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ABSTRACT

Armenian music has existed for centuries, dating back to several millennia BC. The
music has undoubtedly evolved over time, whether passed down traditionally or through
reimaginations of the original piece. Despite straying from the original versions, the
music nonetheless keeps the spirit and tradition behind them intact.

This thesis will compare and analyze the harmonic differences in a famous Armenian
Hymn, Տէր Ողորմեա (“Der Voghormia”, meaning “Lord Have Mercy”). The baseline
version will be the one that is found in the 20th-century manuscript written by Gomidas
Vartabed, and will be compared against later renditions. This will be performed by using
several different techniques and algorithms from the Digital Signal Processing (DSP)
and Music Information Retrieval (MIR) fields. The final products will be implemented
through Python programming, along with related helper packages and toolkits.

Thesis Co-Supervisor: Garo Saraydarian
Title: Lecturer of Music

Thesis Co-Supervisor: Peter Hagelstein
Title: Associate Professor of Electrical Engineering
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Chapter 1: Introduction

Music has always been a fundamental part of society. Stretching back many thousands
of years, music served as a way to entertain others, exchange ideas, and establish
identities. Today, that still holds true. Millions of people worldwide interact with music
due to its uses in mass media, entertainment, and social activities. The way music
makes its way into our lives underwent a radical change due to advancements in digital
technology. In addition to the mass creation and distribution of music through digital
means, we can also computationally study properties of music.

Computational Music Analysis incorporates techniques and tools from both digital signal
processing (DSP) and music information retrieval (MIR). The goal of MIR is to extract
interesting data points about a piece of music in question, such as its tempo, structure,
chords, and instrumentation. All of this information and more can be extracted from a
digital audio signal, incorporating techniques from DSP. The key part of DSP is utilizing
the discrete Fourier transform, which decomposes functions of time into functions of
frequency. This transform helps dissect what frequencies with what magnitudes are
present in an audio signal, allowing us to extract musical features to analyze.

Armenian music has been around for hundreds and thousands of years. However, two
major events in Armenian history significantly impacted the survival of Armenian culture:
the Armenian Genocide in 1915, and the establishment of Soviet Armenia in 1922. As a
result, the way Armenian music has been studied, written, and performed has changed
due to the destruction of musical resources, change in political ruling class, and change
in geography. Musical traditions and manuscripts that survived may be different from
what once was, and the music of the Armenian Diaspora may stray from the styles and
methods used in Armenia today. In addition, the development of digital technology has
forever shaped the future of music. Between new instruments, analysis tools, and audio
formats, there is a lot more that is possible with music today than there ever was before.

The hymn we wish to analyze is Gomidas Vartabed’s composition of “Der Voghormia”.
The analysis will involve designing algorithms that will allow us to compare various
renditions of the piece, and see how similar or different these different versions are from
Gomidas’s. The necessary DSP and MIR methods will be implemented using the
Python programming language. With the exception of some helper functions to simplify
some math and plotting, all of the code will be written from scratch. The algorithms will
work off of WAV audio files, which can be generated and exported through the score
writing program MuseScore and the audio editing software Audacity. Figures (Fig.) and
equations (Eq.) will be labeled by their corresponding chapter and subsection. Specific
songs will be referred to by their names from Appendix A.
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Chapter 2: Armenian Music Research

Before going into the details of the algorithms, it is important to understand how
Armenian music in general can be different from what we are used to seeing and
hearing in the West. A twelve tone scale is common, but is not the standard around the
world. Armenian music does have its similarities with Western music, but there are
areas where they differ.

2.1 Armenian Music System
A complication considered in implementing the necessary algorithms and parameters is
the structure of Armenian music. Notable differences include its scalar structure,
instrumentation, and harmonization. Although we are dealing with a hymn that is purely
vocal, covers and remixes that exist due to modern music technology may contribute
additional instrumentation and ornamentation to the music. Armenian music does not
follow the same structure as Western music, where there is an established system of 12
tones. The structure of Armenian music originates with its chant music, similarly to
Western music with Gregorian chant. Armenian chant music adheres to a system known
as octoechoes (Kerovpyan and Kerovpyan, 2020). This system contains a specific
subset of liturgical music known as sharagan, which made use of a tetrachordal system
with non-Western intervals. These intervals include major and minor semitones,
subminor thirds, and medium thirds. As a result, attention to the intervals, notation, and
harmony used in “Der Voghormia'' is critical and should be considered when coding the
necessary algorithms. This is especially due to how MIDI, a digital interface for audio,
typically calculates the frequency of a note. MIDI notes take on a value from 0 to 127,
and are converted to a frequency based off of the twelve-tone scale by:

(Eq. 2.1.1)

The frequency is in hertz, 440 Hz is the common frequency used for A4 (the “A” above
middle C), and 69 is the MIDI number for A4. A4 is often used as the reference pitch for
the conversion. If any versions of “Der Voghormia” use pitches outside of the Western
twelve-tone scale, this formula would not work and our algorithms must be modified.
Unless specified otherwise, we will assume the 12-TET system, as the exact verse we
are comparing against uses a 12-tone scale.
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2.2 Gomidas Vartabed

Composing, arranging, and transcribing over 3,000 works of folk music, Gomidas
Vartabed’s (1869 - 1935) works received praise from local communities and abroad
(Vagramian-Nishanian, 1981). Although his career began in the Caucasus, he attended
many opportunities in Europe which established the link between Armenian music and
Western music. His studies helped bring his Eastern influences, such as instruments, to
the West. Western influences, such as the notation system, were also brought back to
the East. While abroad, he entertained professional journals with his insight on eastern
music. These insights were not only on the origins and meanings behind Armenian
music, but also the Arabic, Kurdish, Turkish, and Persian melodies that he studied as
part of his ethnomusicological career.

2.3 Der Voghormia

“Der Voghormia” was first composed by 18th-century composer Catholicos Simeon
Yerevantzi (1710 - 1780), also known as Simeon I of Yerevan (Capan, 2005). Simeon
was known for establishing the first printing press in Armenia, embracing the production
of manuscripts and books. The hymn embodies sorrow, joy, and hope, calling to the
Lord to have mercy. It is often performed before Holy Communion, where the body and
blood of Christ is received. The song has been performed in churches and at events for
hundreds of years, and continues to have a significant emotional and spiritual impact for
many.

The manuscript by Gomidas contains four voices: three tenors with one being solo, and
a bass. There are several verses within the piece, but analysis will focus primarily on
the structure of the first verse, as it dictates the pattern for the rest of the piece.
Although the melodies are mostly the same, the version by Gomidas is the most
famous. This makes it our prime candidate to compare other versions to it rather than
the version by Catholicos Simeon. Both manuscripts can be found in Appendix B.
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Chapter 3: Related Works

There are many research papers and theses covering related ideas out there. The
International Audio Labs Erlangen has many theses and research papers that
implement various analysis topics and techniques for the purposes of computational
music analysis (Grosche, 2012). The overlapping topics between these references and
our analysis are pitch and chroma based features, dynamic time warping, audio
segmentation, and chord recognition. Another related topic is audio segmentation
through harmonic-percussive separation, where the harmonic and percussive
components of a song are extracted into their own signals (Driedger, 2016). These
topics cover a wide area of analysis, some of which will be explored in-depth in the
following sections.

One thesis on Georgian vocal music looks into the ideas of audio segmentation and
fundamental frequency estimation in monophonic and polyphonic songs (Rosenzweig,
2017). These serve to identify the various voices in these songs, and then extract what
pitches are being used. Another honors thesis from Wheaton College uses hidden
Markov models to measure the similarity between western classical piano pieces (Liu,
2019). This focused on parameter estimation using an expectation-maximization
algorithm, and defining a similarity metric from it.

The ideas above are just the tip of the iceberg. The content covered in this thesis is not
the ultimate approach to achieve these goals, but serves as a showcase as to what
computational music analysis methods exist and how they are established.
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Chapter 4: The Fourier Transform

The Fourier transform, generally speaking, is an integral transform that decomposes a
function of time or space into a function of temporal or spatial frequency. In simpler
terms, consider a musical chord. The Fourier transform would decompose that chord
into pitches with their corresponding intensities. This application is significant to the
mathematical and computational exploration of audio. Specifically, we will be utilizing
the discrete Fourier transform (DFT) and its relative, the short-time Fourier
transform (STFT), to showcase our analysis.

4.1 The Discrete Fourier Transform
Mathematically speaking, the DFT is defined as:

(Eq. 4.1.1)

N is the length of our time sequence x[n], k is the frequency index, and j is the
imaginary unit. Our output X[k] is a frequency sequence also of length N.

This takes a time sequence of complex numbers and transforms them into a frequency
sequence of complex numbers. Given a sequence of music, the DFT allows us to
transform that sequence into its constituent frequencies, which opens the door to the
analysis of these frequencies. The DFT is also an invertible process, meaning we can
go back and forth between the time and frequency domains.

To translate our frequency index to a numerical frequency value in Hertz, we can use
the relationship:

(Eq. 4.1.2)

Where Fs is the sampling rate of our audio - we will be using 22050 Hz. This can tell us
what frequencies are present in a song as long as we know the sampling rate and
length of the original sequence.

If we know the length of our song is T seconds, then we can find that the time
corresponding to a certain sample n is:

(Eq. 4.1.3)
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4.2 The Short-Time Fourier Transform
Related to the DFT is the STFT, which tracks the magnitude and phase content of a
signal. The STFT works as a DFT that is windowed at various steps. The goal is to
consider short sections of the signal to extract exactly when certain frequencies occur,
as the DFT’s frequency information is averaged over the entire time domain.

The STFT is defined as:

(Eq. 4.2.1)

Similarly to the DFT, we have that N is the length of our time sequence x[n], k is the
frequency index, and j is the imaginary unit. For the STFT, k will be a value ranging from
0 to N/2 + 1.

Our windowing function w[n] is also of length N. We want the whole signal captured, so
that a decay can be applied to samples outside of our short sections. The Hann window
is often chosen due to its good tradeoff between time resolution and frequency. Since
we are working with audio signals, the band of frequencies we obtain over time works
better with a “smoothing” window relative to, say, a rectangular window. These windows
are separated by our hop size, H. The variable m is an integer value ranging from 0 to
M - 1, where M is the total number of hops.

Fig. 4.2.1, Hann window

Just like with the DFT, we can invert the STFT to get the inverse STFT, or iSTFT. The
iSTFT will come into play in chapter 5.4.

Frequency is translated just like how it was for the DFT. We can also recover the time
value (in seconds) of each column. The time value of each column given by:

(Eq. 4.2.2)
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Chapter 5: Fourier Applications and Methods
Since the Fourier transform gives us access to frequency information, we can utilize it to
uncover even more properties of an audio signal. This can be done by visualizing our
audio (chapter 5.1). Building off of that, we can obtain the information to perform our
comparisons and analysis. We first need to determine which sections of music match
(chapter 5.2). Then, we need to extract the relevant harmonic data (chapter 5.3). Finally,
we will define and detail a quantitative way to compare our songs (chapter 5.4).

5.1 Spectrograms and Chromagrams
The spectrogram is a picture of sound, displaying frequency against time. It is defined
as the square of the magnitude of the STFT:

(Eq. 5.1.1)

The spectrogram of Der_Voghormia_1.wav, our baseline song, is shown below.

Fig. 5.1.1, spectrogram of Der_Voghormia_1

As mentioned before, the piece consists of three tenor voices and a base voice. We can
see the more intense areas are towards the lower k values, which supports this idea. In
general for live audio, intensities in higher frequencies can appear due to overtones.

Built off of the spectrogram is the chromagram, which groups notes by pitch class
rather than frequency. This is independent of octave and timbre, meaning the
chromagram is a very useful tool in analyzing melody and harmony. We will again
assume a twelve-tone equal temperament scale, but note that modifications may be
necessary depending on the music used for analysis.
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Fig. 5.1.2, Chromagram of Der_Voghormia_1

The chromagram is generated through matrix manipulation of the spectrogram. Since
we hear pitch proportional to the logarithm of frequency, we first convert the
spectrogram into a log-frequency spectrogram. This spectrogram assigns frequency
bins to a pitch, making use of the relationship described by (Eq. 4.1.2). From there, we
use a conversion matrix to combine a note and its octaves into a pitch class. This is to
measure which notes show up, rather than segregating them by pitch class. This
conversion matrix is 12-by-128, representing the 128 MIDI pitches and 12 tone scale
(with 0 representing “C”, and each consecutive integer representing a half-step up).

Fig. 5.1.3, Spec-to-Chroma conversion matrix

The multiplication of this conversion matrix with the log-frequency spectrogram results
in a chromagram. However, there are several modifications we can make to the
chromagram to enhance its properties. One of the most basic is applying spectral
smoothing to the chromagram by means of logarithmic compression. This compression
helps accentuate the lower energy notes. For our chromagram C, we can apply a
compression factor 𝛾 that multiplies every value in our chromagram such that our new
chromagram is equal to:

(Eq. 5.1.2)
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The results of compressing by a factor of 1 is shown below. The note occurrences and
their intensities (watch the color scale!) are much more clear than before:

Fig. 5.1.4, Log10 compression of Der_Voghormia_1 with 𝛾 = 1

Another technique known as CENS (Chroma Energy Normalized Statistics) uses five
modifications to the chromagram in order to suppress noise, ignore differences in
volume, and clean up any small fluctuations (Müller, 2015, p. 375). This is done by first
normalizing with the Manhattan norm, then performing logarithmic quantization. From
there, we time-smooth and downsample the chromagram, which is finally normalized
again by the Euclidean norm.

Fig. 5.1.5, CENS Chromagram of Der_Voghormia_1

Spectrograms and chromagrams will be vital to the following algorithms and analysis,
and can be optimized further to improve the quality of our analysis. These optimizations
and enhancements will be discussed in later sections, after demonstrating how these
ideas serve as building blocks for our algorithms.
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5.2 Dynamic Time Warping
Chroma representations of music allow us to compare and contrast the features in a
song. These features can be synchronized into temporal correspondence through
Dynamic Time Warping (DTW), which finds an optimal alignment between two
time-dependent sequences (Müller, 2015, p. 131). In our case, these sequences are
chroma vectors. Given two different versions of a song, we can use DTW to scan for a
section of music in one song to find the corresponding section of music in the other. Say
there is a section of our baseline “Der Voghormia” that is 5 to 10 seconds into the piece
that we wish to find in another version. If we were to use DTW with a version of “Der
Voghormia” that is played twice as slow, we would receive an output that tells us that
the corresponding section takes place in the 10 to 20 second frame of this slower piece.

Fig. 5.2.1, How DTW aligns two sequences (Müller, 2015, p. 132)

In order to perform DTW, we must first generate an optimized cost matrix between the
two chroma vectors x of size N, and y of size M. The cost matrix C compares every
location of one chromagram to every location of the other chromagram. The cost is
based on the cosine distance between the chroma vectors, namely:

(Eq. 5.2.1)

Where n, m take on integer values from 0 to N, M respectively.

16



Other metrics such as Euclidean distance may be used, but cosine distance is mainly
chosen because it is calculated independently of vector length. Instead, it only
considers the twelve chroma bands and their respective energy distributions, which also
makes it fast to compute. Note that for normalized chromagrams, the denominator is
equal to 1.

Based on the cost matrix, we can compute a number of paths P that get us from the
bottom-left of our matrix (i.e., the start of our songs) to the top-right of our matrix (i.e.,
the ends of our songs). However, our goal is to find the optimal path from start to finish.
We can find this optimal path P* by first creating an accumulated cost matrix D. D
calculates the optimal costs of all subpaths from start to finish for our two chroma
vectors by choosing the adjacent preceding cell with the lowest cost. From there, we
generate a backtracking matrix B that serves as a pointer to the matrix cells with the
least cost. The optimal path is then found by starting at the top right of B, and following
the pointers to the bottom left. An example of this process in action is depicted below:

Fig. 5.2.2, Example of a full DTW process

DTW performed on Der_Voghormia_1.wav and Der_Voghormia_2.wav is plotted below,
with the optimal path in red. Note the difference in song lengths - the optimal path
reveals the alignment between the two songs, allowing us to find where an excerpt in
one song can be found in the other:

Fig. 5.2.3, DTW of CENS chromas between Der_Voghormia_1.wav and Der_Voghormia_2.wav.

17



5.3 Audio Decomposition
Der_Voghormia_1.wav is purely vocal, but what if we are comparing it to a version that
has percussive parts? Percussion would influence the spectrogram and would impact
our analysis. Thankfully, the spectrogram can tell us whether we are having a tonal
sound or a sharp impulse. This is prominent in Der_Voghormia_2.wav, which features
some percussion on top of the melody.

Fig. 5.3.1, spectrogram of Der_Voghormia_2.wav

Notice the mix of horizontal and vertical lines in the plot. The horizontal lines represent
steady sinusoids with a narrow-band frequency range (harmonic), while the vertical
lines represent impulses with a wide-band frequency range (percussion). Knowing this,
we can split up a given audio signal into a sum of a harmonic signal and percussive
signal. This technique is known as harmonic-percussive separation (HPS) and
makes use of the iSTFT (Müller, 2015, p. 419). HPS comes in six steps:

1. Convert our time-domain audio signal to its STFT
2. Apply a harmonic filter to the STFT to create a harmonic-filtered STFT
3. Use the harmonic-filtered STFT to create a harmonic mask
4. Apply the mask to the original STFT to create a harmonic STFT
5. Repeat steps 2-4 with a percussive filter
6. Apply the iSTFT to the harmonic and percussive STFTs to recover our time

domain harmonic and percussive signals. The original time-domain signal is
equal to the sum of these two new signals!

For our choice of filtering, we make use of median filtering. Median filtering works by
constructing a new signal whose contents are generated by taking medians in
equally-sized windows of our original signal. This eliminates spikes in our signal, while
retaining its edges. The figure shown displays the smoothing of a random signal using a
window of size 5:

18



Fig. 5.3.2, Median filtering with window size 5

For our edge cases, we can zero-pad the original signal, meaning we extend the signal
in a direction and give the new signal parts a value of 0. This is so our filtering window
has enough of a signal to capture. Filtering the rows and columns to the original STFT
enables us to create masks, which essentially assign cells of the STFT to be harmonic
or percussive. These masks make use of Wiener filtering, and are determined by:

(Eq. 5.3.1)

Where the tildes represent our filtered spectrograms, h/p denote harmonic/percussive,
and 𝜖 is a very small constant of our choice (typically in the range 10-2 - 10-5). We then
multiply these masks by the original STFT to create our harmonic and percussive
STFTs. Finally, applying the iSTFT to our two new STFTs returns our original signal, but
now separated into its harmonic and percussive components. Listening to these
separated signals will support this idea, but it is possible (and likely) for some artifacts to
remain after separation.

Fig. 5.3.3, HPS of Der_Voghormia_2.wav with 𝜖 = 0.0001
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5.4 Chord Recognition and Scoring
Now that we can reliably extract a harmonic region of interest, we can computationally
compare the chord structure of one song versus another. We once again look at the
chromagram, and process a chord template over it. We will use a major/minor triad
chord template, but the process can be extended to augmented/diminished triads,
seventh chords, and others. This template is a matrix of triads “in order”, meaning the
major triads are listed first (beginning with C major = 0) and are followed by the minor
triads:

Fig. 5.4.1, Major/minor triad chord template

Multiplication of this against the chromagram of a song will result in a chromagram-like
score matrix, where each row is the score a particular chord received. The chord with
the highest score is the algorithm’s best estimate for what chord occurred at that time.
For Der_Voghormia_1.wav, this score matrix looks like:

Fig. 5.4.2, Der_Voghormia_1.wav score matrix
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The score is determined by the normalized dot product between the chroma vector x
and the chord template c, which is given by:

(Eq. 5.4.1)

As depicted in (Fig. 5.4.2) above, a darker shading means a higher confidence in a
specific chord. One thing to note is the influence of overtones, which can impact our
scoring and identification. One way to handle this is to introduce an exponential decay
factor 𝛼 to simulate overtones over the ideal template. This adjustment modifies our
template by giving the harmonics a decline in energy rather than forcing them to zero:

Fig. 5.4.3, Modified chord template with 𝛼 = 0.5

Furthermore, the tuning between two pieces may not be the same. A4 = 440 Hz is not a
requirement, and how many cents the tuning differs by can drastically alter the chord
recognition and scoring. This can be solved by passing a tuning parameter into the
creation of chromagrams. Knowing the tuning difference is extremely difficult if not
impossible by ear, so an algorithm was written to discover the best tuning. This
algorithm simply processes the score calculation using tuning values in a specified
range, and outputs the tuning with the best score. For our purposes, a step size of one
cent ranging from -50 cents to +50 cents (half a semitone each way) works best. This
captures the most reasonable range of tuning differences while maintaining a
respectable computation speed.

Despite all this, further improvements still exist and will be explored. In the next section,
we will discuss two additional filtering approaches to further improve the quality of our
chord recognition.
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Chapter 6: Design Improvements
In this chapter, we will look at two different filtering methods to improve our
chromagrams and our chord recognition.

6.1 Pre-filtering
As discussed in chapter 5.1, spectral smoothing is only one way to enhance a
chromagram. We can also apply temporal smoothing to the chromagram. This is
known as a pre-filtering method, and is used to avoid irrelevant local variations (Müller,
2015, p. 271). Pre-filtering smooths out any temporal fluctuations in the chromagram,
making the overall structure more consistent. To perform temporal smoothing, we apply
an averaging filter on each row of the chromagram. This filter takes a window of size L
centered at our choice of n, and averages the local values:

(Eq. 6.1.1)

This is a simple process to clean up some of the time-axis mess a chromagram could
have when notes rapidly change over a short period of time, and plays a part in
generating a CENS chromagram as discussed in chapter 5.1.

Instead of performing pre-filtering, we can also approach chord recognition by means of
hidden Markov models (HMMs), which is a post-filtering method that will be
discussed in the next section (Müller, 2015, p. 291). Using HMMs makes pre-filtering
redundant, as it contains context-aware smoothing within the process. As such, it will be
of interest to score a pre-filtered chromagram against a post-filtered chromagram and
see which method performs better.
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6.2 Hidden Markov Models
HMMs build off of the idea of a Markov chain. A Markov chain represents a set of
discrete states, and a set of the probabilities of transitioning between these states. A
state can transition to itself, and the sum of the transition probabilities must equal 1. In
our musical context, let’s say we only have three chords in a song we wish to make: C
major, F major, and G major. An example Markov chain could be modeled like:

Fig. 6.2.1, Markov chain of three major triads (Müller, 2015, p. 275)

We can refer to an initial probability vector to determine our initial state, then run the
process repeatedly until we have enough chords for the song we want to make. We can
expand on the idea of a Markov chain to construct a model that can predict where a
song wants to move (or stay).

A hidden Markov model is a more statistical expansion of the Markov chain. Our chords
are our states just like before, but we now have an observation layer added to our
model. In this case, the observation layer is our chroma vectors. Every time a state is
active, we have an observation produced. However, we cannot directly observe the
underlying chord, only the chroma vectors that are mapped to them. This gives the
model its name of “hidden”.

There is a problem with our chroma vector observations - their compositions are twelve
dimensional. This is a computational mess, and describes much more different chroma
vectors than we will care about. To avoid this, we can discretize our model by first
creating a codebook of finite observations. We then quantize the chroma vectors by
generating a finite mapping between the codebook and our actual observations. Luckily
for us, we have a process that can already do this. We can create a size 24 codebook
for our 24 major and minor triads, and we can map our observations to them by finding
the best match through our same scoring process described in chapter 5.4.
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There are five distinct parameters that define an HMM. Similar to a Markov chain, we
have our set of discrete states, a matrix of transition probabilities (which we will
shorthand as the transition matrix), and a vector of initial state probabilities. Some chord
transitions are more likely than others, but it is difficult to quantify this across every
piece of music ever performed or composed. Therefore, a uniform approach to the
transition and initial state matrices is a safe approach, albeit lacking in musical
sophistication. Specifically for the transition matrix, we can have an emphasis along its
main diagonal to reinforce the idea of a chord transitioning to itself, but otherwise has an
equal chance to transition to any different chord. This emphasis is simply a weighting
factor on the diagonal that makes it stand out more compared to the other values in the
matrix.

In addition to the aforementioned three parameters, we must have observations, and
must generate a matrix of output probabilities known as the emission matrix. The
observations have been discussed to be the 24 different major and minor triads, so that
leaves the generation of the  emission matrix.

For a given state, the probability distribution amongst the different observations isn’t
necessarily uniform. For example, C major chords can produce observations that look
like A minor or E minor due to their composition. Therefore, we will want to assign
probability values based on how similar each chord template is to another. We
reintroduce the decay factor for the overtones into this assignment, and end up
generating a template is similar to the ideas presented in Fig. 5.4.3:

Fig. 6.2.2, Emission matrix with 𝛼 = 0.5
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We now have our five parameters, and thus have a complete HMM. To process our
model, we can run the Viterbi algorithm on it. The Viterbi algorithm recursively
computes optimal state sequences by making use of a backtracking procedure. This is
a dynamic programming algorithm that is quite similar to DTW as presented in chapter
5.2. What it accomplishes is that given an observation sequence, what is the most likely
sequence (or, what is the highest-scoring sequence) out of all the possible sequences
from our observations (Müller, 2015, p. 281). The outcome of this algorithm is influenced
by our transition matrix’s diagonal weighting, as well as our choice of decay factor 𝛼.

We now have several different optimizations to compute a score from. The next section
will detail how these methods fare, with some optimizations being combined with others:

- Spectral smoothing
- Overtone adjustments
- Tuning adjustments
- Pre-filtering
- Post-filtering (HMMs)
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Chapter 7: Results
Results will be given through the following subsections, which will display the
spectrograms and log-compressed chromagrams of each song side by side, followed by
their DTW, and then the HPS of the comparing song. At the end, a table of scores will
be presented along with a discussion regarding their values. As discussed in chapter
5.4, the score is determined by the normalized dot product between the chroma vector
of our comparing song, and the chord template generated from Der_Voghormia_1, our
reference song.

7.1 Parameters
Parameters to keep in mind are the logarithmic compression factor 𝛾 for chromagram
enhancement, Wiener filtering constant 𝜖 for our HPS masks, decay factor 𝛼 for the
chord template overtones, tuning adjustment t, prefiltering window size L, and diagonal
weighting factor w for our transition matrix. We will look at 𝛼, t, L, and w. We will fix 𝛾 =
1 and 𝜖 = 10-4, but note that improvements can be made through adjusting these two
parameters.

In addition, the Fourier transform parameters used were a sampling rate Fs = 22050 Hz,
DFT window length N = 4096, and hop size H = 2048. Powers of 2 work best N and H
due to the design of the DFT and STFT, and found that H = N/2 yielded favorable
results. These parameters can be played with, but their overall impact on the chord
recognition is not as significant or as interesting as the other parameters.
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7.2 DV1 and DV2

Fig. 7.2.1, Spectrogram of DV1

Fig. 7.2.2, Spectrogram of DV2

DV1 is digitally generated audio that was transcribed from a physical manuscript, and
features three tenor voices and one bass voice.

DV2 is a professional studio recording that features percussion and duduk (a woodwind
instrument) in addition to its vocals.

One main observation here is the differences in the y-axis. There is a much wider range
of frequencies being presented in DV2, but the main concentration is around the lower
values. DV1 also has a notable gap between its two different colored bands, whereas in
DV2 there is substance along most rows.
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Fig. 7.2.3, Chromagram of DV1

Fig. 7.2.4, Chromagram of DV2

Here we see our differences in notes. Although there seems to be an emphasis around
0 = C and 7 = G, DV1 has higher intensities of 10 = B-flat than DV2 does. The near
constant presence of this B-flat in DV1 will influence our chord identification by trying to
fit the many C’s and B-flat’s into chords, whereas DV2 has more of a note spread that
can lead to the detection of different chords.
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Fig. 7.2.5, DTW between DV1 and DV2 (CENS)

From this DTW, we see that there is a pretty consistent matching of melody due to the
path mainly being a diagonal from one corner to the other. Listening to DV2 supports
this idea, as the song is a repetition of the DV1 melody but in different contexts (duduk
performing the melody, voices performing the melody). The bumps along the way can
be explained by breaks between the melodies, as well as the underlying percussion.

29



Fig. 7.2.6, HPS masks for DV2

Fig. 7.2.7, Separated spectrograms for DV2

The masks and separations confirm that DV2 features a good amount of percussion,
which has been removed from the harmonic audio. Listening to this separation confirms
that it mostly worked, but some percussion remained in the harmonic signal. Despite
this, the percussion sounds were much lower and the harmonic content was much
clearer.
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7.3 DV1 and DV3

Fig. 7.3.1, Spectrogram of DV1

Fig. 7.3.2, Spectrogram of DV3

DV1 is digitally generated audio that was transcribed from a physical manuscript, and
features three tenor voices and one bass voice.

DV3 is digitally generated audio that was transcribed from a physical manuscript, and
features one solo voice and piano accompaniment.

The spectrograms make it clear how similar these songs are on a visual level - the
frequencies present are similar, and the number of samples in each song are almost
exact. Despite this, the harmonic structure will vary due to the chords present in the
piano accompaniment being different from the chords created by the supporting voices
in DV1. In addition, the spacing between rows in DV3’s spectrogram is more
pronounced than the rows in DV1’s spectrogram.
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Fig. 7.3.3, Chromagram of DV1

Fig. 7.3.4, Chromagram of DV3

The chromagrams here really show how these two songs mainly differ by three
half-steps. DV1 starts on 0 = C, whereas DV3 starts on 9 = A. The intensity patterns
throughout the chromagrams are very similar, which can be seen with 9 = A and 11 = B
in DV3’s chromagram having the same pattern as 0 = C and 2 = D in DV1’s
chromagram.
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Fig. 7.3.5, DTW between DV1 and DV3 (CENS)

The square shape and the persistent diagonal really hammer in that the two songs are
melodically identical. The minor bumps are due to the differences in the underlying
harmony, and how they could cloud the main harmony from the algorithm.
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Fig. 7.3.6, HPS masks for DV3

Fig. 7.3.7, Separated spectrograms for DV3

Even though HPS was not necessary for this song, it may be surprising to see the
percussion spectrogram have some content. This can be due to the masks and filters
expecting percussive content in the first place. The mask design makes use of the
non-zero constant 𝜖, meaning that even with no percussive content, the filters will find
something to extract. The percussive signal plays a cacophonous version of the original
song, with the voice and piano parts extremely distorted. It is difficult to aurally tell the
difference between the original song and the harmonic signal, but there technically are
some harmonic components accidentally extracted.
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7.4 DV1 and DV4

Fig. 7.4.1, Spectrogram of DV1

Fig. 7.4.2, Spectrogram of DV4

DV1 is digitally generated audio that was transcribed from a physical manuscript, and
features three tenor voices and one bass voice.

DV4 is a live band performance featuring voice, drums, strings, and electric guitar that
incorporates a funk groove to support the main melody.

Once again, we see most of the content condensed in the lower area of the
spectrogram. Notice how there are fading peaks extending upwards. These can be the
product of the different instrumentation, as well as noise since we are working with a
live recording that is unfiltered.
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Fig. 7.4.3, Chromagram of DV1

Fig. 7.4.4, Chromagram of DV4

There is not much to compare with these chromagrams. They suggest that the songs
are pretty different, as the intensities don’t line up in similar places. Furthermore, DV4
lacks intensities earlier on which makes it harder to tell what is going on melodically.
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Fig. 7.4.5, DTW between DV1 and DV4 (CENS)

DTW confirms our earlier suspicion that the two songs are considerably lacking in
similarities, due to the many horizontal lines present. There are some diagonal-like
areas especially earlier on, but overall the region matching is not very good. Rather than
taking a section, the whole song will be compared against DV1.
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Fig. 7.4.6, HPS masks for DV4

Fig. 7.4.7, Separated spectrograms for DV4

The separation looks pretty good. We know that there was percussive content, and it
appears that a lot of it was filtered out from the harmonic components. However,
listening to the separated signals tells a different story. The percussive signal sounds
like it did a good job, but the harmonic signal is missing a lot of itself. The audio sounds
“static-y” or that it “crackles”, and the harmonic content is made very unclear. Our HPS
algorithm doesn’t do a great job with DV4.
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7.5 DV1 and DV5

Fig. 7.5.1, Spectrogram of DV1

Fig. 7.5.2, Spectrogram of DV5

DV1 is digitally generated audio that was transcribed from a physical manuscript, and
features three tenor voices and one bass voice.

DV5 is a professional studio recording that features a medley arrangement of 3 different
variations.

A lot of DV5’s content is towards the end of the piece where the third variation is.
Otherwise, for the most part, it shares a similar sparisity early on with DV1. DV5’s
spectrogram does lack the two horizontal bands of spectral content that is pronounced
in DV1’s spectrogram.
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Fig. 7.5.3, Chromagram of DV1

Fig. 7.5.4, Chromagram of DV5

Similarly to the spectrogram discussion, the content of DV5 is backended. There are
some intensities in similar places between DV1 and the end of DV5, suggesting that the
chromagram for the third variation of DV5 looks like a condensed version of DV1’s
chromagram.
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Fig. 7.5.5, DTW between DV1 and DV5 (CENS)

Unlike DV4, the large horizontal line isn’t a problem. DTW detects two decently
matching regions at the beginning and the end - the first and third variations. The third
was deemed the best fit to score against DV1 based on the spectrograms,
chromagrams, and DTW. In addition, an aural comparison makes it clear that the
rhythm between DV1 and DV5 is most similar in the third variation. A more similar
rhythm means less chord detection errors in general by minimizing the differences
(fluctuations) between pieces.
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Fig. 7.5.6, HPS masks for DV5

Fig. 7.5.7, Separated spectrograms for DV5

As mentioned before, the third variation features percussion, which is supported by the
separated spectrograms - the percussive spectrogram has a lot of content towards the
end of the piece. The separation worked pretty well for this piece, but was not perfect.
Although the percussion was successfully filtered out, the harmonic quality took a hit.
Unlike DV4, the melody and harmony was still recognizable.
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7.6 Table of Scores
Scores are calculated against the chords from DV1 based on (Eq. 5.4.1), taking on
values from 0 to 1. A score close to 0 means that the two songs, despite sharing the
same melody, are harmonized in entirely different ways. A score close to 1 means that
the vast majority of the chords between the two songs matched. Note that the prefiltered
and HMM scores used the compression and tuning optimizations. The decay factor 𝛼
for the chord template overtones, tuning adjustment t, prefiltering window size L, and
diagonal weighting factor w for our transition matrix are also shown.

Song Unoptimized
Score and 𝛼

Compressed + Tuned
Score and t

Prefiltered
Score and L

HMM Score and
w

DV2 0.15242

𝛼 = 0.2

0.18374

t = -10 cents

0.27455

L = 13

0.29114

w = 9

DV3 0.13081

𝛼 = 0.3

0.29147

t = -298 cents

0.29147

L = 1

0.34621

w = 2

DV4 0.08427

𝛼 = 0.5

0.09322

t = +20 cents

0.17773

L = 99

0.14933

w = 3

DV5 0.10663

𝛼 = 0.7

0.10900

t = +1 cent

0.15121

L = 27

0.16744

w = 3

We can notice significant improvements in chord detection through our optimizations
methods. Although no scores were able to be close to 1, the two filtering processes
especially pose a higher quality comparison between songs, with HMM performing
better than prefiltering most of the time.

DV2 suffers from the heavy amount of percussion and non-lyrical sounds that
harmonize the melody. Even with HPS, some of this percussion remains in the harmonic
extraction. Percussion can still provide harmonic content after all - the resonance of a
drumhead can have a note associated with it. Improving the HPS algorithm could
definitely help improve the score for this version of “Der Voghormia”.
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Despite DV3 also being a digitally generated audio file, its score isn’t as close as it
should seem even with the tuning adjustment. Comparing the manuscripts, DV3 is three
half-steps down from DV1, so one would think that a tuning adjustment should have it
score close to 1. However, the main issue lies in the underlying harmony. DV1’s melody
is supported by two tenors and a bass, whereas DV3’s melody is supported by a piano
that plays different chords compared to DV1. Of course, some essence of similarity was
still detected. Prefiltering is shown to have no impact on the score, which makes sense
as digital audio is relatively cleaner than a live recording.

DV4 had a lot of noise in the audio due to the nature of the recording. This can explain
why its scores were relatively low. Using a better recording or implementing a noise filter
could see dramatic improvements for this song, especially in terms of improving its HPS
and its scoring. The funk groove to this rendition also gives rise to harmonies that would
not be present in DV1, messing with the chord detection. The recording quality could
also explain how prefiltering had a greater impact on the score than HMM.

DV5 contains three unique imaginations of “Der Voghormia”. The rhythmic design can
change how the algorithm detects a chord change, and one version also features
percussion. The version with percussion was determined to be the most similar. Despite
being the most similar version, the rendition still contains different ornamentations and
accompaniment that impacts our chord detection.
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Chapter 8: Conclusion
As just discussed, the scores are somewhat low. This isn’t necessarily a bad thing, as it
means that there are major differences in the pieces. The important part is the accuracy
of the scores, which can be adjusted through our design. One thing that could further
improve our design is extending the chord template to seventh chords and chords from
the Armenian sharagran as discussed in chapter 2.1. A flaw in our current algorithm is
that suspensions, passing tones, and the like are not accurately detected. Although
these can easily be determined by examining a manuscript, it is not as easy to
implement through computational design. Alternative approaches to our current
methods can also be considered. For example, instead of HPS, we can instead attempt
audio segmentation through non-negative matrix factorization, or NMF. This can be
done by gradient descent, where we wish to minimize the Euclidean distance between a
templates matrix, an activations matrix, and a spectrogram-like matrix, all which detail
musical properties.

Our study could also be expanded to examine other musical aspects that aren’t directly
clear from our spectrogram/chromagram-based algorithms. Some expansions of our
analysis include beat tracking to determine tempo and structure analysis to divide the
music into sections. This can demonstrate non-harmonic differences by displaying
differences in speed and form.

Although music can sound very related to one another, there are significant underlying
differences that make them feel much different. The changes in harmony,
timbre/instrumentation, and tempo all play roles in changing the context and
interpretation of a melody. What we have found is that despite our ears picking up
similarities, the truth is that the songs can be very much different. This can be proven
pictorially, analytically, and quantitatively.

Pictorially, we saw how spectrograms and chromagrams detailed the frequency content
of a piece of music. Comparing these between songs, we can see how similar and
different they are in terms of notes and their intensities.

Analytically, we first looked at dynamic time warping to detect which regions between
two songs are most similar. We retrieved an optimal path between songs, which tells us
what the best alignment of them are. Then, we divided audio into harmonic and
percussive components, whose combination resulted in our original signal. Here is
where we discovered how much percussive influence there was in the harmony. We
then pictorially reviewed the separated spectrograms, showing us exactly how much
substance there was in the harmonic and percussive components.
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Quantitatively, a score formula was decided on and served as a measure for harmonic
similarities. The more chords that were shared between two songs, the better they
scored. Given that a similar melody was present in all of the songs, the score gave us a
measure to determine which songs were harmonically similar and which were different.

Despite the similarities and differences, the spirit and impact of the melody remains.
“Der Voghormia” continues to convey its powerful message throughout the many
contexts given by its many renditions.
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Appendix A: Reference Table

Name Artist/Composer Notes

Der_Voghormia_1

DV1

Appendix B

Gomidas Vartabed Digitally generated audio

Transcribed from physical manuscript

Three tenors, one bass

Der_Voghormia_2

DV2

Reference [10]

System of a Down Professional recording

Discography name: “Arto”

Duduk, Percussion, Vocals

Der_Voghormia_3

DV3

Appendix B

Catholicos Simeon Digitally generated audio

Transcribed from physical manuscript

Voice + Piano

Der_Voghormia_4

DV4

Reference [5]

Eileen Khatchadourian Live Performance

Band: voice, drums, strings, electric guitar

incorporates a funk groove

Der_Voghormia_5

DV5

Reference [9]

Armenia Sarkissian Professional recording

Medley arrangement of 3 different
variations
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Appendix B: Digital Manuscripts

Excerpt of the first verse from Gomidas Vartabed’s version of “Der Voghormia”
(A. Alaverdyan, personal communication, March 18, 2022)
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Digital manuscript of Simeon I’s version of “Der Voghormia”
(G. Saraydarian, personal communication, April 10, 2022)
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