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Abstract

Spoken language is a rich medium of communication that combines words with various
information about emotions, feelings, and excitation through modulations in tone and
pitch. In discourse, this allows for maintaining a human element that is lacking in
many other channels, such as writing or social media. However, a person’s voice
is a distinct biomarker, and there exist many settings in which it may need to be
anonymized in order to protect the speaker’s identity.

This thesis presents a framework for performing speaker anonymization using
voice conversion (VC) methods. We first introduce a model for performing end-to-
end zero-shot voice conversion by modifying the architecture of a neural vocoder. To
the best of our knowledge, this is one of the first end-to-end approaches for zero-
shot VC that has ever been proposed. Our model is able to maintain the clarity
and intelligibility of transformed speech very well while also achieving good voice
style transfer performance—an improvement over current state-of-the-art VC models,
which exhibit a trade-off between audio quality and accurate voice style transfer.

Next, we present a method for extending targeted voice conversion to un-targeted
voice anonymization. This is done by fitting a Gaussian mixture model (GMM) to the
latent space of speaker embeddings that are fed into the VC model, and then sampling
from the GMM to select the target voice for anonymization. This obviates the need
for explicitly specifying a target speaker when performing VC-based anonymization.

We evaluate both our voice conversion and anonymization methods on publicly
available data as well as real-world audio from conversations on the Local Voices
Network (LVN) platform, demonstrating their applicability to “in-the-wild” settings.
Finally, we provide a discussion of this work’s potential applications and the ethical
considerations of using voice conversion technologies in society.

Thesis Advisor: Deb Roy
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Chapter 1

Introduction

The past decade has seen the massive growth of speech technology-based services

that many people use every day, such as personal voice assistants, Internet Protocol

telephony, and social audio platforms. Many of these developments have been driven

by rapid advances in algorithms for speech and audio-related tasks such as coding,

recognition, and synthesis, which have in turn been spurred by advances in machine

learning and the increased availability of massive datasets. The demand for these

services is not surprising given the qualities of speech, which is a uniquely human

mode of communication that conveys both linguistic and paralinguistic information

such as emotion, emphasis, contrast, and focus [103]. Speech can also encode other

elements of self-expression that may not be encoded by grammar or vocabulary, such

as irony or sarcasm [30]. This makes it a much richer medium compared to other

communication modalities such as written text.

However, there have been growing concerns in recent years about data privacy,

especially in light of emerging problems with data ownership and violation of user

trust by companies [31, 34]. This has led to increased demands for technologies that

can preserve the privacy of various types of data. In the context of speech, which

encodes a speaker’s vocal identity, this raises interesting challenges for developing

methods that can anonymize the identities of speakers.

Although there are several established methods for anonymizing speech, most of

them, especially ones used commonly in media, result in unnatural, robotic voices
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that lose the expressivity and prosodic elements of the original speech. They can

also result in the original utterances becoming garbled or less intelligible, which often

means that subtitles must be used to allow listeners to properly understand what is

being said. Moreover, some of these methods have the flaw of being reversible if the

details of the original transformation are known.

One way of tackling the anonymization problem while maintaining naturalness

and expressivity is through the lens of voice conversion (VC): the task of converting

a speaker’s voice to sound like that of another individual while maintaining the lin-

guistic and prosodic content of the original speech [94]. Voice conversion can enable

anonymization by transforming a speaker’s voice to sound like that of someone else.

In recent years, advances in deep learning have led to VC systems that can produce

significantly more realistic and comprehensible converted voices compared to tradi-

tional methods. However, the naturalness, intelligibility, and accuracy of transformed

voices even for state-of-the-art VC models still lags behind that of true speech, es-

pecially in settings where conversion is applied to new speakers that were previously

unseen during model training (i.e., in the zero-shot setting) [86, 83, 124].

In this thesis, we are interested in the problem of anonymizing the voices of arbi-

trary speakers in multi-party conversations, where each speaker may have previously

been unseen by the anonymization model and only a few minutes or seconds of speech

data may be available per speaker. We approach this through the voice conversion

paradigm, with the goal of synthesizing anonymized voices that sound natural and

maintain the intelligibility, expressivity, and prosody of the original speech as much

as possible. These conditions necessitate the development of a novel VC method that

can transform voices with high fidelity in the zero-shot setting.

1.1 Motivation

In spoken language, much of the meaning is determined by context—that is, the

objects or entities which surround a focal communicative event [103]. This means

that the truth or validity of a proposition is determined by commonsense reference to
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experience. Consequently, spoken language tends to convey subjective information,

and an important aspect of it is the establishment of a relationship between the

speaker and the audience [103]. This contrasts with written language, in which there

is a greater emphasis on logical and coherent argument, and most of the meaning is

provided directly by the text itself.

These properties of speech make it an ideal medium for people to share content

such as stories and life experiences. Speech allows a listener to pick up on paralin-

guistic cues that convey the valence of emotional experiences [57, 89], and it has

been shown to communicate human-like mental capacities related to thinking and

feeling [90]. Consequently, listening to someone tell a narrative is often significantly

more powerful and can convey its essence more effectively than reading a written

version or transcript of the same story [58].

1.1.1 The Local Voices Network (LVN)

Motivated by these aspects of spoken dialogue, the Local Voices Network (LVN)1

was established by the non-profit Cortico as a platform for hosting and collecting

community-driven facilitated conversations on various social issues. LVN was created

in order to combat the deterioration of social and institutional trust that has be-

come prevalent in today’s society [44], with the goal of building stronger civic spaces

that can draw out and uplift conversation participants’ life experiences. By creat-

ing channels where people can speak about social issues and listen to others, LVN

conversations are meant to improve communication and understanding across various

social divides. In doing so, they also aim to increase the opportunity for traditionally

underheard communities to make their voices heard on important social issues. The

platform has been successfully deployed in several real-world settings, including in

Madison, Wisconsin in 2020 to elicit public opinion on the selection of a new police

chief [59] and in Boston, Massachusetts in 2021 to draw out important public issues

in the context of the Boston Mayoral Election [60].

Each conversation is led by a trained facilitator, who conducts the flow of the
1https://cortico.ai/platform/
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Figure 1-1: An example conversation recording on the online LVN platform that has
been made available for public listening.

conversation and guides the other participants to share their experiences in relation

to the topic at hand. Most conversations have between 4 to 8 participants and usually

last between 40 to 90 minutes in length. All conversations are recorded, transcribed,

diarized, and uploaded online; often, the conversation data is subsequently shared

with others beyond the initial participant group for more public viewing. In this way,

LVN enables the dissemination of peoples’ voices in a fundamentally human way—by

literally allowing others to listen to them speak. Figure 1-1 shows an example LVN

conversation that has been made available for public viewing on the online platform.

Although LVN conversations are spaces in which participants are meant to be

comfortable sharing their thoughts and experiences honestly, there are still settings in

which they can be reluctant to do so for privacy reasons. These are often situations in
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which a participant may fear retaliation against them for what they say, such as if they

share an opinion that would be perceived as deeply unpopular in their community or

if they speak negatively of a party with the upper hand in a power dynamic. For this

reason, many participants choose to use pseudonyms in LVN conversations. However,

the fact that conversations are recorded and made available to others for listening

means that participants may still be identified if someone recognizes their voice.

An anonymization system that could mask the identities of speakers in LVN con-

versations could have major implications for the content that is shared by participants,

as they could be more willing to share certain stories if they had confidence that they

could not be identified by others. To this end, the primary motivation of this thesis is

to create a speaker anonymization system for speech in LVN conversations. In doing

so, we must take care to preserve the emotion, expressiveness, and intelligibility of the

original speech, which are aspects of spoken language that make LVN so powerful. Of

course, such a system would also have applications that go beyond the LVN platform,

as there are many other contexts in which expression-preserving voice anonymization

can be valuable. These include online social audio platforms, anonymized interviews

in media, and more generally, any setting in which a speaker would like to protect

personal information such as geographical background or ethnicity.

1.2 Contributions

The key contributions of this thesis are as follows:

1. A model for end-to-end zero-shot voice conversion. We propose a novel

approach for end-to-end zero-shot voice conversion that is based on the archi-

tecture of a neural vocoder. To the best of our knowledge, this is one of the first

end-to-end zero-shot VC methods that has ever been proposed. Our model is

able to strike a good balance between maintaining the clarity and intelligibility

of transformed speech while also achieving good voice style transfer perfor-

mance. This contrasts with current state-of-the-art VC models, which we find

to exhibit a trade-off between audio quality and accurate voice style transfer.
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2. A method for extending targeted voice conversion to un-targeted

voice anonymization. We introduce a method that allows for the use of

a voice conversion model to anonymize voices, even when a target speaker is

not specified.

3. Evaluation of the proposed voice anonymization framework on data

from real-world spoken conversations. We apply our voice conversion

and anonymization methods to audio samples from conversations hosted and

recorded on the Local Voices Network, demonstrating their effectiveness and

applicability to “in the wild” audio that contains varying amounts of background

noise and reverberation.

1.3 Outline

The remainder of this thesis is organized as follows:

• Chapter 2 discusses related work on the history and modern state of voice

privacy preservation and voice conversion.

• Chapter 3 describes several key concepts and previous works that serve as foun-

dations for our proposed voice conversion model.

• Chapter 4 describes the architecture and training procedure for our voice con-

version model.

• Chapter 5 describes our method for extending targeted voice conversion to un-

targeted voice anonymization.

• Chapters 6 and 7 present the data sources used for training and evaluation in

this work and the objective and subjective metrics that are used for evaluation.

• Chapter 8 presents the results of using our model to perform voice conversion

and anonymization, as well as performance comparisons against other current

state-of-the-art VC models.
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• Chapter 9 describes several experiments and explorations that were performed

to better understand how our model works.

• Chapter 10 discusses limitations of the present work and directions for future

research.

• Chapter 11 discusses the ethical considerations of using voice conversion tech-

nologies in society.

• Finally, Chapter 12 concludes with a summary of this work and final remarks.

25



26



Chapter 2

Background

In this chapter, we first present related work on voice privacy preservation in various

settings and situate the present work within the greater literature. We then provide

an overview of voice conversion as a task, discussing its theory, history, and some

modern state-of-the-art methods.

2.1 Voice Privacy Preservation

With the rise of data-driven personalized systems in recent years [74], there has been

growing demand for data privacy preservation around the world. Many countries

and regions have enacted legal statutes to enforce the usage and sharing of data.

One notable example is the European Union’s General Data Protection Regulation

(GDPR) [113], which regulates data protection principles when treating, transferring,

or storing personal data. Hence, privacy-preserving data processing has become an

active research area in many domains.

While a legal definition of privacy has yet to be established [66], speech contains

a significant amount of personal information about the speaker that can be disclosed

by various means [67]. For example, it is a distinct biomarker by which a speaker’s

identity can be determined by human listening or automated speaker recognition

systems. In addition, a person’s voice can reveal many facets of their identity, such as

age, gender, ethnic origin, geographical background, and health or emotional state.
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Consequently, there has been a great deal of interest in developing technologies for

speech privacy preservation. These technologies can be used to mask speaker identities

from human listeners [36], but increasingly, there have been efforts to develop systems

that can do the same against automatic speech processing systems such as voice

assistants [87, 2].

2.1.1 Methods

Modern approaches to speech privacy preservation can broadly be classified into four

types: deletion, encryption, distributed learning, and anonymization [106]. Deletion

methods [13, 21] are designed to obfuscate speech so that no information about it

can be recovered; they are primarily meant for ambient sound analysis. Encryption

methods [76, 6, 128] use cryptography to secure the raw data and support compu-

tation upon it in the encrypted domain. They tend to incur significant increases in

computational load and can necessitate the use of special hardware. Decentralized or

federated learning methods aim to train models from distributed data without access-

ing that data directly [51]. However, it has been shown that information about the

original data in federated learning models can be derived by inverting gradients [18],

which raises concerns about potential information leaks.

Speaker anonymization, which is addressed by this thesis, refers to the goal of sup-

pressing the personally identifiable attributes of a speech signal while leaving most

other attributes intact. Compared to the other privacy preservation methods de-

scribed above, anonymization methods tend to be more flexible because they can

selectively suppress or keep unchanged certain speech attributes and be easily inte-

grated into existing speech processing systems. Previous approaches for anonymiza-

tion have included noise addition [25], speech transformation [82, 77], voice conver-

sion [80, 16, 24, 96], and disentangled representation learning [95, 1].
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2.1.2 VoicePrivacy initiative

Recent increased interest in developing solutions for speech privacy preservation mo-

tivated the creation of the VoicePrivacy initiative [106, 107], an enterprise that aims

to foster the development of technologies in this domain. The initiative aims to

bring together a research community in order to formulate specific tasks of inter-

est, develop evaluation methodologies, and benchmark new solutions through a series

of challenges. Specifically, its mission is to “foster progress in the development of

anonymization and pseudonymization solutions which suppress personally identifi-

able information contained within recordings of speech while preserving linguistic

content, paralinguistic attributes, intelligibility and naturalness” [108].

The first VoicePrivacy Challenge [109] was organized in 2020 as part of this ini-

tiative, focusing on the task of voice anonymization, and laid out a set of common

datasets, protocols, and metrics for evaluating anonymization performance of models.

The second iteration of the VoicePrivacy Challenge is to happen later in 2022 [108].

The challenge’s evaluation criteria place large importance on maintaining aspects of

speech that are related to human perception, such as naturalness and intelligibility,

which are evaluated using both objective and subjective metrics. Given the simi-

larities between these criteria and our own, this work largely grounds its evaluation

framework in the methodologies used in the challenge.

2.2 Voice Conversion

It is relatively simple to anonymize speech by modulating voice characteristics using

signal processing techniques. Some basic methods involve altering the frequency spec-

trum to change the perceived pitch of the voice or designing acoustic filters to change

the spectral characteristics of the speech. Many speech anonymization methods to-

day, especially ones popularly used in the media, fall under these categories. However,

these methods often result in robotic, unnatural transformed voices. Because they

are not explicitly designed to retain the comprehensibility of the speech, they can

also necessitate the use of subtitles or captions to allow listeners to understand what
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is being said. Moreover, some of these methods can be reversed if the details of the

original transformation are known.

Therefore, this work approaches speaker anonymization through the perspective

of voice conversion (VC). Voice conversion is the task of converting one’s voice to

sound like that of another person without changing the linguistic or prosodic content

conveyed in the original speech [94]. It belongs to the general field of speech synthesis,

which also includes text-to-speech (TTS), speech vocoding, and the changing of other

speech properties such as emotion and accents. In addition to speaker anonymiza-

tion, VC technology has many other real-life use cases, such as personalized speech

synthesis, communication aids for the speech-impaired, and voice dubbing in movies.

2.2.1 Information in speech

A given speaker can be characterized by three high-level factors [94]: 1) linguis-

tic factors, which are reflected in sentence structure, lexical choice, and idiolect,

2) suprasegmental factors, such as the prosodic characteristics of a speech signal,

and 3) segmental factors related to short-term features, such as the spectrum and

formants. When linguistic content is held constant, the suprasegmental and segmen-

tal factors are the relevant factors that encode information about a speaker’s identity.

Thus, a voice conversion system is expected to convert the suprasegmental factors

and segmental factors of a source speaker to those of a target speaker.

In this work, we take a slightly coarser view of these factors. We refer to the

linguistic information conveyed by a speech utterance as content information. The

suprasegmental and segmental factors are grouped together under pitch (the funda-

mental frequency and rise or fall the pitch contour across syllables), rhythm (the

speed at which a speaker utters combinations of phonemes), and timbre (the voice

characteristics of a speaker that are reflected in formants encapsulated in the fre-

quency components of the spectral envelope). While there has been some research

on disentangling these various components from one another [84, 85], most VC sys-

tems today are only able to disentangle and change the timbre of a speech utterance.

Therefore, we broadly denote the timbre as speaker information and frame the role
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of a VC system as converting the timbre of an utterance to sound like that of another

target individual while maintaining the content, pitch, and rhythm.

2.2.2 Typical pipeline

A typical VC system takes as input a source utterance (from the original speaker)

and a target utterance (from the intended new speaker). The objective is to extract

the content information from the source utterance and combine it with the speaker

information from the target utterance, resulting in a speech signal that corresponds to

the content of the source utterance spoken in the target speaker’s voice. A VC system

usually includes three key modules: speech analysis, mapping, and reconstruction [94].

Figure 2-1 shows a block diagram of the overall pipeline.

The goal of the speech analysis module is to decompose the source utterance

signal into some intermediate representation for effective manipulation or modification

with respect to the acoustic properties of speech. These intermediate representations

often take the form of log magnitude spectrograms taken from the short-time Fourier

transform (STFT), sometimes mapped onto the mel scale.

The core of a VC system is the mapping module, which performs the actual speaker

conversion function. This module performs a transformation on the intermediate rep-

resentation from the speech analysis module, combining the speaker information from

the target utterance with the content information of the source utterance. For exam-

ple, if the input intermediate representation is a log-mel spectrogram, the mapping

module outputs another log-mel spectrogram. The new spectrogram should theoret-

ically correspond to a time domain speech signal where the source utterance is being

spoken in the target speaker’s voice.

Finally, the reconstruction module converts the transformed intermediate features

back into a time domain speech signal. This module can be implemented using

phase reconstruction methods such as the Griffin-Lim algorithm [23], but modern

approaches usually use neural network-based vocoders [73, 81, 47, 35], which are able

to reconstruct speech with much higher fidelity.

Most VC systems specifically address the mapping module, as the other modules
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Figure 2-1: Block diagram of typical voice conversion system.

are either well-established or are significant research domains in their own right.

However, as we will discuss more later, this work proposes an end-to-end VC approach,

which combines the mapping and reconstruction modules together into one model.

This eliminates the need for a separate vocoder and significantly streamlines the

overall pipeline.

2.2.3 Traditional methods

Early research on voice conversion focused on spectrum mapping using parallel train-

ing data, where speech of the same linguistic content is available for both the source

and target speaker. Popular statistical approaches used parametric methods such

as Gaussian mixture models (GMMs) [104] or partial least squares regression [28],

or non-parametric methods such as exemplar-based sparse representation [102, 118].

In this setting, dynamic time warping (DTW) could also be used to align the two

utterances [27]. Other work also explored voice conversion using non-parallel training

data [100, 15]; this is a significantly more challenging setting because of the need to

establish a mapping between non-parallel source and target utterances.

In recent years, advances in deep learning have had a significant impact on voice

conversion research. Not only has deep learning greatly advanced the state-of-the-

art, but it has also transformed the way in which the task itself is framed. Perhaps

the largest boon of deep learning has been the data-driven learning paradigm; by

training on much larger amounts of data than before, VC systems have been able
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to achieve significant improvements in terms of voice quality and similarity to the

target speaker, especially in the non-parallel data setting. Some early deep learning-

based VC systems used architectures such as deep bidirectional LSTMs [99] and

feedforward neural networks with KL-divergence [119]. More recent approaches have

framed the conversion task as a style transfer problem, using variants of generative

adversarial networks (GANs) [32, 40, 41] or vector-quantized variational autoencoders

(VQ-VAEs) [112, 46]. Some methods have also leveraged the latent representations

of automatic speech recognition (ASR) models to extract linguistic features from the

source speech and decompose it into content and speaker information [52, 127].

Many of the voice conversion methods described above are applicable only in

the one-to-one conversion setting; that is, they can only transform one given input

speaker’s voice into one specific target speaker’s voice. While some of these models

can perform conversion with high-fidelity, they require many hours of training data

from each speaker in order to do this [94]. Some more recent methods go beyond this

and are able to perform many-to-many voice conversion [39, 42], in which a model is

able to convert voices to and from multiple speakers that have previously been seen

during training.

2.2.4 Zero-shot VC

However, the setting of interest in this thesis—multi-party conversations with very

little data per speaker—necessitates zero-shot voice conversion, an even more difficult

problem. Here, the VC model must be able to convert voices to and from many

different speakers who may have been previously unseen during training. Usually,

the target speaker’s voice is determined based on some descriptive representation

of that speaker that is extracted from a single utterance. This is usually done by

passing the target utterance through a “speaker encoder” network, which extracts a

vector embedding that contains information about the speaker of that utterance. The

speaker encoder can either be pre-trained on a speaker identification or verification

task or trained jointly along with the rest of the voice conversion network.

Zero-shot voice conversion is challenging, and models that can perform it have
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started to appear in the literature only in recent years. The first model to demon-

strate reasonable performance on the task was AutoVC [86], an autoencoder-based

model that combined a pre-trained speaker encoder with carefully designed dimen-

sionality bottleneck layers to disentangle content information from speaker informa-

tion. Although it was one of the first zero-shot VC methods to be proposed, it is still

quite competitive compared to many newer methods and is perhaps the model that is

most often used for baseline comparisons. AutoVC has also served as the base model

for a range of modifications and improvements, such as the addition of F0 informa-

tion [83], mutual information-based disentangled representation learning [124], and

adversarial voice style mixup for GAN-based training [50]. Other approaches for zero-

shot voice conversion have used a variety of methods for disentangling the content

and speaker information in speech, including adaptive instance normalization [10],

activation function guidance [8], and information perturbation-based training [9].

2.2.5 End-to-end VC

Recently, some VC methods have sought to do away with the analysis-mapping-

reconstruction pipeline and develop models that can be trained in an entirely end-

to-end manner. The core philosophy of end-to-end models is that the modules of a

learning system should be differentiable with respect to all adjustable parameters,

allowing the entire system to be trained as a whole by gradient descent and back-

propagation with respect to some loss [20]. Although end-to-end models have some

limitations, notably with regards to interpretability and modularity, they have be-

come popular in the context of deep learning due to their simplicity, elegance, and

high performance.

In the context of voice conversion (and speech synthesis in general), end-to-end

models are particularly appealing because they do not require a separate vocoder to

synthesize time domain waveforms. VC models that produce spectrograms and rely

on vocoders to synthesize time domain audio can have highly variable performance

depending on the quality of the vocoder. Traditional vocoders such as WORLD [63]

are prone to introducing artifacts such as metallic sounds into their audio. While more
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modern neural vocoders have fewer such issues, they can still generate poor quality

audio if the spectrogram itself has flaws. VC models that generate spectrograms as

an intermediate step are forced to define their training loss functions in the spectrum

domain, which may not always align with human perception of audio once converted

to the time domain. Consequently, many VC models are prone to producing audio

that has artifacts or that sounds muffled due to oversmoothing in the spectrum.

Despite this, little prior work has been done on end-to-end voice conversion. The

first end-to-end voice conversion model to be proposed was Blow [91], a normalizing

flow network for non-parallel, many-to-many, raw-audio voice conversion. However, it

is not able to perform zero-shot conversion, and like many other flow-based networks,

has a very large number of model parameters. To the best of our knowledge, the only

model currently in the literature that can perform end-to-end zero-shot VC is NVC-

Net [68]. NVC-Net consists of a speaker encoder, a content encoder, a generator, and

three discriminators for GAN-based training, all of which are trained jointly from

scratch.

In Chapter 4, we introduce a novel approach for end-to-end voice conversion that

preserves the intelligibility of the converted speech significantly better than current

state-of-the-art VC models, while also achieving comparable or better voice style

transfer accuracy.
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Part II

Modeling
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Chapter 3

Preliminaries

In this chapter, we present preliminaries, concepts, and related work that provide

context for and motivate some of the key design choices in our voice conversion model.

3.1 The Source-Filter Model of Speech Production

In humans, the physical production of speech sounds involves the generation of an

acoustic waveform within the vocal tract, the propagation of that waveform through

the vocal tract, and its release through the speaker’s mouth and nostrils [64]. Figure

3-1 shows a diagram of how speech is physically produced in this manner. There are

two types of production methods:

• Voiced speech, which is generated by the modulation of the airstream leaving

the lungs by periodic opening and closing of vocal folds in the glottis or larynx.

Specifically, the vocal tract is excited by a series of nearly periodic pulses gen-

erated by the vocal cords. This production method is used for vowels and nasal

consonants.

• Unvoiced speech, which is generated by forcing air through a narrow con-

striction of the vocal tract, which creates noisy turbulent airflow at the anterior

end of the constriction. This produces sounds such as fricatives or unvoiced

plosives.
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Figure 3-1: Diagram of physical speech production by the vocal cords and vocal tract.

From a signal processing point of view, the speech production process can be

modeled by a linear system in which the excitation of the vocal cords (the source) is

convolved with a representation of the vocal tract (the filter) [3]. Here, the excitation

is modeled using either an impulse train (for voiced speech) or white noise (for un-

voiced speech), represented by a signal 𝑒(𝑛) with Fourier transform 𝐸(𝑧). Meanwhile,

the vocal tract can be modeled using a discrete time-varying linear filter with impulse

response ℎ(𝑛) and transfer function 𝐻(𝑧). Therefore, an output speech signal 𝑥(𝑛)

and its Fourier transform 𝑋(𝑧) can be described as follows:

𝑥(𝑛) = 𝑒(𝑛) * ℎ(𝑛), (3.1)

𝑋(𝑧) = 𝐸(𝑧)𝐻(𝑧), (3.2)

where * denotes the convolution operation. Figure 3-2 illustrates a block diagram of

this source-filter model of speech production.
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Figure 3-2: Block diagram of the source-filter model of voice production.

The transfer function of a linear system can always be represented by its poles

and zeros; however, for non-nasal voiced speech sounds, the transfer function of the

vocal tract can be modeled with no zeros provided that the order of pole coefficients is

sufficiently large [17]. Therefore, the vocal tract can be represented using an all-pole

filter whose coefficients are determined over time through linear predictive coding.

Physically, the vocal tract can be viewed as an acoustic tube of varying diameter

at different points. Depending on the shape of the acoustic tube, a sound wave

traveling through it will be reflected in such a way that interferences will create

different weighted magnitudes of frequencies across the frequency spectrum [4]. At

a given point in time, these make up the spectral envelope of the voice, which

determines the specific phoneme that is produced via resonances called formants.

The source-filter model provides a way of modeling the spectral envelope: it can be

approximated by the transfer function of the filter, 𝐻(𝑧) [3]. Figure 3-3 shows an

example of an utterance’s spectral envelope extracted from an analysis window.

In the context of the information in speech described in Section 2.2.1, we can con-

sider the excitation of the vocal cords 𝐸(𝑧) to contain some of the speaker information

in a spoken utterance. Indeed, 𝐸(𝑧) contains information on a voice’s fundamental

frequency (F0) as well as its harmonic frequencies. Meanwhile, we can consider the

spectral envelopes and formants 𝐻(𝑧) over time to contain a significant portion of the

content information of an utterance. In voice conversion, one of the required steps is

to disentangle the content information of an utterance from its speaker information.
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Figure 3-3: The spectral envelope of an utterance at a given analysis frame. Peaks
in the envelope represent formant frequencies.

As we see here, one way of doing this is to separate 𝐻(𝑧) from 𝐸(𝑧) by performing

deconvolution.

It should be noted that 𝐻(𝑧) still contains a significant amount of speaker infor-

mation on its own. Intuitively, this is because different speakers have different vocal

tract shapes, which causes variations in the way in which spectral envelopes and for-

mants are shaped even when the same phonemes are being pronounced. Therefore,

deconvolution of 𝐻(𝑧) and 𝐸(𝑧) is not expected to fully disentangle speaker and

content information on its own.

3.1.1 Deconvolution in the cepstrum

Recall from Equation 3.1 that a speech signal 𝑥(𝑛) can be expressed as a convolution

between an excitation signal 𝑒(𝑛) and the impulse response of the vocal tract filter

ℎ(𝑛). In the frequency domain, this convolution becomes equivalent to the multi-

plication of their respective Fourier transforms, as shown in Equation 3.2. Taking

the logarithms of the absolute values of the Fourier transforms to compute the log

magnitude spectra converts the multiplication operation to addition:

log |𝑋(𝑧)| = log |𝐸(𝑧)𝐻(𝑧)| (3.3)

= log |𝐸(𝑧)|+ log |𝐻(𝑧)|. (3.4)
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If we apply a Fourier transform (in practice, actually a discrete cosine transform

(DCT) since the log magnitude spectrum only has real components) to the above,

we obtain a frequency distribution of the fluctuations in the curve of the spectrum,

called the cepstrum1 (𝐶):

𝐶 = DCT(log |𝑋(𝑧)|) (3.5)

= DCT(log |𝐸(𝑧)|) + DCT(log |𝐻(𝑧)|). (3.6)

If we assume that the source (excitation) spectrum has only rapid fluctuations (since

the excitation signal is a stable, regular oscillation), its contribution to the cepstrum

will be concentrated in the higher quefrency2 bins of 𝐶. Conversely, the filter (vocal

tract) will contribute slow fluctuations to the spectrum of 𝑋 and will be concentrated

in the lower quefrency bins.

Therefore, the separation of 𝐸(𝑧) and 𝐻(𝑧) becomes straightforward: we sim-

ply have to perform liftering3 and select the desired quefrency region by multiplying

the entire cepstrum by a window at the appropriate position. Low-quefrency lifter-

ing, where the quefrency coefficients below a certain point are extracted, allows us

to obtain the vocal tract characteristics in the quefrency domain. High-quefrency

liftering, the opposite, allows us to obtain the excitation characteristics. Once we

have performed liftering, it is a simple matter of performing the inverse DCT to

obtain the deconvolved spectral envelope and excitation. Figure 3-4 illustrates the

results of performing low-quefrency and high-quefrency liftering on a sample log-mel

spectrogram.

1From flipping the first part of the word spectrum.
2The cepstrum equivalent of frequency.
3Filtering in the cepstrum domain.
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(a) Original log-mel spectrogram

(b) Low-quefrency liftered log-mel spectrogram

(c) High-quefrency liftered log-mel spectrogram

Figure 3-4: A sample log-mel spectrogram (a) and the results of performing (b) low-
quefrency and (c) high-quefrency liftering on it. Note that (b) captures the spectral
envelope and formants of the utterance, while (c) captures the F0 and its harmonic
frequencies.
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3.2 Deep Generative Models for Speech Synthesis

Modeling audio is a challenging problem because of the high temporal resolution of

the data (sampling rates are usually at least 16 kHz and can go up to 48 kHz or

higher) and the presence of structure at different time scales with both short- and

long-term dependencies. This is especially difficult in the context of speech synthesis,

as models must be able to accurately capture this structure and generate the samples

of a time domain waveform while maintaining high perceptual fidelity.

Generally, speech synthesis models operate by taking a lower-resolution interme-

diate audio representation as their input and reconstructing the corresponding time

domain audio. As such, these models can be considered vocoders. The interme-

diate representations are usually chosen to be easier to model than raw audio while

preserving enough information to allow accurate inversion back to the time domain.

Mel spectrograms [19, 92] are perhaps the most commonly used type of intermediate

representation, although other representations such as aligned linguistic features [73]

can also be used.

In recent years, deep generative neural network models (so-called neural vocoders)

have achieved great success in speech synthesis, demonstrating significantly improved

performance compared to traditional signal processing methods [23, 63]. They can

largely be classified into three families: autoregressive models, non-autoregressive

models, and generative adversarial network (GAN)-based models.

3.2.1 Autoregressive models

WaveNet [73] was one of the first deep generative models to demonstrate success in

speech synthesis. It is a fully convolutional model that uses dilated causal convolu-

tions to produce speech samples in an autoregressive manner, conditioned on linguistic

features that are temporally aligned with the raw audio. WaveRNN [37] was subse-

quently introduced as a faster model based on a simple, single-layer recurrent neural

network; it introduced various techniques such as weight sparsification and subscale

generation to improve synthesis speed.
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However, inference with autoregressive models is fundamentally quite slow because

audio samples must be generated sequentially, which makes them impractical for real-

time applications.

3.2.2 Non-autoregressive models

To address these issues, many non-autoregressive models were subsequently proposed

to generate waveforms more quickly. These models can be orders of magnitude

faster than their autoregressive counterparts because they are highly parallelizable

and can fully exploit modern hardware such as GPUs and TPUs. Some types of

non-autoregressive models, such as Parallel WaveNet [72] and ClariNet [78], utilize

knowledge distillation, in which a trained auto-regressive decoder is distilled into a

flow-based convolutional student model. The student model is then able to perform

inference much more quickly than the teacher model while achieving a similar level

of performance. Other non-autoregressive models, such as WaveGlow [81] and Wave-

Flow [79], utilize flow-based methods, using autoregressive and inverse autoregressive

flows to represent high capacity generative flows for audio. While flow-based methods

enable fast speech generation at inference time, they tend to have very large model

sizes that make them impractical for applications with constrained memory budgets.

3.2.3 GAN-based models

More recently, generative adversarial networks (GANs) [22] have become a popular

way of training speech synthesis models. By designing generator and discriminator

losses strategically, it is possible to train a model to synthesize high quality audio

with a compact and fast generator architecture.

The performance of GAN-based models is largely dependent on the ability of their

discriminators to discern real and fake generated samples. Therefore, many of the

advances in GAN-based speech synthesis have come as a result of more clever and so-

phisticated discriminator designs. MelGAN [49] utilized a collection of discriminators

that evaluated the generated audio at multiple timescales to determine their au-
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thenticity. Parallel WaveGAN [122] introduced a multi-resolution short-time Fourier

transform (STFT) loss to stabilize GAN training. More recently, HiFi-GAN [47] in-

troduced a discriminator design that evaluates synthesized audio at various periods

in the time domain, and UnivNet [35] introduced a design that performs an analogous

role for various spectral resolutions in the frequency domain.

GAN-based vocoders have achieved state-of-the-art results in speech synthesis,

being able to generate audio with clarity and naturalness that approach ground truth

speech. Because of their compact generator architectures, they are also able to per-

form inference extremely quickly—often hundreds of times faster than real-time on

GPUs and faster than real-time even on CPUs.

3.3 Location-Variable Convolutions

Most of the aforementioned speech synthesis models are implemented using a WaveNet-

like generator network, in which mel spectrograms are used as conditioning features

and dilated causal convolutions are applied to capture the long-term dependencies

of a waveform. This necessitates a large number of convolution kernels in order to

properly capture the many time-dependent features that arise in speech, since the

same convolutional kernel weights must be used for all audio frames. However, in a

traditional linear prediction vocoder [3], the coefficients for the all-pole linear filter

vary depending on the conditioning acoustic features of the analysis frame. What

if a network could have variable kernel coefficients depending on the conditioning

features? Such a network could then be able to model long-term dependencies in

waveforms much more efficiently than fixed-kernel methods. Inspired by these ideas,

[126] recently introduced location-variable convolutions (LVCs), in which dif-

ferent convolutional kernel weights are used to model different intervals in the input

sequence depending on the corresponding “local” sections of a conditioning sequence

such as a mel spectrogram.

Formally, let the input sequence to the convolution operation be x = {𝑥1, 𝑥2, ..., 𝑥𝑛},

and define the local conditioning sequence as h = {ℎ1, ℎ2, ..., ℎ𝑚}. Each element in
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Figure 3-5: Diagram of the location variable convolution (LVC) process.

the local conditioning sequence is associated with a given continuous interval in the

input sequence. LVCs utilize a kernel predictor network (KPNet) whose purpose

is to predict the weights of convolution kernels given a local conditioning sequence.

Therefore, each element in the local conditioning sequence determines the specific

convolution kernels that are applied to its associated input sequence interval. In

other words, each interval of the input sequence has a different convolution operation

performed on it depending on the temporally associated section of the conditioning se-

quence. The final output sequence z is produced by splicing together the convolution

results from each processing interval after passing them through a gated activation

unit (GAU) [111]. Figure 3-5 illustrates a diagram of the role of the kernel predictor

network in an LVC layer.
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The operations done by an LVC layer can be expressed by the following equations:

{x(𝑖)}𝑚 = split(x), (3.7)

{W𝑓
(𝑖),W

𝑔
(𝑖)}𝑚 = KPNet(h), (3.8)

z(𝑖) = tanh(W𝑓
(𝑖) * x(𝑖))⊙ 𝜎(W𝑔

(𝑖) * x(𝑖)), (3.9)

z = concat(z(𝑖)), (3.10)

where x(𝑖) denotes the intervals of the input sequence associated with ℎ𝑖, and W𝑓
(𝑖)

and W𝑔
(𝑖) denote the filter and gate convolution kernels for x(𝑖), respectively. * denotes

the convolution operation and ⊙ denotes element-wise multiplication.

Intuitively, LVCs have more powerful capabilities for modeling long-term depen-

dencies in audio because they can flexibly generate kernel weights that correspond in

a more customized way to different conditioning sequences.
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Chapter 4

LVC-VC: End-to-End Zero-Shot

Voice Conversion

We now bring together the preliminaries established in Chapter 3 and introduce

Location-Variable Convolution-based Voice Conversion (LVC-VC), our pro-

posed model for end-to-end zero-shot voice conversion.

LVC-VC is based on UnivNet [35], a neural vocoder that combines location-

variable convolutions in its generator with a variety of discriminators for GAN-based

training. We chose to use UnivNet’s base architecture and training strategy because

of its capabilities for generating very high-fidelity audio. It was shown to outperform

other state-of-the-art GAN-based vocoders in objective and subjective evaluations,

regardless of whether the speakers of input spectrograms had been seen or unseen

during training. In addition, it is able to achieve very fast inference speeds even com-

pared to other GAN-based methods, which allows for real-time audio synthesis. As

with many other vocoders, UnivNet takes a log-mel spectrogram as its input feature

and reconstructs time domain audio corresponding to that spectrogram. To adapt

the model to perform voice conversion, however, we made several modifications to

the original model’s input features, architecture, and training strategy.

Most zero-shot VC models trained on non-parallel data use a self-supervised train-

ing strategy with some form of self-reconstruction loss. At a high-level, the idea is to

decompose a given training utterance into separate speaker and content embeddings,
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and then recombine them using a decoder to reconstruct the original signal. At infer-

ence time, conversion can simply be performed by extracting the content embedding

from the source utterance and combining it with the speaker embedding from the tar-

get utterance. The hope is that the model will learn to combine content and speaker

embeddings in a coherent way regardless of where each of them comes from, thereby

synthesizing audio that corresponds to the content of the source utterance spoken

in the target speaker’s voice. Given this, most models are composed of a content

encoder, speaker encoder, and decoder. Some previous VC methods have trained all

of these components jointly from scratch [10, 8, 68], while others have used a speaker

encoder that was pre-trained on a separate speaker verification task [86, 83].

LVC-VC consists of a generator 𝐺, a speaker encoder 𝐸𝑠, and a set of discrimi-

nators for GAN-based training. Like most other zero-shot VC models, it is trained

using a self-reconstruction paradigm. However, because the model is based on a neural

vocoder, it does not include an explicit content encoder or decoder in its architecture.

Rather, we feed a specific set of carefully designed input features that already have

some amount of information disentanglement into the model’s kernel predictor net-

work. Then, the kernel predictor is tasked with combining the information from the

various features and passing it to the generator to perform audio synthesis. While

this strategy removes some degree of interpretability, it significantly streamlines the

model’s overall structure and largely removes the difficult task of teaching the model

to perform proper disentangled representation learning.

4.1 Input Features

4.1.1 Content features

In voice conversion, the source utterance is responsible for providing content informa-

tion. Let the source utterance in the time domain be x and its log-mel spectrogram

be X. We perform low-quefrency liftering on X to extract the spectral envelope of

the utterance H. H serves as the primary content feature that is fed into the model,
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and is intended to contain the content information of X but with the excitation of

the vocal cords (the harmonics) removed.

However, recall from Section 3.1 that a low-quefrency liftered spectrogram still

contains a significant amount of speaker information. To prevent the model from us-

ing this residual speaker information in the feature, we randomly warp H by stretching

or compressing it along the frequency axis during training. The warping is done via

linear interpolation between frequency bin values, and we denote the warped version

of the feature H′. We found that this step removes most of the residual speaker

information in low-quefrency liftered log-mel spectrograms while still preserving the

content information represented in the original spectral envelope. A similar informa-

tion perturbation strategy was used by a speech decomposition and synthesis model in

[9] to constrain the information that would be extracted from certain input features.

We also compute the normalized F0 contour of x and use it as an additional input

feature for the model. Specifically, we use the per-frame normalized quantized log

F0 feature pnorm that was introduced and used previously in [83] and [84]. While

an utterance’s F0 contour does not encode any linguistic content information, it

does contain meaningful information about the pitch, prosody, and intonation of an

utterance over time (i.e., how it was said). Therefore, we broadly categorize this

feature as content information since it encodes aspects of the source utterance that

we wish to preserve in the output.

To compute pnorm, we first extract the log F0 from all of a speaker’s voiced samples

using a pitch tracking algorithm [56]. Then, we compute the speaker’s log F0 mean

𝜇 and variance 𝜎2. We use the same analysis window size and and hop as when

computing X to make sure that the number of extracted F0 frames matches up with

the number of spectrogram frames. Then, for each voiced frame, we normalize the

raw log F0 𝑝raw as follows:

𝑝norm,𝑛 =
𝑝raw,𝑛 − 𝜇

4𝜎
+

1

2
, (4.1)

where 𝑛 denotes the index of an analysis frame. This operation roughly constrains
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(a) X (b) H

(c) pnorm (d) H′

Figure 4-1: Various content-related input features for LVC-VC extracted from a sam-
ple utterance x. (a) Log-mel spectrogram X, (b) Low-quefrency liftered log-mel
spectrogram H, (c) Normalized log F0 contour extracted from x, (d) Warped low-
quefrency liftered log-mel spectrogram H′ (stretched by a factor of 1.15).

values of 𝑝norm to be within the range [0, 1]; any values falling outside this range

are clipped. We then quantize the range [0, 1] into 256 bins and one-hot encode the

𝑝norm values. Finally, we add another bin to represent unvoiced frames, resulting in a

257-dimensional one-hot encoded feature for each frame. The concatenation of these

features across all frames then becomes pnorm, with dimensions (257, 𝑁):

pnorm = [𝑝norm,1; 𝑝norm,2; ...; 𝑝norm,𝑁 ]. (4.2)

Figure 4-1 shows visualizations of the various content features. The idea is that

during training, LVC-VC should learn to extract the appropriate information from

the speaker features (see Section 4.1.2) and combine them with H′ and pnorm so as to

“un-warp” H′, “un-normalize” pnorm, and add the appropriate excitation harmonics to

reconstruct the original signal. At inference time, the model should use information

about the target speaker to perform the “un-warping” and “un-normalizing” in a way

that causes the generated audio to sound like the target speaker’s voice.
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4.1.2 Speaker features

For speaker-related conditioning features, we use embeddings extracted from a speaker

encoder 𝐸𝑠 that has been pre-trained on a speaker recognition task. The architecture

and training details of 𝐸𝑠 are described more in-depth in Section 4.2.2. We denote

speaker embeddings using the variable 𝑠. For an utterance x with log-mel spectrogram

X, the speaker embedding is then:

𝑠 = 𝐸𝑠(X). (4.3)

A good speaker encoder should produce embeddings that are close together in

the latent space for utterances from the same speaker, regardless of the utterances’

content. Conversely, it should produce embeddings that are farther apart in the

latent space for utterances spoken by different speakers. Furthermore, a speaker

embedding should encode information about its speaker’s vocal characteristics so

that embeddings from unseen speakers can be used for zero-shot voice conversion.

In addition to the speaker embedding, we also include the quantized median log

F0 value of a speaker as an additional conditioning feature. This is computed as

follows. We extract the log F0 from all of a speaker’s voiced speech samples using

the same pitch tracking algorithm as for pnorm above and compute the median for a

speaker. Then, we quantize the range log(65.4) Hz to log(523.3) Hz (corresponding

to the notes ‘C2’ and ‘C5’) into 64 bins and and one-hot encode the median log F0

values. As before, any F0 values falling outside the quantized range are clipped. This

results in a 64-dimensional vector 𝑚 that encodes a speaker’s F0 information.

4.2 Model Architecture

4.2.1 Generator

The generator 𝐺 is largely based on the generator in UnivNet, specifically the UnivNet-

c16 variant, which has a channel size of 16 in each of its convolutional layers. Figure
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4-2 shows a diagram of the overall architecture. In total, the generator contains

around 4.5 million parameters. It is a fully convolutional neural network that takes

random noise z as an input sequence and the content and speaker features described

in Section 4.1 as conditions, and outputs a raw audio waveform x̂. Its main body

consists of a series of 1D transposed convolutional layers to upsample the input noise

sequence z, which is specified to have the same length as the low-quefrency liftered

log-mel spectrogram H. In our experiments, spectrograms are at a 256× lower res-

olution compared to raw audio. Therefore, there are three transposed convolutional

layers with upsampling factors of 8×, 8×, and 4× to perform the total 256× upsam-

pling. This results in the output waveform x̂ having the same length as the source

waveform x from which H was extracted.

Each transposed convolutional layer is followed by a stack of four residual blocks

that gradually transform the noise sequence into the final waveform as it is passed

through them. Each residual block consists of a dilated 1D convolution, a 1D location-

variable convolution (LVC), and a gated activation unit [111]. The four dilated con-

volutions in each stack have dilation factors of [1, 3, 9, 27]. Leaky ReLU [54] with

𝛼 = 0.2 is used as the activation before the dilated convolutions and LVCs. The

kernels of the LVC layers are determined by kernel predictor networks that take the

conditioning features H, pnorm, 𝑠, and 𝑚 as input (Figure 4-3). Each residual stack

has its own kernel predictor network, for a total of three kernel predictors. Each

kernel predictor consists of a residual stack of 1D convolutions with Leaky ReLU

activations (𝛼 = 0.2), and simultaneously predicts the kernels of all of the LVC layers

in the stack that it is associated with.

The output waveform is thus a result of feeding the input noise sequence and all

of the conditioning features through the generator:

x̂ = 𝐺(z,H,pnorm, 𝑠,𝑚). (4.4)
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Figure 4-2: LVC-VC generator architecture. Kernels for LVC layers come from the
kernel predictor network.
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Figure 4-3: Kernel predictor network for LVC-VC.
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Figure 4-4: t-SNE visualization of embeddings extracted from the utterances of 50
speakers in the VCTK dataset using 𝐸𝑠. Each color denotes a different speaker.

4.2.2 Speaker encoder

For the speaker encoder 𝐸𝑠, we use the Fast ResNet-34 speaker recognition model from

[11]. The model was pre-trained using angular prototypical loss on the development

set of the VoxCeleb2 dataset [12] and uses self-attentive pooling [7] to aggregate

frame-level features into an utterance-level representation. It is based on the original

ResNet-34 architecture [26], but has only one-quarter of the channels in each residual

block and earlier strides in order to reduce the computational complexity. The model

takes 40 dimensional log-mel spectrograms as input and outputs speaker embeddings

of dimension 512.

Although very fast and lightweight (about 1.4 million parameters), the model

achieves an impressive equal error rate (EER) of 2.18% on a speaker verification

task for the VoxCeleb1 test set [65]. We chose to use it because of its combination

of efficiency and high quality speaker representations. Figure 4-4 shows a t-SNE

visualization of speaker embeddings extracted from the utterances of 50 speakers in

the VCTK dataset [120] using 𝐸𝑠.
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4.2.3 Discriminators

In addition to the use of LVCs in its architecture, one of the key components of Uni-

vNet that helps it generate such high quality audio is the design of its discriminators

for GAN-based training. UnivNet utilizes two discriminators, a multi-resolution spec-

trogram discriminator (MRSD) and a multi-period waveform discriminator (MPWD),

which we also use for training LVC-VC.

Multi-resolution spectrogram discriminator (MRSD)

During training, the purpose of the MRSD is to evaluate a synthesized audio waveform

at multiple frequency resolution scales and make a decision as to whether the wave-

form is real audio or not. Hence, the MRSD actually consists of 𝑀 sub-discriminators,

each of which evaluates and makes a decision on the accuracy of the generated audio

at a given spectral resolution. The sub-discriminators of the MRSD compute 𝑀 lin-

ear magnitude spectrograms from the true audio x and synthesized audio x̂ during

self-reconstructive training using 𝑀 short-time Fourier transform (STFT) parameter

sets, {FT𝑚(·)}𝑀𝑚=1. Here, FT𝑚(·) denotes the Fourier transform performed by the 𝑚-

th sub-discriminator. Each STFT parameter set consists of: (number of points for the

Fourier transform, window length (in seconds), hop length (in seconds)). Formally,

the sub-discriminators compute the following:

{s𝑚 = |FT𝑚(x)|, ŝ𝑚 = |FT𝑚(x̂)|}𝑀𝑚=1. (4.5)

By employing multiple spectrograms with various temporal and spectral resolutions

to analyze audio, the MRSD’s objective is to determine whether a given waveform’s

spectral characteristics appear to be real or not. In doing so, it is able to induce the

generator to produce higher fidelity audio. In our experiments, 𝑀 = 3 and the STFT

parameter sets for the sub-discriminators were [(512, 0.025, 0.005), (1024, 0.05, 0.01),

(256, 0.01, 0.002)].1

1The number of Fourier transform points here for each window length are appropriate for audio
at 16 kHz sampling rates, which we used throughout this work. At other sampling rates, a different
number of Fourier transform points may need to be used with analysis windows of the same length.
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The MRSD’s sub-discriminators all follow the same basic architecture, which is

inspired by the multi-scale waveform discriminator used in [49]. It consists of strided

2D convolutions followed by Leaky ReLU activations with 𝛼 = 0.2.

Multi-period waveform discriminator (MPWD)

The MPWD, originally introduced in [47], is also a mixture of sub-discriminators, each

of which takes as input equally spaced samples of a time domain audio waveform at

a different period 𝑝 and makes a decision as to whether the audio is real or not.

Each sub-discriminator consists of a stack of strided 2D convolutional layers with

Leaky ReLU activations (𝛼 = 0.2). The periods are set to the prime numbers 𝑝 ∈

[2, 3, 5, 7, 11] in order to avoid overlaps in analysis between the sub-discriminators as

much as possible.

Specifically, given a 1D raw audio signal of length 𝑇 , the audio is reshaped into

a 2D array of width 𝑝 and height 𝑇/𝑝. The reshaped audio is then fed through

the sub-discriminator corresponding to the period 𝑝, which makes a decision as to

whether the audio is real or fake. Collectively, the sub-discriminators of the MPWD

are designed to model and capture implicit structures in the periodic patterns of audio

at multiple temporal resolutions, thereby guiding the generator to synthesize more

realistic waveforms.

4.3 Training

Recall that we use a speaker encoder 𝐸𝑠 that has already been pre-trained to extract

embeddings with some form of speaker information. Therefore, to train LVC-VC, we

keep the weights of 𝐸𝑠 fixed and only train the generator and discriminators.

4.3.1 Loss functions for self-reconstruction

As mentioned previously, LVC-VC is trained primarily using a self-reconstruction

paradigm. In this setting, both the source and the target utterances are set to

be the same, and the model’s objective is to reconstruct the original utterance as
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closely as possible. Let an input utterance for training be x and the associated con-

ditioning features be H′,pnorm, 𝑠, and 𝑚 (recall that we randomly warp H during

self-reconstructive training only). Then, the reconstructed output is produced by

x̂ = 𝐺(z,H′,pnorm, 𝑠,𝑚). We use some of the same loss functions that are used to

train the baseline UnivNet vocoder, described below.

In addition to the GAN losses defined by the discriminators in Section 4.2.3, multi-

resolution STFT loss [122] is used as an auxiliary training criterion. It is made up

of the sum of multiple spectrogram losses computed using various STFT parameter

sets. The full auxiliary loss ℒaux, which is comprised of the spectral convergence loss

ℒsc and log STFT magnitude loss ℒmag, is defined as follows:

ℒsc(s, ŝ) =
‖s− ŝ‖𝐹
‖s‖𝐹

, (4.6)

ℒmag(s, ŝ) =
1

𝑁
‖ log s− log ŝ‖1, (4.7)

ℒaux(x, x̂) =
1

𝑀

𝑀∑︁
𝑚=1

Ex,x̂

[︁
ℒsc(s𝑚, ŝ𝑚) + ℒmag(s𝑚, ŝ𝑚)

]︁
. (4.8)

Here, 𝑁 denotes the number of frames in the spectrogram and ‖ · ‖𝐹 and ‖ · ‖1
denote the Frobenius and L1 norms, respectively. 𝑀 is the number of MRSD sub-

discriminators. s and ŝ are defined as in Equation 4.5, and each 𝑚-th ℒsc and ℒmag

reuse the s𝑚 and ŝ𝑚 that are used for the 𝑚-th MRSD sub-discriminator.

4.3.2 Loss functions for speaker similarity

Through self-reconstructive training, voice conversion models are meant to learn how

to combine speaker and content information in a coherent way, thereby synthesizing

audio that corresponds to the content of the source utterance spoken in the target

speaker’s voice. However, self-reconstructive training on its own does not explicitly

force the converted audio to take on the vocal characteristics of the target speaker.

In this setting, the amount of voice style transfer that can actually happen is highly

dependent on the quality of the speaker encoder 𝐸𝑠—that is, whether its embeddings

indeed encode enough of a speaker’s vocal identity—and how well the VC model learns
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to utilize the information in that embedding. Indeed, training a model to properly

disentangle and utilize the content and speaker information from an utterance is

difficult. There are cases in which content embeddings end up containing some speaker

information that has leaked through, or where they do not preserve all of the linguistic

information from the source utterance. This can result in converted speech that still

sounds like the source speaker or has unclear, garbled pronunciation of words. These

issues can be especially noticeable when conversion is being performed on previously

unseen speakers in the zero-shot setting.

LVC-VC avoids the second of these issues by means of its input feature design. Be-

cause it utilizes the full spectral envelope of the source utterance, content information

is well-preserved in the output audio no matter what. However, we found during our

experiments that the spectral envelope still carried some amount of speaker informa-

tion through the synthesis, even with the warping strategy to perturb this information

during training. This sometimes caused converted audio to maintain some aspects of

the source speaker and not be fully transformed into the target speaker’s voice.

Therefore, we utilize an additional loss which induces LVC-VC to generate audio

that more closely matches the characteristics of the target speaker. We call this loss

the speaker similarity criterion (SSC). To implement it, we make LVC-VC generate

voice-converted audio by using speaker features that are different from those of a

source utterance from which the content features are extracted. Then, the converted

utterance is explicitly guided to sound more like the target speaker’s voice.

Formally, let the original utterance used for self-reconstructive training be x0 and

its associated features be (H0,pnorm,0, 𝑠0,𝑚0). For each reconstructive training sam-

ple, we sample 𝑁 more utterances from different speakers x1, ...,x𝑁 with associated

features (H𝑛,pnorm,n, 𝑠𝑛,𝑚𝑛), ∀𝑛 ∈ [1, ..., 𝑁 ]. We designate x0 to be the target utter-

ance for performing conversion. Then, the SSC loss ℒssc is defined as follows:

x̂𝑛,0 = 𝐺(z,H𝑛,pnorm,𝑛, 𝑠0,𝑚0), (4.9)

ℒssc =
1

𝑁

𝑁∑︁
𝑛=1

cos
(︀
𝐸𝑠(x̂𝑛,0), 𝑠0

)︀
, (4.10)
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where cos(𝑥1, 𝑥2) denotes the cosine similarity between 𝑥1 and 𝑥2.

4.3.3 GAN-based training

The generator and discriminator losses for training follow the least-squares GAN

objective functions [55]. The overall losses are defined as follows:

ℒ𝐺 =
1

𝐾

𝐾∑︁
𝑘=1

Ez,c

[︁
(𝐷𝑘(𝐺(z,H′,pnorm, 𝑠,𝑚))− 1)

2
]︁

+ 𝜆auxℒaux(x, 𝐺(z,H′,pnorm, 𝑠,𝑚))

+ 𝜆sscℒssc, (4.11)

ℒ𝐷 =
1

𝐾

𝐾∑︁
𝑘=1

(︀
Ex

[︀
(𝐷𝑘(x)− 1)2

]︀
+ Ez,c

[︀
𝐷𝑘(𝐺(z,H′,pnorm, 𝑠,𝑚))2

]︀)︀
, (4.12)

where 𝐾 denotes the number of all sub-discriminators across the MRSD and MPWD

and 𝐷𝑘 denotes the 𝑘-th sub-discriminator across all sub-discriminators. 𝜆aux and

𝜆ssc are weighting factors that balance the contributions of the auxiliary loss and SSC

loss for the generator, respectively.

4.3.4 Training specifications

Throughout all of our experiments, we use audio sampled at a rate of 16 kHz. To

obtain H from a time domain utterance x, we start off with an 80-dimensional log-mel

spectrogram X computed using a 1024 point Fourier transform, with a Hann window

of 1024 samples and hop length of 256 samples. We then take the 20 lowest quefrency

coefficients for low-quefrency liftering. To compute H′, we choose the warping factor

along the frequency axis from a uniform distribution over the range [0.85, 1.15] for

each training sample. H′ thus has dimensions (80, 𝑁), where 𝑁 is the number of

frames in the spectrogram X. It is stacked with the other content feature, pnorm

(which has dimensions (257, 𝑁)), and then fed into the model. Likewise, the two

speaker features 𝑠 and 𝑚 are concatenated to produce a 576 (= 512+64) dimensional

vector before being fed into the model.
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For the speaker embeddings, we use a training strategy that is meant to make the

model robust against small variations in the embedding values. For each speaker in

the training set, we fit a GMM with 1 component2 to the embeddings extracted from

that speaker’s training utterances. To reconstruct a given utterance during training,

we randomly sample from the speaker’s GMM to obtain the specific embedding 𝑠

that is used for reconstruction. This ensures that a similar, but different speaker

embedding is used to perform reconstruction for an utterance every time. We find

that this strategy also helps the model generalize better to unseen speakers.

Training was done on four NVIDIA GeForce GTX 1080 Ti GPUs. We used the

AdamW optimizer [53] with a learning rate of 1e-4 and 𝛽1 = 0.5, 𝛽2 = 0.9. All

utterances and input features were cropped or padded to correspond to 16,384 samples

(1 second) for batch processing. For the SSC loss, we set 𝑁 = 8. Following [35], we

set 𝜆aux = 2.5. Through empirical experiments, we set 𝜆ssc = 0.9.

The model was first trained with only self-reconstructive loss (without SSC loss)

using a batch size of 32 for 1.8 million iterations. Then, we halved the learning rate to

5e-5 and continued training the model with the SSC loss included for 5,000 more iter-

ations, using a decreased batch size of 16 due to GPU memory constraints. We found

that this strategy ensured that the model learned to produce high-quality audio from

the input features first, before then being guided to perform better voice conversion

without compromising audio quality significantly. 𝜆ssc was linearly annealed from 0

to its final value for the first 2,000 steps in which the SSC loss was used.

4.4 Inference

Once training is complete, LVC-VC performs voice conversion at inference time by

simply combining the content features from the source utterance and the speaker

features from the target utterance to generate audio. Given source utterance x1 with

content features (H1,pnorm,1) and target utterance x2 with speaker features (𝑠2,𝑚2),

2We assume that the distribution of speaker embeddings for a given speaker is roughly Gaussian
with a single component.
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the converted utterance x̂1→2 is produced by:

x̂1→2 = 𝐺(z,H1,pnorm,1, 𝑠2,𝑚2). (4.13)

64



Chapter 5

From Voice Conversion to

Anonymization

Until now, we have discussed our work largely in the context of voice conversion, where

a source utterance is transformed to sound like a target speaker. However, recall that

our original motivation is to perform voice anonymization. Although anonymization

can be performed by using VC to change the perceived identity of a speaker to another

individual, this requires that a specific target speaker—a real person—be chosen.

This brings up a variety of potential issues. First, target speakers must give

permission for their voices to be used for the purposes of VC-based anonymization.

In addition, there likely needs to be a reasonably large number of speakers in the pool

of possible target voices in order to have enough options to satisfactorily anonymize

a wide variety of source speakers. Finally, there is a major ethical issue regarding the

potential of VC technologies to impersonate individuals—so-called “audio deepfakes”.

Given this, a VC-based anonymization methodology that could synthesize speech in

a rich variety of non-existent speakers’ voices would be an attractive prospect.

Inspired by the recently introduced task of speaker generation [98], this chapter

introduces a methodology to use VC models for speaker anonymization without the

need for specifying a target speaker. Although we discuss this approach in the context

of LVC-VC, it can feasibly be used to extend the capabilities of any VC model that

incorporates a speaker encoder.
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5.1 Sampling Arbitrary Speaker Embeddings

At a high level, our idea for performing un-targeted speaker anonymization is straight-

forward: it involves modeling the distribution of speaker embeddings generated by

the speaker encoder of a VC model and then sampling from that distribution to ob-

tain an arbitrary speaker embedding. That embedding is then used as the “target”

speaker embedding for the VC model in order to change the vocal characteristics of

a given source utterance.

To do this, we use the speaker encoder 𝐸𝑠 of LVC-VC to extract embeddings from a

large number of speakers. Specifically, we do this for the speakers in the development

set of the VoxCeleb1 dataset [65]; we randomly sample up to 50 utterances from each

speaker, for a total of 60,402 embeddings from the 1,211 speakers in the dataset.

Then, we fit a Gaussian mixture model (GMM) with 8 mixture components to the

extracted embeddings; we refer to this GMM as 𝑆. To perform anonymization, we

sample from 𝑆 to extract an arbitrary speaker embedding 𝑠, which can then be fed

into LVC-VC to transform and anonymize a source utterance.

5.2 Selecting F0

Recall that in addition to the speaker embedding, one of the speaker-related features

that is fed into LVC-VC is a one-hot quantized representation of the target speaker’s

log F0. Therefore, randomly sampling a speaker embedding is not sufficient on its

own to perform anonymization using LVC-VC; we must also specify the target voice’s

median F0 value in order to transform the source utterance.

It is possible to select a target F0 by randomly choosing a value from the range that

is quantized: 65.4 Hz to 523.3 Hz (see Section 4.1.2). However, this could result in an

F0 that is very different from the expected voice that the speaker embedding encodes.

For example, the speaker embedding might correspond to a male-sounding voice,

but the selected F0 value could be very high, corresponding to a female-sounding

voice. We found during experiments that this mismatch could result in anonymized
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speech that sounded noisy, buzzy, or otherwise unnatural compared to the output of

performing conversion on a specified target speaker.

To solve this issue, we trained a model 𝐹 to predict the F0 of a voice from

its corresponding speaker embedding 𝑠 ∈ R512. The model is a feedforward neural

network with one hidden layer of 512 units using ReLU activation and an output

layer with 1 unit using sigmoid activation. Dropout [97] is used with 𝑝 = 0.5. 𝐹 is

trained to predict the raw median F0 value of the voice corresponding to a speaker

embedding. Specifically, it predicts a value between the minimum and maximum

frequencies that are quantized by 𝑚 (65.4 Hz (‘C2’) and 523.3 Hz (‘C5’)), which are

normalized to be in the range [0, 1].

We trained our F0 predictor model on the speaker embeddings of 40,017 utterances

from 99 speakers in the VCTK corpus [120] and tested on the 4,225 utterances from

the remaining 10 speakers. This was the same train-test split as we used for training

LVC-VC and other baseline voice conversion models (see Section 6.1). We used the

AdamW optimizer [53] with a learning rate of 1e-4 and 𝛽1 = 0.9, 𝛽2 = 0.999. On

utterances from the test set, the model achieved a mean absolute F0 error of 12.43 Hz,

with a standard deviation of 10.58 Hz. We determined that this level of performance

was satisfactory for our purposes, since the objective of the F0 predictor was simply

to approximate F0 values that would somewhat match random speaker embeddings

that are sampled for performing anonymization.

5.3 Inference

Therefore, to perform un-targeted speaker anonymization with LVC-VC, we first sam-

ple an embedding 𝑠 from 𝑆. Then, we use the F0 predictor network 𝐹 to estimate

the median F0 of the voice that would correspond to 𝑠 and convert it into the one-hot

quantized feature �̃�. Given a source utterance x1 with associated content features

(H1,pnorm,1), an anonymized version of that utterance x̃1 can be generated as follows:

x̃1 = 𝐺(z,H1,pnorm,1, 𝑠, �̃�). (5.1)
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Part III

Evaluation
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Chapter 6

Data Sources

6.1 VCTK Corpus

We used the VCTK corpus [120] for model training and targeted voice conversion

evaluation. The dataset consists of 44,242 utterances from 109 speakers, totaling

around 44 hours of audio. Of the 109 speakers, 47 are male and 62 are female. The

original audio has a sampling rate of 48 kHz, but we resampled it to 16 kHz for our

experiments.

We randomly partitioned the dataset into 99 “seen” speakers, who would be used

for many-to-many VC, and 10 “unseen” speakers, who would be used for zero-shot

VC. The utterances of the 99 seen speakers were further randomly split into train

and test sets in a 9-1 ratio. Only utterances from the seen speakers’ train set were

used for training models.

6.2 Local Voices Network (LVN)

We also used audio from Local Voices Network (LVN) conversations to evaluate the

performance of LVC-VC; it was not used for training. As described in Section 1.1.1,

LVN conversations usually have between 4 to 8 speakers and range from around

40 to 90 minutes in length. The lengths of speaker turns vary widely, from short

bursts of frequent changes to long stretches of several minutes of just one person
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speaking. Conversations can be recorded either using a physical recording device or

over a videoconferencing platform such as Zoom. Because of this, the audio quality of

utterances can vary widely, with differing sources and amounts of background noise

and reverberations depending on the acoustic environment or microphone setup of

the speaker.

As of the writing of this thesis, the LVN platform contains almost 2,000 conversa-

tion recordings. However, conversations have privacy settings that limit how publicly

visible they are. There are three levels of privacy:

• Public: Conversation is publicly available to anyone on the Internet.

• Community: Conversation is available to anyone with LVN account creden-

tials.

• Private: Conversation is only available to a set of designated individuals.

We worked only with public conversations in order to avoid running into issues

with data availability agreements. Furthermore, we filtered out all conversations that

were not held in English (LVN also includes conversations that were held in Spanish).

In total, there were 203 public conversations that met these criteria.1 We preprocessed

all audio by resampling to 16 kHz and splitting it up into chunks corresponding

to individual sentences that each person spoke, according to the transcription and

speaker diarization provided on the LVN platform. Then, we extracted 2 utterances

per speaker from 50 speakers who were randomly sampled from all participants in

these conversations, for a total of 100 utterances. These utterances ranged from 3 to

28 seconds in length, and were used as the source utterances in order to evaluate the

performance of LVC-VC in terms of both targeted voice conversion and un-targeted

voice anonymization tasks.

1As of April 2022.
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Chapter 7

Evaluation Metrics

In this chapter, we outline the various metrics that we use to evaluate models on voice

conversion and anonymization tasks. These take the form of objective and subjective

measurements that aim to quantify a model’s performance in terms of generating

properly converted or anonymized audio. In particular, we evaluated three aspects of

the generated speech:

• Quality/Naturalness: How free of noise or other artifacts is the converted or

anonymized speech? How natural does the audio sound?

• Intelligibility: How well does the converted or anonymized speech preserve

the linguistic information of the original source utterance? In other words, how

well is the pronunciation of words maintained?

• Similarity: For voice conversion, how similar does the transformed utterance

sound to the target speaker? For anonymization, how dissimilar does the trans-

formed utterance sound to the source speaker?

Although we did not use exactly the same methodologies, our evaluation metrics

and protocols were inspired in part by the evaluation plan of the VoicePrivacy Chal-

lenge [108].

71



7.1 Objective Metrics

7.1.1 Quality

Although developing an objective measure to evaluate the general quality of speech is

difficult, several methods have been introduced in recent years to automatically esti-

mate speech quality. These methods are meant to act as proxy measures to subjective

evaluations of audio quality done through human listening tests, which can be costly

and time-consuming. For our purposes, we used NISQA [61] to compute objective

quality scores for how clean utterances sounded. NISQA is trained to evaluate the

overall quality of an audio sample, taking into account four dimensions: noisiness,

coloration, discontinuity, and loudness. Specifically, it estimates the mean opinion

score (MOS) for overall speech quality that a human would assign to the utterance.

Scores are given in the range 1–5, where 1 means that the audio quality is very poor

and 5 means that the audio quality is very clean.

7.1.2 Intelligibility

For an objective measure of an utterance’s intelligibility, we computed its word error

rate (WER) and character error rate (CER) on an automatic speech recognition

(ASR) task against the ground truth transcript. We used a pre-trained wav2vec

2.0 model [5] made available through the Hugging Face Transformers library [117].

Specifically, we used the “wav2vec2-base-960h” version of the model, which was pre-

trained and fine-tuned to perform ASR on 960 hours of the LibriSpeech corpus [75].

7.1.3 Speaker similarity

To objectively evaluate speaker similarity, we performed an automatic speaker ver-

ification (ASV) task on the converted or anonymized utterances and computed the

equal error rate (EER), which is the threshold at which the false acceptance and false

rejection rates of the verification system are equal. For fair evaluation, we used a

different speaker verification model from the speaker encoder that is used in LVC-VC
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(see Section 4.2.2). Specifically, we used a slightly larger, more performance-optimized

ResNet-34-based model from [29]. This model contains half the number of channels

in each residual block compared to the original ResNet-34 (around 8.0 million pa-

rameters) and uses attentive statistics pooling [70] to aggregate temporal frames. It

was trained on the VoxCeleb2 development set and achieves an EER of 1.18% on the

VoxCeleb1 test set.

For targeted voice conversion, we compared a converted utterance against a differ-

ent randomly sampled utterance from the source speaker as well as against the target

utterance; the goal was to see whether the converted utterance would be identified

as a different speaker from the source speaker and the same speaker as the target

speaker. For un-targeted anonymization, we simply compared a transformed utter-

ance against a different randomly sampled utterance from the source speaker in order

to see if the identity had been successfully anonymized.

7.2 Subjective Metrics

All subjective listening tests were conducted on Amazon Mechanical Turk. For each of

the listening tests described below, each utterance or utterance pair was evaluated by

two subjects. Further details on the full survey design and data collection procedures

are described in Appendix A.

7.2.1 Naturalness

We conducted mean opinion score (MOS) tests to evaluate the naturalness of utter-

ances. Note that the naturalness score here is somewhat different from the objective

quality metric described above in Section 7.1.1, as humans take into account the vo-

cal characteristics of a speech sample as well as its overall cleanliness to determine

naturalness. Here, subjects were asked to assign a score from 1–5 on the naturalness

of each utterance, where 1 meant that the utterance did not sound natural at all and

5 meant that the utterance sounded completely natural.
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7.2.2 Intelligibility

We also conducted tests to evaluate the intelligibility of utterances. For each utter-

ance, subjects were asked to assign a score from 1–5 on the intelligibility of the audio,

where 1 meant that the utterance was not understandable at all and 5 meant that the

utterance was perfectly understandable. Listeners were instructed to ignore the gen-

eral audio quality of the utterance and focus explicitly on whether the pronunciation

of the spoken words was clear or not.

7.2.3 Speaker similarity

Judging the similarity of one speaker to another is a rather unusual task that is not

an element of peoples’ everyday speech perception. However, recognizing speakers

is something that is done all the time. Therefore, we followed the methodology

described in [115] and designed our subjective speaker similarity evaluation to be

more like that of a speaker recognition task. Speakers were presented with pairs of

utterances and asked to indicate whether the two voices sounded like they came from

the same speaker. The scale for judging was: “Same speaker: Absolutely sure”, “Same

speaker: Not sure”, “Different speaker: Not sure”, and “Different speaker: Absolutely

sure”. Then, the responses were converted to binary decisions of “same” or “different”,

after which we measured the percentage of each response for a given model.

For voice conversion, each pair of utterances consisted of a converted utterance

and the corresponding target utterance. For anonymization, each pair consisted of an

anonymized utterance and a different random utterance spoken by the source speaker.
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Chapter 8

Results

In this chapter, we present the results from using LVC-VC to perform voice conversion

and anonymization on the VCTK and LVN datasets described in Chapter 6, as well

as performance comparisons against other current state-of-the-art voice conversion

models.

8.1 VCTK

8.1.1 Targeted voice conversion

To evaluate the performance of LVC-VC on targeted voice conversion, we com-

pared it against six other VC models: AdaIN-VC [10], AGAIN-VC [8], AutoVC [86],

AutoVC-F0 [83], Blow [91], and NVC-Net [68]. AdaIN-VC, AGAIN-VC, AutoVC,

and AutoVC-F0 are not end-to-end models; they produce spectrograms, which must

then be passed through a vocoder to produce time domain audio. Blow and NVC-Net

are end-to-end models; they take audio waveforms as input and directly produce time

domain audio.

We used the official implementations of all of the models from GitHub except

for AutoVC-F0, which we implemented according to the instructions in the paper

since an official implementation was not publicly available. All models were trained

from scratch on the same train-test split of the VCTK dataset as LVC-VC. For a fair
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comparison, models taking spectrograms as input features were trained using the same

spectrogram configuration as LVC-VC, and all time-domain audio was synthesized

using a UnivNet-c16 vocoder [35] that was trained on the LibriTTS dataset [125].

We considered three different voice conversion settings for evaluation:

• Seen-to-seen: Conversion from a “seen” speaker in the training set to another

“seen” speaker.

• Unseen-to-seen: Conversion from an “unseen” speaker not in the training set to

a “seen” speaker in the training set.

• Unseen-to-seen: Conversion from an “unseen” speaker not in the training set to

another “unseen” speaker; i.e. true zero-shot voice conversion.

All of the VC models we used for comparison are capable of performing zero-shot voice

conversion except for Blow, which can only convert voices to and from previously

seen speakers. Therefore, we only evaluated Blow on the seen-to-seen setting, while

all other models were evaluated on all three settings.

For every voice conversion setting, we considered four gender-to-gender conversion

combinations: male-to-male, male-to-female, female-to-male, and female-to-female.

For the seen-to-seen setting, we sampled 25 speakers from the 99 seen speakers in

the VCTK corpus as source speakers and randomly assigned one speaker from each

gender to act as target speakers. For each source-target speaker pair, we randomly

sampled two utterances from each speaker for performing conversion. This resulted in

200 (= 25×2×4) utterance pairs for seen-to-seen conversion. For the unseen-to-seen

setting, we used the 10 unseen speakers from the VCTK corpus as source speakers

and randomly sampled target speakers and utterances from the 99 seen speakers in

the same way as above. This resulted in 80 (= 10×2×4) utterance pairs. Finally, for

the unseen-to-unseen setting, we used the 10 unseen speakers from the VCTK corpus

as source speakers and randomly sampled target speakers and utterances from the

other 9 unseen speakers, resulting in 80 (= 10× 2× 4) utterance pairs.

Tables 8.1, 8.2, and 8.3 show the results of evaluating the aforementioned voice

conversion models with the metrics described in Chapter 7 on the seen-to-seen,
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Table 8.1: Seen-to-seen voice conversion evaluation results on the VCTK dataset.
(MOS: Mean opinion score for naturalness (1–5); INT: Mean subjective intelligibility
score (1–5); SIM: Subjective similarity score of utterances (%); WER: ASR word
error rate (%); CER: ASR character error rate (%); EER: ASV equal error rate (%);
NISQA: Average quality score predicted by NISQA model.)

Model MOS INT SIM WER CER EER NISQA

Ground Truth 4.40 ± 0.07 4.64 ± 0.06 91.75 11.27 3.94 1.50 4.50 ± 0.05
UnivNet (Vocoder) 4.33 ± 0.08 4.47 ± 0.07 90.50 12.26 4.47 2.00 4.45 ± 0.06

LVC-VC 3.54 ± 0.12 4.17 ± 0.10 46.00 22.69 9.55 18.50 4.00 ± 0.08

AdaIN-VC 2.33 ± 0.10 3.05 ± 0.13 53.00 43.06 22.48 33.00 3.75 ± 0.09
AGAIN-VC 2.04 ± 0.10 2.88 ± 0.13 44.00 47.64 25.22 24.00 3.70 ± 0.10
AutoVC 3.78 ± 0.10 4.15 ± 0.09 22.25 24.24 10.82 40.50 4.13 ± 0.06
AutoVC-F0 3.59 ± 0.10 4.03 ± 0.10 34.50 25.16 11.81 33.00 4.10 ± 0.07
Blow 1.85 ± 0.08 3.19 ± 0.13 35.00 31.01 14.86 53.00 3.07 ± 0.11
NVC-Net 2.96 ± 0.11 3.40 ± 0.13 67.75 48.91 27.25 15.00 4.31 ± 0.07

Table 8.2: Unseen-to-seen voice conversion evaluation results on the VCTK dataset.

Model MOS INT SIM WER CER EER NISQA

Ground Truth 4.43 ± 0.12 4.83 ± 0.07 93.75 9.69 2.93 0.00 4.42 ± 0.09
UnivNet (Vocoder) 4.34 ± 0.11 4.55 ± 0.12 93.75 11.70 3.77 0.00 4.38 ± 0.10

LVC-VC 3.31 ± 0.15 4.31 ± 0.14 41.88 17.37 7.03 20.00 3.89 ± 0.14

AdaIN-VC 2.42 ± 0.15 3.23 ± 0.18 53.75 36.56 17.86 36.25 3.85 ± 0.13
AGAIN-VC 2.43 ± 0.15 3.34 ± 0.20 45.63 43.33 21.62 33.75 3.72 ± 0.18
AutoVC 3.50 ± 0.13 4.33 ± 0.14 28.75 23.03 10.97 30.00 4.18 ± 0.11
AutoVC-F0 3.52 ± 0.14 4.06 ± 0.16 38.13 22.12 9.67 26.25 4.04 ± 0.12
NVC-Net 3.17 ± 0.18 3.44 ± 0.21 60.63 48.45 26.91 11.25 4.14 ± 0.13

Table 8.3: Unseen-to-unseen voice conversion evaluation results on the VCTK dataset.

Model MOS INT SIM WER CER EER NISQA

Ground Truth 4.41 ± 0.12 4.73 ± 0.08 93.75 12.06 3.58 0.00 4.37 ± 0.10
UnivNet (Vocoder) 4.36 ± 0.10 4.67 ± 0.09 91.25 14.34 4.85 0.00 4.37 ± 0.09

LVC-VC 3.08 ± 0.14 4.06 ± 0.16 29.38 20.10 8.29 26.25 3.50 ± 0.13

AdaIN-VC 2.41 ± 0.14 3.28 ± 0.21 50.63 41.43 20.53 35.00 3.55 ± 0.17
AGAIN-VC 2.18 ± 0.14 2.90 ± 0.20 30.00 51.57 26.86 32.50 3.35 ± 0.16
AutoVC 3.39 ± 0.16 4.00 ± 0.16 5.63 27.97 12.41 66.25 4.09 ± 0.10
AutoVC-F0 3.21 ± 0.15 4.08 ± 0.16 12.50 28.15 12.55 63.75 3.94 ± 0.12
NVC-Net 3.09 ± 0.16 3.44 ± 0.20 35.63 50.51 26.27 37.50 4.24 ± 0.11
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unseen-to-seen, and unseen-to-unseen settings, respectively. We also report the re-

sults for ground truth speech and speech reconstructed using the UnivNet vocoder to

provide baseline values for reference. MOS denotes the subjective naturalness score

(Section 7.2.1), INT denotes the subjective intelligibility score (Section 7.2.2), and

SIM denotes the subjective similarity score (Section 7.2.3). WER and CER are the

ASR word error and character error rates (Section 7.1.2), EER is the ASV equal error

rate (Section 7.1.3), and NISQA is the audio quality score estimated by the NISQA

model (Section 7.1.1). For MOS, INT, SIM, and NISQA, higher is better. For WER,

CER, and EER, lower is better. We report average scores across all converted ut-

terances for MOS, INT, WER, CER, and NISQA. We also report 95% confidence

intervals for MOS, INT, and NISQA.

We see that most of the previously proposed voice conversion models largely fall

under two categories: 1) those that are able to perform voice style transfer (VST) rea-

sonably well, but produce low-quality or less intelligible audio (AdaIN-VC, AGAIN-

VC, NVC-Net), and 2) those that produce high-quality and intelligible audio, but

are not able to perform VST very well (AutoVC, AutoVC-F0). In other words, all

of these models appear to face a trade-off between producing high-quality audio and

achieving good VST performance.

AdaIN-VC and AGAIN-VC are able to produce audio with relatively good scores

for SIM and EER, but they do poorly in terms of MOS, NISQA, INT, WER, and

CER. NVC-Net actually appears to produce the cleanest audio—it achieves the best

NISQA scores in all three settings—and it performs quite well in terms of VST,

achieving the best SIM and EER in the seen-to-seen and unseen-to-seen settings.

However, it has among the worst WER and CER scores and a fairly low INT score,

indicating that it is not able to preserve content information very well; this appears to

contribute to its lower MOS. In addition, its VST performance degrades significantly

in the unseen-to-unseen setting.

AutoVC and AutoVC-F0 demonstrate relatively good scores for MOS, INT, WER,

CER, and NISQA in all three settings, indicating that they are able to produce clean,

intelligible audio. However, they perform quite poorly in terms of VST, as shown by
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their SIM and EER scores. This is especially evident in the unseen-to-unseen setting,

where the SIM and EER scores are by far the worst among all of the models.

LVC-VC is able to manage these trade-offs much better than the other models.

While it is not quite the best at producing clean, natural audio, it achieves MOS

and NISQA scores that are competitive with the other best models in those cate-

gories, especially in the seen-to-seen and unseen-to-seen settings. Notably, it achieves

very high INT scores and has by far the lowest WER and CER in all three set-

tings, indicating that it is able to maintain the linguistic content and pronunciation

clarity of source utterances very well. This shows that the low-quefrency liftered

mel-spectrogram that we use as LVC-VC’s input feature is effective at preserving

and passing on the content information of source utterances to converted utterances.

LVC-VC also performs quite well in terms of VST performance. Although it does

not quite outperform AdaIN-VC and AGAIN-VC in terms of SIM, it obtains a better

EER than them in all three settings. It also obtains the best EER among all of the

models in the unseen-to-unseen setting.

8.1.2 Un-targeted voice anonymization

Following the methodology outlined in Chapter 5, we performed un-targeted voice

anonymization on the same 80 utterances that were used for evaluating unseen-to-

seen targeted voice conversion on the VCTK corpus. Here, because the goal is to

perform anonymization, lower SIM and higher EER scores are better; 0.00% SIM

and 50.00% EER would indicate perfect anonymization for all utterances. Table 8.4

shows the results of performing anonymization in this way.

We find that our anonymization method appears to work quite well for masking

speaker identity. SIM decreased from 93.75% to 26.88% and EER increased from

0.00% to 31.25%, indicating that speakers’ voices were successfully masked in most

cases for both human listeners and the ASV model. We note that we did not put

any particular constraints when sampling speaker embeddings for anonymization (e.g.

by enforcing that the sampled embeddings have a minimum cosine distance from the

source utterance’s embedding); adding these constraints would likely result in an even
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Table 8.4: Un-targeted voice anonymization evaluation results on the VCTK dataset.

Model MOS INT SIM WER CER EER NISQA

Ground Truth 4.43 ± 0.12 4.83 ± 0.07 93.75 9.69 2.93 0.00 4.42 ± 0.09

LVC-VC: Untargeted 3.16 ± 0.17 3.70 ± 0.16 26.88 15.17 6.05 31.25 3.70 ± 0.14

greater degree of anonymization on average.

As a side effect of anonymization, however, we do see that the naturalness, in-

telligibility, and general audio quality of anonymized speech decreases compared to

the original ground truth audio (although WER and CER are not as adversely af-

fected). This is likely a result of LVC-VC being fed speaker embeddings that have

been sampled from a latent space of embeddings that it has not seen before. We hy-

pothesize that this quality degradation could be mitigated to some extent if LVC-VC

were trained on a larger dataset with many more speakers; being exposed to a wider

space of speaker embeddings during training could help the model generalize better

to arbitrary speaker embeddings during inference.

In practice, we believe it would be possible to design an un-targeted speaker

anonymization system by randomly sampling several different potential target em-

beddings, and then allowing people who wish to anonymize their voices to listen to

the options and select the target voice that they would like to use. By giving hu-

man users some degree of control over the overall process, it should be possible to

guarantee a satisfactory level of voice anonymization while better maintaining the

perceptual elements of the transformed speech.

8.1.3 Ablation studies

We conducted ablation studies on LVC-VC to evaluate the impact of the various input

features and training strategies on the model’s performance. Specifically, we tested

versions of the model trained without sampling speaker embeddings for reconstructive

training from GMMs (using a single average embedding for each speaker instead),

without the SSC loss, without warping the low-quefrency liftered mel spectrogram

H, and without using each of the input features pnorm and 𝑚. The results on seen-
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Table 8.5: Seen-to-seen voice conversion evaluation results for various ablations of
LVC-VC on the VCTK dataset.

Model WER CER EER NISQA

LVC-VC 22.69 9.55 18.50 4.00 ± 0.08

w/o GMM embeddings 23.33 10.18 15.50 3.86 ± 0.09
w/o SSC loss 15.79 5.97 68.00 4.16 ± 0.08
w/o warping H 19.80 8.51 41.50 3.96 ± 0.09
w/o pnorm 23.11 10.22 18.50 3.71 ± 0.10
w/o 𝑚 22.34 9.05 21.00 3.91 ± 0.09

Table 8.6: Unseen-to-seen voice conversion evaluation results for various ablations of
LVC-VC on the VCTK dataset.

Model WER CER EER NISQA

LVC-VC 17.37 7.03 20.00 3.89 ± 0.14

w/o GMM embeddings 16.64 7.10 16.25 3.69 ± 0.15
w/o SSC loss 12.25 4.38 71.25 4.04 ± 0.13
w/o warping H 19.56 8.40 42.50 3.81 ± 0.17
w/o pnorm 19.01 7.61 25.00 3.66 ± 0.15
w/o 𝑚 18.28 7.46 20.00 3.82 ± 0.13

Table 8.7: Unseen-to-unseen voice conversion evaluation results for various ablations
of LVC-VC on the VCTK dataset.

Model WER CER EER NISQA

LVC-VC 20.10 8.29 26.25 3.50 ± 0.13

w/o GMM embeddings 26.92 11.11 25.00 2.89 ± 0.14
w/o SSC loss 16.78 6.64 68.75 3.83 ± 0.13
w/o warping H 19.76 7.39 51.25 3.62 ± 0.17
w/o pnorm 21.33 8.60 32.50 3.36 ± 0.18
w/o 𝑚 22.90 9.90 28.75 3.47 ± 0.14

to-seen, unseen-to-seen, and unseen-to-unseen voice conversion are shown in Tables

8.5, 8.6, and 8.7, respectively. For convenience, we only report scores from objective

metrics.

When LVC-VC is trained on a single average speaker embedding instead of sam-

pling from a GMM, we find that VST performance improves slightly. However, the

overall audio quality decreases significantly, especially in the unseen-to-unseen set-

ting. This suggests that training the model to reconstruct audio from diverse speaker
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embeddings sampled from a GMM helps it combine the information in speaker embed-

dings with content features more coherently when synthesizing audio. Consequently,

the model is also able to better utilize speaker embeddings from unseen speakers,

leading it to produce much higher quality audio in the zero-shot setting.

When we train LVC-VC without SSC loss, we find that the model has trouble

performing VST accurately, as evidenced by much higher EERs in all three settings.

This demonstrates the importance of explicitly guiding the model to perform voice

conversion rather than only relying on self-reconstructive training. Warping the low-

quefrency liftered mel spectrogram has a similar effect on VST performance; training

LVC-VC using H rather than H′ for self-reconstruction also leads to significantly

higher EERs. This indicates that, without warping, the source speaker information

remaining in H seems to leak through to the output audio and cause imperfect con-

version. Meanwhile, training using the warped feature H′ seems to effectively perturb

the source speaker information such that LVC-VC is able to “un-warp” the content

features to match the vocal characteristics of the target speaker much more accurately.

Finally, while they do not appear to crucially impact any one aspect of the model’s

performance, the normalized F0 contour pnorm and quantized F0 median 𝑚 contribute

to relatively small, but significant performance gains in terms of all measured metrics.

Therefore, we can see that each of the training strategies and features that we used

contribute meaningfully to the overall performance of LVC-VC.

8.2 LVN

We used LVC-VC to anonymize utterances that were sampled from LVN conversations

as described in Section 6.2. We used two different methods: 1) targeted anonymiza-

tion, where the utterances were converted to the voices of seen speakers from the

VCTK corpus, and 2) un-targeted anonymization, where we followed the method-

ology described in Chapter 5. For targeted anonymization, we randomly selected a

speaker from the 99 seen speakers in the VCTK corpus to use as the target speaker.

As before, since we are performing anonymization, lower SIM and higher EER scores
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Table 8.8: Targeted and un-targeted voice anonymization evaluations results on audio
from LVN conversations.

Model MOS INT SIM WER CER EER NISQA

Ground Truth 4.49 ± 0.10 4.50 ± 0.11 91.00 38.16 20.72 2.00 3.27 ± 0.17

LVC-VC: Targeted 2.21 ± 0.13 2.71 ± 0.15 25.00 65.98 36.86 31.00 2.91 ± 0.15
LVC-VC: Untargeted 2.02 ± 0.12 2.33 ± 0.14 10.50 69.61 38.97 39.00 2.55 ± 0.14

are better. The results are shown in Table 8.8.

Before diving into the results, it is worth noting several differences between the

audio from LVN and VCTK. First, LVN audio quality is significantly worse than that

of VCTK. Compared to NISQA scores around 4.4 or 4.5 for VCTK, LVN data only

has an average NISQA score of 3.27. This is largely a result of the diverse conditions

under which LVN conversations are recorded, which includes varying amounts of

background noise and reverberation.

Second, the WER and CER for ground truth LVN audio is significantly worse

than for VCTK. This may partly be due to the relatively poor audio quality, which

could make it difficult for the wav2vec 2.0 ASR model to accurately recognize the

content of the speech. However, it is likely also a consequence of inaccurate speech

transcriptions. On the LVN platform, transcripts are meant to be read on their own

or followed along while listening to the audio; consequently, many artifacts of natural

human speech, such as “um”s, “uh”s, or repeated words or phrases, are not transcribed

verbatim for the sake of readability. This phenomenon likely also contributes to the

much higher ASR error rates that we see here.

In terms of the anonymization performance of LVC-VC, we see a similar pattern

to the results seen above for VCTK. Both targeted and un-targeted anonymization

methods result in low SIM scores and high EERs (25.00% and 10.50%, and 31.00%

and 39.00%, respectively), indicating successful anonymization of vocal identity in

most cases. However, we also see a fairly large degradation in speech quality, both

in terms of naturalness and intelligibility. Subjective naturalness and intelligibility

scores notably decrease quite significantly, and ASR error rates and NISQA scores

also worsen as well.
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Given the way in which LVC-VC was trained, these results are not entirely sur-

prising. Because LVC-VC was trained exclusively on clean audio from VCTK, it

was never exposed to noisy or reverberant audio. Therefore, it may not be able

to properly utilize the low-quefrency liftered spectrograms of utterances with a poor

signal-to-noise ratio, as the frequency characteristics of noise and reverberations likely

muddle the content information that is encoded in the input feature. We discuss this

issue more in-depth and propose some strategies for mitigating these shortcomings in

Chapter 10.
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Chapter 9

Internal Representations: What’s

going on under the hood?

We have seen that LVC-VC is able to synthesize audio by combining together various

content and speaker-related input features within a vocoder-like framework. However,

we do not know how exactly the audio is generated. What is actually happening

inside the model? Is the intuition we described previously—that speaker features are

used to “un-normalize” and “un-warp” the content features—correct? We performed

several explorations of the intermediate representations of LVC-VC in order to better

understand how the model works. This chapter describes the results of those analyses.

9.1 Time Domain Audio Generation

To investigate how LVC-VC generates time domain audio, we performed spectral

analyses of the intermediate outputs of the model after each transposed convolutional

block. Specifically, we looked at linear spectrograms of each of these intermediate

outputs in order to gain an intuition of what is happening at each step as the model

upsamples the input noise sequence to eventually produce the output audio signal.

Recall that LVC-VC starts with an input noise sequence that is at a 1
256

× tempo-

ral resolution compared to the final output signal. It contains three 1D transposed

convolutional layers that upsample this input sequence by 8×, 8×, and 4× to produce
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Figure 9-1: Spectrogram of the sample utterance that we use to illustrate spectral
analyses of the internal representations of LVC-VC.

the final time domain waveform. Therefore, we can essentially consider the outputs

of the three transposed convolutional blocks to be downsampled versions of the final

output signal with temporal resolutions that are 1
32
×, 1

4
×, and 1× that of real-time.

Taking this into account, we computed the STFTs of these downsampled signals using

the following Fourier transform parameters:

• 1
32
× downsampled signal: 32 point Fourier transform, 32 sample window length,

8 sample hop length, corresponding to audio sampled at 500 Hz.

• 1
4
× downsampled signal: 256 point Fourier transform, 256 sample window

length, 64 sample hop length, corresponding to audio sampled at 4 kHz.

• 1× downsampled signal: 1024 point Fourier transform, 1024 sample window

length, 256 sample hop length, corresponding to audio sampled at 16 kHz.

Note that because the model uses 16 channels in its convolutional layers, the output

of each transposed convolutional block also has 16 channels.

In the rest of this chapter, we use a sample utterance from the VCTK corpus to

illustrate the results of the spectral analyses we performed on the internal represen-

tations of LVC-VC. The utterance is of the phrase “Please call Stella” and is spoken

by a female voice. Figure 9-1 shows the linear spectrogram corresponding to this

utterance.

86



Figure 9-2: Results of computing the STFT on the output of the first transposed
convolutional stack of LVC-VC. Signals are at a 1

32
× temporal resolution compared

to real-time.
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Figure 9-3: Results of computing the STFT on the output of the second transposed
convolutional stack of LVC-VC. Signals are at a 1

4
× temporal resolution compared to

real-time.
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Figure 9-4: Results of computing the STFT on the output of the third transposed
convolutional stack of LVC-VC. Signals are at the same temporal resolution (1×) as
real-time.
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Figure 9-2 shows the results of computing the STFT on the 16 channels of the

output of the first transposed convolution stack when LVC-VC is tasked with recon-

structing the sample utterance. We can see that the model immediately begins to

construct content information, as demonstrated by the emergence of three clear voiced

segments in the STFT outputs (“Please”, “call”, “Stella”). In these voiced segments, we

also see the emergence of the first harmonic band of the speaker’s F0 around the 200

Hz mark. In addition, we can notice that individual channels appear to model differ-

ent aspects of the audio signal. Some channels appear to model the voiced segments

of the utterance, while others appear to model the unvoiced segments, background

noise, or silence.

Figures 9-3 and 9-4 show the corresponding STFT visualizations for the outputs of

the second and third transposed convolution stacks, respectively. We see that similar

patterns emerge in terms of different channels appearing to correspond to different

aspects of the final time domain audio signal: voiced segments, unvoiced segments,

background noise, and silence. In Figure 9-3, we can notably see one channel at

(5, 2) that appears to encode the spectral envelope and the formant frequencies of

the utterance over time. We also see the formation of more harmonic frequencies and

the overall F0 contour, indicating the gradual addition of more detailed speaker and

content information as the signal propagates through the model.

Overall, these results indicate that the different channels of LVC-VC’s convolu-

tional layers encode the various aspects of a speech signal, such as voiced and un-

voiced segments, vocal cord harmonics, formants, silence, and noise. LVC-VC thus

appears to generate audio by starting off with incorporating high-level speaker and

content features in the lower layers of the model, and then gradually adding in more

fine-grained speaker and content information as it dilates the signal across the time

domain and spectrum. These results are perhaps not entirely surprising; we can see

them as analogous to the way in which convolutional filters in deep computer vision

models learn to encode different aspects of images in their layers, such as edges, colors,

and patterns [48, 71].
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9.2 Incorporation of Speaker and Content Informa-

tion

Now that we have gained an intuition of how LVC-VC synthesizes audio overall, we

would like to see how it incorporates speaker and content information during the

audio generation process. To do this, we performed experiments where we ablated

each of these features and performed spectral analyses of the resulting outputs.

9.2.1 Speaker information

To analyze how LVC-VC incorporates speaker information in the speech generation

process, we zeroed out the speaker embedding 𝑠 and quantized log median F0 𝑚 and

made the model generate audio using only content features. Then, we performed

spectral analyses in the same way as in Section 9.1 by computing the STFTs of the

intermediate outputs of the transposed convolution stacks as well as of the final output

signal. Figure 9-5 illustrates the final output of the model when it generates audio

with no speaker information, and Figure 9-6 illustrates the intermediate outputs of

the transposed convolution stacks. For brevity, we only include visualizations for 4

out of the 16 channels for each of the intermediate outputs.

We can see that the spectral envelope and formants of the utterance are well

Figure 9-5: Spectrogram computed from the output signal generated by LVC-VC
when the speaker embedding 𝑠 and quantized log median F0 𝑚 have been zeroed out.
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(a) Output of first transposed convolution stack.

(b) Output of second transposed convolution stack.

(c) Output of third transposed convolution stack.

Figure 9-6: Results of computing the STFT on the intermediate outputs of LVC-
VC after each transposed convolutional stack when the speaker embedding 𝑠 and
quantized log median F0 𝑚 have been zeroed out.
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preserved at each intermediate layer and in the final output signal, indicating that

the content information has been passed through the model properly. However, we

also notice that the speaker’s F0 band and its harmonics do not form at any point,

indicating that the speaker’s vocal characteristics have not been imparted onto the

output signal. Intuitively, this makes sense; since the model does not have any condi-

tioning information about the speaker’s identity, there is no way for it to determine

the characteristics of the speaker’s voice.

These results demonstrate that the content-related features we feed into LVC-VC

properly transfer the content information of the source utterance to the output of the

model without allowing any speaker information through.

9.2.2 Content information

To analyze how LVC-VC incorporates content information, we made the model gen-

erate audio after zeroing out the low-quefrency liftered mel spectrogram H. However,

we did continue to provide the normalized F0 contour pnorm in order to see how it

would interact with the speaker information 𝑠 and 𝑚. Figure 9-7 illustrates the final

output of the model when it generates audio with no content information, and Figure

9-8 illustrates the intermediate outputs of the transposed convolution stacks.

The outputs are essentially the reverse of what we see when we zero out the speaker

Figure 9-7: Spectrogram computed from the output signal generated by LVC-VC
when the low-quefrency liftered mel spectrogram H has been zeroed out.
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(a) Output of first transposed convolution stack.

(b) Output of second transposed convolution stack.

(c) Output of third transposed convolution stack.

Figure 9-8: Results of computing the STFT on the intermediate outputs of LVC-
VC after each transposed convolutional stack when the low-quefrency liftered mel
spectrogram H has been zeroed out.
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information. Voiced segments, which are specified by the normalized F0 contour

pnorm, still appear to be generated more or less properly; the shape and contour of

the F0 and its harmonic frequencies still form somewhat normally, demonstrating

that pnorm is being successfully “un-normalized” by combining it with the speaker

information. However, as expected, the spectral envelope and formants do not form

at all, resulting in a situation in which the F0 contour is present but there is no

content information for it to correspond to. In addition, we see that in the absence

of the knowledge of which unvoiced frames are silent, the model appears to fill in the

gaps with white noise-like artifacts up to around 6,000 Hz (as seen in Figure 9-7).

These results indicate that the speaker-related features that are fed into LVC-VC

allow the model to effectively express the speaker’s vocal characteristics in the output

audio without passing any content information through.

9.3 Summary

Overall, the analyses in this chapter support the intuition that we provided earlier

in Section 4.1.1: that LVC-VC combines speaker information with the content fea-

tures in such a way that “un-warps” the low-quefrency liftered spectrogram H and

“un-normalizes” the normalized F0 contour pnorm. This indicates that our strategy

for LVC-VC’s design—combining carefully designed input features in an end-to-end

vocoder-like framework, rather than training the model to explicitly disentangle and

recombine the information in an utterance—is an effective way of synthesizing audio

using the speaker and content information taken from different utterances.

95



Part IV

Wrap-Up
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Chapter 10

Limitations and Future Work

In this chapter, we explore some of the main limitations of the voice conversion and

anonymization methods that we have proposed, as well as extensions and future

directions that could be taken to address them.

10.1 Generated Audio Quality

We saw in Chapter 8 that LVC-VC is able to generate high quality audio in terms

of naturalness when the target speaker for voice conversion was seen during training,

regardless of the source speaker. However, we also saw that audio quality deteriorates

when the target speaker was unseen during training or arbitrarily sampled from a

distribution, indicating that the way in which the model combines speaker and content

information to generate audio is sensitive to the specific speaker embedding that is

used. This does not preclude LVC-VC from being used for anonymization in general,

as we can still produce high quality anonymized audio by converting voices to pre-

specified target speakers that were seen during training. However, it does limit us

from effectively using the anonymization method from Chapter 5 in practice.

We hypothesize that this issue could be mitigated by training the model on data

from a much larger number of speakers. During our ablation studies, we saw that

training the model on speaker embeddings sampled from GMMs of seen speakers’

embeddings led to greater robustness and much better audio quality when perform-
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ing zero-shot voice conversion compared to training using a single mean embedding

for each speaker. This suggests that exposure to a wider space of speaker embed-

dings during training could help the model generalize better to arbitrary speaker

embeddings during inference.

Indeed, the VCTK corpus that we used is quite small, especially for modern deep

learning standards—it contains only 109 unique speakers, of which only 99 were used

for training. We used this dataset primarily because of convenience; it is the standard

dataset that is used in most of the voice conversion literature, and its small size makes

it practical for training models in a reasonable amount of time. However, using much

larger datasets such as VoxCeleb1 [65] or VoxCeleb2 [12], which have on the order

of thousands of speakers, could greatly improve LVC-VC’s ability to generate higher

quality speech even when using previously unseen or arbitrary speaker embeddings.

Larger datasets could also make it easier to train the speaker encoder 𝐸𝑠 jointly with

the rest of the model since it would then be exposed to a larger variety of speakers; this

could lead to further improvements compared to using a fixed pre-trained network.

In addition, recall that audio quality degraded significantly when transforming

speakers from LVN conversations, regardless of whether the target voice had been

a previously seen speaker or an arbitrary sampled one. This was likely due to the

significantly noisier and more reverberant nature of LVN audio, which consists of “in

the wild” data that was recorded under a wide variety of uncontrolled conditions. We

previously mentioned that this was not entirely surprising given that LVC-VC was

never trained on anything other than clean VCTK data. Previous works on automatic

speech recognition [45] and speech representation learning [88] have demonstrated

the importance of data augmentation for training speech models that are robust to

noise. We believe that the quality degradation issues could be somewhat mitigated

by training LVC-VC on audio from more diverse sources and/or by performing data

augmentation. It could also be helpful to preprocess noisy or reverberant audio with

speech enhancement or denoising systems.

Finally, audio quality could also be improved by using a larger model. In our

experiments, we based the generator architecture on the variant of UnivNet called
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UnivNet-c16, which uses a channel size of 16 in its convolutional layers, as opposed

to the larger variant UnivNet-c32, which uses a channel size of 32. Again, this was

primarily for convenience reasons, as UnivNet-c16 was more lightweight and could be

trained faster. However, [35] showed that UnivNet-c32 generated significantly higher

quality speech than UnivNet-c16, especially when vocoding spectrograms of previ-

ously unseen speakers. Therefore, simply changing our base generator architecture to

use 32 channels in its convolutional layers could improve LVC-VC’s performance.

10.2 Anonymization and Voice Attribute Control

From an anonymization perspective, the capabilities of our proposed methods are

limited by the current VC paradigm, which can only handle making changes to an

utterance’s timbre. This means that while a converted utterance might sound like

it was spoken by a different person, it will still maintain certain characteristics of

the original speaker that can be important personal identifiers, such as rhythm and

accent. Therefore, only a limited degree of anonymization is possible through pure

voice conversion, and it does not include capabilities for more fine-grained control

when transforming speech.

Relatively little research has been done on methods that can flexibly and inde-

pendently disentangle and alter these other characteristics of an utterance. However,

some recent works have shown that it is possible to explicitly disentangle certain other

factors of speech for more fine-grained control. For example, [84] demonstrated that it

is possible to disentangle the rhythm, pitch, and timbre of a speech signal using specif-

ically designed information perturbation and autoencoder information bottlenecks for

more controllable speech synthesis. Meanwhile, [98] proposed a method for learning

a latent space of speaker identities that allows for sampling arbitrary, non-existent

voices while explicitly conditioning on locale (accent) and gender. [9] introduced a

method that could alter timbre, shift pitch, and perform time-scale modification of

speech by using an information perturbation strategy for various input features in a

speech analysis and synthesis framework.
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Going beyond the current VC paradigm, a direction of future work could be

the development of a system that can change various paralinguistic attributes of

a voice, and in doing so, realistically and flexibly morph a voice without the need for

specifying a target speaker. One way of doing this could be by harnessing the power

of deep generative models to create a speaker embedding space, rather than relying

on a speaker encoder pre-trained on a recognition task. Some recent works have

demonstrated the feasibility of controllable speech synthesis frameworks by sampling

from the latent spaces of generative models [33, 110]. However, these methods were all

used for text-to-speech applications. Extending such frameworks would have strong

implications not just for the task of speaker anonymization, but for the overall field

of speech synthesis.
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Chapter 11

Ethical Considerations

As machine learning research and applications become more ubiquitous across society,

they have raised the capabilities of many technologies and increased the likelihood

of meaningful social benefit. However, they have also brought with them many un-

certainties with regards to potential misuses of these technologies. Indeed, problems

with data privacy, algorithmic bias, automation risk, and potential malicious uses of

artificial intelligence have been well-documented [116]. These concerns are especially

relevant for application-based research that aims to be deployed in the real world.

This thesis aims to improve the state-of-the-art in voice conversion in order to ef-

fectively perform the task of speaker anonymization. Unfortunately, voice conversion

is a field that is fraught with potential misuse. So-called “audio deepfakes” can be

used to deceive people by synthetically generating statements and attributing them

to certain individuals; this can lead to harmful actions such as voice spoofing [43] or

the spread of fake news and misinformation [93]. To the extent that this work en-

ables more realistic, targeted manipulation of speaker identities, it could potentially

exacerbate these misuses if used by a malicious party.

Consequently, a wide variety of recent work has sought to address the question of

how to deal with audio deepfakes. These include techniques for anti-spoofing [114, 38,

101], as well as for more general fake audio detection [62, 14]. Recently, there have also

been several public challenges to encourage the development of more systems that can

detect fake audio, such as ASVspoof [105, 121] and the Audio Deep Synthesis Detec-
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tion Challenge (ADD) [123]. Going forward, the speech machine learning community

should continue to encourage these directions of research and raise awareness of the

potential problems with high-fidelity synthetic audio.

There are also approaches that can be taken from a more immediately practical

standpoint [69]. First, organizations that utilize synthetic voices generated by text-

to-speech (TTS) or voice conversion technologies should provide adequate disclosure

to audiences when they do so; this is especially important if using the voice of a

well-known person. Doing this can help minimize the risk of harmful outcomes from

potential deception and can also increase trust in the organization delivering the voice.

When generating or converting voices to sound like real speakers, the owners of the

voices should also have control over their voice model (i.e., give permission for how

and where it will be used) and be compensated for their use if appropriate.

In the past, using voice conversion methods for speaker anonymization neces-

sitated changing the original voice to a different existing person’s voice. The un-

targeted speaker anonymization approach introduced in Chapter 5 was our way of

trying to go beyond this paradigm and avoid some of the pitfalls associated with

audio deepfakes. Although there are currently some key limitations to our proposed

method, we see many potential avenues to improving un-targeted voice conversion

and synthesis, as described in Section 10.2. In this regard, we believe that additional

research to extend and generalize the capabilities of VC technologies can help mitigate

some concerns about audio deepfakes, at least in the present anonymization setting.
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Chapter 12

Conclusion

12.1 Summary of Work

In this thesis, we were motivated to develop a speaker anonymization system that

could effectively mask the vocal identity of spoken utterances while maintaining their

prosodic elements. We chose to approach the anonymization problem from the lens

of voice conversion (VC) because it would allow us to preserve the expressivity of

utterances while transforming them to sound like other individuals. To this end,

we presented Location-Variable Convolution-based Voice Conversion (LVC-VC), an

end-to-end model for zero-shot voice conversion that is able to convert the vocal

identity of an utterance to and from that of any speaker. We found that LVC-VC is

able to achieve voice conversion performance that is competitive with or better than

many current state-of-the-art zero-shot VC models, achieving a good balance between

naturalness, intelligibility, and voice style transfer accuracy.

Furthermore, we introduced a method for extending targeted voice conversion

to un-targeted voice anonymization, in which arbitrary and potentially non-existent

voices are sampled from a distribution of speakers and used as the target voice in

our VC model. Using regular VC methods for anonymization brings up a variety

of practical and ethical issues because they necessitate that a real target speaker be

specified in order to change a voice. Our proposed anonymization method aimed to

avoid these concerns by eliminating the need for specifying a real target speaker.
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12.2 Final Remarks

In the age of the web and social media, where text-based discourse has become so

ubiquitous, spoken language still remains one of the most meaningful modes of com-

munication that we have. Speaking directly to others and listening to voices is fun-

damentally powerful in a way that reading a text message, a Tweet, or a blog post

is not. Thus, speech allows us to tell stories and spread ideas with others extremely

effectively, perhaps to an even greater extent than we sometimes realize. Working

towards a high quality method for anonymizing speech can be seen as a step towards

the democratization of the voice, empowering people everywhere to speak and share

their perspectives with others more freely. To this end, this work hopes to have made

a small contribution in that direction.
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Appendix A

Design of Amazon Mechanical Turk

Surveys for Subjective Evaluations

A.1 Subjective Listening Test for Naturalness (MOS)

For the subjective listening test for evaluating the naturalness of utterances, subjects

were asked to assign a score from 1–5 on the naturalness of the audio. 1 meant that

the utterance did not sound natural at all and 5 meant that the utterance sounded

completely natural. Participants were paid $0.05 per response. The full instructions

given to the subjects were as follows:

Listen to the sample of speech, which may or may not have been generated
by a computer, and assess the quality of the audio based on how close it
is to natural speech.

You should wear headphones and work in a quiet environment.

The rubric for evaluation was as follows:

• Excellent (5) – Completely natural speech

• Good (4) – Mostly natural speech

• Fair (3) – Equally natural and unnatural speech

• Poor (2) – Mostly unnatural speech

• Bad (1) – Completely unnatural speech
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Figure A-1: Amazon Mechanical Turk instructions for subjective evaluations of nat-
uralness.

Figure A-1 shows a screenshot of the response page for subjects.

A.2 Subjective Listening Test for Intelligibility

For the subjective listening test for evaluating the intelligibility of utterances, subjects

were asked to assign a score from 1–5 on the intelligibility of the audio. 1 meant

that the utterance was not understandable at all and 5 meant that the utterance

was completely understandable. Participants were paid $0.05 per response. The full

instructions given to the subjects were as follows:

Listen to the sample of speech, which may or may not have been generated
by a computer, and assess how understandable the words being spoken are.
Some of the audio samples may sound somewhat degraded or distorted.
Please try to listen beyond the audio quality and make your rating based
on the clarity of the pronunciation of the words.

You should wear headphones and work in a quiet environment.
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Figure A-2: Amazon Mechanical Turk instructions for subjective evaluations of intel-
ligibility.

The rubric for evaluation was as follows:

• Excellent (5) – Completely intelligible speech

• Good (4) – Mostly intelligible speech

• Fair (3) – Somewhat intelligible speech

• Poor (2) – Mostly unintelligible speech

• Bad (1) – Completely unintelligible speech

Figure A-2 shows a screenshot of the response page for subjects.

A.3 Subjective Listening Test for Similarity

For the subjective listening test for evaluating the similarity of two utterances, sub-

jects were asked to indicate whether the two voices sounded like the could have come

from the same speaker. Participants were paid $0.10 per response. The full instruc-

tions given to the subjects were as follows:
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Figure A-3: Amazon Mechanical Turk instructions for subjective evaluations of sim-
ilarity.

Listen to the two speech samples, which may or may not have been gen-
erated by a computer. Please give an assessment as to whether you think
the two samples could have been said by the same speaker.

Some of the audio samples may sound somewhat degraded or distorted.
The speed and accent with which the speech was spoken may also be dif-
ferent. Please try to listen beyond these differences and concentrate on
deciding whether the voices themselves sound similar or not.

You should wear headphones and work in a quiet environment.

The rubric for evaluation was as follows:

• Same speaker – Absolutely sure

• Same speaker – Not sure

• Different speaker – Not sure

• Different speaker – Absolutely sure

Figure A-3 shows a screenshot of the response page for subjects.
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