
Graphical User Interface for Anomaly Detection in
DBOS

by

Robert Redmond

B.S. Electrical Engineering and Computer Science
Massachusetts Institute of Technology, 2021

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 6, 2022

Certified by. .
Michael Stonebraker

Adjunct Professor
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Graphical User Interface for Anomaly Detection in DBOS

by

Robert Redmond

Submitted to the Department of Electrical Engineering and Computer Science
on May 6, 2022, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis describes a graphical user interface which can aid in managing and vi-
sualizing detected anomalies within Database Operating System (DBOS). Because
web applications can be built atop DBOS, it needs a security system to counteract
incoming attacks from online. One of the cornerstones of a full security pipeline is a
strong interface so system experts can monitor and react to incoming threats. While
command line interfaces and graphical user interfaces are both means to monitor
incoming/potential threats, the latter confer stronger advantages within the context
of anomaly detection in DBOS. User studies were used to evaluate the interface’s
features throughout the development process.

Thesis Supervisor: Michael Stonebraker
Title: Adjunct Professor

3

4

Acknowledgments

I’d like to thank Professor Michael Stonebraker for his guidance over the duration

of this project. Çağatay Demiralp and Deeptaanshu Kumar provided feedback and

advice throughout this projects development and were invaluable to its success. Addi-

tionally, I’d like to thank the greater DBOS team, with special thanks to Qian Li and

Peter Kraft whose previous work on DBOS and continued support made the project

possible.

5

6

Contents

1 Introduction 13

2 Related Work 15

2.1 Database Operating System . 15

2.1.1 Nectar Network . 15

2.2 Modern Security Threats . 16

2.2.1 Broken Access Control . 16

2.2.2 Cryptographic Failures . 16

2.2.3 Injection . 17

2.3 Modern Security Software User Interface 17

2.3.1 Splunk . 17

2.3.2 Crowdstrike . 19

3 System Architecture 21

3.1 Labeling Anomalies . 21

3.2 Information Retrieval . 22

3.3 Codebase . 22

4 Interface Design 25

4.1 Prioritizing anomalies . 25

4.2 Investigating anomalies . 28

4.3 Historical Analytics . 29

7

5 User Studies 33

5.1 Initial Study . 33

5.2 Web Application Revisions . 35

5.3 Final Study . 36

6 Closing Remarks 39

6.1 Future Work . 39

6.1.1 User Profiles . 39

6.1.2 Multiple Databases . 39

6.2 Conclusion . 40

8

List of Figures

2-1 Splunk Security Posture Dashboard 18

2-2 Splunk Intrusion Detection Dashboard 19

2-3 Splunk Search Page . 20

2-4 Crowdstrike Dashboard Creator . 20

4-1 Web Application Overview Page . 26

4-2 Web Application Overview Popup . 27

4-3 Web Application Search Page . 28

4-4 Web Application Invalid Search . 29

4-5 Web Application Stats Page . 29

4-6 Web Application Interactive Stats Plot 30

9

10

List of Tables

5.1 Initial Study Results . 34

5.2 Final Study Results . 37

11

12

Chapter 1

Introduction

As the internet has matured, it has taken a crucial role in all aspects of modern society.

Whether it be in connecting communication world wide or serving as the basis for

financial systems the world over, never before has the technology we use been more

crucial. Because of the importance of online systems, they are often attacked by

malicious actors for their own gain. These actors might leak users’ confidential data

or compromise users’ accounts and steal their data, which takes an obvious toll on

these users. As such, it is vital that these systems be protected from attacks.

Any online system today needs to be able to recognize and stop incoming malicious

attacks. However, with novel attack methods being found regularly this requires

constant vigilance on the part of system administrators to ensure that no malicious

actors gain access. Security systems can quickly become outdated as attack methods

evolve to overcome them. In addition to protecting against all the possible known

threats, a security system also needs to allow the administrator to quickly recognize

when a new threat has emerged.

Stopping known attacks from impacting a system requires recognizing what can

uniquely identify an attack and rejecting any interactions which match the pattern.

However, it can be difficult to extract exactly what identifies an attack. Compounding

the issue, attackers actively try to disguise their traffic to appear benign to unsus-

pecting systems. Additionally, identifying novel attacks is very difficult; often it is not

until a system has been breached that novel attack methods become known. While

13

new methods relying on machine learning are becoming more common, most systems

still rely on security experts to identify and investigate potential attacks. It requires

knowledge and skill to distinguish a potential attack from normal traffic. As such,

security systems need a suite of tools designed to help experts sift through incoming

traffic in the hopes of identifying possible attacks.

DBOS [1], is a system under development which can serve as the backend to web

applications. DBOS is a novel design which places the database as the fundamental

unit of an operating system instead of the file system. In order to serve as the backend

for online systems, it will need the same industry standard security features to protect

its users online.

This thesis details the design of a graphical user interface for a DBOS anomaly

detection system. The goal is to allow security experts to quickly identify potential

attacks in their system and conduct rapid investigation of these attacks.

14

Chapter 2

Related Work

2.1 Database Operating System

DBOS is an ongoing effort to develop an OS stack which rests on a modern database

management system (DBMS) [1]. Whereas traditional OSs rely on the file system,

and can then interact with a database, DBOS bypasses the file system entirely. The

novel architecture of DBOS tightly integrates computation and data, which allows it

to be particularly performant on data-centric tasks.

A crucial component of DBOS’s system design is its robust provenance system [2].

All of DBOS’s current state is stored in a database, and DBOS additionally allows

for logging of all user requests. This could allow users of DBOS to go back to any

previous state, or track exactly how some piece of data arrived at its current state.

Because DBOS is built atop a database, it is critical that its data is impervious to

attacks that would illegally access, modify, and/or delete it. Luckily, the provenance

system supported by DBOS allows users to log all changes with relative ease.

2.1.1 Nectar Network

Nectar Network is a web application for which DBOS serves as the backend. It

is a fairly simple application, serving largely as a test bed for development, which

allows users to register, login and send or receive messages between each other. This

15

served as the web application for which threat data is displayed by the new graphical

user interface developed. In order to generate data, the website was made public

at http://nectarnetwork.org/. In addition to the random attacks generated by

internet traffic finding the site, specific attacks against the site were generated using

attack tools. All of these were logged through DBOS’s provenance system.

2.2 Modern Security Threats

Security threats may be constantly evolving, but we know what types of attacks are

the most common. In an effort to make application developer aware of these attacks so

that they can combat them, The Open Web Application Security Project (OWASP)

lists 10 of the most common vulnerabilities in web applications [3]. We’ll consider the

first 3 examples to understand the trends they paint in web security. All of these rely

on abusing vulnerabilities in an application, and will differ significantly from normal

traffic in their inputs to the application.

2.2.1 Broken Access Control

This broad category includes any way in which an attacker might abuse an applica-

tions login access control to gain illicit access. As an example, an attacker might try

to directly navigate to a website’s admin page. An application with broken access

control might not verify that the attacker has admin privileges, and thereby grant

access.

2.2.2 Cryptographic Failures

This category encompasses any vulnerabilities which may lead to encrypted data

stored in a database to being exposed by an attack. Any attack which can access an

application’s database can constitute a cryptographic failure, but only if a web appli-

cation has failed to properly protect users’ data. Common causes cited include not

encrypting all sensitive data or failing to keep the encryption keys properly secured.

16

2.2.3 Injection

This category includes various types of code injection, including SQL injection and

cross site scripting. SQL injection attacks operate by including SQL strings in queries

which attempt to pull confidential information from an application’s database. This

might give an attacker read and write access over the entirety of the database. Cross

site injection also involves injecting an attacker code into a website. Instead of tar-

geting the database, this method targets other users who browse the webpage, often

to steal confidential information.

2.3 Modern Security Software User Interface

Security threats pose a massive problem to any company which has a software com-

ponent. The industry that exists to protect information online is similarly massive,

with many competitors providing in-depth analysis and protection for their users.

With such a proliferation of companies, the exact ways in which they build their user

interfaces can vary wildly from service to service. However there are trends that we

can analyze to understand the design philosophies that they take. We’ll consider some

of these security services and see what features they consider key to their interfaces,

and how those features are informed by their users’ needs.

2.3.1 Splunk

Splunk [4] provides data analytics software to thousands of companies [5], and includes

the product "Splunk Enterprise Security". This product offers users threat detection

and the ability to investigate possible incidents quickly.

The main dashboard for Splunk [6] is its Security Posture view, seen in Figure 2-1,

which provides a high-level overview of the entire security state of a system. In order

to achieve that goal, it condenses an entire day’s worth of security threats into just 5

numbers. The first 3, shown in red, are the number of intrusion alerts, infected hosts

and malware signatures detected. An arrow is included to show whether that number

17

has increased or decreased in comparison to the previous day. The 2 numbers in blue

tell a user how many hosts and accounts are being protected. These numbers provide

a quick 5-second view of the system, and so massive differences in these values will

point to a failure in the system.

Figure 2-1: Splunk Security Posture Dashboard

We also see that right below the 5-second overview of the system, Splunk gives

the user ways of digging into the data. The three graphs, which list intrusions by

severity, over time and by source, are all linked to the Intrusion Detection Dashboard

(Figure 2-2), and clicking any of them pulls up that dashboard.

In this new view we get another 5-second overview, but this time of just the

intrusions detected. This overview splits intrusions based on severity, color coding

them so that red is the most critical intrusion type. Clicking on any of these values

keeps the user on the Intrusion Security Dashboard, but limits the resulting statistics

to only intrusions of the associated type. This allows users to easily filter intrusion

by severity or action.

In the graphs and lists below the 5-second overview, intrusions are compared by

their characteristics such as signature, source or location. Clicking on any of these

characteristics moves users to the search page [7] where all events matching that

characteristic are listed. As an example, selecting a specific signature in the Intrusion

Detection Dashboard will result in a search for all instances with that signature.

Splunk has additional features other than intrusion detection that it can visualise,

18

Figure 2-2: Splunk Intrusion Detection Dashboard

such as firewall alerts or malware detection, but they all follow a similar user flow. A

user is presented with an overview dashboard with a few key numbers and features;

clicking on them will filter the results based on those features, and eventually that

filtering leads to the search page. At this point, overview and statistics aren’t useful

as there are too few instances, so Splunk lists all of the instances for the user to peruse

and investigate.

2.3.2 Crowdstrike

Let’s consider Crowdstrike to be exemplary of a different approach to dashboards in

the industry, that being the idea of "modular" dashboards. Crowdstrike encourages

users to build their own dashboards by providing widgets [8] to display data (Figure

2-4). This might be in the form of number counts, line graphs over time, or simply

filtered lists. The philosophy behind these designs is that no one understands what’s

needed from a dashboard more than the experts who use it. As such, it’s better to

give security experts all the tools to build their own dashboards.

Modular, customizable widgets are a fundamental part of their core design, and

19

Figure 2-3: Splunk Search Page

Figure 2-4: Crowdstrike Dashboard Creator

the interface reflects that. There are clear distinctions between widgets and they

are all designed to fit in the predetermined grid. This isn’t to say that Splunk and

other similar security dashboards don’t include customizable dashboards, but that

Crowdstrike makes creating a dashboard mandatory for its users.

20

Chapter 3

System Architecture

3.1 Labeling Anomalies

Both Splunk and Crowdstrike offer labeling services in addition to their user inter-

faces. Common techniques to label anomalies include building comprehensive sets of

rules and using machine learning classifiers. A novel machine learning based technique

for labeling malicious request is currently being developed in the DBOS system.

This new technique can quickly and accurately label incoming requests based on

their malicious nature. Because it is based on machine learning instead of more

traditional rules, this system can output the probability of any incoming traffic being

malicious. This has the distinct advantage of giving a user a clear idea of how likely

an incident is of being malicious before they start investigating, which can help direct

a user’s efforts in investigation.

This does come at the price of being understandable. A rule is designed to capture

a single type of attack, which means any request that is flagged has a corresponding

reason to be flagged. Machine learning based approaches are often opaque, meaning

that in order to fully understand why a request is malicious, a user will need to

manually investigate that request. Therefore, making that investigation process as

quick and painless as possible is vital.

21

3.2 Information Retrieval

Because DBOS is built on the fundamental assumption that databases are the building

blocks for a system, retrieval of anomalies within the system is trivial. The current

DBOS stack, which supports the Nectar Network web application, logs all incoming

requests to Vertica. A labeling daemon can automatically label these logs as malicious

or benign by applying the machine learning model to them. As such, retrieving the

data for the web app is nearly trivial, executed as a series of SQL queries on the

database.

Additionally, because Vertica is a column oriented database, it stores data tables

by column rather than by row [9]. This is particularly efficient when users are filtering

traffic based on the values in specific columns, which is the expected behavior for

investigation. This makes loading information into the interface quick and easy.

3.3 Codebase

The codebase was developed in R using the Shiny [10] package, which is a web appli-

cation framework. Importantly, Shiny establishes "reactive" bindings between inputs

and outputs, allowing for an interactive user experience with minimal coding. Ad-

ditionally, Shiny comes with many prebuilt widgets that are directly usable out-of-

the-box or with suitable customization options. The structure of code utilizing Shiny

can be split between the user interface (UI) and server logic. The UI specifies the

layout of inputs and visualizations that are provided to the user in the web applica-

tion itself. The server logic defines "reactions" to changes in user inputs that may

result in new UI elements/visualizations along with internal changes to the server

environment. The following example describes a typical interaction between the UI

and server within a deployed web application. A user selects a filtering option from a

dropdown menu. This change in the dropdown menu value prompts a new query with

the newly selected filtering option. The returned data is then redisplayed in real-time

to the user. This structure, in which user inputs immediately change the display,

22

makes Shiny applications reactive and provides immediate feedback to users. There

are some cases where users will want to spend time editing their inputs before they

are processed, in which case a more traditional submit button makes sense. However,

the ability to respond to user input in real-time makes the user experience fluid and

seamless, and is vital to the designed interface.

23

24

Chapter 4

Interface Design

The goal of the interface is to provide a security administrator with the necessary

resources and visualizations to further investigate predicted/flagged anomalies. To

that end, I have developed a local web application using R to facilitate anomaly

investigation. In particular, the web application consists of three tabs that each

display relevant data or visualizations that can be updated in real-time based on user

input. The first tab (default tab on launch) is the overview page (Figure 4-1), which

allows the user to apply various filters to the provenance data for interactive display.

The second tab is the search page (Figure 4-3), which allows the user to directly query

the provenance data using SQL commands as input. The third tab is the stats page

(Figure 4-5), which allows the user to visualize anomaly trends through a historical

line graph of detected anomalies.

4.1 Prioritizing anomalies

The main function of the overview page is to provide an interface for a user to filter

anomalies based on the available logged fields and an anomaly threshold. This allows

for anomaly prioritization based on the filtering options selected. An example of

how this process is enacted can be seen in Figure 4-1. The left sidebar specifies the

available filtering options and the right main content displays the output data table

based on the selected filtering options.

25

Figure 4-1: Web Application Overview Page

The sidebar consists of two components: the anomaly threshold and advanced

search options. The anomaly threshold is simply a slider between 0 to 1 that spec-

ifies the minimum value of the predicted label that should be displayed in the out-

put data table. The advanced search options allow a user to filter for any num-

ber of HTTP fields with associated values. The full list of available HTTP fields

in the dropdown menu is as follows: ‘cookie: JSESSIONID’, ‘getAuthType’, ‘get-

ContentType’, ‘getContextPath’, ‘getLocalName’, ‘getMethod’, ‘getPathInfo’, ‘get-

PathTranslated’, ‘getProtocol’, ‘getQueryString’, ‘getRemoteAddr’, ‘getRemoteUser’,

‘getRequestURI’, ‘getRequestURL’, ‘getRequestedSessionId’, ‘getServerName’, ‘get-

ServletPath’, ‘header: accept’, ‘header: accept-encoding’, ‘header: accept-language’,

‘header: connection’, ‘header: cookie’, ‘header: dnt’, ‘header: host’, ‘header: referer’,

‘header: upgrade-insecure-requests’, ‘header: user-agent’. An operator dropdown

menu appears between consecutive field-value pairs to denote whether the relation

between them should be ‘AND’ or ‘OR’. It has been noted that this formatting

makes it impossible for the user to specify complex or nested conditions based on

field-value pairs, but this functionality is available in the search page through SQL

queries. The syntax would be fairly long and convoluted, but it is fully possible

within the search page, which takes in raw SQL commands. The add and remove

options are fairly self-explanatory, and allow the user to define the number of field-

value pairs that will be considered. The submit button processes the chosen filtration

options into a SQL command that is then outputted in the main content panel. For

reference, the SQL command associated with the filtration options selected in Figure

26

4-1 is “SELECT LOG_TIMESTAMP, RAW_REQUEST, MODEL_LABEL, SNORT_LABEL FROM

HTTPLOG_REQUEST_LABELED WHERE MODEL_LABEL > 0.70 AND RAW_REQUEST LIKE

‘%"getRemoteAddr" : "81.174.251.27"%’ AND RAW_REQUEST LIKE

‘%"getRequestURI" : "%index.php"%’ ORDER BY MODEL_LABEL".

Figure 4-2: Web Application Overview Popup

The main content is a filtered list of labeled entries in the database. There are

three columns that correspond to the “EntryID", “Predicted Label", and “Snort La-

bel". The EntryIDs are the UNIX timestamps that correspond to unique HTTP

requests. Importantly, each timestamp is a clickable link that generates a popup

containing the raw HTTP field-value pairs in a human readable format. Figure 4-2

displays a popup that results from clicking on the first EntryID from the data ta-

ble in Figure 4-1. Note that the value of “getRemoteAddr" matches the input value

of “81.174.251.27", and the value of “getRequestURI" matches the input value of

“%index.php", in which % denotes a wildcard character that represents zero or more

characters. The predicted label is the outputted probability from the previously de-

scribed ML model that predicts anomalous Nectar Network requests. The output is

consistent with the anomaly threshold option selected in the sidebar that corresponds

to a minimum value of 0.7. The Snort label corresponds to ground truth, which was

used to train and evaluate the machine learning model. Notably, new entries will only

have a predicted label with no available Snort label. By default, entries are sorted in

27

ascending order by the predicted label, but there are ascending and descending sort

options available for each column.

4.2 Investigating anomalies

Figure 4-3: Web Application Search Page

The main function of the search page is to enable the user to directly query the

underlying Vertica provenance database. This is done by inputting and executing

arbitrary SQL queries, which gives the flexibility needed to handle complex investi-

gations. An example SQL command has been executed and displayed in Figure 4-3.

The left sidebar specifies user inputs and options, and the main content panel displays

the result of the SQL query.

The sidebar provides several quality of life features to facilitate the search process.

The top checkbox dictates whether the user text input below should be cleared every

time a new query is submitted. Importantly, queries are not sanitized or modified

before submission. The web application operates under the assumption that it is

being used by a security administrator or other party with intimate knowledge of the

underlying Vertica provenance database schema. An additional quality of life feature

is that queries can be submitted by either using the submit button or pressing the

keyboard enter button. Once a query has been submitted and displayed, a link is

28

generated under the history section with the exact text submitted. This allows the

user to easily resubmit a previous query by simply clicking on the associated link.

Note that the history only maintains the previous 10 submissions, and each submission

in the history is unique. Repeatedly submitting the same query will simply result in

that query staying at the top of history.

Figure 4-4: Web Application Invalid Search

The main content, on the right of Figure 4-3, consists of the table that results

from the most recent query submitted by the user. Importantly, the text of the most

recent query is displayed in bold above the table for ease of use. In the event of an

invalid SQL query, the web application handles it gracefully by displaying a two-entry

data table that consists of the problematic syntax as well as the original query string.

An example of an invalid SQL query can be seen in Figure 4-4.

4.3 Historical Analytics

Figure 4-5: Web Application Stats Page

The main function of the stats page is to provide a historical view of anomalous

behaviors by visualizing aggregate anomalous activity over various timeframes and

29

dates. The default settings and associated line plot are shown in Figure 4-5. The

left sidebar specifies all available user options, and the main content panel displays

the resulting line plot. It should be noted that there is no submit button as in the

other pages since the line plot reacts automatically to changes or selections in the user

options. This is simply because there are no text inputs in the stats user options that

would cause unnecessary and excessive queries upon all textual changes whatsoever.

Users can use the historical view to recognize peaks in the number of attacks which

might point to a concerted attack effort, or to understand long term trends in their

security.

The sidebar consists of only two components: the anomaly threshold and time

unit. As in the overview page, the anomaly threshold dictates the minimum value at

which predicted labels are considered to be truly anomalous. The time unit has three

options: day, hour, and minute. The time unit indicates the granularity at which

anomalies should be aggregated and displayed in the line plot.

(a) Selecting a subsection of the line graph.

(b) Displaying the newly selected subsection.

Figure 4-6: Web Application Interactive Stats Plot

The main content displays the line plot with the selected user options. Impor-

tantly, the line plot is generated using the plotly package, which is specialized for

30

interactive visualizations. Figure 4-6 demonstrates one such capability in that sub-

sections of the line graph can be selected and magnified by the user. Also, as shown

in Figure 4-7, there are tooltips accessible by user mouse hover that displays a tuple

of the exact date and number of detected anomalies. The top right portion of the

plot contains icons that showcase the full utility of a plotly plot. From left to right,

the corresponding icons allow the user to download the plot, zoom freely, pan, zoom

in, zoom out, autoscale, reset axes, show closest data on hover, and compare data on

hover.

31

32

Chapter 5

User Studies

Throughout the development of the web application, I actively sought out user feed-

back to better design the application itself and understand the needs of potential

users. Concretely, I have conducted a longitudinal study involving five industry pro-

fessionals to gather and incorporate feedback into the web application. In an initial

and final study given to the five participants, they were given a brief explanation on

the purpose for the web application as well as a live demonstration of its main features

at the time. After each page was described and displayed in its entirety, each user

was allowed to freely explore the page to their satisfaction. Afterwards, they were

given a page-specific survey to determine whether key aspects of the page related to

functionality, aesthetics, and ease of usage were well implemented. Users were asked

to give numeric scores between 1 (strongly disagree) to 5 (strongly agree) for each

question. They were also given an open-ended prompt at the end of each page survey

to provide general feedback and suggestions.

5.1 Initial Study

The initial study was performed in early March when the general functionality, design,

and implementation of the web application was completed. Table 5.1 displays the

questions given to and aggregate scores given by the participants after the guided,

live demonstration and free exploration process of each page. Scores were generally

33

Table 5.1: Initial Study Results

Question Aggregate Score
Overview Page

How well do you feel you can prioritize anomalies based
on the available sidebar options? 2.8

Does the data table display relevant anomaly information
clearly and effectively? 3.2

Would you consider the layout of the page to be
well-organized and aesthetically pleasing? 3.8

Is it simple and easy to use the provided interface to
produce your desired output? 3.8

Search Page

How well do you feel you can investigate anomalies based
on the available sidebar options? 3.6

Does the data table display relevant anomaly information
clearly and effectively? 3.2

Would you consider the layout of the page to be
well-organized and aesthetically pleasing? 3.8

Is it simple and easy to use the provided interface to
produce your desired output? 4.4

Stats Page

How well do you feel you understand historical anomaly
trends based on the available sidebar options? 4.8

Does the line plot display relevant anomaly information
clearly and effectively? 4.0

Would you consider the layout of the page to be
well-organized and aesthetically pleasing? 4.6

Is it simple and easy to use the provided interface to
produce your desired output? 4.4

34

above average, but there were some poorer scores in the overview and search pages

that warranted further development. The general feedback regarding both pages

was that the data table returned by queries was relatively cluttered and lacking in

functionality. At the same time, the limited number of available side options in both

pages made it difficult to truly prioritize or investigate anomalies in detail.

5.2 Web Application Revisions

Several quality of life changes were implemented following the initial study to improve

upon the user interface and general functionality of the web application. In particular,

all data tables were replaced and rendered using the DT package, an R interface for

working with JavaScript DataTables, rather than the default Shiny package. This

allowed for search options within the table itself as well as column-specific sorting

options (ascending or descending order). At the same time, the HTTP field-value

pairs were not displayed in plain text as another column in the overview page. Instead,

the timestamps were used as unique entry IDs with clickable links. When clicked on,

these links produced popups that displayed HTTP field-value pairs in a standard

table format, making it much more accessible. With respect to the overview sidebar

options, the advanced search options were added to let users filter based on any of

the fields in the HTTP requests. This allows users to quickly and efficiently dive into

only the requests they’re interested in. With respect to the search sidebar options,

the unique history provided a much needed quality of life improvement that made

investigations much simpler and easier. Users can now recall a previously executed

query to see the result again, or to make small edits to the query as they explore the

data. Additionally, the line plot in the stats page was replaced and rendered using the

plotly package rather than the ggplot package. This allowed for interactive features

incorporated directly into the plot itself as described in the “Historical Analytics"

section of the “Interface Design" chapter.

35

5.3 Final Study

The final study was performed in early April after careful consideration and imple-

mentation of feedback received by those in the initial user study. Table 5.2 displays

the questions given to and aggregate scores given by the participants after the guided,

live demonstration and free exploration process of each page. Scores were extremely

positive, and the vast improvement compared to their corresponding initial values

suggest that the web application revisions were generally favorable and beneficial.

36

Table 5.2: Final Study Results

Question Aggregate Score
Overview Page

How well do you feel you can prioritize anomalies based
on the available sidebar options? 4.4

Does the data table display relevant anomaly information
clearly and effectively? 4.8

Would you consider the layout of the page to be
well-organized and aesthetically pleasing? 4.4

Is it simple and easy to use the provided interface to
produce your desired output? 4.6

Search Page

How well do you feel you can investigate anomalies based
on the available sidebar options? 4.4

Does the data table display relevant anomaly information
clearly and effectively? 3.8

Would you consider the layout of the page to be
well-organized and aesthetically pleasing? 4.2

Is it simple and easy to use the provided interface to
produce your desired output? 4.4

Stats Page

How well do you feel you understand historical anomaly
trends based on the available sidebar options? 4.8

Does the line plot display relevant anomaly information
clearly and effectively? 4.8

Would you consider the layout of the page to be
well-organized and aesthetically pleasing? 4.6

Is it simple and easy to use the provided interface to
produce your desired output? 4.6

37

38

Chapter 6

Closing Remarks

6.1 Future Work

While I am pleased with the current version of the interface, there are additional

features which would be welcome. Many of these features relate to the daily user ex-

perience with the interface, as opposed to the experience of investigating a particular

anomaly; most would be necessary for a professional grade consumer product.

6.1.1 User Profiles

As it currently stands, the interface operates without saving any user preferences or

changes. While this works for investigating anomalies, for someone who is using the

software daily the ability to save the current session and reopen it another day would

be useful. Associating saved sessions, as well as session histories, with a user profile

would do just that.

6.1.2 Multiple Databases

Currently, the interface operates on a single Vertica database which represents the

labeled logs for a single web app. However, in modern companies it is not uncommon

to have tens of applications, each of which is hosted on a different system. For a

system administrator trying to protect all of these applications at once, being able

39

to quickly identify anomalies specific to each application is vital. This would likely

involve pooling from multiple databases and including added filters so that users can

search for anomalies in specific databases.

6.2 Conclusion

Overall, the current interface contains most of the core features necessary for inves-

tigating anomalies as they come into a DBOS web application. Using the novel ma-

chine learning approach to labeling anomalies offers security administrators to quickly

narrow down which possible anomalies are most likely real, letting them quickly pri-

oritize their investigative time and effort. Providing historical analytic allows experts

to quickly identify rapid spikes in malicious traffic, which in turn allows for rapid

mobilization against any attacks. And when investigating possible anomalies in or-

der to determine their severity and impact on a system, allowing security experts to

quickly search for the exact incidents they are interested in and see all of the related

information is vital. There are still improvements that can be made, but the initial

ability of the interface to accomplish these key goals is positive.

40

Bibliography

[1] A. Skiadopoulos, Q. Li, P. Kraft, K. Kaffes, D. Hong, S. Mathew, D. Bestor,
M. J. Cafarella, V. Gadepally, G. Graefe, J. Kepner, C. Kozyrakis, T. Kraska,
M. Stonebraker, L. Suresh, and M. Zaharia, “DBOS: A dbms-oriented operating
system,” Proc. VLDB Endow., vol. 15, no. 1, pp. 21–30, 2021.

[2] D. Kumar, Q. Li, J. Li, P. Kraft, A. Skiadopoulos, L. Suresh, M. J. Cafarella,
and M. Stonebraker, “Data governance in a database operating system (DBOS),”
in Heterogeneous Data Management, Polystores, and Analytics for Healthcare -
VLDB Workshops, Poly 2021 and DMAH 2021, Virtual Event, August 20, 2021,
Revised Selected Papers (E. K. Rezig, V. Gadepally, T. G. Mattson, M. Stone-
braker, T. Kraska, F. Wang, G. Luo, J. Kong, and A. Dubovitskaya, eds.),
vol. 12921 of Lecture Notes in Computer Science, pp. 43–59, Springer, 2021.

[3] “Owasp top 10 security report.” https://owasp.org/Top10/. Accessed: 2022-04-
16.

[4] “Splunk website.” https://www.splunk.com/. Accessed: 2022-04-17.

[5] “Companies using splunk.” https://enlyft.com/tech/products/splunk. Accessed:
2022-04-16.

[6] “Using the infosec app for splunk.” https://splunk-infosec-
documentation.readthedocs.io/en/latest/5%20-%20UsingInfoSec/. Accessed:
2022-04-16.

[7] “Splunk: Search, filter and correlate.” https://www.splunk.com/en_us/resources/videos/search-
filter-and-correlate.html. Accessed: 2022-04-16.

[8] “How to use crowdstrike dashboards.” https://www.crowdstrike.com/blog/tech-
center/customizable-dashboards/. Accessed: 2022-04-16.

[9] “Why all column stores are not the same,” tech. rep., Vertica.

[10] “Shiny documentation.” https://shiny.rstudio.com/reference/shiny/1.0.5/. Ac-
cessed: 2022-04-17.

41

