
Interactive Procedural Design Exploration
for Modular Structures

by

John Huanshuo Rao

Submitted to the
Department of Architecture

in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Architecture
Bachelor of Science in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

May 2022

© 2022 John Huanshuo Rao. All rights reserved

The author hereby grants to MIT permission to reproduce and
to distribute publicly paper and electronic copies of this thesis document in whole

or in part in any medium now known or hereafter created.

Signature of Author:
Department of Architecture

May 25, 2022

Certified by:
Caitlin T. Mueller

Ford International Career Development Professor
Associate Professor of Architecture

Associate Professor of Civil and Environmental Engineering
Thesis Supervisor

Accepted by:
Leslie K. Norford

Professor of Building Technology
Chair, Department Undergraduate Curriculum Committee

Interactive Procedural Design Exploration
for Modular Structures

by

John Huanshuo Rao

Submitted to the Department of Architecture on May 25, 2022
in Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Architecture
Bachelor of Science in Electrical Engineering and Computer Science

Abstract
This thesis presents a grammar-based methodology for generating and evaluating structures that
are constructed as aggregations of modular units. Using modular units as a building system can
be more efficient for construction and potentially high performing structurally. Most of modular
structures today are built in simple stacks which clearly advantages construction efficiency and
the structural load transfer. However, other more complex configurations of modules might better
address other important design factors such as daylight availability and the creative design intent
of the architects. With the goal of expanding the design exploration process for modular structures,
this thesis proposes a new methodology that integrates procedural design generation using shape
grammars and structural performance evaluation using finite element analysis.

Algorithmically, this paper takes inspiration from recent advances in discrete modeling tools. Under
the existing frameworks, aggregations can be generated following either stochastic procedures
or deterministic procedures. However, using deterministic systems often yields expected results
with limited diversity while using stochastic systems does not give designers direct control over
the generation process. By controlling the stochasticity of the generation process based on user
feedback and performance goals, the methodology proposed in this thesis generates design options
that follow specific design intent yet provides unexpected results.

Thesis Advisor:
Caitlin T. Mueller

Title:
Ford International Career Development Professor
Associate Professor of Architecture
Associate Professor of Civil and Environmental Engineering

Acknowledgments
This thesis would not have possible without the guidance and support from everyone who has
been a part of my journey at MIT. First and foremost, I must express my immense gratitude for
my academic and thesis advisor, Caitlin Mueller, who has inspired me throughout my time at MIT
with her creativity and intellectual curiosity. During the development of this thesis, Caitlin has
offered me thoughtful feedback and valuable advice. In the past five years at MIT, she has guided
me through my academic work, career planning, and even personal life. I am truly grateful for all
the insightful conversations we have had. Caitlin, thank you for always being there for me, not
only as a great advisor, but also as a great friend.

I would also like to thank Keith Lee, Yijiang Huang, and everyone from the Digital Structures
group for sharing and inspiring me with their work. In particular, I thank Keith for generously
sharing his work and experience which helped me start this thesis. I thank Yijiang for his technical
expertise that helped address many issues in the implementation process of this thesis. I am grateful
for all faculty and staff of the Department of Architecture. I would not be where I am today without
their support and guidance throughout the entirety of my time at MIT.

I am indebted to all my friends for their unconditional support and love that kept me going
even during the roughest times. My experience at MIT would have been incomplete without the
memories we have had together. Joyce, thank you for always being there for me and believing in
me. To Catherine, Jackie, Caleb and Dongnyung, thank you for constantly stimulating my passion
for design and making all the late nights in studio one of the most unforgettable parts of my last
five years.

Most importantly, I would like to express my utmost gratitude for my parents, Junfeng Rao and
Xin Zhou, and everyone in my family for their unending support and dedication to my education.
Their unconditional love has given me the strength to push myself through all the challenges
during my time at MIT. My mom cultivated my creativity at a young age while my dad taught me
how to challenge myself intellectually. They have continuously inspired me with their wisdom and
passion.

And finally, I thank Davey for always smiling during my toughest of times.

7 of 90

Table of Contents

1. Introduction .. 9
 1.1 Interpretation of Modularity in Architecture ... 10

 1.2 Motivation ... 12

2. Background .. 15
 2.1 Related Works .. 16

 2.2 Research Gap and Opportunities .. 22

3. Modular Aggregation Grammar .. 24
 3.1 System Definitions .. 25

 3.2 Production Rules ... 30

 3.3 Geometric Utilities .. 40

 3.4 Quantitative Analysis ... 46

4. Algorithmic Grammar Control .. 55
 4.1 Stochasticity Controls .. 56

 4.2 Algorithm Overview .. 68

5. Case Studies ... 70
 5.1 Tradeoff Between Structural Performance and Complexity 71

 5.2 Design Example - "Grow Bigger" .. 75

 5.3 Design Example - "Grow Around" ... 79

6. Conclusion .. 80
 6.1 Summary of Contribution ... 81

 6.2 Potential Impact .. 82

 6.3 Limitations and Future Work ... 82

 6.4 Concluding Remarks ... 84

8 of 90

Appendices ... 85
 A. Implementation ... 86

 B. Bibliography ... 88

9 of 90

Chapter 1

Introduction

This thesis presents a new computational methodology that enables designers to efficiently explore

a diverse set of design possibilities for modular structures. This chapter introduces the motivation

behind this research with a discussion around the historical interpretations of modularity in

architecture and its present day challenges.

10 of 90

1.1 Interpretation of Modularity in Architecture

Modularity has been a constantly evolving concept in architecture since the mid-20th century.

Empowered by the industrial revolution and driven by the demands of post-World War II period,

building systems consisted of standardized units, “modules”, became an area of interest in

modern architecture. Notably, the Metabolist movement, launched by a group of young Japanese

architects in 1960, introduced the notion of buildings as living organisms that evolve with the

urban environment. Emphasizing the idea of dynamic, adaptable, and replaceable living space,

the Metabolists envisioned systems of megastructures with hundreds of individual units attached

and subject to frequent replacement (Lin, 2011).

Kisho Kurokawa’s Nagakin Capsule Tower is perhaps one of the most well-known examples

that materialized this vision, to some extent. Situated in middle of the bustling neighborhood of

Ginza, Tokyo, this 14-story apartment building is comprised of 144 standardized units plugged

into two larger shafts at varying angles and offsets. These capsules resemble shipping containers

in size, and they were all equipped with built-in furnishings. In response to the rapid urbanization

Adaptable

Huoshenshan Hospital,
Wuhan, China
(2020)

Scalable

Functional

Removable

Portable

Reusable

Transformable

Expandable

Sustainable

Versatility

Affordable

Nakagin Tower, Tokyo
Kisho Kurokawa

(1972)

Nomadic Museum
Shigeru Ban

(2005)

Habitat 67, Montreal
Moshe Safdie
(1967)

Carmel Place, New York City
nArchitects
(2017)

Figure 1.1.1. Notable examples of modular architecture and some of the design concepts that are commonly
associated with modularity in architecture.

11 of 90

around the world, Nagakin Tower suggested a new model of affordable micro-living in cities.

Though Kurokawa initially intended the capsules to be replaced within thirty-five years, the

plan was never realized. In the 50 years since its completion, not a single unit was replaced

due to various financial and construction challenges. In recent years, the building has fallen

into disrepair due to poor maintenance and became essentially uninhabitable. Controversy

surrounding Nagakin Tower has perhaps gloomed its early glory and plans of its demolition have

been underway for more than a decade (Lin, 2011). In the spring of 2021, it was announced that

Nagakin Tower would eventually be demolished and replaced by a completely new building.

Despite its impending doom, Nagakin Tower remains an inspiring image of modular design,

with its aspirations to be a form of architecture that reacts and responds to the constantly shifting

needs of the society (Dara & Sinclair, 2018).

Another exemplary interpretation of modular architecture is manifested by Mosh Safdie’s Habitat

67. In comparison to the Nagakin Tower, Habitat 67 presents a different building system in

which modules are stacked on each other to form complex and imaginative aggregations. Safdie

envisioned Habitat 67 “as a system not a building” (Safdie, 1970). It challenged the “inhumane”

approach to building characterless urban towers, and established an unprecedented model of

quality urban living. The creative geometric arrangement of 354 identical modules created

146 residences of varying sizes and configurations that catered to the individual needs of the

inhabitants. It addressed people’s need for community, nature, light, and space. Safdie perceived

modularity in architecture as an adaptable and expandable building system that adjusts to the

humans inhabiting the space.

Though there have been many other interpretations of modular structures focusing on different

design concepts such as the temporality and transformability of architecture, the system of

stacking modules on top of each other seems to be the more widely adopted model than the

Metabolist megastructures, “because, paradoxically, the rigorous megastructure-capsule

distinctions offer little flexibility in terms of occupancy and structural expansion” (Lin, 2011).

Constructing a secondary structural system would clearly reduce the financial and constructional

12 of 90

benefits of modular structures. Therefore, this thesis focuses on designing modular architecture

as systems of independently stacked sub-assemblies.

1.2 Motivation

Nagakin Capsule Tower and Habitat 67 both embodied visionary design thinking and ideologies

that were well-ahead of their time. However, contemporary modular architecture seems to be

largely focused on the quantitative benefits (Dara & Sinclair, 2018). Using modular building

system has become increasingly popular in addressing issues like post-disaster rebuilding and

affordable housing crisis (Thompson, 2019). As a result, designs of modular structures seen

today are often optimized for construction efficiency, costs, and structural performance, often

resulting in monolithic stacking of boxes. Simply stacked forms can be the most intuitive

solutions to address the quantitative goals, but more complex aggregations of modules might be

more desirable options in terms of manifesting the creative intent of the designer and providing

access to daylight and outdoor space for the inhabitants. The lack of overlap between these two

design approaches can be exemplified by the contrast between the Huoshenshan Hospital in

Wuhan and Habitat 67 in Montreal.

Design Intent

Human
Experience

Structural
Performance

Construction
Efficiency

Habitat 67
Montreal, Canada

Huoshenshan Hospital
Wuhan, China

Figure 1.2.1. Lack of overlap between optimizing for quantitative and qualitative goals in modular design seen
today.

13 of 90

Huoshenshan Hospital was designed and built in early 2020 to accommodate the intense

demand for hospital care due to the outbreak of COVID-19 in Wuhan. Constructed in 9 days,

Huoshenshan was the earliest and fastest architectural response to the global pandemic (Luo et

al, 2020). Using prefabricated modular units not only enabled fast construction but also provided

the flexibility to effectively organize the layout into multiple levels of contamination zones,

preventing the spread of the virus. In this case, modularity served its purpose by efficiently

addressing the need of the time. However, Huoshenshan Hospital can perhaps only be considered

as a temporary design solution with little architectural significance. Its lack of emphasis

on patient experience and aesthetic appeal hinders it from being converted to a permanent

hospital. On the other hand, Habitat 67 is visually interesting and provided a novel urban living

experience for the rapidly growing cities in the 1960s. Yet, the construction of the project took

over three years to complete and came with an extremely high price tag (Safdie, 1970).

Building complex aggregations with simple standardized units poses both opportunities and

challenges. It can be challenging to understand the structural behaviors of modular systems

once the design of such system becomes more geometrically complex. For instance, if the

system involves a lot of cantilevering or irregular rotations, it becomes difficult to understand

and visualize the structural load transfers within the system. Difficulty optimizing structural

efficiency is a factor that restricts the creativity of designers while designing with modular

units. It is difficult for architects to balance quantitative goals and qualitative goals of a design

without a thorough understanding of the structural behavior of modular systems. Although many

structural analysis software tools allow designers to determine the performance of a particular

design, they are often only used in the post-design rationalization process, independent of the

creative design process. It is impractical to manually model and test all potential early design

concepts. Especially, in a high-dimensional design space, there are many variables, such as

the offset distances and the rotation angles between modules, that can have unexpectedly large

impact on the structural performance of the whole system.

What if there was an opportunity to fully integrate the quantitative rationalization and qualitative

14 of 90

design exploration process? Is it possible to harness the generative power of computational

design to automatically generate potential design solutions and structural feedback, allowing

designers to spend more time on iterating through different concepts? The purpose of this thesis

is to develop a new computational methodology that could help architects design, iterate, and

evaluate the quantitative and qualitative characteristics of complex modular structures following

specific design intent. The proposed methodology in this thesis also presents the opportunity

to expand the creative capacity of designers by discovering new design possibilities. Fig. 1.2.2

illustrates the conceptual framework of the methodology.

structural score:
0.94

structural score:
3.83

structural score:
1.40

Design Evaluation

Grammar-based Design
Generation

Design Problem

Quantitative Performance
Analysis

Iterate

rule ID: 1
origin: (17.886,10.0, 0.0)
rotation angle: 0

rule ID: 1
origin: (17.886,30.0,0.0)
rotation angle: 0

rule ID: 1
origin: (9.886,30.0,0.0)
rotation angle: 0

rule ID: 1
origin: (105.886,10.0,0.0)
rotation angle: 0

new module

plot

starting
geometry

new
module

definition

structural score:
1.97

structural score:
5.72

Figure 1.2.2. Conceptual framework of the methodology proposed in this thesis. This method focuses on establishing
a collaborative and iterative process between human designers and computers.

15 of 90

Chapter 2

Background

This chapter discusses existing research in grammar-based geometry generation methods and

identifies specific needs for further research to develop a methodology that can be effectively

integrated into the design exploration process for modular structures.

16 of 90

Generation of a shape using shape-grammar
(Stiny & Gips, 1971)

Parametric design study
(Brown & Mueller, 2019)

Figure 2.1.1.The two common paradigms of computational design: parametric methods and procedural methods
(shape-grammar).

2.1 Related Works

This section presents existing computational methods and tools used design and computer

graphics that inspired the work in this thesis.

2.1.1 Common Paradigms of Computational Design

Existing computational design methods can be categorized into two common paradigms: the
parametric approach, and the procedural approach (Fig. 2.1.1). In parametric design, specific
aspect of a geometry can be manipulated through a set of parameters, or variables, and each
design can be mathematically represented as a point in a design space. Grasshopper, a plug-in
for 3D modeling software Rhinoceros, was developed around this idea in which users can design
and edit complex shapes by adjusting defined parameters.

In the case of generating modular design options, the simplest approach to designing an efficient

algorithm that computes different assemblies is to parameterize certain inputs and sample a

large set of parameter points across the design space to output different design options. Using

a conventional parametric design paradigm like this would be relatively easy to implement.

However, parametric design solutions are often in the same family of limited variety, since the

17 of 90

number of solutions are limited by the number of parameters and the range of each parameter

(Lee, Fivet, & Mueller, 2015). Though it is possible to define a parameter-based design space that

covers broader diversity in possible solutions, with extensive expertise, it is often not practical

to do so at the conceptual design stage before overall formal strategies have been decided upon

(Mueller C. T., 2014). This is especially limiting in the case of exploring modular design options,

since the question concerns both the geometry and the topology of the aggregations.

One way that effectively addresses this limitation is using a procedural approach, or shape-

grammar. First introduced by George Stiny at MIT and James Gips from Stanford in the 1970s

(Stiny & Gips, 1971), shape-grammar is defined as a set of rules that dictate the transformations

of geometries. These rule sets can be used to describe a design language rather than a specific

design. For example, one rule could specify how and when a module can be attached to another

module. Using shape-grammars in place of a simple parameter-based framework has many

advantages. Firstly, automatic form generation can be easily achieved following the desired

logic and objectives (Stiny & Gips, 1971). Secondly, instead of defining large sets of parameters,

grammars can concisely represent different classes of models. Since rules can be applied

repeatedly and recursively, using a small set of rules can potentially generate infinite number

of design possibilities. In contrast to generating design by adjusting predefined parameters, the

diversity of solutions is not bounded by the range or size of the parameter set. Furthermore, even

with very simple building blocks and a simple set of rules, it is still possible to find complex and

diverse forms of unexpected designs if certain randomness is applied during the application of

the rules (Brunn et al, 2021).

Implementing the generation procedure using shape-grammar also presents the opportunity

to restrict generated design solutions to those that are constructable. Specifically, rules that

dictate the transformation and aggregation of the structures can be designed to follow common

construction logic, thus only producing solutions that are feasible to construct. In Making

Grammars, Terry Knight and George Stiny discuss in detail how to expand the theories of shape

grammars into the making of physical “things” (Knight & Stiny, 2015). Hence, adopting a

18 of 90

grammar-based system is the more suitable candidate for the purpose of this thesis.

2.1.2 Automatic Grammar Exploration

Grammars in existing architectural literature, are typically defined abstractly, and therefore

designed to be applied by humans manually (Wonka et al, 2006). Rule-based systems, or

grammars, are widely researched and explored in many other fields. In computer graphics,

this approach is sometimes referred to as procedural modeling. A famous procedural modeling

method, the L-system, was first proposed by biologist Aristid Lindenmeyer as a formal approach

of describing the growth process of biological developments. Since then, it has been commonly

extended to geometry generation of various types of models, such as plants, textures, buildings,

and even cities. Using a procedural approach based on L-system to model buildings and cities

allows the consideration of global goals and local constraints, such as building programs and

zoning rules (Parish & Muller, 2001). CGA shape, another shape-grammar based modeling

system, was developed to produce extensive architectural models with high visual quality and

details, specifically for computer games and movies (Wonka et al, 2006).

Though efficient and robust, L-system based procedural modeling systems tend to focus on the

automatic generation process of complex geometries that “resemble” scenes of building and

cities rather than the creative design process of specific architectural forms. The algorithm,

Model Synthesis, proposed by Paul Merrell and Dinesh Manocha (Merrell & Manocha, 2010)

addresses this question, to some extent, by controlling the generation outputs to resemble user-

defined input models (Fig. 2.1.3). However, this technique is most effective only when designers

have clear visions for the overall topology of the modular aggregations. Furthermore, most

existing procedural modeling techniques find new forms of geometry through a process of

Figure 2.1.2. Generation of a building using an extended L-system, as presented in
(Parish & Muller, 2001).

19 of 90

“morphing” in which one shape is refined into another more detailed shape. This thesis, however,

attempts to focus on generating complex forms by aggregating simple components, and develops

a system that can be inherently integrated into an iterative process for designing real structures.

Figure 2.1.3. Model Synthesis example. The model on the left is a user-input model and the image on
the right shows the generated output that resembles the user specified form (Merrell & Manocha, 2010).

Many recent developments in assembly-driven algorithms for designing spatial structures are

closely related to the goal of this thesis. Expanded from a protein folding algorithm, trussfold

is a growth-based, assembly-driven truss design algorithm recently proposed by Keith Lee at

MIT (Lee & Mueller, 2021). Starting with a triangular lattice, the algorithm would search for

the placement of next node and it would compute the performance scores, according to metrics

defined by the initial algorithm, of all possible conformations growing from the input partial

chain (Lee & Mueller, 2021). The resulting conformations would be categorized based on their

quantitative performances and a set of the best performing solutions would be propagated into

the next iteration, until a set of possible final solutions is found (Fig. 2.1.4). This thesis takes

inspiration from this iterative growth procedure developed in trussfold. However, as discussed

later in Section 3.4.2, each module in this thesis consists of a significant number of nodes and

elements, hence the growth process is much more complex than the trussfold algorithm.

Algorithmically, this thesis also takes inspiration from recent advances in discrete modeling

tools, such as Wasp, a framework developed to model objects as assemblies of discrete modular

units (Rossi & Tessmann, 2019). Under the Wasp framework, aggregations can be generated

following multiple different procedures: stochastic aggregation, explicit aggregation description,

20 of 90

Figure 2.1.4. Trussfold - growth-based spatial truss design based
on computational protein folding logic (Lee & Muller, 2021).

geometry-driven aggregation, and field-driven aggregation (Rossi & Tessmann, Designing with

Digital Materials, 2017). Each of these procedures has its own advantage and disadvantages.

Developed as a plug-in for Rhino Grasshopper, Wasp allows users to define different forms

of geometries as different modular units and the specific types of connections between each

module. Using the stochastic generation procedure allows users to find diverse solutions of

unexpected forms but it reduces user’s control on the outcomes (Rossi & Tessmann, Designing

with Digital Materials, 2017). Explicit descriptions allow users to manually apply rules to drive

the form of generated results, but this process can be highly inefficient and tedious. Geometry

and field-driven aggregations use user-defined global geometries or scalar fields to drive the

rule selection and aggregation growth (Rossi & Tessmann, Designing with Digital Materials,

2017). However, after some experimentation with the Wasp system, it was found that using field-

driven aggregation essentially reduces the problem to a parametric-based design space where

the outcome of a specific geometry input is deterministic. Since the number of connection types

between modules is limited, the diversity of possible outcomes is great greatly reduced. For

instance, each specific rule states that one module can only be connected at a very specific point

along one of its faces. Attempting to broaden the design space using this approach can result in

the rule sets becoming overly complex and difficult to understand. Thus, further innovation and

research is needed to expand these techniques to generate complex modular structure options that

follow specific design intentions yet provide unexpected results.

21 of 90

2.1.3 Human Interaction

As discussed in the previous section (Section 2.1.2), there are exiting computational tools that

can efficiently generate geometries and optimize the topology based on quantitative performance

but they are not intentionally designed for a collaborative experience between human designers

and computers. Under these frameworks, more qualitative concerns are often only considered at

the beginning of the generation process. Human-robot collaboration, a fabrication framework for

the design and construction of spatial structures (Brunn et al, 2021), highlights the potential of

enabling active collaboration between machines and humans during the creative process. Using

two robotic arms to cooperatively to aggregate an unplanned structure made of a collection of

spherical units, Brunn’s paper describes a “design as you build” process in which the final form

of the resulting structure is driven by both robotic inputs, as path-planning constraints, and

human evaluation.

Caitlin Mueller and John Oschsendorf at MIT proposed an interactive evolutionary algorithm,

structureFIT, that integrates user interaction to control the diversity of solutions for conceptual

structural designs (Mueller & Ochsendorf, 2015). This technique highlights a promising way

of giving users direct control and access to more than a single optimized solution. Taking

inspiration from this algorithm, this thesis proposed a system where users can define their design

preferences and a set of parameters to control the stochasticity of the generated designs. To

encourage an iterative creative process, this system is designed to generate assemblies in a layer-

by-layer construction process (detailed in Section 3.2.4), in which designers can evaluate the

outputs and adjust the design problem accordingly between each layer of generation.

2.2 Research Gap and Opportunities

So far, this chapter has shown that existing work in grammar-based geometry generation

methods are inspiring, yet not sufficient to achieve the goal of this thesis on their own. This

22 of 90

section summarizes the research goals of this thesis and potential ways to combine and expand

on the different strategies presented in the chapter.

Based on the review of works discussed in Section 2.1, several main challenges can be identified:

•	 Parametric design systems and deterministic grammar systems can give designers direct

control of generated design solutions, but they often lack the diversity that is critical at

the conceptual design stage.

•	 Known procedural modeling algorithms can efficiently produce large number of

geometries, but they are suited as a part of iterative creative design process of interesting

architectural forms.

•	 Design optimization algorithms are normally driven by quantitative performance instead

of promoting a collaborative process between human designers and machines.

•	 Aggregation-based form generation methods are not as widely researched, and their

efficiency often becomes a limiting factor. For instance, generating large assemblies with

Wasp can sometimes take up to several seconds per assembly, since it constantly attempts

to solve geometric constraint problems, such as collision detection, using 3D meshes of

the modular units.

Attempting to resolve these challenges, this thesis presents a few specific research goals:

•	 Expand upon existing work in procedural modeling and other grammar-based systems for

developing a computational approach to automatic explore design options for modular

aggregations.

•	 Design a set of simple and easily understandable grammar rules that can create diverse

and unexpected design options that respond to specific constraints.

•	 Define new metrics that can be used by designers to evaluate both quantitative and

qualitative design factors such as structural performance, daylight performance, porosity,

and geometric complexity.

•	 Develop strategies to allow designers to control a stochastic generation process and direct

23 of 90

the formal characteristics of design outputs.

•	 Implement an efficient generation system in which users can iteratively collaborate with

computers throughout the entire creative process.

24 of 90

Chapter 3

Modular Aggregation Grammar

As discussed in Chapter 2, this thesis proposes a grammar-based generation method to

increase the diversity of the output designs. This chapter introduces the overall framework

of the proposed method and the definition of the grammar used in exploring the design

space. Specifically, this chapter focuses on the underlying mechanisms of the system: setup

of user specifications and design constraints, production rules of the grammar, geometric

utilities for evaluating design outputs, and the definition of quantitative performance metrics.

25 of 90

3.1 System Definitions

How do the different components of the system interact with each other? How are design

preferences and constraints defined through user inputs? How does the computer interpret the

user inputs? This section presents the high-level framework and the definition of geometries

throughout the generation process. Though this system is implemented considering modules of

specific scale and form, this approach can be extended and adapted for modules of any scale and

form.

3.1.1 Framework Overview

initialize new assembly and
rule set

user inputs

design preferences & constraints

(plot, starting geometry, areas to

avoid, desired # of modules, # of

assemblies)

constraints
satisfied?

YES

select a rule

sample random values for
rule parameters apply rule

complexity
analysis

add module to
assembly

local goal
satisfied?

structural analysis

NO

user
evaluation?design outputs

selected user favorites

update design
problem

YESYES

NO

Figure 3.1.1. System flowchart. This diagram illustrates how different components of the system are connected
at a high-level. This chapter focuses on discussing the highlighted components. Details of other components are
presented in later chapters.

26 of 90

In contrast to some of the existing methods discussed in Chapter 2, the approach presented in

this thesis attempts to build an iterative collaboration between human designers and computers.

A user of the system would first set up the design problem for the system with specific inputs, as

shown in Fig, 3.1.1. Section 3.1.3 discusses how users can specify these inputs and how they can

influence the outputs of the system.

Once the system validates all user inputs, it would begin the generation through the process of

selecting a rule, applying the selected rule, constraint checking, and quantitative evaluation.

This process is repeated until the design goal is satisfied. Specifically, this method generates

assemblies of modules through a layer-by-layer construction approach, meaning that each floor

of the structure is completed before the generation of the next floor begins. In this case, the

local goal is satisfied when the current floor contains the desired number of modules specified

by the user. This approach is advantageous because it follows the common construction logic

of modular structures and provides designers the opportunity to interact with the system by

adjusting the design problem between each layer of generation to achieve desirable global form.

Designers can iterate through different design concepts with different sets of user inputs until

they are satisfied with the outputs from the system.

As shown in Fig. 3.1.1, this proposed method presents a stochastic approach of deploying the

grammar. Since the rules are selected randomly, diverse sequences of actions can be generated

with the same user inputs and only a small number of rules. Since each rule is also associated

with a set of random parameters, a diverse range of designs can be automatically generated using

the same rule sequence. This enables the system to explore large portions of the design space and

potentially yield infinite number of possible design solutions. The process of selecting random

rule and parameters are detailed in Chapter 4.

3.1.2 Geometry Definitions

This section discusses some of the definitions and terminologies commonly used in this thesis.

A module is defined as a single modular unit. An assembly is defined as the group of all modules

27 of 90

forming an modular structure. How and where would a new module be added to the existing

assembly? Applying an aggregation-based generation method requires some understanding of

the spatial relation of individual units in the existing design. Visually interpreting the form and

relationship between discrete geometries can be a simple task for humans. However, it can be

difficult for computers to efficiently determine the relations within an assembly and apply the

appropriate transformation. To simplify this process, the implementation of the system defines

each module with a set of parameters in the global coordinate system: the dimensions, the origin,

and the rotation angle.

Considering rectangular modules, the dimensions of each module describe its length, width,

and height. By default, the dimensions of modules in the starting geometry are assigned to all

modules in the same assembly. However, it is possible for users to specify new dimensions

throughout the generation process as desired.

The origin of a module describes the Cartesian coordinate of one of the corners on its bottom

face. As illustrated in Fig. 3.1.2, each module is initially modeled with its length along the global

y-axis; its width along the global x-axis, and its height along the global z-axis. In this initial

orientation, the origin is defied by its bottom left vertex of its bottom face. The rotation angle

describes each module’s degree of rotation, counter-clock wise around its origin, from the initial

orientation with respect to the positive y-axis (Fig. 3.1.2).

This method of defining modules with parameters describing its relation to a global coordinate

system can be generalized to accommodate modules of other forms or even assemblies of

different types of modules, as long as the definition is consistent within an assembly. Since all

modules can be described with a simple set of numbers, generating a new assembly at each step

only involves computing the proper range for each one of these parameters. This computation

process is presented in Section 3.2 and Section 3.3. Any design solutions can also be easily

reconstructed as long as the parameters of all modules in the assembly of interest are properly

recorded.

28 of 90

3.1.3 User Inputs and Design Constraints

The design problem is specified by a set of user inputs(Fig. 3.1.1). The plot defines the boundary

of the area in which the aggregation is allowed to grow. For designers, this can be used to

describe the boundary of the site. The starting geometry is a group of one or more modules

that describes the point at which the aggregation of modules would start forming. Because

of how the production rules are applied sequentially (detailed in Section 3.2), the resulting

aggregations of modules tend to grow around the starting geometry, given that all modules are

within the defined plot. This gives designers the opportunity to consider different configurations

of starting geometry based on the programmatic and circulation needs. For instance, the

starting geometry can be used as the lobby space or the entrance to a building. The position of

the starting geometry on the plot determines the positioning of building(s) on the given site.

Figure 3.1.2. Definition of a module showing its dimensions, origin, and rotation angle.

z

x

Y

length

width

height

initial orientation in 3D initial orientation in plan

Y

x

width

length

origin: (10,10,0)
rotation angle: 0°

origin: (18,20,0)
rotation angle: 0°

origin: (10,10,0)
rotation angle: 45°

origin: (10,10,0)
rotation angle: 270°

origin
origin

29 of 90

desired number of modules = 15

Figure 3.1.3. 2D plan projection of 1-layer generation outputs with desired number of modules set to 15. These
designs demonstrate how user inputs can be adjusted to drive the form of resulting designs. Starting geometry
of multiple modules tend to generate designs of similar characteristics while using a single module as a starting
geometry produces less expected results. Specifying void can push the resulting designs to grow around certain areas
on the plot. The positioning of starting geometry also clearly affects the growth pattern.

starting
geometry

plot

starting
geometry

plot

starting
geometry

plot

starting
geometry

plot
void

starting
geometry

plot
void

30 of 90

When considering how the resulting designs would respond to their specific site conditions,

designers can also specify areas to avoid within the plot by defining the void. Defining specific

void enables users to efficiently iterate different design concepts considering the topographic

conditions or the planning of their site.

The desired number of modules defines the size of each aggregation layer. Sometimes, the

system might not satisfy this number under the given design constraints, but the number of

modules in outputs would never exceed the specified number. Fig. 3.1.3 demonstrates how these

user inputs are used to drive the form of a one-story modular structure. Since the system can

generate 100 assemblies of 15 modules in roughly 8 seconds on a standard laptop, users can

generate and evaluate hundreds of designs at once.

In addition to the design constraints describe by the plot, void, and desired number of modules,

there are also several other design constraints defined within the grammar. First, all modules

within a structure must be connected by overlapping faces or sometimes by only a corner. If the

user wishes to explore design options of multiple structures on the same plot, multiple starting

geometries can be defined, one for each structure. In this case, the resulting designs would

feature a cluster of modules around each starting geometry, and modules within each cluster

are always connected. Secondly, none of the modules can collide with any other module in the

assembly. Lastly, all modules must be either grounded or supported by another module from the

layer below. This constraint does not evaluate the actual structural performance of the system but

is only designed to eliminate obviously infeasible options caused by “floating” modules. Section

3.3 presents the algorithms for how these design constraints are checked at every step during the

generation process.

3.2 Production Rules

The grammar defines the set of shape transformations allowed during the growth of an assembly.

In this proposed methodology, the grammar was implemented using a set of two stochastic

31 of 90

plot

starting
geometry

rule ID: 0
origin: (17.886,17.496, 0.0)
rotation angle: 0

rule ID: 0
origin: (25.886,31.987,0.0)
rotation angle: 270

rule ID: 0
origin: (23.335,17.496,0.0)
rotation angle: 270

rule ID: 0
origin: (37.485,31.987,0.0)
rotation angle: 45

new origin

new module

new
module

definition

Figure 3.2.1. Production rule steps of generating a 5-module assembly using the naive rule only. At every
step, a single module is added to a randomly selected location in the existing assembly.

production rules. Each rule dictates how a new module is added to a group of existing modules

to create a new assembly. Even though both rules are stochastic in nature, they each define a

different design logic, leading to distinctive geometric patterns in generation outputs. In this

paper, the two rules will be referred to as the naïve rule and the extension rule. This section

details the underlying algorithm of these two rules and how they can be applied in combination

to produce desirable designs.

3.2.1 Naive Rule

The naïve rule is a stochastic parametric production rule. Fig. 3.2.1 demonstrates the step-by-

step process of how an one-layer assembly of five modules is generated using only the naïve

rule. At each step, a new module is attached to the boundary of the existing assembly layer. As

highlighted in Fig. 3.2.2, the boundary is defined as the group of line segments that encloses all

modules of this layer in 2D projection (plan view). These line segments are computed using the

intersection points between all module edges. The detailed algorithm of boundary computation

will be discussed in Section 3.3.1.

When the naïve rule is applied, a random line segment on the boundary of a given group of

modules is selected. Then a real-valued random position parameter in [0, 1] is selected using

a probability distribution based on user input. The position parameter is used to find a point at

32 of 90

Figure 3.2.2. A 5-module assembly. The heavier line
indicates the boundary of this assembly.

the normalized length along the selected line segment, as the origin location(Section 3.1.2) of

the new module. As previously discussed in Section 3.1, in the implementation of the proposed

methodology, a module can be defined using two parameters, the origin and the rotation angle.

The rotation angle of the new module is selected from a set of discrete angles using another

predefined probability distribution. If the location and orientation of the new module does not

violate any of the design constraints, this new module is added to the given assembly. Otherwise,

the algorithm repeats the same procedure until a valid location is found, or the defined maximum

number of iterations has been reached.

Note that the range of potential rotation angles for any new module always spans 90 degrees,

but the start and end of this 90-degree range is constrained by the orientation of the selected

boundary edge, as shown Fig. 3.2.3. The number of discrete rotation angles in the set is

determined based on the user input, angle step size. For instance, if the angle range is [0º, 90º]

and the step size is set to 15º, the set of discrete rotation angles to select from would be {0º, 15º,

30º, 45º, 60º, 75º, 90º}.

Since both the origin location and rotation of the added module is randomly selected at each

step, applying the naïve rule introduces randomness to both the location and directionality of

growth. Every time the naïve rule is applied, three random variables are selected from three

distinct sets, thus the total number of possible outputs is determined by the size of these three

sets. Considering a case where the user starts with an assembly of only one rectangular module

and the angle step size set to 15º, there would be 4 possible choices for boundary edge selection

and 7 possible choices for rotation angle. And, if the system rounds all the position parameters to

33 of 90

origin angle range: [0°, -90°]

[45°,-45°] [Φ,90°-Θ]

Φ Θ

Figure 3.2.3. Relationship between the rotation angle range and the orientation of an existing module. The range
of potential rotation angle always spans 90° but the actual range is determined by the orientation of the existing
module.

3.2.2 Extension Rule

The extension rule was designed to limit the amount of randomness in the generation process.

Fig. 3.2.4 demonstrates how the extension rule is applied recursively to generate a one-layer

assembly of five modules. At each step, a random module along the boundary is selected, then

a new module is added by extending the selected module from one of its edges that is on the

assembly boundary. Unlike the naïve rule, the extension rule only introduces randomness to the

location of growth, because it does not rely on any other random parameter. The directionality

of growth will always be orthogonal to the global orientation of the existing assembly. Since

there is only one possible extension from any given edge of a module, the number of the possible

outputs using the extension rule is always bounded by the number of extendable edges on the

assembly boundary. Note that an edge is defined as extendable only if it covers the full length or

two-decimal places, there would be 100 possible points on each edge. This could produce 2,800

different design outputs. As the assembly grows, the number of possible design outputs grows

exponentially and becomes essentially unbounded. A generation process using only this rule

would likely produce results that cover a diverse range in the design space, providing designers

with a large number of diverse design options to consider. However, if the user were interested

in exploring design options that follow a specific pattern, using only the naïve rule would not be

sufficient. Because of this highly randomized procedure, it is difficult to control the outputs form

the naïve rule so that they formulate a consistent design language that meets the intent of the

designer.

34 of 90

Figure 3.2.5. The number of possible extensions increases by 2 as an assembly grows.

full width of a module.

In contrast to the naïve rule, only one random variable is selected every time the extension rule is

applied, and the size of the set of variables increases only by a small constant amount with every

new addition to the assembly. Considering the case of a user starting with an assembly of a single

rectangular module and using only the extension rule, the number of possible outputs is initially

4. This number increases by at most 2 every time a new module is added to the assembly, as

shown in Fig. 3.2.5.

Therefore, the number of possible outputs only increases linearly as the assembly grows. If the

user were to generate assemblies with only the extension rule, the resulting designs would only

cover a relatively small portion of the design space and most of the outputs would likely to have

very similar design patterns.

rule ID: 1
origin: (17.886,10.0, 0.0)
rotation angle: 0

rule ID: 1
origin: (17.886,30.0,0.0)
rotation angle: 0

rule ID: 1
origin: (9.886,30.0,0.0)
rotation angle: 0

rule ID: 1
origin: (105.886,10.0,0.0)
rotation angle: 0

new module

plot

starting
geometry

new
module

definition

Figure 3.2.4. Production rule steps of generating a 5-module assembly using the extension rule only. At every step, a
new module is added by extending a randomly selected module in the existing assembly.

35 of 90

3.2.3 Combination of rules

Fig. 3.2.6 shows selected design outputs from generating one-layer assemblies of 10 modules.

The first row of designs are generated using only the naïve rule while the bottom row shows the

outputs of using only the extension rule. All the random variables used in these examples were

generated using a uniform probability distribution (discussed in Section 4.1). Visually, these

two sets of results each clearly defines a distinctive design pattern. Aggregations using only the

naïve rule produces complicated sprawling structures while the ones generated with only the

extension rule have more compact and rigid configurations. If both rules are applied throughout

the generation process, the resulting designs are expected to exhibit an interesting mixture of

characteristics seen in both sets of designs seen above. This section illustrates the qualitative

behavior of design outputs generated from specific combinations of the naïve and extension rule.

A sequence of rules will be denoted as a list of 0s and 1s, representing the naïve rule and the

extension rule respectively. For example, [0,1,0,1] represents the sequence where the two rules

are applied in alternating order.

plot

starting
geometry

1

6

2

7

3

8

4

9

5

10

Figure 3.2.6. Generation outputs of 10 module assemblies. Design #1 to #5 are generated using only the naïve rule
, and design #6 to #10 are generated using only the extension rule. These sets of results demonstrate the distinct
design pattern of two production rules.

36 of 90

Fig. 3.2.7 shows ten selected designs from applying the different splicings of rule sequences

to the same plot and starting geometry setup as the previous example. Unsurprisingly, similar

Figure 3.2.7. Generation outputs of 10 module assemblies using different rule sequences. These sets of results
demonstrate that the visual characteristics of design outputs can be controlled by splicing different rule sequences.

rule sequence: [1,1,1,1,1,0,0,0,0]

1

6

2

7

3

8

4

9

5

10

rule sequence: [0,1,0,1,0,1,0,1,0]

1

6

2

7

3

8

4

9

5

10

rule sequence: [0,0,0,0,0,1,1,1,1]

1

6

2

7

3

8

4

9

5

10

37 of 90

visual characteristics can be observed across each set of results. The pattern seen in sequence

[1,1,1,1,1,0,0,0,0] can be described as having a few “unstructured” modules radiating from a

central mass of modules “structured” on an orthogonal grid. On the other hand, generation from

rule sequence [0,0,0,0,0,1,1,1,1] show less uniform characteristics across the designs. However,

these designs can be characterized as having multiple clusters of “structured” configurations.

These clusters are not always formed on a single grid like seen previously, and the relationship

between each clusters is unique. Because of the unique spatial relations within each assembly,

this also demonstrates that applying the production rules in a defined sequence still allows

designers to explore a diverse set of design options.

Interestingly, all of the designs from the alternating rule sequence [0,1,0,1,0,1,0] show a

consistent growth pattern except design #5 and #9. The majority of these designs are “structured”

along a central vertical axis with a few modules breaking from the grid in multiple directions.

The behavior of design #5 and design # help illustrate that the system can sometimes output quite

unexpected results.

To further illustrate the possibility of deriving a desired design pattern in the generation outputs

by splicing rule sequences, Fig. 3.2.8 shows two sets of results that exhibit drastically different

behaviors. Design #1 through #5 are generated by applying the sequence [0,0,1,0,0,1,0,0,1].

rule sequence: [0,0,1,0,0,1,0,0,1]

1

6

2

7

3

8

4

9

5

10

rule sequence: [1,1,0,1,1,0,1,1,0]

Figure 3.2.8. Generation outputs of 10 module assemblies using rule [0,0,1,0,0,1,0,0,1] and [1,1,0,1,1,0,1,1,0]. These
results show that the frequency at which each of the rules is applied has a large impact on the global form of the
assembly configurations.

38 of 90

Design #6 to #10 are produced with the sequence [1,1,0,1,1,0,1,1,0]. As expected, the resulting

designs show more “structured” growth patterns when the extension rule is applied more

frequently. Even though design #1 through #5 do not necessarily formulate a consistent design

language, they still demonstrate a mixture of the visual characteristics previously.

In summary, examples in this section demonstrates that specifying the sequence of rules can be

an effective way of controlling the topology of the design outputs. Applying the extension rule

introduces “structure” to the configurations of modules while the naïve rule allows the assembly

to “sprawl”. In practice, it can be difficult for designers to experiment with all combinations of

rule sequencing. This thesis proposes a method of generating random sequences of rules based

on user preferences. The proposed method utilizes probability distributions computed from

user inputs to determine which production rule to apply to a given state of an assembly. More

discussion around this method will be detailed in Chapter 4 of this thesis.

3.2.4 Construction by Layer

The production rules discussed so far only consider the transformation within a single-layer

assembly. This methodology proposes a layer-by-layer construction logic for generating multi-

story structures. To increase user interaction throughout the aggregation process, designers

can iterate on the designs of partial structures by generating a single layer of the assembly at

a time and select their favorite designs as the starting geometry base for the next layer. Once a

geometry base is specified, a parametric production rule is applied to initialize the generation

of a new layer by directly extruding up a set number of modules from the previous layer. Then,

the rest of the generation procedures within each new layer follow the same production rules

discussed in the previous sections. Using a parameter to control the amount of direct extrusions

enables designers to consider their programmatic needs and vertical circulation designs between

each iteration. Design samples shown in this section demonstrate that this construction by

layer approach is a promising way to incorporate designer preferences into different stages of a

generative design process. Considering the design #3 of rule sequence [1,1,1,1,1,0,0,0,0] from

39 of 90

Fig 3.2.7 as the base geometry, Fig 3.2.9 shows how a 1-layer assembly transforms into different

starting geometries to start a second layer growth and a set of selected outputs from each starting

geometry.

Figure 3.2.9. 1-layer assembly to 2-layer generation process. These results show that direct extrusion rule parameter
can influence the diversity of final design outputs.

direct extrusion rule
parameter: 10% 20% 50% 70% 100%

desired number of module in 2nd layer: 10

completed

40 of 90

3.3 Geometric Utilities

This section describes the high-level implementation of some of the geometric utilities used in

the generation process, including boundary computation and design constraint checking. Since

these computations occur whenever a new module is added to a given assembly, the performance

of these algorithms can have significant impact on the overall performance of the system. The

methods discussed here are implemented with the assumption that all modular units are vertical

extrusions of two-dimensional polygons (sometimes referred to as 2.5D objects). Hence, all

geometric properties are computed in two-dimensional space to improve the efficiency of the

system. Adapting the implementation to accommodate three-dimensional modules that are not

simple extrusions 2D shapes is non-trivial and was not explored in this thesis.

3.3.1 Boundary Computation

As introduced in Section 3.2.1 (Fig. 3.2.2), the boundary of a given assembly layer is the

collection of module edges that encloses all modules of the same layer in two-dimensional space.

Drawing the outline of a set of polygons is an inherently simple problem for humans, but it can

be difficult to generalize the computation procedure algorithmically. Many approaches were

considered during the implementation of this thesis.

Considering rectangular modules, the 2D projection of a module is a set of four edges and four

The outputs shown above are generated applying an alternating rule sequence to the same design

problem setup as the selected 1-layer geometry base. Alternatively, designers can also adjust the

behavior of each layer individually by adjusting the user inputs between each iteration. Chapter

4 and Chapter 5 will discuss how different user inputs, such as the design constraints and the

probability distributions of the random variables, can be used to drive the global form of the

generated aggregations.

41 of 90

vertices. Mathematically, the term convex hull can be used to describe the minimal convex

polygon containing all these rectangle vertices. Many algorithms, such as the famous “Gift

Wrapping” algorithm, have been proposed to efficiently find the convex hull of given set of

2D points. However, the boundary of an assembly is almost never a convex polygon. Another

approach to solving the boundary computation problem was to compute the concave hull. As

the name suggests, the term concave hull describes the concave polygon that containing a set

of points. Computing the concave hull from a set of points is much more complicated and little

work has focused on concave hull algorithms in comparison to convex hull algorithms (Asaeedi

et al, 2017). An early implementation tested in this thesis was based on the “Swing Arm”

algorithm proposed by Galton and Duckham (Galton & Duckham, 2006). However, it was noted

later that, in some cases , the concave hull of all module vertices also differs from the boundary

of an assembly, as shown in Fig. 3.3.1. In these cases, the boundary of an assembly layer cannot

be described by a single concave polygon but multiple connected polygons. This resulted in

design outputs that are not fully connected within itself, since an inaccurate boundary was used

to compute location of new modules in the process described in Section 3.2.1.

Since the desired boundary only contains line segments that are on the edges on the modules,

a new method of computing the boundary was implemented using the edges of all the modules

instead of only using the vertices. An outline of this implementation is given below in Algorithm

1. Fig. 3.3.2 illustrates the different cases of intersection events described in the algorithm.

boundarycocave hullconvex hull

Figure 3.3.1. Convex hull vs. concave hull vs. assembly boundary. Using known concave hull algorithms sometimes
approximates the boundary well but does not guarantee that every line segment is a part of a module edge.

42 of 90

Algorithm 1 Boundary computation
 Inputs: Edges - an array of all module’s bottom edges in the assembly layer
 Outputs: Boundary – an array of line segments representing the boundary of an assembly layer
 Initialize a boundary set output ← {}
 Initialize a set tracking indices of edges that completely overlap, O ← {}
 Initialize a set tracking indices of edges that have partial overlaps, P ← {}
 Initialize a map mapping edge indices to overlap intersection points, Pts ← {}
 N = the number of edges in Edges
 for i ← 0 to N-1 do
 if i is in O, then
 this edge is not on the boundary, continue onto the next edge.
 for j ← i+1 to N do
 if j is in O, then
 this edge is not on the boundary, continue onto the next edge.
 Check intersection of edgei and edgej
 if there is an intersection event between the 2 edges, then
 case 1: the intersection event occurs only at a point, then
 both edges could potentially be on the boundary, continue onto the next edge
 case 2: the intersection event of these 2 edges is an overlap, AND
 the overlap spans the entire length of either or both edges, then
 that edge(or both edges) is not on the boundary, add the index of that edge to O
 continue onto the next edge
 case 3: the intersection event of these 2 edges is an overlap, AND
 the overlap is only spans a part of either or both edges
 add the index of the edge that has a partial overlap to P
 add the start and end points of the overlap to the corresponding entry in Pts
 end for
 end for
 for n ← 0 to N do
 if n is not in O or P, then
 edgen is on the boundary, add edgen to output
 if n is in P, then
 only a part of edgen is on the boundary, specifically the non-overlap part of the edge
 sort entries in Pts[n] by distance from the start point of edgen in ascending order
 for pti in Pts[n] do
 if pti is the first point, then
 make a new line segment from start point of edgen to pti
 if pti is the last point, then
 make a new line segment from pti to end point of edgen
 otherwise
 make a new line segment from pti to pti+1
 add the new line segment to output
 end for
 return output

43 of 90

Since the system is iterating through all the edges and checking the intersections with every

other edge, the time complexity of this algorithm is O(n2) where n is the number of module

edges in 2D. The time complexity upper bound of the “Swing Arm” algorithm is also O(n2)

(Galton & Duckham, 2006), so the algorithm used in this implementation has similar worst-case

performance as other concave hull algorithms. However, efficient data type designs in an object-

oriented programming language can significantly improve the performance of this algorithm. For

instance, the implementation of this thesis makes use of an object class that updates and stores

the boundary at every step throughout the generation process. In this case, the initial computation

follows the procedure outlined in Algorithm 1, but every time a new module is added it only

needs to check for intersections between the newly added edges and the previously computed

boundary edges. Therefore, the time complexity of updating the boundary is O(n) since adding a

single module adds a constant number of edges. This approach achieves linear time complexity

at the expense of memory usage. More discussion on the implementation of different classes will

be detailed in Section 5.

3.3.2 Collision Detection

As discussed in Section 3.1.4, one of the design constraints for the generation of assemblies is

that no module can collide with another module. The previous prototype implemented in Rhino

Grasshopper uses the Wasp plug-in’s built-in 3D mesh collision detection checking. Collision

checking with 3D objects was found to be a performance bottleneck of the system’s overall

case 1
intersection at a single point

case 2
intersection overlaps entire

length of the edge(s)

case 3
intersection partially
overlaps the edge(s)

intersection point

Figure 3.3.2. Three different cases of intersection events as described in Algorithm 1. The heavy dark lines indicate
the selected edges, and the red lines describes the intersection events.

44 of 90

Algorithm 2 Collision Checking
 Inputs: M - new module for collision checking; A - an array of existing modules in this layer
 Outputs: True if new module does not collide with another module in the assembly
 False otherwise
 newEdges = all bottom edges of M
 maxDist = 2 × the length of the longest edge in newEdges
 for modulei in A do
 calculate the Euclidean distance D from the origin of M to the origin of modulei

 if D > maxDist then
 M does not collide with modulei , continue onto to next module in A
 existingEdges = all bottom edges of modulei

 initialize an overlap edge counter C ← 0
 for edgeA in newEdges do
 for edgeB in existingEdges do
 Check intersection of edgeA and edgeB
 if there is an intersection event between the 2 edges, then
 case 1: the intersection event occurs only at a point
 if this intersection point is NOT an endpoint of either edgeA or edgeB then
 M and modulei intersect
 return False
 case 2: the intersection event of these 2 edges is an overlap then
 C += 1
 if C > 1 then

efficiency. An effective approach to resolve this issue is checking for possible collisions in 2D,

assuming that all modular units are vertical extrusions of 2D shapes. If two polygons have no

overlapping areas, their 3D extrusions do not collide. Algorithm 2 outlines the implementation

for checking whether a new module collides with another module in the existing assembly. Fig

3.3.3 (collision cases) shows that different cases described in Algorithm 2.

case 1a
2 modules DO NOT

collide,
IF edge intersections
occur at an endpoint

case 2a
2 modules DO NOT

collide,
IF number of edge

overlaps <= 1

case 2b
2 modules collide,
IF number of edge

overlaps > 1

case 1b
2 modules collide,

IF edge intersections
occur at a point that’s

NOT an endpoint
Figure 3.3.3. Different cases of intersections events as described in Algorithm 2. If intersections events occur in two
of the scenarios described, the 3D extrusion of these shapes would collide.

45 of 90

Since this algorithm iterates through all the modules in the given assembly once, and each

module has a constant number of edges, the time complexity of this collision checking procedure

is O(n) where n is the number of modules in the given assembly layer.

3.3.3 Other Constraint Checking

Before a new module can be added to the assembly, it is also critical to ensure that the proposed

location of the new module is within the bounds of the user define plot and outside of the void.

Like the previous operations discussed in this section, checking these constraints can also

be efficiently done in 2D. The implementation of this system includes two versions of these

constraint checking mechanism. The first, and the more efficient, approach is to consider a

module within the bounds of the plot if all of its bottom vertices and its centroid are contained

by the curve of the plot when projected in the XY-Plane. Similarly, a module is out bounds of the

voids when these point projections are not contained by any curves of the void. Note that this

is not a strict checking of these conditions since a module might have small areas that are still

inside the voids or outside the plot in some edge cases. A more robust, but slightly less efficient,

version uses a similar logic as the one described Algorithm 2. Instead of only checking if a given

curve contains a set of points, this algorithm checks for specific intersection events between all

the edges of a module and the input curves. Since each implementation could potentially lead

to very different solutions, the system allows users to select whether or not a strict checking is

required.

When the growth of the assembly takes place above the grounded layer, the system also ensures

that the new module is supported by at least another module in the assembly layer below. In

the proposed methodology, a module is considered to be supported if it has any overlapping

Algorithm 2 Collision Checking (continued)
 M and modulei overlap
 return False
 end for
 end for
 end for
 return True

46 of 90

3.4 Quantitative Analysis

One of the goals of this thesis is to help designer find modular structure design solutions that

are both visually interesting and quantitatively well-performing. As briefly introduced in

Chapter 1, structures that are consisted of repetitively stacked modules are expected to be more

advantageous in terms of structural performance. More complex configurations can often better

communicate the creative intent of the architects and address other important design factors such

as porosity and daylight availability. This section introduces the two main numerical metrics that

are used to evaluate the structural performance and complexity of the aggregations through the

generation process.

3.4.1 Complexity Score

This thesis presents a method of characterizing the topology of an assembly with a numerical

metric, complexity score. It is a measurement how complex the configuration of modules is

area with any module in the assembly layer below. This operation is also implemented in 2D

using a similar logic as the collision checking algorithm discussed in Section 3.3.2. Instead of

checking for intersections with modules of the same assembly layer, support condition checking

uses Algorithm 2 to check for intersections with modules from the layer below the new module.

This procedure eliminates structurally infeasible designs by ensuring that every module in

the design outputs is either grounded or supported by another module. This method is able to

produce a diverse range of solutions in terms of both visual characteristics and quantitative

performance because it does not place any constraints on the amount of the overlapping areas

between module. Allowing some poor-performing partial structures to aggregate is critical since

these partial structures, especially early in the generation process may eventually lead to well-

performing final designs. Further structural performance analysis of the solutions is included at

end of each iteration to allow designers to evaluate the quantitative performance goals of their

favorite designs.

47 of 90

Figure 3.4.1. A few configurations of 2 modules in plan. The heavier line shows the boundary of
these assemblies, which demonstrates that the total length of the boundary can be used to measure the
complexity of a given assembly.

boundary length: 2×L + 4×W boundary length: 3×L + 4×W boundary length: 4×L + 4×W

L

W
L/2

within each layer of a given assembly, relative to the number of modules. Each individual layer

in an assembly has its own complexity score, and the mean complexity score of all assembly

layers can be used to evaluate the configuration of the entire assembly. The calculation of

complexity score for each assembly layer makes use of the boundary computed for the given

layer. As defined in Section 3.3.1, the boundary of an assembly layer describes the overall shape

of the module configuration, and the total length of the boundary defines the perimeter of this

shape.

Considering an assembly layer consisted of two rectangular modules, the simplest configuration

is when two modules are position directly adjacent of each other, forming another large rectangle

in plan. To create a more complex configuration of two adjacent modules, one could position

the two modules with a certain offset so that the plan projection of the two modules only share

an edge partially, as shown in Fig. 3.4.1. The complex configuration is occurs when the two

module edges of the two modules only intersect at a single point, meaning that the two rectangles

in plan do not share any edges at all. Note that the total boundary length of these configurations

increases as the configuration gets more complex. This demonstrates that boundary length is

an effective approximation of a configuration’s complexity. The proposed evaluation method

uses the ratio between the total length and total floor area to quantify the complexity of a given

assembly layer, as given in Eq. [3.4.1] below.

48 of 90

 CR = Lboundary / Atotal Eq. [3.4.1]

where CR is the raw complexity score of a given assembly layer; Atotal is the total floor area of the

assembly layer, and Lboundary is the total length of the boundary. This metric can be computed in

linear time, since the boundary can be computed in linear time, as described in Section 3.3.1.

To account for assemblies of different sizes, the complexity score needs to be so that this metric

would fall within the same numerical range, [0, 1], for all assemblies. This would also give

more information about how complex a given assembly layer is in comparison to other possible

configurations. To normalize the complexity score, the system needs to predict the maximum and

minimum possible complexity score for an assembly of a certain size. As discussed previously,

the most complex assembly here can be defined as the configuration of modules in which none

of the modules share any edges. Therefore, the maximum complexity score can be calculated

using Eq. [3.4.2]. Similarly, the minimum complexity score can be calculated by approximating

the minimum boundary length of an assembly of a given size. Considering rectangular module, a

square has always has the smallest perimeter of any rectangle with a given area. Hence, the most

“compact” configuration of modules would result in a square-shaped assembly. Even though

it is not always possible to arrange modules into a perfect square, depending on the dimension

and number of modules in the assembly, using Eq. [3.4.3] serves as an efficient method of

approximating the minimum complexity score.

 Cmax = (n × Lmodule) / Atotal Eq. [3.4.2]

where Cmax is the maximum possible complexity score used to determine the normalized

complexity score; n is the number of modules in the given assembly, and Lmodule is the perimeter

of a single module.

 Cmin
 = 4 × √A total / Atotal Eq. [3.4.3]

where Cmin is the minimum possible complexity score used to determine the normalized

complexity score, and Atotal is the total floor area of the assembly layer. The numerator of this

equation gives the perimeter of a square of given area Atotal. This is only an approximation of the

minimum possible complexity score, which isn’t always achievable.

49 of 90

 Cnormalized = (CR - Cmin) / (Cmax - Cmin) Eq. [3.4.4]

where Cnormalized is the normalized complexity score of an given assembly layer and CR is the raw

complexity score given by Eq. [3.4.1]. Cmax and Cmin are given in the equations above. The metric

quantifies how complex is a given assembly configuration relative to the number of modules in

the assembly. A higher value indicates the assembly is more complex, or less “structured”.

Fig. 3.4.2. shows the complexity score of a few small assemblies as well as a series assemblies

selected from Section 3.2.3. These examples demonstrates that assemblies with a relative low

complexity score are more “structured” than those with higher complexity scores, as expected.

As designers iterate on different early design concepts, it might be important to consider how the

Figure 3.4.2. 1-layer design samples shown with their complexity scores. Assemblies with similar topology
demonstrate comparable complexity score.

n = 1
(initial case)

n = 2

n = 10

n = 10

complexity = 0.50

complexity = 0.01

complexity = 0.98

complexity = 0.60

complexity = 0.51

complexity = 0.88

complexity = 0.46

complexity = 0.60

complexity = 0.10

complexity = 0.55

complexity = 1.00

complexity = 0.06

complexity = 0.61

50 of 90

complexity of an aggregation could affect spatial relations within a design. Higher complexity

scores are often associated with more “porous” designs that offer a more interesting and novel

experience for the inhabitants of the building. Since complexity score is calculated using the

total boundary length of the assembly, it directly correlates to the potential total façade area.

Designs with longer façade bring opportunities to introduce additional openings in the building

envelope for daylight to enter. Furthermore, designs with lower complexity scores tend to have

larger depth between exterior walls, which means that there is a higher percentage of non-daylit

area than designs with higher complexity scores and shallower floor depth (Fig. 3.4.3). Hence,

this methodology proposes that the complexity score of a given design can also be interpreted

as the heuristic value for daylight performance. This could enable designers to explore more

possibilities in the early design phase without performing daylight simulations on all of them.

However, overly complex configurations might sometimes make it difficult to accommodate

specific programmatic needs and circulation designs. Considering multi-story structures,

complex configurations might also disadvantage construction efficiency and structural load

transfers. Therefore, it is critical to balance the complexity score of the generation outputs with

other evaluation metrics when designing modular structures following this methodology. Chapter

4 will discuss how the aggregation grammar can be controlled by designers to produce designs

with desirable complexity scores.

Figure 3.4.3. Illustrated comparison of potential daylit area between a simple and a more complex
configuration. Daylight depth are estimated based the rule of thumb: 2.5 times of the window head
(Reinhart, 2018). Both consisted of 8 modules, the more complex assembly on the right could perform
much better in terms of daylighting.

potential daylit area

glazing

51 of 90

3.4.2 Structural Performance Score

At the end of each iteration, structural analysis can be performed on each generated modular

structure to allow designers to consider the structural performance of different design concepts.

In the implementation of this thesis, structural analysis is integrated into the system using

Karamba3D, a parametric structural engineering analysis tool. This section details the specific

structural model and loading conditions used to analyze the performance of modular structures

discussed in this thesis. Under this methodology, designers may also specify their own structural

model and loads to get more accurate feedbacks for the specific material and construction of

the modular unit of their choosing. This thesis specifically considers the case of using shipping

containers as modules and each assembly is abstracted as a system of steel frames. Each module

in an assembly is represented as a system of finite number of beam elements and nodes. Fig.

3.4.4 shows a 20-feet High Cube shipping container (20 feet by 8 feet by 9.5 feet) represented

with 44 nodes and 64 elements.

elements cross-sections
6.85”

6.
85

”

0.236”

2.36”

0.118”

2.
36

”

Figure 3.4.4. A few configurations of 2 modules in plan. The heavier line shows the boundary of
these assemblies, which demonstrates that the total length of the boundary can be used to measure the
complexity of a given assembly.

20’

8’ 9.5’

20’

8’

Note that each face of the module is modeled as a bracing system with the exception of the

smaller walls at the ends of the module. No structural elements were placed on these faces to

52 of 90

account for the possibility that these faces may be commonly used for large openings such

entrances into the building. In reality, the faces of a shipping container are much more complex

structurally. Since a more accurate structural model of shipping containers would significantly

increase the time it takes to perform finite element analysis. This bracing system is used to

approximate each module as a rigid body.

A total downward load of 2,300 kilogram (6.173 kips) is split between all nodes to simulate

self-weight (Bernardo et al, 2013). Fig. 3.4.5 demonstrates the loading condition and structural

behavior of a few simple stacks of modules using this structural representation.

The total strain energy describes the elastic energy stored in the deformed system. When

comparing two structural systems under the same loads, a smaller value of total strain energy

denotes a structure with less deformation, hence, a better performing structure. However, as

demonstrated in Fig. 3.4.5, the number of modules in a system can also have a direct impact on

the total strain energy. To compare the relative structural performance between assemblies of

different number of modules, this methodology defines the structural performance score of an

assembly as given in Eq. [3.4.5]. If two assemblies have similar total strain energy but different

number of modules, the assembly with more modules would have a lower structural performance

total strain energy (kip×ft):
0.0378

Figure 3.4.5. Structural analysis of simple stacks of modules. The arrows indicate the point load applied at each
node. The purple gradient on the structural elements indicate the areas of largest displacement.

total strain energy (kip×ft):
0.0197

total strain energy (kip×ft):
0.0056

53 of 90

Figure 3.4.6. Structural analysis of the selected 2-layer assembly designs from Fig. 3.2.9. As expected, these
designs show that there are clear correlations between the complexity score and structural performance score.
The gradient on the structural elements indicate their relative displacement, where darker color indicates
larger displacement. This visualization of displacement could also help designers adjust the generated designs
to achieve better structural performance.

direct extrusion parameter: 100%

layer 2 complexity:
0.38

structural score:
0.98

direct extrusion parameter: 10%

layer 2 complexity:
0.53

structural score:
2.26

layer 2 complexity:
0.20

structural score:
0.94

layer 2 complexity:
0.68

structural score:
5.72

layer 2 complexity:
0.48

structural score:
2.46

direct extrusion parameter: 20%

layer 2 complexity:
0.40

structural score:
3.87

layer 2 complexity:
0.32

structural score:
4.61

layer 2 complexity:
0.47

structural score:
3.33

layer 2 complexity:
0.49

structural score:
3.83

direct extrusion parameter: 50%

layer 2 complexity:
0.32

structural score:
2.47

layer 2 complexity:
0.58

structural score:
1.97

layer 2 complexity:
0.37

structural score:
2.03

layer 2 complexity:
0.35

structural score:
1.40

direct extrusion parameter: 70%

layer 2 complexity:
0.55

structural score:
5.81

layer 2 complexity:
0.41

structural score:
2.38

layer 2 complexity:
0.45

structural score:
1.49

layer 2 complexity:
0.31

structural score:
1.29

54 of 90

score. This metric defines lower structural performance scores as better-performing in terms of

relative structural efficiency since having more modules also means that there is a larger total

floor area in the assembly.

 S = E / n × 100 Eq. [3.4.5]

where S is the structural performance score; E is the total strain energy of the structural system,

and n is the total number of modules in this assembly.

To demonstrate how designers could use this method to evaluate the design outputs based on

the structural performance score, Fig. 3.4.6 presents the structural analysis results of the 2-layer

assemblies previously discussed in Section 3.2.4. All these designs were generated using the

same ground layer base geometry but different direct extrusion rule parameter. Despite the visual

diversity of these results, many of them have relatively comparable structural performance score.

In addition to evaluating the quantitative feedback of the outputs, users can also evaluate the

structural performance visually based on the relative displacement of each elements. As seen in

some of the examples with large cantilevering, a few poorly placed modules can have a large

impact on the overall structural performance score. This encourages designers to interact with the

generation outputs to achieve more desirable solutions by adjusting the placement of modules.

Seeing the visual and quantitative performance feedback at the end of every iteration can also

help designers build a better understanding of the structural behavior of modular aggregations.

Comparing the input parameter and the performance scores, the larger extrusion parameter value

tend to produce designs that perform better structurally since directly stacking a second layer

advantages load transfer. However, the second design form the 10% extrusion parameter set

was intentionally selected to demonstrate that this relationship is not always guaranteed. Though

rare, some outliers are expected because of the stochastic nature of the generation method, .

Additionally, one may also observe that there is a clear correlation between the complexity score

and structural performance score as expected. More discussion around how characterize this

relationship and balance these numerical metrics in design outputs will be detailed in Chapter 4

and Chapter 6.

55 of 90

Chapter 4

Algorithmic Grammar Control

This chapter presents a method of controlling the deployment of the grammar to satisfy the creative

intent of designers. As seen in Chapter 3, the form of the design outputs not only depends on user

inputs such as the plot and void, but are also determined by the sequence of rules applied during

the generation process. Section 4.1 in this Chapter discusses a method of selecting a production

rule and parameters at each aggregation step in a stochastic yet controllable way. Section 4.2

provides a detailed overview of how this stochastic rule selection algorithm is embedded into the

overall framework of the system introduced in the previous chapter. Design samples in this chapter

demonstrate how the proposed methodology can enable designers to explore diverse design options

with desirable quantitative and qualitative characteristics.

56 of 90

4.1 Stochasticity Control

Instead of applying transformations to existing geometries manually, using a grammar-based

aggregation method presents the opportunity to algorithmically explore a large portion of the

design space. This allows designers to efficiently iterate through different design concepts and

discover unexpected possibilities. Automatic grammar deployment can be implemented with

a number of different approaches. Using explicit aggregation description, where users would

specify the complete sequence of rules to be applied, allows full control over the generation

process. As presented in Section 3.2.3, this approach can be used to effectively control the

growth pattern in the resulting designs. However, experimenting with explicit sequences of rules

can quickly become tedious and laborious (Rossi & Tessman, 2017). Stochastic aggregation

method allows the system to randomly select a rule to apply at each step, hence allowing more

open and unexpected growth process that can be challenging to control.

When using a stochastic approach, it is critical to consider the probability distribution that

determines the likelihood of a random choice. In probability theory, an uniform distribution

describes a statistical function in which all possible values are equally likely to be selected,

hence the outcome is arbitrary. Eq. [4.1.1] and Fig. 4.1.1 describe the general probability mass

function of discrete uniform distribution.

Figure 4.1.1. Probability mass function of discrete uniform distribution. a is the
lower bound of possible values while b is the upper bound. n represents the total
number of possible values. If selecting a production rule using uniform distribution,
n = 2, a = 0 (naive rule), b = 1 (extension rule). In the case of rotation angle, these
parameter would depend on the angle step size and computed angle range (Section
3.2).

f(x)

x0

1/n

57 of 90

 f(x) = 1/ n Eq. [4.1.1]

where f(x) describes the probability of a discrete random variable x, and n denotes the number of

all possible values in the set.

Since the two main production rules, the naive rule (rule 0) and the extension rule (rule 1),

each produce results with distinct characteristics (Fig. 3.2.6), arbitrarily selecting a rule at

every step based on uniform probability distribution is unlikely to lead to designs with desirable

architectural quality. Additionally, if the naive rule is chosen, the rotation angle and the position

parameter of the new module also need to be selected (Section 3.2.1). Selecting all these

parameters using uniform distribution is not an effective approach to generate designs with

similar design languages. Instead, this section proposes a method of sampling from a normal

distribution based on the current state of the assembly and user preferences. The general form

probability density function of a normal distribution is described below.

 f(x) = (1/ σ√2π)×e-(1/2)((x-μ)/σ)^2 Eq. [4.1.2]

where f(x) is the probability density of a real value x, μ is the mean or expectation of the

distribution, and the σ is the standard deviation. The variance of the distribution is σ2.

Figure 4.1.2. Probability density function of a normal distribution. f(x) is
the probability density of a real value x, μ is the mean, or expectation, of the
distribution, and the σ is the standard deviation.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

f(x)

x+5σ+4σ+3σ+2σ+1σμ-1σ-2σ-3σ-4σ-5σ

58 of 90

Normal distributions, or also known as Gaussian distribution, are important in statistics as they

often accurately describe the expected distribution of random values of natural phenomena

(Lyon, 2014). For the purpose of this thesis, normal distributions’ unique properties can give

user direct control of the probability distribution of the random sampling process at each step, by

adjusting the standard deviation (σ) or the mean (μ). For instance, when selecting the position

parameter, keeping the mean at 0.5 and setting the standard deviation to a relatively small

value is more likely to result in placing a new module around midpoint of an existing module’s

edge. This is a promising way of controlling the stochasticity of the generation process while

still allowing the system to explore a diverse set of possible designs. This section presents

how different values of standard deviation can affect different aspects of the design outputs,

quantitatively and qualitatively.

4.1.1 Rule Selection

As previously shown in Chapter 3, applying the naive rule tend to result in sprawling structures

that have higher complexity score while the extension rule produces more compact configuration

of modules with relatively low complexity score. Designs with high complexity scores are

more visually interesting and perform well in terms of porosity. However, when considering the

constructibility and structural performance of multi-story buildings, very complex configurations

are not as desirable. Designs with lower complexity scores can sometimes exhibit more desirable

architectural qualities, such as providing more flexible and functional spaces, but they are often

less creative solutions, and do not address other design concerns well. The goal is to balance the

qualities produced by these two rules to achieve complexity scores in a desirable range.

Instead of selecting a random rule arbitrarily based on a given probability distribution, the

proposed method uses the complexity score of the current assembly to make a more informed

choice. At every step in the generation process, a random benchmark score is selected using

a specified normal probability distribution. As the shown in Fig. 4.1.3, the mean (μ) of this

probability density function is set to 0.5. Users can adjust the likely range of this randomly

selected benchmark score by adjusting the standard deviation (σ) of the probability distribution,

59 of 90

which will bed referred to as the rule control factor throughout this thesis. For instance, setting

the rule control factor to 0.1 would likely yield a benchmark score around 0.5.

The complexity score of the current state assembly is then compared to the selected benchmark

score when deciding which rule to apply. If the current complexity score is lower than the

benchmark score, the naive rule will be applied. Otherwise, the extension rule will be applied.

This means that the likelihood of applying the naive rule is much higher when a higher

benchmark score is selected, vice versa.

As demonstrated in Fig. 4.1.4, smaller values of rule control factor form a more deterministic

system where the complexity score of the design outputs are likely to be lower, On the other

hand, larger values would result in a more diverse range of complexity scores. Setting the control

factor to 0 would change the probability distribution to a uniform distribution, in case the user

wishes to experiment with a “completely” stochastic aggregation process. Visually, the design

samples in Fig. 4.1.5 show that smaller rule control factors produce compact configurations with

similar design language while larger control factors lead to more "chaotic" configurations that are

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
f(x)

x
1.00.90.80.70.60.50.40.30.20.10.0

Figure 4.1.3. Overlay of probability density functions with different rule control factor (σ).
f(x) describes the probability of selecting a benchmark scores x (defined in Section 4.1.1).
Using control factor of 0.1 would most likely yield a benchmark score between 0.4 and 0.6
while the probability is almost uniformly distributed when the control factor is set to 0.5.

σ = 0.1
σ = 0.2
σ = 0.3
σ = 0.4
σ = 0.5

60 of 90

rule control factor (σ)

co
m

pl
ex

ity
 s

co
re

0.1 0.2 0.3 0.4 0.50.0
0.0

0.2

0.4

0.6

0.8

1.0

Rule Control Factor vs. Complexity Score

Figure 4.1.4. Complexity vs. rule control factor data based on 600 generated design samples. 100 designs are
evaluated for each rule control factor (Section 4.1.1). The rotation angle and the position parameters (Section
3.2.1) are randomly selected from uniform distribution to best demonstrate the effect of rule control. Control factor
of 0 denotes sampling rule from a uniform distribution. As expected, lower values of control factors result in
concentrated score in the lower range while higher values have a wider range of scores.

similar to the pattern previously seen in Fig. 3.2.8 (when the explicit rule sequence [0,0,1] was

applied repeatedly).

The results presented in this section demonstrate how designers can control the growth pattern of

modular aggregations without explicitly specifying the sequence of rules to apply at each step.

Section 4.1.2 and 4.1.3 further discuss how this method can be used to select other parameters to

generate specific forms that follow the creative intent of designers.

61 of 90

0.1 0.2 0.3 0.4 0.5σ

Figure 4.1.5. Design samples of 1-layer assembly of 15 modules generated using different rule control factor (σ)
and uniformly sampled rotation angle and position parameter. These designs demonstrate how different σ values
can affect the qualitative characteristics of the design outputs in addition to the numeric complexity score shown
in Fig. 4.1.4.

62 of 90

4.1.2 Position Selection

Recall Section 3.2.1, when the naive rule (rule 0) is selected during the generation process, the

system has to select two other random values: the position parameter and rotation angle. This

section focuses on the sampling method of position parameter, which determines the point on

an existing module edge where the new module's origin (Section 3.1.2) would be. The method

is similar to the rule selection procedure described in the previous section. Every time the

naive rule is chosen, a random variable representing the position parameter is sampled using

a normal distribution based on specified position control factor (μ) (Fig. 4.1.6). The mean (μ)

of this normal distribution is centered at 0.5. The position parameter describes the point at the

normalized length along a given line segment (Section 3.2.1). Setting the mean to 0.5 means

that new modules are more likely to be attached to the midpoints of existing module edges. This

choice of mean value can be adjusted by designers to explored different topology of assembly

and address their own design concerns. Based on experiment results, attaching new modules

at the midpoints produces more interesting spatial qualities. Offsetting the modules can create

functional negative spaces for circulation or outdoor access.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
f(p)

p
1.00.90.80.70.60.50.40.30.20.10.0

Figure 4.1.6. Overlay of probability density functions with different position control factor
(σ). f(p) denotes the probability density for a particular position parameter p. When the normal
distribution is centered at 0.5, the placement of new modules are more likely to be around the
midpoints of an existing module edge.

σ = 0.1
σ = 0.2
σ = 0.3
σ = 0.4
σ = 0.5

63 of 90

0.1 0.2 0.3 0.4 0.50.0
0.0

0.2

0.4

0.6

0.8

1.0

position control factor (σ)

co
m

pl
ex

ity
 s

co
re

Position Control Factor vs. Complexity Score

Figure 4.1.7. Complexity vs. position control factor data based on 600 designs gnerated with only the naive rule.
100 designs are evaluated for each position control factor (σ) (Section 4.1.2). The rotation angle (Section 3.2.1)
is randomly selected from {90°, 0°} best demonstrate the effect of position control. Control factor of 0 denotes
sampling position parameter from a uniform distribution. Complexity score are concentrated on the higher end
because only the naive rule was applied.

Fig. 4.1.7 shows the complexity scores of 600 designs generated using different position control

factors and applying only the naive rule. The rotation angle of these designs are constrained to

{90°, 0°}. In contrast to the relation seen in the rule selection process (Fig. 4.1.4), there is no

clear correlation between the numerical score and the position control factor. The concentration

of scores on the higher end of the scale reflect the behavior of applying only the naive rule.

However, Fig. 4.1.8 shows that the organization of modules can be related to their position

control factor visually.

64 of 90

0.1 0.2 0.3 0.4 0.5

Figure 4.1.8. Design samples of 1-layer assembly of 15 modules generated by applying only the naive rule with
different position control factor (σ) and uniformly sampled rotation angle from {90°, 0°}. Even though the
correlation is not as obvious, one can still observe that the spatial qualities and organization of the assemblies
seem to vary with the control factor. Lower σ values force all modules to be connected around the center of their
edges.

σ

65 of 90

4.1.3 Rotation Angle Selection

In addition to the position selection procedure discussed in Section 4.1.2, when the naive rule

(rule 0) is selected during the generation process, the system has to choose the rotation angle

(detailed in Section 3.1.2) which determines the angle between the new module and the existing

module it would be attached to.

To generate more feasible architectural outputs, rotation angles are always chosen from a specific

set of discrete angles, as discussed in the Section 3.2.1. Each angle in the set of possible rotation

angles is associated with its own unique set of real numbers. Whenever the naive rule is chosen,

a random number is selected using the specified normal distribution, and then the corresponding

rotation angle would be applied to the new module. The mean (μ) of this normal distribution is

centered at the values associated with orthogonal rotations. Non-orthogonal angles are disfavored

in the aggregation procedure because they are more difficult to construct and sometimes produce

unusable corner spaces in resulting designs. Considering the set of possible rotation angles {0º,

15º, 30º, 45º, 60º, 75º, 90º}, the normal distribution would be centered around 90° and 0°. Fig.

4.1.9 illustrates the probability of each of these angles being chosen when the angle control

factor (σ), the standard deviation of the normal distribution, is set at 0.1. Increasing the angle

control factor would significantly increase the likelihood of applying non-orthogonal rotation at

each aggregation step.

Figure 4.1.9. Probability density function with angle control factor (σ) set to 0.1 as discussed
above. f(x) describes the probability of selecting a particular real number x. Each number x is
associated with a discrete rotation angle to be applied. Lower values of angle control factors
strongly favors orthogonal rotations over other possible angles.

75°90°0°15°30° 60° 45°45°
x

f(x)

0.00

0.10

0.20

0.30

0.40

66 of 90

Fig. 4.1.10 compares the complexity scores of designs generated using different angle control

factor. Control factor of 0 means that the rotation angle is sampled from a uniform distribution.

Since the angle control factor is not considered when applying the extension rule, these designs

were generated by applying only the naive rule. As seen previously, applying only the naive

rule lead to designs with extremely high complexity score. Though, the correlation between the

complexity score and the control factor is not as obvious as seen in the rule selection process

(Fig. 4.1.4), there is still a slight upward trend in the distribution of the scores as the control

factor value increases.

0.1 0.2 0.3 0.4 0.50.0
0.0

0.2

0.4

0.6

0.8

1.0

angle control factor (σ)

co
m

pl
ex

ity
 s

co
re

Angle Control Factor vs. Complexity Score

Figure 4.1.10. Complexity vs. angle control factor data based on 600 generated design samples. 100 designs are
evaluated for each angle control factor (discussed in Section 4.1.3). These aggregations were generated using
only the naive rule, and sampling the position parameter from a uniform distribution. Control factor of 0 denotes
sampling rule from a uniform distribution. The correlation between the control factor and the complexity score is
less prominent as seen in Fig. 4.1.4, but obvious visual correlation between the two can be observed in Fig. 4.1.10.

67 of 90

0.1 0.2 0.3 0.4 0.5

Figure 4.1.11. Design samples of 1-layer assembly of 15 modules generated applying only the naive rule with
different angle control factor (σ). The position parameter is sampled from a uniform distribution. Visually, the
relations between modules are influenced by the angle control factor. Designs generated using smaller values of
angle control factor lead to more orthogonal rotations between modules while higher σ lead to patterns that are
not structured on a orthogonal grid.

σ

68 of 90

Similar to behaviors discussed in Section 4.1.2, the effect of angle control factor is more

prominent visually. Smaller angle control factor clearly lead to more "structured" design outputs.

When the control factor is set to 0.1, almost all modules are organized on a clear orthogonal grid.

Using angle control factor of 0.5 produced many results that seemed to be growing in a circular

pattern. Interestingly, as seen in Fig. 4.1.8 and Fig. 4.1.11, both position and angle control factors

seem to influence the directionality of growth and how the assembly interacts with the void

(hatched areas in the figures) defined by the user (Section 3.1.3). This provides the opportunity

for designers to consider how they want the structures to respond to their site conditions, such as

the topography and existing infrastructures.

The stochasticity control methods presented in these sections demonstrate a promising way

to allow designers control the complexity and growth pattern of the generated results while

exploring a diverse set of possible solutions. Instead of specifying explicit rule sequences,

designers can potentially formulate their desired design language by experimenting with different

combinations of control factors. Chapter 5 further explores the relation between different values

of control factors and other quantitative measurements, specifically structural performance.

4.2 Algorithm Overview

This section presents an overview of how the stochasticity control methods discussed in

the section 4.1 are integrated into the generation algorithm of the whole system. Fig. 4.2.1

summarizes the algorithm framework of the proposed automatic stochastic generation method.

As previously illustrated in Fig. 3.1.1, designers first formulate the problem by specifying the

required user inputs. In addition to the user specifications introduced in Section 3.1.3, designers

may also specify the control factor values, or select the default values, to initialize the generation

process. Step 3 to step 10 are repeated until each assembly reaches a termination condition,

either satisfying the desired number of modules of the current layer or the system fails to find a

valid placement within the maximum number of iterations allowed. Design outputs are displayed

for the user once all the assemblies are completed. Users can then evaluate the designs, adjust

design problem specifications as desired, and select their favorites as the base geometries for

69 of 90

Figure 4.2.1. Framework of the proposed stochastic aggregation algorithm.

the generation of next layer. On average, generating 100 assemblies of 15 modules takes around

8 seconds. The efficiency of the generation process allows designers to efficiently repeat this

process and iterate on different design ideas.

 0 formulate design problem

START

 1a initialize assembly

 2 set probability density functions

 3 compute current complexity, c

 4 sample complexity benchmark, x

 5a select rule 0

if c < x

 5b select rule 1

if c >= x

 6a select a boundary edge 6b select an extendable edge

 7a sample a position parameter &
 rotation angle

 7b compute extension position

 8 make a new module

 9 check constraints

 10 update assembly

 11 record & terminate
 this assembly

if # of modules < desired #

if # of modules == desired #

if more assemblies to generate

 12 evaluate & output designs END

if NOT satisfiedif NOT satisfied

if satisfied

70 of 90

Chapter 5

Case Studies

Chapter 3 and Chapter 4 presented a grammar-based aggregation methodology that allows

designers to directly interact with the generation process of modular structures. This chapter

presents additional results to demonstrate the ability of this system at balancing the qualitative

and quantitative design goals. A few design examples are also included in this chapter to show the

potential usage of this generation system for solving challenging design problems.

71 of 90

Figure 5.1.1. Design problem formulation for exploring the Pareto frontiers for the complexity score and
structural performance score of 2-layer assemblies. The performance of the 100% directly extruded 2-layer
structure is shown as base case. Lower structural score indicates better structural performance.

selected layer 1 base

layer 2 complexity = 0.48
structural = 1.10
direct extrusions = 100%
total # of modules = 20

complexity

= 0.48

design problem specifications

plan view

starting
geometry

plot
void

rule σ = 0.30
angle σ = 0.30
position σ = 0 (uniform)
desired # of modules in layer 1 = 10
desired # of modules in layer 2 = 10

perspective view

2-layer structure from 100% direct extrusion

sample designs from layer 1 generation

complexity

= 0.77complexity

= 0.32complexity

= 0.69

5.1 Tradeoff Between Complexity and Structural Performance

Generally, more complex configurations of modules often lead to more desirable qualitative traits

but they are expected to perform worse structurally when stacked in multiple layers. The balance

of qualitative and quantitative design goals can be treated as a multi-objective optimization

problem, using the structural performance score and complexity score (defined in Section 3.4).

This section formulates a specific design problem to explore the Pareto frontier of these two

numerical metrics. Fig. 5.1.1 illustrates the user inputs and the ground layer structure selected as

the base geometry to initialize the generation of the second layer.

72 of 90

complexity

= 0.97

structural = 8.34
direct extrusions = 10%
of modules = 19
rule σ = 0.33
angle σ = 0.28
position σ = 0.16

complexity

= 0.81

structural = 1.61
direct extrusions = 40%
total # of modules = 18
rule σ = 0.34
angle σ = 0.32
position σ = 0.43

Figure 5.1.2. Complexity score vs. structural performance score of 300 2-layer designs illustrating the Pareto
tradeoff. The Pareto optimal solutions are indicated with darker outlines in the plot. These data show that many
solutions have similar level structural performance as that of the directly extruded assembly shown in Fig. 5.1.1.

complexity

= 0.69

structural = 1.17
direct extrusions = 50%
of modules = 18
rule σ = 0.10
angle σ = 0.31
position σ = 0.40

complexity

= 0.54

structural = 0.97
direct extrusions = 50%
of modules = 17
rule σ = 0.36
angle σ = 0.12
position σ = 0 (uniform)

73 of 90

In multi-objective optimization, Pareto frontier is defined as a set of non-dominated solutions in

which all objectives are considered equally optimal and no objective can be improved without

sacrificing the others. Fig. 5.1.2 shows the structural performance score and complexity score

of 300 designs of 2-story modular structure generated by randomly sampling control factor

(σ) values (Section 4.1). The data shows expected correlation between the complexity and

structural performance, and the Pareto tradeoff is clear. However, it is also evident that simple

configurations with lower complexity scores do not necessarily lead to the best structural

performance. In fact, the best structural performing solutions are concentrated between 0.4 and

0.5 on the complexity score axis. This shows that the designs with similar complexity score in

each layer tend to perform better since the ground layer complexity score in these designs is 4.8

(Fig. 5.1.1). Designs with similar complexity score tend to have more overlapping areas and less

cantilevering, which again shows that the amount of cantilevering can have a large impact on the

structural performance.

Additionally, this case study also demonstrates that many more interesting aggregations can have

similar, sometimes even better, structural performance as the directly extruded assembly. Note

that the Pareto optimal designs shown in Fig. 5.1.2 do not have the desired number of modules as

specified by user input. Designers are given the freedom of deciding how they wish to consider

these different factors when selecting their favorite designs. Analyzing the correlation between

qualitative and quantitative performance of a large variety of designs numerically and visually

can further help designers understand the behavior of modular structural systems and develop

desirable design solutions. Fig. 5.1.3 shows a few additional designs near the Pareto frontier.

74 of 90

complexity

= 0.52

structural = 1.46
direct extrusions = 60%
of modules = 20
rule σ = 0.09
angle σ = 0.12
position σ = 0 (uniform)

complexity

= 0.18

structural = 2.48
direct extrusions = 20%
of modules = 20
rule σ = 0.24
angle σ = 0.34
position σ = 0.1

complexity

= 0.69

structural = 2.01
direct extrusions = 60%
of modules = 20
rule σ = 0 (uniform)
angle σ = 0.26
position σ = 0 (uniform)

complexity

= 0.66

structural = 2.02
direct extrusions = 30%
of modules = 20
rule σ = 0.49
angle σ = 0.41
position σ = 0.56

complexity

= 0.74

structural = 3.18
direct extrusions = 30%
of modules = 20
rule σ = 0.27
angle σ = 0.09
position σ = 0.11

complexity

= 0.14

structural = 2.04
direct extrusions = 10%
of modules = 20
rule σ = 0.10
angle σ = 0.20
position σ = 0.38

complexity

= 0.38

structural = 1.27
direct extrusions = 70%
of modules = 20
rule σ = 0.12
angle σ = 0.33
position σ = 0.47

complexity

= 0.12

structural = 1.61
direct extrusions = 10%
of modules = 20
rule σ = 0.05
angle σ = 0.33
position σ = 0.47

complexity

= 0.78

structural = 2.58
direct extrusions = 30%
of modules = 19
rule σ = 0.43
angle σ = 0.23
position σ = 0.10

Figure 5.1.3. Additional designs near the Pareto frontier shown Fig.5.1.2.

75 of 90

5.2 Design Example - "Grow Bigger"

To demonstrate how this generation system can be used to find design solutions that follow very

specific global forms specified by the designer, this section presents a design example that grows

"bigger" as it aggregates up in a "tree form". This particular form presents interesting spatial

qualities and porosity that cannot be produced through simple stacking of modules. Formally,

this design takes inspiration from Habitat 67, seeking to provide sufficient daylight and outdoor

space by arranging the modules with various offsets and rotations. Quantitatively, the structural

performance of this particular design scored in the top 10% of 80 designs generated for each

layer. Fig. 5.2.1 illustrates how the form of this design was derived by manipulating the user

inputs between each iteration of a new layer.

Figure 5.3.1. Generation sequence of "Grow Bigger". The area of the void (hatched area) is reduced and the
desired number of modules was increased between the generation of each layer to allow the new layer to grow
beyond the boundary of its previous layer.

rule σ = 0.3
angle σ = 0.30
position σ = 0 (uniform)
desired # of modules in layer 1 = 12
desired # of modules in layer 2 = 16
desired # of modules in layer 3 = 20

layer 3 complexity = 0.58
total # of modules = 44

initial user input

selected layer 1 design

selected layer 2 design

final design output

layer 2 complexity = 0.66
total # of modules = 26

layer 1 complexity = 0.51
total # of modules = 12

76 of 90

Figure 5.3.2. Massing model renderings of "Grow Bigger". The lack of materiality in these renders suggests
another interpretation of the design as a heavier and more monumental structure rather than an aggregation of light-
weight steel boxes.

77 of 90

Figure 5.3.3. Massing model rendering of "Grow Bigger". The varying spatial relations between the modules
create function negative spaces within the structure.

Figure 5.3.4. Looking up from a negative space. This aggregation creates multiple voids in the center of the
building, forming more permeable edges between the interior and exterior space.

78 of 90

5.3 Design Example - "Grow Around"

This section presents a playful design example demonstrating how the generation algorithm can

be used to find design solutions that navigate around especially constraining site condition. As

shown in Fig. 5.3.1, the geometric user inputs consists of a rectangular plot with the MIT logo

specified as the void. Multiple single-module starting geometries are placed around the site.

Interestingly, these separate structures start to join and fill up the negative space on the site as

the assembly grew larger. Throughout the generation process, all modules were placed strictly

outside the logo. This example also illustrates this aggregation method's ability to generate

design solutions that respond to very specific and challenging circumstances at an urban scale.

Figure 5.3.1. Design problem specification before initializing the generation procedure. The problem is designed to
show how the system can navigate around complex site conditions. The MIT logo is specified as the void.

rule σ = 0 (uniform)
angle σ = 0.30
position σ = 0.30
desired # of modules = 100

plan view perspective view

step 0 - step 20

Figure 5.3.2. Generation sequence of "Grow Around". Partial solutions are displayed at every 5 steps.

79 of 90

Figure 5.3.3. Generation sequence of "Grow Around". Partial solutions are displayed at every 5 steps. At step 78,
the procedure was terminated because the algorithm was no longer able to find a valid placement for a new module
within the specified maximum number of iterations. Although the final output did not reach the desired number of
modules (100), it was able to populate most of the space around the MIT logo.

step 25 - step 45

step 50 - step 70

step 75 step 78 - termination state

total # of modules = 86

80 of 90

Chapter 6

Conclusion

This chapter summarizes research work developed in this thesis, highlights the potential impact

of this new computational methodology, presents important directions for future work, and offers

concluding remarks.

81 of 90

6.1 Summary of Contribution

This thesis presents a new aggregation-based generation methodology for exploring modular

design possibilities. With an iterating by layer approach, the aggregation process promotes

designer intervention at every stage. The grammar system presented in this thesis consists of

a simple and easily understandable set of rules that can define infinitely diverse aggregation

topologies.

This thesis improves upon existing stochastic grammar exploration systems by giving designers

the control over the stochasticity of the generation process while maintaining the diversity of

outputs, allowing discovering unexpected design possibilities. By allowing users to specify

design preferences through geometric and numerical inputs, this generation system computes

design solutions that responds to a variety of constraints and the creative designer intent.

In addition to commonly used structural performance metrics, this thesis also introduces a new

numerical metric, complexity score (Section 3.4), to quantify other traditionally unformulated

qualitative design goals in early design stage, such as porosity and visual characteristics. A series

of designs are selected to demonstrate how geometrically complex modular aggregations could

have better daylight performance and exhibit more interesting spatial qualities. The potential

tradeoffs between structural performance and geometric complexity are explored in Section 5.1

of this thesis.

The implemented system demonstrates good performance in terms of speed. The

algorithm(Section 3.3) and software design (Appendix A) allow geometric constraints and

properties be computed in linear time. Thus, designers can generate a large number of potential

designs within a few seconds.

82 of 90

Finally, this thesis presents a few case studies demonstrating the potential use of this generation

methodology and how it may be adopted in helping designers solve different types of design

challenges. Through systematic explorations, designers may find modular design options that

well balance the qualitative and quantitative performance goals.

6.2 Potential Impact

This new methodology is a more efficient and systematic approach than the trial-by-error

method commonly practiced in the design industry today. Giving designers the ability to

explore more diverse design options and evaluate their respective performance can help address

designers' concerns about the quantitative benefits of modular structures. This could enable

more experimentation of different forms that further advance the discourse around modularity

in architecture and broaden the applications of modular structures. This method can potential be

extended to address design problems of different scales, and even in fields beyond architectural

design. It can be generalized to solve any challenges concerning complex aggregations of

simple components, in urban design, structural design or mechanical engineering. For instance,

the overall organization of cities can be interpreted as aggregations of communities, land

parcels, and transportation networks. The grammar rules and evaluation metrics may need to be

redesigned and adapted accordingly to describe new constraints, but the fundamental framework

could remain similar.

6.3 Limitations and Future Work

This thesis demonstrates the potential of this new modular design exploration methodology,

but there are limitations that should be considered for future work. Real world design problems

normally involve more quantitative and qualitative design factors that cannot be described by

the two metrics defined in this thesis: the structural performance and complexity score (Section

83 of 90

3.4). Though construction sequencing is considered in the algorithm, there is no defined metric

evaluating the cost of construction. Some designs may be easily constructed with a single crane

and minimal labor. Others might be impossible to construct without more complicated setup.

This might be an especially important for designer to consider when designing for sites that are

inaccessible by heavy machinery. It is also critical to note the distinction between the process

of assembly and disassembly. Certain designs might be easy to assemble but challenging to

disassemble or even to replace a few modules. Since modular structures are often favored

for temporary designs, the financial, environmental, and labor cost of disassembly is equally

important as that of the assembly process.

Further research is also needed to develop methods to contextualize the performance score of

each design. Even though the current complexity metric can be used as an indication of the

amount of negative space in a design, not all negative spaces are equally valuable. Certain

spacings between modules might be function as circulation space or patio spaces while

others might provide no real functions. The performance of each design solution must also be

considered with its social, environmental or community context. For instance, spacing for patios

or courtyard may be less desirable in colder climate. This is certainly a challenging task to

accomplish computationally. It would require developing other systems that allow designers to

validate the “scoring of designs” during the aggregation process.

Additionally, developing optimization algorithms to search for optimal solutions based on

designer preferences is an important direction for future research. A recurrent neural network

(RNN) is a subset of machine learning algorithms that are used for problems involving sequential

data or time series data, such as language translation and speech recognition. Under the proposed

methodology, each design can be abstracted as a sequence of data, including the sequence of

product rules applied and of the specific rule parameters selected. Training sequence models

using large datasets of generation outputs may be a promising approach to search for the design

solutions that have the best performance in certain user-specified categories or predict sequences

of grammar rules that might lead to designs satisfying designers’ qualitative expectations.

84 of 90

Designing more case studies and usability tests with more complex design problems involving

module of different materials and forms would provide more guidance expanding the capabilities

of this methodology.

6.4 Concluding Remarks

Technological advancement in the 20th century has enriched the world with a new form of

architecture that adapts and reacts to the shifting needs of the society through modularity.

However, despite the unprecedented development of computing power and fabrication

technology in the world today, expressive forms of modular architecture seem to have been

largely replaced by tedious stacks of boxes. This change of course in modular design is

partially due to the difficulty of finding visually interesting solutions that also meet the intense

quantitative performance demands. By proposing a procedural design exploration methodology,

this thesis intends to show that it is possible for designers to liberate their creativity by taking full

advantage of computation in a human-machine collaborative design process.

85 of 90

Appendices

86 of 90

Appendix A

Implementation

This appendix gives a high level overview of the implementation of the system. The grammar
exploration and assembly generation procedures are implemented in Python and integrated
into Rhino Grasshopper environment as a series of components using Hops, a Grasshopper
component allowing external functions to be added as Grasshopper definition. Visualization
of generation outputs and structural analysis are scripted in Grasshopper using Karamba3D, a
parametric structural analysis tool. Six Python classes are defined to operate at different levels of
the grammar exploration process:

•	 module
o properties – stores data for each individual modular unit;,e.g. origin, angle, di-

mensions, etc.
o methods – modular level operations, e.g. getBottomEdges(), getVertices(), etc.

•	 assembly
o properties – stores data for each generated assembly, e.g. modules, history, bound-

ary, controlObject, etc.
o methods – assembly level operations, e.g. computeBoundary(), checkAllCon-

straints(), computeComplexty(), etc.
•	 control

o properties – stores data for stochasticity control process, e.g. ruleControlFactor,
angleControlFactor, positionControlFactor, etc.

o methods – stochastic procedure operations, e.g. getRandomRule(), getPositionPa-
rameter(), getRotationAngle(), etc.

•	 rules
o properties – stores the definition of rules, e.g. ruleID, canApply, etc.
o methods – rule operations; e.g. applyRuleZero(), applyRuleOne(), etc.

•	 history
o properties – stores the generation history of each assembly, e.g. currentStep, rule-

sApplied
o methods – history recording operations; e.g. recordCurrentStep(), etc.

•	 grammar
o properties – stores high level data for entire generation process, e.g.

allAssemblies, maxIteration, positionControlFactor, etc.

87 of 90

o methods – highest level generation operations; e.g. initializeGeneration(),
generateSingleLayer(), generateMultiLayer() etc.

As discussed in Section 3.3 of this thesis, the object oriented system design allows faster
computation (at the expense of memory) since different geometric properties and data are stored
and updated accordingly at every step of the generation process. Fig. A.1 illustrates how these six
different classes are integrated into the system.

grammar

controlrules assembly

modules

history

create 1 set of rules objects per layer/iteration

maintains the prob. distribution

sets the parameter for rules

rule operations;
modifies assembly state

each assembly uses same control object
in the same iteration

create n assembly objects for each iteration

oparetions within each assembly;
a collection of module objects

creates new module objects to be added to assembly
accept or reject a module based on constraint checking

records the control object and rule
parameters for each step of an assembly

create 1 to n control
objects for each iteration

each assembly keeps 1
history object

app.py Hops server/grasshopper

instantiate grammar &
calls grammar operations

Figure A.1. High-level integration of the system. app.py is the entry point that interfaces with Hops to start the
application.

88 of 90

Appendix B

Bibliography

Asaeedi, S., Didehvar, F., & Mohades, A. (2017). Alpha-Concave Hull, a Generalization of
Convex Hull. Theoretical Computer Science, 18-59.

Bernardo, L. F., Oliveira, L. A., Nepomuceno, M. C., & Andrade, J. M. (2013). Use of
refurbished shipping containers for construction of housing buildings: details for
structural project. Journal of Civil Engineering and Management.

Boafo, F., Kim, J.-H., & Kim, J.-T. (2016). Performance of Modular Prefabricated Architecture:
Case Study-Based Review and Future Pathways. Sustainability, 8(6), 558.

Brown, N., & Mueller, C. (2019). Quantifying diversity in parametric design: a comparison
of possible metrics. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 33, 40-53.

Brunn, E. P., Ting, I., Adriaenssens, S., & Parascho, S. (2021). Human–robot collaboration: a
fabrication framework for the sequential design and construction of unplanned spatial
structures. Digital Creativity, 320-336.

Dara, C., & Sinclair, B. R. (2018). Liberating Architecture: A Critical Review of the Landscapes
of Innovation + Advancement in Modular Design + Construction. 11th International
Symposium on Architecture of 21st Century: In Search of New Paradigms. Baden-Baden,
Germany.

Galton, A., & Duckham, M. (2006). What Is the Region Occupied by a Set of Points?
Geographic Information Science. GIScience 2006. Lecture Notes in Computer Science.
4197, pp. 81-98. Springer, Berlin, Heidelberg.

Knight, T. W. (1993). Color Grammars: The Representation of Form and Color in Designs.
Leonardo, 26(2), 117-124.

Knight, T., & Stiny, G. (2015). Making grammars: From computing with shapes to computing
with things. Design Studies, Vol. 41, 8-28.

Lee, J., Fivet, C., & Mueller, C. T. (2015). Modelling with Forces: Grammar-Based Graphic
Statics for Diverse Architectural Structures. Modelling Behavior, 491-504.

Lee, K. J., & Mueller, C. T. (2021). Adapting computational protein folding logic for growth-
based, assembly-driven spatial truss design. Proceedings of the IASS Annual Symposium.
Guilford, U.K.

Lin, Z. (2011). Nakagin Capsule Tower Revisiting the Future of the Recent Past. Journal of
Architectural Education (1984-), 65(1), 13-32.

Luo, H., Liu, J., Li, C., Chen, K., & Zhang, M. (2020). Ultra-rapid delivery of specialty field

89 of 90

hospitals to combat COVID-19: Lessons learned from the Leishenshan Hospital project
in Wuhan. Automation in Construction, 119.

Lyon, A. (2014). Why are Normal Distributions Normal. The British Journal fo the Philosophy of
Science, 65, 621-649.

Merrell, P., & Manocha, D. (2010). Model Synthesis: A General Procedural Modeling Algorithm.
IEEE Transactions on Visualization and Computer Graphics, 17(6), 715-728.

Mueller, C. T. (2014). Computational exploration of the structural design space. Cambridge,
MA: Ph.D. Dissertation, Dept. Architecture, MIT.

Mueller, C. T., & Ochsendorf, J. (2015). Combining structural performance and designer
preferences in evolutionary design space exploration. Automation in Construction 52,,
70-82.

Navaratnam, S., Ngo, T., Gunawardena, T., & Henderson, D. (2019). Performance Review of
Prefabricated Building Systems and Future Research in Australia. Buildings , 9(2), 38.

Parish, Y. I., & Muller, P. (2001). Procedural modeling of cities. SIGGRAPH ‘01: Proceedings of
the 28th annual conference on Computer graphics and interactive techniques (pp. 301–
308). New York, NY: Association for Computing Machinery.

Reinhart, C. (2018). Massing Studies. In Daylighting Handbook I (pp. 91-125). Cambridge, MA:
Building Technology Press.

Rossi, A., & Tessman, O. (2017). Geometry as Assembly: Integrating design and fabrication with
discrete modular units. eCAADe 35, (pp. 201-210).

Rossi, A., & Tessmann, O. (2017). Aggregated Structures: Approximating Topology Optimized.
Proceedings of the IASS Annual Symposium. Hamburg, Germany.

Rossi, A., & Tessmann, O. (2017). Designing With Digital Materials. Proceedings of CAADRIA
2017. Hong Kong: The Association for Computer-Aided Architectural Design Research
in Asia.

Rossi, A., & Tessmann, O. (2019). From Voxels to Parts: Hierarchical Discrete Modeling
for Design and Assembly. In L. Cocchiarella (Ed.), ICGG 2018 - Proceedings of the
18th International Conference on Geometry and Graphics. ICGG 2018. Advances in
Intelligent Systems and Computing. 809, pp. 1001-1012. Springer, Cham.

Safdie, M. (1970). Beyond Habitat. Cambridge, MA: The MIT Press.

Stiny, G., & Gips, J. (1971). Stiny, George and James Gips. “Shape Grammars and the
Generative Specification of Painting and Sculpture. IFIP Congress.

Tavernier, I., Cambier, C., Galle, W., & De Temmerman, N. (2021). A Conceptual Framework
for Interpretations of Modularity in Architectural Projects. In J. Littlewood, H. R., & L.
Jain (Ed.), Sustainability in Energy and Buildings 2020. Smart Innovation, Systems and
Technologies. 203, pp. 127-137. Springer, Singapore.

Thompson, J. (2019). Modular Construction: A Solution to Affordable Housing Challenges.

90 of 90

Cornell Real Estate Review, 17.

Wonka, P., Muller, P., Haegler, S., Ulmer, A., & Van Gool, L. (2006). Procedural Modeling of
Buildings. ACM Transactions on Graphics, 614-623.

Zhao, A., Xu, J., Konakovic, M., Hughes, J., Spielberg, A., Rus, D., & Matusik, W. (2020).
RoboGrammar: graph grammar for terrain-optimized robot design. Proceedings of
SIGGRAPH Asia 2020.

