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Abstract

Manipulation tasks such as construction and assembly require reasoning over complex
object interactions. In order to successfully plan for, execute, and achieve a given task,
these interactions must be modeled accurately and capture low-level dynamics. Some
examples include modeling how a constrained object (such as a door) moves when
grasped, the conditions under which an object will rest stably on another, or the
friction constraints that allow an object to be pushed by another object.

Acquiring models of object interactions for planning is a challenge. Existing engi-
neering methods fail to accurately capture how an object’s properties such as friction,
shape, and mass distribution, effect the success of actions such as pushing and stack-
ing. Therefore, in this work we leverage machine learning as a data-driven approach
to acquiring action models, with the hope that one day a robot equipped with a
learning strategy and some basic understanding of the world could learn composable
action models useful for planning to achieve a myriad of tasks. We see this work as
a small step in this direction.

Acquiring accurate models through a data-driven approach requires the robot to
conduct a vast amount of information-rich interactions in the world. Collecting data
on both real and simulated platforms can be time and cost prohibitive. In this work
we take an active learning approach to aid the robot in finding the small subspace
of informative actions within the large action space it has available to explore (all
motions, grasps, and object interactions). Additionally, we supply the robot with
optimistic action models, which are a relaxation of the true dynamics models. These
models provide structure by constraining the exploration space in order to improve
learning efficiency. Optimistic action models have the additional benefit of being
easier to specify than fully accurate action models.

We are generally interested in the scenario in which a robot is given an initial
(optimistic) action model, an active learning strategy, and a space of domain-specific
problems to generalize over. First, we give a method for learning task models in a
bandit problem setting for constrained mechanisms. Our method, Contextual Prior
Prediction, enables quick task success at evaluation time through the use of a learned
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vision-based prior. Then, we give a novel active learning strategy, Sequential Actions,
for learning action models for long-horizon manipulation tasks in a block stacking
domain. Finally, we give results in a tool use domain for our Sequential Goals method
which improves upon Sequential Actions by exploring goal-directed plans at training
time.

Thesis Supervisor: Tomás Lozano-Pérez
Title: Professor of Computer Science and Engineering

Thesis Supervisor: Leslie Pack Kaelbling
Title: Professor of Computer Science and Engineering
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Chapter 1

Introduction

Robotic manipulation tasks require reasoning over complex interactions. Humans

are able to quickly sense, plan, and act in tasks such as tool use, manipulating con-

strained mechanisms (such as doors and drawers), and stacking objects in a stable

arrangement. We take for granted the fact that we can easily reason over complex

continuous spaces to, say, use a hammer or open a door. There are infinitely many

ways we could move through open space with a hammer in-hand, and make con-

tact between the hammer and the target object. Additionally, we understand the

underlying physical constraints which result in successful hammer use, i.e. applying

force in the direction we want the nail to go in to the surface. Planning for and

successfully executing a long sequence of actions which involves complex phenomena,

such as friction and stability, is a computationally challenging problem in robotic

manipulation.

The challenges of long-horizon planning for manipulation have been effectively

addressed by task and motion planning (TAMP) methods [95, 99, 33, 49]. These

methods work by breaking up the prohibitively large action space into discrete high-

level actions. These actions, such as pick and place, require models which describe

the preconditions under which executing an action is possible, and effects which will

be true once an action is executed. For example, a pick action precondition would

be that the robot cannot be holding anything, and an effect would be that the robot

is holding something. Assumptions are typically baked into these action models by
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ignoring the effects of object properties that do not influence the action’s success.

For example, place actions typically assume that stacking objects such that their

geometric centers align will always result in a stable stack, which is accurate when

the world consists of blocks with uniform mass distributions. However, it breaks down

when the world is more complex and object shapes and mass distributions vary. While

these assumptions greatly improve planning efficiency, model misspecification limits

a planner’s ability to generalize to more complex domains.

While TAMP approaches have worked well in pick-and-place domains, fine-grained

manipulation tasks involve complex models which are more difficult to specify by

hand. Machine learning (ML) techniques have been used as an effective data-driven

solution in these more challenging manipulation scenarios. Methods for learning

models for robust grasping [65, 57], peg-in-hole [46, 36], pushing [2, 11], and other

highly constrained problems have been successfully developed. Reinforcement and

supervised learning techniques have enabled robots to acquire complex models of

fine-motor skills. However, these approaches to learning action models typically only

work for a single goal-directed task, and do not fit into a larger framework for long-

horizon reasoning.

We are interested in expanding upon the capabilities of long-horizon robotic ma-

nipulation such that robots can reason about more complex tasks, and understand

the underlying physical constraints of a given problem. Integrating ML techniques

with TAMP has become an effective approach [103, 92], as ML can be leveraged to

learn accurate models of complex dynamics. By augmenting a planning system with

the ability to learn from data, we can develop robots capable of overcoming issues

associated with model misspecification. We are interested in techniques which enable

learned action models to fit easily into high level task and motion planners.

Collecting data on a real or simulated robotic system is both time and cost con-

suming, and the space of plans that a robot has available to explore is prohibitively

large. Randomly executing actions is a very inefficient approach to collecting useful

data for learning, particularly for sequential problems where the useful part of the

action space is very small relative to the entire action space the robot has to explore.
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A visual of this phenomenon for a sequential task is shown in Figure 1-1. To address

this we leverage active learning strategies in which the robot is tasked with not only

learning some unknown concept, but also with being the experimenter and guiding

its own data collection. These strategies allow us to limit the data needed to learn a

target concept by guiding experimentation to the useful parts of the action space.

We also aim to use the structure that a task and motion planner provides to

improve exploration of long-horizon plans. In this way we do not start learning from

scratch, but instead from some simplified but misspecified model. Specifically, we

specify optimistic models, which are a relaxation of the true unknown dynamics; that

is, a model that assumes the robot can successfully reach more states than it actually

can. For example, an optimistic pick action might predict that the robot is able to

pick up an object from any location, ignoring any underlying object properties which

might prevent it from doing so (such as the object’s weight). An optimistic pushing

model might ignore the conditions required for successful pushing (e.g. friction cone

and push direction constraints). Optimistic models are easier to specify than fully

accurate transition models as they allow us to ignore the complex conditions under

which an action can be successfully executed. A visual of an optimistic relaxation of

a grasping model is shown in Figure 1-2. In this work we explore how optimism can

be combined with a TAMP formalization to achieve effective and efficient learning of

complex robot behaviors.

We are generally interested in understanding what a robot can learn when given

an optimistic model, an active learning strategy, and an evaluation task which is

different from the training tasks in some way. First, in Chapter 2 we give problem

formulations for the concrete problems addressed in this thesis for learning both task

and action models. In Chapter 3 we discuss related work. Chapter 4 gives the

background of specific related work which we leverage in our work. In Chapter 5 we

give a method, Contextual Prior Prediction, for learning task models which enable

a robot to generalize to novel tasks at evaluation time. This work uses a bandit

framework where goals can always be achieved with a single action. As such, the

learned models do not fit into a long-horizon TAMP system. However, this method
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Figure 1-1: Size of successful actions subspace for a single action versus
sequential actions. In this example the robot is tasked with moving the blue block
to the blue dotted region by using the black hook-shaped tool and moving downward
in a straight line. On the left we show successful (green gripper) and unsuccessful
(red gripper) attempts at grasping the tool from its initial position. On the right we
show contact configurations between the tool and the block which would successfully
(green tool) or unsuccessfully (red tool) move the blue block to the goal position under
friction cone constraints. When the robot attempts to move the block with the tool,
some of the grasps which previously worked for picking up the tool no longer work.
This is either due to the contact configuration between the tool and block not being
successful, or the gripper goal pose being kinematically out of reach. When the task
was simply grasping the tool (shown on the left), the successful actions were a larger
proportion of all actions the robot attempted. However, when we attempt the longer
problem of tool use (shown on the right), the number of actions which successfully
accomplish the task shrink in proportion to the full action space the robot has to
explore. The few remaining successful grasps are shown in gray squares.
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Figure 1-2: Increasingly optimistic grasping models. This shows different opti-
mistic grasping models for a robot attempting to grasp and pick up the black hook-
shaped tool. It attempts all shown grasps optimistically, believing that they will work
and that the tool will remain in the gripper once it is picked up. The grasps shown
in green result in successful grasps while those in red are unsuccessful attempts. The
grasping model on the left corresponds to the underlying true grasping model and
all attempted grasps work. The middle model shows a relaxation of this in which we
assume that simply making contact with the tool will result in successful grasps, but
learn that this assumption does not hold for two of the attempted grasps. Finally, on
the right we show a relaxation on the contact assumption in which the robot believes
all visualized grasps will work. Here the successful grasps are an even smaller set of
grasps within all attempted grasps.
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still provides insight into successful active learning from an optimistic model. We

then give methods which address both active learning of action models and long-

horizon planning in Chapters 6 and 7. In Chapter 6 we give an active learning

strategy, Sequential Actions, for learning action models in sequential domains. In

Chapter 7 we introduce Sequential Goals, which improves upon Sequential Actions

by leveraging goal-directed exploration at training time. We evaluate the methods

discussed in Chapters 5, 6, and 7 in a constrained mechanisms, block stacking, and

tool use domain, respectively. Finally, we conclude and summarize our findings in

Chapter 8.
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Chapter 2

Problem Formulation

In this chapter we discuss the problem formulations addressed by this work. At a

high level we address the problem in which a robot is given a misspecified optimistic

action model and must learn an accurate model which is useful given an evaluation

task. Our approaches can be broken down into two phases: a learning and evaluation-

phase, as shown in Figure 2-1. During the learning-phase the agent uses the optimistic

model within an active learning strategy to collect data and learn an accurate model.

Then, during the evaluation-phase, the robot uses this accurate model to plan for

and achieve a goal, given the initial state. In our work the learned accurate model is

either a task feasibility model (TFM) or an action feasibility model (AFM). We give

problem formulations for both in Sections 2.2 and 2.3 respectively. First, we give the

definition of an optimistic model in Section 2.1.

Figure 2-1: High level approach.
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2.1 Optimistic Model

A robot operates in an observable state space 𝒮 and can take actions in action space

𝒜. It operates under an unknown true transition function 𝑓𝑇 : 𝒮 × 𝒜 → 𝒮 and is

given an optimistic transition function, 𝑓𝑂 : 𝒮 ×𝒜 → 𝒮.

The set of states reachable under the optimistic transition function from state 𝑠𝑖−1

is

𝒮𝑂(𝑠𝑖−1) = {𝑠𝑖 | ∃𝑎 s.t. 𝑠𝑖 = 𝑓𝑂(𝑠𝑖−1, 𝑎)},

and the set of states reachable under the true transition function from state 𝑠𝑖−1 is

𝒮𝑇 (𝑠𝑖−1) = {𝑠𝑖 | ∃𝑎 s.t. 𝑠𝑖 = 𝑓𝑇 (𝑠𝑖−1, 𝑎)}.

When we say that 𝒮𝑂 is an optimistic version of 𝒮𝑇 , we mean that these functions

have the following property

𝒮𝑇 (𝑠) ⊆ 𝒮𝑂(𝑠).

Intuitively, 𝑓𝑂 is a relaxation of 𝑓𝑇 , and believes that the robot can transition into

more states than it actually can within a single action step. It is important to note

that planning with 𝑓𝑂 may allow plans to be constructed that will not actually be

executable under the true transition dynamics.

2.2 Task Feasibility Model

First, we examine a multi-armed bandit setting in which the environment resets to the

initial state after each action is attempted. At evaluation time, given a novel state,

𝑠, the robot must find the action, 𝑎*, which maximizes the unknown task reward

function, 𝑅𝑡𝑎𝑠𝑘 : 𝒮 ×𝒜 → R,

𝑎* = argmax
𝑎∈𝒜

𝑅𝑡𝑎𝑠𝑘(𝑠, 𝑎).
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We take a data-driven approach to this problem and propose to learn an approxi-

mation of the unknown reward function which we refer to as a task feasibility model

(TFM).

2.2.1 Learning Problem

We use the optimistic model to explore and collect data to train an approximation

of the unknown reward function or TFM, 𝑅̂𝑡𝑎𝑠𝑘 : 𝒮 × 𝒜 → R [74]. We learn 𝑅̂𝑡𝑎𝑠𝑘

by collecting a dataset of (𝑠, 𝑎, 𝑟) tuples where 𝑟 is the reward received after taking

action 𝑎 from state 𝑠. We give a method for learning 𝑅̂𝑡𝑎𝑠𝑘 and using it in the

evaluation-phase in Chapter 5.

2.3 Action Feasibility Model

We then look into sequential decision-making problems where the robot is given a

task which requires a sequence of actions. We present two different evaluation-phase

problems. In the first, the robot is given the task in the form of a reward function,

𝑅𝑡𝑎𝑠𝑘 : 𝒮 → R, and must find a plan in which the last state maximizes reward,

𝑎*1:𝑁 = argmax
𝑎1:𝑁∈𝑃

𝑅𝑡𝑎𝑠𝑘(𝑠𝑁).

In the second, the robot is given a goal state, 𝑠𝑔𝑜𝑎𝑙 ∈ 𝒮, and must find a plan which

brings the robot to the goal state

𝑎*1:𝑁 = argmax
𝑎1:𝑁∈𝑃

1{𝑠=𝑠𝑔𝑜𝑎𝑙}(𝑠𝑁).

We note that in many of our tasks the length of plans in the search space 𝑃 varies,

meaning the value 𝑁 varies as well. In our work in Chapter 6, we constrain the

planner to only generate plans of a certain length 𝑁 , and in Chapter 7 we use a

skeleton-based planner where 𝑁 is determined by the length of the given skeleton.

Maximizing these objectives with a plan space 𝑃 generated using the optimistic
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model would potentially result in an infeasible plan and unsuccessful plan execution.

This is due to the fact that the optimistic model is not accurate. To successfully plan

to accomplish a given task, we need the help of an additional model, a probabilistic

classifier, which indicates the probability that the optimistic model’s prediction is

correct, or feasible. We refer to this classifier as an action feasibility model (AFM),

𝑓𝐴 : 𝒮 ×𝒜 → [0, 1],

which predicts the probability that taking an action from a state is accurately mod-

eled under the optimistic transition function. We can evaluate the feasibility of an

optimistic plan, 𝑎1:𝑁 , from a given initial state, 𝑠0, as

pf(𝑠0, 𝑎1:𝑁) =
𝑁∏︁
𝑖=1

𝑓𝐴(𝑠𝑖−1, 𝑎𝑖) (2.1)

where 𝑠𝑖 = 𝑓𝑂(𝑠𝑖−1, 𝑎𝑖).

Now at evaluation time we can use the feasibility model to find plans that maxi-

mize the combination of task reward and plan feasibility

𝑎1:𝑁 = argmax
𝑎1:𝑁∈𝑃

pf(𝑠0, 𝑎1:𝑁)𝑅𝑡𝑎𝑠𝑘(𝑠𝑁).

And in the case where the robot is given a goal state we can do the same,

𝑎1:𝑁 = argmax
𝑎1:𝑁∈𝑃

pf(𝑠0, 𝑎1:𝑁)1{𝑠=𝑠𝑔𝑜𝑎𝑙}(𝑠𝑁).

2.3.1 Learning Problem

We propose to learn the parameters of the action feasibility model by performing

supervised learning. During data collection the robot takes an action 𝑎 from a state

𝑠𝑖−1, transitions to state 𝑠𝑇𝑖 under the true unknown dynamics, and receives feasibility
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label

𝜑 =

⎧⎪⎨⎪⎩1 close(𝑠𝑇𝑖 , 𝑠
𝑂
𝑖 )

0 otherwise,

where 𝑠𝑂𝑖 is the state which the optimistic model expected to transition to. For

continuous state spaces such as object poses, close(𝑠𝑇 , 𝑠𝑂) evaluates to True if the

states are within some distance 𝜖 of each other. For logical states, close(𝑠𝑇 , 𝑠𝑂)

evaluates to True if the logical states match, for example whether or not a robot is

holding a given object.

The dataset of (𝑠, 𝑎, 𝜑) samples are used to train the approximated action feasi-

bility model,

𝑓𝐴 : 𝒮 ×𝒜 → [0, 1].

The predictions are probabilistic to account for our epistemic uncertainty, or the un-

certainty we have over our predictions. We will discuss our methods, Sequential Ac-

tions and Sequential Goals, which address this learning problem in Chapters 6 and 7.
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Chapter 3

Related Work

Our work touches on many topics in the areas of learning and planning for robotic

manipulation. There have been many recent advances in applying machine learning

to robotics problems. However, they typically address low-level manipulation tasks

[25, 64, 2]. In this work we aim to enable a robot to learn skills which can be integrated

into a planning framework for long-horizon problems. We also aim to do this in a

data efficient manner. In Section 3.1 we discuss related works in the space of active

learning where others are also concerned with learning efficiency. In Section 3.2 we

discuss the problem of learning task-specific models. Section 3.3 addresses learning

models for planning, works most closely related to ours. Finally, in Section 3.4 we

discuss the role of optimism in machine learning applications.

3.1 Active Learning

Active learning [70] is a well-established learning paradigm that aims to minimize the

number of samples needed to learn an unknown function. Active learning methods

are leveraged in robotic manipulation learning problems [19, 103] in order to limit

the amount of data collection required on robotic platforms, a process which often

requires vast amounts of time and human supervision.

Bayesian Active Learning by Disagreement (BALD) [45] is a method which takes

a Bayesian approach to active learning by not just learning the unknown function,
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but additionally modeling uncertainty over the parameters of the unknown function.

This method selects training samples in areas of the model input space where there is

high disagreement over the model parameter values. We leverage this strategy in our

work, and give a brief overview of this method in Section 4.2. Gal et al. [30] extends

BALD to high-dimensional domains by using deep neural networks and MC-dropout

[29] to approximate the distribution over the unknown model parameters. In our work

on learning action feasibility models, discussed in Chapters 6 and 7, we follow the

approach of Beluch et al. [12] and use an ensemble of deep networks to approximate

this distribution.

Another strategy for active learning which we leverage in our work is Gaussian

Process Upper Confidence Bound (GP-UCB), where the objective is to maximize an

unknown function. The function is modeled using a Gaussian Process (GP), and

an acquisition function is used to select training data by both exploiting areas of the

input space which have high mean value, and exploring parts of the input space which

have high variance. We give a brief overview of this method in Section 4.1.

Ideas from active learning have also been used in model-based reinforcement learn-

ing (RL) tasks [85, 90]. Baranes et al. [7] address active exploration via a competence

metric which is used to scores goals. The robot then executes a plan to achieve the

highest scoring goal with the purpose of learning inverse action models. The com-

petence metric is high in parts of the goal space where the robot’s ability to achieve

goals is changing. Similar to the BALD acquisition strategy leveraged in our work

[45], the disagreement concept can be applied to a model-based RL setting. Pathak

et al. [85] represent a forward dynamics model with an ensemble of networks and use

the variance of the ensemble output as intrinsic motivation to guide data collection.

In our work instead of predicting continuous states we predict action feasibility, and

use it in combination with an optimistic model to search for feasible plans.
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3.2 Learning Task Models

Our work on task feasibility model learning, given in Chapter 5, addresses problems

that are often addressed by RL methods. We use pixels as input to the learned model

which is common in RL applications [85, 25, 64]. Where we seek to learn a model

which can generalize to many initial states, or images, with shared structure, RL

methods typically aim to learn a policy for a single initial state and goal. In this set-

ting, ideally a robot could be trained to do any task with basic visual sensing and the

correct learning framework, eliminating the need to manually engineer perception and

control systems. Finn et al. [25, 64] train a network to perform various manipulation

tasks from pixel-space input. Their work focuses on learning to perform a single task

well, whereas we focus on manipulating multiple objects that share structure.

Similar to Agrawal et al. [2], we use a model-based policy in our work on learning

task models. They focus on learning forward and inverse models for poking objects

where the robot is given low-level actions parameterized by a direction and distance

to move the end effector. We assume we have a structured parameterized policy space

based on kinematic models and focus on learning which parameterization is correct

for a given object. Other model-based work attempts to learn a dynamics model to

be used in a controller [62, 27, 76].

Recent work has started to explore the idea of learning an embedded space of

policies to handle the more general case of policy learning for a variety of tasks in a

single environment. Lynch et al. [69] develop a method for learning from teleoperated

“play” data in which a human controls a simulated robot to generate data to train an

embedded policy space. Hausman et al. [42] use a similar objective, but the data is

generated via off-policy reinforcement learning. In both works the agent is constrained

to perform well in only a single environment.
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3.3 Learning for Task and Motion Planning

Learning accurate models for long-horizon planning is an increasingly active area of

research. Models for planning are typically represented by either fully symbolic or

hybrid (parameterized by both discrete and continuous) parameters. Methods for

learning symbolic action models which are either deterministic [17] or noisy [83] have

been explored via various learning strategies such as random goal sampling [17]. The

work of Wang et al. [103] is most similar to our action feasibility model learning work

in that they assume a TAMP architecture with hybrid actions, and learn constraints

on continuous parameters of hybrid action models. A similar approach is taken in

[50], a precursor to [103]. Silver et al. [92] learn full probabilistic hybrid action models

by clustering observed transitions.

A closely related body of work to learning accurate action models for planning,

is learning models to aid in planning given accurate action models [19, 108, 55, 56,

54, 53]. These methods learn mappings from action types and goals to successful

action parameterizations. In Xu et al.’s [108] work this is referred to as an actions’

affordance.

In all methods referred to so far, as well as in our work, the training and evaluation

problems are drawn from the same distribution. However methods vary in how this

distribution is represented. One could vary the objects, and initial and goal states

between training and evaluation [103]. Another evaluation approach is to maintain

the same objects but vary the initial and goal states between training and evaluation

[17, 92]. Finally, as is typical in RL settings, one could use the same objects, initial

and goals states during training and evaluation [19, 108], although Curtis et al. [19]

also gives results on transferring the learned models to different problems.

In our work we explore learning from optimistic action models, but learning from

models which are inaccurate in other ways has also been explored. Lagrassa et al.

[59] use model-free RL to augment a given inaccurate planning domain when an unex-

pected transition occurs. Other methods have been used to learn residual controllers

on top of inaccurate controllers, where the inaccuracies stem from either simulation
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approximations to the real world [3], or poorly learned RL-based controllers [91].

3.4 The Role of Optimism in Learning

Optimism in the face of uncertainty has been widely studied for multi-armed bandit

problems [94, 6, 20, 75, 5] as well as both model-free and model-based RL problems

[98, 79, 82, 75, 5]. In these problem settings the objective is to maximize cumulative

reward (minimize cumulative regret) or final reward (final regret) given a computation

budget. We have the same objective in our work on learning task feasibility models.

In our action feasibility model learning work the objective is to learn an accurate

model which can be used in a planner to achieve a variety of goals. Even though the

objectives are different, in both cases exploration is necessary to achieve the desired

outcome, and thus previous work in the area of optimism is relevant and vitally

important.

In the case of multi-armed bandits where the objective is to minimize cumulative

or final regret, confidence bounds have been found to be very effective at handling the

exploration-exploitation trade off. Here the confidence bounds act as an optimistic

estimate of a selected action’s value [6, 20].

In RL, optimism can be used as a form of exploration by either initially making

all actions [98, 79] or states [82] look optimistically rewarding. In the work of Osband

et al. [79] they theoretically prove that in most cases, exploring by optimistically

sampling from a model posterior is more effective than artificially initializing a model

to be maximally rewarding everywhere, and refer to optimistically sampling from a

posterior as stochastic optimism. This insight is present in our work in that when we

score potential actions, we do so by sampling from our current feasibility model pos-

teriors. We do not use the optimistic model to make the action space look artificially

rewarding everywhere for exploration, but rather to represent the space of actions the

robot has available to explore.

Auer et al. [5] and Munos et al. [75] develop algorithms for addressing both

bandit and RL problems with the use of optimistic exploration, and give performance
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bounds in terms of the complexity of the domain [75] and the adversarial “shift” used

during exploration [5].
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Chapter 4

Background

4.1 Gaussian Process Upper Confidence Bounds

The Gaussian Process (GP) provides a nonparametric method for modeling an un-

known function as a distribution over functions

𝑓(𝑥) ∼ gp(𝜇(𝑥), 𝑘(𝑥, 𝑥′))

where 𝜇(𝑥) is the mean function, and 𝑘(𝑥, 𝑥′) is a kernel function which models the

covariance between pairs of function values [86]. GP regression allows us to calculate

the posterior distribution given a dataset of input output pairs 𝒟 = (x,y).

𝑓(𝑥) ∼ gp(𝜇𝒟(𝑥), 𝑘𝒟(𝑥, 𝑥))

𝜇𝒟(𝑥) = 𝜇(𝑥) + 𝑘(𝑥,x)K−1(y − 𝜇(x))

𝑘𝒟(𝑥, 𝑥
′) = 𝑘(𝑥, 𝑥′)− 𝑘(𝑥,x)K−1𝑘(x, 𝑥′)

K = 𝑘(x,x)

(4.1)

Gaussian Process Upper Confidence Bound (GP-UCB) is an active learning strat-

egy which aims to maximize an unknown function. It does this by selecting points

which both exploit areas of the input space which have high mean value, and explor-

ing areas with high variance. This allows for the agent to maximize the unknown
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function such that there is low uncertainty everywhere, and higher resolution in the

parts of the input space with high value. We leverage this method when learning a

task feasibility model where the ultimate goal is to maximize reward, thus requiring

a good understanding of these parts of the input space. Given the posterior distribu-

tion shown in Equation 4.1, the GP-UCB acquisition function [94] generates an input

sample 𝑥* using the following objective

𝑥* = argmax
𝑥

𝜇𝒟(𝑥) + 𝛽1/2𝑘𝒟(𝑥, 𝑥) (4.2)

where 𝛽 is a parameter which determines how much to factor in uncertainty when

selecting the next input.

4.2 Bayesian Active Learning by Disagreement

Bayesian Active Learning by Disagreement (BALD) [45] gives a strategy for learning

an unknown function parameterized by Θ. In this framework we take a Bayesian

approach and maintain a distribution over the unknown model parameters Pr(Θ | 𝒟).

The goal is to select the dataset, 𝒟 = (x,y), that maximally reduces the entropy of

Pr(Θ | 𝒟),

argmin
𝒟

ℋ(Θ | 𝒟).

The general problem of designing a sequence of experiments to minimize entropy

— or equivalently, maximize information gain — is an NP-hard sequential decision-

making problem [43]. Fortunately, in submodular problems, a myopic approach that

considers only the next experiment to conduct can be shown to be a good approxi-

mation to the optimal experimentation strategy [26]. We can then greedily select a

single datapoint, (𝑥, 𝑦), at a time

argmax
𝑥

ℋ(Θ | 𝒟)−ℋ𝑦∼Pr(·|𝑥,𝒟)(Θ | 𝑦, 𝑥,𝒟). (4.3)
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However computing entropy in the parameter space Θ is generally intractable,

especially in our case where Θ are the parameters of an ensemble of neural networks

as will be discussed in Section 6.1. Houlsby et al. [45] note that Equation 4.3 is

equal to the mutual information between the unknown output and model parameters,

I(Θ; 𝑦 | 𝑥,𝒟). Therefore they reformulate the objective in the low-dimensional output

space, yielding the final objective

bald(𝑥) = ℋ(𝑦 | 𝒟, 𝑥)− EΘ∼Pr(·|𝒟) [ℋ(𝑦 | 𝑥; Θ)] . (4.4)

Initially, the distributions over both the model parameters, Pr(Θ | 𝒟), and out-

puts, Pr(𝑦 | 𝑥,Θ), represent the uncertainty we have with respect to our predictions.

This uncertainty is referred to as epistemic uncertainty. Aleatoric uncertainty is the

the uncertainty in an underlying stochastic process. The goal of selecting inputs

via the bald objective, is to eliminate epistemic uncertainty, such that in the end

any remaining uncertainty is captured by Pr(𝑦 | 𝑥,Θ) and only represents aleatoric

uncertainty.

Finding the input, 𝑥, which maximizes Equation 4.4 invites an appealing inter-

pretation: maximizing the first term encourages selecting an 𝑥 where our overall

uncertainty of the output value is high, and minimizing the second term encourages

selecting an 𝑥 for which there is high confidence in varying parts of the model pa-

rameter space. For there to be both high overall uncertainty and high individual

model confidence, the models must be in disagreement. Intuitively, if our distribution

Pr(Θ | 𝒟) has areas of high confidence in different parts of the output space, then

observing a 𝑦 value in one of these areas is likely to prove some of those predicted

outcomes incorrect. If we think of the overall uncertainty as a combination of epis-

temic and aleatoric uncertainty, then this objective seeks an experiment with high

overall uncertainty and low aleatoric uncertainty, which therefore has high epistemic

uncertainty.
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4.3 Task and Motion Planning

Task and motion planning methods [31, 32, 95, 99, 21, 61, 60, 101, 33, 24, 96, 31, 15,

48, 49, 67, 106] enable robots to plan for long-horizon manipulation problems which

involve actions parameterized by both discrete and continuous action parameters

(hybrid actions). Many of these methods represent the discrete and semantic aspects

of the planning problem using the Planning Domain Definition Language (PDDL) [31,

32, 95, 99, 21, 61, 33, 96, 31, 15, 106].

4.3.1 PDDLStream

PDDLStream [33] gives a method for extending PDDL to the continuous aspect of

robotic manipulation through the use of planning streams. The details of how PDDL-

Stream finds a concrete plan for a given planning problem are discussed in [33]. Here

we simply describe how to define a planning problem. The following notation borrows

heavily from Garrett et al. [33].

A predicate 𝑝 is a boolean function, and an atomic fact 𝑝(x) is a predicate eval-

uated on object tuple x which evaluates to True. A literal is a fact or a negated

fact. A state, 𝑠, is a set of literals. We operate under the closed world assumption,

meaning that facts not explicitly in the state are False. An action is specified by its

parameters X𝐴𝑖
, a set of literal preconditions 𝑝𝑟𝑒𝐴𝑖

(X𝐴𝑖
), and a set of literal effects

𝑒𝑓𝑓𝐴𝑖
(X𝐴𝑖

). During planning an action is applicable in state 𝑠 if 𝑝𝑟𝑒+𝐴𝑖
(x) ⊆ 𝑠 and

𝑝𝑟𝑒−𝐴𝑖
(x)∩𝑠 = ∅, where the + and − superscripts designate the positive and negative

literals respectively. In our work we define a planning problem with an initial state,

a goal state, and a set of actions for a given domain. Stream functions are functions

which take in action parameters and return potential values for continuous action

parameters. They are also part of the planning problem, but we omit them in this

thesis for simplicity.

In Sections 6.2.2 and 7.2 we give the states and actions used in a block stacking

and tool use domain, respectively. Note that in the problem formulations given in

Chapter 2, the optimistic transition function, 𝑓𝑂, is given in the functional repre-
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sentation, 𝒮 × 𝒜 → 𝒮, however in our work in Chapter 7 the optimistic model is

represented by PDDLStream actions.
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Chapter 5

Task Feasibility Model Learning

As humans, we frequently encounter new objects and are able to successfully articulate

them with little to no experience on those particular object instances.1 Consider

entering a new kitchen. You can quickly open the cupboards, turn on the lights,

and operate the stove, even though you have never used these specific objects before.

This behavior is enabled by rich visual cues such as the presence of a handle, or the

location of hinges on a door (see Figure 5-1). These features are useful for inferring

the function of a new mechanism and for estimating the motion that it can undergo.

Our goal is to enable a robot to efficiently interact with novel articulated objects

without human guidance by learning from previous visuo-motor experience with re-

lated objects. Previous work has shown how robots can infer the kinematic models

of new mechanisms given a single demonstration of the mechanism being actuated

[97]. However, demonstrations are often expensive as they require a human teacher

every time the robot needs to interact with a new object. Other methods provide

exploration strategies which enable a robot to estimate the kinematic properties of

mechanisms [8], [80]. While these methods perform well, they do not transfer any

experience from similar mechanisms when interacting with novel mechanisms. We

desire a solution where the robot uses past experience to experiment efficiently with

1The material in this chapter is based on:
Caris Moses*, Michael Noseworthy*, Leslie Pack Kaelbling, Tomás Lozano-Pérez, and Nicholas Roy.
Visual Prediction of Priors for Articulated Object Interaction. IEEE International Conference on
Robotics and Automation (ICRA), 2020. [74]
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Figure 5-1: Objects with rich visual features. Contextual Prior Prediction (CPP)
is motivated by the fact that most objects have rich visual features which indicate
their motion. In our simulated door domain (left), the position of the handle and
width of the door indicate the direction which it opens and with what radius. Other
objects, such as latches (center left), toys (center right), or ovens (right) also have
visible indicators such as tracks, hinges, and knobs.

new mechanism instances to learn how to actuate them from a very small number of

self-selected actuations.

Due to constraints present in articulated objects, very few of the possible motion

commands the robot can generate are likely to cause the mechanism to move. Without

models of the object, the robot must propose its own goals or sequences of actions

that can quickly generate motion that exhibits the correct kinematic structure of

the mechanism. In order to enable efficient exploration, we propose our method,

Contextual Prior Prediction (CPP), which uses the visual appearance of a mechanism

to provide a prior that indicates which actions are likely to be successful in actuating

the mechanism. The mapping from visual appearance to an actuation prior is learned

from previous interactions with mechanisms from the same class. This enables the

robot to only try actions that it believes are likely to succeed based on the new

object’s appearance. We also found initializing the space the robot has to explore to

an optimistic action space to be very useful for data efficiency. Specifically, we use

task knowledge to limit the exploration space to tasks of the same type but unknown

parameters. For example, when exploring how to actuate a sliding joint, the robot

attempts to actuate it as if it were a sliding joint with various angles and lengths.

Referring back to our high level approach shown in Figure 2-1, we have a learning-

phase and an evaluation-phase. During the learning-phase the robot learns a general

mapping from the appearance of a mechanism and a proposed action to a reward
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which measures how far the mechanism moves, i.e. a task feasibility model (TFM) or

reward function. Then during the evaluation-phase, given a novel object and starting

with a prediction based on its visual appearance and previous interactions, the robot

must actively select a sequence of motion commands that will cause the mechanism

to move. As the robot gets more experience in the learning-phase with different

mechanisms, it is able to “understand” a new mechanism with fewer and fewer trials

in the evaluation-phase.

We formulate the overall problem as a Contextual Multi-Armed Bandit (C-MAB)

in which the robot continuously interacts with a sequence of mechanisms (contexts)

with shared structure. For the learning-phase, we represent the TFM using a neu-

ral network, which maps visual appearances and possible actions to value, and train

it using conventional supervised learning methods. Then, for the evaluation-phase,

given a novel mechanism to interact with, we use the TFM to predict the expected

value of each possible action in a continuous action space. We treat this function

as the prior mean of a Gaussian Process (GP), and use the Gaussian Process Up-

per Confidence Bound (GP-UCB, details in Section 4.1) strategy [94] to handle the

exploration-exploitation trade off when finding the optimal action.

In our method, GP-UCB is also used in the learning-phase. We explore the effec-

tiveness of GP-UCB and random sampling as exploration strategies during training.

At evaluation time, we compare the overall effectiveness of the system to one that

applies GP-UCB to each new mechanism starting from a generic prior, as well as to

a baseline random search. The techniques are generic and could apply to a variety

of mechanisms. Our experimental comparisons are done in a simulated domain con-

taining prismatic and revolute joints with different visual appearances and kinematic

parameters. The learned reward functions do not fit into a long-horizon planning sys-

tem, but the methods investigated here give good insight into how we can successfully

explore an optimistic action space using active learning.

The contribution of this work is to demonstrate how a period of exploration with

mechanisms with different visual appearances can lead to the ability to actuate never-

before-seen mechanism instances with very few (sometimes just one) trials. In addi-
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tion, the approach of learning to map appearance to the prior of a GP, rather than

mapping appearance directly to motor commands, means that the overall system is

significantly more robust, and can recover from inaccurate predictions that arise when

there is little training data.

5.1 Method

We propose a method to address the problem of task feasibility model learning, as

laid out in Section 2.2. The problem is modeled as a C-MAB, in which the robot is

given a novel initial state represented by an image, and must maximize reward. We

address this problem by first collecting data in order to learn a task-specific model,

𝑅̂𝑡𝑎𝑠𝑘. Then at evaluation time, given a novel initial state we use 𝑅̂𝑡𝑎𝑠𝑘 within an active

learning strategy to maximize reward. An image of the learning and evaluation-phase

is given in Figure 5-2

5.1.1 Training Phase

During the learning-phase for a given task, the robot is presented with a sequence of

initial states, 𝑠 ∈ 𝒮, and uses active learning within the space of the optimistic model,

𝑓𝑂, to select an action, 𝑎 ∈ 𝒜. It gets 𝑀 chances to interact with the environment,

receiving a reward, 𝑟 ∈ R, and resetting to the initial state after each interaction.

The generated dataset of (𝑠, 𝑎, 𝑟) tuples are used to train the TFM, 𝑅̂𝑡𝑎𝑠𝑘.

5.1.2 Evaluation Phase

At evaluation time the robot is presented with novel initial states and must maximize

reward. A naive strategy would simply find the action which maximizes the reward

of the learned model given an new state 𝑠

𝑎 = argmax
𝑎∈𝒜

𝑅̂𝑡𝑎𝑠𝑘(𝑠, 𝑎).
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Figure 5-2: Learning and evaluation-phase for Contextual Prior Prediction.
During the learning-phase, the robot is sequentially presented with mechanisms. The
robot can interact with each mechanism for 𝑀 steps (timeline ticks) before a new one
appears. We evaluate the robot’s performance on a separate evaluation set of novel
mechanisms (bottom). For each evaluation mechanism, the robot takes actions until
it has generated an optimal interaction (generated the most possible motion).

However, when we have a small amount of training data, this prediction may not be

very accurate. We would like to extend the model such that when the robot takes

actions and fails, the rewards from failed attempts inform future interactions as the

robot searches for the optimal action. We do so by modeling each new initial state

with its own gp (Equation 4.1) where the mean function is the learned task model,

and use GP-UCB (Equation 4.2) to collect data. This helps to provide guidance

before any new data is collected. We refer to this as Contextual Prior Prediction

(CPP) [74].

Specifically, given a new state, 𝑠 ∈ 𝒮, we use a gp (Equation 4.1) to model a state-

specific reward function, where the input space is an action, 𝑥 ∈ 𝒜, and the output

is the reward, 𝑦 ∈ R. We then use GP-UCB (Equation 4.2) to select datapoints with

the initial mean function set to the learned model, 𝜇(𝑥) = 𝑅̂𝑡𝑎𝑠𝑘(𝑠, 𝑥).

Under this criterion, samples initially come from parts of the space where the

learned reward function predicts high reward. Then as the true state/context-specific

reward function is learned, we select actions with much more accurate knowledge of
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(a) Slider Task

(b) Door Task

Figure 5-3: Visual of constrained mechanisms tasks and parameterized pol-
icy spaces. In both domains we assume the robot knows where the handle is, then
explores an optimistic action space to determine which action parameterization maxi-
mizes reward. For the slider (a) the optimistic action space is the angle perpendicular
to the plane normal (shown with a green vector), 𝑙, and the distance to slide the han-
dle, 𝑧. For the door (b) the optimistic action space is the distance from the handle to
the hinge, 𝑤, and the pitch of the frame attached to the door hinge, 𝑝, and the angle
to open to door, 𝑞.

the true underlying reward function.

5.2 Constrained Mechanisms Domain

We demonstrate our method in a simulated domain containing prismatic and revolute

joints with different kinematic parameters; an example of each is shown in Figure 5-3.

The state is represented by an image, 𝑠 ∈ 𝒮 = R𝑤𝑝×ℎ𝑝×3 where 𝑤𝑝 and ℎ𝑝 are the

number of pixels in the width and height of the given image.

The objective of the slider task is to have the robot actuate a prismatic joint to

its limit. The action space is the angle in which to slide the slider (about a vector

normal to the slider plane centered at the slider handle), 𝑙 ∈ [0, 𝜋], and the distance to

slide, 𝑧 ∈ [−0.25 m, 0.25 m], therefore 𝑎 = (𝑙, 𝑧). We assume that the initial position

of the slider handle and the normal to the slider plane are known. The reward is

the distance that the robot is able to move the handle. The optimistic model for the

slider task assumes that ∀𝑙 ∈ [0, 𝜋] the slider will move in that direction the given
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distance 𝑧.

The objective of the door task is to open the door by actuating the revolute joint

to its joint limit. The action space is the pitch of the frame attached to the door

hinge where the 𝑦-axis is fixed and parallel to the door plane, 𝑝 ∈ [0, 2𝜋], the distance

from the hinge to the handle, 𝑤 ∈ [0.055, 0.15], and the opening angle of the door,

𝑞 ∈ [0, 𝜋
2
], therefore 𝑎 = (𝑝, 𝑤, 𝑞). We assume that the position of the door handle and

the normal to the initial door plane are known. The reward is the distance that the

robot is able to move the handle. The optimistic model for the doors task assumes

that ∀𝑝 ∈ [0, 2𝜋] and 𝑤 ∈ [0.055, 0.15] the door handle will open to the given angle 𝑞.

In both tasks the reward is maximized by actuating the joint to its limit.

5.3 Implementation

We discuss the representation used for the task feasibility models in Section 5.3.1,

then the details of the Gaussian Process in Section 5.3.2, and finally the PyBullet

simulator we developed for our experiments in Section 5.3.3.

5.3.1 Task Feasibility Model Representation

We approximate the TFM, 𝑅̂𝑡𝑎𝑠𝑘, with a neural network (NN) which consists of in-

dependent encoders for the input channels (images and action parameters) and a

regressor which uses these encodings to predict reward. A visual of our architecture

is given in Figure 5-4. The image encoder 𝑓im has the form 𝑧im = 𝑓im(𝑠) = 𝑓ss(𝑓cnn(𝑠)),

where 𝑓cnn is a Convolutional Neural Network (CNN). We found that mapping from

the CNN directly into a fully connected layer did not result in useful encodings, so we

added 𝑓ss, which is a spatial softmax layer [25]. It generates, as output, a set of 2D

feature points that are salient for making value predictions. Each 2D feature point is

the expected pixel location of activations in one of the final CNN channels.

For the action inputs, a Multi-Layer Perceptron (MLP), 𝑓a, transforms the action

parameters into a latent space. This part of the network was designed so that addi-

tional action types could be added to the system, in which case, action parameters
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Figure 5-4: The NN architecture for 𝑅̂𝑡𝑎𝑠𝑘. 𝑅̂𝑡𝑎𝑠𝑘 predicts reward, 𝑟, given a state,
𝑠, represented as an image, and an action, 𝑎.

for all policies would be transformed into a shared space. This yields action encoding

𝑧𝑎 = 𝑓a(𝑎). Finally, 𝑧𝑖𝑚 and 𝑧𝑎 are concatenated and passed through an MLP, 𝑓dist,

which learns to predict how the action and image features map to a reward. The NN

is composed of these encoders and the distance regressor as follows,

𝑅̂𝑡𝑎𝑠𝑘(𝑠, 𝑎) = 𝑓dist([𝑓im(𝑠); 𝑓a(𝑎)]).

If 𝑅̂𝑡𝑎𝑠𝑘 is trained to effectively approximate the true reward function 𝑅 then an

approximately optimal policy has the form

𝜋(𝑠) = argmax
𝑎∈𝒜

𝑅̂𝑡𝑎𝑠𝑘(𝑠, 𝑎).

This formulation suffices for mechanisms that can be effectively actuated by a single

relatively simple parameterized action. If we were to move to truly sequential mech-

anisms, such as gate latches, it would be necessary to treat the problem as a Markov

Decision Process rather than a bandit.
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5.3.2 Gaussian Process Details

To select actions according to the GP-UCB criteria given a state 𝑠, we must opti-

mize the GP-UCB objective (Equation 4.2). To do this we start by evaluating the

function on a coarse sampling of the action space. We then perform non-linear op-

timization on a few of the best samples, and select the best optimization run as the

criteria-maximizing action. We found that using 𝛽 = 2 in the GP-UCB objective

(Equation 4.2) resulted in good optimization performance.

In our experimental results we use a squared exponential kernel and tune the

kernel parameters by executing GP-UCB on a separate set of random mechanisms

and observing the resulting exploration strategies. We aim to find a good balance

between exploring areas of the input space with high uncertainty and areas with

known high reward.

5.3.3 PyBullet Simulation

Using the PyBullet [18] simulator, we can generate multiple mechanisms where in-

stances of the same joint type share visual structure. In our experiments, the robot

will see a sequence of randomly generated mechanisms belonging to the same class.

See Figure 5-3 for an example slider and door.

An action is a trajectory the end-effector should follow to actuate a joint with the

corresponding action parameters. Given the pose of the mechanism handle, and action

parameters, a trajectory is generated in the mechanism’s configuration space. Then

inverse-kinematics and Cartesian interpolation are used to generate a trajectory in

Cartesian space. This trajectory is executed using a PD controller by applying forces

to the handle. Due to the mechanism’s constraints, the applied forces do not always

result in motion.
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5.4 Evaluation

In this section we describe the effectiveness of CPP in the slider and door domains.

We find that CPP is able to learn from relatively few training mechanisms to quickly

operate a new mechanism. We first discuss the regret metric used to evaluate CPP

in Section 5.4.1, and describe the different methods which will be evaluated in Sec-

tion 5.4.2. We give regret results in Section 5.4.3. We analyze different data generation

methods and their performance in Section 5.4.4. Finally, we give a proof of concept

of our method on a Baxter robot in Section 5.4.5.

5.4.1 Evaluation Metric

To measure the robot’s success we assume that an oracle is able to provide the optimal

reward, 𝑟*, and we calculate the normalized simple regret (nsr) which is the loss of

not selecting the optimal action

nsr =
𝑟* − 𝑟

𝑟*
, (5.1)

where 𝑟 is the reward for the robot’s chosen action. For each new state presented

to the robot during evaluation, we count the number of interactions needed until the

robot can achieve nsr < 0.05.

5.4.2 Methods

The CPP method can work with any kind of exploration strategy during training

time. We give results using two different exploration strategies during training time.

We will discuss the comparison of these two methods in Section 5.4.4.

CPP-Random We randomly sample from the action space to collect training

interactions for each mechanism.

CPP-GP-UCB We use the GP-UCB objective (Equation 4.2) to collect training

interaction data. With this method the agent is actively trying to maximize its reward

with each mechanism.
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We compare our method against two simple but sensible baseline methods for

evaluation that do not try to use previous experience and visual information about

the new mechanism to predict how to actuate it. Thus, for the baseline methods,

each mechanism is a new problem. While we expect performance to improve within

one trial of interaction with a mechanism, we do not expect performance to improve

across interactions with different mechanisms.

Random We randomly sample from the action space until the agent is able to

maximize its reward.

GP-UCB The robot uses the GP-UCB objective (Equation 4.2) for action selec-

tion until it is able to maximize its reward.

5.4.3 Regret Results

In both the baselines and in our evaluation of CPP, we limit the agent to 100 attempts

at maximizing its reward. The results of our experiments are shown in Figure 5-5.

Each plot shows the number of steps each method took to maximize the reward on

the evaluation mechanisms as a function of 𝐿, the number of mechanisms the robot

interacted with during training time. The baseline methods (blue and green) have

the same median for all 𝐿 values because they are not leveraging previous experience,

and thus cannot show improvement.

The learning-based methods (red and cyan) show significant decreases in the num-

ber of interactions required to generate a successful interaction. Not only does the

median number of interactions to success decrease with 𝐿, but so do the quantiles,

meaning these methods more reliably interact with novel mechanisms. The larger

𝐿 values are important to us: a well-trained robot is able to actuate a mechanism

without any experimentation!

One drawback of CPP is that it can be misled by a poorly trained 𝑅̂𝑡𝑎𝑠𝑘. In this

case, the robot will first explore areas where 𝑅̂𝑡𝑎𝑠𝑘 predicts high reward even if it is

wrong. The GP-UCB algorithm will eventually correct the model’s beliefs and explore

other regions but this may take longer than an uninformed prior. We note that in all

cases, as 𝑅̂𝑡𝑎𝑠𝑘 starts performing better (after seeing more unique mechanisms), the
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Figure 5-5: Reward maximization results for Contextual Prior Prediction.
Number of interactions until success (less than 0.05 regret) on novel sliders (top) and
doors (bottom). The median number of interactions is reported for 50 evaluation
mechanisms for 5 separately trained 𝑅̂𝑡𝑎𝑠𝑘 models. The plots show performance for
models that have been previously trained on 𝐿 mechanisms (𝑥-axes) each with 𝑀 =
100. We compare our method, noted as CPP-GP-UCB and CPP-Random, to GP-
UCB which does not learn from previous interactions, and Random. 25% and 75%
quantiles are plotted.

number of required interactions decreases.

To visualize the usefulness of CPP versus just trusting our 𝑅̂𝑡𝑎𝑠𝑘 predictions, we

compare an agent that simply selects the best action according to 𝑅̂𝑡𝑎𝑠𝑘, to one that

that uses our CPP method. Figure 5-6 shows a CPP agent which performs 10 GP-

UCB interactions on top of the learned visual prior. As shown, CPP can still achieve

low regret even with a poor 𝑅̂𝑡𝑎𝑠𝑘 prior.

To visualize how the 𝑅̂𝑡𝑎𝑠𝑘 prior improves over time, we show its predictions after
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Figure 5-6: Regret results for Contextual Prior Prediction versus directly
optimizing 𝑅̂𝑡𝑎𝑠𝑘. This plot compares using 𝑅̂𝑡𝑎𝑠𝑘 to directly predict optimal actions
(NN), to using 10 GP-UCB interactions on top of 𝑅̂𝑡𝑎𝑠𝑘 to find optimal actions (CPP).
As shown, the NN initially results in poor performance as compared to CPP.

Figure 5-7: Motion generated for different exploration strategies. Motion his-
tograms of the data collected for 𝑀 = 100 steps on 𝐿 = 100 doors using random data
collection (left) and GP-UCB active data collection (right). The GP-UCB sampling
is biased toward collecting samples with more motion.

being trained on an increasing number of sliders in Figure 5-8. The predictions get

better at different rates for each slider which likely correlates to how similar the

evaluation sliders are to the training sliders.

5.4.4 Data Generation

The primary utility of GP-UCB is to generate useful interactions during evaluation

when the learned 𝑅̂𝑡𝑎𝑠𝑘 does not have accurate predictions. We also experimented

with using GP-UCB for collecting useful actions while interacting with training mech-

anisms.

Figure 5-5 shows that both the CPP-Random and CPP-GP-UCB methods perform
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Figure 5-8: Visualization of the 𝑅̂𝑡𝑎𝑠𝑘 prior. Prior visualized after experience with
𝐿 previous sliders for 2 novel sliders. Each plot visualizes the predicted reward for
an action, given in polar coordinates (direction and distance to move the handle).
Yellow indicates a higher predicted distance. In all rows the predictions improve as
𝐿 increases. However they all improve at different rates. This is most likely a factor
of how closely these evaluation sliders correspond to sliders seen during training.

similarly in learning a good prior for slider mechanisms. However, for door mecha-

nisms, we see that the CPP-GP-UCB method outperforms CPP-Random. This is

due to the size of the action space, the size of the rewarding region of the action

space relative to the size of the entire space, and the complexity of the reward func-

tion (how dependent the policy parameters are on each other). Figure 5-7 gives a

histogram visualization of the training data used for door mechanisms. The random

exploration strategy generates mostly zero motion, while the GP-UCB method is able

to effectively actively explore the action space to find rewarding samples useful for

training 𝑅̂𝑡𝑎𝑠𝑘.

5.4.5 Real Robot Proof of Concept

We tested our learned model for slider mechanisms on a Baxter robot. The policy

parameterizations are the same, and the trajectories output by the policies are fed

into a position controller for the Baxter end effector, as shown in Figure 5-9. Our

objective was to determine if the evaluation part of our pipeline could be executed

on a real robotic platform. We observed that the Baxter was able to explore the real,

novel slider mechanism when it started from both a poor (little previous experience)

and good 𝑅̂𝑡𝑎𝑠𝑘 model. The input image is a simulated version of the real mechanism
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Figure 5-9: Contextual Prior Prediction proof of concept with Baxter robot.
The real and simulated (inset) slider actuated by the Baxter.

as depicted in the inset of Figure 5-9. We surprisingly found that the Baxter was able

to generate more motion for imperfect actions than the simulated agent. This was

due to the compliance in the Baxter arm, which actually aided in shaping the reward,

enabling the Baxter to learn the correct slider parameters with very few interactions.

5.5 Related Work

This work lies at the intersection of estimating kinematic models and policy learning.

While the former can be used in the latter, there has been little work tying the two

together with the goal of generalizing to novel objects through vision. Section 3.2

discussed related reinforcement learning techniques. Here we focus on other works

related to the Contextual Prior Prediction method.

Of particular relevance to our work are other methods which estimate the kine-

matic parameters of articulated objects from interaction data [97, 8, 80, 52, 41, 23].

However, these works focus on learning the kinematic parameters for a single object.

These works use visual representations such as optical flow [13, 52], or point features

[23], which have been shown to be useful in predicting either kinematic models [52, 23]

or rigid body separation [13]. Abbatematteo el al. [1] develop a method for predict-

ing the kinematic parameters of a class of objects from an image. Similarly, we use a
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CNN to learn visual features that are informative of motion in a class of objects.

A closely related problem is that of learning object affordances which is primarily

concerned with the effects of actions as opposed to their rewards. In [77], the authors

predict a probability distribution over possible object affordances from pixels. In

[72], the authors learn the probability of successfully executing a grasp. Our method

extends similar lines of work, in that the agent uses the learned model to seed on-line

interactions.

GPs are useful for active exploration due to the fact that they give an estimate

of the uncertainty over predictions [94]. However, using GPs requires careful speci-

fication of the kernel function which can be difficult to specify for images [51, 102].

In CPP we are able to reap the benefits of using a GP for exploration by using the

image to initialize a GP over the low dimensional action space.

5.6 Conclusion

In this work, we focused on the problem of efficiently exploring novel mechanism in-

stances by transferring knowledge from interactions with previous mechanisms through

vision. We developed a method, Contextual Prior Prediction, that uses a learned prior

mean for a GP and GP-UCB to maximize reward given a novel state. We evaluated

our method in a continual C-MAB learning framework in a simulated domain con-

sisting of prismatic and revolute joints, and proved that the evaluation strategies can

be executed on a real robotic platform. We demonstrated that as the robot interacts

with more mechanism instances, it can successfully actuate a new mechanism with

an increasingly smaller number of interactions. Beginning with an optimistic action

space enabled us to learn an accurate task feasibility model for predicting task re-

ward. Future work needs to be done evaluating what would be necessary to learn

relevant features for predicting motion from realistic images. In the next chapters we

look into sequential manipulation domains and move away from using a pixel-based

state representation in order to improve learning efficiency.
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Chapter 6

Action Feasibility Model Learning

Long horizon sequential manipulation tasks still pose a challenging problem for robotic

systems.1 Tasks such as assembly depend on using many objects with varying physical

properties. Finding a plan to achieve a task in these domains consists of reasoning

over large spaces that include discrete action plans, as well as low-level continuous

motion plans.

These problems can be effectively addressed hierarchically: at the highest level

of abstraction the system searches over plausible abstract action sequences, and at

the lower level it plans for detailed concrete motion plans and object interactions.

The complexity of the search space for the concrete planner is greatly reduced when

constrained by the abstract action sequence. Further computational efficiencies can be

gained if we lazily [39] postpone concrete planning until we have a complete abstract

plan that is likely to succeed, avoiding the need to query the concrete planner multiple

times. A version of this approach is used in skeleton-based task and motion planning

systems [68, 38, 55].

The success of this lazy strategy hinges on our ability to predict whether an ab-

stract action sequence will be feasible to execute. In this work we leverage optimistic

action models at the abstract level. We call an optimistic abstract action sequence

1The material in this chapter is based on:
Michael Noseworthy*, Caris Moses*, Isaiah Brand*, Sebastian Castro, Leslie Pack Kaelbling, Tomás
Lozano-Pérez, and Nicholas Roy. Active Learning of Abstract Plan Feasibility. Robotics: Science
and Systems (RSS), 2021. [78]
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feasible if both the concrete planner returns a solution and this solution is reliably

executed in the real world with the intended outcome. The optimistic action model is

a relaxation on the true dynamics and does not take into account errors in execution.

As such the robot may end up attempting a plan that fails during execution.

Fortunately, even an approximately correct estimator of abstract action feasibility

can offer huge computational advantages during planning. In some cases it may be

possible to approximate action feasibility via coarse-grained simulation. However,

this strategy still requires a coarse dynamics model, which may not capture complex

phenomena needed to accurately predict feasibility in the real world.

Instead, we explore a strategy in which we learn an abstract action feasibility

model (AFM) that predicts action feasibility by exploring the space of real plan

executions without a specific planning problem or task at hand — a form of curious

exploration [81]. Data efficiency is a primary concern in enabling real robot learning

of feasibility models. Here, a training instance is the execution of an abstract action,

labeled by success or failure. Labeling a sequence of abstract actions is very expensive

as it involves finding and executing a concrete motion plan, potentially taking several

minutes on a real robot. Furthermore, due to the combinatorial input space of abstract

action plans, randomly executing actions is unlikely to elicit interesting behavior.

To address the data efficiency problem, we observe that in the process of training

the AFM, some observations may be more valuable than others. Active learning is a

technique for identifying unlabeled instances that are most informative in learning a

target concept. The technical challenge is how to find plans of interest — an active

learning approach requires both a way to generate candidate plans, and a way to

score how informative a candidate plan might be given the current model.

To determine how informative a plan is with respect to the learned AFM, we adopt

an information-theoretic active learning approach [70, 45]. To generate candidate

plans, we exploit an important property of abstract action sequences: for an action

sequence 𝑎1:𝑁 , if any prefix (𝑎1, . . . , 𝑎𝑖) is infeasible, then any longer prefix (𝑎1, . . . , 𝑎𝑗)

for 𝑖 < 𝑗 ≤ 𝑁 is also infeasible. This infeasible subsequence property gives us leverage

during data acquisition. A complex plan instance may contain many elements that
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Figure 6-1: Panda tower construction. This shows the Franka Emika Panda
robot constructing a tower to improve its understanding of action feasibility. A wrist-
mounted camera refines object pose estimates for precise grasping. Unique ArUco
markers [34] are applied to each face of each object for object identification and
localization.

are highly informative for model learning, but will never be experienced because early

elements in the plan will fail with high probability.

We apply this active learning strategy to the concrete problem of stacking blocks

with a real robot, where the blocks are each unique and have non-uniform mass

distributions. The robot autonomously designs, plans, and executes experiments to

learn action feasibility models using a Franka Emika Panda robot arm (Figure 6-

1). The robot is also capable of resetting the world state after each experiment,

enabling continuous autonomous experimentation. The learned feasibility predictor

is later used to build towers with previously unseen blocks that satisfy several different

objective functions, including the tallest possible tower or the tower with the longest

overhang. This sample-efficient autonomous learning process relieves engineers from

supervising data collection, resetting the experimental environment, and having to

specify accurate dynamics models for planning. This results in a highly flexible and

robust system for planning and executing complex action sequences in the real world.

In summary, our contributions are:

• A method to learn an abstract action feasibility model (AFM) by synthesizing

hypothetical optimistic plans;
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• A data acquisition approach which leverages the infeasible subsequence property

when sampling potential plans;

• A robotic system which conducts autonomous self-supervised learning via inte-

grated perception, experimentation, planning, and execution.

6.1 Method

Here we give a method for solving the action feasibility model (AFM) learning problem

outlined in Section 2.3.1. Specifically, we want to learn an AFM which can be used

with a planner to maximize a given task reward,

𝑎1:𝑁 = argmax
𝑎1:𝑁∈𝑃

pf(𝑠0, 𝑎1:𝑁)𝑅𝑡𝑎𝑠𝑘(𝑠𝑁),

where plan feasibility, or pf (Equation 2.1), depends on the learned AFM. We take

an information-theoretic approach to actively learning an AFM. An overview of the

learning and evaluation-phases are given in Figure 6-2. First we give our method,

Sequential Actions, in Section 6.1.1, then we discuss the representation of the AFM

in Section 6.1.2.

6.1.1 Sequential Actions

Our method builds upon Bayesian Active Learning by Disagreement (BALD) [45],

described in Section 4.2. As discussed, the bald objective’s (Equation 4.4) derivation

relies on the underlying information gain problem being submodular. Informally, a

submodular problem is one in which executing any one action does not have the

potential to make future actions more informative. We make the observation that

information gain in block stacking is not submodular on the level of individual block

placement actions, but is submodular on the level of towers constructed. Building a

single tower will always give us information, and that amount of information strictly

decreases over time (i.e. has diminishing returns). However within a single tower,

certain block placements can give more or less information depending on where and
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Figure 6-2: Learning and evaluation-phase for action feasibility models. The
proposed system for learning an abstract AFM operates in two phases. Learning-
phase (top) The robot iteratively designs and executes experiments that improve its
AFM. (A) Using its current model, the robot selects the abstract action sequence,
𝑎1:𝑁 , that maximizes information gain over the AFM. The Sequential Actions objec-
tive is shown here, but it can be replaced with any of the baseline active learning
strategies given in Section 6.4.1. (B) The robot then computes and executes a con-
crete motion plan for 𝑎1:𝑁 . (C) After observing the true action feasibilities, the robot
uses this new labeled data to update its AFM, represented by an ensemble of neural
networks. Evaluation-phase (bottom) Once an AFM has been learned the robot
can use it to perform various tasks, such as building the tower with the longest over-
hang from a given novel set of blocks.

when they are stacked. One could imagine setting up a tower building experiment

with the intent of gaining the most information on the last block placement in the

sequence, proving that information gain on the level of block placements does not

always have diminishing returns.
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When calculating the bald objective (Equation 4.4) over plans (towers), the input

is a sequence of actions, 𝑥 = 𝑎1:𝑁 . The output is a label of whether or not that tower

was stable after construction, 𝑦 = 𝜑. However, if we generate candidate plans using

the optimistic model, 𝑓𝑂, then we could end up selecting a plan which fails to execute

all intended actions. Using the bald objective in this way does not account for the

fact that some of the actions in the sequence 𝑎1:𝑁 may never be experienced due to a

previous action in the sequence being infeasible. We refer to this as the infeasible sub-

sequence property. In sequential domains in which reaching parts of the state space

are dependent on previous actions taken, it is important to consider the feasibility of

an action given the actions taken up to that point.

We therefore reformulate the objective by using our plan feasibility (pf) calcu-

lation (Equation 2.1). We also change the bald objective to now take individual

actions as input 𝑥 = 𝑎 and individual action labels as output, 𝑦 = 𝜑. By combining

plan feasibility and information gain over individual actions, we maximize information

gain over all actions in the sequence by considering our ability to actually execute

each action to acquire each label. This gives the Sequential objective

argmax
𝑎1:𝑁∈𝑃

𝑁∑︁
𝑖=1

pf(𝑎1:𝑖)bald(𝑎𝑖). (6.1)

When 𝑃 = 𝑃𝑎𝑐𝑡, which consists of plans generated by random roll-outs of the opti-

mistic transition model, 𝑓𝑂, we refer to it as the Sequential Actions objective.

In our stacking domain, the state and action are both represented by an ab-

stract action 𝑎. Therefore the AFM operates only on action 𝑎 to predict feasibility,

𝑓𝐴(𝑎; Θ) → [0, 1]. We will discuss the details of the combined state action represen-

tation for the stacking domain in Section 6.2.1.

6.1.2 Action Feasibility Model Representation

To deal with domains in which the state representation has variable length, we lever-

age graph neural networks (GNNs). GNNs make predictions based on aggregations of

local properties and relations among the input entities, and exploit parameter tying
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to model global properties of plans of arbitrary size using a fixed-dimensional pa-

rameterization Θ. Many recent works have focused on learning predictive dynamics

models. In such scenarios, it has been shown that explicitly representing objects and

their relations in the model can lead to more efficient learning and generalization

[9, 10, 16, 107]. As such, graph networks are becoming a more common modeling

choice in these domains [55, 88]. For a detailed description of GNNs, see the overview

by [109].

The active learning objective is to maximally reduce the entropy of Pr(Θ | 𝒟). In

general, for complex model classes such as neural networks, an explicit representation

of Pr(Θ | 𝒟), the distribution over the parameter space given training data 𝒟, is diffi-

cult to construct or update with new data. We therefore follow the strategy of Beluch

et al. [12] and represent uncertainty with an ensemble of individual neural network

models. For each individual model, initial parameters are drawn independently at

random and are updated to incorporate new data via gradient descent in different

orderings of the dataset.

Using an ensemble of equally weighted parameter vectors (𝜃1, . . . , 𝜃𝐾) to represent

𝑓𝐴(𝑎; Θ) allows us to compute a global feasibility prediction,

𝑓𝐴(𝑎; Θ) =
1

𝐾

𝐾∑︁
𝑖=1

𝑓𝐴(𝑎; 𝜃𝑖).

We find an experiment that maximizes the estimated bald objective using an en-

semble with the following calculation

bald(𝑎) = ℋ[𝑓𝐴(𝑎; Θ)]− 1

𝐾

𝐾∑︁
𝑖=1

ℋ[𝑓𝐴(𝑎; 𝜃𝑖)].

In Section 6.3.1 we give the details of the GNN used in the stacking domain.
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Figure 6-3: Non-uniform mass distribution blocks. The cuboids for the real
robot experiments were constructed from laser cut plywood. A 25mm diameter lead
ball is mounted randomly inside some of the objects to significantly alter the mass
distribution.

6.2 Stacking Domain

We implement this framework for a class of problems in which the robot manipulates

objects to construct towers. All of our experiments use the 7-DOF Panda robot from

Franka Emika either in a simulated PyBullet environment or in the real world.

6.2.1 State and Abstract Action Representation

The world consists of the robot and a set of objects, 𝒪, with which it can interact.

In this work, we consider cuboids with non-uniform mass distributions (Figure 6-

3). Each object, 𝑜 ∈ 𝒪, is described by a tuple, (𝑑, 𝑐,𝑚), where 𝑑 ∈ R3 are the

dimensions, 𝑐 ∈ R3 is the offset of the center of mass from the center of geometry,

and 𝑚 ∈ R is the object’s mass.

During the learning-phase we use a set of 10 blocks, and all evaluations are per-

formed with a different set of 10 blocks. The block parameters from each set are

sampled from the same uniform distribution over the dimensions of the objects and

the locations of the center of mass within the objects.
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In this domain we combine the state and abstract action into a single action

representation. An abstract action is specified by 𝑎 = (o, r) where r ∈ 𝑆𝐸(3) are the

relative poses of all objects o with respect to the objects below them (or the table if

this is the first object in the list). The action portion of this representation is getting

the final object to the final relative pose. The robot can plan in this abstract action

space, and consider abstract actions that are infeasible to construct. However, when

constructing and labeling abstract actions to learn 𝑓𝐴, we only label abstract actions

which either succeed or fail on the last block placement. Once the tower falls we do

not label any future abstract actions that the robot was considering.

This abstract action is optimistic in that it believes that any contact between the

block being placed on the tower and the block below it will result in a stable tower.

However this will not always be the case due to the effects of the center of mass not

being considered, as well as any noise in the underlying robot system.

An abstract action 𝑎 is labeled as feasible, 𝜑 = 1, if the last block placement

results in the tower remaining stable, and infeasible, 𝜑 = 0, otherwise. Feasibility

in this scenario equates to the robot being able to construct a specific tower, so it

corresponds to constructability as opposed to stability. A tower can be stable but

not constructable, but all constructable towers are stable towers. In this chapter

we use the term stable as it is more intuitive, but plan feasibility is actually tower

constructability.

6.2.2 Low-level PDDL Action Models

We use PDDLStream [33] (discussed in Section 4.3.1) to find the concrete plan, con-

sisting of grasps and motion plans, needed to execute an abstract action. In this

section we given the predicates and PDDL action models used to find a concrete plan

for a corresponding abstract action 𝑎.
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Predicates

The parameters for our actions and predicates are the following: ?o is an object

(either the table or a block), ?p is an object pose, ?g is a grasp, ?q is a robot arm

configuration, and ?t is a robot arm trajectory in joint space.

The predicates AtPose, AtConf, and HandEmpty model the changing pose of

objects, configuration of the robot arm, and state of the robot gripper. When the

robot is holding something, the grasp is modeled with AtGrasp. Block and Table

simply mean that the given object is a block or table, respectively. On indicates that

?o1 is resting stable on top of ?o2. PickKin (PlaceKin) indicates that object

?o can be picked (placed) from (at) ?p with grasp ?g following trajectory ?t from

configuration ?q1 to ?q2.

FreeMotion indicates that trajectory ?t from configuration ?q1 to ?q2, where

the robot is not holding an object, is collision-free. HoldingMotion indicates that

trajectory ?t from configuration ?q1 to ?q2, where the robot is holding object ?o

with grasp ?g, is collision-free.

Stackable is a derived predicate which indicates that object ?o1 can have

something stacked on top of it if it is either a table, or a block with nothing on top

of it.

(:derived (Stackable ?o1)

(or (forall (?o2) (not (On ?o2 ?o1))) (Table ?o1)))

Moveable is a derived predicate which indicates that object ?o1 is a block and

can be moved (has nothing on top of it).

(:derived (Movable ?o1)

(and (Block ?o1) (not (exists (?o2) (On ?o2 ?o1)))))

Action Descriptions

The following MoveFree and MoveHolding action descriptions model the condi-

tions under which the robot can move from one configuration to another while either

not holding a block, or while holding a block.
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(:action MoveFree

:param (?q1 ?q2 ?t)

:pre (and (FreeMotion ?q1 ?q2 ?t)

(AtConf ?q1)

(HandEmpty))

:effect (and (AtConf ?q2)

(not (AtConf ?q1))))

(:action MoveHolding

:param (?o ?g ?q1 ?q2 ?t)

:pre (and (HoldingMotion ?o ?g ?q1 ?q2 ?t)

(AtConf ?q1)

(AtGrasp ?o ?g))

:effect (and (AtConf ?q2)

(not (AtConf ?q1))))

The following Pick and Place action descriptions model the conditions under

which the robot can either pick up or place an object.

(:action Pick

:param (?o1 ?p1 ?o2 ?g ?q1 ?q2 ?t)

:pre (and (PickKin ?o1 ?p1 ?g ?q1 ?q2 ?t)

(AtPose ?o1 ?p1)

(HandEmpty)

(AtConf ?q1)

(Movable ?o1)

(On ?o1 ?o2))

:effect (and (AtGrasp ?o1 ?g)

(AtConf ?q2)

(not (AtConf ?q1))

(not (AtPose ?o1 ?p1))

(not (HandEmpty))

(not (On ?o1 ?o2))))
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(:action Place

:param (?o1 ?p1 ?o2 ?g ?q1 ?q2 ?t)

:pre (and (PlaceKin ?o1 ?p1 ?g ?q1 ?q2 ?t)

(AtGrasp ?o1 ?g)

(AtConf ?q1)

(Stackable ?o2))

:effect (and (AtPose ?o1 ?p1)

(HandEmpty)

(AtConf ?q2)

(not (AtConf ?q1))

(not (AtGrasp ?o1 ?g))

(On ?o1 ?o2)))

6.2.3 Task Reward Functions

The learned AFM model is applied to three different objectives in the evaluation-

phase:

1. Tallest Tower: The objective is to construct the tallest possible tower.

2. Longest Overhang: The objective is to construct the tower with the maximum

distance from the center of geometry of the bottom block to the furthest vertical

side of the top block.

3. Maximum Unsupported Area: The objective is to construct the tower where

each block has as much area as possible unsupported by the block below it.

6.3 Implementation

We discuss the details of the ensemble of GNNs used to represent the learned AFMs

in Section 6.3.1. Then, we discuss the details of our planner in Section 6.3.2. In

Section 6.3.3 we describe the perception system used to localize blocks in our real
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world experiments, and in Section 6.3.4 we give our real world experimentation setup.

Finally, in Section 6.3.5 we explain how our method could be applied to other domains.

6.3.1 Learning

The distribution over AFM model parameters is represented by an ensemble of net-

works. In our implementation, the ensemble is made up of GNNs with domain-specific

connectivity. The input to the GNN is an abstract action, 𝑎. Each block placement in

𝑎 is represented by a separate node in the graph, and each node is connected to nodes

above it in the tower. This mirrors the analytical computation of tower stability. If we

consider each subtower in the tower that starts with the top block, they must all have

a combined center of mass within the contact patch of the block below them. This is

shown visually in Figure 6-4. We refer to this network architecture as a Towers Graph

Network (TGN). Other network architectures which are invariant to task plan length

are a Fully Connected Graph Network (FCGN) and a LSTM model. The FCGN

uses the same node and edge networks as our TGN model, but has edges between

each node. The LSTM model passes each block’s vector representation through the

network in order starting from the top of the tower, and most closely matches our

TGN connectivity. A visualization of the connectivity of each architecture is given in

Figure 6-5.

In our experiments, 10 networks are used in the ensemble. Each individual network

is randomly initialized and trained using the binary cross-entropy loss function with

early stopping according to the loss on a validation set, which is also collected actively.

We also perform data augmentation by rotating each collected tower 90, 180, and, 270

degrees about the axis normal to the table surface.

Before active learning, each model in the ensemble is initialized by training on the

same dataset (shuffled differently for each) of 40 randomly generated plans of length

2. During the learning-phase, at each iteration the top 10 most informative plans

are chosen and labeled by attempting to execute each with the robot. 20% of the

collected data is added to a validation set and the remainder is added to the training

set.
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(a) Tower and Subtowers

(b) TGN Predication

(c) TGN Connectivity

Figure 6-4: Towers Graph Network and analytical stability calculation. Con-
sider the tower shown in (a). Calculating the stability of this tower consists of cal-
culating the combined center of mass of each subtower, and determining if it is in
the contact patch between the bottom-most block in the subtower, and the block
supporting the subtower. In this example that would consist of calculating the joint
center of mass of the subtowers highlighted in yellow, blue, and red, and seeing if
each subtower’s joint center of mass is within the contact patch between the yellow
and blue block, the blue and red block, and the red and green block, respectively.
(b) shows how the outputs from each node in the graph network are averaged to get
the final network prediction. (c) shows how each subtower is used to determine the
connectivity of the TGN for this given tower.

70



Tower Towers Graph
Network Connectivity

Fully Connected Graph
Network Connectivity

LSTM Connectivity

Figure 6-5: Different network architectures for learning action feasibility
models in the towers domain. The flow of information for the model architectures
compared in Section 6.4.4. The TGN uses domain specific connectivity, while the
FCGN assumes no prior knowledge on how the blocks should be used together to
inform predicting feasibility. The LSTM simply iterates through the blocks starting
with the top block.

6.3.2 Planning

Planning consists of first finding a high-level plan of abstract actions, then finding a

consistent low-level plan with the motions and grasps necessary to achieve the high-

level objectives. In this domain, abstract actions are simply the poses of all blocks in

a tower. To continuously execute abstract action plans, the low-level planner must

consider many scenarios, such as regrasps and moving fallen blocks back to their home

positions before building a new tower. First we discuss the high-level Monte Carlo

planner, then the low-level planner.

High-Level Planner

At the high-level we use a Monte Carlo planner which simply rolls out random abstract

actions, of a given length 𝑁 , to generate plan space 𝑃𝑎𝑐𝑡. During the learning-phase

we score plans in 𝑃𝑎𝑐𝑡 using the Sequential Actions objective. During the evaluation-

phase, we score plans using Equation 6.1, a combination of learned plan feasibility

and the task reward.
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Low-Level Planner

To handle low-level planning, we use the PDDL action models given in Section 6.2.2

with PDDLStream [33] (described in Section 4.3.1). This planner handles task level

reasoning and uses a Bidirectional RRT [58] in joint configuration space to perform

motion planning and collision checking with a surrogate world model implemented

in PyBullet [18]. In this work we make the simplifying assumption that there are

dedicated positions for the base of the tower, regrasping, and storage for each of the

objects. These constraints are specified to the planner to reduce planning time by

limiting the search space of possible action parameters.

To make planning more efficient, we break up calls to PDDLStream by passing

in a single desired block pose at a time. We iterate through each abstract action,

plan to achieve the last block placement using the low-level PDDLStream planner,

then execute the concrete plan. For each block placement, we give the planner a goal

state of (Pose ?o ?p), where we calculate the desired pose ?p of block ?o to be

placed from the abstract action 𝑎. After executing the concrete plan for each abstract

action, we check whether or not the tower has fallen. If it is still stable we continue

planning and executing block placements. If the tower falls during execution or the

entire tower is successfully constructed, then we pass new goals to the planner which

consist of getting each block back to its home position starting with the block highest

up in the 𝑧-direction (normal to the table). This heuristic, of starting with the top

block, is helpful when deconstructing a stable tower. It is also helpful when the blocks

have fallen into a pile, allowing the robot to deconstruct the pile starting from the

top.

6.3.3 Perception

We perform experiments in both a simulated PyBullet environment as well as a real

robotic environment. In simulation we perceive blocks using their ground truth poses.

On the real platform we engineer a perception system. For the system to robustly pick

up blocks and recover from unstable towers falling in unpredictable configurations,
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Figure 6-6: Panda stacking domain setup. Our setup includes two world-view
cameras, shown in blue. A wrist-mounted camera, shown in green, is used for more
accurate grasping. All blocks are shown in their home positions.

we require a perception system that can identify and localize objects at arbitrary

positions. Although more advanced perception systems might be needed for arbitrary

objects, vision is not the immediate focus of this work, so we pattern our objects with

ArUco markers [34] to simplify perception. To indicate identity and avoid orientation

ambiguity, each object has a unique ArUco marker on each face.

Two RealSense D435 depth cameras (shown in blue in Figure 6-6) mounted stat-

ically on a frame observe the workspace and allow for localizing the objects with

minimal occlusions. If an object is not visible, it is assumed to be at its home posi-

tion behind the arm. Due to the resolution of the cameras and size constraints of the

tags on the blocks, we found that the pose estimates from the static cameras can have

up to 1 centimeter of error. This level of error is acceptable, as rough pose estimates

are refined with a third RealSense D435 camera mounted on the robot wrist (shown

in green in Figure 6-6). As the arm moves to a pre-grasp pose computed from the

noisy object pose estimate, the wrist-mounted camera collects images closer to the

the object to be grasped, allowing for a refined pose estimate and more precise grasp.
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6.3.4 Execution

In simulation, motion plans and grasps are executed by moving the robot through

joint configuration trajectories. On the real robot, motion plans are executed using

joint-space controllers on the robot. When constructing a tower in the learning-phase,

after each block placement, the wrist camera is used to check for tower stability. If

a tower was unstable, then the last manipulated block will not be near its expected

pose in front of the gripper.

To improve data collection efficiency, we parallelize execution and planning. As

the robot executes a motion plan to assemble or disassemble a tower, the planner

produces plans to move each individual block in that tower under the assumption

that all actions will be successful. This parallelism is interrupted if a tower falls over

prematurely, prompting a replan to clear the fallen blocks.

If the state of the world is such that a robot is unable to find a plan to proceed with

experimentation or execute an existing plan, human intervention may be required.

We have provisioned for several of these cases, including blocks falling off the table, or

too close to one another for the planner to find feasible grasp candidates. Once such

issues are manually resolved (e.g., by putting the block back on the table or pushing

them apart from each other), the robot can update its estimate of block poses and

resume planning.

6.3.5 Method Generalizability

Here, we motivate a more general class of problems for which our system applies and

clarify which components of the system are specific to our chosen domain. Our method

most benefits domains where the feasibility of an action depends strongly on the

preceding action sequence (e.g., adding a fifth block to a tower that already has four

blocks). Domains that include construction tasks, like ours, will commonly benefit

from non-myopic information gathering and a feasibility predictor that incorporates

previous actions into its predictions. Consider a packing problem where many objects

need to be placed in a larger container without any becoming damaged. To apply our
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method to a new domain the overall system/methodology would remain unchanged.

However, one would need to adapt the following domain-specific components:

1. Optimistic action definitions. Parameterize an optimistic action that is appro-

priate for the domain and connect it to concrete actions (e.g., object locations

within the container). Ensure that the feasible subspace of the action (actions

which can feasibly be placed without causing damage) is within the space of

the optimistic model’s predictions.

2. Experimental infrastructure. Additional capabilities to autonomously plan and

execute optimistic actions in the physical world (e.g., motion and grasp planning

infrastructure).

3. Feasibility detector. For a new action, we require a method to autonomously

acquire the feasibility label during execution (e.g., whether the gripper will

collide when placing the object or if an object will be damaged).

4. Additional inductive bias (optional). Additional structure to the learner can

further increase data efficiency, as shown by our TGN method. However, this

is not required as we show in Figure 6-5 that a general purpose graph network

can be used (e.g., a graph network that has connectivity between all objects).

In Chapter 7 we apply learning AFMs to a tool-use domain and give many more

details on how this method could be adapted to a new domain.

6.4 Evaluation

First in Section 6.4.1 we discuss the baselines we compare our Sequential Actions

method to. In Sections 6.4.2 and 6.4.3 we evaluate the learning efficiency and task

performance of the different active learning strategies. In Section 6.4.4 we analyze the

ability of the learned AFMs to generalize, as well as how different NN architectures

can impact the accuracy of the learned AFMs. These results are generated in a

simulated towers domain. Finally, Section 6.4.5 gives the performance of learning an
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AFM on a real robot. We show that not only can the robot learn an AFM from real

data and use it to perform downstream tasks, but also that learning on the real robot

allows us to be robust to system noise.

When assessing task performance during the evaluation-phase, we randomly select

𝑁 = 5 blocks from the set of 10 novel evaluation blocks and execute the best tower

(that uses all 5 blocks) found by the Monte Carlo planner, given the task objective

and our AFM. The reward received from executing this tower is used to calculate

normalized regret (Equation 5.1), which is the difference between this received reward

and the maximum possible reward. If a tower is unstable, we assign a reward of zero.

We calculate the maximum possible reward by considering each tower evaluated by

the Monte Carlo planner within a simulator with no added noise, and selecting the

one which both maximizes reward and is stable.

6.4.1 Baselines

We compare to several baselines. First we discuss methods which learn an AFM, then

we discuss methods which learn a full plan feasibility model.

Action Feasibility Model Baselines

In all methods described in this section, the robot receives a feasibility label after

each action is executed. What varies is how actions are selected.

Incremental The Incremental strategy leverages the infeasible sub-sequence prop-

erty. In this method we only consider plans 𝑎1:𝑁 for which we have already observed

the prefix to be feasible. In other words, the prefix 𝑎1:𝑁−1 is in the current dataset

with labels 𝜑𝑖 = 1 for 1 < 𝑖 < 𝑁 − 1.

argmax
𝑎1:𝑁∈𝑃𝑖𝑛𝑐

1{(𝑎𝑖,𝜑𝑖=1) for 1<𝑖<𝑁−1∈𝒟}bald(𝑎𝑁)

We generate 𝑃𝑖𝑛𝑐 by randomly stacking a block on sequences of actions which are

already in the dataset with positive labels.

Greedy Actions The Greedy Actions approach selects the next action 𝑎𝑁 which
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maximizes the bald objective, given that we have already constructed 𝑎1:𝑁−1 and

the tower is still stable. This strategy does not take into consideration that if a plan

fails early, we do not get to learn from the full plan execution, which is the infeasible

sub-sequence property.

Random Actions The Random Actions approach selects the next action, 𝑎𝑁 ,

randomly, given that we have already randomly executed 𝑎1:𝑁−1 and the tower is still

stable. It also does not take into account the infeasible sub-sequence property.

Plan Feasibility Model Baselines

We also compare to baselines which model abstract plan feasibility, as opposed to ab-

stract action feasibility, These methods do not account for the infeasible sub-sequence

property. In the previously discussed AFM learning methods, we are able to use our

learned models to calculate plan feasibility, pf (Equation 2.1). However, now we

directly represent a plan feasibility model which has no notion of individual action

feasibility. We are no longer learning an action feasibility model, 𝑓𝐴 : 𝒜 → R, but a

plan feasibility model, 𝑓𝑃𝐿𝐴𝑁 : 𝒜𝑁 → R. In this setup the robot only receives labels

for each tower as opposed to each action. If the full tower is constructed without

falling it receives a positive label, 𝜑 = 1, and if it falls during construction it receives

a negative label, 𝜑 = 0. A dataset for learning 𝑓𝑃𝐿𝐴𝑁 consists of (𝑎1:𝑁 , 𝜑) where a

single label corresponds to each plan (tower) in the dataset.

Complete The Complete strategy uses the bald objective with the learned

𝑓𝑃𝐿𝐴𝑁 to select a plan which maximizes information gain.

Random Plans The Random Plans strategy plans by rolling out random se-

quences of optimistic actions, then executes the generated plan.

6.4.2 Impact of Action Feasibility Model Learning Strategy

on Task Performance

Figure 6-7 shows the task performance of models trained using our Sequential Actions

method against baselines which learn an AFM. Each strategy has results aggregated
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from 4 independent training runs and 50 task evaluations per run all performed in

a simulated environment. Different sets of blocks are used between training and

evaluation.

Our AFM performs best on the Tallest Tower task, reaching a median regret of

roughly 0 after constructing only 200 towers with the Sequential Actions method. The

Incremental method also performs well, successfully minimizing regret with minimal

variance across runs. Note that the shaded region represents the quartile distribution

— a region that extends to 1.0 means that more than a quarter of the trials were

unstable. This highlights the importance of considering the infeasible sub-sequence

property when sampling and scoring plans in the action space. Finally, the naive

Greedy Actions strategy performs the worst, and is only able to achieve decent per-

formance on the Tallest Tower task after seeing roughly 800 training towers, likely

due to the fact that it is not considering the feasibility of subtowers when searching

the actions space, just greedy single-block placements.

The Maximum Unsupported Area and Longest Overhang tasks are more chal-

lenging for the robot because they require deep understanding of the tower stability

decision boundary, while the Tallest Tower task only requires a rough understanding

of how to build stable towers with high confidence. These results show that in spite

of the difficulty of the first two tasks, the active learner is able to improve its under-

standing of the decision boundary well enough to perform tasks with very low regret

and low variance.

6.4.3 Impact of Plan Feasibility Model Learning Strategy on

Task Performance

Figure 6-8 we give results for methods which learn full plan feasibility models as

opposed to action feasibility models. While Complete performs better than Random

Plans, it still does not perform as well as the Sequential Actions method. This shows

the usefulness of considering both individual action feasibility and information gain

when selecting plans to learn from.
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Figure 6-7: Results for learning an action feasibility model. A comparison of
sampling strategies which learn an AFM on different downstream tasks all performed
in simulation. Each method evaluation consists of 4 separate AFM model-learning
runs, and each point is the Median Normalized Regret of 50 individual planning runs
per learned model. The shaded regions show 25% and 75% quantiles.
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Figure 6-8: Results for learning a plan feasibility model. A comparison of
sampling strategies which learn plan feasibility models on different downstream tasks
all performed in simulation. Each method evaluation consists of 4 separate AFM
model-learning runs, and each point is the Median Normalized Regret of 50 individual
planning runs per learned model. The shaded regions show 25% and 75% quantiles.
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6.4.4 Effect of Model Architecture on Action Feasibility Model

Accuracy and Generalizability

We compare our TGN to the other network architectures shown in Figure 6-5. For

this evaluation, we report accuracy on a held-out test set of towers built with the novel

evaluation blocks. The test set consists of half feasible and half infeasible towers, and

1000 towers for each tower size. Our models were trained in simulation on towers

consisting of up to 5 blocks, but our results give model accuracy for towers ranging

from 2 to 7 blocks, shown in Figure 6-9.

In the towers domain, it is necessary to consider the joint centers of mass for

groups of blocks above support blocks. While the LSTM architecture could remember

the previous blocks as it iterates through the tower, in practice we find that it is

outperformed by the graph network architectures. We believe this is because the

connectivity of the graph networks allows them to precisely compare adjacent blocks

in addition to aggregating information about multiple blocks. The weakness of the

LSTM is more pronounced as the number of blocks in a tower increases.

Our TGN architecture is structured to be biased towards our particular domain,

so it is able to improve its predictions much faster than the other architectures. This

enables good planning time performance as seen in Section 6.4.2, with similar long-

term performance to the FCGN architecture.

6.4.5 Real Robot Experiments

Finally, we give results for executing the entire active learning pipeline on a real

Panda robot. During the learning-phase, the robot built 400 towers over a period

of 55 hours using a fixed set of 10 blocks. The TGN ensemble was initialized with

40 random 2-block towers labeled in simulation with added relative-pose noise. Here

we look into evaluation-phase task performance when we replace the learned AFM

with other possible feasibility models (with a novel set of 10 blocks). Specifically, we

compare the following three models:

Analytical We compare to a hand-engineered model of action feasibility that
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Figure 6-9: Comparison of NN architectures for action feasibility model
learning. A comparison of different network architectures using the Sequential Ac-
tions strategy performed in simulation. The accuracy for each method is averaged
over 3 separate training runs. The shading shows the minimum and maximum accu-
racy from these runs.
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calculates whether a candidate block placement is feasible in a noiseless world. The

analytical calculation in described in Figure 6-4.

Simulation We also compare to a noisy simulator feasibility model, which pre-

dicts that an action is feasible only if the candidate tower is also stable to 10 normally

distributed perturbations, with a standard deviation of 5mm, for each block place-

ment.

Learned We perform the Incremental active learning strategy described in Section

6.4.1.

For each task and learned feasibility model we select 5 blocks at random from the

evaluation set and plan to maximize the given task reward. The robot constructs 10

towers for each task and feasibility model. In Table 6.1, we report average normalized

regret, and the number of total trials that resulted in a stable tower. Figures 6-10, 6-

11, and 6-12 includes images of the robot performing the different tasks using these

different AFMs.

From these results, it can be seen that the Analytical model can build towers

with high reward when the tower is stable, but the towers it chooses to build are

rarely stable across all three tasks. However, the Simulation and Learned AFM

models can still build towers with large overhang while considering the effects of

noisy action execution on a real robot. Our Learned model performs competitively

with the Simulation model, and in aggregate leads to similar stability across all tasks

(27 versus 24 stable towers out of 30). However, note that the Simulation model

Tallest Longest Max Unsupported
Tower Overhang Area

Model Regret #Stable Regret #Stable Regret #Stable
Analytical 0.30 7/10 0.80 2/10 0.80 2/10
Simulation 0.41 6/10 0.47 8/10 0.19 10/10
Learned 0.15 9/10 0.45 9/10 0.33 9/10

Table 6.1: Real robot task performance when using different action feasi-
bility models. The Learned model was trained with data collected through active
learning on the real Panda robot. The Analytical and Simulation models calculate
feasibility using the known underlying dynamics but use either no noise or simple
noise models respectively.
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presents higher variability in tower stability across tasks. This is because the model

makes assumptions about the type of noise distribution (Gaussian only in the plane

normal to the table) and its parameters (mean and variance), which may be more

suitable for certain tasks. The Learned model, on the other hand, may capture other

complex real-world phenomena that significantly contribute to action feasibility in a

task-agnostic setting.

During the 55-hour learning-phase, the robot encountered 141 errors. Some of

which we provisioned for, as discussed in Section 6.3.4, however some required reset-

ting the system by returning all blocks to their home positions manually and moving

the robot back to its home position. A block (or more than one) fell off of the table

11 times, requiring us to put the block back on the table for the robot to proceed with

planning. There were 29 perception errors which required full resets. This was due to

either a block being out of view of the cameras, or estimating the block position with

too much error to recover autonomously. Planning failed only 6 times, mostly due to

a block falling too close to the robot’s base for it to plan a collision-free trajectory to

retrieve it. 3 times a block fell so hard that it broke open, requiring reconstruction

and a full reset. A block slipped out of the robot’s gripper 4 times due to the shifted

center of mass or weight of the block, and required a full reset.

6.5 Related Work

A common approach to long-horizon planning problems is to decompose the solution

into high-level reasoning over abstract actions, and lower level reasoning over concrete

actions [68, 89, 101]. Singh et al. [93] performed early work on considering the

feasibility of high-level plans to improve efficiency when planning in high-dimensional

spaces. Recent works have proposed methods that predict feasibility of an action as

a way to reduce the number of calls to expensive solvers and enable more efficient

planning [22, 104]. Our work builds upon this literature by presenting a method to

learn feasibility actively when detailed physical models are not available.

Tasks that involve stacking objects in a Blocks World have a long history in
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artificial intelligence. Early works developed methods to compute the stability of

block placements and construct a target configuration [14, 105]. More recently, com-

puter vision researchers have developed scene understanding algorithms that take

into account known geometries and stability properties of objects within the scene

[37, 47, 87]. Furrer et al. [28] developed a system that can build stacks out of stones

using detailed models of the objects.

Recent work has shown the ability to predict tower stability using deep learning

techniques [35, 40, 63]. However, typically these works have used passively collected

datasets which include orders of magnitude more samples than required in this work

— making them infeasible to actively collect on a real robot. An active learning

approach allows the robot to explore efficiently, and learn a feasibility model under

the real-world noise distribution. In addition, vision-based systems would not be

effective when the state contains non-visual properties, such as the center of mass in

our stacking domain [35, 63].

6.6 Conclusion

We have presented a system which leverages information-theoretic active learning to

acquire an abstract action feasibility model, and shown that incorporating action fea-

sibility into the active learning strategy can dramatically improve sample efficiency.

We deployed our system on a real Franka Emika Panda robot arm in a block stacking

domain, enabling the robot to learn a useful AFM model with only 400 experiments.

In the next chapter we will apply Sequential Actions, as well as an extension, Se-

quential Goals, to a tool use domain. We believe that this self-supervised method of

curious exploration is an exciting direction, as it may someday allow the millions of

robots sitting powered-off in laboratories around the world to make effective use of

their downtime.
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Chapter 7

Action Feasibility Model Learning

with Goals

In this chapter we address limitations of the Sequential Actions strategy for learning

action feasibility models (AFMs).1 In the block stacking domain used in the previous

chapter, the action space was reduced to a single abstract stacking action. During

active learning, candidate plans were generated by randomly rolling out abstract

actions (resulting in 𝑃𝑎𝑐𝑡). This was an effective strategy due to both the number

of actions (one single stacking action) and the ability to sample feasible, or stable,

plans via random rollouts. Figure 7-1 shows the feasibility labels of several hundred

random rollouts of the abstract stacking model. Many of the randomly generated

plans are feasible.

During active learning, the robot is attempting to collect samples which enable it

to accurately determine the boundary between feasible and infeasible action labels.

This requires first acquiring both positive and negative labels so that the robot can

then focus on finding the decision boundary. Since it is fairly easy to randomly sample

a feasible plan in the block stacking domain, 𝑃𝑎𝑐𝑡 was an effective set of candidate

plans for determining both the feasible and infeasible subspaces.

1The material in this chapter is based on:
Caris Moses, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Learning to Plan with Optimistic
Action Models. Workshop on Scaling Robot Learning at IEEE International Conference on Robotics
and Automation (ICRA), 2022. [73]

89



Figure 7-1: Feasible subspace for block stacking. These plots show the feasibility
labels for 500 randomly generated towers under the optimistic block stacking action
model. The optimistic model assumes that any contact between 2 blocks will result
in a stable tower. The towers are generated from 4 blocks where each tower has the
same order of block placements, but varies the position at which each block is placed
in contact with the block below it. The plots show the relative (𝑥, 𝑦) position between
blocks 1 and 2 (left), 2 and 3 (center) and 3 and 4 (right). The plotted points indicate
whether the tower was stable (green) or not (red) after the given block was placed on
top. If the tower fell before the given block could be stacked then it is plotted in red.
As you can, only sampling 500 plans still results in 12 feasible stable towers.

In many manipulation tasks, however, the action space cannot easily be reduced

to a single abstract action. Additionally, the robot may be given optimistic models

for which the subspace of feasible actions is very small and thus difficult to randomly

sample, as shown in the block pushing task in the introduction (Figure 1-1). In tool

use tasks, complex contact and friction constraints lead to very few actions being

successful.

In domains with more complex action spaces, more sophisticated methods of gen-

erating candidate plans is necessary. In this chapter we evaluate an active learning

strategy for learning action feasibility models by generating a rich search space of

plans leveraging both optimism and goal-directed planning. Goal-directed planning

proves to be a more effective method for generating candidate plans to learn from.

We give results in a tool use domain, shown in Figure 7-2, where the robot is tasked

with pushing blocks to goal positions, but is only given optimistic models which do

not take into account all object and environmental properties.
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7.1 Sequential Goals

In many manipulation domains, executing random roll-outs to explore the space of

potential plans may not provide enough coverage to elicit interesting training data.

Random roll-outs of actions often lead to a robot mostly moving around in free

space, and rarely in useful plans such as grasping objects or even making contact

with objects. In Chapter 6 we were able to successfully generate candidate plans

𝑃𝑎𝑐𝑡 with the help of a useful action space abstraction. However, for problems which

cannot be reduced to an abstract action space of a single (e.g. block stacking) action,

more sophisticated plan generation methods are required.

As such, during the learning-phase, the Sequential Goals method uses a different

plan space, 𝑃 = 𝑃𝑔𝑜𝑎𝑙, to calculate the Sequential objective (Equation 6.1). Now we

supply the robot with a space of goal states, 𝒮𝑔𝑜𝑎𝑙 ⊂ 𝒮, which it can sample from and

use within a planner to generate a set of candidate plans for active learning

𝑃𝑔𝑜𝑎𝑙 = {𝑎1:𝑁 |∃𝑠𝑔𝑜𝑎𝑙 ∈ 𝒮𝑔𝑜𝑎𝑙 s.t. 𝑎1:𝑁 = plan(𝑓𝑂, 𝑠0, 𝑠𝑔𝑜𝑎𝑙)}. (7.1)

A set of goal states are sampled, and the optimistic model is used in a planner to

generate plans which provide the search space for the optimization of the Sequential

objective (Equation 6.1).

As with the Sequential Actions objective, the input to bald (Equation 4.4) is an

action, 𝑥 = 𝑎, and the predictions are of individual action feasibility, 𝑦 = 𝜑.

7.2 Tool Use Domain

We give results in a tool use domain, shown in Figure 7-2 inspired by [108] which

was in turn inspired by [100]. The robot is given a tabletop environment with a hook

and two blocks. Parameterized actions allow the robot to pick (Pick) and place

(Place) objects, move while holding an object (MoveHolding), move while not

holding an object (MoveFree), and attempt to manipulate the block with the hook

tool (MoveContact). We define our domain using PDDLStream [33] (described in
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Figure 7-2: Tool use domain. The objects have properties which are unknown to
the robot. The yellow block is heavy and cannot be picked up or grasped outside of
the green circle. The tool must be used to interact with it outside of the green circle.
The blue block is inside of an unmodeled tunnel, and the robot must first use the
tool to push it out of the tunnel before it can be directly manipulated.

Section 4.3). In the following sections we give the predicates (Section 7.2.1), actions

(Section 7.2.2), and goal and initial states (Section 7.2.3) used in our tool use domain.

7.2.1 Predicates

The parameters for our actions and predicates are the following: ?o is an object, ?p

is an object pose, ?g is a grasp, ?q is a robot arm configuration, ?t is a robot arm

trajectory in joint space, ?c is the relative pose between the tool and an object it is

in contact with.

The predicates AtPose, AtConf, and HandEmpty model the changing pose of

objects, configuration of the robot arm, and state of the robot gripper. When the

robot is holding something, the grasp is modeled with AtGrasp. Block, Tool, and

Table simply mean that the given object is a block, tool, or table, respectively. On

indicates that ?o1 is resting stable on top of ?o2. PickKin (PlaceKin) indicates

that object ?o can be picked (placed) from (at) ?p with grasp ?g following trajectory

?t from configuration ?q1 to ?q2.

FreeMotion indicates that trajectory ?t from configuration ?q1 to ?q2, where
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the robot is not holding an object, is collision-free. HoldingMotion indicates that

trajectory ?t from configuration ?q1 to ?q2, where the robot is holding object ?o

with grasp ?g, is collision-free (according to the optimistic model). ContactMotion

is optimistically modeled, and evaluates to True when planning to move object ?o1

from pose ?p1 to ?p2 using tool ?o2 which is grasped by the robot with grasp ?g

as the robot follows trajectory ?t from configuration ?q1 to ?q2. ?c is the contact

configuration between objects ?o1 and ?o2. This does not take into account the

object properties or physical constrains necessary to move two objects together (eg.

hooking or poking), and assumes any contact configuration between objects ?o1 and

?o2 will result in object ?o1 moving to pose ?p2. This assumption is shown in

Figure 7-3.

7.2.2 Action Descriptions

The following action descriptions define the optimistic transition model, 𝑓𝑂. The pick

and place actions are defined as follows:

(:action Pick

:param (?o1 ?p1 ?o2 ?g ?q1 ?q2 ?t)

:pre (and (PickKin ?o1 ?p1 ?g ?q1 ?q2 ?t)

(AtPose ?o1 ?p1)

(AtConf ?q1)

(On ?o1 ?o2)

(HandEmpty))

:effect (and (AtGrasp ?o1 ?g)

(AtConf ?q2)

(not (AtConf ?q1))

(not (AtPose ?o1 ?p1))

(not (HandEmpty))

(not (On ?o1 ?o2)))

(:action Place

:param (?o1 ?p1 ?o2 ?g ?q1 ?q2 ?t)

93



Figure 7-3: Optimistic pushing model. The ContactMotion predicate evaluates
to True for all potential push actions from the initial contact configuration, shown in
the center, to all surrounding goal positions. The motion follows a straight line path
from the initial to goal pose of the block. This ignores the friction conditions which
enable successful pushing. The green region shows roughly where the yellow block
could be successfully pushed.
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:pre (and (PlaceKin ?o1 ?p1 ?g ?q1 ?q2 ?t)

(AtGrasp ?o1 ?g)

(AtConf ?q1))

:effect (and (AtPose ?o1 ?p1)

(HandEmpty)

(AtConf ?q2)

(On ?o1 ?o2)

(not (AtConf ?q1))

(not (AtGrasp ?o1 ?g)))

The different types are move actions are defined as follows:

(:action MoveFree

:param (?q1 ?q2 ?t)

:pre (and (AtConf ?q1)

(FreeMotion ?q1 ?q2 ?t)

(HandEmpty))

:effect (and (AtConf ?q2)

(not (AtConf ?q1)))

(:action MoveHolding

:param (?o ?g ?q1 ?q2 ?t)

:pre (and (HoldingMotion ?o ?g ?q1 ?q2 ?t)

(AtConf ?q1)

(AtGrasp ?o ?g))

:effect (and (AtConf ?q2)

(not (AtConf ?q1)))

(:action MoveContact

:param (?o1 ?c ?o2 ?p1 ?p2 ?g ?q1 ?q2 ?t)

:pre (and (ContactMotion ?o1 ?c ?o2 ?p1 ?p2 ?g ?q1 ?q2 ?t)

(AtConf ?q1)

(AtPose ?o1 ?p1)

(AtGrasp ?o2 ?g)
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(Block ?o1))

:effect (and (AtConf ?q2)

(AtPose ?o1 ?p2)

(not (AtConf ?q1))

(not (AtPose ?o1 ?p1)))

The MoveContact action is optimistic due to its ContactMotion precondition,

in that it ignores the friction cone constraints between the tool and target object

which enable successful pushing. The MoveHolding action is optimistically modeled

because it assumes that once an object is held, it can be moved anywhere. While

this model includes kinematic constraints, it does not account for object properties

which may make moving while holding an object infeasible (e.g. the weight of the

yellow block). Although not demonstrated in our particular domain, the grasp of

the in-hand object and the trajectory followed could also impact the success of this

action. Finally, the Pick action is optimistically modeled because it assumes that

an object can be picked from anywhere which is kinematically within reach. This

fails when the robot attempts to pick up the yellow block outside of the green circle,

and when it attempts to pick the blue block from its initial position inside of the

unmodeled tunnel. We learn action feasibility models 𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡, 𝑓ℎ𝑜𝑙𝑑𝑖𝑛𝑔, and 𝑓𝑝𝑖𝑐𝑘 for

these optimistically modeled actions.

7.2.3 Initial and Goal States

The goal space we give the robot to sample goals from during active learning, 𝒮𝑔𝑜𝑎𝑙,

is (AtPose ?o ?p) where ?o can be either the yellow block or the blue block, and

?p is a pose on the table. For each planning and execution instance the initial state

is the same. The yellow block begins in the same position within the green circle, and

the blue block begins in the tunnel. However the goals states are randomly generated

during learning and evaluation.

The planner is given the following goal predicate

(AtPose GoalObj GoalPose)
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and initial state

((AtPose GoalObj GoalObjInitPose) ∧

(AtPose Tool ToolPose) ∧

(Block YellowBlock) ∧

(Block BlueBlock) ∧

(Tool Tool) ∧

(Table Table)).

GoalObj can be either YellowBlock or BlueBlock.

7.3 Implementation

All experiments were conducted in PyBullet [18]. We discuss the details of the plan-

ner in Section 7.3.1, and the representation of the learned feasibility models in Sec-

tion 7.3.2.

7.3.1 Planning

In many planning problems there are potentially multiple solutions, or plans, which

can achieve a given goal. Most modern planners, including PDDLStream [33] (de-

scribed in Section 4.3.1), are only able to return a single or very few solutions when

given a specific planning problem. Our Sequential Goals method relies on plans

returned from a planner to generate plan space 𝑃𝑔𝑜𝑎𝑙. If we generate plans using

PDDLStream, then for a given goal, 𝑠𝑔𝑜𝑎𝑙 ∈ 𝒮𝑔𝑜𝑎𝑙, the robot will only ever sample

(and execute) a very small subset of the plans which can possibly achieve 𝑠𝑔𝑜𝑎𝑙. Ad-

ditionally, 𝑃𝑔𝑜𝑎𝑙 is generated using the optimistic model. Therefore, not only will the

plans not sufficiently cover the space of plans which could possibly achieve 𝑠𝑔𝑜𝑎𝑙, they

also might not be feasible to execute under the unknown true dynamics.

Take, for example, a goal of getting the blue block to a specific pose on the table

which is outside of the tunnel. Under the optimistic model, the robot believes that

it can directly pick up the blue block from its initial position and move it to the goal

position. However, under the true transition model, the tunnel is blocking the robot
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from doing so. If PDDLStream only ever returns this plan, of directly picking and

placing the blue block, then it will never discover the alternative plan (also a valid

solution under the optimistic model) of first using the tool to push the blue block out

of the tunnel, then directly picking and placing the block at the goal position.

Therefore, we use skeleton-based planning to implement plan when generating

𝑃𝑔𝑜𝑎𝑙 (Equation 7.1) and achieve diverse plans under the optimistic model. Our

skeleton-based planner takes in an optimistic transition model defined by PDDLStream-

style action descriptions, an initial state state and a goal state both represented by

logical predicates, and a plan skeleton. A plan skeleton is a sequence of actions where

some of the action parameters are not yet grounded, meaning they do not have a spe-

cific value. Ungrounded variables begin with # and are grounded at planning time.

In the tool use domain, the following plan skeletons are used to generate plans to

achieve goal states sampled from 𝒮𝑔𝑜𝑎𝑙:

1. MoveFree -> Pick(Tool, ToolPose, Table, #g) ->

MoveHolding(Tool, #g) ->

MoveContact(Tool, #c, GoalObj, GoalObjInitPose, GoalPose, #g)

2. MoveFree ->

Pick(GoalObj, GoalObjInitPose, Table, #g) ->

MoveHolding(GoalObj, #g) ->

Place(GoalObj, GoalPose, Table, #g)

3. MoveFree -> Pick(Tool, ToolPose, Table, #g1) ->

MoveHolding(Tool, #g1) ->

MoveContact(Tool, #c, GoalObj, GoalObjInitPose, #p1, #g1) ->

MoveHolding(Tool, #g1) ->

Place(Tool, #p2, Table, #g1) ->

MoveFree ->

Pick(GoalObj, #p1, Table, #g2) ->

MoveHolding(GoalObj, #g2) ->

Place(GoalObj, GoalPose, Table, #g2)
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Figure 7-4: Simulated Panda executing a grounded plan skeleton. A time-
lapse of the robot executing a grounded plan from Skeleton #3 for the blue block.
Note that this plan is feasible under the true transition function, however when plan-
ning with the optimistic model it is possible (and far more likely) to generate a plan
which is infeasible under the true transition model.

We omit the configuration and trajectory parameters of each action for readability,

but these parameters are also grounded at planning time.

The first skeleton has the robot use the tool to push GoalObj to the GoalPose.

The second has the robot directly pick GoalObj and place it at the GoalPose.

The third skeleton has the robot first use the tool to push GoalObj, then place the

tool, then pick GoalObj and place it at GoalPose A visual of a grounded (feasible)

plan generated from Skeleton #3 is given in Figure 7-4. While we do not directly

use PDDLStream [33] for planning, many of its tools were useful in developing our

skeleton-based planner.

7.3.2 Learning

In order to learn efficiently, we use a low-dimensional state and action representation

as input to the learned feasibility models. The input to 𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡 is the (𝑥, 𝑦) position

of the intended final push pose of the pushed block. The robot receives label 𝜑 = 1

if the block is successfully pushed to the final pose, and 𝜑 = 0 otherwise. The input

to 𝑓ℎ𝑜𝑙𝑑𝑖𝑛𝑔 is the (𝑥, 𝑦) position of the intended final pose of the held block within the

robot’s gripper. The robot receives label 𝜑 = 1 if the block successfully reaches the
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final pose, and 𝜑 = 0 otherwise. The input to 𝑓𝑝𝑖𝑐𝑘 is the (𝑥, 𝑦) position of the picked

block’s initial pose. The robot receives label 𝜑 = 1 if the block is successfully picked

from the table, and 𝜑 = 0 otherwise. Each PDDL action has a corresponding low-level

controller which takes a grounded action and returns the corresponding trajectories

and grasps. In our implementation these actions do not alter the orientations of

the blocks. However, if we added rotations to the robot’s abilities, we would then

augment these learned AFMs to also take in the rotation of the block.

We learn a separate model for each of the blocks. In addition, the contact con-

figuration between the pushed block and the tool, as well as the grasp of the tool

in hand can impact the success of the MoveContact action. As such we learn

a separate model for every combination of block, contact configuration, and grasp

for the MoveContact actions, and just a single model for each block’s Pick and

MoveHolding action.

The feasibility models are each represented by an ensemble of Multi-Layer Per-

ceptions (MLPs). We found that the distribution used to sample initial NN weight

values and the type of activation function in the MLPs greatly impacted the qual-

ity of the ensemble’s predictions. Initially, we used ReLU (Rectified Linear Unit)

activation functions between each linear layer, and the default PyTorch [84] weight

initialization method. In PyTorch, by default, weights are drawn from the distribu-

tion Uniform( −1√
𝑛𝑖𝑛

, 1√
𝑛𝑖𝑛

), where 𝑛𝑖𝑛 is the dimensionality of the input to the linear

layer. In our MLPs the value of 𝑛𝑖𝑛 is either 2 to 48 depending on whether or not

the layer is the initial input to the MLP. While this resulted in models which were

able to accurately predict feasibility, the ensemble’s predictions had high confidence

in areas with no training data. This phenomenon is visualized in Figure 7-5. In order

to accurately represent the distribution 𝑓𝐴(𝑠, 𝑎; Θ), we desire a model which makes

confident predictions near data and is uncertain far from data. This allows the robot

to consider uncertainty when selecting actions to execute.

We found that widening this distribution to Uniform(−1, 1) resulted in initial

models with more diverse predictions which enabled them to converge to very differ-

ent, but accurate, models. This diversity resulted in improved predictions in areas
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with little data. However, we still found uncertainty to be low between datapoints

with the same label. This is also shown in Figure 7-5.

We then explored using a Sigmoid activation function as opposed to a ReLU, and

changing the distribution which weights are initially drawn from to a Normal(0, 𝜎)

distribution. For certain values of 𝜎 this enabled us to get the ensemble to make

predictions with high uncertainty far from data and between datapoints of the same

label, which is desired. The value of 𝜎 impacts how tightly the high confidence area

around datapoints hugs the samples, as is shown in Figure 7-6. In this way it acts as

a tuneable parameter for determining how samples should impact nearby predictions.

We found an ensemble of 20 MLPs to be effective at modeling a distribution over

the predictive space. Using a wider distribution to sample initial weight values is

beneficial for getting diverse models, however it also makes it more challenging for

models to converge to accurate predictions as initial weight values are potentially

very far from 0. To deal with this, we perform up to 5 restarts if the models have

not converged to a training loss of less than 𝜖 after 300 epochs. We used 𝜖 = 1 in our

experiments. We also found that learning improved if instead of selecting the plan in

𝑃𝑔𝑜𝑎𝑙 which maximizes the Sequential objective (Equation 6.1), we randomly sample

from the top 1% of plans in 𝑃𝑔𝑜𝑎𝑙.

7.4 Evaluation

First we discuss the baselines we compare against in Section 7.4.1. Then we evaluate

the learning efficiency of the proposed Sequential Goals method over the previous

Sequential Actions method and compare to other baselines in Section 7.4.2. Finally,

we give results for using the learned actions within a planner in Section 7.4.3.

7.4.1 Baselines

We compare the Sequential methods, Sequential Goals and Sequential Actions, to

random baselines. Random Goals randomly samples from 𝑃𝑔𝑜𝑎𝑙 and Random Actions

randomly samples from 𝑃𝑎𝑐𝑡, where 𝑃𝑎𝑐𝑡 consists of plans generated from random
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(a) 𝑤0 ∼ Uniform( −1√
𝑛𝑖𝑛

, 1√
𝑛𝑖𝑛

), 𝑛𝑖𝑛 ∈ {2, 48} (b) 𝑤0 ∼ Uniform(−1, 1)

Figure 7-5: ReLU with initial weights drawn from a uniform distribution.
These plots show the mean (top) and standard deviation (bottom) predictions from
an ensemble of 20 MLP. Each MLP takes in a 2D input and make predictions ∈
[0, 1]. The points indicate positive (green, label is 1) and negative (red, label is
0) samples in the dataset. These images show predictions from learned models with
initial weights, 𝑤0, drawn from a Uniform distribution. The left is the default PyTorch
weight initialization. On the right we show how widening the uniform distribution
enables more accurate uncertainty predictions far from datapoints. However, we still
desire high uncertainty between datapoints.
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(a) 𝑤0 ∼Normal(0, 1) (b) 𝑤0 ∼Normal(0, 3)

(c) 𝑤0 ∼Normal(0, 5) (d) 𝑤0 ∼Normal(0, 7)

Figure 7-6: Sigmoid with initial weights drawn from a normal distribution.
These plots show the mean (top plots) and standard deviation (bottom plots) pre-
dictions from an ensemble of 20 MLP. Each MLP takes in a 2D input and make
predictions ∈ [0, 1]. The points indicate positive (green, label is 1) and negative (red,
label is 0) samples in the dataset.
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Figure 7-6: (cont.) These images show predictions from learned models with initial
weights, 𝑤0, drawn from a Normal(0, 𝜎) distribution. The value of 𝜎 changes un-
certainty predictions around datapoints. The higher the value, the tighter the low
uncertainty region hugs sampled points.

Figure 7-7: Joint model accuracy for all learned action feasibility models.
Each line consists of 5 runs. The Sequential methods use 20 MLPs in their ensembles,
and the random methods (which do not perform active learning) use a single MLP
to represent each 𝑓𝐴. The 𝑥-axis is all actions executed by the robot including ones
which were not modeled optimistically (e.g. place).

roll-outs of the optimistic transition model,

𝑃𝑎𝑐𝑡 = {𝑎1:𝑁 |∃𝑠0:𝑁 s.t. 𝑠𝑖 = 𝑓𝑂(𝑠𝑖−1, 𝑎𝑖)}.

7.4.2 Learning Efficiency

Figure 7-7 shows the accuracy of the learned feasibility models for all methods. Se-

quential Goals is able to quickly learn the true underlying feasibility of the optimistic

models. The performance of both Sequential Goals and Random Goals shows the

usefulness of 𝒮𝑔𝑜𝑎𝑙 and using goals to generate the optimization search space. The

benefits of using the Sequential objective (Equation 6.1) to actively acquire trajecto-

ries is evidenced by the jump in performance between Sequential Goals and Random
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(a) Sequential Actions (b) Sequential Goals

Figure 7-8: Actions selected by different Sequential strategies. The types of
actions selected by the Sequential Actions strategy are shown on the left, and the
types of actions selected by the Sequential Goals strategy are shown on the right.
These are averaged over 5 runs and standard deviation is also visualized. In the
Sequential Goals plot, the MoveFree and Pick actions perfectly correspond. Each
time the robot picks up an object it must first move through free space.

Goals which randomly samples from 𝑃𝑔𝑜𝑎𝑙. Sequential Actions and Random Actions

perform poorly because the plans in 𝑃𝑎𝑐𝑡 are not goal-directed and thus consist of

many actions which are not useful, such as moving without any objects in hand.

Figure 7-8 shows the different types of actions executed by each sequential method.

As you can see the Sequential Actions strategy ends up executing mostly MoveFree

actions which do not aid in learning the feasibility models.

Figures 7-9, 7-10, 7-11, and 7-12 show both the mean and standard deviation of

the AFM ensemble predictions for each method after a single learning-phase run of

2500 executed actions. They also visualize the samples selected and executed by the

robot. You can see in the figures that the exploration strategy greatly impacts the

quality of the collected data and the resulting learned AFM. We only show figures for

optimistic actions which the robot attempted to execute during the learning-phase.

As such, the number of plots for each method varies. Only the Sequential Goals

method has the robot attempt all optimistic actions (Pick, MoveHolding, and

MoveContact) for both the yellow and blue block.
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(a) Blue Block 𝑓𝑝𝑖𝑐𝑘 (b) Yellow Block 𝑓ℎ𝑜𝑙𝑑𝑖𝑛𝑔 (c) Yellow Block 𝑓𝑝𝑖𝑐𝑘

Figure 7-9: Learned action feasibility model predictions for Random Ac-
tions. These plots show the ensemble predictions of the AFMs learned from a single
run of the Random Actions strategy. The grayscale color indicates the model’s predic-
tion for the given (𝑥, 𝑦) input (see Section 7.3.2 for the model inputs). A value of 1.0
indicates feasible action parameters, and 0.0 indicates infeasible action parameters.
The random methods do not require maintaining a distribution over the parameter
space, so we only use an ensemble consisting of a single model. The plotted points are
the action parameters which were executed by the learning strategy and were found
to be either feasible (green) or infeasible (red). Only the actions that were used to
train the AFMs are visualized. Many other actions (such as MoveFree) were exe-
cuted, but not used to learn an AFM and thus are not visualized here. For the blue
block, the robot attempts to pick it from its initial position, but finds that that action
is infeasible. It never explores plans to first push the blue block out of the tunnel,
therefore no other pick actions are ever successful. For the yellow block the robot is
able to successfully pick it up from its initial position. It is then able to learn that
some MoveHolding actions are feasible while others are not. The Random Actions
strategy leads the robot to execute a plan which involve picking, placing, then pick-
ing up the yellow block again. This is shown by the Pick attempt which does not
correspond to the yellow block’s initial position. No MoveContact actions are ever
attempted due to the difficulty of randomly sampling a successful tool use plan.
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(a) Blue Block 𝑓𝑝𝑖𝑐𝑘 (b) Yellow Block 𝑓ℎ𝑜𝑙𝑑𝑖𝑛𝑔 (c) Yellow Block 𝑓𝑝𝑖𝑐𝑘

Figure 7-10: Learned action feasibility model predictions for Sequential Ac-
tions. These plots show the ensemble predictions of the AFMs learned from a single
run of the Sequential Actions strategy. The grayscale color indicates the model’s
prediction for the given (𝑥, 𝑦) input (see Section 7.3.2 for the model inputs). In the
top mean prediction plots, a value of 1.0 indicates feasible action parameters, and
0.0 indicates infeasible action parameters. In the bottom standard deviation plots
the value indicates the standard deviation of the ensemble’s prediction for a given
AFM input. The plotted points are the action parameters which were executed by
the learning strategy and were found to be either feasible (green) or infeasible (red).
Only the actions that were used to train the AFMs are visualized. Many other actions
(such as MoveFree) were executed, but not used to learn an AFM and thus are not
visualized here. For the blue block, the robot attempts to pick it from its initial posi-
tion, but finds that that action is infeasible. It never explores plans to first push the
blue block out of the tunnel, therefore no other pick actions are ever successful. For
the yellow block the robot is able to successfully pick it up from its initial position.
It is then able to learn that some MoveHolding actions are feasible while others
are not. The Sequential Actions strategy leads the robot to execute a plan which
involve picking, placing, then picking up the yellow block again. This is shown by
the Pick attempts which do not correspond to the yellow block’s initial position. No
MoveContact actions are ever attempted due to the difficulty of randomly sampling
a successful tool use plan when generating 𝑃𝑎𝑐𝑡.
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(a) Blue Block 𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡 (b) Blue Block 𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡 (c) Blue Block 𝑓𝑝𝑖𝑐𝑘

(d) Yellow Block 𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡 (e) Yellow Block 𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡 (f) Yellow Block 𝑓𝑝𝑖𝑐𝑘

(g) Yellow Block 𝑓ℎ𝑜𝑙𝑑𝑖𝑛𝑔

Figure 7-11: Learned action feasibility model predictions for Random Goals.
These plots show the ensemble predictions of the AFMs learned from a single run of
the Random Goals strategy. The grayscale color indicates the model’s prediction
for the given (𝑥, 𝑦) input (see Section 7.3.2 for the model inputs). A value of 1.0
indicates feasible action parameters, and 0.0 indicates infeasible action parameters.
The random methods do not require maintaining a distribution over the parameter
space, so we only use an ensemble consisting of a single model. The plotted points are
the action parameters which were executed by the learning strategy and were found
to be either feasible (green) or infeasible (red). For the 𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡 AFMs we also visualize
the contact configuration between the tool, shown in black, and the block, shown in
its color in its initial position. From this contact configuration the robot attempts to
move it to the different (𝑥, 𝑦) positions in the plot. For the blue block 𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡 AFM
shown in (a), the robot receives a few positive labels near the blue block’s initial
position, but is never able to randomly sample a plan which successfully pushes the
blue block out of the tunnel (which extends to 𝑥 = 0.4).
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Figure 7-11: (cont.) The 𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡 AFM shown in (b) is never feasible due to the tool
colliding with the tunnel before it is ever able to reach the desired contact configura-
tion. The robot attempts to pick the blue block from its initial position, but finds that
that action is infeasible due to the tunnel. Since it is never able to successfully pick
the blue block, no MoveHolding actions are ever attempted with the blue block.
For the yellow block the robot is able to see some positive labels for both 𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡
AFMs shown in (d) and (e). It is also able to successfully pick the yellow block from
its initial position. Finally it executes many MoveHolding actions to learn 𝑓ℎ𝑜𝑙𝑑𝑖𝑛𝑔
for the yellow block.

(a) Blue Block 𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡 (b) Blue Block 𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡 (c) Blue Block 𝑓𝑝𝑖𝑐𝑘

(d) Blue Block 𝑓ℎ𝑜𝑙𝑑𝑖𝑛𝑔 (e) Yellow Block 𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡 (f) Yellow Block 𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡
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(g) Yellow Block 𝑓𝑝𝑖𝑐𝑘 (h) Yellow Block 𝑓ℎ𝑜𝑙𝑑𝑖𝑛𝑔

Figure 7-12: Learned action feasibility model predictions for Sequential
Goals. These plots show the ensemble predictions of the AFMs learned from a
single run of the Sequential Goals strategy. The grayscale color indicates the model’s
prediction for the given (𝑥, 𝑦) input (see Section 7.3.2 for the model inputs). In the
top mean prediction plots, a value of 1.0 indicates feasible action parameters, and
0.0 indicates infeasible action parameters. In the bottom standard deviation plots
the value indicates the standard deviation of the ensemble’s prediction for a given
AFM input. The plotted points are the action parameters which were executed by
the learning strategy and were found to be either feasible (green) or infeasible (red).
For the 𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡 AFMs we also visualize the contact configuration between the tool,
shown in black, and the block, shown in its color in its initial position. From this
contact configuration the robot attempts to move it to the different (𝑥, 𝑦) positions
in the plot. For the blue block 𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡 AFM shown in (a), the robot is able to explore
feasible pushes which move the block out of the tunnel (past 𝑥 = 0.4). Now, when it
attempts picking the blue block, it is occasionally successful. These pick attempts are
shown in (c). The 𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡 AFM shown in (b) is never feasible due to the tool colliding
with the tunnel before it is ever able to reach the desired contact configuration. Once
the robot has successfully picked up the blue block, all attempted MoveHolding
actions are feasible, as shown in (d). For the yellow block the robot is able to see
some positive labels for both 𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡 AFMs shown in (a) and (b). Finally, both 𝑓𝑝𝑖𝑐𝑘
and 𝑓ℎ𝑜𝑙𝑑𝑖𝑛𝑔 learn how the weight of the yellow block impacts the success of the Pick
and MoveHolding actions.
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7.4.3 Plan Success

During the evaluation-phase, the robot finds a plan which achieves a given goal state,

𝑠𝑔𝑜𝑎𝑙 ∈ 𝒮𝑔𝑜𝑎𝑙, according to the following objective

𝑎1:𝑁 = argmax
𝑎1:𝑁∈𝑃𝑔𝑜𝑎𝑙(𝑠𝑔𝑜𝑎𝑙)

pf(𝑠0, 𝑎1:𝑁)1{𝑠=𝑠𝑔𝑜𝑎𝑙}(𝑠𝑁),

where 𝑃𝑔𝑜𝑎𝑙(𝑠𝑔𝑜𝑎𝑙) consists of plans which achieve the goal state using the different

plan skeletons given in Section 7.3.1. To evaluate the usefulness of our learning

AFMs after executing and learning from 2500 actions, each AFM is given a set of 19

feasible goals from 𝒮𝑔𝑜𝑎𝑙. The success rate of planning to achieve these goals is shown

in Table 7.1 for each method. While Sequential Goals does not perform perfectly, it

is still markedly better than the baselines. Many of the learned models for Random

Goals, Sequential Actions, and Random Actions were unable to find the small feasible

subspace for pushing the blue block. This region opens up the robot to being able

to reach a wide range of goal poses for the blue block. This accounts for most of the

difference in performance between Sequential Goals and the baselines. Figure 7-13

shows the 19 goal states, and the success rate for each method. You can see that only

the Sequential Goals method is able to achieve the goals for the blue block.

Method Plan Success
Sequential Goals 0.73 ±0.44
Random Goals 0.48 ±0.50

Sequential Actions 0.48 ±0.50
Random Actions 0.20 ±0.40

Table 7.1: Planning performance of Sequential Goals and all baselines.

7.5 Related Work

Tool use and pushing tasks are frequently used in robotic manipulation research due

to the modeling challenges that they pose. These tasks often require fine-grained

manipulation, complex objects and contact configurations, and dynamic interactions.
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(a) Sequential Goals (b) Random Goals

(c) Sequential Actions (d) Random Actions

Figure 7-13: Goals success rate for all methods. These plots visualize how
successful each method was at planning to achieve the evaluation-phase goals. The
area which the robot is unable to carry the yellow block is shown in green and the
tunnel is shown in gray. The initial block positions are given by the yellow and blue
squares. Each evaluation-phase goal position and block is represented by a circle
where the edge color indicates which block the goal is for, and the interior color of
the circle is the success rate of the robot attempting to achieve the given goal. For
each method we performed 5 runs, and use the resulting learned AFMs to plan to
achieve the given goals. The Sequential Goals method is the only one which is able
to achieve any goals for the blue block. This is due to its ability to learn the feasible
subspace in the optimistic pushing model for the blue block. Once it learns this
feasible subspace, it can find plans which first push the blue block out of the tunnel,
then pick it up and move it elsewhere. The other methods are able to learn the yellow
block AFMs with varying success.
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Methods for learning dynamics models for pushing, poking, ball bouncing [11, 3, 2],

and tool use [108, 44, 100] have been explored. Holladay et al. [44] give a method for

selecting the highly constrained variables needed for accurately using tools such as

screwdrivers, hammers, wrenches, and knives. Toussaint et al. [100] gives a formula-

tion of a TAMP system which is able to solve for dynamic interactions by modeling

the domain in a fully differentiable manner.

7.6 Conclusion

In this section we gave the Sequential Goals strategy which built upon the Sequential

Actions strategies explored in Chapter 6. Sequential Goals provides a way for a robot

to leverage a given space of goal states to plan towards while generating candidate

plans for active learning. By using goal directed plans, as opposed to random actions,

the robot is able to generate a rich search space for learning action feasibility models

efficiently. We demonstrated the Sequential Goals strategy in a tool use domain where

the size of the feasibility subspace within the optimistic action space is very small

and difficult to model accurately.
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Chapter 8

Conclusion

We conclude by discussing problems unaddressed by this thesis in Section 8.1, con-

sidering future work in Section 8.2, and finally summarizing the work presented in

this thesis in Section 8.3.

8.1 Unaddressed Problems

We make various assumptions in our methods for learning task and action models.

Primarily that,

• As humans, we can hand-design optimistic models useful for learning.

The criteria for an optimistic model is that, for a single action step, the true

underlying resulting states (feasible subspace) are a subset of the states the

optimistic model believes the system can reach (optimistic space). This is a

very loose constraint, and the size of the feasible subspace withing the optimistic

space has an impact on the success of the methods outlined in this work. As

action models become more optimistic, the size of the feasible subspace within

the optimistic space grows proportionally smaller, making it more challenging

to randomly sample.

• Learning a classifier on top of optimistic models is sufficient for achiev-

ing evaluation-phase tasks. When the outcome of an optimistically modelled
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action is different from the predicted outcome, our method provides no way of

capturing this outcome to then use later in a planner. For example, if a robot

is attempting a MoveHolding action, but the object falls out of the robot’s

grasp on the way, then our method would simply learn that those specific action

parameters do result in successful MoveHolding actions. This could prevent

the robot from ever learning alternative outcomes which might be useful later.

• Exploring either random optimistic plans, or goal-directed plans for

goals randomly sampled from 𝒮𝑔𝑜𝑎𝑙, is sufficient for discovering feasible

actions. We assume that these strategies will successfully lead the robot to

attempt feasible actions. However, in some cases it may be nearly impossibly

to find feasible action parameters, particularly for longer plans or very optimistic

models.

• It is safe to explore the space of an optimistically defined action

model. Exploring the space of an optimistic model is potentially dangerous.

In our optimistically defined tool use task, the robot collides with the unmod-

elled tunnel when attempting to directly pick up the blue block inside of the

tunnel. While this is a safe plan in simulation, in the real world it could po-

tentially damage the robot. Optimistic exploration in the real world could also

put people in harm’s way.

• As humans, we can hand-design a useful space of goals, 𝒮𝑔𝑜𝑎𝑙, to guide

exploration. To increase the ability of our method to generalize to various

goals, which is the ultimate objective of robotic manipulation, 𝒮𝑔𝑜𝑎𝑙 might be

difficult to specify by-hand in a way that allows the robot to later accomplish

various tasks.

8.2 Future Work

Here we propose future work and potential solutions to the unaddressed problems

previously stated.

116



• As humans, we can hand-design optimistic models useful for learning.

We could explore various strategies for discovering both the best set of optimistic

actions, and the best level of optimism for those actions. The effectiveness of

a chosen optimistic model could be evaluated based on how effective it is at

enabling the robot to achieve evaluation-phase tasks. When optimistic models

are defined using PDDL, preconditions (or features), such as requiring objects

to be in contact, are used to constrain the optimistic actions and ensure that

the robot is able to quickly find feasible actions. However, there are many other

types of actions and features we could bake into our optimistic models. For

example, designing an optimistic action for using a door handle could be done

in many different ways. A robot could explore at the level of small movements

and learn to chain them together for successful door-twisting interactions, or it

could explore the space of longer twisting actions designed by an engineer. All

of these choices greatly impact the success of these learning methods for robotic

manipulation. Automating this process could be an interesting future direction.

• Learning a classifier on top of optimistic models is sufficient for achiev-

ing evaluation-phase tasks. It could be useful to capture the alternative out-

comes of optimistic actions; or actions which do not fall under the capabilities

of the optimistic model. For example, we could cluster the alternative outcomes

to learn additional models which might be useful during the evaluation-phase.

• Exploring either random optimistic plans, or goal-directed plans for

goals randomly sampled from 𝒮𝑔𝑜𝑎𝑙, is sufficient for discovering feasible

actions. To ensure that the robot is able to explore feasible actions in scenar-

ios where that is increasingly difficult, it might be useful to leverage expert

demonstrations [4]. These demonstrations would guide the robot to the feasible

subspace and improve learning efficiency, as the robot would not have to waste

time searching for the feasible subspace. However, expert demonstrations also

impart bias on the learned models, so ways of balancing random exploration

and expert demonstrations might be necessary.
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• It is safe to explore the space of an optimistically defined action

model. Expert demonstrations [4] could also be used to constrain explo-

ration, and prevent the robot from attempting potentially dangerous actions.

Safety could also be addressed through the use of safer control methods, such as

impedance control [66], which allows a robot to quickly react to contact forces,

preventing harm to people or itself. Soft robotics [71] has also been an increas-

ingly active area of research, and addresses safety concerns through the use of

compliant end effectors.

• As humans, we can hand-design a useful space of goals, 𝒮𝑔𝑜𝑎𝑙, to guide

exploration. To alleviate the human bias of goal specification, we could allow

the robot to generate its own useful space of goals from within the state space, to

discover which learning-phase goals enable the best task completion during the

evaluation-phase. It could also determine goal utility based on the information

gained from executing various goal-directed plans.

8.3 Summary

In this thesis we have demonstrated several active learning strategies for learning both

task feasibility models, 𝑅̂𝑡𝑎𝑠𝑘, and action feasibility models, 𝑓𝐴. We have explored

how visual state representations can be useful for generalizing to novel states via a

learned gp prior, enabling quick task reward maximization in a constrained mecha-

nism domain. We investigated active learning in sequential domains by extending the

Bayesian Active Learning by Disagreement [45] strategy. In a block stacking domain

this was performed with the help of a useful action abstraction and the Sequential

Actions method. Finally, we improved upon Sequential Actions with the Sequential

Goals method which enables a robot to generate a richer optimization search space

consisting of goal-directed plans.

The key takeaways from the work in this thesis are that:

• Optimistic models are useful for constraining the exploration space of a robot
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while not eliminating potentially useful actions;

• Action feasibility can be integrated into an active learning objective in order to

ensure that we consider both information gain and a robot’s ability to execute

actions;

• Generating an optimization search space for sequential manipulation problems

is improved by using goal-directed plans.
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