the smaller sources totalling about 3.8 mCi placed another 60 m further down. The

lower altitude UAV was able to achieve an 80% detection rate between 148 to 158 m

from the largest source. Neither UAV flew close enough to the smallest source to find

it, never coming within 40 m of it. Since the middle source was only 60 m from the

largest source and that was well within the range where the largest source could be

detected, a detection range for this source could not be separated out of the data.

These results support that this alarm method could be sensitive enough for practical

use in UAV radiation mapping.

3.3 Computed Spectra Results

Before analysis was done on computed 131I specrtra data, real data was checked

against computed data to determine how well the spectra matched. Trial 21 of the

cesium experiment, a setup with the source 31 cm from the detector, was used to

compare real and computed data. A computed spectrum was created with the same

source strength and distance as this measurement, and approximately the same mea-

surement time of around 30 min. The computed and real spectra for the same cesium

source at the same distance were significantly different, as seen in figure 3-3. The

computed data had a higher count rate and the full energy peak was much higher.

This could be due to some differences between the model and real detector setup that

give higher detection efficiency in the simulation, such as the plastic casing around

the detector or the metal stand the detector was on during data collection. The sim-

ulated data does not appear to be interchangeable with the measured data. In this

case simulated and real data should not be combined, and simulated data should not

be used to estimate real detection distances or false alarm rates.
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Figure 3-3: Spectra plots with background subtracted for real experimental (top) and
computed (bottom) data. Both spectra are approximately 30 min at 31 cm from a
3.46 µCi137Cs source. Count rates above background and live time for the measure-
ments are in the plots, the y axes are different scales because the simulated data has
a much higher 662 keV peak.

However, computed iodine data could still provide evidence that the alarm meth-

ods described and analyzed earlier could be applied with other isotopes or even with

different detector responses that what was used in the data collection. An ROC curve

was made using computed iodine data and computed background data, seen in 3-4.

The general observations from this plot were the same as those made from the real
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data despite the differences in the spectra data, the best performance came from us-

ing the full energy peak and Compton continuum for the isotopes of interest while

ignoring higher energy background.
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Figure 3-4: ROC curves created from computed data in GADRAS, only the full
spectrum, full energy peak bin, and Compton continuum and full energy peak bin
were included. The data was simulated as 10 m from a 100 µCi 131I source.
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Chapter 4

Conclusions

As stated in the previous section, the most sensitive alarm method tested was to

use a bin for each isotope of interest containing all of the spectrum channels up

to but not beyond the peak energy. The data suggests that out-performing the

sensitivity of using counting statistics with the full spectrum count rate is difficult.

The recommended implementation of this would be to begin a radiation mapping

mission by collecting background data either while hovering after takeoff or during

transit to the search area for at least a minute. Then using a 3𝜎 threshold on the

background bins as the alarm for the remainder of the flight. Data analysis earlier

in this thesis demonstrates that this method maximizes sensitivity and would work

without issue in many UAV radiation mapping scenarios. In five of the six background

flights analyzed the false alarm rate is 0.45% or less, translating to only approximately

5 false alarms over a 20 min flight. A flight of that length is approaching the limit

of battery life for the UAV’s used in this setup. The median background flight false

alarm rate of 0.19% translates to only approximately 2 false alarms over a 20 min

flight. This method also maximized the area under the ROC curve, meaning it is

more sensitive than other methods. Using this method to determine the threshold

worked with data from the Utah flight testing, indicating that a prior background

collection flight over the search area is not necessary for this to work. The data used

as the background from the Utah testing is from an approximately 1 km transit. So

this example also supports that this alarm method could still work for large search
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areas and long transits to the search area.

However, there are some limits to this approach. Searching in more complex

environments such as urban areas could result in significantly increased rates of type

I errors, type II errors, or both. There are a few ways to mitigate this issue. It

could be accounted for in the mission planning and deployment of radiation mapping

UAVs with this alarm method to not be used in cities. Instead it would be better

to use a different alarm algorithm for these locations such as one of the GADRAS

functions or the background subtracting method described by [1]. Alternatively, the

alarm method of energy bins containing only the peak energies of isotopes of interest

proved to be much more resistant to changing background levels, although it was

less sensitive. Another potential issue is this approach is also relatively simple and

basic, although that could also help by reducing the computing power required for the

alarm. Also, the method used for this thesis focuses only on a small list of isotopes.

While the method could be applied to other isotopes of interest, it does require some

assumptions or prior knowledge about what sources are being searched for in order

to be most effective. This is not necessarily always a bad assumption, but situations

could arise in which this is a disadvantage.

These findings can be useful for radiation mapping using autonomous vehicles,

which is an important tool in the response to a nuclear attack or disaster. In the

future, more research on the topic could expand the list of isotopes this method has

been tested with. Also, since all of the data analysis was done by post processing

data of flights, it would be advisable to observe the results of an autonomous flight

test using this alarm method before implementing it. However, based on the analysis

done so far it can be concluded that this method could have sufficient performance

for UAV radiation mapping as is. The simulated data also suggests that this method

could work with other isotopes or potentially even other detectors than what was used

in the tests done for this research. With additional testing and verification, the alarm

method selected in this thesis could be serviceable for practical radiation mapping

missions.
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