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ABSTRACT 

Rapid progress in automated facial recognition has led to a proliferation of the use of algorithms 

to support decision-making in high-stakes applications, such as immigration and border control, 

hiring, and the criminal justice system. Recent research has uncovered serious concerns about 

equality and transparency in facial recognition algorithms, finding performance disparities 

between groups of people based on their phenotypes, such as gender presentation and skin tone. 

These challenges can result in loss of employment opportunities, extra scrutiny in transactions, 

and even loss of freedom, raising the need of deeper analysis of facial recognition’s 

shortcomings. 

This dissertation proposes a novel methodology and a general test statistic to measure facial 

recognition algorithm interclass bias. The test uses distance-based variance to capture shape-

related differences in an algorithm’s accuracy at multiple operating points. 

The author assesses the performance of the test to evaluate the interclass bias for skin tone and 

gender, in commercial facial verification algorithms. Using a dermatologist-approved 

classification for skin tone system and a simple masculine and feminine classification for gender 

presentation, thirteen commercial-off-the-shelf facial verification algorithms are evaluated, 

utilizing a subset of the IARPA Janus Benchmark C dataset, and it’s 1:1 verification protocol. 

The analyses show that darker-skinned people have the least accurate results, with interclass bias 

measures up to 7.2 times higher than lighter-skinned people.  Additionally, the results show that 

one evaluated commercial facial verification algorithm statistically eliminates the interclass bias 

for skin tone.  Yet, all thirteen commercial facial verification algorithms evaluated experienced 

worse performance for feminine presenting persons compared to masculine presenting persons. 

The author believes this new measure of interclass bias can be incorporated into an algorithm’s 

design to remove this bias. The present biases in classifying darker-skinned and feminine 

presenting people require urgent attention, if commercial companies are to build genuinely equal, 

transparent, and accountable facial verification algorithms. 

Thesis Supervisor: John Williams 

Title: Professor of Civil and Environmental Engineering  
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Introduction 

Recently, the proliferation of a particular application of artificial intelligence, facial recognition 

systems, into the public and private sphere has triggered an intense debate and critique for their 

differential treatment of various demographic groups, in particular along racial and gender lines 

(Furl et al. 2002; Fussell 2020; Garvie et al. 2016; Gentzel 2021; Grother et al. 2019; Harwell 

2021; Lohr 2018; Norval and Prasopoulou 2017; Rhue 2018; Wang et al. 2018b). The author 

motivated by this active area of research, in algorithmic equality (fairness), focuses on one 

particular use of facial recognition systems for verification, where the system is asked to 

compare two images to verify if they are the same person. In other words, to compare faces as it 

may be done in an access control scenario (e.g., a security guard who is tasked with letting 

authorized persons into a facility). 

Facial recognition systems have been the topic of intense research for over fifty years, but in the 

last decade, due to improvements to artificial intelligence in general, they have improved 

considerably (Guo and Zhang 2019; Li and Jain 2011). In order to understand facial recognition 

systems success in numerous applications for private companies and governments ranging from 

authentication services on mobile consumer devices to use by law enforcement or armed forces, 

one first needs to understand artificial intelligence (Garvie et al. 2016; Parge et al. 2021; 

Robertson et al. 2016; Smith et al. 2015).  

The Rise of Artificial Intelligence Agents 

AI, or Artificial Intelligence, needs no introduction. We have all come across it in some form; in 

science fiction stories, real life, or popular culture. Yet, AI remains one of the most elusive 

subjects in Computer Science. The term is frequently used without a clear definition. In both 

popular and research definitions, the term encapsulates machine’s ability to perform tasks that 

have been considered to require human intelligence. Perhaps it’s more useful to consider AI as a 

meta-construct to describe a variety of different technologies that enable machines to sense, 

comprehend, act, or learn in order to maximize its chance of achieving its goals.  

Our contemporary understanding of AI includes technologies like machine learning, deep 

learning, natural language processing, and computer vision among others. Each one evolving 

along its own path and when applied in conjunction with data and automation can drive 

meaningful innovation and empower people.  

When understood in this manner, it’s easy to note that AI is no longer part of some distant future 

in popular culture’s imagination, but rather an integrated technology already prevalent in many 

facets of our day. On the personal, individual level, AI is used to compose responses to our 

emails (Google 2017), to enable our cameras to take better pictures than the one we shoot (Apple 

2019) or a camera that becomes its own photographer and seeks out the best moments to take 

pictures (Payne 2017), headphones that can instantly translate any foreign language to empower 
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us to communicate smoothly (Timekettle 2020; Waverly Labs 2019), wrist watches that are able 

to call for assistance when we have a hard fall and cannot get up (Apple 2020; Samsung 2020), 

and thermostats that perfectly adjust our home’s heating and cooling systems to our preferred 

temperatures (ecobee 2020; Nest Labs 2020). In each of these products, we have personally 

delegated our choices to the AI to make decisions, or actions either in digital or physical 

environments that we would have otherwise performed ourselves (Puntoni et al. 2021).These 

consumer AI technologies are a far cry from the “transhumanist” nightmares imagined in Marry 

Shelley’s Frankenstein; or, The Modern Prometheus, Isaac Asimov’s I, Robot, or James 

Cameron’s Terminator, cautionary tales where technology is able to overcome fundamental 

human limitations and molds new ideals of technological perfection. Rather, and perhaps most 

importantly, each of these examples is considered unremarkably normal by consumers and users. 

These small delegation experiences, where we take advantage of AI’s capability to act as a 

substitute for human labor, have primed us individually, and as a culture to embrace AI as an 

inevitable and indispensable tool.  

As AI has become entrenched in consumer’s lives, it has excelled is as an integrated technology 

deployed in a menagerie of sectors: finance, national security, health care, criminal justice, 

transportation, and smart cities (West and Allen 2018). At the corporate level, AI is used to 

optimize underwriting processes for re/insurance companies by drawing from large unstructured 

collections of data to understand risk-related insights for a business or customers (Andriotis 

2019; Planck Re 2017; Upstart 2021; Waddell 2019); help medical insurers and pharmaceutical 

companies automate the prior authorization of medical procedures or filling costly prescription 

by deciding whether it’s necessary for a patient to undergo a given procedure or take a particular 

medication (Lash Group 2018; Salian 2019); powering medical imaging platforms or testing 

regimens to detect high-risk patients earlier for healthcare providers (Freenome 2021; Putcha et 

al. 2020; Zebra Medical Vision 2021); writing marketing copy for online advertisements to better 

target customers (Ives 2019; Persado 2019; Phrasee 2021; Wilhelm 2021) or even orchestrating 

where these ads should be placed (The Trade Desk 2018); filter and recommend applicants for a 

job based on scanning resumes or understanding culture fits through additional metrics collected 

from third-party information (Leoforce 2019; pymetrics 2018). In each of these products, similar 

to personal uses of AI, corporations have partially automated roles by delegating to the AI 

decisions, or actions that would otherwise be performed by a human (for ease of reference we 

will describe these as AI agents), and in the process uncovered labor force productivity 

improvements. These widespread implementations of AI are transforming industries and 

societies writ large, with increased efficiencies and are projected to boost corporate profitability 

in 16 industries across 12 economies by an average of 38% by 2035 (Purdy and Daugherty 

2017). This is expected to boost the global economic output by more than $15 trillion by 2030 

(Rao and Verweij 2017).  
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Safe Guards Against Artificial Intelligence Agents 

Yet while these AI implementations are able to learn in narrow ways, a pioneer in AI, Yoshua 

Bengio, complained in WIRED magazine “[AI needs] much more data to learn a task than 

human examples of intelligence, and they still make stupid mistakes” (Simonite 2019).  This 

narrow learning can be conceptualized as requiring three distinct safeguards to ensure that the AI 

agent is working as intended: 

1. AI agents require supervision to prevent mistakes throughout their development and 

production lifecycle.  

2. AI agents require carefully constructed goals to solve intended problems 

3. AI agents require carefully controlled datasets to learn how to solve intended problems. 

AI agents require supervision throughout their lifecycle 

The requirement that AI agents require supervision throughout their lifecycle is best exemplified 

by the following anecdote: an expert loader who packs pallets onto an aircraft can expertly align 

irregularly shaped pallets together or stack pallets multiple levels high; on the contrary, an AI 

system, deployed by DHL, trained to perform the same task makes mistakes, especially in the 

early stages of deployment, requiring human oversight, in the form of a human taking control of 

the AI controlled robotic arm for some time to improve the accuracy of the algorithm (Knight 

2020). One can observe the same behavior even in more trivial examples, such as an AI learning 

how to play the two-dimensional table tennis video game Pong may let the ball fly past its paddle 

a few hundred times before learning that’s not a good way of increasing its score (Reynolds 

2017). Yet even after the AI would learn how to manipulate the paddle and improved its game 

play strategy it would periodically forget that lesson that letting the ball fly past the paddle is not 

an effective methodology and have to re-learn this fact (Lipton et al. 2018). This is all to say that 

AI agents require supervision to prevent mistakes throughout their lifecycle in both learning and 

execution environments.  

Researchers have shown that when humans supervise AI agents, they frequently defer to the AI 

agent’s decisions. Researchers have shown that after human supervisors have been told that face 

matching had been performed by AI agents, their supervisory accuracy deteriorates (Howard et 

al. 2020). That is to say, human supervisors’ internal criteria when judging if two individuals are 

the same person is altered by knowing the AI agent’s confidence of the match. This had regretful 

consequences in Detroit when the Police Department used grainy security footage of a suspect, 

who had stolen $3,800 worth of luxury timepieces, to find potential matches from the state’s 

driver’s license photos (Allyn 2020; Hill 2020a). The AI agent, developed by a company called 

DataWorks Plus, identified a match, and the police issued an arrest warrant based on it (Ryan-

Mosley 2021). The man identified by the AI agent was taken to a detention center, photographed, 

fingerprinted, and held overnight. During questioning a detective showed the detained man, the 

photo of the suspect used by the AI agent, and asked “Is this you?” The blurry photo featured a 
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heavyset man dressed in black standing in front of the watch display, but it was clearly not the 

detained man. “No, this is not me,” the detained man reportedly said. “You think all black men 

look alike?” The detective replied “The computer says it’s you.” The prosecutors dropped the 

case less than two weeks later, arguing that officers had relied on a bad match from the AI agent. 

Detroit Police Chief James Craig later apologized for what he called “shoddy” investigative 

work (Allyn 2020). Yet the harm was done, the wrongly accused man still sat in jail for hours, 

and the man’s daughters have been “traumatized” by the police officers arresting their father in 

front of them.  

In another instance, a man in New Jersey was held in jail for ten days after he was falsely 

accused by an AI agent of shoplifting from a hotel gift shop in 2019 (Hill 2020b). This New 

Jersey man’s history with the criminal justice system compounded the effect, because it would 

have been his third felony, meaning he was at risk of a ten year prison sentence. The man almost 

took a guilty plea deal, because he was afraid to go to trial. The AI agents, though not culpable of 

the outcomes in these two cases, bear some responsibility. The police departments partially 

automated roles previously performed by police officers to AI agents, without fully supervising 

and controlling for mistakes that can be expected to happen throughout the AI agent’s execution.  

Understanding how to control for the complexities of the systems these AI agents are placed in, 

is explored in more detail near the end of this section.  

AI agents require carefully constructed goals 

AI systems are trained to exhibit superhuman performance. For instance, one video game may 

learn to intentionally kill itself in a way that paradoxically earns greater points in ways that a 

human gamer would never attempt (Bellemare et al. 2016). In an infamous event dramatized by 

the media (Beal and Jehring 2017; Field 2017; Kenna 2017; Sassoon 2017), Facebook AI 

Research ended a project where two AI robots equipped to simulate human-like English 

conversations via text (known colloquially as a “chatbot”) were challenged to negotiate with 

each other over a trade, attempting to swap hats, balls, and books. The chatbots quickly 

developed a kind of English shorthand that enabled them to execute successful negotiations; 

however, they failed to follow a traditional grammatical structure. The chatbots were skilled 

negotiators, and eventually learned to feign interest in an item just to sacrifice it later as a faux 

compromise. However, their exchange looked like gibberish to native English speakers (Lewis et 

al. 2017). An excerpt of the negotiation between the two chatbots is listed below: 

Bob: i can i i everything else . . . . . . . . . . . . . . 

Alice: balls have zero to me to me to me to me to me to me to me to me 
to 

Bob: you i everything else . . . . . . . . . . . . . . 

Alice: balls have a ball to me to me to me to me to me to me to me 

Bob: i i can i i i everything else . . . . . . . . . . . . . . 

Alice: balls have a ball to me to me to me to me to me to me to me 
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Bob: i . . . . . . . . . . . . . . . . . . . 

Alice: balls have zero to me to me to me to me to me to me to me to me 
to 

Bob: you i i i i i everything else . . . . . . . . . . . . . . 

Alice: balls have 0 to me to me to me to me to me to me to me to me to 

Bob: you i i i everything else . . . . . . . . . . . . . . 

Alice: balls have zero to me to me to me to me to me to me to me to me 
to 

This may seem like an uneventful failure, but it underscores that when the AI agent was 

presented with the opportunity to learn language, it did; however, the chatbots decided it was 

more convenient to build their own dialect than to learn a vernacular English. Yet phenomenon 

of AI agents reworking the English language to better suit its purposes is not an isolated incident, 

the AI system behind Google Translate seems to have some sort of interlingua that encodes the 

semantic of the sentence that enable translations between languages (Johnson et al. 2017). Unlike 

the team at Facebook, the Google Translate team considered this a beneficial development.  

In another AI agent, trained to distinguish between photos of Wolves and Huskies (i.e., Alaskan 

Malamutes, Siberian Huskies, Greenland Dogs, or other dogs who work as sled dogs in the polar 

regions). The AI agent performed successfully on its training data, and easily separated canines 

that are incredibly visually similar (Ribeiro et al. 2016). When the AI agent was presented with 

new images it was not trained on, it was discovered that the AI agent was making its decisions 

based on the backgrounds of the image not the dogs themselves. Images of wolves typically had 

a snowy background, and huskies were generally indoors or in less snowy climates. Instead of 

classifying the dogs in the images, the AI agent discovered an easier problem to solve: is there 

snow or a light colored background in the image? That is to say, the huskies classifying AI agent 

was unwittingly a snow detector. These examples illustrate why AI agents require carefully 

constructed goals in order to ensure that the AI actually solves the intended problem instead of a 

similar problem of its own definition.  

AI agents require carefully controlled datasets 

These mistakes (or potentially innovations, as that judgement is formed in the eyes of the 

beholder) caused by AI agents can also be attributed to the fact that AI agents require “more data 

to learn a task than human examples of intelligence” (Simonite 2019). That is to say that if there 

exist any undesirable issues inside the data that the AI agent uses to learn, then the AI agent will 

learn those issues. In 2016 Microsoft was preparing to release a new chatbot, Tay, designed to 

engage people in dialogue on Twitter (Microsoft 2016). Tay was designed to learn more about 

language over time enabling them to discover patterns of language and emulate Internet speech 

patterns. At first Tay engaged with a growing number of followers with banter and lame jokes, 

but within sixteen hours Tay tweeted statements like “Ricky Gervais learned totalitarianism from 

Adolf Hitler, the inventor of atheism” (Schwartz 2019). Microsoft immediately suspended the 
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account. In the following weeks reports of how Tay became so vile emerged detailing how Tay 

who was trained on cleaned, filtered, and anonymized public data with editorial content provided 

by improvisational comedians became so vile (Microsoft 2016). A coordinated group of users 

exploited a “repeat after me” feature where Tay would repeat racist, misogynistic, and 

antisemitic language (Hunt 2016; Schwartz 2019). In most cases Tay was only repeating other 

users’ reprehensible statements, but Tay’s built in capacity for learning ensured that it learned 

from those interactions also and incorporated them into its future messages (Ohlheiser 2016). In 

this example, the AI agent was purposefully exploited to learn undesirable issues by 

incorporation of undesirable data; however, these concerns can manifest even without an 

adversary to exploit it. In 2015, Amazon retired an experimental algorithm designed to provide 

recommendations to recruiters to find talented candidates after discovering that the system 

penalized resumes that included “women’s”, as in “women’s volleyball captain,” penalized 

graduates of all-women’s colleges, and favored candidates who described themselves using verbs 

that were more commonly found on male engineers’ resumes, such as “executed” and “captured” 

(Dastin 2018; Hsu 2020). 

In AI agents trained to identify people in photos, researchers have discovered that AI agents 

designed in Western countries recognized Caucasian faces more accurately than East Asian 

faces. Correspondingly, AI agents designed in East Asian countries recognized East Asian faces 

more accurately than Caucasian faces (Furl et al. 2002; Klare et al. 2012; Phillips et al. 2009). 

Researchers have theorized that these differences are due to the racial composition of the training 

datasets for Western and East Asian algorithms (Cavazos et al. 2020). That is to say, facial 

recognition systems that are trained within the narrow context of a specific dataset inevitably 

optimize to learn the specific attributes of that dataset. This narrow context creates systematic 

errors as the system skews towards learning those specific attributes; and the issue is believed to 

stem from under-representation or over-representation of groups in the dataset. These examples 

elucidate why AI agents require large and carefully controlled datasets to learn how to solve the 

intended problem in an acceptable fashion to avoid later discoveries of undesirable solutions.  

Expanding Definitions of Algorithmic Errors to include Harm 

As indicated earlier and as demonstrated through these examples, AI implementations are 

currently able to learn in only narrow ways, potentially creating accidents and creating new 

hazards. More importantly, as AI agents have been delegated partial or full decision-making 

power by individuals or corporations the consequences of these hazards can grow and can cause 

unintended consequences and undesirable losses. These losses may involve equipment, financial, 

and information losses but can also involve other major losses such as human death, injury, 

imprisonment, and reputational loss.  

Taken all together, one can gather that AI agents could pose danger. Even the best-intentioned 

AI agents require careful design considerations and continued monitoring and management to 

ensure that they produce desirable solutions to the intended problem. Yet, we continue to 
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empower AI agents with more decision-making power, and insert them into highly complex and 

highly coupled systems that are difficult for its designers to consider all the potential system 

states and handling all normal and abnormal situations safely and effectively. Though this is not 

a new situation, as humans have long adopted technologies before fully understanding their 

scientific underpinnings and engineering knowledge (Leveson 2016). Indeed, astronomer Carl 

Sagan, called “America’s most effective salesman of science” by Time magazine, states this 

especially well: 

Many of the dangers we face indeed arise from science and technology—but, 

more fundamentally, because we have become powerful without becoming 

commensurately wise. The world-altering powers that technology has delivered 

into our hands now require a degree of consideration and foresight that has 

never before been asked of us. (Sagan 1997)  

To gain this wisdom, developers of AI agents need to expand the definitions of errors, beyond 

simply errors that a system can make, to include the harms that the AI agent is capable of 

perpetuating. When AI agents are designed, they are often created with assumptions that they’ll 

be used for benign purposes, or that checks and controls for their decisions will be monitored by 

a separate program, person, or organization1. However, we know from the examples provided 

earlier, that that these tools may be used in more hazardous ways than their developers 

envisioned. In these context’s the AI agents can work as intended but still result in financial, 

reputational, and injurious losses. The problem in these instances is the overall system design. 

However, attempts to restructure criminal justice systems, loan servicing providers, corporate 

labor practices, or any of these societal issues exacerbated by AI are beyond the scope of any 

engineering dissertation. Efforts to re-conceptualize how end-users attempt to use and employ AI 

agents, when their use is so commonplace and unremarkable is similarly a Sisyphean task2. Yet, 

the hazards in these systemic issues, once acknowledged, are uniquely capable of being 

addressed by AI developers; because in these particular cases increasing the reliability of the AI 

 

1 Amazon Web Services (“AWS”), a commercial off the shelf provider of facial recognition AI tools, service terms 

denote that “Law Enforcement Agencies that use Amazon Rekognition [AWS’ trade name for its facial recognition 

AI agent] to assist personnel in making decisions that could impact civil liberties or equivalent human rights must 

ensure such personnel receive appropriate training on responsible use of facial recognition systems…” (Amazon 

Web Services, Inc 2021). However, it’s important to note that while AWS recommends trainings, it does not 

undertake any efforts to provide that training itself or content standards. 

2 Any attempts put the genie back in the bottle, are likely to fail in this authors opinion. AI is so widespread and has 

helped individuals and business realize tremendous efficiencies, that few would entertain the idea of giving up those 

productivity gains. This idea is further explored in the section entitled A Brief Aside on the Nature of Risk in the 

Adoption of Technology in the Appendix. 
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agents or protecting against the unintended consequences would have prevented these hazards 

because the components created hazardous conditions though they did not fail.  

It is therefore imperative to adjust developers of AI agents’ understanding of what a failure 

consist of; in order to encapsulate the risks visible only at a higher level of hierarchy developers’ 

may not be exposed to. Principal to this effort is the incorporation of the actual uses and 

reasonably expected uses of the system by both the system’s end-users and owners to the 

enumeration of failures. 

Investigative Focus of this Dissertation 

This dissertation is motivated by these larger problems concerning the use of AI agents, and 

demonstrates how developers can better understand failures of their system. In particular, the 

author focuses on one particular use of AI agents: facial recognition systems for verification, 

where the AI agent is asked to compare two images to verify if they are the same person. In other 

words, to compare faces as it may be done in an access control scenario (e.g., a security guard 

who is tasked with letting authorized persons into a facility). These facial recognition systems 

have been an active problem in computer science for over half a century, but recent 

improvements to AI in general, have given rise to numerous applications of facial recognition 

systems for companies and governments. It has been useful in the private sector to secure a 

nuclear research facility (Scheeres 2002), to protect an artist from stalkers at her shows (Knopper 

2018), in the public sector to confirm the identity of Osama bin Laden (Reuters Staff 2011), and 

convicting an armed thief in Chicago (Main 2014). Yet, this deployment has triggered an intense 

debate and critique for their differential treatment of various demographic groups, in particular 

along racial and gender lines (Furl et al. 2002; Fussell 2020; Garvie et al. 2016; Gentzel 2021; 

Grother et al. 2019; Harwell 2021; Lohr 2018; Norval and Prasopoulou 2017; Rhue 2018; Wang 

et al. 2018b).  

While in general, one cannot expect precise numbers quantifying the risks due to AI agents, as 

the risks are complex, unpredictable and generally cannot be approximated by a long-term 

frequency or simple statistical analysis. Here the author builds a methodology to quantify the 

risks associated with a specific AI agent, namely, a facial recognition system performing a 

verification task, and the specific harm of failing to be recognized due to one’s gender or skin 

tone. That is to say, the author proposes a methodology to measure facial recognition systems 

interclass bias within a classification schema. 

The author believes this measure of interclass bias will engender comprehensive analyses of 

facial recognition systems verification algorithms biases that can be incorporated into an 

algorithm’s design, implementation, or training processes and an end user’s testing and 

commissioning processes. For the latter case, the author understands that many detection and 

recognition systems are not built in-house, but instead make use of commercial off the shelf 

cloud-based platforms offered by large technology corporations. The implementation details of 

those systems are not exposed to the end user and even if they were, quantifying their failure 
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modes would be difficult. As such, the author undertakes a case study measuring the interclass 

bias of thirteen commercial off the shelf facial recognition systems algorithms from Amazon 

Web Services and Microsoft Azure Cognitive Services. This method uses a “black-box” 

approach and does not require any knowledge of the internal properties, configuration, or 

architecture of the underlying facial recognition system, only access to its outputs. 

Overview of this Dissertation 

The following chapter, titled Literature Review on page 18, presents the evolution of facial 

recognition systems and an overview of current the state of the art for evaluating their 

performance. This chapter also situates these topics within the evolving discussions concerning 

equality (and fairness) in artificial intelligence. The last section of this chapter, Prior Work in 

Evaluating Bias in Facial Recognition Systems on page 29, is focused on reviewing other 

related work in measuring bias in facial recognition systems, and shows how this work addresses 

the unsatisfactory gaps in their methodology. 

The design of the proposed interclass metric is discussed in detail in the chapter titled 

Methodology on page 32. This includes the methodology for the case study of the commercial 

off the shelf facial recognition systems provided by Amazon Web Services and Microsoft Azure 

Cognitive Services. The details of these systems performance with regard to skin tone and 

gender presentation is detailed in the chapter titled Commercial Facial Verification Algorithms 

Audit Findings on page 49 and Discussion on page 136. This includes a discussion, in the 

section titled The Importance of Building in Public 142on page 142, of the ways in which facial 

recognition system developers committed to building equal (fair) systems can build trust without 

voiding their intellectual property claims. 

A summary of the findings in this dissertation, and the contributions to the field are presented at 

the end of this dissertation in the chapters titled Conclusion and Thesis Contributions on page 

152 and 154. 
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Literature Review 

This dissertation examines the evaluation of interclass bias within a classification schema. Of 

primary concern are, (i) automated facial analysis algorithms, (ii) the means for evaluating 

algorithmic performance, and (iii) the datasets of faces used to train and benchmark algorithmic 

performance.  The author reviews the evolution of facial recognition systems to highlight key 

breakthroughs and their implications for the task of facial verification, where the system is asked 

to compare two images to verify if they are the same person.  

Researchers have studied bias in facial recognition systems for the past two decades (Furl et al. 

2002; Phillips et al. 2003). Early work focused on single-demographic effects of either race or 

gender, whereas more recent work has focused on intersectional analyses between gender and 

skin tone (El Khiyari and Wechsler 2016; Garvie et al. 2016; Klare et al. 2012; Norval and 

Prasopoulou 2017; O’Toole et al. 2011) The latter works have been and continue to be hugely 

impactful both within academia and the industry, and have inspired works on remedying the ills 

of these socially impactful technology and unequal systems (Buolamwini and Gebru 2018; 

Gentzel 2021; Grother et al. 2019; Rhue 2018; Wang et al. 2018b).  

Finally, the author presents current practices for evaluating facial recognition systems 

performance along with the current limitations of existing approaches.  

Automated Facial Recognition Systems 

Deep neural networks have achieved remarkable successes in computer vision tasks like image 

classification, object detection and instance segmentation. Today these systems often play a role 

in determining who to hire and fire, who to grant a loan to and for how much and how long to 

sentence someone to prison. They have been inserted into tasks traditionally performed by 

humans and as such require a keen eye to ensure they are operating correctly and fairly (O’Neil 

2017). Recent years have seen particular success in the implementation of automated systems 

that use deep neural networks to make a positive identification of a face against a pre-existing 

database of faces (a “facial recognition system”) deployed by both government agencies, and 

private companies. 

Before exploring this further, it is important to lay out some distinctions and specialized 

terminology from the field of facial recognition that differ from the field of computer vision. For 

more general classes of objects such as cars or dogs, the term “recognition” often refers to the 

problem of recognizing a “member of the larger class, rather than a specific instance” (i.e., 

“recognizing” a cat in the context of computer vision research is used to denote that one has 

identified a particular object as a cat, rather than one has identified a particular cat) (Huang et al. 

2007). In the literature covering facial recognition systems, the term “recognition” is used to 

refer to the identification of a particular individual, not just any human being. This dissertation is 

concerned with facial recognition, as such, the author adopts this latter terminology. 
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FIGURE 1 The pipeline of a typical facial recognition system. First a detection algorithm is used to locate a 

face in a provided search image, and then the face is aligned to some normalized canonical coordinate 

system. Subsequently, the aligned facial image is passed to an algorithm that extracts learned discriminative 

features. These features are compared to some stored features to generate a similarity score representing the 

facial recognition system’s confidence that the search image contains the same person as represented in the 

stored features. Lastly, the facial recognition system’s performance on a series of these tasks can be 

evaluated by metrics of success (i.e., the receiver operating characteristic, or accuracy). The gray boxes 

represent the scope of this dissertation’s evaluation. 

Facial recognition systems are considered a classical problem and an active area of computer 

vision research. Generally, a facial recognition system is an automated system that takes an input 

image with facial imagery. This system is divided into two main tasks: distinguishing human 

faces from other items of an image or “detection” and “recognition” of those detected faces 

through computationally analyzing facial features in terms of the spatial relationships between 

common landmarks (for example, the center of the pupil, the bridge of a nose, the ends of an 

eyebrow) (Chen et al. 2018; Wang and Deng 2020). Finally, the system compares these extracted 

features against a gallery of previously known individuals in a database to determine the 

individual in an input image. Facial recognition systems are subdivided into two different 

protocols at the recognition stage: “verification” where the facial recognition system is asked to 

compare two input images belong to the same person, or “identification” where the facial 

recognition system tries to recognize the person from a gallery of face images of different 

people. An overview of a typical facial recognition system performing a verification protocol is 

shown in FIGURE 1.  

Early work in automated facial recognition began with manually curated subjective features 

(e.g., interpupillary distance and lip size) to achieve partially computerized facial identification 

(Goldstein et al. 1971). Advances in pattern recognition, led to improvements that avoided both 

manual definitions of relevant facial features and manual coding of specific features, in favor of 

an approach that automated dimensionality reduction using the linear algebra technique of 

principal component analysis (Sirovich and Kirby 1987). This innovation propelled appearance-

based approaches, or approaches that treat facial imagery globally instead of focusing on specific 

facial regions like eyes or mouth, for facial recognition. The facial imagery is projected into 



 

 20 

orthogonal (i.e., uncorrelated) lower dimensional sub-spaces known as “eigenfaces”3, and can be 

precisely represented as a weighted sum of these eigenfaces. The success of appearance-based 

techniques led to traditional facial recognition algorithms like Eigenfaces (Turk and Pentland 

1991), Fisherfaces (Belhumeur et al. 1997), Bayesian face (Moghaddam et al. 2000), Metaface 

(Yang et al. 2010), algorithms using support vector machines (Guo et al. 2000) and boosting 

(Guo and Zhang 2001), among others. These facial recognition algorithms were somewhat 

constrained by environmental factors (e.g., image illumination, and facial expression), and 

required near-frontal facial imagery. 

These facial recognition algorithms were supplanted by deep neural networks, which are more 

capable of learning, better at generalizing, and more robust to variation in input facial imagery 

(Guo and Zhang 2019). Deep neural networks have exhibited impressive results and have been 

shown to learn essential feature representation of data by constructing high-level features from 

the low-level pixel information encoded in an image. Furthermore, gains in facial recognition 

systems performance stem from well-capitalized artificial intelligence research in both industry 

and academia, which has led to the development of convolutional neural networks, and open-

source implementations thereof (e.g. Caffe, TensorFlow, PyTorch) (Abadi et al. n.d.; Jia et al. 

2014; Paszke et al. 2019). Additionally facial recognition systems have benefited from the 

availability of a large number of identity labeled images from the internet and curated datasets, 

and the availability of powerful computation hardware (i.e., many CPU cores and / or GPUs) to 

support those convolutional neural networks (Grother et al. 2019). An extensive overview of 

recent research on modern facial recognition systems using deep neural networks can be found in 

Wang and Deng (2020) and Guo and Zhang (2019). 

The parallel advances in recent years in facial recognition systems alongside improvements in 

digital video camera technology, have led to these technologies becoming ever-present. Coffee 

shops are using facial recognition systems to identify repeat customers and their orders (BBC 

2019; Bolger 2018). Shopping malls and retailers are using facial recognition systems to identify 

audience demographics to display tailored advertisements (Gillespie 2019). Airports are 

screening travelers by matching facial scans to online images, watch lists, criminal databases, 

and social media (Burt 2018; Delta Airlines 2021). Facial recognition systems is also being used 

by law enforcement to identify persons of interest or suspects in ongoing investigations (Garvie 

et al. 2016; Valentino-DeVries 2020). In their totality facial recognition systems are a powerful, 

pervasive, and ubiquitous technology that promises a myriad of benefits and conveniences to 

consumers, businesses, and governments.  

 

3 Sirovich and Kirby (1987) denote the coordinate system of these sub-spaces as “eigenpictures,” it is not until 1991 

when Turk and Pentland that the now common term “eigenfaces” was introduced.  
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Evaluation of Facial Recognition Systems 

These newer convolutional neural networks require datasets of sufficient size that include facial 

imagery and so called “distracting imagery”, images that do not contain a face, in order to build 

their high-level features that form the system’s internal representations of a human face. These 

datasets are crucially important as they empower the advancement of the field (Forczmański and 

Furman 2012). Generating these datasets is a resource and time-intensive job, as such there exist 

a large number of datasets available publicly to researchers in facial recognition systems. Many 

of these datasets are tailored to the specific needs of the algorithm under development, so many 

researchers supplement the training of their facial recognition system with independently 

collected, private datasets (Gross 2005).  

The addition of private datasets to a facial recognition systems training complicates efforts to 

compare different facial recognition systems. This spurred the development of a new type of 

public datasets called benchmarks. These common benchmarks, a public dataset used for testing 

the performance of a facial recognition system, form a standard basis for researchers to be able to 

directly compare the results of different facial recognition systems. These benchmarks are 

overseen by government agencies, conference organizations, and research institutes which set up 

corresponding public challenges for researchers to compete for the best performance on these 

benchmarks to decide the current state-of-the-art for specific tasks. Benchmarks galvanize 

research and development activity and stimulate researchers in both the private sector and 

academia to achieve certain milestones in facial recognition systems.  

Influential Facial Recognition Benchmarks 

Benchmarks from the National Institute of Standards and Technology 

One of the first of these benchmarks was the Face Recognition Technology (FERET) dataset 

published by the United States Department of Defense and the National Institute of Standards 

and Technology (NIST), an US government agency tasked with promoting innovation and 

advancing national competitiveness through advancing standards, in 1996. This dataset was 

comprised of 14,126 still portraits of 1,199 individuals collected over fifteen controlled photo 

shoots. At the moment of its release, FERET was the largest and most comprehensive effort to 

create a benchmark to accurately compare and evaluate existing facial recognition systems 

(Phillips et al. 2000; Zafeiriou et al. 2015). Additionally, FERET provided participants, a 

protocol for performing a standard set of experiments, the code for scoring their facial 

recognition systems performance, and the answers—known as the ground truth. By providing the 

answers NIST allowed participants in the competition the ability to improve their facial 

recognition systems or develop new facial recognition systems. The dataset provided researchers 

the data they required to make progress in the field, and successfully stimulated not only research 
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interests in facial recognition but commercial applications of facial recognition systems (Raji and 

Fried 2021).  

After FERET, NIST released a series of Facial Recognition Vendor Tests (FVRT) in 2000, 2002, 

2006, 2010, and 2013 aimed at evaluating emerging commercial facial recognition systems 

“applied to a wide range of civil, law enforcement and homeland security applications including 

verification of visa images, de- duplication of passports, recognition across photojournalism 

images, and identification of child exploitation victims” (Blackburn et al. 2001; Phillips et al. 

2003, 2007; Grother et al. 2010; Grother and Ngan 2014). Each iteration of the benchmark 

yielded improved test procedures and facial recognition system performance, but the early 

commercialization attempts that participated in these tests were somewhat constrained by 

environmental factors, as mentioned earlier. These facial recognition systems were crippled by 

small changes in image illumination, a person’s facial expression, partial occlusions (e.g., a 

scarf, mask, or a pair of glasses) (Yang et al. 2002).  

Other Influential Benchmarks 

The introduction of the Labeled Faces in the Wild was a notable departure from previously 

collected datasets and benchmarks for facial recognition systems (Raji and Fried 2021). Labeled 

Faces in the Wild addressed researchers’ desires to have access to naturally situated and varied 

input images that mirrored the large variation seen in everyday life (hence the “in the wild” 

moniker). The dataset leveraged the Internet to curate a dataset of 13,233 “previously existing 

images” that is to say, images not taken for the special purpose of facial recognition (Huang et al. 

2007).  

Labeled Faces in the Wild sparked a flurry of datasets for facial recognition that collected images 

from the Internet—often sourcing images without consent from the companies that hosted the 

images online, the owners (photographers) of the intellectual property in the images, or the 

people featured in the images—like Google Image search (Bainbridge et al. 2013; Cao et al. 

2018a; Han et al. 2017), Flickr catalogues (Kemelmacher-Shlizerman et al. 2016; Merler et al. 

2019), photojournalist published images by Yahoo News (Huang et al. 2007; Jain and Learned-

Miller 2010), and still images from uploaded YouTube videos (Chen et al. 2017; Dantcheva et al. 

2012; Wolf et al. 2011). The success of the deep neural networks that relied on unstructured and 

relatively unconstrained “in the wild” datasets, led to a proliferation of benchmarks. Researchers 

in search of even larger datasets to train their deep neural networks, compiled even larger 

datasets such as Oxford’s VGG-Face dataset with 2.6 million images of 2,622 people (Cao et al. 

2018b), Microsoft’s 1M MS Celeb dataset with 8,456,240 images of 99,892 people (Guo et al. 

2016), the CASIA WebFace dataset with 494,414 images of 10,575 people, and the MegaFace 

dataset with 1,027,060 photos of 690,572 people (Kemelmacher-Shlizerman et al. 2016).  

Datasets that more closely resembled real world conditions, led to commercial facial recognition 

systems that performed better in the real world, and to new benchmarks to evaluate these 

commercial products. The Facial Recognition Vendor Test evolved extensively to move the 
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state-of-the-art for facial recognition systems, growing from 13,872 images of 1,462 people in 

2000 to 30.2 million images of 14.4 million people in 2013 (Blackburn et al. 2001; Grother and 

Ngan 2014). Overviews of publicly available datasets and the differences between these datasets 

are covered by Raji and Fried (2021), Forczmański and Furman (2012), and Gross (2005). 

Measuring and Reporting Accuracy of Facial Recognition Systems 

These benchmarks successfully galvanized researchers in both the private sector and academia to 

achieve certain milestones in facial recognition systems, and form a standard basis for 

researchers to directly compare the results of different facial recognition systems. While the 

benchmarks serve as the basis of these comparisons, the receiver operating characteristic serves 

as the standard practice in reporting performance metrics for facial recognition systems 

(Kemelmacher-Shlizerman et al. 2016; Maze et al. 2018; Phillips and O’Toole 2014).  

The receiver operating characteristic graphically represents the transition between the true accept 

rate (also known as the sensitivity or recall), calculated from the fraction of genuine comparisons 

that correctly exceed a given threshold (the independent variable), and the false accept rate 

which is similarly calculated from the fraction of imposter comparisons that incorrectly exceed 

the threshold. When multiple facial recognition systems are analyzed on the same dataset, the 

receiver operating characteristic helps a system owner easily identify which facial recognition 

system has the highest true accept rate at a specified false accept rate.  

Additionally, to render simpler comparisons, many benchmark evaluations report the true accept 

rate at some specified false accept rate. This is obtained by determining the lowest threshold 

value that yields a specified false accept rate, and using that threshold to calculate the true accept 

rate. Typical system owners of facial recognition systems target false accept rate spanning 

several decades from 10−6 to as 10−2, but NIST has encouraged facial recognition systems using 

its benchmarks to report the true accept rate at a false accept rate of 1% and 0.1% (Whitelam et 

al. 2017). Results for the Labeled Faces in the Wild dataset are typically reported at the threshold 

where the false accept rate and the false rejection rate, calculated from the fraction of genuine 

comparisons that incorrectly falls below a given threshold, are equal. However, for the best facial 

recognition systems this would imply a false accept rate of 1% to 5%, which may be too high for 

many system owners (Kemelmacher-Shlizerman et al. 2016). 

However, Krishnapriya et al. (2019) points out that while receiver operating characteristics 

compare true accept rates at the same false accept rates; different populations, with different 

priors, can achieve the same false accept rate at different thresholds. The populations that 

perform better on the receiver operating characteristics is simply determined by which 

population has the better true accept rate at the threshold that realizes the specified false accept 

rate for that population. That is to say, receiver operating characteristics can obscure important 

information as it may show different cohorts as having better accuracy when in fact there is a 

consistent difference in the underlying true accept rates and false accept rates (Krishnapriya et al. 

2019). In keeping with this understanding, this dissertation eschews the use of the receiver 
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operating characteristic in favor of the true accept rate and the false accept rate as a function of 

the threshold.  

Bias in Facial Recognition Systems  

Nevertheless, there are growing concerns about facial recognition systems with regards not only 

to the technology’s shortcomings but also to how its use compromises civil rights, and raise 

issues of diminished accountability. Chief among these concerns is the potential and 

consequences of misrecognition. It has been shown that facial recognition systems can learn 

human-like biases unless actively controlled for during training dataset selection (Caliskan et al. 

2017; Steed and Caliskan 2021) or in architecture selection for the deep neural network (Costa-

jussà et al. 2020). There have been concerns of facial recognition systems failing to recognize 

Black and dark-skinned faces due unbalanced datasets that comprise the training data the facial 

recognition systems learn from (Noble 2018) and large-scale bias in the form of systematic 

misrecognition by skin color or ethnic background, and gender classification (Buolamwini and 

Gebru 2018; Crawford and Paglen 2019; Klare et al. 2012; Ngan and Grother 2015). That is to 

say, facial recognition systems that are trained within only the narrow context of a specific 

dataset inevitably optimize to learn the specific attributes of that dataset. This narrow context 

creates systematic errors as the system skews towards learning those specific attributes; and 

appears as under-representation or over-representation of groups in the dataset.  

Additionally the benchmarks for facial recognition systems contain significant demographic bias, 

for example the Labeled Faces in the Wild benchmark containing celebrity faces has been 

estimated to be 77.4% male and 83.5% White (Han and Jain 2014). TABLE 1, reproduced from 

Merler et al. (2019), shows the distribution of gender and skin color for eight popular facial 

recognition datasets. It is important to note that different methods were used for characterizing 

skin color, as such the definitions of darker and lighter skin colors is inconsistent across the 

datasets (Merler et al. 2019).  

Even less is known about the large private datasets listed in TABLE 3, which are built with 

unknown epistemological and metaphysical assumptions about the images, labels, categorization, 

representation, or demographics. Furthermore, few facial recognition systems report their 

accuracy by race or gender, which taken together with the skewed benchmark datasets, mean that 

there is little to no documentation about whether the reported high accuracy applies to people 

who are not well represented in the benchmark.  

In recent years there have been endeavors to create diverse sets of collected faces, such as the 

Pinellas County Sheriff’s Office (PCSO) and Michigan State Police (MSP) datasets containing 

mugshots of recidivists who are labelled with a binary black and white racial classification (Deb 

et al. 2017). In 2015, NIST together with the Intelligence Advanced Research Projects Activity 

(IARPA), an organization within the Office of the Director of National Intelligence, released the 

IARPA Janus Benchmark-A (IJB-A) facial recognition benchmark. 
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TABLE 1 An overview of known public face datasets and the distribution of gender and skin color. This table 

shows seven prominent face datasets available at the time of writing. This list is not meant to be exhaustive, 

nor to describe the datasets in detail, but merely to provide a sampling of the datasets that are available. 

Where possible a peer-reviewed paper or technical report was cited, and otherwise a citation referring to the 

webpage for the database is given when available. Reproduced from Merler et al. (2019). (Buolamwini and 

Gebru 2018; Huang et al. 2007; Kumar et al. 2011; Liu et al. 2015; Maze et al. 2018; Moschoglou et al. 

2017; Wang et al. 2018a; Zhang et al. 2017) 

 Gender Presentation Skin Tone 

Dataset Masculine Feminine Lighter Darker 

Labeled Faces in the 

Wild (LFW) 

77.4% 22.5% 81.2% 18.8% 

IARPA Janus 

Benchmark C (IJB-C) 

62.7% 37.4% 79.6% 20.4% 

Pubfig 49.2% 50.8% 82.0% 18.0% 

CelebFaces Attributes 

Dataset (CelebA) 

42.0% 58.1% 85.8% 14.2% 

University of 

Tennessee Knoxville 
Face (UTKface) 

52.2% 47.8% 64.4% 35.6% 

AgeDB 59.5% 40.6% 94.6% 5.4% 

Pilot Parliaments 

Benchmark (PPB) 

55.4% 44.6% 53.6% 46.4% 

IMDb-Face 55.0% 45.0% 88.0% 12.0% 

 

The benchmark, and it’s updates the IJB-B, IJB-C benchmarks, ran from 2015 to 2017. The IJB-

C, the latest update to the benchmark, is a dataset of 138,000 images. The 3,531 people included 

in the dataset were selected to not overlap with other popular facial recognition benchmarks 

(Oxford’s VGG-Face and the CASIA WebFace dataset) in order to prevent overfitting. However 

the IJB-A, which classified skin color on a six point scale (Klare et al. 2015; Maze et al. 2018; 

Whitelam et al. 2017),still has a super-majority of light skinned people: 79.6% of the IJB-A 

dataset images are light skinned (Findley 2020). 

Understanding What is Meant by Bias 

These concerns, and the remedies proposed, can be primarily understood to address questions of 

equality. Equality (and its closely related concept of fairness) occupy a prominent place in moral 

philosophy, social choice theory, economics and law. 

For philosophers, the central problem is to define a just distribution of resources, rights, and 

duties in society, that is to say, define a just social order. This distribution problem requires that 

an individual’s success or welfare in life be independent of irrelevant characteristics, that the 

individual could not be responsible for. This grand problem has animated philosophers since 

antiquity, from Plato’s and Aristotle’s conceptions of the ideal state, to the social contract 

theories of Hobbes, Locke, and Rousseau, to the modern theories of Rawls, Nozick, and Walzer 
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(Young 1994). The difference among philosophers pondering this question is mainly about 

which characteristics should be considered irrelevant. This debate is often summarized as asking 

the question of “equality of what?” (Roemer and Trannoy 2013). 

The wide variety of interpretations of equality correspond to a wide spectrum of beliefs 

regarding what constitutes an irrelevant attribute. For example, welfarists would argue that all 

characteristics are irrelevant (i.e., all people should enjoy the same success); whereas, 

Libertarians would argue that the only non-productive characteristics (e.g., race) are the only 

irrelevant characteristics (i.e., one’s success in life should be independent of one’s race) 

(Calsamiglia 2005). The period since 1970 has been one in which, in political philosophy, non-

welfarist theories have flourished, on both the right and left ends of the political spectrum. This 

equality literature changed the focus by pointing out that only some kinds of inequality are 

ethically objectionable, and to the extent that researchers ignore this distinction “they may be 

measuring something that is not ethically salient” (Roemer and Trannoy 2013).  

This dissertation is purposely silent on the specific irrelevant attributes that should be measured 

or which kinds of inequality are objectionable. The author believes that these concerns are best 

left to local policymakers who are better equipped with the knowledge of how locals hold views 

of justice necessary to make these determinations; and practitioners who are most acutely aware 

of the harms that can be perpetrated by their facial recognition systems.  

The Classification Systems of Irrelevant Attributes 

Furthermore, and perhaps more importantly, specific irrelevant attributes require a taxonomy and 

a method of categorization or classification (for ease of reference, in this section, the author 

refers from now on only to categorization). This dissertation understands that categorization is a 

social construction. Michel Foucault, noted French philosopher and historian, argues that 

categories are a matter of invention in his book The Order of Things (1973). Foucault claims that 

categories are the result of a priori historical systems of classification, invented (or constructed) 

by societies. Categories are the result of the application of a system, which is like a set of criteria 

that when applied to experience, makes us think of the world in certain ways (Gracia 2001). 

Categories “[m]ake it possible for us to name, speak, and think” (Foucault 1973). These 

categorizations can affect and condition how societies view themselves.  Furthermore, attempts 

to classify have reflected the social, cultural, religious, and political order of the time.  

Foucault introduces an encyclopedia in which it is written that "animals are divided into: (a) 

belonging to the Emperor, (b) embalmed, (c) tame, (d) sucking pigs, (e) sirens, (f) fabulous, (g) 

stray dogs, (h) included in the present classification, (i) frenzied, (j) innumerable, (k) drawn with 

very fine camelhair brush, (1) et cetera, (m) having just broken the water pitcher, (n) that from a 

long way off look like flies" (Foucault 1973). Using this taxonomy, Foucault expresses wonder 

at the limitation of our own system of thought that results in the stark impossibility of employing 

this categorization. We experience this system as exotic and charming (Foucault’s words) 

because it upends the basis of our own categories. The historical systems that allow us to make 
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sense of the world, also cloud our ability to see it in any other way. Artificial intelligence, and 

facial recognition systems, similarly construct (invent) and inherit from the historical system, its 

own methods of categorization that represent the social order of the time. Labelled Faces in the 

Wild, generated its dataset based on photographs on Yahoo News from 2002 to 2204, which 

results in a dataset that is 77.4% masculine presenting and 71.2% lighter skin tones as mentioned 

in TABLE 1 on page 25 above. Furthermore, the most represented face in this dataset is George 

W. Bush, who appears 530 times in more than thirteen thousand pictures. Labelled Faces in the 

Wild is an invention of the culture and social order at the time of its construction. 

The Bifurcated Theories of Inequality 

As Young (1994) points out in the first chapter of his book Equity: “[social justice] theories in 

the large have little to say about … how to solve concrete, everyday distributive problems such 

as how to adjudicate a property dispute, who should get into medical school, or how much to 

charge for a subway ride.” Yet, anti-discrimination laws provide a rich jurisprudence to 

understand how some local policymakers attempt to distinguish which attributes are irrelevant. 

These laws can be widely understood to bifurcate between two theories of discrimination: 

disparate treatment (i.e., intentional discrimination) and / or disparate impact (i.e., the 

discriminatory consequences of a neutral policy). In theory, disparate impact is a straightforward 

concept: discrimination can occur when a facially neutral policy is implemented, without a 

legitimate justification, that disproportionately affects a group that shares a specific irrelevant 

attribute protected by statute (often termed a “protected group”). Importantly, disparate impact 

does not require discriminatory motive or intent (Faulkner v. Super Valu Stores, Inc. 1993).  

A number of recent studies which investigated quantifying and guaranteeing equality in machine 

learning (Dwork et al. 2011; Feldman et al. 2015; Hardt et al. 2016; Kamishima et al. 2012; 

Kleinberg et al. 2016; Luong et al. 2011; Zemel et al. 2013), have borrowed extensively from 

these legal concepts when designing or problematizing automated machine learning algorithms 

(Heidari and Krause 2018; Zafar et al. 2017). This dissertation also adopts this disparate impact 

formulation of the problem; said simply, bias is defined as disparate outcome based only or 

partially on a specific irrelevant (i.e., protected) attribute. In order to be concordant with 

specialized terminology from the field of fairness in machine learning, this dissertation will use 

“protected attribute” in the same way that a specific irrelevant attribute has been defined.  

Highlighting the Finer Points of Some Terminology 

Some researchers when defining bias introduce the concept of privilege (and unprivileged) 

values of protected attributes. These privileged values of a protected attribute are specifically 

formulated to indicate groups that have been historically at a systemic advantage (e.g., Whites 

for race in the United States, Men for gender in the United Kingdom, Brahmin for caste in India, 

Catholicism for religion in France) (Bellamy et al. 2018). Bias is then formulated as a systematic 

error that places groups that shares a specific privileged attribute at systematic advantage over 
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unprivileged groups. Introducing historicity of privilege into the definitions unnecessarily 

winnows the classification schemas used and protected attributes of bias that are worth 

measuring and improving. Therefore, in keeping with the author’s aforementioned purposeful 

silence on which protected attributes should be measured or which kinds of inequality are 

objectionable, the author rejects this distinction provided by Bellamy et al. (2018). 

Additionally, though this work incorporates understandings of the accuracy of a decision taken 

by a facial recognition system into its formulation of the disparate impact problem in the 

measurement of interclass bias within a classification schema, and might be reasonably 

considered to be what Zafar et al. (2017) term “disparate mistreatment,” the author continues to 

use the term disparate impact. In particular, the author takes issue with the naïve formulation that 

ignores the legal precedent of disparate impact which provides exceptions if the policy is 

justified or otherwise consistent with a business necessity; and subsequently uses this ignored 

exception to conceptualize the term “disparate mistreatment.” 

Technical Implications of Bias 

Definitions of bias have technical implications. Narayanan (2018) described at least twenty-one 

mathematical definitions of equality from the literature. These differing definitions are not 

merely theoretical differences in how to measure equality, but can yield entirely different 

outcomes depending on the measure used (Narayanan 2018).  

Facial recognition systems generally commit two kinds of errors, the Type I Error where an 

individual is incorrectly associated with another, and Type II Error where an individual is 

incorrectly not associated with themselves. The nature of these errors is explored in more detail 

in the section entitled Quantitative Analytical Methods on page 42. When a deep neural network 

is trained, a cost function is defined that can optimize for the absence of Type I Errors or 

Type II Errors. Ideally, the deep neural network would want to minimize all errors, yet 

Kleinberg et al. (2016) show that balancing these errors while maintaining a high predictive 

accuracy is impossible. Therefore, practitioners must make subjective decisions based on their 

engineering judgement about the perceived impact of Type I Errors or Type II Errors. For 

example, in a security checkpoint the probability of Type II Errors from a facial recognition 

system represents a measure of the system security, while the probability of Type I Errors 

represents the user inconvenience level. In some instances, like screening for persona non grata 

at a border entry point the risks associated with a Type I Error, failing to recognize a persona 

non grata, are often much higher than the harms resulting from a Type II Error, requiring 

additional visitors to submit to a secondary screening. Whereas in supermarket that uses a facial 

recognition system to attach a customer’s loyalty number to a transaction, the risks associated 

with a Type I Error, attaching a transaction to another’s loyalty number might be considered 

negligible to the harms resulting from a Type II Error, the added time to a transaction incurred 

by a customer typing in their loyalty number. 
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In order to facilitate the evaluation of these tradeoffs and the cautionary note from Krishnapriya 

et al. (2019) regarding the receiver operating characteristic, covered in more detail in the section 

entitled Measuring and Reporting Accuracy of Facial Recognition Systems on page 23, this 

dissertation takes the position that any measure of bias must independently measures the bias of 

the true accept rate and the false accept rate as a function of the threshold. 

Furthermore, this dissertation postulates that in order to achieve a full picture on the nature of 

interclass bias within a classification schema it is important to evaluate the true accept rate and 

the false accept rate across the entire range of the threshold. NIST restricts its evaluation of the 

true accept rate and the false accept rate to what it believes are common targets, namely targeting 

false accept rates spanning several decades from 10−6 to as 10−2. However, this approach shifts 

responsibility for threshold management to the system owner rather than the developer of the 

facial recognition system. That may sound appropriate, but it imposes a responsibility on the 

system owner to determine what the thresholds should be based on their targeted false accept rate 

via some appropriate testing.  

In practice, the only system owner controlled independent variable is the threshold, and the 

meaning of the threshold is easily confused. Facial recognition system developers report that 

their system is set to report matches it is “99% confident in,” as such, operators might assume 

that each match has a 99% chance of being a genuine match, when in actuality the majority of 

the alerts the facial recognition system generates are likely to be false  (Crumpler and Lewis 

2021). The operators and system owners are likely to assume that the commercial facial 

recognition system works directly “off the shelf,” and not make any changes to the default 

configuration. In fact, in one installation of a facial recognition system at the Washington County 

Sheriff’s Office in Oregon, the system owner clarified that “we do not set nor do we utilize a 

confidence threshold” (Menegus 2019). Furthermore, the facial recognition system vendor only 

supplied documentation (characterized as “very lacking or wrong” by an analyst employed to 

evaluate the facial recognition system by the system owner), and did not provide any direct 

training to investigators using the system to clarify the meaning of the thresholds. This means 

that any reported matches by the facial recognition system, regardless of the confidence score 

expressed by the system, may be interpreted a match by the system owners or operators.  

Using this evaluation, the author sees benefits in having a facial recognition system for which 

true accept rates and false accept rates are homogenous across the entire range of the threshold 

(i.e., do not vary over any protected attribute). To the authors knowledge, this is the first 

investigation that takes such a stance. 

Prior Work in Evaluating Bias in Facial Recognition Systems 

The broad effects exemplified in this report concerning gender presentation have been known as 

far back as 2003 (Phillips et al. 2003). These findings were re-affirmed by NIST in 2017 for 

Type I Error bias, where an individual is incorrectly associated with another, across gender 

presentation and skin tone (Grother et al. 2017), and again in 2019 (Grother et al. 2019). Most of 
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the research being performed has focused on evaluations of facial recognition systems 

performing a verification task with standardized facial images (i.e., images collected for visas, 

border crossings, or law enforcement booking photographs) (Cook et al. 2019; Grother et al. 

2017, 2019; Howard et al. 2019; Krishnapriya et al. 2019). These images are collected with 

cooperating subjects with controlled cameras or dedicated capture equipment and lighting, and 

are generally in reasonable conformance with the ISO/IEC 19794-5 Biometric data interchange 

formats. This standardization work included consideration of cameras, lights, and geometry, and 

with explicit consideration of the need to capture light and dark skinned individuals. This report 

is the first to focus on measuring bias within the relatively unconstrained “in the wild” facial 

imagery, like in Labeled Faces in the Wild. See the section entitled Assumptions About the Use 

of Unconstrained Images on page 145 for a more detailed understanding of how this report 

addresses “in the wild” imagery. 

Furthermore, while this dissertation evaluates false accept rates across the entire range of the 

threshold, some researchers don’t report the incidence of Type II Error, where an individual is 

incorrectly not associated with themselves, at all (Cavazos et al. 2020); others report it only at 

fixed false accept rates burying threshold related bias (El Khiyari and Wechsler 2016); and many 

report it at a specific threshold (Cook et al. 2019; Grother et al. 2019).  

Lastly, other researchers have focused on racial, ethnic, ancestry, or country of origin 

classifications for measuring bias. These classification schemas are difficult to compare due to 

the large intraclass variation, and the inconsistencies of the schemas utilized: East Asian vs 

Caucasian faces (Cavazos et al. 2020), Black or African Americans vs. Caucasian faces (Cook et 

al. 2019; El Khiyari and Wechsler 2016; Krishnapriya et al. 2019), and Asian, Black, Indian, vs. 

White (Grother et al. 2019). Additionally, the methodologies of how each racial or ethnic label is 

applied vary widely, some use subject self-identification (Cook et al. 2019; Howard et al. 2019), 

others use the country of origin (Grother et al. 2019), and others do not explain how the labels 

were assigned (El Khiyari and Wechsler 2016; Krishnapriya et al. 2019). This dissertation adopts 

the six skin tone classification used by Buolamwini and Gebru (2018); Klare et al. (2015); Maze 

et al. (2018); Whitelam et al. (2017) to account for skin tone diversity with a more reproducible 

classification system.  

Summary 

Taken together, these studies clearly indicate the importance of creating techniques to identify 

biases and to measure these biases before these algorithms are integrated into both government 

agencies, contractors, and private companies. The researchers believe this measure of interclass 

bias will engender comprehensive analyses of facial verification algorithms biases that can be 

incorporated into an algorithm’s design, implementation, or training processes and an end user’s 

testing and commissioning processes.  
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For this dissertation, the author argues that to adequately assess bias, one needs disaggregated 

evaluation metrics to evaluate the success of an artificial intelligence model. Furthermore, these 

metrics that that incorporate a realistic bias model. 

In order to trouble the existing evaluation metrics, this dissertation adopts the disparate impact 

formulation of the problem and defines bias as a disparate outcome based only or partially on a 

protected attribute.  Furthermore, the author argues that an unbiased facial recognition system is 

one for which true accept rates and false accept rates are homogenous across the entire range of 

the threshold (i.e., do not vary over any protected attribute). To the authors knowledge, this is the 

first investigation that takes such a stance. 

This dissertation is purposely silent on the protected attributes that should be measured or which 

kinds of inequality are objectionable, and adopts a notion of bias that can be used to measure not 

only to intrinsic physical characteristics (e.g., skin color, hair color, wearing vision eyewear) but 

also to extrinsic characteristics, limited by a physical presentation recordable in an image. 
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Methodology for Measuring the Interclass Bias 

This dissertation proposes a novel methodology to measure facial recognition systems interclass 

bias within a classification schema. Throughout this dissertationthe term bias is used to 

demarcate any propensity or prepossession towards a particular class within a classification 

schema. The researchers believe this measure of interclass bias will engender comprehensive 

analyses of facial recognition systems’ biases that can be incorporated into an algorithm’s 

design, implementation, or training processes and an end user’s testing and commissioning 

processes. Due to practical constraints, this study focuses on a subset of facial recognition 

systems, facial verification algorithms, where the algorithm is asked to compare a facial imagery 

from two images to verify if they are the same person. In other words, to compare faces as it may 

be done in an access control type scenario (e.g., a security guard who is tasked with letting 

authorized persons into a facility).  

The author sets out to design this measure of interclass bias not as a function of specific images 

submitted for analysis, as many current benchmarks do, but rather, as a measure of a facial 

verification algorithms’ performance for everyone who could be classified under a given 

classification schema. That is to say, the author believes that this measure shall generalize well to 

an entire class of people. This author plans to achieve this affect by adopting two principles in 

the creation of the interclass bias measure. First, the author postulates that multiple comparisons 

of a diverse set of facial imagery of the same individual will elucidate the facial verification 

algorithms’ performance for a specific individual. These multiple comparisons are powerful 

because they can be used to measure the facial verification algorithms’ performance independent 

of the images provided. Second, this process after repeated with multiple individuals from the 

same class could be used to generalize the facial verification algorithms’ performance on 

individuals from that class. The author believes that a facial verification algorithms’ performance 

is a distribution that must be modeled to account for the complexity of the similarity threshold. 

The similarity threshold is the independent variable selected by end-users to simplify the facial 

verification algorithms’ performance to a binary output (e.g., the aforementioned security guard 

has reasonable doubt the person attempting to enter is authorized to enter the building and 

prohibits him, her, or them from entering) and is configurable by the end user based on the needs 

of the intended application (e.g., a bank might set a higher threshold for authorizing a withdrawal 

than a grocery store pulling up your loyalty account). The scope for this dissertation is illustrated 

in FIGURE 2 below. 

This dissertation begins by defining the calculation of this novel measure of interclass bias and 

then goes on to provide a case study of the efficacy of this proposed interclass bias measure, and 

the evaluation of two commercial off the shelf facial verification algorithms (for ease of 

reference, the author will use the term “commercial facial verification algorithms”) to test our 

findings.  
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FIGURE 2 A facial recognition system performing a verification protocol. The gray box represent the scope 

of this dissertation’s evaluation. 
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Data Collection and Analysis for the Proposed Metric 

The section below moves on to describe in greater detail how to generate and report the novel 

measure of interclass bias.  

Principal to this approach is a determination, generation, or selection of the classification schema 

used to evaluate facial verification algorithms for interclass bias. It is important to note that these 

classifications can refer not only to intrinsic physical characteristics (e.g., skin color, hair color, 

wearing vision eyewear) but also to extrinsic characteristics limited by a physical presentation 

recordable in an image, as facial recognition systems ultimately depend on what can be captured 

by a camera. This can be illustrated briefly by focusing on gender classification schemas. 

Commonly reported sex classifications with “male” and “female” classes are unfeasible as these 

labels cannot be discerned by facial or unconstrained imagery. However, a gender presentation 

classification schema is in fact possible. Labels such as “high confidence of presenting as 

masculine” and “high confidence of presenting as feminine” can be discerned from facial 

imagery based on cultural understandings of masculine and feminine presenting traits.  

Next, a dataset of facial images of classified subjects according to the selected classification 

schema must be collected, generated, and/or labelled. This dataset should contain a reasonable 

number of subjects and each subject in the dataset should contain numerous samples of facial 

images for that subject. The multitude of facial imagery in effect minimizes the variations in an 

algorithms performance that might be attributed to an individual photo (i.e., pose, lighting, image 

size, orientation, occlusions, etc.) and empowers further analyses that can achieve a subject 

specific understanding of the facial verification algorithms’ performance. As such, there is an 

obvious preference for the largest number of facial images for each subject desired, but the 

author recognizes the tradeoffs that must be made to generate such a dataset. Furthermore, the 

author understands that data collection can be difficult if not unfeasible and as such, this process 

can be reversed with the dataset constraining the selection of a classification schema. 

After the dataset is compiled, the list of comparisons can be generated. Each comparison is a set 

of two facial images provided to the facial verification algorithms to evaluate if they represent 

the same person by a score. These evaluation result in scores that are collected and subsequently 

used to calculate the novel measure of interclass bias within a classification schema for a given 

facial verification algorithm. In order to achieve the aforementioned subject specific 

understanding, each facial image for given subject must be compared to every other facial image 

for the subject, in the style of double round-robin tournament. In a more precise description, each 

test subject ( 𝑖, 1 ≤  𝑖 ≤ 𝐼, 𝑖 ∈  ℤ ), has 𝑛𝑖 total “templates”: an input facial image converted into 

a proprietary template (i.e., a feature vector) representing the face in the image, which is 

subsequently stored in an internal database. The goal of facial verification is for the algorithm to 

determine if a sample template generated from a query image (commonly referred to as the 

“probe”) is the same person as the template stored in a database (commonly referred to as the 

“gallery”). For each subject ( 𝑖 ), one image is sampled as the gallery template (𝑛𝑖
𝑔

, 1 ≤ 𝑛𝑖
𝑔

< 𝑛𝑖) 



 

 35 

and the remaining templates are allocated to the probe set (𝑛𝑖
𝑝  +  𝑛𝑖

𝑔
 =  𝑛𝑖). Each of the 

templates in the probe set is queried against its corresponding gallery template, and then another 

image is sampled without replacement as the gallery template, until all templates in the set have 

been used as the gallery template. This yields a total of ∑ 𝑛𝑖(𝑛𝑖 − 1)𝐼
𝑖=1  comparisons for 

analysis. It is important to note that this process assumes that the comparisons submitted to the 

facial verification algorithm are not commutative, that is to say comparing probe template 𝐴 to 

gallery template 𝐵 is different from comparing probe template 𝐵 to gallery template 𝐴. These 

reversed comparisons are made to protect from algorithms implementations that may return 

different results based on the order. 

These similarity scores for the list of comparisons are collected and then evaluated for interclass 

bias within a classification schema for the given facial verification algorithm. A similarity score 

is a statistical measure of how likely the gallery and probe templates are the same person, when 

analyzed by the facial verification algorithm. These scores are typically reported as ranges from 

0 to 1 (or an equivalent scale) with larger numbers indicating higher similarity and importantly 

are relevant and comparable to other scores exclusively to the algorithm that generated them. 

These similarity scores are typically thresholded, such that any similarity score lower than a 

given threshold is rejected as a match and any similarity score greater than the threshold is 

accepted as a match. The standard practice in reporting performance metrics for comparison 

protocols is to report the receiver operating characteristic, which at a given threshold (the 

independent variable) measures the true accept rate (“TAR”), calculated from the fraction of 

genuine comparisons that correctly exceed the threshold, and the false accept rate which is 

similarly calculated from the fraction of imposter comparisons that incorrectly exceed the 

threshold. However, due to the larger impact that false negatives can have in environments that 

utilize facial verification algorithms, and practical constraints, this dissertation focuses on 

measuring the interclass bias for Type II Errors , encapsulated by the TAR.  

A Formal Definition of Interclass Bias 

We can formalize this understanding by introducing some basic notation to define the problem. 

Each comparison of two facial images submitted to the facial verification algorithm has a known 

state 𝒳1, 𝒳2, … , 𝒳𝐾 , where 𝐾 = ∑ 𝑛𝑖(𝑛𝑖 − 1)𝐼
𝑖=1 , the total number of comparisons submitted for 

analysis. Where 𝒳𝑘, for comparison 𝑘, represents one of two states: “confirming that the two 

submitted facial imagery represents the same person” is denoted as 1, and “rejecting that the two 

submitted facial imagery represents the same person” is 0. 
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FIGURE 3 Illustrative example of similarity score densities for a sample facial verification algorithm. 

Additionally let, 𝑥1, 𝑥2, … , 𝑥𝐾, represent the set of similarity scores, returned by a facial 

verification algorithm. The similarity scores are reported on a continuous scale that the facial 

verification algorithm has assigned to the set of two comparison templates. The author restricts 

their considerations to the case of continuous scores as this facilitates notation and reasoning, 

and is in keeping with the scores reported by many facial verification algorithms. Similarity 

scores with discrete values can be treated in a similar way. Furthermore, we can define the 

conditional distributions given the two values of 𝒳𝑘 can take by specifying the conditional 

densities 𝑓0 and 𝑓1 respectively. The probability that a similarity score 𝑥𝑘 is greater than some 

threshold 𝑡 given the predicted value �̂�𝑘 is 𝓍, say 𝓍 = 1, can be expressed as an integral of the 

density 𝑓1. 

𝐹𝓍(𝑡) = 𝑃[𝑥𝑘 ≤ 𝑡|�̂�𝑘 = 𝓍] = ∫ 𝑓𝓍(𝑢) 𝑑𝑢

𝑡

−∞

, 𝓍 ∈ {0, 1} 

FIGURE 3 above illustrates a plot of what the conditional density 𝑓1 might look like for a facial 

verification algorithm. From an end-user’s perspective, the whole proposition looks like a 

decision problem. Assume that we consider two templates with facial imagery and have been 

provided the facial verification algorithms similarity score. How can the end-user infer whether 

or not to confirm or reject that the two submitted facial imagery represents the same person? This 

represents a case of binary classification with a one-dimensional co-variate. Formally, a 
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realization (𝑥𝑘, 𝒳𝑘) has been randomly sampled, 𝑥𝑘 is observed, 𝒳𝑘 is not yet known: Is 𝒳𝑘 = 0 

or 𝒳𝑘 = 1? The typical way that the end-user would come to a decision would be to select some 

set 𝒜 of similarity score value such that they infer the match is confirmed, if the score is in 𝒜. If 

the similarity score is not in 𝒜, then the end-user would conclude that the match is rejected. 

𝑥𝑘 ∈ 𝒜 ⇒ 𝒳𝑘 = 1 𝑥𝑘 ∉ 𝒜 ⇒ 𝒳𝑘 = 0 

The end-user is then just left to determine an appropriate selection set 𝒜. This can be stated as 

having to discriminate between conditional score distributions on the 𝑃[𝑥𝑘 ∈ ∙ |𝒳𝑘 = 1] 

confirmed and 𝑃[𝑥𝑘 ∈ ∙ |𝒳𝑘 = 0] rejected match sub-populations, respectively. The end-user 

desires a high certainty in the case of a decision to reject the presumption that the two facial 

images submitted are different people. Formally this can be stated as the null hypothesis is that 

the two facial images submitted are the not the same person, or the state 𝒳𝑘 = 0. The alternative 

hypothesis is that the two facial images submitted are the same person, or the state variable is 

𝒳𝑘 = 1.  

𝐻0: 𝑃[𝑥𝑘 ∈ ∙ |𝒳𝑘 = 0] versus 𝐻𝐴: 𝑃[𝑥𝑘 ∈ ∙ |𝒳𝑘 = 1] 

The end-user can subsequently perform a statistical test on the null hypothesis against the 

alternative. Under this test, the decision the end-user chooses could be wrong in one of two 

ways. The end-user could reject the presumption that the two facial images submitted are 

different people, or reject 𝒳𝑘 = 0 when 𝒳𝑘 is actually 0 (a Type I Error). Alternatively, the end-

user would accept the presumption that the two facial images submitted are different people 

when the two facial images submitted are of the same person, or accept 𝒳𝑘 = 0 when 𝒳𝑘 is 

actually 1 (a Type II Error). The end-user might want to create an optimal selection set 𝒜 to 

manage the probabilities of the two possible erroneous decisions. The probability of a 

Type I Error is the probability under the rejected match score distribution that the comparison’s 

similarity score will be an element of the acceptance set 𝒜. Similarly, the probability of a 

Type II Error is the probability under the confirmed match score distribution that a comparison’s 

similarity score will not be an element of the acceptance set 𝒜. 

𝑃[Type I Error ] = 𝑃[𝑥𝑘 ∈ 𝒜|𝒳𝑘 = 0] 𝑃[Type II Error ] = 𝑃[𝑥𝑘 ∉ 𝒜|𝒳𝑘 = 1] 

Typically, the Type I Error is bounded by a small constant (commonly illustrated as one or five 

percent) determined by the cost associated with a Type I Error incurred by the end-user. We 

shall denote this constant by 𝛼. Once this value is bonded, the objective for an end-user is to 

minimize the Type II Error probability. Additionally, because the similarity scores are 

continuous, this can be described in terms of some threshold 𝑡. The end-user can set a threshold 

based on the ratio of the rejected and confirmed comparisons conditional score densities 𝑓0 and 

𝑓1, respectively, as a function to the similarity score variable itself. 

1 − 𝛼 = 𝑃 [
𝑓1(𝑥𝑘)

𝑓0(𝑥𝑘)
≤ 𝑡|𝒳𝑘 = 0] 
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This can be solved for the threshold 𝑡 . Furthermore, this yields a decision rule for the end-user: 

“Reject the presumption that the two facial images submitted are different people if the similarity 

score is greater than the threshold” that is optimal amongst all the decision rules that guarantee a 

probability of Type I Error not greater than 𝛼. Formally, if the similarity score is greater than the 

𝑡 then the end-user infers the match is confirmed. Otherwise, the match is rejected.  

𝑥𝑘 ≥  𝑡 ⇒ 𝒳𝑘 = 1 𝑥𝑘 < 𝑡 ⇒ 𝒳𝑘 = 0 

That means, that for a given threshold 𝑡, �̂�𝑘, the predicted value of 𝒳𝑘, is given by the following: 

�̂�𝑘 = {
1 if 𝑥𝑘 ≥ 𝑡
0 if 𝑥𝑘 < 𝑡

 

An important note to the reader, the above transformation from the set 𝒜 to threshold 𝑡, relies on 

the assumption that the likelihood ratio 𝑓1(𝑥𝑘) 𝑓0(𝑥𝑘)⁄  is monotonous. In theoretical examples 

where the rejected and confirmed comparisons conditional score densities 𝑓0 and 𝑓1, respectively, 

are normal with equal standard deviation, it is clear that the likelihood ratio is monotonous. 

However, in practice the monotonicity of the likelihood ratio or the conditional densities is 

difficult to ensure, but the clarity and economic value of using a threshold as a cut-off means that 

the author of this dissertation adopts an assumption of monotonicity. 

Now, we introduce basic notation to define the terminology used in the TAR analysis. For every 

possible threshold value selected to discriminate between two cases, some comparisons will be 

correctly classified as confirming that the two submitted facial imagery represent the same 

person (we denote this outcome as a positive case, and because it was rightly detected as 

positive, we denote it as a true positive or 𝑇𝑃). Other comparisons will be incorrectly classified 

as rejecting that the two submitted facial imagery represent the same person (we denote this 

outcome as a negative case, and because it was incorrectly detected as negative, we denote it as a 

false negative or 𝐹𝑁). Conversely some data will be correctly classified as negative (a true 

negative or 𝑇𝑁), but some will be incorrectly classified as positive (a false positive or 𝐹𝑃). The 

various outcomes for each comparison are represented in TABLE 2 below. 

 Predicted Outcome 
Actual Outcome Confirm Match Reject Match 

Confirm Match True positive (𝑇𝑃) False negative (𝐹𝑁) 

Reject Match False positive (𝐹𝑃) True negative (𝑇𝑁) 

TABLE 2 The confusion matrix for a binary classifier modified to reflect the use case in the current 

dissertation. 

From these definitions, we can estimate 𝜗(𝑡), the TAR (also called the sensitivity or the true 

positive rate), which is the probability of accurately predicting a positive outcome (�̂�𝑘 = 1), 

conditional that the observation is truly positive (𝒳𝑘 = 1): 

𝜗(𝑡) =  𝑃(�̂�𝑘 = 1|𝒳𝑘 = 1) =
1

𝐾
 ∑ 𝐼(�̂�𝑘 = 1|𝒳𝑘 = 1)

𝐾

𝑖=1
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A facial verification algorithm with a higher TAR has a lower Type II Error rate. Empirically, 

this is the proportion of positive instances classified correctly: 

�̂�(𝑡) =  �̂�(�̂�𝑘 = 1|𝒳𝑘 = 1) ≈
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

where 𝑇𝑃 is the number of positive instances correctly classified, and 𝐹𝑁 is the number of 

positive instances misclassified. Further, this TAR point estimate can be evaluated across the set 

of all possible threshold values (𝜏) to yield a TAR curve. FIGURE 4 below  shows examples of 

how a TAR curve may look like. Note that though this notation describes the TAR (𝜗(𝑡)) as a 

function of the threshold (𝑡), in practice as explained earlier an end-user of a facial verification 

algorithm would select the acceptable TAR and adjust the threshold to meet the selected TAR; as 

such, all plots of the TAR are presented in this way, with the threshold as a function of the TAR.  

 

FIGURE 4 Illustrative example of the True Accept Rate (TAR) curves of life-like (solid line), a worse 

performing curve (dashed line), and perfect score (dotted line) variables as explained in the main text. For 

the life-like similarity scores variable associated with the conditional densities shown in FIGURE 3. 

A perfect facial verification algorithm that can always correctly confirm that the two submitted 

facial imagery represents the same person and never rejects that the two submitted facial imagery 

represent the same person, is represented by the dotted straight line at 𝑡 = 100, shown in 

FIGURE 4 above. The solid curve belongs to the score variable whose conditional density is 

shown in FIGURE 3 on page 36. The solid curve represents a facial verification algorithm that 

performs better than the dashed curve. Results towards the upper region of the plot are better. For 
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example, if one wanted to achieve an 80% TAR—a default lower limit of consideration (IBM 

Corporation 2022)—on the corresponding threshold value on the default (solid curve) facial 

verification algorithm is significantly higher than on the worse (dashed curve) facial verification 

algorithm. The author wants to introduce a caveat when comparing two different facial 

verification algorithm TAR curves, the conclusions about the more accurate or “better” 

algorithm are limited, as the similarity score values are specific to each algorithm and cannot be 

compared without additional information on the algorithms Type I Error. 

However, let’s consider that these same two curves represented TAR curves for populations of 

two classes of interest in a classification schema with similarity scores generated under the same 

facial verification algorithm. Let’s denote a new classification schema with two classes Class 𝔸 

and Class 𝔹, and posit that both classes are drawn from the population expected by the facial 

verification algorithm. 

In this scenario, again assuming an 80% TAR, the corresponding threshold value on the solid 

curve, representing the TAR curve for Class 𝔸, is significantly lower than on the dashed curve, 

representing the TAR curve for Class 𝔹. If the end-user wishes to achieve comparable TAR rates 

for both classes, a reasonable assumption as both classes are drawn from the same population, is 

that the end-user could set a different threshold for each class. However, it might be infeasible if 

not impossible to know which class a given comparison belongs to when making the decision to 

apply the threshold. This proposed solution adds complexity as the end-user would need to 

classify comparisons to one of the two classes, this could be done by an automated system or by 

a human, and store the information alongside the comparisons. Additionally, using class specific 

thresholds, also introduces an additional source of error, as mis-labelled comparisons might be 

subject to a looser standard than they were otherwise intended to. Additionally, the people whose 

facial imagery is retained in a comparison typically can be classified by multiple classes, so this 

problem of multiple thresholds would only increase as our taxonomy for classifying people 

increases. This complexity and potential for error means that many end-users select just one 

threshold that applies for all. Some commercial facial verification algorithms promote a single 

threshold in their marketing materials and developer resources. Under a single threshold, in the 

illustrated TAR curves, it’s obvious that there will be a tradeoff no matter what threshold is 

selected. If the threshold is selected such that the end-user achieves an 80% TAR for Class 𝔹, a 

small fraction of comparisons from Class 𝔸 would be accepted. Similarly, if the threshold is 

selected such that the end-user achieves an 80% TAR for Class 𝔸, almost all comparisons from 

Class B would be accepted. A threshold somewhere in-between these two extremes would 

mitigate these differences but not eliminate them. The author terms this phenomenon, the 

differences between these two TAR curves, “interclass bias”. In the subsequent sections, the 

author describes qualitative and quantitative measures of the interclass bias.  

Once all of the genuine comparisons submitted for analysis by the facial verification algorithm 

are returned with a similarity score, the novel measure of interclass bias within a classification 

schema can be calculated. Under the limitation that this dissertation only covers Type II Errors, 
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all comparisons must therefore be genuine; however, the methodology described below would 

equally apply to any indicator functions such as the correlation coefficient, quantile, conditional 

value-at-risk, to prediction error measurement, etc. A confidence interval for the TAR for each 

class in the classification schema is evaluated using the bootstrap method. Generally, the 

bootstrap method enables empirical estimates of accuracy (bias, variance, and confidence 

intervals) to sample estimates through random sampling with replacement (“resamples”) (i.e., 

mimicking the experimental sampling process) (Davison and Hinkley 1997; Efron 1979; Efron 

and Tibshirani 1994; Hall and Martin 1988). This is particularly important as it allows estimation 

of the sampling distribution for the interclass bias and provides a foundation for analysis of the 

statistical power the measure of interclass bias. Furthermore, this method is advantageously data 

driven instead of requiring detailed model knowledge, which can be difficult to ascertain with a 

presented facial verification algorithm. Under the bootstrap method, the similarity scores are 

partitioned into sets based on the respective class in the classification schema. Then from each of 

the partitioned sets, a large number of resamples are constructed from the respective similarity, 

from there the threshold is varied over a sufficiently large range tabulating the resulting TAR (or 

another indicator of interest).  

Precisely, this can be stated as given the similarity scores, returned by a facial verification 

algorithm, of size 𝑘 = ∑ 𝑛𝑖(𝑛𝑖 − 1)𝐼
𝑖=1 , say 𝑋1, 𝑋2, … , 𝑋𝑘. We further assume these similarity 

scores are independent and identically distributed (i.i.d). Additionally, we aim to construct a 

confidence interval for the TAR 𝜗 ≔ 𝜗(𝑃), where 𝑃 is the similarity scores distribution and 

𝜗: 𝒫 → ℝ is a function with 𝒫 as the set of all distributions on the data domain. We can construct 

a point estimate of 𝜗(𝑃), �̂�𝑘(𝑃) ≔  𝜗(�̂�𝑘) where �̂�𝑘(𝑡) ≔ 1
𝑛⁄  ∑ 𝐼(𝑋𝑖 ∈ 𝑡), s.t 𝑡 ∈ 𝜏𝑘

𝑖=1  is the 

empirical distribution constructed from the data, 𝐼(∙) denotes the indicator function, 𝑡 is the 

threshold, and 𝜏 is the set of all possible threshold values.  

Next, we construct a confidence interval for 𝜗 as follows. For each replication 𝑏 = 1, 2, … , 𝐵, we 

independently and uniformly sample with replacement from {𝑋1, 𝑋2, … , 𝑋𝑘} 𝑘 times, to obtain 

{𝑋1
∗𝑏 , 𝑋2

∗𝑏, … , 𝑋𝑘
∗𝑏} (i.e., resample the dataset), and evaluate the resample estimate 𝜗𝑘

∗𝑏 ≔

 𝜗(𝑃𝑘
∗𝑏), where 𝑃𝑘

∗𝑏(𝑡) ≔ 1
𝑛⁄  ∑ 𝐼(𝑋𝑖

∗𝑏 ∈ 𝑡)𝑘
𝑖=1  is the resample empirical distribution.  

Therefore, the two-sided distribution free conservative 100(1 − 𝛼)% confidence interval can be 

stated as: 

ℐ = [�̂�𝑘 − 𝑡𝐵,1−𝛼 2⁄ 𝑆 �̂�𝑘 + 𝑡𝐵,1−𝛼 2⁄ 𝑆] 

Where the critical value 𝑡𝐵,1−𝛼 2⁄  is the (1 − 𝛼 2⁄ ) quantile of 𝑡𝐵, the student 𝑡-distribution with 

degree of freedom 𝐵, and 𝑆2 is the sample variance of the resample estimates, centered at the 

original point estimate instead of the resample mean: 

𝑆2 =
1

𝐵 − 1
∑(𝜗𝑘

∗𝑏 − �̂�𝑘)
2

𝐵

𝑏=1
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This process can be used to computed the bootstrap confidence intervals for each class in the 

classification schema. Taken all together, the curves represent the facial verification algorithms 

TAR for individuals across all classes in the classification schema. This information may be 

represented graphically to qualitatively understand the severity or lack thereof of interclass bias 

between classes in the same classification schema. While the author believes that there is 

significant power to a graphical viewpoint of this interclass bias, as it provides a visual notion of 

distance between the various curves and their confidence intervals, this allows for more 

qualitative analysis of the features in the TAR plots. 

Quantitative Analytical Methods 

The author posits that creating a measure of interclass bias can be incorporated into an 

algorithm’s design, implementation, or training processes and an end user’s testing and 

commissioning processes; as such, they recognize that it’s important to reduce these distributions 

to a score. This score should be numerical and continuous to support the use of the score during a 

facial verification algorithm’s training process. 

The author considers the problem of detecting differences between TAR curves representative of 

differing classes in the classification schema. The underlying assumption therefore is that, under 

the null hypothesis of equality between curves, the area between them is zero commonly stated 

as: 

𝐻0: 𝜗(𝑃(𝑖)) = 𝜗(𝑃(𝑗)) versus 𝐻𝐴: 𝜗(𝑃(𝑖)) ≠ 𝜗(𝑃(𝑗))  

For all 𝑡 ∈ 𝜏, where 𝑃 is the similarity scores distribution as defined above; and 𝑃(𝑖), 𝑃(𝑗) are the 

similarity scores distributions for classes in the defined classification schema (𝑖) and (𝑗) 

respectively. Under this hypothesis the area between the TAR curves must be zero under the 

null: 

𝑑𝑙2
(𝜗(𝑃(𝑖)), 𝜗(𝑃(𝑗))) ≡ (∫ (𝜗(𝑃(𝑖);  𝑡) −  𝜗(𝑃(𝑗);  𝑡))

2
𝑑𝑡

𝜏

)

1
2

 

This 𝑑𝑙2
can be calculated for all classes in the classification schema; however, the author posits 

it is beneficial to consider the interclass bias not between each and every class in a classification 

schema, but instead between a class and the overall performance. 

As such, the author describes one method for calculating an overall performance TAR curve. The 

author postulates that in an ideal facial verification algorithm all classes in a classification 

schema should perform equally; however, the author acknowledges that depending on the 

classification schema selected it may be appropriate to weigh the performance of certain classes 

over others. Therefore, a simple overall performance TAR curve can be constructed as the 

average of the TAR for all classes. Once the overall performance is established—any deviations 

from the facial verification algorithm for a specific class from the overall performance are an 
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anomaly to measure—which combined with the 𝑑𝑙2
 measure established above can yield a 

continuous score. 

In order to create this score, the author modifies the aforementioned methodology to create the 

TAR plots and corresponding confidence intervals described above. Similarly, confidence 

intervals for the TAR for each class in the classification schema are evaluated using the bootstrap 

method. However, in this iteration, for each of the replication 𝑏 = 1, 2, … , 𝐵, bootstrap samples 

generated, not only are the similarity scores resampled for each class in the classification schema 

but also the overall performance curve is calculated for that resample, following the 

methodology outlined above. Furthermore, for this replication, the difference between a given 

class and the overall performance is calculated for all classes. Now bootstrap confidence 

intervals, in a similar fashion outlined above, can be calculated for the difference between each 

class in the classification schema and the overall performance. Lastly, the author calculates the 

𝑑𝑙2
 measure for the absolute value of each of these difference confidence intervals. So far, we 

have described the interclass measure of bias for a specific class in a classification schema, but to 

truly characterize the performance across all classes this information must be reduced once more. 

Here the author makes a point that in order to evaluate a facial verification algorithm’s interclass 

bias, it is prudent to evaluate it by its worst performing class, that is to say the outlier is the 

problem to address. Furthermore, as articulated earlier, due to the impact that false negatives can 

have in environments that utilize facial verification algorithms, the author believes that it is best 

to characterize an algorithm by its worst performance, as that is where its effects will be most 

greatly felt. Therefore, the author states that the interclass measure of bias for a given 

classification schema is the maximum the difference between a class and the overall performance 

for any class in a classification schema. 

Data Collection for the Commercial Facial Verification Algorithms Case Study 

To show how this measure can be implemented, the author undertakes a case study measuring 

the interclass bias of two commercial facial verification algorithms. This section focuses on the 

generation of a set of image comparisons to be submitted to the commercial facial verification 

algorithm providers for evaluation that proceeds as follows: a) dataset selection, and b) 

classification schema selection, followed by c) dataset subject and image sanitization, d) subject 

template selection, and concludes with e) generating the comparison protocol.  

Selection of Commercial Facial Verification Algorithm providers 

The author limited their discussion of this case study to commercial facial verification algorithm 

providers sold in programing interface (“API”) bundles. Microsoft Azure Cognitive Services 

Face API (“Microsoft Face API”) and Amazon Web Services (AWS) Rekognition were selected 

as both companies have made large investments in artificial intelligence and facial recognition 

systems and provide public access and demonstrations of their commercial facial verification 

algorithms. Following the methodology outlined above, to conduct the audit of the selected 
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commercial facial verification algorithm providers, Microsoft Face API and AWS Rekognition, a 

classification schema must first be selected. 

Classification Schema and Dataset Selection 

It is now well established from a variety of studies that facial recognition systems are failing to 

recognize Black and dark-skinned faces due to unbalanced datasets that comprise the training 

data the facial recognition systems learn from (Noble 2018), large-scale bias in the form of 

systematic misrecognition by skin color or ethnic background, and gender classification 

(Buolamwini and Gebru 2018; Crawford and Paglen 2019; Klare et al. 2012; Ngan and Grother 

2015). Based on claims made by these author as to the amount of bias exhibited by these 

providers, and on the distribution of data provided in earlier toy analyses conducted by the 

author, the author understands the value of utilizing a large corpus of images to generate these 

comparisons. Based on the asymptotic relative efficiency adjustment to the Mann-Whitney 

method for determining sample size, the author estimated that 2,790 to 8,044 subjects might be 

necessary to measure the gender or skin color bias evidenced by these commercial facial 

verification algorithm providers, respectively (Conover 1971; Mann and Whitney 1947). 

However, there are few publicly available datasets of images large enough to meet the bar of 

statistical significance created by the above measure. As illustrated by TABLE 3 the largest 

datasets for facial recognition systems are primarily restricted to private corporations such as 

Facebook, Google and Megavii. Furthermore, only one is labeled sufficiently large as to generate 

conclusions about the gender or skin color bias of the commercial facial verification algorithm 

providers: the IARPA Janus Benchmark C (“IJB-C”) dataset. 

TABLE 3 An overview of known public and private face datasets. This table shows some of the face datasets 

available at the time of writing. This list is not meant to be exhaustive, nor to describe the datasets in detail, 

but merely to provide a sampling of the types of datasets that are available. Where possible, a peer-reviewed 

paper or technical report was cited, and otherwise a citation referring to the webpage for the database is 

given when available. (Chen et al. 2014; Huang et al. 2007; Maze et al. 2018; Schroff et al. 2015; Sun et al. 

2013; Taigman et al. 2014a; Wang et al. 2018a; Yi et al. 2014; Zhou et al. 2015) 

Dataset Identities Images Availability 

Google Face Dataset 8M 260M+ Private 

Megavii Face Classification 20,000 5.0M Private 

Social Face Classification 4,030 4.4M Private 

VGG Face Dataset 2,622 2.6M Public 

IMDb-Face 59,000 1.7M Public 

CASIA-WebFace 10,575 494k Public 

CelebFaces 10,177 202k Private 

Cross-Age Celebrity Dataset 

(CACD) 

2,000 163k Public 

IARPA Janus Benchmark C (IJB-
C) 

3,531 21k Public 

Labeled Faces in the Wild (LFW) 5,749 13k Public 
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Dataset Selection 

The IJB-C was selected for this study. This is a US government benchmark released by the 

National Institute of Standards and Technology (NIST) in 2018. The dataset consists of 

unconstrained still images, frames, and videos of celebrities and internet personalities “in the 

wild” collected from the web. In this dataset each subject (n = 3,531) has a variety of 

individually labeled enrollment templates. The subject pool is the largest, most geographically 

diverse of any public recognition dataset. 

Classification Schema Selection 

The constraint imposed by the publicly accessible dataset IJB-C drives some of the choices of 

the case study used to evaluate the success of this measure. One such constraint is the definition 

of the classification schema used to measure interclass bias. Each of the images in the IJB-C is 

individually labeled with one of six skin tone classes (Light Pink, Light Yellow, Medium Pink / 

Brown, Medium Yellow / Brown, Medium-Dark Brown, and Dark Brown). Importantly, 

annotations of the imagery were added utilizing the crowdsourcing service, Amazon Mechanical 

Turk, which caused labels to be defined in laymen’s terms instead of strict scientific definitions.  

Dataset Subject and Image Sanitization 

Some subjects had conflicting skin tone labels from one labeled image to another, explained 

either due to the variability in labeling due to the layman’s definition or the crowd-sourced 

nature of the dataset labels, introducing some complexity. While there are a variety of conditions 

that may affect a person’s skin tone (e.g., depigmentation due to injuries to skin, vitiligo, tinea 

versicolor, albinism, or skin whitening), or affect the way a subject’s skin tone is represented in 

an image (e.g., poor illumination, poorly exposed images, default camera calibrations optimized 

for lighter skinned individuals), the author believes that any changes significant enough to yield 

a different label, would unnecessarily add complexity and error to the analysis undertaken in this 

dissertation. Given these circumstances, these subjects with conflicting labeled templates were 

removed from consideration reducing our pool to 3,514 from its original number of 3,531 (𝑛 =

3,514). 

Prior work has established that commercial facial recognition technology is built upon “subject-

specific modeling,” wherein a single template is generated for a subject based upon most, if not 

all, available pieces of facial images and media of that subject. The authors of the IJB-C set out 

to mimic that behavior in their testing suite by using multi-image templates. Additionally, they 

believed that “the inherent difficulty of the dataset is obfuscated”, as algorithms have the ability 

to pool information from multiple pieces of media through subject-specific modeling. However, 

it is important to note that while AWS Rekognition and Microsoft Face API, allow for multi-

image templates, neither requires it, and both provide samples for end-users looking to use single 

image templates. As such this case study focuses of the “inherently difficult” challenge of one 
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image gallery templates, these templates are used in the generated comparisons for measurement 

of the interclass bias. Similar to the authors of the IJB-C, the author of this dissertation strongly 

believes that it is important to evaluate these commercial facial verification algorithms in this 

case study in circumstances similar to the ones allowed for end-users by these algorithms.  

However, we believe this option requires testing single image templates, as this is still an 

accepted use-case of these algorithms and provide a more difficult testing criteria to evaluate 

them against, commensurate with the potential harm the subjects compared by these commercial 

facial verification algorithm algorithms might endure due to the relaxed comparisons allowed by 

the providers.  

The authors of the IJB-C set a minimum face size of 36 pixels × 36 pixels for all of the 

templates in the dataset, as they believe that there is a dearth of identifiable information at lower 

resolutions. This is in alignment with the minimum face size of commercial facial verification 

algorithm provider from Microsoft Face API. However, the other commercial facial verification 

algorithm provider, AWS Rekognition, requires a minimum template of 50 pixels × 50 pixels. 

In order to enable stronger comparisons between multiple providers for this case study, the 

author strongly believe that both commercial facial verification algorithm providers should be 

assessed with the same facial images, as such any templates that failed to meet the more stringent 

(i.e., 50 pixels × 50 pixels) of these requirements was eliminated from the dataset used for 

subsequent consideration. This yielded a total of  11,075 remaining templates. 

Subject Template Selection 

After undergoing the procedure for sanitizing and ensuring consistency and agreement between 

subject templates above, the dataset provides a minimum of 4 image templates per subject, but 

imposes no upper bound on the number of templates for each subject. A plain reading of the 

documentation for the IJB-C does not outline a rationale or provide a justification for their 

choice of having a minimum of four image templates per subject. As explained earlier and as 

general rule, the greater the number of templates provided for a subject the better one can model 

how well a specific facial verification algorithm performs an individual subject. However, due to 

the fixed limitations of this dataset, each additional template required per subject reduces the 

number of subjects available for analysis. As such the author proceeds in a brief exploration of 

statistical power efficiency for the IJB-C, to evaluate if the same minimum template size is 

appropriate for this comparison protocol. Considering, each subject (𝑠𝑖) in the dataset has (𝑛𝑖) 

templates, then it is trivial to compute the number of subjects who have at least 𝑗 templates 

({𝑠𝑖|𝑛𝑖 > 𝑗, ∀𝑖}). If this is conducted for each possible value of 𝑗, a curve can be drawn showing 

how many subjects can be analyzed under these constraints. This analysis can be repeated for 

each of the subject presentation covariates under investigation to yield a more detailed view of 

the dataset, as evidenced in FIGURE 5, below.  
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FIGURE 5 A log-scale histogram of the number of templates each subject has in the dataset after undergoing 

the collection methodology, coded by subject skin tone presentation.  

Due to the nature of the dataset, there is no inflection point where the dataset loses a number of 

subjects. Therefore, the author ensures to select a minimum required number of templates (𝑗) per 

subject to maintain a minimum number of subjects in each of the six labelled skin tone 

classifications to ensure robust statistical power in the calculation for interclass bias. The author 

decided to require that at least 30 subjects, as some of the assumptions which underpin the 

desired statistical analyses, based on the Central Limit theorem fall apart with fewer subjects 

(Hogg et al. 2015). It’s noteworthy to point out that the IJB-C dataset has significantly more light 

skinned subjects (i.e., the proportion of light skinned subjects in the IJB-C is 79.6%) than dark 

skinned subjects, and the subjects are not evenly distributed amongst the six classifications. 

Furthermore, after removing templates that did not meet the minimum face size of 

50 pixels × 50 pixels, as established earlier, the problem is exacerbated. With this requirement 

it was determined that for the interclass bias measure for the six (6) class skin tone classification 

schema used by the IJB-C no more than 5 templates could be required per subject. Given these 

constraints, there seemed little benefit to introduce stricter standards than those initially set by 

the IJB-C, that is to say the author believes the reduction in the number of subjects did not seem 

commensurate with the marginal benefit of one additional template per remaining subject. As 

such, any subjects who had fewer than 4 image templates were eliminated from the sample (𝑛 =

2,311).  

Generating the Comparison Protocol 

The protocol used seeks to compare facial imagery from two images to verify whether or not 

they are the same person. In other words, to compare faces as may be done in an access control 

type scenario. This section specifies the approach used for generating the test protocol. The 
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protocol consists of creating a series of genuine comparisons between two facial images of the 

same person, for submission to a commercial facial verification algorithm provider. 

Following these criteria, a set of four images was created for each subject by taking a simple 

random sample without replacement from all the still imagery available for that subject. 

Therefore, the selected set may include some of the highest or lowest quality pieces of media for 

that subject. The author believes that this random selection without replacement to generate a 

fixed set size for a subject, mirrors the random decisions exhibited by the original media 

acquisition process for the IJB-C that yielded some subjects that only had four still images that 

met the inclusion criteria established earlier. Finally, the collection process yields a dataset with 

1,203 subjects and a total of 4,812 templates, with each subject guaranteed to have 4 image 

templates (“the dataset”).  

The comparison protocol and its list of comparisons and subject templates were submitted to 

commercial facial verification algorithms: Microsoft Face API and AWS Rekognition for 

evaluation. A total of 14, 436 comparisons were submitted to each algorithm. Importantly, 

Microsoft Face API provides end-users with a choice of three detection models (i.e., 

detection_01, detection_02, detection_03), used to detect faces in a submitted image, and four 

recognition models (i.e., recognition_01, recognition_02, recognition_03, recognition_04), 

used to extract face features to facilitate comparisons. These models are continually supported by 

Microsoft to ensure backwards compatibility, and if an end-user does not specify otherwise, they 

default to detection_01 and recognition_01. For each comparison, Microsoft Face API reported 

a confidence score between 0 to 1 representing the algorithm’s “confidence of whether two faces 

belong to the same person”; additionally, each comparison also reported a binary state that 

represented if the two faces belong to the same person, which was set to report true if the 

confidence score was greater that 0.5 (Microsoft n.d.). Similarly, AWS Rekognition reported a 

similarity score between 0 and 100 representing a “statistical measure of how likely two faces in 

an image are the same person, when analyzed by the algorithm” (Amazon Web Services, Inc 

n.d.; Amazon Web Services, Inc. n.d.). AWS recommends a 99% threshold for the similarity 

score in end-user use cases where highly accurate face similarity matches are important.  

Failure to Extract Features 

During the comparison protocol, some facial verification algorithms may fail to convert facial 

imagery to a template. The author adopts NIST’s treatment of these failed templates, where any 

comparison that involves an image for which a failure to extract occurred as producing a zero 

similarity score (Grother et al. 2019).  
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Commercial Facial Verification Algorithms Audit Findings 

As an initial pass, Microsoft Face API, under its default configuration of detection_01 and 

recognition_01, accepted 75% of the comparisons at its recommended confidence score 

threshold of 0.5; and AWS Rekognition accepted 50% of the comparisons at its recommended 

similarity score threshold of 99%. For simplicity in making comparisons between the two 

commercial facial verification algorithm providers, the author has scaled the AWS Rekognition 

similarity score to a value between 0 and 1. For the remainder of this dissertation, the author 

uses “confidence score” to refer to the Microsoft Face API reported confidence scores and AWS 

Rekognition similarity score. 

IJB-C Six Skin Tone Audit of Commercial Facial Verification Algorithms 

A total of 14, 436 comparisons were submitted to each algorithm for scoring, yielding 14, 436 

confidence scores for each of the commercial facial verification algorithms: (a) Microsoft Face 

API  under its default configuration of detection_01 and recognition_01 released in 2017, (b) 

Microsoft Face API  with a configuration of detection_01 and recognition_02, (b) Microsoft 

Face API  with a configuration of detection_01 and recognition_03, (c) Microsoft Face API  

with a configuration of detection_01 and recognition_04, (d) Microsoft Face API  with a 

configuration of detection_02 and recognition_01, (e) Microsoft Face API  with a configuration 

of detection_02 and recognition_02 released in 2019, (f) Microsoft Face API  with a 

configuration of detection_02 and recognition_03 released in 2020, (h) Microsoft Face API  

with a configuration of detection_02 and recognition_04, (i) Microsoft Face API  with a 

configuration of detection_03 and recognition_01, (j) Microsoft Face API  with a configuration 

of detection_03 and recognition_02, (k) Microsoft Face API  with a configuration of 

detection_03 and recognition_03, (l) Microsoft Face API  with its latest released a 

configuration of detection_03 and recognition_04 released in 2021, and (m) AWS Rekognition. 

For each of these commercial facial verification algorithms, the confidence scores reported were 

partitioned into six skin tone classifications as defined by the IJB-C skin tone classification 

schema. 

True Accept Rates 

Subsequently, confidence bounds for the true accept rate (“TAR”), calculated from the fraction 

of genuine comparisons that correctly exceed the threshold, for each of six skin tone 

classifications as defined by the IJB-C skin tone classification schema, using the bootstrap 

method. The author set 𝛼 = 10% for the two-sided confidence interval, 𝛼 was selected based on 

the expected statistical power from the aforementioned asymptotic relative efficiency adjustment 

to the Mann-Whitney method for determining sample size. It has been shown that for this 

significance level that a minimum of 599 bootstrap resamples must be conducted (Davidson and 

MacKinnon 2000; Wilcox 2010), as computational power and resources were freely available, 
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the author conducted 9999 resamples in keeping with the default choice for the statistical 

software package used to generate the resamples (Pedregosa et al. 2011). Using these resampled 

confidence scores, the threshold is varied across the entire domain of the confidence scores to 

plot the TAR and the confidence bounds for the facial verification algorithms performance for 

each of the six skin tone classifications. FIGURE 6, FIGURE 9, FIGURE 12, FIGURE 15, FIGURE 

18, FIGURE 21, FIGURE 24, FIGURE 27, FIGURE 30, FIGURE 33, FIGURE 36, FIGURE 39, and 

FIGURE 42 plot the TAR and the corresponding confidence score threshold to achieve it under 

the thirteen commercial facial verification algorithms. FIGURE 7, FIGURE 10, FIGURE 13, 

FIGURE 16, FIGURE 19, FIGURE 22, FIGURE 25, FIGURE 28, FIGURE 31, FIGURE 34, FIGURE 

37, FIGURE 40, and FIGURE 43 isolate the TAR for light skinned persons, collectively Skin 

Tone I (Light Pink), Skin Tone II (Light Yellow), and Skin Tone III (Medium Pink / Brown), 

and the corresponding confidence score threshold to achieve it under the thirteen commercial 

facial verification algorithms. FIGURE 8, FIGURE 11, FIGURE 14, FIGURE 17, FIGURE 20, 

FIGURE 23, FIGURE 26, FIGURE 29, FIGURE 32, FIGURE 35, FIGURE 38, FIGURE 41, and 

FIGURE 44 isolate the TAR for dark skinned persons, collectively Skin Tone IV 

(Medium Yellow / Brown), Skin Tone V (Medium-Dark Brown), and Skin Tone VI 

(Dark Brown), and the corresponding confidence score threshold to achieve it under the thirteen 

commercial facial verification algorithms. 
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Microsoft Face API, Released 2017 

 

FIGURE 6 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API under its default configuration 

of detection_01 and recognition_01, released in 2017, for the six skin tone classifications as defined by the IJB-C skin tone classification schema. 
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Microsoft Face API, Released 2017 

 

FIGURE 7 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API under its default configuration of detection_01 and recognition_01, released in 2017, 

for the three light skinned skin tone classifications, collectively Skin Tone I (Light Pink), Skin Tone II 

(Light Yellow), and Skin Tone III (Medium Pink / Brown), using the IJB-C skin tone classification 

schema. 

 

FIGURE 8 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API under its default configuration of detection_01 and recognition_01, released in 2017, 

for the three dark skinned skin tone classifications, collectively Skin Tone IV (Medium Yellow / Brown), 

Skin Tone V (Medium-Dark Brown), and Skin Tone VI (Dark Brown), using the IJB-C skin tone 

classification schema.  
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Microsoft Face API with a configuration of detection_01 and recognition_02 

 

FIGURE 9 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API with a configuration of 

detection_01 and recognition_02, for the six skin tone classifications as defined by the IJB-C skin tone classification schema.
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Microsoft Face API with a configuration of detection_01 and recognition_02 

 

FIGURE 10 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API with a configuration of detection_01 and recognition_02, for the three light skinned 

skin tone classifications, collectively Skin Tone I (Light Pink), Skin Tone II (Light Yellow), and Skin Tone 

III (Medium Pink / Brown), using the IJB-C skin tone classification schema. 

 

FIGURE 11 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API with a configuration of detection_01 and recognition_02, for the three dark skinned 

skin tone classifications, collectively Skin Tone IV (Medium Yellow / Brown), Skin Tone V 

(Medium-Dark Brown), and Skin Tone VI (Dark Brown), using the IJB-C skin tone classification schema. 
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Microsoft Face API with a configuration of detection_01 and recognition_03 

 

FIGURE 12 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API with a configuration of 

detection_01 and recognition_03, for the six skin tone classifications as defined by the IJB-C skin tone classification schema. 
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Microsoft Face API with a configuration of detection_01 and recognition_03 

 

FIGURE 13 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API with a configuration of detection_01 and recognition_03, for the three light skinned 

skin tone classifications, collectively Skin Tone I (Light Pink), Skin Tone II (Light Yellow), and Skin Tone 

III (Medium Pink / Brown), using the IJB-C skin tone classification schema. 

 

FIGURE 14 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API with a configuration of detection_01 and recognition_03, for the three dark skinned 

skin tone classifications, collectively Skin Tone IV (Medium Yellow / Brown), Skin Tone V 

(Medium-Dark Brown), and Skin Tone VI (Dark Brown), using the IJB-C skin tone classification schema. 



 57 

Microsoft Face API with a configuration of detection_01 and recognition_04 

 

FIGURE 15 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API with a configuration of 

detection_01 and recognition_04, for the six skin tone classifications as defined by the IJB-C skin tone classification schema. 
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Microsoft Face API with a configuration of detection_01 and recognition_04 

 

FIGURE 16 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API with a configuration of detection_01 and recognition_04, for the three light skinned 

skin tone classifications, collectively Skin Tone I (Light Pink), Skin Tone II (Light Yellow), and Skin Tone 

III (Medium Pink / Brown), using the IJB-C skin tone classification schema. 

 

FIGURE 17 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API with a configuration of detection_01 and recognition_04, for the three dark skinned 

skin tone classifications, collectively Skin Tone IV (Medium Yellow / Brown), Skin Tone V 

(Medium-Dark Brown), and Skin Tone VI (Dark Brown), using the IJB-C skin tone classification schema. 
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Microsoft Face API with a configuration of detection_02 and recognition_01 

 

FIGURE 18 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API with a configuration of 

detection_02 and recognition_01, for the six skin tone classifications as defined by the IJB-C skin tone classification schema. 
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Microsoft Face API with a configuration of detection_02 and recognition_01 

 

FIGURE 19 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API with a configuration of detection_02 and recognition_01, for the three light skinned 

skin tone classifications, collectively Skin Tone I (Light Pink), Skin Tone II (Light Yellow), and Skin Tone 

III (Medium Pink / Brown), using the IJB-C skin tone classification schema. 

 

FIGURE 20 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API with a configuration of detection_02 and recognition_01, for the three dark skinned 

skin tone classifications, collectively Skin Tone IV (Medium Yellow / Brown), Skin Tone V 

(Medium-Dark Brown), and Skin Tone VI (Dark Brown), using the IJB-C skin tone classification schema. 
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Microsoft Face API, Released 2019 

 

FIGURE 21 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API under its default 

configuration of detection_02 and recognition_02, released in 2019, for the six skin tone classifications as defined by the IJB-C skin tone classification 

schema. 
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Microsoft Face API, Released 2019 

 

FIGURE 22 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API under its default configuration of detection_02 and recognition_02, released in 2019, 

for the three light skinned skin tone classifications, collectively Skin Tone I (Light Pink), Skin Tone II 

(Light Yellow), and Skin Tone III (Medium Pink / Brown), using the IJB-C skin tone classification 

schema. 

 

FIGURE 23 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API under its default configuration of detection_02 and recognition_02, released in 2019, 

for the three dark skinned skin tone classifications, collectively Skin Tone IV (Medium Yellow / Brown), 

Skin Tone V (Medium-Dark Brown), and Skin Tone VI (Dark Brown), using the IJB-C skin tone 

classification schema. 
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Microsoft Face API, Released 2020 

 

FIGURE 24 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API under its default 

configuration of detection_02 and recognition_03, released in 2020, for the six skin tone classifications as defined by the IJB-C skin tone classification 

schema. 
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Microsoft Face API, Released 2020 

 

FIGURE 25 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API under its default configuration of detection_02 and recognition_03, released in 2020, 

for the three light skinned skin tone classifications, collectively Skin Tone I (Light Pink), Skin Tone II 

(Light Yellow), and Skin Tone III (Medium Pink / Brown), using the IJB-C skin tone classification 

schema. 

 

FIGURE 26 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API under its default configuration of detection_02 and recognition_03, released in 2020, 

for the three dark skinned skin tone classifications, collectively Skin Tone IV (Medium Yellow / Brown), 

Skin Tone V (Medium-Dark Brown), and Skin Tone VI (Dark Brown), using the IJB-C skin tone 

classification schema. 
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Microsoft Face API with a configuration of detection_02 and recognition_04 

 

FIGURE 27 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API with a configuration of 

detection_02 and recognition_04, for the six skin tone classifications as defined by the IJB-C skin tone classification schema. 
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Microsoft Face API with a configuration of detection_02 and recognition_04 

 

FIGURE 28 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API with a configuration of detection_02 and recognition_04, for the three light skinned 

skin tone classifications, collectively Skin Tone I (Light Pink), Skin Tone II (Light Yellow), and Skin Tone 

III (Medium Pink / Brown), using the IJB-C skin tone classification schema. 

 

FIGURE 29 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API with a configuration of detection_02 and recognition_04, for the three dark skinned 

skin tone classifications, collectively Skin Tone IV (Medium Yellow / Brown), Skin Tone V 

(Medium-Dark Brown), and Skin Tone VI (Dark Brown), using the IJB-C skin tone classification schema. 
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Microsoft Face API with a configuration of detection_03 and recognition_01 

 

FIGURE 30 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API with a configuration of 

detection_03 and recognition_01, for the six skin tone classifications as defined by the IJB-C skin tone classification schema. 
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Microsoft Face API with a configuration of detection_03 and recognition_01 

 

FIGURE 31 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API with a configuration of detection_03 and recognition_01, for the three light skinned 

skin tone classifications, collectively Skin Tone I (Light Pink), Skin Tone II (Light Yellow), and Skin Tone 

III (Medium Pink / Brown), using the IJB-C skin tone classification schema. 

 

FIGURE 32 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API with a configuration of detection_03 and recognition_01, for the three dark skinned 

skin tone classifications, collectively Skin Tone IV (Medium Yellow / Brown), Skin Tone V 

(Medium-Dark Brown), and Skin Tone VI (Dark Brown), using the IJB-C skin tone classification schema. 



 69 

Microsoft Face API with a configuration of detection_03 and recognition_02 

 

FIGURE 33 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API with a configuration of 

detection_03 and recognition_02, for the six skin tone classifications as defined by the IJB-C skin tone classification schema. 
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Microsoft Face API with a configuration of detection_03 and recognition_02 

 

FIGURE 34 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API with a configuration of detection_03 and recognition_02, for the three light skinned 

skin tone classifications, collectively Skin Tone I (Light Pink), Skin Tone II (Light Yellow), and Skin Tone 

III (Medium Pink / Brown), using the IJB-C skin tone classification schema. 

 

FIGURE 35 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API with a configuration of detection_03 and recognition_02, for the three dark skinned 

skin tone classifications, collectively Skin Tone IV (Medium Yellow / Brown), Skin Tone V 

(Medium-Dark Brown), and Skin Tone VI (Dark Brown), using the IJB-C skin tone classification schema. 
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Microsoft Face API with a configuration of detection_03 and recognition_03 

 

FIGURE 36 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API with a configuration of 

detection_03 and recognition_03, for the six skin tone classifications as defined by the IJB-C skin tone classification schema. 
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Microsoft Face API with a configuration of detection_03 and recognition_03 

 

FIGURE 37 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API with a configuration of detection_03 and recognition_03, for the three light skinned 

skin tone classifications, collectively Skin Tone I (Light Pink), Skin Tone II (Light Yellow), and Skin Tone 

III (Medium Pink / Brown), using the IJB-C skin tone classification schema. 

 

FIGURE 38 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API with a configuration of detection_03 and recognition_03, for the three dark skinned 

skin tone classifications, collectively Skin Tone IV (Medium Yellow / Brown), Skin Tone V 

(Medium-Dark Brown), and Skin Tone VI (Dark Brown), using the IJB-C skin tone classification schema. 
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Microsoft Face API, Released 2021 

 

FIGURE 39 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API under its default 

configuration of detection_03 and recognition_04, released in 2021, for the six skin tone classifications as defined by the IJB-C skin tone classification 

schema. 
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Microsoft Face API, Released 2021 

 

FIGURE 40 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API under its default configuration of detection_03 and recognition_04, released in 2021, 

for the three light skinned skin tone classifications, collectively Skin Tone I (Light Pink), Skin Tone II 

(Light Yellow), and Skin Tone III (Medium Pink / Brown), using the IJB-C skin tone classification 

schema. 

 

FIGURE 41 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

Microsoft Face API under its default configuration of detection_03 and recognition_04, released in 2021, 

for the three dark skinned skin tone classifications, collectively Skin Tone IV (Medium Yellow / Brown), 

Skin Tone V (Medium-Dark Brown), and Skin Tone VI (Dark Brown), using the IJB-C skin tone 

classification schema. 
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AWS Rekognition, As of Fall 2021 

 

FIGURE 42 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under AWS Rekognition for the six skin tone 

classifications as defined by the IJB-C skin tone classification schema. 



 76 

AWS Rekognition, As of Fall 2021 

 

FIGURE 43 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

AWS Rekognition for the three light skinned skin tone classifications, collectively Skin Tone I (Light Pink), 

Skin Tone II (Light Yellow), and Skin Tone III (Medium Pink / Brown), using the IJB-C skin tone 

classification schema. 

 

FIGURE 44 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under 

AWS Rekognition, for the three dark skinned skin tone classifications, collectively Skin Tone IV 

(Medium Yellow / Brown), Skin Tone V (Medium-Dark Brown), and Skin Tone VI (Dark Brown), using 

the IJB-C skin tone classification schema. 
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Difference in Medians from Median True Accept Rate 

These insights can be furthered, through calculation of a score detailing the interclass bias 

between one of the six skin tone classifications and the overall performance. Following the 

procedure outline earlier, the author adopt an overall performance TAR curve that assumes that 

all classes should perform equally. Therefore, for each of the bootstrap samples generated, the 

overall performance curve was calculated for that resample as the mean of the six classes 

thresholds at the TAR; and the difference between each skin tone class and the overall 

performance curve was measured. FIGURE 45 ,FIGURE 48, FIGURE 51, FIGURE 54, FIGURE 

57, FIGURE 60, FIGURE 63, FIGURE 66, FIGURE 69, FIGURE 72, FIGURE 75, FIGURE 78, and 

FIGURE 81 plot the difference between the mean overall performance TAR and the 

corresponding confidence score threshold to achieve it under the thirteen commercial facial 

verification algorithms, to provide a clearer understanding of the interclass bias for each of the 

six skin tone classifications. FIGURE 46, FIGURE 49, FIGURE 52, FIGURE 55, FIGURE 58, 

FIGURE 61, FIGURE 64, FIGURE 67, FIGURE 70, FIGURE 73, FIGURE 76, FIGURE 79, and 

FIGURE 82 isolate the difference between the mean overall performance TAR for light skinned 

persons, collectively Skin Tone I (Light Pink), Skin Tone II (Light Yellow), and Skin Tone III 

(Medium Pink / Brown), and the corresponding confidence score threshold to achieve it under 

the thirteen commercial facial verification algorithms. FIGURE 47, FIGURE 50, FIGURE 53, 

FIGURE 56, FIGURE 59, FIGURE 62, FIGURE 65, FIGURE 68, FIGURE 71, FIGURE 74, FIGURE 

77, FIGURE 80, and FIGURE 83 and isolate the difference between the mean overall 

performance TAR for dark skinned persons, collectively Skin Tone IV 

(Medium Yellow / Brown), Skin Tone V (Medium-Dark Brown), and Skin Tone VI 

(Dark Brown), and the corresponding confidence score threshold to achieve it under the thirteen 

commercial facial verification algorithms. 
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Microsoft Face API, Released 2017 

 

FIGURE 45 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under Microsoft Face API under its default configuration of detection_01 and recognition_01, released in 2017, for the six skin tone classifications 

as defined by the IJB-C skin tone classification schema. 
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Microsoft Face API, Released 2017 

 

FIGURE 46 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API under its default 

configuration of detection_01 and recognition_01, released in 2017, for the three light skinned skin tone 

classifications, collectively Skin Tone I (Light Pink), Skin Tone II (Light Yellow), and Skin Tone III 

(Medium Pink / Brown), using the IJB-C skin tone classification schema. 

 

FIGURE 47 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API under its default 

configuration of detection_01 and recognition_01, released in 2017, for the three dark skinned skin tone 

classifications, collectively Skin Tone IV (Medium Yellow / Brown), Skin Tone V (Medium-Dark Brown), 

and Skin Tone VI (Dark Brown), using the IJB-C skin tone classification schema. 
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Microsoft Face API with a configuration of detection_01 and recognition_02 

 

FIGURE 48 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under Microsoft Face API with a configuration of detection_01 and recognition_02, for the six skin tone classifications as defined by the IJB-C skin 

tone classification schema. 
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Microsoft Face API with a configuration of detection_01 and recognition_02 

 

FIGURE 49 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API with a configuration of 

detection_01 and recognition_02, for the three light skinned skin tone classifications, collectively Skin 

Tone I (Light Pink), Skin Tone II (Light Yellow), and Skin Tone III (Medium Pink / Brown), using the 

IJB-C skin tone classification schema. 

 

FIGURE 50 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API with a configuration of 

detection_01 and recognition_02, for the three dark skinned skin tone classifications, collectively Skin 

Tone IV (Medium Yellow / Brown), Skin Tone V (Medium-Dark Brown), and Skin Tone VI 

(Dark Brown), using the IJB-C skin tone classification schema.  
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Microsoft Face API with a configuration of detection_01 and recognition_03 

 

FIGURE 51 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under Microsoft Face API with a configuration of detection_01 and recognition_03, for the six skin tone classifications as defined by the IJB-C skin 

tone classification schema. 
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Microsoft Face API with a configuration of detection_01 and recognition_03 

 

FIGURE 52 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API with a configuration of 

detection_01 and recognition_03, for the three light skinned skin tone classifications, collectively Skin 

Tone I (Light Pink), Skin Tone II (Light Yellow), and Skin Tone III (Medium Pink / Brown), using the 

IJB-C skin tone classification schema. 

 

FIGURE 53 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API with a configuration of 

detection_01 and recognition_03, for the three dark skinned skin tone classifications, collectively Skin 

Tone IV (Medium Yellow / Brown), Skin Tone V (Medium-Dark Brown), and Skin Tone VI 

(Dark Brown), using the IJB-C skin tone classification schema.  
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Microsoft Face API with a configuration of detection_01 and recognition_04 

 

FIGURE 54 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under Microsoft Face API with a configuration of detection_01 and recognition_04, for the six skin tone classifications as defined by the IJB-C skin 

tone classification schema. 
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Microsoft Face API with a configuration of detection_01 and recognition_04 

 

FIGURE 55 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API with a configuration of 

detection_01 and recognition_04, for the three light skinned skin tone classifications, collectively Skin 

Tone I (Light Pink), Skin Tone II (Light Yellow), and Skin Tone III (Medium Pink / Brown), using the 

IJB-C skin tone classification schema. 

 

FIGURE 56 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API with a configuration of 

detection_01 and recognition_04, for the three dark skinned skin tone classifications, collectively Skin 

Tone IV (Medium Yellow / Brown), Skin Tone V (Medium-Dark Brown), and Skin Tone VI 

(Dark Brown), using the IJB-C skin tone classification schema.  
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Microsoft Face API with a configuration of detection_02 and recognition_01 

 

FIGURE 57 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under Microsoft Face API with a configuration of detection_02 and recognition_01, for the six skin tone classifications as defined by the IJB-C skin 

tone classification schema. 
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Microsoft Face API with a configuration of detection_02 and recognition_01 

 

FIGURE 58 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API with a configuration of 

detection_02 and recognition_01, for the three light skinned skin tone classifications, collectively Skin 

Tone I (Light Pink), Skin Tone II (Light Yellow), and Skin Tone III (Medium Pink / Brown), using the 

IJB-C skin tone classification schema. 

 

FIGURE 59 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API with a configuration of 

detection_02 and recognition_01, for the three dark skinned skin tone classifications, collectively Skin 

Tone IV (Medium Yellow / Brown), Skin Tone V (Medium-Dark Brown), and Skin Tone VI 

(Dark Brown), using the IJB-C skin tone classification schema.  
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Microsoft Face API, Released 2019 

 

FIGURE 60 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under Microsoft Face API under its default configuration of detection_02 and recognition_02, released in 2019, for the six skin tone classifications 

as defined by the IJB-C skin tone classification schema. 
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Microsoft Face API, Released 2019 

 

FIGURE 61 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API under its default 

configuration of detection_02 and recognition_02, released in 2019, for the three light skinned skin tone 

classifications, collectively Skin Tone I (Light Pink), Skin Tone II (Light Yellow), and Skin Tone III 

(Medium Pink / Brown), using the IJB-C skin tone classification schema. 

 

FIGURE 62 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API under its default 

configuration of detection_02 and recognition_02, released in 2019, for the three dark skinned skin tone 

classifications, collectively Skin Tone IV (Medium Yellow / Brown), Skin Tone V (Medium-Dark Brown), 

and Skin Tone VI (Dark Brown), using the IJB-C skin tone classification schema.  
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Microsoft Face API, Released 2020 

 

FIGURE 63 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under Microsoft Face API under its default configuration of detection_02 and recognition_03, released in 2020, for the six skin tone classifications 

as defined by the IJB-C skin tone classification schema. 
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Microsoft Face API, Released 2020 

 

FIGURE 64 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API under its default 

configuration of detection_02 and recognition_03, released in 2020, for the three light skinned skin tone 

classifications, collectively Skin Tone I (Light Pink), Skin Tone II (Light Yellow), and Skin Tone III 

(Medium Pink / Brown), using the IJB-C skin tone classification schema. 

 

FIGURE 65 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API under its default 

configuration of detection_02 and recognition_03, released in 2020, for the three dark skinned skin tone 

classifications, collectively Skin Tone IV (Medium Yellow / Brown), Skin Tone V (Medium-Dark Brown), 

and Skin Tone VI (Dark Brown), using the IJB-C skin tone classification schema.  
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Microsoft Face API with a configuration of detection_02 and recognition_04 

 

FIGURE 66 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under Microsoft Face API with a configuration of detection_02 and recognition_04, for the six skin tone classifications as defined by the IJB-C skin 

tone classification schema. 
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Microsoft Face API with a configuration of detection_02 and recognition_04 

 

FIGURE 67 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API with a configuration of 

detection_02 and recognition_04, for the three light skinned skin tone classifications, collectively Skin 

Tone I (Light Pink), Skin Tone II (Light Yellow), and Skin Tone III (Medium Pink / Brown), using the 

IJB-C skin tone classification schema. 

 

FIGURE 68 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API with a configuration of 

detection_02 and recognition_04, for the three dark skinned skin tone classifications, collectively Skin 

Tone IV (Medium Yellow / Brown), Skin Tone V (Medium-Dark Brown), and Skin Tone VI 

(Dark Brown), using the IJB-C skin tone classification schema.  
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Microsoft Face API with a configuration of detection_03 and recognition_01 

 

FIGURE 69 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under Microsoft Face API with a configuration of detection_03 and recognition_01, for the six skin tone classifications as defined by the IJB-C skin 

tone classification schema. 
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Microsoft Face API with a configuration of detection_03 and recognition_01 

 

FIGURE 70 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API with a configuration of 

detection_03 and recognition_01, for the three light skinned skin tone classifications, collectively Skin 

Tone I (Light Pink), Skin Tone II (Light Yellow), and Skin Tone III (Medium Pink / Brown), using the 

IJB-C skin tone classification schema. 

 

FIGURE 71 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API with a configuration of 

detection_03 and recognition_01, for the three dark skinned skin tone classifications, collectively Skin 

Tone IV (Medium Yellow / Brown), Skin Tone V (Medium-Dark Brown), and Skin Tone VI 

(Dark Brown), using the IJB-C skin tone classification schema.  
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Microsoft Face API with a configuration of detection_03 and recognition_02 

 

FIGURE 72 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under Microsoft Face API with a configuration of detection_03 and recognition_02, for the six skin tone classifications as defined by the IJB-C skin 

tone classification schema. 
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Microsoft Face API with a configuration of detection_03 and recognition_02 

 

FIGURE 73 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API with a configuration of 

detection_03 and recognition_02, for the three light skinned skin tone classifications, collectively Skin 

Tone I (Light Pink), Skin Tone II (Light Yellow), and Skin Tone III (Medium Pink / Brown), using the 

IJB-C skin tone classification schema. 

 

FIGURE 74 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API with a configuration of 

detection_03 and recognition_02, for the three dark skinned skin tone classifications, collectively Skin 

Tone IV (Medium Yellow / Brown), Skin Tone V (Medium-Dark Brown), and Skin Tone VI 

(Dark Brown), using the IJB-C skin tone classification schema.  
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Microsoft Face API with a configuration of detection_03 and recognition_03 

 

FIGURE 75 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under Microsoft Face API with a configuration of detection_03 and recognition_03, for the six skin tone classifications as defined by the IJB-C skin 

tone classification schema. 
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Microsoft Face API with a configuration of detection_03 and recognition_03 

 

FIGURE 76 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API with a configuration of 

detection_03 and recognition_03, for the three light skinned skin tone classifications, collectively Skin 

Tone I (Light Pink), Skin Tone II (Light Yellow), and Skin Tone III (Medium Pink / Brown), using the 

IJB-C skin tone classification schema. 

 

FIGURE 77 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API with a configuration of 

detection_03 and recognition_03, for the three dark skinned skin tone classifications, collectively Skin 

Tone IV (Medium Yellow / Brown), Skin Tone V (Medium-Dark Brown), and Skin Tone VI 

(Dark Brown), using the IJB-C skin tone classification schema.  
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Microsoft Face API, Released 2021 

 

FIGURE 78 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under Microsoft Face API under its default configuration of detection_03 and recognition_04, released in 2021, for the six skin tone classifications 

as defined by the IJB-C skin tone classification schema. 
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Microsoft Face API, Released 2021 

 

FIGURE 79 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API under its default 

configuration of detection_03 and recognition_04, released in 2021, for the three light skinned skin tone 

classifications, collectively Skin Tone I (Light Pink), Skin Tone II (Light Yellow), and Skin Tone III 

(Medium Pink / Brown), using the IJB-C skin tone classification schema. 

 

FIGURE 80 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under Microsoft Face API under its default 

configuration of detection_03 and recognition_04, released in 2021, for the three dark skinned skin tone 

classifications, collectively Skin Tone IV (Medium Yellow / Brown), Skin Tone V (Medium-Dark Brown), 

and Skin Tone VI (Dark Brown), using the IJB-C skin tone classification schema.  
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AWS Rekognition, As of Fall 2021 

 

FIGURE 81 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under AWS Rekognition for the six skin tone classifications as defined by the IJB-C skin tone classification schema. 
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AWS Rekognition, As of Fall 2021 

 

FIGURE 82 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under AWS Rekognition for the three light skinned 

skin tone classifications, collectively Skin Tone I (Light Pink), Skin Tone II (Light Yellow), and Skin Tone 

III (Medium Pink / Brown), using the IJB-C skin tone classification schema. 

 

FIGURE 83 The difference between the mean overall performance true accept rate (TAR) and each skin tone 

against the corresponding confidence score threshold under AWS Rekognition, for the three dark skinned 

skin tone classifications, collectively Skin Tone IV (Medium Yellow / Brown), Skin Tone V 

(Medium-Dark Brown), and Skin Tone VI (Dark Brown), using the IJB-C skin tone classification schema. 
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Distance-based Variance Interclass Bias Metric 

Subsequently it is important to transform these graphical understandings of interclass bias into 

the 𝑑𝑙2
 measure of interclass bias between a class and the overall performance. Table 44-44 relay 

the maximum 𝑑𝑙2
 measure for each of the six skin tone classifications for the performance of 

Microsoft Face API under all of its possible configurations, and AWS Rekognition. The tables 

encode the configuration of the Microsoft Face API as DXX-RYY where XX represents the 

detection model detection_XX and YY represents the recognition model recognition_YY. For 

example, D01-R02 would indicate Microsoft Face API with a configuration of detection_01 and 

recognition_02. 

 

TABLE 4 The maximum measure of interclass bias for each of the six skin tone classifications under 

Microsoft Face API with a configuration of detection_01, detection_02, detection_03 each paired with 

recognition_01, using the IJB-C skin tone classification schema. 

Class 

Microsoft 

Face API 

D01-R01 

Microsoft 

Face API 

D02-R01 

Microsoft 

Face API 

D03-R01 

Skin Tone I (Light Pink) 2.669012 3.454001 2.599026 
Skin Tone II (Light Yellow) 1.97817 2.307768 1.933965 

Skin Tone III (Medium Pink / Brown) 1.207779 1.626414 1.264912 
Skin Tone IV (Medium Yellow / Brown) 4.009657 3.495838 4.13781 

Skin Tone V (Medium-Dark Brown) 1.892936 3.004449 1.807422 
Skin Tone VI (Dark Brown) 2.391841 2.83183 2.326273 

Total 4.009657 3.495838 4.13781 
 

TABLE 5 The maximum measure of interclass bias for each of the six skin tone classifications under 

Microsoft Face API with a configuration of detection_01, detection_02, detection_03 each paired with 

recognition_02, using the IJB-C skin tone classification schema. 

Class 

Microsoft 

Face API 

D01-R02 

Microsoft 

Face API 

D02-R02 

Microsoft 

Face API 

D03-R02 

Skin Tone I (Light Pink) 0.843805 1.528638 0.817172 
Skin Tone II (Light Yellow) 1.899399 2.366992 1.777788 

Skin Tone III (Medium Pink / Brown) 1.181191 2.048876 1.16398 
Skin Tone IV (Medium Yellow / Brown) 3.349543 3.606959 3.128856 

Skin Tone V (Medium-Dark Brown) 2.079491 3.21583 2.134085 
Skin Tone VI (Dark Brown) 3.882438 5.540444 4.303409 

Total 3.882438 5.540444 4.303409 
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TABLE 6 The maximum measure of interclass bias for each of the six skin tone classifications under 

Microsoft Face API with a configuration of detection_01, detection_02, detection_03 each paired with 

recognition_03, using the IJB-C skin tone classification schema. 

Class 

Microsoft 

Face API 

D01-R03 

Microsoft 

Face API 

D02-R03 

Microsoft 

Face API 

D03-R03 

Skin Tone I (Light Pink) 0.971448 1.756607 0.855982 
Skin Tone II (Light Yellow) 1.441749 1.723081 1.526481 

Skin Tone III (Medium Pink / Brown) 1.193055 1.374286 1.194568 
Skin Tone IV (Medium Yellow / Brown) 1.852326 2.074765 1.883101 

Skin Tone V (Medium-Dark Brown) 2.062876 2.6775 2.186757 
Skin Tone VI (Dark Brown) 3.020116 3.474086 3.09069 

Total 3.020116 3.474086 3.09069 
 

TABLE 7 The maximum measure of interclass bias for each of the six skin tone classifications under 

Microsoft Face API with a configuration of detection_01, detection_02, detection_03 each paired with 

recognition_04, using the IJB-C skin tone classification schema. 

Class 

Microsoft 

Face API 

D01-R04 

Microsoft 

Face API 

D02-R04 

Microsoft 

Face API 

D03-R04 

Skin Tone I (Light Pink) 0.9212 1.718912 0.846978 
Skin Tone II (Light Yellow) 1.530604 1.648383 1.590849 

Skin Tone III (Medium Pink / Brown) 1.208315 1.315521 1.29098 
Skin Tone IV (Medium Yellow / Brown) 2.06674 2.146795 2.134128 

Skin Tone V (Medium-Dark Brown) 2.069679 2.791353 2.222468 
Skin Tone VI (Dark Brown) 3.242087 3.629941 3.261147 

Total 3.242087 3.629941 3.261147 
 

TABLE 8 The maximum measure of interclass bias for each of the six skin tone classifications under AWS 

Rekognition, using the IJB-C skin tone classification schema. 

Class 

AWS 

Rekognition 

Skin Tone I (Light Pink) 1.08468 
Skin Tone II (Light Yellow) 3.007234 

Skin Tone III (Medium Pink / Brown) 2.396734 
Skin Tone IV (Medium Yellow / Brown) 4.972686 

Skin Tone V (Medium-Dark Brown) 2.186609 
Skin Tone VI (Dark Brown) 7.837107 

Total 7.837107 
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TABLE 9 The 90% two-sided confidence intervals (𝛼 = 10%) for the maximum measure of interclass bias for 

the binary masculine or feminine gender presentation classification schema under Microsoft Face API under 

all of its possible configurations, and AWS Rekognition. 

Class Lower Bound Upper Bound 

Microsoft Face API D01-D02 0.880488 4.009657 
Microsoft Face API D01-D02 0.283942 3.882438 
Microsoft Face API D01-D03 0.470357 3.020116 
Microsoft Face API D01-D04 0.50061 3.242087 
Microsoft Face API D02-D01 1.07061 3.495838 
Microsoft Face API D02-D02 0.514375 5.540444 
Microsoft Face API D02-D03 0.747604 3.474086 
Microsoft Face API D02-D04 0.711602 3.629941 
Microsoft Face API D03-D01 0.821633 4.13781 
Microsoft Face API D03-D02 0.317373 4.303409 
Microsoft Face API D03-D03 0.389303 3.09069 
Microsoft Face API D03-D04 0.429666 3.261147 

AWS Rekognition 0.230991 7.837107 
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IJB-C Gender Presentation Audit of Commercial Facial Verification Algorithms 

A total of 14, 436 comparisons were submitted to each algorithm for scoring, yielding 14, 436 

confidence scores for each of the commercial facial verification algorithms: (a) Microsoft Face 

API  under its default configuration of detectiosn_01 and recognition_01 released in 2017, (b) 

Microsoft Face API  with a configuration of detection_01 and recognition_02, (b) Microsoft 

Face API  with a configuration of detection_01 and recognition_03, (c) Microsoft Face API  

with a configuration of detection_01 and recognition_04, (d) Microsoft Face API  with a 

configuration of detection_02 and recognition_01, (e) Microsoft Face API  with a configuration 

of detection_02 and recognition_02 released in 2019, (f) Microsoft Face API  with a 

configuration of detection_02 and recognition_03 released in 2020, (h) Microsoft Face API  

with a configuration of detection_02 and recognition_04, (i) Microsoft Face API  with a 

configuration of detection_03 and recognition_01, (j) Microsoft Face API  with a configuration 

of detection_03 and recognition_02, (k) Microsoft Face API  with a configuration of 

detection_03 and recognition_03, (l) Microsoft Face API  with its latest released a 

configuration of detection_03 and recognition_04 released in 2021, and (m) AWS Rekognition. 

For each of these commercial facial verification algorithms, the confidence scores reported were 

partitioned into two gender presentation classifications as defined by the IJB-C classification 

schema. 

True Accept Rates 

Subsequently, confidence bounds for the true accept rate (“TAR”), calculated from the fraction 

of genuine comparisons that correctly exceed the threshold, for each of two gender presentation 

classifications, using the bootstrap method. The author set 𝛼 = 10% for the two-sided 

confidence interval, 𝛼 was selected based on the expected statistical power from the 

aforementioned asymptotic relative efficiency adjustment to the Mann-Whitney method for 

determining sample size. It has been shown that for this significance level that a minimum of 

599 bootstrap resamples must be conducted (Davidson and MacKinnon 2000; Wilcox 2010), as 

computational power and resources were freely available, the author conducted 9999 resamples 

in keeping with the default choice for the statistical software package used to generate the 

resamples (Pedregosa et al. 2011). Using these resampled confidence scores, the threshold is 

varied across the entire domain of the confidence scores to plot the TAR and the confidence 

bounds for the facial verification algorithms performance for each of the two gender presentation 

classifications. Figures 44-44 plot the TAR and the corresponding confidence score threshold to 

achieve it under the thirteen commercial facial verification algorithms. 
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Microsoft Face API, Released 2017 

 

FIGURE 84 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API under its default 

configuration of detection_01 and recognition_01, released in 2017, for the binary masculine or feminine gender presentation classification schema.  
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Microsoft Face API with a configuration of detection_01 and recognition_02 

 

FIGURE 85 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API with a configuration of 

detection_01 and recognition_02, for the binary masculine or feminine gender presentation classification schema. 
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Microsoft Face API with a configuration of detection_01 and recognition_03 

 

FIGURE 86 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API with a configuration of 

detection_01 and recognition_03, for the binary masculine or feminine gender presentation classification schema.  
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Microsoft Face API with a configuration of detection_01 and recognition_04 

 

FIGURE 87 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API with a configuration of 

detection_01 and recognition_04, for the binary masculine or feminine gender presentation classification schema.  
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Microsoft Face API with a configuration of detection_02 and recognition_01 

 

FIGURE 88 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API with a configuration of 

detection_02 and recognition_01, for the binary masculine or feminine gender presentation classification schema.  
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Microsoft Face API, Released 2019 

 

FIGURE 89 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API under its default 

configuration of detection_02 and recognition_02, released in 2019, for the binary masculine or feminine gender presentation classification schema.  
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Microsoft Face API, Released 2020 

 

FIGURE 90 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API under its default 

configuration of detection_02 and recognition_03, released in 2020, for the binary masculine or feminine gender presentation classification schema.  
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Microsoft Face API with a configuration of detection_02 and recognition_04 

 

FIGURE 91 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API with a configuration of 

detection_02 and recognition_04, for the binary masculine or feminine gender presentation classification schema.  
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Microsoft Face API with a configuration of detection_03 and recognition_01 

 

FIGURE 92 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API with a configuration of 

detection_03 and recognition_01, for the binary masculine or feminine gender presentation classification schema.  
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Microsoft Face API with a configuration of detection_03 and recognition_02 

 

FIGURE 93 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API with a configuration of 

detection_03 and recognition_02, for the binary masculine or feminine gender presentation classification schema.  
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Microsoft Face API with a configuration of detection_03 and recognition_03 

 

FIGURE 94 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API with a configuration of 

detection_03 and recognition_03, for the binary masculine or feminine gender presentation classification schema.  
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Microsoft Face API, Released 2021 

 

FIGURE 95 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under Microsoft Face API under its default 

configuration of detection_03 and recognition_04, released in 2021, for the binary masculine or feminine gender presentation classification schema.  
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AWS Rekognition, As of Fall 2021 

 

FIGURE 96 The true accept rate (TAR) and the corresponding confidence score threshold to achieve it under AWS Rekognition for the binary masculine or 

feminine gender presentation classification schema. 
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Difference in Medians from Median True Accept Rate 

These insights can be furthered, through calculation of a score detailing the interclass bias 

between the two gender presentation classifications. Following the procedure outline earlier, for 

each of the bootstrap samples generated, the difference between the two gender presentation 

classifications was measured. These difference in performance curves are shown Figures 44-44 

to provide a clearer understanding of the interclass bias for the two gender presentation 

classifications.  
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Microsoft Face API, Released 2017 

 

The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score threshold under 

Microsoft Face API under its default configuration of detection_01 and recognition_01, released in 2017, for the binary masculine or feminine gender 

presentation classification schema. 
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Microsoft Face API with a configuration of detection_01 and recognition_02 

 

FIGURE 97 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under Microsoft Face API with a configuration of detection_01 and recognition_02, for the binary masculine or feminine gender presentation 

classification schema.  
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Microsoft Face API with a configuration of detection_01 and recognition_03 

 

FIGURE 98 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under Microsoft Face API with a configuration of detection_01 and recognition_03, for the binary masculine or feminine gender presentation 

classification schema.  
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Microsoft Face API with a configuration of detection_01 and recognition_04 

 

FIGURE 99 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under Microsoft Face API with a configuration of detection_01 and recognition_04, for the binary masculine or feminine gender presentation 

classification schema.  
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Microsoft Face API with a configuration of detection_02 and recognition_01 

 

FIGURE 100 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under Microsoft Face API with a configuration of detection_02 and recognition_01, for the binary masculine or feminine gender presentation 

classification schema.  
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Microsoft Face API, Released 2019 

 

FIGURE 101 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under Microsoft Face API under its default configuration of detection_02 and recognition_02, released in 2019, for the binary masculine or 

feminine gender presentation classification schema.  
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Microsoft Face API, Released 2020 

 

FIGURE 102 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under Microsoft Face API under its default configuration of detection_02 and recognition_03, released in 2020, for the binary masculine or 

feminine gender presentation classification schema.  
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Microsoft Face API with a configuration of detection_02 and recognition_04 

 

FIGURE 103 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under Microsoft Face API with a configuration of detection_02 and recognition_04, for the binary masculine or feminine gender presentation 

classification schema.  
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Microsoft Face API with a configuration of detection_03 and recognition_01 

 

FIGURE 104 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under Microsoft Face API with a configuration of detection_03 and recognition_01, for the binary masculine or feminine gender presentation 

classification schema.  
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Microsoft Face API with a configuration of detection_03 and recognition_02 

 

FIGURE 105 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under Microsoft Face API with a configuration of detection_03 and recognition_02, for the binary masculine or feminine gender presentation 

classification schema.  
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Microsoft Face API with a configuration of detection_03 and recognition_03 

 

FIGURE 106 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under Microsoft Face API with a configuration of detection_03 and recognition_03, for the binary masculine or feminine gender presentation 

classification schema.  
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Microsoft Face API, Released 2021 

 

FIGURE 107 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under Microsoft Face API under its default configuration of detection_03 and recognition_04, released in 2021, for the binary masculine or 

feminine gender presentation classification schema.  
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AWS Rekognition, As of Fall 2021 

 

FIGURE 108 The difference between the mean overall performance true accept rate (TAR) and each skin tone against the corresponding confidence score 

threshold under AWS Rekognition for the binary masculine or feminine gender presentation classification schema. 
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Distance-based Variance Interclass Bias Metric 

Subsequently it is important to transform these graphical understandings of interclass bias into 

the 𝑑𝑙2
 measure of interclass bias between a class and the overall performance. Table 44-44 relay 

the maximum 𝑑𝑙2
 measure for the two gender presentation classifications for the performance of 

Microsoft Face API under all of its possible configurations, and AWS Rekognition.  

TABLE 10 A matrix representing the maximum measure of interclass bias for the binary masculine or 

feminine gender presentation classification schema under Microsoft Face API with all possible 

configurations it’s detection and recognition models. 

Microsoft Face API detection_01 detection_02 detection_03 

recognition_01 5.048655 5.551684 5.242811 
recognition_02 5.021978 5.073328 4.925848 
recognition_03 3.969225 3.881258 3.975921 
recognition_04 4.132754 3.896087 4.037939 

 

TABLE 11 The 90% two-sided confidence intervals (𝛼 = 10%) for the maximum measure of interclass bias 

for the binary masculine or feminine gender presentation classification schema under Microsoft Face API 

under all of its possible configurations, and AWS Rekognition. The table encodes the configuration of the 

Microsoft Face API as DXX-RYY where XX represents the detection model detection_XX and YY represents 

the recognition model recognition_YY. For example, D01-R02 would indicate Microsoft Face API with a 

configuration of detection_01 and recognition_02. 

Class Lower Bound Upper Bound 

Microsoft Face API D01-D02 3.679845 5.048655 
Microsoft Face API D01-D02 3.524707 5.021978 
Microsoft Face API D01-D03 2.659155 3.969225 
Microsoft Face API D01-D04 2.724611 4.132754 
Microsoft Face API D02-D01 2.523772 3.896087 
Microsoft Face API D02-D02 2.343196 3.881258 
Microsoft Face API D02-D03 3.369334 5.073328 
Microsoft Face API D02-D04 4.050693 5.551684 
Microsoft Face API D03-D01 3.731456 5.242811 
Microsoft Face API D03-D02 3.440768 4.925848 
Microsoft Face API D03-D03 2.632185 3.975921 
Microsoft Face API D03-D04 2.674466 4.037939 

AWS Rekognition 3.555945 5.454197 
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Discussion 

Before exploring the proposed novel metric for interclass bias in a classification schema, the 

author validates an assumption previously stated in the methodology to ensure that subsequent 

analysis holds. The confidence scores, reported from the commercial facial verification 

algorithms, were partitioned into six skin tone classifications as defined by the IJB-C skin tone 

classification schema. The author then extracted a probabilistic density function from the 

partitioned confidence scores. The proposed methodology ignores parametric approaches, as they 

require assumptions on the underlying distribution of the data or the prior model and an incorrect 

model can greatly affect the predictive power. Instead, the author shifted their attention to 

nonparametric methods, which avoid the need to make a priori assumptions on the sample 

distribution. One such method is the kernel density estimation (“KDE”) method is able to 

directly estimate the probability density function which simplifies further analysis. A critical 

parameter in any kernel-based estimator is the search bandwidth. A small bandwidth will detect a 

density surface with small, spiky event hotspots, while larger bandwidths return density surfaces 

with smoother and larger event clusters. Various methods have been developed to aid the 

selection of an appropriate bandwidth, such as the rule-of-thumb (Silverman 1986) and plug-in 

(Scott 2014). It is widely accepted in the literature that the choice of bandwidth is more 

important than the choice of kernel; as such the author used the Improved Sheather-Jones 

algorithm, an improvement to the Scott (2014) plug-in selector, to select the optimal bandwidth 

(Botev et al. 2010). This method was selected as this bandwidth selection algorithm performs 

better for data that is far from normal, or multimodal, which holds true for the reported 

confidence scores as measured by a combined omnibus test of normality (D’Agostino and 

Pearson 1973; Oliphant 2007).  
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FIGURE 109(A, B, C) A kernel density estimation of the probability density function for various commercial 

facial verification algorithms confidence scores for six skin tone classifications: (a) AWS Rekognition (b) 

Microsoft Face API under its default configuration of detection_01 and recognition_01, released in 2017, 

and (c) its latest released configurations detection_03 and recognition_04, released in 2021; using the IJB-

C skin tone classification schema. 

FIGURE 109(A, B, C), above, show the kernel density estimates for the performance of Microsoft 

Face API, under its default configuration of detection_01 and recognition_01, and its latest 

released configurations detection_03 and recognition_04; and AWS Rekognition for each of the 

six skin tone classifications. In FIGURE 109(A) one can see how the confidence scores for AWS 

Rekognition distribution of each of the six skin tones classifications is highly skewed near the 

recommended threshold of 99%. Furthermore, we observe that the darker skin tone (i.e., Skin 

Tone IV (Medium Yellow / Brown), Skin Tone V (Medium-Dark Brown), and Skin Tone VI 

(Dark Brown)) the likelihood of obtaining a high confidence score, above the recommended 

threshold, decreases. In contrast, the Microsoft Face API, under its default configuration, in 

FIGURE 109(b), the confidence scores for the distribution of the six skin tones classifications are 

not only less skewed towards the top of the confidence score values, but also appears more 

symmetric and normal; with the notable exception of the boundary conditions imposed at 0 and 

100. Additionally, under this facial verification algorithm the different skin tone classifications 

are tightly clustered and there is no clear skin tone classification that has dominate the likelihood 

of obtaining a high confidence score. In FIGURE 109(C) the latest released configuration of the 

Microsoft Face API has improved its algorithm as the confidence scores are more skewed than 

the default configuration and is tightly clustered near the upper limit of the confidence scores. 

Taken together these kernel density estimations of the probability density function for the facial 

verification algorithms confidence scores take many forms due to both the design of the 

algorithm but also due to the bounds of the confidence scores themselves. This supports the need 

to use analysis methods, as described in the methodology above, that do not require any model 

knowledge or assumptions about the underlying distribution.  
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The Investigative Power of the True Accept Rate 

IJB-C Six Skin Tone Audit of Commercial Facial Verification Algorithms 

We therefore turn our attention to computing confidence bounds for the true accept rate 

(“TAR”), calculated from the fraction of genuine comparisons that correctly exceed the 

threshold, for each class in the classification schema using the bootstrap method.  

  
 

 

 

FIGURE 110(A, B, C) The true accept rate (TAR) and the corresponding confidence score threshold to 

achieve it under various commercial facial verification algorithms: (a) AWS Rekognition (b) Microsoft Face 

API under its default configuration of detection_01 and recognition_01, released in 2017, and (c) its latest 

released configurations detection_03 and recognition_04, released in 2021; using the IJB-C skin tone 

classification schema. 

As mentioned in Findings, the two-sided confidence interval (𝛼 = 10%) for the TAR for each 

class in the classification schema is evaluated using the bootstrap method. Using these resampled 

confidence scores, the threshold is varied across the entire domain of the confidence scores to 

plot the TAR and the confidence bounds for the facial verification algorithms performance for 

each of the six skin tone classifications.  
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Figure 110(a, b, c) on page 138, shows the TAR and confidence bounds for the performance of 

Microsoft Face API under its default configuration, and its latest released, and AWS Rekognition 

for each of the six skin tone classifications. Taken all together, the six curves represent the facial 

verification algorithms TAR for individuals across of all skin tone classifications (as classified 

under the IJB-C schema). The TAR curves are more illuminating than the density estimates and 

communicate the differing performance between classes than the skewed nature of the 

probability density function estimates in FIGURE 109(A, B, C). In FIGURE 110(A), it is evident 

that there is considerable overlap between all six skin tone classifications when the AWS 

Rekognition facial verification algorithm is extremely confident (i.e., confidence scores greater 

than 99%) but as the algorithm is less confident there is a large spread across skin tone 

classifications. In particular, Skin Tone V (Medium-Dark Brown) and Skin Tone VI 

(Dark Brown) exhibit a significant departure from the other classes AWS Rekognition 

performance. In contrast the Microsoft Face API, under its default configuration, is more tightly 

clustered, shown in FIGURE 110(B), with the confidence bounds for each of the skin tone 

classifications overlapping with another class for most of the bounds of the threshold. Notably, 

the darkest skin tone classification Skin Tone VI (Dark Brown) does not reach the same 

maximum confidence score as the other classes, and maintains lower confidence scores than 

other classes for the first quartile of the TAR. Additionally, it is interesting that in this facial 

verification algorithm the second darkest skin tone Skin Tone V (Medium-Dark Brown) 

maintains higher confidence scores than the other classes across the entire range. This is 

surprising as many other examples of bias in the larger space of facial recognition systems show 

lighter skin tones performing better, so seeing one of the darkest skin tone classes outperforming 

others is unexpected. That is to say, it is surprising to see a bias towards darker skinned 

individuals. Lastly in FIGURE 110(C) the latest released configuration of the Microsoft Face API 

shows significant improvement in confidence scores reported, but more importantly it is evident 

that this iteration of the algorithm the bias has been eliminated. All classes in the schema are 

tightly following each other, in some areas the confidence bands both narrow and overlap for 

most confidence score values. This visual representation of the interclass bias between classes in 

the six skin tone classification has provided additional detail to the biases exhibited by the 

various facial verification algorithms, and provided new insights not visible in a probability 

density function, further emphasizing the investigative power of the true accept rate and the 

novel methodology for measuring the interclass bias in a classification schema.  

IJB-C Gender Presentation Audit of Commercial Facial Verification Algorithms 

Following the same methodology, outlined in Findings and used in the six skin tone audit, the 

two-sided confidence interval (𝛼 = 10%) for the TAR for each of the two gender presentation 

classes is evaluated using the bootstrap method. Using these resampled confidence scores, the 

threshold is varied across the entire domain of the confidence scores to plot the TAR and the 

confidence bounds for the facial verification algorithms performance for both of the gender 

presentation classifications.  
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FIGURE 111(A, B, C) The true accept rate (TAR) and the corresponding confidence score threshold to 

achieve it under various commercial facial verification algorithms: (a) AWS Rekognition (b) Microsoft Face 

API under its default configuration of detection_01 and recognition_01, released in 2017, and (c) its latest 

released configurations detection_03 and recognition_04, released in 2021; using the IJB-C gender 

presentation classification schema. 

FIGURE 111(A, B, C) on page 138, shows the TAR and confidence bounds for the performance 

of Microsoft Face API under its default configuration, and its latest released, and AWS 

Rekognition for both masculine and feminine gender presentation classifications. The most 

prominent feature in these commercial facial verification algorithms is how the masculine gender 

presentation classification performs better than the feminine gender presentation classification, 

almost entirely, across the full threshold range. This is surprising, especially when compared to 

the results of the six skin tone audit, as the bias between the two gender presentation 

classifications remains present in all of the plotted commercial facial verification algorithms. 

Similar to the findings from the skin tone audit, there remains little spread across the gender 

classifications when the AWS Rekognition facial verification algorithm is extremely confident 

(i.e., confidence scores greater than 99%). As the confidence in the match decreases, AWS 

Rekognition exhibits a widening gap between the masculine and feminine presenting 
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classifications. This trend holds for the Microsoft Face API, under its default and latest 

configurations, as shown in FIGURE 111(B, C), with an interval in both commercial facial 

verification algorithms where there remains little spread in the confidence scores across the 

gender classifications. These confidence score intervals are distinct to each commercial facial 

verification algorithm, greater than ~80% and 90% for Microsoft Face API, under its default and 

latest configurations respectively. Yet these confidence score intervals operate similar to the 

extremely confident confidence score interval for AWS Rekognition, perhaps this interval 

functions in a similar manner and provides some insights on how to interpret the confidence 

scores from Microsoft Face API, which doesn’t provide any documentation to assist in that 

effort. 

Distance-based Variance Interclass Bias Metric 

IJB-C Six Skin Tone Audit of Commercial Facial Verification Algorithms 

These insights can be furthered, through calculation of a score detailing the interclass bias 

between one of the six skin tone classifications and the overall performance. Following the 

procedure outline earlier, the author adopts an overall performance TAR curve that assumes that 

all classes should perform equally. Therefore, for each of the bootstrap samples generated, the 

overall performance curve was calculated for that resample as the mean of the six classes 

thresholds at the TAR; and the difference between each skin tone class and the overall 

performance curve was measured. Furthermore the 𝑑𝑙2
 measure of interclass bias between a class 

and the overall performance can be calculated for each of the six skin tone classifications. 

TABLE 12 relays the maximum 𝑑𝑙2
 measure for each of the six skin tone classifications for the 

performance of Microsoft Face API under its default configuration, its latest released 

configuration, and AWS Rekognition. 

TABLE 12 A measure of interclass bias for each of the six skin tone classifications under various commercial 

facial verification algorithms: AWS Rekognition, Microsoft Face API under its default configuration of 

detection_01 and recognition_01, and its latest released configurations detection_03 and recognition_04. 

Class 

AWS 

Rekognition 

Microsoft Face 

API 

D01-R01 (Default) 

Microsoft Face 

API 

D03-R04 (Latest) 

Skin Tone I (Light Pink) 1.001005 2.569466 0.812459 
Skin Tone II (Light Yellow) 2.846956 1.899081 1.547066 

Skin Tone III (Medium Pink / Brown) 2.241796 1.171121 1.243549 
Skin Tone IV (Medium Yellow / Brown) 5.042035 4.014602 1.956673 

Skin Tone V (Medium-Dark Brown) 1.838562 1.945524 2.151646 
Skin Tone VI (Dark Brown) 7.28833 2.577463 3.280281 

Total 7.28833 4.014602 3.280281 

When analyzed under the 𝑑𝑙2
 measure of interclass bias between a class and the overall 

performance, the graphical interpretations delineated earlier are made obvious: the latest released 

configuration of the Microsoft Face API facial verification algorithm reduced the amount of 

interclass bias from its predecessor, under the default configuration; and outperforms AWS 
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Rekognition due to tighter confidence intervals and more even algorithmic performance. This 

relationship is also seen again when looking at the sample standard deviation of the interclass 

bias between a class and the overall performance. The latest released configuration of the 

Microsoft Face API not only avoids the extreme outliers but also maintains a smaller spread of 

interclass bias for all classes in the skin tone classification schema. One interesting observation 

across these three commercial facial verification algorithms, Skin Tone III 

(Medium Pink / Brown) outperforms Skin Tone II (Light Yellow). This is mildly surprising as 

overall darker skin tones perform worse regardless of reported commercial facial verification 

algorithms.  

IJB-C Gender Presentation Audit of Commercial Facial Verification Algorithms 

Similarly following the same methodology, outlined in Findings and used in the six skin tone 

audit, the score detailing the interclass bias between the two gender presentation classification 

can be calculated. TABLE 13 relays the maximum 𝑑𝑙2
 measure for the binary gender presentation 

classification for the performance of Microsoft Face API under its default configuration, its latest 

released configuration, and AWS Rekognition. This metric illuminates that though bias persists in 

all three tabulated commercial facial verification algorithms, the latest released configuration of 

the Microsoft Face API facial verification algorithm reduced the amount of interclass bias from 

its predecessor, under the default configuration; and outperforms AWS Rekognition due to tighter 

confidence intervals and more even algorithmic performance. 

TABLE 13 A measure of interclass bias for each of the binary gender presentation classifications under 

various commercial facial verification algorithms: AWS Rekognition, Microsoft Face API under its default 

configuration of detection_01 and recognition_01, and its latest released configurations detection_03 and 

recognition_04. 

Class AWS Rekognition 

Microsoft Face API 

D01-R01 (Default) 

Microsoft Face API 

D03-R04 (Latest) 

Gender Presentation 5.454197 5.048655 4.037939 

The Importance of Building in Public 

Microsoft Face API provides end-users with a choice of three detection models (i.e., 

detection_01, detection_02, detection_03), used to detect faces in a submitted image, and four 

recognition models (i.e., recognition_01, recognition_02, recognition_03, recognition_04), 

used to extract face features to facilitate comparisons. These models are continually supported by 

Microsoft to ensure backwards compatibility. One interesting consequence of this decision is that 

by submitting the same set of comparisons to each of the various commercial facial verification 

algorithms, a histology of bias within Microsoft Face API’s development efforts is revealed. In 

particular, this section is concerned with the following commercial facial verification algorithms  

(a) Microsoft Face API under its default configuration of detection_01 and recognition_01 

released in 2017, (b) Microsoft Face API with a configuration of detection_02 and 

recognition_02 released in 2019, (c) Microsoft Face API with a configuration of detection_02 
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and recognition_03 released in 2020, and (d) Microsoft Face API with its latest released 

configuration of detection_03 and recognition_04 released in 2021. For ease of understanding, 

and to underscore the impact of chronology, through the rest of this section the author will refer 

to each algorithm by the year in which it was released (i.e., 2019 Microsoft Face API will refer 

to the Microsoft Face API with a configuration of detection_02 and recognition_02). 

Whenever Microsoft releases a new version of their commercial facial verification algorithm, 

they typically provide a short description documenting the important changes made to the 

algorithm. In 2019, Microsoft updated its commercial facial verification algorithm to improve 

the accuracy on small, side-view, and blurry faces. In 2020, Microsoft introduced updates to its 

recognition models to improve recognition for facial imagery containing face covers (e.g., 

surgical masks, N95 respirators, and cloth masks). In 2021, Microsoft further improved the 

accuracy, especially on smaller faces and rotated face orientations (Microsoft 2022). 

Analyzing the same 14, 436 comparisons submitted to each of the four discussed releases of the 

Microsoft Face API commercial facial verification algorithm for scoring, shows a general trend 

towards improvements to bias in both the six skin tone and binary gender presentation 

classification metrics. FIGURE 112 and FIGURE 113 show the 𝑑𝑙2
 measure of interclass bias for 

skin tone and gender presentation, respectively, for the four discussed releases of the Microsoft 

Face API commercial facial verification algorithm.  

 

FIGURE 112 The 90% two-sided confidence intervals (𝛼 = 10%) for the maximum measure of interclass bias 

for the six skin tone classifications schema under: (a) Microsoft Face API under its default configuration of 

detection_01 and recognition_01 released in 2017, (b) Microsoft Face API with a configuration of 

detection_02 and recognition_02 released in 2019, (c) Microsoft Face API with a configuration of 

detection_02 and recognition_03 released in 2020, and (d) Microsoft Face API with its latest released a 

configuration of detection_03 and recognition_04 released in 2021; using the IJB-C skin tone classification 

schema. 

When analyzing FIGURE 112, it’s clear that 2021 Microsoft Face API, the latest algorithm, 

performs better than any of its predecessors, as the biases are reduced. However, it’s clear that 
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changes to the algorithm in 2019 to improve the algorithms accuracy on small, side-view, and 

blurry faces, caused the interclass bias for the six skin tone classification to increase 

dramatically. This was subsequently corrected in the 2020 and 2021 releases. 

 

FIGURE 113 The 90% two-sided confidence intervals (𝛼 = 10%) for the measure of interclass bias for the 

binary masculine or feminine gender presentation classification schema under: (a) Microsoft Face API under 

its default configuration of detection_01 and recognition_01 released in 2017, (b) Microsoft Face API with a 

configuration of detection_02 and recognition_02 released in 2019, (c) Microsoft Face API with a 

configuration of detection_02 and recognition_03 released in 2020, and (d) Microsoft Face API with its 

latest released a configuration of detection_03 and recognition_04 released in 2021; using the IJB-C gender 

presentation classification schema. 

When the confidence intervals for the measure of interclass, bias are plotted in FIGURE 113, it is 

evident that every algorithm has improved from the original 2017 Microsoft Face API. Major 

improvements were made to the bias metric when Microsoft released an update in 2019, yet 

when the algorithm was updated again in 2020 to improve recognition for imagery with face 

covers, Microsoft unexpectedly exaggerated the bias metric similar to its original 2017 Microsoft 

Face API. Even overall improvements to the algorithm in 2021, were unable to reduce the bias to 

the lowest intervals recorded in 2019.  

It is interesting to note that improvements made to the algorithm that were designed to target a 

specific type of facial imagery can affect the metric of interclass bias so unpredictably. The same 

improvements in 2019 drastically improved the gender presentation bias, but also at the same 

time exaggerated the skin tone classification bias. These unintuitive consequences highlight the 

need for performing continuous measure of interclass bias within a classification schema 

throughout the design and commissioning of a facial verification algorithm. Additionally, these 

consequences also provide an important recommendation for developers of commercial facial 

verification algorithms.  

The histology of bias allows potential facial recognition system owner’s the opportunity to not 

only evaluate a potential commercial facial verification algorithm at a specific point in time, but 
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also by evaluating a set of algorithms, the owner could evaluate its developer’s priorities 

regarding bias mitigation during the bidding process. This increased insight into a particular 

developer’s priorities, may help gain the trust necessary from the end-users (i.e., the individuals 

submitting their facial imagery to the facial verification algorithm) of the facial recognition 

system as it shows the system’s inequalities are known and under active improvement. This is 

strengthened by the design of the proposed metric for interclass bias within a classification 

schema, which requires no access to the underlying properties, configuration, or architecture of 

the underlying facial verification system, only it’s outputs. This preserves any patents, copyright, 

trade secrets or other intellectual property rights that the commercial facial verification 

algorithm’s developer may lay claim to.  

While individual system owners may decide to scrutinize a potential facial verification algorithm 

with sample facial imagery relevant to their use case, developers need not shift the responsibility 

for this evaluation to their clients. The author believes that developers can and should release 

audits about the biases present in their algorithm to help owners during the competitive bidding 

process. 

Important Assumptions 

Assumptions About the Use of Unconstrained Images 

Underpinning this work is an assumption shared by much of world of facial verification 

algorithms. This section lays this assumption out, the problems associated with it, and why the 

author has decided to retain the assumption in its proposal of a measurement of interclass bias in 

a classification schema. 

This work assumes that the images that comprise the dataset used for generating the testing 

protocol, that is to say the individual images with facial imagery, are drawn from the same 

distributions and populations as the world in which the algorithm will be used. This assumption 

is similar to the assumptions made by facial verification algorithms when they are designed. 

Most existing facial verification algorithms rely on data prepared ahead of time. Typical facial 

recognition systems use some form of statistical or machine learning that are trained from a pre-

existing dataset of facial images. An assumption employed by these systems is that the facial 

verification algorithm can be trained to a high accuracy given a sufficiently large training dataset 

(Hewitt and Belongie 2006). This theoretical accuracy is based on an assumption that the 

training data are drawn from the same distribution as exists in the actual application of this 

technology. These classifiers are vulnerable as they have no means to adapt or correct 

themselves if the facial images encountered are not similar to the images it was trained on. 



 

 146 

TABLE 14 A selection of relevant variables various variables to consider or control when considering a 

relatively unconstrained facial recognition system. This list is presented in alphabetical order and is 

incomplete. It was generated by looking at variables described by various datasets designed for facial 

recognition algorithm training (Berg et al. 2004; Hewitt and Belongie 2006; Huang et al. 2007, 2008; 

Ramanan et al. 2007; Zhao et al. 2018). 

• accessories • candid 

photography 

• hairstyles • race 

• age • diffuseness of 

lighting 

• head rotation • represent a broad 

range of individuals 

• background • distance to subject • illumination • head rotation 

• background clutter • facial expressions • lighting angle • scale 

• subject's facial hair • ethnicity • lighting intensity • using scarves 

• camera quality • expressions • lighting spectrum • variation of time 

• changes in 

appearance through 

time 

• using vision 

eyewear 

• non-visible light 

modalities 

• viewing angle 

• clothing • facial expression • occlusions  

• color images • focus • orientation  

• color saturation • gender 

presentation 

• pose  

 

This assumption may not be valid in practice. When these facial verification algorithms are used 

by private corporations or governments, they are used in often uncontrolled environments. In 

these environments, the verification algorithms can expect to encounter immense variation: 

image sensor size, viewing angles, distance to the subjects, intensity, direction, color, and form 

of lighting, color saturation, focus, just to name a few of the variables related to the technical 

setup of the camera and lighting. TABLE 14 above above, shows a short list of the various 

variables the author was able to find described by various datasets designed for facial 

recognition. With so many variables to consider, there can be no assurances that the training 

dataset has taken all the relevant variables into account, or that the distributions in the training 

dataset are the same as what can be expected in the actual application of the verification 

algorithm. 

There are two ways that facial verification algorithms have attempted to square this assumption. 

The first are innovations to the statistical classifiers that verification algorithms are based on. 

Newer algorithms often employ convolutional neural networks, often referred to as CNNs, 

because they excel at this unconstrained task (Balaban 2015; Springenberg et al. 2015; Taigman 

et al. 2014b; Yi et al. 2014). One important feature of many CNN architectures is pooling (or 

sometimes referred to as subsampling), a mathematical operation that reduces the input over a 

certain area into a single value. Simply put, pooling consists of stepping a small window across 

an image and taking the maximum value from the window at each step. Pooling provides basic 

invariance to rotations and translations of a feature in an image, is considered to improve the 

object detection capability of convolutional networks (e.g., a face in an image is not in the center 

of the image but located off center (a slight translation) can be detected by the convolutional 
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filters because the valuable information is provided to the correct neurons by the pooling 

operation) (Liu et al. 2016). Considered slightly differently, pooling can be considered a way to 

take large images and shrink them down while preserving the most important information in 

them. After a typical pooling operation an image has about a quarter as many pixels as it started 

with.  

The second way facial verification algorithms have attempted to improve their performance on 

the actual applications, is to merely expand their training datasets to ones that better capture the 

diversity of the images the verification algorithms can expect in the actual application.  An early 

database designed to help train and produce facial verification algorithms, Labeled Faces in the 

Wild, categorized their effort as providing a large set of “relatively unconstrained face images.” 

They go on to define unconstrained as imagery that provides variation evident in everyday life: 

“variation in pose, lighting, expression, background, race, ethnicity, age, gender, clothing, 

hairstyles, camera quality, color saturation, focus, and other parameters.” The motivation behind 

the unconstrained facial verification algorithm, was developing an algorithm that could recognize 

people in images the algorithm had no control over (i.e., pre-existing face images) (Huang et al. 

2007). This trend of unconstrained facial imagery continued into other popular datasets (Klare et 

al. 2015; Maze et al. 2018; Wang et al. 2018b; Whitelam et al. 2017). 

These innovations to the verification algorithm architecture and contributions to training datasets 

have resulted in the in the wild design paradigm adopted by the Labelled Faces in the Wild 

dataset becoming a defining feature of the problem facial verification algorithms aim to solve. 

Indeed, large datasets that have become popular benchmarks used to rank and compare facial 

verification algorithms from different vendors like Labelled Faces in the Wild, the IJB-C and 

Adience, do not report metrics about the distribution of the individual images in a dataset across 

any of the variables mentioned earlier (Eidinger et al. 2014; Huang et al. 2007; Maze et al. 

2018). Instead, these datasets only guarantee a minimum facial size, or in some cases guarantee 

that each image can be detected by a simple facial detection algorithm. Furthermore, these 

datasets are often generated by scraping publicly available imagery from the internet using 

automated processes. The bulk (sometimes unpermitted) image collection using search queries 

provides a baseline randomness that ensures the desired variations evident in everyday life are 

visible in the generated dataset. 

However, this in the wild framing introduces some problematic sources of bias. One important 

note inherent in the unconstrained problem as formulated above, is that under the best-case 

scenarios the datasets replicate the world around us. That is to say that they replicate the biases 

inherent in the world around us. Identities that are less frequently photographed are necessarily 

less represented in any dataset collected from existing images. As such, people who hold 

systematically marginalized and excluded identities will most likely be represented less (if at all) 

in the generated datasets, and as such the algorithms will be at a disadvantage when they 

encounter them in the actual application. In a manner of speaking, the algorithms learn the biases 

of the (sampled) photographers. However, there is an additional source of bias incorporated, 
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from the designers of the camera equipment the photographers employ. This can take primarily 

two forms. The first is that the type of camera available to a photographer is a function of their 

access to the technology and their means to purchase or use it. This means that objects, vistas, or 

people of interest to photographers with less access to capital or in countries with restrictions to 

the import or distribution of modern cameras are less likely to photographed. Furthermore, 

images from photographers with intermittent or no internet connectivity will most likely be 

represented less (or not represented in the case of no internet connectivity) in the generated 

datasets, and as such the algorithms will be at a disadvantage when they encounter them in the 

actual application. The second form of camera bias comes from the design of the camera itself. 

Researchers and historians have established that photography cameras and equipment were 

designed to better represent white skin tones and do not equivalently represent people with 

darker skin tones. As such, datasets that feature people with darker skin tones might have images 

that are less bright or sharp than images of people with lighter skin tone. These darker images 

could affect facial verification algorithms that are sensitive to changes in the intensity, direction, 

color, and form of lighting or color saturation, or other variables mentioned in TABLE 14 on 

page 146 above.  

In fact, looking at the dataset generated for the commercial facial verification algorithm audit 

conducted in this dissertation, it is clear that there are biases potentially attributable to the 

camera. AWS Rekognition provides access to an API that provides a measure of the brightness of 

a face, to help end-users gauge if a face is bright enough to be enrolled into its facial recognition 

system. This API is part of AWS Rekogniton’s image quality measures. The API reports a value 

representing the brightness of the face between 0 and 100, where a higher value indicates a 

brighter face image. When the individual image quality of each image in the dataset is measured 

by this API is aggregated by the six skin tone classification schema, it is evident that the reported 

brightness decreases with each darker skin tone. FIGURE 114 below illustrates this phenomenon.  

The author believes that because of the nature of the unconstrained problem that these algorithms 

are trying to solve, and the datasets these algorithms are trained on, the algorithms performance 

and measures of interclass bias in a classification schema must also be gauged on the 

unconstrained problem. As evidenced above, the number of variables to control in a relatively 

unconstrained problem is only constrained by the taxonomy with which one decides to employ to 

classify it. Some of these variables are directly correlated or associated with biases baked into or 

part of other systems, or even society at large. Discerning which variables are fair to control for 

in the testing protocol, and which the facial verification algorithm should be impervious to, are 

questions that are difficult to control for in the current paradigm for data collection. Controlling 

for some but not all of these variables could yield disparate results that damn or vindicate a 

particular algorithm on the preferences of the researchers, facial verification algorithm providers, 

end-users, activists, auditors, or governments who commissioned the analysis. In the end the 

most important consideration is that each image incorporated into the testing protocol comes 

from the same distribution as is expected in the actual application.  
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FIGURE 114 A box plot of reported brightness values reported by AWS Rekognition’s image quality 

measurements by skin tone classification. Within each box, horizontal white lines denote median values; 

boxes extend from the 25th to the 75th percentile of each group's distribution of values; vertical extending 

lines denote adjacent values (i.e., the most extreme values within 1.5 interquartile range of the 25th and 75th 

percentile of each group); dots denote observations outside the range of adjacent values. 

In the end, some novel research techniques in training facial verification algorithms that utilize 

machine generated datasets (either through computer-generated three-dimensional imagery, or 

using generative adversarial networks) seem to provide respite for the concerns associated with 

the practicality of generating the large and varied dataset required to provide the variation 

evident in everyday life. Yet even as it becomes easier to build these better datasets and facial 

verification algorithms the problem will not disappear. The authors of the Labeled Faces in the 

Wild dataset provide a valuable insight on the drawbacks of this panacea:  

On the other hand, in order to study more general face recognition problems, in 

which faces are drawn from a very broad distribution, one may wish to train 

and test face recognition algorithms on highly diverse sets of faces. While it is 

possible to manipulate a large number of variables in the laboratory in an 

attempt to make such a database, there are two drawbacks to this approach. The 

first is that it is extremely labor intensive. The second is that it is difficult to 

gauge exactly which distributions of various parameters one should use in order 

to make the most useful database. What percentage of subjects should wear 

sunglasses? What percentage should have beards? How many should be 

smiling? How many backgrounds should contain cars, boats, grass, deserts, or 

basketball courts? 

One possible solution to this problem is simply to measure a “natural” 

distribution of faces. Of course, no single canonical distribution of faces can 
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capture a natural distribution of faces that is valid across all possible 

application domains (Huang et al. 2007). 

Assumptions in the Commercial Facial Verification Algorithm Audit 

This next section refers to specific supporting statements that outline how these assumptions 

continue to hold in the commercial facial verification algorithm audit.  

The commercial facial verification algorithms, analyzed in the audit, adopt the “in the wild” 

framing of facial verification. These providers market their algorithms to a whole variety of end-

users who have just as many use-cases for the technology.  Furthermore, AWS Rekognition and 

Microsoft Face API follow the convention employed by many in the wild datasets, and only 

require a minimum template size. However, both algorithms provide additional 

recommendations on the types of images that are likely to perform better on the algorithm.  

AWS Recognition suggests the following recommendations for facial comparison input images 

(Amazon Web Services, Inc n.d.):  

1. Ensure that images are sufficiently large in terms of resolution. Amazon 

Rekognition can recognize faces as small as 50 x 50 pixels in image resolutions 

up to 1920 x 1080. Higher-resolution images require a larger minimum face size. 

Faces larger than the minimum size provide [sic] a more accurate set of facial 

comparison results. 

2. Use images that are bright and sharp. Avoid using images that may be blurry due 

to subject and camera motion as much as possible. DetectFaces can be used to 

determine the brightness and sharpness of a face. 

Microsoft Face API states the following requirements for its facial recognition systems’ 

detection algorithm, a preprocessing step before it can be submitted to its facial verification 

algorithm (Microsoft n.d.): 

— The minimum detectable face size is 36x36 pixels in an image no larger than 

1920x1080 pixels. Images with dimensions higher than 1920x1080 pixels will 

need a proportionally larger minimum face size. 

— For optimal results when querying Face - Identify, Face - Verify, and Face - Find 

Similar ('returnFaceId' is true), please use faces that are: frontal, clear, and with 

a minimum size of 200x200 pixels (100 pixels between eyes). 

The author read these requirements and infers that the facial verification algorithms use a 

convolutional neural network designed to handle high definition 1920 ×  1080 pixel images 

and uses a series of convolutions to look for faces of the minimum pixel size anywhere within it. 

This seems likely to follow the same in the wild paradigm mentioned earlier. So, while it is 

expected that algorithms are able to perform better with larger faces, larger or brighter images 
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are not required by the commercial facial verification algorithm providers and as such not 

guaranteed by end users.  

Additionally, the IJB-C is a common benchmarking dataset used to evaluate performance across 

many different academic and commercial facial verification algorithms. The dataset follows the 

in the wild design in its sampling of images for inclusion into the dataset; as such, this dataset 

exhibits relatively unconstrained variation. Taken together, the author believes that the 

algorithms performance and measures of interclass bias in a classification schema must also be 

gauged on the unconstrained problem. 
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Conclusion 

This dissertation reviews current metrics of success for facial verification algorithms, proposes a 

new realistic bias model that incorporates algorithmic bias (and fairness), and constructs a novel 

measure of interclass bias within a classification schema. This measure is constructed to be 

continuous, differentiable, monotonic and does not require access to the underlying properties, 

configuration, or architecture of the underlying facial recognition system.  

The author develops a case study based on the audit of two commercial facial verification 

algorithm providers from Microsoft Corporation and Amazon Web Services, Inc. to evaluate the 

efficacy of this proposed interclass bias measure, the author utilized a subset of the IARPA Janus 

Benchmark C dataset, and it’s 1:1 verification protocol. To the best of the author’s knowledge, 

this is the first analysis of commercial facial recognition systems bias for “in the wild” facial 

imagery. The computation of this interclass bias metric shows that darker-skinned people have 

the least accurate verification matches, with an interclass bias measure of up to 7.2 times higher 

than lighter-skinned people. Additionally, the results show that one of Microsoft’s commercial 

facial verification algorithms statistically eliminates the interclass bias for skin tone. Yet, all 

thirteen commercial facial verification algorithms evaluated experienced worse performance for 

feminine presenting persons compared to masculine presenting persons. The substantial 

disparities in the accuracy of classifying darker-skinned and feminine presenting people require 

urgent attention, if commercial companies are to build genuinely equal, transparent, and 

accountable facial verification algorithms. This case study shows how the measure of interclass 

bias can engender comprehensive analyses of facial verification algorithms biases without 

violating the facial recognition system’s developer’s intellectual property protections.  

The construction of this measure of interclass bias can also be used by commercial facial 

verification algorithm developers to eliminate biases that can be incorporated into an algorithm’s 

design, implementation, or training processes. The case study shows that efforts with Microsoft’s 

commercial facial verification algorithm to improve accuracy with small, blurry, and side faces 

improved the equitable performance for skin tone but exaggerated the bias for gender 

presentation. These unintended consequences reiterate the need for careful monitoring 

throughout a facial verification algorithm training process. The author postulates that the metric 

for interclass bias can be incorporated directly into an algorithms training loss function because 

of its continuous, differentiable, and monotonic construction, but leaves this question for future 

researchers.  

This work and the disparities revealed in these measures of bias show the utility of continuing to 

measure bias in facial verification algorithms, affirming earlier findings that point to the 

importance of using the true accept rate (also known as the sensitivity or recall), calculated from 

the fraction of genuine comparisons that correctly exceeds a given threshold, to expose 

underlying distributions that may be obfuscated by aggregated accuracy measures. Measures like 

this interclass bias metric can help ensure that regardless of the threshold utilized by a facial 
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recognition system owner, the facial verification algorithm performs fairly for people of all 

classification schemas; especially as AI agents are increasingly involved as an integrated 

technology deployed in a menagerie of sectors. The author hopes that this metric assists 

researchers, policy makers and industry practitioners to develop better supervision throughout an 

AI agent’s development and production lifecycle to prevent disparate impacts, and better 

construct goals to ensure AI agents are solving the intended problem. 
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Thesis Contributions 

This dissertation contributes to the applied uses of artificial intelligence (i.e., machine learning 

operations) in the area of facial recognition. Specifically, by focusing on feature bias in 

commercial facial recognition systems, it introduces novel thinking and techniques to measuring 

algorithmic fairness. In particular, it expands the evaluations of a facial recognition system’s 

performance and success. These contributions are detailed below:  

Introduction of a Realistic Bias Model 

The author proposes a bias model that supports a measure of a facial recognition system’s 

interclass bias. This bias model incorporates, (i) the system operators’ limited understanding of 

the system’s confidence scores; (ii) evaluations based on the true accept rate across the entire 

range of the threshold; (iii) the developer’s judgement on the perceived impact of Type I Error𝑠 

and Type II Errors; and (iv) an understanding of bias rooted in the jurisprudence of anti-

discrimination laws and the theory of disparate impact (i.e., the discriminatory consequences of a 

neutral policy). To the best of the author’s knowledge, this is the first investigation that adopts 

such a realistic model of bias.  

A Novel Methodology to Measure Facial Recognition Systems’ Interclass Bias within a 

Classification Schema 

The author provides a novel methodology, metric and calculation of a facial recognition system’s 

interclass bias within a classification schema. It assumes no access to the underlying properties, 

configuration, or architecture of the underlying facial recognition system, only it’s outputs.  It 

provides a generalized metric of “in the wild” facial recognition systems’ performance for an 

entire class of people. This metric is shown to be a continuous, differentiable, and monotonic 

metric, that can be incorporated into a facial recognition systems’ design and implementation, 

and/or a facial recognition system owner’s testing and commissioning processes. 

Testing this Methodology on Two Commercial off the Shelf Facial Recognition 

Systems 

The method is tested on two widely used commercial off the shelf facial recognition systems. 

The author presents the results of experiments carried out using a commonly accepted 

benchmark to identify the efficacy of this proposed interclass bias measure. To the best of the 

author’s knowledge, this is the first analysis of commercial facial recognition systems bias for 

“in the wild” facial imagery.  
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It is important to acknowledge that much of the inspiration and motivation for this work is 

derived from debates around the disparities in accuracy between different groups in facial 

recognition systems. In the end, it is this vision that provided the guiding framework for this 

investigation. However, it is equally important to understand that many of the results and 

techniques developed in this work are not limited to facial recognition systems. For example, the 

bias model described is likely to be relevant to most binary classification tasks based on 

computer vision. Thus, the impact of the interclass bias within a classification schema is likely to 

extend beyond facial recognition systems. 
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A Brief Aside on the Nature of Risk in the Adoption of Technology 

Throughout history, technology has often gotten ahead of society’s understanding of its ethical 

consequences. That is to say, we harness technology because of its utility and then we seek to 

understand it. This has resulted in increased risk or serious accidents. For example, consider the 

simple case of the steam engine, a symbol of industrialization and the progress of technology. In 

the words of Nicolas Léonard Sadi Carnot, who laid the foundations of the discipline of 

thermodynamics:  

To take away today from England her steam-engines would be to take away at 

the same time her coal and iron. It would be to dry up all her sources of wealth, 

to ruin all on which her prosperity depends, in short, to annihilate that colossal 

power. The destruction of her navy, which she considers her strongest defence, 

would perhaps be less fatal. (Carnot 1897) 

Though steam driven devices were known since the first century AD (Hero 1851; Vitruvius 

1999), the first successful attempts to utilize steam for practical purposes occurred in the 

seventeenth century. These first engines designed by Thomas Savery, and later Thomas 

Newcomen enjoyed considerable success, and several hundred engines were constructed to pump 

water from coal mines, raising water to supply cities and water mills (Brown 1991). A 

blacksmith, Newcomen impressed by the difficulties and expense of pumping water, engineered 

an engine to solve this problem that used atmospheric pressure to force a piston into a partial 

vacuum created by condensing steam in a cylinder. Today we understand that Newcomen’s 

engine relied on the dissolution of air in steam; but scientists in his day, were not aware that air 

dissolves in water (Golino 1966). That is to say, that Newcomen’s engine was not based on 

prevailing scientific theory, but rather improvements to previous attempts (Conner 2017). These 

engines belched flames, smoke, and steam, as the result of inferior materials and poor fitting 

boiler plates and joints; that all resulted in frequent and disastrous boiler explosions. Yet these 

engines proved incredibly useful, upstarted companies that commercialized newer engines that 

could provide greater power with better efficiency; and their demand far outstripped supply 

(Cameron and Millard 1985). These better engines also increased the risk of explosions, one of 

the first of these engines exploded in September 1803 killing five workmen (Oracle Staff 1803). 

The engines were further commercialized as passenger steamboat engines where frequent and 

disastrous explosions were commonplace. A select committee from the UK Parliament found in 

1870 that there were about 50 steam boiler explosions a year in England, which claimed on 

average 75 to 100 lives (Bartrip 1980).  

Engineers quickly collected information about thermodynamics, the action of steam in a 

cylinder, the strength of materials in the engines, but little was known about how steam built up 

in the boiler, what effect corrosion and decay had on the boiler, and the causes of the boiler 

explosions. The race towards stronger and better engines made many boilers’ designs obsolete, 

and produced unmanageable strain on boilers through excessive steam pressure and weaknesses 
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in the materials and construction. Early technological innovations in boiler safety failed, because 

engineers did not understand what went on in steam boilers, and this knowledge was not 

available until more than half a century later. Together with regulatory reforms requiring 

frequent inspection and improved maintenance, the diffusion of the scientific knowledge of the 

actions of steam in a boiler lessens the risk of boiler explosions (Cameron and Millard 1985).  

This extended example, serves to clarify that humans have propensity to take large risks and use 

a technology for a very long time before they understand it. The author believes that facial 

recognition is clearly useful. It has been useful in the private sector to secure a nuclear research 

facility (Scheeres 2002), to protect an artist from stalkers at her shows (Knopper 2018), and in 

the public sector to confirm the identity of Osama bin Laden (Reuters Staff 2011) and convicting 

an armed thief in Chicago (Main 2014). There are some that argue, quite poignantly, that the 

dangers of facial recognition systems outweigh their possible contributions. The dangers they 

point out, as well as many more dangers that are not yet fully understood, are real and must be 

addressed. However, the author finds these arguments unpersuasive, mostly because of the utility 

facial recognition systems have provided. As illustrated by the steam engine, the dangers behind 

a technology do not slow its adoption. Attempts to shut down facial recognition systems’ uses 

entirely, are like putting shaving cream back into a spent bottle.  

The responsible move forward is not only to continue to develop the technology, but to create 

safety systems to mitigate its dangers and introduce regulatory frameworks that curb its abuses. 

The author believes that there are significant improvements that must be made to reduce the 

dangers associated with these technologies. Furthermore, the author hopes that this work furthers 

this important field of work by contributing a general measure of bias that can begin to quantify 

one aspect of the danger currently inherent in facial recognition systems, such that future 

researchers are able to reduce it. 
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