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Abstract

Systems are constantly increasing complexity. Being able to quantify the system
complexity and how it relates to human effort and cognition can bring numerous
benefits for product development and project management. In this thesis, 25 people
were part of an experiment using the travel salesperson problem, they completed 13
problems each with varying complexity. The results were summarized and through a
series of statistical analysis it was found that the human effort scales super-linear with
complexity in the form 𝑒 = 𝐴𝐶1.47 + 𝑑, where 𝐴 and 𝑑 are constants. Additionally,
based on the results in this study and previous, it is proposed an objective function for
optimization of system architecture decomposition which uses the heuristics learned
to reduce the human effort to understand the system.
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Chapter 1

Introduction

Throughout the years, due to the increase in safety, environmental, and customer

requirements the systems are getting more and more complex, leading to greater

development costs and longer development times even with the aid of better and more

efficient technology, techniques, and methodologies. A study from 2008[1], shows that

approximately half of the annual price escalation rate from the development of the

aircraft F-15A in 1975 to F-22A in 2005 was attributed to the complexity of the system

as shown in Figure 1-1. In this case, complexity was loosely defined as "performance

characteristics and airframe material", driven by customer requirements.

In another study[4], it was analyzed the development costs in relationship to

mission complexity, here complexity is measured as an index that uses a broad set

of parameters based on performance, mass, power and technology choices. Results

shown in Figure 1-2 depict a clear upward trend, as the Complexity Index increases,

development costs increase exponentially. This is an important insight to the value

of understanding and managing complexity.

In software systems lines of code are often used to measure complexity. Also,

from the space industry, Figure 1-3 shows the increase from less than 100 to over

one mullion lines of codes from space missions from the 1960’s to the 2010’s. This

increase is attributed to the increased performance requirements, including increasing

autonomy to deal with issues with latency, and improving efficiency and resiliency by

having self-evaluating diagnosing and correction tools.[22]

15



Figure 1-1: Contributors to the price escalation from the F-15A to the F-22A[1]

Figure 1-2: Development cost vs Complexity index [4]
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Figure 1-3: Lines of code through time in space mission [22]

Measuring complexity and being able to compare system complexities is a chal-

lenge. Several metrics have been introduced with no particular metric being unani-

mously used across multiple disciplines. What the studies have in largely in common

is that system complexity is growing quickly. Each metric has its strengths and

weaknesses, and therefore are used in different contexts, usually within the same dis-

cipline. Having a single metric that is universal would allow system architects, system

engineers and project managers to further understand and optimize their processes,

forecasts and better match them with reality.

1.1 Literature Review

There are many types of metrics of system complexity, in this section several are

summarized, with their strengths and weaknesses, typical uses and pitfalls. This

will give a large overview of the helm of possibilities followed by the reason why

structural complexity is used throughout this thesis. The types described here are

size, that can be represented in lines of code, number of functions, number of function

calls, number of interfaces, or even weight, cyclomatic complexity, Big "O" notation,

17



coBRA, molecular complexity, and finally structural complexity.

1.1.1 Measuring complexity by size

This is a low-level, often easy to measure and compute. It can be used as a first indi-

cator for software systems, by measuring the lines of code [12], or by calculating the

number of functions, and how many times they are called. Additionally, for physical

systems it can be used by calculating the number of components, or by weight. To

illustrate one of the pitfalls of this method, Figure 1-4 shows the cumulative weight

change of vehicles in the US from 1975 to 2010, and there are almost 200 kg added to

vehicles attributed to the addition of new features. However, the total average weight

of the vehicles remained much more constant since the 1980’s due to the improve-

ments in technology and architecture, such lighter and strong materials and a front

wheel drive architecture and the unibody construction, depicted in Figure 1-5.[10]

As in this example, when using a measure of size, often it is needed more context to

understand and to take conclusions.

Figure 1-4: Cumulative weight effects of feature changes and mix shifting. [10]

18



Figure 1-5: Average weights of new U.S. vehicles since 1975 [10]

1.1.2 Cyclomatic Complexity

Specifically created to be applied in software, the cyclomatic complexity measure was

introduced by Thomas J McCabe in 1976. It is based on a network, based on graph

theory. This approach seeks to measure and control the number of paths through

a coding script. The more possible paths taken by the script, larger the complexity.

More specifically the "cyclomatic number 𝑉 (𝐺) of a graph 𝐺 with. 𝑛 vertices, 𝑒 edges

and 𝑝 connected components is":[11]

𝑉 (𝐺) = 𝑒− 𝑛+ 𝑝. (1.1)

Although this metric is used in software development, it is hard to generalize to

other domains or systems. Additionally, it does not account for the interface, or

code complexity, focusing solely a simplified measure of the structure of the code.

Also, it is a metric used mostly for individual scripts and not for the whole software

19



development.

1.1.3 Big "O" Complexity

The Big "O" notation is commonly used for computational complexity. It refers to

floating point operation, those being: addition, subtraction, division or multiplica-

tion. It is extremely useful to evaluate algorithms, as the input size 𝑛 increases.[13]

Although this is extremely valuable for many applications, systems often do not need

to solved mathematically but understood, to measure a system complexity by the

number of floating operations is counter-intuitive and often impossible.

1.1.4 CoBRA

Complexity Based Risk Assessment (CoBRA), as per the authors knowledge, was

first intruducted in 1997 by Sarsfield to be used to determine the complexity of

spacecrafts. CoBRA takes into consideration, the design life or required operating

life, the destination target, the spacecraft density, the instrument mass fraction, the

pointing accuracy of the bus, solar array efficiency, power system efficiency, downlink

data rate, central processing power, mass memory, and software code lines.[17] This

metric have been used exclusively for spacecraft since it was first introduced, as it is

very specific to this domain it cannot be related to any system in any discipline.

1.1.5 Molecular Complexity

In chemistry and drug development complexity is an important characteristic of or-

ganic molecules. However, how to calculate it have been a topic in scientific literature

for decades without a clear consensus. Bonchev and Trinajstic introduced a method

in 1977[5] to measure one important aspect of the molecular complexity, the struc-

tural and topology of the connections. However, in these systems self-similarity is also

important.[23] Some aspects of these measurements are shared with systems, however

how to calculate them is often too laborious or too specific to molecules and cannot

be transferred directly.
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1.1.6 Structural Complexity

Structural complexity will be covered in more detail in the next chapter. It was

developed in 2012 by Sinha and De Weck to measure specifically the complexity

of systems. This metric as opposed to those aforementioned in this study and many

others, was developed with the intent to address component, local interface and global

topological complexity.[19] Throughout this document, unless specifically mentioned,

the word complexity will be used to describe the system structural complexity.

1.2 Cognitive performance in the TSP

1.2.1 Travel Salesperson Problem

For this study it was used the Travel Salesperson Problem (TSP). The TSP was

formulated in 1930 by Karl Menger and and since then has became one of the most

famous and classical problems in optimization. The TSP is a Non-Deterministic

Polynomial-time hard (NP-Hard), which means it has arithmetic complexity (Big

"O") of 𝑂( (𝑛−1)!
2

).[2] The problem formulation is as follows: a sales person is based on

a city and has to travel multiple cities to perform sales and comeback at the starting

city at the minimum possible cost, which is often, and in this study, measured by

distance. The salesperson should visit each city once and only once. The TSP is

widely used in practice. It’s applications range from circuit-board drilling, computer

wiring, X-Ray Crystallography, order-picking in warehouses, vehicle routing, mask

plotting in printed circuit boards (PCBs) [7]. The TSP in this study follows the

traditional symmetric problem, where going from point A to point B have the same

cost as going from point B to point A.

1.2.2 Previous experiment on Travel Salesperson Problem

In 1996, MacGregor and Ormerod [9] run two experiments with 58 and 29 test sub-

jects, and 6 and 7 problems, and 10 and 20 total points respectively. One hypothesis

they had was that the complexity of the TSP is a function of inner points rather
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than total points, which the results corroborated. In both experiments, the variabil-

ity in the tests increased with the number of inner points and the overall quality of

the answers declined. Also, the test subjects were consistently producing very good

results (within 5-10% of the optimal solution) in relatively short time (2 minutes per

problem).

1.3 Problem Statement

The goal of this thesis is to explore the relationship between system complexity,

effort, and quality of the solutions answered in an experiment by human test subjects.

Furthermore, it will be analyzed behaviors, techniques and strategies employed by the

subjects to solve the problems. The effort will be measured as the time to complete

a problem, quality will be measured as a percentage above the best possible solution.

The problems are a set of different travel salesperson problems with an array of

different structural complexities. The TSP was chosen because of it’s many possible

solutions and how humans cope with these options, for the simplicity and easiness

to understand the problem question, because it is relatively easy and low cost to the

test subjects and run the experiment.
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Chapter 2

Complexity metric

The word complexity is used a lot in many different disciplines and contexts. However

it is a very hard concept to measure it and without an universal metric, thus almost

impossible to compare the complexity of systems. Sinha and de-Weck[19] tackled this

with a system product architecture structural approach. The authors understand

that a system complexity arises from the combination of three aspects, these are:

component complexity, interface complexity and the topology complexity.

2.1 Definition

In this thesis, it was adopted the system structural complexity metric created by

Sinha and de-Weck[19]. Unless specified, the word complexity will be used as defined

in their work. The equation that defines the metric is shown in equation 2.1.

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦, 𝐶 = 𝐶1 + 𝐶2 * 𝐶3 (2.1)

Where 𝐶1 is the component complexity, 𝐶2 is the interface complexity, and 𝐶3 is

the topology complexity. For convenience, all the information necessary to calculate

the system complexity is given through a 𝑛2 matrix, called the complexity design

structure matrix, 𝐷𝑆𝑀 𝑐, shown in equation 2.2.
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𝐷𝑆𝑀 𝑐 =

⎡⎢⎢⎢⎣
𝛼1 . . . 𝛽𝑛1

... . . . ...

𝛽1𝑛 . . . 𝛼𝑛

⎤⎥⎥⎥⎦ (2.2)

Where:

𝐶1 =
𝑛∑︁

𝑖=1

𝛼𝑖 (2.3)

𝛼𝑖 is the complexity of component 𝑖.

𝐶2 =
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝛽𝑖𝑗, 𝑤ℎ𝑒𝑟𝑒 𝑖 ̸= 𝑗 (2.4)

𝛽𝑖𝑗 is the interface complexity between 𝑖 and 𝑗 components. It is worth mentioning

that 𝛽𝑖𝑗 is not necessarily equal to 𝛽𝑗𝑖, as not all interfaces are bi-directional or

symmetric. Also that, 𝛼𝑖 and 𝛽𝑖𝑗 are greater or equal to 0. Finally we have,

𝐶3 =
1

𝑛

∑︁
𝑆[𝑆𝑉 𝐷(𝐴(𝐷𝑆𝑀 𝑐 − 𝑡𝑟𝑎𝑐𝑒(𝐷𝑆𝑀𝑐)))] (2.5)

In words, 𝐶1 is the sum of the diagonal terms of the 𝐷𝑆𝑀 𝑐, 𝐶2 is the sum of

all the values in the 𝐷𝑆𝑀 𝑐 minus the diagonal values (𝐶1). Finally, 𝐶3 is calculated

by setting the diagonal to zero, and taking the binary true for any value above zero,

and false to values equal to zero, which called the adjency matrix of the 𝐷𝑆𝑀𝑐. The

singular value decomposition 𝑆𝑉 𝐷 is then taken, and the sum of the scaling (S) of

the 𝑆𝑉 𝐷 is normalized by the matrix size, n.

2.2 Calculation Example

For example, in another study from Sinha and de-Weck[20], it was used the sample

controlled pump system shown in Figure 2-1. If the controller, pump, valve, filter

and motor have a component complexity (𝛼𝑖) of 5, 2, 1, 1 and 3 respectively, and the

physical, material, energy and infomation flow have 𝛽 = 0.5, 1, 1, 1 respectively, the

system has the 𝐷𝑆𝑀 𝑐 as shown in Table 2.1.
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Figure 2-1: Sample problem. Controlled Pump System.

Table 2.1: 𝐷𝑆𝑀𝐶 for problem in Figure 2-1

C P V F M

Controller C 5 0 1.5 0 0.5

Pump P 0 2 0.5 0 1.5

Valve V 2.5 1.5 1 0.5 0

Filter F 0 0 1.5 1 0

Motor M 1.5 0.5 0 0 3

Simplifying the 𝐷𝑆𝑀𝐶 to calculate 𝐶1 of the system, as shown in Table 2.2. And

summing all the values, we have a 𝐶1 = 5 + 2 + 1 + 1 + 3 = 12.

Table 2.2: Matrix for equation 2.3 for 𝐶1 calculation, for problem in Figure 2-1

C P V F M

Controller C 5 0 0 0 0

Pump P 0 2 0 0 0

Valve V 0 0 1 0 0

Filter F 0 0 0 1 0

Motor M 0 0 0 0 3

Similarly, adapting the 𝐷𝑆𝑀𝐶 to calculate 𝐶2 of the system, as shown in Table
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2.3. Summing all the values, we have a 𝐶2 = 12. Note that 𝐶1, and 𝐶2 are accidentally

the same and this is not true for every system.

Table 2.3: Matrix for equation 2.4 for 𝐶2 calculation, for problem in Figure 2-1

C P V F M

Controller C 0 0 1.5 0 0.5

Pump P 0 0 0.5 0 1.5

Valve V 2.5 1.5 0 0.5 0

Filter F 0 0 1.5 0 0

Motor M 1.5 0.5 0 0 0

Finally, transforming the 𝐷𝑆𝑀𝐶 to calculate 𝐶3 of the system, as shown in Table

2.4. Summing the values of the scaling values of the 𝑆𝑉 𝐷 of the Table 2.5 and

normalizing it, we get 𝐶3 = 1.12. Now, it is possible to use Equation 2.1 to calculate

the total system Complexity.

Table 2.4: Matrix for equation 2.5 for 𝐶3 calculation, for problem in Figure 2-1

C P V F M

Controller C 0 0 1 0 1

Pump P 0 0 1 0 1

Valve V 1 1 0 1 0

Filter F 0 0 1 0 0

Motor M 1 1 0 0 0

𝐶 = 12 + 12 * 1.12 = 25.44 (2.6)
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Chapter 3

Canonical experiment on complexity

3.1 Complexity and Human Effort Relationship

As discussed in the Chapter 1 the main purpose of this study it to further analyze

the relationship between human effort and system complexity as well as to build

on knowledge from Sinha and De-Weck[20]. Where they analyzed the time it took

subjects to correctly build physical models of chemical molecules with different com-

plexities. For their experiment, only correctly built molecules were accepted, if there

was a mistake, then re-work was necessary until it was correctly built. Their results

suggests a super linear relationship between human effort and complexity in the form

𝑒 = 𝐴𝐶1.47. Since this is only one experiment in a very specific discipline, using

specific cognitive and dexterity skills, it is necessary to expand the study and the

experiment to multiple domain such as natural social problems, path optimization,

organization structure, and to other disciplines, such as mechanical and electronic to

validate the versatility and cross-discipline of the structural complexity metric.

3.2 Experiment methodology

The experiment had in total 25 test volunteers, that were subjected to 13 TSP prob-

lems each. Although more participants is always better for statistical analysis, 25

participants is enough to provide meaningful results, assuming a normally distributed

27



data set, the impact of additional participants is smaller and smaller, in the confi-

dence and standard deviation of the model is smaller in the form of 1√
𝑛−1

. Also, the

average values should not change dramatically for every new data point and it will

add an impact of 1
𝑛
. The problems were sampled from 30 problems varying in pairs

for 15 different levels complexity, each test had at most one problem from each level.

In total, it was created 210 unique problem combinations (2 times choose 13 from 15

levels – 2 * 15𝐶13). All the test subjects had at least bachelor’s degree, predominantly

in STEM fields, with a mix of 84% male to 16% female, and 84% were students in the

System Design and Management masters program at MIT. Each test subject received

a brief explanation of what was expected from them and how to complete the prob-

lems. A sample problem was demonstrated, with an optimal solution, a sub-optimal

and valid solution, and an invalid solution, where not every city was visited. For each

problem the volunteer had 2 plots available of size 2.9 x 4.5 inches, one at the top used

exclusively for draft, which they could use either a pen, or a black sharpie and one at

the bottom, reserved for the final answer using a red sharpie. Figure 3-1 exemplifies

how each problem for a test looked like. There was no time limit to complete the test,

nor individual problems. Their objective was to find the optimal path or to get as

close as possible to it. The total time to complete each problem was recorded along

with the total path taken in each problem. Upon prior agreement, the experimental

subjects were recorded using two cameras, a front view and a top view which were

used to measure the time of each problem and to observe any techniques, strategies

and methods used by the experimental subjects.

3.2.1 Creating problems and summary

To create the 30 problems, firstly it was defined how many inner and outer points each

problem would have. Outer points are defined as the points that compose the convex

hull of all the points in the TSP and the inner points are those not in the convex

hull. Based on the study by, MacGregor and Ormerod [9] the quantity of inner points

is the main driver for complexity of the TSP, while outer points add relatively less

complexity. For the base scenario it was assumed that the component complexity, 𝛼𝑖,
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Figure 3-1: Example of experiment problem
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Table 3.1: Base complexity for points and interfaces

Point Complexity type Complexity

Component Inner point 𝛼𝑖 2
Outer point 𝛼𝑖 1

Interface
Inner-Inner 𝛽𝑖𝑗 3
Inner-Outer 𝛽𝑖𝑗 2
Outer-Outer 𝛽𝑖𝑗 1

for inner points was 2, while for outer points it was 1. For the interface complexity,

𝛽𝑖𝑗, there are 3 possible connections, between inner and inner points, between inner

and outer points, and between outer and outer points, these had complexity of 3,2

and 1 respectively. Or more intuitively, for each inner point in the interface 𝛽𝑖𝑗 added

1 to interface complexity that started at a base of 1. A summary is shown in Table

3.1. With this information is simple to calculate 𝐶1 and 𝐶2 for each problem as shown

in equations 3.1 and 3.2. Where, 𝑁𝑖𝑛𝑛𝑒𝑟 and 𝑁𝑜𝑢𝑡𝑒𝑟 are the number of inner and outer

points respectively.

𝐶1 = 2𝑁𝑖𝑛𝑛𝑒𝑟 +𝑁𝑜𝑢𝑡𝑒𝑟 (3.1)

𝐶2 = 3𝑁𝑖𝑛𝑛𝑒𝑟 +𝑁𝑜𝑢𝑡𝑒𝑟 (3.2)

Every TSP problem has the same connectivity structure or adjacency matrix,

needed to calculate topology complexity, 𝐶3, which can be computed following the

pseudo-code shown in algorithm 1 and shown in Equation 3.3. This means that the

complexity of the TSP is independent of the path, and is only a function of how many

inner and outer points it has.
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𝐴𝑇𝑆𝑃 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0 0 1

1 0 1 . . . 0 0 0

0 1 0 . . . 0 0 0
... . . . . . . . . .

. . . . . . ...

0 0 0 . . . 0 1 0

0 0 0 . . . 1 0 1

1 0 0 . . . 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.3)

Algorithm 1 Code to calculate 𝐶3 in TSP
Require: Total number of points (n)
𝑚 = Initialize 𝑛2 matrix with zeros
for integers 𝑖 in (1 to n) do

𝑚[𝑖,𝑚𝑜𝑑(𝑖+ 1, 𝑛)] = 1
𝑚[𝑚𝑜𝑑(𝑖+ 1, 𝑛), 1] = 1

end for
𝐶3 = Σ(𝑆𝑉 𝐷(𝑚))/𝑛

As previously mentioned, 15 distinct levels with 2 problems in each were created.

They were create to have 2 problems that had different number of inner and outer

points but had similar complexities. Table 3.2 has all the problems with their level,

problem ID, number of inner and outer points, along with the 𝐶1, 𝐶2, 𝐶3 and total

complexity.

The problem creation was based the data in Table 3.2, specifically the number

of inner and outer points. The basic principle of the creation of the problem was to

have randomized X and Y values and checking how many were part of the convex

hull and if that matched the problem outer points number. Additionally, it was set a

minimum distance of 5% of the total range between points to ensure meaningfulness

of each point. A more detailed pseudo-code is shown in Algorithm 2.

3.2.2 Ensuring correct path distances

The experiment was designed in Python in X, Y coordinates using algorithm 2, then

plotted using matplotlib, then copied to a word document and finally printed. There
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Table 3.2: Problem level, ID, number of inner and outer points, and Complexity.

Level Problem ID Inner points Outer points 𝐶1 𝐶2 𝐶3 𝐶

1 id 0 1 5 7 8 1.33 18
id 1 2 3 7 9 1.29 19

2 id 2 2 4 8 10 1.33 21
id 3 2 5 9 11 1.28 23

3 id 4 4 3 11 15 1.28 30
id 5 4 4 12 16 1.21 31

4 id 6 4 6 14 18 1.29 37
id 7 4 7 15 19 1.28 39

5 id 8 7 5 19 26 1.24 51
id 9 6 8 20 26 1.28 53

6 id 10 6 12 24 30 1.28 62
id 11 7 10 24 31 1.28 64

7 id 12 10 10 30 40 1.26 81
id 13 9 13 31 40 1.28 82

8 id 14 15 4 34 49 1.27 96
id 15 12 13 37 49 1.27 99

9 id 16 13 11 37 50 1.27 100
id 17 15 10 40 55 1.27 110

10 id 18 15 11 41 56 1.28 112
id 19 16 10 42 58 1.28 116

11 id 20 17 10 44 61 1.27 122
id 21 17 11 45 62 1.27 124

12 id 22 18 11 47 65 1.27 130
id 23 18 12 48 66 1.28 132

13 id 24 19 12 50 69 1.27 138
id 25 19 13 51 70 1.27 140

14 id 26 20 11 51 71 1.27 141
id 27 20 12 52 72 1.27 143

15 id 28 22 12 56 78 1.28 155
id 30 28 8 56 80 1.27 158
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Algorithm 2 Creating a TSP problem
Require: Number of points (n), Number of outer points (out points), minimum

distance between points, (min dist)
𝑋𝑌 = Initialize (n x 2) matrix with random values between 0 and 1
hull points = how many points are part of the hull
while hull points not equal to out points do

Z = abs(hull points - out points)
Zp = Generate Z points
substitute Z random points in XY with points Zp
Calculate hull points

end while
𝑑 = 𝑛2 matrix with distance between points
while d smaller than minimum distance between points do

Nd = Calculate number of points smaller than min dist
Ndp = Generate Nd random points
cXY = copy of XY
substitute Ndp in cXY in the points that were smaller than min dist
if hull points in cXY equals out points then

XY = cXY
Will exit loop

else
Continue loop

end if
end while
return XY

are many conversions happening in this process and it is important to ensure that

the X, Y coordinates of points designed in Python are reflected in in the final printed

experiment. This is important because the definition of optimal path uses the de-

signed X,Y coordinates not the printed plot where the experiment happened. The

step taken to ensure this was forcing the the scaling of the plot to have a ratio of

1. Additionally, 3 problems were manually checked and the distances between points

matched to those in the Python calculations.

3.2.3 Defining problems optimal path

One of the important analysis aspects of the TSP is optimality, and since the test

subjects are not expected to find the optimal values, in this experiment it was used

as a measure of the quality of their answers. The optimal path and cost for each
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problem was determined using Gurobi in Julia. Gurobi is a powerful optimization

software for linear problems. The mathematical TSP optimization problem is defined

in Equation 3.4:[7]

min
∑︁

𝑑𝑖𝑗𝑥𝑖𝑗

s.t.:
𝑛∑︁

𝑗=1

𝑥𝑖𝑗 = 1 𝑖 = 1, 2, ..., 𝑛

𝑛∑︁
𝑖=1

𝑥𝑖𝑗 = 1 𝑗 = 1, 2, ..., 𝑛

∑︁
𝑖,𝑗∈𝑆

𝑥𝑖𝑗 ≤ |𝑆| − 1 2 ≤ |𝑆| ≤ 𝑛− 2, 𝑆 ⊂ {1, 2, ..., 𝑛}

𝑥𝑖𝑗 ∈ {0, 1} 𝑖, 𝑗 = 1, 2, ..., 𝑛𝑖 ̸= 𝑗

(3.4)

Where 𝑑𝑖𝑗 is the distance between city 𝑖 and city 𝑗, and 𝑥𝑖𝑗 = 1 means a path

taken by the salesperson while 𝑥𝑖𝑗 = 0, means a path not taken. The first constraint

determines that there will be only one departure per city, the second determine only

one entrance per city. This does not rule out the possibility of multiple loops. There-

fore, the third constraint is needed to assure that no loop in "any city subset should

be formed", and "|𝑆| means the number of elements included in the set 𝑆"[7].

3.2.4 Data collection method

Mainly, there were two values collected from each experiment, the time it took the

person to complete each problem and the path taken to solve the problem. The time

it took the person to complete the test was recorded using the cameras subtracting

the completion time to the initial time of the problem. The completion time was

defined by when the person flipped the page to start the next problem and the initial

time was defined once the problem was set on the table, ready to be solved. The

path for each problem was collected by assigning each point an identification number

and recording the order in which the cities were visited. For example in Figure 3-2,

starting arbitrarily from point 6 and going clock-wise, the path taken is [6,1,7,5,4,2,3]

and implicitly it comes back to 6. Each point location and distance to other points

34



was easily identifiable in Excel tables generated from Python.

Figure 3-2: Sample from test 11, problem 1, for path recording

3.3 Results and Analysis

There were 25 total volunteers for the experiment, each completed 13 tests, one

full experiment and other 2 problems were lost due to technical failure with the

camera, totaling 310 valid tests completed. Results are summarized in Table 3.3,

with how many times each problem was completed, the average time of completion

(𝑡), the average cost, the normalized average cost and a multiplication between the

average time and the normalized average cost. The average normalized cost (NC)

is the average cost normalized by the optimum path for the each problem that was

determined by the method mentioned earlier in this chapter. The argument to use

the 𝑁𝐶 * 𝑡 is based on the expectation that they are inversely proportional variables,

the longer someone spends working on a problem the better the results they deliver

(closer to optimal). And the shorter the time dedicated to the problem, worse the

results are (larger costs).
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Table 3.3: Experiment result summary

Test ID Complexity Test count Av. time (s) cost Av. NC Time * Av.
NC

id 0 18 12 53.58 1.98 1.02 56.22
id 1 19 12 66.08 2.21 1.00 66.15
id 2 21 9 58.56 2.66 1.01 58.95
id 3 23 15 86.47 3.23 1.02 88.44
id 4 30 13 63.77 2.13 1.03 65.66
id 5 31 11 83.64 3.20 1.01 84.20
id 6 37 8 57.63 3.29 1.00 57.63
id 7 39 16 70.75 4.01 1.02 72.50
id 8 51 16 94.13 3.75 1.03 96.20
id 9 53 7 82.00 3.85 1.02 83.24
id 10 62 17 83.47 4.78 1.02 85.22
id 11 64 7 156.86 3.74 1.02 159.35
id 12 81 10 112.50 4.54 1.08 121.08
id 13 82 14 112.79 5.04 1.01 114.14
id 14 96 9 132.22 4.77 1.05 139.80
id 15 99 11 131.55 6.26 1.04 137.50
id 16 100 11 135.82 5.23 1.04 140.47
id 17 110 7 169.57 5.51 1.02 173.77
id 18 112 10 89.10 5.41 1.03 92.84
id 19 116 8 225.75 5.75 1.12 238.82
id 20 122 7 149.00 5.78 1.06 158.21
id 21 124 11 143.64 5.63 1.08 153.99
id 22 130 7 177.86 5.37 1.04 184.47
id 23 132 10 144.70 4.22 1.03 150.44
id 24 138 7 179.29 5.87 1.02 183.45
id 25 140 11 167.18 6.14 1.03 173.43
id 26 141 9 191.44 5.32 1.06 205.74
id 27 143 8 213.00 6.35 1.13 230.62
id 28 155 9 216.78 6.35 1.07 230.08
id 30 158 8 200.75 5.32 1.11 213.30
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3.3.1 Initial Hypothesis

Using the data collected, it was performed on it several regression analysis using

least square method. Since data collected consists of the time needed to complete

the problem and the NC, it was firstly analyzed each relationships individually with

respect to the problem complexity. Followed by the analysis of the relationship time

needed to complete the test, times NC as a function of problem complexity. Finally

these 3 analysis were performed using every data point, and aggregating it using

the simple average or the weighted average. The averages are shown in Table 3.3,

the weighted average used the test count to give a larger weight for tests that were

taken more times. In the initial analysis there were 9 regressions. A summary of the

possible variable analysis is shown below, in the left, what kind of data aggregation

was performed in the data. And in the right, what types of regression formulas were

used. Where 𝑡 is the time to complete the problem, 𝑛𝑜𝑝𝑡 is the normalized cost, 𝐶

is the problem complexity and 𝑎, 𝑏, and 𝑑 are the variables to be found using the

regression model.

Data used Regression formula

• Every point • Time as function of Complexity in

the form 𝑡(𝐶) = 𝑎𝐶𝑏

• Average • Percentage of optimal solution as

function of Complexity in the form

𝑛𝑜𝑝𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑

• Weighted Average • Time times Percentage of optimal

solution as function of Complexity in

the form 𝑡 * 𝑛𝑜𝑝𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑

A overall summary of the results, with the hypothesis, the coefficeint, its value,

t-test value, 70% confidence interval and 𝑅2 is shown in the Table 3.4.

Regression on all points

The results of every data point and the time taken from each experiment are shown

in Figure 3-3 and Table 3.5. On the contrary to the results shown by Sinha et Al.[20],
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Table 3.4: Experiment analysis summary

Every Point

Regression Coef value t-test 70% Confidence
Interval 𝑅2

𝑡(𝐶) = 𝑎𝐶𝑏 a 7.85 3.46 (5.50, 10.21) 0.321b 0.63 10.13 (0.56, 0.69)

𝑛𝑜𝑝𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑
a 1.6e-5 0.19 (-7.0e-5, 1.0e-4)

0.072b 1.66 1.60 (0.59, 2.74)
d 1.01 78.23 (1.00, 1.02)

𝑡 * 𝑛𝑜𝑝𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑
a 0.06 0.52 (-0.06, 0.18)

0.356b 1.56 4.11 (1.16, 1.95)
d 61.09 5.17 (48.82, 73.37)

Average

Regression Coef value t-test 70% Confidence
Interval 𝑅2

𝑡(𝐶) = 𝑎𝐶𝑏 a 7.55 2.62 (4.51, 10.59) 0.775b 0.64 7.90 (0.56, 0.73)

𝑛𝑜𝑝𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑
a 1.8e-5 0.19 (-8.4e-5, 1.0e-4)

0.464b 1.64 1.55 (0.53, 2.76)
d 1.01 69.00 (0.99, 1.02)

𝑡 * 𝑛𝑜𝑝𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑
a 0.14 0.42 (-0.22, 0.49)

0.802b 1.40 3.05 (0.91, 1.88)
d 56.64 3.11 (37.39, 75.90)

Weighted Average

Regression Coef value t-test 70% Confidence
Interval 𝑅2

𝑡(𝐶) = 𝑎𝐶𝑏 a 7.86 9.50 (7.00, 8.71) 0.780b 0.63 27.81 (0.61, 0.65)

𝑛𝑜𝑝𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑
a 1.6e-5 0.65 (-9.5e-6, 4.1e-5)

0.476b 1.66 5.47 (1.35, 1.98)
d 1.01 266.9 (1.01, 1.01)

𝑡 * 𝑛𝑜𝑝𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑
a 0.06 1.48 (0.02, 0.10)

0.819b 1.56 11.76 (1.42, 1.70)
d 61.09 14.77 (56.80, 65.39)
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where they had a super-linear relationship between complexity and time, with the

exponent 𝑏 = 1.47, here it is shown a sub-linear relationship, 𝑏 = 0.629. This can

be attributed to time of re-work, as in Sinha and De Weck’s study, the total time to

compute was the sum of the time to construct their model and the time of re-work,

as it was not accepted any incorrect built model and the correct solution was given

to them to mimic it. In this study, there are (𝑛 − 1)!/2 [7] possible solutions, it is

unfeasible to expect every human to be able to find the optimal solution for any 𝑛

above 10 (more than 180 thousand possible paths). Also, another hypothesis why

this happens will be discussed later in the chapter.

Figure 3-3: Regression Analysis, 𝑡(𝐶) = 𝑎𝐶𝑏, for every point, 𝑅2 = 0.321

Table 3.5: Regression Analysis summary, 𝑡(𝐶) = 𝑎𝐶𝑏, for every point, 𝑅2 = 0.321

value standard error t-test p-value
70% Confidence

Interval

a 7.85 2.27 3.46 0.00 (5.50, 10.21)

b 0.63 0.06 10.13 0.00 (0.56, 0.69)
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The resulting analysis from using every data point and taking the NC from each

experiment are shown in Figure 3-3 and Table 3.5. Although the 𝑅2 is low, there is a

clear upward trend in the complexity and the distance from the optimal value. The

offset 𝑑 = 1.01 is necessary because the results are limited to the optimal path and it

shows that even at very low complexities it is not expected to have perfect optimal

solutions from the test subjects.

Figure 3-4: Regression Analysis, 𝑛𝑜𝑝𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑, for every point, 𝑅2 = 0.072

Table 3.6: Regression Analysis summary, 𝑛𝑜𝑝𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑, for every point, 𝑅2 =
0.072

value standard error t-test p-value
70% Confidence

Interval

a 1.6e-5 8.2e-5 0.19 0.85 (-7.0e-5, 1.0e-4)

b 1.66 1.04 1.60 0.11 (0.59, 2.74)

d 1.01 0.01 78.23 0.00 (1.00, 1.02)

Finally, as previously mentioned, since in this study the test subjects were allowed
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to find sub-optimal solutions, another hypothesis was tested. It was multiplied NC by

the time to complete. The goal function is 𝑡*𝑛𝑜𝑝𝑡 = 𝑎𝐶𝑏+𝑑. This hypothesis implies

a tradeoff between time spent in the problem and the search to finding the optimal

solution for each problem. The subjects that spend more time in the problem are

expected to find results closer to the optimal value. The results are shown in Figure

3-5 and Table 3.7. This hypothesis generated better, more relevant statistical metrics

than the previous analysis, with a 𝑅2 = 0.356, and t value of 1.6 for the exponent

𝑏 = 1.56.

Figure 3-5: Regression Analysis, 𝑛𝑜𝑝𝑡 * 𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑, for every point, 𝑅2 = 0.356

Table 3.7: Regression Analysis summary, 𝑛𝑜𝑝𝑡 * 𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑, for every point,
𝑅2 = 0.356

value standard error t-test p-value
70% Confidence

Interval

a 0.06 0.12 0.52 0.61 (-0.06, 0.18)

b 1.56 0.38 4.11 0.00 (1.16, 1.95)

d 61.09 11.82 5.17 0.00 (48.82, 73.37)
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Regression on average based on problem complexity

The next set of analysis were performed using the average time, and average NC.

Again, it will be presented in the order of time as function of complexity (𝑡(𝐶) = 𝑎𝐶𝑏),

NC as function of complexity (𝑛𝑜𝑝𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑), and lastly, time multiplied by the

NC as a function of complexity(𝑛𝑜𝑝𝑡 * 𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑).

Firstly, the results of the regression of time as function of complexity (𝑡(𝐶) = 𝑎𝐶𝑏)

are shown in Figure 3-6 and Table 3.8. Similar to the previous section, the relationship

is sub-linear. However, the statistical relevance increased substantially, achieving a

𝑅2 = 0.775 and a t value of 7.90 for the exponent 𝑏 = 0.64.

Figure 3-6: Regression Analysis, 𝑡(𝐶) = 𝑎𝐶𝑏, averaged, 𝑅2 = 0.775

Table 3.8: Regression Analysis summary, 𝑡(𝐶) = 𝑎𝐶𝑏, averaged, 𝑅2 = 0.775

value standard error t-test p-value
70% Confidence

Interval

a 7.55 2.88 2.62 0.01 (4.51, 10.59)

b 0.64 0.08 7.90 0.00 (0.56, 0.73)
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Secondly, the results of the regression of time as function of complexity (𝑛𝑜𝑝𝑡(𝐶) =

𝑎𝐶𝑏 + 𝑑) are shown in Figure 3-7 and Table 3.9.

Figure 3-7: Regression Analysis, 𝑛𝑜𝑝𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑, averaged, 𝑅2 = 0.464

Table 3.9: Regression Analysis summary, 𝑛𝑜𝑝𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑, averaged, 𝑅2 = 0.464

value standard error t-test p-value
70% Confidence

Interval

a 1.8e-5 9.6e-5 0.19 0.85 (-8.4e-5, 1.0e-4)

b 1.64 1.06 1.55 0.13 (0.53, 2.76)

d 1.01 0.01 69.00 0.00 (0.99, 1.02)

Finally, the results of the regression using time multiplied by NC as a function

of complexity(𝑛𝑜𝑝𝑡 * 𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑) are shown in Figure 3-8 and Table 3.10. The

results show a super-linear relationship with the exponent 𝑏 = 1.40, with a statistically

significant t-value of 3.05 and 𝑅2 = 0.802. This is very similar to the results found

by Sinha and De Weck in their study, increasing the hypothesis that effort has a

super-linear relationship with complexity.
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Table 3.10: Regression Analysis summary, 𝑛𝑜𝑝𝑡*𝑡(𝐶) = 𝑎𝐶𝑏+𝑑, averaged, 𝑅2 = 0.802

value standard error t-test p-value 70% Confidence
Interval

a 0.14 0.33 0.42 0.68 (-0.22, 0.49)
b 1.40 0.46 3.05 0.00 (0.91, 1.88)
d 56.64 18.24 3.11 0.00 (37.39, 75.90)

Figure 3-8: Regression Analysis, 𝑛𝑜𝑝𝑡 * 𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑, averaged, 𝑅2 = 0.802

Regression on weighted average based on problem complexity

Using the same order from the previous section, the analysis in this section were

performed using a weighted average. This means that each value of the 310 tests

were substituted by the average of the respective complexity. This will give problems

that were conducted more times higher weight in regression. The results are shown in

order, regression on time, Figure 3-9 and Table 3.11, Figure 3-10 and Table 3.12, and

Figure 3-11 and Table 3.13 respectively. The most relevant analysis here is that due

to the increased number of data points when compared to the simple average is the

improved t value (from 3.05 to 11.76) and a much narrower confidence interval(from
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[0.91,1.88] to [1.42,1.70]) for the exponent 𝑏 = 1.56 in the time multiplied by the NC

when compared to the average results.

Figure 3-9: Regression Analysis, 𝑡(𝐶) = 𝑎𝐶𝑏, weighted average, 𝑅2 = 0.780

Table 3.11: Regression Analysis summary, 𝑡(𝐶) = 𝑎𝐶𝑏, weighted average, 𝑅2 = 0.780

value standard error t-test p-value
70% Confidence

Interval

a 7.86 0.83 9.50 0.00 (7.00, 8.71)

b 0.63 0.02 27.81 0.00 (0.61, 0.65)
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Table 3.12: Regression Analysis summary, 𝑛𝑜𝑝𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑, weighted average,
𝑅2 = 0.476

value standard error t-test p-value 70% Confidence
Interval

a 0.00 0.00 0.65 0.52 (-9.5e-6, 4.1e-5)
b 1.66 0.30 5.47 0.00 (1.35, 1.98)
d 1.01 0.00 266.92 0.00 (1.01, 1.01)

Figure 3-10: Regression Analysis, 𝑛𝑜𝑝𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑, weighted average, 𝑅2 = 0.476
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Table 3.13: Regression Analysis summary, 𝑛𝑜𝑝𝑡 * 𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑, weighted average,
𝑅2 = 0.819

value standard error t-test p-value 70% Confidence
Interval

a 0.06 0.04 1.48 0.14 (0.02, 0.10)
b 1.56 0.13 11.76 0.00 (1.42, 1.70)
d 61.09 4.14 14.77 0.00 (56.80, 65.39)

Figure 3-11: Regression Analysis, 𝑛𝑜𝑝𝑡 * 𝑡(𝐶) = 𝑎𝐶𝑏+𝑑, weighted average, 𝑅2 = 0.819

Residuals

To further analyze and validate the results, the residuals for each regression was

created and shown in Figure 3-12. In the x-axis, it is shown the sample number,

this is ordered based on the problem complexity and in the y-axis its the residual.

Ideally, for a least square method the samples are normally randomly distributed

around the zero value. In the experiment, values with larger complexity have larger

residuals. This can be seen better in the first column when every point is taken into

consideration. Although, this is an important measure, the skewness in this analysis
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is not enough to discredit the analysis mentioned in the previous sections.

Figure 3-12: Residuals for the regressions. Columns: 1. Using every point, 2. Av-
eraged, 3. Weighted Average. Rows: 1. 𝑡(𝐶) = 𝑎𝐶𝑏, 2. 𝑛𝑜𝑝𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑, 3.
𝑛𝑜𝑝𝑡 * 𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑

3.3.2 Further analysis

Once the analysis in the previous section was completed, it was noticed something

interesting, specially the three plots based on the regression where NC and time

were multiplied (𝑛𝑜𝑝𝑡 * 𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑). These had better statistics results, with

better 𝑅2, p-values and t-test. These were also the only analysis that allowed the

time of completion to have an offset or a Y intercept different than zero. So another

hypothesis was created: 𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑. The results are summarized in Table 3.14

and shown in Figures 3-13, 3-14, and 3-15. For the weighted average, the 𝑏 coefficient

is 1.46, with a 70% interval confidence between 1.33 and 1.60, with very high t-tests

for the exponent 𝑏 and intercept 𝑑, of 11.4 and 13.9 respectively. All these regressions

perform very closely to the 𝑛𝑜𝑝𝑡 * 𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑 option. Since the NC were very

close to optimal, varying in average from 0% to 13% above the optimal, it has a
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much smaller impact when comparing to the time for completion. Additionally, this

results are different from that shown in previous studies mentioned earlier, where

time was expected to approach zero as complexity approaches zero. Here, it is shown

that even for the least complex problems there is an overhead cognitive load where

the test subjects take to first understand the problems before solving it. Once that

initial hurdle has passed, then the complexity of the task increases the time to solve

super-linearly.

Figure 3-13: 𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑 using all points

3.3.3 Uncertainty on inner and outer point values

Up to this point, it was assumed the values in Table 3.1 to calculate complexity,

however these numbers are not absolute and at this stage of research there is a good

amount of uncertainty. To address, and mitigate this issue, a Monte-Carlo simulation

was performed in the 𝛼 and in the 𝛽 coefficients to calculate problem complexity and

regressions in the form 𝑛𝑜𝑝𝑡 * 𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑 were performed. It was chosen the

triangular uncertainty for every coefficient as it is only needed 3 values, a pessimistic,
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Table 3.14: Summary results for 𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑

Every point

Regression Coef value standard error t-test p-value
70%

Confidence
Interval

𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑
a 0.09 0.18 0.51 0.61 (-0.09, 0.27)
b 1.46 0.38 3.84 0.00 (1.07, 1.86)
d 58.33 12.49 4.67 0.00 (45.4, 71.3)

Average

Regression Coef value standard error t-test p-value
70%

Confidence
Interval

𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑
a 0.21 0.48 0.43 0.67 (-0.30, 0.72)
b 1.31 0.45 2.93 0.01 (0.84, 1.78)
d 53.65 18.74 2.86 0.01 (33.88, 73.42)

Weighted Average

Regression Coef value standard error t-test p-value
70%

Confidence
Interval

𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑
a 0.09 0.06 1.52 0.13 (0.03, 0.15)
b 1.46 0.13 11.43 0.00 (1.33, 1.60)
d 58.33 4.19 13.91 0.00 (54.0, 62.7)
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Figure 3-14: 𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑 using point average

Table 3.15: Base complexity with uncertainty for points and interfaces

Point Complexity type Complexity
Uncertainty
Distribution

(min/max/mode)

Component Inner point 𝛼𝑖 2 Triangular(0,3,2)
Outer point 𝛼𝑖 1 Triangular(0,2,1)

Interface Inner point 𝛽 3 Triangular(0,3,2)
Outer point 𝛽 1 Triangular(0,2,1)

an optimistic, and a most probable value as shown in Table 3.15. Since the coefficients

are relative to one another, I believe that with enough Monte-Carlo samples these

distributions will yield meaningful results.

The most important variable that is being tracked in this study is the exponent

𝑏, which is of interest to understand the relationship between effort and complexity.

The coefficient 𝑎 is a scaling factor, which is highly dependent of the 𝛼 and 𝛽 values,

by multiplying them by a factor of x, it would increase the complexity by a factor of y,

and that would be reflected in coefficient 𝑎. 𝑑 is a necessary offset because of the initial

overhead of analyzing the problem. Thus, 𝑏 was the value chosen to be tracked in

51



Figure 3-15: 𝑡(𝐶) = 𝑎𝐶𝑏 + 𝑑 using weighted point average

the Monte-Carlo simulation. Figure 3-16 shows the cumulative distribution function

of this variable across 10 thousand simulations. In the figure, it is also shown the

deterministic value, in a vertical dashed line, the Monte-Carlo median and average,

in a red dot, and a red vertical line respectively. In the simulation, the minimum

value recorded was 1.1 and the maximum was 1.9, with the average and median

being slightly over 1.5. In comparison, the deterministic value was 1.4. This result

increases the confidence that the complexity and effort relationship is super-linear.

Figure 3-16: Monte-Carlo simulation for exponent 𝑏
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Also, for each problem it was recorded the new complexity for each iteration

of the Monte Carlo and is shown in Figure 3-17 in boxplot format. Although, the

variability seems to be large, the upward complexity from the simpler problems in the

left to the more complex problems is still valid. However, there were problems that

at first, in the deterministic analysis, were more complex than other, but depending

on the iteration had lower complexity. Two examples are problems Id14 and Id13,

and problems Id28 and Id30.

Figure 3-17: Monte-Carlo problem complexity variability

3.3.4 Normalized Cost and Normalized Time

One assumption made in the study was that the normalized cost and time were

inversely proportional. So this section is dedicated on challenging this assumption.

to do that, it was analyzes the normalized cost versus the normalized time (NT). NT

was defined as the time to solve a problem divided by the average of time to solve that

problem. Figure 3-18 shows the inverse relationship between NC and NT, however

is it arguably a very slow relationship as the fit suggests 𝑁𝐶 = −9𝑒−3𝑁𝑇 + 1.05,

when doubling the time taken in the problem, the NC is only increased by 0.9%.

Also, Figure 3-19 shows that simpler problems have larger variations in NT, this

happens mainly because the average time taken in those are smaller. Figure 3-20

was created using only the data collected for problem ids equal or larger than 11

or a complexity value above 63 to understand the more complex problems. This
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Figure 3-18: Normalized cost vs. Normalized time

plot shows a stronger relationship, accounting for 3.6% improvement in NC for every

additional average time incremented in the problem. From both Figures 3-18 and

3-20, it can be argued that lower NT yields to more inconsistent results, leaving the

possibility for large errors while taking longer does not eliminate the possibility of

sub-optimal solutions, but reduces the possibility of having large errors. For example,

the standard deviation in NC for NT smaller than 1 was 0.1, and for NT larger than

1 was 0.04 which corroborate with this analysis. The difference is even larger when

taking into consideration only the problems with complexity over 63, with a standard

deviation of 0.13 versus 0.05 for NT smaller than 1 and over 1 respectively.

Moreover, Figure 3-21 shows the average NT and average NC for each test subject.

Here, each data point is a different test subject. Clearly there is a downward trend,

where more time is spent better results surface.
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Figure 3-19: Normalized time, boxplot by problem id

55



Figure 3-20: Normalized cost vs. Normalized time for complexities larger than 63 (id
11 and above)

Figure 3-21: Average normalized time versus Average normalized cost for each test
subject

.
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Table 3.16: Base complexity and 10% sensitivity

Point Complexity type Complexity Sensitivity
test

Component Inner point 𝛼𝑖 2 [1.8, 2.2]
Outer point 𝛼𝑖 1 [0.9, 1.1]

Interface Inner point 𝛽 3 [2.7, 3.3]
Outer point 𝛽 1 [0.9, 1.1]

3.3.5 Sensitivity

Finally, a sensitivity analysis was performed in the component and interface complex-

ity values as shown in Table 3.16. By varying 10% in each of the complexity type,

it was analyzed the overall average percentage complexity change across all 30 prob-

lems. The results are shown in Figure 3-22. Since the problems in this experiment

have in average more inner points (12.0) than outer points (8.7), it was expected the

inner points to have a larger impact in the sensitivity. Also, inner points have larger

complexity values, thus changing 10% will lead to a larger change in the total Com-

plexity. Similarly, the interface component 𝛽 has a larger impact in both inner and

outer points. This is due to the multiplier 𝐶3 term, which in every problem is above

1, and with an average of 1.28. The 𝐶3 term does not change, as it is independent of

𝛼 and 𝛽, and dependent only whether there is a connection between two cities.
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Figure 3-22: Sensitivity analysis, impact on average Complexity by a change in 10%
in coefficient

.

Additionally, the impact of the ratios between inner and outer component and

interface complexity on the exponent b was analyzed using the average results for

each problem. As mentioned previously, although there is a precedent and strong

reasoning that inner points contribute more to the complexity of the problems, it

is not know exactly by how much, or what are the values. Figure 3-23, shows this

analysis for ratios over one, where inner points contribute more the complexity. In

this figure, both x and y axis are in the range from 1 to 10, and the b coefficient is

always over one, in the range from 1.7 to 1.2. The red dot represents the deterministic

data point used in the regressions showed earlier, where the ratio for 𝛼𝑖𝑛𝑛𝑒𝑟

𝛼𝑜𝑢𝑡𝑒𝑟
= 2 and

𝛽𝑖𝑛𝑛𝑒𝑟

𝛽𝑜𝑢𝑡𝑒𝑟
= 3 yielding 𝑏 = 1.396
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Figure 3-23: 𝛼𝑖𝑛𝑛𝑒𝑟

𝛼𝑜𝑢𝑡𝑒𝑟
vs. 𝛽𝑖𝑛𝑛𝑒𝑟

𝛽𝑜𝑢𝑡𝑒𝑟
impact on exponent coefficient b, the red dot represents

the deterministic data point used in the analysis, for ratios over 1

.

Similarly, Figure 3-24 shows the same relationship between the ratios of inner and

outer points, however in this case the outer points have a larger impact than inner

points. In this case, there is a faster change in the exponent coefficient, reaching

almost at 1.9, and below 1 for very small ratios of both 𝛼 and 𝛽, around 0.3 and

0.21 respectively. Based on previous studies it is possible to eliminate the possibility

that inner points will have a much lower impact in the complexity than outer points,

increasing the confidence of the super-linear relationship attached to the 𝑏 coefficient.
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Figure 3-24: 𝛼𝑖𝑛𝑛𝑒𝑟

𝛼𝑜𝑢𝑡𝑒𝑟
vs. 𝛽𝑖𝑛𝑛𝑒𝑟

𝛽𝑜𝑢𝑡𝑒𝑟
impact on exponent coefficient b, for ratios under 1

.

3.3.6 Variability

The variability, or the standard deviation for each problem was also calculated and

is shown in Table 3.17. It interesting to measure the how the variability in the

results vary across different complexities. Similar to the previous analysis, here the

hypothesis, visually corroborated by residuals shown in Figure 3-12, is that variability

increases as complexity increases. Two regressions were created in the following forms:

𝑌 = 𝑎𝐶𝑏 (3.5)

𝑌 = 𝑎𝐶𝑏 + 𝑑 (3.6)

Where 𝑌 is the expected variability in the NC multiplied by the time for the system

complexity 𝐶, and 𝑎, 𝑏 and 𝑑 are constants. A summary of the results is shown in

Table 3.18. Also depicted in Figures 3-25a and 3-25b. Both models perform relatively

well, with fairly high t-values and nearly zero p-values, however Equation 3.5 performs
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slightly worse, and seems to underestimate at higher complexities while Equation 3.5

seems to over and underestimate randomly across all complexities, as expected. It

also implies that even at when approaching problem with zero complexity, there is a

overhead human variability to assimilate and solve the problem, different people will

solve in different speeds even the simplest of the problems which does not happen

at Equation 3.5. Thus, Equation 3.6 seems to be a better approximation. After

the initial overhead, as complexity increases the variability of the results increase

super-linearly.

(a) (b)

Figure 3-25: Variability model:
(a) 𝑌 = 7.110𝑋0.660, 𝑅2 = 0.785,
(b) 𝑌 = 0.060𝑋1.558 + 61.093, 𝑅2 = 0.819

3.3.7 Learning effect

To minimize the learning effect, ordering of the problems within a test was random-

ized, this was intended to avoid having an ascending or descending complexity order

which could have skewed the results. To better understand the impact of learning in

the experiment, three plots were generated, the time taken in each problem, the nor-

malized time and the normalized cost, as a function of the solving sequence. First,

Figure 3-26a does not show evidence of more time being spent in either a specific

problem or periods of the test. Figure 3-26b, in the other hand shows a clearly an

relatively high value in the normalized time spent in the first problem solved by the
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Table 3.17: Experiment analysis standard deviation summary

Time (s) Cost NC Time * NC
id C Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

id 0 17.67 53.58 43.91 1.98 0.10 1.02 0.05 56.22 52.06
id 1 18.65 66.08 52.11 2.21 0.00 1.00 0.00 66.15 52.11
id 2 21.33 58.56 37.85 2.66 0.05 1.01 0.02 58.95 37.71
id 3 23.12 86.47 54.82 3.23 0.04 1.02 0.01 88.44 56.86
id 4 30.26 63.77 38.42 2.13 0.10 1.03 0.05 65.66 40.17
id 5 31.31 83.64 39.65 3.20 0.04 1.01 0.01 84.20 39.75
id 6 37.30 57.63 79.65 3.29 0.00 1.00 0.00 57.63 79.65
id 7 39.27 70.75 34.09 4.01 0.11 1.02 0.03 72.50 35.96
id 8 51.34 94.13 54.80 3.75 0.13 1.03 0.03 96.20 54.42
id 9 53.38 82.00 39.64 3.85 0.07 1.02 0.02 83.24 40.66
id 10 62.39 83.47 42.44 4.78 0.13 1.02 0.03 85.22 43.85
id 11 63.53 156.86 70.40 3.74 0.07 1.02 0.02 159.35 71.24
id 12 80.51 112.50 50.13 4.54 0.42 1.08 0.10 121.08 52.13
id 13 82.10 112.79 50.86 5.04 0.12 1.01 0.02 114.14 51.56
id 14 96.46 132.22 57.92 4.77 0.33 1.05 0.07 139.80 63.35
id 15 99.43 131.55 64.96 6.26 0.18 1.04 0.03 137.50 69.28
id 16 100.30 135.82 65.88 5.23 0.22 1.04 0.04 140.47 67.69
id 17 110.07 169.57 95.73 5.51 0.21 1.02 0.04 173.77 96.81
id 18 112.48 89.10 43.63 5.41 0.24 1.03 0.05 92.84 49.45
id 19 116.03 225.75 86.98 5.75 1.17 1.12 0.23 238.82 76.00
id 20 121.71 149.00 78.38 5.78 0.66 1.06 0.12 158.21 80.13
id 21 123.61 143.64 72.49 5.63 0.40 1.08 0.08 153.99 74.72
id 22 129.80 177.86 88.34 5.37 0.13 1.04 0.03 184.47 90.36
id 23 132.19 144.70 60.47 4.22 0.11 1.03 0.03 150.44 65.22
id 24 137.89 179.29 51.81 5.87 0.07 1.02 0.01 183.45 52.22
id 25 139.84 167.18 79.31 6.14 0.26 1.03 0.04 173.43 84.22
id 26 141.44 191.44 113.77 5.32 0.25 1.06 0.05 205.74 125.67
id 27 143.38 213.00 78.53 6.35 1.46 1.13 0.26 230.62 70.43
id 28 155.45 216.78 93.05 6.35 0.34 1.07 0.06 230.08 93.44
id 30 157.53 200.75 86.22 5.32 1.10 1.11 0.23 213.30 82.85

62



Table 3.18: Results of standard deviation analysis - summary

𝑅2 = 0.785 fit: 𝑌 = 7.110𝑋0.660

value standard error t-test p-value 70% Confidence Interval
a 7.11 0.78 9.07 0.00 (6.30, 7.92)
b 0.66 0.02 27.93 0.00 (0.64, 0.69)

𝑅2 = 0.819 fit: 𝑌 = 0.060𝑋1.558 + 61.093
value standard error t-test p-value 70% Confidence Interval

a 0.06 0.04 1.48 0.14 (0.02, 0.10)
b 1.56 0.13 11.76 0.00 (1.42, 1.70)
d 61.09 4.14 14.77 0.00 (56.80, 65.39)

test subjects. This was observed during the tests as well, the subjects often took

longer to process the task and asked clarifying questions during the first problem. As

for the remaining of the problems, the data does not show high correlation. With the

data points varying within ± 5% of the normalized time. The NC as a function of the

solving sequence plot shown in Figure 3-26c does not have a clear trend or pattern.

The fourth problem has a much higher normalized cost, this is due to 2 problems

which had very high 17% and 26% above optimum that coincidentally where every

other sequence had at most one. This is also observed in the standard deviation of

each sequence, where sequence 4 has a standard deviation of 7.4% while every other

sequence falls between 1.8% and 5.1%. This easily could be a sampling issue of an

outlier and is not necessarily a pattern.

3.4 Video insights

Each test subject was free to choose whichever strategy they thought was best to

find the optimum solutions. As previously mentioned, the TSP is a NP hard problem

with (𝑛−1)!
2

possible solutions. For a problem with 10 points there are more than 180

thousand distinct solutions. We, humans, are not capable of process and store this

amount of information, much less in a short period of time with multiple problems

being done in a short period of time (the average time of completion for all the

problem was 2 minutes). Thus, humans tend to rely on heuristics and experience
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(a) (b)

(c)

Figure 3-26: Sequence analysis:
(a) Problem Time as a function of problem sequence,
(b) Problem normalized time as a function of problem sequence,
(c) Problem normalized cost as a function of problem sequence

to solve the TSP. The TSP is a common problem in most people’s life, for example:

Bob is at home working and has to go in no particular order, to grocery shopping,

to pick up his daughter at soccer practice, to go to the pharmacy and to drop his

mom’s dinner at her house before returning home. In this scenario, Bob will most

likely to plan his route based on his previous experience, time traveled and distance

between places. Throughout the years, we develop a heuristic on how to approach this

problem. In this experiment it was observed in several occasions the same heuristics

being applied. Figure 3-27a and 3-27b are two examples of different test subjects

physically hiding part of the problem to reduce the problem space and be able to

better grasp and search for a solution. They are abstracting the problem to reduce

the number of possible solutions, and they are able to do this with a high level of
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confidence due to the heuristic they created along their life. They are confident that

searching for smaller sub-clusters and then linking the sub clusters will give them

good enough results. This is also shown in Figure 3-28 where the test subject marked

the sub-sections he was confident with a black sharpie on the draft session while

he was looking for the best way to connect the other points with a pen where his

path confidence was lower. These techniques, although do not guarantee the optimal

solution, they reduce the search space significantly and give good enough results for

most of the applications we see in an ordinary day to day life.

(a) (b)

Figure 3-27: Video excerpt - Human abstraction examples, (a) Test 15 (b) Test 25

Additionally, for the results of 15 test subjects, it was recorded the time spent in

making the drafts as a percentage of the total time spent in the problem. On average

the test subjects spent 72% of the time in the draft section of the problems. The

amount of time spent in the draft portion does not have an obvious relationship to

the NC or the problem complexity as shown in Figures 3-29a and 3-29b. These are

interesting findings, it was expected the ratio to increase as complexity increases as

there were more points to be searched and calculated. However, the results suggest

that with the increase of problem complexity is linearly proportional to the time

needed to copy the solution from the draft to the final answer plot. Moreover, the time

ratio cannot be correlated to the normalized cost, one behavior that was observed in

the experiment was that test subjects sometimes made changes from the draft directly

in the final answers, so they were still actively solving the problem, even after they

65



Figure 3-28: Video excerpt - Piecewise solving, Test 19
.

had stopped working on the draft solution.

3.5 Discussion

One of the biggest findings from this experiment is that for the TSP there is an

overhead of cognitive load. The data suggests that regardless of the complexity of

the problem there is an initial time where the test subjects take to understand it, after

that, the complexity has a super-linear relationship with the time taken to solve the

problem. This is different from the results previously by Sinha and de Weck[20], where

their results suggests that as complexity approaches zero, the time to solve it also

approaches zero. Additionally, in this experiment, sub-optimal solutions are allowed

whereas in the previous experiment it was not. The sub-optimality has some influence

in the differences in the results, however are very minor as shown in the previous

section. Thus, there must be something else that explains the need of the inclusion

of an offset for this problem. One hypothesis based on the video analysis and Figures

3-27 and 3-28 is that the test subjects involuntarily cluster points before starting to
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(a) (b)

Figure 3-29: (a) Time ratio, Draft time over Total time versus Normalized cost, (b)
Problem Complexity versus Time ratio, Draft time over Total time

solve the problems, Figure 3-30 was created to exemplify this phenomenon, starting

at step (a) with the problem to be solved, at (b) the test subjects visually inspect

and create mental clusters, where points are close together and seem to aggregate

well, next at step (c) they solve a one way path trying to find a solution that could

link the clusters as well as possible and finally at (d) they link the clusters. The

argument here is that it takes a set amount of time to go from step (c) to step (d),

the simplest of the problems do not have clusters and internal paths to be optimized.

So the overhead is due to linking of clusters. The super-linearity relationship is a

reflection of the increasingly difficulty to come up with meaningful clusters and to

find the best path within each cluster. This hypothesis, also supports the super-

linear growth as opposed to 𝑂( (𝑛−1)!
2

), the clustering reduces the number of possible

solutions substantially. And humans are able to do this based on their heuristics

developed throughout the years where achieving an the absolute optimal path is not

necessary, specially because searching for the optimal solution may take longer than

the benefit since often use it only a few times, as opposed to industry where the same

path is taken thousand times a day which justifies the investment.

Another interesting finding is that the longer the time spent in the problem ,as

expected, improves the results, but it also improves the variability of the outcome.

So by spending longer in a problem, it is expected to get better and more consistent

results. The test subjects that spent less time in the problems were more erratic,
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(a) (b)

(c) (d)

Figure 3-30: Hypothesis of solving steps for humans, exemplified in test id 19
(a) Unsolved problem
(b) Step 1 - Clustering points
(c) Step 2 - Solving one way within the clusters
(d) Step 4 - Connect clusters and solve problem

prone to large errors, reaching over 60% of the optimum values. Also, similar to the

time to complete the problem, the variability of the time spent also increases super-

linearly after an offset. This can be attributed to the different strategies chosen by

the test subjects, the variability seems to vary proportionally based on the problem

complexity. So the person who was solving the problems quickly, also solved the more

complex problems faster, and the person who decided to take longer did it so in the

same proportion.
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3.6 Code base

All of the code used in this analysis is available at https://github.com/rbhopker/

Thesis_complexity. It includes the methods to calculate complexity, complexity ma-

nipulation functions. the code to create the TSP problems, how the TSP problems

were solved, all the analysis were performed, along with the code for a an implemen-

tation of the TSP experiment online using Streamlit library.
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Chapter 4

System Decomposition

4.1 Introduction

To better understand systems, their behaviors, interaction and emergencies, it is a

common practice to reduce the details and focus on the primary focus of the system.

Setting the level of abstraction allows the architect to hide the details and while al-

lowing us to reason about the function of the system[6]. Therefore setting the level of

abstraction is crucial for the understanding of the system, however I argue that the

complexity of the system is unaffected by it, because it is a inherited system property.

As highlighted in the "Principle of Decomposition" in Crawley et al.[6] system decom-

position is possibly the most important decision in system architecting to "minimize

the apparent complexity of the system" and that it "is an active choice made by the

architect". Figure 4-1 is a high level depiction of this rationale. The more detailed

the level of abstraction the higher it is the perceived system complexity, in the other

hand, the more coarse the level of abstraction is the smaller the system complexity is

perceived. In contrast the system complexity remains unchanged. Ronnie Thebeau,

in his thesis[21] tackled this problem by modifying an algorithm that creates decom-

positions given an architecture, which uses a randomized approach, and the objective

function is based on the sum of interactions within a cluster and outside the cluster,

and there is a penalty based on the cluster size and the total DSM size.
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Figure 4-1: Relationship between Level of abstraction and System complexity

4.2 "Conservation of Complexity"

To exemplify how this can be applied to the metric we defined in Section 2.1, we

will continue using the same example problem shown in Figure 2-1. This system is

composed of five sub-systems, the Controller, Pump, Valve, Filter and Motor. Each

sub-system have their own internal interfaces and components. Thus it is possible to

calculate their complexities. In this example, it was given them a value of 5, 2, 1, 1

and 3 respectively, based on expertise of the paper authors’. The level of abstraction

was arbitrarily chosen to exemplify the complexity metric. But what happens if the

level of abstraction was increased even more? For example, it is possible to combine

the sub-systems Valve and Filter to be a part of a single subsystem. If the complexity

of the system remains constant what modifications Table 2.1 have to go through to

depict the new system architecture level of abstraction. Table 4.1 shows the values

that are unknown for this transformation of the system. Firstly, it is simple to

calculate the 𝐶1 for the 𝑉 𝐹 sub-system. By calculating the complexity of the 𝑉 𝐹

slice from Table 2.1,or in short 𝐶𝑉 𝐹
1 = 𝐶([ 1 0.5

1.5 1 ]) = 4, and substituting in Table 4.1

yields to Table 4.2.

The new 𝐶1 is easily calculated by adding 5,3 4 and 3 which is 14. From Equation

2.6 the total system complexity is unchanged at 25.44, which means that the 𝐶2𝐶3

term must be equal to 11.44. To calculate the 𝐶3 term all it is needed is the binary

value of the adjacency matrix, whether there is an interface between the components
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Table 4.1: 𝐷𝑆𝑀𝐶 for problem in Figure 2-1 with increased level of abstraction

C P VF M
Controller C 5 0 ? 0.5

Pump P 0 2 ? 1.5
Valve and Filter VF ? ? ? ?

Motor M 1.5 0.5 ? 3

Table 4.2: 𝐷𝑆𝑀𝐶 for problem in Figure 2-1 with increased level of abstraction

C P VF M
Controller C 5 0 ? 0.5

Pump P 0 2 ? 1.5
Valve and Filter VF ? ? 4 ?

Motor M 1.5 0.5 ? 3

which is available to us from Table 2.4, if either the Valve or Filter have interface

with the other sub-systems it means that the new abstraction will also have interfaces

between them. The new matrix for 𝐶3 calculation is shown in Table 4.3, which yields

𝐶3 = 1. Thus, 𝐶2 = 11.44. This 𝐶2 term has two components, the known interface

values from Table 2.4, and the unknown values from the change in abstraction level.

From equation 2.4 the known values (𝐶𝑘
2 ) add up to 4, so it is possible to determine

that the unknown values (𝐶𝑢
2 ) must be equal to 7.44. The issue is to determine how

much it will be attributed for each of the interfaces identified while calculating 𝐶3 as

shown in Table 4.4. In this study, it was used the weighted average, based on the sum

of the interfaces that got abstracted. For example, 𝐶𝑉 𝐹 (𝐶) =
2.5

2.5+1.5+1.5+0.5
7.44 = 3.1.

Doing this for all unknown values yields to Table 4.5.

Table 4.3: Modified Table 2.4 for new level of abstraction

C P VF M
Controller C 0 0 1 1

Pump P 0 0 1 1
Valve and Filter VF 1 1 0 0

Motor M 1 1 0 0
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Table 4.4: 𝐶2 first estimate for problem in Figure 2-1 with increased level of abstrac-
tion

C P VF M
Controller C 0 0 1.5? 0.5

Pump P 0 0 0.5? 1.5
Valve and Filter VF 2.5? 1.5? 0 0

Motor M 1.5 0.5 0 0

Table 4.5: 𝐷𝑆𝑀𝐶 for problem in Figure 2-1 with increased level of abstraction

C P VF M
Controller C 5 0 1.9 0.5

Pump P 0 2 0.6 1.5
Valve and Filter VF 3.1 1.9 4 0

Motor M 1.5 0.5 0 3

4.2.1 Component and interface complexity

Unfortunately, it is possible to increase the level of abstraction, but it is not possible to

reduce it with knowledge from the expanded system architecture. Neither is possible

to reverse the calculation without using the original complexity 𝐷𝑆𝑀 . Increasing the

abstraction is possible because information gets merged, but to accurately unmerge

it, it is necessary to know the system’s architecture.

By using the calculation method described in this section, the breakdown and

the level of abstraction matters. It is specially important in the distribution of the

complexity. We can demonstrate it using the same sample system in Figure 2-1. By

using different approaches (Figure 4-2) to achieve the apparently the same level of

abstraction. As expected, both systems have the same overall complexity, however

the system in Figure 4-2a, which is a level 2 decomposition has a higher 𝐶1 value

while having a lower 𝐶2 value when comparing to the system in Figure 4-2b which is

a level 1 decomposition. This analysis provides an interesting insight. In Figure 4-2a,

because some interfaces are within the level 2 decomposition part of the interface

complexity (𝐶2) is transferred to internal complexity (𝐶1). In the other hand, the

system in Figure 4-2b retains more interface complexity because it does not have
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further decomposition. Therefore, it is an architectural choice to trade complexity

from components to the interfaces and vice-versa.

(a) (b)

Figure 4-2: (a) Multiple abstraction level (b) Single abstraction level

4.3 Optimal level of abstraction to manage complex-

ity

As mentioned in Chapter 3, the human effort has a super-linear relationship with

system complexity in the approximated in the form 𝑒 = 𝐴𝐶𝑏 + 𝑑 which means that

not only decomposition level but also the architecture of the decomposition directly

impact the effort to manage a system. This also means that there is at least one opti-

mal decomposition that minimizes human effort. Equation 4.1, proposed a objective

function to minimize the effort taken by humans to understand the system.
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min 𝑒𝑡

s.t.:

𝑒𝑡 = 𝑒𝑖 +

𝑗∑︁
𝑛=1

𝑒𝑛

𝑒𝑛 = 𝐴𝐶𝑏
𝑛

𝐶𝑖 = 𝐶 −
𝑗∑︁

𝑛=1

𝐶𝑛

𝑒𝑖 = 𝐴𝐶𝑏
𝑖 + 𝑑

Substituting:

𝑒𝑡 = 𝐴𝐶𝑏
𝑖 + 𝑑+

𝑗∑︁
𝑛=1

𝐴𝐶𝑏
𝑛

(4.1)

Where 𝑒𝑡 is the total human effort, 𝑒𝑖 is the integration effort, 𝑒𝑛 is the individual

decomposition effort to understand(grasp, build) the system and 𝐶𝑛 is the complexity

for each decomposition 𝑛, 𝐶𝑖 is the integration complexity and 𝐶 is the total system

complexity. 𝑏 is super-linear, 𝑑 is a possible overhead.

4.4 Example application

Using the air conditioner (AC) system shown in Figure 4-3, created by Prof. Steve

Eppinger, modified from [15], also from his authorship, although it looks simple,

there are over 27 million possible different ways of decompose this system. From the

possible solutions some are better level of abstractions than other, while others may

take a similar amount of effort to understand it. The system’s connections along

with Eppinger’s favorite solution, based on his experience is shown in Figures 4-4a

and 4-4b, respectively. The components are clustered into 3 different subsystems, the

heater, the blower and the AC, which is much more intuitive for engineers and those

familiar to AC systems. However, an expert is not always available to decompose a

system, or it is too complicated to do it. Using the intuition described in Chapter 3

and in Equation 4.1, with the intent to minimize the the total effort to understand
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the system, calculating all the possible abstractions it is possible to determine good

system architectures.

Figure 4-3: Air conditioning system

(a) (b)

Figure 4-4: (a) AC system marks (b) AC expert decomposition

For this system, it was calculated the effort for nearly 20 million possible different

architectural decompositions, where the system was divided into 1, 2, 3, 4, 5 and

6 clusters. Every possible solution using these clusters was evaluated. Figure 4-5

summarizes all these possible options, the Y-axis is a normalized effort, where the

denominator is the system without an abstraction, as seen in Figure 4-4a. Firstly,
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by analysing the median values, it shows that by having a decomposition, in average

the effort to understand the system decreases between 20% and 30%, regardless of

how many clusters there are. Even the worse decompositions, have a benefit from 8%

to 20%. The optimal decomposition, shown in Figure 4-6a, has a normalized effort

of 52%, while the modified expert solution is shown in Figure 4-6b has a normalized

effort of 53%. It was needed to modified the abstraction because the method presented

in this chapter does not allow for overlapping abstractions. Interestingly, the expert

solution is the best decomposition for decompositions with 3 clusters, and only 1%

worse than the global optimal. This difference is minimal and the architect can

argue for either option based on other information not included in the model. The

only differences between the two decompositions were components H - Fan and J -

Condenser, which combined into a new cluster, previously they were in the clusters

Heater and AC respectively. Although there are a lot of assumptions boiled into this

model, it clearly yielded a meaningful decomposition that could be used as a baseline.

The denominator of the normalized cost is the effort calculated for the whole system

as seen in Figure 4-4a. In this solution the exponent 𝑏 used was equal to 1.4775 based

on values found in Chaper 3 and in the study by Sinha and de Weck[20].

4.5 Abstraction of the TSP

Applying this method to the TSP is a non-trivial task, mainly because the clustering

for the TSP should not be based on the complexity and connection if the points,

but instead in their distances and relative distances between clusters, before the path

between the points are drawn, as shown in Figure 3-30, step (a) to (b). It can be

argued that for each problem, there is a cluster that reduces the human effort to

solve the problem, and it is the architect’s job to decipher and determine them. The

different times and normalized costs seen in the experiment mentioned earlier could be

partially attributed to this argument, where each test subject either chose a different

abstraction or chose to not have abstractions at all. In the TSP, the tradeoff of

introducing clusters is the risk of not finding the optimal path, however, good enough
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Figure 4-5: Evaluating system decomposition options, Normalized effort in Y-axis

results often arise in relatively much shorter time. To test this hypothesis, the same

problem could be given to two groups, where in one set of problems the clusters are

given, and for the other group is not. If proven true, the group with the clusters will

perform better, faster and more consistently.

4.6 Discussion

In this Chapter it was introduced a method to reduce the human effort to comprehend

a system based on the complexity metric and on system decomposition. The objective

function is based on the effort it takes humans to comprehend and understand the

system as a function of system and decomposition structural complexities. The system

complexity metric still needs to be further validated, Chapter 3 is a step forward in

this direction, while the system decomposition is an established method used widely

in system design. The combination of the two in order to find optimal values is
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(a) (b)

Figure 4-6: (a) Optimal level of the decomposition (b) AC modified expert decompo-
sition

computational expensive but the usual method is hard and requires deep system

and discipline knowledge from the system architect. Different algorithms can be

implemented to reduce the search space, one example would be to use randomized

optimization algorithms such as simulated annealing and genetic algorithm, however

these do not guarantee optimality. Finding a good architecture decomposition has a

compounding positive impact, it often shape the development of systems, from team

formation and interactions, subsystem testing, verification and validation to supplier

interaction.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Measuring complexity across different systems and disciplines is hard. Being able

to do it is important for comparison and to take conclusions based on the system

complexity, such as estimation of cost and time for completion. Using the structural

complexity metric, this study reinforces the hypothesis that effort increases super-

linearly with the respect of system complexity. In this study it was a found an

exponent of 1.56 with a 70% confidence interval between 1.42 and 1.70. Although

the exact number or range still has to be further developed, it was shown that even

with great variation in the component and interface complexity the super-linearity

was still true. However, unlikely the previous study, here it was observed an overhead

needed to understand the system before the increase of complexity played a role in the

increase in effort to solve the problems. Additionally, test subjects that spent more

time than the average in the respective problems showed better quality answers but

also much smaller variability, yielding better answers more consistently. Also, with

the exception of the first problem, the data did not support any trend in learning

effect or typical behavior while solving the problems. It is speculated that the human

effort to solve the TSP is not only a function of interior points but also as a function

of the distance and of how it is possible to cluster points.

It is the job of the architect to decompose the system. They should strive to
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make it as simple as possible for the human mind. In this study, it was introduced a

method to evaluate it based on human cognitive understanding. There are infinitely

many possible level of abstractions for a system, and the architect using experience

and the heuristic shown in this study should be able to create a decomposition that

is close to optimum, while retaining the most important details.

5.2 Future Work

Further studies are still needed to validate the results shown in this paper. The TSP is

an interesting problem, however humans have a good heuristic to solve it which led to

answers close to optimum constantly. Removing some constraints and modifying some

rules could yield interesting results to analyze the complexity of path finding problems.

For example, it could be allowed multiple loops as if there were multiple salespersons

starting in different cities that had to visit a set of cities as a group, or multiple

salespersons starting at the same city. I believe these can increase the range of the NC

by the test subjects. To validate the hypothesis generated in Section 3.5 and shown in

Figure 3-30, it can be done an AB testing where group A receives the problems with

the clusters given to them as in Figure 3-30b, while group B receives only the points

as shown in Figure 3-30a. Other experiments, in different disciplines are required to

further increase the confidence of the super-linearity relationship between complexity

and effort. Additionally, more information is needed to determine what types of

systems have an overhead for understanding as seen in this experiment. Moreover, a

validation experiment in the search for optimality is system decomposition is needed

to strengthen the argument posed in Chapter 4.
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Appendix A

COUHES Approval

The Committee on the Use of Humans as Experimental Subjects (COUHES) approval

for the experiments mentioned in this study is shown in the next page. The study

was exempted under the Exempt Category 3, Benign Behavioral Intervention.
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