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Abstract

Anomaly detection on time series data is increasingly common across various in-
dustrial domains that require monitoring metrics to prevent potential accidents and
economic losses. The complications of anomaly detection revolve around a scarcity
of labeled data and the need to learn temporal correlations between multiple vari-
ables. Most successful unsupervised methods either use single-timestamp prediction
or reconstruct entire time series. However, these methods are not mutually exclusive
and can each offer complementary perspectives. This work first explores the successes
and limitations of prediction-based and reconstruction-based methods. Next, it com-
pares the effect of attention-based architectures with LSTM-based architectures on
existing models. Finally, this research proposes a novel autoencoder architecture ca-
pable of producing bi-directional predictions while simultaneously reconstructing the
original time series by optimizing a joint objective function. An ablation study using
a mixture of prediction and reconstruction errors demonstrates that this simple ar-
chitecture outperforms other state-of-the-art models for anomaly detection on both
univariate and multivariate time series.

Thesis Supervisor: Kalyan Veeramachaneni
Title: Principal Research Scientist
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Chapter 1

Introduction

1.1 Motivation

Time series data is consistently generated and collected across various industries –

examples include stock price in finance, heart rate in biomedicine, and retail sales

in business. Effective monitoring, utilization, and analysis of time series data often

increases efficiency and productivity. Anomaly detection is a subset of time series

analysis that aims to identify unexpected events. Since early anomaly detection is

crucial to prevent issues like bank fraud, medical problems, and structural defects,

this form of research is broadly and increasingly relevant.

1.2 Background

1.2.1 Common Characteristics of Anomalies in Time Series

While criteria for anomalies in time series differ across domains, there are common

identifiable patterns. Point anomalies are singular data points that suddenly deviate

from the normal range of the series. Contextual anomalies are data points that lie

within the normal range of the series but do not follow the expected patterns. Finally,

collective anomalies are data points that are not anomalous individually but are when

considered in the context of the entire dataset.
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Choi et al. [6] further broke down the patterns exhibited by anomalies in time

series. Assume that the baseline time series has symmetric amplitude and frequency

over time. The “missing" anomalies are long segments of observations that are missing

or default to one constant value. The “minor" anomalies are segments of observations

with relatively small amplitudes. The “outlier" anomalies are the same as point

anomalies. The “square" anomalies describe a sudden shift in oscillation patterns

(e.g., from sine wave to square wave). The “trend" anomalies introduce a linear trend

to the previously stationary time series. Finally, the “drift" anomalies introduce a

random drift to the once stationary time series.

1.2.2 Properties of Time Series

Time series also exhibit unique properties like temporality, dimensionality, noise,

and non-stationarity that complicate anomaly detection. First, temporality refers

to the temporal correlations and dependencies between consecutive observations in

a time series [12]. Second, dimensionality refers to the number of channels in each

observation. Multivariate time series datasets with more than one channel have the

added complexity of capturing both temporal dependencies and correlation between

observations simultaneously [5]. Third, noise refers to the unwanted changes to signals

during their capture, storage, transmission processing, or conversion [17]. Finally,

non-stationarity refers to having statistical properties that change over time, like

seasonality, concept drift, and change points.

1.3 Related Work

Existing methods for anomaly detection on time series are categorized into prediction-

based and reconstruction-based approaches as summarized by Geiger et al. [7]. While

these methods are often based on LSTM networks, alternative networks based on the

attention mechanism provide a different perspective for learning hidden representa-

tions.
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1.3.1 Prediction-based Approaches

Prediction-based methods learn to forecast future observations through previous pat-

terns in the time series. An observation is anomalous when the predicted value

deviates significantly from the actual value. Examples of prediction-based methods

include Autoregressive Integrated Moving Average (ARIMA) [15] and Long Short

Term Memory Recurrent Neural Network with Non-parametric Dynamic Threshold-

ing (LSTM-NDT) forecasting models [9]. However, these models are sensitive to

outliers and often fail to find contextual anomalies.

1.3.2 Reconstruction-based Approaches

Reconstruction-based methods learn a latent low-dimensional representation to recon-

struct the original input. This method assumes the latent space prioritizes capturing

common patterns within the dataset. Rare events like anomalies are not captured in

the latent representation and are less likely to be accurately reconstructed. Exam-

ples of reconstruction-based methods include Principal Component Analysis (PCA)

[16], LSTM Auto-Encoders (LSTM-AE) [8], and LSTM Variational Auto-Encoders

(LSTM-VAE) [14]. PCA is limited to linear reconstructions, while other methods

fail to leverage spatial-temporal correlation and other dependencies in multivariate

settings. Generative Adversarial Networks (GAN) is another reconstruction-based

method that strives to address these issues. For example, MAD-GAN [13] uses

spatial-temporal correlation and other dependencies among multiple variables to cap-

ture non-linear latent interactions by considering the entire variable set concurrently.

TadGAN [7] is a similar model trained with cycle consistency loss to address model

instability issues and to allow for better reconstruction of time series data.

1.3.3 Attention Mechanisms

Transformers [18] are a viable alternative to LSTM networks. LSTM networks quickly

lose information from earlier hidden states since they rely on sequential processing

to store past information in one final hidden state. Instead, transformers use multi-

19



head attention to parallelize computation, avoid recursion, and increase tolerance

in capturing long-term dependencies. Parallelization also has the added benefit of

reducing training time and overcoming computation limitations faced by TadGAN

and MAD-GAN with high-resolution inputs. For example, TransGAN [10] proposed a

simple GAN structure built entirely of memory-efficient transformer blocks along with

a training recipe to handle model instability issues. While TransGAN was developed

for high-resolution image data, similar ideas can be adopted to improve the LSTM-

based GAN models.

1.4 Outline

• Chapter 2 provides information about univariate and multivariate time series

datasets used in this study. This chapter also states the problem definition and

evaluation criteria of unsupervised anomaly detection in time series.

• Chapter 3 explores the successes and limitations of baseline prediction-based

methods (ARIMA, LSTM-NDT) and reconstruction-based methods (LSTM-

AE, LSTM-VAE, TadGAN).

• Chapter 4 proposes several ideas to leverage successes and overcome the limi-

tations of baseline methods.

• Chapter 5 investigates the effect of replacing LSTM-based networks with attention-

based networks on the performance of existing methods.

• Chapter 6 summarizes the study and discusses potential future works.

1.5 Contributions

• Documented four successes and six limitations of baseline methods with visual-

ized examples across multiple datasets, as summarized in Chapter 6.

20



• Proposed the idea of masking anomaly scores to address false positive predic-

tions and bi-directional regression to address missing forecasts at the start of

the time series.

• Provided a simple autoencoder with regression (AER) framework that leverages

the successes of prediction-based and reconstruction-based methods. Ablation

studies show that AER achieved an average contextual F1 score of 0.7383, a

20% improvement compared to the baseline ARIMA model.

• Explained the instability of critic scores and the duality of the critic and gen-

erator sub-components of the TadGAN model.

21
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Chapter 2

Experimental Setup

2.1 Data Description

The models are evaluated on both univariate and multivariate datasets spanning

various domains to test generalizability and adaptability.

2.1.1 Data Sources

The National Aeronautics and Space Administration (NASA)1 provided two space-

craft telemetry datasets: Soil Moisture Active Passage (SMAP) and Mars Science

Laboratory (MSL), acquired from a satellite and a rover respectively [9]. The type

and timing of the measurements have been anonymized. All telemetry values are

min-max scaled to between [-1,1] according to the train split. Each measurement

is accompanied by one-hot encoded information about commands sent or received by

specific spacecraft modules in a given time window. MSL consists of 54 while SMAP

consists of 24 of these one-hot encoded commands. MSL and SMAP can be treated

as either univariate or multivariate datasets.

Yahoo Webscope Program2 provided the S5 datasets, which consist of one dataset

of real production traffic to Yahoo properties (A1) and three synthetic datasets (A2,

A3, A4) with varying trend, noise, and pre-specified or random seasonalities. The A2

1https://github.com/khundman/telemanom/
2http://research.yahoo.com/Academic_Relations/ydata-labeled-timeseries-anomalies-v1
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and A3 datasets only contain outliers inserted at random positions, while the A4 has

outliers and change points. The interval between each observation is one hour for all

signals from Yahoo. A1, A2, A3, and A4 are all univariate datasets.

Numenta Anomaly Benchmark (NAB)3 provides time series datasets from vari-

ous domains: artificialWithAnomaly (Art), realAdExchange (AdEx), realAWSCloud-

watch (AWS), realTraffic (Traffic), realTweets (Tweets). Art consists of artificially

generated signals with varying types of anomalies. AdEx is a dataset for online adver-

tisement clicking rates, where the signals include cost-per-clicks (CPC) and cost per

thousand impressions (CPM). AWS is a dataset for metrics collected by the Amazon-

CloudWatch service and consists of signals from CPU utilization, Network Bytes In,

and Disk Read Bytes. Traffic is a dataset for real-time traffic data from the twin cities

metro area in Minnesota collected by the Minnesota Department of Transportation.

It includes specific sensors’ signals from occupancy, speed, and travel time. Tweets is

a dataset for Twitter mentions of large publicly-traded companies (e.g., Google and

IBM), measured by the number of mentions for a given ticker symbol every 5 minutes.

Art, AdEx, AWS, Traffic, and Tweets are univariate datasets.

The UCR time series anomaly archive 4 is an alternative to the NASA, Yahoo, and

NAB datasets. Wu et al. [19] mentioned that these popular datasets suffer from one

or more of the following four flaws: triviality, unrealistic anomaly density, mislabeled

ground truth, and run-to-failure bias. Hence, the UCR time series anomaly archive

was created as a standardized dataset to compare anomaly detection algorithms.

UCR consists of one univariate dataset with 250 signals.

OmniAnomaly 5 collected data over five weeks from a large internet company and

created the Server Machine Dataset (SMD). The dataset is already partitioned into

train and test splits and consists of signals from 28 different machines. SMD is a

multivariate dataset.

3https://numenta.com/machine-intelligence-technology/numenta-anomaly-benchmark/
4https://www.cs.ucr.edu/~eamonn/time_series_data_2018/UCR_

TimeSeriesAnomalyDatasets2021.zip
5https://github.com/NetManAIOps/OmniAnomaly
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Datasets Properties # Anomalies # Points
Source Name Synthetic Signals Point Contextual Anomaly Data

NASA MSL ✗ 27 0 36 7766 132046
SMAP ✗ 53 0 67 54696 562800

Yahoo

A1 ✗ 67 68 110 1669 94866
A2 ✓ 100 33 167 466 142100
A3 ✓ 100 935 4 943 168000
A4 ✓ 100 833 2 837 168000

NAB

Art ✓ 6 0 6 2418 24192
AdEx ✗ 5 0 11 795 7965
AWS ✗ 17 0 30 6312 67644
Traffic ✗ 7 0 14 1560 15662
Tweets ✗ 10 0 33 15662 158511

UCR UCR ✗ 250 0 250 49113 19353766
Source Name Channels Signals Point Contextual Anomaly Data

NASA MSL 55 27 0 36 7766 132046
SMAP 25 53 0 67 54696 562800

INET SMD 38 28 0 14 58940 1416825

Table 2.1: Summary of the benchmark datasets.

2.1.2 Exploratory Analysis

Table 2.1 provides a high-level overview of each dataset, including the properties,

total number of anomalies, and total number of data points. The total number

of anomalies is sub-divided into point anomalies identified by a single value and

contextual anomalies identified by an interval. The total number of data points

consists of the total number of anomalous points and observations in the dataset. A

synthetic indicator is provided for univariate datasets, while the number of channels

is provided for multivariate datasets.

2.1.3 Preprocessing Steps

Figure 2-1 visualizes the pre-processing steps. Each dataset is divided into train and

test splits according to the data source and detrended, as necessary, by fitting a linear

model. Then, the values of each signal are min-max normalized to between [-1, 1]

according to the train split. Missing values are imputed with the mean. Let 𝑇 be

the number of observations in the split, 𝑛 be the input size to the model (defaults to
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Figure 2-1: Visualization of the preprocessing steps from the original time series 𝑡 to
model inputs 𝑥𝑖. The train split uses the fit function while the test split uses the
produce function based on the MLPrimitives library.

𝑛 = 100 for reconstruction-based models and 𝑛 = 250 for prediction-based models),

and 𝑑 be the dimensionality. 𝑇 − 𝑛 number of inputs 𝑥𝑖 ∈ R𝑛×𝑑 are then created

using a stride of one. The output differs between prediction-based and reconstruction-

based models. In the case of prediction-based models, the prediction for index 𝑖 of

the original time series is 𝑓𝑖 ∈ R. In the case of many-to-one reconstruction-based

models, the reconstructed sequence starts at index 𝑖 is 𝑦𝑖 ∈ R𝑛.

2.2 Evaluation

2.2.1 Problem Definition

Unsupervised time series anomaly detection aims to find a set of anomalous intervals

from time series 𝑡 with 𝑑 observations per time step. Ideally, each anomalous interval
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captures an unexpected behavior that deviates from the pattern in the signal.

2.2.2 Identifying Anomalous Sequences

Chapter 3 documents the method for constructing anomaly scores from prediction-

based and reconstruction-based models. Given the anomaly scores, a locally adaptive

thresholding function from Hundman et al. [9] is used to identify anomalous intervals.

It uses a sliding window to compute local thresholds, join continuous observations to

create anomalous sequences, and mitigate false positives by pruning anomalies.

Let 𝛼 be the sequence of anomaly scores with a maximum size of length 𝑇 (one

score for each observation). The window size defaults to 𝑇
3

with a step size of 𝑇
3*10 to

optimally identify both point and contextual anomalies. The adaptive threshold for

each sliding window is four standard deviations from the window’s mean. Observa-

tions with scores that exceed that threshold are identified as anomalous. Consecutive

anomalous time steps are joined together to create 𝐾 anomalous sequences. A prun-

ing method is used to reduce the number of false positives. Let the maximum anomaly

score 𝐾
(𝑖)
𝑚𝑎𝑥 represent each anomalous sequence 𝐾(𝑖). The maximums are sorted in

descending order, and the decrease percentage change 𝑝(𝑖) is calculated between 𝐾
(𝑖)
𝑚𝑎𝑥

and 𝐾
(𝑖+1)
𝑚𝑎𝑥 . At the sequence 𝐾(𝑗) whose percentage change 𝑝(𝑗) does not exceed an

empirically defined threshold 𝜃 (defaults to 0.13), that sequence and all subsequent

sequences are reclassified as normal, i.e., all sequences between [j, K].

2.2.3 Evaluation Metrics

Similar to Hundman et al. [9] and Geiger et al. [7], the metric used in this study is

unweighted contextual F1 scores for each dataset. The motivation is that anomalies

are rare and window-based in many real-world application scenarios. The end-users’

goal is to detect timely true alarms without receiving many false positives. This

evaluation metric prioritizes finding any part of the anomalies.

Anomaly scoring is based on overlapping segments: a true positive (TP) if a known

anomalous window overlaps any detected windows, a false negative (FN) if a known
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anomalous window does not overlap any detected windows, and a false positive (FP) if

a detected window does not overlap any known anomalous region. Two final metrics

summarize the F1 scores across datasets into one number. The first method gives

equal importance to all datasets by averaging the F1 scores (Avg. F1). The second

method emphasizes datasets with more signals by tallying up all TP, FN, and FP

values across all datasets to compute the F1 score (Total F1).
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Chapter 3

Baseline Models

The baseline models for time series anomaly detection are divided into prediction-

based and reconstruction-based approaches. All baseline models are implemented

using TensorFlow 2.0 [1] under Orion [7], a machine learning library for unsupervised

time series anomaly detection.

3.1 Prediction-based Methods

Prediction-based methods learn patterns from a given time series to forecast future

values. An observation is classified as anomalous if the difference between the fore-

casted value and the original value exceeds a certain threshold. The prediction-based

models used in this study are AutoRegressive Integrated Moving Average (ARIMA)

[15] and LSTM with Non-parametric Dynamic Thresholding (LSTM-NDT) [9].

3.1.1 Prediction-based Anomaly Scores

Given the input 𝑥𝑖 ∈ R𝑛×𝑑 with length 𝑛 and dimensionality 𝑑 starting at index 𝑖,

prediction-based models produce an one-step forecast in the forward direction 𝑓𝑛+𝑖

at index 𝑛 + 𝑖. Let 𝑡 be values of the time series and 𝑇 be the total number of

observations. Only forecasts 𝑓𝑛+𝑖 for 𝑖 ∈ [𝑛+1, 𝑇 ) can be calculated since the models

require at least 𝑛 observations to forecast the first value at the index 𝑛 + 1. The
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prediction-based anomaly score 𝛼𝑝 takes the absolute mean error between the time

series 𝑡 and the sequence of forward predictions 𝑓 .

𝛼𝑝(𝑡, 𝑓) =

⎧⎪⎨⎪⎩0 𝑖 ∈ [1, 𝑛+ 1)

|𝑡𝑖 − 𝑓𝑖| 𝑖 ∈ [𝑛+ 1, 𝑇 )

(3.1)

An exponentially weighted moving average with a smoothing window of 0.1 * 𝑇 is

applied to the anomaly score to reduce noise.

3.1.2 Autoregressive Integrated Moving Average (ARIMA)

ARIMA is a popular statistical model that uses lags and lagged forecast errors to

predict future values. Three terms characterize the model: the order of the autore-

gressive term 𝑝, differencing 𝑑, and moving average term 𝑞. The auto-regressive model

𝐴𝑅(𝑝) uses a weighted sum of lagged observations to capture different temporal struc-

tures. The integrated differencing uses a 𝑑 order differencing to ensure stationarity.

Finally, the moving average model 𝑀𝐴(𝑞) uses the weighted sum of lagged prediction

errors to capture the relationship between observations and residual errors. However,

ARIMA has several drawbacks. First, it is sensitive to parameter selection and re-

quires extensive domain knowledge about the time series. Second, it cannot model

seasonal or cyclic variations. Finally, it cannot model multivariate time series and

learn correlations between exogenous variables.

ARIMA is implemented with the StatsModels library. The hyperparameters are

empirically set to p=1, d=0, q=0. The inputs are 𝑥𝑖 ∈ R𝑛×𝑑 such that 𝑛 = 250 and 𝑑

depends on dimensionality of the dataset. The outputs are predictions in the forward

direction 𝑓𝑛+𝑖 ∈ R.

3.1.3 LSTM Non-parametric Dynamic Threshold (LSTM-NDT)

LSTM-NDT [9] uses LSTMs and a novel non-parametric dynamic thresholding tech-

nique to detect anomalies in telemetry time series data. Hundman et al. proposed

maintaining a single model per channel to facilitate more granular system control and
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mitigate errors from high dimensionality outputs. Their research also promoted an

exponentially-weighted average function to smooth anomaly errors, dynamic thresh-

olds to produce anomalous intervals, and a pruning methodology to reduce false

positives.

Similar to ARIMA, the inputs are 𝑥𝑖 ∈ R𝑛×𝑑 such that 𝑛 = 250 and 𝑑 depends

on the dimensionality of the dataset. The outputs are predictions in the forward

direction 𝑓𝑛+𝑖 ∈ R. The original LSTM-NDT uses two LSTM layers with 80 units

and dropout rate of 0.3. The training hyperparameters were 35 epochs, batch size

of 64, and Adam optimizer. Simplifying the architecture, a one-layer version LSTM-

NDT-1 is also benchmarked in this study. The specifics of the models are located in

the appendix figure A-1.

3.1.4 Results & Discussion

Appendix table B.2 documents the results for each prediction-based model. LSTM-

NDT and LSTM-NDT-1 outperformed ARIMA with higher average F1 scores. They

also had lower average training times and did not encounter convergence issues. RNN

layers can model non-linear relationships and better forecast future values. The fact

that LSTM-NDT-1 perform similarly to LSTM-NDT for both univariate and mul-

tivariate datasets suggests that a simpler model with fewer parameters might be

beneficial.

Visualizations of the time series 𝑡 and the corresponding prediction-based anomaly

scores 𝛼𝑝 for each model are plotted to understand the successes and limitations in

figures 3-1, 3-2, and 3-3. The top graph in each figure shows the time series with the

ground truth anomalous intervals highlighted in red. The bottom graph shows the

prediction-based anomaly score for ARIMA (green), LSTM-NDT (blue), and LSTM-

NDT-1 (purple).
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Figure 3-1: art_daily_flatmiddle signal from the artificialWithAnomaly dataset
shows that prediction-based models produce high prediction-based anomaly scores
near the beginning (PL1) and low anomaly scores for contextual anomalies with
simple patterns (PL2).

PL1 - High anomaly scores at the start result in false positives

Figure 3-1 shows that high prediction-based anomaly scores towards the beginning

resulted in false-positive predictions. This behavior occurs in many signals across

multiple datasets. The error is the byproduct of the exponential weighted moving

average function used to smooth the anomaly scores. The function requires at least

the same number of observations as the size of the smoothing window before producing

stable anomaly scores.

PL2 - Low anomaly scores for contextual anomalies with simple patterns

Figure 3-1 also shows that prediction-based models produce low anomaly scores at

the contextual anomaly with a simple pattern. The cyclic pattern in prediction-

based anomaly scores suggests that the models could not fully capture the structure,

especially at the change point in the time series. However, in this case, the contextual

anomaly is a simple pattern. Therefore, the models can easily forecast the pattern,

resulting in nearly zero anomaly scores at the interval. Hence, the adaptive threshold
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Figure 3-2: A3Benchmark-TS11 signal from the YAHOOA3 dataset shows that
prediction-based methods fail to find anomalies at the start of the time series (PL3).

failed to find the contextual anomaly.

PL3 - Missing predictions at the start of the time series

Figure 3-2 shows false negative predictions for anomalies located at the beginning of

the time series. These false negatives occur because prediction-based models require

at least 𝑛 observations to forecast the first value at index 𝑛+1. This behavior mainly

impacts datasets like YAHOOA3 and YAHOOA4 with a decent amount of point anomalies

at the start of the time series. False-negative predictions will artificially decrease the

F1 scores for those datasets.

PL4 - Short-sightedness produces many false positives

Figure 3-3 shows prediction-based models producing a false positive prediction for

every spike in the signal without anomalies. This behavior occurs when the model

fails to capture the long-term pattern or when input context 𝑛 is not sufficiently

long enough. In such cases, the false positives significantly decrease the F1 scores of

datasets such as realAWSCloudwatch.
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Figure 3-3: ec2_cpu_utilization_c6585a signal from the realAWSCloudwatch
dataset that shows prediction-based models producing many false positives for a sig-
nal without anomalies (PL4).

3.2 Reconstruction-based Methods

Reconstruction-based methods capture a low-dimensional latent representation using

an encoder function and reconstruct the input using the representation via a generator

function. Rare events like anomalies are not captured in the latent representation and

are less likely to be accurately reconstructed, leading to high reconstruction-based

anomaly scores. Similar to Geiger et al. [7], this research explores three methods for

calculating anomaly scores: point-wise differencing, area differencing, and Dynamic

Time Warping (DTW). The reconstruction-based models used in this study are LSTM

autoencoders (LSTM-AE) [8], LSTM variational autoencoders (LSTM-VAE) [14], and

generative adversarial networks (TadGAN) [7].

3.2.1 Reconstruction-based Anomaly Scores

The input of reconstruction-based models is 𝑥1...𝑛
𝑖 ∈ R𝑛×𝑑 with length 𝑛 and dimen-

sionality 𝑑 starting at index 𝑖 of time series 𝑡. The output 𝑦1...𝑛𝑖 ∈ R𝑛 is the recon-

structed sequence of values of one channel in 𝑡. The models consist of an encoder
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𝐸 and a generator 𝐺 function such that 𝑦1...𝑛𝑖 = 𝐺(𝐸(𝑥1...𝑛
𝑖 )). Each index 𝑖 in the

time series 𝑡𝑖 for 𝑖 ∈ [1, 𝑇 ] has multiple reconstructed values since that index occurs

in multiple sequences of 𝑦1...𝑛𝑖 . Hence, the final value for index 𝑖 is the median of the

collection of reconstructed values for that index. Given the full sequence of 𝑡 and 𝑦,

the reconstruction-based anomaly scores can be calculated in the three different ways

laid out above. Similar to prediction-based anomaly scores, an exponential weighted

moving average with a smoothing window of 0.1 * 𝑇 is applied to the anomaly score

to reduce noise.

Point-wise differencing (PD)

The reconstruction-based anomaly score 𝛼𝑟,𝑝 takes the absolute mean error between

the time series 𝑡 and the reconstructed value 𝑦 every index 𝑖.

𝛼𝑟,𝑝(𝑡, 𝑦) = |𝑡𝑖 − 𝑦𝑖| 𝑖 ∈ [1, 𝑇 ] (3.2)

Area differencing (AD)

The reconstruction-based anomaly score 𝛼𝑟,𝑎 is created using a fixed length window

size that measures the similarity between local regions.

𝛼𝑟,𝑎(𝑡, 𝑦) =
1

2𝑙

⃒⃒⃒⃒∫︁ 𝑖+𝑙

𝑖−𝑙

𝑡𝑖 − 𝑦𝑖 𝑑𝑡

⃒⃒⃒⃒
𝑖 ∈ [1, 𝑇 ] (3.3)

The similarity is measured by the average difference between areas beneath two curves

of length 2𝑙 calculated using the trapezoidal rule (defaults to 𝑙 = 10).

Dynamic Time Warping (DTW)

The reconstruction-based anomaly score 𝛼𝑟,𝑑 created with dynamic time warping al-

lows for nonlinear alignment between two sequences that are locally out of phase [4].

DTW creates a cost matrix 𝐶 ∈ R2𝑙×2𝑙 such that each (𝑖, 𝑗) coordinate represents the
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distance 𝑐𝑘 between 𝑡𝑖 and 𝑦𝑗.

𝛼𝑟,𝑑(𝑡, 𝑦) = min
𝐶

⎡⎣ 1

𝐾

⎯⎸⎸⎷ 𝐾∑︁
𝑘=1

𝑐𝑘

⎤⎦ (3.4)

Dynamic programming solves for the optimal wrap path 𝐶* with the minimum warp

distances between the 𝑡 and 𝑦 series.

3.2.2 LSTM Autoencoders (LSTM-AE)

LSTM-AE is an autoencoder with LSTM layers that reconstructs the output 𝑦 using

a latent representation 𝑧 of the input 𝑥. The size of the latent space balances the

tradeoff between information loss and the accuracy of reconstructed values.

The inputs are 𝑥𝑖 ∈ R𝑛×𝑑 such that 𝑛 = 100 and 𝑑 depends on the dimensionality

of the dataset. The outputs are the reconstructed values of one channel 𝑦𝑖 ∈ R𝑛.

The model uses one LSTM layer with 60 units for the encoder and generator. A

time-distributed layer with a dense one-unit layer is used to create the output. The

specifics of the models are located in the appendix figure A-2a.

3.2.3 LSTM Variational Autoencoders (LSTM-VAE)

LSTM-VAE introduces regularization in the latent space using a probabilistic encoder

𝑞(𝑧|𝑥) and decoder 𝑝(𝑥|𝑧). The encoder learns the mean and standard deviations to

reparameterize the prior distribution to create the latent vector 𝑧. This method

avoids overfitting and ensures that the latent space has good properties that enable

a generative process. Unlike autoencoders, variational autoencoders optimize the ev-

idence lower bound (ELBO) criterion. ELBO consists of two terms: maximization of

the expected log-likelihood of the observation and minimization of the KL-divergence

between the posterior distribution 𝑞(𝑧|𝑥) and the prior distribution 𝑝(𝑧) ∼ 𝑁(0, 𝐼).

The inputs are 𝑥𝑖 ∈ R𝑛×𝑑 such that 𝑛 = 100 and 𝑑 depends on the dimensionality

of the dataset. The outputs are the reconstructed values of one channel 𝑦𝑖 ∈ R𝑛. The

encoder uses one shared LSTM layer with 60 units and separate dense layers, each
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with 60 units, to create the mean and standard deviation vector. The decoder uses a

repeat vector layer, a LSTM layer with 60 units, and a time-distributed layer with a

dense one-unit layer. The specifics of the models are located in the appendix figure

A-2b.

3.2.4 TadGAN

TadGAN is a generative adversarial network that also uses a cycle consistency loss

[20] to resolve mode collapse issues in regular GANs. The model has an encoder

𝐸 and generator 𝐺, each with its critic, 𝐶𝑧 and 𝐶𝑥. Let 𝑥 be the input and 𝑧 be

the corresponding latent vector. Also, let the prior be a white noise matrix that

follows a standard multivariate normal distribution 𝑁(0, 𝐼). 𝐶𝑥 tries to distinguish

the real input sequences 𝑥 from the reconstructed output 𝐺(𝑧). Likewise, 𝐶𝑧 tries to

distinguish the real latent noise 𝑧 from the generated latent representation 𝐸(𝑥). The

objective function consists of the Wasserstein loss with Wasserstein-1 distance [2] and

the cycle consistency loss [20]. The Wasserstein loss trains each output distribution

of 𝐸 and 𝐺 to match the target distribution of 𝑧 and 𝑥. This loss motivates both

encoder and generator to produce new samples that fool their respective critics 𝐶𝑧

and 𝐶𝑥. The loss for each generator-critic pair is as follows:

min
𝐺

max
𝐶𝑥

𝑉𝑥(𝐶𝑥, 𝐺) = E𝑥[𝐶𝑥(𝑥)]− E𝑧[𝐶𝑥(𝐺(𝑧))] (3.5)

min
𝐸

max
𝐶𝑧

𝑉𝑧(𝐶𝑧, 𝐸) = E𝑧[𝐶𝑧(𝑧)]− E𝑥[𝐶𝑧(𝐸(𝑥))] (3.6)

The cycle consistency loss motivates the model to reconstruct samples 𝑥̂ that are

similar to the input 𝑥. Similar to autoencoders, this loss function minimizes the L2

norm between the input 𝑥 and the reconstructed output 𝐺(𝐸(𝑥)); that is,

𝑉𝐿2(𝐸,𝐺) = E[||𝑥−𝐺(𝐸(𝑥))||2] (3.7)
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The full objective combines equations 3.5, 3.6, and 3.7.

min
𝐸,𝐺

max
𝐶𝑥,𝐶𝑧

𝑉𝑋(𝐶𝑥, 𝐺) + 𝑉𝑍(𝐶𝑧, 𝐸) + 𝑉𝐿2(𝐸,𝐺) (3.8)

The inputs are 𝑥𝑖 ∈ R𝑛×𝑑 such that 𝑛 = 100 and 𝑑 depends on the dimensionality

of the dataset. The outputs are the reconstructed values of one channel 𝑦𝑖 ∈ R𝑛.

The latent space is 𝑧𝑖 ∈ R𝑧 (defaults to 𝑧 = 20). The encoder and generator each

use bi-directional LSTM layers, while both critics use 1D convolution layers. The

specifics of the models are located in the appendix figure A-2c.

Incorporating critics into anomaly scores

Both the reconstruction score between input 𝑥𝑖 and reconstructed output 𝐺(𝐸(𝑥𝑖))

and the critic score from 𝐶𝑥(𝑥𝑖) can be used to create the final anomaly scores. Critic

𝐶𝑥 could offer another perspective, since it is optimized to distinguish between real

and fake reconstructed outputs. Geiger et al. reported an ablation study merging

these scores using summation, product, critic-only, and reconstruction-only combi-

nations. This study will report the optimal combination of critic and reconstruction

scores for each dataset.

TensorFlow Implementations and GPUs

TadGAN is originally implemented in TensorFlow 1.x using Keras Layers. Since

then, TensorFlow has released the 2.x version allowing for tighter integration with

Keras and eager execution to enhance model development. With the intention of

future-proofing, this study will re-implement TadGAN in TensorFlow 2.x. The main

difference between the two environments is that eager execution evaluates operations

and returns actual values of tensors as they occur in the code without building graphs.

Hence, the most significant change is the model compilation and the implementation

of gradient penalty loss. In TensorFlow 1.x, the gradients are obtained from the Keras

backend to calculate the gradient penalty loss. However, TensorFlow 2.x handles these

gradients using the tf.GradientTape function and requires a second-order derivative

38



to calculate the gradient penalty loss.

Graphics processing units (GPUs) are used to significantly reduce the training

time of TadGAN and other baseline models. However, this requires some minor

changes to the layers of TadGAN. TensorFlow 1.x offers a separate LSTM Keras

layer backed by cuDNN in tf.keras.layers.CuDNNLSTM. On the other hand, Ten-

sorFlow 2.x has the cuDNN LSTM layer built directly into the standard LSTM layer

in tf.keras.layers.LSTM. TensorFlow 2.x automatically uses the cuDNN-backed

version during runtime if all requirements are met. One such requirement is that

the recurrent dropout rate (fraction of the units to drop for the linear transforma-

tion of the recurrent state) must be 0.0, but that directly conflicts with the original

implementation, which uses 0.2.

3.2.5 Results & Discussion

Appendix table B.3 documents the results for LSTM-AE and LSTM-VAE models

using various reconstruction-based anomaly scoring methods. Appendix table B.4

documents the results for all reconstruction-based baseline models. The results of

LSTM-AE and LSTM-VAE using DTW to calculate the anomaly scores are similar

to those of TadGAN. These results suggest that the LSTM-AE architecture alone

is sufficient to capture the same information as TadGAN with less parameters. The

results of TadGAN implemented in TensorFlow 2.x are similar to those in TensorFlow

1.x. However, TadGAN implemented in TensorFlow 2.x took significantly longer to

train. This could be because second-order derivatives might be more computationally

intensive in eager execution or because the model was not compiled optimally.

As with the prediction-based models, visualization of the time series 𝑡 and the

corresponding reconstruction-based anomaly scores for each model are plotted. The

top graph in figures 3-4, 3-5, and 3-7 shows the time series with the ground truth

anomalous intervals highlighted in red. The middle three graphs correspond to point-

wise differencing 𝛼𝑟,𝑝, area differencing 𝛼𝑟,𝑎, and DTW 𝛼𝑟,𝑑 anomaly scores for LSTM-

AE (dark green) and LSTM-VAE (purple) models. The anomaly scores for TadGAN

(light green) are plotted on a separate graph since they combine recombination and
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Figure 3-4: A4Benchmark-TS100 signal from YAHOOA4 dataset shows that
reconstruction-based anomaly scores fail to capture point anomalies (RL1).

40



critic scores. The principal component analysis (PCA) of the reconstructed output

𝑦𝑖 is also plotted in figures 3-6 and 3-8 to visualize the output in 2D space for each

model.

RL1 - Reconstruction-based scores reduce peaks for point anomalies

Figure 3-4 shows how reconstruction-based methods like LSTM-AE and LSTM-VAE

fail to capture point anomalies. The prediction-based anomaly scores are calculated

from the median of all predicted values for index 𝑖. Since some reconstructed outputs

𝑦𝑖 are better at capturing the point anomalies than others, the median value is closer

to the true value at index 𝑖. This lowers the anomaly scores such that the window-

based threshold no longer captures those point anomalies since the scores are now

closer to the window’s mean. The anomaly score created from combining critics and

reconstruction errors for TadGAN was inaccurate in this signal and produced many

false positives.

RL2 - Bad train-test splits result in mode collapse

Figure 3-5 shows the train-test split of a signal in the univariate benchmark dataset

leading to mode collapse of outputs from reconstruction-based methods. The train

split consists of only -1 values, while the test split consists of non-trivial values.

Therefore, any reconstruction-based methods fitted on the train split will likely re-

construct the sequences of values close to -1. Figure 3-6 confirms this idea since the

same color dots for each reconstruction-based method are close to one another rather

than being close to the true output (red). The pattern of the anomaly scores also

closely resembles the test split of the time series. This behavior is the byproduct of

information loss since the signal originates from a multivariate dataset and calls for

the re-evaluation of univariate benchmark datasets in the Orion library.
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Figure 3-5: C-2 signal from MSL dataset demonstrates a bad train-test split with the
train split consisting of only one constant number.
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Figure 3-6: PCA of outputs from the C-2 signal from MSL dataset confirms mode
collapse of outputs from reconstruction-based methods.
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RS1 - DTW scores are better at capturing anomalies

Figure 3-7 shows that anomaly scores created from point-wise and area differencing

are noisy compared to those created from DTW at the point anomaly. The success

of DTW scores is attributed to the method’s ability to handle shifts in the alignment

of two series. The anomaly scores created from the reconstruction and critic scores

in TadGAN also seem to capture similar information. However, those scores are still

relevantly noisy and produce many false positives, leading to lower F1 scores for the

YAHOOA3 dataset. Moreover, in figure 3-8, the PCA of the outputs of TadGAN for

this signal suggests that the model seems to reconstruct a fuzzier version of the input

compared to the autoencoder architectures.
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Figure 3-7: A3Benchmark-TS11 signal from YAHOOA3 dataset demonstrates the effec-
tiveness of each anomaly scoring method.
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Figure 3-8: PCA of outputs from the A3Benchmark-TS11 signal from YAHOOA3 dataset
demonstrates that LSTM-AE and LSTM-VAE models are better than TadGAN at
reconstructing the input.
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Chapter 4

Prediction-Reconstruction Models

4.1 Optimizing Existing Models

4.1.1 Smoothing Function Masking

The first optimization targets the start of sequence false-positive predictions created

from the exponential weighted moving average smoothing function (PL1). A solution

is to mask 𝑚 indices from the start of the sequence with some values. Using the

minimum of anomaly scores as the masking value provided the best results. By

default, 𝑚 is equal to 0.01 * 𝑇 (size of smoothing window) such that 𝑇 is the length

of the time series.

Masking improves average F1 scores for all models

Appendix tables B.5 and B.6 show the results of masking prediction-based and

reconstruction-based anomaly scores. The average F1 score increased by ∼ 0.02 for

prediction-based methods and ∼ 0.005 for reconstruction-based methods. Prediction-

based methods saw a greater increase since those methods tend to make more false-

positive predictions. In general, masking had more of a negative effect on prediction-

based methods than reconstruction-based methods for the YAHOOA3 dataset. The

YAHOOA3 dataset has many point anomalies at the start of the signal. Hence, remov-

ing extra anomaly scores on top of the anomaly scores that prediction-based models
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cannot produce further exaggerates the false-negative issues in the dataset. Further-

more, masking does not seem to affect the combined anomaly scores from TadGAN.

4.1.2 Bi-directional Regression

The second optimization targets the missing start of sequence anomaly scores from

prediction-based methods (PL3). This issue occurs because prediction-based methods

require at least 𝑛 observations to make the first prediction at the 𝑛 + 1 index. A

solution is to perform regression in both directions to produce anomaly scores in the

forward 𝑓 and reverse 𝑟 directions. The reverse 𝑟 direction scores fill in the missing

anomaly scores at the beginning. Bi-directional regression can be implemented by

either training two separate models using forward and reverse sequences or training

one joint model that can forecast in both directions.

Two Separate Models (biLSTM-S)

Appendix figure A-3a implements bi-directional regression by training two prediction-

based models separately. One model trains on the sequences in the forward direction

𝑥𝑖,𝑓 , and the other trains on the sequences in the reverse direction 𝑥𝑖,𝑟. For this study,

the prediction-based models are LSTM-NDT with the same hyperparameters. While

this implementation works with any prediction-based models, training time will be

twice the time it takes to train one model.

One Joint Model (biLSTM-J)

Appendix figure A-3b implements bi-directional regression using one joint model to

reduce training time. Instead, the implementation uses a biLSTM layer to eliminate

the need to reverse the inputs. The biLSTM layer consists of two LSTMs trained on

inputs in the forward and reverse directions. The last hidden state from the biLSTM

layer is used to forecast in the forward direction 𝑓 , while the first hidden state is

used to forecast in the reverse direction 𝑟. Both hidden states are connected to their

respective dropout and dense layer, similar to LSTM-NDT. The biLSTM layer uses
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40 units, for a total of 80 units across the two LSTM sub-components, to keep the

dimensionality of the hidden states consistent with that of LSTM-NDT.

Calculating bi-directional anomaly scores

Bi-directional prediction-based anomaly scores are similar to prediction-based anomaly

scores, with a few minor modifications. Let 𝑇 denote the number of observations in

the time series, 𝑡 denote the time series, and 𝑛 denote the input length. Also, let 𝑓

denote the sequence of predictions in the forward direction, 𝑟 denote the sequence of

predictions in the reverse direction, and 𝛼𝑝 denote the function to calculate prediction-

based anomaly scores.

First, calculate the anomaly scores in the forward direction 𝛼𝑝(𝑡, 𝑓) for indices

𝑖 ∈ [𝑛 + 1, 𝑇 ] and the anomaly scores in the reverse direction 𝛼𝑝(𝑡, 𝑟) for indices

𝑖 ∈ [0, 𝑇 −𝑛]. If masking is used, then the first 𝑚 values of 𝛼𝑝(𝑡, 𝑓) are replaced with

zeros, and the first 𝑚 values of 𝛼𝑝(𝑡, 𝑟) are replaced with 𝑚𝑖𝑛(𝛼𝑝(𝑡, 𝑟)). Then, the

𝛼𝑝(𝑡, 𝑓) are padded with 𝑛 zeros in the beginning while 𝛼𝑝(𝑡, 𝑟) are padded with 𝑛 at

the end to align the anomaly scores. The bi-directional anomaly scores 𝛼𝑏 consist of

averages of both scores in overlapping intervals and the max between both scores in

non-overlapping intervals.

𝛼𝑏(𝑡, 𝑓, 𝑟) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝛼𝑝(𝑡, 𝑓) [0, 𝑛+𝑚]

1
2
𝛼𝑝(𝑡, 𝑓) +

1
2
𝛼𝑝(𝑡, 𝑟) [𝑛+𝑚,𝑇 − (𝑛+𝑚)]

𝛼𝑝(𝑡, 𝑟) [𝑇 − (𝑛+𝑚), 𝑇 ]

(4.1)

Appendix figure A-3c shows a visualization of combining the forward and reverse

anomaly scores.

Results & Discussion

Appendix table B.7 compares the results of bi-directional prediction-based masked

models with those of baseline prediction-based masked models. The biLSTM-S-M

and biLSTM-J-M models produced average F1 scores that are slightly higher than
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those produced by LSTM-NDT-1-M. Both models saw a significant increase in F1

scores for YAHOOA3 and YAHOOA4, as those datasets have point anomalies at the begin-

ning that baseline prediction-based models missed. Moreover, the drawbacks of the

masking function no longer apply to the YAHOOA3 dataset since there are anomaly

scores at the beginning. However, bi-directional models generally produce more

false positive predictions, which lowers the F1 scores for some datasets. For ex-

ample, LSTM-NDT already produces false positive predictions for every peak in the

ec2_cpu_utilization_c6585a signal that has no anomalies (PL4). Filling in the

anomaly scores at the beginning will only add to the list of false positive predictions.

4.2 Autoencoders with Regression (AER)

4.2.1 Motivation for Prediction and Reconstruction Scores

Prediction-based and reconstruction-based anomaly scores each have their successes

and limitations. For example, prediction-based anomaly scores easily identify point

anomalies but produce relatively more false positives. On the other hand, reconstruction-

based anomaly scores easily identify contextual anomalies and produce relatively more

false negatives.

RS2 - Reconstruction anomaly scores better capture contextual anomalies

Figure 4-1 revisits the issues prediction-based models have in detecting contextual

anomalies (PL2). The reconstruction-based anomaly scores spiked while prediction-

based anomaly scores remained close to zero at the contextual anomaly. This behavior

occurs for prediction-based anomaly scores since the contextual anomaly pattern was

easy to model. Reconstruction-based anomalies struggled to recreate the entire inter-

val, since the model likely tries to reconstruct values from simple anomalous intervals

and complex non-anomalous intervals. The sudden shift from an intricate cyclic pat-

tern to a simple pattern results in high reconstruction-based anomaly scores.
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Figure 4-1: The art_daily_flatmiddle signal from artificialWithAnomaly
dataset shows how prediction-based models fail to capture contextual anomalies (PL2)
while reconstruction-based methods can do so (RS2).
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Figure 4-2: ec2_cpu_utilization_c6585a signal from realAWSCloudwatch dataset
shows prediction-based models making many false positive predictions (PL4) while
reconstruction-based models do not (RS3).
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Figure 4-3: A4Benchmark-TS100 signal from YAHOOA4 dataset shows reconstruction-
based models failing to capture point anomalies (RL1) while prediction-based models
can easily capture them (PS1).
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RS3 - Reconstruction anomaly scores reduce false positives

Figure 4-2 revisits the issue of prediction-based models producing many false positives

caused by sudden spikes in prediction-based anomaly scores (PL4). While reconstruc-

tion anomaly scores showed similar patterns, the peaks were flatter. These flat tops

help avoid false-positive predictions since the peak scores no longer exceeded four

standard deviations from the mean of the locally adaptive threshold.

PS1 - Prediction anomaly scores better capture point anomalies

Figure 4-3 revisits the issues with reconstruction-based models producing many false

negatives (RL1). While the reconstruction anomaly scores create some noticeable

peaks, the peaks are not as apparent as those in prediction-based anomaly scores.

This difference causes reconstruction-based models to miss point anomalies, resulting

in lower average F1 scores for datasets like YAHOOA3 and YAHOOA4. Since there is still

a minor peak, multiplying both anomalies scores might amplify the scores at point

anomalies.

4.2.2 Two Separate Models

The most straightforward implementation of a prediction-reconstruction model is

to train one prediction-based model and one reconstruction-based model separately

(AER-S). For simplicity and unbiased comparison, the bi-directional prediction-based

masked model is biLSTM-NDT-1-M, and the reconstruction-based masked model is

LSTM autoencoder with dynamic time warping (LSTM-AE-DTW-M).

4.2.3 One Joint Model

The joint model borrows ideas from the LSTM autoencoder and the bi-directional

LSTM-NDT to produce prediction and reconstruction scores. Let the input be 𝑥𝑖 ∈

R(𝑛−2)×𝑑 such that 𝑛 − 2 is the number of observations and 𝑑 is the dimensionality.

The output is the one-step reverse prediction 𝑟𝑖 ∈ R, reconstructed sequence 𝑦𝑖+1 ∈

R𝑛−2, and the one-step ahead prediction 𝑓𝑛 ∈ R. Let 𝑡 be the time series. The

54



reconstruction loss 𝑉𝑟𝑒𝑐 is the mean squared error between the time series 𝑡[𝑖+1,𝑛−1]

and the reconstructed sequence 𝑦𝑖+1. The prediction loss 𝑉𝑝𝑟𝑒𝑑 is the average of

the mean squared error between the time series 𝑡𝑖, 𝑡𝑛 and the predicted 𝑟𝑖, 𝑓𝑛. The

contribution of the prediction and reconstruction loss is determined by 𝛾. The full

objective function is:

𝛾

2
𝑉𝑝𝑟𝑒𝑑(𝑡𝑖, 𝑟𝑖) + (1− 𝛾)𝑉𝑟𝑒𝑐(𝑡[𝑖+1,𝑛−1], 𝑦𝑖+1) +

𝛾

2
𝑉𝑝𝑟𝑒𝑑(𝑡𝑛, 𝑓𝑛) (4.2)

By default, the hyperparameters are 𝑛 = 100 observations per input and 𝛾 = 0.5 to

give equal importance to the prediction and reconstruction losses. One biLSTM layer

with 𝑏 = 30 units is used for both the encoder and decoder. The latent space is the

same dimension as the last hidden state of the bidirectional LSTM layer, which is 2𝑏.

Latent Space Regression (AER-L)

Figure A-4a shows an implementation that uses the features learned from the latent

space to forecast one step ahead and reverse observations. The architecture is the

same as in the biLSTM-J model, but the last hidden state is also used as input

into the decoder of an LSTM-AE model. This design mimics that of the regression

architectures.

Reconstructed Space Regression (AER-R)

Figure A-4b shows an implementation that directly reconstructs and forecasts in both

directions without making changes to the latent space. The repeated vector layer in

the decoder increases by two units compared with the AER-L model. This increase

allows the model with input of length 𝑛 − 2 to produce outputs of length 𝑛. This

design mimics that of the autoencoder architectures.

4.2.4 Prediction-Reconstruction Mixture Scores

The bi-directional prediction-based anomaly scores 𝛼𝑏 and reconstruction-based anomaly

errors 𝛼𝑟 can both be used to create the combined anomaly scores 𝛼𝑐. This section

55



explores several ways of combining the two scores.

Prediction-based Only (PRED)

The combined anomaly scores 𝛼𝑐 are calculated using only the bi-directional prediction-

based anomaly scores.

𝛼𝑐(𝑡, 𝑟, 𝑦, 𝑓) = 𝛼𝑏(𝑡, 𝑓, 𝑟) (4.3)

Reconstruction-based Only (REC)

The combined anomaly scores 𝛼𝑐 are calculated using only the reconstruction-based

anomaly scores. The calculation of reconstruction-based anomaly scores defaults to

using DTW since it outperforms point-wise differencing and area differencing.

𝛼𝑐(𝑡, 𝑟, 𝑦, 𝑓) = 𝛼𝑟,𝑑(𝑡, 𝑦) (4.4)

Convex Combination (SUM)

The combined anomaly scores 𝛼𝑐 are calculated using a convex combination with

parameter weight 𝛽 that controls the two errors’ relative importance (by default

𝛽 = 0.5). Both prediction-based and reconstruction-based anomaly scores are min-

max scaled to between [0, 1] before the combination.

𝛼𝑐(𝑡, 𝑟, 𝑦, 𝑓) = (1− 𝛽)𝛼𝑟,𝑑(𝑡, 𝑦) + 𝛽𝛼𝑏(𝑡, 𝑓, 𝑟) (4.5)

Product (MULT)

The combined anomaly scores 𝛼𝑐 are calculated using a point-wise product between

the two scores to emphasize both scores’ high values. 𝛽 controls the relative impor-

tance of the two errors (by default 𝛽 = 1). Both prediction-based and reconstruction-

based anomaly scores are min-max scaled to between [1, 2] before the combination.

𝛼𝑐(𝑡, 𝑟, 𝑦, 𝑓) = 𝛽𝛼𝑟,𝑑(𝑡, 𝑦)⊙ 𝛼𝑏(𝑡, 𝑓, 𝑟) (4.6)
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Table 4.1: Results of new models (highlighted with *) compared to prediction-based
and reconstruction-based baseline models. All anomaly scores are masked for a fair
comparison. The lowest scores are highlighted in dark red, while the highest scores
are highlighted in dark green.
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4.2.5 Results & Discussion

Multiplication & prediction-based only combined scores are informative

Appendix B.8, B.9, B.10 documents the results for the AER-S, AER-L, and AER-R

models. The results include F1 scores for each dataset using various methods to com-

bine bi-directional prediction-based and reconstruction-based anomaly scores. MULT

and PRED combination methods produce the highest average F1 scores. All models

prefer the PRED combination method for the YAHOOA3 and YAHOOA4 datasets since

they consist of only point anomalies. Likewise, all methods prefer the MULT combi-

nation method for the MSL and SMAP datasets. REC combination method consistently

produced the lowest average F1 score across all models, which is consistent with other

reconstruction-based baseline models. Another note is the trade-off between the pre-

cision and the recall for the MULT and and PRED combination methods: The MULT

combination method has higher precision while the PRED combination method has

higher recall. Finally, the average F1 scores for regression in the reconstruction space

(AER-R) are higher than in the latent space (AER-L). This disparity suggests that

the hidden state used to reconstruct the input conflicts with the hidden state used to

forecast one step ahead.

AER-R outperforms baseline models

Table 4.1 shows the results for all baseline masked models and two proposed masked

models (biLSTM-J-M, AER-R-M). AER-R-M uses a similar optimization method as

TadGAN to select the best F1 scores across different anomaly combination methods.

The results suggest that combining prediction-based with reconstruction-based meth-

ods often leads to better F1 scores than combining critic-based with reconstruction-

based anomaly scores. This occurs because the combination of critic-based and

reconstruction-based scores produced by TadGAN offers the same information as

other reconstruction-based scores produced by methods like LSTM-AE-DTW-M. The

optimized average F1 score of the AER-R-M model is 0.7383 for the univariate dataset,

which is a significant increase over the average F1 scores of 0.5875 from TadGAN-
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M and 0.6124 from ARIMA. In addition, AER-R has a lower training time than

TadGAN-M without convergence issues as is the case with ARIMA. Finally, unlike

other prediction-based models, AER-R also has the flexibility to combine prediction-

based and reconstruction-based scores to improve F1 scores based on the dataset.
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Chapter 5

Attention Mechanisms

The attention mechanism was originally developed for machine translation tasks in

encoder-decoder models. For example, Bahdanau attention allowed the decoder to

learn the most relevant parts of the input sequence using a weighted combination of

the encoded input vectors. Later, multi-head attention was introduced to parallelize

the calculations and is commonly used in transformer encoder layers. This chapter

explores the effect of replacing the LSTM layers with various attention mechanisms

in prediction-based models like LSTM-NDT and reconstruction-based methods like

TadGAN on anomaly scores.

5.1 Bahdanau Attention (B)

Bahdanau attention [3] was introduced to address issues with decoders having limited

access to information when long sequences are encoded into a fixed-length vector. The

solution was to create a weighted sum of the input encoded states to allow the decoder

to directly access relevant information instead of relying on the last hidden state of

RNN-based architectures. This implementation of the attention mechanism consists

of three main components: alignment scores, weights, and context vector. First, the

network learns some weights and biases to convert the input hidden states ℎ ∈ R𝑛×𝑑

into alignment scores of size R𝑛. Then, the softmax function is applied to these

alignment scores to create the 𝛼 weights. Finally, the weights are used to create the
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context vector 𝑐, the weighted sum of hidden states.

𝑐 =
𝑛∑︁

𝑖=1

𝛼𝑖 * ℎ𝑖 (5.1)

TensorFlow’s tf.keras.layers.AdditiveAttention is an implementation of Bah-

danau attention, but it is only suitable for linear-based and CNN-based networks.

A custom implementation is needed for RNN-based networks like LSTM-NDT and

TadGAN.

5.2 Transformer Encoders (E)

Transformer encoders [18] represent the input sequences using different sequential

positions in place of RNNs and CNNs. Advantages to this approach are that it can

learn dependencies between distant observations and calculate the output in parallel

instead of sequential.

First, the input passes through an embedding layer. Then, positional encodings

are added to allow the layer to learn the relative positions within the input. The

original implementation of positional encoding uses a sine function for even indices

and a cosine function for odd indices.

𝑃𝐸2𝑖 = 𝑠𝑖𝑛(𝑝𝑜𝑠/100002𝑖/𝑑) (5.2)

𝑃𝐸2𝑖+1 = 𝑐𝑜𝑠(𝑝𝑜𝑠/100002𝑖/𝑑) (5.3)

The closeness between two hidden states is determined by their similarity in the

context and position in the input.

The position-aware embeddings are passed into a multi-head attention block as

query 𝑄, key 𝐾, and value 𝑉 to learn a representation using self-attention. The multi-

head comes from splitting the dimensions of the embeddings into multiple segments.

This splitting allows the model to attend to information from different representation

subspaces and positions. Moreover, the total computational cost remains the same
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as using single-headed attention. Each 𝑄,𝐾, 𝑉 has its linear layer, and the output is

passed into scaled dot-product attention.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑘

(︂
𝑄𝐾𝑇

√
𝑑𝑘

)︂
𝑉 (5.4)

The dot-product attention is scaled by a factor of the square root of the depth to

prevent large magnitudes that result in small gradients. Finally, the attention output

from each head is concatenated and passed into one final dense layer.

The multi-head attention layer output is added with the original embeddings be-

fore undergoing layer normalization. The residual connection and layer normalization

both help to avoid vanishing gradients issues. Then, a feed-forward network with reLu

activation is applied to keep the output of the encoder block in the same dimensions

as the inputs. Finally, the feed-forward network output is added with the multi-head

attention layer output before undergoing layer normalization. The encoder models

use an Adam optimizer with a custom learning rate scheduler to improve learning.

The specifics of the transformer block are located in the appendix figure A-5a.

5.3 Time Series Transformer Encoders (T)

Several modifications are made to fine-tune the transformer encoder for time series

data. First, an adjustable positional encoding Time2Vec [11] for time series is used in

place of a fixed sinusoidal positional encoding function. Second, batch normalization

is used instead of layer normalization since the input lengths 𝑛 are fixed in training.

The specifics of the transformer block are located in the appendix figure A-5b.

5.4 Results & Discussion

Various attention mechanisms were applied to LSTM-NDT and TadGAN models. In

the case of Bahdanau Attention, the attention layer is applied directly to the hidden

state output sequences of the LSTM layer. In the case of transformer encoders and

time series transformer encoders, those layers were used in place of LSTM layers.
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Figure 5-1: art_daily_flatmiddle signal from artificialWithAnomaly dataset
shows mode collapse of reconstructed outputs from TadGAN-B and TadGAN-E at-
tention variations.

5.4.1 Attention-based LSTM-NDT

No significant improvements with attention mechanisms

Results in appendix table B.11 shows that the attention-based models either perform

similarly or worse than the base model without attention. While the transformer

encoder version LSTM-NDT-1-E performs similarly to the base LSTM-NDT, the

training time nearly doubled even with the support of GPUs. Moreover, the models

with Bahdanau attention LSTM-NDT-B and time series transformer encoder LSTM-

NDT-T showed a significant drop in average F1 scores. There could be more noise

when considering the entirety of the hidden states, leading to inadequate training of

parameters for the attention mechanisms.
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5.4.2 Attention-based TadGAN

Mode collapse with certain attention mechanisms

Results in appendix table B.12 also support the idea that models with the attention

mechanism did not offer many benefits compared to the LSTM variation. While

the average F1 scores dropped for every attention variation, the training time was

significantly reduced using the transformer encoder in TadGAN-E. Figure 5-1, which

shows the PCA of reconstructed outputs, gives insight into the performance decrease

in attention variations. While TadGAN’s reconstructed outputs resemble the truth

outputs, TadGAN-B and TadGAN-E’s reconstructed outputs converged into a single

point in the plot. This behavior suggests mode collapse issues since those models

could only produce one output type. While TadGAN-T was able to produce outputs

similar to TadGAN, other unexplained factors caused the drop in performance.

Duality of critics and generators

Despite the mode collapse issues, results in appendix table B.12 show that F1 scores

of TadGAN-E only dropped around ∼ 0.07 compared to TadGAN. To investigate

this further, figure 5-2 plots the breakdown of the anomaly scores created from recon-

struction and critic scores for TadGAN and TadGAN-E. While both models produce

similar combined scores that successfully identify the contextual anomaly, reconstruc-

tion and critic scores contributed to the combined score differently. For example, in

TadGAN (green) without mode collapse issues, the reconstruction scores peaked at

the contextual anomaly while the critic scores showed non-informative cyclic patterns.

This finding is consistent with Geiger et al., which finds instability when critic scores

are used alone as an anomaly score. On the other hand, in TadGAN-E (purple) with

mode collapse issues, the critic scores spiked at the contextual anomaly while the re-

construction scores showed non-informative patterns. This behavior occurs because

the min-max optimization framework of TadGAN prioritizes the optimization of ei-

ther the generators or the critics. Figure 5-3 shows the training loss for the critic

x (𝑐𝑥), critic z (𝑐𝑧), and encoder-generator (𝑒𝑔) for both TadGAN and TadGAN-E.
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Figure 5-2: art_daily_flatmiddle signal from artificialWithAnomaly dataset
shows the breakdown of reconstruction and critic anomaly scores for TadGAN (green)
and TadGAN-E (purple).
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Figure 5-3: art_daily_flatmiddle signal from artificialWithAnomaly dataset
shows the training loss for TadGAN (green) and TadGAN-E (purple).

TadGAN-E favors optimizing critic x as the model ended with a lower critic x loss

cx_loss than TadGAN. On the other hand, TadGAN favors optimizing the generator

as the model ended with a lower reconstructed mean squared error loss eg_mse than

TadGAN-E. The lower average F1 scores for mode collapse models suggest that pri-

oritizing reconstruction scores is better than prioritizing critic scores for identifying

anomalies.
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Chapter 6

Future Work

6.1 Summary

This study introduces the idea of masking anomaly scores, bi-directional regression

for prediction-based methods, and autoencoder with regression (AER) to overcome

identified limitations and leverage successes from existing methods, as summarized

in table 6.1. In addition, this study also explored the effect of replacing LSTM with

attention-based architectures on the average contextual F1 scores of existing methods.

While the attention-based alternatives offered no improvement in the average F1

scores, the results unintentionally provided insights into the duality of critics and

generators in the TadGAN architecture.

While combining prediction-based and reconstruction-based anomaly scores in

the AER model offers additional insights for anomaly detection, there are still many

improvements and unanswered questions. This chapter divides the improvements and

answered questions into several sections: AER architectures, attention mechanisms,

dataset re-evaluation, and multivariate datasets.

6.2 AER Architectures

The architecture of autoencoder with regression models can be improved since it

is currently based on naive biLSTM-AE and LSTM-NDT models. The idea can
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Table 6.1: Summary of successes and limitations of existing prediction-based and
reconstruction-based methods.

be extended to any regression-based or reconstruction-based model with minimum

changes to the objective function and the architecture. Also, more experimentation

is needed to determine the optimal 𝛾 controlling the contribution of prediction and

reconstruction loss.

Another research question centers around determining the optimal combination

of anomaly scores without using the ground truth labels. The current methodology

requires prior knowledge about the anomaly type (e.g., point or contextual) contained

in the signal to determine the optimal combination of anomaly scores. A solution

could be to employ a consensus schema that only accepts the anomaly sequence if

three or more combination methods agree on the sequence being anomalous. However,

there might be more efficient methods to combine the anomaly scores. For example,
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relaxing to a semi-supervised setting, the labeled data could be used to fine-tune the

combination of anomaly scores for the dataset.

6.3 Attention Mechanisms

Despite not providing many benefits in this study, the attention mechanisms still

have room for improvement. For instance, the transformer encoder layer is a valid

alternative to LSTM layers as the length and dimensionality of the input increase.

More research in this direction may also provide further insights into how to minimize

the duality of critics and generators in TadGAN models. The combination of critic-

based and reconstruction-based anomaly scores might be more informative if critics

and generators are equally well-trained.

6.4 Dataset Re-evaluation

The issue with the bad train-test split in at least one signal of the MSL dataset remains

unresolved (RL2). For instance, the C-2 signal from the univariate MSL dataset has a

train split consisting of only -1 values. In contrast, the test split consists of patterns

with anomalies unrelated to the train split. Therefore, the models will not learn

meaningful information in order to find anomalies in such signals. The univariate

datasets MSL and SMAP in the Orion benchmark library should be re-evaluated since

some information was lost in the conversion from multivariate to univariate datasets.

6.5 Multivariate Datasets

The performance of many-to-one models depends greatly on the target channel.

Hence, the performance of these models suffers in the case of multivariate datasets

where the target channel is not apparent, as seen in the SMD dataset. A solution

could be to train a many-to-one model for each channel; however, this approach can

be costly depending on the complexity of the model and the number of channels in
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the input. Another solution could be to forecast the values of every channel in the

next step for prediction-based models or to reconstruct the entire input with every

channel for reconstruction-based models. However, this approach requires modifying

both the objective function and the method to calculate anomaly scores, especially

in the case of DTW.
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Appendix A

Figures
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Figure A-1: The architecture of the prediction-based models. (a) LSTM-NDT is the
original two-layer LSTM model. (b) LSTM-NDT-1 is the one-layer version with fewer
parameters.
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Figure A-2: The architecture of the reconstruction-based models. (a) LSTM-AE is the
autoencoder model with LSTM layers. (b) LSTM-VAE is the variational autoencoder
model with LSTM layers. (c) TadGAN consists of an encoder 𝐸, generator 𝐺, critic
𝐶𝑥, and critic 𝐶𝑧.
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Figure A-3: The architecture of bi-directional regression models and methodology to
combine forward and reverse anomaly scores. (a) biLSTM-S consists of two sepa-
rate LSTM-NDT models trained on the forward and reversed input sequences. (b)
biLSTM-J is one joint model trained to forecast in both directions simultaneously.
(c) Visualization of the method to combine forward and reverse anomaly scores.
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Figure A-4: Joint models inspired by LSTM autoencoders and shared bi-directional
LSTM regressors. (a) AER-L uses the latent space to forecast values and uses the
same latent space as inputs to the decoder. (b) AER-R increases the number of repeat
vectors to reconstruct the input sequences and to forecast values in both directions.
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Figure A-5: The architecture of attention encoders. (a) Transformer encoder used for
natural language processing tasks. (b) Time series transformer encoder adapted for
time series.
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Tables
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𝑡 values of a time series
𝑇 total number of observations in time series
𝑛 length of input 𝑥
𝑑 dimensionality of the input 𝑥
𝑥 input for all models
𝑦 output for reconstruction-based models
𝑓 forward predicted values for prediction-based models
𝑟 reverse predicted values for prediction-based models
𝑚 number of observations from the start to mask
𝛼𝑝 prediction-based anomaly scores
𝛼𝑏 bi-directional prediction-based anomaly scores
𝛼𝑟,𝑝 reconstruction-based anomaly scores created from point-wise differencing
𝛼𝑟,𝑎 reconstruction-based anomaly scores created from area differencing
𝛼𝑟,𝑑 reconstruction-based anomaly scores created from dynamic time warping
𝛼𝑐 prediction-reconstruction mixture anomaly scores

Table B.1: List of notations.
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Table B.2: Results for all prediction-based baseline models.
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Table B.3: Results for LSTM-AE and LSTM-VAE models with point-wise differencing
(PD), area differencing (AD), and dynamic time warping (DTW) reconstruction-
based anomaly scores.
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Table B.4: Results for all reconstruction-based baseline models.
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Table B.5: Results after masking prediction-based anomaly scores (denoted by M).
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Table B.6: Results after masking reconstruction-based anomaly scores (denoted by
M).
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Table B.7: Results of baseline prediction-based models compared to separate (S) and
joint (J) bi-directional models. Masking (M) is applied to all models.
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Table B.8: Results of baseline ARIMA-M masked model compared to separate au-
toencoder regression masked models (AER-S-M).
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Table B.9: Results of baseline ARIMA-M masked model compared to joint autoen-
coder regression masked models in the latent space (AER-L-M).
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Table B.10: Results of baseline ARIMA-M masked model compared autoencoder
regression masked models in the reconstruction space (AER-R-M).
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Table B.11: Results for LSTM-NDT with different attention mechanisms.
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Table B.12: Results for TadGAN with different attention mechanisms.
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