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ABSTRACT

A three-dimensional model of electromechanically coupled poroelastic systems
is developed, and general two-dimensional solutions are found for the case of an
isotropic, homogeneous biphasic layer of finite thickness. All processes are assumed
to be governed by a linearized theory. Limitations of the model are discussed both in
terms of mathematical considerations and with regard to application of the model to
articular cartilage. The solid displacement, fluid velocity, stress, and the electrical
current density and potential within the layer are predicted for boundary conditions
representing:

e electrical to mechanical transduction, with potential or current stimulation;

¢ mechanical to electrical transduction, with and without fluid flow normai to
the tissue surface;
and

e an electrically driven mixed boundary value problem with intervals of pre-
scribed displacements and intervals of prescribed stress.

The general solutions for the case with zero current density are interpreted physically.
Numerical soluticns for the fields are obtained for all three cases, with a special
algorithm presented for the rapid solution cf the third case. Asymptotic solutions are



iii

found for the first two cases in the short-wave (infinite-depth) and long-wave (one-
dimensional) limits, and are found to agree with the numerical solutions. Numerical
solutions are found in the long-wave limit of the first case with boundary conditions
that correspond to those of experiments in the literature. The theoretical predictions
are in good agreement with the data when parameter values from the literature are
used. Such agreement is also shown in the long-wave limit of the second case. The
results of all cases are interpreted in terms of the feasibility of an electrokinetic
surface probe for measuring the electromechanical properties of biphasic materials
such as articular cartilage. It is found that material properties can be inferred
for depths on the order of the imposed wavelength or the diffusion boundary layer
thickness (whichever is smaller) when surface stress and potential are measured as

a function of frequency, wavelength, and the amplitudes ( at the surface ) of the
vertical current and displacement.

Thesis Supervisor: Alan J. Grodzinsky
Title: Professor
Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology
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Chapter 1

Introduction

This thesis presents a model of electromechanically coupled poroelastic systems. A
poroelastic medium will here be taken to be a medium for which any macroscopic
volume element contains both a solid and fluid continuum. The first version of
a poroelastic theory was developed in the early 1920’s [99] to study consolidation
of soil under a load. Later versions have been used in a variety of fields such as
reservoir modeling and petroleum exploration [7,91]. Electromechanical coupling
has also long been recognized as important in poroelastic media, with applications
such as geological exploration [37]. More recently, electromechanical phenomena
have been identified as fundamental to the behavior of biological conmnective tissues
such as bone [45,94,95,105], and cartilage [4,33,44,67).

The model presented here will be general enough for all of these applications,
and the range of parameters used should allow applications in many areas. The com-
putations presented here, however, were performed using parameters pertaining to
electrokinetic transduction in soft connective tissues such as articular cartilage. This
is a particularly fruitful use of the theory as it suggests a non-destructive method
for the measurement of certain physical and biochemical parameters of cartilage,

e.g. mechanical or electrical stimulation of the surface [34,35]. Since these pa-

13
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rameters are greatly altered with the onset of cartilage d2generation in joint disease
[33,51,74], a device { “probe” ) based on this model could detect changes in cartilage
properties associated with, e.g., the early development of osteoarthritis [51]. Even
though several relevant one-dimensional models have been presented ( cf. §1.2 ), a
one-dimensional mode: ‘s insufficient for the geometry of an sn vivo measurement.
This introductory chapter will describe the microstructure of cartilage. This will
motivate the use of electromechanical coupling to model the properties of this partic-
ular medium. The historical background of the field of clectromechanically coupled
poroelasticity will then be presented. The mathematical model used here will then be
developed, and the following chapters will describe case studies of a finite-thickness,
two-dimensional layer of a poroelastic medium under boundary conditions describ-
ing different idealized configurations of the aforementioned probe. The boundary
conditions include current driving, in which the mechanical and electrical fields re-
sulting from an injection of current are studied, mechanical driving, in which the
fields resulting from a mechanical displacement at the surface are studied, and a

mixed boundary condition representing a probe with spaces between electrodes.

1.1 The Structure of Articular Cartilage

The purpose of this section is to acquaint the reader with the basic macro- and micro-
structure of cartilage and to motivate the macroscopic electromechanical model pre-
sented herein. The changes which occur in osteoarthritis will also be briefly discussed
so that the utility of the above probe may be seen. The descriptions provided here are
based on information gathered in the last decade (44,71,74,88], and are not intended
to be complete. Because details are constantly changing, the reader is referred to
the literature for further information.

Articular cartilage is a multiphasic, polydisperse, inhomogeneous, anisotropic
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medium. Articular cartilage is found covering the ends of bones ir diarthroidal
joints ( ¢f. figure 1.1 ), and serves two basic functions there. First, it serves as a
lubricating layer which drastically reduces friction in joints [84]. Second, it helps to
distribute the load imposed on the bones forming these joints, especially in the case
of weight-bearing joints. The thickness of the layer is on the order of millimeters, and
depends on the joint and species being considered [74). Adult articular cartilage has
no blood, nerve, or lymph supply [71]. The interface between the deep ( “bottom” )
zone of the cartilage and the underlying ( “subchondral” ) bone is referred to as the
“tidemark.” The top “articular surface” is in contact with synovial fluid in the joint
and with the opposing articular surface. Even though there are living cells ( termed
chondrocytes ) present in cartilage, in the adult they constitute only 1 — 10% of the
wet weight [44]. They do not appear to contribute significantly to the mechanical
and electromechanical properties of the tissue, which are determined largely by the

extracellular matrix.

1.1.1 The Extracellular Matrix of Articular Cartilage

The extracellular matrix consists mainly of proteoglycans, collagen, and the inter-
stitial fluid phase. These three constituents determine such macroscopic parameters
as the elastic moduli, fluid permeability, and electromechanical coupling of the car-
tilage.

Water makes up 65% to 80% of the wet weight of cartilage [44,74]. Most in-
vestigators believe that the majority of fluid in cartilage is unbound and freely
exchangeable with the surrounding media. This view was recently challenged by
Torzilli et al. [101], who reported that as much as 30% of cartilage water may be
bound. However, Maroudas et al. [76] performed a series of experiments including a
repeat of Torzilli’s, and reported values closer to 1%. The exact content varies with

depth from the surface, age, and with the degree of degeneration, if any. /n vivo
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the fluid phase contains numerous electrolytes which balance the net charge of the
proteoglycans, and, along with oxygen and nutrients, supply the physiological needs
of the chondrocytes [44,71].

Most of the dry weight of articular cartilage ( 65% to 75%, see [44,71] ) is col-
lagen. Cartilage ( “type II” ) collagen, like other collagens, consists of triple helical
macromolecules. The basic subunit is a polypeptide chain wound in a left-handed
helix. Three of these helicies are then wound around each other in a right-handed
super-helix, with both hydrogen and covalent bonding between the constituents,
forming tropocollagen, which is the basic unit of the collagen molecule. Tropocoila-
gen molecules are about 1.5nm in diameter, 300nm in length, and have molecular
weights on the order of 3-10° daltons. Collagen molecules further aggregate to form
fibrils. In many connective tissues, fibrils are found to group together to form larger
fibers of different diameters [104].

The fibrils of collagen form a loose mesh in cartilage. Collagen is woven fairly
tightly near the surface, but it is randomly oriented and dispersed more homoge-
neously throughout the bulk of the volume [84]. The ~ 100 nm gaps between the
fibrils are significantly larger than the 2 to 10 nm “pore” size relevant for the exclu-
sion of solutes in diffusion and for the fluid permeability [74]. The woven network
of cross-linked collagen fibrils gives a large tensile strength to this loose mesh. The
collagen is largely responsible for the shear strength of cartilage and for its resistance
to the swelling pressure generated by the proteoglycans [74,84)].

Proteoglycan aggregates ( PGAs ) are large, complex polyelectrolytes woven
through and tightly associated with the collagen matrix, and make up about 20%
of the dry weight of articular cartilage [44,71]. These aggregates resemble test tube
brushes in structure ( ¢f. figure 1.2 ). They are roughly 1 um in length and .7 um in
diameter, and have a molecular weight of about 10® daltons [88,44]. Each aggregate

is made up of proteoglycan monomers attached to a chain polymer of hyaluronic

=
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acid ( ¢f. figure 1.3 ). The monomers consist of glycosaminoglycans ( “GAGs”,
once known as mucopolysaccharides ) attached to a protein core. The GAGs, which
weigh ~ 10° daltons, are linear polymers of disaccharides, principally chondroitin
sulfate ( “CS” ) and keratan sulfate ( "KS”,cf. figure 1.3 ), attached by a special

linking region to a core protein.

At physiological pH of about 7.4, the CS dimer has two negative charges, and the
KS has one, on the average. This results in a fixed charge density of about 6.1 M /1
for normal articular cartilage [44]. On a macroscopic scale this charge is neutralized
by the presence of mobile positive ( “counter” ) ions in the fluid within the cartilage.
The concentration of all the coions and counterions in the cartilage is deterrined
by the Donnan equilibrium relations, and results in an osmotic pressure difference
between the fluid in the matrix and the external bathing solution [74]. This osmotic
pressure, which may also be regarded as a result of electrostatic repulsion between
the GAG constituents ( [44] ), results in a swelling pressure. This pressure, which
indicates a tendency for the matrix to absorb fluid, is a major component of the

compressive modulus of cartilage [26,74,87].

The presence of the PGAs in cartilage has two other consequences of note. First,
there is a significant change in several of the mechanical properties. For instance,
the size of a solute which is free to diffuse or be advected into the matrix is reduced
to roughly 5nm ( ¢f. above ). Thus it is seen that the PGAs act like a swollen
gel which is constrained by the collagen matrix. This is particularly apparent in
terms of the changes of stiffness and volume of cartilage with changes in the pH or
solute concentration of its external bath [44]. Also, experiments have shown that
the mechanical response to a difference in osmotic pressure across the surface of
the cartilage is directly related to the response to a mechanical load applied to the
surface [74]. Thus if we define

P =P - Am, (1.1)
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with hydrostatic pressure P, and osmotic pressure difference A7 ( relative to the
point of fluid pressure reference ), P may now be used in place of P within a single
domain or across an interface ( e.g. the cartilage surface ) to predict a mechanical
response ( see also [26] ).

The second major consequence of the presence cf PGAs in articular cartilage is
the existence of electrokinetic coupling. When there is macroscopic fluid motion in
cartilage due to a pressure gradient, the counterions are dragged in the direction of
the flow ( ¢f. figure 1.4 ). This results in a macroscopically measurable streaming
potential, which is on the order of 2 10 mV drop over a 1 mm sampleifa 1 pm/s flow

is induced, requiring a pressure drop on the order of 10° N/m? = 1M Pa ~ 10atm.

1.1.2 Implications for Diagnostic Measurements

It is now possible to see what some macroscopic measurements imply about the
physicochemical state of the material. For example, if the proteoglycan content
is reduced, then the concentration of excess counterions necessary to balance the
fixed charge density will also be reduced. This will result in a drop in the osmotic
pressure, and thus the compressive stiffness of the cartilage. Since the conductivity
of a ( dilute ) ionic solution is proportional to the concentration of mobile ions
( [44] ), the electrical conductivity of the medium will also be reduced. Lastly, the
decrease in fixed charge density will clearly result in a weakening of the electrokinetic
coupling.

- Several changes occur in diseased tissue. Osteoarthritic tissue, for instance, is
known to have a lower concentration of proteoglycans and a larger water content [71].
This excess water has been associated with a fibrillated or damaged collagen ma-
trix [75]. Such tissue has lost some ability to resist the swelling pressure. Further-
more, it appears that the PGA content decreases in direct proportion to the sevérity

of the disease [71].
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Figure 1.4: Streaming potential induced by a macroscopic flow. The mobile,
“counter” ions ( “+” ) in the interstices are dragged by the fluid, and constitute
a streaming current. The potential measured will be in a direction opposing this
current and the implied charge separation, as expected from Le Chatelier’s principle.

Reproduced from [35] with permission of the authors.
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Experimental evidence suggests that all of the parameters which describe the
electrokinetic coupling undergo significant changes during the onset of csteoarthritis.
First, it is known that the fixed charge density measures the proteoglycan content of
the cartilage [74]. It is also known that if the charge density is varied by modification
of the PGA content ( as opposed to, e.g., external bath concentrations ), the Darcy
permeability of the tissue varies approximately like the inverse of the charge density.
Thus knowledge of the permeability alone gives significant information about the
status of the cartilage.

Further, both the stiffness [74] and the coupling parameter which determines
the streaming potential [44,35) change in enzymatically modified cartilage. On the
basis of experiments involving artificially induced arthritis in laboratory animals and
enzymatic degradation of excised articular cartilage, it has been conjectured that the
changes in the streaming potential can be detected at an earlier stage than those of
stiffness alone [35,82]. Also, visual inspection alone is not always sufficient to detect
even large scale changes in, e.g., proteoglycan content of osteoarthritic tissue |74].
Thus a probe able to measure non-destructively the electromechanical parameters

of cartilage in vivo could well be beneficial to the early detection of osteoarthritis.

1.2 Background for Electromechanically Coupled
Poroelasticity

Mathematical models of biphasic media have been used to describe phenomena from
acoustic waves in saturated soil [11] to the electromechanochemical response of artic-
ular cartilage [35]. The earliest published use was Darcy’s 1856 treatise [23] on the
public springs in the city of Dijon, in which he stated the proportionality between
pressure gradients and relative velocity of fluid and solid. The motion of the solid

phase was taken into account by Terzaghi [99] in the early 1220’s, and his theory
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was generalized by Biot [6,7] in the mid-1930’s. This section gives a brief s.ummary
of approaches to poroelastic modeling that have been used in various contexts.
Swelling gels are frequently modeled as poroelastic media with high porosities
( fluid volume fractions } ¢ ~ 1. Because of the high porosity of cartilage, these
models can be used in some situations. One such theory has been proposed by
Tanaka and co-workers [97,98], who assumed that ¢ = 1, and that, as a result,
the fluid is stationary while the solid matrix moves through it. They also assumed
that the solid matrix obeys a linearly elastic, isotropic constitutive relation whose
stiffness parameters are properties of “the fiber network alone” [98]. The only solid-

fluid interaction in this model arose from a Darcy’s law body force which is equivalent

to
Vp = —fo& (1.2)

where p is fluid pressure ( force / total area ), @ is displacement of the solid, and f isa
friction coefficient. In the low-frequency limit of the ( one-dimensional ) momentum

balance, this produced a diffusion equation:
4 2
fou= (K + EG)a. u (1.3)

( G and K are the shear and bulk compressibility moduli for the solid matrix,
respectively ). Good agreement was obtained with data from both light-scattering
[98] and free-swelling [97] experiments.

A somewhat different approach to free-swelling was taken by Friedman [38,39].
Because of the large volume changes exhibited by cornea ( the subject of his theory ),
a Lagrangian coordinate system was used. Friedman wrote equations of conservation
of mass for the solid and fluid, a momentum-conserving form of Darcy’s law, and
a relation conserving total momentum. It should be noted that conservation of
momentum had not been used by other authors [29], making it necessary to introduce

ad hoc assumptions and extraneous parameters. By using experimental data relating
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equilibriumr sweliing pressure [29] ( defined to be that force / total area exerted by
the solid on an infinitely fluid-permeable surface ) and tissue permeability [50] to
tissue hydration ( i.e. porosity ), an irreducible system of hyperbolic equations
was obtained. Numerical solutions fit available data somewhat better than previous
theories.

A much more general approach to biphasic problems has been taken by Mow and
co-workers [3,52,58,60,61,69,83,84,85,86,102,103]. Mow developed a mixture (“two
variable”) description based on the work of Craine, Green and Naghdi [21,43], and
Bowen [16]. In this system, density, displacement, stress, and constitutive relations
of the fluid and solid are kept separate. By considering a system in which the
solid and fluid elements are incompressible, Mow obtained the equation of mass
conservation (83|

¢V il + (1-¢)V @ =0, (1.4)
where %/, &” are fluid and solid displacements, respectively. This intuitive result was
also written down by Biot [8]. The separate momentum equations are ( without

body forces ):
D

s _ V"_ ® —8
ot T T+
D v -
! — W 3
P Dt V.1 + 77,
with
7 =7 = K(o - ). (1.5)

Here p' is the mass per unit total (tissue) volume, #* the velocity, T® the partial stress
field, 7 the interaction body force, all of species i, and K is inversely proportional
to the Darcy permeability.

The constitutive equations also set this approach apart from others. They are
derived from very general mixture-theoretic, thermodynamic considerations. Af-

ter linearizing this theory, it is assumed that: the system is isotropic; the solid is
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strictly elastic ( s.e. non-dissipative ); the fluid is inviscid; and there is no stress

produced by relative vorticity of fluid and solid. The resulting equations are [83]:

T’ = —apl+ Ael+ 2Ne
and,
T/ = —pI—Qel,
(1.6)

where p is (¢ times) the fluid pressure, I is the unit tensor, « is the solid to fluid

ratio (1 — ¢)/#, e is the small strain tensor, with

(SRR

(83.'"'1' + 82,‘“!’) ’ (1'7)

€5 =

e=tre=V- #°, and the parameter @ defines the change in fluid pressure due
to dilitation of the solid matrix. Here p is the fluid force per total ( as opposed to
fluid ) area. Some authors [26,35,83,92] have used the total area as a basis, while
others have used either fluid area [91,7], or both [15]|. By considering a free surface
of tissue at equilibrium with a fluid bath, the fluid area basis explains the unusual
factor of a in T".

Two noteworthy features of this model are the distinction of the stress fields for
the fluid and solid phases, and the use of Q. Other developments [7,15,26,35,91,92]
neither consider two separate stress fields for the fluid and solid phases, nor describe
explicitly the pressure force of the fluid acting on the solid. Also, the fluid stress
here contains a contribution other than the pressure. Others ( ¢f. below ) consider
the pressure to be the fluid stress field. It should be noted, however, that this
contribution was eliminated [3] by setting @ = 0, making the stress fields consistent
with those of other authors.

Another important contribution by Mow and co-workers is the consideration of

the nonlinearities produced by strain-dependent permeability. The results of several



§1.2. 27

experiments led to the introduction of a dependence of K ( ¢f. equation 1.5 ) on the

strain in the solid [52,58,60,69,83,84].
K = Ko exp(—Mye), (1.8)

where K, and M, are constants, and e = 8,v is the (one-dimensional) matrix consoli-
dation. The resulting nonlinear equations were solved exactly for the one-dimension-
al static case, and demonstrate good agreement with available data [60]. Creep and
stress relaxation solutions have been examined [52]. The effects of finite deformation
theory have also been investigated [58].

Another approach is the “single variable” representation founded by Biot [6-
13,15]. He considered strain and porosity f.o be natural variables with which to
describe the status of the medium. ( This was strictly true only of his later works [8—
13]: his first work and that of Rice and Cleary [91] are similar — ¢f. below. ) A
completely phenomenological approach was used to linearly relate the stresses and

the fluid pressure to strain and porosity of an isotropic system [8]:

oij = 2Ne;;+ (Ae + Q£)5.',-
p = G@ie+ Re.

Here N, A,Q,Q1, and R are elastic constants, §;; is the Kronecker delta, e;; is the
strain in the solid matrix ( ¢f. equation 1.7 ), p is the force on the fluid per unit
total area ( as T/, above ), 0;; = T;;, and € = V .U, where U is the displacement
of the fluid. Consideration of thermodynamic reversibility and the existence of an
elastic potential showed that Q; = @, but it should be noted that the arguments
given in the first work [7] are not valid for compressible fluids. A similar error led

to the conservation of mass equation
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but equation 1.4 was properly used for the case of incompressible constituents. Biot
used Darcy’s law
Vp = —k(! — o) (1.9)
for time-dependent problems. Recently the equations of this theory, including the
extension to anisotropic media with compressible constituents, were rigorously re-
derived by Burridge and Keller using the method of spacial homogenization [17].
Several differences from the Mow approach are apparent here. First, Biot used
the fluid pressure variable, p, to represent all of the forces on the fluid. Also, the
pressure exerted by the fluid on the solid is not ( explicitly ) contained in his ex-
pression for solid stress. Furthermore, Biot was allowing both the fluid and solid
constituents to be compressible. In the limit of incompressible constituents ( also

taken by Mow ), we have the relations [15]:

Q+R
"R

Under additional non-restrictive assumptions, however, the approach taken by Mow

=1 and ¢*R'=0.

et al. is completely equivalent to that of Biot.

The roles of Biot’s parameters A,Q, and R are not, however, easily visualized.
Biot and Willis [15] presented a number of intuitive Gedanken experiments relating
the naturally measured experimental parameiers to these phenomenological param-
eters. Rice and Cleary [20,91], on the other hand, started with the more readily
visualized parameters from Biot’s first work [7]. In this approach, stress ( now T
represents total force / unit total area ) and fluid pressure ( force per unit fluid
area ) are naturally controllable variables, and strain and porosity are expressed as

linear functions of these variables. The constitutive laws are [91]:

2G’1 1

2Geu (1"1 + P5-,) (Tkk + 3[’)6;1 + — H K

—=)pbi; (1.10)
and

¢—do= (Tu + 3p) — (1.11)

K"
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where G is the shear modulus, v is Poisson’s ratio, K = 280t H is a modulus
’ S(1—-2v)?

related to compressibility of constituents, and ¢¢ is the undeformed porosity of the
material. Darcy’s law is still used for ( inertia free ) time-dependent preblems, but it
should be noted that because it is stated in terms of mass flux ( ') and equilibrium
fluid density po [91] using,

§=-pocVp,

the permeability x may be przssure dependent for a compressible fluid. The equation

of conservation of mass, now valid for compressible constituents is
am+V-G+V.(mi*)=0 ,

with m = ¢p.

By considering two time scales, Rice and Cleary developed what they termed the
“drained” and “undrained” elastic coefficients. The “drained” parameters refer to
the static response of the medium after infinite time. This allows all relative solid
and fluid motion to cease, and yields the familiar G and v of linear elasticity. If,
however, the response is considered after a time short enough that no filuid motion
has occurred ( f.e. the mass of fluid per unit volume, m, is unchanged ), the
“undrained” parameters are evcked. One of these is the undrained Poisson’s ratio
Vy, and the other, B, relates fluid pressure to total normal stresses on a surface

element by

_ Aoy
Ap = B3 .

Since v, and B can be¢ expressed in terms of the parameters of equations 1.10
and 1.11, the entire theory is reformulated using the intuitive parameters ¢, G, v, v, B,
and «.

This theory was also utilized by Chandler and Johnson [19,54]. First, equa-
tions 1.10 and 1.11 were re-written in terms of ¢,k ( ¢f. equation 1.9 ), ks, k,, and

ks. Here, ks, k,, and k; are the bulk compressibilities of the (“drained”) solid matrix,
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solid constituent, and fluid phase, respectively. The authors then deveioped several
limiting cases of the acoustic propagation theory of Biot [11,13]. Specifically, they
showed that the “slow” compressional mode predicted by Biot is equivalent to the
diffusive behavior predicted by others. In so doing, they found and corrected errors
( in predicted mechanical diffusion coefficients ) made by other authors [54]. They
also verified that fluid motion is negligible in the gel limit ¢ — 1.

While the application of poroelastic theories to the purely mechanical behavior of
connective tissues has now matured, the electromechanical transduction processes
described in the previous section have only recently begun to be elucidated. In
several recent works [18,65), classical theories relating pressure gradients to poten-
tial gradients have been utilized to good effect. In particular, Salzstein and Pol-
lack [94,95] have predicted stress generated potentials in bone using the poroelastic
theory of Mow along with electrokinetic coupling virtually identical to that below
in equation 1.12.

A somewhat different approach has been taken by Grodzinsky and co-workers [25-
28, 32-36,44,56, 63,64). Their stress-strain relations [25] are those of the single vari-
able approach of Biot and of Rice and Cleary, modified to include effects of chemical
gradients: '

0i; = 2G(c)€i; + [A(c)err — B(c) — (p — A)]6y;

where ¢ is a local electrolyte concentration, 3 is a “chemical stress” ( used to account
for changes in equilibrium strain with ¢ ), and Ar is again the osmotic pressure
( ¢f. §1.1.1). The constituents are considered to be incompressible. Thus, for a one-
dimensional problem in which an infinitely permeable platen compresses cartilage

against an impervious surface, mass conservation requires

¢vf = —v, ,

where v$ denotes the z-component of velocity v*.
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The electrokinetic interactions are described by a modified form of Darcy’s law:

S -
Js kay —kaa .V

Here, kj; is the ( short-circuited ) Darcy permeability, ki2 is the ( null-pressure )
electrical conductivity, and k;2 and k;; are coupling coefficients that are equal by
Onsager reciprocity. This model has been successfully used to describe the results
of one-dimensional experiments involving mechanically generated streaming poten-
tials and current-generated mechanical stress in articular cartilage [25,35,64]. Also,
electrical, mechanical, and chemical properties of the fluid and sclid constituents
( along with an idealized geometric representation of the extracelluiar matrix ) have

been used to predict the k;; with some success [25,26,62,94].



Chapter 2

Governing Equations

2.1 Introduction

This chapter presents the differential equations and parameters of the model used
to describe a homogeneous, linearly-elastic, isotropic, electromechanically coupled,
poroelastic medium. The first section will state the governing equations of the
sjstem, along with the primary assumptions 6n rwhich the equations are based.
Working equations will then be developed, and the two-dimensional version will be
stated in terms of partial differential equations in rectangular coordinates. ( The
equations are developed in cylindrical cooerdinates in appendix 2.3.2. ) The second
section will discuss the assumptions in more detail. In particular, the relation of
the model assumptions to the measured properties of articuiar cartilage will be
considered. Alsd, the equation of consemtioﬁ of mass will be derived more carefully,

showing the order of terms dropped in linearizing this equation.

32
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2.2 The Model

The three-dimensional model presented here is based primarily on the electrokinetic

coupling approach used by Eisenberg [25] and Frank [35] ( ¢f. §1.2 ). The mechanical

development is also strongly influenced by that of Biot (7] and that of Rice and

Cleary [91]. The following assumptions are made concerning the poroelastic two-

phase continuum and the disturbance to be analyzed:

1.

and

The electromagnetic wavelengths are much longer than the length scaie of the

layer so that the electroquasistatic form of Maxwell’s equations is applicable;

the disturbance wavelength ( A ) is sufficiently long compared to the inter-

molecular spacing of the tissue matrix that a continuum model may be used;

. the frequencies ( f ) of interest are such that the charge relaxation time in the

fluid ( about 1 ns for cartilage ) is much smaller than 1/f;

. the frequency of disturbances ( f ) is low enough that inertial and acoustical

effects are negligible;

. all processes are isothermal, and chemical reactions are negligible;

the individual solid and fluid constituents are isotropic, homogenecus, and

incompressible;

motion of the fluid phase can be modeled by Darcy flow — the fluid phase may

be considered to be inviscid at macroscopic solid boundaries;

the amplitude of the solid displacement field is small enough that the mechanics

of the solid matrix can be represented by a linear, elastic model.
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These assumptions are discussed more thoroughly in section 2.3.

Using assumption 6, conservation of mass is (8,3, ¢f. §2.3.2 below]
V- +V-5 =0, (2.1)

where «g is the solid volume fraction, v° is the local velocity of the solid matrix, and

7 is the local velocity of the fluid’. Conservation of momentum is ( from assumption
1)

-t

V.g=0 (2.2)

where the solid stress ¢ measured per unit total area is given by the constitutive

relation [15,25,26] ( using 6 and 8 )
oij = 2Ge¢;j + ng(ALEu - P) (2.3)

Here, G and AL are the Lamé coefficients of the golid matrix, P is the fluid pressure
( per unit total area ) including both hydrestatic and osmotic pressure [26], and ¢;

is the small-strain tensor
l(% + ﬂ‘i)
2 63,- az.- ’

€ij (2.4)
1,7 =1,2,3.

To describe electrical interactions two more equations are needed. First, under
the assumption 3, the current density is solenoidal, corresponding to instantaneous

charge relaxation, so that

V.-J=0o, (2.5)

where J is the current density. The solid-fluid interaction is governed by linearized

electrokinetics ( which encompasses both Ohm’s and Darcy’s laws as special cases ):

VPt ke ) (77, (26)
Ve b2y —b22 J

1Notation is defined in Appendix C.
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where ® is the electrical potential, and V'* is the relative fluid velocity ¥/ — ¢*. Here,
by; is the ( open-circuit ) Darcy hydraulic resistivity, by is the ( no flow ) electri-
cal resistivity and &;; and b;; are coupling coefficients that are equal by Onsager
reciprocity. The coupling exists because ions in the Debye layer near the charged
moieties of the solid matrix are being dragged by the fluid. Details of the derivation
of equation 2.6 may be found in the literature [24,55]. It should be emphasized
that electrical snteractions snfluence the measured by;, and mechanical snteractions
influence ba;. For example, open- and closed-circuit measurements of permeability
for bovine articular cartilage differ by roughly 10% [34].

Two additional relations are useful. By taking the curl of the first and second

‘rows of equation 2.6, assumption ( 6 ) and det(b;;) # O yield

(=]

VxV* = (a)
and, (2.7)

VxJd = 0. (b)
The latter equation also arises in the electroquasistatic case of a homogeneous,

'isotropic, monophasic medium ( ¢f. Appendix 2.3.2 ), but is arrived at differently.

The above differential equations are easily written in rectilinear coordinates.
Because only two-dimensional ( plane-strain ) geometries are considered in this work,
the two-dimensional equations will be presented. By writing the local velocity of the

solid matrix as

v

oi (2.8)
the equation of conservation of mass 2.1 becomes
ag(8,0cuy + 8,0:u,) + vy + 3,v, =0. (2.9)

( All field and coordinate variables will be dimensional for the rest of this section:

“s”’g have been omitted for clarity. ) The conservation of momentum is expressed in
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terms of the solid displacements and pressure by substituting equations 2.4 and 2.3

into 2.2, yielding

(2G + AL)V?u, + (G + AL)(8,0,u, — B%u,) — 8,P =

2.10
(2G + AL)Vus + (G + AL)(8,8,uy — du,) —8,P = O, (219)

where homogeneity of the Lamé coefficients and equivalence of the mixed partials
0,9, = 3,9, have been assumed. If the electrokinetic coefficients b;; are also homo-

geneous, then equations 2.6 become

OynP = —buVis) + biaJy.n (2.11)
OynP = buVi —budys,

where (y,s} represents the y or z component, as appropriate. Equation 2.5 ia just
any + a.J. =0. (2.12)

Given appropriate boundary conditions, the preceding eight equations may now be
sqlved for uy,u,,V,,V;, P, J,, Ji, and ¢. Equations 2.7 may be used in place of two

of the equations 2.6. In rectangular coordinates, equations 2.7 become

oVe—-d,V, = 0
and, (2.13)
3,J,—3,J, = 0.

2.3 Limitations

This section will discuss the limitations of the model in terms of the assumptions
made in deriving the model equations ( page 33 ). First, the implications of the
physical assumptions will be compared to properties of articular cartilage which
have been investigated experimentally. Then purely mathematical limitations of the
model will be discussed. In particular, the size of the non-linear terms ignored in

the equations of conservation of mass will be discussed.
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2.3.1 Relevance to Properties of Articular Cartilage

The purpose of this section is to examine the assumptions of the model ( on page 33 )
in light of experimentally measured properties of articular cartilage. The basis of

each assumption will be discussed, and implications of simplifications examined.

1. The assumption of electroquasistatics is valid so long as f <« ¢/L, where
J is the frequency of the applied disturbance ( ¢f. §3 ), ¢ is the speed of
light, and L is the smallest length scale being considered. The thickness of the
cartilage layers being considered here is approximately 1 mm, and the shortest
wavelengths will be about 1 um. Since the highest frequency considered in this

work is considerably iess than 1 Hz, this assumption is well founded.

2. The longest length scale for which the microstructure of the extracellular ma-
trix is relevant is roughly either the largest dimension of a collagen fibril or
proteoglycan aggregate, or the interstitial pore size. In articular cartilage,
the collagen fibrils and PGA’s both have length scales on the order of 1 um
( §1.1 ), and the pore size is roughly 2 to 10 nm. Thus the 1 um wavelengths

mentioned above are at the limits of validity of this assumption.

Two facts ameliorate the seriousness of this situation. First, the highest wave-
lengths will appear only as short-wavelength terms in Fourier series solutions.
Second, an O(1)-amplitude driving field ( e.g. J in chapter 4 ) with a small
wavelength A will be seen to produce a response ( e.g. @ ) with amplitude pro-
portional to a power of 1/A. Thus the small Fourier coefficient and the natural

size of the response combine to reduce the effects of constituents of finite size.

3. The theory of electric fields in electrolyte solutions [65] predicts that the

time 7 required for concentration gradients on the scale of a Debye length
k™! ~ 1/(¢/0)D to equilibrate, is roughly ¢/o [81]. Here 0 ~ 1 mho/m
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is the conductivity of the solution in the vicinity of the Debye layer, and
€ ~ 806 = T-1071° farads/m, so that 7 ~ 10~ s [48]. Since the highest
frequency considered below is 0.1 Hz, and because macroscopic concentration
gradients are not imposed ( ¢f. assumption 5 ), the Debye layers may be

considered to be in quasi-equilibrium.

. The equation of momentum conservation ( 2.2 ) ignores an acceleration term
which has the form [11,12,13] pd?i&, where p is an average mass density. To
estimate the error incurred by dropping this term, consider its size relative to
the terms kept, e.g. (2G+ ;) V2u,, where u, is a horizontal displacement ( §3 ).
If the V operator has length scale at most L, then the acceleration term would
have a non-dimensional coefficient ¢ of the form ¢ = pL?f2/(2G + Ap). Since
gradients will occur over a length scale on the order of the cartilage depth,
L =10"% m is a reasonable choice here. Using p = 10% kg/m3,, f = 1Hz, and
2G + Ar = 10° Nm~? gives ¢ = 107%. Thus inertia and acoustic rropagation
are not significant for the range of frequencies or material properties studied

here.

. In vitro experiments have been successful at maintaining constant tempera-
tures, and show that the chemical composition of the cartilage samples are
not drastically different after mechanical and or electrical stimuli are im-
posed [32,33,34,63]. Also, the majority of researchers have found that nearly
100% of the interstitial water in cartilage is freely exchangeable, i.e. is not
reacting with the collagen or PGAs [76]. Further, there is substantial evidence
that the major ionic solutes in the interstitial fluid ( e.g. Na* and Cl~ ) do
not react or bind chemically with the macromolecules of the extracellular ma-
trix [44,74]. There is little or no evidence suggesting that the assumptions

of constant temperature and no reaction could not be realized in an in vivo
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experiment of a sufficiently short time duration.

. There is strong evidence suggesting that both the solid matrix and the in-
terstitial fluid in articular cartilage act as though incompressible under the
experimental conditions relevant to the current work [74]. By comparing the
change of volume under load with the volume of fluid expressed, Maroudas (73]
showed that the change in volume is virtually identical to the fluid lost. Also,
there is evidence that the Darcy permeability ( b} in equations 2.6 ) of car-
tilage is approximately isotropic in spite of the highly anisotropic structure
of the material ( ¢f. below ). This was suggested by experiments by Mc-
Cutchen [78], and verified more directly by Maroudas 72|, who measured nor-
mal and tangential permeabilities. Because of the close relation between the
Darcy permeability and the other electrokinetic coupling coefficients suggested
by micromodels [25], the scalar ( rather than tensor ) form of the b;; used in
equations 2.6 is reasonably justified. The tensor form would be appropriate in

cases for which anisotropy is deemed important.

Further, in spite of the fact that articular cartilage is neither isotropic nor ho-
mogeneous, many predictions based on isotropy and homogeneity have closely
matched experimental results {35,36,60,61,64,83]. It is clear, however that the
porosity, charge density, and collagen structure and content, are all depen-
dent on depth from the articular surface [44,71,74,84,88]. Furthermore, the
total collagen and proteoglycan contents and content profiles ( as a function of
depth ) varies significantly between individuals, and between joints of a given
individual [88]. Neighboring regions from a given joint, however, have less
marked differences. biagnostic interpretations of electromechanical measure-

ments will thus depend strongly on the latter.
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7. The use of Darcy’s law and equations like 2.6 have also had a great deal of
success in predicting one-dimensional experiments [35,64,83]. The main con-
sideration which must be addressed in using this law is the dependence of the
permeability ( and, by implication, the other b;; ) on such factors as strain and
pressure. Mow and co-workers [52,84] have used pressure and strain-dependent
permeability to fit one-dimensional permeation data [83] using a phenomeno-
logical relationship like equation 1.8. Maroudas [74] has also measured a de-
pendence of permeability on porosity ( and thus strain ), but did not find a
pressure dependence. The effect of non-linearities in the poroelastic behav-
ior of articular cartilage is a topic of current investige.ion {52,58,60,69,83,84].
The inclusion of non-linear effects may improve the fit of some types of ma-
terial parameters [64], but for small, one-dimensional deformations the linear
relation 2.6 is able to accurately predict data values under a wide variety of

conditions.

8: The use of linear mechanics is consistent with the use of a linear phenomenolog-
ical felation 2.6, and linear conservation of mass equation 2.1 ( ¢f. §2.3.2). In
fact, linear elasticity seems to predict the one-dimensional equilibrium stress-
strain relation for strains as high as 15% [25,26]. Also, the effects of the
intrinsic viscoelasticity of the solid matrix on the time dependent behavior of

articular cartilage are currently being examined [68,84].

2.3.2 Mathematical Considerations

This section will derive the equation of conservation of mass 2.1 in detail. In partic-
ular, the size of non-linear terms left out of the equations of mass will be considered.
The error due to ignoring the quadratic terms in the stress and strain tensors is

similar to that in single-phase elasticity, and is discussed by other authors [70].



§2.3.2 41

The roles of inhomogeneities and non-linear constitutive properties was discussed
in §2.3.1. Also, the assumption that there is no coupling of the relative rotation of
the fluid to the stress tensor in the solid made by some authors [83] is not required
in the current model because of equation 2.7. The development of this section is
based in part on analysis done by Mow et al. [83].

Consider first the separate equations of mass conservation for the fluid and solid

constituents. If there is no chemical reaction, then
8™ +V - (p*5*) =0, (2.14)

where p*/ is the mass of solid ( fluid ) per unit total volume. The densities also

obey the relation [83]
o} + 0’0y =0, (2.15)

where p}’ is the “true” density: solid ( fluid ) mass per unit solid ( fluid ) volume.

Assuming that the constituents are incomp “essible gives
p.l!(t) -_ p'l!(o) ,

so that taking 8; of equation 2.15, solving 2.15 for p/, and using 2.14 gives the
kinematic relation ( also stated by [83] )

Vi +aV 5"+ (" —¢/)-Vinp* =0, (2.16)

where ;
8
et = 1
TP
is the solid content volume of solid per volume of fluid, and ¢/ is the porosity, volume

a= ,

of fluid per total volume.

The usual solid and fluid dilitations ( in equation 2.1 ),

V. and dn=-V-i°. o (2.1)
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must now be expressed in terms of the above notation. First, define 7j and € by
p! =pl(t =0) (1 +7) and P =pt=0(1-9. (2.18)

Using ¢* = 9%, assuming that the initial density of the solid is uniform, gradp®(t =

0) = 0, substituting 2.10 into 2.1 and dividing by —p* gives
e+ (E—1)de+ Ve 5" =0. (2.19)
Thus
4 —
e=i+ J{J V. (e5%)dt (2.20)
where é(t = 0) = e(t = G) = 0 has been used. Thus the total error in assuming
that the relative change in mass density of the solid phase is e is the integral of the

divergence of a field proportional to the actual change in relative density and to the

velocity of the solid matrix. A parallel for the fluid phase gives ( n(t =0) =0)
. .
n=1+ /o v - (797)dt, (2.21)

which has a similar interpretation. It is thus reasonable to make the linear approx-

imations
e=é and n =i (2.22)

in 2.18 as long as fluid and solid displacements are small, e.g. ,
¢ .
/(; V. (7')dt/n < 1. (2.23)

Note that the only integrals of fluid and solid velocities appear in equations 2.20
and 2.21, so that it is only the magnitude of the displacements are relevant to the
approximations 2.22.

To complete the derivation of 2.1, equations 2.22 will be used to simplify 2.16.



§A.2 43

To this end, expand « in terms of & and 7:
[ a2 -
prp’(t=0)1—¢
a = 4 -
prp'(t =0)1+7
S 8
prp’(t = 0) “2 3 = (2.24)
= 1+ 0(n% é2, ne
pro’(=0) '+ 0T &1
= a{t=0)+h.o.t. = ap+h.o.t..

Also, using 5p’(t = 0) = 0 yields

Vinp' = VInp'(t=0)(1-¢) (2.25)

1~

Now substituting 2.22, 2.24 and 2.25 into 2.16 gives
~ 0 + ol — e —)Bie — ag(1 — e — n)(7* — ')Ve + h.o.t. =0. (2.26)

This may be recognized, by using 2.17, to be equation 2.1 with ( lowest order ) error
terms

ao(e + n)dse + ag(v* — 77) Ve.

Integrating these terms in time shows, as for equations 2.20 and 2.21, that the mass
relation 2.1 does not require that fluid or solid velocities are small, but only that
the dilitatiors and displacements are small. This implies that constraints on using
the linear differential form of mass conservation for poroelastic media are no more

stringent than those on using the linear equations of momentum conservation.

Appendix 2A: The Response of a
‘Rigid Conductor

To judge the magnitude of ® it is useful to consider the response of a rigid, single

phase conducting slab of thickness §° and conductivity o. Inside the conductor we
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have
' VxXxE =0
V.eE =
jemEe (2.27)
vV.J = —8.p
J = oF

which correspond to Faraday’s law, Gauss’ law, conservation of charge, and Ohm’s
law. The electroquasistatic assumption 3 on page 33 now gives d¢p < 3,J,, 3,J;.

Assuming further that Vo = 0, equations 2.27a, 2.27¢ and 2.27d give
Ve =o0.

where ® is the electrical potential with E=-V3. If subjected to the electrical

boundary conditions in equations 4.1, the result is

7 tcoshé(z+1) Jo eilky—wt) (2.28)
sinh§(z+1) | sinhé
and,
p = _Soshélz+l) (2:29)

kosinhé
The maximum magnitude of ® in 2.29 corresponding to the values used above (.7 =

1uA/mm?, o = lmho/in, and 6 =10"3m ) is

286mV A =10mm
|®maz = { 0.159mv A = 1mm (2.30)
0.0159mv A =.1mm

These values are very close to those in table 1.
There are two additional considerations. First, if the fixed charse density of
the solid matrix reverses sign, so do ;2 and b;;, but ® does not. This property

is preserved by equations 3.24, 4.5, and 2.29. Second, there are two choices for o

e
r E-ql“hv.. b
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in 2.29:

o= by = no-flow conductivity, I = 0 (2.31)

and,

82111

™ = open-flow conductivity, VP =0.

g = (bzg—b

The former is necessarily smaller, as the fluid drag on migrating ions is larger with
the fluid “held in place.” Since the boundary conditions 4.1 in §4.1 resemble this

more closely, o = b;; was used in equation 2.30 above.

Appendix 2B: The Momentum Equations in Radial

Coordinates

Many problems in poroelasticity have boundary conditions for which cylindrical
polar coordinates are more appropriate, The momentum equations 2.2 are thus
presented here in cylindrical radial coordinates for reference. ( The other model
equations, 2.1, 2.5, 2.6, and 2.7 are easily written in ccordinate form using standard

vector identities. ) In these coordinates, equations 2.2 become [40]

%(8,(ra") + 090ps — Opp) + 0505 —3,P = 0
(81 (rur) + s + Buas) + Dp0s - ~aP = 0 (2.32)
%(8,.(1'0,,.) + 0w+ 00w —3P = 0. (2.33)
The six independent strain coordinates are now
€&r = Oy, &s = 3(0rus + L(Bpu, — uy))
€0 = L(Oous+u,) €n = 3(8euto+ 1yu,) (2.34)

€ = Oyu, L € = 3(Bau,+0,u,) .

L 7
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If 8, = u, = 0 is assumed, substituting 2.34 into 2.3 and the result into 2.32 yields

(2G + AL)[B,ﬁarru, + 8,%6,:;,;] + G’;‘;[O}u, - 8,8,.rua] -a,P =0
(2G + AL) 5[060,ru, + B}us] + G(8, 18,11y ~ 8,285u,] — 20, P 0.

Il



Chapter 3

Solution of the Governing

Equations

This chapter presents the general, two-dimensional solutions of the governing equa-
tions 2.1 — 2.6. In the first section the equations will be non-dimensionalized and
Fourier transformed, while the following sections will present “particular” and “ho-
mogeneous” solutions. The homogeneous solutions will then be interpreted physi-

cally to gain insight into the implications of the model.

3.1 Non-dimensionalization and Transformation

Because equations (2.1-2.6) are linear, superposing solutions that have a single wave-
lengfh and frequency yields solutions to a large class of time and space dependent
problems. Because of the isotropy and homogeneity of the problem, rotating and
superposing the solutions to such two-dimensional problems produces the solutions
to three-dimensional problems.

Because of the above characteristics, the solutions to two dimensional cases will

be found via complex amplitudes. This is equivalent to using Fourier transforms

47
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and assuming all fields have a single wavelength and frequency. To do this, the

equations will first be non-dimensionalized by assuming that there is a current or

potential excitation with angular frequency w (= 27 f) and wavenumber k (= 27/})

imposed on the surface. The choice of current is due to convenience in finding

the “particular solns” ( ¢f. below ) and in solving problems with electrical forcing

( as will be seen in Chapter 4 ); displacement or velocity would have been equally

appropriate. This generates solutions which may be expressed in the form

and,

with

F4

z=5—_,

= asuy(z)etv -
= agu,(z)eilv’-we)
= Jopdyy(z)efthv -wh)

= Jopv, (2)efthu~wt)
= Jo %ﬁV, (2)ef(#v"-wt)
= Jo%ﬁV.(z)c"(""_""")
= Job6°byzp(z)eittv 1)

Job°b128(2) e (kv™-ut)

= Job'bia0y,(2)ef (v~

= o (a)ehr =)

= Joj' (z)e‘(kﬂ. —wt)

= J06 .bzz¢(z) e"(""' —wt)

6.2bu
and ay = Jom ’

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

where u, and u, are the horizontal and vertical solid displacement fields, v, v,,V},

and V, are the horizontal and vertical laboratory frame and relative fluid velocities
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[ respectively ), S = —o3s is the force per unit total area exerted on a plane of
constant z ( defined so as to be positive in compression ), gy, is the shear force in
the y direction on a plane of constant 2, J, and J; are horizontal and vertical current
densities, §* is the ( dimensional ) thickness of the layer, and b;; are the coupling
coefficients of equation 2.6. All “+” variables are dimensional ( ¢f. Appendix C for
notation ).

The transformed equations are found by substituting equations 3.1 through 3.6

into 2.1 through 2.7a, giving

aor(buy —tul) + 16y, +v, = O (3.8)

p—1671V, = —i671 (a)
r+Ve = (6) (3.9)

S+ibsV, = 571, (c)

¢' — b.Vs = -5 (d)
10y, — bru, — vy —sru;, = 0 -(3.10)

and,
2(1 - v)(u) — 6%uy) +ibu, —u —i6p = O (3.11)
2(1 - v)(u) — 6%u,) + 6%u, +ibu, —p° = 0.

These equations use the relation %'.;\_A:‘ e 2(1 —v), with v the Poisson ratio, and the

definitions

_ wbHJ" _ 6 2
byabz1
b = 3.13
6 = ké (3.14)
and,
Vo, = vy, +iry, (3.15)
Vi = vyg+iry

for the relative velocity. ( A* is discussed below equation 3.26 and in §3.3.)
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3.2 Solution

3.2.1 The Particular Solutions

To find a general solution to the above equations, we proceed as follows. If “'”

denotes j";, then substituting 3.6 intc 2.5 and 2.7b gives
Ji — 6%, =0 (3.16)
where 6§ = k6°. Thus the current density satisfies
Je = ks€®* + kge™%*, (3.17)
with k7, and kg constants to be determined. Also { from 2.5 and 2.7b ),
Jy = 16715 = ikye® — ikge™". (3.18)

Thus J will be treated as a known inhomogeneity in equations 3.8 to 3.11.

To obtain the general pa.rﬁcula.r solutions, it is assumed that there exists a par-

-t

ticular solution for which there is no relative velocity, s.e. V = 0. In this case

equations 3.9 give p® and ¢” immediately ( below ). Using 3.15 and 3.8 we find that
uf' = —ifub . (3.19)
Substituting for u, and u, in 3.11 gives thé two equations
n(uf" -uf’) = &p
', (3.20)

n(uf" — uf)

where n = 1 — 2v. These two equations are consistent, however, and lead to the

general particular solutions to equations 3.8 to 3.11:

Xp(z; knka) = (ﬂz,“'.’,vzgv'.’d”,8',03.,&,1'.',’,5:)1‘
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are given by ( jP and j¥ are j; and j, of equations 3.17 and 3.18 )

P
ull

E#[’WCG' - kse“' + ’1(’6766‘ + kse-s')

+ 6(ks — kz) cosh~y/sinh 6] (a)

sz [v(kre®® — kse™*%) + 6(ks — k7) sinh~/sinh 6]  (b)

—trub (¢)
—iruf (d)
67 (kre?® ~ kge%%) (e)
PP + 2inbuf f)

181 kye®® + kge~® + y(kre’® — kse~0*)
+ &(kg — k) sinh~/sinh 8] (g)
L (k)

51

(3.21)

In the above, v = é(z + 1), and equations 3.4 and 2.3 have been used in the form

8=p—2(1 —v)u, — 2bvy, .

The same two equations yield

Oys = 2n(ug, +i6u,) ,

(3.22)

(3.23)

from which 3.21g was derived. Note that because V? = 0, the particular solutions

should have no dissipative loss from the Darcy’s law part of equation 2.6. This is

true, as evidenced by the frequency only appearing as a scaling factor in the velocities

in the equations above ( r is the non-dimensional frequency ).
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Now the task is to find the homogeneous solutions to equations 3.8 through 3.11

corresponding to k7 = ks = 0 ( +.e.

—

J =0 ) and a particular solution due to the

current in equations 3.9. By substituting constants multiplied by exponentials of z

into the equations, the solutions are easily found to be
Xﬂ(z; kl: kz’ kSs k4'| k5v kﬁa k7a kB) =

N

e £

iy =iy
—

,ﬁ
Q & e @
g % &k % <%
—

ki

+ k4

(i )

e’ + k2

—2né
k 2iné J

(i 1—iz )
z
§—2ind—rz
2né — irz
2n
2nbdz
\ 2in(6z—1) |

(i )

-r

e 4+ ks

(i )
A
—apr
tagAr
—ig5
~2né
\ 2inéA |

(61 4

F-4

5 — 2né

2n

M 4 kg

—2n8 —irz

| —2néz
\ 2in(5z+1) J

iz\

+rz
e’* (3.24)

()
A
agr
sagAr | e~
T35
2né

\ 2inbA |

where k,---, kg are constants ( in y, z, and ¢ ) to be determined, and

Here

A

VI—iAT

(R(A) > 1).

A =kA®,

(3.25)
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. _ (2G + AL)¢0
A= \/—_—buw (3.25)

is the diffusion boundary layer thickness. Note also that

and

¢ = —b.p" . (3.27)

Given the general particular solutions, X¥, in §3.2.1, the complete solutior of equa-
tions 3.8 to 3.11 are now simply X + XP. Thus any solution to the untransformed
equations 2.1 to 2.6 ( with well-posed boundary conditions ) may be constructed by
superposing ( properly rotated ) this solution over k and w.

The crux of the solution now lies in the determination of ky,-- -, ks.

3.3 Physical Interpretation of
the Homogeneous Solutions

Each of the six solution vectors of equation 3.24 may be understood in terms of a

specific physical behavior. The first two ( those multiplied by k; and k; ) satisfy
V.g=V.# =0. (3.28)

Further, there is no relative motion between the fluid and the solid, resulting in the
lack of pressure or potential fields. Thus these “modes” represent the motion of a
monophasic incompressible medium of moduli G and A,. Tlie motion is a quasi-
static two-dimensional shear wave traveling in the y-direction. ( This wave is not
acoustic; ¢f. assumption 4 on page 33 .) Because of the isotropy of the model, there
exist similar waves traveling in the z- and 2-directions, decaying in planes normal

to the direction of travel!. The vertical decay of the fields over a length scale of A is

1 Analogous statements may be made about the other four solutions as well. The symmetry of all

six solutions with respect to reflection about the z, y-plane is also due to the isotropy of the model.
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not due to damping, as there is no frictional loss in this motion. The decay results
from the Laplacian nature of the momentum equations.

The second pair of solutions also obeys equations 3.28. Thus this motion also
represents shear waves traveling through the biphasic medium. In this case, though,

the relative motion is given by
V=1V, = —2inbet®s.

Both the decay length and the amplitude of the pressure field are independent of the
frequency of the imposed disturbance ( for a fixed 1 ). Further, the amplitude of
the pressure is proportional to b;;, the Darcy resistivity. From equation 3.24 we see
that these modes have a plane of zero normal stress at z = 0. These solutions thus
correspond to a semi-infinite slab driven by shear with no normal surface ( z =0)
stress. For example, with displacement applied at z - 0 such that there is no
normal stress ( at z = 0 ), there is damping and energy dissipation in the bulk. This
mode is like a steady Darcy flow through a medium, here modified to satisfy the
two-dimensional drive and mechanics of the sysiem. Displacement does not change
with f, while the relative velocities are proportional to f. In the limit A — oo, the

resulting Darcy-like flow corresponds to a y-directed relative velocity which decreases

linearly with depth. Note, however, that
¢H = _bcpni

8o that there is a streaming potential here which is not predicted by the Darcy law
limit ( J=0 ) of our coupling equations 2.6. There is electrical energy dissipation
here, so that strictly energetic considerations show that the “Darcy” coefficient is
different here than that predicted in a system not including electrokinetic effects.
The last two modes contain all of the dynamics of the system. For these two

sclutions, equation 3.28 no longer holds, and both phases undergo both shear and
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compression. These modes are most easily understood by considering the two limits
A —0and A — oo.
A—-0:

In this limit the frequency is high enough that the diffusion boundary layer

thickness is a vanishing fraction of a wavelength. Thus it will be important in the

long-wave limit ( ¢f. §4.2.2 ). We have
A~ A7le7T 4 0(A), (3.29)

so that

Abz ~ Z_e-"% + 0(Akz"). (3.30)

It is now clear that, in these modes, all of the fields oscillate and decay over a length

of order A*: the behavior is that of a diffusive boundary layer of thickness A*.
The relative magnitudes of the fields are also easily interpreted. If the fifth mode

is scaled so that we have a solution to the problem of a semi-infinite slab with a

displacement of magnitude a; at the surface we obtain ( dimensionally )

 }
() [ aes
ul 1
v ~ agwAe%% a sty W) +Ass (3.31)
vl togw
H VR YR g
\ P ks =6/ | (2G + ) gee™% )

(once again, ¢7 = —b.p™). First, note that the ratic of fluid velocity to displacement
( in the y- or z-direction ) is that of solid to fluid volume. Since both constituents
are here modeled as iﬁcompressible, the conservation of mass is accomplished by
the exchange of volume between fluid and solid. Also, the horizontal motions are a
factor of A smaller than the vertical. As expected in a normal boundary layer, the

secondary, or generated motion is much smaller than that imposed.
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The characteristic pressure is also informative. Equation 3.31e shows that the
pressure is proportional to the uniaxial modulus of the material, with the force
increasing with the ratio of displacement to boundary layer thickness. P may also

be written

(3.32)

P = { ¢61611A‘wa.' e—i%... (a)
\/4’61(26' + Ap)bpia) P (b)

Equation 3.32a has P proportional te the matrix resistance b;; acting over a length
A’ on a characteristic velocity way. Equation 3.32b gives P as the geometric average
of the modulus of the solid matrix and the matrix resistance b;; acting over a length
ay on the veldcity way. The dynamics are thus expressed as the balance of the
elastic ( solid ) and resistive ( dissipative ) forces.

The relative phases of the variables are also understandable. The fluid and solid
velocities are 180° out of phase, as expected in a dissipative limit. Also, the pressure

leads the vertical displacement by 45°.

A—o00:

In this limit, f is so low ( or A so short ) that the diffusion depth is much greater
than the length scale of the disturbance ( A ). This is the quasistatic limit, which
yields .

A~1— -;-A" +0(A™) (3.33)

so that
z‘ /A.

Az~ kz' + O ). (3.34)

‘Thus none of the three pairs of homogeneous solutions have any frequency depen-
dence ( to first order ), as expected. Note, however, that V;,,V, # 0 in these ( ks, ks )

modes, and that they are still the only way to transmit compression waves. The

frequency is now so low that the only length scale ( other than a; ) is A. Fur-
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ther, equations 3.31 and 3.32a are now true if A* is replaced by k~%. Thus the

interpretations given to equations 3.31 and 3.32a are easily modified to this case.



Chapter 4

The Current Forced Response

4.1 Introduction

This chapter describes the response of an infinite sheet of “tissue” of finite thickness
to a surface probe which imposes a known normal current density to the articular
surface. We consider an infinite, planar, poroelastic sheet of finite thickness ( fig-
~ure 4.1 ). There is no displacement or transverse fluid flow at the bottom surface,
and the top is covered by a fluid and subjected to one of a variety of mechanical and
electrical boundary conditions ( discussed below ). The desired results are ¢.g., the
solid displac_ement, fluid velocity, and electric fields in the bulk, and the mechanical

stress and electrical potential at the surface.

First, a method of solution appropriate for the boundary conditions of interest
will be described. Next, the results of numerical calculations and asymptotic long-
and short-wave analyses for two cases will b‘e presented. The predictions of the
long-wave limit of the model will be found to agree with data from experiments

coerresponding to this limit.

58
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Figure 4.1: Geometry and boundary conditions for current forcing. A
two-dimensional sinusoidal current density is applied to the top of a §°-thick layer.
The top and bottom are constrained so that there is n6 motion of the solid matrix
or normal fluid flow. The bottom is in contact with an insulator, so there is no
vertical current density there. The top electrode is segmented to allow measurement
of ®(y,z =0).
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4.2 Results

This chapter treats two boundary value problems involving two-dimensional surface

stimulation of the tissue layer of figure 4.1:

Case 1: the displacement, velocity, pressure, potential, and current density fields
due to a vertical current density applied to the top surface;

and

Case 2: the displacement, velocity, pressure, potential, and current density fields

due to a potential applied to the top surface.

The corresponding boundary conditions are:

Case 1:
uy(O) =0 u(0)=0 V,(00=0 3(0)=1 (4.1)
uy(—1) =0 u,(-1) =0 V,(-1)=0 j(-1)=0

and

Case 2:

4(0)=0 u,(0)=0 V,(0)=0 ¢(0)=1
4y (-1) =0 u,(-1) =0 V,(=1) =0 5(~1)=0

The mechanical boundary conditions correspond to no displacement of the solid
matrix at the top or bottom surface, and no normal fluid flow at the top or bottom
surfaces. Note that the condition V,(0) = @ for no normal velocity relative to the

top surface is the linearization of the condition

AV =Jo22(V, - i;-{-v,,a,,u.) , (4.2)

bu

where V,,V,, and u, are considered to be non-dimensional ( 4 la equations 3.3

and 3.1 ) functions of ¥,2, and t. Thus this condition will orly be valid when
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the second term above is small. Because u,(y,z = 0,—1) = 0 here, however, this
linearization becomes exact at both boundaries.

The electrical conditions represent the material being supported by an insulaiing
substance. At the top surface either a normal current is injected or a potential is
prescribed. These conditions were chosen because they simulate a probe that could
measure the electromechanical properties of, e.g., a layer of cartilage on bone in
vive!. With the given boundary conditions, it would be appropriate to measure the
resulting surface stress ( s(0) ) and potential ( or current ) at the surface.

It is clear from these boundary conditions and the linearity of the model that

the solution to case 2 may be obtained by rescaling that of case 1:

A
A — case 1
case 2 ¢(0)cm 1 ’

where A is any field variable. Since, the denominator above is always very close to
unity ( ¢f. §4.2.2 ), the second case will not be described in detail in this work.
To solve the above problem it is only necessary to determine the k;, - - - , kg of §3.2.

It is evident from equations 4.1 and 3.17 that
Jx = sinh~/sinh§, (4.3)

where 4 = §(2+1), so that

cﬁ e’
= _2sinh6 a.nd ks = (4‘4)

kr " 2sinhé’

The current density is thus known in closed form, and has the same form as that

for a rigid conductor ( ¢f. §2.3.2 ).The particular solutions corresponding to these

1t is known that v,(—1) s 0 in adult articular cartilage due to the relative impermeability of
the so-called “tidemark” interface between cartilage and subchondral bone [79]. In addition, the
conductivity of the subcondral bone is known to be at least one to two orders of magnitude lower

than that of cartilage {57|.
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k7 and ks may be found from equations 3.21 of §3.2.1 to be:

= sinhv/sinh é
» o= t coshy/sinhé
W@ = (1 — 6 coth 6) coshy + vsinhy
v 2né*sinh 6
W = ~q coshy — 6 coth 6sinh v (4.5)
* 2n6%sinh é
P o= 6~ cosh~/sinh é
& = P° + 2inbul
o = i (1 — 6 coth §) sinhy + ycoshy
ve =0 5smhé

These particular solutions, along with the mechanical boundary conditions from

equation 4.1, determine the boundary conditions appropriate for the homogeneous

solutions, X#,

4.2.1 Numerical Results

The coefficients k; through k¢ were calculated by inverting the matrix determined
by equations 3.24, the six mechanical boundary conditions of equations 4.1, and
the boundary contributions of equations 4.5. Matrix inversion was performed by
the NAG Library routines FO3ADF and FO4AHF using double precision arithmetic.
The parameter values used in the calculations correspond to those measured for

cartilaginous connective tissue [25,34]:

b b 1-10"X2 1.107%2
( 11 12) ____( me ™3 (4.6)

ba1 bas 1-10- X 10.-m

2G+ ) =5-10°%; 6 =1mm

( + L) m3 ( 4, 7)
v=04 ¢o = 0.8

Note that since the ratio A*/6* ranged from .25 to .025, and because the wavelength

was varied from ten times to one tenth the thickness of the medium, the results
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presented will be appropriate to many applications ( the dimensional magnitudes
may be rescaled easily ). Thus the specific values chosen for f,),2G + )\, and b;;
are not crucial. Studies of the effects of varying v and ¢ have only been performed
for a slightly different set of boundary conditions in a long-wave case ( §4.3 ).

Five sets of vaiues were obtained. These correspond to A fixed at .1 mm (“short-
wave”), 1 mm, or 10 mm (“long-wave”) while f swept logarithmically through .001 Hz
to .1Hz, and f fixed at .001 Hz (“low-frequency”) or .1 Hz (“high-frequency”)
while A swept logarithmically from .1mm to 10mm. The boundary conditions
implied by the calculated k; were checked against equations 4.1. The error in
the boundary conditions was generally less than 1078% over the range A > .1lmm,
001 Hz < f < .1 Hz, though errors as high as .03% occurred near f = .1 Hz and
A = .1mm. ( Errors were calculated relative to the maximum amplitude at the
corresponding f and A. ) Table 4.1 lists the maximum ( over z ) values obtained for
various frequency and wavelength combinations. The driving current density fields,
which are known in closed form, are plotted in figure 4.2, which shows the value for

A =2mm ( j, and j, are independent of frequency ).

Most of the results are plotted as surfaces of magnitude or phase of 2 non-
dimensional transform variable versus depth ( z ) and either log f or log . Plots of
all of the fields calculated for each set of values are in Appendix A.1. In figure 4.3,
the change in |u,| and |u,| with frequency with constant A = 1 can be seen. Note
the shift of the maximum amplitude of u, towards z = 0 as the frequency rises. The
values of |V;| and |V;| are similarly presented in figure 4.4. Here it may be seen that
there is a significant horizontal ( “slip” ) velocity at both z = 0 and 2z = 1, along
with a similar trend in a.ﬁ:\plitude maxima for V. Figure 4.5b is an example of the
insensitivity of the potential, ¢, to frequency. This holds throughout the range of )

for which calculations were performed.

The length scale for significant changes in the fields is found to be the lesser of A
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[ (Hz)/ uy us Vi Vi p b= (mV) s(0)
A (mm) uy (um) | uj(pm) |V} (nm/s) |V} (nm/s)| P (kPa) 5(0) (kPa)
0.125 3.12.1072 | 1.67 (1.48) 0.516 0.552 (.309) 0.335
0.001/10 2.60 (2.14)
3.00 0.749 16.7 5.16 5.52 3.35
6.37-10"3% [ 6.47-10"3 0.164 6.19.10°2 0.155 2.19-102
0.001/1 0.159
0.153 0.155 1.64 0.619 1.55 0.219
6.65-10°%|6.65-10°5| 1.71-10°3 | 8.27-10~* | 1.59-10~2 2.27-1073
0.001/0.1 1.59-1072
1.60-1073]1.60-10°3| 1.71-1072 | 6.27-103 0.159 2.27-102
1.26-1072 { 4.99.1073 | 1.76 (1.49) | 0.833 | 0.107 (0.031) 3.46- 1072
0.01/10 2.58 (2.14)
0.302 0.120 17.8 8.33 1.07 0.346
0.01/1 2.18-107% [ 3.21.10°8 0.664 0.371 8.46-10~2 0.150 8.86- 1073
5.23-10"2 [ 7.70- 102 6.64 3.71 0.846 ' 8.86- 102
6.65-1075({6.65-10%| 1.70-10~2 | 6.27-10"3 | 1.59-10"2 2.27-10"3
0.01/0.1 : 1.59.10"2
1.60-10"% | 1.60-10°3 0.170 6.27-10"2 0.159 2.27-1072
H 1.26-1073 | 5.57-1074 | 1.78 (1.49) | 0.984 2.78-10°2 3.48-1078
0.1/10 \ , 2.57 (2.14)
3.02-1072|1.34-10" 17.8 9.84 0.278 3.48.10"2
0.1/1 1.97.-10~4 | 5.08- 1074 0.893 0.728 2.61-10"2 0.145 1.19-1073
' 473-10-%|1.22.-10~2| 803 7.28 0.261 ' 1.19-10-2
6.36-1075 | 6.48.10°% 0.164 6.19-10"2 | 1.55-10"2 2.19-10°%
0.1/0.1 1.59-10~2
1.53-1073% | 1.56- 1073 1.64 0.619 0.155 2.19.10°2

Table 4.1: Maximum field magnitudes for current forcing. These are the values

of the maxima ( over z ) of the magnitudes of the indicated field variables. The

upper value at a given f/) is the non-dimensional value, while the lower one is a

dimensional one based on the parameter values given in equations 4.6 and 4.7, with

Jo = 14/m?. The values in parentheses are minima, and are included where dcemed

significant. The values of the surface stress, 3(0) { and S(0) ), are given instead of

the maxima of s over 2.
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Figure 4.2: The Current Density Field J, /Jo. The case with §/X = 1/2 is pictured.
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Mag of Pressure, A = | mm
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Figure 4.5: Magnitude of the pressure and electrical potential, |pj and |¢|,
A=1mm,f = .001 to .1 Hz. The maximum values in the diagrams are 1.55 kPa
and 0.159 mV respectively. The minimum is zero. Note that the maximum value of

® at f =.1Hz is ozly 0.145mV.
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and A*. This trend can be viewed as a competition between equations 3.29, and 3.33,
and can be seen in the. |u,| and |V,| of figures 4.3b and 4.4b,. This trend is also
noticeable in the phases of all of the fields, as is exemplified by arg(u,) at A = 1mm,
plotted in figure 4.6. Note that the phase changes in the top .08 mm, or roughly
3A*, when f = .1 Hz, but changes over .3 mm, or roughly 4A°*, at f = .01 Hz. For
lower frequencies the same trend is observed but the bbunda.ry conditions at z = —1

have a stronger influence.

There are two readily observed effects of wavelength. One is that the penetration
depth of the disturbance is proportional to the wavelength, as is demonstrated by
the pressure distribution in figure 4.7. This is to be expected from equations 3.24,
especially in light of the approximation 3.35. For the case of short wavelengths,
|y, |usf, |p|, and |@| are independent of frequency. This is demonstrated for the
pressure in figure 4.14 ( inset ). Further, [V’| and |V;’| are proportional to the
frequency, as expected. For lower frequencies, the phases of all field variables are
roughly constant over the region of significant magnitude. At higher frequencies the
slope of the phase change rises so that, in some cases, there is a significant phase

change even over the boundary layer.

4.2.2 Asymptotic Results

To gain physical insight and to verify the numerical solutions, we now consider two
limits. The short-wave limit corresponds %o 6§ = 2x6*/\X — oo, or a wave of finite
wavelength on an infinitely deep layer. The long-wave limit corresponds to § — 0,

or a one-dimensional surface disturbance.
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Phase of Horiz Disp, A =1mm

Figure 4.6: Phase of the. horizontal displacement, arg(u,), A = 1mm, f = .001 to
.1 Hz. The range is from -1.32 to 0.079 radians. The spikes at tae bottom surface
come from the difficulty of determining the phase of a variable whose magnitude is
approaching zero. Other, similar spikes were removed by linearizing the data when

a large ( > 0.3 radians ) jump occurred.
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Mag of Pressure, { = 1077 Hz

Figure 4.7: Magnitude of the pressure, |p|, f = .001 Hz,A = .1 to 10mm. The

maximum value is 5.52 kPa, the minimum is zero.
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The Short-Wave Limit

In the short-wave limit § — 00, so that equations 3.24 suggest that all of the bound-

ary conditions 4.1 at 2 = —1 may be used at z = —o0, thus treating the problem in
terms of boundary layer theory. To implement this, the particular solutions of §4.2

must be expanded to order exp(—§), yielding

2

o= e o= et
P = —671ef = -
i £-2 AW 4 1pp 25,8 (48)
wb = 671+ 2)e® uf = =672
vi = —iruf v = —iruf,

where 2 = 6z = kz*. If the values of the above particular solutions are subtracted
from the boundary conditions 4.1 and equations 3.24 are used, the equations for

ky,- -+, kg are obtained:

uf(0) = —ﬁ, = 67 Yky — ks + ks + ka + ks — ko]
wl(-1) = 0 = kie™® —kzef +ks(1—6)ed + ky(1 + 8)e’
+khge 2 — kgeht
ud(0) = 0 = ky+ka+ksA+keA
ul(-1) = 0 = kye % + kye® — ksbe® + kybe® + kgAeA® + kgAeht
vi(0) = 0 = —kyj—ks+ k32in§ - k42in§ + ksaoA + keagA
v(-1) = 0 = —kie™% — ks’ + ks(2ind — 1)e7® — ky(2iné + 1)’
+ksaohe A% + kgapAer?
(4.9)
It is now assumed that
ka, ke, ke = O(e~%) , (4.10)

and 4.9 are solved to O(e~?), consistent with the expansion of the particular solu-
tions 4.8. Because all terms with k3, k¢, and kg are now a factor of ¢~% smalier than

~ the others, the system 4.9 need only be solved for ki,k;, and ks. The values of the
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latter three coefficients, when used in 3.24 give

Uy

Us

and,
s(0)

where

$oCE73[1 — 2(A — 1) — elA-1)8) et
1¢oC62[(A—1)2 + A(elA )% — 1))e?
1poCr6~2[(A—1)(1 + 2) + ao(A — e(A1)f))e?
$oCr6%[Aao(1 — e + (A~1)3]e!

- 1Cr§2[A — (A 1)3) 2

ACr§2[1 — elA-1)3] ¢

[67! — Cré6~2{A — e(A1)3)) ¢t
—[671 = b.Cr62(A — elA-1)8)]
ief

et

2indob~1C(A — 1),

C = [Ar/6% + 2ingo(A — 1)) 71

73

(4.11)

It should be noted that these solutions satisfy the differential equations of the model

exactly: only the boundary conditions ( s.e. 4.9 ) are approximated. Also, if the

values of ky, ks, and ks are substituted into equations 4.9, the resulting k, k¢, and kg

are found to be consistent with the assumptions 4.10. The boundary layer nature of

solutions 4.11 is exemplified by the velocity and pressure fields of figure 4.8. Further,

the good agreement between numerical and asymptotic results can be seen in the

predicted surface stress of figure 4.9, as well as the velocity amplitudes of figure 4.8.

The above solutions can be simplified in the low frequency limit, A 3 1. In this

case equation 3.33 holds so that

C ~ ¢51(3 — 4v) 1A%
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Figure 4.8: Magnitude of relative velocities, |V,| and Vel, f = 1Hz,A = .1mm.

The solid lines show the numerical results, and those of equations 4.11e and f are
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5402.2
N
To _
3—1
(=] I
o | ]
I L .
s | §
%o
w |
L -
5 L
o . 7
! Lo X ]
-1.0 0. 10 2.0 3.0
log,cA ( mm )
e { T T T 1
q . —
Na
whea
o
o
< k|
1] r
ho- | p—
s | ;
o
H
e
8
9 T -
[3) I
|
. ] . ] ] —

log.oA'( mm )

75
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Thus,for§ > 1,A > 1,

u ~' '6—213-'052
Ug ~ ef5—3? (!.—IT).E
vy ~ efATIIE(1+ (240 — 1)2)

v, ~ —sefATI=E (240 — 1)2

(4.12)
V, ~ elA7?=E(1-2)
Vo ~ efA™?3=E(1-3)
p ~ ef§1
¢ ~ -1+ bid=EA(1-2)]+0(AY)
and
8(0) ~ 671(1=2y). . (4.13)

‘The pressure field is that generated by the current J through equation 2.6. The
( dimensional ) velocities are proportional to the frequency and ( through J') the
pressure, so that the current drives the pressure and relative velocity fields via the
coupling parameter b;;. Because the mechanical resistivity ( b;; ) does not appear
in the ( dimensional ) velocitics, the solid displacement must be driven by mass
conservation. Now the force balance is strictly between elastic compression and
shear. This system is weakly coupled in that the current is not significantly affected
by the mechanical ficlds.

Using the parameter values above in §4.2.1, the extza term kept in the expansion
of ¢ ( in equation 4.12 ) shows that |¢(z = 0)] = 1 to one part in 10° at A =
1mm, f = 10~3Hz. Since there is very little frequency dependence at this value of

A, this exemplifies the claim ( in §4.2 ) that |¢(z = 0)| is close to unity.
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The Long-Wave Limit

In this limit, § — 0, so that the scale of the imposed wave is much larger than the
thickness of the layer. In this case a formal perturbation expansion
H _ §-1 2 H_ 2
v, =8 Mup+8%x,+...) ul =upn+uy+...
v s * (4.14)
vI =6 (o +6%vn+...) v =veo+ 8%, +...
was used. The ratio of magnitudes of the vertical and horizontal components of y—
and z—directed fields was chosen to be consistent the Taylor series expansions of
the particular solutions 4.5 with § < 1. Reducing (3.8)-(3.11) to four equations in

Uy, Us, Uy, and v; and substituting 4.14 gives:

aor(uy — tuly) +ive + vy, = 0(6%)
| vio +irul, = O0(6%) (4.15)
nuyy + vy0 +iru, = 0(6%)

(1 +n)uly +éulg + veo +irue = O0(6%)

Keeping terms of the same order in the boundary conditions 4.1 and the particular

solutions ( ¢f. §3.2.1 ) results in

tUyo —;:%z(z +1)

wo = ghale +1)(e+2) - Rlr+)0 - T 4Rk
+ &6y - )+ §v-1) - 3]

Vo = irfﬁ(z(z +1) + 3%3

Vo = —ireliz(z +1)(z + 2) + 2(1 — 269) + (1 — ¢o)(1 — &) (4.16)
~ife &Gy - D+ §6v-1) -}
+i%{i}l¢?°[q sinh ¢z + (v + t) sink ¢{z + 1)]

Voo = (2v+1)/6

Vo = iqi;';-—}i% + (57 - 1)%% —2(2iy— 1) + 1 — iy
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where
,

— (9¢ -1
1= (2’ + 6¢on)

and,

—ir _ ﬂ .
2(1 - V)¢o A
Note that the factor ¢ is exactly the expected first order approximation to A that

¢ 1. (4.17)
one would expect from equation 3.29.

The displacements and velocities agree well with those calculated numerically at
A = 10mm, as is seen in figures 4.10 and 4.11. Here it is seen that u, is parabolic,
while u, is skewed towards the tcp. This makes sense in view of the relative velocity
and currert density fields. J; is nearly constant in 2, and thus so is V. The
mechanical displacements u, and u, are zero at the top and bottom and are driven
via fluid drag. J, has a linear profile, and the higher value at the top drives an

asymmetric relative velocity and, hence, an asymmetric displacement.

At higher frequencies this skewing effect is exaggerated, as seen in ﬁgure 4.11.
Now the displacement and velocity fields are even more biased towards the top of the
layer ( |u,| and |V;| are very similar at any f in the long-wave limit ). This change
with frequency is due to the change in A. It is also visible in the phases of the
fields ( ¢f. §4.2.1.). It should be noted that, especially for the relative velocities, the
phases behave as one would expect from two decoupled, cne-dimensional analyses
of the problem: V is in phase with j,, and simila.i'ly for V, and j,. Also, the
agreement between numerical and asymptotic values of u,,us, and V; is better at
high frequencies. This makes sense, as the imposed length scale should be as large
as possible relative to both 6°* and A* to apply this limit.

The pressure and potential are not as easily obtained in this limit. To see why,
note that only an average value of V, is obtained from the lowest order analyses,
and that the value of V;(0) is not well estimated. Because of equations 3.9a and b,
this means that it is difficult to find the value of p(0) ( and thus s(0) ). Further, all
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Figure 4.10: Magnitude of the horizontal and vertical displacements, |u,| and |u,|,
A = 10mm, f = .001 Hz va. depth z. The solid lines show the numerical results,

while the dashed lines show the results of equations 4.16a ( upper ) and b ( lower ).
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Figure 4.11: Magnitude of the horizontal and vertical relative velocities, |Vy| and
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of the vertical field terms have been dropped from equation 4.15b. This equation
is from 2.7a, which expresses the consistency of the vertical field values with the
coupling equation 2.6. Because of the terms dropped from this equation, it is possible

to derive two separate values for each of p and ¢:

Pa = 27/6°+ 222+ 2+ 3

(4.18)
$a = —(22/2+2+3) — (be(2y — 1) +1)/6?

from equations 3.9a and 3.9¢; and

P = pa(0} +iy2z(z+1) — “i:h z[i7(cosh ¢z — 1)

+ (8 — 1)(cosh ¢(z + 1) — cosh ¢)]

¢ = ¢a(0) + 22=[(as above)] + (be(1 — i) — 1)z + % (be(1 — 2i) — 1)

¢sinh¢
(4.19)
from 3.9b and 3.9d. In either case, the resultant normal surface stress is
s(0) = iy(2672 -2 ;’; lgcoth ¢)+1/3. (4.20)

This equation gives a good fit to the numerically calculated value of s(0) for A >
9mm, as can be seen in figure 4.9, which shows the value of s vs. logA at f =
0.001 Hz. Because of the difficulty of approximating the value of V,(0), the agree-
ment between the numerical and long-wave pressure cr stress is not very good at
high frequencies. The agreement with ¢ is still very good, as V;, does not effect it

very much when b, = 0.1.

4.3 Comparison with Experimental Data

Even though there are no available data which use every facet of the current model,
some comparisons can be made. Frank [34] used a one-dimensional confined com-
pression geometry and boundary conditions very close to equations 4.1. He applied

a current density of the form J =1,Jocoswt across a cylindrical disk of cartilage
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and measured the resulting stress at z = 0 ( ¢f. figure 4.12 ). There are two differ-
ences between the boundary conditions of equations 4.1 and those of the experiment.
First, the no flow condition at 2 = 0 is replaced by one of infinite fluid permeability
( and thus zero pressure, by equation 2.6 ).

The second difference is that the vertical displacement is applied to the electrode
structure which contacts the top surface at z = 0. Because of the compliance of the
porous platen used for the top electrode, the vertical displacement changes to main-
tain quasi-static stress equilibrium at the top surface. This is derived by requiring
stress continuity at z = 0. In the one-dimensional limit, the only contribution to the
platen stress is from its vertical displacement. ( Also note that, if a no-slip condition
is imposed at the surface, the u, = 0 boundary condition below would preclude any
contribution from a horizontal displacement or its tangential derivative, as in the
t6u, term in equation 3.22. ) Thus, the equilibrium stress that the platen produces
when its surface is displaced ( vertically ) by a distance u}(z = 0) must be equal to
the tissue normal stress S*(z = 0). If the platen is assumed to be a linear, elastic
material, then the relation between S°(0) and the displacement at its surface may
be written \

429 _s(=0),

where A, is a modulus which is proportional to the uniaxial compressional modulus

A,

of the platen and to the ratio of tissue to platen thickness. Further, there is zero
shear in the one-dimensional limit. Thus the lbng-wave results discussed here, which
use continuity of horizontal displacement ( “no-slip” ), should be the same as those
derived froin shear continuity.
Thus the approprizte non-dimensional boundary conditions are:
4y (0) =0 u,(0) - ;FF3-s(0) =0 p(0)=0 5(0)=1 (4.21)
uy(—1) =0 u,(—1) =0 vs(—1) =0 j,(—1)=0.

A current density, Jp, of ~s 3.84/m? was applied, and the resultant surface stress was
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measured. This was repeated at frequencies between 0.005 and 1 Hz. To simulate

these data, the following parameter values were taken from the literature:

bu b | [ 3.3-10M1% 6.9-10°%; (4.22)
bzl bzz 7.3'106‘4% 1.1 Om '

2G+ A, =1.1-10020 A, =10.-101% (4.23)
6* = .68mm v=04 ¢o =0.8

No adjustable parameters were used to fit the data. All of the parameter values
were calculated by using those given in Frank [35] except for bz, which was estimated
using bulk electroneutrality and linearity of solution conductivity with concentration
( of mono:monovalent species at low concentrations ) and data from Lee et al. [63].
Also, the parameter values determined by Frank were verified by a measurement
which had no adjustable parameters. Note that 2G + AL, A,,b11,9, and by, were
all determined by independent measurements; only the four parameters v, b, b;2,
and b,; are left to be determined. v does not appear in the one-dimensional theory.
Frank [34] used four independent configurations to measure the remaining 3 param-
eters in such a way that there was no parameter to be fit to the last set of data. It
is in this sense that the above set of parameter values has not been fit to the data.

Since the experiment was reasonably one-dimensional, A = oo should have been
used, but actual calculations were carried out for A ranging from 100 mm to 10° mm.
This was found to make less than 0.5% difference in the calculated value of s(0) for
f = 1075 and 0.2 Hz. The value of s(0) was also virtually unchanged for v ranging

from 0.35 < v < 0.49%. The results of calculations using A\ = 1060 mm are shown in

figures 4.12 and 4.13. The calculations agree quite well with the data. |

3The value of s(0) was found to vary nearly linearly in ¢o, as expected, with slope about 4.80 -
10~3 108 3¢ £ = 0.1 Hz, and te be constant in ¢ at f = 1075 Hz.
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Figure 4.12: Magnitude of the surface stress, |s(0)| vs. frequency f. The solid curve
is the result of numerical calculations ( §4.3 ). The data are from Frank [34]. A
schematic of the experimental setup is shown in the inset: a sinusoidally varying,
vertically directed current density is applied directly *o the bottom of the cylindrical,
confined sample, while at the top the current must pass through a porous platen
&esigned so as to let the pressure equilibrate. The magnitude and phase of the
compressive force on the top electrode was measured and recorded. The data are
presented as mean plus or minus a standard deviation based on 9 different samples

of bovine femoropatellar cartilage.
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vs. frequency f. As in figure 4.12,
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4.4 Discussion

Using the above model, it is possible to make some predictions regarding a surface
probe used to measure electromechanical parameters( 6°,byy, b12, 021, b22,G, v, and
éo ) of a biphasic medium. The interpretation of the values of these parameters
will depend on the exact nature of the material being studied, but in all cases they
give information about the material. For cartilage, for example, knowledge of b3, is
useful because it gives information about the fixed charge density of the solid matrix
[44]. The values of b;; and by, which should be equal by Onsager’s analysis (90}, give
additional information about the electrochemical state of the medium, such as the
proteoglycan concentration within the matrix. The other parameters give additional
structural and compositional information as discussed in §1.1.

One strategy for measuring the above parameters is as follows. For each of two
significantly different wavelength ( A ) disturbances, the following experiments would

be performed using the geometry of figure 4.1:

1. a current density like that of equation 3.5 is applied to the surface with the
displacement held fixed, and the resultant stress 5(0) and potential ¢(0) are

measured ( magnitude and phase for each ) as a function of frequency;

2. a potential like that of equation 3.5 is applied to the surface with the displace-
ment held fixed, and the resultant stress s(0) and current density J,(0) are

measured;

3. a vertical displacement like that of equation 3.1 is applied to the surface with
an open circuit ( J,(0) =0 ) boundary condition and the resultant stress s(0)
and potential ¢(0) are measured;

and

4. a vertical displacement like that of equation 3.1 is applied to the surface with
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a short circuit ( ¢(0) = 0 ) boundary condition and the resultant stress s(0)

and current density J;(0) are measured.

The first two experiments are those of cases one and two ( ¢f. page 60 ). The third is
examined in chapter 5. Each of the above experiments gives four measurements ( as a
function of frequency ) at each of two wavelengths, so that a total of 32 independently
measured quantities. Since there are only eight parameters, this allows sufficient
redundancy to check the consistency of any predictions.

The model suggests several issues regarding the ability to make such measure-
ments. First, over the two decades of frequency used, the penetration depth is
proportional to the wavelength of the imposed disturbance. Thus any predictions
about material properties based on short-wave disturbances will only be sensing
those relevant to a layer of material about one wavelength thick, as suggested by
figure 4.14. This implies that it is possible to selectively measure properties of all of
the material, or to measure properties relevant near the surface.

Arbitrarily short wavelengths may not be used, however. Equations 4.12 show
that |uy|, |us, |Vy], |Vas| o< A%, and |p|, |¢|, and, as seen in figure 4.9, |s| < A\. The
latter demonstrates that shorter wavelengths produce smaller signals. Tte approxi-
mation to the stress in equation 4.13 suggests that |s(0)| should be independent of
frequency for wavelengths small compared to the layer thickness, 6*, and diffusion
thickness, A*. The inset in figure 4.14 and other results show that this independence
extends at least to frequencies so high that A*/A = 0.25, far beyond the expected
range of validity of equations 4.12.

Short-wave measurements may, therefore, be taken at relatively high frequencies
without a decrease of the response amplitude. Thus, the natuie of the electromechan-
ical interactions near the surface can be determined using a short-wave disturbance.
This could be beneficial, as these properties determine how the biphasic layer inter-

faces with any sensing device placed on its surface. Further, the decrease in surface
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stress for short wavelengths implies that surface imperfections ( e.g. roughness or
lack of control over the exact disturbance waveform ) will not cause severe changes
in the anticipated response. This is roughly equivalent to St. Venant’s principle
in that it implies that local changes in beundary conditions will produce only local
changes in fields. Note that the requirement that the net applied stress be zero is
met if a large-scale or a single-period average is taken.

For the medium to long wavelength disturbances, the fields develop phase lags
over a depth of several A. Thus the diffusive nature of the process is manifested by
a time delay in the propagation of the disturbance into the material, in addition to
changing the location ( in z ) of amplitude maxima ( ¢f. §4.2.2 ). This suggests that
some information about seemingly strictly mechanical parameters ( e.g. G, A, by,
and ¢o ) may be obtained from an electrical disturbance.

Because of the limit on the penetration depth, a device used to measure bulk
properties must have a length scale the same as that of the medium to be investi-
gated. For longer wavelengths ( A > O(1lmm) ), |8(0)| is decreasing in f, roughly
like the inverse of a fractional power of f. Thus the largest field amplitudes, and
( possibly ) the easiest measurements, are at lower frequencies. This is also shown
by the results in table 4.1.

The results suggest possible limitations to probe measurements which should be
considered. First, the dimensional values of the velocities and stresses suggest that,
for some applications with weak coupling and/or high stiffness, a large current den-
sity would be required. This could result in chemical reactions, heat generation,
and other behavior net incorporated in the present work. Second, nonlinear effects
may have to be considered. These effects could be important, especially under con-
ditions of higher strain [83,84]. Further, the effects of three-dimensional boundary

conditions may have to be included.
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Mag of Pressure, A = 0.1 mm
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.001 HZ

Figure 4.14: Magnitude of the pressure, |[p|,A = .Imm, f = .001 to .1 Hz. The
maximum value is .159 kPa at .001 Hz, .155kPa at .1 Hz. The minimum value is

zero.



Chapter 5

The Mechanically Forced Response

5.1 Introduction

This chapter describes the electromechanical response of the poroelastic “tissue”
layer of previous chapters to a probe which imposes a known, periodic, vertical
displacement at the top surface. The desired results will, as before, be the solid
displacement, fluid velocity, electrical potential, and current density fields in the
bulk, and the mechanical stress and electrical potential at the surface. First, some
preliminary analytical results will be discussed. Then the numerical and asymptotic
short- and long-wave results will be presented. Finally, a limiting case of the model

will be compared with experimental data.

90
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5.2 Results

5.2.1 Case Descriptions and

Consequences of the Boundary Conditions

The geometry and boundary conditions considered here may be seen in figure 5.1.
The boundary conditions provide a mechanical drive instead of the current drive of
the previous chapter( ¢f. §4.1 ). Two cases will be compared with each other and to

case one of the previous chapter:

Case 3: the displacement, velocity, pressure, potential and current density fields
due to a vertical displacement applied to top surface of the layer, with no fluid
flow normal to the top surface;

and

Case 4: the displacement, velocity, pressure, potential and current density fields

due to a vertical displacement applied to the top surface of the layer, with no

resistance to fluid flow normal to the top surface.

In terms of the non-dimensional variables of the last chapter, the corresponding

boundary conditions are:

Case 3:
t,(0)=0 1w, (00=1 V,(0)=0 7(0)=0 (5.1)
uy(—1) =0 u,(--1) =0 V,(-1)=0 j(-1)=0
and
Case 4:
u,{0) =0 u,(0)=1 p(0)=0 g(0)=0 52)

u(~1) =0 u(-1)=0 Vi(-1)=0 j(-1)=0
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Electrode Segment for Measuring

’ ®(y,z=0) and Sly,2:=0):
W% (220) = Re(aye!(Ky-wtl)

~N

uyrurtVy 40

22l T 7T T 7T 777777777 7777777 7

Figure 5.1: Geometry and boundary condition: for mechanical forcing. A
two-dimensional sinusoidal current density is applied to the top of a §*-thick layer.
The top and bottom are constrained so that there is no motion of the solid matrix
or normal current density. At the top surface there is either no flow throﬁgh the sur-
face ( case three, as shown ) or no pressure gradient along the surface ( case four ).
The electrode in contact with the top surface is segmented to allow measurement of

&(y,z =0).
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The drive in each of these cases is a unit amplitude cosinusoidal vertical displace-
ment. Both cases have no displacement, vertical velocity or vertical current density
at the bottom surface, and no horizontal displacement or current density at the top.
Case three allows no fluid flow normal to the surface. Note, however, that the non-
zero vertical displacement of the top surface now requires that the non-linear term
in equation 4.2 be dropped. This is easily justified if the amplitude of the imposed
displacement is sufficiently small relative to its wavelength. Case four assumes that
the top surface, along with whatever is in contact with it, is infinitely permeable,
8o that the pressure will be the same at every point along the surface. The value of
the transform of the pressure is thus zero at ( z=0) for any non-zero wavenumber
k ( ¢f. equation 3.1).

The above boundary conditions are again intended to simulate the action of an
electromechanical probe to be used on articular cartilage in vivo. In order to simulate
the bound- y conditions of interest, the surface electrode can be thought of as a line
of isolated, segmented electrodes connected to a high impedance amplifier so that
there is no normal current ( ¢f. figure 5.1 ). The segmentation of the electrode
allows for the measurement of &(y, z = 0) along the surface. Also, in case four the
electrode is considered to be made of an infinitely porous material, like that in the
experiments of Frank [34] described in figure 4.12.

The first fact to note about the above cases is that the current density field J is
everywhere zero. This is easily seen from equations 3.16 or 3.17 and the hoinogeneous
boundary conditions ( on J, ) above. A simple consequence of this fact is that the
potential is proportional to the pressure via ¢¥ = —b,p” ( equation 3.27 ). Thus
the potential will not be discussed separately in this chapter.

The vanishing of the current density also implies that a maximum or minimum
in the magnitude of the ( transformed ) pressure p occurs only when the relative

velocity fields V;, and V, are co-linear in the complex plane. To see this, note that,
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from equations 3.9,

ga,lpP = 6(Rep Rep+ Imp Imp)
= (-~ ReVy)(- ImV,) + (- Ia V})( Re ;) (5.3)
= (ReV,,ImV,)-( Imv”).
— ReV,

Since the last vector is normal to V;, in the complex plane, 3;|p(z)| = 0 iff V, is
colinear with V,. The latter condition is equivalent to V; and V; being in phase
or 180° out of phase. Thus at points where the pressure is & local maximum or
minimum in 2z, either V; is maximum at the same time as V, is minimum, or vice
versa.

It is now also possible to derive a condition necessary for mechanical energy
dissipation. If the mechanical work done on the solid per unit time and per unit
length in the z-direction is denoted W*, then by appropriately chousing the phase

( or time origin ) in equations 3.1 through 3.6 we have

W* = S(z=0):(—8wu,(z=0)) = 04(0)3:u,(0)
= —w(2G + ML) Re¢,(0) Resu;(0) (5.4)
= —w(2G + AL) Reu}(0)3,- Resu (0) .
Note that this uses the fact that no shear work is being done ( as ©,(0) =0 ), and
that there is no pressure work dune on the fluid because either u,(0) = O ( case

three ), or p(0) = O ( case four ). If (-) now denotes a time average over one period

( 2r/w ), then the relation
{ Re (A=) Re (Be™)) = % Re (AB)
( A and B constant in t ) gives

W) = %w(ZG +z) Re [i8,u,(0)2(0)] , (5.5)
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where i, denotes the complex conjugate of u,. Since the energy put into a dissipative
system is expected to be positive, and because u,(0) = 1 by equations 5.1 and 5.2,
we now require

0 < (W*) = Re (id,-u,(z = 0)). (5.6)

By letting u, = Ae'® and noting :hat ¥(0) = 0, and A(0) = 1, we obtain ( for cases
three and four ) '

(W*)>0 iff d,argu, <0. (5.7)

Thus energy is dissipated in this system if and only if the phase of the vertical
displacement is increasing as one moves down into the layer. Since the phase is a
measure of the time lag with respect to the profile of the drive at z = 0 ( u,, in
these cases ), this means that energy is dissipated only if the vertical displacement
has a time lag just below the surface. This intuitive result has been verified for the
calculations in a number of parameter regimes. It is exemplified by figure 5.2, which
shows that argu,, though an increasing function of z on » larger scale, is strictly
decreasing in z in a thin layer near the top surface, for at least A = 10 mm and the
frequencies shown. ( Parameters and calculation methods are discussed in §5.2.2,
¢f. also appendix A.2 ). Thus the model is known to have an appropriate behavior

with respect to energy dissipation.

5.2.2 Numerical Results

The calculations performed in this section used exactly the same methods and pa-
rameter values as section 4.2.1. Because the current density J is zero everywhere, the
equations for k;, ..., ke are now obtained directly from the boundary conditions 5.1
or 5.2 and the equations for the homogeneous solutions 3.24. For case three ( which
has no flow through the top surface ), the studies done were the same as those for

the current-forced problem listed on page 63. For case four ( which has an infinitely
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Figure 5.2: Phase of the vertical displacement vs. depth
for A\ = 10. mm,f = 2.5-1072,5.107%, and 0.1 Hz. The highest curve is the
lowest frequency, while the lowest, dashed curve is the highest frequency. Even
though on a large scale the phase of the displacement decreases into the layer, closer

examination reveals a phase increase, consistent with energy dissipation.
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I (Hz)/ ug (mm) Ve (um/s) |V (um/s) | P (kPa)| & (mV) |S(0) (kPa)
A (mm)
0.001/10.| ©0.106 | 8.36-1072 | 0.476 133. 1.33 124.
0.001/1.0 || 2.66 - 1073 | 4.04-107? 0.111 6.44 6.44-1072 90.0
0.001/0.1 || 2.62-10"2 | 4.12.10"2 | 0.112 0.657 |6.57-107% 898.
0.01/10. 0.177 0.133 2.53 210. 2.10 204.
0.01/ 1.0 |{ 3.20-102 0.227 0.823 36.1 0.361 94.8
0.01/0.1 | 2.62 - 1073 0.412. 1.12 6.54 6.54-102 898.
0.1/10. 0.216 0.165 9.86 262.0 2.62 249,
0.1/1.0 3.55 - 1072 0.462 3.58 73.6 0.736 101.
0.1/0.1 2.65-1073 4.03 11.1 64.1 0.641 900.0

Table 5.1: Maximum field magnitudes for vertical displacement forcing of an in-
finitely permeable surface ( case four ). These are the dimensional values of the
maxima ( over 400 evenly spaced values of z ) of the magnitudes of the indicated
field variables. They are based on the parameter values given in equations 4.6
and 4.7, and use a displacement amplitude of a;y = 0.1 mm. The magritude of the

surface stress, S(0), i8 given instead of the maxima of |S| over z.

permeable surface ), the fields were found for f = 10™® Hz and f = 0.1 Hz with
A varying linearly from 0.1 to 10.1 mm in steps of 0.2. They were also found for
A = 0.1 mm, with f varying linearly from 0.001 to 0.101 Hz by steps of 0.002, and
A = 10 mm with f varying logarithmically from 1073 to 0.1 Hz. As for the current
forced cases, the errors in meeting the boundary conditions ( and thus, it is inferred,
in the fields ) are negligible relative to the overall magnitudes of the fields. Table 5.1
lists the maximum ( over z ) values obtained for various frequency and wavelength

combinations.
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The fields were again plotted as surfaces of magnitude or phase of a non-dimen-
sional, transformed variable versus depth ( z ) and either A, f, or log f. Plots of all
of the fields calculated for each set of values are in Appendix A.2. The magnitude
of the vertical displacement, |u,|, is shown in figure 5.3 for case four ( permeable
surface ) for A = 10 mm. The effect of the diffusion boundary layer thickness, A,
can be readily seen from the change in depth of the inflection point, even though
the overall amplitude does not change. The two profiles given for the same field
in case three ( impermeable surface ) show little frequency dependence of any kind
( figure 5.4 ). These profiles, however, are similar to those of figure 5.3 in that the
overall amplitude changes very little with frequency. Note that the cverall frequency
independence of the vertical displacements for both mechanically forced cases is in
sharp contrast with the results of the current forcing of case one, as exemplified by

figure 4.3 on page 66.

The magnitudes of the horizontal displacements are also relatively frequency in-
dependent, but, in contrast with those above, are virtually identical for the two
cases. The magnitude of the horizontal displacement for case three is plotted in
figure 5.5. Because of the significant difference between the fluid flow fields ( dis-
cussed below ), the similarity of the horizontal displacement fields is very likely an

indication that the horizontal motion is largely driven by the conservation of mass.

The horizontal relative velocity is generally much larger than the vertical velocity
in the third case, and is plotted in figure 5.6. The minimum at X ~ 2 mm of the
magnitude ( evaluated at z = 0 ) seems to represent the crossover from the long-
wave to short-wave behavior. A similar minimum in amplitude at the surface occurs
for the relative vertical velocity in case four, as can be seen in figure 5.7. Here
the minimum may be explained as follows: for shorter wavelengths there is a large
normal flow due to the amount of displacement per unit solume near the surface. For

longer wavelengths, the geometry is increasingly that of uniaxial compression, and
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Magnitude of the vertical displacement, u,, for a permeable surface,

Figure 5.3

A = 10 mm, f = 103 to 10~! Hz logarithmically. The upper left-hand side is the

0), and f = 0.1 Hz is at the back. The amplitude varies from

top surface ( z

ional value ) to 0.

imens

ay is the d

exactly 1 ( by equations 5.2
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Figure 5.4: Magnitude of the vertical displacement, u,, for an impermeable surface,

A =10mm, f = 1073 ( solid line ) and 10~! Hz.
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Mag of Horiz Disp, f = 107° Hz
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Figure 5.5: Magnituce of the horizontzl displacement, u,, for an impermeable sur-
face, f = 1073 Hz, A = 0.1 to 10. mm logarithmically. The maximum amplitude is

2.35 mm per mm of a;.
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the relative vertical velocity will increase to a level which obeys the one-dimensional

conservation of fluid volume and the no-flow condition at the bottom, z = —1.

For case four the horizontal relative velocity is, for a wide range of frequencies
and wavelengths, two orders of magnitude smaller than the vertical. This could be
éxpected, as equation 3.9a with J = 0 gives 6p = tV,. Since p(z = 0) = 0 in this
case, V(2 = 0) is also constrained to zero. Similarly, V,, > V, for a large range of
parameters in case three. This is a result of the fact that the fluid is constrained to
horizontal ( relative ) motion at the top and bottom boundaries.

Two other results are especially noteworthy. First, there is a rise of the phase
of the vertical displacement near the bottom boundary in almost every parameter
range ( with frequency f >~ 102 Hz ). In case three with A = 10 mm, shown in
figure 5.8, this rise is about 7/5. It is possible that this change in phase is related

to the dissipation of energy expressed in equation 5.7.

Second, the frequency dependence of the fields of case three is very similar, at A =
i0 mm, to the behavior expected in a one-dimensional experiment. From figure 5.5
it is clear that the parabolic displacement field expected for long-wave behavior
( ¢f. §5.2.3 ) is only obtained for A sufficiently greater than 6°. In a truly one-
dimensional situation, the vertical relative velocity is expected to be proportional
to the frequency of the stimulus ( ¢f., e.g., equation 5.13 ). In figure 5.9, however,
the amplitude only increases by roughly one order of magnitude when the frequency
increases by two. ( V./f is shown on this plot, so exact proportionality would be
demonstrated by a surface independent of f ). Note however, that the amplitude is
roughly symmetric about 2 = —1/2. This should be the case for a one-dimensional
system with the boundary conditions here: the system is symmetric about this
depth if considered in a frame moving with half the velocity of the top boundary -
remember that inertia is being ignored here.

Further, at f ~ 102 Hz the phase undergoes a violent transition from being
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Mag of Rel Horiz Vel, f = 107° Hz
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Figure 5.6: Magnitude of the relative horizontal velocity, V,, for an impermeable
surface, f = 10~% Hz, A = 0.1 to 10. mm logarithmically. The maximum amplitude

is 1.65 um/s per mm of a;.
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Hagnitude of Relative Vertical Velacity
f = .1 Hz, lam = .1 te 10,1
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Figure 5.7: Magnitude of the relative vertical velocity, V,, for a permeable surface,

f=10"! Hz, A = 0.1 to 10.1 mm linearly. The maximum amplitude is 1.11 um/s

per mm of a;.
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Phase of Vert Disp, A = 10 mm

Figure 5.8: Phase of the vertical displacement, u,, for an impermeable surface,
A =10 mm, f = 1073 to 10~! Hz logarithmically. The minimum value is -0.02

radians, the maximum is 0.66.
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nearly constant in z ( at about 0 ) for higher frequencies, to a step-function sym-
metric about the center ( with values ~ —m/2 at the top and ~ /2 at the bottom )
for lower frequencies. The system is now acting as though it is being uniformly, pe-
riodically pressurized, which is the expected low-frequency behavior. The presence
of this behavior for a A* of only about 6°/3 ( f = 1073 Hz ) is a familiar case of
an asymptotic behavior appearing before it can be rigorously justified. In addition,
for frequencies above that of the transition, the depth over which the phase changes

significantly seems to be proportional to A*, as expected.

5.2.3 Asymptotic Results

This section presents the long and short wave asymptotic limits { ¢f. §4.2.2 for
the case of a mechanically driven layer with an infinitely permeable surface ( case
four ). Only case four is being presented since the two cases are very similar. More
important, however, is the fact that a one-dimensional experiment in the case of an
impermeable surface would effectively measure the compressibility of the material.
Since the constituents have been assumed to be incompressible, the present model
would not be expected to properly predict the behavior of the material under these

conditions.

The Short-Wave Limit

This section considers the shori-wave limit 6 —+ co. The procedure here is similar
to that of section §4.2.2. The wavelength of the disturbance is so short compared
to the thickness of the layer that the bettom of the layer may be considered to be
at z = —oo. Thus, as in §4.2.2, the boundary conditions 5.2 at z = 0 and the

homogeneous solutions 3.24 now determine the equations for the k;:

UV(O) =0= k + k3/5 + ks



§5.2.3 107

Mag of Rel Vert Vel, A = 10 mm

RN
QXS

TSN
\\l' ' l """"‘..: :::::::’0 S

0D
XX

Q
[} > ’0:%’0 XK

y
K

5
% '0'0:’0 0
ISR

Figure 5.9: Magnitude of the relative vertical velocity, V,, for an impermeable sur-
face, A = 10 mm, f = 1073 to 10! Hz logarithmically. The maximum amplitude

is 0.128 um/s per mm of a;.
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Phase of Rel Vert Vel, A = 10. mm

Figure 5.10: Phase of the relative vertical velocity, V;, for an impermeable surface,
A=10mm, f = 1073 to 10~! Hz logarithmically. The range is from —1.43 to 2.58

radians, with a jump tolerance of 0.4 ( ¢f. figure 4.6 ).
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u,(0) =1= ki + Aks (5.8)
p(0) =0= nks—tsTsoks
ky = —(1+ )ks
ks = Zn" oks (5.9)
ks = [A—l—é—’a’;%]“

As before these equations along with equations 3.24 determine a solution which

satisfies the differential equations exactly, and satisfies the boundary conditions at

the bottom to order O(e~%). These solutions are:

and,

s(0)

-~

ks[5572 +i(eDF —1)]ef

kse® + ks| sz + A(e(““)' - 1)]e’
lcsr[2

ksr[m(z —671) + fag(AeA-12 — 1)]¢f

ksroy (eA-1)2 — 1)e?

(5.10)
thsrég(eA-18 — 1)t
ik 35 (1 — e(A-18) 2
— cp
ks 345 6¢o ?

where once again 2 = kz* is the boundary layer variable.

These asymptotic solutions agree extremely well with the numerically calculated

ones, as can be seen in figures 5.11 and 5.12. The former shows that the numerical

and asymptotic values for the horizontal and vertical displacements agree well for A =

0.i mm, and f = 1073 Hz. All of the fields have the boundary layer characteristics

exhibited by these displacements. Figure 5.12 shows that the predicted stress also
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agrees quite well with that predicted numerically. Also, the agreement through
A = 2 mm ( where A > § ) is again better than might be expected from purely

physical reasoning.

Equations 5.10 may be simplified in the low frequency limit A > 1. In this
limit for any £ satisfying |2|/A? < 1 and |2| < § ( so that the field magnitudes are

significant ),
(A-1)2 5 —-tb
e —1~A-1)2~ —-7F2.
( ) 4(1 - L’)¢0
Further,
4i82¢0n(1 - V)

ks (3 -4v)r

Using this in the above yields

-4 A 2
8—4vze

Uv~

3_’4"2]8!
2v{ag—1)—(2+a0)
3—-4v

u, ~ [1-—

rzet

v ~ s=—[(nds +1)2 +n(cp — 1) —1]re’

3—-4nu

vy —%E:%réc'
Vo ~ m;’:—”y[l + Z]ret

p ~ _ma‘%jée'
These equations show that the maximum pressure is proportional to the frequency
and wavelength of the disturbance ( the pressure is zero at the surface ). They also
demonstrate that the maximum velocities are proportional to frequency. Further,
figure 5.13, which shows the magnitude of the vertical velocity divided by frequency
for A = 0.1 mm at f = 1072 and 0.1 Hz, exemplifies the frequency proportionaiity
which the pressure and velocity fields exhibit for short-wave disturbances. ( The
phases do change somewhat with frequency. ) The displacements are similarly fre-

quency independent. It may thus be surmised that equations 5.10 are valid over the

range of frequencies considered in this work.
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Figure 5.11: Magnitude of horizontai and vertical displacements, u,, and u,, for a
permeable surface, f = 0.001 Hz, A = 0.1 mm. The units are normalized to the

vertical displacement at z = 0. The solid lines show the numerical results, while the

4y™'s mark the those of equations 5.10a ( lower ) and b ( upper ).
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Figure 5.12: Magnitude and phase of the surface stress, 5(0), for & permeable surface,
f = .001 Hz, vs. logjoA. The solid lines show the numerical results, and those of
equations 5.10i and 5.13f are marked with dashed and dottcd lines, respectively. The

units are 10° N/m? per mm of a,.
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Figure 5.13: Numerically calculated magnitude of vertical relative velocity, V,, for

a permeable surface, f = 0.001,0.1 Hz, A = 0.1 mm. The numerical results for
f = 0.001 are shown by a solid line, and those for f = 0.1 are drawn with “x™’s.
The dimensional values are the value shown times w times the amplitude of the

imposed vertical displacemens, a;.
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The Long-Wave Limit

This section considers case four in the limit § — 0, for which the wavelength of the
imposed wave is much larger than the thickness of the layer. In this case a formal

perturbation expansion
uy = §(uyo + 6%uy1 +...) uy=u,+6%uy+...
V,=6(Vo+6W +...) Vi=Vio+6WV,+... (5.11)
p=po+6p+... 8s=80+6%8 +...

was used. The relative magnitudes of the lowest order fields was chosen to be

consistent with the boundary conditions 5.2 and the expected resemblance to one-

dimensional fields. Using equations 3.15 to reduce (3.8)-(3.11) to five equations in

uy, Uy, Vy, and V;, and p and substituting 5.11 gives:

—iruly + ¢V = 0(6%)
po—1iVo = 0(6%)
Po+V = 0(6%) (5.12)
iVio — Vo = 0(6?)
nuy, +fuly —ipp = O0(6%),
The solution to these equations using boundary conditions 5.2 is

_ sinh¢(z+41)
U = sinh ¢

2
Uy = s;—S%}E(cosh ¢(z+1) + %—a?’z- cosh¢ + L(2))
__grcosh¢(z+4+1) —cosh¢

Po = "o ¢sinh¢ (5.13)
Vo = ¥u

50 Pl

Vo = —i

Ziro
w(0) = -2(1-v)sSRpE,

where

L(z) =[1+ (é':—;; — 1) cosh¢]z — cosh¢ ,
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and, as in equation 4.17 on page 78,

= __——t.f = i._ "'.%
=V -0 At

For the boundary conditions used in this case, the approach to long wave behkavior
is slower than that investigated in section 4.2.2. This may be seen in figure 5.14
which shows the horizontal and vertical displacements for A = 100 mm and f =
1072 Hz. Even though the maximum horizontal displacement is expected to decay in
proportion to the wavenumber, at this wavelength it is still nearly 20% of that of the
~vertical. In spite of this fact, the agreement between the numerics and asymptotics
is quite good. ( At A =10 mm, maxu, ~ maxu,, and there is little agreement
between numerics and asymptotics. ) Also, the pressure ( and potential ) field is
unambiguously defined here ( in contrast with §4.2.2 ), and the agreement is as gocd
as that for the displacements. Because of the good agreement of the numerical and
asymptotic vertical displacements ( for sufficiently high A ), and because the pressure
at z = 0 is zero by the boundary conditions 5.2, the prediction of the surface stress

is also very good, as can be seen in figure 5.12.

The frequency dependence of this case does have some similarities with that of
the current forced problem. Figure 5.15 demonstrates how the penetration depth of
the relative vertical velocity ( and, in fact, all of the fields ) depends on the frequency.
For the long wave case, the disturbance only propagates for a distance comparable
to the diffusion boundary layer thickness, A*. Figure 5.16 shows that ever though
the value of the phase of the velocity field is constant in frequency at z = 0, the
phase increases ( t.e. a lag develops ) much more rapidly at high frequencies. This
behavior is familiar from the short-wave behavior of both this case and case one
(¢f 84.2.2).

One of the most salient features of the long;wave limit, however, is that it agrees

with one-dimensional analytic and experimental results of other authors [25,35]. If
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Figure 5.14: Magnitude of the horizontal and vertical displacements, |u,| and |u,|,
for a permeable surface, A = 10 mm, f = 0.001 Hz ve. depth z. The solid lines show

the numerical results, while the “x”’s show the results of equations 5.13a ( upper )

and b ( lower ). Magnitude is normalized by a;.
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6.85 * 107% Hz
1.0

102 mm, f = 1073,

Nz\. A=

Figure 5.15: Numerically calculated magnitude of the vertical relative velocity, |Vals
for a permeable surface, A = 10° mm, f=10"%685" 10-? Hz vs. depth 2. The
dimensional values are the value shown times w times the amplitude of the imposed
vertical displacement. The frequency 6.85 10~? was chosen because it is near the

highest value for which the numerical results converge.
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Figure 5.16: Numerically calculated phase of the vertical relative velocity, |V;|, for

a permeable surface, A = 102 mm, f = 1073,6.85 - 10~ Hz vs. depth z.




§5.3. 119

’

the notation is changed so that the relative velocity is defined as doV, and $oV,
( flow is defined as flux per unit total area ), and the k;; defined appropriately via
equation 2.6, then Eisenberg’s 25 and Frank’s [35] analytical results agree exactly
with those in equations 5.13. Furthermore, if the boundary conditions are slightly
modified to account for the application of the surface displacement via a compress-
ible porous platen ( as in §4.3 ), then there is good agreement with experimental
data. The analysis of these modified boundary conditions has been performed by
Frank [35], who also performed experiments using vertical displacement driving and
confined uniaxial compression. A plot of the magnitude of both experimentally

measured and analytically determined streaming potential is shown in figure 5.17.

5.3 Discussion

The use of mechanical stimulation to estimate the values of physical parameters of
a layer of electromechanically coupled material may now be seen to have several
characteristics in common with the current stimulation ( case one ) of Chapter 4.
These similarities are particularly visible through the dependence of the fields on the
frequency and wavelength of the imposed disturbance, as will be discussed below.
A significant difference, though, is that fewer data values are available for a given f
and A because, at z =0, J = 0. In case four, for which the top surface is infinitely
permeable, we found that ¢ = p = 0, so that even one less measurement ( that of
#(0) ) may be used to estimate parameter values. If #(0) is measured, however,
the resulting value may be used as measure of linearity, the degree to which the
boundary conditions are physically realized, etc.

As in Chapter 4, the penetration depth of the disturbance is limited by both the
wavelength, A, and diffusion boundary layer thickness, A*, of the imposed surface

displacement. In the short wave limit, the fields are only significant in a boundary
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NEUTRAL pH

2.0—

1.0

0.0

Figure 5.17: Theoretical and experimental magnitude of the surface electrical
( “streaming” ) potential, |¢(0)| ( in mV ) vs. frequency f, for a permeable surface.
The solid curve is the theoretical prediction [35], and the data are from Frank [35].
The experimental setup is similar to that shown in figure 4.12. Here, a sinusoidally
varying vertical displacement is applied to the top of a cylindrical, confined sample
‘via a compressible, porous platen, and the resulting electrical potential difference
between the top and bottom surfaces measured. The applied displacement repre-
sents a 1% strain amplitude superimposed on a static displacement of 15%. The
data are presented as mean plus or minus a standard deviation based 6n 9 different

samples of bovine femoropatellar cartilage.
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layer of thickness roughly equal to A. In case four ( permeable surface ), it was shown
that the maximum pressure ( the pressure is zero at the surface ) is proportional to
frequency and wavelength while the velocities are proportional to frequency. In case
three ( impermeable surface ) the asymptotics have not been performed, but the
same frequency proportionality has been observed numerically, and it is surmised
that the wavelength dependence is likely to be similar. Thus, short wave stimulation
produces smaller signals, as before in case one, so that surface irregularities and non-
uniform application of the boundary conditions on a small scale will not introduce
large errors in the measured field values. This is again related to St. Venant’s
principle ( ¢f. 88 ). Further, by using a surface disturbance composed of short-wave
harmonics at a high frequency, it should be possible to obtain significant information
about the values of the material parameters near the surface.

For wavelengths on the order of the depth, the frequency dependence is observ-
able in at least two ways. First, the penetration depth of all of the displacement
and velocity fields are roughly proportional to A*. Similar behavior is seen for both
the permeable and impermeable surface boundary conditions, as demonstrated by
figures 5.18 and 5.19. Both of these show that the relative velocity has a significant
amplitude for a depth of about A*. Note that the vertical velocity is larger in the
permeable case, as is the horizontal ( by an order of magnitude ) in the impermeable
case. This is consistent with the intuitive idea that in the permeable case the fluid
will just be squeezed out through the top surface, and that the mechanical displace-
ment will thus be converted to a relative vertical velocity. In the impermeable case,
the fluid is, for the most part, restricted to horizontal relative motion.

Further, changes in the frequency of the imposed disturbance effect the overall
amplitude of the velocity fields for intermediate wavelengths. In figure 5.18 the
maximum magnitude of the horizontal velocity increases by an order of magnitude

when the frequency increases by two orders of magnitude. This suggests that the
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Mag of Rel Horiz Vel, A = 1 mm

Figure 5.18: Magnitude of the relative horizontal velocity divided by frequency,
Vy/w, for an impermeable surface, A = 1 mm, f = 0.001 to 0.1 Hz logarithmically.

The maximum amplitude shown corresponds to 1.08 - 10~3 mm/s per mm of ay.
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Mag of Rel Vert Vel, A = 10. mm
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Figure 5.19: Magnitude of the relative vertical velocity divided by frequency, Vilw,
for a permeable surface, A = 10 mm, f =0.001 to 0.1 Hz ldga.rit.hmically. The
maximum amplitude shown corresponds to 4.76 - 10-3 mm/s per mm of a;. From

this graph may be approximated that the dimensional value at f = 0.1 is about

0.3 mm/s per mm of a;.
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amplitude is proportional to A*. The ratio V,/f does seem to be asymptoting to a
constant at either end of the frequency domain, however. The change in magnitude
with f is shown for the relative vertical velocity for a longer wavelength for case four
in figure 5.19. In the latter case the ( dimensional ) amplitude is roughly proportional
to the frequency, perhaps due to the increased wavelength of the disturbance.

The most striking contrast between the permeable and impermeable cases may
be seen at longer wavelengths, as shown in figures 5.15 and 5.2(\. In the former
the more significant relative velocity ( V, ) is shown to have a magnitude which is
very nearly proportional to the frequency of the surface disturbance. In the latter,
however, the more significant velocity ( V, ) is ( dimensionally ) nearly constant in
frequency. ( This may also be surmised from the coupling equation 2.6, the fact that
J = 0, and the fact that the pressure field is nearly constant in f. ) Further, full
penetration seems to occur at this wavelength regardless of freque'nc y. This contrasts
sharply with the behavior of ¥V, shown for the permeable case in figure 5.15, in which
the penetration depth is seen to be roughly proportional to the diffusion boundary
layer thickness. Thus wavelength is 2 much more important factor than frequency in
determining the depth over which parameters are being measured in the impermeable
case. This is shown clearly in figure 5.6, which shows that the relative horizontal
velocity is only significant near the bottom of the layer if the wavelength is on the
order of or larger than the depth.

Finally, several other factors may need to be considered in comparing these results
to experimental data. First, the linearity of the model requires that the displacernent
amplitude ( a; ) be much smaller than the depth ( & ). Thus the effects of finite stress
and strain have not been accounted for. Similarly, in some cases inhomogeneity ard
anisotropy of the material could produce significant changes in estimated parameter
values. Lastly, the application of the boundary conditions used here to a three

dimensional problem of finite extent is not yet clear. The latter concern was one of
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the particular motivations for the material in the next chapter.
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Figure 5.20: Magnitude of the reiative horizontal velocity divided by frequency,

' -V, /w, for an impermeable surface, A = 10 mm, f = 0.001 to 0.1 Hz logarithmically.

The maximum amplitude shown corresponds to 1.65 - 10~2 mm/s per mm of a,.

The dimensional value at f = 0.1 is 1.71 - 10~% mm/s per mm.



Chapter 6

The Mixed Boundary Value Problem

6.1 Introduction

This chapter addresses a problem which satisfies boundary conditions thought to
be closer to those present when the electromechanical probe is used for in vivo
measurements. The next section will state the problem and its boundary conditions.
The following section will explain the algorithm developed to solve the given system
of equations and boundary conditions. The numerical results will then be presented

and discussed.

6.2 Statement of the Probiem

The boundary conditions considered in this chapter are similar to those of a contact
problem in pure elasticity, in which displacement is specified on one region, and stress
on another. Specifically, the top ( z = 0 )surface of the §°-thick layer of material of
previous chapters is divided into two types of regions which are extended periodically

in both y-directions. These are ( ¢f. figure 6.1):

127

:
'
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Region : 0 <y < !; { y =y"/6*, y and |, are non-dimensional ), on which

u)(y,2=0,t) =0 V.)'(y,2,t) =0 o, (y,2,t) =0

6.1)
Ji(y,0,2) = Jo[l - (ﬁ_)l]eiwt (6.1)

and

Region II: !; < y < I, on which
P(y,z=0,t) =0 S(y,2,t) =0 o},(y,2t) =0 J(y,0,t) =0, (6.2)

where [6* is the total dimensional width of region I and region II. These correspond to
the surfaces under the electrodes of a segmented electromechanical probe, and those
between the electrodes, respectively. The conditions on region I are like those of case
one of Chapter 4 in that a known current density is applied to a surface through
which there is no fluid flow arnd at which the solid matrix is not allowed any vertical
displacement. It is different in that the condition of no horizontai displacement has
been replaced by one of free slip: there is no shear force at the top surface. Thus the
surface of the electrode is assumed to be sufficiently smooth, and the normal forces
sufficiently small, so that the solid matrix is free to slip along the surface of the
electrode. This is consistent with the boundary conditions used by other authors (3]

along boundaries with relative motion between cartilage and a smooth solid.

The second region represents the free surface in the space between the two elec-
trodes. Here again there is no shear force on the surface. In addition, however,
there is no pressure, so that the fluid is free to exchange with a “reservoir” between
the electrodes. Lastly, the normal force is zero, as there is nothing to constrain the
vertical motion of the solid matrix.

- The two regions are now repeated in such a way that J, is even about the
line y = 0, and odd about the line y = {. The boundary conditions on the icp

surface are now 4[/-periodic in y, as may be seen in figure 6.1. The profile of J; was
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yz0 ' y=4 | | |
| | | i i
| | |
: | I '
\ l ! |
V | | |
| | | | |
I | | | :
€ lectrode Free | | |
) | Surface ! '
!
X p 777227721
2:=0
uz=V1=O 8'p=0 uz=V1’0 .'D'O
Jz = Uz 3“,=Vz =0
z=-|

Figure 6.1: Boundary conditions for the mixed boundary condition problem. Above:
The segmented electrode is shown. The areas in which the electrode is in contact
with the surface obey a type I boundary conditions 6.1, or a symmetric variant
thereof. The regions not in contact with an electrode are subject to the type II
boundary conditions 6.2. Below: The graph of J,(z = 0) shows how the boundary

conditions are extended periodically with the symmetries described on page 130.
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chosen to represent a current injecting electrode next to an insulating region. Since a
discontinuous profile is not physically realizable, the given “continuous square-wave”
was chosen ( ¢f. ﬁguré G.1 ). The particular functional dependence was chosen for
ease of analysis in finding the particular solutions ( ¢f. below }.

The boundary conditions at the bottom ( z=-1 ) are the same as in previous

chapters. These are:

ui(y,z=-1,t) =0 ul(y,~1,t)=0 V;(y,—1,t)=0 j:(y,~1,t)=0 (6.3)
These again correspond to no horizontal or vertical displacement of the solid ma-
trix, and no fluid or current flow through the surface. Note that equations 2.12.1
through 2.62.6 now immediately show that u},V,’, P, and S have the same symme-
tries as J,. The variables u;,V’,0;,, and J,, on the other hand, are odd symmetric
about y = 0, and even symmetric about y = I.

There are at least three major reasons for considering the above configuration.
First, it is impossible to perform an experiment on a layer which extends indefinitely
in the z- and y-directions. Thus it would be useful to model a structure of finite
extent. Second, a practically designed probe probably will not cover the whole
surface of the material whose properties are being measured. Thus, the top surface
will most likely be subjected to more than one type of boundary condition, including
one representing the forcing of the probe, and the other accounting for the areas not
in contact with the probe. Third, a periodic probe is a natural implementation of
both the segmented electrode structure, and the periodic transform methods used
in previous chapters. Further, periodic probes have been used successfully to probe
electrical properties in other applications [107]. Lastly, a probe with the above
configuration could be used to apply both electrical and mechanical stimuli, thus
obviating the need to change probes during a measurement.

Even though the problem being considered is of infinite extent, the above bound-

ary conditions are still appropriate as a firsi step towards fulfilling the ideals de-
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scribed above. First, multiple boundary conditions have been imposed, and a pe-
riodic structure has been used. Moreover, since the probe is truncated to a finite
width ( in the y-direction ), the Fourier spectrum of the input current is changed
primarily by spreading into the high-% regions. ( This is just a result of the exchange
between bandwidth in physical and Fourier spaces. ) Because short wave forcings are
known to produce only small signals at the surface under a wide variety of boundary
conditions, the problem described above should provide a reasonable approximation

to the result of a finite width probe.

6.3 The Algorithm for Solution of
the Mixed Problem

6.3.1 Introduction

This section describes the algorithm used to find the fields satisfying the boundary
conditions 6.1 and 6.2 described in the previous section. However, the details of
the algorithm’s operation are more easily understood if the general idea behind it
is understood first. Since a great deal of information is contained in the solutions
of §3.2, it seems reasonable to try to use these solutions to solve the problem at
hand. Noting that the current can be solved for in advance ( as in Chapter 4, this
will be explained in more detail below ), only the coefficients of the homogeneous
solutions need to be calculated. Because there are six homogeneous solutions ( for a
given wavelength and frequency ) if a solution containing M Fourier components is
desired, there will be 6 M degrees of freedom. The most direct approach to solving
the problém, then, would be to use M collocation points on each of the top and
bottom surfaces, and require that each of the three boundary conditions hold at

each point. This yields 6 M linear equations in the 6M coefficients corresponding
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to the k;,..., ke of equation 3.24. The solution of these equations, and thus this
algorithm, requires a time on the order of (6M)3.

The algorithm developed for this problem, however, has an asymptotic time
bound of M3, thus providing a solution 218 times as fast. To do this, the three
boundary conditions at the bottom of the layer and the zero-shear condition are first
used to reduce the number of degrees of freedom to 2M. Fufther, the information
contained in the zero pressure and shear conditions of region II are used to eliminate
one more degree of freedom. The method used to remove the degrees of freedom is
effectively that of posing the problem in terms of Green's functions for other, related
problems. This results in a problem of M degrees of freedom, which takes O(M?3)
time to solve. Even though the set up time is lengthened considerably, the reduction
in time for the major matrix inversion step more than compenaates when M is large

enough to provide reasonable resolution.

6.3.2 The Current Density Field and Particular Solutions

Because the vertical current density is known at the top and bottom surfaces ( from
equations 6.1, 6.2, and 6.3 ), the current density field is known in closed form.
The symmetry of the stated problem makes it convenient to use a slightly different

notation than that cof the previous chapters. Specifically, for the current density we

define
Jy(y*,2%t) = Joe Wt y®_ JmJy(2) 8in kmy (6.4)
Ja(y*,2°t) = Joe T, Jmi™(2) cos kmy
where j, is a Fourier ccefficient, k,, is a wavenumber ( given below ), and (y, z) =
(y°,2%)/6", as before. Here, j* and j;* are related to the previously used j, and j,
by '
Jv = 'Jy |5=kn (6.5)
jlm = j' |5-'-'kln *
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The sin and cos functions were chosen according to the symmetries mentioned on

page 130. It is also useful to define non-dimensional variables

.Tu(yszat) = JII/JO

Ilyzt) = Ji/d. (6.6)

The superscript “S” and over-bar will be omitted for the remainder of this chapter,
except where necessary for clarity.

To find the current density field, note that if ¢5, and j, of equations 4.5 are used
for 5 and j;*, then jm will simply be the Fourier series for the profile of J; given

by equations 6.1 and 6.2. The coefficients j,, are thus found to be:

. _ 8‘ -2 cos 1) — 1 -3 sin 1
Jm = f[(kmll) (kml ) 3(""" ) (k"‘l ) (6.7)
- G(kmll)-‘ COS(kmll) + G(km.ll)_.5 Sin(kmli)]
with ( )
_2m-1)n
ko= S (6.8)

The current density field solution is completed by using equations 4.5a and b with
k., substituted for §, so that

7« = sinhy/sinhk, (6.9)
Jy = —coshy/sinhky,,

with 4 = k(2 + 1). The current density field J is shown in figure 6.2.
As in the case of Chapter 4, the current density field produces a mechanical
réaponse which does not satisfy the given boundary conditions. The response is

described here using a notation analogous to that of equations 6.4 and 6.6 above.
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Current Density Field
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Figure 6.2: Current density field for mixed boundary conditions.
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Thus we define
ul(y',2t) = aye ' TR, fmuf™(2)sinkny
+ 52, [sinkny S5, cPul(2)]
ul(y*,2%t) = aye” T2 imul™(2)coskmy
+3%2_, lcoskay T8, ctul (z)]
vy, 2°t) = Jofde TR, jmvp™(2) sin kmy
+ 0 [sinkmy Th-g 7 (z)]
VW) = Joli2e o T, o™ (2) co8 kny

+3%_, [cos kmy S5, c}"v,",‘(z)] .
Vo (v',2t) = Jo;:fe"‘”‘ w1 JmVy ™ (2) sin kmy
+ Ty [sinkmy T, 'V (z)]
Viy',2't) = J ;ﬁe“"" ®©_, jmVE™(2) cos kmy
+ =1 (€08 kmy PR V,',"(z)]
P(y*,2",t) = Job%bize "t T2, jmp’™(2) cos kmy
+ Traes [cos kmy T, P (2)]
S(y*,2',t) = Job%buae™ ™t T2, jms"™(2) cos kmy
+ X0 .cos kny 38, c}"s‘,’"(z)]
05, (y°,2°,t) = Job'brae™ T, fm6T ™ (2) sin kmy
+¥>_, smk,,.yEl = 1%¢*0] (z)]
B(y*,2°,t) = Job°baze ™! Tin_; jmd"™(2) cos kmy
+X3., [cos kmy T8, c}"¢{"(z)]

Also, a set of non-dimensionalized variables @, ..., may be defined analogously to

(6.10)

Jv in equation 6.6 using the non-dimensionalizations above. These will also be used,
and overbar will be dropped where non-dimensionality is clear from the context.

The superscript “P” in equation 6.10 represents the aforementioned response to
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the current density. These particular solutions are given by ( see equations 4.5 and

the procedure for deriving the homogeneous solutions, below )

uPm = _[(1—kmcothk,)coshy + vsinh~y
v o 2nk;, sinh k,,
Pm _ 7coshq — ky, coth k,, sinh 4y
U 2nk? sinh ky
Vi =0
V‘Prn =0 (6. 1 1)
P’™ = k:lcoshy /sinh kpm
sf™ = pP 4 2nkmup
r = _(1—km coth km) sinh~v + v cosh o
9 = knsinhk,,

The terms of equations 6.10 which are summed over ! are the homogeneous solu-
tions, which are derived from those of equations 3.24. The functions of 2 which are
associated with ¢[* ( e.g. uT(2) ) are obtained from the homogeneous solutions of
equations 3.24 as follows. First, §, which was the product of the imposed wavenum-
ber and the dimensional thickness, is replaced by k,,. Then, for any field component
A which is even in y, the AP are identical to the appropriate homogeneous solu-
tion for that component.’ For any ﬁeld component A which is odd in y, the Ar
are ¢ times the homogeneous solutlons for that component. For example, for the

horizontal displacement ( uy ), which is odd in y,
uys = —(z + k;t)etms

( ¢f. equations 3.24 ). For the vertical displacement ( us ), which is even in y,

uly = zekn*
The ¢f* are analogous to the k; of equation 3.24. Since 3, are given in equations 6,7,
the solution of the problem again lies in the determination of the coefficients of the

homogeneous solutions.
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6.3.3 Solution for the Non-Mixed Problem:
Problems “A” and “B”

The first step in solving this problem is to change it into a convenient homogeneous
problem, s.e. , one with current density J = 0. To do this, the problem is divided
into two subproblems, denoted “A” and “B”. The current density for problem A is

that given by equations 6.4, 6.7, and 6.9. The mechanical boundary conditicns for

A are
0)=0 0)=0 +(0) =0
uy(—1) =0 u,(-1)=0 V,(-1)=0.
Problem B has J, = 0 and mechanical boundary conditions
RegionI (0<y<l):
ul(y,z = 0,t) = —ul(y,z = 0,¢) Vi(y, 2,t) = —VA(y,z = 0,t)
0,,(v,2,t) =0
(6.13)
Region Il (/; <y<!):
p(y,2=0,t) =0 s(y,2,t) =0 0oyl(y,2,t) =0 (6.14)
and
Bottom Surface (2= —1):
uy(—1) =0 u,(—-1)=0 V,(-1)=0. (6.15)

In equations 6.13, the u.‘,“ and VA refer to the solution to problem A at the given
location. The above equations are shown schematically in figure 6.3. From the
linearity of the problem it is evident that the sum of the solutions to problems A

and B is the desired solution.
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z
4 Jp as given in figure 6.1 =4
Z=0 " - - T ’y
-:,. '.‘a'yz-ép=s=o" ’ ‘
‘ 'uya_u, =_V,' = Jp 20 '
z=-| ; s - . .
Proolem A
z
4 Jz 'a'yl=0
— — - o Y
uz=-uf y =4 pfs=0 ‘ |
Vp=-VE RRPCI ..
» Jl‘-'ll' .=‘.‘l=Vz 'O
Problem B
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Figure 6.3: Boundary conditions for problems “A” and “B.” Problem A is inhomo-

geneous but has no mixing of boundary conditions. Problem B is homogeneous but

has mixed boundary conditions.
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The solution to problem A is obtained easily by the methods of Chapter 4. For

each wavenumber k.,, the following boundary conditions are applied:
i cfmp(0) = —dmp"™(0)

El—l Ct si(0) = ~JjmsF ™(0)
L= cf™a(0) = —jmoy,"(0)

21~1 cl x(—l) = —jmuf"‘(—l)
Ex=1 ""z mup(-1) = -jmuf"‘(—l)
T V(1) = —gmV™(-1),

m = 1,...,M, where 5, are given in equation 6.7. This is a set of M six by six
linear equations in the complex zonstants cZ,...,c4. If the time reauired to solve
one such six by six equation is Tg, this step requires a time of M7s. Note that the
infinite sums of equations 6.4 and 6.10 have necessariiy been truncated at a finite
number of Fourier modes, M

Note, however, for m sufficiently large k,, *> 1, and the solution to equations 6.3.3

approaches that of the short-wave approximation defined by
A =cdm =™ =0 (6.16)

( ¢f. §4.2.2 and §5.2.3 ). Because equations 6.3.3 are ill-conditioned in this parameter
regime, and because short-wave analytical results agreed well with numerical ones
(in previous chapters ), equation 6.16 was substituted into 6.3.3 when k,, > 6.
This means that the time required to solve 6.3.3 is reduced to O (M7Ts), where T is
the time required to solve the resulting three equations in c™,cf™, and ¢f™. Any
errors in the values of the ¢f* which could result from this approximation would sﬁow
up as deviations of the fields from the desired boundary conditions. As will be seen

in §6.4, these errors were not significant.
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6.3.4 The Basis Coeflicients:

Reducing the Number of Degrees of I'reedom

Even though problem B has no current density, and may thus be solved in terms
of strictly mechanical boundary conditions, it has the mixed condition at the top
which is the crux of the present inquiry. To solve this efficiently the iiomogeneous
coefficients ( ¢ ) of two sets of fields will be used. It is the use of these “basis”
coefficients, the affiliated fields, and the fast Fourier transform which effectively
reduces the number of degrees of freedom.

To define the basis coefficients, we will use Green’s function-like boundary con-
ditions on the pressure at z = 0 for one set, and on the normal stress at z = 0 for
the other. We will be rephrasing the boundary conditions of the problem in terms of
the question: given all of the other boundary conditions of problem B, what surface
pressure and normal stress values will result in the given surface values, —u2 and

—-VA, for the vertical displacement and velocity fields? First, define the sinc-like

function
2 yM  cos(k k 0
snc, (y) = 1?' Emey cosllinti) cos(fny) n 7 (6.17)
M E%:x cos(kmy) n=0
where y, is the y-coordinate of the nth collocation point on the z = 0 axis,
tm=(n-1)/M. (6.18)

( The use of the term “collocation point” will be come clearer in equations 6.22
below ). The snc function has the property that
1 n=k

sncy, (Vi) = { 0 itk (6.19)

The pressure and ( normal ) stress basis coefficients may now be defined using

the snc, (y) function. The pressure basis coefficients, /', are those values of the
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homogeneous solutions coefficients, ¢[*, for which ( for a given value of M ) the fields

obey the boundary conditions ( J=0 )

p(y,z=0) = snca(y) 8(y,0) = 0 o0u,(y,0) = 0

(6.20)
uy(y,—-1) = 0 u;(y,—1) = 0 Vi(y,-1) = 0

The stress basis coefficients, $, are defined analogously, with the roles of p and s
reversed.

Note that any problem satisfying the boundary conditions of problem B with
the conditions u}(y,z = 0,t) = —uf(y,z = 0,¢) and V,(y,2,t) = —VA(y,z = 0,2)
replaced by any two ( consistent ) boundary conditions can be solved using a super-
position of the fields corresponding to the pressure and stress basis functions. By

“solution”, it is meant that the conditions hold at each of the
ng = —-M ] (6.21)

collocation points in region I ( ¢f. figure 6.3 ). In particular, there exist coefficients

IT, and T, such that the ng collocation equations

—ul(yj,z2=0) = T, M. TN, cos(kmy;) TP, Puli(z = 0)
Tnli Trn Tey c08(kmy;) iy Simul(z = 0)

(6.22)
—VsA (yisz2=0) = a2, 1l Eﬁf—l vos(kmy;) E?_l PnVi(z =0)
ny Ta XM m=1€08(kmy;) Ti1 SV (z = 0)
are satisfied for each j = 1,...,n¢. From 6.20 and 6.19 it can be seen that
PB(% 0) E I, E cos\kmy) E Pl:.pyl (z = 0) ’ (6'23)
m=1
in which there is no contribution from the Y,, terms. Moreover,
p°(vn,0) =TI, (6.24)

A similar equation holds for s? with the II, terms omitted.

—7j
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It may now be seen in what manner the problem has been rephrased in terms
of which pressure and stress fields produce the desired displacement and velocity
at the boundary. By equations 6.22 and 6.24 it is evident that the values of the
pressure and stress on regien I can be chosen to obtain the desired displacements
there. Furthermore, given the values of the A and §;, the number of unknowns
in the problem has been reduced to 2rg, comprised of the Il, and Y. As long as
I, < 1/2, equation 6.21 shows that 2ny < M. Thus the problem has been reduced
to one that can be solved in O(M?®) time. ( If I; > [, then the roles of p and s and
those of u, and V, may be reversed to adhere strictly to this time bound. Even if
this is not done, the time will be at most O(8M?3), a factor of 27 better than the
brute force collocation method. ) All that now remains is to show how the A and
S™ may be obtained in a time T < O(M?), and the exact procedure for finding I,
and T,.

6.3.5 Solution for the Basis Functions and their Coefficients

Because the Fourier coefficients of the snc function are known from equation 6.17,
P™ and S may be easily calculated. For a fixed n and m, equation 6.23 shows that

the six coefficients A must obey the equation

Tie1 Pime(0) = sz cos(kmyn)
58, Pme(0) =0

T4 PRop(0) =0

Tiat Prug(-1)=0

Yi=1 Anu(-1) =0

216=1 PI?V-?("I) =0,

(6.25)

where the values must be divided by two if n = 0. The equations for the S are

identical, except that the roles of p[* and a}"A are reversed. The solution of these
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equations must be found for m = 1,...,M, and n = 1,...,no. However, because
the coefficients of the A™ on the left side are independent of n, the coefficients may

be found from the value of, ¢.g., AT* via
P = 2cos(kmyn) A1 (6.26)

(v1 =0, ¢f. 6.18 ). Thus, if Ts is the time required to solve a six by six linear

equation with complex coefficients, the A™ and §® may be solved for in M Ty time!.

To determine the values of the II, and Ty, equations 6.22 are used. The values
of u2 (and VA ) are determined by equations 6.10 with jm, = 0, and c[* = ¢{™ using
a fast Fourier inversion. This takes only M log M time for each of the two variables.
Note that the symmetries in this problem ( ¢f. page 130 ) allow the determination
of M Fourier coefficients from M spacial values. The 2ny equations 6.22 are then
solved for the values of the pressure and normal stress at the collocation points, If,
and T,, respectively. As mentioned in the previous section, this step requires M3
time.

The homogeneous coefficients which correspond to problem B, ¢™ may now be

determined. Note that

M — ng terms
g,

(pa(yl,z=0),...,p3(yu,0)) = (Hl’“'nnnoa 0,

(B(41,2=0),...,88(ym,0)) = (T1,.--3Tney  Oy...,

M — ng terms

-0 6.27
o (6.27)
By performing a fast Fourier transform of these values, the M values of pP™ and
8™ in

ply,z2=0) = TM  pPmcosknmy

(6.28)
s(y,2=0) = TM_  sB™coskny

1This fact was not realized until after the algorithm was implemented, and the results presented
used direct solution of all ng M equations. As this is still O(M"T.) time, the overall performance
was not direly effected.
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may be determined. Thus problem B has been reduced to the problem

T e p0) = po"

S ePmsp(0) = 7

T efmor(0) = 0
2?=1 czBm“:l'(_l) =0
ThcP™ug(-1) = 0

T eemVir(-1) = 0,
form=1,...,M. As before, this step takes only MT; time, though the comments
about use of the shortwave approximation on page 139 are again appropriate. The
solution to the problem defined by boundary conditions 6.1, 6.2, and 6.3 is now given

by equations 6.4, 6.7, and 6.10, with

e =ef™ + ™.

6.4 Results

The algorithm described in the preceding section was used to determine the fields
with the parameter values of equations 4.6 and 4.7. In addition, the values ! = 1
and [; = 0.5 were used. Calculations were made for current stimulus frequencies of
f =107% and 1073 Hz. Values of the coefficients were calculated for various values
of M ( the number of Fourier modes kept in equation 6.10 ). The values of M
ranged between 20 ﬁ.nd 100 modes for the low-frequency ( f = 10~% ), and between
20 and 120 for the mid-frequency ( f = 10~2 ). Because the Fourier series for some
of the fields converge slowly, the coefficients j, and ¢[* were passed through the
Hamming window [46] before calculating the fields. In particular, the coefficients

were transformed according to

Cm— |a+ bcos(n'E!'-)]Cm .
kae
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where C,, is one of j, or ¢f*, b =1 — a, and

0.076
a=0.523 + ™

The convergence of the fields with increasing M is discussed in Section §6.5.

The magnitudes and phases of the fields were plotted as functions of y and
z for the range 0 < y < 2! ( one half-period in the horizontal direction ) and
—1 < 2 £ 0. ( Plots of all of the relevant fields may be found in Appendix A.3,
while the maximum and minimum values of the field magnitudes and phases are in
Table 6.1. ) In figure 6.4 the horizontal displacement, |&,|, is shown for f = 1073,
Note that it grows over the region in which current is injected ( region I ), and
is nearly constant in y near region II. The profile looks very much the same for
f = 107%. The magnitudes of the vertical displacement, |&,|, is shown for both
frequencies in figure 6.5. The apparent cusp in |u,| on the line y = ! is due to the fact
that u, is asymmetric about this axis. Note that in the “static” case ( f = 1075 ),
the behavior is drastically different. Also, in both cases the boundary condition
u, = 0 on region I and on z = —1 are met. For f = 1073, the maximum of |u,| over
region I is less than 10™* its maximum over region II. Other boundary conditions

were met with similar accuracy.

The fluid velocity fields have a singularity at the interface between regions I and
II. The magnitude and phase of the relative horizontal velocity, V, are shown for
f = 107" in figure 6.6. The magnitude of the field is similar for f = 1073, but the
maximum along the symmetry axis y = [ is larger by a factor of about three. In
both cases a phase lag develops in region I with frequency, whereas in region II and
away irom the top V,, is 180° out of phase with the input ( J; ). Thus, near the
surface there is a rapid phase change from across singularity. The boundary and
the singularity influence a much shallower region for higher frequencies, as expected

from previously mentioned interpretations of the diffusion boundary layer thickness
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Variable Maximum | Minimum | Maximum Modes,
Amplitude Phase Phase Samples
_ 3.10. 162 1.00 1.37 100,513
u" 0.103 2.9-10% | 3.8.10"2 | 100,513
_ 1.53.10"2 -3.13 3.14 100,129
" 1.27-102 | —3.00 3.13 100,129
7, 1.33 -3.14 3.14 100,513
2.88 —-3.14 3.14 100,513
v 1.75 —-3.14 3.14 100,513
3.615 —-3.14 3.14 100,513
0.255 —-2.58 2.66 100,513
P 0.456 -3.12 5.3.102 100,513
_ 4.06 - 1072 -2.26 2.37 100,513
) 0.120 -3.11 4.9.1072 100,513
2, 1.17-10-2 —0.356 2.37 100,129
5.02-107? -3.08 0.048 100,129
3 0.546 -3.14 3.14 100,129
0.570 -3.14 3.14 100,129
- 1.07 w x 100,513
T 1 1 1 100,513
1 0 0 00, 00
Js
T T T T

Table 6.1: Field values for mixed boundary condition forcing. These are the values of

the extrema ( over y and 2z ) of the ( non-dimensional ) magnitudes and phases of the

indicated field variables calculated using the parameters described in Seztion §6.4.

The upper values refer to f = 1073 Hz, the lower to f = 10~% Hz. Plots of thesa

fields may be found in Appendix A.3.
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Mag of Horiz Disp, f = 107> Hz, 1 = 1
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Figure 6.4: Magnitude of the horizontal displacement, [Byl, f =10"% Hz, M = 100.

The maximum non-dimensional value is 0.10.
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Mag of Vert Disp, f = 1073 Hz, 1 = 1
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Figure 6.5: Magnitude of the Vertical Displacement, |&,], f = 10~% and 1073 Hz,

M = 60 and 100, respectively ( Differences are not due to the number of modes. ).

The maximum non-dimensional values are 1.3 10-% and 1.5- 1072, respectively.
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( ¢f. §3.3. The magnitude of the relative vertical velocity, V; for both frequencies is
in figure 6.7. Note that interior values of vertical velocity are also larger for f = 10~3
here. The phase of the relative vertical velocity for f = 1073 is shown in figure 6.8.
Note the transition of roughly 45° from region II into the interior, and the fact that
V, is in phase with J, below the diffusion boundary layer thickness. For f = 1075,
V. is in phase with J; everywhere.

The reason for the singularity in the velocity fields may seen in the pressure field.
The magnitude of the pressure, |p| is shown in figure 6.9 for f = 107%. Note that the
tangent to |p| is nearly vertical at the boundary y = I, between regions I and II. ( This
is explained in §6.5. It is also seen in the real part of the pressure, and thus is not a
manifestation of having taken the magnitude. ) The coupling equation 2.6 indicates
that the relative velocity can be calculated by adding the current density field and
the gradient of the pressure. Because the current density is continuous at y = [;, any
discontinuity in the derivative or value of p would be expressed as a singularity of
higher order in the relative velocity field. Thus, the singularity in the relative velocity
fields is reasonable. Also, the of 3, is discontinuous at y = [,, and it was considered
possible that the singularity in the relative velocities was due to the consequent slow
convergence of its ( j,’s ) Fourier series. This was disproven by demonstrating that
the singularity exists even if the boundary conditions J, = cos(k;y) exp(—iwt) are
used, cf. §6.5.

The magnitudes and phases of the three stress-related variables, p,s, and o,
have some striking similarities and differences. First, the profile of the pressure at
f = 1073 looks very much like that shown for f = 10~% in figure 6.9. As might be
expected from the velocity profiles and the diffusion boundary layer thickness, the
magnitude decays more rapidly for f = 10~3. Further, the maximum value at the
latter frequency is roughly half that of the former. The maximum magnitude of the

normal stress, s, however, is nearly 3 times as large for f = 107% as for f = 1073.
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Mag of Rel Horiz Vel, f = 1073 Hz, | = 1

L
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Figure 6.6: Magnitude and phase of the relative horizontal velocity, V,, f = 10~% Hz,
M = 100. The maximum non-dimensional value of the magnitude is 1.8. The phase
ranges between —r and 7. Values of the phase are not plotted for points at which
the magnitude of the field is smaller than a specified fraction of the maximum value

over the whole region. In this case that “cutoff fraction” was 5 - 10~4.
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Mag of Rel vert Vel, f = 109-5
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Hz, 1 =1
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Pnease of Rel Vert Vel, f

ocity, V,, f = 1073, M = 100, The value

Figure 6.8; Phase of the relative vertica| vel

Tanges between —r ang 7 radians.
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10°° Hz, 1 =1

o of Pressure, f
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= 10~%, M=60. The maximum

Figure 6.9: Ma.gnitude of the pressure, \p|, for f

value plotted is 0.454.
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Since pressure stresses do not account for this, consideration of the constitutive
equation 2.3 shows that the large difference must be due to a large change in either
the magnitude of the elastic stresses or the relative phases of the elastic and pressure
stresses ( with the latter change resulting in cancellation ). As with the pressure,
the profile decays more rapidly ( towards the bottom ) for the higher frequency.
The phase profiles of the pressure and normal siress are also similar. For f =
1075, both variables are in phase with J,, as they are real and positive for 0 < y < I,
and negative for | < y < 2!. In figure 6.10 it can be seen that, for f = 1073, s
has a lag of 7/2 over most of the volume, and a lag of 37/4 over a region within
a diffusion layer thickness of region II. The lag for p is similar, with an average lag

close to 37 /4.

The behavior of the shear, o,,, shows the frequency dependence even more dra-
matically than p or s. In figure 6.11, the sharp maximum of |o,,| which results from
the change in boundary conditions propagates into the medium for almost one-third
of its depth. Given the fact that the shear is zero at the surface, as required by
the boundary conditions; the development of such narrow maxima just beneath the
surface is somewhat surprising. This is especially true rfor the sharp peak present
in the plot of the f = 10~* value in the same figure. In this case, however, the
effect is spread over a wider region starting much closer to the surface, as would
be expected. Further, the maximum value of |oy,|, which occurs at (y,z) = (I, ~1)
is roughly four times as large for the lower frequency. This supports the idea that
the mechanical stresses due to the solid matrii are stronger at lower frequencies,
as mentioned above for the normal stress. Lastly, for both frequencies ( especially
f=10"%) fhe phases are relatively constant over the bottom 60% of the layer. The
difference is that the low-frequency value is roughly zero, while that of f = 1073 is
roughly 27 /5. Thus there is a significant lag present for the higher frequency which

is not for the lower one, as expected.



§6.4. 155

for f = 10~%, M = 100. The value

Figure 6.10: Magnitude of the normal stress, |3|,
ranges from -2.26 to 2.37 with a cutoff frequency ( ¢f. figure 6.8 ) of 0.01.



Figure 6.11: Magnitude of the shear stress, |3,,|, f = 10~° and 1073, M = 60, and

100, respectively. The maximum values are 5.02 - 10~? and 1.17 - 1072, respectively.
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The potential fields for the two frequencies are surprisingly similar. The magni-
tude of the potential for f = 1073 is shown in figure 6.12. It is virtually indistin-
guishable from that of the lower frequency. The phases are also indistinguishable,
and are 180° out of phase with J;, as would be suspected from a purely conductive
model ( ¢f. §2.3.2. There is a difference in the maximum amplitude, though, as
the maximum for f = 10~% is 4.5% higher than that at f = 10~3. Since J is not
frequency dependent, the change must be due to the change in amplitude and phase

of the relative velocity field.

6.5 Discussion

This section addresses several points. First, the convergence of the fields as the
number of modes kept ( M ) increases must be addressed before the results can be
interpreted physically. Next, the results will be compared to those of the simpler
boundary conditions used in previous chapters. In particular, the existence of the

gingularities in the relative velocity field, f", will be discussed.

6.5.1 Convergence

The convergence of the fields as M — oo was examined in three ways. First, the
magnitude of several fields at a given depth, 2z, were plotted as a function of y
for M = 36, 70, and 120. These plots are shown for the pressure and vertical
current density at the surface, p and V, in figures 6.13 and 6.14. For these plots,
the fields have been calculated using the forcing J, = cos(k1y) exp(—twt) mentioned
on page 149 instead of that given in equations 6.1 and 6.2. Note that the values of
p change very littie except in the vicinity of the boundary y = I; between regions I
and II.

As the resolution improves with M, it is clear the tangent to ply =l,z2=0)is
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\lag of Potential, f = 107 Hz, 1 = 1

103, M = 100. The maximum is

Figure 6.12: Magnitude of the potential, |@|, f

0.570.



§6.5.1 159

0.3
e

B D

= 10" llz, one cmpnt J,
0.2
l

f
0.

I’(#--0),

Figure 6.13: Magﬁitude of the pressure, |p|, f = 10"’, M = 36, 70, and 120. The

boundary condition J, = cos(k1y) exp(—iwt) was used.
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Figure 6.14: Magnitude of the relative horizontai velocity, |V,|, f = 10-3, M = 36,
70, and 120. The boundary condition J, = cos(k,y) exp(—:twt) was used.
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becoming more and more vertical. In figure 6.14 it can be seen that, as expected
from the y-component of the coupling equation 2.6a, the singularity in V, at y =,
becomes better defined as the gradient of p in that neighborhoed increases. In any
region not containing the point (y = l;,z = 0), however, it appears that the values
of this field are also converging. It is also important to note that even though
the vertical current density profile is infinitely smooth in this case ( as opposed
to having the discontinuous derivative implicit in equations 6.1 and 6.2 ), there is
still a singularity in V; and V;. The singularity is thus, as will be discussed further
below, due to the mechanical boundary cdnditions, and not just the singularity in
the chosen current density profile.

The second test for convergence examines the differences between successive ap-
proximations to the fields. The analysis involved in such a test is as follows. As-
sume that a complex number X is being successively approximated by the sequence

T3, Z32,.... The first differences d, = Az, are defired by Az, = z,, — z,—;. Note that

m
Im =9 dn, (6.29)
n=1

where d; has been defined as z,. Thus if the sequence z,, is to converge as M — oo,
the d, must decay sufficiently rapidly. In particular, if the slope of a plot of log |d,|
versus log n is ( asymptotically ) linear and has a slope —b < —1, then the sequence
Z,, converges absolutely at with an error on the order of m~(*-1), In figure 6.15,
this procedure was performed using the maximum over y at z = —0.5 of each of
the field variables u,, u,, Vy, V4, p, 8, J,, and ¢ as a separate sequence z,. It is
evident that all but the last two converge like M1, and that the last two converge
like M~3 or faster. In applications where more than a few digits of accuracy are
needed, the convergence may thus be accelerated via a Richardson-Aitken or other,

similar transformation [5].

At the surface ( z = 0 ), however, the values of V; and V, converge only condi-
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Figure 6.15: Convergence rate for the field maxima at z = —0.5, f=10%1=1,
l; = 0.5. The values corréspond to the differences in the values of the maximum
amplitudes of the fields over y at 2 = —0.5 for successive values of the number
of modes used in the caiculatiéns, M. The symbols 1, 2, 3, 4, 7, 8 correspond
to values for |3,], |8al, %), Vil |8, 18], 13, and ||, respectively. For example,
the upper-left-hand “4” represents the log of the difference between the value'of
max |7,(y,z = —0.5)| (0 < y < 1) evaluated for M = 30 and M = 20 modes. The
values of M used are 30, 40, 50, 60, 70, 80, and 99. |
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tionally. To see this, observe that in figure 6.16 the values of the differences between
the successive approximations to V,(y = 1,z = 0) are decaying only like M~1/4,
The other plot in this figure, however, shows that the values are converging in an
oscillatory manner, and ( from the previous observation ) with an envelope of M~/

These oscillations may be damped out to give more accurate values.

6.5.2 Comparison with Previous Results

There are several similarities between the behaviors associated with mixed boundary
conditions, and those associated with non-mixed electrical or mechanical forcing.
The first of these 's the phase lag which develops at higher frequencies for virtually
all of the variables. For current forcing, for example, in figure 4.6 it was seen that
the phase of the horizontal displacement rises by a little more than one radian ( on
the average ) as the frequency goes from 1075 to 1073, In the mixed case this also
happens, as the phase of u, is nearly constant at zero for f = 107°, and ranges
between 1.00 and 1.37 for f = 1073, In this sense the mixed problem is acting like
the current forced orne.

This similarity between the current forced response under mixed and non-mixed
boundary conditions is also seen in the displacement amplitude. The horizontal dis-
placement is much smaller at higher frequencies for both cases. If longer wavelengths
are considered in the non-mixed case, it can be seen that the amplitude of the re-
sponses for both cases decrease roughly in proportion to the frequency. This makes
gense in that the sclid and fluid can not, given the frictional interaction between
them, react instantaneously to the driving current. Thus at a higher frequency the
solid matrix will not have time to move as far before the phase of the driving reverses.
This argument also explains why there is a phase lag for the higher frequencies.

Note, however, that the vertical displacement actually increases slightly with

frequency. This is probably due to the increase in vertical velocity ( and conse-
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Figure 6.16: Convergence.'of the relative velocity fields, V,,and V, at z =0, f = 1073,
l =1, 1l; = 05. Above: As in figure 6.15, but with the symbols 1, 2, 3, and
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at M = 46, 58, and 62.
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quent drag on the matrix ) in the interior where the vertical displacement is not
constrained. The relative lack of change of amplitude is similar to that noted for the
mechanically forced case. Alsi;, the concentration of the vertical displacement field
near the center of the layer seems related to the lack of equilibration time mentioned
above. In the “static” case ( f = 1078 ), the displacement has time to move all the
way up to the spé.ces between the electrodes.

The latter effect is also responsible for the relative sizes of the normal and shear
stresses, s and o,,, at f = 107% and 1073. It was noted ( in §6.4 ) that the pressure
changes by a factor of only about two, whereas s changes by a factor of three, and
oys by one of four. The fact that, for lower frequencies, the displacement fields have
time to develop large gradicnts. means that the stress fields will also be larger at
these frequencies. Similarly, the stress and shear fields develop significant phase lags
at the higher frequencies.

The relative velocity fields also appear to lack equilibration time. In the current
driven case, the magnitudes of the relative velocities increased slightly with a two
decade freciuency change. If the region away from the singularity is considered, this is
also true for the mixed boundary value problem as well. The increase is, most likely,
due to a scaling effect. Namely, at higher frequencies, one expects proportionally
higher velocities. This might be true for these two cases if the frequencies were in the
static range ( f < 107% ), but here again the drag interaction with the solid matrix
results in a certain time delay before the fluid can obtain its equilibrium ( static )
amplitude.

The two most outstanding features of the previous four non-mixed cases can
be seen here as well. First, the influence of the diffusion boundary layer thickness
has alsc been seen in this mixed boundary value problem. This is seen in the shear
profile of figure 6.11, where the profile is smoothed at a much shallower depth for the

case at the higher frequency ( and, thus, lower diffusion boundary layer thickness ).
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Further, the singularities in the velocities are smoothed out closer to the surface for
higher frequencies.

Finally, the penetration depth is still proportional to the input wavelength. Thus
any information contained in harmonics with short wavelengths is lost beyond one
wavelength below the surface. This can be seen in the smoothness of even the
singular profiles of V,, and V, ( figures 6.6 and 6.7, respectively ) for z < —0.1. In
this manner it may be said that even though the singularities near the change in
boundary conditions would not be physically realized, the values of the field away
from the boundary would not be significantly altered if these singularities were not

present.

6.5.3 The Nature of the Singularity

This section will demonstrate that the singularities, which may at first seem to be
an extreme response the given change in boundary conditions, are to be expected in
the present model. Consider, first, the vicinity of the point py = (y =/;,z=0)on a
local yet macroscopic scale. That is to say, consider figure 6.17, in which the point
Po is the origin of a stretched y, 2-coordinate system. The scale of these coordinates
is sufficiently stretched that all other boundaries in the problem are insignificant,
yet not so much that the electrochemistry at the surface of the electrodes needs to
be considered. ( This coordinate scale is only considered for mathematical purposes,
and does not necessarily exist in practice ). An analysis of the singularity will
be carried out on this coordinate scale using the classical potential theory for the

irrotational flow of an inéompressiblg fluid.

‘First, note that, in the static limit f — 0, the relative velocity behaves like an

incompressible and is also irrotational. In this limit, the relative and absolute fluid
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Am(X)=2z

V; =0
LLLLLLLLLLLLY ' >

Figure 6.17: Local coordinate systerﬁ and boundary conditions for analysis of the

singularity. The pressure is zero for z = 0, y > 0, which is the positive real axis if

this plane is considered to be the complex z = y + sz plane.
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velocities, V and v, are equal. By considering equation 2.1 or 3.8, it is evident that
V.-V=0, (6.30)

which is the equation of conservation of mass for an incompressible flow. In additicn,
equation 2.7 ( V x V = 0 ) shows that this flow is irrotationai. Thus the relative

velocity may be set equal to the gradient of a function ¢
V= 6@ ’

which is harmonic,
Vip =0
The function (y,2) is necessarily the real part of a function ¥ = ¢ + iy of the

complex variable x = ¢ + $2. In terms of this complex potential, we wave
dx? = Vy - "V. 9 (6-31)

where d, is the derivative with respect to the complex variable .

" The boundary conditions relevant to this potential low problem are taken from
equations 6.1 and 6.2 to be

p=20y>0 (6.32)
Ve = 0 y<0.

To convert the pressure equation into a velocity conaition, the steady, constant den-
sity, irrotational form of Bernoulli’s law is used. Substitution of 6.31 gives ( assuming
unit density )

p=c— |V =c—|dF?, (6.33)

where ¢ is an arbitrary constant, taken here as zero. Thus it is required that |d, ¥|

be constant on the pcsitive real-x axis. This condition may be generaly restated as

¥ lx=v>0 = ¢/ |x=y>o = /W), (6.34)
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for some real function f(y) defined on y > 0. The other boundary condition simply
requires that d, ¥ be real on the negative real axis.
Since one of the given equations 6.33 is non-linear, a general sclution may not

be obtainable. However, a very broad class of solutions is available in the form
d, F = 2(VX) | (6.35)

where O(x) is an “odd” function which is analytic in the vicinity of the origin, and
real on the real x-axis. By odd, it is meant that O has the Taylor seriea

o0
O(X) — Z%’X”_l .
Jj=l

If O is also positive for x real and ¥ < 0, and negative for x > 0, then conditions €.34
and d, ¥ real for x < 0, x real, are clearly satisfied.

The simplest example function O satisfying these conditions is O = —x. This
function gives p = —|exp(24/—x)|. Note that this function has a vertical tangent at
the origin ( approaching along the negative real x-axis ). This is exactly what is
seen in figures 6.9 and 6.13. In fact, this property is shared by any solution of the
above form if a; # 0. Thus it can be seen that the vertical tangent of the pressure
field at po is a natural consequence of the irrotationality ( and, at low frequencies,
incompressibility ) of the flow. From the coupling equations 2.6 and the continuity
of J it is clear that such a tangent would cause a singularity in the relative velocity
field. It is this singularity which is observed.

There are at least two ways this analysis could be supported by other results.
The first is to perform a numerical analysis of a series of problems having boundary

conditions 6.3 on the bottom, and obeying

Js _( as given above )
f(yil)us(y,0) + (1 - f)s(y,0) = 0 (6.36)
f(il)Va(y,0) + (1 - f)p(y,0) = O
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at the top. Here f is a smoothing function which changes from one for y = 0 to zero
for y = I. Most of the change should take place within a transition region of length

l; on either side of the point po = ({;,0). One such function is
=a(l - ta.nh( )) +b,

where

and

by _ lja.

The idea is to smoothly simulate the transition between the region I and II boundary
conditions. By solving a series of problems with decreasing /;, the development of
the singularities in the velocity fields should be observed.

The second method is similar to that used in this section. By modifying the
potential theory of poroelastic media proposed by McNamee and Gibson [80] to
include the effects of the electrckinetic coupling, it is possible to express the mixed
boundary value problem of this chapter strictly in terms of harmonic and biharmonic
functions. By considering only the vicinity of the point py ( s.e. , taking an infinitely
deep layer with region I extending to y = —oo and region II to y = oo ), it may be
possible to find the exact analytic nature of the singularities in all of the variables.
This could be compared in more detail with the present numerical results.

In both of the clarification methods it is clear that the physical limitations of the
material being studied must be taken into account. More considerations would be
necessary to determine the effects that the large velocities and stresses could have on
a sample being tested. It is yet to be determined to what extent the the assumptions
of linearity and uniform material property would breakdown, and to what extent

there could be damage to the material being probed.



Chapter 7

Conclusion

A new, three-dimensional model of an electromechanically coupled poroelastic mediura
has been proposed in this thesis. The assumptions of the model have been censidered
in terms of the biophysical properties of articular cartilage, which was the material
used as an example in this work. Further, some of the mathematical assumptions,
such as linearity, have also been discussed. General solutions to the model equations
have been given, and their physical implications have been examined. When prop-
erly superposed, these solutions yield the answers to a variety of three-dimensional
problems.

The model has been used to predict the behavicr of several types of surface
probes which, it is proposed, could be used to measure the electromechanical prop-
erties of a charged biphasic medium. The first of these, examined in Chapter 4, is
a surface probe which would supply a sinusoidal current density to the top surface
of a finite-thickness layer. ( By rescaling the solutions, the results of a potential,
rather than current, input may be found. ) Next, in Chapter 5, the response of this
layer to mechanical stimulation was considered. The boundaries were assumed to
be electrically insulating, and the top surface was considered in turn to be either

impermeable or else infinitely permeable to fluid flow. Lastly, in Chapter 6, the re-

171
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sponse to a mixed boundary condition was investigated by simulating a probe which
injects current into some regions along the surface of the material, and yet where
the mechanical boundary conditions prevent vertical displacement and velocity. The
adjacent regions were imagined to be bounded by an insulating fluid ( e.g. low ionic-
strength water ), but were otherwise unconstrained mechanically ( ¢.e. there was
no pressure or normal stress ). |

The behavior of the model was determined through the use of numerics and

asymptotics. For the current-stimulated case, the main findings are:

o the penetration depth of a surface disturbance is proportional to the wave-

length of the stimulus;

o at short wavelengths the field amplitudes are independent of frequency, except

for the velocities, which are proportional to f;

o there is an increase in the change of phase over the penetration depth as the
diffusion boundary layer thickness, A oc f~1/2, beccmes small;

and,

o for wavelengths on the order of or greater than the thickness, the frequency
strongly influences the phase lag between stimulus and response, and affects

the locations of field amplitude maxima.
For the mechanically stimulated case, we found in addition that:

e the overall amplitude of the displacement fields is independent of the frequency
of the surface disturbance;

and,

e the amplitude of the relative velocity in the bulk is strongly affected by the
boundary conditions: it is greatest in the direction normal to a permeable

boundary, and minimum normal to an impermeable one.
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Asymptotic solutions were found for both the electrically and mechanically driven
cases. In particular, the .short-wave ( infinite-depth } and long-wave limits of the
model were examined using these asymptotic solutions. There is excellent agreement
between the numerics and the asymptotics, and the results of both solution methods
agree with physical interpretations of the model. Using parameter values from the
literature, the long-wave limit of the model agrees well with data obtained from
experiments using uniaxial geometries. Further experimentation is needed, however,
to test the model fully under conditions of finite wavelength.

Results for the mixed boundary value problem were generated using a Fourier
collocation algorithm which was shown to be approximately 216 times faster than
the most straightforward algorithm. The results of the numerical studies using this

algorithm were:

e there is a violent singularity in the relative velocity field at the boundary
between the two kinds of boundary conditions — this singularity arises from
an infinite derivative of the pressure which may be explained in terms of the

potential theory of incompressible irrotational fluid flow;

o the behavior is consistent with that of the non-mixed problems — the short-
wave phenomena are damped out rapidly as one moves into the layer, and
a phase lag develops in most field variables as the frequency of the driving

current is increaced;

e at higher frequencies the field profiles cannot attain their equilibrium ampli-
tudes, so that, overall, displacements and stresses decrease with frequency,
whereas the magnitudes of the relative velocities change relatively little;

and,

e as the imposed frequency is varied, there is a significant change in directly

measurable quantities such as the normal surface force, s, and potential ¢: for
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the former variable the changes include both amplitude and phase, whereas

for the latter they are only in the amplitude.

Nevertheless, if this approach is used to model the outcome of an actual experiment,
the assumptions of linearity and homogeneity of material properties should be re-
examined in light of the nature of the singularities present in the results.

The results of the model motivate the use of a surface probe for the measurement
of electromechanical properties of charged biphasic media. For the mixed boundary
value problem, there is a significant change in the response of the medium with fre-
quency despite the fact that the current density field is frequency-independent. This
suggests that all of the coupling parameters, ( b;; ) make significant contributions to
the values of the fields. A measurement protocol similar to that suggested in Sec-
tion 4.4 could thus be effective. The sensitivity and accuracy of the measurements
depend on the variation of the surface stress and potential with the parameters to
be measured. Further studies should be undertaken to determine the extent of these

variations.



Appendix A

Plots

A.l Current-Forced Fiélds

A.1.1 Numerical Results

This section presents the results for the current forced case ( casz one ) presented in
Chapter 4. The results are presented as plots of non-dimensional transform variables,
as before. First the current density magnitudes are presented ( ¢f. equations 4.5 )
versus depth, 2, and wavelength, A. Then the magnitudes and phases of the fields

are presented for the parameter values:
1. A=10mm, f = 10~3 to 0.1 Hz logarithmically,
2. A.= 1 mm, f = 1073 to 0.1 Hz logarithmically,
3. A=0.1mm, f = 1073 to 0.1 Hz logarithmically,

4. f=10"%3 Hz,) = 0.1 to 10 mm logarithmically,

and

- 5. f=0.1 Hz,A =0.1 to 10 mm logarithmically.
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Plots 176

The magnitude and phase of the fields are presented in the order u, ( horizontal
displacement ), u, ( vertical displacement ), V, ( horizontal relative velocity ), V,
(vertical relative velocity ), p ( pressure ), ¢ { potential ), and ( for some cases ) |j, |
and |7;| ( current densities ). Field magnitudes may be obtained from Table 4.1, and
the ranges of arguments ( complex phases ) are listed in the captions. The arguments
have been linearized ( in z ) whenever there was an apparent discontinuity due tc
numerical error in the vicinity of a relatively small field magnitude. The phases were
linearized whenever the difference in the phases at two consecutive grid points ( in
z ) exceeded a specified tolerance. The tolerance was chosen by eye using the overall

smoothness and integrity of the data as criteria.
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Mag of Horiz Curnt Den, f = 0.1 Hz
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|75], A = 0.1 to 10.0 mm logarithmically. |j,| is independent of f. The maximum

depicted value of |j,| is 1.80.
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Mag of Vert Curnt Den, f = 0.1 Hz
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[75], A = 0.1 to 10.0 mm logarithmically. |j,| is independent of f. The maximum
depicted value of |j,| is 1 ( ¢f. equations 4.1 )
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Mag of Horiz Disp, A = 10 mm
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|uy]s A =10 mm, f = 1073 to 0.1 Hz logarithmically.
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Plots

10 mm
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Phase of Horiz Disp, A = 10 mm
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—0.170 < argu, < 1.08 1072, A = 10 mm, f = 107° to 0.1 Hz2 logarithmically.
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Mag of Vert Disp, A = 10 mm

|us], A = 10 mm, f = 1072 to 0.1 Hz logarithmically.



Plots

Phase of Vert Disp, A = 10 mm
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—2.43 < argu, < —0.614, A = 10 mm, f = 10~ to 0.1 Hz logarithmically.

183



Plots 184

Mag of Rel Horiz Vel, A = 10 mm
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Phase_of Rel Horiz Vel, A = 10. mm
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Mag of Rel Vert Vel, A = 10 mm
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Phase of Rel Vert Vel, A = 10. mm
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—1.07 < argV; < 0.122, A = 10 mm, f = 1073 to 0.1 Hz logarithmically.
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Mag of Pressure, A = 10 mm
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Phase of Pressure, A = 10 mm
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Phase of Pressure, A = 10 mm

0.873 < argp < 2.17, A = 10 mm, f = 1073 to 0.1 Hz logarithmically.
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Mag of Potential, A = 10 mm
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Phase of Potential, A = 10 mm
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Phase of Horiz Disp, A = 1 mm
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Mag of Vert Disp, A = 1 mm

|usly A = 1mm, f = 1073 to 0.1 Hz logarithmically.



Plots

Phase of Vert Disp, A = 1 mm
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—2.99 < argu,; < —1.31, A = 1 mm, f = 1073 to 0.1 Hz logarithmically.
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Mag of Rel Horiz Vel, A = 1 mm

[Vy /was|, A =1mm, f =102 to 0.1 Hz logarithmically.
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Phase of Rel Horiz Vel, A = 1 mm
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0.247 < argV, < 1.73, A = 1 mm, f = 1073 to 0.1 Hz logarithmically. -
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Phase of Rel Horiz Vel, A = | mm
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0.247 < argV, < 1.73, A =1 mm, f = 1073 to 0.1 Hz logarithmically.
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Mag of Rel Vert Vel, A = 1 mm
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Plots

Phase of Rel Vert Vel, A = 1 mm

~1.51 < argV, <0.218, A = 1 mm, f = 1073 to 0.1 Hz logarithmically.
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Phase of Rel Vert Vel, A = 1 mm
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Mag of Pressure, A = 1 mm
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Phase of Pressure, A = 1 mm
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Mag of Potential, A =1 mm
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Phase of Potential, A = 1 mm
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—3.16 < arg¢ < —3.065, A = 1 mm, f = 1072 to 0.1 Hz logarithmically.
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Plots
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Mag of Horiz Disp, A = 0.1 mm
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Plots
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Plots
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Mag of Rel Horiz Vel, A = 0.1 mm
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Plots

Rel Vert Vel, A = 0.1 mm
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Plots

Phase of Pressure, A = 0.1 mm
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Mag of Horiz Disp, I = 1077 Hz

u,|, f =10"% Hz, A = 0.1 to 10.0 mm logarithrnically.
v



Plots 220

7 ’%%ﬂlm s
;zllllllIIIllIIIIIIlIII’III[[ i
sy AR
II’;”‘{?” -,4;5,;;’15"5"541 I .,1’ |. i

' & A7 777220 i

1.68 < ar - . = ——

- g Uy < 0.150- 10 2 3 0.1t

. [ al 10.0 mm lOga.l'ith i
.



Plots 221

Vag of Vert Disp, f = 107% Hz

||, f =10"3"Hz, A = 0.1 to 10.0 mm logarithmically.
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. _ +n-3
Phase of Vert Disp, f = 1077 Hz

~3.63 < argu, < —1.82, f =107 Hz, A = 0.1 to 10.0 mm logarithmically.
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fac of Rel Horiz Vel, f = 10 Hz
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Shase of Rel Horiz Vei, f = 1077 Hz
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\lag of Rel Vert Vel, f = 1073 Hz
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Phase of Rel Vert Vel, f = 107° Hz
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~1.85 < argV, < —0.312, f = 10”3 Hz, A = 0.1 to 10.0 mm logarithmically.
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Mag of Pressure, f = 107% Hz
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|¢, f =10"3 Hz, f =103 Hz, A = 0.1 to 10.0 mm logarithmically.
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Mag of Horiz Diso, f = 0.1 Hz

luy|, f =0.1 Hz, A = 0.1 to 10.0 mm logarithmically.
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Mag of Horiz Disp, f = 0.1 rz

luyl, f =0.1 Hz, A = 0.1 to 10.0 mm logarithmically.
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Plots

Phase of Horiz Disp, f = 0.1 Hz

0.1 to 10.0 mm logarithmically.
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Mag of Ver: Disp, f = 0.1 Hz
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Plots
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Plots

f = (0.1 Hz
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Mag of Pressure, f = 0.1 Hz

gaTIEN SURFACE

0.1 to 10.0 mm Iogarithmically.

01Hz )=

l’\plt f=0.1 Hez, J



Phase of Pressure, f = 0

[ i 1 ' i ] T
I
N O
i} _r
R Bttt iet ittt b
"" N
\
i \
i / \
d -
I |
!
i | |
(\l,}. — |'
i !
i | I
C | | L | L | ! | I
10 -08 -06 -04 -02
/

argp, f=01Hz,A~025,A=1(——),and A=10mm (- ---).

Plots

243



Mag of Potential, f = 0.1 Hz
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¢, f=0.1Hz, f =0.1 Hz, A = 0.1 to 10.0 mm logarithmically. arg¢ ~ —.



A.1.2 Asymptotic Results

are being compared are plotted with “47g “xmg, un 's, or dashed lines. Short-waye

results ( equations 4.11 are presented for:
L f=10%Hz y=~q4 mm,
2. [=01Hz =0 mm,

3. f=10"3 Hz, )\ = 1.0mm,

and

are presented for ) — 0.1 and 1.0, with J varying from 10-3 to 10~ g5, Long-wave
Tesults are presented for f = 10-3, anq = 0.1 Hz, boty, With X = 10 ympm,. The
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