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Abstract
This thesis presents a grammar-based methodology for generating and evaluating structures that 
are constructed as aggregations of modular units. Using modular units as a building system can 
be more efficient for construction and potentially high performing structurally. Most of modular 
structures today are built in simple stacks which clearly advantages construction efficiency and 
the structural load transfer. However, other more complex configurations of modules might better 
address other important design factors such as daylight availability and the creative design intent 
of the architects. With the goal of expanding the design exploration process for modular structures, 
this thesis proposes a new methodology that integrates procedural design generation using shape 
grammars and structural performance evaluation using finite element analysis. 

Algorithmically, this paper takes inspiration from recent advances in discrete modeling tools. Under 
the existing frameworks, aggregations can be generated following either stochastic procedures 
or deterministic procedures. However, using deterministic systems often yields expected results 
with limited diversity while using stochastic systems does not give designers direct control over 
the generation process. By controlling the stochasticity of the generation process based on user 
feedback and performance goals, the methodology proposed in this thesis generates design options 
that follow specific design intent yet provides unexpected results.
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Chapter 1

Introduction

This thesis presents a new computational methodology that enables designers to efficiently explore 

a diverse set of design possibilities for modular structures. This chapter introduces the motivation 

behind this research with a discussion around the historical interpretations of modularity in 

architecture and its present day challenges. 
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1.1 Interpretation of Modularity in Architecture

Modularity has been a constantly evolving concept in architecture since the mid-20th century. 

Empowered by the industrial revolution and driven by the demands of post-World War II period, 

building systems consisted of standardized units, “modules”, became an area of interest in 

modern architecture. Notably, the Metabolist movement, launched by a group of young Japanese 

architects in 1960, introduced the notion of buildings as living organisms that evolve with the 

urban environment. Emphasizing the idea of dynamic, adaptable, and replaceable living space, 

the Metabolists envisioned systems of megastructures with hundreds of individual units attached 

and subject to frequent replacement (Lin, 2011). 

Kisho Kurokawa’s Nagakin Capsule Tower is perhaps one of the most well-known examples 

that materialized this vision, to some extent. Situated in middle of the bustling neighborhood of 

Ginza, Tokyo, this 14-story apartment building is comprised of 144 standardized units plugged 

into two larger shafts at varying angles and offsets. These capsules resemble shipping containers 

in size, and they were all equipped with built-in furnishings. In response to the rapid urbanization 

Adaptable

Huoshenshan Hospital, 
Wuhan, China 
(2020)

Scalable

Functional

Removable

Portable

Reusable

Transformable

Expandable
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Nakagin Tower, Tokyo 
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(1972)

Nomadic Museum
Shigeru Ban

(2005) 
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Carmel Place, New York City
nArchitects
(2017)

Figure 1.1.1. Notable examples of modular architecture and some of the design concepts that are commonly 
associated with modularity in architecture.
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around the world, Nagakin Tower suggested a new model of affordable micro-living in cities. 

Though Kurokawa initially intended the capsules to be replaced within thirty-five years, the 

plan was never realized. In the 50 years since its completion, not a single unit was replaced 

due to various financial and construction challenges. In recent years, the building has fallen 

into disrepair due to poor maintenance and became essentially uninhabitable. Controversy 

surrounding Nagakin Tower has perhaps gloomed its early glory and plans of its demolition have 

been underway for more than a decade (Lin, 2011). In the spring of 2021, it was announced that 

Nagakin Tower would eventually be demolished and replaced by a completely new building. 

Despite its impending doom, Nagakin Tower remains an inspiring image of modular design, 

with its aspirations to be a form of architecture that reacts and responds to the constantly shifting 

needs of the society (Dara & Sinclair, 2018).

Another exemplary interpretation of modular architecture is manifested by Mosh Safdie’s Habitat 

67. In comparison to the Nagakin Tower, Habitat 67 presents a different building system in 

which modules are stacked on each other to form complex and imaginative aggregations. Safdie 

envisioned Habitat 67 “as a system not a building” (Safdie, 1970). It challenged the “inhumane” 

approach to building characterless urban towers, and established an unprecedented model of 

quality urban living. The creative geometric arrangement of 354 identical modules created 

146 residences of varying sizes and configurations that catered to the individual needs of the 

inhabitants. It addressed people’s need for community, nature, light, and space. Safdie perceived 

modularity in architecture as an adaptable and expandable building system that adjusts to the 

humans inhabiting the space. 

Though there have been many other interpretations of modular structures focusing on different 

design concepts such as the temporality and transformability of architecture, the system of 

stacking modules on top of each other seems to be the more widely adopted model than the 

Metabolist megastructures, “because, paradoxically, the rigorous megastructure-capsule 

distinctions offer little flexibility in terms of occupancy and structural expansion” (Lin, 2011). 

Constructing a secondary structural system would clearly reduce the financial and constructional 
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benefits of modular structures. Therefore, this thesis focuses on designing modular architecture 

as systems of independently stacked sub-assemblies. 

1.2 Motivation

Nagakin Capsule Tower and Habitat 67 both embodied visionary design thinking and ideologies 

that were well-ahead of their time. However, contemporary modular architecture seems to be 

largely focused on the quantitative benefits (Dara & Sinclair, 2018). Using modular building 

system has become increasingly popular in addressing issues like post-disaster rebuilding and 

affordable housing crisis (Thompson, 2019). As a result, designs of modular structures seen 

today are often optimized for construction efficiency, costs, and structural performance, often 

resulting in monolithic stacking of boxes. Simply stacked forms can be the most intuitive 

solutions to address the quantitative goals, but more complex aggregations of modules might be 

more desirable options in terms of manifesting the creative intent of the designer and providing 

access to daylight and outdoor space for the inhabitants. The lack of overlap between these two 

design approaches can be exemplified by the contrast between the Huoshenshan Hospital in 

Wuhan and Habitat 67 in Montreal.

Design Intent 

Human 
Experience

Structural 
Performance

Construction 
Efficiency

Habitat 67 
Montreal, Canada

Huoshenshan Hospital 
Wuhan, China

Figure 1.2.1. Lack of overlap between optimizing for quantitative and qualitative goals in modular design seen 
today.
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Huoshenshan Hospital was designed and built in early 2020 to accommodate the intense 

demand for hospital care due to the outbreak of COVID-19 in Wuhan. Constructed in 9 days, 

Huoshenshan was the earliest and fastest architectural response to the global pandemic (Luo et 

al, 2020). Using prefabricated modular units not only enabled fast construction but also provided 

the flexibility to effectively organize the layout into multiple levels of contamination zones, 

preventing the spread of the virus. In this case, modularity served its purpose by efficiently 

addressing the need of the time. However, Huoshenshan Hospital can perhaps only be considered 

as a temporary design solution with little architectural significance. Its lack of emphasis 

on patient experience and aesthetic appeal hinders it from being converted to a permanent 

hospital. On the other hand, Habitat 67 is visually interesting and provided a novel urban living 

experience for the rapidly growing cities in the 1960s. Yet, the construction of the project took 

over three years to complete and came with an extremely high price tag (Safdie, 1970). 

Building complex aggregations with simple standardized units poses both opportunities and 

challenges. It can be challenging to understand the structural behaviors of modular systems 

once the design of such system becomes more geometrically complex. For instance, if the 

system involves a lot of cantilevering or irregular rotations, it becomes difficult to understand 

and visualize the structural load transfers within the system. Difficulty optimizing structural 

efficiency is a factor that restricts the creativity of designers while designing with modular 

units. It is difficult for architects to balance quantitative goals and qualitative goals of a design 

without a thorough understanding of the structural behavior of modular systems. Although many 

structural analysis software tools allow designers to determine the performance of a particular 

design, they are often only used in the post-design rationalization process, independent of the 

creative design process. It is impractical to manually model and test all potential early design 

concepts. Especially, in a high-dimensional design space, there are many variables, such as 

the offset distances and the rotation angles between modules, that can have unexpectedly large 

impact on the structural performance of the whole system. 

What if there was an opportunity to fully integrate the quantitative rationalization and qualitative 
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design exploration process? Is it possible to harness the generative power of computational 

design to automatically generate potential design solutions and structural feedback, allowing 

designers to spend more time on iterating through different concepts? The purpose of this thesis 

is to develop a new computational methodology that could help architects design, iterate, and 

evaluate the quantitative and qualitative characteristics of complex modular structures following 

specific design intent. The proposed methodology in this thesis also presents the opportunity 

to expand the creative capacity of designers by discovering new design possibilities. Fig. 1.2.2 

illustrates the conceptual framework of the methodology.

structural score: 
0.94

structural score: 
3.83

structural score: 
1.40

Design Evaluation

Grammar-based Design 
Generation

Design Problem

Quantitative Performance 
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Iterate
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rotation angle: 0
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rule ID: 1
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structural score: 
1.97

structural score: 
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Figure 1.2.2. Conceptual framework of the methodology proposed in this thesis. This method focuses on establishing 
a collaborative and iterative process between human designers and computers.
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Chapter 2

Background

This chapter discusses existing research in grammar-based geometry generation methods and 

identifies specific needs for further research to develop a methodology that can be effectively 

integrated into the design exploration process for modular structures.
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Generation of a shape using shape-grammar
(Stiny & Gips, 1971)

Parametric design study 
(Brown & Mueller, 2019)

Figure 2.1.1.The two common paradigms of computational design: parametric methods and procedural methods 
(shape-grammar).

2.1 Related Works

This section presents existing computational methods and tools used design and computer 

graphics that inspired the work in this thesis. 

2.1.1 Common Paradigms of Computational Design

Existing computational design methods can be categorized into two common paradigms: the 
parametric approach, and the procedural approach (Fig. 2.1.1). In parametric design, specific 
aspect of a geometry can be manipulated through a set of parameters, or variables, and each 
design can be mathematically represented as a point in a design space. Grasshopper, a plug-in 
for 3D modeling software Rhinoceros, was developed around this idea in which users can design 
and edit complex shapes by adjusting defined parameters. 

In the case of generating modular design options, the simplest approach to designing an efficient 

algorithm that computes different assemblies is to parameterize certain inputs and sample a 

large set of parameter points across the design space to output different design options. Using 

a conventional parametric design paradigm like this would be relatively easy to implement. 

However, parametric design solutions are often in the same family of limited variety, since the 
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number of solutions are limited by the number of parameters and the range of each parameter 

(Lee, Fivet, & Mueller, 2015). Though it is possible to define a parameter-based design space that 

covers broader diversity in possible solutions, with extensive expertise, it is often not practical 

to do so at the conceptual design stage before overall formal strategies have been decided upon 

(Mueller C. T., 2014). This is especially limiting in the case of exploring modular design options, 

since the question concerns both the geometry and the topology of the aggregations. 

One way that effectively addresses this limitation is using a procedural approach, or shape-

grammar. First introduced by George Stiny at MIT and James Gips from Stanford in the 1970s 

(Stiny & Gips, 1971), shape-grammar is defined as a set of rules that dictate the transformations 

of geometries. These rule sets can be used to describe a design language rather than a specific 

design. For example, one rule could specify how and when a module can be attached to another 

module. Using shape-grammars in place of a simple parameter-based framework has many 

advantages. Firstly, automatic form generation can be easily achieved following the desired 

logic and objectives (Stiny & Gips, 1971). Secondly, instead of defining large sets of parameters, 

grammars can concisely represent different classes of models. Since rules can be applied 

repeatedly and recursively, using a small set of rules can potentially generate infinite number 

of design possibilities. In contrast to generating design by adjusting predefined parameters, the 

diversity of solutions is not bounded by the range or size of the parameter set. Furthermore, even 

with very simple building blocks and a simple set of rules, it is still possible to find complex and 

diverse forms of unexpected designs if certain randomness is applied during the application of 

the rules (Brunn et al, 2021). 

Implementing the generation procedure using shape-grammar also presents the opportunity 

to restrict generated design solutions to those that are constructable. Specifically, rules that 

dictate the transformation and aggregation of the structures can be designed to follow common 

construction logic, thus only producing solutions that are feasible to construct. In Making 

Grammars, Terry Knight and George Stiny discuss in detail how to expand the theories of shape 

grammars into the making of physical “things”  (Knight & Stiny, 2015). Hence, adopting a 
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grammar-based system is the more suitable candidate for the purpose of this thesis.

2.1.2 Automatic Grammar Exploration

Grammars in existing architectural literature, are typically defined abstractly, and therefore 

designed to be applied by humans manually (Wonka et al, 2006). Rule-based systems, or 

grammars, are widely researched and explored in many other fields. In computer graphics, 

this approach is sometimes referred to as procedural modeling. A famous procedural modeling 

method, the L-system, was first proposed by biologist Aristid Lindenmeyer as a formal approach 

of describing the growth process of biological developments. Since then, it has been commonly 

extended to geometry generation of various types of models, such as plants, textures, buildings, 

and even cities. Using a procedural approach based on L-system to model buildings and cities 

allows the consideration of global goals and local constraints, such as building programs and 

zoning rules (Parish & Muller, 2001). CGA shape, another shape-grammar based modeling 

system, was developed to produce extensive architectural models with high visual quality and 

details, specifically for computer games and movies (Wonka et al, 2006). 

Though efficient and robust, L-system based procedural modeling systems tend to focus on the 

automatic generation process of complex geometries that “resemble” scenes of building and 

cities rather than the creative design process of specific architectural forms. The algorithm, 

Model Synthesis, proposed by Paul Merrell and Dinesh Manocha (Merrell & Manocha, 2010) 

addresses this question, to some extent, by controlling the generation outputs to resemble user-

defined input models (Fig. 2.1.3). However, this technique is most effective only when designers 

have clear visions for the overall topology of the modular aggregations. Furthermore, most 

existing procedural modeling techniques find new forms of geometry through a process of 

Figure 2.1.2. Generation of a building using an extended L-system, as presented in 
(Parish & Muller, 2001).



19 of 90

“morphing” in which one shape is refined into another more detailed shape. This thesis, however, 

attempts to focus on generating complex forms by aggregating simple components, and develops 

a system that can be inherently integrated into an iterative process for designing real structures. 

Figure 2.1.3. Model Synthesis example. The model on the left is a user-input model and the image on 
the right shows the generated output that resembles the user specified form (Merrell & Manocha, 2010).

Many recent developments in assembly-driven algorithms for designing spatial structures are 

closely related to the goal of this thesis. Expanded from a protein folding algorithm, trussfold 

is a growth-based, assembly-driven truss design algorithm recently proposed by Keith Lee at 

MIT (Lee & Mueller, 2021). Starting with a triangular lattice, the algorithm would search for 

the placement of next node and it would compute the performance scores, according to metrics 

defined by the initial algorithm, of all possible conformations growing from the input partial 

chain (Lee & Mueller, 2021). The resulting conformations would be categorized based on their 

quantitative performances and a set of the best performing solutions would be propagated into 

the next iteration, until a set of possible final solutions is found (Fig. 2.1.4). This thesis takes 

inspiration from this iterative growth procedure developed in trussfold. However, as discussed 

later in Section 3.4.2, each module in this thesis consists of a significant number of nodes and 

elements, hence the growth process is much more complex than the trussfold algorithm. 

Algorithmically, this thesis also takes inspiration from recent advances in discrete modeling 

tools, such as Wasp, a framework developed to model objects as assemblies of discrete modular 

units (Rossi & Tessmann, 2019). Under the Wasp framework, aggregations can be generated 

following multiple different procedures: stochastic aggregation, explicit aggregation description, 
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Figure 2.1.4. Trussfold - growth-based spatial truss design based 
on computational protein folding logic (Lee & Muller, 2021).

geometry-driven aggregation, and field-driven aggregation (Rossi & Tessmann, Designing with 

Digital Materials, 2017). Each of these procedures has its own advantage and disadvantages. 

Developed as a plug-in for Rhino Grasshopper, Wasp allows users to define different forms 

of geometries as different modular units and the specific types of connections between each 

module. Using the stochastic generation procedure allows users to find diverse solutions of 

unexpected forms but it reduces user’s control on the outcomes (Rossi & Tessmann, Designing 

with Digital Materials, 2017). Explicit descriptions allow users to manually apply rules to drive 

the form of generated results, but this process can be highly inefficient and tedious. Geometry 

and field-driven aggregations use user-defined global geometries or scalar fields to drive the 

rule selection and aggregation growth (Rossi & Tessmann, Designing with Digital Materials, 

2017). However, after some experimentation with the Wasp system, it was found that using field-

driven aggregation essentially reduces the problem to a parametric-based design space where 

the outcome of a specific geometry input is deterministic. Since the number of connection types 

between modules is limited, the diversity of possible outcomes is great greatly reduced. For 

instance, each specific rule states that one module can only be connected at a very specific point 

along one of its faces. Attempting to broaden the design space using this approach can result in 

the rule sets becoming overly complex and difficult to understand. Thus, further innovation and 

research is needed to expand these techniques to generate complex modular structure options that 

follow specific design intentions yet provide unexpected results. 
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2.1.3 Human Interaction

As discussed in the previous section (Section 2.1.2), there are exiting computational tools that 

can efficiently generate geometries and optimize the topology based on quantitative performance 

but they are not intentionally designed for a collaborative experience between human designers 

and computers. Under these frameworks, more qualitative concerns are often only considered at 

the beginning of the generation process. Human-robot collaboration, a fabrication framework for 

the design and construction of spatial structures (Brunn et al, 2021), highlights the potential of 

enabling active collaboration between machines and humans during the creative process. Using 

two robotic arms to cooperatively to aggregate an unplanned structure made of a collection of 

spherical units, Brunn’s paper describes a “design as you build” process in which the final form 

of the resulting structure is driven by both robotic inputs, as path-planning constraints, and 

human evaluation. 

Caitlin Mueller and John Oschsendorf at MIT proposed an interactive evolutionary algorithm, 

structureFIT, that integrates user interaction to control the diversity of solutions for conceptual 

structural designs (Mueller & Ochsendorf, 2015). This technique highlights a promising way 

of giving users direct control and access to more than a single optimized solution. Taking 

inspiration from this algorithm, this thesis proposed a system where users can define their design 

preferences and a set of parameters to control the stochasticity of the generated designs. To 

encourage an iterative creative process, this system is designed to generate assemblies in a layer-

by-layer construction process (detailed in Section 3.2.4), in which designers can evaluate the 

outputs and adjust the design problem accordingly between each layer of generation. 

2.2 Research Gap and Opportunities

So far, this chapter has shown that existing work in grammar-based geometry generation 

methods are inspiring, yet not sufficient to achieve the goal of this thesis on their own. This 
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section summarizes the research goals of this thesis and potential ways to combine and expand 

on the different strategies presented in the chapter.

Based on the review of works discussed in Section 2.1, several main challenges can be identified:

•	 Parametric design systems and deterministic grammar systems can give designers direct 

control of generated design solutions, but they often lack the diversity that is critical at 

the conceptual design stage.

•	 Known procedural modeling algorithms can efficiently produce large number of 

geometries, but they are suited as a part of iterative creative design process of interesting 

architectural forms.

•	 Design optimization algorithms are normally driven by quantitative performance instead 

of promoting a collaborative process between human designers and machines.

•	 Aggregation-based form generation methods are not as widely researched, and their 

efficiency often becomes a limiting factor. For instance, generating large assemblies with 

Wasp can sometimes take up to several seconds per assembly, since it constantly attempts 

to solve geometric constraint problems, such as collision detection, using 3D meshes of 

the modular units. 

Attempting to resolve these challenges, this thesis presents a few specific research goals:

•	 Expand upon existing work in procedural modeling and other grammar-based systems for 

developing a computational approach to automatic explore design options for modular 

aggregations.

•	 Design a set of simple and easily understandable grammar rules that can create diverse 

and unexpected design options that respond to specific constraints.

•	 Define new metrics that can be used by designers to evaluate both quantitative and 

qualitative design factors such as structural performance, daylight performance, porosity, 

and geometric complexity.

•	 Develop strategies to allow designers to control a stochastic generation process and direct 
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the formal characteristics of design outputs. 

•	 Implement an efficient generation system in which users can iteratively collaborate with 

computers throughout the entire creative process.
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Chapter 3

Modular Aggregation Grammar

As discussed in Chapter 2, this thesis proposes a grammar-based generation method to 

increase the diversity of the output designs. This chapter introduces the overall framework 

of the proposed method and the definition of the grammar used in exploring the design 

space. Specifically, this chapter focuses on the underlying mechanisms of the system: setup 

of user specifications and design constraints, production rules of the grammar, geometric 

utilities for evaluating design outputs, and the definition of quantitative performance metrics.
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3.1 System Definitions

How do the different components of the system interact with each other? How are design 

preferences and constraints defined through user inputs? How does the computer interpret the 

user inputs? This section presents the high-level framework and the definition of geometries 

throughout the generation process. Though this system is implemented considering modules of 

specific scale and form, this approach can be extended and adapted for modules of any scale and 

form.

3.1.1 Framework Overview

initialize new assembly and 
rule set

user inputs

design preferences & constraints

(plot, starting geometry, areas to 

avoid, desired # of modules, # of 

assemblies)

constraints 
satisfied?

YES

select a rule

sample random values for 
rule parameters apply rule

complexity 
analysis

add module to 
assembly

local goal 
satisfied?

structural analysis

NO

user 
evaluation?design outputs

selected user favorites

update design 
problem

YESYES

NO

Figure 3.1.1. System flowchart. This diagram illustrates how different components of the system are connected 
at a high-level. This chapter focuses on discussing the highlighted components. Details of other components are 
presented in later chapters.
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In contrast to some of the existing methods discussed in Chapter 2, the approach presented in 

this thesis attempts to build an iterative collaboration between human designers and computers. 

A user of the system would first set up the design problem for the system with specific inputs, as 

shown in Fig, 3.1.1. Section 3.1.3 discusses how users can specify these inputs and how they can 

influence the outputs of the system.

Once the system validates all user inputs, it would begin the generation through the process of 

selecting a rule, applying the selected rule, constraint checking, and quantitative evaluation. 

This process is repeated until the design goal is satisfied. Specifically, this method generates 

assemblies of modules through a layer-by-layer construction approach, meaning that each floor 

of the structure is completed before the generation of the next floor begins. In this case, the 

local goal is satisfied when the current floor contains the desired number of modules specified 

by the user. This approach is advantageous because it follows the common construction logic 

of modular structures and provides designers the opportunity to interact with the system by 

adjusting the design problem between each layer of generation to achieve desirable global form. 

Designers can iterate through different design concepts with different sets of user inputs until 

they are satisfied with the outputs from the system.

As shown in Fig. 3.1.1, this proposed method presents a stochastic approach of deploying the 

grammar. Since the rules are selected randomly, diverse sequences of actions can be generated 

with the same user inputs and only a small number of rules. Since each rule is also associated 

with a set of random parameters, a diverse range of designs can be automatically generated using 

the same rule sequence. This enables the system to explore large portions of the design space and 

potentially yield infinite number of possible design solutions. The process of selecting random 

rule and parameters are detailed in Chapter 4.

3.1.2 Geometry Definitions

This section discusses some of the definitions and terminologies commonly used in this thesis. 

A module is defined as a single modular unit. An assembly is defined as the group of all modules 
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forming an modular structure. How and where would a new module be added to the existing 

assembly? Applying an aggregation-based generation method requires some understanding of 

the spatial relation of individual units in the existing design. Visually interpreting the form and 

relationship between discrete geometries can be a simple task for humans. However, it can be 

difficult for computers to efficiently determine the relations within an assembly and apply the 

appropriate transformation. To simplify this process, the implementation of the system defines 

each module with a set of parameters in the global coordinate system: the dimensions, the origin, 

and the rotation angle. 

Considering rectangular modules, the dimensions of each module describe its length, width, 

and height. By default, the dimensions of modules in the starting geometry are assigned to all 

modules in the same assembly. However, it is possible for users to specify new dimensions 

throughout the generation process as desired. 

The origin of a module describes the Cartesian coordinate of one of the corners on its bottom 

face. As illustrated in Fig. 3.1.2, each module is initially modeled with its length along the global 

y-axis; its width along the global x-axis, and its height along the global z-axis. In this initial 

orientation, the origin is defied by its bottom left vertex of its bottom face. The rotation angle 

describes each module’s degree of rotation, counter-clock wise around its origin, from the initial 

orientation with respect to the positive y-axis (Fig. 3.1.2). 

This method of defining modules with parameters describing its relation to a global coordinate 

system can be generalized to accommodate modules of other forms or even assemblies of 

different types of modules, as long as the definition is consistent within an assembly. Since all 

modules can be described with a simple set of numbers, generating a new assembly at each step 

only involves computing the proper range for each one of these parameters. This computation 

process is presented in Section 3.2 and Section 3.3. Any design solutions can also be easily 

reconstructed as long as the parameters of all modules in the assembly of interest are properly 

recorded.
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3.1.3 User Inputs and Design Constraints

The design problem is specified by a set of user inputs(Fig. 3.1.1). The plot defines the boundary 

of the area in which the aggregation is allowed to grow. For designers, this can be used to 

describe the boundary of the site. The starting geometry is a group of one or more modules 

that describes the point at which the aggregation of modules would start forming. Because 

of how the production rules are applied sequentially (detailed in Section 3.2), the resulting 

aggregations of modules tend to grow around the starting geometry, given that all modules are 

within the defined plot. This gives designers the opportunity to consider different configurations 

of starting geometry based on the programmatic and circulation needs. For instance, the 

starting geometry can be used as the lobby space or the entrance to a building. The position of 

the starting geometry on the plot determines the positioning of building(s) on the given site. 

Figure 3.1.2. Definition of a module showing its dimensions, origin, and rotation angle. 
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desired number of modules = 15

Figure 3.1.3. 2D plan projection of 1-layer generation outputs with desired number of modules set to 15. These 
designs demonstrate how user inputs can be adjusted to drive the form of resulting designs. Starting geometry 
of multiple modules tend to generate designs of similar characteristics while using a single module as a starting 
geometry produces less expected results. Specifying void can push the resulting designs to grow around certain areas 
on the plot. The positioning of starting geometry also clearly affects the growth pattern. 
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When considering how the resulting designs would respond to their specific site conditions, 

designers can also specify areas to avoid  within the plot by defining the void. Defining specific 

void enables users to efficiently iterate different design concepts considering the topographic 

conditions or the planning of their site. 

The desired number of modules defines the size of each aggregation layer. Sometimes, the 

system might not satisfy this number under the given design constraints, but the number of 

modules in outputs would never exceed the specified number. Fig. 3.1.3 demonstrates how these 

user inputs are used to drive the form of a one-story modular structure. Since the system can 

generate 100 assemblies of 15 modules in roughly 8 seconds on a standard laptop, users can 

generate and evaluate hundreds of designs at once. 

In addition to the design constraints describe by the plot, void, and desired number of modules, 

there are also several other design constraints defined within the grammar. First, all modules 

within a structure must be connected by overlapping faces or sometimes by only a corner. If the 

user wishes to explore design options of multiple structures on the same plot, multiple starting 

geometries can be defined, one for each structure. In this case, the resulting designs would 

feature a cluster of modules around each starting geometry, and modules within each cluster 

are always connected. Secondly, none of the modules can collide with any other module in the 

assembly. Lastly, all modules must be either grounded or supported by another module from the 

layer below. This constraint does not evaluate the actual structural performance of the system but 

is only designed to eliminate obviously infeasible options caused by “floating” modules. Section 

3.3 presents the algorithms for how these design constraints are checked at every step during the 

generation process.

3.2 Production Rules

The grammar defines the set of shape transformations allowed during the growth of an assembly. 

In this proposed methodology, the grammar was implemented using a set of two stochastic 
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plot
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geometry

rule ID: 0
origin: (17.886,17.496, 0.0)
rotation angle: 0

rule ID: 0
origin: (25.886,31.987,0.0)
rotation angle: 270

rule ID: 0
origin: (23.335,17.496,0.0)
rotation angle: 270

rule ID: 0
origin: (37.485,31.987,0.0)
rotation angle: 45

new origin

new module

new 
module 

definition

Figure 3.2.1. Production rule steps of generating a 5-module assembly using the naive rule only. At every 
step, a single module is added to a randomly selected location in the existing assembly. 

production rules. Each rule dictates how a new module is added to a group of existing modules 

to create a new assembly. Even though both rules are stochastic in nature, they each define a 

different design logic, leading to distinctive geometric patterns in generation outputs. In this 

paper, the two rules will be referred to as the naïve rule and the extension rule. This section 

details the underlying algorithm of these two rules and how they can be applied in combination 

to produce desirable designs. 

3.2.1 Naive Rule

The naïve rule is a stochastic parametric production rule. Fig. 3.2.1 demonstrates the step-by-

step process of how an one-layer assembly of five modules is generated using only the naïve 

rule. At each step, a new module is attached to the boundary of the existing assembly layer. As 

highlighted in Fig. 3.2.2, the boundary is defined as the group of line segments that encloses all 

modules of this layer in 2D projection (plan view). These line segments are computed using the 

intersection points between all module edges. The detailed algorithm of boundary computation 

will be discussed in Section 3.3.1.

When the naïve rule is applied, a random line segment on the boundary of a given group of 

modules is selected. Then a real-valued random position parameter in [0, 1] is selected using 

a probability distribution based on user input. The position parameter is used to find a point at 
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Figure 3.2.2. A 5-module assembly. The heavier line 
indicates the boundary of this assembly.

the normalized length along the selected line segment, as the origin location(Section 3.1.2) of 

the new module. As previously discussed in Section 3.1, in the implementation of the proposed 

methodology, a module can be defined using two parameters, the origin and the rotation angle. 

The rotation angle of the new module is selected from a set of discrete angles using another 

predefined probability distribution. If the location and orientation of the new module does not 

violate any of the design constraints, this new module is added to the given assembly. Otherwise, 

the algorithm repeats the same procedure until a valid location is found, or the defined maximum 

number of iterations has been reached. 

Note that the range of potential rotation angles for any new module always spans 90 degrees, 

but the start and end of this 90-degree range is constrained by the orientation of the selected 

boundary edge, as shown Fig. 3.2.3. The number of discrete rotation angles in the set is 

determined based on the user input, angle step size. For instance, if the angle range is [0º, 90º] 

and the step size is set to 15º, the set of discrete rotation angles to select from would be {0º, 15º, 

30º, 45º, 60º, 75º, 90º}. 

Since both the origin location and rotation of the added module is randomly selected at each 

step, applying the naïve rule introduces randomness to both the location and directionality of 

growth. Every time the naïve rule is applied, three random variables are selected from three 

distinct sets, thus the total number of possible outputs is determined by the size of these three 

sets. Considering a case where the user starts with an assembly of only one rectangular module 

and the angle step size set to 15º, there would be 4 possible choices for boundary edge selection 

and 7 possible choices for rotation angle. And, if the system rounds all the position parameters to 
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origin angle range: [0°, -90°]

[45°,-45°] [Φ,90°-Θ]

Φ Θ

Figure 3.2.3. Relationship between the rotation angle range and the orientation of an existing module. The range 
of potential rotation angle always spans 90° but the actual range is determined by the orientation of the existing 
module.

3.2.2 Extension Rule

The extension rule was designed to limit the amount of randomness in the generation process. 

Fig. 3.2.4 demonstrates how the extension rule is applied recursively to generate a one-layer 

assembly of five modules. At each step, a random module along the boundary is selected, then 

a new module is added by extending the selected module from one of its edges that is on the 

assembly boundary. Unlike the naïve rule, the extension rule only introduces randomness to the 

location of growth, because it does not rely on any other random parameter. The directionality 

of growth will always be orthogonal to the global orientation of the existing assembly. Since 

there is only one possible extension from any given edge of a module, the number of the possible 

outputs using the extension rule is always bounded by the number of extendable edges on the 

assembly boundary. Note that an edge is defined as extendable only if it covers the full length or 

two-decimal places, there would be 100 possible points on each edge. This could produce 2,800 

different design outputs. As the assembly grows, the number of possible design outputs grows 

exponentially and becomes essentially unbounded. A generation process using only this rule 

would likely produce results that cover a diverse range in the design space, providing designers 

with a large number of diverse design options to consider. However, if the user were interested 

in exploring design options that follow a specific pattern, using only the naïve rule would not be 

sufficient. Because of this highly randomized procedure, it is difficult to control the outputs form 

the naïve rule so that they formulate a consistent design language that meets the intent of the 

designer. 
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Figure 3.2.5. The number of possible extensions increases by 2 as an assembly grows.

full width of a module. 

In contrast to the naïve rule, only one random variable is selected every time the extension rule is 

applied, and the size of the set of variables increases only by a small constant amount with every 

new addition to the assembly. Considering the case of a user starting with an assembly of a single 

rectangular module and using only the extension rule, the number of possible outputs is initially 

4. This number increases by at most 2 every time a new module is added to the assembly, as 

shown in Fig. 3.2.5. 

Therefore, the number of possible outputs only increases linearly as the assembly grows. If the 

user were to generate assemblies with only the extension rule, the resulting designs would only 

cover a relatively small portion of the design space and most of the outputs would likely to have 

very similar design patterns. 

rule ID: 1
origin: (17.886,10.0, 0.0)
rotation angle: 0

rule ID: 1
origin: (17.886,30.0,0.0)
rotation angle: 0

rule ID: 1
origin: (9.886,30.0,0.0)
rotation angle: 0

rule ID: 1
origin: (105.886,10.0,0.0)
rotation angle: 0

new module

plot

starting 
geometry

new 
module 

definition

Figure 3.2.4. Production rule steps of generating a 5-module assembly using the extension rule only. At every step, a 
new module is added by extending a randomly selected module in the existing assembly.
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3.2.3 Combination of rules

Fig. 3.2.6 shows selected design outputs from generating one-layer assemblies of 10 modules. 

The first row of designs are generated using only the naïve rule while the bottom row shows the 

outputs of using only the extension rule. All the random variables used in these examples were 

generated using a uniform probability distribution (discussed in Section 4.1). Visually, these 

two sets of results each clearly defines a distinctive design pattern. Aggregations using only the 

naïve rule produces complicated sprawling structures while the ones generated with only the 

extension rule have more compact and rigid configurations. If both rules are applied throughout 

the generation process, the resulting designs are expected to exhibit an interesting mixture of 

characteristics seen in both sets of designs seen above. This section illustrates the qualitative 

behavior of design outputs generated from specific combinations of the naïve and extension rule. 

A sequence of rules will be denoted as a list of 0s and 1s, representing the naïve rule and the 

extension rule respectively. For example, [0,1,0,1] represents the sequence where the two rules 

are applied in alternating order. 
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Figure 3.2.6. Generation outputs of 10 module assemblies. Design #1 to #5 are generated using only the naïve rule 
, and design #6 to #10 are generated using only the extension rule. These sets of results demonstrate the distinct 
design pattern of two production rules.
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Fig. 3.2.7 shows ten selected designs from applying the different splicings of rule sequences 

to the same plot and starting geometry setup as the previous example. Unsurprisingly, similar 

Figure 3.2.7. Generation outputs of 10 module assemblies using different rule sequences. These sets of results 
demonstrate that the visual characteristics of design outputs can be controlled by splicing different rule sequences. 
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visual characteristics can be observed across each set of results. The pattern seen in sequence 

[1,1,1,1,1,0,0,0,0] can be described as having a few “unstructured” modules radiating from a 

central mass of  modules “structured” on an orthogonal grid. On the other hand, generation from 

rule sequence [0,0,0,0,0,1,1,1,1] show less uniform characteristics across the designs. However, 

these designs can be characterized as having multiple clusters of  “structured” configurations. 

These clusters are not always formed on a single grid like seen previously, and the relationship 

between each clusters is unique. Because of the unique spatial relations within each assembly, 

this also demonstrates that applying the production rules in a defined sequence still allows 

designers to explore a diverse set of design options.

Interestingly, all of the designs from the alternating rule sequence [0,1,0,1,0,1,0] show a 

consistent growth pattern except design #5 and #9. The majority of these designs are “structured” 

along a central vertical axis with a few modules breaking from the grid in multiple directions. 

The behavior of design #5 and design # help illustrate that the system can sometimes output quite 

unexpected results. 

To further illustrate the possibility of deriving a desired design pattern in the generation outputs 

by splicing rule sequences, Fig. 3.2.8 shows two sets of results that exhibit drastically different 

behaviors. Design #1 through #5 are generated by applying the sequence [0,0,1,0,0,1,0,0,1]. 

rule sequence: [0,0,1,0,0,1,0,0,1]
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rule sequence: [1,1,0,1,1,0,1,1,0]

Figure 3.2.8. Generation outputs of 10 module assemblies using rule [0,0,1,0,0,1,0,0,1] and [1,1,0,1,1,0,1,1,0]. These 
results show that the frequency at which each of the rules is applied has a large impact on the global form of the 
assembly configurations.



38 of 90

Design #6 to #10 are produced with the sequence [1,1,0,1,1,0,1,1,0]. As expected, the resulting 

designs show more “structured” growth patterns when the extension rule is applied more 

frequently. Even though design #1 through #5 do not necessarily formulate a consistent design 

language, they still demonstrate a mixture of the visual characteristics previously. 

In summary, examples in this section demonstrates that specifying the sequence of rules can be 

an effective way of controlling the topology of the design outputs. Applying the extension rule 

introduces “structure” to the configurations of modules while the naïve rule allows the assembly 

to “sprawl”. In practice, it can be difficult for designers to experiment with all combinations of 

rule sequencing. This thesis proposes a method of generating random sequences of rules based 

on user preferences. The proposed method utilizes probability distributions computed from 

user inputs to determine which production rule to apply to a given state of an assembly. More 

discussion around this method will be detailed in Chapter 4 of this thesis. 

3.2.4 Construction by Layer

The production rules discussed so far only consider the transformation within a single-layer 

assembly. This methodology proposes a layer-by-layer construction logic for generating multi-

story structures. To increase user interaction throughout the aggregation process, designers 

can iterate on the designs of partial structures by generating a single layer of the assembly at 

a time and select their favorite designs as the starting geometry base for the next layer. Once a 

geometry base is specified, a parametric production rule is applied to initialize the generation 

of a new layer by directly extruding up a set number of modules from the previous layer. Then, 

the rest of the generation procedures within each new layer follow the same production rules 

discussed in the previous sections. Using a parameter to control the amount of direct extrusions 

enables designers to consider their programmatic needs and vertical circulation designs between 

each iteration. Design samples shown in this section demonstrate that this construction by 

layer approach is a promising way to incorporate designer preferences into different stages of a 

generative design process. Considering the design #3 of rule sequence [1,1,1,1,1,0,0,0,0] from 
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Fig 3.2.7 as the base geometry, Fig 3.2.9 shows how a 1-layer assembly transforms into different 

starting geometries to start a second layer growth and a set of selected outputs from each starting 

geometry.

Figure 3.2.9. 1-layer assembly to 2-layer generation process. These results show that direct extrusion rule parameter 
can influence the diversity of final design outputs.

direct extrusion rule 
parameter: 10% 20% 50% 70% 100%

desired number of module in 2nd layer: 10

completed
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3.3 Geometric Utilities

This section describes the high-level implementation of some of the geometric utilities used in 

the generation process, including boundary computation and design constraint checking. Since 

these computations occur whenever a new module is added to a given assembly, the performance 

of these algorithms can have significant impact on the overall performance of the system. The 

methods discussed here are implemented with the assumption that all modular units are vertical 

extrusions of two-dimensional polygons (sometimes referred to as 2.5D objects). Hence, all 

geometric properties are computed in two-dimensional space to improve the efficiency of the 

system. Adapting the implementation to accommodate three-dimensional modules that are not 

simple extrusions 2D shapes is non-trivial and was not explored in this thesis. 

3.3.1 Boundary Computation

As introduced in Section 3.2.1 (Fig. 3.2.2), the boundary of a given assembly layer is the 

collection of module edges that encloses all modules of the same layer in two-dimensional space. 

Drawing the outline of a set of polygons is an inherently simple problem for humans, but it can 

be difficult to generalize the computation procedure algorithmically. Many approaches were 

considered during the implementation of this thesis. 

Considering rectangular modules, the 2D projection of a module is a set of four edges and four 

The outputs shown above are generated applying an alternating rule sequence to the same design 

problem setup as the selected 1-layer geometry base. Alternatively, designers can also adjust the 

behavior of each layer individually by adjusting the user inputs between each iteration. Chapter 

4 and Chapter 5 will discuss how different user inputs, such as the design constraints and the 

probability distributions of the random variables, can be used to drive the global form of the 

generated aggregations.
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vertices. Mathematically, the term convex hull can be used to describe the minimal convex 

polygon containing all these rectangle vertices. Many algorithms, such as the famous “Gift 

Wrapping” algorithm, have been proposed to efficiently find the convex hull of given set of 

2D points. However, the boundary of an assembly is almost never a convex polygon. Another 

approach to solving the boundary computation problem was to compute the concave hull. As 

the name suggests, the term concave hull describes the concave polygon that containing a set 

of points. Computing the concave hull from a set of points is much more complicated and little 

work has focused on concave hull algorithms in comparison to convex hull algorithms (Asaeedi 

et al, 2017). An early implementation tested in this thesis was based on the “Swing Arm” 

algorithm proposed by Galton and Duckham (Galton & Duckham, 2006). However, it was noted 

later that, in some cases , the concave hull of all module vertices also differs from the boundary 

of an assembly, as shown in Fig. 3.3.1. In these cases, the boundary of an assembly layer cannot 

be described by a single concave polygon but multiple connected polygons. This resulted in 

design outputs that are not fully connected within itself, since an inaccurate boundary was used 

to compute location of new modules in the process described in Section 3.2.1. 

Since the desired boundary only contains line segments that are on the edges on the modules, 

a new method of computing the boundary was implemented using the edges of all the modules 

instead of only using the vertices. An outline of this implementation is given below in Algorithm 

1. Fig. 3.3.2 illustrates the different cases of intersection events described in the algorithm. 

boundarycocave hullconvex hull

Figure 3.3.1. Convex hull vs. concave hull vs. assembly boundary. Using known concave hull algorithms sometimes 
approximates the boundary well but does not guarantee that every line segment is a part of a module edge.
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Algorithm 1 Boundary computation
  Inputs: Edges - an array of all module’s bottom edges in the assembly layer 
  Outputs: Boundary – an array of line segments representing the boundary of an assembly layer
  Initialize a boundary set output ← {}
  Initialize a set tracking indices of edges that completely overlap, O ← {}
  Initialize a set tracking indices of edges that have partial overlaps, P ← {} 
  Initialize a map mapping edge indices to overlap intersection points, Pts ← {}
  N = the number of edges in Edges
  for i ← 0 to N-1 do
      if i is in O, then
 this edge is not on the boundary, continue onto the next edge.
      for j ← i+1 to N do
 if j is in O, then
     this edge is not on the boundary, continue onto the next edge.
 Check intersection of edgei and edgej
 if there is an intersection event between the 2 edges, then
    case 1: the intersection event occurs only at a point, then
  both edges could potentially be on the boundary, continue onto the next edge
    case 2: the intersection event of these 2 edges is an overlap, AND
    the overlap spans the entire length of either or both edges, then
  that edge(or both edges) is not on the boundary, add the index of that edge to O
  continue onto the next edge
    case 3: the intersection event of these 2 edges is an overlap, AND 
     the overlap is only spans a part of either or both edges
  add the index of the edge that has a partial overlap to P
  add the start and end points of the overlap to the corresponding entry in Pts
      end for
  end for
  for n ← 0 to N do
    if n is not in O or P, then
 edgen is on the boundary, add edgen to output
    if n is in P, then
 only a part of edgen is on the boundary, specifically the non-overlap part of the edge
 sort entries in Pts[n] by distance from the start point of edgen in ascending order
 for pti in Pts[n] do
     if pti is the first point, then
  make a new line segment from start point of edgen to pti
     if pti is the last point, then
  make a new line segment from pti to end point of edgen
     otherwise
  make a new line segment from pti to pti+1
     add the new line segment to output
  end for
  return output
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Since the system is iterating through all the edges and checking the intersections with every 

other edge, the time complexity of this algorithm is O(n2) where n is the number of module 

edges in 2D. The time complexity upper bound of the “Swing Arm” algorithm is also O(n2) 

(Galton & Duckham, 2006), so the algorithm used in this implementation has similar worst-case 

performance as other concave hull algorithms. However, efficient data type designs in an object-

oriented programming language can significantly improve the performance of this algorithm. For 

instance, the implementation of this thesis makes use of an object class that updates and stores 

the boundary at every step throughout the generation process. In this case, the initial computation 

follows the procedure outlined in Algorithm 1, but every time a new module is added it only 

needs to check for intersections between the newly added edges and the previously computed 

boundary edges. Therefore, the time complexity of updating the boundary is O(n) since adding a 

single module adds a constant number of edges. This approach achieves linear time complexity 

at the expense of memory usage. More discussion on the implementation of different classes will 

be detailed in Section 5. 

3.3.2 Collision Detection

As discussed in Section 3.1.4, one of the design constraints for the generation of assemblies is 

that no module can collide with another module. The previous prototype implemented in Rhino 

Grasshopper uses the Wasp plug-in’s built-in 3D mesh collision detection checking. Collision 

checking with 3D objects was found to be a performance bottleneck of the system’s overall 

case 1
intersection at a single point

case 2
intersection overlaps entire 

length of the edge(s)

case 3
intersection partially 
overlaps the edge(s)

intersection point

Figure 3.3.2. Three different cases of intersection events as described in Algorithm 1. The heavy dark lines indicate 
the selected edges, and the red lines describes the intersection events.
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Algorithm 2 Collision Checking
  Inputs: M - new module for collision checking;  A - an array of existing modules in this layer
  Outputs: True if new module does not collide with another module in the assembly
        False otherwise
  newEdges = all bottom edges of M
  maxDist = 2 × the length of the longest edge in newEdges
  for modulei in A do
      calculate the Euclidean distance D from the origin of M to the origin of modulei

          if  D > maxDist then
 M does not collide with modulei , continue onto to next module in A
          existingEdges = all bottom edges of modulei

          initialize an overlap edge counter C ← 0
      for edgeA in newEdges do
 for edgeB in existingEdges do
     Check intersection of edgeA and edgeB
 if there is an intersection event between the 2 edges, then
    case 1: the intersection event occurs only at a point
     if this intersection point is NOT an endpoint of either edgeA or edgeB then
      M and modulei intersect
      return False
    case 2: the intersection event of these 2 edges is an overlap then
  C += 1
  if C > 1 then

efficiency. An effective approach to resolve this issue is checking for possible collisions in 2D, 

assuming that all modular units are vertical extrusions of 2D shapes. If two polygons have no 

overlapping areas, their 3D extrusions do not collide. Algorithm 2 outlines the implementation 

for checking whether a new module collides with another module in the existing assembly. Fig 

3.3.3 (collision cases) shows that different cases described in Algorithm 2. 

case 1a 
2 modules DO NOT 

collide,
IF edge intersections 
occur at an endpoint

case 2a 
2 modules DO NOT 

collide,
IF number of edge 

overlaps <= 1

case 2b
2 modules collide,
IF number of edge 

overlaps > 1

case 1b 
2 modules collide,

IF edge intersections 
occur at a point that’s 

NOT an endpoint
Figure 3.3.3. Different cases of intersections events as described in Algorithm 2. If intersections events occur in two 
of the scenarios described, the 3D extrusion of these shapes would collide. 
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Since this algorithm iterates through all the modules in the given assembly once, and each 

module has a constant number of edges, the time complexity of this collision checking procedure 

is O(n) where n is the number of modules in the given assembly layer. 

3.3.3 Other Constraint Checking

Before a new module can be added to the assembly, it is also critical to ensure that the proposed 

location of the new module is within the bounds of the user define plot and outside of the void. 

Like the previous operations discussed in this section, checking these constraints can also 

be efficiently done in 2D. The implementation of this system includes two versions of these 

constraint checking mechanism. The first, and the more efficient, approach is to consider a 

module within the bounds of the plot if all of its bottom vertices and its centroid are contained 

by the curve of the plot when projected in the XY-Plane. Similarly, a module is out bounds of the 

voids when these point projections are not contained by any curves of the void. Note that this 

is not a strict checking of these conditions since a module might have small areas that are still 

inside the voids or outside the plot in some edge cases. A more robust, but slightly less efficient, 

version uses a similar logic as the one described Algorithm 2. Instead of only checking if a given 

curve contains a set of points, this algorithm checks for specific intersection events between all 

the edges of a module and the input curves. Since each implementation could potentially lead 

to very different solutions, the system allows users to select whether or not a strict checking is 

required.

When the growth of the assembly takes place above the grounded layer, the system also ensures 

that the new module is supported by at least another module in the assembly layer below. In 

the proposed methodology, a module is considered to be supported if it has any overlapping 

Algorithm 2 Collision Checking (continued)   
      M and modulei overlap
      return False
       end for
      end for
  end for
  return True
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3.4 Quantitative Analysis

One of the goals of this thesis is to help designer find modular structure design solutions that 

are both visually interesting and quantitatively well-performing. As briefly introduced in 

Chapter 1, structures that are consisted of repetitively stacked modules are expected to be more 

advantageous in terms of structural performance. More complex configurations can often better 

communicate the creative intent of the architects and address other important design factors such 

as porosity and daylight availability. This section introduces the two main numerical metrics that 

are used to evaluate the structural performance and complexity of the aggregations through the 

generation process. 

3.4.1 Complexity Score

This thesis presents a method of characterizing the topology of an assembly with a numerical 

metric, complexity score. It is a measurement how complex the configuration of modules is 

area with any module in the assembly layer below. This operation is also implemented in 2D 

using a similar logic as the collision checking algorithm discussed in Section 3.3.2. Instead of 

checking for intersections with modules of the same assembly layer, support condition checking 

uses Algorithm 2 to check for intersections with modules from the layer below the new module. 

This procedure eliminates structurally infeasible designs by ensuring that every module in 

the design outputs is either grounded or supported by another module. This method is able to 

produce a diverse range of solutions in terms of both visual characteristics and quantitative 

performance because it does not place any constraints on the amount of the overlapping areas 

between module. Allowing some poor-performing partial structures to aggregate is critical since 

these partial structures, especially early in the generation process may eventually lead to well-

performing final designs. Further structural performance analysis of the solutions is included at 

end of each iteration to allow designers to evaluate the quantitative performance goals of their 

favorite designs. 



47 of 90

Figure 3.4.1. A few configurations of 2 modules in plan. The heavier line shows the boundary of 
these assemblies, which demonstrates that the total length of the boundary can be used to measure the 
complexity of a given assembly.

boundary length: 2×L + 4×W boundary length: 3×L + 4×W boundary length: 4×L + 4×W

L

W
L/2

within each layer of a given assembly, relative to the number of modules. Each individual layer 

in an assembly has its own complexity score, and the mean complexity score of all assembly 

layers can be used to evaluate the configuration of the entire assembly. The calculation of 

complexity score for each assembly layer makes use of the boundary computed for the given 

layer. As defined in Section 3.3.1, the boundary of an assembly layer describes the overall shape 

of the module configuration, and the total length of the boundary defines the perimeter of this 

shape. 

Considering an assembly layer consisted of two rectangular modules, the simplest configuration 

is when two modules are position directly adjacent of each other, forming another large rectangle 

in plan. To create a more complex configuration of two adjacent modules, one could position 

the two modules with a certain offset so that the plan projection of the two modules only share 

an edge partially, as shown in Fig. 3.4.1. The complex configuration is occurs when the two 

module edges of the two modules only intersect at a single point, meaning that the two rectangles 

in plan do not share any edges at all. Note that the total boundary length of these configurations 

increases as the configuration gets more complex. This demonstrates that boundary length is 

an effective approximation of a configuration’s complexity. The proposed evaluation method 

uses the ratio between the total length and total floor area to quantify the complexity of a given 

assembly layer, as given in Eq. [3.4.1] below.
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 CR =  Lboundary / Atotal        Eq. [3.4.1]

where CR is the raw complexity score of a given assembly layer; Atotal is the total floor area of the 

assembly layer, and Lboundary is the total length of the boundary. This metric can be computed in 

linear time, since the boundary can be computed in linear time, as described in Section 3.3.1. 

To account for assemblies of different sizes, the complexity score needs to be so that this metric 

would fall within the same numerical range, [0, 1], for all assemblies. This would also give 

more information about how complex a given assembly layer is in comparison to other possible 

configurations. To normalize the complexity score, the system needs to predict the maximum and 

minimum possible complexity score for an assembly of a certain size. As discussed previously, 

the most complex assembly here can be defined as the configuration of modules in which none 

of the modules share any edges. Therefore, the maximum complexity score can be calculated 

using Eq. [3.4.2]. Similarly, the minimum complexity score can be calculated by approximating 

the minimum boundary length of an assembly of a given size. Considering rectangular module, a 

square has always has the smallest perimeter of any rectangle with a given area. Hence, the most 

“compact” configuration of modules would result in a square-shaped assembly. Even though 

it is not always possible to arrange modules into a perfect square, depending on the dimension 

and number of modules in the assembly, using Eq. [3.4.3] serves as an efficient method of 

approximating the minimum complexity score. 

 Cmax = ( n × Lmodule ) / Atotal       Eq. [3.4.2]

where Cmax is the maximum possible complexity score used to determine the normalized 

complexity score; n is the number of modules in the given assembly, and Lmodule is the perimeter 

of a single module. 

 

 Cmin 
  = 4 × √A          total  / Atotal       Eq. [3.4.3]

where Cmin is the minimum possible complexity score used to determine the normalized 

complexity score, and Atotal is the total floor area of the assembly layer. The numerator of this 

equation gives the perimeter of a square of given area Atotal. This is only an approximation of the 

minimum possible complexity score, which isn’t always achievable. 
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 Cnormalized  = ( CR - Cmin) / (Cmax - Cmin)      Eq. [3.4.4]

where Cnormalized is the normalized complexity score of an given assembly layer and CR is the raw 

complexity score given by Eq. [3.4.1]. Cmax  and Cmin are given in the equations above. The metric 

quantifies how complex is a given assembly configuration relative to the number of modules in 

the assembly. A higher value indicates the assembly is more complex, or less “structured”. 

Fig. 3.4.2. shows the complexity score of a few small assemblies as well as a series assemblies 

selected from Section 3.2.3. These examples demonstrates that assemblies with a relative low 

complexity score are more “structured” than those with higher complexity scores, as expected. 

As designers iterate on different early design concepts,  it might be important to consider how the 

Figure 3.4.2. 1-layer design samples shown with their complexity scores. Assemblies with similar topology 
demonstrate comparable complexity score.
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complexity of an aggregation could affect spatial relations within a design. Higher complexity 

scores are often associated with more “porous” designs that offer a more interesting and novel 

experience for the inhabitants of the building. Since complexity score is calculated using the 

total boundary length of the assembly, it directly correlates to the potential total façade area. 

Designs with longer façade bring opportunities to introduce additional openings in the building 

envelope for daylight to enter. Furthermore, designs with lower complexity scores tend to have 

larger depth between exterior walls, which means that there is a higher percentage of non-daylit 

area than designs with higher complexity scores and shallower floor depth (Fig. 3.4.3). Hence, 

this methodology proposes that the complexity score of a given design can also be interpreted 

as the heuristic value for daylight performance. This could enable designers to explore more 

possibilities in the early design phase without performing daylight simulations on all of them. 

However, overly complex configurations might sometimes make it difficult to accommodate 

specific programmatic needs and circulation designs. Considering multi-story structures, 

complex configurations might also disadvantage construction efficiency and structural load 

transfers. Therefore, it is critical to balance the complexity score of the generation outputs with 

other evaluation metrics when designing modular structures following this methodology. Chapter 

4 will discuss how the aggregation grammar can be controlled by designers to produce designs 

with desirable complexity scores. 

Figure 3.4.3. Illustrated comparison of potential daylit area between a simple and a more complex 
configuration. Daylight depth are estimated based the rule of thumb: 2.5 times of the window head 
(Reinhart, 2018). Both consisted of 8 modules, the more complex assembly on the right could perform 
much better in terms of daylighting.  

potential daylit area

glazing
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3.4.2 Structural Performance Score

At the end of each iteration, structural analysis can be performed on each generated modular 

structure to allow designers to consider the structural performance of different design concepts. 

In the implementation of this thesis, structural analysis is integrated into the system using 

Karamba3D, a parametric structural engineering analysis tool. This section details the specific 

structural model and loading conditions used to analyze the performance of modular structures 

discussed in this thesis. Under this methodology, designers may also specify their own structural 

model and loads to get more accurate feedbacks for the specific material and construction of 

the modular unit of their choosing. This thesis specifically considers the case of using shipping 

containers as modules and each assembly is abstracted as a system of steel frames. Each module 

in an assembly is represented as a system of finite number of beam elements and nodes. Fig. 

3.4.4 shows a 20-feet High Cube shipping container (20 feet by 8 feet by 9.5 feet) represented 

with 44 nodes and 64 elements. 

elements cross-sections
6.85”

6.
85

”

0.236”

2.36”

0.118”

2.
36

”

Figure 3.4.4. A few configurations of 2 modules in plan. The heavier line shows the boundary of 
these assemblies, which demonstrates that the total length of the boundary can be used to measure the 
complexity of a given assembly.

20’

8’ 9.5’

20’

8’

Note that each face of the module is modeled as a bracing system with the exception of the 

smaller walls at the ends of the module. No structural elements were placed on these faces to 
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account for the possibility that these faces may be commonly used for large openings such 

entrances into the building. In reality, the faces of a shipping container are much more complex 

structurally. Since a more accurate structural model of shipping containers would significantly 

increase the time it takes to perform finite element analysis. This bracing system is used to 

approximate each module as a rigid body.

A total downward load of 2,300 kilogram (6.173 kips) is split between all nodes to simulate 

self-weight (Bernardo et al, 2013). Fig. 3.4.5 demonstrates the loading condition and structural 

behavior of a few simple stacks of modules using this structural representation. 

The total strain energy describes the elastic energy stored in the deformed system. When 

comparing two structural systems under the same loads, a smaller value of total strain energy 

denotes a structure with less deformation, hence, a better performing structure. However, as 

demonstrated in Fig. 3.4.5, the number of modules in a system can also have a direct impact on 

the total strain energy. To compare the relative structural performance between assemblies of 

different number of modules, this methodology defines the structural performance score of an 

assembly as given in Eq. [3.4.5]. If two assemblies have similar total strain energy but different 

number of modules, the assembly with more modules would have a lower structural performance 

total strain energy (kip×ft):
0.0378

Figure 3.4.5. Structural analysis of simple stacks of modules. The arrows indicate the point load applied at each 
node. The purple gradient on the structural elements indicate the areas of largest displacement.

total strain energy (kip×ft):
0.0197

total strain energy (kip×ft):
0.0056
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Figure 3.4.6. Structural analysis of the selected 2-layer assembly designs from Fig. 3.2.9. As expected, these 
designs show that there are clear correlations between the complexity score and structural performance score. 
The gradient on the structural elements indicate their relative displacement, where darker color indicates 
larger displacement. This visualization of displacement could also help designers adjust the generated designs 
to achieve better structural performance.  
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score. This metric defines lower structural performance scores as better-performing in terms of 

relative structural efficiency since having more modules also means that there is a larger total 

floor area in the assembly.

 S = E / n × 100        Eq. [3.4.5]

where S is the structural performance score; E is the total strain energy of the structural system, 

and n is the total number of modules in this assembly.

To demonstrate how designers could use this method to evaluate the design outputs based on 

the structural performance score, Fig. 3.4.6 presents the structural analysis results of the 2-layer 

assemblies previously discussed in Section 3.2.4. All these designs were generated using the 

same ground layer base geometry but different direct extrusion rule parameter. Despite the visual 

diversity of these results, many of them have relatively comparable structural performance score. 

In addition to evaluating the quantitative feedback of the outputs, users can also evaluate the 

structural performance visually based on the relative displacement of each elements. As seen in 

some of the examples with large cantilevering, a few poorly placed modules can have a large 

impact on the overall structural performance score. This encourages designers to interact with the 

generation outputs to achieve more desirable solutions by adjusting the placement of modules. 

Seeing the visual and quantitative performance feedback at the end of every iteration can also 

help designers build a better understanding of the structural behavior of modular aggregations.

Comparing the input parameter and the performance scores, the larger extrusion parameter value 

tend to produce designs that perform better structurally since directly stacking a second layer 

advantages load transfer. However, the second design form the 10% extrusion parameter set 

was intentionally selected to demonstrate that this relationship is not always guaranteed. Though 

rare, some outliers are expected because of the stochastic nature of the generation method,  . 

Additionally, one may also observe that there is a clear correlation between the complexity score 

and structural performance score as expected. More discussion around how characterize this 

relationship and balance these numerical metrics in design outputs will be detailed in Chapter 4 

and Chapter 6. 
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Chapter 4

Algorithmic Grammar Control

This chapter presents a method of  controlling the deployment of the grammar to satisfy the creative 

intent of designers. As seen in Chapter 3, the form of the design outputs not only depends on user 

inputs such as the plot and void, but are also determined by the sequence of rules applied during 

the generation process. Section 4.1 in this Chapter discusses a method of selecting a production 

rule and parameters at each aggregation step in a stochastic yet controllable way. Section 4.2 

provides a detailed overview of  how this stochastic rule selection algorithm is embedded into the 

overall framework of the system introduced in the previous chapter. Design samples in this chapter 

demonstrate how the proposed methodology can enable designers to explore diverse design options 

with desirable quantitative and qualitative characteristics.
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4.1 Stochasticity Control

Instead of applying transformations to existing geometries manually, using a grammar-based 

aggregation method presents the opportunity to algorithmically explore a large portion of the 

design space. This allows designers to efficiently iterate through different design concepts and 

discover unexpected possibilities. Automatic grammar deployment can be implemented with 

a number of different approaches. Using explicit aggregation description, where users would 

specify the complete sequence of rules to be applied, allows full control over the generation 

process. As presented in Section 3.2.3, this approach can be used to effectively control the 

growth pattern in the resulting designs. However, experimenting with explicit sequences of rules 

can quickly become tedious and laborious (Rossi & Tessman, 2017). Stochastic aggregation 

method allows the system to randomly select a rule to apply at each step, hence allowing more 

open and unexpected growth process that can be challenging to control.

When using a stochastic approach, it is critical to consider the probability distribution that 

determines the likelihood of a random choice. In probability theory, an uniform distribution 

describes a statistical function in which all possible values are equally likely to be selected, 

hence the outcome is arbitrary. Eq. [4.1.1] and Fig. 4.1.1 describe the general probability mass 

function of discrete uniform distribution.

Figure 4.1.1. Probability mass function of discrete uniform distribution. a is the 
lower bound of possible values while b is the upper bound. n represents the total 
number of possible values. If selecting a production rule using uniform distribution, 
n = 2, a = 0 (naive rule), b = 1 (extension rule). In the case of rotation angle, these 
parameter would depend on the angle step size and computed angle range (Section 
3.2). 

f(x)

x0

1/n
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 f(x) = 1/ n                Eq. [4.1.1]

where f(x) describes the probability of a discrete random variable x, and n denotes the number of 

all possible values in the set.

Since the two main production rules, the naive rule (rule 0) and the extension rule (rule 1), 

each produce results with distinct characteristics (Fig. 3.2.6 ), arbitrarily selecting a rule at 

every step based on uniform probability distribution is unlikely to lead to designs with desirable 

architectural quality. Additionally, if the naive rule is chosen, the rotation angle and the position 

parameter of the new module also need to be selected (Section 3.2.1). Selecting all these 

parameters using uniform distribution is not an effective approach to generate designs with 

similar design languages. Instead, this section proposes a method of sampling from a normal 

distribution based on the current state of the assembly and user preferences. The general form 

probability density function of a normal distribution is described below.  

 f(x) = (1/ σ√2π )×e-(1/2)((x-μ)/σ)^2             Eq. [4.1.2]

where f(x) is the probability density of a real value x, μ is the mean or expectation of the 

distribution, and the σ is the standard deviation. The variance of the distribution is σ2.

Figure 4.1.2. Probability density function of a normal distribution. f(x) is 
the probability density of a real value x, μ is the mean, or expectation, of the 
distribution, and the σ is the standard deviation.
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Normal distributions, or also known as Gaussian distribution, are important in statistics as they 

often accurately describe the expected distribution of random values of natural phenomena 

(Lyon, 2014). For the purpose of this thesis, normal distributions’ unique properties can give 

user direct control of the probability distribution of the random sampling process at each step, by 

adjusting the standard deviation (σ) or the mean (μ). For instance, when selecting the position 

parameter, keeping the mean at 0.5 and setting the standard deviation to a relatively small 

value is more likely to result in placing a new module around midpoint of an existing module’s 

edge. This is a promising way of controlling the stochasticity of the generation process while 

still allowing the system to explore a diverse set of possible designs. This section presents 

how different values of standard deviation can affect different aspects of the design outputs, 

quantitatively and qualitatively.

4.1.1 Rule Selection

As previously shown in Chapter 3, applying the naive rule tend to result in sprawling structures 

that have higher complexity score while the extension rule produces more compact configuration 

of modules with relatively low complexity score. Designs with high complexity scores are 

more visually interesting and perform well in terms of porosity. However, when considering the 

constructibility and structural performance of multi-story buildings, very complex configurations 

are not as desirable. Designs with lower complexity scores can sometimes exhibit more desirable 

architectural qualities, such as providing more flexible and functional spaces, but they are often 

less creative solutions, and do not address other design concerns well. The goal is to balance the 

qualities produced by these two rules to achieve complexity scores in a desirable range. 

Instead of selecting a random rule arbitrarily based on a given probability distribution, the 

proposed method uses the complexity score of the current assembly to make a more informed 

choice. At every step in the generation process, a random benchmark score is selected using 

a specified normal probability distribution. As the shown in Fig. 4.1.3, the mean (μ) of this 

probability density function is set to 0.5. Users can adjust the likely range of this randomly 

selected benchmark score by adjusting the standard deviation (σ) of the probability distribution, 
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which will bed referred to as the rule control factor throughout this thesis. For instance, setting 

the rule control factor to 0.1 would likely yield a benchmark score around 0.5. 

The complexity score of the current state assembly is then compared to the selected benchmark 

score when deciding which rule to apply. If the current complexity score is lower than the 

benchmark score, the naive rule will be applied. Otherwise, the extension rule will be applied. 

This means that the likelihood of applying the naive rule is much higher when a higher 

benchmark score is selected, vice versa. 

As demonstrated in Fig. 4.1.4, smaller values of rule control factor form a more deterministic 

system where the complexity score of the design outputs are likely to be lower, On the other 

hand, larger values would result in a more diverse range of complexity scores. Setting the control 

factor to 0 would change the probability distribution to a uniform distribution, in case the user 

wishes to experiment with a “completely” stochastic aggregation process. Visually, the design 

samples in Fig. 4.1.5 show that smaller rule control factors produce compact configurations with 

similar design language while larger control factors lead to more "chaotic" configurations that are 
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Figure 4.1.3. Overlay of probability density functions with different rule control factor (σ). 
f(x) describes the probability of selecting a benchmark scores x (defined in Section 4.1.1). 
Using control factor of 0.1 would most likely yield a benchmark score between 0.4 and 0.6 
while the probability is almost uniformly distributed when the control factor is set to 0.5.   
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Rule Control Factor vs. Complexity Score

Figure 4.1.4. Complexity vs. rule control factor data based on 600 generated design samples. 100 designs are 
evaluated for each rule control factor (Section 4.1.1). The rotation angle and the position parameters (Section 
3.2.1) are randomly selected from uniform distribution to best demonstrate the effect of rule control. Control factor 
of 0 denotes sampling rule from a uniform distribution. As expected, lower values of control factors result in 
concentrated score in the lower range while higher values have a wider range of scores. 

similar to the pattern previously seen in Fig. 3.2.8 (when the explicit rule sequence [0,0,1] was 

applied repeatedly). 

The results presented in this section demonstrate how designers can control the growth pattern of 

modular aggregations without explicitly specifying the sequence of rules to apply at each step. 

Section 4.1.2 and 4.1.3 further discuss how this method can be used to select other parameters to 

generate specific forms that follow the creative intent of designers.
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0.1 0.2 0.3 0.4 0.5σ

Figure 4.1.5. Design samples of 1-layer assembly of 15 modules generated using different rule control factor (σ) 
and uniformly sampled rotation angle and position parameter. These designs demonstrate how different σ values 
can affect the qualitative characteristics of the design outputs in addition to the numeric complexity score shown 
in Fig. 4.1.4. 
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4.1.2 Position Selection

Recall Section 3.2.1, when the naive rule (rule 0) is selected during the generation process, the 

system has to select two other random values: the position parameter and rotation angle. This 

section focuses on the sampling method of position parameter, which determines the point on 

an existing module edge where the new module's origin (Section 3.1.2) would be. The method 

is similar to the rule selection procedure described in the previous section. Every time the 

naive rule is chosen, a random variable representing the position parameter is sampled using 

a normal distribution based on specified position control factor (μ) (Fig. 4.1.6). The mean (μ) 

of this normal distribution is centered at 0.5. The position parameter describes the point at the 

normalized length along a given line segment (Section 3.2.1). Setting the mean to 0.5 means 

that new modules are more likely to be attached to the midpoints of existing module edges. This 

choice of mean value can be adjusted by designers to explored different topology of assembly 

and address their own design concerns. Based on experiment results, attaching new modules 

at the midpoints produces more interesting spatial qualities. Offsetting the modules can create 

functional negative spaces for circulation or outdoor access.  
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Figure 4.1.6. Overlay of probability density functions with different position control factor 
(σ). f(p) denotes the probability density for a particular position parameter p. When the normal 
distribution is centered at 0.5, the placement of new modules are more likely to be around the 
midpoints of an existing module edge. 
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Figure 4.1.7. Complexity vs. position control factor data based on 600 designs gnerated with only the naive rule. 
100 designs are evaluated for each position control factor (σ) (Section 4.1.2). The rotation angle (Section 3.2.1) 
is randomly selected from {90°, 0°} best demonstrate the effect of position control. Control factor of 0 denotes 
sampling position parameter from a uniform distribution. Complexity score are concentrated on the higher end 
because only the naive rule was applied.

Fig. 4.1.7 shows the complexity scores of 600 designs generated using different position control 

factors and applying only the naive rule. The rotation angle of these designs are constrained to 

{90°, 0°}. In contrast to the relation seen in the rule selection process (Fig. 4.1.4), there is no 

clear correlation between the numerical score and the position control factor. The concentration 

of scores on the higher end of the scale reflect the behavior of applying only the naive rule. 

However, Fig. 4.1.8 shows that the organization of modules can be related to their position 

control factor visually.
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0.1 0.2 0.3 0.4 0.5

Figure 4.1.8. Design samples of 1-layer assembly of 15 modules generated by applying only the naive rule with 
different position control factor (σ) and uniformly sampled rotation angle from {90°, 0°}. Even though the 
correlation is not as obvious, one can still observe that the spatial qualities and organization of the assemblies 
seem to vary with the control factor. Lower σ values force all modules to be connected around the center of their 
edges.

σ
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4.1.3 Rotation Angle Selection

In addition to the position selection procedure discussed in Section 4.1.2, when the naive rule 

(rule 0) is selected during the generation process, the system has to choose the rotation angle 

(detailed in Section 3.1.2) which determines the angle between the new module and the existing 

module it would be attached to. 

To generate more feasible architectural outputs, rotation angles are always chosen from a specific 

set of discrete angles, as discussed in the Section 3.2.1. Each angle in the set of possible rotation 

angles is associated with its own unique set of real numbers. Whenever the naive rule is chosen, 

a random number is selected using the specified normal distribution, and then the corresponding 

rotation angle would be applied to the new module. The mean (μ) of this normal distribution is 

centered at the values associated with orthogonal rotations. Non-orthogonal angles are disfavored 

in the aggregation procedure because they are more difficult to construct and sometimes produce 

unusable corner spaces in resulting designs. Considering the set of possible rotation angles {0º, 

15º, 30º, 45º, 60º, 75º, 90º}, the normal distribution would be centered around 90° and 0°. Fig. 

4.1.9 illustrates the probability of each of these angles being chosen when the angle control 

factor (σ), the standard deviation of the normal distribution, is set at 0.1. Increasing the angle 

control factor would significantly increase the likelihood of applying non-orthogonal rotation at 

each aggregation step. 

Figure 4.1.9. Probability density function with angle control factor (σ) set to 0.1 as discussed 
above. f(x) describes the probability of selecting a particular real number x. Each number x is 
associated with a discrete rotation angle to be applied. Lower values of angle control factors 
strongly favors orthogonal rotations over other possible angles.
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Fig. 4.1.10 compares the complexity scores of designs generated using different angle control 

factor. Control factor of 0 means that the rotation angle is sampled from a uniform distribution. 

Since the angle control factor is not considered when applying the extension rule, these designs 

were generated by applying only the naive rule. As seen previously, applying only the naive 

rule lead to designs with extremely high complexity score. Though, the correlation between the 

complexity score and the control factor is not as obvious as seen in the rule selection process 

(Fig. 4.1.4), there is still a slight upward trend in the distribution of the scores as the control 

factor value increases.
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Figure 4.1.10. Complexity vs. angle control factor data based on 600 generated design samples. 100 designs are 
evaluated for each angle control factor (discussed in Section 4.1.3). These aggregations were generated using 
only the naive rule, and sampling the position parameter from a uniform distribution. Control factor of 0 denotes 
sampling rule from a uniform distribution. The correlation between the control factor and the complexity score is 
less prominent as seen in Fig. 4.1.4, but obvious visual correlation between the two can be observed in Fig. 4.1.10.
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0.1 0.2 0.3 0.4 0.5

Figure 4.1.11. Design samples of 1-layer assembly of 15 modules generated applying only the naive rule with 
different angle control factor (σ). The position parameter is sampled from a uniform distribution. Visually, the 
relations between modules are influenced by the angle control factor. Designs generated using smaller values of 
angle control factor lead to more orthogonal rotations between modules while higher σ lead to patterns that are 
not structured on a orthogonal grid.

σ
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Similar to behaviors discussed in Section 4.1.2, the effect of angle control factor is more 

prominent visually. Smaller angle control factor clearly lead to more "structured" design outputs. 

When the control factor is set to 0.1, almost all modules are organized on a clear orthogonal grid. 

Using angle control factor of 0.5 produced many results that seemed to be growing in a circular 

pattern. Interestingly, as seen in Fig. 4.1.8 and Fig. 4.1.11, both position and angle control factors 

seem to influence the directionality of growth and how the assembly interacts with the void 

(hatched areas in the figures) defined by the user (Section 3.1.3). This provides the opportunity 

for designers to consider how they want the structures to respond to their site conditions, such as 

the topography and existing infrastructures.

The stochasticity control methods presented in these sections demonstrate a promising way 

to allow designers control the complexity and growth pattern of the generated results while 

exploring a diverse set of possible solutions. Instead of specifying explicit rule sequences, 

designers can potentially formulate their desired design language by experimenting with different 

combinations of control factors. Chapter 5 further explores the relation between different values 

of control factors and other quantitative measurements, specifically structural performance. 

4.2 Algorithm Overview

This section presents an overview of how the stochasticity control methods discussed in 

the section 4.1 are integrated into the generation algorithm of the whole system. Fig. 4.2.1 

summarizes the algorithm framework of the proposed automatic stochastic generation method.  

As previously illustrated in Fig. 3.1.1, designers first formulate the problem by specifying the 

required user inputs. In addition to the user specifications introduced in Section 3.1.3, designers 

may also specify the control factor values, or select the default values, to initialize the generation 

process. Step 3 to step 10 are repeated until each assembly reaches a termination condition, 

either satisfying the desired number of modules of the current layer or the system fails to find a 

valid placement within the maximum number of iterations allowed. Design outputs are displayed 

for the user once all the assemblies are completed. Users can then evaluate the designs, adjust 

design problem specifications as desired, and select their favorites as the base geometries for 
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Figure 4.2.1. Framework of the proposed stochastic aggregation algorithm.

the generation of next layer. On average, generating 100 assemblies of 15 modules takes around 

8 seconds. The efficiency of the generation process allows designers to efficiently repeat this 

process and iterate on different design ideas.

 0 formulate design problem

START

 1a initialize assembly

 2 set probability density functions

 3 compute current complexity, c

 4 sample complexity benchmark, x 

 5a select rule 0

if c < x

 5b select rule 1

if c >= x

 6a select a boundary edge  6b select an extendable edge 

 7a sample a position parameter &  
 rotation angle

 7b compute extension position

 8 make a new module

 9 check constraints

 10 update assembly

 11 record & terminate  
 this assembly

if # of modules < desired #

if # of modules == desired #

if more assemblies to generate

 12 evaluate & output designs END

if NOT satisfiedif NOT satisfied

if satisfied
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Chapter 5

Case Studies

Chapter 3 and Chapter 4 presented a grammar-based aggregation methodology that allows 

designers to directly interact with the generation process of modular structures. This chapter 

presents additional results to demonstrate the ability of this system at balancing the qualitative 

and quantitative design goals. A few design examples are also included in this chapter to show the 

potential usage of this generation system for solving challenging design problems. 
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Figure 5.1.1. Design problem formulation for exploring the Pareto frontiers for the complexity score and 
structural performance score of 2-layer assemblies. The performance of the 100% directly extruded 2-layer 
structure is shown as base case. Lower structural score indicates better structural performance.

selected layer 1 base

layer 2 complexity = 0.48
structural = 1.10
direct extrusions = 100%
total # of modules = 20

complexity
 
= 0.48

design problem specifications

plan view

starting 
geometry

plot
void

rule σ = 0.30
angle σ = 0.30
position σ = 0 (uniform)
desired # of modules in layer 1 = 10
desired # of modules in layer 2 = 10

perspective view

2-layer structure from 100% direct extrusion

sample designs from layer 1 generation

complexity
 
= 0.77complexity

 
= 0.32complexity

 
= 0.69

5.1 Tradeoff Between Complexity and Structural Performance

Generally, more complex configurations of modules often lead to more desirable qualitative traits 

but they are expected to perform worse structurally when stacked in multiple layers. The balance 

of qualitative and quantitative design goals can be treated as a multi-objective optimization 

problem, using the structural performance score and complexity score (defined in Section 3.4). 

This section formulates a specific design problem to explore the Pareto frontier of these two 

numerical metrics. Fig. 5.1.1 illustrates the user inputs and the ground layer structure selected as 

the base geometry to initialize the generation of the second layer.
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complexity
 
= 0.97

structural = 8.34
direct extrusions = 10%
# of modules = 19
rule σ = 0.33
angle σ = 0.28
position σ = 0.16

complexity
 
= 0.81

structural = 1.61
direct extrusions = 40%
total # of modules = 18
rule σ = 0.34
angle σ = 0.32
position σ = 0.43

Figure 5.1.2. Complexity score vs. structural performance score of 300 2-layer designs illustrating the Pareto 
tradeoff. The Pareto optimal solutions are indicated with darker outlines in the plot. These data show that many 
solutions have similar level structural  performance as that of the directly extruded assembly shown in Fig. 5.1.1.

complexity
 
= 0.69

structural = 1.17
direct extrusions = 50%
# of modules = 18
rule σ = 0.10
angle σ = 0.31
position σ = 0.40

complexity
 
= 0.54

structural = 0.97
direct extrusions = 50%
# of modules = 17
rule σ = 0.36
angle σ = 0.12
position σ = 0 (uniform)
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In multi-objective optimization, Pareto frontier is defined as a set of non-dominated solutions in 

which all objectives are considered equally optimal and no objective can be improved without 

sacrificing the others. Fig. 5.1.2 shows the structural performance score and complexity score 

of 300 designs of 2-story modular structure generated by randomly sampling control factor 

(σ) values  (Section 4.1). The data shows expected correlation between the complexity and 

structural performance, and the Pareto tradeoff is clear. However, it is also evident that simple 

configurations with lower complexity scores do not necessarily lead to the best structural 

performance. In fact, the best structural performing solutions are concentrated between 0.4 and 

0.5 on the complexity score axis. This shows that the designs with similar complexity score in 

each layer tend to perform better since the ground layer complexity score in these designs is 4.8 

(Fig. 5.1.1). Designs with similar complexity score tend to have more overlapping areas and less 

cantilevering, which again shows that the amount of cantilevering can have a large impact on the 

structural performance. 

Additionally, this case study also demonstrates that many more interesting aggregations can have 

similar, sometimes even better, structural performance as the directly extruded assembly. Note 

that the Pareto optimal designs shown in Fig. 5.1.2 do not have the desired number of modules as 

specified by user input. Designers are given the freedom of deciding how they wish to consider 

these different factors when selecting their favorite designs. Analyzing the correlation between 

qualitative and quantitative performance of a large variety of designs numerically and visually 

can further help designers understand the behavior of modular structural systems and develop 

desirable design solutions. Fig. 5.1.3 shows a few additional designs near the Pareto frontier. 
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complexity
 
= 0.52

structural = 1.46
direct extrusions = 60%
# of modules = 20
rule σ = 0.09
angle σ = 0.12
position σ = 0 (uniform)

complexity
 
= 0.18

structural = 2.48
direct extrusions = 20%
# of modules = 20
rule σ = 0.24
angle σ = 0.34
position σ = 0.1

complexity
 
= 0.69

structural = 2.01
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# of modules = 20
rule σ = 0 (uniform)
angle σ = 0.26
position σ = 0 (uniform)

complexity
 
= 0.66

structural = 2.02
direct extrusions = 30%
# of modules = 20
rule σ = 0.49
angle σ = 0.41
position σ = 0.56

complexity
 
= 0.74

structural = 3.18
direct extrusions = 30%
# of modules = 20
rule σ = 0.27
angle σ = 0.09
position σ =  0.11

complexity
 
= 0.14

structural = 2.04
direct extrusions = 10%
# of modules = 20
rule σ = 0.10
angle σ = 0.20
position σ = 0.38
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= 0.38

structural = 1.27
direct extrusions = 70%
# of modules = 20
rule σ = 0.12
angle σ = 0.33
position σ = 0.47

complexity
 
= 0.12

structural = 1.61
direct extrusions = 10%
# of modules = 20
rule σ = 0.05
angle σ = 0.33
position σ = 0.47

complexity
 
= 0.78

structural = 2.58
direct extrusions = 30%
# of modules = 19
rule σ = 0.43
angle σ = 0.23
position σ = 0.10

Figure 5.1.3. Additional designs near the Pareto frontier shown Fig.5.1.2. 
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5.2 Design Example - "Grow Bigger"

To demonstrate how this generation system can be used to find design solutions that follow very 

specific global forms specified by the designer, this section presents a design example that grows 

"bigger" as it aggregates up in a "tree form". This particular form presents interesting spatial 

qualities and porosity that cannot be produced through simple stacking of modules. Formally, 

this design takes inspiration from Habitat 67, seeking to provide sufficient daylight and outdoor 

space by arranging the modules with various offsets and rotations. Quantitatively, the structural 

performance of this particular design scored in the top 10% of 80 designs generated for each 

layer. Fig. 5.2.1 illustrates how the form of this design was derived by manipulating the user 

inputs between each iteration of a new layer. 

Figure 5.3.1. Generation sequence of "Grow Bigger".  The area of the void (hatched area) is reduced and the 
desired number of modules was increased between the generation of each layer to allow the new layer to grow 
beyond the boundary of its previous layer. 

rule σ = 0.3 
angle σ = 0.30
position σ = 0 (uniform)
desired # of modules in layer 1 = 12
desired # of modules in layer 2 = 16
desired # of modules in layer 3 = 20

layer 3 complexity = 0.58
total # of modules = 44

initial user input

selected layer 1 design

selected layer 2 design

final design output

layer 2 complexity = 0.66
total # of modules = 26

layer 1 complexity = 0.51
total # of modules = 12
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Figure 5.3.2. Massing model renderings of "Grow Bigger". The lack of materiality in these renders suggests 
another interpretation of the design as a heavier and more monumental structure rather than an aggregation of light-
weight steel boxes.



77 of 90

Figure 5.3.3. Massing model rendering of "Grow Bigger".  The varying spatial relations between the modules 
create function negative spaces within the structure.

Figure 5.3.4. Looking up from a negative space. This aggregation creates multiple voids in the center of the 
building, forming more permeable edges between the interior and exterior space.
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5.3 Design Example - "Grow Around"

This section presents a playful design example demonstrating how the generation algorithm can 

be used to find design solutions that navigate around especially constraining site condition. As 

shown in Fig. 5.3.1, the geometric user inputs consists of a rectangular plot with the MIT logo 

specified as the void. Multiple single-module starting geometries are placed around the site. 

Interestingly, these separate structures start to join and fill up the negative space on the site as 

the assembly grew larger. Throughout the generation process, all modules were placed strictly 

outside the logo. This example also illustrates this aggregation method's ability to generate 

design solutions that respond to very specific and challenging circumstances at an urban scale. 

Figure 5.3.1. Design problem specification before initializing the generation procedure. The problem is designed to 
show how the system can navigate around complex site conditions. The MIT logo is specified as the void.

rule σ = 0 (uniform)
angle σ = 0.30
position σ = 0.30
desired # of modules = 100

plan view perspective view

step 0 - step 20

Figure 5.3.2. Generation sequence of "Grow Around". Partial solutions are displayed at every 5 steps.
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Figure 5.3.3. Generation sequence of "Grow Around". Partial solutions are displayed at every 5 steps. At step 78, 
the procedure was terminated because the algorithm was no longer able to find a valid placement for a new module 
within the specified maximum number of iterations. Although the final output did not reach the desired number of 
modules (100), it was able to populate most of the space around the MIT logo.

step 25 - step 45

step 50 - step 70

step 75 step 78 - termination state

total # of modules = 86
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Chapter 6

Conclusion

This chapter summarizes research work developed in this thesis, highlights the potential impact 

of this new computational methodology, presents important directions for future work, and offers 

concluding remarks. 
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6.1 Summary of Contribution

This thesis presents a new aggregation-based generation methodology for exploring modular 

design possibilities. With an iterating by layer approach, the aggregation process promotes 

designer intervention at every stage. The grammar system presented in this thesis consists of 

a simple and easily understandable set of rules that can define infinitely diverse aggregation 

topologies. 

This thesis improves upon existing stochastic grammar exploration systems by giving designers 

the control over the stochasticity of the generation process while maintaining the diversity of 

outputs, allowing discovering unexpected design possibilities. By allowing users to specify 

design preferences through geometric and numerical inputs, this generation system computes 

design solutions that responds to a variety of constraints and the creative designer intent.

In addition to commonly used structural performance metrics, this thesis also introduces a new 

numerical metric, complexity score (Section 3.4), to quantify other traditionally unformulated 

qualitative design goals in early design stage, such as porosity and visual characteristics. A series 

of designs are selected to demonstrate how geometrically complex modular aggregations could 

have better daylight performance and exhibit more interesting spatial qualities. The potential 

tradeoffs between structural performance and geometric complexity are explored in Section 5.1 

of this thesis. 

The implemented system demonstrates good performance in terms of speed. The 

algorithm(Section 3.3) and software design (Appendix A) allow geometric constraints and 

properties be computed in linear time. Thus, designers can generate a large number of potential 

designs within a few seconds. 
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Finally, this thesis presents a few case studies demonstrating the potential use of this generation 

methodology and how it may be adopted in helping designers solve different types of design 

challenges. Through systematic explorations, designers may find modular design options that 

well balance the qualitative and quantitative performance goals.

6.2 Potential Impact

This new methodology is a more efficient and systematic approach than the trial-by-error 

method commonly practiced in the design industry today. Giving designers the ability to 

explore more diverse design options and evaluate their respective performance can help address 

designers' concerns about the quantitative benefits of modular structures. This could enable 

more experimentation of different forms that further advance the discourse around modularity 

in architecture and broaden the applications of modular structures. This method can potential be 

extended to address design problems of different scales, and even in fields beyond architectural 

design. It can be generalized to solve any challenges concerning complex aggregations of 

simple components, in urban design, structural design or mechanical engineering. For instance, 

the overall organization of cities can be interpreted as aggregations of communities, land 

parcels, and transportation networks. The grammar rules and evaluation metrics may need to be 

redesigned and adapted accordingly to describe new constraints, but the fundamental framework 

could remain similar.

6.3 Limitations and Future Work

This thesis demonstrates the potential of this new modular design exploration methodology, 

but there are limitations that should be considered for future work. Real world design problems 

normally involve more quantitative and qualitative design factors that cannot be described by 

the two metrics defined in this thesis: the structural performance and complexity score (Section 
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3.4). Though construction sequencing is considered in the algorithm, there is no defined metric 

evaluating the cost of construction. Some designs may be easily constructed with a single crane 

and minimal labor. Others might be impossible to construct without more complicated setup. 

This might be an especially important for designer to consider when designing for sites that are 

inaccessible by heavy machinery. It is also critical to note the distinction between the process 

of assembly and disassembly. Certain designs might be easy to assemble but challenging to 

disassemble or even to replace a few modules. Since modular structures are often favored 

for temporary designs, the financial, environmental, and labor cost of disassembly is equally 

important as that of the assembly process. 

Further research is also needed to develop methods to contextualize the performance score of 

each design. Even though the current complexity metric can be used as an indication of the 

amount of negative space in a design, not all negative spaces are equally valuable. Certain 

spacings between modules might be function as circulation space or patio spaces while 

others might provide no real functions. The performance of each design solution must also be 

considered with its social, environmental or community context. For instance, spacing for patios 

or courtyard may be less desirable in colder climate. This is certainly a challenging task to 

accomplish computationally. It would require developing other systems that allow designers to 

validate the “scoring of designs” during the aggregation process.

Additionally, developing optimization algorithms to search for optimal solutions based on 

designer preferences is an important direction for future research. A recurrent neural network 

(RNN) is a subset of machine learning algorithms that are used for problems involving sequential 

data or time series data, such as language translation and speech recognition. Under the proposed 

methodology, each design can be abstracted as a sequence of data, including the sequence of 

product rules applied and of the specific rule parameters selected. Training sequence models 

using large datasets of generation outputs may be a promising approach to search for the design 

solutions that have the best performance in certain user-specified categories or predict sequences 

of grammar rules that might lead to designs satisfying designers’ qualitative expectations. 
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Designing more case studies and usability tests with more complex design problems involving 

module of different materials and forms would provide more guidance expanding the capabilities 

of this methodology.

6.4 Concluding Remarks

Technological advancement in the 20th century has enriched the world with a new form of 

architecture that adapts and reacts to the shifting needs of the society through modularity. 

However, despite the unprecedented development of computing power and fabrication 

technology in the world today, expressive forms of modular architecture seem to have been 

largely replaced by tedious stacks of boxes. This change of course in modular design is 

partially due to the difficulty of finding visually interesting solutions that also meet the intense 

quantitative performance demands. By proposing a procedural design exploration methodology, 

this thesis intends to show that it is possible for designers to liberate their creativity by taking full 

advantage of computation in a human-machine collaborative design process.
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Appendices
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Appendix A 

Implementation

This appendix gives a high level overview of the implementation of the system. The grammar 
exploration and assembly generation procedures are implemented in Python and integrated 
into Rhino Grasshopper environment as a series of components using Hops, a Grasshopper 
component allowing external functions to be added as Grasshopper definition. Visualization 
of generation outputs and structural analysis are scripted in Grasshopper using Karamba3D, a 
parametric structural analysis tool. Six Python classes are defined to operate at different levels of 
the grammar exploration process:

•	 module
o properties – stores data for each individual modular unit;,e.g. origin, angle, di-

mensions, etc. 
o methods – modular level operations, e.g. getBottomEdges(), getVertices(), etc.

•	 assembly
o properties – stores data for each generated assembly, e.g. modules, history, bound-

ary, controlObject, etc. 
o methods – assembly level operations, e.g. computeBoundary(), checkAllCon-

straints(), computeComplexty(), etc.
•	 control

o properties – stores data for stochasticity control process, e.g. ruleControlFactor, 
angleControlFactor, positionControlFactor, etc. 

o methods – stochastic procedure operations, e.g. getRandomRule(), getPositionPa-
rameter(), getRotationAngle(), etc.

•	 rules
o properties – stores the definition of rules, e.g. ruleID, canApply, etc. 
o methods – rule operations; e.g. applyRuleZero(), applyRuleOne(), etc.

•	 history
o properties – stores the generation history of each assembly, e.g. currentStep, rule-

sApplied
o  methods – history recording operations; e.g. recordCurrentStep(), etc.

•	 grammar
o properties – stores high level data for entire generation process, e.g. 

allAssemblies, maxIteration, positionControlFactor, etc. 
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o methods – highest level generation operations; e.g. initializeGeneration(), 
generateSingleLayer(), generateMultiLayer() etc.

As discussed in Section 3.3 of this thesis, the object oriented system design allows faster 
computation (at the expense of memory)  since different geometric properties and data are stored 
and updated accordingly at every step of the generation process. Fig. A.1 illustrates how these six 
different classes are integrated into the system. 

grammar

controlrules assembly

modules

history

create 1 set of rules objects per layer/iteration

maintains the prob. distribution 

sets the parameter for rules

rule operations; 
modifies assembly state

each assembly uses same control object
in the same iteration

create n assembly objects for each iteration 

oparetions within each assembly;
a collection of module objects

creates new module objects to be added to assembly
accept or reject a module based on constraint checking

records the control object and rule 
parameters for each step of an assembly

create 1 to n control 
objects for each iteration

each assembly keeps 1 
history object

app.py Hops server/grasshopper

instantiate grammar &
calls grammar operations

Figure A.1. High-level integration of the system. app.py is the entry point that interfaces with Hops to start the 
application.
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