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Abstract 
 

Over the last decade, cybersecurity threats have drastically increased in scale, impact and 
frequency across the United States. As a result, companies and governments require active 
monitoring of their cyber risk. While cyber risk management frameworks such as the 
National Institute of Standards and Technology (NIST) Cybersecurity Framework are 
helpful, in practice this framework is actualized through formalized approaches to cyber risk 
measurements. While the emphasis on entity-level loss is valuable in the continued fight 
against cybercrime and acts of cyberterrorism, the individual-level impact is often neglected, 
to the detriment of everyday users of vulnerable technologies. Negative impacts to 
individuals as an outcome of organizations being hacked are often not captured today, 
thereby artificially excluding costs to individuals from loss calculations. 
  
Through this body of research, we propose a novel approach to size negative externalities in 
relation to cybersecurity incidents. In contrast to prior research, this approach emphasizes the 
harm experienced by individuals rather than financial losses to enterprises. We present a new 
Taxonomy of Individual Cyber Harms, a formalized harm assessment methodology, and a 
cyber risk forecasting model to predict probable estimates of individual harms through a 
series of Monte Carlo Simulations. Through the analysis, we show that not only do harms 
exist for individuals as a result of cyber incidents, but that the extent of this harm is sizeable 
and can be greater than the harm to the entity for specific types of cyber incidents. Our 
results demonstrate that harms to individuals make up 42% of total losses experienced due to 
cyber attacks on US municipalities, or an additional 72% of harms currently captured. From 
a policy perspective, a discussion follows providing recommendations for avenues for 
remedy and redress for individuals who have experienced harm from cyber attacks. 
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Introduction 

Over the last decade, cybersecurity threats have drastically increased in scale, impact 

and frequency across the United States. From well-funded industries such as financial 

services and pharmaceuticals, to resource-constrained local governments, entities are 

experiencing an ongoing onslaught of attempted infiltration by malicious actors, with a 

staggering number resulting in a successful security breach [1]. In the last quarter of 2021 

alone, organizations attempted to deter over 900 attacks per week, a 50% increase over the 

same period in 2020 [2]. These malicious actors are compelled to attack US entities due to a 

variety of drivers, including financial, geopolitical and reputational motives. Threat actors 

often are emboldened by the ease of exploiting an environment given the increase in attack 

surfaces and the exploit toolkits readily available [3], as well as the apparent lack of 

repercussions faced by successful attackers due to insufficient legal safeguards and a highly 

digitized, often anonymized financial system that increases the odds of profiting [4] [5]. 

Even in the face of demonstrable investments in technology controls, and adoption of 

cybersecurity best practices by both public and private organizations, society’s dependency 

on a distributed population of heterogeneous technologies makes effective prevention and 

deterrence of cyber threats difficult to achieve [6]. 

From cyberterrorism to theft of sensitive personal data, cybersecurity risks vary 

widely [7]. To better capture and subsequently manage this diverse set of cyber-related 

consequences, security experts, policy-makers and operational risk stakeholders created 

relevant risk taxonomies, evaluation frameworks and quantification methodologies [8] [9] 

[10]. Although these risk management tools are valuable and leveraged today by many, 
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significant barriers exist to achieving a robust, more unified risk management framework. 

Security complexities, sector nuances, and the diversity of professional backgrounds within 

the security industry all contribute to and perpetuate this issue [11][12]. For example, while 

the White House signed an executive order in 2021 mandating all companies that sell to the 

government follow minimum security requirements, there is no single, mandatory standard 

across private institutions for evaluating and measuring their cybersecurity risk [13] [14]. 

Viewed all together, there is a need to overcome these challenges in order to achieve a more 

targeted, unified, and readily available cyber risk management toolkit, with an emphasis on 

meaningful measurements. 

 
Diversity of Cyber Risk Management Audiences 

While consistent standards, frameworks, and clear risk measurements are important to 

better manage and mitigate the impact of cyber attacks, it is important to acknowledge the 

differences in consequences and potential harm amongst victims – and therefore, a need for 

framework flexibility. For example, nations are concerned about national security and stolen 

intellectual property, while companies are more focused on the impact of an attack to their 

bottom-line [8]. Individuals differ as well, in that they wish to avoid more personal risks, 

such as identity theft and inter-personal reputational harm [7]. Differentiating how different 

categories of cyber attack victims are impacted is essential to ensuring appropriate attack 

mitigation techniques and cybersecurity policies are crafted with real audience needs in 

mind. 

Given these distinctions, most cyber risk frameworks are catered towards enterprises 

and government entities, rather than individuals. Orlando (2021) defines risk management as 
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enabling, “a system to cope with the effects of uncertainty on business activity” and this is 

especially true in the case of cyber incidents [15]. Firms therefore have a greater need to 

utilize formal frameworks and actively monitor cyber risk, while individuals often do not 

prioritize security until after they are affected by a cyber attack [16].  

Research Motivation: Cyber Incident Impacts and Harms  

Honing in on the “impacts” dimension noted above, there is a wealth of research and 

analysis on the measurable outcomes resulting from a security incident to an organization 

rather than an individual. This partially stems from the recent shift in threats from individuals 

or small businesses to Big Game Hunting (BGH), which targets larger, more well-resourced 

organizations, and more recently incorporates extorting victim entities for high sums of 

cryptocurrency [17]. While the emphasis on entity-level loss is valuable in the continued 

fight against cybercrime and acts of cyberterrorism, the individual-level impact is often 

neglected, to the detriment of everyday users of vulnerable technologies. As with 

organizations, individuals may be specifically targeted by malicious threat actors. According 

to the Federal Bureau of Investigation’s (FBI’s) 2021 Internet Crime Report, the top 

categories of crime affecting individuals include romance scams, email compromise, 

cryptocurrency scams, tech support fraud, and ransomware [7].  

However, the data collected for these incidents are often limited to attacks that 

specifically target individuals, not institutions. Negative impacts to individuals as a result of 

organizations being hacked are often not captured today, thereby artificially erasing costs to 

individuals from loss calculations. This particular type of impact – one that results from the 

sale and use of technology products and services provided by an entity to its consumers or 
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residents – can therefore be classified as a negative externality (and one that is poorly 

documented at that) [18]. This erasure minimizes the actual harm experienced by individuals 

as a result of an attack on a company or government. Without the ability to better name, 

acknowledge, and measure notions of loss and harm, there are few avenues for recourse or 

redress. Therefore, we feel an individual’s experience of harm as a result of a cyber attack on 

an entity is an area worth investigating further through additional analysis of cyber incident 

loss data.  

 
Research Area of Focus: Cybersecurity Externalities Affecting Individuals 

The remainder of this work will focus on investigating two main areas, with the first 

serving as the primary research question of interest: 

1. How can we better quantify negative externalities related to cybersecurity incidents, 

emphasizing the harm experienced by everyday individuals rather than the monetary, 

reputational, or proprietary data loss to enterprises? 

2. What frameworks, measurements and policies can be leveraged to better provide 

individuals with mechanisms for effective remedy or redress in the event of a 

cybersecurity incident? 

The first section will provide background regarding current concepts of cyber risk, 

impact, and harm based on existing literature. We then interrogate gaps in the literature in 

relation to acknowledging and sizing negative externalities from cyber attacks, leading to a 

hypothesis that individual harms from cyber attacks exist, are non-negligible in size, and are 

largely ignored by cyber risk quantification efforts. A new Taxonomy of Individual Harms, 

as well as an individual harm assessment methodology are proposed. Leveraging real-world 
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incident loss data for cyber attacks against US cities and towns, we undergo a high-level 

quantification exercise using Monte Carlo simulations, comparing measures of harm when 

loss data for individuals is or is not included. Our results demonstrate that harms to 

individuals make up 42% of total losses experienced due to cyber attacks on US 

municipalities. This is an additional 72% of harms currently captured at the entity-level. 

Given this result, we then explore potential avenues for remedy or redress for individuals in 

the event of a cybersecurity incident beyond mechanisms that exist today, making a 

distinction between solutions that do or do not take into account stakeholder liability or 

precise harm estimates. We close with areas ripe for further data collection and investigation 

that support our proposed framework and quantification methods, highlighting the need for 

better accountability models for both entities and end-users.  
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Chapter 1: Literature Review – Cyber Risk, Impact, and Harms 

To properly understand the value of cyber risk identification and management as a 

means of managing cyber risk-related harms, a review of existing, relevant literature is key. 

We will first provide an overview of how cyber risk is defined, documented, and utilized by 

both organizations and individuals. Then, we will move to a review of current 

conceptualizations of harm in a security context, and discuss how those conceptualizations 

either include or ignore harm to individuals. 

1.1 An Introduction to Cyber Risk Frameworks and Principles 

At the most basic level, cybersecurity risk is defined as the impairment or loss of 

confidentiality, integrity or availability of data, services or assets, otherwise known as the 

“C-I-A Triad” [19]. More detailed risk frameworks and security practices generally build off 

of the C-I-A Triad, leveraging the framework as a sort of foundational truth to describe and 

manage broad risk outcomes [20]. According to the security rating company BitSight, the 

purpose of a cybersecurity framework is to provide, “a common language and set of 

standards for security leaders across countries and industries to understand their security 

postures” [21]. Security rating firm SecurityScorecard notes that these frameworks, “provide 

a set of “best practices” for determining risk tolerance and setting controls” [22]. A 

fundamental concept here is that cyber risk is related to a loss of some sort, either wholly or 

in part, via exposure, destruction, or suppression of data, services or assets. Risk incorporates 

notions of “likelihood” and “impact severity” of an event occurring [23]. In this case, the 

“event” is a cyber attack on a targeted nation-state, organization or individual victim. Cyber 

risk management practices aim to identify and measure the probability and potential 
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ramifications of a cyber attack. A common cyber risk analysis methodology that borrows 

from operational risk evaluation methods is the Risk and Control Self Assessment, or RCSA 

[24] [25]. The RCSA identifies inherent risk levels of business processes without controls in 

place, and outputs the residual risk level based on the measured effectiveness of the 

implemented controls, relying on a risk matrix to score control effectiveness [24] [26]. By 

adhering to cyber risk frameworks, stakeholders can plan and prioritize implementing high-

value preventive, detective, and responsive risk mitigation capabilities and processes to 

protect valuable assets from cyber threats [27]. 

On the surface, cyber risk measurement and management may seem straightforward, 

but the underlying complexities of the security landscape has led to sundry and often 

divergent lenses through which to understand and manage cyber risk. For example, one 

difference among control frameworks is the primary area of focus that informs how notions 

of risk are described and organized. For instance, some cybersecurity risk frameworks are 

organized around security controls, while others focus on cyber threats or vulnerabilities 

[22]. For reference, a security control, as defined by the National Institute of Standards and 

Technology (NIST), is a “safeguard or countermeasure prescribed for an information system 

or an organization designed to protect the confidentiality, integrity, and availability of its 

information and to meet a set of defined security requirements” [28]. Many controls-oriented 

cyber risk frameworks are leveraged to measure the effectiveness of those security controls 

at mitigating cyber threats based on the expected minimum deterrence capabilities. One 

cybersecurity framework centered around control is the Center for Internet Security (CIS) 

Critical Security Controls, which includes controls such as Data Protection, Account 

Management, and Data Recovery [29].  The CIS controls are evaluated using its associated 
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CIS Controls Self Assessment Tool [30]. The results of this type of control assessment effort 

can in turn inform an overarching cyber risk mitigation strategy [22]. For cybersecurity 

threats, one well-known framework is MITRE ATT&CK [31]. MITRE’s ATT&CK 

framework breaks down the tactics, techniques and procedures (TTPs) commonly used by 

malicious threat actors to exploit vulnerable environments. Organizations often leverage 

MITRE to analyze the attack likelihood of the risk equation, as well as assess how well 

controls stack up against particular TTPs [22].  

Another dimension by which cyber risk frameworks differ is the intended audience. 

While many risk frameworks are broad in nature, many are targeted to specific industries and 

purposes. For example, the HITRUST Cybersecurity Framework is meant for healthcare 

organizations to assess their data protection capabilities and meet healthcare-specific 

heightened compliance obligations [32]. The Payment Card Industry Data Security Standards 

(PCI DSS) is meant for financial institutions and lays out minimum security requirements 

related to cardholder data, such as how cardholder data should be stored and encrypted [22]. 

 Although focus areas and sector audiences differ for cyber risk frameworks, there is a 

general trend for cyber risk frameworks to cater to enterprise-level audiences rather than to 

consumers. The Cybersecurity Framework (CSF) is one such framework geared towards 

entities rather than individuals. Developed by NIST, the framework is indeed widely 

leveraged by organizations across dozens of industries today, albeit to different degrees [33]. 

The CSF, “not only helps organizations understand their cybersecurity risks (threats, 

vulnerabilities and impacts), but how to reduce these risks with customized measures” [34]. 

Other well-known entity-level frameworks include the International Organization for 

Standardization (ISO) 2700 series, Control Objectives for Information Technology (COBIT), 
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as well as the aforementioned frameworks above, many of which reference other existing 

standards and risk measurement methodologies [22] [35, p. 101].  

The primacy of enterprise-centered cyber risk frameworks over personal ones is 

apparent and unsurprising given both the need for firms to combat frequent cyber threats and 

the resources available to dedicate to securing an entity’s assets. While the home networks of 

individual people may be targeted by malicious threat actors, the likelihood and scale of the 

threats are far lower than that of an organization or public entity given the potential value of 

a person’s assets in comparison to a business or government organization; this is evidenced 

by the difference in the price of personal cybersecurity insurance versus the cost of insuring 

entire entities [36] [37]. In addition, studies show that individuals often neglect to actively 

assess their own security risks and may not care sufficiently about the issues a cyber attack 

may present [16] [38]. As stated on the Kudelski Security-run blog ModernCISO, “people 

are more likely to hold a grudge with a restaurant they had a bad experience with than the 

credit company who lost enough of their data for a criminal to commit identity theft” [38].  

However, simply because individuals often lack desire and resources to assess their 

own cyber risk does not mean no tools or frameworks exist; a need still remains. Security 

researchers and public interest technologists dedicated to safeguarding consumers have 

attempted to fill this gap [39][40]. For instance, the Electronic Frontier Foundation (EFF) 

developed an approach for creating a personal security plan as part of their Surveillance Self-

Defense Project [41]. EFF provides an inquiry-based process to review the value of one’s 

own personal assets, the protections in place and areas of weakness, as well as the likely 

threats to digital information and associated assets [41]. This process is based on the concept 

of threat modeling, which is one method of assessing risk given adversary intent and 
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personal risk tolerance for loss, exposure, or destruction of assets [42]. Other relevant 

personal security risk assessment frameworks include the Factors Analysis in Information 

Risk (FAIR) Privacy risk framework, which focuses on personal privacy risks to individuals 

rather than entities [40], as well as recommendations by the Federal Trade Commission on 

Personal Information and Data Protections [43].  

 Despite the existence of the few personal cyber risk frameworks noted above, there 

remains a dearth of cyber risk analysis methods dedicated to individuals. Moreover, risk 

frameworks aimed at enterprises ignore risks to individuals that were caused by a successful 

breach of their organization’s network. The assessments focus on risk to the institution 

directly, but avoid evaluating associated risks to their clients, end-users or residents. This is 

problematic because although, as noted above, individuals may not voluntarily focus on their 

own security risks, cyber threats aimed at entities may still result in consequences that 

significantly affect them. To elucidate how these consequences impact society, we review 

conceptions of harm, loss and impact in a cybersecurity context.  

 
1.2 Conceptualization of Harms, Loss and Impact in Cybersecurity 

 From a digital security perspective, notions of “harm”, “loss”, and “impact”, are 

intimately related, although the latter two concepts are more widely used by security 

professionals, especially in reference to risk measurement and quantification efforts. NIST 

defines cyber impact as, “The magnitude of harm that can be expected to result from the 

consequences of unauthorized disclosure of information, unauthorized modification of 

information, unauthorized destruction of information, or loss of information or information 

system availability” [44]. Thus, “harm” can be viewed as the negative consequence itself, 
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whereas “impact” is the relative size of the consequence. A loss is a representation of that 

harm, and can include things like financial or reputational costs [45]. When organizations 

utilize the cyber risk frameworks and associated assessment methodologies detailed above, 

there is an emphasis on the type and size of potential losses to the business. Impact analyses 

help to further size the negative effects resulting from cyber attacks to better inform 

detection, prevention, and recovery strategies.  

Overall, this notion of loss helps risk practitioners, security professionals, business 

stakeholders and individual consumers understand what may be at stake in the event a cyber 

incident occurs. Determining the scale at which this loss can and does occur is important for 

planning purposes and remediation efforts to minimize the magnitude of harm experienced 

[23]. This need to name and size the scale of losses resulting from a security breach has 

resulted in a rich, diverse body of work focused on the systematic quantification of cyber risk 

[10]. Typically, negative outcomes are quantified in monetary losses to institutions, although 

there is inconsistency amongst stakeholders regarding how costs or losses should be defined 

and measured – a fact that often manifests in deviations in the coverage for cyber losses from 

cyber insurance companies [46]. For example, in a 2018 report, The Council of Economic 

Advisors provided cost estimates for cybersecurity events using changes in stock prices post-

event, but highlight increases in company investment in security solutions as well [19]. Other 

common losses include any extortion funds paid to bad actors, the cost of restoring lost data, 

and the overall value of funds directly stolen from an organization [36][45]. To sufficiently 

clarify the significance of and relationship between harm, loss and impact in the context of 

cyber risk, we now provide a brief review of cyber risk measurement methodologies. 
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1.2.1   Cyber Risk Measurement and Data Collection Methods 

There are countless methods of various maturity and purpose that attempt to articulate 

and quantify cyber risk, although there is no single consistently adopted method to 

systematically measure cyber risk and size potential impact to victims of cyber attacks. Ruan 

(2017) highlights measurement limitations, noting that, “qualitative methods lack granularity, 

objectivity and ability to assist in cost–benefit analysis, while quantitative methods lack 

efficiency, statistical robustness and reliable asset valuation” [27]. While this may be the 

case, there are several basic components required for usable assessment and measurement 

methods. First, methods are typically grounded in their framework’s taxonomies. A 

taxonomy is “a comprehensive, common and stable set of […] categories that is used within 

an organization,” and in the context of cyber risk, it “facilitates a comparative analysis of an 

organization’s risk over time” [47]. Taxonomies are typically mutually exclusive and 

collectively exhaustive within a bounded scope, and help standardize the way stakeholders 

discuss and similarly comprehend terms within a security framework [48]. In addition, 

taxonomies provide a meaningful hierarchy to structure complex terms and concepts; the 

NIST CSF, for example, organizes security controls around a framework for stages of a 

cyber incident – Identify, Protect, Detect, Respond and Recover [9]. Similarly, MITRE 

systematizes the ATT&CK framework into high level stages of the Cyber Kill Chain, and 

then breaks down those stages into underlying threat techniques used by malicious threat 

actors [31]. Measurements can then be tied to a given taxonomy, thereby supporting a 

comprehensive and easily digestible method of defining and sizing cyber harms and impact.  

Another common component to assessment and measurement methods is the actual 

types of estimations related to cyber risk. In their book How to Measure Anything in 
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Cybersecurity Risk, Douglas Hubbard and Richard Seiersen define measurement as, “A 

quantitatively expressed reduction of uncertainty based on one or more observations” [23]. 

Some methods rely on translating risk measures to ordinal scales or rankings, such as the 

common 1-5 risk ranking or high-medium-low scale used in RCSA evaluations [23] [24]. 

More precise operational risk models aim to estimate risk exposure and quantify exact 

amounts or ranges of financial loss in dollars based on particular data inputs and assumptions 

related to cyber incidents [49][50]. 

While there is no set standard to measure the impact of cyber incidents, there are 

numerous well-established models that organizations leverage. One systematic, granular 

methodology focused on quantifying financial losses to an organization is the Factor 

Analysis of Information Risk, commonly known as the FAIR Model [51]. FAIR leverages a 

standardized information and operational risk taxonomy to analyze risk scenarios using a 

highly structured data collection and measurement process. The model estimates both loss 

event frequency and magnitude, bucketing loss magnitude into primary and secondary losses 

[24][51]. Primary losses refer to losses that are directly caused by the actions of a hacker, 

such as theft of funds from financial accounts, whereas secondary losses include downstream 

effects such as legal fines [52]. Primary and secondary losses can be referred to as “direct” or 

“indirect” loss in a broader sense beyond the FAIR Model.  

Another widely-adopted cyber risk quantification concept is Value-at-Risk, or VaR, 

which is used for market risk measurements as well [27]. VaR provides a risk estimate for a 

probable range of financial losses to an organization given specific statistical risk parameters 

and security data. The end-product of the analysis typically bubbles up to a single number, 

which can be tracked and compared over time [53]. The FAIR Model is considered to be a 
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specific sub-type of Cyber VaR analysis [51]. Other VaR models include Erola et. al’s 

(2022) Cyber Value at Risk (CVaR) systematic approach to predicting financial losses [54], 

and Orlando’s (2021) proposal to incorporated unexpected loss events into Cyber VaR 

calculations [15]. 

Third party cybersecurity rating companies are major players in the cyber risk 

quantification space as well, providing expertise, frameworks and models that less mature 

companies may lack [55]. Cybersecurity ratings are defined as “a comprehensive and 

dynamic measure of how secure a vendor or product is against malicious attacks, informed 

by data and KPIs,” and rely on a third party view of cyber risk based on externally-collected 

data [56]. Security rating firms include companies like SecurityScorecard, BitSight, and 

UpGuard, each of which leverage their own proprietary methods and models to quantify risk 

into a single numeric or alphanumeric rating [56].  

A key dependency of risk measurement is data access and collection efforts. Models 

rely on data that is often imprecise, non-standard, and difficult to obtain. Company-specific 

cyber incident data are logically quite sparse given their high-risk, low frequency nature [57]. 

Limitations are compounded by the fact that firms often shy away from sharing loss 

information for fear of reputational risk ramifications [58]. This difficulty to obtain 

meaningful risk data has led to numerous mass data collection efforts, with the intent to 

investigate the patterns and extent around attack outcomes in order to prevent, deter and 

respond to cyber incidents. For example, the annual Verizon Data Breach Investigation 

Report provides statistics for over 5,000 confirmed breaches, detailing the number of attacks 

per sector, the types of assets targeted (e.g., bank accounts), and the aggregate dollar loss 

amount to companies by attack type [59]. The annual IBM Data Breach Report also provides 
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aggregate cost metrics and trend analysis given known financial losses to companies directly 

harmed by hackers [60]. The Massachusetts Institute of Technology’s Internet Policy 

Research Initiative (IPRI) collects cyber loss data in relation to failed controls as part of their 

Secure Cyber Risk Aggregation and Measurement (SCRAM) initiative [61]. Real cyber 

incident data is collected from companies and municipalities via a secure multi-party 

computation platform in order to highlight the extent companies are suffering financial losses 

in relation to the maturity of their security environment [62]. Through the author’s work on 

SCRAM as a member of IPRI, the difficulty of collecting and analyzing large quantities of 

cyber incident data to inform meaningful cyber risk measurements became quite evident, and 

helped inform the basis of this research. 

Although extensive efforts are taking place to enhance the measurement of cyber 

risks, especially through the collection of incident loss data, substantial gaps remain. In 

particular, there is limited transparency into, or acknowledgement regarding, what is 

included or excluded from loss and impact analyses, which is an essential aspect of sizing 

harms and accurately estimating losses. Indirect costs are often excluded or hidden, to the 

detriment of potential cyber attack victims [63]. In fact, Deloitte studies estimate that hidden 

costs such as operational disruption or destruction, or the loss of company reputation, 

account for over 95% of overall costs to a business [64].  

One such cost estimate exclusion is the harm to individuals as a result of a cyber 

attack, rather than to an organization’s bottom-line. Both the literature and business practices 

tend to exclude how people are impacted as a result of a cyber breach. In part, this is due to 

the aforementioned prioritization of cyber risk management frameworks for organizations 

rather than consumers due to the real-world need for business or government entities to 
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manage a large set of diverse risks on an ongoing basis [8] [15]. In addition, this scope 

exclusion is a byproduct of the difficulty of associating a negative outcome to a specific 

cyber event. Like many negative externalities, demonstrating cause and effect remains 

challenging, such as when a victim of a data breach cannot prove they will be targeted by 

cybercriminals engaging in identity theft because of the data breach itself [65]. Given this 

exclusion of individuals in many cyber risk analyses, we now delve deeper into the specific 

notion of harm in a cybersecurity context. Up to this point, the terms “loss” and “harm” have 

been largely used interchangeably. In the next section, our goal is to highlight existing bodies 

of work pertaining to cyber harms through both organizational and human-centric lenses, 

showcasing the considerable gap in the literature in both naming and measuring cyber-related 

harms to individuals. 

 
1.2.2   Cybersecurity and Individual Harms 

 At the most fundamental level, harm is defined as “physical or mental damage” [66]. 

In US law, harm is synonymous with “injury”, in the sense that an injury, “is a harm suffered 

by a person due to some act or omission done by another person, and can generally give rise 

to a civil tort claim or a criminal prosecution” [67]. In a more colloquial sense, harm is often 

said to be “experienced,” and therefore more associated with people rather than corporations 

or institutions. This may account for the relative lack of the use of the word “harm” in cyber 

risk management circles, which focus almost exclusively on the probability, size and scope 

of negative ramifications of cyber attacks to organizations [51]. “Loss” is often used in lieu 

of harm in the literature because of the known and measurable monetary implications of a 

cyber attack to a business or entity, although more broadly organizations can be victims of 
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cyber-harms in that the value of an asset, data, or service is reduced in some way via 

destruction, damage or exposure [8][68].  

 In recent years, several bodies of research have attempted to fill the gap of 

articulating the nuances of various cyber harms, moving beyond financial losses to 

organizations. In their paper A Taxonomy of Cyber-Harms: Defining the Impacts of Cyber-

Attacks and Understanding How They Propagate, Agrafiotis et. al. (2018) builds off of 

economics and criminology to establish a taxonomy of cyber-harms for organizations [8]. 

Through this work, the authors define cyber-harm as, “the damage that arises as a direct 

result of an attack conducted wholly or partially via digital infrastructures, and the 

information, devices and software applications that these infrastructures are composed of.” 

[8]. According to their proposed taxonomy, cyber-harms fall into five main buckets: physical 

/ digital harm, economic harm, psychological harm, reputation harm, and social / societal 

harm. Underneath these buckets are distinct sub-types of harm to organizations, such as 

reduced business growth, worry/anxiety from employees, and media scrutiny [8]. Another 

cyber harm taxonomy detailed in Cyber Harm: Concepts, Taxonomy and Measurement 

creates a Cyber Harm Model, inclusive of both a harm taxonomy and cyber risk assessment 

process, for the purpose of evaluating harm at the national rather than organizational level 

[68]. This taxonomy is broader and inclusive of the organizational-level cyber-harm 

taxonomy, and expands the taxonomy to include political/governmental and cultural harms 

as well, breaking down how individual, organizational, and property/infrastructure harms all 

inform national security interests [68]. Both of these taxonomies go beyond financial loss 

and reflect on the need to identify, measure, and mitigate more intangible harms that 

negatively impact society and organizations [8][68].  
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While both of these bodies of work do touch upon cyber harms to people, policy-

makers and business leaders are the intended audiences outside of academia. These 

taxonomies also prioritize attacks aimed at institutions rather than individuals. To explore 

cyber harms more closely tied to victims who are targeted as individual people, we turned to 

the Internet Crime Complaint Center (IC3) Report issued annually by the Federal Bureau of 

Investigation [7]. The IC3 receives complaints reported by victims, identifies and publicizes 

threat trends and patterns, and works on near and longer-term remediation steps on behalf of 

the victim [69]. According to the 2021 report, the top five types of cyber-crime of more than 

550,000 individual complaints were extortion, identity theft, personal data breach, non-

payment/non-delivery and phishing/vishing/smishing/pharming [69]. Throughout the report, 

harm is measured in monetary losses. 

Other areas of recent yet highly informative security harm research intended for 

individual people rather than institutions bring privacy threats and harms into focus. For 

example, Levy and Schneier (2020) detail the nuances of privacy threats in the context of 

intimate relationships, highlighting common threat attributes [39]. The privacy harms 

described in personal abusive or manipulative relationships are often not financial in nature, 

but rather focus on power dynamics and relate to physical, sexual or emotional abuse [39]. 

Citron and Solove (2021) interrogate the history of privacy harms based on existing legal 

precedent, arguing for a better mechanism to address the effects of privacy harms to 

individuals and society [70]. The authors create a novel typology of privacy harms to support 

their goal and include: Physical, Economic, Reputational, Psychological, Autonomy, 

Discrimination, and Relationship Harms [70]. A key driver for recognizing these distinct 

privacy harms is to ensure personal privacy protections can be upheld with violations legally 
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enforced, which is often a challenge given the burden of establishing a direct link between 

privacy infringement occurrences and negative impacts to individuals [70] [71].  

While the limited literature that exists does touch upon cyber harms to organizations 

or harms resulting from attacks targeting individuals, there remains a significant gap when 

accounting for “indirect” costs. Specifically, the harm to individuals as a result of an attack 

on an institution is often either incompletely captured or entirely excluded from cyber risk 

identification and impact measurement methods altogether. For example, in the case of the 

annual FBI IC3 Report, the analysis ignores estimates of the cost to address or remediate the 

actualized harm itself [69]. In the FAIR Model, losses to individuals are pointedly omitted 

from cyber harm quantification efforts unless the loss also impacts the victimized 

organization in some way [72]. This is problematic because the spillover effects to 

individuals due to a company’s vulnerable technology being exploited by hackers can be 

very real and extremely harmful. This is most starkly seen with regard to attacks on critical 

infrastructure. For example, the 2017 NotPetya cyber attack in the Ukraine brought down 

institutions such as banks, utilities and transport. It was estimated that the pharmaceutical 

company Merck lost an estimated $870 million, while FedEx lost $400 million, as part of a 

total $10 billion price tag in total losses [73]. However, aggregated cost estimates and 

assessed damages should not be limited to affected businesses and government entities. 

Notably, Ukrainian residents went without access to financial assets, critical resources like 

electricity, and the freedom to move safely and freely [74]. These are actualized negative 

externalities affecting individuals due to a targeted cyber attack, yet the emphasis on 

articulating risk and sizing harms in the context of institutions masks the true extent of harms 

experienced, as well as the full range of victims.  
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This omission of individual harms from cyber risk frameworks and associated loss 

calculations is a significant issue that requires attention from academia, operational risk 

stakeholders, policy-makers and the cybersecurity community. In light of this, we aim to 

make individual harms resulting from a targeted attack on entities more transparent. Similar 

to the privacy harms typology developed by Citron and Solove [70], our objective is to 

articulate a Taxonomy of Individual Cyber Harms to support the acknowledgement and 

measurement of negative impacts, with the overarching goal of informing a discussion on 

potential redress to victimized individuals. To achieve this goal, we now propose a structured 

approach for articulating and sizing cyber harms to individuals.  
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Chapter 2: Methods for Sizing Individual Cyber Harms  

The creation of a structured approach to categorize and size individual cyber harms 

caused by attacks on entities is a first step to mitigating the effects of these injuries. Without 

recognizing the true size of aggregated risks, preparation and remediation planning for cyber 

attacks will remain insufficient. Ignoring the existence of a cost, or the true extent of a harm 

to individuals does not remove the issue, but rather leaves society worse off and prioritizes 

enterprise-level investments at the expense of implementing policies and acquiring resources 

that could help people in need. To support the assessment of individual cyber harms, we first 

propose a Taxonomy of Individual Cyber Harms, drawing upon the existing literature. We 

then propose two different approaches to estimating the size of cyber harms to individuals. 

 
2.1 Individual Cyber Harms: Proposed Taxonomy 

To help reverse the minimization of cyber incident harms to individuals, we propose a 

Taxonomy of Individual Cyber Harms (“the Taxonomy”). The Taxonomy leverages the 

harms laid out in Citron’s and Solove’s Typology of Privacy Harms [70], as well as 

Agrafiotis et. al.’s organizationally-focused Taxonomy of Cyber-Harms [8], with some 

adjustments. Modifications were made to account for where additional granularity in the 

taxonomy is or is not highly relevant. We therefore consolidated the relevant sub-types of 

Social and Societal Harm in the Taxonomy of Cyber-Harms with Physical or Digital Harm 

into a new category, named “Safety and Security”, and included the Autonomy Harms 

detailed in the Typology of Privacy Harms into this aggregate category as well. We also 

removed discrimination and relationship harms from the Typology of Privacy Harms, given 

their minimal relevance in the context of downwind effects to individuals when entities, 
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specifically, are exploited. With these changes, we bucketed cyber harms to individuals into 

four main categories: 

 
Economic Harms  

This is the direct loss of monetary funds or benefits to an individual, or the theft of sensitive 

information that could provide a malicious actor with future access to said funds or benefits. 

Examples of cyber incidents that could result in economic harms are hacked bank account or 

identity theft as a result of a broader company data breach. Economic harms typically are 

more easily recognized and quantifiable because losses can be measured in dollars. 

 
Safety and Security Harms 

This type of harm refers to the loss of access to or disruption of critical services such as 

Emergency Medical Services, healthcare, public safety, or critical public works. 

Ransomware attacks on public institutions are good examples of incidents that often result in 

safety and security harms to individuals. A ransomware attack on the city of Baltimore in 

2018 left the city without the ability to call 911, resulting in a significant safety risk to 

Baltimore residents in the event of an emergency [75]. 

 
Reputational Harms  

Organizations are usually the focus of reputational harm, typically in reference to brand 

management and the potential loss of customers; this is not the case for this taxonomy [45]. 

Instead, reputational harms to individuals coincide with when sensitive or confidential 

information is released as a result of a cyber attack against an entity. Reputational harm is a 

byproduct of the damage to an individual’s image in society, often resulting in personal or 
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professional fallout. The infamous Ashley Madison hack that exposed millions of cheating 

spouses to their friends, families and communities resulted in notable reputational harm [8]. 

Several politicians were caught up in the scandal, with many resigning [76]. 

 
Psychological Harms 

Psychological harm is the trauma and mental anguish associated with the aftermath of a 

cyber incident, including the inability to trust, paranoia related to technology use, and severe 

anxiety. Some victims of cyber attacks suffer from Post-Traumatic Stress Disorder (PTSD) 

in the aftermath of an incident. Support services that help victims after critical incidents have 

reported an uptick in emotional trauma caused by cyber events and invasions of privacy [77]. 

Psychological harms are understandably difficult to measure given the impact is on a 

person’s well-being rather than a person’s wallet, and hacked companies or cyber risk 

professionals may not have access to information that could take this type of harm into 

account or translate the harm estimates into monetary losses [8]. In extreme cases, as was 

seen in the aftermath of the Ashley Madison hack, individual victims experienced such 

mental anguish that they took their lives [76]. 

 
2.2 Individual Cyber Harms: Measurement Framework 

A main benefit of developing the taxonomy above, beyond acknowledging the existence 

of individual cyber harms caused by cyber attacks on institutions, is the structure the 

taxonomy provides to assess the extent of the harm itself. Leveraging quantitative and 

qualitative metrics can support comprehension and analysis that better inform future harm 

mitigation strategies [68]. To create meaningful metrics in this space, we propose dimensions 
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that aid in the estimation of individual losses laid out in the Taxonomy. We bake in a 

reasonable assumption that there is relationship between specific dimensions of an attack’s 

outcomes, and the extent of harm felt by affected individuals. Based on the type of attack, 

these harm dimensions factor into how significantly or minimally a cyber incident can 

impact individuals; through an economic lens, this can be viewed as estimating a price tag 

for the negative externalities resulting from the technology and services an entity provides to 

consumers and constituents [18].  

Through this assessment framework, we associated each of the Individual Cyber Harms 

with three distinct harm dimensions (“Dimensions”) to help estimate the magnitude of 

individual harms resulting from an attack against an organization: 

 
Individual right to or ownership of data, asset, or service impacted  

In the US legal system, a harm or injury is often associated with an infringement on a right of 

some sort [70]. The American Enterprise Institute, a public policy think tank focused on 

democracy and human rights expounds, “Think of people’s legal rights as forming a bubble 

around them. When a right is invaded, the law recognizes that as harm and offers appropriate 

remedies.” [78] When a company is hacked, data, assets or services may be affected. Under 

current systems, the company rather than the affected customers are taken into account [72]. 

However, there are certain rights individuals have to those affected data, assets or services in 

other, more traditional contexts. Therefore, recognizing the relative level of ownership one 

has over these items based on precedent could help size the harm (although not necessarily 

take into account the liability piece – more on that later). For instance, we have a strong, 

unambiguous individual right to keep our social security number private, outside of 
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interactions with specific, mostly government-run services, and to maintain that a social 

security number is for personal use only [79]. In contrast, the right for a parent’s child to 

attend school and access education uninterrupted is a bit more nebulous. In the US, while 

there is a general belief for and investment in the right to access free education, there is no 

explicit guarantee codified at the federal level [80]. Therefore, if a school is shut down as a 

result of a security incident, the harm estimated may be considered smaller in the context of 

individual rights. This dimension can also inform post-incident remedy to victims given its 

somewhat more legally-grounded considerations. 

 
Irreplaceability of data, asset or service impacted 

As a second dimension, the inability to easily substitute the data or asset in the event of an 

attack influences the amount of harm experienced by an individual. For example, one reason 

why identity theft can take 100-200 hours over six months to remediate on average is 

because some of the data is not replaceable, meaning once the information is compromised 

only risk-mitigating protections can be put in place [81]. The lasting harm or the loss 

experienced through time to remediate is therefore highly associated with the irreplaceable 

nature of that data. In another example, journalist Mat Honan was hacked in 2012 due to 

Apple and Amazon security flaws [82]. Photos of his child as a baby were erased, something 

that was of immense value to the victim and cannot be replaced  [83]. In contrast, a 

compromised credit card number is highly substitutable since the victim can often simply use 

another one, and be issued a new number with relative ease by the issuing bank. Inability to 

access credit, which would be the main economic harm, may not occur. 
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Permanence of impact 

The third harm dimension, permanence of impact, refers to the length of time an individual is 

affected by the attack. The longer a victim is impacted, the greater the potential harm. This 

concept is not dissimilar to long tail costs experienced by firms in the wake of a cyber attack; 

IBM’s 2021 Cost of a Data Breach Report shows that, on average, 16% of an organization’s 

total costs caused by a data breach occur two years or more after the attack took place [60]. 

For individuals, permanence of impact could be high for identity theft that goes unresolved, 

or if critical care is not received due to a cyber incident bringing down a hospital’s network.  

Along with these three harm dimensions, we included one additional “weight factor” 

that could amplify the extent to which these dimensions play a role in harm outcomes: 

 
Level of interconnectivity of affected data, asset or service 

“Interconnectivity” refers to technology dependencies or credential re-use. For companies, 

one reason why there is such a degree of worry about the ease of lateral movement on a flat 

network is that once a malicious actor gains access to one asset or area of the network, there 

is risk of movement to other, often more sensitive assets [84]. A high level of 

interconnectivity is also the culprit for supply chain attacks, as was seen in the 2020 

SolarWinds hack, where over 100 enterprise customers were affected by a singular point of 

failure in the SolarWinds software update code [85]. This logic for enterprises can be 

leveraged for individuals as well. An email compromise resulting from a broader cyber 

incident likely affects the confidentiality and accessibility to other important personal 

accounts; in the Mat Honan case, his compromised email account gave the attacker the 

opportunity to access his Twitter and Apple accounts as well [83]. Stolen credentials also 
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may result in additional attacks if those credentials are reused, or are common enough to be 

affected by attacks that leverage credential stuffing techniques [86].  

By leveraging the proposed Taxonomy of Individual Cyber Harms and the associated 

Dimensions, we aim to provide a framework and methods by which individual harms 

resulting from cyber attacks on entities can be identified, assessed and measured. Through 

this work, we can then help inform ways to reduce the unaddressed cyber harms experienced 

by people. To demonstrate the value of this measurement framework, we conducted an 

exercise to assess and size individual harms of individuals. In the next section, we lay out the 

assessment methodology to size individual cyber harms before delving into an analysis using 

real-world cyber incident data.  

 

2.3 Proposed Assessment and Harm Sizing Methods 

The purpose of this section is to define a step-by-step methodology for quantifying 

measures of individual impact not captured today by organizational-level loss data. 

Measuring cyber loss data to inform overall cyber risk and impact is a complex task, partially 

due to the sparsity of incident datasets [25]. The general practice of measuring low-

frequency, high-risk events such accidents (e.g., a plane crash), or in this case cyber 

incidents, comes with significant limitations regarding how broadly one can generalize and 

apply the outcomes of a limited set of cyber attacks to risk measures [57]. To combat this 

gap, we look to accurately simulate cyber attacks by leveraging the attack and harm details in 

our data. We estimate the distribution of frequency of cyber incidents per year, as well as the 

size of entity-level and individual-level harms annually for a cyber insurance pool with a 

similar risk profile.  
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 One sensible way of measuring this uncertain risk is through a series of random 

samplings to generate possible outcomes based on known data and reasonable assumptions. 

This is best accomplished through a series of Monte Carlo simulations. A Monte Carlo 

Simulation is defined as, “a model used to predict the probability of different outcomes when 

the intervention of random variables is present”, and thereby “help to explain the impact of 

risk and uncertainty” [87].  

 
Analysis Details 

This analysis is grounded in the Taxonomy of Individual Cyber Harms and associated 

Dimensions described above. To conduct this analysis, we use cyber incident insurance 

claims data submitted by municipalities. We believe using municipalities as our basis for 

analysis comes with specific advantages. First, municipalities often have a publicly available 

budget for reference to help value losses. Second, cities and towns provide a diverse array of 

essential services to their residents, which means there is a higher likelihood that more harm 

types will be included within the dataset. Lastly, the authors are interested in analyzing a 

resource-constrained environment, so subsequent discussion regarding redress are based on 

realistic assumptions. 

First, we bucketed incident data into the harm categories defined above based on the 

descriptions provided in the data: Economic, Safety and Security, Reputational, and 

Psychological. There is one additional category (“Uncategorized”) for incidents that do not 

have an adequate amount of data to move forward in the analysis. Then, we further break 

down each harm type into Incident Outcomes, such as identity theft, or system shutdown due 
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to ransomware. This grouping supports additional analysis, comparing individual and entity-

level harms systematically per capita.  

Then, we ran a Monte Carlo experiment that simulates the number of successful attacks 

per year, sampling from a Poisson distribution based on the percentages of attacks bucketed 

into each of the Taxonomy categories. The Poisson distribution shows, “the number of 

events occurring in a given time period, given the average number of times the event occurs 

over that time period” [88]. This distribution is particularly helpful for assessing the 

probability of randomly-occurring, discrete, independent events that can be associated with a 

set rate of occurrence [89]. The rate of events multiplied by a set time period is called a rate-

parameter, typically represented by lambda l [89]. For reference, the standard equation for a 

Poisson distribution [89] is: 

!(#	events	in	an	interval) 	= 	 0!" 	λ
#

#! 

The summary output compares individual-level harms that are not captured today to 

entity-level costs. To achieve this, we produce a set of distributions, depicted visually via 

histograms and cumulative plots. The histograms align with the harm types within the 

Taxonomy. The outputs include: 

• Distributions of the incurred losses to the city or town, by cyber harm type 

• Distributions of the harm to individuals, by cyber harm type 

To size the harm to individuals noted in the second bullet above, two methodologies are 

explored: Per Capita Bottoms-Up Measures, and Case Study-Based Measures.  
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2.2.1 Per Capita Bottoms-Up Measures 

This methodology recognizes that the relationship between incurred losses at the 

entity-level and the harm experienced by individuals in the event of a cyber attack can be 

tenuous. For example, a police station may only have ten computers and two servers, and 

therefore the direct cost of remediation to the municipality may remain small. However, the 

harm experienced by a resident in danger, with no ability to contact the police during a time 

of need, could have little known relationship to the cost incurred. To combat this 

discrepancy, we leverage a new methodology that bakes in a per capita view of losses based 

on types of attacks, termed Per Capita Bottoms-Up Measures. The attack types, referred to as 

Incident Outcomes, underly the Taxonomy of Individual Cyber Harms. The ultimate outputs 

of this method is a formulaic evaluation of individual-level harms that can be compared to 

entity-level losses.  

To use this method, each individual harm dimension should be evaluated via an 

inquiry-based method that serve as options to help quantify the loss for each incident. For 

example, if a cyber incident puts an individual’s life in danger, the Value of a Statistical Life 

(VoSL) may be used to help quantify potential losses; currently, VoSL is approximately $10 

million [90]. This would fall under the Irreplaceability dimension, as shown in the table 

below. 
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 Inquiry Process Metrics 

Right/Ownership • What is the perceived value of the 
affected asset or record? 

Market value, black market 
value 

Irreplaceability 
• What is the level of ease to use or 

access alternatives? 
• How many alternatives exist? 

Willingness-to-Pay (WTP), 
Value of Life (VoSL) 

Permanence 
• Can the effects of the attack be fully 

remediated? 
• What is the opportunity cost? 

Mean Time to Recover (MTTR) 

Interconnectivity • How many dependencies are there 
on the affected asset? 

# of associated accounts or 
assets 

Table 1: Inquiry Process of sizing individual harms 

 
The metrics are then translated into set parameters and incorporated into a standard formula 

for individual harms, and shown below: 

!"#$%$#&'(	*+,-.	/'.0 = 	∑ (4! ∗ 6! ∗ %!)"
!#$
898&(':$9"  

 
Variable Description Unit 

n Number of different Incident Outcomes that impact the harm to an 
individual - 

f   Frequency of event occurrence Metric per interval 
of time 

p 
Actualized harm, serving as a weight factor on the value of 
affected assets. This is dialed up or down depending on the 
assumed degree of actual harm to individuals. 

Typically a 
percentage 

v Full value of potential harm based on the affected assets US Dollars 

population Scope of individuals affected by an attack Persons 

Table 2: Description of variables for Individual Cyber Harm formula 

 

As an example, for a ransomware attack the formula could be used in the following manner 

after following the inquiry process: 

• f is the number of days of a ransomware attack per year 
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• p is the assumed drop in productivity experienced as a result of systems shutting 

down 

• v is the potential greatest value of harm – i.e., the value of the impacted assets 

 
The results from the series of inquiries and input parameters for individual cyber harms are 

subsequently incorporated into the Monte Carlo model. 

 
2.2.2 Case Study-Based Measures 

In this alternative harm sizing exercise, it is assumed that the loss experienced by 

individuals is correlated to the loss incurred at the entity-level – e.g., an individual harm has 

a direct relationship to the organizational-level costs or the size of the breach. This is often 

true for data breaches, where the number of records leaked can be correlated with the number 

of customers affected (i.e., the individual) [60]. 

 This method is called “Case Study-Based” because it is dependent on the 

documentation of losses for cyber incident case studies for both organizations and individual 

victims, and then determining a quantifiable relationship between the two via the harm 

dimensions. Note that this dataset of case studies and coded relationships between entity and 

individual-level harms does not exist, and would need to be created in order to leverage this 

method. That being said, we still find value in describing this harm quantification method, 

and running through the exercise with dummy data. 

Through the collection of historical cyber incident data, this method analyzes the 

relationship between different types of Incident Outcomes, as mentioned previously (e.g., 

identity theft, breach of a hospital’s Electronic Healthcare Records), the size of the loss to the 
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entity (e.g., dollars lost, number of records exposed), and the impact to individuals via the 

dimensions of individual harm and the weight factor (Right/Ownership, Irreplaceability, 

Permanence, Interconnectivity).  

Incident Outcomes have different associations with Rights/Ownership, 

Irreplaceability and Permanence harm dimensions, and the weight of each of these 

dimensions in relation to the total cost to an organization therefore vary. For example, the 

Economic harm associated with credit card number theft rates is quite low on the 

Irreplaceability dimension because credit card numbers can easily be reissued. Therefore, the 

individual-level harm incurred as a percentage of total entity-level harm incurred would be 

low as well. Below is a table representation of the Case Study-Based Correlated Measures: 

 Individual Cyber Harm Dimensions 

Harm Type Right/ Ownership 
R 

Irreplaceability 
I 

Permanence 
P 

Economical 
Incident Outcome 1 
Incident Outcome 2 

… 

High % of entity-
level harm incurred 

= R1 

Low % of entity-level 
harm incurred = I1 

Low % of entity-level 
harm incurred = P1 

Safety and Security R2 I2 P2 

Reputational R3 I3 P3 

Psychological R4 I4 P4 

Table 3: Bottoms-up Individual Harm Calculation Methodology Options 

 
For a broader analysis, a Monte Carlo Simulation can then be run for cyber incidents per 

year, with each simulation N producing the following, with c denoting the weight of 

interconnectivity: 

 
3	 = 	4#5657	80908	8:;;	6#<=>0?	 ∗ 	 ((A$ 	+ 	 C$ 	+ 	!$	) 	∗ 	<)	 
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While this method has its advantages in principle, in practice the historical case study 

data is currently unknown. Although the required data is not available today, we feel that the 

proposed model is valuable enough to demonstrate use with synthetic data in the next 

section, with the hope that future data collections efforts will make the missing relationships 

available. The modularity and transparency of the model allows for incremental replacements 

of the dummy distributions. 
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Chapter 3: Applied Methods: Results and Analysis 

3.1 Applied Methods Overview 

Our analysis is scoped to focus on cyber incident insurance claims submitted by 

municipalities. In order to analyze this dataset, the author agreed with the relevant insurance 

stakeholders to keep the specifics around the insurance claims confidential in order to avoid 

additional risk exposure on the part of previously attacked cities and towns. Therefore, 

overarching details relevant to the analysis will be provided, but the locations, names and 

sizes of the municipalities included within the dataset will remain concealed. Specifically, we 

leverage claims data for municipalities located in the United States for incidents taking place 

between July 1, 2018 and January 31, 2022. These municipalities make up one distinct 

insurance pool, with cities with populations above 115,000 excluded by the insurance 

company to better balance the risk profile of the pool. There are 49 claims total, with 

coverage extended to 250-500 cities and towns. 

Each of the 49 claims are categorized within the bounds of the Taxonomy of Individual 

Cyber Harms: Economic, Safety and Security, Reputational, and Psychological. This 

categorization is derived from the anonymized, general loss description provided with each 

insurance claim. A fifth bucket, “Uncategorized”, is included as well for incident claims that 

do not provide adequate information within the loss description to be appropriately 

categorized and leveraged for analysis. While we acknowledge that each cyber incident can 

and likely is associated with multiples types of harm from the Taxonomy, for ease of analysis 

we bake in a strict one-to-one relationship between each individual incident in the claims 
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data and the categorization within the Taxonomy. This limitation can be reviewed and 

addressed in future research efforts. 

Given the focus on municipalities, we also highlight whether there was a public service 

impacted by the cyber incident. Public services include emergency services, school systems, 

and other fundamental public works typically provided by a city or town, and funded by 

taxpayers. Based on the incident description provided for each insurance claim, we further 

break down and group the data into Incident Outcomes, such as “Endpoint data destruction 

requiring recovery” and “Unrecovered stolen funds”. 

We estimated the dollar value of individual harm associated with each incident and 

incorporated it within the dataset. The loss is provided in per capita terms, serving as an 

apples-to-apples comparative analysis between entity-level and individual harms caused by a 

cyber attack targeting a municipality. The estimated dollar value of individual harm follows 

the Per Capita Bottoms-Up Methodology detailed in the previous section, meaning each 

estimate is grounded in the detail provided in the incident description and leverages the 

Individual Cyber Harm equation. The table below provides high-level details for how 

individual cyber harm calculations were determined for each loss event given the nature of 

the attack described, with particular attention given to the Incident Outcome. Note that these 

calculations assume a “moderate” scenario for the percentage of potential harm actualized, 

and these figures can be dialed up or down in magnitude depending on ingoing assumptions. 

A more granular view of the basis for the loss calculations, including source information, can 

be found in Appendix A. 
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Loss Calculations: Safety & Security Harms to Individuals 

Table 4: Bottoms-up Individual Harm Calculations by Incident Outcome for Safety & Security Harms 
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Loss Calculations: Economic Harms to Individuals 

Table 5: Bottoms-up Individual Harm Calculations by Incident Outcome for Economic Harms 
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 Loss Calculations: Reputational Harms to Individuals 

Table 6: Bottoms-up Individual Harm Calculations by Incident Outcome for Reputational Harms 

Loss Calculations: Psychological Harms to Individuals 

Table 7: Bottoms-up Individual Harm Calculations by Incident Outcome for Psychological Harms 
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As previously highlighted in the Methodology section, cyber incident data is notably 

sparse [25]. The 3.5 years’ worth of cyber incident data only includes 49 claims, and 

therefore conclusions derived from this data requires additional efforts to better ground and 

analyze both entity and individual-level harms. By expanding the risk profile of the 49 

claims to thousands of incidents via simulated data, we can forecast future loss ranges and 

distributions for municipalities; this information can be generalized to conduct risk-based 

cyber analysis and decision-making. This scenario-generation is produced via a series of 

Monte Carlo samplings [87]. The annual rates of different types of cyber incidents and loss 

amount of associated harms drive the rate variable of the Poisson distribution underlying the 

Monte Carlo models. We can then assess the size and shape of the distributions to inform 

perspectives on the extent of entity versus individual-level cyber harms on a per capita basis, 

providing visibility into losses missing from standard risk calculations. For reference, the 

simulation code, implemented in Python, can be found in the Appendix B. 

3.2 Summary of Entity-Level Harms 

First, we reviewed the quantity of incidents that fell into each Harm Type. Economic 

harms were by far the most prevalent, responsible for about 70% of incidents included within 

the dataset. Of the 35 incidents categorized under Economic harms, 14 involved monetary 

fraud. Several claims indicated fraudulent accounts or redirected direct deposits for 

municipal employees. Other notable incidents associated with Economic harms involved 

phishing and ransomware (10% each). In addition, 12% of incidents were categorized as 

causing Safety and Security harms. These harms were often associated with public services 

such as police stations, fire stations, and sewage treatment. Both Psychological and 
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Reputational harms were not common in the dataset, with only 2 instances and 1 instance, 

respectively. While these two types of harms may indeed occur less frequently than others, 

this sparsity of data also speaks to the difficulty of identifying and quantifying less tangible 

harms. Cyber insurance coverage typically aligns with monetary losses, and therefore the 

descriptions provided by the claims may be biased towards including language that focuses 

on Economic rather than Psychological or Reputational harm. Below is a summary of the 

dataset organized via the Taxonomy of Individual Cyber Harms: 

Taxonomy Incident Count Percentage of Total 
Economic 35 71% 
Safety & Security 6 12% 
Uncategorized 5 10% 
Reputational 2 4% 
Psychological 1 2% 
Total 49 100% 

Table 8: Incident Frequency by Harm Type 

 
The entity-level losses incurred in dollars by the municipalities were more weighted towards 

Economic harms, which are responsible for 84% of total costs over the 3.5 years in in the 

dataset. Again, this is understandable – a city or town would be more likely to submit a cyber 

insurance claim in the event of an incident that generates financial loss. 

 
Harm Taxonomy         Entity-Level Loss ($) Percentage of Total 
Economic $1,378,692 84% 
Psychological $169,006 10% 
Safety & Security $95,209 6% 
Reputational $455 0% 
Uncategorized $0 0% 
Total $1,643,361  100% 

Table 9: Entity-Level Loss by Harm Type 
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We drilled down a level further to gain a better understanding of the types of services 

impacted by cyber attacks given particular Incident Outcomes. Of the 49 claims, 29% were 

due to a general breach of a municipality’s network and 12% involved identity theft of 

municipality employees. Attacks against police stations and schools accounted for 8% of the 

dataset each, with singular incidents against a fire station, library and sewage station pump 

present as well. Overall, the total cost incurred by all municipalities over 3.5 years is only 

~$1.6M for the entire insurance pool. However, there is significant individual-level harm 

excluded from consideration, thereby minimizing both the amount of risk and the associated 

impact of cyber attacks on US municipalities and its residents. This speaks to the overall 

value of undergoing an additional exercise to assess personal harms in the form of losses at 

the individual level.  
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Total Claims by Harm Type & Incident Outcome Incident Count Percentage of Total 
Economic 35 71% 
General breach of municipality network 14 29% 
Municipality employee identity theft 6 12% 
Not applicable to individuals 5 10% 
Endpoint data destruction, requiring recovery 3 6% 
Ransomware Attack shut down systems 3 6% 
Unrecovered stolen funds 2 4% 
Data breach, exposed PII 1 2% 
Financial administration shut down 1 2% 
Safety & Security 6 12% 
Police Station – All technology down, ex. 911 2 4% 
Police Station – 911 system down 1 2% 
Sewage pumps station damage 1 2% 
General breach of municipality network 1 2% 
Fire Department – All technology down 0.25 1% 
Fire Department – EMS + Hazardous Conditions 0.25 1% 
Fire Department – Fire-related injury 0.25 1% 
Fire Department – Fire-related death 0.25 1% 
Uncategorized 5 10% 
Uncategorized 5 10% 
Psychological 2 4% 
Impact to children’s access to education 2 4% 
Reputational 1 2% 
Sensitive information exposed regarding criminal 
behavior 

1 2% 

Total 49 100% 
Table 10: Incident frequency by Harm Type and Incident Outcome 
Note: Incidents that included more than one incident outcome were divided evenly amongst those outcomes in the 
incident count  
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Total Entity-Level Loss by Harm Type & 
Incident Outcome 

Entity-Level Loss ($) Percentage of Total 

Economic $1,378,692 84% 
General breach of municipality network $590,722 36% 
Endpoint data destruction, requiring recovery $508,761 31% 
Ransomware Attack shutdown systems $201,790 12% 
Not applicable to individuals $29,637 2% 
Financial administration shut down $25,000 2% 
Municipality employee identity theft $13,415 1% 
Unrecovered stolen funds $9,368 1% 
Data breach, exposed PII $0 0% 

Psychological $169,006 10% 
Impact to children’s access to education $169,006 10% 

Safety & Security $95,209 6% 
Police Station – All technology down, ex. 911 $78,432 5% 
General breach of municipality network $10,009 1% 
Police Station – 911 system down $5,783 0% 
Fire Department – All technology down $246 0% 
Fire Department – EMS + Hazardous Conditions $246 0% 
Fire Department – Fire-related death $246 0% 
Fire Department – Fire-related injury $246 0% 
Sewage pumps station damage $0 0% 

Reputational $455 0% 
Sensitive information exposed regarding criminal   
behavior $455 0% 

Total $1,643,361 100% 
Table 11: Total Entity-Level Losses across municipality dataset 
Note: Incidents that included more than one incident outcome were divided evenly amongst those outcomes in the 
Entity-Level Loss column.  
 

Public Service Impacted Incident Count Percentage of Total 
None 38 77.6% 
Police 4 8.2% 
School 4 8.2% 
Fire Station 1 2.0% 
Library 1 2.0% 
Sewer 1 2.0% 
Total 49 100.0% 

Table 12: Count of Public Services Impacted by a Cyber Incident 
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Public Service Impacted Entity-Level Loss ($) Percentage of Total 
None $1,330,735 78% 
School $218,025 8% 
Police $84,669 8% 
Library $8,947 2% 
Fire Station $986 2% 
Sewer - 2% 
Total $1,643,361  100% 

Table 13: Entity-Level Loss of Public Services Impacted by a Cyber Incident 

 

3.3 Sizing of Individual-Level Harms 

3.3.1 Per Capita Bottoms-Up Measures: Results 
 

Based on the relevant literature and current risk calculation methodologies at the entity-

level, we hypothesize that individual-level harms are not adequately captured in standard 

cyber incident loss estimates. We reviewed how sizeable individual-level harms are often 

missing from risk and impact analyses, thereby making it difficult for an individual to obtain 

redress or remedy for harms experienced. The objective of this exercise is to explore this 

hypothesis, demonstrating both the presence of, and the extent to which, individual-level 

harms are missing from the loss calculations for incidents targeted at entities. Note that while 

not all individual-level harms result in a dollar value of loss, the loss calculations are 

translated into dollar values in order to provide a basis for a like-for-like comparison between 

entity-level and aggregated individual-level losses. 

Through our individual-level harm calculations leveraging the methodologies described 

in Section 3.1, our analysis highlights that the harm to people caused by cyber attacks 

targeting municipalities can be a significant ratio of entity-level harms for certain Incident 

Outcomes. First, we reviewed the total estimated Individual-Level losses by Harm Type and 

underlying Incident Outcome. In total, an additional $1.18M in harms to individuals were 
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captured via our estimations across the cyber insurance claims dataset. Economic harms are 

responsible for 46% of these losses, with ransomware accounting for a majority of the costs. 

Safety and Security harms make up 36% of total harms to individuals, with attacks affecting 

police stations resulting in almost all of the costs to individuals for this Harm Type. 

Psychological harms, which included two instances of attacks on schools, account for 18% of 

the losses, while Reputational harms remain below 1% of losses. 

Total Individual-Level Loss by Harm Type & 
Incident Outcome 

Individual-Level 
Loss ($) 

Percentage of Total 

Economic $543,719 46% 
Ransomware Attack shut down systems $387,728 33% 
Unrecovered stolen funds $82,315 7% 
Municipality employee identity theft $35,100 3% 
General breach of municipality network $24,894 2% 
Data breach, exposed PII $8,621 1% 
Endpoint data destruction, requiring recovery $5,000 0% 
Financial administration shut down $61 0% 
Not applicable to individuals $0 0% 

Safety & Security $422,002 36% 
Police Station – 911 system down $345,502 29% 
Police Station – All technology down, ex. 911 $61,126 5% 
Sewage pumps station damage $10,000 1% 
Fire Department – All technology down $4,438 0% 
General breach of municipality network $579 0% 
Fire Department – EMS + Hazardous Conditions $354 0% 
Fire Department – Fire-related injury $1 0% 
Fire Department – Fire-related death $0 0% 

Psychological $218,493 18% 
Impact to children’s access to education $218,493 18% 

Reputational $591 0% 
Sensitive information exposed regarding criminal  
behavior $591 0% 

Total $1,184,805 100% 
Table 14: Total Individual-Level losses across municipality dataset 
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To gain a better understanding of harms for each individual rather than in the aggregate, 

we then assessed per capita individual harms in comparison to entity-level harms. This 

exercise was conducted with the understanding that risk is being spread equally across a 

municipality’s population; however, the author acknowledges that many of the losses 

described, such as ones that impact a children’s access to education, may not be evenly 

dispersed across an entire city or town’s population under real-world conditions. 

Each cyber incident insurance claim is grouped by Incident Outcome and Harm Type, 

expressing the average per capita harm for each. A multiplier on entity-level per capita harms 

is included to help elucidate the relationship between the two levels of harms.  

Through this exercise, we found that ransomware attacks exhibited a greater absolute 

dollar amount and magnitude of harm to residents of municipalities on a per capita basis than 

direct municipality losses, at almost double the amount of entity-level harm captured. 

Attacks on police stations were a significant driver of individual harms, totaling more than 

$20 per person over the span of time provided in the dataset, or just shy of $6 per person per 

year. Additionally, the attacks against schools resulted in an additional 1.3 times the entity-

level loss. Both data breaches exposing PII and water pump station breaches resulted in an 

additional $0.23 and $0.53 per capita respectively based on the individual harm calculations, 

where no harm was documented previously. 

Note that while unrecovered funds and municipality employee identity theft did result in 

a greater magnitude of individual harms per capita than the entity harms per capita, the main 

driver of the magnitude of harm is the underlying asset, not the population. While a 

multiplier is still provided in Table 15, this means that while resulting individual harms not 

captured is spread across a municipality’s population, there is no per capita link between the 
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individual and entity level harms. For example, the loss derived from the amount of stolen 

funds unrecovered is evenly spread amongst taxpayers, but that total amount of harm is not 

expected to scale up or down whether or not there are more or less residents in the 

municipality; in fact, the more residents in the affected municipality, the lower the per capita 

harm value. This is noted for the calculations on lines 5-7 in Table 5 in section 3.1. 

Harm per Capita by Harm Type & Incident 
Outcome 

Individual  
Harm ($) 

Entity 
Harm ($) Multiplier 

Economic 0.99 2.54 0.39 
Unrecovered stolen funds 1.69 0.35 4.83 
Ransomware Attack shutdown systems 17.04 8.87 1.92 
Municipality employee identity theft 0.30 0.11 2.73 
General breach of municipality network 0.09 2.25 0.04 
Financial administration shut down 0.01 4.88 0.00 
Endpoint data destruction, requiring recovery 0.21 21.71 0.01 
Data breach, exposed PII 0.23 0.00 .23 : 0 

Safety & Security 3.62 0.94 3.85 
Sewage pumps station damage 0.53 0.00 .53 : 0 
Police Station – All technology down, ex. 911 2.54 3.50 0.73 
Police Station – 911 system down 17.74 0.59 29.87 
General breach of municipality network 0.09 1.62 0.06 
Fire Department – Fire-related injury 0.00 0.08 0.00 
Fire Department – Fire-related death 0.00 0.08 0.00 
Fire Department – EMS + Hazardous  
Conditions 0.03 0.08 0.36 
Fire Department – All technology down 0.37 0.08 4.50 

Reputational 0.03 0.03 1.30 
Sensitive information exposed regarding  
criminal behavior 0.03 0.03 1.30 

Psychological 4.04 3.12 1.29 
Impact to children’s access to education 4.04 3.12 1.29 

Total $1.60 $2.22 0.72 
Table 15: Per capita harms by Harm Type & Incident Outcome, Individual-level vs. Entity-level 
Note: Data is rounded to the nearest hundredth 
 
 

The lack of inclusion of individual-level losses for attacks targeting institutions therefore 

artificially deflates loss estimates. This not only impacts the accuracy of risk-based decision-

making from a cybersecurity perspective, but essentially causes affected individuals to 

remain invisible victims of cyber harms given the lack of acknowledgement of the size and 



 

 54 

extent of the human impact. This is true even when the multiplier is less than 1; an excluded 

loss is still important to consider, even if the harm to the individual is lower than the harm to 

the entity, because any noted individual harm is still additional to what is being captured 

today. While the dataset is small, these general figures also can be leveraged in the future to 

help estimate the probable uncaptured individual losses on a per capita basis for an attack 

that falls under a particular Incident Outcome. The dataset can be built out further over time 

as relationships between individual harms and direct losses at the organizational level 

become more transparent. 

Moreover, it is important to acknowledge the limitations of grounding generalizable 

insights in a sparse dataset representing high-risk, infrequent events [91]. There is a high-

level of uncertainty and variance in risk outcomes for cyber incidents, and baking those 

uncertainties into cyber risk and impact quantification efforts allows for reasonable 

assumptions and insights to be made [10]. Therefore, before delving further into the drivers 

for the quantity of individual-level harms not captured, we perform an additional level of 

analysis by pulling out the attack patterns from the dataset. These patterns are used to 

simulate a much larger group of incidents with a similar risk profile, which can then be 

leveraged to determine the distribution of the quantity of individual level harms. This 

probabilistic approach better reflects the uncertainty around the specific loss values, yet still 

allows us to determine and assess the relative size of individual harms not captured by many 

existing quantification efforts. 

 
3.3.2 Per Capita Bottoms-Up Measures: Simulated Cyber Incidents  
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In order to derive generalizable findings from the relatively small dataset to predict 

future loss ranges and distributions for municipalities, we leverage a probabilistic sampling 

method to simulate additional cyber incidents, expanding the dataset to 5,000 simulated 

cyber incidents with a similar risk profile to the claims submitted in the municipality cyber 

insurance pool. A Monte Carlo modeling exercise was conducted, leveraging a Poisson 

probability distribution curve as the basis for random sampling. The key variable that 

informs the distribution is the rate-parameter and represents the numbers of instances of an 

event occurring in a specific amount of time [89]. The taxonomy-bucketed dataset includes 

the frequency and costs for different types of cyber incidents over a set length of time. By 

taking the entity-level costs and per capita harms incurred over the course of the 3.5 years 

included the data, we can produce annual attack rate-parameters for each of the individual 

harms within the Taxonomy, and randomly sample from the generated Poisson distribution. 

 We plotted the annual loss rates associated with the simulated cyber incidents on a per 

capita basis across all Harm Types, as well as for Economic harms to demonstrate the utility 

of the simulations. Aggregated harms per year are spread across the pro-rated municipality 

populations affected in the dataset. A comparative analysis between the entity-level and 

individual-level harms further elucidates the potential benefits to this exercise. 

 The distributions reflect that annual rate of per capita harms from the 49 claims in the 

dataset. Figure 1 shows a median per capita entity-level harm of $0.63, compared to $0.45 

for individual harms. This breaks down to a .71 multiplier on entity-level harms to produce 

individual-level harms, aligning well with the .72 multiplier across all harms in Table 15. For 

Economic harms, the annual median per capita entity-level loss is $0.73, whereas the 

individual-level annual per capita losses are $0.28. The multiplier on entity-level losses in 
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sizing related individual-level harms is .38, again aligning well with the .39 multiplier 

between economic and individual-level per capita harms provided in Table 15. While the 

probable ranges for these annual per capita harms are quite small, amounting to tenths of a 

cent, and follow a relatively normal distribution, once aggregated across all affected 

municipality residents the range of losses can vary by several thousands of dollars. This is 

notable for a budget-strapped city or town that requires adequately-resourced resiliency 

planning in the event of an attack. 

 
  Figure 1: Annual Per Capita Entity vs. Individual Level Loss Distributions, All Harm Types 
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  Figure 2: Annual Per Capita Entity vs. Individual Level Loss Distributions, Economic Harms 
 

 
3.3.3 Drivers of Individual Harms 
 

Upon reviewing the results of both the summary data and the simulation, a key question 

arises: Why are harm estimations for individuals so significant for certain types of attacks, 

especially in comparison to direct costs to municipalities? First, individual loss volumes are 

partially driven by the population of a city or town. Insurance claims typically account for 

finding and repairing the root cause of why the attack occurred in the first place; sometimes, 

the costs include any money paid out for extortion demands [92]. However, claims typically 

do not include the cost of an individual dealing with the ramifications of an attack, like 
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reversing acts of identity theft, and the magnitude of the harms from those types of attacks 

are directly proportional to the size of the municipality. Second, several of the claims in the 

dataset described ransomware attacks. The average length of downtime due to a ransomware 

attack in 2021 was 22 days, driving the costs related to the Permanence of Impact dimension 

up [93]. In addition, even though the estimated likelihood of loss of life was small for the 

attack scenarios present in the data, the “asset” the cost estimate is applied to is large – 

namely, the value of a person’s life. As mentioned earlier in the chapter, the utilized Per 

Capita Bottoms-Up Methodology incorporates the Value of a Statistical Life (VoSL), which 

is about $10 million today [90]. This is an important takeaway -- the inability to access 

certain critical services, like calling 9-1-1 for emergency services, can present substantial risk 

to municipality residents. Even if the likelihood side of the risk equation is relatively small, 

the impact can be quite significant. This is one reason why the Cybersecurity and 

Infrastructure Security Agency (CISA) exists, to ensure critical infrastructure sectors remain 

resilient against cyber attacks, preventing harm to those living in the US [94]. However, this 

was not true across the board. The current likelihood of death or injury as a result of a fire-

related incident has become so low that the individual harm calculations are negligible 

despite the underlying $10 million VoSL input for potential harm. 

 
3.4 Alternative Harm-Sizing Method: Case Study-Based Correlated Measures 

Additional research is required to build up a collection of historical incident data 

mapping the dimensions of individual harms – i.e., Right/Ownership, Irreplaceability, 

Permanence of Impact – to individual and entity-level costs. To accomplish this, first a set of 

descriptive cyber incidents impacting a particular sector would need to be collected and 
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tagged with the Taxonomy of Individual Cyber Harms. Each cyber incident would have an 

existing entity-level cost associated with it, likely from an insurance claim. Then, data would 

be organized into Incident Outcomes that fall under each Harm Type within the Taxonomy. 

After, the association of each dimension would need to be coded into the data. This 

information could be collected based on publicly available incident information, or via 

interviews with individual victims that serve as a representative sample. For example, during 

the May 2019 ransomware attack on the city of Baltimore, residents were unable to buy and 

sell homes while the applicable administrative software was shut down [95]. The affected 

victims could be interviewed and asked systematic questions related to their experiences and 

losses in relation to the dimensions outlined. After this dataset is built, a rough equation that 

estimates individual-level losses based on institutional costs can be created and leveraged for 

future estimates.  

Using synthetic data, we forecast what a distribution of attacks causing individual harms 

could cost. We mock up synthetic data for the following Incident Outcomes associated with 

Economic harms: 

 

 Dimension % of Entity Harm Weight Factor 

Incident 
Outcome 

Probability of 
Economic Harm 

in Dataset 
Right/ 

Ownership Irreplaceability Permanence Interconnectivity 

Credit Card 
Number 

Theft 
25% 2% 0% .5% 5 

SSN Theft  75% 7% 5% 2% 10 

Table 16: Synthetic data for Attack Profile Harm Dimensions, as a percentage of entity-level costs 
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We then run 5,000 simulations, sampling from the Incident Outcomes using the Probability 

column (denoted in blue) as the rate-parameter for the Monte Carlo Model. The dummy data 

dimension for the percentages of entity-level harm are then applied to the municipality 

dataset. For simplicity, these figures are in the aggregate. If the underlying population of 

individuals are made visible during the data collection phase, this analysis can be easily 

converted to include per capita, rather than aggregate figures. 

 
Figure 3: Synthetic data; Frequency and Cumulative views of Aggregated Individual Level Loss 
Distributions, Economic harms 

 
Just as with the Bottoms-Up approach, a distribution of the probable size of aggregate 

harm to individuals can be calculated. Once the data is collected, this method provides a 

structured, repeatable individual harm estimation framework without the need of analyzing 

every incident in a dataset. The collection of the necessary data is a fundamental dependency. 

Value can be demonstrated incrementality if Incident Outcome data is collected iteratively, 

and then be applied on a per capita basis.  

With value of estimating the magnitude of individual harms established, we now provide 

a brief discussion regarding potential means of compensating individuals for the cyber harms 

experienced.  
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Chapter 4: Mechanisms for Remedy and Redress for Individual Cyber 
Harms 
 

The purpose of naming, categorizing and estimating the scope of harm to individuals 

caused by a cyber incident is to inform novel solutions for remedy or redress. The legal 

definition of remedy is, “The manner in which a right is enforced or satisfied by a court when 

some harm or injury, recognized by society as a wrongful act, is inflicted upon an 

individual.” [96] Redress includes the concept of relief, or “a means of obtaining a remedy” 

[97]. A remedy should be viewed as more of a treatment or a correction, whereas redress as 

compensation to make up for something that went awry and needs to be restored. In this 

chapter, we will review novel solutions that could rectify the individual harms experienced. 

We explore legal, governmental, and industry mechanisms for relief from cyber harms. 

Though the prior chapters discuss the quantification of cyber harms, the solutions proposed 

do not all require such a granular degree of harm size specificity. Rather, the harm estimation 

exercise can often serve as more of a “t-shirt sizing” effort, where degrees of small, medium 

and large can suffice and inform the remedial harm reduction action.  

 The solutions proposed are influenced by two key factors – whether the party 

responsible for the harm is clearly known, and whether the size of the harm is well-

understood. The suggested mechanisms for remedy or redress are organized below based on 

these factors: 
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 Responsible party known Responsible party unknown/unclear 

Harm size known Torts 
Cybersecurity Superfund, 

Federal taxes rebates 

Harm size unknown/unclear Statutory claims, 
enhanced security services 

Current state 

Table 17: Matrix of proposed mechanisms for individual cyber harm remedy or redress 

 

4.1 Scenario 1: Harm Size and Responsible Party Known – Torts 
 

Restatement of the Law, Torts 2d lays out the definitions and criteria for violations 

and remedies in the US related to intentional harms, negligence, strict liability, as well as 

other types of wrongful injuries [98]. Negligence, for example, is defined in the context of 

torts as, “conduct which falls below the standard established by law for the protection of 

others against unreasonable risk of harm. It does not include conduct recklessly disregardful 

of an interest of others.” [98] Essentially, a tort claim is available in the legal arena if specific 

requirements are met. There must be a “failure to meet a duty”, a known responsible party, 

and a resulting harm [99]. If the accused wrongdoer is deemed responsible for the harm, the 

victim will be compensated by the responsible party [98].  

Where the naming and sizing of individual cyber harm becomes essential is the tort 

requirement to prove damages [70]. Through the outlined Bottoms-Up measurement 

approach, the specific individual harm related to a cyber incident can be quantified and used 

in court to meet the necessary criteria. This is best applied when there is negligence of some 

sort at the organizational level, such as consistently unpatched vulnerable systems or poor 

compliance with security standards. To run through a scenario, let’s say a ransomware attack 

shut down a town’s systems due to poor vulnerability management practices related to the 
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city’s Windows servers. If the cyber insurance claims totaled $100,000 in a town of 5,000 

residents, the per capita entity-level harm would be $20. Using the findings derived from the 

Per Capita Bottoms-Up measurement approach, a multiplier of 1.92 can be applied to the $20 

loss per capita. If the attack details meets the criteria for a tort claim, each resident could be 

entitled to an additional $38.40 if the analysis is leveraged. In fact, this systematic sizing of 

harm to individuals using the historical relationship between entity and individual losses 

could allow residents to meet the proof of harm requirements for a tort claim in the first 

place.  

However, tort claims for security and privacy have historically proven difficult 

[70][100]. The closest precedent for cybersecurity tort claims is in the case of Capital One 

Consumer Data Security Breach Litigation, where the United States District Court for the 

Eastern District of Virginia assumed “a tort duty to protect personally identifiable 

information by representing to customers that they carefully safeguard this information” 

[101]. As the eligibility for tort claims in a security context progress beyond the state-level 

and become more widely accepted, the Taxonomy and harm assessment approaches laid out 

could prove valuable. 

 
4.2 Scenario 2: Harm Size Unknown/Unclear, Responsible Party Known 

4.2.1 Statutory Claims 

Based on the legal precedent for data breaches set in Spokeo, Inc. vs. Robins and 

Ramirez vs. TransUnion, the potential for cyber harm, like identity theft resulting from a data 

breach, does not meet the requirement to show proof of harm [99]. However, these data 

breach cases are held to standards required for tort claims, where evidence of damages are 
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mandatory, when in fact they should be viewed as eligible for statutory claims [70][102]. 

This legal avenue for remedy is available without needing to demonstrate a high level of 

specificity or precision for the harm estimated. Statutes that provide for statutory damages, 

theoretically, simply require proof that an injury occurred, but not to a highly specific degree 

[100]. For example, violations of the Anti-Cybersquatting Consumer Protection Act provide 

damages if a domain name is pirated, with compensation to the victims ranging from $100 to 

$10,000, as well as ten times the maximum if the piracy was done willfully [103]. This 

ranging of potential awarded damages based on a rubric provides an opportunity for a more 

generalized individual cyber harm sizing exercise. In light of this, Case Study-Based 

Correlated Measures may be a worthy candidate to fill this gap. If historical cyber incident 

data can show a consistent pattern of linkage between specific dimensions of data/asset 

ownership rights, irreplaceability, and permanence of impact, this can then inform the 

gradation of statutory damages awarded. In truth, much work is necessary to shift claims of 

individualized cyber harms from statutory damages to tort claims given the lack of relevant 

cybersecurity statutes on the books. That being said, the proposal outlined here could be 

beneficial to explore in parallel. 

 
4.2.2 Enhanced Security Services 
 

Stepping away from the strictly legal mechanisms for redress, enhanced security 

services to affected victims is another viable option when the responsible party is known but 

the exact size of the harm remains opaque. For example, as a byproduct of the Equifax Data 

Breach settlement, the Federal Trade Commission and Consumer Financial Protection 

Bureau mandated free membership to Experian IdentityWorks for four years to monitoring 
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potential identity theft for individuals with exposed personal information in the 2017 Equifax 

data breach [104]. While we do not endorse a solution that relies on a questionable service 

highly related to the responsible party, the general concept should not be ignored. It should 

not take a settlement to provide these services. Instead, the individual harm-sizing exercise 

can be conducted by enterprises or regulators to understand the nature and extent of the cyber 

harm. For example, if data is collected for Incident Outcomes related to compromised 

Electronic Medical Records at hospitals, either Bottoms-up or Case-Based methods can be 

applied. For Per Capita Bottoms-up Measures, if the harm to individuals exceeds an 

established threshold (an entity-level multiplier of .5 or greater per capita individual losses to 

patients, for example), then new monitoring services can automatically be provided to 

mitigate these additional negative impacts to patients. More robust security controls, like 

advanced threat monitoring on a home network, could be provided as well. 

 
4.3 Scenario 3: Harm Size Known, Responsible Party Unknown/Unclear 
 

We hypothesize that the area with the most potential to close the cyber harm gap via 

the Taxonomy for Individual Cyber Harms and the associated measurement methodologies 

are scenarios in which the responsible parties are unknown or unclear, but the general size of 

the harm is known. While there are a dearth of solutions in this category today, there is also 

the lowest likelihood for pushback. This is because a responsible party is not actively 

fighting the claims. Instead, the government is providing compensation for individual cyber 

harms through a novel set of solutions that build on existing remedies in similarly structured 

ecosystems that generate negative externalities. 
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4.3.1 Cybersecurity Superfund 

  For societal issues related to the environment and the health of a population, it is 

often difficult to stop the issue at the source or address individual claims of harm. This is 

because there are confounding factors that also could negatively impact a life. For instance, 

air pollution, a common negative externality example, is a result of standard business 

activities that, under unregulated market conditions, produce pollutants that harm the health 

of individuals [105]. However, stripping out whether other risk factors like smoking, rather 

than industry-produced air pollution, negatively impacted an individual can be difficult.  

While there are numerous mechanisms that price-in the cost of negative externalities, we 

believe the concept of a superfund is ripe for application in a cybersecurity context. 

Superfund is the colloquial term used for the Comprehensive Environmental Response, 

Compensation and Liability Act (CERLA), created by Congress in the 1980s and overseen 

by the US Environmental Protection Agency [106]. The law created a tax on chemical and 

petroleum firms, and built up a trust fund of $1.6 billion dollars to clean up “abandoned or 

uncontrolled hazardous waste sites” [106]. Superfund comes with requirements and provides 

authority for different remedial actions to reduce hazardous waste in the name of 

safeguarding the health of individuals [107].  

This concept can be leveraged to compensate individuals for harm experienced by cyber 

attacks targeted at entities via a Cybersecurity Superfund. As mentioned in our discussion on 

tort claims, proving a linkage between a quantifiable harm and a responsible party is 

difficult, and this results in barriers for much-needed redress. A creation of a Superfund for 

individual victims of cyber incidents could help sidestep this ongoing issue. While 

companies across all sectors are exploited, technology firms would serve as reasonable 
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candidates for a tax given their level of capital available and contribution to vulnerable 

environments. An analysis of the historical size of harms through the proposed methodology 

could help inform policy-makers on Cybersecurity Superfund monetary targets, as well as 

how the remedial funds should be allocated. For example, our Per Capita Bottoms-up 

analysis shows that attacks on police stations that do not shut down 9-1-1 include additional 

losses to residents, amounting to 73% of direct costs to the entity. Policy-makers can analyze 

the estimated frequency of future attacks on police stations and review the historical data on 

direct costs. The Cybersecurity Superfund can then set a monetary target aligned with 73% 

of those costs for the purposes of providing compensation or remediation services directly to 

affected residents in the future. 

Note that while this proposal is tagged to the unknown or unclear responsible party 

category, the EPA’s Superfund cleanup efforts are funded by potentially responsible parties 

(PRPs) about 70% of the time [108]. A similar division can be asserted for the Cybersecurity 

Superfund where legal claims fall short, providing incentives for targeted entities to uplift 

their security processes and capabilities to avoid future payout to the Superfund. 

 
4.3.2 Federal Tax Rebates 

 Federal tax rebates are an additional mechanism for awarding compensation to 

affected victims when the relative size of the harm is known, but the responsible parties are 

not. Additional tax relief based on certain criteria due to an experienced hardship is not a 

new concept. Due to the COVID-19 pandemic, Recovery Rebate Credits were issued to 

eligible taxpayers based on the 2021 fiscal year, and the Child Tax Credit increased [109]. 

Moving expenses are quantified and considered tax deductible if set criteria is met and all 
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expenses are both “reasonable” and “necessary” [110]. Similarly, a set of questions can be 

asked as part of the tax filing process that determine both the eligibility and extent of harm 

experienced due to a cyber incident. Through this proposal, the amount of relief provided 

should be informed by the Taxonomy and applicable harm sizing methodology, as is detailed 

in the Superfund section above. The funds for the rebates would need to be approved and set 

aside by Congress, akin to the process followed for other tax rebates [109].  
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Chapter 5: Conclusion and Future Areas of Research 
 

Through this body of research, we have demonstrated that harms to individuals as a 

result of institutions being exploited not only go uncaptured today, but also account for an 

additional ~70% of harms when compared to organizational-level losses. This amounts to an 

42% of total harms. Ignoring costs to individuals from loss calculations does a disserve to 

residents, end-users and everyday consumers. Without the ability to identify and size 

individual cyber harms, there are few opportunities for meaningful recourse or redress. By 

combining our proposed Taxonomy and measurement approaches with legal, market-based, 

and government-run remedies, individuals can be appropriately compensated and protected 

in the long-run. 

The subject of individual cyber harm categorization and measurement would benefit 

from several areas of additional research. First, we did not investigate in detail incentive 

structures that could prevent cyber attacks from successfully exploiting institutions in the 

first place. An interesting research question to explore would be, “What accountability 

models can be instituted to better align incentives amongst users and providers of goods and 

services that depend on technology?” This could include topics such as cyber insurance and 

liability, as well as product labeling (i.e., privacy and security “nutrition labels” [111]).  

Substantial work is also still required to collect the necessary historical incident data for 

the alternative harm sizing method driven by Case Study-Based Correlated Measures. 

Without a firmer grasp on the relationship between entity-level and individual-level harms in 

the context of harm dimensions like ownership, irreplaceability, and permanence of impact, 

the framework lacks a more systematic, replicable approach. 
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A final area ripe for further analysis is a comparative review of individual cyber harm 

quantification for attacks that compromise data confidentiality versus data availability. The 

methods for estimating the impact for these two types of risks can be quite different, and 

drilling down a level further would be advantageous, improving the accuracy of harm sizing 

efforts. 

There is still significant work to be done in the cyber risk, impact, and harm 

measurement space. We optimistically hope that our review of relevant literature, 

development of sizing methods and associated findings, and proposals for mechanisms to 

address individual cyber harm moves this area of research closer to the overall objective of 

providing protection for individuals who are casualties of broader technological and security 

challenges. 
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Appendix A: Per Capita Bottoms-Up Measures 

Appendix A1: Detailed View of Equations 
 
Safety and Security Harms: Police Station 
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Safety and Security Incident Outcome 1: [1] [2] [3] [4] [5] [6, p. 1] [7] [8] [9] 
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Safety and Security Harms: Fire Department 
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Safety and Security Harms: Sewage Pump Station 
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Economic Harms 
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Economic Harms (continued) 
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Reputational Harms 
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Psychological Harms 
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