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Engineering

ABSTRACT

Decarbonization of the global economy in order to limit rapid global surface temperature
growth is a critical industrial and societal challenge for the next several decades. Yet, sev-
eral sectors of the economy remain stubbornly difficult to decarbonize, such as commodity
chemicals production, cement and steel manufacturing, and synthetic fertilizer synthesis, to
name only a few. Emerging efforts to decarbonize these processes rely on electrochemical
techniques, which use emissions-free sources of electricity to drive relevant chemical reac-
tions. Much remains to be understood about the fundamentals of electrochemical kinetics,
hampering efforts to rationally engineer decarbonized electrochemical processes. This thesis
develops new physical models and applies rigorous statistical methods towards developing a
more complete understanding of electrochemical kinetics.

The physical models I develop are grounded in the framework of classical statistical
mechanics. In Chapter 2, I develop an extension to the classical Marcus kinetic theory of
electron transfer that accounts for diffusive transport effects in the electrochemical double
layer. In Chapter 3, I advance a simple physical explanation for why the reorganization
energy, a key parameter in Marcus theory, exhibits marked attenuation upon approach to
a constant potential electrode surface. Finally, in Chapter 4, I apply molecular dynamics
simulations of the electrochemical double layer (EDL) to evaluate the fidelity of continuum
theoretical predictions of electrostatic potential variation in the EDL.

The statistical methods I report in this thesis leverage relatively straightforward mathe-
matical approaches to modernize classical electrochemical analyses. In Chapter 5, I show
how applying a Bayesian analysis technique to Tafel slope analysis can correct subjective hu-
man biases in literature-reported analyses of CO2 electroreduction data. Finally, inChapter
6, I develop a new electrochemical analysis technique based on analysis of weakly nonlinear
current response to a medium-amplitude oscillating voltage signal, which can serve as a com-
plementary technique to cyclic voltammetry, a more traditional approach to electrochemical
characterization.

Thesis Supervisor: Adam P. Willard
Title: Associate Professor of Chemistry
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Chapter 1

Introduction

Human progress since the Industrial Revolution to the present day has coincided with the
steady acceleration of greenhouse gas (GHG) emissions into the Earth’s atmosphere. The
same industrial technologies and energy systems that have enabled human society to flourish,
as evinced by prodigious population growth and global improvement of living standards, have
also summoned the looming specter of a new civilization-scale threat: anthropogenic climate
change. The latest report from the Intergovernmental Panel on Climate Change suggests
that in order to limit the increase in the global average surface temperature to only 2 C
beyond pre-industrial levels, humanity must embark on an aggressive trajectory towards
net-zero GHG emissions by the year 2050.1 Simply imagining the collective action required
to effect such a trajectory is already a staggering exercise; GHG emissions are currently part
and parcel of several goods and services taken for granted in modern society: electricity to
power homes, transportation to access work opportunities, concrete and steel to construct
the material world, to mention only a few.

Despite the daunting nature of the challenge of broad-based GHG emissions reductions
across wide swaths of industry and society (“decarbonization”), there are promising signs
of progress. Electricity generation from solar and wind power in 2021 comprised 13% of US
power production2, and these GHG-free sources of power can now compete economically (on
a per-energy basis) with more traditional GHG-emitting power sources. The transportation
sector has been revolutionized by the advent of Li-ion battery powered electric vehicles,
which comprised 4.5% of new car sales in 20213, and are projected to grow their share of
American vehicle stock over the next several years. Yet, strong headwinds to decarbonization
prevail in numerous other sectors of the economy: commodity chemical production, steel and
cement manufacturing, synthetic fertilizer synthesis, maritime shipping, airborne travel, and
many others. In these sectors, the “green premium” remains stubbornly large; nascent
decarbonized technologies cannot yet compete economically with existing GHG-emitting
modes of operation.4

An abundance of research interest has been directed towards developing commercializ-
able GHG-free technologies in these high green premium applications. The modus operandi
for decarbonization in these technologies is to replace traditional GHG-emitting process en-
ergy sources (oil, natural gas, or coal) with renewable electricity distributed through the
power grid. Given this strategy, it is unsurprising that industrial decarbonization efforts in
the research and early commercialization stage leverage electrochemical techniques, which
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boast a rich scientific history. “Electrochemical technique” describes an approach that in-
volves converting electrical energy (usually conveyed by the flow of electrons in a circuit) into
chemical energy (usually stored in stable molecular bonds), or vice-versa. Fundamentally,
such techniques require establishing a contact between an electrical circuit (in the simplest
case, a wire) and a chemical system (in the simplest case, a beaker of electrolyte solution);
the physical setting of this connection is known as the electrochemical interface. The elec-
trochemical interface plays host to numerous electrochemical reactions, in which energy is
transferred between the circuit and the solution, carried by electrons which physically transit
the interface.

Studying chemical kinetics (i.e. the rates of different electrochemical reactions) at the
electrochemical interface is challenging because it hosts a confluence of varied physical ef-
fects, nearly all of which play a non-trivial role in sculpting the nature of its chemical
dynamics, especially under external driving. Understanding how these effects interact to
produce macroscopically-observable experimental behavior is of immense practical interest
for effectively engineering GHG-free approaches to tackle difficult-to-decarbonize sectors of
the economy. This thesis reports on the development of new physical models and improved
statistical methods for understanding electrochemical kinetics; these advances can mean-
ingfully improve efforts to engineer the electrochemical reactions at the heart of critical
decarbonized manufacturing technologies.

1.1 Physical Models

Matter at a driven electrochemical interface is subject to a number of unique physical con-
straints that are not present in bulk electrolyte. The interface is characterized by stark spatial
anisotropy, strong electric fields, and the persistent presence of an electronic reservoir. In
response to these constraints, molecules are forced to adopt typical configurations that are
highly atypical in the bulk; fluctuations around these configurations are also highly con-
strained. Ultimately, all of these physical effects manifest themselves in the macroscopically
observable characteristics of electrochemical interfaces, which can be probed quantitatively
with powerful experimental tools. Although experimental approaches can provide a wealth
of information about the nature of chemical dynamics at an interface, they often convolve
the numerous physical effects at play in an electrochemical setting. Physical models are the
scalpels with which we can begin to cut apart these effects; when applied judiciously, in
conjunction with experimental data, they can sort out the relative importance of different
microscopic physical phenomena. This thesis advances three major thrusts of fundamen-
tal physical modeling, each concerning the impact of molecular fluctuations on the rates of
interfacial electrochemical reactions.

In Chapter 2, we extend the classical Marcus kinetic model for an electron transfer
reaction carried out in bulk electrolyte to account for the effects of diffusive species transport
in the electrochemical double layer, a universal feature of electrochemical interfaces. We
formulate this model in a coordinate system that separately resolves both the transport
of redox species in the direction perpendicular to the electrode surface and the thermal
fluctuations of the solvent environment that drive electron transfer. This formulation enables
us to explore how the observable characteristics of electrochemical systems are influenced by
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spatial variations in the electric fields and electronic couplings that are inherent to the double-
layer, especially under conditions of low ionic strength, where screening lengths are larger.
We apply this model to highlight the fundamental interplay between two physical attributes
of interfacial electrochemistry: electrode coupling and electrostatic driving. Using a simple
model system designed to isolate this interplay we demonstrate how variations in the location
of electron transfer can lead to systematic changes to the electrochemical transfer coefficient.
We also illustrate that for certain redox reactions, differences in electrostatic driving between
products and reactants can lead to non-monotonic current voltage behavior.

Chapter 3 focuses on developing a simple physical understanding for the suppression
of the Marcus reorganization energy upon approaching an interface held at a constant po-
tential by means of an external circuit. We propose that this phenomenon, which has been
reported in experimental and simulation studies which utilize varied approaches, arises from
the physically universal impact of image charges that arise at a constant potential inter-
face. By plumbing the effects of image charges into a simple statistical field theory model,
we demonstrate that the suppression of reorganization energies upon approach to the inter-
face is a direct consequence of the polarization response of a constant potential electrode.
We contextualize these results by discussing their implications for the rates of Marcus-like
“outer–sphere” electron transfer reactions.

Finally, Chapter 4 examines the structure of electrostatic potential profiles in the elec-
trochemical double layer. These potential profiles are usually understood and contextualized
by macroscopic models of continuum electrostatics, which assume that the solvent can be
faithfully represented by a homogeneous dielectric medium, and often discount the effects
of ions of finite size. We interrogate the accuracy of these models by examining the results
of molecular dynamics simulations of aqueous electrolytes sandwiched between two metal
electrodes held at a constant potential difference. While some of the essential features of the
continuum electrostatics theories are reproduced, our results demonstrate that the molec-
ular nature of the dielectric solvent molecules and the ions comprising the electrolyte has
a marked effect on the observed electrostatic potential profiles. These results motivate the
development of improved electrostatics models that properly account for these small length
scale effects.

1.2 Statistical Methods

Modern techniques in statistics and data science can help accurately quantify the uncertainty
associated with a reported experimental result. Despite finding more use across science and
engineering in recent years, rigorous statistical techniques are still woefully underemployed
in the analysis of electrochemical data. Experimental electrochemical techniques of various
stripes are often hampered by outmoded approaches to data handling: for example, linear
fitting techniques for analysis of results reign supreme, and uncertainties in analysis results
are often incompletely quantified and reported, if at all. Since the results of such analyses
are often used to impute fundamental knowledge about a chemical mechanism or physical
phenomenon at work, it behooves electrochemical researchers to employ more sophisticated
statistical tools when analyzing and reporting results. Application of statistical prescrip-
tions to classical electrochemical analysis may sometimes involve relatively straightforward
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changes to post-experimental data analysis; in other contexts, a fundamental overhaul of the
experimental procedure may be preferable. This thesis advances two major thrusts along
these lines, proposing the use of rigorous statistical techniques when collecting and analyzing
current-voltage measurements on electrochemical systems.

In Chapter 5, we develop a Bayesian data analysis approach to estimate the Tafel slope
(a key parameter often quoted the characterize the efficacy of an electrochemical catalyst)
from experimentally-measured current-voltage data. Our approach obviates the human in-
tervention required by current literature practice for Tafel estimation, and provides robust,
distributional uncertainty estimates. Using synthetic data, we illustrate how data insuffi-
ciency can unknowingly influence current fitting approaches, and how our approach allays
these concerns. We apply our approach to conduct a comprehensive re-analysis of data from
the CO2 reduction literature. This analysis reveals no systematic preference for Tafel slopes
to cluster around certain “cardinal values” (e.g. 60 or 120 mV/decade). We hypothesize
several plausible physical explanations for this observation, and discuss the implications of
our finding for mechanistic analysis in electrochemical kinetic investigations.

Chapter 6 focuses on developing an electrochemical characterization technique that
hinges on analyzing the nonlinear current response of an electrochemical system to a small
amplitude oscillating voltage signal. Using a mathematical framework based on Fourier
analysis and time-dependent perturbation theory, we derive expressions that link the output
current signal to the input voltage signal and the underlying microscopic parameters of the
electrochemical system. We confirm the validity of our mathematical formalism by compari-
son to time-domain numerical simulations of an interfacial reaction-diffusion model. Employ-
ing standard regression tools, we analyze the results of oscillating voltage experiments on the
model ferrocyanide/ferricyanide redox couple to extract the values of the electron transfer
rate constant, electrochemical transfer coefficient, and equilibrium potential. Our technique
is a complementary tool to traditional cyclic voltammetry approaches to characterization,
and may be better suited for high-throughput experimentation applications.

1.3 References

[1] H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegŕıa,
M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, and B. Rama. Climate change
2022: Impacts, adaptation, and vulnerability. contribution of working group ii to the sixth
assessment report of the intergovernmental panel on climate change. 2022. URL https:

//report.ipcc.ch/ar6wg3/pdf/IPCC_AR6_WGIII_SummaryForPolicymakers.pdf.

[2] Tyler Hodge. New renewable power plants are reducing u.s. electricity generation from
natural gas, 2022. URL https://www.eia.gov/todayinenergy/detail.php?id=50918.

[3] Sean Tucker. Electric vehicle sales surging as overall new
car sales fall, 2022. URL https://www.kbb.com/car-news/
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Chapter 2

Expanding Marcus Theory to
Account for Transport Phenomena in
the Electrochemical Double Layer

2.1 Introduction

Electron transfer (ET) reactions at electrode-electrolyte interfaces take place within the elec-
trical double layer (EDL), a region in which many of the physical properties that influence
ET are sharply varying. 1 Traditional models of interfacial ET reactions omit these vari-
ations by using approximations that effectively “flatten” the EDL so that it is localized to
the electrode surface. In this work, we develop a model that explicitly resolves the spatial
variations in the EDL and the dynamics of species within it, enabling a detailed microscopic
investigation of EDL effects on interfacial ET. Our model illustrates a ubiquitous physical ef-
fect that emerges due to an interplay between electrostatic driving forces within the EDL and
the spatially-dependent electronic coupling that drives interfacial ET reactions. We demon-
strate that this interplay establishes an optimal location for ET, resulting in experimentally
verifiable modifications to the electrochemical transfer coefficient/Tafel slope. Furthermore,
we highlight that our simple model contains the physical effects necessary to capture and
contextualize the enigmatic non-monotonic current voltage behavior in peroxodisulfate elec-
troreduction experiments, as first observed by Frumkin1,2. Our model is sufficiently general
and easy to interpret, leaving it well-poised to offer fresh mechanistic insight into a number
of additional electrochemical phenomena.

A characteristic feature of all solid-electrolyte interfaces, the EDL forms due to the pref-
erential affinity of a specific charged species to the solid surface3. This preferential affinity
leads to a buildup of excess charge in a region of finite width, typically 1–5 nm, that decays
away from the solid surface. Across this narrow space-charge region, both the electrical po-
tential and the electronic coupling between the reactive species and the electrode can change

1The material in this chapter is reproduced in part with permission from: Limaye, A. M.; Willard, A. P.,
Modeling Interfacial Electron Transfer in the Double Layer: The Interplay between Electrode Coupling and
Electrostatic Driving. J. Phys. Chem. C 2020, 124, 2, 1352–1361. Copyright © 2019 American Chemical
Society, https://doi.org/10.1021/acs.jpcc.9b08438.

19

https://doi.org/10.1021/acs.jpcc.9b08438


dramatically. Recent experimental studies have suggested that variations inside the EDL can
exert significant influence on interfacial ET reactions.4 These studies have led to numerous
hypotheses about the role of EDL structure in interfacial ET reactions, however, evaluating
these hypotheses requires the development of models that properly account for EDL effects.

Macroscopic transport models of electrochemical systems often assume the EDL is in-
finitesimally thin. Under this assumption, interfacial ET processes can be modeled using
Marcus theory5–7, encoded as a boundary condition by the Butler-Volmer equation8, or
more sophisticated analogs9. This approach is sufficient to model some systems, but devia-
tions from experimental behavior in others have inspired a number of empirical corrections
that re-introduce EDL effects10–13. Continuum models with empirical EDL corrections are
indispensable for engineering electrochemical devices, and will continue to find use in the
quantitative interpretation of experimental results. However, reliance on post hoc EDL cor-
rections hampers the ability of these models to make mechanistic remarks on the nature of
ET reactions.

Electronic structure simulations, on the other hand, provide a great deal of information
about the energetics of small molecular clusters near electrode interfaces. Modern density
functionals can accurately predict species adsorption energies on metallic surfaces, and shed
light on the preferred molecular conformations of reactive species14. These methods are
regularly used for characterizing the thermodynamics of ET reactions, and are a useful tool
for catalyst design15. However, electronic structure simulations typically struggle to access
the characteristic length and time scales of the EDL. These scales are essential for devel-
oping a complete kinetic picture of interfacial ET processes that involve collective solvent
rearrangement (e.g. with rates determined by Marcus theory)16.

Our model operates at the intermediate length and time scales relevant to the EDL,
and provides a useful complement to the previously discussed techniques. It is inspired
by previous work applying reaction-diffusion equations to study the Anderson-Holstein ET
model in a quasi-classical limit17,18. We extend these efforts by incorporating an additional
reaction coordinate tracking the position of a reactive species inside the EDL. Inclusion of
this electrode approach coordinate allows us to directly investigate the interplay between
electrostatic and electrochemical potentials variations within the EDL. While our model
does not resolve any molecular detail or macroscopic transport phenomena, it represents
the essential physics of EDL effects on interfacial ET in a natural, understandable manner.
Under appropriate parametrization, our model reproduces experimental results, and recovers
the correct limiting behavior when EDL effects are unimportant.

In this chapter, we start by sketching a qualitative description of the physical components
of our model, followed by a presentation of its mathematical formalism. We apply this
model in two different contexts. First, we study the spatial localization of ET events in
the electroreduction of a neutral reactant at a cathode, and examine its impact on the
electrochemical transfer coefficient. Second, we study how spatial localization of ET events
depends on the applied potential in a model for peroxodisulfate electroreduction. Our results
offer a compelling microscopic explanation for the non-monotonic current-voltage behavior
observed in this system that is entirely consistent with contemporary macroscopic models.
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2.2 Smoluchowski Master Equation Model

Reaction Coordinates

Our model resolves fluctuations along two distinct coordinates relevant to electron transfer
in the EDL. The first is a Marcus coordinate, x, which tracks the collective polarization of
the local dielectric solvent environment on a reactive species. In the Marcus picture5–7,19,
the initial and final states of an ET reaction are characterized by very distinct preferred
configurations of the surrounding solvent polarization field. ET events can occur when
a fluctuation along a solvent polarization coordinate renders the two states roughly iso-
energetic16,20,21. Marcus’ key insight was the assumption that fluctuations along the solvent
coordinate obey Gaussian statistics. The validity of Gaussian statistics (equivalently, the
presence of a quadratic free energy well) in this context has been verified by numerous
simulation studies, and represents a spectacular success of linear response theory16,22,23. In
our model, x is a unitless coordinate which will house a parabolic confining free energy
representing the collective preference for a species-specific solvent polarization state.

The second is an approach coordinate, z, tracking the distance of a reactive species from
the electrode surface. Electrode approach is a relevant coordinate when studying interfacial
ET because numerous physical quantities affecting ET vary drastically with distance from the
interface. For example, screening phenomena cause the electrostatic potential to approach
its bulk value as one moves away from a constant potential interface. Additionally, the
quantum mechanical electronic coupling between the reactive species and the band orbitals
of the electrode changes significantly with z, serving to facilitate ET near an electrode
surface. A recent study incorporated an approach coordinate to examine the interaction
between interfacial ET and macroscopic transport processes in electrochemical devices24. In
contrast, our model allows us to understand the influence of microscopic property variations
and diffusive transport on interfacial ET. Hence, the approach coordinate in this model is
resolved within a length scale L representing the spatial extent of the EDL, most closely
associated with the Debye screening length of the electrolyte.

Free Energy Surfaces

The thermodynamics of our model are encoded into the free energy profiles of each reactive
species. Specifically, we express the free energy for species i on the coordinate product space
(x, z) as,

Fi(x, z) =
kreorg
2

[x− x̄i]2 + qi [ϕ(z)− ϕ(0)] + Eint,i. (2.1)

The first term represents the (Marcus) free energy cost of deforming the solvent coordinate
away from its minimum x̄i, where kreorg specifies the width of the parabola (proportional,
up to an order-one constant, to the reorganization energy). The second term represents the
electrostatic energy of a point charge of magnitude qi in an externally-applied potential ϕ(z).
The third term is an intrinsic energy offset associated with species i. This could be due to,
for example, an energetic cost for intramolecular rearrangement that accompanies an ET
event.

Equation (2.1) requires specification of an electrostatic potential profile, ϕ(z), describing
the manner in which screening attenuates the applied potential. A litany of models employing
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different assumptions about screening physics describe the functional dependence of potential
decay in the EDL8,25,26. The conclusions we draw from our model are insensitive to the details
of the potential profile, as long as it decays to its bulk value when z = L. With simplicity
in mind, we select a linear decay function to describe the potential drop across the entire
EDL,

ϕ(z) = V
[
1− z

L

]
, (2.2)

where V is the applied (electrode) potential. In our model, electrostatic interactions between
charged species and the potential are “one-way”: species motions are influenced by the
potential, but do not distort the potential profile. Physically, this corresponds to a situation
in which a reactive species is dilute in an inert supporting electrolyte, a common setup for
practical electrochemical measurements.

Dynamics

An ensemble of independent walkers initialized on the free energy surface of Eq. (2.1) and
connected to a thermal bath at inverse temperature β will evolve according to Langevin
dynamics. Instead of tracking the trajectories of the independent walkers, we can examine
the dynamics of the entire probability distribution Pi(x, z, t) as it evolves from its initial
condition. In the overdamped (Brownian) limit, the distribution is propagated in time by
the Smoluchowski diffusion operator27

L̂iPi ≡ D∇ ·
[
e−βFi∇

(
eβFiPi

)]
, (2.3)

where D is a (scalar) diffusion constant. In the form written in Eq. (2.3), the Smolu-
chowski operator implicitly obeys the fluctuation-dissipation theorem. In terms familiar to
electrochemical literature, Eq. (2.3) takes advantage of the Nernst-Einstein relation to pa-
rameterize electromigrative drift and diffusion rates by a single diffusion constant8. The
fluctuation-dissipation theorem is valid for systems at or near equilibrium; non-equilibrium
generalizations have been developed for electrochemical systems, but are beyond the scope
of this work28.

In addition to diffusing on its own free energy surface, a member of species i can also
undergo an outer-sphere ET event to transform into a different species j. This type of ET
phenomenon is inherently quantum mechanical, and involves a switch between two Born-
Oppenheimer surfaces near a diabatic crossing point. A full quantum dynamical description
of the diabatic intersection is outside the scope of this study. However, we can extract infor-
mation about the resultant occupation statistics on the two diabatic surfaces using surface
hopping (SH) dynamics. Under the SH picture, a walker can “hop” between surfaces at a
rate proportional to the electronic coupling. In terms of distributional evolution, SH dynam-
ics can be modeled with a master equation approach which includes continuous balanced
sink/source rates that transform one species to another, effectively connecting free energy
surfaces. This approach has been used heuristically29–31 and also developed rigorously17,18,32

in prior work on interfacial ET.
The sink and source rates must be set such that the stationary distribution of the dy-

namics respects the proper equilibrium (Boltzmann) distribution. There is, in principle, no

22



unique way to define these rates, but a simple expression for the sink/source rate between
surfaces i and j in accordance with prior work17,33 is,

ζi→j(x, z) =
Γij(z)

ℏ
f [Fj(x, z)− Fi(x, z)] , (2.4)

where f [·] is the Fermi distribution of the electrode. The coupling profile, Γij(z), changes
upon electrode approach, primarily because of increasing overlap between the molecular
orbitals of the redox species and the band orbitals of the electrode34. Previous studies on
ET29,34–38 and self-assembled monolayers39,40 have used the exponential form,

Γij(z) = Γ̄ij exp [−z/zdec,ij] , (2.5)

for this decay, consistent with detailed quantum mechanical calculations41–43. Prior studies
report a wide range of values for Γ̄ij and zdec,ij, suggesting that they are dependent on the
chemical details of the system. Hence, the coupling magnitude and decay rate are important
physical parameters in our model, and we thoroughly examine the effects of varying them
within reasonable values. We note that Eq. (2.5) neglects any dependence of the coupling
on the applied electrode potential, though this effect may play an important role at high
electrode surface charge density36.

Conservation of probability mass yields the following set of coupled partial differential
equations describing the dynamics of the species population distributions,

∂Pi

∂t
= L̂iPi +

∑
j ̸=i

[ζj→iPj − ζi→jPi] . (2.6)

For numerical and analytical convenience, we will non-dimensionalize Eq. (2.6) utilizing the
EDL length scale L and the diffusive timescale τ ≡ L2/D. The scaled spatial coordinate,
time, hopping rate, and propagator are given by z̃ = z/L, t̃ ≡ t/τ , ζ̃i→j ≡ τ · ζi→j, and
ˆ̃L ≡ τ · L̂, respectively. Full details on the non-dimensionalization procedure are described
in Section 7.1. From here on, we will drop all tildes, and work exclusively with the non-
dimensional variables. Taken together, these equations comprise a Smoluchowski master
equation (SME) that describes the distributional evolution of our reactive ensemble.

Boundary Conditions

Finally, we need to specify appropriate boundary conditions on Eq. (2.6). We would like
to use the SME to determine the amount of current passed from the electrode in a non-
equilibrium steady state (NESS) defined by a particular applied voltage V . The NESS
is created by maintaining a constant probability density (equivalently, a concentration) of
reactant species and a vanishing probability density of product species at the EDL boundary
(z = 1). Both probability densities are equilibrated with respect to the Marcus coordinate
x at the EDL boundary. In a real system, these concentrations could be maintained by fast
convective mass transport mechanisms (vigorous stirring, a rotating-disk electrode, etc.). It is
worth noting that many electrochemical phenomena of interest (cyclic voltammetry peaks44,
Sand’s time45, etc.) are the result of slow external mass transport processes influencing
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interfacial ET rates. Assessing the effects of external mass transfer limitations is outside
the scope of this work, but it is easy to imagine a multi-scale scheme that couples the SME
dynamics described here to a macroscopic transport model46.

We consider the electrode surface at z = 0 to be ideally blocking; it does not admit
species adsorption or intercalation, implying a no-flux boundary condition for all species.
Because of the strongly confining Marcus potential in the x coordinate, with sufficiently
large domains, it is largely immaterial whether we specify a zero-concentration or a no-
flux boundary condition at the x-boundaries. For computational convenience, we choose to
specify no-flux boundary conditions. The boundary conditions uniquely specify a steady-
state solution to Eq. (2.6), which we compute numerically. Various properties of the NESS
(current, preferred position of ET, etc.) can be computed using the numerical steady-state
solution. Computational details on our solution scheme can be found in Section 7.1.

2.3 Spatial Localization of Electron Transfer

The electrode approach coordinate z mediates a physical tradeoff that is germane to nearly
all interfacial electrochemistry. Due to the decay of the potential ϕ(z) (as modeled by Eq.
(2.2)), the driving force for ET is greatest further from the electrode. At the same time, the
electronic coupling that facilitates ET decays with z (as modeled by Eq. (2.5)), achieving
its greatest value at the electrode surface. The competition between these two effects leads
to an optimal/modal position for ET, with experimentally-measurable consequences. Here,
we evaluate these consequences with a simple model.

Model Specification

The simplest possible model system exhibiting this behavior is the case of a netural species
(species 0) being reduced in a single-electron outer-sphere reaction to produce a negatively
charged species (species 1). Due to its simplicity, this model is excellent for gaining an
intuitive understanding of the SME, and also showcases the effects of changing the Γ̄01

and zdec,01 parameters of the coupling profile. We select parameters that are in line with
typical electrochemical reactions, choosing Eint,0 = 0 eV, Eint,1 = 0.20 eV, kreorg = 1 eV,
and T = 300 K. We study the current-voltage behavior of this system by varying the
applied voltage V across a broad range of tunings of the parameters Γ̄01 and zdec,01. All
conclusions derived from this model are relatively insensitive to properly-correlated changes
in the selected parameters.

Figure 2.1 shows free energy profiles for both species when the electrode is held at V =
−0.25V. Because species 0 carries no charge, its free energy has no electrostatic contribution,
and is independent of the approach coordinate. The free energy for species 1, however,
exhibits a strong dependence on the approach coordinate. At z = 1.00, the reduced state is
favored energetically by 50meV, a driving which vanishes entirely at z = 0.80 due to decay
of the electrical potential in the EDL. Our model is equivalent to a traditional Marcus theory
description at the z = 1 spatial slice, where changing the applied potential by an amount
δV shifts the driving force felt by the reactive species by exactly δV . For z < 1, a region
not considered in traditional Marcus theory, screening causes the driving force to shift by an
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Figure 2.1: Free energy profiles computed from Eq. (2.1) for a simple two-species model.
The z = 0 and z = 1 boundaries correspond to the electrode surface and the edge of the
EDL, respectively.

amount strictly less than δV .

Mapping ET Location

Our model resolves where ET events occur along the electrode approach coordinate. In the
NESS, there will be a net current between states, which can be quantified as a function of
the Marcus coordinate and the approach coordinate by the following observable:

∆(x, z) ≡ ζ0→1P0 − ζ1→0P1∫ ∫
dxdz [ζ0→1P0 − ζ1→0P1]

. (2.7)

This observable essentially describes the flux of population between the two states occurring
at a specific point in coordinate space. In the case of traditional Marcus theory, the reaction
occurs only at the EDL boundary, implying ∆(x, z) = δ[x− x∗] · δ[z − 1], where δ[·] denotes
a Dirac delta function, and x∗ denotes the value of x where the parabolas cross. The SME
model improves on traditional Marcus theory by resolving the electrode approach coordinate.
In order to isolate the z-dependence, we marginalize over the Marcus coordinate:

∆̄(z) ≡
∫

dx ∆(x, z). (2.8)

Since the EDL thickness L sets the length scale of our model, changes in the electrostatic
screening length or the decay length of the coupling profile are equivalently described by
varying the zdec,01 parameter.

Figure 2.2 depicts the effects of changing zdec,01 on ∆(x, z) when Γ̄01 = 6 eV. Figure
2.2A illustrates that when the coupling profile decays quickly, electron transfer only occurs
within a short distance of the electrode surface. Here, the driving force is much smaller than
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A B C

Figure 2.2: Mapping the spatial localization of electron transfer. (A, B) Spatial maps of
∆(x, z) for zdec,01 = 0.01 and zdec,01 = 0.10, respectively. (C) Traces of the normalized
marginal current ∆̄(z) for values of zdec,01 ∈ [0.01, 0.40].

the applied voltage. Figure 2.2B illustrates that when the coupling profile decays gradually,
the electron transfer peaks at z-values further away from the electrode. Here, the driving
force is higher, approaching the applied voltage. Figure 2.2C depicts profiles of ∆̄(z) as a
function of the coupling decay parameter zdec,01, each independently normalized. We observe
that the width of the profiles increases as zdec,01 increases, indicating that ET is occuring
over a broader region of space. At extremely high values of zdec,01, the SME model collapses
to traditional Marcus theory, since all ET events are localized to z = 1. Physically, this
corresponds to a situation where the electrolyte screening length is considerably smaller than
a typical electronic tunneling distance. This matches expectation – traditional Marcus theory
is known to work well for pure outer-sphere interfacial electrochemistry, where electrons
tunnel from electrode to species through the entire EDL10.

Transfer Coefficients

Variation in the location of ET within the EDL can precipitate measurable changes in the
transfer coefficient α. The transfer coefficient is defined by the empirical Butler-Volmer
current-voltage relationship for a cathodic reaction8,

i = i0 exp {α · β [−eV −∆Eint]} , (2.9)

where i is the measured current density, i0 is the zero-potential (exchange) current density,
e is the fundamental charge unit, and ∆Eint ≡ Eint,1 − Eint,0. The underpinnings of Marcus
kinetics16 imply the Arrhenius relationship,

i = i0 exp [−βEa] ,

where Ea is the activation energy. Hence, the transfer coefficient α must obey the relation-
ship,

α = −
[
∂Ea

∂(eV )

]
. (2.10)

In plain terms, α quantifies the amount that an externally-applied voltage V changes the ac-
tivation energy, and hence the observed current. Up to appropriate unit scalings, the transfer
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A B

Figure 2.3: Current-voltage curves and transfer coefficient predictions from the two-surface
model. (A) Several current-voltage curves measured for different values of the coupling local-
ization parameter zdec,01 (expressed non-dimensionally as a fraction of L), with Γ̄01 = 6 eV.
(B) Transfer coefficients determined by linear fitting for a number of different coupling
strengths are shown as colored dots. The solid lines are predictions from the simple
model/approximation developed in Eq. (2.14).

coefficient is the inverse of the Tafel slope, another quantity often resolved in electrochemical
measurements. Traditional Marcus theory offers the following prediction for the dependence
of α on the applied potential (see Section 7.1 for a detailed derivation):

αMarcus =

[
1

2
+

∆Eint + eV

kreorg

]
. (2.11)

Equation (2.11) implies that at the equilibrium potential Veq = −∆Eint/e, the transfer coeffi-
cient should be exactly 1/2, then decrease with more cathodic applied potentials, eventually
becoming negative at potentials below − (kreorg + 2∆Eint) /2e, corresponding to the Marcus
inverted regime. Thus, the expectation for typical outer-sphere electrochemical reactions is
that the transfer coefficient decreases from α = 1/2 as the potential is tuned from Veq to
more negative values.

Figure 2.3 shows current-voltage measurements for several different values of the coupling
localization parameter zdec,01, holding Γ̄01 = 6 eV. Transfer coefficients are determined by
simple linear regression to the initial region of the curves, and are plotted as solid circles
in Fig. 2.3B. Counter to expectation, at low values of zdec,01, the equilibrium potential
transfer coefficients predicted by the model are significantly smaller than the Marcus theory
prediction of 1/2. The attenuated transfer coefficients are a direct consequence of the driving
force/coupling strength tradeoff in the z-coordinate. For small zdec,01 values, ET can only
occur within a short distance from the electrode surface, where the potential deviates very
little from the electrode potential (and hence the electrostatic driving force is very low). Due
to this “pinning” effect, increasing the applied potential has less of an effect on the activation
energy of the reaction compared to the case where the reaction occurs at the EDL boundary
z = 1 (see Section 7.1 for schematic illustration).

We can devise a simple approximation for the functional dependence of the transfer
coefficient α on zdec,01 by leveraging information contained in the net current profile ∆(x, z).
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Given that ET occurs at any value of z, the activation energy is now a function of the
approach coordinate, with a profile denoted as Ea(z). The average activation energy ⟨Ea⟩
can be determined by integrating Ea(z) against the empirical marginal of the net current,

⟨Ea⟩ =
∫
dz ∆̄(z)Ea(z)∫

dz ∆̄(z)
. (2.12)

Equations (2.1) and (2.2) yield the following expression (see Section 7.1 for complete deriva-
tion) for the activation energy profile,

Ea(z) =
kreorg
2

[
1

2
+

∆Eint + eV z

kreorg

]2
. (2.13)

Assuming that the net current profile is roughly independent of the applied potential, ap-
plying the Leibniz rule yields,

α = −
∫

dz ˜̄∆(z) ·
[

dEa

d(eV )

]
, (2.14)

where ˜̄∆(z) denotes ∆̄(z) normalized by its own integral. The solid lines in Fig. 2.3B are
constructed from numerical evaluation of Eq. (2.14), and match the qualitative behavior
of the measured α quite well. However, Eq. (2.14) assumes a limit of small coupling,
resulting in systematic underestimation of the measured α values. The non-adiabatic hopping
expression used in the SME model enables transitions away from the parabola crossing, thus
increasing the measured α value. When this smearing effect is reduced by increasing kreorg,
the predictions from Eq. (2.14) achieve quantitative agreement with the measured α values
from the SME model (see Section 7.1).

Implications

The variation of the preferred electron transfer position in z with changes in the zdec,01
parameter has implications for the analysis of current-voltage behavior for outer-sphere ET
reactions. Current-voltage curves are typically fit to Eq. (2.9), which predicts an exponential
dependence between the the observed current and the applied potential. This relationship
can only hold if all ET events occur at z = 1, and should fail spectacularly for ET events
that are localized much closer to the interface, where the reaction potential is much lower in
magnitude than the applied potential.

A correction to the Butler-Volmer equation developed by Frumkin accounts for this effect
by adjusting the driving force to the mean potential at the most likely transition state (TS)
position (termed “psi-prime” in the original literature)47,48. Frumkin originally set the psi-
prime potential to the potential at the outer Helmholtz plane (OHP). Disagreements with
experimental results inspired a number of studies that expanded on Frumkin’s formalism,
but they all preserve the assumption that the most likely reaction site is at the OHP49–52.
We note that there is no a priori basis to assume that the most likely position for the ET
event is exactly at the OHP. We demonstrate that this position can be fuzzy, and intricately
dependent on molecular details of the redox species (coupling profile with an electrode), as
well as on electrolyte characteristics (screening length).
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If the typical position of ET is within the region of potential decay in the EDL, then
there are additional implications for the measured transfer coefficient. In particular, we show
that transfer coefficients can be significantly lower than the traditional Marcus prediction
of 1/2 for reactions that occur inside the EDL. Previous studies53–57 have speculated about
the effects of changing reaction site position on the transfer coefficient; the SME model pre-
sented here confirms this speculation in a quantitative manner. This phenomenon provides
a plausible explanation for the unusually high Tafel slopes observed for certain outer-sphere
reactions such as ammonia oxidation58. Even when the typical position of ET is outside
the EDL, as is common for high ionic strength electrolytes with small screening lengths, L,
experiments performed at a series of decreasing ionic strengths can provide additional infor-
mation about the system. At a particular ionic strength, the transfer coefficient suppression
described here will arise; since the variation of L with ionic strength is well-known27, one
can use this “onset length” to infer the spatial extent of the electronic coupling profile for
the original system, a quantity which is difficult to access in any other manner.

2.4 Potential-Dependent Spatial Localization of Elec-

tron Transfer

The model discussed in the previous section involves the reduction of a neutral species,
which is completely unresponsive to electrostatic forces in the EDL. In this case, we find
empirically that the optimal position for ET is roughly independent of the applied potential.
However, it is often the case that both the oxidized and reduced species are ionic, and
thus both responsive to electrostatic forces in the EDL. Since these forces depend on the
applied potential, changes in the potential can change the modal position of ET, yielding
consequences which could be measured experimentally.

Background

The effects of electrostatic repulsion from an electrode on current-voltage behavior are often
treated using Frumkin’s correction to the Butler-Volmer equation. In textbook form8, the
correction reads,

i0,obs = exp [β (eα− qion)ϕ(zrxn)] · i0,true, (2.15)

where qion is the charge carried by the ionic reactant species, zrxn is the most likely position
of the reaction, and ϕ(zrxn) is the electrostatic potential at this position. Equation (2.15)
packages the driving force correction mentioned previously with another correction describing
the attenuation (magnification) of the species concentration due to electrostatic repulsion
(attraction). To understand the implications of this equation, consider the electroreduction
of an anionic species at a cathodic applied potential. If zrxn is far from the electrode (near
the EDL boundary), the Frumkin correction will be small, because ϕ(zrxn) should be nearly
zero (the bulk potential), leading to roughly unperturbed Butler-Volmer current-voltage
behavior. On the other hand, if zrxn is very close to the electrode, the Frumkin correction
shuts off all current at cathodic voltages, because electrostatic repulsion of the anion depletes
its concentration at zrxn. In all cases, if zrxn is assumed constant over a linear voltage sweep,
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Eq. (2.15) predicts monotonic current-voltage behavior – depending on the value of qion, the
current could either uniformly increase or decrease over the sweep.

Frumkin and others did a number of experiments2,47,59 on the electroreduction of the
peroxodisulfate anion in the following cathodic half-reaction:

S2O
2−

8 + 2 e− −−→ 2 SO 2−
4 . (2.16)

Unexpectedly, experiments consistently observe non-monotonic “S”-shaped current-voltage
behavior. When tuning from low to high cathodic voltages, the current increases and goes
through a maximum, at which point it begins to descend steeply and then goes through
a minimum, and then continues to increase for the rest of the scan range (see Figure 1 of
Frumkin et al. 2). This unusual behavior is only observed in a handful of systems that feature
the reduction of a large anionic species carrying a high charge1. The prevailing physical
explanation for this phenomenon relies on electrostatic forces in the EDL2. The initial
increasing current branch occurs at cathodic potentials below the potential of zero charge
(pzc) of the electrode. In this voltage regime, the electrode carries a slightly positive surface
charge, which interacts favorably with the anionic reactive species; the current increases with
voltage according to Eq. (2.9). The subsequent current decrease occurs upon crossing the
pzc, when the negatively charged surface generates electrostatic repulsion that attenuates the
current in the manner described by Eq. (2.15). The current minimum and following increase
at even more cathodic potentials has proven difficult to rationalize experimentally52.

Much of the literature on peroxodisulfate electroreduction focuses on explaining the de-
pendence of specific features in the “S”-shaped current-voltage curves on the concentrations
of different spectator ions60–62. Our model resolves the “S”-shape without invoking molec-
ular detail, suggesting that distance-dependent electrostatic driving and coupling alone are
sufficient to explain this anomalous behavior.

Model Specification

The peroxodisulfate electroreduction reaction maps naturally to a two-surface model that
includes an anionic species (species 0) carrying charge q0 = −1 and another anionic species
(species 1) carrying charge q1 = −2. For convenience, we assign parameter values Eint,0 =
0 eV, Eint,1 = 0.05 eV, kreorg = 1 eV, and T = 300 K. For these fixed parameter values, we
study current-voltage behavior over a range of zdec,01 values.

Changing zdec,01 could correspond to altering the electrostatic screening length in the
solution or modifying the species/surface chemistry, altering the spatial localization of the
electronic coupling. Our model does not resolve the presence of specific ions in the EDL
other than the redox-active species, implying that the “pzc” in our model coincides with the
point of zero applied potential, V = 0. Figure 2.4 depicts the species free energy profiles
when the electrode is held at V = −0.25V. Both species carry a charge, and hence both
free energy surfaces depend on the approach coordinate.

Understanding S-Shaped Current-Voltage Behavior

Figure 2.5A depicts current-voltage curves over a range of values of zdec,01. Our model
recovers “S”-shaped current-voltage behavior as observed by Frumkin for a limited range of
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Figure 2.4: Free energy profiles computed from Eq. (2.1) for a model mapping to the
peroxodisulfate reduction system in Eq. (2.16)

values of zdec,01 ∈ [0.06, 0.09]. On either side of this region, we see very different asymptotic
behavior. For zdec,01 > 0.09, electrostatic repulsion effects contribute only a small kink in
the current-voltage behavior. Figure 2.5B confirms that in this case, the current continues
to increase exponentially at more cathodic potentials, flattening only due to the effects of
the avoided inverted region in Marcus kinetics at an electrode. For zdec,01 < 0.06, on the
other hand, electrostatic repulsion effects strongly influence the current-voltage behavior,
leading to negative transfer coefficients that eventually approach zero at far more cathodic
potentials.

This behavior can be rationalized in the context of Eq. (2.15) by assuming that zrxn
depends on the applied potential. This dependence is not considered in the original Frumkin
treatment, and is a unique consequence of the interplay between electrostatic repulsion and
distance dependent driving/coupling. Since the SME model gives us direct access to spatial
map of ET events, we can define

⟨z⟩rxn ≡
∫

dz · z · ˜̄∆(z), (2.17)

where ⟨z⟩rxn denotes the mean position for ET. Unlike in the case of the neutral reactant
species, Fig. 2.5C demonstrates that ⟨z⟩rxn is indeed a function of the applied potential.
Cathodic of the pzc, ⟨z⟩rxn increases with applied voltage for all values of zdec,01, since the
reactant is repelled from the negatively-charged electrode surface. However, due to distance-
dependent coupling, the rate of increase depends strongly on the value of zdec,01. At high
zdec,01, the ET reaction is facile even far away from the electrode, so ⟨z⟩rxn quickly reaches the
EDL boundary, where electrostatic repulsion is minimized and driving force is maximized.
For low zdec,01, the ET reaction is very sluggish at large z, so ⟨z⟩rxn creeps away from the
electrode surface slowly. The effects of changing ⟨z⟩rxn as a function of applied potential are
observed clearly in Fig. 2.5D, which tracks ϕ (⟨z⟩rxn) as a function of the applied potential.

31



A

C D

B

Figure 2.5: Results from model mapped to peroxodisulfate reduction. (A) Current-voltage
curves computed for a family of models with different zdec,01 values. (B) Same data as in top
left, but the current is plotted on a logarithmic scale, enabling the simple identification of
regions with positive and negative Tafel slopes. (C) Traces of the most likely site for electron
transfer, determined from the mean value of ∆(x, z), defined in Eq. (2.7) as a function of
the applied potential, for various values of zdec,01. (D) Traces of the electrostatic potential at
the most likely site for electron transfer, a value that plays an operative role in the Frumkin
correction in Eq. (2.15).
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Non-monotonic current-voltage behavior occurs when ϕ (⟨z⟩rxn) goes through a minimum,
demarcating a switch between an increasing and decreasing Frumkin correction.

Implications

Results from the SME model suggest that the striking “S”-shaped behavior observed in the
peroxodisulfate electroreduction experiments is best contextualized on a continuum parame-
terized by zdec,01, a dimensionless quantity relating the length scales for electronic tunneling
and electrostatic screening. When the tunneling length scale is much larger than the screen-
ing length scale, the Frumkin correction is negligible, consistent with experimental results
for reactions involving electron tunneling through the entire EDL10,63. When the tunneling
length scale is much smaller than the screening length scale, electrostatic repulsion domi-
nates and shuts off ET, since the reactant cannot approach close enough to couple to the
band orbitals of the electrode. When the two scales are delicately balanced, electrostatic
repulsion effects initially reduce the current, until the potential driving force is large enough
to drive ET entirely at the EDL boundary. The microscopic insight provided by the SME
model is consistent with modern work on peroxodisulfate reduction, which has argued that
the current increase at highly cathodic potentials is due to broadening of the “reaction zone”
over which ET may occur52. In fact, prior studies have speculated that the most likely tran-
sition state position for peroxodisulfate reduction can deviate from the OHP position as a
function of applied potential10,63–65. Our model lends rigorous theoretical support toward
this hypothesis.

Admittedly, the model developed here omits many pieces of physics that are known to
operate on the length and time scales associated with the EDL. Certain physical effects
are genuinely outside the scope of our model. Reactions that proceed through specifically
adsorbed intermediates, or result in intercalation of a reactant species into the electrode
generally do not proceed through electron tunneling, and hence are poorly described by
our outer-sphere formalism. When such physics is dominant, numerous other models35,66–68

are more appropriate for interpreting experimental results. Other effects can be naturally
incorporated into our formalism, given a sufficient avenue (e.g. interface-sensitive experi-
ments or high-level quantum mechanical calculations) towards accurate parameterization.
For example, ion approach toward an interface often requires shedding its solvation shell(s),
which can carry a heavy free energy penalty.68–70 On the other hand, image-charge effects
at conducting interfaces are known to stabilize ionic species at an electrode surface23,71, and
also renormalize the characteristic price for fluctuations along the Marcus coordinate71,72.
Both of these effects are highly sensitive to the chemical details of the system, yet can be
included by appropriately parameterized modifications to Eq. (2.1). While we choose to iso-
late and intuitively understand the more universal competition between electrostatic driving
and electronic coupling in this work, the aforementioned modifications are fertile ground for
future work.
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Chapter 3

Understanding Attenuated Marcus
Reorganization Energies in the
Electrochemical Double Layer

3.1 Introduction

Electrodes facilitate outer-sphere electrochemical reactions by providing a tunable source of
thermodynamic bias and by shaping the microscopic electric field fluctuations that mediate
electron transfer (ET) kinetics.1 The electrode’s contribution to these fluctuations quite
literally reflects that of the adjacent electrolyte solution, due to image charge effects. In
this manuscript, we investigate the general role of image charges in modifying the electro-
static potential distributions experienced by species in the vicinity of an electrode-electrolyte
interface. We use molecular dynamics (MD) simulations with constant potential boundary
conditions to demonstrate the simultaneous narrowing of Marcus parabola widths and lower-
ing of reorganization energies as reactive species approach the electrode within the electrolyte
screening length. We construct a Gaussian field theory to show that these simultaneous ef-
fects are consequences of the constant potential boundary imposed by the electrode, and that
they can be intuitively framed in terms of image charge effects. These results thus provide
a physical basis for understanding the position dependent Marcus rates that have been pre-
viously observed in simulation studies,1–3 and a theoretical prescription for including these
general effects in the parameters of microkinetic models.

When an interfacial electrochemical reaction involves the tunneling of an electron be-
tween the electrode and a weakly coupled reactant, its rate can depend on the thermal
fluctuations of the electrolyte solution. Hush and Chidsey formalized this dependence by
extending Marcus’ theory for homogeneous ET4–6 to an interfacial setting, which includes
the contribution of the continuum electronic states of the electrodes.7–11 Like Marcus the-
ory, Marcus-Hush-Chidsey theory formulates the rate of outer-sphere electron transfer as a
function of the solvent reorganization energy, λ, which represents the free energy penalty of

1The material in this chapter is reproduced in part with permission from: Limaye, A. M.; Ding, W.;
Willard, A. P., Understanding attenuated solvent reorganization energies near electrode interfaces. J. Chem.
Phys. 2020, 152, 114706. Copyright © 2020 Authors, https://doi.org/10.1063/5.0003428.
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a “vertical” ET event that preserves the nuclear configuration of the reactive species and
its solvent environment. Larger values of λ are typically associated with larger activation
barriers and thus lower ET rates.

Physical and electrostatic constraints imposed by an electrode can cause λ to vary as a
function of redox species position relative to the electrode surface. This position dependence
can be studied by analyzing the results of all-atom MD simulations of model electrode-
electrolyte systems. For instance, λ can be computed by sampling the equilibrium statistics
of the vertical energy gap coordinate, ∆E, for redox species that reside at specific distances
from the electrode surface.12–17 The distributions that govern these statistics are related to
free energy surfaces of the oxidized or reduced diabatic states, and take the form of Marcus
parabolas when the statistics of ∆E are Gaussian.

For a given redox reaction, the value of λ is primarily determined by fluctuations of
the surrounding molecular environment, however, it can be significantly modified by the
polarization response of a nearby electrode. For a perfectly conducting planar electrode,
this polarization response can be conveniently represented with image charges, whereby
every charge in the electrolyte is reflected with opposite sign across a mirror plane along
the electrode surface. One implication of the image charge picture is that the electrostatic
fluctuations that originate from the electrode inherit their statistics from the electrolyte
solution. However, the image plane imposes a constraint on these fluctuations, i.e., that
they are equal and opposite, resulting in general and predictable physical consequences near
the electrode.

Previous simulation and experimental studies of simple redox ions in the vicinity of an
electrolyte-electrolyte interface have found λ to decrease monotonically as ions approach
the electrode surface.2,3,13,18 This decrease has been attributed to the influence of image
charge interactions,13 however, the specific physical details of this influence have yet to be
fully formalized. With simulation data alone it is challenging to disentangle the interplay
between the direct interaction of a redox ion with its own image charge and the indirect
interactions of a redox ion with the image charge of other electrolyte species. Here, we
combine MD simulation with theoretical modeling to generate new physical insight into the
role of electrode polarization in mediating interfacial ET rates.

In the following section, we present the results of MD simulations in which we have
computed the dependence of λ on the distance of the redox species from the electrode. We
decompose this dependence into separate position dependent components and discuss their
physical implications. Then, in Sec. 3.3, we present a statistical field theory that captures
the effect of the electrode in constraining the potential fluctuations at the electrochemical
interface.

3.2 Electrode-Electrolyte Molecular Dynamics Simu-

lations

3.2.1 Background

Marcus theory provides an intuitive theoretical framework for describing the influence of
thermal environmental fluctuations on outer-sphere interfacial ET rates. It describes ET
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as a transition between two weakly coupled diabatic states: one in which a target redox
species is in an oxidized state, and the other in which it is in a reduced state. The reaction
coordinate for this redox transition is typically chosen to be the vertical energy gap,

∆E({rN}) = Ered({rN})− Eox({rN}), (3.1)

where {rN} denotes the configuration of all nuclei in the system, and Ered({rN}) and
Eox({rN}) are the potential energies of the reduced and oxidized states, respectively (in
identical nuclear configurations). Thermal fluctuations lead to variations in ∆E, with ther-
modynamic consequences that can be quantified in terms of free energy surfaces – often
referred to as Marcus parabolas – as illustrated in Fig. 3.1A.

If the electronic coupling, Hredox, between the states is small, then the rate of ET is given
by the standard Marcus formula,

kET =
2π

ℏ
|Hredox|2

1√
4πkBTλ

e−β∆A‡
, (3.2)

where kBT is the Boltzmann constant multiplied by temperature, β = (kBT )
−1, and ℏ is

the reduced Planck constant. If the statistics of ∆E are Gaussian, then ∆A‡, the activation
energy, is given by,

∆A‡ =
(λ+∆A0)2

4λ
, (3.3)

where ∆A0 is the reaction free energy (see Fig. 3.1A). In this expression, the reorganization
energy, λ, is related to the width of the Marcus parabolas through the linear response
relationship,

λ =
βσ2[∆Eredox]

2
=
⟨∆Ered⟩ − ⟨∆Eox⟩

2
, (3.4)

where σ2[∆Eredox] denotes the variance of the equilibrium probability distribution for ∆E,
and ⟨∆Ered⟩ and ⟨∆Eox⟩ are the average values of ∆E computed from the reduced or oxidized
states, respectively. The second equality reflects a constraint that arises from assuming linear
response, implying that ∆E obeys Gaussian statistics, which also leads to the property
σ2[∆Eredox] = σ2[∆Ered] = σ2[∆Eox]. Gaussian statistics are expected when ∆E arises from
numerous long-range charge-charge and dipole-charge interactions, typical of outer-sphere
ET in an electrolyte medium.19

Equation 3.2 can be generalized to the case of interfacial ET (i.e., where an electrode
acts as an electron donor/acceptor) by integration over the Fermi distribution of electronic
states within the electrode. This integration yields the Marcus-Hush-Chidsey (MHC) ex-
pression,20–23

k
(MHC)
ET =

4π2

ℏ
|Hredox|2

1√
4πkBTλ

∫ ∞

−∞
dϵ

g (ϵ)

1 + eβϵ
· exp

[
−β∆A‡(ϵ, µel)

]
, (3.5)

where ϵ is the energy of the transferred electron relative to the Fermi level of the electrode,
g(ϵ) is the density of electronic states (DOS) in the electrode, and ∆A‡(ϵ, µel) denotes the
activation energy, now expressed as a function of the the electronic energy and applied
potential as,

∆A‡(ϵ, µel) =
[λ− (ϵ+∆q · µel)]

2

4λ
, (3.6)
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Figure 3.1: (a) Marcus curves for diabatic energy surfaces (black solid curves) of a redox
reaction, with states red and ox representing the different location of the transferred charge.
The red dotted lines trace out the avoided crossing in the adiabatic representation, with
Hredox being the electronic coupling between the two diabatic states. (b) For a redox reaction
in an electrochemical cell, a double-electrode configuration is employed, and the charge ∆q is
transferred between the redox species (blue and red spheres) and the polarizable electrodes
(gray spheres).

where µel denotes the applied electrochemical potential, and ∆q is the amount of transferred
charge.

3.2.2 Computing reorganization energies from constant potential
MD simulation

As Eqs. 3.2 and 3.5 reveal, the quantity λ plays a central role in setting the ET rate for
weakly coupled condensed phase ET reactions. In the context of MD simulation, λ can be
determined based on the equilibrium statistics of ∆E as sampled from the oxidized and
reduced states. These statistics are quantified by the probability distributions Pox(∆E) and
Pred(∆E), respectively, which relate to the free energy functions, Aox(∆E) and Ared(∆E),
through the relationship,

Pα(∆E) ∝ exp [−βAα(∆E)] . (3.7)

For simulations of interfacial redox reactions, care must be taken when computing Pox(∆E)
and Pred(∆E), for example, to account for the effects of the electrode potential and to avoid
artifacts from interactions with charges in neighboring periodic replicas. In this subsection,
we formulate an expression for computing λ from simulations of a generic two-electrode
system, such as illustrated in Fig. 3.1B. This expression properly accounts for the fact
that the electrode, assumed to be an ideal conductor, can re-polarize immediately upon ET,
whereas the surrounding solvent environment cannot.
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To begin, we consider an electrolyte solution containing a single redox-active particle
confined between two planar electrodes that are each held at fixed electrochemical potential,
and are assumed to be ideally conducting. The system is periodically replicated in the two
dimensions parallel to the electrode surface. We assume that the electrodes are in contact
with an infinite reservoir of electrons with an electrochemical potential, µel, electrostatically
neutral (i.e., held at the potential of zero charge) and can polarize infinitely quickly in re-
sponse to changes in the charge distribution of the electrolyte. We describe the electrode
boundaries with the method of image charges by explicitly representing the reflections of
all electrolyte particles in the electrode domain as oppositely signed point charges. In sys-
tems with parallel planar electrodes, the electrolyte system and its image charges can be
represented with a series of infinite periodic images in the direction perpendicular to the
electrodes (i.e., the z-axis), as illustrated in Fig. 3.2.24–27

The primary contribution to the vertical energy gap, ∆E, for a redox reaction at a fixed
nuclear configuration is the change of charge on the redox species and its associated influence
on electrode polarization (e.g., image charge interactions). Usually, ∆E is calculated by
evaluating the difference in energy of the system before and after changing the charge states
of the involved particles without modifying the nuclei configuration.12 Previous studies used
a particle switching scheme,2,13,28 whereby an ion in a system configuration sampled from
its equilibrium distribution is replaced by its redox counterpart, and the constant potential
boundary condition is re-established without updating the nuclear configuration. The energy
of the new system is evaluated, and the difference from that of the original system is taken
to be ∆E.

When computing ∆E for a periodically replicated system, one must take care not to
introduce artifacts due to electrostatic interactions across periodic replicas. In interfacial
systems, electrode polarization can give rise to such artifacts. In Fig. 3.2, we present
a sketch of the simulation system, its image region, and their tiled replicas under periodic
boundary conditions (PBCs),24,27 as well as how the system changes in the oxidation reaction
αred → αox + ∆q. In the reduced diabatic state (top part), the electrolyte (solid black
boundaries) contains one reduced ion of interest (filled red circle) and few other electrolyte
particles (filled black circles). Based on method of image charges, the conducting interface
creates an image region (solid red boundaries) containing reflections of the particles in the
electrolyte with equal magnitude but oppositely signed point charges (open circles). In
accordance with prior work, the constant potential condition is implemented using standard
PBC replicates of the electrolyte and image domain in the z direction (dashed black and red
boundaries).24 This generates an infinite series of the reduced ion and its image charges in
the z direction.26 In addition, PBCs are also applied in the x and y directions to simulate
the effectively infinite electrode surface in the xy plane, creating tiled replicas (dashed blue
boundaries) of the series of primary and image boxes.

When the redox ion in the electrolyte is oxidized (filled blue triangle in bottom part of
Fig. 3.2), its image charges change as well (open blue triangles), since the electrode re-
polarizes instantly. Because the periodicity in the z direction is due to the double-interface
image reflection, all the corresponding charges in this direction must also change accordingly.
However, we do not wish to modify the charge state of the ions in the x and y replicas, i.e.,
the red circles in the dashed blue boxes must remain the same. This is to ensure that
only one oxidation reaction occurs, whereas changing the charges in the x and y replicas
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Figure 3.2: The change in charge states on relevant ions and images during an oxidation
reaction: αred → αox + ∆q. Primary box (solid black boundaries) includes the redox ion α
(filled red circle for reduced state, filled blue triangle for oxidized state) and other electrolyte
particles (filled black circles). Image box (solid red boundaries) contains the reflections of the
particles from the primary box (open symbols). Replica boxes due to PBC are represented
by dashed boundaries.
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would imply that many oxidation reactions occur simultaneously, in a spuriously correlated
fashion. Despite this fact, we do not expect significant error from this spurious correlation for
simulations conducted in large primary boxes, because the electrostatic interactions between
the switched ion and its x and y replicas are attenuated significantly over large distances by
ionic and dielectric screening.

Based on this scheme, we obtain a new equation for ∆E (see Sec. 7.2 for a detailed
derivation). As mentioned previously, only Coulombic interactions involving the redox ion
need to be considered. By using the correct charges as illustrated in Fig. 3.2, the vertical
energy gap of a particle α in the two states can be expressed as,

∆Ered(r
N) = ∆q

[
ϕred +

1

2
∆q · f(z, L)

]
− IEred +∆q · µel, (3.8a)

∆Eox(r
N) = ∆q

[
ϕox −

1

2
∆q · f(z, L)

]
− EAox +∆q · µel, (3.8b)

where ∆q is the amount of charge being transferred, µel is the applied electrochemical po-
tential, IEred is the ionization energy of the reduced species, and EAox is the electron affinity
of the oxidized species. The Madelung potential, ϕ, is defined for the reduced species as,

ϕred =
∑
j ̸=red

qj
|rj − rred|

, (3.9)

where the summation is taken over all other charges in the system (including image charges),
qj is the charge of particle j, and |rj − rred| is the distance between particle j and the
reduced species. The correction function f(z, L) is a deterministic function of the relative
z-position of the redox species in the electrochemical cell that captures the double-image
plane effect for electrodes separated by a distance L. The energy of this image effect is
proportional to the Coulombic interaction energy between a point charge of ∆q and two bare
electrodes,1,13 which, as shown by Cox and Geissler,26 can be described by a conditionally-
convergent infinite series of image charges. This charge series can be tamed by an alternating
resummation (see Sec. 7.2) to glean a physically interpretable result, and to yield an exact
expression for the correction function,

f(z, L) =
1

2L

[
− 1

d1d2
+ 2γ + ψ(1 + d1) + ψ(1 + d2)

]
(3.10)

where d1 = z/L and d2 = 1−d1 are the non-dimensional distances from the redox particle to
each of the two electrodes, ψ(x) = Γ′(x)/Γ(x) is the digamma function, Γ(x) is the Gamma
function, and γ = −ψ(1) ≈ 0.577216 is the Euler–Mascheroni constant.

By combining Eqs. 3.4 and 3.8, we find that the reorganization energy can be expressed
as a function of the z position of the redox species:

λ =
1

2
∆q [⟨ϕred⟩ − ⟨ϕox⟩+∆q · f(z, L)] , (3.11)

where ⟨ϕred⟩ and ⟨ϕox⟩ are the average values of the Madelung potential evaluated for the
redox species at position z when it is in the reduced and oxidized states, respectively. Notably,
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by exploiting the relationship between ∆E and ϕ for point charge systems (see Sec. 7.2), λ
can also be described by the width of the Madelung potential distribution, as,

λ =
β(∆q)2

2
· σ2[ϕredox]. (3.12)

This equation provides a prescription for computing the reorganization energy from the
statistics of ϕ evaluated for the redox species. These statistics can be readily sampled from
MD simulation data gathered at constant potential.

To evaluate the dependence of λ on the position relative to the electrode surface, we
evaluate Eqns. 3.4 and 3.12 for a series of equilibrium simulations. Our simulations include
an electrolyte solution in implicit solvent confined between two parallel constant potential
electrodes. The results of the simulation are presented in the following subsection, and the
simulation details are summarized below and fully described in Section 7.2.

3.2.3 Simulations results

The simulations are performed using the classical MD simulator LAMMPS,29 with the Con-
stant Potential package for simulating the electrolyte-electrode interactions.1,30–32 A simula-
tion box of size 80×80×100 (x×y×z) is set up in the non-dimensional Lennard-Jones (LJ)
style unit system as implemented in LAMMPS to maximize generality. Two parallel planar
electrodes, each consisting of 3 layers of electrode atoms, are placed at z = 10 and z = 90,
effectively creating a region of size 80 × 80 × 80 in between. A group of positive and neg-
ative monovalent ions are confined in this region, and interact with the electrodes via both
short-range LJ potential and electrostatic potential. The simulations provide equilibrium
statistics of these ions for computing ∆E of redox reactions: the oxidization of negative ions
and the reduction of positive ions. The results are discussed below.

Figure 3.3(a) contains a plot of A(∆E), as computed from Eq. 3.7 for the reduced
and oxidized species at different z−positions. Our results highlight that A(∆E) is roughly
parabolic for both the reduced and oxidized species, indicating that ∆E obeys Gaussian
statistics. We find that the minimum and width of the parabolas depend on the z-position
of the redox species. Specifically, Ared(∆E) and Aox(∆E) are more closely spaced and
narrower for redox species nearer to the electrode, as illustrated in Fig. 3.3B. The combined
effect of these z-dependent changes in A(∆E) is that the reorganization energy λ decreases
as redox species approach the electrode. This result, plotted in Fig. 3.3C, is consistent with
the finding of previous studies.2,13,33

Figure 3.3(b) presents the profile of such position dependence by displaying the means
and variances of the two ∆E distributions for the two charge states, respectively. It is
clear that ⟨∆Ered⟩ and ⟨∆Eox⟩ are symmetric to each other around zero, as expected for
the thermodynamically undriven oxidation and reduction reactions. In addition, the ob-
servations that σ2[∆Ered] = σ2[∆Eox] (red triangles overlaying blue dashed line) and that
σ2 = kBT (⟨∆Ered⟩ − ⟨∆Eox⟩) (see Sec. 7.2) validate the linear response assumption that
underlies the application of Marcus theory. More importantly, due to Eq. 3.12, the profile
of σ2[∆Ered/ox] also represents the position-dependent profile of the reorganization energy λ,
which exhibits maximum value near the cell center, and gradually reduces when approaching
the electrode interfaces (see Fig. 3.3C, black line).
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Figure 3.3: (a) Marcus parabolas for the reduced (⟨∆E⟩ > 0) and oxidized (⟨∆E⟩ < 0)
states at different z values, where z = 35 is near the center of the cell, while z = 5 is near
the electrode interface. (b) The position dependent profile of the mean and variance of ∆E.
Note that σ2[∆Ered] (red triangles) overlays σ2[∆Eox] (blue dashed line). (c) The position
dependent profile of λ (black line), which can be decomposed into the term of (⟨ϕred⟩−⟨ϕox⟩)
in Eq. 3.11 (red line) and the correction function f(z, L) (blue line). Note: all quantities
are in reduced non-dimensional Lennard-Jones system, which is unitless.

To evaluate the role of image charge interactions on λ(z), we decompose it into its separate
z-dependent contributions. Specifically, Fig. 3.3C depicts each term in Eq. 3.12 separately.
We observe that the decrease in λ as redox species approach the electrode results from a
balance between two competing effects. The contribution from local changes in electrostatic
potential, (1/2)∆q(⟨ϕred⟩ − ⟨ϕox⟩) (red line), increases for species approaching the interface,
while remaining the same for species at a distance more than about 5 length units away
from either electrode. This effect, which contains the indirect influence of the image charges
of other species, is localized to the interface. However, this increase is offset by a more
significant decrease in the direct image charge term, (1/2)(∆q)2f(z, L).

While the sign of ⟨ϕred/ox⟩ is determined by the particle’s environment and its own charge
state, the function f(z, L) is always negative with larger magnitude near the electrode in-
terface (blue line in Fig. 3.3C). From Eq. 3.10, the position-dependence of f(z, L) is de-
termined by three functions of distance: (d1d2)

−1, ψ(1 + d1), and ψ(1 + d2). Note that
by definition, 0 ≤ d1/2 ≤ 1 and d1 + d2 = 1. Hence, the value of two digamma functions
only ranges from ψ(1) ≈ −0.577216 to ψ(2) ≈ 0.422784, and the sum of the two functions
does not contribute significantly to f(z, L). The general shape of f(z, L) in fact is from
the function of inverse distance from the interface (1/d1 or 1/d2), and because of the dou-
ble layer, it is symmetric around the center of the cell. Ultimately, the summation of the
two quantities, (1/2)∆q(⟨ϕred⟩− ⟨ϕox⟩) and (1/2)(∆q)2 · f(z, L), results in the concave-down
position-dependent profile of λ (black line).

50



3.3 A Statistical Field Theory Accounting for Constant-

Potential Boundaries

The simulation results presented in Sec. 3.2 reveal that the Marcus reorganization energy, λ,
is significantly attenuated in the vicinity of an electrode. This attenuation is a consequence
of image charge effects arising from the constant potential condition that is imposed by
a planar, ideally conducting boundary. In this section, we demonstrate the generality of
this λ-attenuation by considering a statistical field theory of the charge density fluctuations
constrained by idealized constant potential boundaries. By dispensing with atomistic details,
we effectively isolate the fundamental role of the constant potential boundary, and image
charge interactions in particular, in modifying ET rates near an electrochemical interface.

Following a general approach for formulating a field theory,34 we represent the charge dis-
tribution of an electrolyte solution that is confined between two constant potential electrodes
in terms of a continuous charge density field, ρ(z), along the longitudinal direction of the cell
(z-direction). This density field represents the spatial distribution of charge coarse grained
over molecular length scales and resolved along a single axis perpendicular to the electrode
surfaces. Atoms and molecules are not explicitly resolved under the field representation, so
the reorganization energy is instead determined based on the fluctuations in the associated
electrostatic potential field, φ(z). In the limit that the electrolyte does not exhibit strong
electrostatic correlations, the relationship between φ(z) and ρ(z) can be formulated from
Debye-Hückel theory. This theory is encoded in the modified charge-potential relationship,

∇2φ− 4πκ2φ = −4πρ, (3.13)

where the electrolyte screening length (Debye length) λD = κ−1 identifies the characteris-
tic distance beyond which the long-range electrostatic force exerted by a single charge is
attenuated due to the effects of screening caused by other mobile charges.

3.3.1 Treating constant potential boundaries

We define the spatial coordinate of our density field using non-dimensionalized units of the
inter-electrode spacing, so that one electrode is located at position z = 0 and the other
at z = 1. We focus on the statistics of the charge density, ρ(z), and the effect of these
fluctuations on the potential, φ(z), as given by Eq. 3.13. Assuming that the electrodes are
each maintained at their potential of zero charge (PZC), the constant potential condition
imposes a constraint on the potential field at the electrode surfaces, such that φ(0) = φ(1) =
0, and on the charge density field, such that it obeys a mirror symmetry across the planes
of z = 0 and z = 1.

One way to satisfy these constraints is to encode them into the basis functions with which
we study the fields ρ(z) and φ(z). In this work, we utilize a basis that includes a “mirror
domain” (z ∈ [−1, 0]), and includes only functions that are odd upon reflection across z = 0,
automatically enforcing φ(0) = 0, as well as satisfying φ(1) = 0 through periodicity of the
domain of −1 < z < 1. These functions also ensure the natural emergence of image charge
interactions within the charge density field. The Fourier sine series with integer frequencies
comprises a complete basis for arbitrary odd functions g that also satisfy the constraint
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(a) (b)

Figure 3.4: (a) Basis functions used in Fourier sine series expansion for the charge density
and electrostatic potential field variables. (b) Individually normalized variance profiles com-
puted from analytical evaluation of Eq. 3.21 (see Sec. 7.2 for an expression in terms of
evaluable special functions), showing variance attenuation near the electrode interface, as
well as plateau behavior upon exceeding a distance of a screening length away from the elec-
trode interface. Values of λD are made non-dimensional by the electrode separation scale, L.

g(0) = g(1) = 0. These basis functions have the form,

ψq(z) = sin(qz), (3.14)

where q ≡ nπ, with n ∈ Z+. These functions are orthogonal with respect to the ℓ2 inner
product, allowing us to define the Fourier sine transform ĝ(q) of a function g(z),

g(z) =
∞∑
q=1

ĝ(q)ψq(z). (3.15)

Figure 3.4(a) depicts a handful of the functions in the basis set, labeled by their frequencies.
It is apparent that these functions satisfy the requisite boundary conditions. In this Fourier
sine basis, the charge-potential relationship of Eq. 3.13 simplifies considerably, yielding,(

q2 + 4πκ2
)
φ̂(q) = 4πρ̂(q). (3.16)

3.3.2 Model formulation and results

We model the fluctuating charge density field as a point-wise Gaussian field with statistics
given by,

P [ρ(z);σρ] ∝ exp

[
− 1

2σ2
ρ

·
∫ 1

−1

dz ρ(z)2
]
, (3.17)
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where σρ parameterizes the variance of charge density fluctuations. This parameter depends
on the implicit coarse-graining length scale and also encodes a significant amount of infor-
mation about the physical and chemical details of the system being modeled. We assume
that σρ is independent of the approach coordinate, z, an assumption which is supported
by empirical results from simulations (see Sec. 7.2). This parameter can, in principle, be
tuned to describe a specific electrochemical system, however, in the results presented below
we choose σρ arbitrarily in order to highlight the general qualitative predictions of this field
theoretic model.

In Fourier space, the distribution in Eq. 3.17 factorizes over the frequencies to yield,

P [ρ̂(q);σρ] ∝
∞∏
q=1

exp

[
− ρ̂(q)

2

2σ2
ρ

]
. (3.18)

In plain terms, every frequency component of the charge density is drawn independently from
a Gaussian of equal variance. Under Debye-Hückel theory, the induced distribution over the
electrostatic potential is independent, but not identically distributed over the frequency
components. By applying Eq. 3.16, we arrive at an expression for the potential distribution
in Fourier space,

P [φ̂(q)] ∝
∞∏
q=1

exp

[
−(q2 + 4πκ2)

2

32π2σ2
ρ

· φ̂(q)2
]
, (3.19)

which can be inverted to solve for the real space potential field. According to Eq. 3.19,
the frequency components of the potential are random variables (RVs) drawn from normal
distributions with different variances. Using N [µ, σ2] to denote a normal RV with mean µ
and variance σ2, we have

φ(z) =
∞∑
q=1

N
[
0,

16π2σ2
ρ

(q2 + 4πκ2)2

]
· sin(qz) (3.20)

Employing standard Gaussian scaling rules and exploiting the fact that variances of inde-
pendent RVs simply sum,

σ2
φ (z) =

16σ2
ρ

π2

∞∑
n=1

sin2(nπz)

(n2 + 4κ2/π)2
(3.21)

An analytical result for this summation can be expressed in terms of non-elementary func-
tions.

Figure 3.4(b) depicts traces of the electrostatic potential variance profile from Eq. 3.21
as a function of the approach coordinate z. Qualitatively, the variance approaches zero at
the cell boundaries z = 0 and z = 1, and plateaus to a constant value within a few screening
lengths λD from the electrode surface. This behavior is consistent with physical intuition; at
the level of Debye-Hückel theory, electrostatic correlations are exponentially attenuated for
distances greater than the screening length, implying that the “bulk” region of the cell (2λ ≤
z ≤ 1 − 2λ) hardly feels the influence of the constant potential electrode. However, within
the region of strong electrostatic influence from the electrode, the image plane constraint
serves to significantly attenuate the range of possible electrostatic fluctuations.
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The results presented in Sections 3.2 and 3.3 demonstrate the generality of reorganization
energy attenuation near a constant potential electrode. The decomposition scheme presented
in Section 3.2 indicates that the effect of image charges supported by the electrodes plays a
dominant role in determining the vertical energy gap, and hence the reorganization energy,
as one approaches the electrode surface. This observation explains why numerous studies
with different representations of intermolecular forces between simulated particles all find
a systematic attenuation of the reorganization energy with electrode approach. In Section
3.3, we build a mathematical framework based on a fluctuating field theory, entirely free
of molecular detail, to show that this attenuation is purely a consequence of the constant
potential boundary conditions. These results help build intuition about the manner in which
an ideal electrode sculpts the landscape of electrostatic fluctuations near the interface.
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Chapter 4

Electrostatic Screening in Moderately
Concentrated Aqueous Electrolyte is
Concentration-Independent and
Microscopically Heterogeneous

4.1 Introduction

Electrochemical systems operate by maintaining an electrochemical potential difference be-
tween two electrodes of opposite polarity, typically separated by a liquid electrolyte. Un-
der applied potential, the electrode surfaces typically acquire a surface charge, resulting
in electric fields that exert directional forces on the solvent molecules and ions comprising
the electrolyte. These fields elicit an electrolyte “screening response” characterized by the
buildup of ionic counter-charge near the electrode, which serves to localize the electric field
within a microscopically thin layer of electrolyte immediately adjacent to the electrodes.
Commonly known as the electrochemical double-layer (EDL), this narrow interfacial region
features stark spatial anisotropy and potent local electric fields, and serves as the backdrop
for several interesting phenomena in interfacial electrochemistry.

Theoretical descriptions of electrostatic screening phenomena in the EDL, which focus on
predicting spatially-resolved profiles of the electrostatic potential and the ionic concentration,
have a rich history. Helmholtz and Perrin advanced the first mathematical model for the
EDL, and assumed that the electrode surface charge was perfectly neutralized by a flat plane
of ions residing at the “outer Helmholtz plane” (OHP), separated from the electrode by a
distance ℓOHP. Under this assumption, the EDL is a microscopic parallel-plate capacitor,
with a constant electric field between the electrode and the OHP, and no variation in the
potential from the OHP onwards. A simple thermodynamic argument should convince us
of the limitations of the Helmholtz picture: the plane–of–ions configuration carries a steep
entropic penalty, and hence is un-representative of a typical ionic density in the EDL.

In fact, more typical electrostatic screening configurations must feature a diffuse cloud of
neutralizing ionic density. The first successful description of potential variations in the EDL
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that accounts for such entropic effects begins by applying the Poisson-Boltzmann equation,

∇2ψ =
c0 · e
ϵ · ϵ0

∑
k

zk exp [−βezkψ] , (4.1)

where ψ is the electrostatic potential, c0 is the bulk ion concentration, e is the fundamental
charge, β is the thermodynamic inverse temperature, and ϵ0 and ϵ are the continuum dielec-
tric permittivity and the permittivity of free space, respectively. The summation runs over
all ionic components of the solution, indexed by k, where zk represents the charge number of
the ion (e.g. zk = +1 for a monovalent cation). We can make analytical progress by lineariz-
ing the exponential term in Eq. (4.1), formally only valid for small electrolyte concentrations
and modest applied potentials, and leveraging the fact that the salt formula is electroneutral
(i.e.

∑
k zk = 0). The resultant mathematical description predicts an exponentially decaying

electrostatic potential,
ψ(z) = ψ0 exp [−z/ℓD] , (4.2)

where z is the separation from the electrode interface, ψ0 is the applied potential, and
ℓD ∝ c

−1/2
ion is the Debye screening length of the electrolyte solution.

Debye-Hückel (DH) theory, as described in Eq. (4.2), is applied widely when considering
screening phenomena in the EDL, especially when they are of relevance to interpreting
the results of electrochemical experiments. DH theory is particularly attractive because it
advances a simple physical picture of mobile-charge screening: a single tagged charge is
surrounded by a diffuse “cloud” of mobile ionic counter-charges with a characteristic length
scale identified by the Debye length ℓD. This results in a monotonically decreasing potential
profile in the EDL. While physically intuitive, the theory for potential decay presented in
Eq. (4.2) involves a number of strong assumptions, many of which may be violated in
electrochemically-relevant electrolyte systems.

First, DH theory also assumes that the ions in the electrolyte can be modeled as point
charges that occupy no volume. Second, DH theory assumes that the solvent environment
can be faithfully represented by a dielectric continuum described by a single dielectric per-
mittivity ϵ, neglecting both the finite size of solvent molecules as well as possible correlations
between their positions and orientations. Although these assumptions are accurate on contin-
uum lengthscales, they can result in qualitatively inaccurate predictions on the lengthscales
relevant to the EDL in moderately concentrated electrolytes. For example, in 1M monova-
lent aqueous electrolyte, the Debye length ℓD = 3 Å, which is comparable to the hydrated
radius of a single solvated ion; at this scale, the intuitive physical picture of a diffuse ionic
charge screening cloud of radius ℓD around a tagged charge becomes untenable. Additionally,
DH theory does not model the strong molecular interactions between a planar electrode sur-
face and solvent dipoles, which have been shown to exhibit strong orientational preferences
within a few molecular layers of an electrode surface. Some of the issues associated with the
second assumption are remedied by the so-called Stern correction, which posits that there
is a molecular layer (the “Stern layer”) of specifically adsorbed, oriented solvent dipoles at
the electrode surface. Including the Stern correction in the theory developed in Eq. (4.2)
results in an electrostatic potential profile that decays linearly in the Stern layer, and then
exponentially out to the bulk. Figure 4.1 depicts schematic descriptions of potential decay
as described by each of the theories discussed.
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A B C

Figure 4.1: Schematic electrical potential profiles in the EDL predicted by (A) Helmholtz-
Perrin theory, (B) DH theory, and (C) DH theory with the Stern correction, where the
dashed section represents the linear decay in the Stern layer.

Here, we seek to evaluate how these continuum theories of electrostatic screening in
the EDL compare with results from constant potential molecular dynamics simulations of
moderately concentrated aqueous electrolytes. Since molecular dynamics simulations fully
represent the finite size effects and molecular correlations of and between solvent molecules
and ions, they are well positioned to examine the pitfalls of the assumptions advanced in
deriving the electrostatic screening theories summarized in Fig. 4.1.

4.2 Results

We study the nature of electrostatic screening in the EDL using molecular dynamics (MD)
simulations of aqueous NaCl electrolytes at various different concentrations sandwiched be-
tween two Pt electrodes. Figure 4.2A depicts a representative snapshot of the molecular
simulation cell, with the z direction oriented normal to the planar electrode surface. In
order to simulate connection to an external circuit that holds the electrodes at a constant
potential difference, we use the well-developed fluctuating charges method to adjust the
point charges on the electrode atoms at each timestep in order to obey a constant potential
difference of ∆V = 1 V between the two electrodes. The simulation box has dimensions
3.1 nm× 3.1 nm× 9.3 nm, and is periodically replicated in the directions lateral to the elec-
trode surface. This is a large enough simulation cell to host two non-overlapping EDLs
at each of the electrodes, with a well-formed bulk in the central region. The intermolec-
ular potential, or “force field” describing the water molecules is the standard TIP3P force
field, whereas the ion and Pt atom interaction parameters are taken from studies reported
in the literature. The results presented here are obviously dependent on the details of the
intermolecular interaction potentials, but the qualitative screening structures reported here
should be broadly conserved between force fields.

In order to compare the results of molecular simulations to the continuum theories sum-
marized in Fig. 4.1, we must develop a way to compute the electrostatic potential profile
from a single simulation snapshot. This is not an immediately straightforward problem, since
the Poisson equation in three dimensions is a partial differential equation that is generally
solved on a regular grid, whereas the atomic positions in an MD simulation are unconstrained
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Figure 4.2: Poisson potential computations from molecular dynamics simulations. (A) Rep-
resentative snapshot of a molecular dynamics simulation cell, depicting an aqueous 1M NaCl
electrolyte between two Pt electrodes. The left electrode is the cathode (held at Vleft = −0.5
V), and the right electrode is the anode (held at Vright = −0.5 V). By convention, the z
axis runs perpendicular to the electrode surfaces. (B) Traces of the equilibrium-averaged,
plane-averaged Poisson potential ψ̄(z), estimated from molecular dynamics simulations run
at various electrolyte salt concentrations. (C) Traces of ψ̄(z) zoomed in on the cathode
and anode, highlighting oscillatory and concentration independent short distance screening
behavior.

relative to the grid points. In order to address this, we use a proportional spreading scheme,
described in full detail in Sec. 7.3, to interpolate the charges at each timestep from the atom
centers to the points on a regular grid. Once the charges are spread onto a regular grid, we
can compute the instantaneous Poisson potential ψ(x, y, z) in a single molecular simulation
snapshot; to achieve correspondence with a one-dimensional continuum electrostatics theory,
we define the plane-averaged Poisson potential,

ψ̄(z) ≡ 1

Lx · Ly

∫ Lx

0

∫ Ly

0

dxdy ψ(x, y, z), (4.3)

where Lx and Ly are the length of the electrolyte region in the x and y directions, respectively.
Finally, we run the molecular simulations for a total sampling time of 10 ns, and compute a
time average of the plane-averaged Poisson potential ψ̄(z) using simulation snapshots saved
every 100 ps.

Figure 4.2B depicts traces of the plane-averaged Poisson potential for several different
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electrolyte ion concentrations (represented by different colors of the thick lines). The thin
black lines represent the planes of constant potential imposed in the MD simulation, where
the voltages are pinned at Vleft = −0.5 and Vright = +0.5 V. It is apparent that the elec-
trostatic screening structure is well-established over the course of the simulations, with two
distinct EDL regions confined within 10-15 Åof the electrode surfaces, and a bulk region with
a flat electrostatic potential profile. Figure 4.2C shows zoomed-in snapshots of the EDLs
at the left and right electrodes, highlighting the electrostatic potential variation in these
regions. Although the plane-averaged potential profiles exhibit electrostatic potential decay
from the electrode surface to the bulk, in line with continuum descriptions of electrostatic
screening, they are strikingly dissimilar from the profiles depicted in Fig. 4.1 in a couple
different ways. First, the profiles are markedly non-monotonic, exhibiting relatively large
oscillations in the local electrostatic potential on the scale of ∆V , the potential difference
between the two electrodes. Second, and perhaps most strikingly, the electrostatic potential
profiles show little variation over the entire range of ion concentrations studied here, instead
of becoming more compact at higher concentrations, as predicted by DH theory.

The marked deviations from DH behavior in Fig. 4.2 raise the question: in what manner
is DH-like screening observed in the MD simulation results presented here, if at all? Since
DH theory treats the solvent molecules as a dielectric continuum, one way in which we may
be able to recover signatures of DH screening in the MD simulations is if we focus solely on
the positional statistics of the ions. We can achieve this by constructing an ionic screening
function,

S(z) = qelec +

∫ z

0

dsρ̄ion(s), (4.4)

where ρ̄ion(z) is the plane-averaged ionic charge density, obtained by applying the propor-
tional spreading procedure described in Sec. 7.3 only to the atom-centered charges on the
ionic species, and neglecting the solvent molecules entirely. Intuitively, the screening func-
tion S(z) tallies the amount of electrode charge that remains unscreened by the mobile ionic
charges; it takes the value qelec at the electrode surface z = 0, and vanishes upon reaching
the bulk region of the simulation cell.

Figure 4.3A depicts traces of the normalized screening function S̄(z) ≡ S(z)/S(0) for
various different concentrations (represented by differently colored traces). According to
DH screening theory, this normalized screening function should decay from unity to zero
in an exponential manner, with associated length scale ℓD, the Debye length. The profiles
in Fig. 4.3A show signatures of the DH screening behavior; the profiles are more diffuse
at lower salt concentrations, and analysis of the length scale by exponential fitting shows
that the decay length is roughly ℓD for each ion concentration. Although the ionic statistics
are in line with expectations from DH theory, the molecular dynamics simulations provide
ample evidence that the solvent molecules play an important role in electrostatic screening.
Figure 4.3B shows traces of the bulk-normalized concentration of water molecules (solid lines)
and sodium cations (dashed lines) in the simulation for the different ionic concentrations
examined. At all concentrations examined, the first density peak of the water molecules
appears closer to the left electrode than the first density peak of the cations. Additionally,
the height of the peak, normalized to the bulk density of water, is roughly independent of
the ion concentration, indicating that the water molecules are able to screen the electrode
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Figure 4.3: Signatures of ionic and dipolar screening behavior. (A) Traces of the normalized
screening function, S(z)/S(0) at various electrolyte concentrations, reflecting concentration
dependent ionic screening behavior. (B) Traces of the local concentration of water molecules
(solid lines) and Na+ cations (dashed lines), normalized by their respective bulk concen-
trations, at various electrolyte concentrations. (C, inset) Schematic depicting the selected
convention for water orientation computations; the molecular orientation vector (black) bi-
sects the water molecule, pointing from oxygen to hydrogen, while the surface normal vec-
tor (green) points normal to the cathode. Negative values of cos θint. indicate hydrogens-
facing-cathode configurations. (C ) Orientational distributions of water molecules situated
at z = 6.6 Å(solid lines), z = 7.4 Å(dot-dashed lines), and in the bulk (dashed lines) at
various electrolyte concentrations.

charge at distances closer than the typical cation approaches the electrode.
Finally, Fig. 4.3C shows orientational distributions of the water molecules at different

values of the z coordinate (represented by solid, dashed, and dash-dotted lines), for various
different ion concentrations (represented by different colors). The orientational order param-
eter, cos θint, captures the degree of alignment of the molecular dipole of a water molecule
with the surface normal of the electrode, as represented schematically in the inset of Fig.
4.3C. For cos θint = −1, the hydrogen atoms in the water molecule are pointed towards
the electrode, whereas cos θint = +1 represents an orientation where the oxygen atoms are
pointed towards the electrode. Since the left electrode is the cathode (held at a negative
potential), it stands to reason that the water molecules closest to the electrode show a dis-
tinct preference for orientations where the water dipole is aligned with the field, which decays
rapidly into an un-oriented distribution in the bulk. Corresponding plots for the orientations
at the anode are included in Sec. 7.3.
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Chapter 5

Examining Cardinal Tafel Slope
Preferences in CO2 Reduction
Electrocatalysis with Bayesian Data
Analysis

5.1 Introduction

Modern tools in data science provide the capability to reduce or outright eliminate sources
of human bias in the analysis and interpretation of experimental measurements. 1 Despite
the wide availability of these tools, many communities continue to rely on more primitive
and bias-prone methods of data analysis. The calculation of Tafel slopes through linear
least squares fitting is one prominent example. Here, we present a robust Bayesian approach
to analyzing electrochemical current-voltage measurements that (1) eliminates the need to
manually exclude points in limiting-current regimes, and (2) provides a well-defined measure
of uncertainty in the fitting parameters (e.g. the Tafel slope). By applying this approach
to a large set of literature data, we identify a systematic but unjustified tendency for the
assignment of Tafel slopes to specific “cardinal” values. This finding highlights the role that
modern data science can play in uncovering and eliminating hidden sources of bias that exist
within various scientific communities.

Current-voltage measurements are a fundamental characterization tool for electrochem-
ical systems, as they report on the propensity for system response when pushed out of
equilibrium by a thermodynamic driving force. In the context of electrochemical catalysis,
current-voltage behavior is often summarized by the Tafel slope, a parameter that quantifies
the amount of electrochemical driving force required to produce a logarithmic increase in the
observed current.1 Nearly all studies that develop a novel electrochemical catalyst report a
Tafel slope, and it is considered an important figure of merit when comparing catalysts. In

1The material in this chapter is reproduced in part with permission from: Limaye, A. M.; Zeng, J.
S.; Willard, A. P.; Manthiram, K., Bayesian data analysis reveals no preference for cardinal Tafel slopes
in CO2 reduction electrocatalysis. Nat. Commun. 2021, 12, 703. Copyright © 2021 Authors, https:
//doi.org/10.1038/s41467-021-20924-y.
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principle, the Tafel slope contains information about the microscopic mechanism underlying
the operation of a catalyst. The elementary kinetic steps of idealized reaction mechanisms
imply a strong tendency for Tafel slopes to exhibit certain “cardinal values”2,3, and these
cardinal values are frequently referenced in the kinetic analysis of catalytic materials. How-
ever, several notable studies have reported Tafel slopes that differ significantly from their
predicted cardinal values.4,5 Because the kinetic steps associated with these cardinal values
are ubiquitous, there is a tendency to interpret Tafel slopes with off-cardinal values as if
they represent a truly cardinal value that has been altered by sources of experimental error,
despite relatively incomplete error quantification.6–12 The flaw in this interpretive strategy
is that it relies on the validity of idealizing assumptions about the underlying kinetic mech-
anism, and does not account for the numerous ways in which deviations from ideality can
influence the Tafel slope.13

Despite the scientific and engineering relevance of the Tafel slope, current literature ap-
proaches for estimating this parameter from measured current-voltage data require subjective
human intervention, and are susceptible to numerous sources of systematic error. Subjective
considerations in the fitting procedure (namely, the manual demarcation of a linear fit re-
gion) make it impossible to determine, in a truly unbiased manner, the intrinsic distribution
of Tafel slopes, and whether they cluster around cardinal values. Additionally, human inter-
ventions in the fitting procedure enable researcher bias, both inadvertent and intentional, to
influence a quantitative catalyst benchmark. Such biases are difficult to recognize without
re-examining primary source data.

To address these concerns, we advance an alternative Bayesian data analysis method
that enables unbiased Tafel slope estimation. This method provides robust, distributional
uncertainty quantification, elucidating the credible range of Tafel slope values consistent
with the measured data. Because our method eliminates subjectivity in the fitting process,
it enables us to fairly evaluate the prevalence of cardinal Tafel slopes within re-analyzed
literature data.

In this manuscript, we begin by describing common literature practices for assigning Tafel
slopes from experimental current-voltage data. Subsequently, we develop the mathematical
formalism behind our Bayesian approach to Tafel slope estimation, and discuss its associated
benefits compared to existing approaches. Using synthetic data, we illustrate the benefits of
our approach, and show how it can be combined with iterative data acquisition procedures
to systematically reduce uncertainty in Tafel slope estimates. Finally, we apply our approach
to a large set of CO2 reduction catalyst data from the literature, and compare our Tafel slope
estimates to the reported values. We find that clustering of reported Tafel slopes around
cardinal values is unjustified, and likely reflects systemic bias across the field. We conclude
by hypothesizing several plausible sources of mechanistic nonideality and estimating their
ability to modify Tafel slopes from their cardinal values.
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5.2 Results

5.2.1 Tafel Slopes in Electrocatalysis

Electrochemical systems operate by converting the energy stored in chemical bonds into
electrical work (or vice-versa) by means of electron transport through an external circuit.
The electron transport process originates at an electrochemical interface, where a portion
of the external circuit (an electrode) is contacted with a chemical system (a reactive elec-
trolyte solution) in the presence of a catalyst. Catalyzed interfacial electron transfer serves
to inextricably link the electrical dynamics of the external circuit to the chemical dynamics
of the electrolyte. Electrochemical characterization techniques exploit this linkage, using the
voltage and current measured in the external circuit to report on the thermodynamic driving
forces and nonequilibrium currents in the chemical system. The simplest possible electro-
chemical experiment involves setting the applied potential at an electrode and measuring
the resultant electrical current (or vice-versa), generating a current-voltage trace.

Several phenomena can influence the shape of current-voltage traces. For example, the
electronic properties of the electrode, the chemical identity of the catalyst material, the
transport characteristics of reactive species in the electrolyte, and myriad other factors all
play an important role in structuring current-voltage behavior.14 When characterizing the
performance of a catalyst material, we are most interested in the kinetic control regime of a
current-voltage trace, where the measured current reports directly on the intrinsic rate of a
chemical reaction at the interface. Under kinetic control, the current is generally expected
to follow an exponential asymptotic dependence on the overpotential η, which quantifies
the difference between the applied electrode potential and the equilibrium potential for the
chemical reaction.1 In the high |η| limit (specifically, |η| ≫ kBT/e, the thermal voltage), the
logarithm of the kinetic current, ikin, should depend linearly on the applied potential. The
(inverse) slope of this relationship is termed the Tafel slope,

Tafel Slope ≡ dη

d log10 ikin

∣∣∣∣
|η| ≫ kBT/e

, (5.1)

and is generally reported in units of mV/decade.
The Tafel slope is an important parameter to judge the performance of a catalyst because

it quantifies the amount of additional applied potential required to observe a logarithmic in-
crease in the measured current. Hence, studies that develop a novel electrocatalytic material
often measure current-voltage data in the kinetic control regime, and then use this data to
estimate a Tafel slope for their catalytic system. Experimental limitations impose a number
of practical constraints on the Tafel slope estimation procedure. First, for several electro-
chemical reactions (CO2 reduction, N2 reduction, organic electrosynthesis, etc.), accurately
determining a kinetic current for a specific reaction requires product quantification after a
constant potential/current hold. Due to throughput limitations for quantification techniques,
the Tafel slope often must be estimated from just a handful of data points (roughly, 3–10).
Another important practical constraint arises from limiting current phenomena observed in
many electrocatalytic systems. At sufficiently high overpotentials, the reaction rate exceeds
the rate of another physical process required for the reaction to proceed. In this regime, the
system is no longer under kinetic control, and the measured current plateaus to a limiting
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Figure 5.1: Schematic comparison of the traditional approach to Tafel fitting and the new
approach we describe in this manuscript. Starting from raw current-voltage data on the left,
the current literature approach begins with manual identification of a linear Tafel region on
the plot. The rest of the data is discarded, and a linear fit to the Tafel region yields a Tafel
slope, with an associated uncertainty corresponding to the standard error of the ordinary
least squares (OLS) estimator. In addition to this quantified uncertainty, an additional
unquantified source of uncertainty arises from manual selection of a Tafel region on the plot.
The new approach described here considers all of the data in the context of a nonlinear model
that smoothly interpolates between the traditional Tafel region and a plateaued region (e.g.,
due to mass transport limitations). Our approach uses a Monte Carlo method to sample from
the Bayes posterior distribution over the parameters of the model, yielding a probabilistic
distribution over Tafel slopes that are consistent with the measured data.

current, becoming independent of the applied voltage.15 Most commonly, limiting currents in
CO2 reduction systems arise from diffusive transport limitations in the electrolyte, although
several other physical reasons for plateau currents have been hypothesized and investigated
in the literature.16–20 Consequently, experimentally measured Tafel data usually starts out
linear, but curves sub-linearly at sufficiently high overpotentials.

In the face of these practical limitations, studies in the literature use a relatively standard
protocol for estimating the Tafel slope, depicted schematically in the upper half of Fig. 5.1.
First, a researcher must manually identify an ad hoc cutoff between a linear, kinetically-
controlled regime (the Tafel regime) and a limiting current (plateau) regime.21 All data points
in the plateau regime are subsequently discarded, and a Tafel slope is fitted by ordinary least
squares (OLS) linear regression to the data in the Tafel regime. The OLS procedure offers
a prescription for extracting the standard error of the Tafel slope; this standard error is
sometimes used to construct a confidence interval for the Tafel slope estimate.22,23
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We believe the current standard literature practice bears several drawbacks. First and
foremost, manual identification of a cutoff between the kinetic and limiting-current regimes
introduces subjectivity into Tafel slope estimation, potentially incorporating undesirable hu-
man influence into the quantification of an important metric for electrocatalyst performance.
Second, reporting the error associated with a linear fit to a manually selected set of data
points systematically under-estimates the actual error associated with estimating a Tafel
slope from a small number of data points. The OLS slope standard error quantifies the
uncertainty associated with the linear fit to a given set of data, but there is an additional
unquantified error associated with selection of the linear regime. Third and finally, ad hoc se-
lection of a regime cutoff can introduce a systematic bias in the Tafel slope, since the final few
points of the kinetic regime will suffer at least some effects from limiting current curvature,
causing the current at these points to deviate slightly from the true kinetic current.

5.2.2 Bayesian Data Analysis Algorithm

Our approach for Tafel slope estimation seeks to obviate manual demarcation between the
linear and plateau regions in current voltage data. To this end, we choose to fit all current-
voltage data measured in a Tafel experiment to a phenomenological model that smoothly
interpolates between the kinetic control and plateau regimes. The model reads,

1

i(η)
=

1

ilim
+

1

i0 exp
[
m−1

T · |η|
] , (5.2)

where i(η) is the measured current density as a function of overpotential. The unknown
parameters in the model are ilim, the limiting current density, i0, the exchange current
density, and m−1

T , the inverse Tafel slope. The mathematical structure of Eq. (5.2) can be
shown to arise, for example, when the surface concentration of a redox-active species changes
with applied overpotential due to diffusive transport effects. Alternatively, Eq. (5.2) could be
motivated by interpreting the presence of limiting-current phenomena as an additional series
resistance to current in the equivalent circuit for an electrochemical cell.1 Most generally,
this model can describe any physical phenomenon that imposes a “speed limit” on the passed
current.24

Typically, the parameters in a model like Eq. (5.2) would be adjusted to achieve optimal
agreement between the model and experimental data. Despite the nonlinearity inherent to
the model, numerical optimization schemes for determining the optimal set of parameters are
mature and well-studied. Here, we employ a different approach based on Bayesian sampling
that can quantify not only an optimal set of parameters, but also a distribution over the likely
values of the model parameters given the available experimental data.25 Before carrying out
any current-voltage measurements, we generally have at least some idea of the reasonable
values of parameters in Eq. (5.2). For example, one would be very leery of a Tafel slope
mT /∈ [101, 103] mV/decade, and one can use tabulated values of a species diffusion coefficient
and an estimate of the cell boundary layer thickness to compute a ballpark estimate of a
limiting current, ilim, arising from diffusive transport limitations.1,24 For a general set of
parameters θ, this knowledge is encoded in a prior distribution over the parameters p(θ).
Upon observing some data y, we can compute an updated posterior distribution p(θ|y) (the
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probability of the parameters given the observed data) using Bayes’ rule,26

p(θ|y) = p(y|θ)× p(θ)
p(y)

. (5.3)

The likelihood p(y|θ) is supplied by a model like Eq. (5.2), in conjunction with an assumption
about the distribution over the error at each data point. Here, we assume the error at each
data point is independently normally distributed with a standard deviation σ = 0.10 log
units, though our approach is flexible in this respect (see Sec. 7.4 for sensitivity analysis
with respect to the σ parameter).

Despite the fact that the partition function p(y) is an unknown constant, Eq. (5.3) yields
a prescription for sampling from the posterior distribution over parameters p(θ|y). Briefly,
one can use a Markov chain Monte Carlo sampling scheme27 to glean several parameter
samples from the posterior distribution, which are expected to concentrate in density around
the optimal values of the parameters (additional detail on implementation can be found in
Sec. 7.4). As depicted in the lower panel of Fig. 5.1, this Bayesian posterior sampling
technique reveals both the optimal values of the model parameters and a distributional
uncertainty estimate over their values, accounting for all sources of uncertainty in the model.
If we truly want to collapse this distributional information to a single value of the parameter,
say for quoting a Tafel slope associated with a catalyst, we can compute,

⟨θ⟩ ≡
∫

dθ · θ · p(θ|y), (5.4)

where ⟨θ⟩ is termed the mean a posteriori (MAP) parameter estimate. When the poste-
rior distribution p(θ|y) is strongly peaked around an optimal set of parameters, the MAP
estimate will line up with the parameters gleaned from a nonlinear optimization technique.
When the posterior distribution is broad or multimodal, the MAP estimate and the opti-
mal parameter values may differ, signaling a high degree of uncertainty associated with the
optimal parameter estimate.

The Bayesian posterior sampling approach offers several key advantages over the tradi-
tional approach to Tafel slope estimation. First, it removes subjectivity from the analysis of
Tafel data: users of our algorithm need only select a model such as Eq. (5.2) to interpret the
observed data, which can be justified on the basis of rigorous physical arguments, unlike a
subjective delineation between linear and plateau regimes. Second, our approach yields ac-
curate quantification the uncertainty associated with a Tafel slope estimate. Specifically, we
believe the distributional uncertainty quantification afforded by our algorithm will be useful
when assessing and discriminating between disparate sets of experimental data. Finally, be-
cause the model in Eq. (5.2) analytically extrapolates away curvature-related attenuation of
the kinetic current, our approach is free of the systematic bias present in current literature
practice.

As a caveat, we stress that while the model in Eq. (5.2) is appropriate for fitting some
current-voltage data in the CO2 reduction literature, experimental and theoretical stud-
ies have noted the possibility of multiple kinetic control regimes with distinct Tafel slopes
before a limiting current plateau regime.3,28,29 This phenomenon can arise due to potential-
dependent surface coverage effects or a potential-dependent switch in the microscopic reac-
tion mechanism. When multiple distinct Tafel regimes are present, the experimental data

70



must be interpreted under a model that allows for this possibility; once a suitable model is
selected, the Bayesian posterior sampling approach can still be employed (see Sec. 7.4 for
additional discussion on model flexibility).

5.2.3 Identifying and Addressing Data Insufficiency

As mentioned previously, practical throughput considerations imposed by product quantifi-
cation and other experimental requirements limit the amount of data generally used in a
Tafel analysis to 3–10 points. In a survey of Tafel data reported in CO2 reduction studies
in the literature, we found that a significant number of papers conduct Tafel analyses on a
set of 3–5 data points within a narrow overpotential window. With such few data points,
trends often appear linear, and so many studies simply extract the Tafel slope from a linear
fit to all the data. While seemingly benign, estimating a Tafel slope without accounting
for the possibility of limiting-current nonlinearity can lead to systematic error arising from
data insufficiency. This phenomenon is elegantly identified and addressed by our Bayesian
posterior sampling approach. For the sake of clarity, we illustrate how this systematic error
can emerge by analyzing a set of synthetic data. The parable narrated by this data is easily
relatable to a specific set of experimental data, and it emphasizes another distinct advantage
of the Bayesian posterior sampling approach.

The inset of Fig. 5.2A depicts a set of (synthetic) Tafel data measured over a 100 mV
overpotential window. To the eye, the data looks entirely linear, and fitting a Tafel slope
to the entire dataset using OLS regression yields a Tafel slope of 130 mV/decade, with a
standard error of 10 mV/decade. However, Fig. 5.2A illustrates the issue with this traditional
Tafel analysis. Indeed, the original set of green data in the narrow overpotential regime is
essentially entirely consistent, within experimental error, with two models possessing very
different Tafel slopes. Model I has a Tafel slope of 80 mV/decade, while Model II has a Tafel
slope of 120 mV/decade. Despite this wide berth in Tafel slope, the models align in the
initial overpotential window because of their distinct limiting currents ilim, which differ by a
modest half order of magnitude. Clearly, the set of data measured in the inset of Fig. 5.2A
is insufficient to distinguish between the two models, but this data insufficiency is entirely
hidden by the traditional analysis approach.

Unlike the traditional analysis approach, Bayesian posterior sampling correctly identifies
the Tafel slope ambiguity present in the original data. The green trace in Fig. 5.2B depicts
the posterior distribution over the Tafel slope using solely the green data. This distribution
is broad and markedly multimodal, with concentrations of probability density around the
Model I and II Tafel slopes. In this manner, Bayesian posterior sampling correctly surmises
that the original data is insufficient to pin down a value of the Tafel slope with high cer-
tainty. One possible solution to this issue is to measure additional data over a wider range
of overpotentials. Depending on the true parameters of the electrochemical system under
measurement, this experiment could yield either the blue data or the red data in Fig. 5.2A.
When the Bayes posterior sampling algorithm is fed a combination of the green data and the
red data, it correctly predicts a posterior distribution of Tafel slopes concentrated around
the Model I Tafel slope. Conversely, when fed a combination of the green data and the blue
data, it correctly predicts a posterior distribution of Tafel slopes concentrated around the
Model II Tafel slope. In other words, multimodality in the posterior distribution predicted
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Figure 5.2: Bimodal posterior distributions signify Tafel slope ambiguity that cannot be
clarified by the available data. (A, inset) Synthetic current-voltage data collected in hypo-
thetical Experiment 1 appears linear over a 100 mV overpotential region, with a Tafel slope
of 130 ± 10 mV/decade. (A) Synthetic current-voltage data over a broader range of over-
potentials. The dashed lines show two models (I, II) with different Tafel slopes and plateau
currents that could both reasonably fit the Experiment 1 data. Synthetic error bars repre-
sent one standard error of the mean of uncertainty in the synthetic data. Experiment 2A
(blue triangles) and 2B (red squares) represent two possible outcomes of experiments that
probe a broader range of overpotentials, which can clearly distinguish between Model I and
Model II. (B) Bayes posterior distributions over the Tafel slope determined by our algorithm
given various sets of observed data. If the algorithm is fed just the Experiment 1 data, the
posterior distribution over the Tafel slope is broad and weakly bimodal, indicating that the
Experiment 1 data is insufficient to discriminate between Model I and Model II. When fit to
the Experiment 2A or 2B data in addition to the Experiment 1 data, this bimodality splits
cleanly into two separate modes centered at the Model I and Model II Tafel slopes. Note
that the linear fit to just the Experiment 1 data is distinct from both the Model I and Model
II Tafel slopes.
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by our algorithm is a hallmark of data insufficiency; when the underlying insufficiency is
addressed, the algorithm neatly splits the distributional modes according to the observed
data.

We highlight a couple of important conclusions from the synthetic data analysis presented
in Fig. 5.2. First, current-voltage data used for Tafel slope estimation should ideally be mea-
sured until clear curvature is observed. If such a measurement is unnecessarily inconvenient
or impossible, one should attempt to quantify the limiting current either through back-of-
the-envelope estimates or through direct experimental control over the limiting current (e.g.
with a rotating-disk electrode), and ensure that data used to estimate Tafel slopes is collected
well below the limiting current density. Without information that elucidates the magnitude
of the limiting current, it is impossible to ascertain the degree of limiting current-induced
attenuation suffered by the current measured in the Tafel regime. Consequently, Tafel slopes
estimated on the basis of a linear Tafel plot measured in a small overpotential window are
likely systematically unreliable, and can harbor significant unquantified uncertainty. Second,
the synthetic data analysis illustrates how the Bayesian posterior sampling approach can be
employed iteratively with data acquisition efforts. Since the posterior distributions accu-
rately quantify the uncertainty associated with a Tafel slope estimated given available data,
an experimentalist can use this uncertainty information to guide future data acquisition until
a desirable uncertainty threshold is achieved.

5.2.4 Evaluating Cardinal Preferences in Literature Data

In addition to being an important metric in assessing catalyst performance, the Tafel slope
can be valuable because it may yield insight into the mechanism of a catalyzed electro-
chemical reaction. The connection between the Tafel slope, a macroscopically-measurable
quantity, and the microscopic reaction mechanism is derived using microkinetic analysis in-
voking a whole host of ideality assumptions.2,3 For an electrochemical reaction that proceeds
through a number of elementary steps, one must assume that a single step determines the
rate, and that all steps prior to the rate-determining step (RDS) are in quasi-equilibrium.
Each of the quasi-equilibrated elementary steps carries an associated equilibrium constant
which is possibly dependent on the applied potential. For potential-dependent equilibrium
constants, one must additionally assume that the potential dependence goes exponentially
in the (strictly integer) number of electrons transferred in the elementary step. The RDS
has an associated forward rate constant, which is assumed to have a Butler-Volmer-like
dependence on the applied potential, with a symmetry coefficient α = 1/2.1 Under these
restrictive assumptions, one can derive (see Sec. 7.4) an equation for the Tafel slope of the
entire chemical reaction (at T = 298 K),

Tafel Slope =
60 mV/decade

n+ q/2
, (5.5)

where n is the total number of electrons transferred in elementary steps prior to the RDS,
and q is the number of electrons transferred in the RDS.

Equation (5.5) gives rise to so-called “cardinal values” of the Tafel slope, which arise
from evaluating the Tafel slope for different values of (n, q). Tafel slope values of 120, 60,
and 40 mV/decade are familiar to most electrochemists, and arise from (n, q) = (0, 1), (1, 0)
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and (1, 1), respectively. Researchers routinely appeal to cardinal values to extract micro-
scopic insight from experimentally-measured Tafel slopes. A common argumentative thrust
goes: “my catalyst has a Tafel slope of 110 mV/decade, which is reasonably close to 120
mV/decade, indicating that the reaction proceeds through a rate-limiting first electron trans-
fer step.” This line of reasoning is only truly valid if the typical catalyst satisfies the ideality
assumptions involved in deriving Eq. (5.5), a point that has been emphasized several times in
the literature.3–5 Comprehensive analysis of literature Tafel data can shed light on whether a
typical catalyst satisfies these strict assumptions; if this is indeed true, then literature Tafel
slopes should tend to cluster around the cardinal Tafel values predicted by Eq. (5.5).

Our Bayesian posterior sampling algorithm for Tafel slope fitting allows us to carry out
an unbiased, automated survey of literature Tafel data to quantitatively test whether Tafel
slope values reported in the literature show any preference for cardinal values. In this study,
we choose to focus on re-analyzing Tafel data from the CO2 reduction literature. We fo-
cus on this subsection of the literature because CO2 reduction is a burgeoning field with
diverse catalyst materials and morphologies,30 and because product quantification require-
ments place Tafel analysis in this field in the low-data regime, as discussed previously. To
carry out the literature survey, we digitized 344 distinct Tafel datasets from the CO2 reduc-
tion literature and fed the resultant data to the Bayesian posterior sampling algorithm to
produce re-analyzed estimates of the Tafel slope. Further information on the data mining
and analysis procedure can be found in the Methods section.

Our re-analysis procedure uses Eq. (5.2) to interpret the literature Tafel datasets. As
mentioned earlier, this model is only truly appropriate in the case of one kinetic control
regime associated with a single Tafel slope; it cannot accurately capture current-voltage
behavior under multiple kinetic regimes, which may be operative in at least some of the
datasets we have analyzed. However, absent independent experimental confirmation of the
physical mechanism underlying the observed multiple kinetic regimes (e.g. from spectroscopy
or surface imaging), it is difficult to rigorously select a single model from the plethora that
arise from enumerating microkinetic possibilities for intermediates in CO2 reduction. Since
the papers from the literature that we have re-analyzed fit a single Tafel slope to their data,
and because they lack the experimental evidence required to pin down a richer physical
model describing their data, we believe that uniform application of the model in Eq. (5.2)
is an appropriate choice for our literature survey study. Our usage of Eq. (5.2) to interpret
the data should not be construed as a blanket endorsement of this model in Tafel analysis.
Indeed, if there is solid experimental evidence motivating the usage of a different kinetic
model for a specific CO2 reduction catalyst system, it can and should be employed under
our Bayesian framework.

Figure 5.3A depicts a correlation plot of the MAP Tafel slope estimated by the Bayes
posterior sampling approach versus the literature-reported Tafel slope. A significant fraction
of the datasets fall within the 20% parity line, a strong sign that our algorithm produces Tafel
slopes that are consistent with literature values when seeing identical data. Additionally,
the MAP Tafel slope does not seem to systematically overestimate or underestimate the
literature-reported value over a wide range of reported Tafel slopes. We note that complete
parity between the MAP and literature Tafel slopes should not be expected; as explained
previously, due to the possibility for subjectivity and systematic error with current literature
practice for Tafel estimation, the MAP estimates derived by our algorithm are arguably more
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Figure 5.3: Unbiased refit of literature data using our Bayesian analysis approach reveals
little preference for cardinal values of the Tafel slope for CO2 reduction catalysts. (A)
Correlation plot of reported Tafel slopes from the literature against MAP Tafel slopes fitted
by our algorithm on identical data. The solid red line represents perfect agreement, while
the red filled intervals are lines representing 10% and 20% relative error. (B) Cumulative
distribution function of the Tafel slopes reported in literature data (blue), and those refitted
by our algorithm (red). Error intervals correspond to one standard deviation of bootstrapped
resamples. (C) Kernel density estimates (KDE) of the empirical probability distribution
function of Tafel slopes reported in literature data (blue) and MAP Tafel slopes refitted by
our algorithm (red). Error intervals correspond to one standard deviation of bootstrapped
resamples. Green dashed lines in both (B, C) correspond to cardinal values of the Tafel slope
predicted by Eq. (5.5).

trustworthy than the literature-reported values.

Figures 5.3B and 5.3C depict estimates of the distributional tendencies of the MAP and
literature-reported Tafel slopes. Figure 5.3B plots the empirical cumulative distribution
function (CDF) of the MAP Tafel slope (red trace) and the literature-reported Tafel slopes
(blue trace). The low-opacity intervals in both Fig. 5.3B and Fig. 5.3C span one standard
deviation of several bootstrapped resamples drawn with replacement (see Methods section
for additional detail on the bootstrapping procedure), and are useful for examining the
sensitivity of our distributional results to the specific subsampling of literature data we have
chosen to analyze.31 The CDF value for a given Tafel slope value mT tallies the running
fraction of datasets that have a Tafel slope value of at most mT. If Tafel slopes truly cluster
around cardinal values, the running fraction should increase sharply around those preferred
values, and one would expect to see sigmoidal features in the CDF at the cardinal values.
Figure 5.3 shows little evidence of such locally sigmoidal behavior; rather, we see something
resembling a straight line, corresponding to a roughly uniform distribution over the range of
Tafel slopes considered.

We can visualize the distributional data in a different way by examining the empirical
probability distribution function (PDF) of the Tafel slopes. Estimating the PDF of a distri-
bution given a set of samples is a notoriously difficult problem in statistics, because relatively
small amounts of sampling noise can result in the presence of spurious peaks in the PDF.
Several techniques exist for tackling this problem; here, we employ Gaussian kernel density
estimation, which constructs an estimate of the PDF by summing appropriately-normalized
Gaussian kernel functions centered at each of the observed data points. Additional details
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on the kernel density estimation procedure are reported in the Methods section. Figure 5.3C
shows a kernel density estimate of the PDF of the MAP (red trace) and literature-reported
(blue trace) Tafel slopes. Based on the shape of the PDFs and their corresponding stan-
dard errors, we conclude that there is a slight preference to assign Tafel slope values around
70 and 125 mV/decade in the literature that essentially disappears when the same data is
re-analyzed with our approach. While a small peak persists around 125 mV/decade in the
MAP Tafel slopes, the height of the peak is roughly within the error bound. We also note
that any residual preference for cardinal values in the MAP Tafel slopes can possibly be
explained by data acquisition biases. While the Bayesian approach we develop removes sub-
jectivity from data analysis, we cannot remove biases introduced during data collection; it is
at least plausible that such biases exist given that the literature-reported values significantly
overestimate the concentration of Tafel slopes around 120 mV/decade compared to the MAP
values.

The results presented in Fig. 5.3 combine data from several studies using different cata-
lyst materials to assess whether or not a preference for cardinal Tafel slopes exists broadly
across all CO2 reduction catalysts. In order to confirm that this apparent lack of cardinal
preference in the entire dataset is not simply an artifact introduced by pooling together
separate catalyst materials which each individually exhibit a cardinal preference, we broke
out the PDF analysis in Fig. 5.3 according to catalyst material identity. Upon examining
the results from the breakout analysis (see Sec. 7.4), we conclude that the apparent lack
of cardinality we find in Fig. 5.3 indeed persists when separately examining Tafel slopes
from common materials used in CO2 reduction catalysts: Ag, Au, Cu, Sn, Zn. Curiously,
it appears that Bi-based materials do show a preference for Tafel slope values around 120
mV/decade, which may inform future mechanistic studies on these catalysts. As a caveat, we
note our Bi results comprise only 27 distinct Tafel datasets, and are hence subject to a high
degree of variability arising from the specific set of studies we chose to re-analyze; future
work that attempts to weigh in on this question should ideally perform new experiments
on well-controlled Bi surfaces and use the data acquisition and analysis recommendations
identified in this work. Taken together, the results presented in Fig. 3 and the material
breakout analysis in Sec. 7.4 lead us to conclude that, when analyzed in an unbiased fash-
ion, experimental data in the literature does not support a systematic preference for cardinal
values of the Tafel slope among CO2 reduction catalysts.

While we are not in a position to identify the cause for deviation from cardinal Tafel slope
values in each specific Tafel dataset comprising Fig. 5.3, we advance the hypothesis that
these deviations could originate from physical non-idealities that violate the assumptions
involved in deriving Eq. (5.5). To test this hypothesis, we attempt to ascertain the manner
in which a select few simple physical non-idealities can adjust the PDF of Tafel slopes that
would otherwise be concentrated around cardinal values. In this regard, we consider three
possible physical effects that violate the ideality assumptions used to arrive at Eq. (5.5).
These three effects comprise a very small subset of the menagerie of physical non-idealities
that could operate in CO2 reduction electrocatalysis; our goal is simply to show that these
effects can spoil a preference for cardinal values of the Tafel slope, not to single out these
particular effects as the only non-idealities present in CO2 reduction.

First, we consider the possibility that the symmetry coefficient α ̸= 1/2. Such deviations
could arise, for example, due to disparate local slopes of the Marcus free energy surfaces at
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Figure 5.4: Physical hypotheses for the lack of observed cardinality in literature Tafel slopes.
(A) Schematic of three selected physical non-idealities which can affect the measured Tafel
slope. (B, blue trace) Synthetic kernel density estimate of the probability distribution over
Tafel slopes for a “random” CO2 reduction catalyst, peaked around the cardinal values pre-
dicted by Eq. (5.5). (B, other traces) Several synthetic kernel density estimates of the
probability distributions over the Tafel slope generated from including random values of
different parameters governing physical non-idealities. (C) Schematic illustrating the possi-
bility of measuring data across separate kinetic regimes in a Tafel analysis. Due to a switch
in mechanism, different overpotential regimes exhibit different Tafel slopes, complicating in-
terpretation of a single Tafel slope value fit straddling both regimes.
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their crossing point, or reactant species position fluctuations in the electrochemical double
layer.32–35 Second, we examine the effect of partial charge transfer or surface dipole formation
in the adsorption of CO2 to the electrode surface, phenomena that have been hypothesized
and characterized in prior studies on CO2 reduction.29,36 Mathematically, the formation of
a surface dipole introduces a potential dependence in the adsorption equilibrium constant
which mathematically resembles a partial charge transfer parameter γ. Third, we introduce
a possible Frumkin correction f originating from the protrusion of an electrode-adsorbed
species into the electrochemical double layer, which attenuates the applied potential due to
electrostatic screening effects.1 The Frumkin correction is most important at low supporting
salt concentration (and hence large resultant electrolyte screening length), but it has been
considered in the context of CO2 reduction electrocatalysis.29 Each of these non-idealities
depends on the value of a non-ideality parameter. Of course, we have no idea, at least a
priori, about the distribution of values these non-ideality parameters can take in typical CO2

reduction catalyst systems. In the absence of information, we make the maximally ignorant
choice, and assume that the non-ideality parameters are drawn from uniform distributions
within a reasonable set of bounds. Once we postulate these uniform distributions, we can
examine how randomly selected non-ideality parameters deform a distribution of Tafel slopes
that begins concentrated around cardinal values.

The blue trace in Fig. 5.4B shows a distribution of Tafel slopes concentrated around the
cardinal values predicted by Eq. (5.5). The relative heights of the cardinal value peaks are
selected by artificially binning the distribution over MAP Tafel slopes into buckets centered
around the cardinal values. The effects of randomly drawn physical non-idealities on this
distribution can be examined using Monte Carlo simulation. Briefly, we sample a Tafel slope
from the distribution depicted in the blue trace, sample the values of one or more non-
ideality parameters, and finally calculate the resultant Tafel slope in the presence of non-
idealities (see Methods section for additional details). Repeating the sampling procedure
several times yields distributions over the Tafel slope, depicted as multicolored traces in Fig.
5.4B for different sets of non-idealities. Evidently, even rather mundane pieces of additional
physics like the ones discussed above can produce stark changes in the distribution of Tafel
slopes, spanning a range of behavior from moving certain peaks away from cardinal values
to smearing out the entire distribution. While we cannot prove with certainty that physical
non-idealities are responsible for the lack of observed Tafel cardinality in the literature, the
results in Fig. 5.4B demonstrate that this is at least a plausible explanation for the observed
behavior.

Alternatively, the observed lack of cardinality may also be a consequence of interpreting
current-voltage data measured under several disparate kinetic regimes through the lens of
Eq. (5.2), which cannot capture these intricacies. As illustrated schematically in Fig. 5.4C,
the kinetic regimes may exhibit different Tafel slopes; in this case, mechanistic interpretation
of a single Tafel slope extracted by fitting Eq. (5.2) to the data is inappropriate. Indeed,
as examined in more detail in Sec. 7.4, fitting synthetic data generated from a model with
multiple cardinal Tafel slope regimes using Eq. (5.2) can produce an off-cardinal Tafel slope
value. This underscores the need to rigorously characterize the several physical complex-
ities present in catalytic systems for CO2 reduction, as they can complicate mechanistic
interpretation guided solely by the Tafel slope.

Taken in their entirety, the results presented in Figures 5.3 and 5.4 present some com-
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pelling reasons for the community to rethink the current approach of deducing mechanistic
information purely from Tafel slope data. Indeed, the prevalence of Tafel slopes in the CO2

reduction literature that do not fall neatly on cardinal values suggests that physical non-
idealities, omitted by Eq. (5.5), may be commonplace in typical catalytic systems. The fa-
miliar approach of “rounding” experimentally-measured Tafel slopes to their nearest cardinal
value to guide mechanistic interpretation, then, leaves one prone to interpreting experimental
data in an overly simplistic manner. Rather than hand-wave away the physical complexities
present in catalytic systems with strong ideality assumptions, we believe it is important to
interpret Tafel data alongside several other pieces of experimental data (e.g. more diverse
electrochemical kinetic data, surface-sensitive spectroscopy, materials characterization, etc.).
In this manner, one can take a non-cardinal Tafel slope (and its associated uncertainty based
on the data) at face value, and build a holistic physical picture that attempts to explain the
deviation from cardinality in a manner consistent with all other experimental observations.
Ideally, all these observations can be interpreted in the context of a richer model that allows
one to determine the true breadth of physical phenomena present across a wide range of
operating parameters, as has been done in some select studies in the literature.2,28,37 We
believe our Bayesian data analysis approach will be equally useful for rigorously quantifying
parametric uncertainties in the suggested new paradigm for kinetic data interpretation.

5.3 Methods

5.3.1 Data Mining and Re-Analysis

We built up a dataset of Tafel measurements reported in the literature by manually extract-
ing figures from published papers and digitizing them using the WebPlotDigitizer tool.38

A full accounting of all papers and corresponding figures can be found in Sec. 7.4. When
selecting datasets to analyze, we excluded those that reported continuous current-voltage
data, because it is difficult to ascertain the underlying data density associated with a con-
tinuous curve, because our method is meant to address the unique challenges of estimating
Tafel slopes with a small amount of data, and because continuous current-voltage data may
be unreliable because product selectivity is not always 100%, especially in CO2 reduction.
We also excluded datasets that reported current-voltage data but did not report an explicit
value of the Tafel slope. We assumed that all datasets were collected with appropriate ex-
perimental techniques (IR-correction for solution resistance has already been applied, etc.),
and did not modify or omit any data from a figure during the digitization process. After dig-
itization, each dataset was tagged with manually entered metadata to facilitate re-analysis.
A full accounting of the metadata fields, as well as a complete record of all scraped data and
metadata, is available in Sec. 7.4.

Re-analysis of the data was carried out using the Python-based julius package, de-
veloped in-house to handle data collation and Bayesian posterior sampling workflows. In
order to determine prior distributions for the parameters, we first find an optimal set of
parameters θ∗ for the limiting current model using an implementation of the trust-region re-
flective (TRF) algorithm implemented in the optimization and root finding package included
in SciPy.39 For each model parameter θi, we select uniform prior distributions supported on
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the interval [0, a× θ∗i ], with a = 10 (note that all parameters we fit in this study are strictly
non-negative). For all models studied here, we find that the posterior distribution does not
depend on the value of a, indicating that the data imposes strong preferences on the op-
timal model fit (see Sec. 7.4 for detailed sensitivity analysis). For each dataset, we draw
N = 4 × 104 total samples (104 samples from four independent chains, each burning their
first 2000 samples) from the posterior distribution using the No-U-Turn Hamiltonian Monte
Carlo sampler (NUTS) implemented in the PyMC3 probabilistic programming package.40

In total, we re-analyzed 344 distinct Tafel datasets. Figure 5.3A restricts to both re-
ported and MAP Tafel slopes mT ∈ [0, 200], which comprises 300 distinct Tafel datasets. A
correlation plot including all analyzed Tafel datasets is reported in Sec. 7.4.

5.3.2 Kernel Density Estimation

We use kernel density estimation (KDE) to estimate probability distributions given a finite
set of samples. KDEs are used in the distributional visualizations in Figs. 5.2, 5.3, and
5.4. We use the Gaussian KDE function in the statistics package included in SciPy, and use
Scott’s rule for bandwidth selection in Figs. 5.2 and 5.3. Since the estimates in Fig. 5.4
are meant to emulate the result of a single simulated experimental observation with some
associated error, here we use a pre-specified bandwidth of 6 mV/decade.

5.3.3 Bootstrap Resampling

We carry out a bootstrap resampling procedure to quantify the degree of variability of
the results in Fig. 5.3 associated with our choice of a specific subset of literature data.31

Essentially, we posit that the observed distribution over the Tafel slope is a good estimate
of the true underlying distribution, and then resample several datasets of the same size as
the original dataset from this distribution with replacement (i.e. samples can show up more
than once, or not at all). The error intervals presented in Figs. 5.3A and 5.3B are gleaned
from one standard deviation of 20 such bootstrapped resamples.

5.3.4 Monte Carlo Simulation

We use Monte Carlo simulation to estimate the distributional changes precipitated in a Tafel
slope distribution by the physical non-idealities identified in the main text. To carry out
this procedure, we begin with the distribution presented in Fig. 5.4A, which is generated
by artificially bucketing the MAP Tafel slopes from the literature analysis into the bins
{[0, 50), [50, 90), [90,∞)}. We sample the physical non-ideality parameters according to α ∼
Unif[0.20, 0.80], γ ∼ Unif[0, 1], f ∼ Unif[0.50, 1.00], where Unif[a, b] signifies a uniform
distribution supported on the interval [a, b]. For each set of non-idealities, we draw N =
4 × 104 total posterior samples (104 samples from four independent chains, each burning
their first 500 samples). The equations governing modifications to the Tafel slope based on
physical nonidealities are worked out in Sec. 7.4. A sensitivity analysis of the Tafel slope
distributions including non-idealities with respect to the bounds of the uniform distributions
over non-ideality parameters is also reported in Sec. 7.4. All Monte Carlo simulation is again
carried out using the PyMC3 probabilistic programming package.40
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Chapter 6

Electrochemical Characterization
Using Analysis of Weakly Nonlinear
Response to Small Amplitude
Oscillating Voltage Signals

6.1 Introduction

Electrochemical characterization techniques have enjoyed increased use as electrochemical
approaches begin to find more productive applications in energy storage, catalysis, biochem-
ical sensing, and several other related fields. Fundamentally, all of these applications rely
on optimizing the rate of an interfacial electron transfer (ET) reaction by turning a number
of physical handles, such as the identity of the ET catalyst material or the chemical com-
position of the environment. Research efforts to optimally design chemicals and materials
for these applications are crucially dependent on effective electrochemical characterization
techniques, which extract the values of microscopic parameters that describe system perfor-
mance from macroscopic electrochemical measurements. Electrochemical characterization
techniques have a storied history, with modern polarographic techniques first arising in the
early 1900s, which ultimately gave rise to the staple characterization tool of today, the cyclic
voltammetry (CV) experiment. Although CV is taught and used widely, it comes with a
number of mathematical and physical drawbacks, stemming from the fact that CV is based
on analyzing electrochemical system response to a large voltage driving force. First of all,
since analytical methods to analyze large driving force response are limited, CV parameter
extraction techniques can only utilize certain features of a voltammogram (peak positions,
peak voltages) and simply throw out the remaining measured data. Additionally, a number
of practical difficulties can arise when the driving force in a CV experiment exceeds the elec-
trochemical stability window of the solvent, resulting in occluded peaks and more inexact
parameter extraction.

We develop an alternative, modern technique for electrochemical characterization that is
predicated on probing systems with controllably small amplitude voltage driving forces. Re-
stricting ourselves to small amplitude driving allows us to employ the tools of time-dependent
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perturbation theory, which we use to derive a set of analytical relationships that predict the
nonlinear electrochemical current response to an oscillatory voltage signal. These relation-
ships can be used to extract electrochemical system parameters in an accurate manner that
efficiently uses all the measured data, without running into the drawbacks typically asso-
ciated with CV techniques. Our oscillating voltage characterization technique can be used
alongside traditional CV experiments, and it is especially well-suited to a high-throughput
data collection context, when minimizing experimental acquisition time and data efficiency
are imperative.

In this manuscript, we begin by describing the well-developed, textbook approaches to
electrochemical characterization. Subsequently, we derive a mathematical framework, based
on Fourier analysis and time-dependent perturbation theory, which can be employed to pre-
dict the nonlinear response of an electrochemical system to an oscillatory voltage input. By
comparison to results from numerical simulations, we demonstrate that our approach can
accurately predict the response of an electrochemical system given a known set of underly-
ing parameters. Finally, we apply our approach to extract the microscopic parameters of
the ferrocyanide/ferricyanide redox couple, using both sinusoidal voltage inputs as well as
windowed chirp voltage inputs, which can probe the system at multiple frequencies simulta-
neously. We find that our approach produces parameter values that are in line with those
reported in the literature and those predicted by alternative methods of electrochemical
characterization.

6.2 Approaches to Electrochemical Characterization

Electrochemical reactions generally take place at a solid-electrolyte interface, where a reac-
tive species either donates or accepts an electron from an electrode material. The kinetics
of this process are generally modeled phenomenologically using the Butler-Volmer kinetic
expression, which involves certain microscopic parameters that encapsulate the chemical de-
tails of the system.1 The goal of electrochemical characterization techniques is to carry out
macroscopic measurements that can supply information about the values of the microscopic
kinetic parameters. Generally, most measurements of this sort involve imposing a controlled
potential difference between a working and reference electrode in an electrochemical cell, and
measuring the resultant current density, or vice-versa. Since the current density quantifies
the magnitude of electron flux through the electrode material, it may be related to the total
rate of the electrochemical reaction at the interface. Although the total rate of reaction is
influenced by the kinetics of the interfacial reaction, it may also, in certain potential regimes,
be controlled by the rate of diffusive reactant (product) transport to (from) the interface.
Hence, electrochemical characterization techniques must effectively deconvolute the effects of
interfacial reaction kinetics from diffusive transport effects in order to accurately determine
the microscopic kinetic parameters of the reaction of interest.2

Cyclic voltammetry (CV) is a workhorse tool of electrochemical characterization, used
in several different contexts including, discovering more active catalysts for electrochemical
synthesis3,4, screening active compounds for flow batteries5,6, and developing improved bi-
ological sensors.7,8 CV experiments apply a time-varying triangular waveform between the
working and reference electrodes of a cell, which sweeps across a potential window of several
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100 mV at a predefined scan rate, which can vary over several orders of magnitude depend-
ing on the system under study.9 If the electrochemical reaction at the boundary involves a
simple redox couple described accurately by Butler-Volmer kinetics, the resultant current
waveform initially rises exponentially, and then peaks and falls as the current response be-
comes transport-controlled. On the reverse portion of the triangular voltage waveform, the
system passes current in the opposite direction, again rising exponentially and then peak-
ing, resulting in a familiar peak-and-trough duck-shaped voltammogram curve (a current vs.
voltage phase plot). There is a rich history of techniques developed to determine parameters
by graphical analysis of voltammograms. For example, the equilibrium potential of the redox
couple may be determined by averaging the positions of the reductive and oxidative peaks
on the voltammogram.9,10 Determining the kinetic rate constant is slightly more involved;
one must carry out a series of CV experiments at successively increasing scan rates, and
extract its value by means of linear regression on the voltages and currents of all the CV
peaks.5,10,11

While parameter extraction from CV is well-developed in the literature, it suffers some
drawbacks resulting from its reliance on applying a large amplitude voltage waveform. For
one, due to the nonlinear nature of the reaction-diffusion problem encoding the mathemat-
ical relationship between the voltage input and the current response, analytical tools are
extremely limited in the high amplitude voltage regime. Existing approaches must rely on
asymptotic analysis techniques which relate characteristics of the voltammogram peaks to
the underlying microscopic parameters.2,11 While such relationships are useful, they inher-
ently imply low data utilization; despite measuring an entire voltammogram curve in the lab,
one can only quantitatively use the information encoded in the peaks, discarding the major-
ity of the measured dataset. A second difficulty may arise when the equilibrium potential
of the redox couple of interest lies near an edge of the electrochemical stability window of
the electrolyte solution. If the potential window swept out by the triangular voltage wave-
form lies outside the stability window, the voltammetric data will be polluted by current
from an adventitious electrochemical reaction involving solvent.9 Since the solvent is present
at much larger concentration than the redox couple, its current response swamps the sig-
nal from the solvent, cloaking the voltammogram peak required for parameter extraction.
Taken together, these difficulties can make parameter extraction from CV either impossible
entirely, or inefficient with respect to the measured data.

Potentiostatic electrochemical impedance spectroscopy (PEIS) is a complementary tech-
nique to CV that is also used widely for electrochemical characterization. PEIS experiments
typically proceed by applying low amplitude (1–5 mV) voltage waveforms at a wide range
of frequencies between the working and reference electrodes of a cell.12 At low enough am-
plitudes, the system responds in a linear manner, producing an output current waveform
at the same frequency as the input voltage waveform, usually with a different amplitude
and phase. The results of a PEIS experiment are analyzed under the formalism of linear
circuit theory, which represents both the voltage and current waveforms at a single frequency
as complex-valued “phasors.” The impedance Z is the (complex) ratio of the current and
voltage phasors, and can take on different values at different frequencies, resulting in an
impedance spectrum, the main product of a PEIS experiment. While impedance spectra are
often used to characterize electrochemical systems, the models employed in the analysis are
generally phenomenological, introducing fictive quantities like a charge-transfer resistance
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or a constant-phase element, which can be difficult to relate to the underlying microscopic
parameters of the Butler-Volmer equation.13,14

We develop a new characterization technique based around applying a small amplitude
oscillating voltage input signal V (t) to an electrochemical system, and observing the resultant
oscillatory current density response signal, J(t). As depicted in the top row of Fig. 6.1, the
relationship between the input voltage and output current in the time domain is encoded
by a coupled reaction-diffusion partial differential equation (PDE) model that involves the
microscopic parameters of the electrochemical reaction. While the PDE model is difficult to
solve analytically in the time domain, it can be analyzed readily in the frequency domain
by means of a perturbative expansion in powers of ϵ, a small parameter associated with the
amplitude of the input voltage signal V (t), as depicted in the bottom row of Fig. 6.1. The
perturbative expansion links the frequency domain representations of the voltage, V̂ (ν) and
the current density Ĵ(ν) in an analytical Volterra series structure that explicitly involves
the microscopic parameters of the electrochemical system.15 Armed with this analytical
relationship between the current output and voltage input in the frequency domain, we can
analyze the results of an oscillating voltage experiment to extract information about the
microscopic parameters of an electrochemical reaction.

6.3 Theory and Numerical Validation

For the purposes of illustrating our approach, we choose to focus here on a simple model
electrochemical system: a quiescent electrolyte solution prepared with both the oxidized and
reduced states of a redox couple at known, dilute concentrations. Under these conditions,
transport of the two species may be modeled by the time-dependent diffusion equation in
one spatial dimension,16

∂

∂t
ck(t, z) = D

∂2

∂z2
ck(t, z) (6.1)

where ck(t, z) describes the concentration of species k ∈ (1, 2) at time t ∈ [0,∞) and spatial
position z ∈ [0,∞), and D is the Fickian diffusion coefficient (assumed to be identical for
both species). Solving the pair of PDEs in Eq. (6.1) requires specification of boundary
and initial conditions corresponding to the quiescent electrolyte system. The most salient
boundary condition is specified at the electrode-electrolyte boundary, where the redox couple
participates in an electrochemical reaction whose rate is described by the Butler-Volmer
kinetic expression,1

−D ∂

∂z
c1(t, z)

∣∣∣∣
z=0

= k0
[
c1(t, z = 0)e−βeα(V (t)−Eeq) − c2(t, z = 0)e+βe(1−α)(V (t)−Eeq)

]
(6.2)

where β ≡ (kBT )
−1 is the thermodynamic inverse temperature, e is the fundamental charge,

k0 is the rate constant, α is the transfer coefficient, Eeq is the equilibrium potential of the
redox couple, and V (t) is the time-dependent voltage input signal. The remaining bound-
ary and initial conditions encode the mathematical requirements imposed by reaction stoi-
chiometry and the physical setting of a quiescent solution with a fixed ratio of bulk species
concentrations, γ ≡ c1,bulk/c2,bulk; these are described in full detail in the Supplementary
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Figure 6.1: Schematic diagram of the medium amplitude oscillating voltage approach to elec-
trochemical characterization. The top row shows the time-domain picture, where a small
(specifically, O(ϵ)) sinusoidal input voltage V (t) is applied between the working and reference
electrodes of an electrochemical system, producing a periodic output current density signal
J(t). In the time-domain, the relationship between the voltage and current signals is encoded
by the dynamics of the time-dependent diffusion equation in Eq. (6.1), under the bound-
ary conditions specified in Eqns. (6.7)–(6.9). The bottom row shows the frequency-domain
picture; the input voltage V̂ (ν) is represented by a delta function at the input sinusoid fre-
quency ν0, producing an output current density Ĵ(ν) which has a linear response component
at ν0, and additional intermodulatory response components at integer multiples of ν0. The
relationship between V̂ (ν) and Ĵ(ν) is encoded by a set of convolution kernels K(n) that
arise from a perturbative analysis of Eq. (6.1), which are organized in rising powers of the
small parameter ϵ.
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Information. Finally, the time-dependent output current density signal is extracted by eval-
uating the species flux at the boundary,

J(t) = −eD ∂

∂z
c1(t, z)

∣∣∣∣
z=0

. (6.3)

Our mathematical approach operates by assuming that the input voltage signal V (t) is
a small disturbance around a reference potential Ehold. More specifically, we assert that the
non-dimensional deviation of the signal from its reference value, βe [V (t)− Ehold], is O(ϵ)
at all times t. In this scenario, we may apply a time-dependent perturbative analysis by
expanding the concentration profiles ck(t, z) in power series,

ck(t, z) = c
(0)
k (t, z) + ϵ · c(1)k (t, z) + ϵ2 · c(2)k (t, z) + . . . (6.4)

where c
(n)
k (t, z) represents the n’th order correction to the time-dependent concentration

profile for species k. The output current density signal, J(t), may also be organized into a
power series,

J(t) = J (0)(t) + ϵ · J (1)(t) + ϵ2 · J (2)(t) + . . . , (6.5)

where J (n)(t, z) now represents the n’th order correction to the time-dependent current den-
sity. For small enough voltage signals (i.e. ϵ≪ 1), the power series in Eq. (6.5) is convergent,
and may, to a good approximation, be truncated at finite order. While we do not derive any
formal convergence guarantees in this work, all the numerical and experimental results we
present are consistent with a convergent power series for the current at all magnitudes of
applied voltage signals studied here.

So far, we have developed the problem formulation in the time domain, seeking to re-
late the output current density signal J(t), to the input voltage signal V (t). Due to the
mathematical structure of the time-dependent diffusion problem stated in Eq. (6.1), it is
much simpler to derive an analytical relationship between the Fourier representations of the
current density and voltage signals. Given a signal f(t), we define its Fourier representation
f̂(ν) as the function that satisfies the following relationship,

f(t) =

∫ ∞

−∞
dν e2πiνtf̂(ν) (6.6)

where i ≡
√
−1 is the imaginary unit.

Upon taking the Fourier transform of Eq. (6.1) and expanding the boundary condition
stated in Eq. (6.2) to desired order, we can extract analytical relationships between Ĵ(ν),
the Fourier representation of the current density signal, and V̂ (ν), the Fourier representation
of the voltage signal, to desired order (full details of the derivation can be found in the Sec.
7.5). At O(ϵ0), we recover the familiar Cottrell current output signal in response to a flat
voltage step input, represented in frequency space as,

Ĵ (0)(ν) =
1√
2πiν

·
ζ ·
(
γeĒhold − 1

)
eαĒhold

√
2πiν + ζ(1 + eĒhold)

. (6.7)
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At O(ϵ1), we arrive at an expression that depends linearly on the input voltage signal,

Ĵ (1)(ν) =
ζ(1 + γ)eĒhold

(1 + eĒhold)
[
ζ(1 + eĒhold) + eαĒhold

√
2πiν

] √2πiν · V̂ (ν), (6.8)

where Ēhold ≡ βe [Ehold − Eeq] is the (non-dimensional) reference potential offset by the

reaction equilibrium potential, and ζ ≡ k0 (Dν∗)−1/2 is the reaction rate constant made non-
dimensional by a reference frequency, which we set to be ν∗ = 1Hz for all results presented
in this work. In the linear regime, only frequencies that are present in the input signal may
be observed in the output signal; this is a general behavior of linear systems, and is exploited
in the PEIS electrochemical characterization technique.

The power of our analytical approach lies in its ability to also extract current–voltage
relationships to nonlinear orders, that is, n > 1. At O(ϵ2), we obtain an expression of the
form,

Ĵ (2)(ν) =

∫
dη1K

(2)(η1; k0, α, Eeq)V̂ (η1)V̂ (ν − η1), (6.9)

where K(2)(η1; k0, α, Eeq) is a convolution kernel function that is parametrically dependent
on the microscopic physical parameters, whose explicit form is detailed in the Sec. 7.5. As
expected, the current density signal at this order now goes quadratically with the magnitude
of the applied voltage signal. The convolutional integral in Eq. (6.9) introduces salient math-
ematical structure which captures an important signature of nonlinear systems. Specifically,
if the voltage signal contains a single input frequency ν0, then the convolutional integral at
this order will not only produce a response at the original frequency ν0, but also generate
response at an “overtone” frequency 2ν0. This phenomenon, known as intermodulation, is a
general characteristic of nonlinear systems, and has been well-documented in nonlinear fluid
rheology17–20, nonlinear spectroscopy21, and elsewhere; it is depicted schematically in the
bottom row of Fig. 6.1. Relationships between the Fourier representations of the current
and voltage signals can be derived to arbitrarily high order; the expression at O(ϵ3) is pre-
sented in the Sec. 7.5. The mathematical structure of these expressions at O(ϵn) involves
(n − 1)’th order convolutional integrals, which result in additional output signals at higher
integer multiple overtones of the frequency of the input signal.17

Zooming out from the mathematical details, the important result furnished by our pertur-
bative analysis is the hierarchy of current-voltage relationships at various orders, as presented
in Eqns. (6.7) – (6.9). These expressions are analytical and closed-form, and explicitly de-
pend on the microscopic physical parameters of the system. One manner in which we can
apply these relationships, and confirm their validity, is to use them to solve the “forward”
problem of electrochemical modeling: given a known set of underlying physical parameters,
we can attempt to predict the output current density signal produced by an electrochemical
system subject to a known input voltage signal. Here, we seek to compare the predictions
from the perturbative analysis to those from numerical time domain simulations of the dif-
fusive transport problem presented in Eq. (6.1).

Briefly, the time domain simulation procedure employs the numerical method of lines;
it couples a grid discretization of the spatial coordinate with high-order adaptive Runge-
Kutta time domain integration. Additional details regarding the time domain numerical
simulations are reported in the Sec. 7.5. For a given voltage input signal, we extract the
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Figure 6.2: Quantitative comparison between time-domain numerical simulation and pre-
dictions from the perturbative analytical model. All results are presented in the frequency
domain. (A, B) Real and imaginary parts of the current density Ĵ(ν) output resultant from
an input signal with a single frequency νin = 1Hz. Open circles represent frequency-domain
current densities extracted from taking the discrete Fourier Transform of time-domain nu-
merical simulation data, whereas solid lines represent predictions from the analytical model.
The color scale represents input sinusoids of different amplitudes A, illustrating an increase
in intermodulatory response at larger frequencies. (C, D) Real and imaginary parts of
the current density Ĵ(ν) output resultant from an input signal with various different input
frequencies νin (represented by the color scale). Open circles represent frequency-domain
current densities extracted from taking the discrete Fourier Transform of time-domain nu-
merical simulation data, whereas solid lines represent predictions from the analytical model.
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corresponding time domain current density output signal from numerical simulation, and
then apply a discrete Fourier transform to move the results into the frequency domain,
where they can be easily compared with predictions from the analytical model. The Fourier
transform of a real time domain signal f(t) is a complex-valued function with Hermitian

symmetry, f̂(ν) =
[
f̂(−ν)

]∗
, where the [·]∗ operator denotes complex conjugation. Hence,

we need only examine the frequency domain signal for ν ≥ 0, but we must check agreement
between both the real and imaginary portions of the Fourier representations of two signals.

Figures 6.2 A and B depict a comparison between results from numerical simulation and
the analytical model (truncated at O(ϵ3)) for a series of voltage input signals of the form,

V (t) = A · sin(2πν0t), (6.10)

where A is a variable amplitude, and ν0 = 1Hz. Figure 6.2A (B) shows a comparison of the
real (imaginary) portion of the Fourier representation of the output current density signal
Ĵ(ν), where open circles represent the results from numerical simulation, while solid lines
represent the results of the analytical model. A majority of the current density response
is concentrated on the input voltage frequency ν0, with minor additional loadings at the
intermodulatory response frequencies 2ν0 and 3ν0. As expected, the magnitude of the inter-
modulatory response grows larger with increasing amplitude A, reflecting a greater degree of
nonlinear system driving. Figures 6.2 C and D depict a comparison between numerics and
the analytical model for a series of voltage input signals following the form presented in Eq.
(6.10), for ν0 taking various values between 1–5 Hz, with the amplitude A fixed at 5 mV.
Again, the open circles represent results collected from numerical simulation, while the solid
lines denote results from the analytical model. At this amplitude, βe|V (t)|∞ ≈ 0.20 ≪ 1,
and so we expect a majority of the current response to be concentrated at the input voltage
frequency ν0, which is borne out in the numerical and analytical results.

Across all the input signal amplitudes and frequencies studied in Fig. 6.2, we observe
excellent agreement between the numerical simulation results and the predictions of the
analytical model. This result demonstrates the validity of the analytical model (evaluated
up to O(ϵ3)) for voltage input signals within the amplitude range A ∈ [5, 45]mV in predicting
both the real and imaginary components of the complex current response signal. In a more
conceptual sense, this confirms that in the parameter regime studied here, the perturbative
analytical model presented in Eqns. (6.7) – (6.9) is an effective tool for solving the “forward
problem” presented earlier: predicting the nonlinear response behavior of electrochemical
systems with a known set of underlying parameters.

6.4 Experimental Validation

Typically, in the context of an electrochemical characterization experiment, we are interested
in solving the “inverse problem”: predicting the (unknown) underlying parameters of an
electrochemical system on the basis of its current response to a known input voltage signal.
Since our mathematical framework can produce predictions of the current response as a
function of the underlying parameters, we can construct an objective function that quantifies
the difference between the experimentally-observed and model-predicted current response.
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Using standard nonlinear optimization techniques, we can minimize this objective function
to glean a set of parameter values that best explain the experimental data. In this section, we
provide a proof-of-concept demonstration by applying our Fourier space analytical formalism
to extract the microscopic electrochemical parameters for a simple and well-characterized
aqueous redox couple. All experimental results presented were taken in a one-compartment
cell with a glassy carbon working electrode, Pt counter electrode, and an Ag/AgCl reference
electrode. The electrolyte solution was prepared from deionized water, 1M NaCl supporting
salt, and 5 mM of potassium ferrocyanide and potassium hexacyanoferrate, comprising both
the oxidized and reduced states of the ferrocyanide/ferricyanide redox couple. Further details
on the experimental setup are included in the Sec. 7.5.

In correspondence with the numerical simulation results presented in Fig. 6.2, we first
attempted to quantify parameters on the basis of current response to a sinusoidal voltage
oscillation around a reference potential Ehold. As derived in Eq. (6.7), simply holding an
electrochemical system at a reference potential produces a current response often known as
the Cottrell current, which decays as t−1/2 at large times. For the sake of simplicity, we
choose to simply hold at the reference potential for a time thold = 100 s until the Cottrell
current has decayed to a suitably small value, and then apply an oscillating sinusoidal signal.
Mathematically, the full voltage signal may be represented in the time domain as,

V (t) = Ehold +H (t− thold) · {A sin [2πνin (t− thold)]} , (6.11)

where H(·) denotes the Heaviside step function, A is the amplitude, and νin is the input
frequency. For the sake of simplicity, we choose to fix the amplitude A = 25 mV and
νin = 3 Hz, while varying Ehold ∈ {203, 253, 303}mV over a series of three experiments.
Figure 6.3A depicts the voltage signals for these three experiments in the time domain,
where the time traces are colored by their respective hold potentials. Figure 6.3B depicts
the current density response to these signals in the time domain, and provides a stark
illustration of the dependence of the response on the hold potential Ehold.

In order to apply the Fourier space perturbative model, we must transform the exper-
imental data measured in the time domain into the frequency domain. We accomplish
this task by using the standard discrete Fourier transform22 applied over the time window
t ∈ [thold, thold + twindow], where twindow = 10 s. Choosing a larger value of twindow would
result in greater frequency resolution at the expense of longer experimental acquisition time;
we present results for different values of twindow in the Sec. 7.5. Most importantly, twindow

should be chosen such that it encompasses an integer multiple of sinusoidal periods, else
the Fourier transformed data will be polluted by “spectral leakage” artifacts which are well-
characterized in the analog signal processing literature.23 Figure 6.3 C (D) depicts the real
(imaginary) part of the appropriately non-dimensionalized current density response signal in
the frequency domain, where the open circles represent the experimental data, whereas the
solid lines represent predictions from the model with parameters that minimize the squared
deviation against the experimental data. Agreement between the experimental results and
the best fit model is visually quite satisfactory, with a majority of the current response at
these frequencies being concentrated on the input frequency νin, and a smaller component
at the overtone 2νi. The best-fit parameter values are determined to be Êeq = 188mV,

α̂ = 0.49, and k̂0 = 17µms−1, which are in reasonable agreement with a standard cyclic
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voltammetry analysis, theoretical prediction, and literature results, respectively24. We note
that further parametric uncertainty quantification efforts could be carried out in a relatively
straightforward manner using a Bayesian framework, although these are outside the scope
of the current work.25

So far, all the numerical and experimental results presented here employ pure-tone signals
that contain a single frequency, denoted νin. However, a distinct advantage of the Fourier
space analytical formalism we develop here is that it is not limited to simple pure-tone signals;
indeed, we may employ it to analyze any input voltage signal that admits a Fourier transform.
In particular, inspection of Eqns. (6.7)–(6.9) reveals that the output current density signal
is nontrivially dependent on the value of νin, implying that a signal that contains loading
at multiple different frequencies can yield a richer picture of the electrochemical system
response. The simplest possible signal with multi-frequency loading is a linear superposition
of sinusoidal oscillations, which is represented in the frequency domain as a summed “comb”
of delta functions at the individual frequencies in the signal. While our method may be
applied to such input signals, here we choose to demonstrate its application to a slightly
more sophisticated multi-frequency signal, the “chirped” waveform, which is well-studied and
widely employed in rheology26,27, spectroscopy28, and analog signal processing.29 Chirped
waveforms are characterized by an instantaneous frequency that continuously sweeps over a
range of frequencies over the course of the signal; if sweeping from low to high frequencies,
this produces an auditory signal that becomes more shrill over time, much like a bird’s chirp.
Mathematically, a chirped waveform is represented as,

V (t) = A sin

{
2π

[
(ν2 − ν1)
2twindow

· t2 + ν1 · t
]}

(6.12)

where ν1 and ν2 are the initial and final frequencies, respectively, A is the amplitude, and
twindow, as before, represents the experimental acquisition time. Additionally, following stan-
dard practice to avoid issues with spectral leakage, we apply a Tukey window function26

with r = 0.8 to the final chirped voltage waveform (additional detail in the Sec. 7.5).
Figure 6.4A depicts the chirped voltage signals in the time domain for three experiments

sweeping over different values of Ehold; by eye, one can distinguish that the oscillations
in the voltage waveform become more frequent over time In all experiments, A = 25mV,
ν1 = 2Hz, ν2 = 5Hz, and twindow = 40 s. Figure 6.4B depicts the current density response
signals in the time domain, where we can again observe a stark dependence on the hold
potential Ehold. Chirped waveform signals are most easily visualized in the Fourier domain by
analyzing the magnitude and phase of the complex Fourier transform data, where Phase(z) ≡
tan−1 [Im{z}/Re{z}] ∈ [−π, π). As shown in Fig. 6.4C, the magnitude signature of the
chirped waveforms is supported over a range slightly larger than the interval [ν1, ν2]; the
open circles, which represent experimental data, and the solid lines, which represent model
predictions with best-fit parameter values, are in excellent agreement. Figure 6.4D depicts
the phase signature of the current density signals in the frequency domain, highlighting some
of the differences at various values of Ehold while still demonstrating agreement between the
experimental data and the model predictions. Finally, although Figs. 6.4C and 6.4D cut off
the frequency axis at ν2 for the sake of clarity of presentation, we do observe (and can fit)
intermodulatory response signatures over the interval [ν2, 2ν2]. These are presented in greater
detail in the Sec. 7.5. The best-fit parameter values are determined to be Êeq = 190mV,
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Figure 6.3: Extracting microscopic electrochemical parameters by analysis of current density
response to a sinusoidal voltage input signal. (A) Time-domain representation of the input
voltage signals, which start off as constant potential holds at various increasing values of the
hold potential, Ehold (depicted by color-coding). A purely sinusoidal input voltage signal of
the form presented in Eq. (6.11), with amplitude A = 25mV and νin = 3Hz is switched on
at t = 100s and applied for 10 s; the Fourier analysis window is t ∈ [100, 110] s. (B) Time-
domain representation of the associated output current density responses. The magnitude of
the observed current is strongly dependent on the hold potential; by eye it is apparent that
the current response contains harmonics at frequencies higher than νin. (C, D) (Imaginary,
real) components of the Fourier representations of the current output signal are depicted
in open circles, whereas the predictions from fitting the analytical model to this data are
represented as solid lines. All the Fourier space content of the current signal is concentrated
at the first three integer multiples of νin; agreement between the data and the fitted model
is excellent.
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α̂ = 0.49, and k̂0 = 17µms−1, which are in agreement with the results from the single sinusoid
experiments, demonstrating that our technique is applicable with a variety of different input
waveforms.
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Figure 6.4: Extracting microscopic electrochemical parameters by analysis of current density
response to a windowed chirp voltage input signal. (A) Time-domain representation of the
input voltage signals, which start off as constant potential holds at various increasing values of
the hold potential, Ehold (depicted by color-coding). A windowed chirp input voltage signal of
the form presented in Eq. (6.12), with amplitude A = 25mV and ν1 = 2Hz and ν2 = 2Hz is
switched on at t = 100s and applied for 40 s; the Fourier analysis window is t ∈ [100, 140] s.
(B) Time-domain representation of the associated output current density responses. The
magnitude of the observed current is strongly dependent on the hold potential. (C, D)
(Magnitude, phase) components of the Fourier representations of the current output signal
are depicted in open circles, whereas the predictions from fitting the analytical model to
this data are represented as solid lines. The Fourier space content of the output signals
is concentrated between frequencies ν1 and ν2; agreement between the data and the fitted
model is excellent.
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7.1 Additional Information: Expanding Marcus The-

ory to Account for Transport Phenomena in the

Electrochemical Double Layer

7.1.1 Non-Dimensionalization Procedure

Conservation of probability mass yields the set of partial differential equations

∂Pi

∂t
= L̂iPi +

∑
j ̸=i

[ζj→iPj − ζi→jPi] . (7.1)

Expanding the shorthand for the Smoluchowski propagator,

∂Pi

∂t
= D∇ ·

[
e−βFi∇

(
eβFiPi

)]
+
∑
j ̸=i

[ζj→iPj − ζi→jPi] . (7.2)

Non-dimensionalizing the gradient operators ∇̃ ≡ L · ∇,
∂Pi

∂t
=
D
L2
∇̃ ·
[
e−βFi∇̃

(
eβFiPi

)]
+
∑
j ̸=i

[ζj→iPj − ζi→jPi] . (7.3)

As explained in the main text, the diffusive timescale τ ≡ D/L2, implying

τ
∂Pi

∂t
= ∇̃ ·

[
e−βFi∇̃

(
eβFiPi

)]
+
∑
j ̸=i

[τ · ζj→iPj − τ · ζi→jPi] . (7.4)

Introducing the non-dimensional time and sink/source rates (t̃ ≡ t/τ and ζ̃ij ≡ τ · ζij) yields
the final non-dimensionalized equations

∂Pi

∂t̃
= ∇̃ ·

[
e−βFi∇̃

(
eβFiPi

)]
+
∑
j ̸=i

[
ζ̃j→iPj − ζ̃i→jPi

]
. (7.5)

7.1.2 Computational Details

Similarity Transformation

The Smoluchowski diffusion operator from the main text reads

L̂iPi ≡ D∇ ·
[
e−βFi∇

(
eβFiPi

)]
. (7.6)

As written, this operator is not self-adjoint. This makes numerical solution more difficult,
and makes a diagonalization procedure unstable1. A standard similarity transformation2

can be employed to write L̂i in a self-adjoint form L̂H
i , formally written as

L̂i = exp (−βFi/2) L̂H
i exp (βFi/2) (7.7)

Recasting the full population dynamics equations in terms of L̂H
i creates some changes to

the sink and source terms which render the entire propagator self-adjoint, the details of this
transformation have been worked out by Ouyang and Subotnik1. Since the self-adjoint form
of the operator is the one we actually use when carrying out numerical calculations, we
report a discretization scheme for L̂H

i , rather than the original propagator.
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Interior Point Discretization

We choose a finite-volume discretization of the SME because it explicitly conserves mass to
numerical precision and also naturally incorporates no-flux boundary conditions, which are
employed at most boundaries in this model. Fig. 7.1 shows a schematic of one of the node
points hosting a finite volume. Our charge is to discretize the self-adjoint version of the
Smoluchowski propagator, written as

L̂H = eβF/2 ∂

∂xi
e−βF ∂

∂xi
eβF/2, (7.8)

where xi is a generalized coordinate (here, refers to either x or z), and Einstein summation
is implied. Inspection reveals that the operator in Eq. (7.8) is a (weighted) divergence of
flux terms.

Using a two-point forward difference stencil, the appropriately-weighted fluxes piercing
the boundary surfaces in Fig. 7.1 of an interior point can be expressed as

Fx−δx/2,y = exp [−βF (x− δx/2, y)]
[
exp [βF (x, y)/2]P (x, y)− exp [βF (x− δx, y)/2]P (x− δx, y)

δx

]
(7.9)

Fx+δx/2,y = exp [−βF (x+ δx/2, y)]

[
exp [βF (x+ δx, y)/2]P (x+ δx, y)− exp [βF (x, y)/2]P (x, y)

δx

]
(7.10)

Fx,y−δy/2 = exp [−βF (x, y − δy/2)]
[
exp [βF (x, y)/2]P (x, y)− exp [βF (x, y − δy)/2]P (x, y − δy)

δy

]
(7.11)

Fx,y+δy/2 = exp [−βF (x, y + δy/2)]

[
exp [βF (x, y + δy)/2]P (x, y + δy)− exp [βF (x, y)/2]P (x, y)

δy

]
(7.12)

The diffusion operator can now be assembled by weighting the fluxes by their appropriate
Boltzmann weight from Eq. (7.6) and making a first order central finite difference approxi-
mation for the divergence. The diffusion operator at a node point centered at (x, y) can be
expressed as

LH(x, y) =
exp [βF (x+ δx/2, y)/2]Fx+δx/2,y − exp [βF (x− δx/2, y)/2]Fx−δx/2,y

δx

+
exp [βF (x, y + δy/2)/2]Fx,y+δy/2 − exp [βF (x, y − δy/2)/2]Fx,y−δy/2

δy
(7.13)

Note that Eq. (7.13) requires evaluating the free energy on the dual grid of the grid defining
the node points; this is not difficult if the free energy can be expressed as an analytical
function in closed form, as in this work.

105



Figure 7.1: Schematic of the finite-volume discretization used for numerical solution of the
Smoluchowski master equation.
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Boundary Point Discretization

At boundary points, we have to take additional care to implement the appropriate boundary
condition. No-flux (Neumann) conditions are simple to incorporate into the discretization
scheme, we simply need to set the corresponding boundary flux term in Eq. (7.13) to zero.
This results in a closed set of equations; the values of the probability field at the interior
points are the only dependent variables involved.

Concentration (Dirichlet) boundary conditions are slightly more difficult to implement.
The two-point central difference flux stencils in Eqns. (7.9)–(7.12) must be changed to two-
point forward difference stencils that involve the specified boundary probability. For the flux
Fx,y+δy/2 out of a top boundary with a specified boundary probability,

Fx,y+δy/2 = exp [−βF (x, y + δy/2)]

[
exp [βF (x, y + δy/2)/2]Pbdy.(x)− exp [βF (x, y)/2]P (x, y)

(δy/2)

]
,

(7.14)
where Pbdy.(x) is the boundary probability. Note that the first term in the bracketed expres-
sion is a constant, while the second term involves a dependent field variable. The first term
comprises an inhomogeneity in the propagator, and leads to the existence of a non-trivial
steady state solution.

Steady-State Solution

The discretization scheme described in the previous two sections approximates the un-
bounded Smoluchowski diffusion operator in Eq. (7.6) by a bounded finite difference op-
erator. The hopping terms can be included straightforwardly1 into the bounded difference
operator, reducing the population dynamics partial differential equation to the matrix equa-
tion

dp

dt
= Lp+ c, (7.15)

where L is the matrix encoding the bounded propagator, p is the probability distribution
evaluated at the finite difference nodes, and c is a constant inhomogeneity vector arising
from the Dirichlet boundary conditions. The solution of the system

Lp = −c (7.16)

comprises a steady-state of the SME model. In practice, the L operator is very sparse with
a predictable structure (block-diagonal with appropriate bandwidth), and so sparse matrix
algorithms can be used to efficiently solve the system in Eq. (7.16).

Computing Current

Comparing results from the SME model to experimental current-voltage data requires a
working definition for net ET current towards a single species. If we let Pi(x, z) denote
the steady-state probability distributions of the species given the appropriate boundary
conditions, an intuitive definition of the net ET current towards species k is:

Jk ≡
∫

dxdz
∑
j ̸=k

[Pj · ζj→k − Pk · ζk→j] (7.17)
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Alternatively, we can compute the current by integrating the net probability flux out of the
z = 1 boundary for species k. While appropriate as a definition for the current, this is more
numerically ill-conditioned since it involves a finite difference expression at a point where
the potential profile has a corner. This ill-conditioning becomes worse at higher values of
the applied potential. For all current-voltage curves measured here, we use the definition in
Eq. (7.17), which is numerically robust over a wide range of applied potentials.

7.1.3 Transfer Coefficients

Traditional Marcus Theory

Marcus theory provides a prediction for the dependence of the transfer coefficient on the
applied potential. I will reproduce the derivation of this dependence here using the param-
eters defined in the two-surface model; the end result is identical to the textbook result3

with appropriate redefinition of variables. Take two Marcus free energies defined on a single
coordinate x:

f1(x) =
kreorg
2
· (x− 1)2 (7.18)

f2(x) =
kreorg
2
· x2 +∆Eint + eV, (7.19)

where V is the applied potential. The two curves intersect at:

x∗ =
1

2
− ∆Eint + eV

kreorg
(7.20)

The free energy at this point referenced to the minimum of f1 is exactly the activation energy
Ea, and is given by:

Ea =
kreorg
2

[
1

2
+

∆Eint + eV

kreorg

]2
(7.21)

Therefore,

αMarcus = −
∂Ea

∂(eV )
=

[
1

2
+

∆Eint + eV

kreorg

]
. (7.22)

Eq. (7.22) is identical to the one produced in the main text.

Model for Transfer Coefficient Attenuation

The model for transfer coefficient attenuation relies on the calculation of an activation energy
profile over the approach coordinate. We can derive this in a similar manner to the traditional
Marcus derivation. The two Marcus free energies are now defined over the product space
(x, z):

f1(x, z) =
kreorg
2
· (x− 1)2 (7.23)

f2(x, z) =
kreorg
2
· x2 +∆Eint + eV z, (7.24)
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The two curves intersect at:

x∗ =
1

2
− ∆Eint + eV z

kreorg
(7.25)

The activation energy profile is straightforward to calculate from here:

Ea(z) =
kreorg
2

[
1

2
+

∆Eint + eV z

kreorg

]2
(7.26)

Applying the Leibniz rule requires computing

dEa

d(eV )
= z

[
1

2
+

∆Eint + V z

kreorg

]
(7.27)

The final transfer coefficient expression from the main text is

α = −
∫

dz ˜̄∆(z) ·
[

dEa

d(eV )

]
, (7.28)

Fig. 7.2 depicts a graphical representation of the integral in Eq. (7.28), using the same
parameters discussed in the main text, for V = −0.20 V (zero overpotential). Current
distributions that are highly localized near the electrode surface (z = 0) overlap with the
initial, increasing branch of this function, and lead to low transfer coefficients. When the

ET event is entirely localized to the EDL boundary, implying that ˜̄∆(z) = δ[z− 1], then the
integration “sifts out” the value of Eq. (7.27) at z = 1. At zero overpotential, this value is
exactly 1/2, implying that we recover the Marcus result from Eq. (7.22) in the appropriate
limit.

Potential Dependence of the Net Current Profile

The derivation of the transfer coefficient model in the main text employed an assumption that

the normalized net current marginal ˜̄∆(z) was roughly independent of the applied voltage.
Figure 7.3 provides numerical confirmation that the net current marginal profile is only a
weak function of voltage over the voltage range studied. Note that this is only an appropriate
assumption when the reactant species does not carry a charge. For a charged reactant, the
ET localization behavior is a strong function of potential, as discussed in the main text.

Additional Intuition

The main text makes reference to a “pinning” effect that attenuates the transfer coefficient
as a consequence of ET localization near the electrode surface. Fig. 7.4 provides some
schematic intuition for this phenomenon. Since the driving force is constrained to be exactly
zero at the electrode surface, modulating the voltage yields less “bang for the buck” activation
energy-wise when the ET event is constrained to occur near the electrode.

Results for Higher Reorganization Energy

A replication of Figure 3 from the main text, but with k = 2.00 eV. As expected, for higher
reorganization energies, the current-voltage curves are linear over a broader voltage range,
and the transfer coefficient prediction from Eq. (7.28) is more quantitatively correct.
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Figure 7.2: Traces of the normalized marginal current ˜̄∆(z) for values of zdec,01 ∈ [0.01, 0.40],
as well as a plot of the integration weight function in Eq. (7.27).
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Figure 7.3: Normalized net current marginal profiles for a range of values of the applied
voltage, using the same parameters as the main text. The shape of the profile is a weak
function of the applied voltage.
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Figure 7.4: Schematic picture of the distance-dependent potential driving force in the SME
model with linear potential decay. As ET occurs closer to the electrode, modulating the
external potential has a smaller effect on the potential driving force felt by the redox-active
species.

A B

Figure 7.5: Current-voltage curves and transfer coefficient predictions from the two-surface
model, for kreorg = 2.00 eV. (A) Several current-voltage curves measured for different values
of the coupling localization parameter zdec,01, with Γ̄01 = 6 eV. (B) Transfer coefficients
determined by linear fitting for a number of different coupling strengths are shown as colored
dots. The solid lines are predictions from the simple model/approximation developed in Eq.
(7.28).
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Figure 7.6: Transfer coefficients determined from linear fitting of current-voltage behavior
versus zdec,01, presented here on a dimensional scale, assuming L = 5 Å.

Dimensionalized Results for Transfer Coefficient Attenuation

A replication of Figure 3B from the main text, but this time with the parameter zdec,01
presented on a dimensional scale, taking L = 5 Å, characteristic for an aqueous electrolyte
with a 1M concentration of monovalent salt. We hope this helps contextualize the results
presented in the main text in terms of length scales familiar to electrochemical literature.

Results for Exponential Potential Decay Profile

A replication of Figure 3B from the main text, but with an augmented potential profile,

ϕ(z) = V exp
[
−z
ν

]
, (7.29)

representing the Gouy-Chapman solution to potential decay in an electrolyte with mobile
charges at a plane interface held at constant potential. In these simulations, we set ν =
0.285L. Note that the solid lines from the main-text figure are derived from an analytical
approximation that only holds for the linear decay profile presented in the main text, so the
solid lines are omitted from this figure.
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Figure 7.7: Transfer coefficients determined from linear fitting of current-voltage behavior
versus zdec,01 from a model using the Gouy-Chapman potential decay profile in Eq. (7.29).
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7.2 Additional Information: Understanding Attenuated

Marcus Reorganization Energies in the Electro-

chemical Double Layer

7.2.1 Resummation Procedure for Image Charge Series

The Madelung potential as defined is computed with the image charges from the initial state.
To get the appropriate vertical energy gap for a system with constant potential boundaries,
we need to subtract away the interaction energy of the initial charge in the “primary cell”
(see Fig. 2 in the main text) with its image charges in the z-direction, and then add back
the interaction energy of the final charge in the “primary cell” with its image charges in
the z-direction. Let ϕk,img.(z) denote the electrostatic potential at position rk induced by all
image charges of the copy of species k in the “primary cell”, when species k carries charge
z. Formally,

∆Egap = qf

 ϕk,Mad.︸ ︷︷ ︸
potential from
initial’s images

−ϕk,img.(qi)︸ ︷︷ ︸
remove potential from

homebox initial’s images

+ϕk,img.(qf )︸ ︷︷ ︸
add back potential from
homebox final’s images


︸ ︷︷ ︸

final energy

− qiϕk,Mad.︸ ︷︷ ︸
initial energy

(7.30)

To proceed, we needs some way to evaluate ϕk,img.(z). Cox and Geissler developed the
following expression by explicitly writing an infinite series accounting for all image contri-
butions.1

ϕk,img.(q) =
∞∑
n=0

(−1)2n+1 · q
2 · (nL+ d̂1)

+
∞∑
n=1

(−1)2n · q
2 · nL

+
∞∑
n=0

(−1)2n+1 · q
2 · (nL+ d̂2)

+
∞∑
n=1

(−1)2n · q
2 · nL

(7.31)

ϕk,img.(q) =
q

2L

[
∞∑
n=0

(−1)2n+1

(n+ d1)
+

∞∑
n=1

(−1)2n

n
+

∞∑
n=0

(−1)2n+1

(n+ d2)
+

∞∑
n=1

(−1)2n

n

]
(7.32)

Here, d̂1 is the z-distance from the nearest electrode boundary, and d̂2 ≡ L − d̂1, its com-
plement. The quantities d1 ≡ d̂1/L and d2 ≡ d̂2/L are their non-dimensional counterparts.
The series summations in Eq. 7.32 are conditionally convergent. As written, each series is
a divergent harmonic series. The following resummation organizes the series into a pair of
alternating harmonic series, which are summable.

ϕk,img.(z) =
z

2L

[
− 1

d1
+

∞∑
n=1

(
1

n
− 1

(n+ d1)

)
− 1

d2
+

∞∑
n=1

(
1

n
− 1

(n+ d2)

)]

ϕk,img.(z) =
z

2L

[
− 1

d1
− 1

d2
+

∞∑
n=1

d1
n2 + nd1

+
∞∑
n=1

d2
n2 + nd2

]
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Isolating the summation and identifying a closed-form result,

S[d] =
∞∑
n=1

d

n2 + nd
, (7.33)

S[d] = γ + ψ(1 + d), (7.34)

where ψ(z) is the digamma function, and γ = 0.577216 . . . is the Euler-Mascheroni constant.
Using this result, Equation 7.33 becomes

ϕk,img.(q) =
q

2L

[
− 1

d1
− 1

d2
+ 2γ + ψ(1 + d1) + ψ(1 + d2)

]

ϕk,img.(q) =
q

2L

[
−d1 + d2

d1d2
+ 2γ + ψ(1 + d1) + ψ(1 + d2)

]
Note that the potential due to the image charges immediately factorizes as

ϕk,img.(q) = q · f(d1, d2)

where f(d1, d2) is the correction function

f(d1, d2) ≡
1

2L

[
−d1 + d2

d1d2
+ 2γ + ψ(1 + d1) + ψ(1 + d2)

]
. (7.35)

7.2.2 Simulation Details

The simulations are performed using the classical MD simulator LAMMPS,2 with the Con-
stant Potential package for simulating the electrolyte-electrode interactions.3 To distance our
study from any particular type of molecular system, we use the non-dimensional Lennard-
Jones (LJ) style unit system as implemented in LAMMPS. A simulation box of size 80 ×
80 × 100 (x × y × z) includes two parallel planar electrodes, each comprised of 3 layers of
electrode atoms, which are placed at z = 10 and z = 90, effectively creating a region of size
80 × 80 × 80 between the electrodes. The positions of the electrode atoms are held fixed,
and the electrodes are kept at a constant potential, with no applied voltage bias between
the two electrodes. A group of positive and negative monovalent ions are confined in inter-
electrode region, and interact with the electrode atoms via both a short-range LJ potential
(with ϵ = 0.2 and σ = 2.5) and long-range electrostatics. The ions are generic LJ spheres,
interacting with each other with LJ parameters ϵ = 1 and σ = 1. The density for each type
of ion (number of ions/volume) in the region between the electrode is 0.001, i.e., there are
512 positive ions and 512 negative ions in the 80 × 80 × 80 volume. The dynamics of ions
are evolved in the NVE ensemble with a Langevin thermostat fixed at a temperature of 1.
All particles are assigned a mass of 1. Periodic boundary conditions are used for the x and y
directions, while non-periodic boundary conditions are used for the z direction, and the slab
version of particle-particle particle-mesh (PPPM) is used for the k-space Ewald summation
algorithm. The electrodes are simulated by using the constant potential method, first intro-
duced by Siepmann and Sprik4, and the further developed by Reed et al 5 and Gingrich et
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al.6 In this method, the charges on the electrode atoms fluctuate according to the electrolyte
environment close to the interface, in order to maintain constant electric potential on the
electrodes. The fluctuating charges are determined at specified time steps by solving for
the electrostatic interactions between the electrode atoms and the electrolyte ions. Further
constraint from applied potential bias can be easily added to the electrode charges. The
utilized package of such method in LAMMPS is implemented by Wang et al.3

7.2.3 Analytical Theory Details

In this section, we work out in detail some common Fourier space manipulations used in
the main text, and quote the result for the summation in Eq. 21 in terms of non-elementary
functions.

Charge–Potential Relationship in Fourier Space

Starting from Eq. 13 in the main text,

∇2φ− 4πκ2φ = −4πρ

∇2

[
∞∑
q=1

φ̂(q)ψq(z)

]
− 4πκ2

∞∑
q=1

φ̂(q)ψq(z) = −4π
∞∑
q=1

ρ̂(q)ψq(z)

∫ 1

−1

dz ψℓ(z)

{
−

∞∑
q=1

q2φ̂(q)ψq(z)− 4πκ2
∞∑
q=1

φ̂(q)ψq(z)

}
= −4π

∫ 1

−1

dz ψℓ(z)

{
∞∑
q=1

ρ̂(q)ψq(z)

}
∞∑
q=1

q2φ̂(q)

∫ 1

−1

dz ψℓ(z)ψq(z) + 4πκ2
∞∑
q=1

φ̂(q)

∫ 1

−1

dz ψℓ(z)ψq(z) = 4π
∞∑
q=1

ρ̂(q)

∫ 1

−1

dz ψℓ(z)ψq(z)

∞∑
q=1

q2φ̂(q)δqℓ + 4πκ2
∞∑
q=1

φ̂(q)δqℓ = 4π
∞∑
q=1

ρ̂(q)δqℓ

ℓ2φ̂(ℓ) + 4πκ2φ̂(ℓ) = 4πρ̂(ℓ)(
q2 + 4πκ2

)
φ̂(q) = 4πρ̂(q),

where the final equation is the Fourier space relationship between the free charge density
and the potential, quoted as Eq. 16 in the main text.
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Factorization of Pointwise Gaussian Field Distribution

Starting from Eq. 17,

P [ρ(z);σρ] ∝ exp

[
− 1

2σ2
ρ

·
∫ 1

−1

dz ρ(z)2
]

P [ρ̂(q);σρ] ∝ exp

[
− 1

2σ2
ρ

·
∫ 1

−1

dz

[
∞∑
q=1

ρ̂(q)ψq(z)

]
·

[
∞∑
ℓ=1

ρ̂(ℓ)ψℓ(z)

]]

P [ρ̂(q);σρ] ∝ exp

− 1

2σ2
ρ

·
∞∑

(q,ℓ)=(1,1)

ρ̂(q)ρ̂(ℓ)

∫ 1

−1

dz ψq(z)ψℓ(z)


P [ρ̂(q);σρ] ∝ exp

− 1

2σ2
ρ

·
∞∑

(q,ℓ)=(1,1)

ρ̂(q)ρ̂(ℓ)δqℓ


P [ρ̂(q);σρ] ∝ exp

[
− 1

2σ2
ρ

·
∞∑
q=1

ρ̂(q)2

]

P [ρ̂(q);σρ] ∝
∞∏
q=1

exp

[
− ρ̂(q)

2

2σ2
ρ

]
,

which is quoted as Eq. 18 in the main text.

Analytical Result for Variance Profile

The analytical result for the summation encountered when performing Fourier inversion are
reported here. The result are expressed in terms of certain special functions, which we will
define prior to presenting the final result. The Hurwitz-Lerch transcendent,

ΦHL(z, s, α) ≡
∞∑
n=0

zn

(n+ α)s
. (7.36)

The Gamma function,

Γ(z) ≡
∫ ∞

0

dx xz−1e−x. (7.37)

Finally, the Gauss hypergeometric function:

2F1(a, b; c; z) ≡
Γ(c)

Γ(b)Γ(c− b)
·
∫ 1

0

dt
tb−1(1− t)c−b−1

(1− tz)a
. (7.38)
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Practically, these functions are evaluated using the mpmath library in Python for constructing
the figures displayed in the main text.7 The analytical result is,

σ2
φ (z) =

σ2
ρ

4κ4

{
−1 +

√
πκ · coth

(
2
√
πκ
)
+ 2πκ2 · csch2

(
2
√
πκ
)2

(7.39)

+π−1e−2πizκ2 ·
[
ΦHL

(
e2πiz, 2, 1− 2iκ√

π

)
+ ΦHL

(
e−2πiz, 2, 1 +

2iκ√
π

)
+Γ

(
−2iκ√

π

)
2F1

(
1, 1− 2iκ√

π
; 2− 2iκ√

π
; e−2πiz

)
+Γ

(
+
2iκ√
π

)
2F1

(
1, 1 +

2iκ√
π
; 2 +

2iκ√
π
; e−2πiz

)]
+π−1e+2πizκ2 ·

[
ΦHL

(
e2πiz, 2, 1− 2iκ√

π

)
+ ΦHL

(
e−2πiz, 2, 1 +

2iκ√
π

)
+Γ

(
−2iκ√

π

)
2F1

(
1, 1− 2iκ√

π
; 2− 2iκ√

π
; e−2πiz

)
+Γ

(
+
2iκ√
π

)
2F1

(
1, 1 +

2iκ√
π
; 2 +

2iκ√
π
; e−2πiz

)]}
.

The expression in Eq. 7.39 is rather opaque. We can extract the qualitative behavior of this
function by examining the original summation in Eq. 21, reproduced as,

σ2
φ (z) =

16σ2
ρ

π2

∞∑
n=1

sin2(nπz)

(n2 + 4κ2/π)2
. (7.40)

Symmetry of the problem demands that the function is symmetric around z = 0.5. It is also
apparent that Var[φ(0)] = 0, since sin(0) = 0. Perhaps less apparently, this function must
plateau for values of κz > 1. To see why, first note that the sum is well-approximated by
only considering frequencies up to a cutoff κ, since higher frequency components are killed
quickly by a factor of n4. These “relevant” frequency components can all be linearized to
good approximation by qz for κz ≪ 1. In this range, all of these frequency components are
increasing, and so Var[φ(z)] is also increasing. The linearization fails after κz ≈ 1, since the
highest relevant frequency component begins to plateau and then decrease. For z ≫ κ−1,
the sum runs over nearly orthogonal functions, and hence does not change much with z.
This is indeed the behavior observed in Fig. 4 in the main text.
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7.2.4 Additional Figures

Ratio between reorganization energies computed by using σ2[∆E] and using ⟨∆E⟩

As described in the main text (Sec. IIA), the reorganization energy, λ, can be obtained by
the following two equations, by the courtesy of linear response theory:

λ1 =
βσ2[∆Ered]

2
=
βσ2[∆Eox]

2
, (7.41a)

λ2 =
⟨∆Ered⟩ − ⟨∆Eox⟩

2
. (7.41b)

Therefore, one way to validate the linear response assumption for a particular system is
to compare λ1 and λ2 calculated using σ2[∆E] and ⟨∆E⟩ obtained from MD simulations,
respectively. Figure 7.8 shows that λ1 and λ2 largely overlap, and that the ratio λ1/λ2 is
close to 1 for all z positions.

MD simulation results of reorganization energy for systems with different Debye
length

As shown by field theory in Sec. IIIB, the exact profile for σ2[∆E] changes as the Debye
length, λD, of the electrolyte system changes. In particular, the size of the bulk region is
larger for systems with smaller Debye length. This effect can be captured by MD simulations.
Keeping the size of the simulation box the same, different Debye lengths can be achieved by
changing the ion concentration in the electrolyte, according to the following relation:

λD =

(
kBT∑N
j=1 n

0
jq

2
j

)
(7.42)

where kB is the Boltzmann constant, T is temperature, n0
j is the mean concentration of

species j, qj is the charge of species j, and N is the total number of charged species. From

the relation, it is clear that λD is smaller for systems with higher ionic strength (
∑N

j=1 n
0
jq

2
j ).

Because the charges of the ions are kept constant for different systems, higher concentration
in our simulation is equivalent to larger ionic strength. Figure 7.9 presents the profiles of
normalized reorganization energy λ for systems with different ion concentration. Compared
to Fig. 4(b), the MD results qualitatively match those from field theory, i.e., bulk region is
larger for systems with higher ion concentration.

Empirical free charge distributions from MD simulations

We computed free charge distributions from simulations by applying a spatial binning proce-
dure to the ionic charges in the MD simulation cell. Figure 7.10 depicts a family of traces of
the empirically-observed free energy profiles of the free charge density for various values of the
z distance from the electrode. Modulo sampling artifacts, the charge density distributions
all have roughly equivalent variance. This lends some empirical support toward employing
a position-independent charge density field variance when constructing a fluctuating field
theory.
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Figure 7.8: The reorganization energies, λ1 (red line) and λ2 (blue line), calculated using
σ2[∆E] and ⟨∆E⟩ obtained from MD simulations, respectively. The black line is the ratio
between λ1 and λ2.
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Figure 7.10: Traces of the empirically observed free energy for a free charge density ρ,
colored by z-position along the simulated electrochemical system, made non-dimensional by
the electrode length scale, L.
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7.3 Additional Information: Electrostatic Screening in

Moderately Concentrated Aqueous Electrolyte is

Concentration-Independent andMicroscopically Het-

erogeneous

7.3.1 Computational Details for Poisson Potential Computation

Given a molecular simulation trajectory, we would like to devise a numerical scheme to
determine the Poisson potential at any point in the simulation volume. The Poisson potential
φ is defined by the Poisson equation,

∇2φ = ρ, (7.43)

where ρ is the free charge density field. The geometry under consideration has two periodic
dimensions, denoted x and y, and one closed dimension z, which is the coordinate normal
to the planar electrodes. The appropriate boundary conditions are,

φ(0, y, z) = φ(Lx, y, z) (7.44)

φ(x, 0, z) = φ(x, Ly, z) (7.45)

∂xφ(0, y, z) = ∂xφ(Lx, y, z) (7.46)

∂yφ(x, 0, z) = ∂yφ(x, Ly, z) (7.47)

φ(x, y, 0) = Vleft (7.48)

φ(x, y, Lz) = Vright, (7.49)

where Vleft and Vright are the applied potentials on the left and right electrodes, situated at
z = 0 and z = Lz, respectively.

To start developing a numerical scheme, we can discretize Eq. (7.43) on a three-dimensional
rectangular grid. Given a specification of the number of grid points N = (Nx, Ny, Nz), we
can define a vector of grid spacings ∆ ≡

(
N−1

x , N−1
y , [Nz + 1]−1). Note that the z-coordinate

has a slightly different grid spacing because we would like to impose Dirichlet boundary
conditions in this coordinate, requiring an extra boundary point. Now, grid points can be
indexed by an index tuple n ∈ {0, . . . , Nx − 1} × {0, . . . , Ny − 1} × {0, . . . , Nz}. The spatial
location of a grid point with index tuple n is simply rn = ∆ · n. Equation (7.43) can be
naturally discretized using a second-order Laplacian stencil. Under a row-major indexing
scheme for the coordinates, this produces a sparse representation of the Laplacian operator,
whose sparsity pattern is depicted in Fig. 7.11A.

Solving Eq. (7.43), discretized on a grid, is relatively straightforward if we have a way
to evaluate the free charge density field, ρ, on the grid points. However, particles in a
molecular simulation are, in general, not situated on a uniform grid. Hence, we need a scheme
for interpolating a non-uniform charge density field onto a uniform grid of points. Figure
7.11B describes the scheme pictorially in two dimensions; extension to three dimensions is
straightforward. Formally, for a particle with index k carrying charge qk localized at position
rk = (xk, yk, zk), we identify eight points bounding the voxel containing the particle. The
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Figure 7.11: (A) Sparsity pattern for discretized Laplacian operator, for N = (5, 5, 4).
(B) Schematic depiction of charge interpolation scheme in two dimensions. Each boundary
point receives a fraction of the charge proportional to the ratio of its correspondingly colored
rectangle area to the entire voxel area.

index tuples of these eight points can be computed using the following equations,

nk
1 = (⌈xk/Lx⌉, ⌊yk/Ly⌋, ⌊zk/Lz⌋) (7.50)

nk
2 = (⌊xk/Lx⌋, ⌊yk/Ly⌋, ⌊zk/Lz⌋) (7.51)

nk
3 = (⌈xk/Lx⌉, ⌈yk/Ly⌉, ⌊zk/Lz⌋) (7.52)

nk
4 = (⌊xk/Lx⌋, ⌈yk/Ly⌉, ⌊zk/Lz⌋) (7.53)

nk
5 = (⌈xk/Lx⌉, ⌊yk/Ly⌋, ⌈zk/Lz⌉) (7.54)

nk
6 = (⌊xk/Lx⌋, ⌊yk/Ly⌋, ⌈zk/Lz⌉) (7.55)

nk
7 = (⌈xk/Lx⌉, ⌈yk/Ly⌉, ⌈zk/Lz⌉) (7.56)

nk
8 = (⌊xk/Lx⌋, ⌈yk/Ly⌉, ⌈zk/Lz⌉) , (7.57)

where ⌊·⌋ and ⌈·⌉ represent the integer floor and integer ceiling functions, respectively. Along
each dimension d ∈ (x, y, z), the particle position partitions the line segment connecting two

adjacent grid points into two segments, one of length ℓ
(d)
↓ = r

(d)
k −⌊r

(d)
k /Ld⌋·∆(d), and another

of length ℓ
(d)
↑ = ⌈r(d)k /Ld⌉ ·∆(d) − r

(d)
k . Note that ∆(d) = ℓ

(d)
↓ + ℓ

(d)
↑ , due to the properties of

the ceiling and floor functions. For notational convenience, define,

δ =
∏
d

∆(d) (7.58)
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Now, we assign each point bounding the voxel a weight,

wk
1 = δ−1 · ℓ(x)↑ ℓ

(y)
↓ ℓ

(z)
↓ (7.59)

wk
2 = δ−1 · ℓ(x)↓ ℓ

(y)
↓ ℓ

(z)
↓ (7.60)

wk
3 = δ−1 · ℓ(x)↑ ℓ

(y)
↑ ℓ

(z)
↓ (7.61)

wk
4 = δ−1 · ℓ(x)↓ ℓ

(y)
↑ ℓ

(z)
↓ (7.62)

wk
5 = δ−1 · ℓ(x)↑ ℓ

(y)
↓ ℓ

(z)
↑ (7.63)

wk
6 = δ−1 · ℓ(x)↓ ℓ

(y)
↓ ℓ

(z)
↑ (7.64)

wk
7 = δ−1 · ℓ(x)↑ ℓ

(y)
↑ ℓ

(z)
↑ (7.65)

wk
8 = δ−1 · ℓ(x)↓ ℓ

(y)
↑ ℓ

(z)
↑ . (7.66)

The charge density on all grid points is computed by incrementing the charge density on
each point i ∈ 1, . . . , 8 bounding the voxel containing particle k by its charge weight qkw

k
i ,

and repeating for all particles in the simulation.
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7.4 Additional Information: Examining Cardinal Tafel

Slope Preferences in CO2 Reduction Electrocatal-

ysis with Bayesian Data Analysis

7.4.1 Literature Analysis

Residuals vs. Literature-Reported Values

Residual analysis can help sniff out systematic or correlated errors in the results presented
in Fig. 3A of the main text. We can define residuals between the literature-reported values
and the MAP values in several different ways. Here, we will consider two definitions of the
residuals, normalized either to the literature-reported Tafel slopes,

Residual Normalized to Reported =
Treported − TMAP

Treported
, (7.67)

or to the MAP Tafel slopes,

Residual Normalized to MAP =
Treported − TMAP

TMAP

. (7.68)

Figure 7.12 depicts plots of the residuals versus the literature-reported and MAP Tafel
slopes (A and C, respectively), as well as kernel density estimates of the distribution over the
residuals normalized to the literature-reported and MAP Tafel slopes (B and D, respectively).
To the eye, the residuals appear roughly unbiased around zero, and there appear to be no
spurious correlations between the residuals.

Correlation Plot over Full Range

Figure 7.13 depicts a correlation plot of the MAP Tafel slope versus the literature-reported
Tafel slope, including all datasets considered in this study.

PDF Plot Using all Posterior Samples

For every single dataset considered in the study, we draw N = 4 × 104 samples from the
posterior distribution over the Tafel slope. In Fig. 3C in the main text, we depict a kernel
density estimate of the distribution over the MAP Tafel slope from each of these posterior
distributions. We choose to display this data because the MAP Tafel slope is a straightfor-
ward point estimate of the Tafel slope given a posterior distribution over the parameter, and
hence is likely the quantity one would quote if asked what the Tafel slope of a catalyst is.
However, the averaging operation involved in computing the MAP Tafel slope can collapse
broad features in the posterior distribution down to a single value; this is especially true
in the case of bimodal posterior distributions arising from insufficient datasets. Figure 7.14
depicts a kernel density estimate of the distribution over the Tafel slope using all samples
collected from the posterior distribution for each dataset. The essential conclusions reported
in the main text are upheld when examining the data in Fig. 7.14. A very small preference
for Tafel slopes around 45 mV/decade emerges in this analysis. However, given the small
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Figure 7.12: Residual Analysis. (A) Plot of the relative residual to the literature-reported
Tafel slope, defined in Eq. (7.67), versus the literature-reported Tafel slope, including only
reported Tafel slopes less than 200 mV/decade. (B) Kernel density estimate of the distribu-
tion over the relative residual to the literature-reported Tafel slope. (C) Plot of the relative
residual to the MAP Tafel slope, defined in Eq. (7.67), versus the MAP Tafel slope, includ-
ing only reported Tafel slopes less than 200 mV/decade. (D) Kernel density estimate of the
distribution over the relative residual to the MAP Tafel slope.
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Figure 7.13: Correlation plot of reported Tafel slopes from the literature against Tafel slopes
fitted by our algorithm on identical data. The solid red line represents perfect agreement,
while the red filled intervals are lines representing 10% and 20% relative error.
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Figure 7.14: Kernel density estimates (KDE) of the empirical probability distribution func-
tion of Tafel slopes reported in literature data (blue) and those refitted by our algorithm
(red). Error intervals correspond to one standard deviation of bootstrapped resamples.
Green dashed lines correspond to cardinal values of the Tafel slope.

amount of total distributional mass under this peak and the high degree of sampling vari-
ability (as evinced by the bootstrap standard deviations), we do not believe it should be
interpreted strongly.

Catalyst Breakout Results

As described in the main text, we split out our results on the distributions over the Tafel
slope by catalyst material identity in order to confirm that our conclusion of a lack of Tafel
cardinality in CO2 reduction catalysis is not an artifact of pooling together data from several
catalyst materials, each of which individually exhibit cardinality. Figures 7.15–7.20 depict
these results for catalysts containing Cu, Ag, Au, Sn, and Bi. Each figure has three panels:
the left-most panel plots a kernel density estimate of the distribution over Tafel slopes using
all samples from the posterior distribution, akin to Fig. 7.14. The center panel plots a
kernel density estimate of the distribution over the MAP Tafel slope from each dataset, akin
to main text Fig. 3C. The right-most panel plots a CDF of the distributional breadth Bi
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for each dataset considered. The distributional breadth is parametrized by the threshold
parameter t, and is defined as,

Bi(t) = CDF−1
i (1− t)− CDF−1

i (t), (7.69)

where CDFi(mT) represents the CDF of the Tafel slope for the i’th dataset. Intuitively,
a high distributional breadth implies that the experimental data measured in the dataset
does not provide information to pin down the value of the Tafel slope with high confidence.
Correspondingly, if the CDF of the distributional breadth increases quickly, then most of
the datasets in the catalyst material subset predict tight distributions over the Tafel slope.
Conversely, if the CDF of the distributional breadth climbs slowly, then several datasets in
the catalyst material subset do not determine a Tafel slope value with high confidence.

For some catalysts, the KDE constructed from all Tafel slope samples (left panel) and the
KDE constructed from the MAP Tafel slope samples (center panel) show different behavior.
The former plot looks more visually noisy than the latter plot; this is to be expected,
since taking the mean of the posterior distribution over the parameters is a “smoothing”
operation. The two ways of visualizing the data convey slightly distinct information, since the
KDE constructed from all samples preserves the uncertainty information retained in a single
fit, while the KDE constructed from the MAP Tafel slopes is the most direct comparison
to the distribution of literature values (which do not carry an associated uncertainty, in
most cases). In certain cases (Ag, Sn), the KDE comprising all samples appears to have
more defined peaks than the KDE comprising MAP samples. First, we note that in these
cases, the bootstrap standard errors for these peaks are much greater than in other areas
of the distribution, suggesting that this peaking behavior is controlled by a small number
of samples, and hence more variable with respect to a change in the specific datasets re-
analyzed in this study. Second, peaking behavior in the KDE comprising all samples that
does not appear in the KDE comprising MAP samples is a sign of some underlying data
insufficiency issues highlighted by Fig. 2 in the main text; these peaks can easily disappear
or be shifted upon measuring additional data. To declare confidently that a certain dataset
espouses a cardinal Tafel slope preference, we contend that both ways of visualizing the
distribution of Tafel slopes for a certain catalyst should show peaking around a cardinal value.
This standard, while stringent, enforces that the available experimental data confidently
determines a cardinal value of the Tafel slope, free of latent data insufficiency issues. While
we observe this for the Bi breakout results in Fig. 7.20, the remainder of the catalyst breakout
datasets do not meet this standard. Hence, though we do not foreclose the possibility
that additional future data collection on these catalysts may reveal a cardinal Tafel slope
preference, we argue that broadly, when considering the data extant in the literature, the
typical CO2 reduction catalyst does not exhibit a strong preference for cardinal values of the
Tafel slope.
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Figure 7.15: Tafel Slope statistics for catalysts containing Ag (Ndatasets = 38). (Left) Kernel
density estimates (KDE) of the empirical probability distribution function of Tafel slopes
reported in literature data (blue) and those refitted by our algorithm (red). Error intervals
correspond to one standard deviation of bootstrapped resamples. Green dashed lines corre-
spond to cardinal values of the Tafel slope. (Center) Same as (Left), but KDEs are computed
using only the MAP Tafel Slope values for each dataset. (Right) CDF of the distributional
breadth, as defined by Eq. (7.69).
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Figure 7.16: Tafel Slope statistics for catalysts containing Au (Ndatasets = 50). (Left) Kernel
density estimates (KDE) of the empirical probability distribution function of Tafel slopes
reported in literature data (blue) and those refitted by our algorithm (red). Error intervals
correspond to one standard deviation of bootstrapped resamples. Green dashed lines corre-
spond to cardinal values of the Tafel slope. (Center) Same as (Left), but KDEs are computed
using only the MAP Tafel Slope values for each dataset. (Right) CDF of the distributional
breadth, as defined by Eq. (7.69).
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Figure 7.17: Tafel Slope statistics for catalysts containing Ag or Au (Ndatasets = 88). (Left)
Kernel density estimates (KDE) of the empirical probability distribution function of Tafel
slopes reported in literature data (blue) and those refitted by our algorithm (red). Error
intervals correspond to one standard deviation of bootstrapped resamples. Green dashed
lines correspond to cardinal values of the Tafel slope. (Center) Same as (Left), but KDEs
are computed using only the MAP Tafel Slope values for each dataset. (Right) CDF of the
distributional breadth, as defined by Eq. (7.69).
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Figure 7.18: Tafel Slope statistics for catalysts containing Cu (Ndatasets = 54). (Left) Kernel
density estimates (KDE) of the empirical probability distribution function of Tafel slopes
reported in literature data (blue) and those refitted by our algorithm (red). Error intervals
correspond to one standard deviation of bootstrapped resamples. Green dashed lines corre-
spond to cardinal values of the Tafel slope. (Center) Same as (Left), but KDEs are computed
using only the MAP Tafel Slope values for each dataset. (Right) CDF of the distributional
breadth, as defined by Eq. (7.69).
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Figure 7.19: Tafel Slope statistics for catalysts containing Sn (Ndatasets = 37). (Left) Kernel
density estimates (KDE) of the empirical probability distribution function of Tafel slopes
reported in literature data (blue) and those refitted by our algorithm (red). Error intervals
correspond to one standard deviation of bootstrapped resamples. Green dashed lines corre-
spond to cardinal values of the Tafel slope. (Center) Same as (Left), but KDEs are computed
using only the MAP Tafel Slope values for each dataset. (Right) CDF of the distributional
breadth, as defined by Eq. (7.69).
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Figure 7.20: Tafel Slope statistics for catalysts containing Bi (Ndatasets = 27). (Left) Kernel
density estimates (KDE) of the empirical probability distribution function of Tafel slopes
reported in literature data (blue) and those refitted by our algorithm (red). Error intervals
correspond to one standard deviation of bootstrapped resamples. Green dashed lines corre-
spond to cardinal values of the Tafel slope. (Center) Same as (Left), but KDEs are computed
using only the MAP Tafel Slope values for each dataset. (Right) CDF of the distributional
breadth, as defined by Eq. (7.69).
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Figure 7.21: Limiting current statistics for all datasets analyzed in the study. (Left) Kernel
density estimates (KDE) of the empirical probability distribution of the limiting current, ilim
fitted when interpreting the data through the model in main text Eq. (2). (Right) Same as
(Left), but KDEs are computed using only the MAP limiting current values for each dataset.

Limiting Current Statistics

Figure 7.21 depicts kernel density estimates of the distribution of fitted limiting currents ilim
from a re-analysis of literature data. Roughly, the distribution appears to be in agreement
with the value of the transport-limited current density for CO2 reduction at an aqueous
flooded electrode.1

7.4.2 Bayesian Fitting

Mathematical Detail

As quoted in the main text, Bayes’ rule reads,

p(θ|y) = p(y|θ)× p(θ)
p(y)

. (7.70)

In the context of this work, y represents the measured current data at a set of voltage points.
We will use the subscript notation yk to denote a single current data point, where the index
k = 1, . . . , Npts. The parameters of a model for interpreting current-voltage data are denoted
by θ; in the context of this work, the relevant parameters for the limiting current model are
ilim, the limiting current density, i0, the exchange current density, and m

−1
T , the inverse Tafel

slope. We will denote the model’s predictions at each voltage point by the subscript notation
Mk(θ).

To successfully apply Bayes’ rule to glean p(θ|y), the posterior distribution over the
model parameters given measured data, we need to identify mathematical forms for the
prior distribution p(θ) and the likelihood function p(y|θ). In all fits conducted in this study,
we employ a uniform prior distribution (also known as an “uninformative” prior distribution)
over a certain parameter range. Since the prior is uniform in the selected parameter range, as
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long as the range includes the values of the parameters for which p(θ|y) has high probability
mass, the choice of prior is unimportant (see further on for a numerical confirmation of this
fact). Given this fact, the choice for the range of our uniform prior is determined by first
using a standard nonlinear least-squares optimization algorithm (TRF) to determine a point
estimate of the optimal set of parameters, θ∗. Formally,

θ∗ = argmin
θ

{
Npts∑
k=1

[yk −Mk(θ)]
2

}
. (7.71)

With the optimal parameters θ∗ in hand, we select a uniform prior p(θ) that is supported in
the range [0, a× θ∗i ] for each parameter i = 1, . . . , Nparams. We choose the very conservative
value a = 10 to ensure that the prior distribution has support over a very broad range
around the optimal parameters. In principle, this choice of a results in a wide parameter
space, which may affect the computational efficiency of a posterior sampling algorithm. In
practice, we find very little computational disadvantage for choosing a = 10 as compared to
a = 2 when using the No-U-Turn Sampler implemented in PyMC3.

The likelihood function for the data given the parameters, p(y|θ), is determined by assum-
ing that the experimental measurement represents a ground truth measurement described
by the model, polluted by unavoidable experimental error,

yk =Mk(θ) + ϵk. (7.72)

We assume that errors at different data points are uncorrelated, and further assume that the
error ϵi at any single data point is drawn from a Gaussian distribution with zero mean and
variance σ2,

p(ϵk) =
1√
2πσ

exp

[
− ϵ2k
2σ2

]
. (7.73)

Because the errors at each point are uncorrelated, the likelihood now factorizes over all the
data points,

p(y|θ) =
Npts∏
k=1

1√
2πσ

exp

[
−(yk −Mk(θ))

2

2σ2

]
. (7.74)

With a likelihood function p(y|θ) and a prior distribution p(θ) in hand, we can plug this
information into a Monte Carlo sampler of our choice to draw samples from the posterior
distribution p(θ|y). Equation (7.74) also makes apparent how one can generalize the Bayesian
posterior sampling approach to more general modelsM(θ). After we write down a suitable
model, we simply evaluate the model predictions with different parameters whenever we
need to compute the likelihood function for a given set of parameters during the sampling
procedure.

Gaussian Error Estimates from Nonlinear Optimization

The Bayesian posterior sampling approach advanced in this work provides a way to glean
distributional uncertainty information about the estimated values of model parameters given
observed data. A similar set of information can also be obtained by analyzing the Hessian
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matrix determined by a nonlinear optimization algorithm seeking an optimal point estimate
of the model parameters. Specifically, if the optimizer seeks to minimize a loss function,

L(θ) = 1

2σ2

Npts∑
k=1

[yk −Mk(θ)]
2 , (7.75)

then it often also produces an estimate of the Hessian,

Hij =
∂L

∂θi∂θj

∣∣∣∣
θ∗
, (7.76)

evaluated at the optimal value of the parameters θ∗. If we assume that the experimental
data is generated by the random process described by Eq. (7.72), and further assume that
the errors at different data points are uncorrelated and drawn from Gaussian distributions
with mean zero and variance σ2, then we can form a Gaussian approximation to the posterior
distribution around θ∗,

p(θ|y) ≈ 1

(2π)d/2 (detH)1/2
exp

[
−1

2
(θ − θ∗)TH (θ − θ∗)

]
, (7.77)

where d is the number of parameters being estimated, and H is guaranteed to be positive
definite by virtue of being evaluated at the optimal point θ∗.

We stress that the expression provided by Eq. (7.77) is an approximation to the true
posterior distribution; due to its Gaussian form, this expression can never accurately repre-
sent bimodality in the posterior distribution. In this sense, the Bayesian sampling approach
is superior, although it comes at significant additional computational expense as d increases.
In this work, d = 3, and this additional expense is essentially negligible given the compu-
tational power available on a typical laptop or desktop computer. Hence, we suggest that
posterior distributions over the Tafel slope fitted using the model in Eq. (2) of the main
text should always be computed using the Bayesian posterior sampling algorithm described
in the previous section. We have simply included mention of the Gaussian approximation
for the sake of completeness, and to guide possible future work that attempts to fit models
with significantly more parameters.

Sensitivity to Error Distribution Width

One important parameter of the Bayesian fitting approach is the width of the normal distri-
bution governing the probability of deviations from the model, which arises when evaluating
the quantity p(y|θ) in Bayes’ rule. Figure 7.22 studies the sensitivity of the posterior dis-
tribution over the Tafel slope to the parameter σ, the standard deviation of the normal
distribution governing the statistics of the model error. As expected, lowering the value of
σ causes the algorithm to become more confident in its estimate. At σ = 0.01 logarithmic
units, the model essentially nails the true Tafel slope of 80 mV/decade. For larger values of σ,
a clear distributional drift to lower values of the Tafel slope is observed. This occurs because
most of the data in Fig. 7.22A lies in the plateau region, and the model faces less penalty
for down-weighting these points as the value of σ is increasing. Hence, the model drifts to
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Figure 7.22: Sensitivity to the width of the error distribution at each point for a simple fit
to synthetic data. (A) Synthetic data sampled from a model with an underlying Tafel slope
of 80 mV/decade. (B) Several traces of the posterior distribution computed using different
values of σ, the standard deviation of the normal error distribution at each point.

larger slopes on the Fig. 7.22A plot, which corresponds to lower values of the Tafel slope.
Note that the distributional widening is significantly greater than the drift in the mean,
suggesting that we should not put much stock into the mean drift. The upshot: for high
values of the σ parameter, this particular set of data does not contain enough information
to pin down the value of the Tafel slope accurately.

Sensitivity to Prior Distribution

As explained in the main text, our Bayesian approach requires specification of a prior dis-
tribution p(θ) over the parameters. Since we know very little about the true distribution of
the Tafel slope at the outset, we choose an uninformative uniform box prior over the interval
[0, a × θ∗i ] for each parameter θi, where θ

∗
i is the optimal value of the parameter gleaned

from the TRF algorithm described in the Methods section. Here, we conduct a sensitivity
analysis on the a parameter. Given that we are using an uninformative prior, we should
expect that the prior width should not influence the posterior distribution as long as the
data expresses some opinion about the ideal value of the parameters. Figure 7.23 depicts
the results of the sensitivity analysis on a set of synthetic data. Indeed, as expected, the
posterior distributions are insensitive to the choice of prior. Note that in all fits considered
in the main text, we use a value of a = 10, as mentioned in the Methods section.

7.4.3 Derivations

Cardinal Tafel Slopes Equation

We will work with a generic reaction scheme, assuming that we begin with a starting species
A(n+q)+ which undergoes n electron transfers prior to the rate-determining step, and then
q electron transfers at the RDS. In practice n will be an integer, and q will be either zero
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Figure 7.23: Sensitivity to the width of the uniform prior distribution bounds. (A) Synthetic
data sampled from a model with an underlying Tafel slope of 80 mV/decade. (B) Several
traces of the posterior distribution computed using different values of a, a parameter influ-
encing the width of the prior distribution fed to the Bayesian posterior sampling algorithm.
All posterior distributions are computed with σ = 0.05.

or one. Here we assume the reaction taking place is reductive; however, the derivation is
entirely analogous for an equivalent oxidation reaction. Schematically, the reactions read,

A(n+q)+ + e− −−→←−− A(n+q−1)+

...

A(q+1)+ + e− −−→←−− Aq+

Aq+ + qe− −−→ A.

The overall current is determined by the rate of the RDS. Assuming Butler-Volmer kinetics
for the forward rate constant of the RDS, we have,

rate = k0 {aAq+ exp [−βqe(1− α) · (ϕ− ϕeq.)]− aA exp [+βqeα · (ϕ− ϕeq.)]} , (7.78)

where k0 is the rate prefactor (sometimes called the Arrhenius prefactor), ai is the activity
of species i, β ≡ (kBT )

−1 is the inverse thermodynamic temperature, e is the fundamental
charge, α is the symmetry coefficient, ϕ is the applied potential, and ϕeq. is the equilibrium
potential for the RDS. At sufficiently high reductive overpotentials ϕ − ϕeq. ≪ 0, only the
first term survives,

rate ≈ k0aAq+ exp [−βqe(1− α) · (ϕ− ϕeq.)] . (7.79)

To make further progress, we have to solve for the activity of the intermediate species Aq+

in terms of the activity of the reactant species for the overall reaction, A(n+q)+. If we assume
that all steps prior to the RDS are fast and equilibriated, we can extract this activity
by analyzing the thermodynamics of the steps prior to the RDS. The free energy change
associated with the r’th reaction reads,

∆Fr = −β−1 log aA(n+q−(r+1))+ + β−1 log aA(n+q−r)+ + eϕ. (7.80)
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Then, the equilibrium constant for reaction r goes as,

Kr ≡ exp [−β∆Fr] (7.81)

Kr =
aA(n+q−(r+1))+

aA(n+q−r)+

× exp [−βeϕ] (7.82)

Kr = K̃r × exp [−βeϕ] , (7.83)

where K̃r is defined by Eq. (7.83), and is independent of potential. Since Eq. (7.83) holds
for all reactions r before the RDS, we can easily solve for the activity of the intermediate,

aAq+ =

[
n∏

r=1

K̃r

]
exp [−nβeϕ]× aA(n+q)+ (7.84)

aAq+ =

[
n∏

r=1

K̃r

]
exp [−nβe (ϕ− ϕeq.)] exp [−nβeϕeq.]× aA(n+q)+ . (7.85)

Plugging back into Eq. (7.79),

rate ≈ k0

([
n∏

r=1

K̃r

]
exp [−nβe (ϕ− ϕeq.)] exp [−nβeϕeq.]× aA(n+q)+

)
exp [−βqe(1− α) · (ϕ− ϕeq.)]

(7.86)

rate = k0

([
n∏

r=1

K̃r

]
exp [−nβeϕeq.]× aA(n+q)+

)
exp [−βe (ϕ− ϕeq.) (n+ q · (1− α))] .

(7.87)

This is a mess, but we only care about the potential-dependent terms when extracting the
Tafel slope, which means we only have to consider the last factor on the RHS. Taking the
logarithm yields,

log [rate] = −βe (ϕ− ϕeq.) (n+ q · (1− α)) + C, (7.88)

where C is a constant independent of potential. For a reduction reaction, the Tafel slope is
defined as,

Tafel Slope =

[
∂ log10 [rate]

∂ [− (ϕ− ϕeq.)]

]−1

. (7.89)

Hence, we have,

Tafel Slope = [log10 (exp(1)) · βe]
−1 · 1

n+ q · (1− α)
. (7.90)

Appropriate unit scalings yield,

Tafel Slope =
60 mV/decade

n+ q · (1− α)
, (7.91)

which reduces to the equation quoted in the main text when α = 1/2.

142



7.4.4 Physical Non-Idealities

Tafel Slopes with Physical Non-Idealities

Eq. (7.91) already accounts for the non-ideality effects introduced by α ̸= 1/2. If we assume
that the CO2 adsorption step has partial charge transfer character quantified by γ, then
despite the fact that the adsorption step is purely chemical, we assume that its equilibrium
constant carries a non-integer order dependence on the applied potential. This can also be
motivated by considering the formation of a permanent dipole on the surface species, which
can access additional thermodynamic stabilization due to a dipole Stark shift from electric
fields present at theinterface. The manner in which surface dipole formation augments the
Tafel slope depends on whether or not the CO2 adsorption step is the rate determining
step. For the case (n, q) = (0, 1), the adsorption step is the RDS. The Frumkin correction
attenuates the applied potential for the rate-determining step by a factor f , which simply
multiplies the latter term in the denominator of Eq. (7.91). Hence, the Tafel slope for
(n, q) = (0, 1) is,

Tafel Slope =
60 mV/decade

γ · f · (1− α)
. (7.92)

For the case (n, q) = (1, 0), the adsorption step is the RDS, and rather than contributing
n = 1 to the order, it instead contributes according to the γ parameter,

Tafel Slope =
60 mV/decade

γ
. (7.93)

Finally, for the case (n, q) = (1, 1), the adsorption step occurs before the RDS, and the Tafel
slope reads,

Tafel Slope =
60 mV/decade

γ + f · (1− α)
. (7.94)

Sensitivities to Parameter Bounds

Figures 7.24 and 7.25 study the sensitivity of the distributional results presented in Fig. 4
of the main text to the bounds of the uniform distributions over non-ideality parameters.
Broadly, our claim is supported by the sensitivity analysis; within reasonable parameter
bounds, we still see that we can get essentially arbitrary distributional shapes depending on
the nonidealities included in the model.

7.4.5 Multiple Kinetic Regimes

Here, we examine the consequences of fitting current-voltage data from a system exhibiting
multiple kinetic regimes to a model that only allows a single Tafel slope (as in Eq. (2) in the
main text) by analyzing synthetic data. The synthetic data is generated from the model,

1

i(E)
=

1

ilim
+

1 + exp
(
−e [kBT ]−1 × [E − Eeq,1]

)
exp

(
e [kBT ]

−1 × α [E − Eeq,2]
) , (7.95)
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Figure 7.24: Several synthetic kernel density estimates of the probability distributions over
the Tafel slope generated from including random values of different parameters governing
physical non-idealities. Different panels use different uniform distributions over the symme-
try coefficient parameter, α.
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Figure 7.25: Several synthetic kernel density estimates of the probability distributions over
the Tafel slope generated from including random values of different parameters governing
physical non-idealities. Different panels use different uniform distributions over the Frumkin
correction parameter, f .
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Figure 7.26: (A) Current-voltage trace generated from Eq. (7.95) using the parameters
α = 1/2, ilim = 100 mA cm−2, Eeq,1 = 0.05 V, and Eeq,2 = 0.15 V (red trace), along with
artificially noised data sampled from the model (black points). (B) Current-voltage traces
evaluated from the MAP fit parameters for Eq. (2) in the main text and Eq. (7.95), along
with the noised data used for the fits (black points). (C) Posterior distribution over the Tafel
slope for the model described by Eq. (2) in the main text.

where E is the applied potential, and the model has free fitting parameters α, ilim, Eeq,1,
and Eeq,2. This model can be shown to arise when a reaction proceeds through a rate-
limiting surface reaction involving a surface intermediate generated through a one-electron
transfer, and present at non-negligible surface coverages. The specifics of how this model
arises are less relevant to this analysis than the fact that the model exhibits two different
Tafel regimes. When α = 1/2, the first regime has Tafel slope mT = 40 mV decade−1 for
Eeq,1 < E < Eeq,2, and the second regime has a Tafel slope mT = 120 mV decade−1 for
E > Eeq,2, before topping out at the limiting current ilim.

Figure 7.26A shows a trace of the current-voltage behavior predicted by Eq. (7.95), with
parameters α = 1/2, ilim = 100 mA cm−2, Eeq,1 = 0.05 V, and Eeq,2 = 0.15 V, as well as
artificially noised data sampled from this model at a sparsely sampled set of voltage points.
Figure 7.26B shows current-voltage traces from both Eq. (7.95) (red) and Eq. (2) from
the main text (blue), each evaluated under the MAP parameters determined from their
respective Bayesian fits. Finally, Fig. 7.26C shows the Bayes posterior distribution for the
Tafel slope fitted using Eq. (2) from the main text. As expected, when using the single
Tafel regime model to fit data generated from multiple Tafel regimes, the MAP value of the
Tafel slope does not coincide with the Tafel slope from either kinetic regime in Eq. (7.95).
However, as illustrated in Fig. 7.27, when the original data is fit to Eq. (7.95), the posterior
distributions are peaked around the true values of the parameters.

This analysis yields two important takeaways. First, it lends credence to the idea that
fitting a single Tafel slope to data collected under multiple Tafel regimes, each individu-
ally exhibiting a cardinal Tafel slope, can produce an off-cardinal value of the Tafel slope,
providing an alternative possible explanation for the lack of observed cardinality in the lit-
erature analysis in the main text. Second, and perhaps more importantly, it shows that
the Bayesian framework presented here can successfully estimate the parameters of more
complicated physical models that incorporate the effects of multiple different Tafel regimes,
or some of the physical nonidealities discussed in the main text. Practically, we furnish the
following recommendation: if one knows in advance that multiple kinetic regimes are at play
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Figure 7.27: Posterior distributions for α, ilim, Eeq,1, and Eeq,2 (A, B, C, D, respectively)
gleaned from Bayesian posterior sampling on the artificially noised data in Fig. 7.26A.
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in a set of current-voltage data, and the nature of these regimes can be encoded into a kinetic
model like Eq. (7.95), then one should carry out Bayesian fitting to such a model. In the
absence of sufficient independent evidence to pin down a kinetic model that resolves multiple
kinetic regimes, Eq. (2) from the main text is a viable alternative, but one should be very
cautious about over-interpreting the mechanistic implications of a Tafel slope determined in
this manner.

7.4.6 References

[1] Kindle Williams, Nathan Corbin, Joy Zeng, Nikifar Lazouski, Deng-Tao Yang, and
Karthish Manthiram. Protecting effect of mass transport during electrochemical re-
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7.5 Additional Information: Electrochemical Charac-

terization Using Analysis of Weakly Nonlinear Re-

sponse to Small Amplitude Oscillating Voltage Sig-

nals

7.5.1 Reversible Reaction, Quiescent Solution

Problem Setup

Consider the two-species diffusion problem specified schematically in Figure 7.28. We will

Figure 7.28: Schematic drawing of a two-species diffusion problem in a semi-infinite domain,
with a reversible (Nernstian) reaction occurring at the left boundary.

track the concentration fields of two species, cA and cB, as explicit functions of a spatial co-
ordinate z and a temporal coordinate t. Let z = 0 denote the position of the electrode; here
(and only here), the two species undergo a single electron transfer reaction, which we assume
occurs at a rate far greater than any other temporal scale in the problem. In other words,
the electrochemical reaction is reversible (other treatments may refer to such a process as a
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Nernstian electron transfer, this document will use the two terms interchangeably).

We take the electrolyte solution here to be quiescent (unstirred), and so as z → ∞, we
approach a bulk region, where the concentrations of both species are held fixed at their
bulk concentrations, cA,bulk and cB,bulk. Conservation of mass considering purely diffusive
transport of species implies the following pair of governing equations,

∂tcA = DA ∂
2
zcA, (7.96)

∂tcB = DB ∂
2
zcB, (7.97)

where DA and DB are the Fickian diffusion coefficients of the two species. Henceforth in this
subsection, we will assume that DA = DB = D, corresponding to symmetric diffusion.

The physical setting of the problem supplies four boundary conditions,

cA(z = 0, t)

cB(z = 0, t)
= exp [+βe (E(t)− Eeq)] , (7.98)

∂cA
∂z

∣∣∣∣
z=0

= − ∂cB
∂z

∣∣∣∣
z=0

, (7.99)

cA(z →∞, t) = cA,bulk, (7.100)

cB(z →∞, t) = cB,bulk, (7.101)

where Eq. (7.98) enforces that the concentrations at the electrode are in the ratio speci-
fied by the appropriate Nernstian equilibrium for an instantaneous applied potential E(t),
reaction equilibrium potential Eeq, and inverse temperature β ≡ (kBT )

−1. Equation (7.99)
enforces mass conservation at the interface, while Eqns. (7.100) and (7.101) enforce that the
concentration fields reach the bulk concentrations as z →∞.

The problem is fully specified upon setting initial conditions for the concentration fields,

cA(z, t = 0) = cA,bulk, cB(z, t = 0) = cB,bulk, (7.102)

which corresponds to a solution beginning at open-circuit conditions, with the species con-
centration fields held constant at their bulk values.

We can consider the time-dependent voltage signal E(t) as the “input” to this dynamical
system. We are free to decompose the input signal E(t) as,

E(t) = Ehold + ϵV (t), (7.103)

where Ehold is a constant hold potential that is turned on at t = 0, ϵ is a small dimensionless
number, and V (t) is a voltage signal that admits a Laplace decomposition. The correspond-
ing output is the passed current density J(t), which can be extracted from the flux of one
of the species at the electrode surface, z = 0,

J(t) = −eD ∂cA
∂z

∣∣∣∣
z=0

. (7.104)
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Ultimately, solving the problem stated here will require developing a relationship between
the input signal E(t) and the output current density J(t). Specifically, we will develop this
relationship as a perturbative series, organized in ascending powers of ϵ, relating the Laplace
space representations of the input and output signals.

Non-Dimensionalization

We introduce the following non-dimensionalization scheme,

c̃A ≡
cA

cA,bulk

, (7.105)

c̃B ≡
cB

cA,bulk

, (7.106)

Ẽ ≡ βeE, (7.107)

J̃ ≡ J

eD1/2ω∗1/2cA,bulk

, (7.108)

t̃ ≡ t · ω∗, (7.109)

z̃ ≡ z ·
[
ω∗

D

]1/2
, (7.110)

where β ≡ (kBT )
−1 is the inverse temperature, e is the fundamental charge, and ω∗ is an

arbitrary fundamental frequency.

Under this non-dimensionalization scheme, the governing equations in Eqns. (7.96) and
(7.97) transform into,

∂t̃c̃A = ∂2z̃ c̃A, (7.111)

∂t̃c̃B = ∂2z̃ c̃B. (7.112)

The boundary conditions transform into,

c̃A(z̃ = 0, t̃)

c̃B(z̃ = 0, t̃)
= γ · exp

[
Ẽ(t)− Ẽeq

]
, (7.113)

∂c̃A
∂z̃

∣∣∣∣
z̃=0

= −γ ∂c̃B
∂z̃

∣∣∣∣
z̃=0

, (7.114)

c̃A(z̃ →∞, t̃) = 1, (7.115)

c̃B(z̃ →∞, t̃) = 1, (7.116)

where γ ≡ cB,bulk/cA,bulk, and Ẽeq is made nondimensional in the manner prescribed by Eq.
(7.107). Finally, the initial conditions transform into,

c̃A(z̃, t̃ = 0) = 1, (7.117)

c̃B(z̃, t̃ = 0) = 1. (7.118)

(7.119)

Now that the non-dimensionalized problem is fully specified, we will drop all tildes in sub-
sequent expressions.
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Kernel Expressions

Kernel at O (ϵ0) At O (ϵ0), we can ignore the second term in Eq. (7.103), yielding E(t) =
Ehold. The first step is to take the governing equations in Eqns. (7.111) and (7.112) into
Laplace space, at this order. Applying the initial conditions in Eqns. (7.117) and (7.118)
yields,

sĉ
(0)
A (z, s)− 1 = ∂2z ĉ

(0)
A (z, s), (7.120)

sĉ
(0)
B (z, s)− 1 = ∂2z ĉ

(0)
B (z, s), (7.121)

subject to the Laplace space boundary conditions,

ĉ
(0)
A (z = 0, s)

ĉ
(0)
B (z = 0, s)

= γ · exp [Ehold − Eeq] , (7.122)

∂ĉ
(0)
A

∂z

∣∣∣∣∣
z=0

= −γ ∂ĉ
(0)
B

∂z

∣∣∣∣∣
z=0

, (7.123)

ĉ
(0)
A (z →∞, s) = 1/s, (7.124)

ĉ
(0)
B (z →∞, s) = 1/s. (7.125)

At O (ϵ0), the current density expression reads,

Ĵ (0)(s) =
1√
s
· γe

Ēhold − 1

eĒhold + 1
, (7.126)

where Ēhold ≡ Ehold − Eeq. Unlike the expressions at higher order, the current density at
this order can be readily transformed back into the time domain,

J (0)(t) =
1√
πt
· γe

Ēhold − 1

eĒhold + 1
. (7.127)

Kernel at O (ϵ1) At O (ϵ1), we must include the second term in Eq. (7.103). Again, we
take the governing equations (7.111) and (7.112) at this order into Laplace space. Note that
we do not need to apply the initial conditions in Eqns. (7.117) and (7.118), since they have
already been handled at O (ϵ0). Hence, we have,

sĉ
(1)
A (z, s) = ∂2z ĉ

(1)
A (z, s), sĉ

(1)
B (z, s) = ∂2z ĉ

(1)
B (z, s), (7.128)

subject to the Laplace space boundary conditions,

ĉ
(1)
A (0, s) = γ · eĒhold ·

{
ĉ
(0)
B (0, 0) · V̂ (s) + ĉ

(1)
B (0, s)

}
, (7.129)

∂ĉ
(1)
A

∂z

∣∣∣∣∣
z=0

= −γ ∂ĉ
(1)
B

∂z

∣∣∣∣∣
z=0

, (7.130)

ĉ
(1)
A (z →∞, s) = 0, (7.131)

ĉ
(1)
B (z →∞, s) = 0. (7.132)
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At O (ϵ1), the current density expression reads,

Ĵ (1)(s) =
eĒhold(1 + γ)(
1 + eĒhold

)2 · √s · V̂ (s). (7.133)

Kernel at O (ϵ2) Again, we take the governing equations (7.111) and (7.112) at this order
into Laplace space. Again, we do not need to apply the initial conditions in Eqns. (7.117)
and (7.118), since they have already been handled at O (ϵ0). Hence, we have,

sĉ
(2)
A (z, s) = ∂2z ĉ

(2)
A (z, s), (7.134)

sĉ
(2)
B (z, s) = ∂2z ĉ

(2)
B (z, s), (7.135)

subject to the Laplace space boundary conditions,

ĉ
(2)
A (0, s) = γ · eĒhold ·

{
1

2
· ĉ(0)B (0, 0) ·

∫
dη V̂ (η)V̂ (s− η) +

∫
dη ĉ

(1)
B (0, η)V̂ (s− η) + ĉ

(2)
B (0, s)

}
,

(7.136)

∂ĉ
(2)
A

∂z

∣∣∣∣∣
z=0

= −γ ∂ĉ
(2)
B

∂z

∣∣∣∣∣
z=0

, (7.137)

ĉ
(2)
A (z →∞, s) = 0, (7.138)

ĉ
(2)
B (z →∞, s) = 0. (7.139)

At O (ϵ2), the current density expression reads,

Ĵ (2)(s) = −
eĒhold

(
eĒhold − 1

)
(1 + γ)

2
(
1 + eĒhold

)3 ·
√
s ·
∫
dηV̂ (η)V̂ (s− η). (7.140)

Kernel at O (ϵ3) Again, we take the governing equations (7.111) and (7.112) at this order
into Laplace space. The initial conditions in Eqns. (7.117) and (7.117) have already been
handled at O (ϵ0). Hence, we have,

sĉ
(3)
A (z, s) = ∂2z ĉ

(3)
A (z, s), (7.141)

sĉ
(3)
B (z, s) = ∂2z ĉ

(3)
B (z, s), (7.142)

subject to the Laplace space boundary conditions,

ĉ
(3)
A (0, s) = γ · eĒhold ·

{
1

6
· ĉ(0)B (0, 0) ·

∫
dη1dη2 V̂ (η1)V̂ (η2)V̂ (s− η1 − η2) +

1

2

∫
dη1dη2 V̂ (η1)V̂ (η2)ĉ

(1)
B (0, s− η1 − η2) +

∫
dηV̂ (η)ĉ

(2)
B (0, s− η) + ĉ

(3)
B (0, s)

}
,

(7.143)

∂ĉ
(3)
A

∂z

∣∣∣∣∣
z=0

= −γ ∂ĉ
(3)
B

∂z

∣∣∣∣∣
z=0

, (7.144)

ĉ
(3)
A (z →∞, s) = 0, (7.145)

ĉ
(3)
B (z →∞, s) = 0. (7.146)
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Figure 7.29: Schematic drawing of a two-species diffusion problem in a semi-infinite domain,
with a quasireversible (Butler–Volmer) reaction occurring at the left boundary.

At O (ϵ3), the current density expression reads,

Ĵ (3)(s) = −
eĒhold

(
4eĒhold − e2Ēhold − 1

)
(1 + γ)

6
(
1 + eĒhold

)4 ·
√
s ·
∫
dη1dη2V̂ (η1)V̂ (η2)V̂ (s− η1 − η2).

(7.147)

7.5.2 Quasireversible Reaction, Quiescent Solution

Problem Setup

Consider the two-species diffusion problem specified schematically in Figure 7.29. We will
track the concentration fields of two species, cA and cB, as explicit functions of a spatial
coordinate z and a temporal coordinate t. Let z = 0 denote the position of the electrode;
here (and only here), the two species undergo a single electron transfer reaction, the rate
of which we assume to be described by the phenomenological Butler-Volmer relationship
between current and potential.
We take the electrolyte solution here to be quiescent (unstirred), and so as z → ∞, we
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approach a bulk region, where the concentrations of both species are held fixed at their
bulk concentrations, cA,bulk and cB,bulk. Conservation of mass considering purely diffusive
transport of species implies the following pair of governing equations,

∂tcA = DA ∂
2
zcA, (7.148)

∂tcB = DB ∂
2
zcB, (7.149)

where DA and DB are the Fickian diffusion coefficients of the two species. Henceforth in this
subsection, we will assume that DA = DB = D, corresponding to symmetric diffusion.

The physical setting of the problem supplies four boundary conditions,

∂cA
∂z

∣∣∣∣
z=0

= k0 {cA(0, t) · exp [−βαe (E(t)− Eeq)]− cB(0, t) · exp [+β(1− α)e (E(t)− Eeq)]} ,

(7.150)

∂cA
∂z

∣∣∣∣
z=0

= − ∂cB
∂z

∣∣∣∣
z=0

, (7.151)

cA(z →∞, t) = cA,bulk, (7.152)

cB(z →∞, t) = cB,bulk, (7.153)

where Eq. (7.150) enforces that the flux of species A at the boundary matches the rate of con-
sumption of species A as prescribed by Butler-Volmer kinetics for an instantaneous applied
potential E(t), reaction equilibrium potential Eeq, and inverse temperature β ≡ (kBT )

−1.
Equation (7.151) enforces mass conservation at the interface, while Eqns. (7.152) and (7.153)
enforce that the concentration fields reach the bulk concentrations as z →∞.

The problem is fully specified upon setting initial conditions for the concentration fields,

cA(z, t = 0) = cA,bulk, (7.154)

cB(z, t = 0) = cB,bulk, (7.155)

which corresponds to a solution beginning at open-circuit conditions, with the species con-
centration fields held constant at their bulk values.

The input voltage signal E(t) is decomposed in the manner prescribed by Eq. (7.103), and
the current is extracted from the concentration profiles in the manner described by Eq.
(7.104).
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Non-Dimensionalization We introduce the following non-dimensionalization scheme,

c̃A ≡
cA

cA,bulk

, (7.156)

c̃B ≡
cB

cA,bulk

, (7.157)

Ẽ ≡ βeE, (7.158)

J̃ ≡ J

eD1/2ω∗1/2cA,bulk

, (7.159)

t̃ ≡ t · ω∗, (7.160)

z̃ ≡ z ·
[
ω∗

D

]1/2
, (7.161)

where β ≡ (kBT )
−1 is the inverse temperature, e is the fundamental charge, and ω∗ is an

arbitrary fundamental frequency.

Under this non-dimensionalization scheme, the governing equations in Eqns. (7.148) and
(7.149) transform into,

∂t̃c̃A = ∂2z̃ c̃A, (7.162)

∂t̃c̃B = ∂2z̃ c̃B. (7.163)

The boundary conditions transform into,

∂c̃A
∂z

∣∣∣∣
z=0

= ζ ·
{
c̃A(0, t) · exp

[
−α
(
Ẽ(t)− Ẽeq

)]
− γ · c̃B(0, t) · exp

[
+(1− α)

(
Ẽ(t)− Ẽeq

)]}
,

(7.164)

∂c̃A
∂z̃

∣∣∣∣
z̃=0

= −γ ∂c̃B
∂z̃

∣∣∣∣
z̃=0

, (7.165)

c̃A(z̃ →∞, t̃) = 1, (7.166)

c̃B(z̃ →∞, t̃) = 1, (7.167)

where γ ≡ cB,bulk/cA,bulk, and Ẽeq is made nondimensional in the manner prescribed by Eq.
(7.107). The dimensionless group in Eq. (7.164),

ζ ≡ k0

(Dω∗)1/2
, (7.168)

emerges naturally from non-dimensionalizing Eq. (7.150), and relates the rate of the surface
reaction to the rate of diffusive transport. Finally, the initial conditions transform into,

c̃A(z̃, t̃ = 0) = 1, (7.169)

c̃B(z̃, t̃ = 0) = 1. (7.170)

Now that the non-dimensionalized problem is fully specified, we will drop all tildes in sub-
sequent expressions.
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Kernel at O (ϵ0) At O (ϵ0), we can ignore the second term in Eq. (7.103), yielding E(t) =
Ehold. The first step is to take the governing equations in Eqns. (7.162) and (7.112) into
Laplace space, at this order. Applying the initial conditions in Eqns. (7.169) and (7.170)
yields,

sĉ
(0)
A (z, s)− 1 = ∂2z ĉ

(0)
A (z, s), (7.171)

sĉ
(0)
B (z, s)− 1 = ∂2z ĉ

(0)
B (z, s), (7.172)

subject to the Laplace space boundary conditions,

∂ĉ
(0)
A (z, s)

∂z

∣∣∣∣∣
z=0

= ζ
{
ĉ
(0)
A (0, s) exp [−α (Ehold − Eeq)]− γ · ĉ(0)B (0, s) exp [(1− α) (Ehold − Eeq)]

}
,

(7.173)

∂ĉ
(0)
A

∂z

∣∣∣∣∣
z=0

= −γ ∂ĉ
(0)
B

∂z

∣∣∣∣∣
z=0

, (7.174)

ĉ
(0)
A (z →∞, s) = 1/s, (7.175)

ĉ
(0)
B (z →∞, s) = 1/s. (7.176)

At O (ϵ0), the current density expression reads,

Ĵ (0)(s) =
1√
s
·

ζ ·
(
γeĒhold − 1

)
eαĒhold

√
s+ ζ(1 + eĒhold)

, (7.177)

where Ēhold ≡ Ehold − Eeq.

Kernel at O (ϵ1) At O (ϵ1), we must include the second term in Eq. (7.103). Again, we
take the governing equations (7.162) and (7.163) at this order into Laplace space. Note that
we do not need to apply the initial conditions in Eqns. (7.169) and (7.170), since they have
already been handled at O (ϵ0). Hence, we have,

sĉ
(1)
A (z, s) = ∂2z ĉ

(1)
A (z, s), sĉ

(1)
B (z, s) = ∂2z ĉ

(1)
B (z, s), (7.178)

subject to the Laplace space boundary conditions,

∂ĉ
(1)
A (z, s)

∂z

∣∣∣∣∣
z=0

= ζ
{
e−αĒhold

[
ĉ
(1)
A (0, s)− αV̂ (s)ĉ

(0)
A (0, 0)

]
− γe(1−α)Ēhold

[
ĉ
(1)
B (0, s) + (1− α)V̂ (s)ĉ

(0)
B (0, 0)

]}
,

(7.179)

∂ĉ
(1)
A

∂z

∣∣∣∣∣
z=0

= −γ ∂ĉ
(1)
B

∂z

∣∣∣∣∣
z=0

, (7.180)

ĉ
(1)
A (z →∞, s) = 0, (7.181)

ĉ
(1)
B (z →∞, s) = 0. (7.182)

At O (ϵ1), the current density expression reads,

Ĵ (1)(s) =
ζ(1 + γ)eĒhold

(1 + eĒhold)
[
ζ(1 + eĒhold) + eαĒhold

√
s
] √s · V̂ (s). (7.183)
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Kernel at O (ϵ2) Again, we take the governing equations (7.162) and (7.163) at this order
into Laplace space. Again, we do not need to apply the initial conditions in Eqns. (7.169)
and (7.170), since they have already been handled at O (ϵ0). Hence, we have,

sĉ
(2)
A (z, s) = ∂2z ĉ

(2)
A (z, s), (7.184)

sĉ
(2)
B (z, s) = ∂2z ĉ

(2)
B (z, s), (7.185)

subject to the Laplace space boundary conditions,

∂ĉ
(2)
A (z, s)

∂z

∣∣∣∣∣
z=0

= ζ

{
e−αĒhold

[
ĉ
(2)
A (0, s)− α

∫
dη1V̂ (η1)ĉ

(1)
A (0, s− η1) +

α2

2
ĉ
(0)
A (0, 0)

∫
dη1V̂ (η1)V̂ (s− η1)

]
− γe(1−α)Ēhold

[
ĉ
(2)
B (0, s) + (1− α)

∫
dη1V̂ (η1)ĉ

(1)
B (0, s− η1) +

(1− α)2

2
ĉ
(0)
B (0, 0)

∫
dη1V̂ (η1)V̂ (s− η1)

]}
,

(7.186)

∂ĉ
(2)
A

∂z

∣∣∣∣∣
z=0

= −γ ∂ĉ
(2)
B

∂z

∣∣∣∣∣
z=0

, (7.187)

ĉ
(2)
A (z →∞, s) = 0, (7.188)

ĉ
(2)
B (z →∞, s) = 0. (7.189)

At O (ϵ2), the current density expression reads,

Ĵ (2)(s) =
ζeĒhold(1 + γ)

√
s

2(1 + eĒhold)
(
eαĒhold

√
s+ ζ(1 + eĒhold)

) ∫ dη1

[
(1− 2α) +

2ζ
(
eĒhold(α− 1) + α

)
ζ(1 + eĒhold) + eαĒhold

√
η1

]
V̂ (η1)V̂ (s−η1).

(7.190)

Kernel at O (ϵ3) Again, we take the governing equations (7.162) and (7.163) at this order
into Laplace space. Again, we do not need to apply the initial conditions in Eqns. (7.169)
and (7.170), since they have already been handled at O (ϵ0). Hence, we have,

sĉ
(3)
A (z, s) = ∂2z ĉ

(3)
A (z, s), (7.191)

sĉ
(3)
B (z, s) = ∂2z ĉ

(3)
B (z, s), (7.192)

subject to the Laplace space boundary conditions,

∂ĉ
(3)
A (z, s)

∂z

∣∣∣∣∣
z=0

= ζ

{
e−αĒhold

[
ĉ
(3)
A (0, s)− α

∫
dη2V̂ (η2)ĉ

(2)
A (0, s− η2) +

α2

2

∫
dη1dη2ĉ

(1)
A (0, s− η2)V̂ (η1)V̂ (η2 − η1)−

α3

6
ĉ
(0)
A (0, 0)

∫
dη1dη2V̂ (η1)V̂ (η2)V̂ (s− η1 − η2)

]
− γe(1−α)Ēhold

[
ĉ
(3)
B (0, s) + (1− α)

∫
dη2V̂ (η2)ĉ

(2)
B (0, s− η2) +

(1− α)2

2

∫
dη1η2ĉ

(1)
B (0, s− η2)V̂ (η1)V̂ (η2 − η1) +

(1− α)3

6
ĉ
(0)
A (0, 0)

∫
dη1dη2V̂ (η1)V̂ (η2)V̂ (s− η1 − η2)

]}
,

(7.193)

∂ĉ
(3)
A

∂z

∣∣∣∣∣
z=0

= −γ ∂ĉ
(3)
B

∂z

∣∣∣∣∣
z=0

, (7.194)

ĉ
(3)
A (z →∞, s) = 0, (7.195)

ĉ
(3)
B (z →∞, s) = 0. (7.196)
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We will define some convenience quantities for ease of understanding the expression for the
current at third order. First, define the convolution kernel,

K(s) =
1

ζ(1 + eĒhold) + eαĒhold
√
s
. (7.197)

Now, define two convolution operators,

CK [f̂ , ĝ] ≡
∫
dηK(η)f̂(η)ĝ(s− η) (7.198)

C[f̂ , ĝ] ≡
∫
dηf̂(η)ĝ(s− η) (7.199)

At O (ϵ3), the current density expression reads,

Ĵ (3)(s) =
−ζ(1 + γ)eĒhold

√
s

6(1 + eĒhold)
(
ζ(1 + eĒhold) + eαĒhold

√
s
) {3ζ (α2 + eĒhold(1− α)2

)
C[V̂ , CK [V̂ , V̂ ]] +

(
−1 + 3α− 3α2

)
C[V̂ , C[V̂ , V̂ ]]− 3ζ

(
α + eĒhold(α− 1)

) [
(1− 2α)CK [V̂ , C[V̂ , V̂ ]] + 2ζ(α + eĒhold(α− 1))CK [V̂ , CK [V̂ , V̂ ]]

]}
.

(7.200)

7.5.3 Reversible Reaction, Stirred Solution

Problem Setup

Consider the two-species diffusion problem specified schematically in Figure 7.30. We will
track the concentration fields of two species, cA and cB, as explicit functions of a spatial
coordinate z and a temporal coordinate t. Let z = 0 denote the position of the electrode;
here (and only here), the two species undergo a single electron transfer reaction, which we
assume occurs at a rate far greater than any other temporal scale in the problem. In other
words, the electrochemical reaction is reversible (or Nernstian).

We assume that the electrolyte solution is stirred, resulting in the formation of a concen-
tration boundary layer of length L within the vicinity of the electrode. For z < L, species
transport is described by the diffusion equation, whereas for z > L, convective transport
dominates, and the species concentrations as z → L can be taken to be fixed at their bulk
concentrations, cA,bulk and cB,bulk. Conservation of mass considering purely diffusive trans-
port of species inside the concentration boundary layer implies the following pair of governing
equations,

∂tcA = DA ∂
2
zcA, (7.201)

∂tcB = DB ∂
2
zcB, (7.202)

where DA and DB are the Fickian diffusion coefficients of the two species. Henceforth in this
subsection, we will assume that DA = DB = D, corresponding to symmetric diffusion.
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Figure 7.30: Schematic drawing of a two-species diffusion problem bounded domain, with a
reversible (Nernstian) reaction occurring at the left boundary.
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The physical setting of the problem supplies four boundary conditions,

cA(z = 0, t)

cB(z = 0, t)
= exp [+βe (E(t)− Eeq)] , (7.203)

∂cA
∂z

∣∣∣∣
z=0

= − ∂cB
∂z

∣∣∣∣
z=0

, (7.204)

cA(z = L, t) = cA,bulk, (7.205)

cB(z = L, t) = cB,bulk, (7.206)

where Eq. (7.203) enforces that the concentrations at the electrode are in the ratio specified
by the appropriate Nernstian equilibrium for an instantaneous applied potential E(t), reac-
tion equilibrium potential Eeq, and inverse temperature β. Equation (7.204) enforces mass
conservation at the interface, while Eqns. (7.205) and (7.206) enforce that the concentration
fields reach the bulk concentrations as z → L.

The problem is fully specified upon setting initial conditions for the concentration fields,

cA(z, t = 0) = cA,bulk, (7.207)

cB(z, t = 0) = cB,bulk, (7.208)

which corresponds to a solution beginning at open-circuit conditions, with the species con-
centration fields held constant at their bulk values.

The input voltage signal E(t) is decomposed in the manner prescribed by Eq. (7.103), and
the current is extracted from the concentration profiles in the manner described by Eq.
(7.104).

We introduce the following non-dimensionalization scheme,

c̃A ≡
cA

cA,bulk

, (7.209)

c̃B ≡
cB

cA,bulk

, (7.210)

Ẽ ≡ βeE, (7.211)

z̃ ≡ z

L
, (7.212)

t̃ ≡ t · ω∗, (7.213)

J̃ ≡ J

eD1/2ω∗1/2cA,bulk

, (7.214)

where β ≡ (kBT )
−1 is the inverse temperature, e is the fundamental charge, and ω∗ is an

arbitrary fundamental frequency.

Under this non-dimensionalization scheme, the governing equations in Eqns. (7.201) and
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(7.202) transform into,

∂t̃c̃A = λ∂2z̃ c̃A, (7.215)

∂t̃c̃B = λ∂2z̃ c̃B, (7.216)

where the dimensionless group

λ ≡ D
L2ω∗ , (7.217)

emerges naturally from the non-dimensionalization procedure, and physically represents the
ratio of the characteristic timescale of the voltage waveform (1/ω∗) and the characteristic
timescale of diffusive transport (L2/D).
The boundary conditions transform into,

c̃A(z̃ = 0, t̃)

c̃B(z̃ = 0, t̃)
= γ · exp

[
Ẽ(t)− Ẽeq

]
, (7.218)

∂c̃A
∂z̃

∣∣∣∣
z̃=0

= −γ ∂c̃B
∂z̃

∣∣∣∣
z̃=0

, (7.219)

c̃A(z̃ = 1, t̃) = 1, (7.220)

c̃B(z̃ = 1, t̃) = 1, (7.221)

where γ ≡ cB,bulk/cA,bulk, and Ẽeq is made nondimensional in the manner prescribed by Eq.
(7.107). Finally, the initial conditions transform into,

c̃A(z̃, t̃ = 0) = 1, (7.222)

c̃B(z̃, t̃ = 0) = 1. (7.223)

Under this non-dimensionalization scheme, Eq. (7.104) transforms to,

J̃ = −
√
λ · ∂c̃A

∂z̃

∣∣∣∣
z̃=0

(7.224)

Now that the non-dimensionalized problem is fully specified, we will drop all tildes in sub-
sequent expressions.

Kernel Expressions

Kernel at O (ϵ0) At O (ϵ0), we can ignore the second term in Eq. (7.103), yielding E(t) =
Ehold. The first step is to take the governing equations in Eqns. (7.111) and (7.112) into
Laplace space, at this order. Applying the initial conditions in Eqns. (7.117) and (7.118)
yields,

sĉ
(0)
A (z, s)− 1 = λ · ∂2z ĉ

(0)
A (z, s), (7.225)

sĉ
(0)
B (z, s)− 1 = λ · ∂2z ĉ

(0)
B (z, s), (7.226)
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subject to the Laplace space boundary conditions,

ĉ
(0)
A (z = 0, s)

ĉ
(0)
B (z = 0, s)

= γ · exp [Ehold − Eeq] , (7.227)

∂ĉ
(0)
A

∂z

∣∣∣∣∣
z=0

= −γ ∂ĉ
(0)
B

∂z

∣∣∣∣∣
z=0

, (7.228)

ĉ
(0)
A (z →∞, s) = 1/s, (7.229)

ĉ
(0)
B (z →∞, s) = 1/s. (7.230)

At O (ϵ0), the current density expression reads,

Ĵ (0)(s) =
1√
s
·

(
e2
√

s/λ + 1
) (
γeĒhold − 1

)(
e2
√

s/λ − 1
) (
eĒhold + 1

) , (7.231)

where Ēhold ≡ Ehold − Eeq.

At long times, the boundary concentrations c
(0)
k (z = 0, t→∞) (correspondingly, s · ĉ(0)k (z =

0, s → 0)) for k ∈ (A,B) can be shown (by taking appropriate limits) to settle into their
steady-state values,

c
(0)
A (z = 0, t→∞) =

eĒhold(1 + γ)

1 + eĒhold
, (7.232)

c
(0)
B (z = 0, t→∞) =

1 + γ

γ
(
1 + eĒhold

) . (7.233)

Kernel at O (ϵ1) At O (ϵ1), we must include the second term in Eq. (7.103). Again, we
take the governing equations (7.215) and (7.216) at this order into Laplace space. Note that
we do not need to apply the initial conditions in Eqns. (7.222) and (7.223), since they have
already been handled at O (ϵ0). Hence, we have,

sĉ
(1)
A (z, s) = λ · ∂2z ĉ

(1)
A (z, s), (7.234)

sĉ
(1)
B (z, s) = λ · ∂2z ĉ

(1)
B (z, s), (7.235)

subject to the Laplace space boundary conditions,

ĉ
(1)
A (z = 0, s) = γ · eĒhold ·

{
ĉ
(0)
B (z = 0, t→∞) · V̂ (s) + ĉ

(1)
B (z = 0, s)

}
, (7.236)

∂ĉ
(1)
A

∂z

∣∣∣∣∣
z=0

= −γ ∂ĉ
(1)
B

∂z

∣∣∣∣∣
z=0

, (7.237)

ĉ
(1)
A (z = 1, s) = 0, (7.238)

ĉ
(1)
B (z = 1, s) = 0. (7.239)

At O (ϵ1), the current density expression reads,

Ĵ (1)(s) =
eĒhold(1 + γ)(
1 + eĒhold

)2 · √s · V̂ (s). (7.240)
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