
Policy Compilation for Stochastic Constraint
Programs

by

Delia Stokes Stephens

S.B., Massachusetts Institute of Technology (2022)

Submitted to the Department of Aeronautical and Astronautical
Engineering

in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautical and Astronautical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Aeronautical and Astronautical Engineering

May 17, 2022

Certified by. .
Brian C. Williams

Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by .
Jonathan P. How

R. C. Maclaurin Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee

2

Policy Compilation for Stochastic Constraint Programs

by

Delia Stokes Stephens

Submitted to the Department of Aeronautical and Astronautical Engineering
on May 17, 2022, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautical and Astronautical Engineering

Abstract

Real-world risk-bounded planning and decision-making problems are fluid, uncertain,
and highly dynamic, demanding an architecture which can encode and solve a rich set
of problems involving decision-making under uncertainty. While many solution archi-
tectures exist for solving deterministic CSPs, very few are able to generate decisions
that are robust to uncontrolled, stochastic events, and even fewer are able to con-
struct conditional policies that are able to adapt online to these uncertain outcomes.
In this thesis, I present a variant of the Optimal Satisfiability Problem Solver (Op-
Sat) that solves dynamic, chance-constrained satisfiability problems. The proposed
variant solves these real-world problems efficiently and encodes policies compactly
through a hybrid architecture that (a) encodes probabilistic information explicitly
as logical constraints, (b) performs temporal reasoning to extract logical temporal
conflicts, and (c) compiles out the constraints of a Weighted, Conditional, Stochastic
CSP into a compact policy representation which may be efficiently queried. Such an
architecture facilitates the design of robust, risk-aware systems by providing a user
with the ability to solve a rich set of problems involving mixed logical and temporal
constraints.1

Thesis Supervisor: Brian C. Williams
Title: Professor of Aeronautics and Astronautics

1This research was generously supported by Airbus SE.

3

4

Acknowledgments

Wow! 5 years of MIT are coming to a close. When I started this journey in 2017,

I had no idea just how hard it would be and how much I would have to rely on my

mentors, friends, and family to get me through school.

I’d like to begin by thanking my lab, the MERS group in CSAIL, and in partic-

ular Professor Brian Williams for taking a chance on me as both my undergraduate

and graduate advisor. His support was critical throughout my undergraduate and

graduate careers, and I am incredibly grateful for the insight, care, and kindness he

demonstrated during my time at MIT. I’d also like to thank some of my incredible

labmates, in no particular order: Marlyse Reeves for being my introduction to the

MERS lab, mentor, and friend; Cameron Pittman for being a great lunch buddy

and test subject of daily Stata café bowls; Andrew Wang for tolerating (and even

encouraging) my love for the esoteric; Eric Timmons for patiently guiding me along

my Common Lisp journey; Tesla Wells for listening to complain and providing me

with pizza at critical junctures; Simon Fang for helping me wrap my head around

my research; Yuening Zhang for being a great mentor and TA; Sungkweon Hong for

asking the kindest, most insightful questions; and everybody else for making my desk

a home after a long hiatus from in-person activities.

I would also like to thank Sebastien Boria and my sponsors at Airbus for their

insights and ideas which made this research possible.

MIT would not have been possible without my friends and teammates. To the

entire MIT Field Hockey Team, thank you! You were a bright spot during some long

days, and I am proud to call all of you my friends and teammates. Thank you also

to my friends in the Air Force ROTC program who taught me how to find humor in

the mundane; I am truly excited to serve with all of you. To the folks of the MIT

Cycling Club— Joanna, Devin, Hannah, Sarah, Berk, and so many others — thanks

for giving me a new hobby and making me feel normal when I talk about bicycles

for extended periods of time. I’d also like to thank my partner, Christine Padalino,

without whom none of this would have been possible. Christine, you remind me of

5

what is actually important when I’m feeling like everything is important, and your

superhuman tolerance of my ridiculousness has made the past 4 years a true joy.

Finally, I’d like to thank my family. To my grandparents, thank you for shaping

me into the woman I am today. To Mom, Dad, and my little brother, James, thank

you for being there for me over the past 23 years of my life. James, you only get

18.5 years of thanks. Play your cards right, and you could get a few more good

years. Without your guidance, support, and love, I could have never imagined myself

getting any degree from MIT, let alone two! Thank you for believing in me even when

I didn’t, picking up the phone when I called (most of the time), and truly listening

to everything I had to say. I love you all very much.

6

Contents

1 Introduction 15

1.1 Representative Scenario . 16

1.2 Approach in a Nutshell . 19

1.2.1 A Simple Example . 20

1.3 Thesis Structure . 22

2 Problem Statement 25

2.1 The Need for an Expressive Chance-Constrained CSP Solver 26

2.1.1 Motivating Examples . 27

2.1.2 Problem Requirements . 30

2.2 Formal Problem Statement . 32

2.3 Chapter Summary . 33

3 Approach 35

3.1 Hybrid Solver Architecture . 36

3.1.1 Policy Representation . 37

3.2 The Weighted CSCSP Subsolver . 41

3.2.1 Conditional CSP Subsolver . 42

3.2.2 Constraint Compiler . 42

3.3 Bayesian Inference Subsolver . 43

3.3.1 Intuition: Performing Bayesian Inference 44

3.4 Temporal Subsolver . 44

3.4.1 Intuition: Extracting Temporal Conflicts 44

7

4 Weighted CSCSP Subsolver 47

4.1 Problem Statement: Weighted CSCSPs 48

4.2 Approach: Combining Two Solvers 50

4.3 Conditional CSP Subsolver . 51

4.3.1 Problem Statement: Conditional CSPs 51

4.3.2 Introducing Another Example 52

4.3.3 Approach: Compiling out Conditional Variables 53

4.4 Constraint Compiler . 55

4.4.1 Problem Statement: Constraint Compiler 56

4.4.2 Simple Example: Continued 56

4.4.3 Approach: Constructing the Policy BDD 57

5 Bayesian Network Compilation 63

5.1 Problem Statement: Bayesian Inference 63

5.1.1 Background: Probabilistic Graphical Models 64

5.1.2 Formal Problem Statement . 64

5.2 Approach: Performing Bayesian Compilation 66

5.2.1 A More Complex Example . 68

6 Temporal Constraint Subsolver 71

6.1 Problem Statement: Temporal Subsolver 72

6.2 Approach: The Temporal Reasoning Algorithm 73

6.2.1 Background: Graph-Based Temporal Reasoning 73

6.2.2 Modified Labeled APSP . 75

7 Discussion and Future Work 83

7.1 Discussion . 83

7.2 Future Work . 84

A Extensions 87

A.1 Extension: Reasoning on a Policy BDD 87

A.1.1 Background: Extracting the Best Policy from Explicit Graphs 88

8

A.1.2 Extracting the Best Policy from the Policy BDD 90

A.1.3 Using the Policy BDD in Online Execution 91

A.2 Extension: Solving a Planning Problem 91

B Implementation 99

B.1 Systems Used . 99

B.1.1 Odo . 99

B.1.2 Riker . 100

B.1.3 OpSat-v3 . 101

B.2 Our Simple Example . 101

B.2.1 Problem Statement . 101

B.2.2 Extracted Temporal Conflicts 102

B.2.3 Resultant BDD . 103

B.3 Converting Between Modeling Languages 103

B.3.1 Semantic Differences . 104

B.3.2 Conversion into Riker’s modeling language 105

9

10

List of Figures

1-1 A robot reasoning online about its observations. 17

1-2 A visual representation of our mixed-logic temporal CSP. Edges denote

temporal constraints with of the form [lower bound, upper bound], de-

noting the temporal distance between events. Controllable choices are

marked by a double circle, with uncontrollable choices marked by a

dashed circle. 21

1-3 The final resultant BDD for our example problem. 23

2-1 A robot reacting to an unexpected obstacle on the factory floor. . . . 26

2-2 A valid solution to the 𝑛-queens problem. 28

2-3 A visual representation of our mixed-logic temporal CSP, wherein the

human and robot collaborate to prepare the human for their commute

and the human then executes their desired commute. 30

3-1 The proposed architecture of dcc-OpSat. 38

3-2 An explicit graph for a simple problem. 39

3-3 The corresponding policy tree for a simple problem. 40

3-4 The node 𝑓1 corresponding to the decision variable assignment (𝑅1 = 𝑐1). 41

4-1 An enhanced view of the WCSCSP Subsolver architecture. 48

4-2 The node 𝑓1 corresponding to the decision variable assignment (𝑅1 = 𝑐1). 59

4-3 The resultant BDD node 𝑓7 corresponding to the example constraint

active𝐻1 ⇒ ((𝐻1 = 𝑐1)⇒ ((𝑅1 = 𝑐1) ∧ (𝑅2 = 𝑐2)))). 59

11

4-4 The resultant Policy BDD, which compactly encodes all of our con-

straints. 61

6-1 A simple precedence graph. Nodes representing decision variables are

annotate with their associated events. 81

7-1 An alternative encoding of the constraint (𝑅1 = 𝑐1). 84

A-1 A simple explicit graph, with a uniform prior distribution.. 89

B-1 A visual representation of our mixed-logic temporal CSP. Edges denote

temporal constraints with of the form [lower bound, upper bound], de-

noting the temporal distance between events. Controllable choices are

marked by a double circle, with uncontrollable choices marked by a

dashed circle. 102

B-2 The final resultant BDD for our example problem. 104

B-3 A visual depiction of the Constraint-Helper procedure. 108

12

List of Tables

1.1 The number of rivets required for each subassembly and the installation

time for the subassembly. As an example, it would take a human 60

minutes to rivet and install Subassembly B, as it takes between 1 and

2 minutes per assembly and 10 minutes to attach Subassembly B. . . 18

1.2 A CPT. 21

4.1 The resultant CPT added to our influence diagram 55

5.1 The conditional probability table (CPT) for our simple influence diagram. 67

5.2 The added WMC vars . 67

5.3 A more complex example to demonstrate our WMC encoding. 69

A.1 The additional propositional constraints for 𝒱𝐶𝑇 and 𝒯 ′ 97

B.1 State space for our example problem. 102

B.2 Temporal constraints for the simple example problem. 103

B.3 The conditional probability table (CPT) for our simple influence diagram.103

B.4 The added WMC vars . 103

13

14

Chapter 1

Introduction

A robot’s environment is never deterministic. Instead, there is a huge demand for

autonomous systems that can reason about their uncertain environments, reacting

fluidly to uncontrollable decisions to quickly generate a new sequence of decisions

and activities with a high likelihood of mission success. The need for flexible, reac-

tive systems that can reason over a rich set of constraints that encode an problem’s

discrete decisions, scheduling requirements, and uncertainty is apparent in a vari-

ety of contexts, including aerospace manufacturing, scientific exploration, household

robotics, and large-scale distribution & logistics.

In this thesis, we argue that designing a system that spends computational re-

sources determining the set of possible responses to the uncertainty in its environ-

ment allows us to solve an expressive set of problems in a wide variety of domains.

We will use human-robot collaboration as our motivating example of an uncertain

environment. Central to our approach are the following notions:

1. Risk-Bounded Uncertainty. Agents should understand the concepts of risk

and uncertainty. By providing an agent with a risk bound instead of simply

asking it to minimize risk, we can encode a risk tolerance that allows the agent

to act even when it is unsure. Otherwise, the agent might choose to simply wait

until it observes all uncontrollable decisions before springing into the action

once the plan has already been executed by its uncontrollable partners.

15

2. Dynamic, Conditional Policies. Rather than asking an agent to rapidly

re-compute a valid solution when it encounters an unexpected observation, it is

more efficient to compile a policy that acts as a rulebook for our agent’s online

execution conditioned on uncontrollable decisions. Our agent can then quickly

turn to the section of its rulebook for the set of observed decisions, select an

action that does not violate the problem’s risk bound, and continue its execution

fluidly.

3. Temporal Reasoning. Discrete decisions affect an agent’s schedule of events;

for example, deciding to refuel before traversing an uncertain environment might

make the traversal take longer due to the increased weight, but the traversal

is less likely to fail due to a fuel shortage. Our hybrid solver should be able

to reason about which sets of choices yield temporal infeasibility so that it may

avoid those execution paths online.

The constraint satisfaction and temporal planning communities have developed a

rich set of tools that can reason on a problem’s logical satisfiability [18], its temporal

causality [4], and controllability [17]; however, there are few that combine the notion

of satisfiability and temporal planning to provide both communities with a tool for

generating expressive, dynamic policies in uncertain environments. This thesis lever-

ages the key insights from both communities, developing a hybrid solver capable of

generating conditional, conditional policies that encode an agent’s flexible responses

to online observations. By providing both communities with a unified modeling lan-

guage and solver, we enable a broader set of problems to be solved quickly and

accurately with conditional policies that allow an agent to efficiently reason online.

1.1 Representative Scenario

To motivate our hybrid solver, we consider an aerospace manufacturing scenario (mod-

ified from [11]) in which a robot needs to react to its uncertain environment on-the-fly.

In this scenario, a human is collaborating with an assembly robot to build an air-

16

craft wing within 40 minutes. Broadly speaking, the wing panels must be secured

while the agents rivet the panel into place. After the panels are secured, one of three

subassemblies may be bolted onto the wing section. Each subassembly requires a

different adhesive—Subassembly A requires bolts, Subassembly B requires aerospace-

grade adhesive, and Subassembly C is simply wing-walk tape pasted onto the wing

surface itself. Only one subassembly must be affixed to the wing. The human can

choose to perform the riveting themselves, in which case the robot should fetch the

required rivets and hand them to the human.

Figure 1-1: A robot reasoning online about its observations.

To further complicate things, the human-robot duo has 40 minutes to perform the

assembly task, and each of the rivets takes between one and two minutes to perform.

The number of rivets and their pattern depends on which subassembly will be bolted

onto the wing. That is to say, the robot can observe the rivet pattern, infer the total

number of rivets required, and start riveting itself if it thinks that the human will

17

not finish the task in time. Otherwise, the robot should simply observe the human’s

riveting and provide them with the rivets for their rivet gun. As you can see from

the durations listed in Table 1.1, we would expect to see the robot intervene if it

believes Subassembly B is the active subassembly, grabbing a rivet gun for itself and

collaborating with the human, as it takes the human 50 minutes to install the rivets

and 10 minutes to install the subassembly. In this case, the human and robot should

not rivet at the same location. Similarly, if the robot infers that Subassembly C is

the active subassembly, it should intervene to help out the human before temporal

constraints are violated.

Subassembly Number of Rivets Subassembly Installation Time
A 10 20
B 50 10
C 30 15

Table 1.1: The number of rivets required for each subassembly and the installation
time for the subassembly. As an example, it would take a human 60 minutes to rivet
and install Subassembly B, as it takes between 1 and 2 minutes per assembly and 10
minutes to attach Subassembly B.

Finally, we bound the robot’s risk tolerance. Suppose the robot has 90% confidence

the human will choose Subassembly A, 8% it will choose Subassembly B, and 2%

Subassembly C. If we set the robot’s risk tolerance conservatively (for example, 0.1%),

then the robot will not pick up bolts until it is quite certain that the robot will

choose Subassembly A. The robot’s confidence can change over time as it observes

the human’s riveting pattern. If the robot’s confidence grows such that it is 99.9%

confident the human will choose Subassembly A, then it can fetch the bolts to prepare

the human for the next task! However, picking too early is risky ; if it fetches the

incorrect Subassembly or fails to help the human when they need it, the assembly

will not be completed within the allotted 40 minutes.

Note just how expressive our representative scenario is. It mixes temporal con-

straints (the human-robot due has 40 minutes to complete the assembly), logical

constraints (the human and robot may not rivet the same location), and a risk con-

straint (the robot may not act until its confidence exceeds a predetermined threshold).

18

This scenario also encodes the desirable quality of flexibility. If the robot observes the

human grab the rivet gun, then it should be able to quickly infer the human’s intent

and fetch the rivets, rather than going through an extensive re-planning process with

the updated information. This desire for fast online reasoning promotes the concept

of a policy. The robot should be able to use an efficiently-represented operations

manual to determine how it should act in uncertain scenarios.

1.2 Approach in a Nutshell

By coordinating techniques from the constraint programming and planning communi-

ties, we propose a dynamic, chance-constrained hybrid solver that allows us to model

an expressive set of problems and generate dynamic conditional policies. By break-

ing down a problem into smaller subproblems, we are able to leverage the state-of-

the-art from both communities, yielding a conditional policy that correctly encodes

an agent’s set of responses to its uncontrollable environment. Our hybrid solver,

dynamic, chance-constrained OpSat (dcc-OpSat), extends the Optimal Satisfiability

solver OpSat [18] and its chance-constrained variation cc-OpSat [6] to generate a

dynamic, chance-constrained policy that allows an agent to reason flexibly on uncon-

trollable decisions.

We achieve this task by dividing the problem into three central subproblems:

1. Policy Compilation. dcc-OpSat’s desired goal is to supply a conditional pol-

icy over the discrete-valued observations extracted from the problem’s set of

constraints. This policy is conditioned on a history of observations (assign-

ments to decision variables by the agent and its environment) and efficiently

represents a set of possible assignments for fast online reasoning. Typically, a

policy is represented as a tree-like structure. Here, we leverage the insight that

we may build this tree up from the constraints themselves, rather than finding

a whole family of solutions and compressing out duplicated structures. This

ground-up approach is more space-and-time efficient than storing the entire ex-

plicit graph or reducing the explicit graph into a more efficient representation.

19

2. Probabilistic Reasoning. Our representative example demonstrated the need

for an agent to perform fast probabilistic reasoning about its environment. For

example, if the manufacturing agent takes too long to perform its probabilistic

inference about the likelihood that the human is attaching Subassembly B, its

slow computation process might cause a delayed intervention.

3. Temporal Reasoning. Our hybrid solver is capable of performing temporal

reasoning on a set of temporal constraints, extracting the set of decisions that

will never be feasible. We can encode infeasibility into our policy of feasible

solutions by representing that infeasibility as an additional constraint. As an

example, it will never be temporally feasible for the human to do the riveting

for Subassembly B by themselves; instead, the robot must choose to assist

them. We could encode this temporal conflict logically with ¬(assembly-b ∧

¬robot-help).

We represent this policy as a compact, efficient form of a decision tree. A decision

tree branches on the possible choices an agent can make or observe; following the

decision tree from root to leaf gives us a partial assignment to decision variables. We

can leverage the policy’s efficient structure for performing probabilistic inference on

our problem during online computation. By weighting the nodes in our tree with

their relative likelihoods, we can find the least risky execution that satisfies our risk

bound.

1.2.1 A Simple Example

In this section, we’ll introduce a simple example to guide guide the rest of this thesis,

introducing at a high-level the notion of a temporal network, logical constraints, and

probabilistic reasoning.

Example 1. Consider a human and robot working together to accomplish two tasks

in sequence. First, the robot chooses to perform one of two tasks (𝑐1 or 𝑐2). Task

𝑐1 takes between 10 and 20 minutes, but task 𝑐2 only takes between two and four.

20

Then, the human chooses to perform one of two tasks (𝑐1 or 𝑐2), each of which also

takes between two and four minutes. If the human chooses to perform task 𝑐1, then

the robot must as well. The human-robot duo must complete their tasks in less than

10 minutes.

We may model our problem with the following state space:

𝒱 = (𝒱𝐶 = {𝑅1}) ∪ (𝒱𝑈 = {𝐻1})

where both 𝐻1 and 𝑅1 have domains 𝐷𝐻1,𝑅1 = {𝑐1, 𝑐2}. Note that 𝐻1 is uncontrol-

lable. As a result, we want to define the prior likelihood of variable 𝐻1, which we do

with the following influence diagram:

𝐻1 = 𝑐1 0.1
𝐻2 = 𝑐2 0.9

Table 1.2: A CPT.

The temporal constraints, though omitted for brevity, can be represented graphi-

cally:

Figure 1-2: A visual representation of our mixed-logic temporal CSP. Edges denote
temporal constraints with of the form [lower bound, upper bound], denoting the tem-
poral distance between events. Controllable choices are marked by a double circle,
with uncontrollable choices marked by a dashed circle.

In Figure 1-2, each temporal constraint is guarded by the assignment to the de-

cision variable. Guards are shown highlighted in orange. Events, which denote re-

markable points in time, are shown by nodes and edges denote temporal constraints.

As an example, the temporal constraint that encodes the action corresponding with

21

robot task 𝑐1 may be defined as follows:

STC(𝑒1, 𝑒2, 2, 4, 𝜓𝑐 = (𝑅1 = 𝑐1))

which takes on the following more formal meaning:

(𝑅1 = 𝑐1)⇒ (𝑙 ≤ 𝑒2 − 𝑒1 ≤ 𝑢)

Similar temporal constraints are included for every edge that appears in our can-

didate graph, though they are not included in the description for brevity. In addition

to the temporal constraints, we must model that the human’s choice influences the

robot’s, which may be accomplished by encoding the following constraint into our

simple example:

𝒞 = {(𝐻1 = 𝑐1)⇒ (𝑅1 = 𝑐1)}

Intuitively, we can tell that our human-robot pair has a 90% chance of succeeding

at completing both tasks within the allotted time. This is because if the human

chooses to complete task 𝑐1, then the robot must also complete task 𝑐1 (which takes

more than the allotted 10 minutes), violating the problem’s temporal constraints.

Our conditional policy encodes the notion of a history of assignments to decision

variables and can be represented in a tree-like structure called a Reduced, Ordered

Binary Decision Diagram as seen in Figure 1-3.

In the next chapters, we’ll build up to this intuitive result and represent the robot’s

conditional choices as a Policy BDD. Finally, in Appendix B.2, we will explicitly

go through every step of the process, discussing how to model and implement this

problem using the tools described this thesis.

1.3 Thesis Structure

In Chapter 2 of this thesis, we outline the defining characteristics of our problem

statement, highlighting a few representative scenarios that motivate the design of our

22

Figure 1-3: The final resultant BDD for our example problem.

hybrid solver. Then, in Chapter 3, we break down our problem statement into the

relevant compilation, Bayesian inference, and temporal reasoning subproblems, dis-

cussing how each subproblem is coordinated to yield a policy that fully represents an

agent’s possibilities. In Chapter 4, we discuss the policy compilation problem, defin-

ing key characteristics of our inputs and outputs and outlining a detailed approach

that goes from a weighted, conditional stochastic logical problem to a policy BDD

that efficiently encodes an agent’s responses. Then, in Chapter 5, we present the

Bayesian inference subsolver, discussing its formal problem statement and relevant

insights. During this chapter, we introduce the human-robot collaboration extension

from [11], discussing how to extract the “best” possible set of decisions in response

to a partial assignment of variables subject to a chance constraint. This extension

23

grounds our Bayesian inference in a real-world application, though the formulation

proposed by dcc-OpSat is more flexible and allows for the implementation of a wide

range of algorithms over the Policy BDD. Chapter 6 discusses how we mix in tem-

poral constraints with our logical constraints, highlighting key algorithms from [11]

and [4] that allow us to extract a set of logical conflicts from a network of temporal

constraints. The conflicts extracted from the temporal constraints are then passed

back to our parent solver and folded into the Weighted CSCSP for compilation into

a policy BDD.

24

Chapter 2

Problem Statement

In this chapter, we will build up the intuition for our problem statement, identifying

key elements of interesting problems that our hybrid solver, dcc-OpSat, can accept.

In short, we identify the growing need for a hybrid solver that combines the best

elements of the SAT and temporal planning communities, enabling us to express a

rich set of constraints useful for a broad range of multi-agent problems in uncertain

environments. Then, we describe the key characteristics of the problems our hybrid

solver can manipulate. Finally, we turn those characteristics into a formal problem

statement for an architecture that can solve a rich set of problems for risk-bounded,

multi-agent planning and decision-making problems.

An agent’s environment is rarely perfectly deterministic. Instead, an autonomous

agent must be able to react flexibly to the uncontrollable choices made by the agents

around it and its environment itself. However, solving multi-agent, risk-bounded

problems on-the-fly is computationally intensive; instead, it is often advantageous to

provide an agent with a rulebook for its behavior, or policy, which allows it to quickly

make decisions once it observes uncontrollable choices.

Consider the intuitive example of a robot traversing a factory floor, going from

waypoint to waypoint to retrieve tools and provide them to a human partner. If the

robot encounters an unexpected obstacle in its path, it should not spend excessive time

reformulating a planning problem, considering all possible schedules that accomplish

its goals, and picking the best one. Instead, the agent should be able to quickly consult

25

a policy generated during its pre-compilation procedure, determine which response

best meets its criteria for success, and follow the path around its obstacle that gets

it to the next tool in the factory.

Figure 2-1: A robot reacting to an unexpected obstacle on the factory floor.

2.1 The Need for an Expressive Chance-Constrained

CSP Solver

Many solution architectures exist for solving deterministic CSPs [18], returning a

single assignment to the decision variables that satisfies a given set of constraints.

However, not all problems are deterministic; in situations where an agent is acting

in an uncontrollable environment, it becomes necessary to solver for a policy that

encodes an agent’s flexible response to uncontrollable decisions. Additional work has

26

been done to create solvers for the CSP’s stochastic [17] and conditional [7] variants,

returning a more flexible policy that represents a set of possible assignments given

uncontrollable observations. Similarly, there are solution architectures for extracting

temporal conflicts from a set of temporal constraints [4]. However, no hybrid solver

exists that combines the notions of temporal and conditional constraints to yield

a dynamic, conditional policy, allowing a user to encode a rich set of multi-agent

decision-making problems.

In this thesis, we leverage key insights from the constraint programming and

temporal planning communities, developing a dynamic, chance-constrained Optimal

Satisfaction Solver (dcc-OpSat) that is capable of manipulating a set of logical, tem-

poral, and state-based constraints to return a dynamic policy governing an agent’s

behavior in an uncontrollable environment. By coordinating between existing sub-

solvers that operate on a subset of the constraints and variables, we are able to pull

from the state of the art in a variety of communities, encoding a rich set of problems

useful for multi-agent domains.

This hybrid architecture combines three critical aspects of real-world problems.

First, it can encode stochastic and controllable discrete-valued variables repre-

senting choices made by an agent or its environment. Additionally, variables may be

conditioned on an agent’s observations. Finally, it combines temporal and logical

constraints. When all three characteristics are combined, we have a hybrid solver that

generates dynamic policies for risk-bounded behavior in uncertain environments.

2.1.1 Motivating Examples

We now consider a few examples that highlight key characteristics of our problem

statement.

Stochastic 𝑛-Queens

Here, we discuss an example that illustrates critical features of a chance-constrained

CSP without temporal constraints. Simply put, neither our agent nor its environment

27

is time-constrained, so there is no need to reason on temporal constraints.

Example 2. Consider a modified version of the canonical 𝑛-queens problem. In

the traditional expression, an agent is tasked with placing 𝑛 queens on an 𝑛 × 𝑛

chessboard such that no two queens attack each other. In our modified formulation,

an agent and a human are collaborating to place 𝑛 queens on the chessboard; the

autonomous agent has no control over the human’s choices but should take actions

in an “assistant” role. The human moves first; after the human’s move, the robot and

human take turns placing pieces on the chessboard until it is filled. The robot knows

a little about how the human is expected to place pieces; for example, if the human

places its first piece in position (2, 0), it is much less likely to place a piece there in

the future. Central to this formulation is the notion of stochasticity : our autonomous

agent lacks total control over its environment and must instead respond to actions

outside of its control. Additionally, our formulation includes the notion of a chance

constraint ; if a robot’s choice is expected to decrease the probability of success below

a threshold, then it may not make that choice. If no possible set of assignments in

the policy exists satisfying the chance constraint, then it should signal an error to

alert its human partner.

Figure 2-2: A valid solution to the 𝑛-queens problem.

The chance-constrained formulation is able to encode the notion of risk. For

28

example, if the robot expects that the human’s next move will be placing a piece in

position (3, 2), then it should not place a piece in positions (3, 1) or (2, 1) in order to

increase the likelihood of mission success. Finally, our formulation also contains an

inherent assignment ordering ; that is, the human makes the first assignment, followed

by the robot, with the pattern proceeding as the board is filled.

Because not all assignments are controllable by our agent, a single solution satis-

fying the constraints does not help our agent make informed choices about its envi-

ronment. Instead, the agent should reason flexibly on the intent of its human partner.

The flexibility demands a solution in the form of a conditional policy. This policy is

conditioned on assignments to stochastic variables and imposes assignments to the

controllable variables while respecting the input assignment ordering.

Human-Robot Collaboration

We borrow an example from [11] to demonstrate our hybrid solver’s ability to solve

critical problems in human-robot collaboration.

Example 3. Consider a robot and human collaborating to prepare the human for

a busy day at work, represented graphically in Figure 2-3. First, the human/robot

duo must eat breakfast and fetch the required items to travel to work. Next, the

human travels to work. The human can choose to sleep in or wake up early and

then later chooses to eat a fueling breakfast of eggs or a lighter cereal. The robot

is not sure of the human’s decisions beforehand, but it does know that the human

tends to run or bike to work if they eat eggs and sleep in when they drive. The full

relationship between these variables is encoded by a set of conditional probability

tables that, in turn, may be expressed as an influence diagram, a generalization of a

Bayesian network. In this way, the robot’s observations may give it more information

about what a human is likely to do later in the plan. While the human wakes up and

eats, the robot can choose to do at most three of the following: pump the human’s

bike’s tires, grab the human’s car keys, grab the human’s shoes, or grab the human’s

umbrella. Due to the problem’s temporal constraints, the robot may not fetch all four

items.

29

Figure 2-3: A visual representation of our mixed-logic temporal CSP, wherein the
human and robot collaborate to prepare the human for their commute and the human
then executes their desired commute.

After the human awakens and eats breakfast, they choose to bike, run, or drive

to work. If they bike or run and it’s raining, they must dry off before sitting in their

plush desk chair. Of course, a human may not bike to work if their bike has flat tires;

they may not run without running shoes; and they may not drive without their car

keys, so the robot has to select the “correct” pre-computed tasks to complete given its

knowledge about the weather, the human’s general tendencies, and their choices thus

far. As an example, the robot may use the observation that the human has chosen to

sleep in to infer that they are less likely to bike or run to work, prioritizing grabbing

the human’s keys over inflating the bicycle’s tires.

The morning routine problem demonstrates the need for an encoding that can

represent temporal constraints that relate the scheduling of events alongside logical

constraints. As an example, the robot’s only has time to do three of its four morning

tasks, which affects the way the human behaves down the road. Furthermore, it re-

emphasizes the importance of conditionality. For example, the robot is only forced

to make certain decisions once it has observed particular human choices.

2.1.2 Problem Requirements

Our examples highlight several demands of our problem’s input and output; though

there exist solvers ([7], [18], [17]) that satisfy a subset of these requirements, none

provide a flexible architecture for dynamically solving chance-constrained CSPs.

Inputs

1. Finite Choices. Our problem’s stochastic and decision variables have discrete,

finite domains. For example, in the stochastic 𝑛-queens problem, the human

30

may choose to place their first queen in Squares (0, 0), (1, 0), (2, 0), or (3, 0).

2. Real-Valued Temporal Events. When encoding a planning problem with

temporal constraints, we must reason over variables with real-valued domains

called events that denote critical points in times. Here, we assume that all

events are controllable and therefore decision variables.

3. Ordering. Assignments to variables are ordered. For example, the human

chooses where to place their chess piece first.

4. Conditionality. Certain assignments activate and deactivate other constraints.

For example, if the human chooses to bike to work, they activate the set of

temporal constraints that encode the biking and potential dry-off procedure.

5. Expressive Constraints. A problem’s constraints may be:

• Logical: if the human places a chess piece in Square (0, 0), then the robot

may not place a piece in Square (0, 1).

• State-based: the robot must actually be pumping the human’s bike be-

tween the events corresponding to pumping.

• Temporal: the human must get to work on time.

• Probabilistic: the human is not likely to place a piece in Square (0, 0).

• Risk-based: if the probability of success falls below a certain threshold,

then the solution is not correct.

Outputs

1. Conditionality. Our output must be conditioned on assignments to uncontrol-

lable variables in order to encode the flexibility required from an uncontrollable

problem.

2. Compact. The solution must efficiently encode the set of all possible assign-

ments to make reasoning on assignments to uncontrollable decision variables

computationally tractable.

31

2.2 Formal Problem Statement

In this section, we define our formal problem statement for a hybrid solver meeting

the requirements outlined in Section 2.1.2.

Inputs

• 𝒱 , a set of variables. Each variable 𝑣𝑖 ∈ 𝒱 is associated with a domain 𝐷𝑣𝑖 ,

which may be finite or real-valued. We further divide 𝒱 into the following

categories to fully express our desired set of problems:

– 𝒱𝐷 ⊆ 𝒱 , the set of discrete, finite-domain variables. A variable 𝑣 ∈ 𝒱𝐷
may be either controllable or uncontrollable (in which case 𝑣 ∈ 𝒱𝑈), and

it may be either conditional (in which case 𝑣 ∈ 𝒱𝐶) or unconditional. A

variable may be both uncontrollable and conditional.

– 𝒱𝐶 ⊆ 𝒱 , the set of conditional variables. Conditional variables may be

active or inactive, and they may have real or finite domains. If they are

inactive, then they need not take a value from their domain and all con-

straints involving the inactive conditional variables are vacuously satisfied.

– 𝒱𝑈 ⊆ 𝒱𝐷, the set of uncontrollable variables.

– 𝒱𝑅 ̸⊂ 𝒱𝐷 ⊆ 𝒱 , the set of variables with real-valued domains. These

variables correspond to events in a temporal constraint network. Variables

with real-valued domains may not be uncontrollable, but they may be

conditional.

Our hybrid solver must be able to handle problems that include at least one of

the above variable types; valid problems need not include all variable types.

• 𝒞, the set of constraints. Constraints may be either:

– State Logical (𝒞𝐿), in which case they are propositional formulae whose

propositions are assignments to discrete variables.

32

– Temporal (𝒞𝑇), in which case they express upper and lower bounds for the

relative values of the real-valued variables 𝒱𝑅.

Constraints may also be both logical and temporal. Grounding this notion in

Example 3, the human choosing to run to work activates the temporal constraint

that driving takes between 15 and 20 minutes. This may be represented by the

logical implication, e.g. (human drives)⇒ STC(𝑒1, 𝑒2, 15, 20).

• 𝒞active, a set of activation constraints expressed as guards on finite domain vari-

ables and simple temporal constraints.

• 𝒱order, an ordering over the finite-domain variables.

• ∆, which encodes the risk bound of our problem’s likelihood of success.

• Pr, which encodes probabilistic constraints on assignments to finite-domain de-

cision variables in the form of a Bayesian network or its generalization, the

influence diagram.

Outputs

• A compact encoding of the decision tree that forms the set of all possible as-

signments to decision variables. In this thesis, we choose a Reduced, Ordered

Binary Decision Diagram for its canonicity and efficiency.

2.3 Chapter Summary

In this chapter, we extended our motivating examples to flesh out two interesting,

representative scenarios—the stochastic 𝑛-queens problem and the human-robot col-

laboration problem. From these examples, we identified a set of critical problem

features that can be solved individually but are challenging to reason over when com-

bined. From the informal descriptions of these features, we distilled a formal problem

statement that drives the architecture of our hybrid solver.

33

34

Chapter 3

Approach

With our problem statement in mind, we may begin to design a hybrid solver archi-

tecture that is capable of solving a mixed-logic temporal problem with probabilistic

constraints. Because each component of our problem statement is relatively well-

understood ([17], [4], [11], [7]) but the sum total—a stochastic, chance-constrained

CSP with mixed logical and temporal constraints —remains an area of active research,

we leverage the notion of a hybrid solver. A hybrid solver coordinates between a set

of subsolvers, each of which can solve one of the subproblems and return useful in-

formation to its parent solver. In the dcc-OpSat case proposed in this thesis, we

identify four critical subsolvers which solve their corresponding subproblems to create

efficient, compact policy representations:

1. A Weighted CSCSP Subsolver, which takes in a Weighted Conditional,

Stochastic CSP and compiles out the constraints into a representation that

may be efficiently queried. In turn, the Weighted CSCSP subsolver depends on:

(a) A Constraint Compiler, which turns the weighted, stochastic CSP and

compiles out the constraints into a conditional policy.

(b) A Conditional CSP Subsolver, which compiles out the conditional vari-

ables and constraints from a Weighted CSCSP and returns a Weighted

SCSP.

35

2. A Bayesian Inference Subsolver, which explicitly represents the probabilis-

tic information from an SCSP as a set of auxiliary constraints.

3. A Temporal Constraint Subsolver, which gathers a set of guarded temporal

constraints and yields a set of logical constraints.

Intuitively, subsolvers (2) and (3) create an augmented CSP which may be com-

piled into a Policy BDD by subsolver (1). Each subsolver leverages existing techniques

and algorithms, which are then coordinated through the parent solver, yielding a dy-

namic conditional policy which represents all possible responses to a set of uncontrol-

lable choices.

3.1 Hybrid Solver Architecture

Our hybrid solver is responsible for coordinating its subsolvers to ensure correct-

ness. Here, we describe the high-level processes for coordination between our three

subsolvers.

First, we take an input of the form described in our formal problem statement

from Section 2.2. Our parent solver then does the following:

1. Hands off the subset of temporal constraints to the temporal subsolver, yielding

a set of temporal conflicts.

2. If the problem contains no conditional variables and constraints, the parent

solver immediately hands off the probabilistic information to the Bayesian in-

ference subsolver, yielding an auxiliary set of variables and constraints.

3. Takes in the auxiliary variables, probabilistic constraints, and temporal conflicts

to the constraint compiler, which in turn:

(a) “Compiles out” conditional constraints, yielding a problem that explicit

represents variable’s activation status. This modifies the probabilistic in-

formation. The modified conditional probability tables which contain our

36

explicit activation constraints is then passed to the Bayesian inference sub-

solver, which generates an additional set of variables and constraints which

are then passed back into the Weighted SCSP problem.

(b) Compiles the unconditional, weighted, stochastic CSP into a Reduced,

Ordered, Binary Decision Diagram (ROBDD) representing a policy.

In short, our subsolvers generate additional variables, constraints, and weights

which are added to our original problem statement; from there, we take the resultant

Weighted CSCSP and yield a Policy BDD. Figure 3-1 shows the overall architecture

for our hybrid solver. In orange are the problem inputs; the inputs are distributed

to the appropriate subsolver, which then generates a set of auxiliary constraints and

returns them to the Weighted CSCSP subsolver. The Weighted CSCSP subsolver,

in turn, compiles out conditional variables to create an unconditional problem and

then represents the set of solutions to that problem as a Reduced, Ordered Binary

Decision Diagram with a set of weights on its nodes.

Our hybrid solver may be described formally by the following high-level algorithm

which coordinates the subsolvers:

Algorithm 1 dcc-OpSat
Input: ⟨𝒱 , 𝒞,𝒱order,∆,Pr⟩ as defined in Section 2.2.
Output: An ROBDD and set of weights 𝒲 .

1: if the problem contains temporal constraints then
2: Extract the temporal conflicts as 𝒞𝑇𝐶

3: end if
4: if the problem contains conditional constraints then
5: Compile out the conditional constraints
6: Modify Pr with the auxiliary conditional variables
7: end if
8: 𝒞𝐵,𝒱𝐵,𝒲𝐵 ← Bayesian-Inference(Pr,∆)
9: ROBDD,𝒲 ← Compile-Constraints((𝒱 ∪ 𝒱𝐵), (𝒞 ∪ 𝒞𝐵 ∪ 𝒞𝑇𝐶),𝒲𝐵)

3.1.1 Policy Representation

To understand our desired output, we introduce the notion of an explicit graph or

decision tree to build up to our definition of a Reduced, Ordered, Binary Decision

37

Figure 3-1: The proposed architecture of dcc-OpSat.

Diagram.

Explicit Graph

An explicit graph represents the set of all possible policies by encoding all possible

assignments to the state space of variables. Nodes in the explicit graph are the vari-

ables in 𝒱 and edges are assignments to those variables. Each leaf node is labeled 0

or 1, and each path from root to leaf represents an interpretation 𝜓𝑆; if this interpre-

tation 𝜓𝑆 is a solution (or model), it satisfies all the constraints in 𝒞. We define the

indicator function 1sat which takes the value of 1 if 𝜓𝑆 is a solution to our problem

and 0 otherwise.

Explicit graphs are often represented in an AND-OR tree structure where the

variables in 𝒱𝑈 represent the AND nodes, and 𝒱𝐶 form the OR nodes. In a policy

tree, we choose one of assignment for each of the OR nodes. Intuitively, this is because

our agent cannot select the assignment of an uncontrollable variable and must choose

the “best” possible response to an uncontrollable choice. Note that, as before, our

variables have discrete, finite domains. We define the set of all interpretations of a

38

Figure 3-2: An explicit graph for a simple problem.

policy tree (the full assignments to the variables in 𝒱) to be 𝒮(𝜋).

To go from the explicit graph to our AND-OR policy tree, we traverse the explicit

graph and choosing one value for each OR node. In Figure 3-3, the red nodes corre-

spond to the uncontrollable variables. A policy is successful if its assignments satisfy

the problem’s constraints; if there is stochasticity in the problem and a risk bound is

provided, then the assignment must also satisfy the problem’s risk bound.

Policy BDD

A Binary Decision Diagram (and, in this case, a Reduced, Ordered Binary Decision

Diagram) is a compact way of encoding Boolean functions that can be easily gener-

ated, modified, and reasoned on by graph algorithms. We choose to represent our

problem output as a Reduced, Ordered Binary Decision Diagram. In an ROBDD,

Boolean functions are represented by directed, acyclic graphs. Note that a policy

represented by an AND-OR tree (or explicit graph) is also a logical formula over a set

of observations. That is, the explicit graph in Figure 3-3 can be considered a set of

boolean functions. However, the explicit graph has substantial duplicated structure

as subgraphs are often repeated during the a traversal, demanding a more efficient

formalization like the ROBDD which eliminates duplicated structures to yield a more

39

Figure 3-3: The corresponding policy tree for a simple problem.

compact representation.

Definition 1. (Reduced, Ordered Binary Decision Diagrams (ROBDD)). A reduced,

ordered BDD (ROBDD) is a rooted, directed, acyclic graph that represents a Boolean

logic formula 𝑓 . The graph 𝒢 consists of a root node, decision nodes (which represent

variable assignments), and two leaf nodes, which denote whether or not formula 𝑓 is

satisfied given a path from root to leaf.

Each node (except for the two terminal nodes) has two children; the edge corre-

spond to the 1 or “high" child of node 𝑛 corresponds to the assignment in node 𝑛

holding (and vice versa). A full path from root to leaf represents a full assignment to

variables in the formula 𝑓 . If the leaf (or terminal) node takes the value of 1, then

the formula 𝑓 evaluates to ⊤ given the assignments along the path from root to leaf;

if the terminal node takes the value of 0 the 𝑓 evaluates to ⊥ given the assignments

along the path.

We may represent an assignment to a decision variable as a single BDD node; its

“high” (1) child represents the assignment holding, and the “low” (0) child represents

the assignment not holding. Consider the variable 𝑅1 with domain {𝑐1, 𝑐2}. We

represent the assignment of 𝑅1 to value 𝑐1 with the BDD in Figure 3-4. Note that a

40

Figure 3-4: The node 𝑓1 corresponding to the decision variable assignment (𝑅1 = 𝑐1).

BDD is inherently a recursive data structure; that is, a BDD node is represented by

the node itself and its high and low children nodes.

Definition 2. (Policy BDD). A Policy BDD is simply a Binary Decision Diagram

representing a policy.

3.2 The Weighted CSCSP Subsolver

In Chapter 2, we established the need for a subsolver which can handle a conditional,

stochastic formulation with a set of weights on the variables, yielding a dynamic

policy which compactly encodes the set of possible solutions to our problem. To

formally describe our problem’s input, we define the Weighted, Stochastic Constraint

Satisfaction Problem, which is composed of a set of controllable, uncontrollable, and

conditional variables and constraints over those variables. The Weighted CSCSP

subsolver is responsible for compiling out the set of constraints represented by a

struture we call a Weighted CSCSP into a policy. This policy may be efficiently

queried to determine which solution maximizes an objective function while satisfying

the problem’s constraints.

Simply put, our Weighted CSCSP subsolver goes from a Conditional, Stochastic

CSP with weighted assignments to decision variables and encodes the set of con-

straints 𝒞 as a policy. Note that our chosen policy representation is a Reduced,

Ordered Binary Decision Diagram. Therefore, our input must also encode a variable

ordering which specifies the order in which assignments are made to variables.

41

Intuition: Weighted CSCSP Subsolver

The Weighted CSCSP subsolver accomplishes its compilation task by in turn leverag-

ing two subsolvers: one (Section 3.2.1) which takes in a Weighted Conditional SCSP

and compiles out the conditional constraints, yielding a Weighted SCSP; and another

(Section 3.2.2) which takes in the Weighted SCSP and compiles out the unconditional

constraints into a Reduced, Ordered Binary Decision Diagram with a set of weights.

3.2.1 Conditional CSP Subsolver

A Reduced, Ordered Binary Decision Diagram cannot reason on conditional variables

and constraints. For that reason, our hybrid architecture must leverage a subsolver

proposed in [11] to compile out the conditional nature of a problem into an uncon-

ditional CSP. Our Conditional CSP subsolver (CCSP Subsolver) accomplishes this

compilation task by reasoning on a Weighted Conditional, Stochastic CSP and yield-

ing a Weighted Stochastic CSP.

Intuition: Compiling out Conditional Constraints

Here, we leverage the insight that we can augment our Weighted CSP with auxiliary

variables and propositions which explicitly represent a variable’s activation status. By

modifying the domains of conditional variables, creating a set of auxiliary variables,

and adding constraints which explicitly represent the variable’s activation status, we

are able to “compile out” the conditional constraints and create a weighted SCSP

without conditionality. In Section 4.3, we will build up from this intuition to develop

a procedure for compiling out conditional constraints.

3.2.2 Constraint Compiler

Finally, we are ready to go from a Weighted SCSP to a Reduced, Ordered Binary De-

cision Diagram! Our Constraint Compiler provides the parent solver with a critical

part of the problem statement in Section 2.2, which established the requirement for

an efficient policy representation. Rather than representing the entire explicit graph,

42

which can grow large when state space 𝒱 is large, we leverage the insight that we

can efficiently build a Reduced, Ordered Binary Decision Diagram directly

from a problem’s constraints. Our constraint compiler takes a set of constraints 𝒞

from our input Weighted SCSP, compiling them out using a set of efficient, canonical

BDD operations, and represents the compiled constraints as a Policy BDD.

Intuition: Compiling out Conflicts

Because Binary Decision Diagrams are an efficient representation for propositional

formulas and we have transformed our mixed logical and temporal problem statement

into a set of unconditional, stochastic constraints, we may build a Reduced, Ordered

Binary Decision Diagram (ROBDD) directly from our transformed input. Compiling

out the conflicts is as simple as using canonical BDD operations (and, or,

and not) to incrementally build up our constraints into an ROBDD which

represents the set of possible solutions to our problem. Finally, we note that

our input weights are simply weights on assignments to decision variables; because

each node in a BDD is simple an assignment to a decision variable, we translate our

weights 𝒲 from our input to their respective nodes in the Binary Decision Diagram.

In Section 4.4, we will build up from this intuition to develop a procedure for compiling

out conflicts into an ROBDD.

3.3 Bayesian Inference Subsolver

Our problem statement drove the requirement for a module which can efficiently

use probabilistic information to infer the likelihood of an agent’s choice. Existing

probabilistic information techniques, which rely on the weighting of variables accord-

ing to their relative likelihoods, miss out on encoding the structural information of

the problem’s probabilistic components. Such structural information enables a much

more rapid inference process; by encoding this structural information in our

problem directly, we are able to speed up probabilistic inference.

Our Bayesian Inference subsolver leverages insights from [11] to reframe prob-

43

abilistic information from a Bayesian network or its generalization, the Influence Di-

agram, into a set of auxiliary variables and weighted constraints which may then be

added into our Weighted CSCSP for use by the Weighted CSCSP subsolver. This

translation allows us to reason explicitly on the problem’s probabilistic information,

encoding it directly into our ROBDD for efficient reasoning.

3.3.1 Intuition: Performing Bayesian Inference

For our Bayesian Inference subsolver, we leverage insights from [11] that note we

may represent rows of a conditional probability table via a weighted set of auxiliary

variables and constraints on those variables. Such insights allow us to encode prob-

abilistic information explicitly in our policy, enabling fast online computation from

the knowledge base of compiled constraints.

3.4 Temporal Subsolver

So far, we’ve discussed encoding logical constraints into a compact knowledge base;

however, a key innovation of this thesis is the ability to mix logical constraints with

temporal constraints in a chance-constrained CSP. To solve this problem, we turn

to the Temporal Subsolver, which gathers the temporal constraints into a tempo-

ral constraint network, performs temporal reasoning, and returns a set of additional

temporal constraints which denote which combinations of events will always be tem-

porally infeasible as well as an implicit ordering of events derived from the temporal

constraints.

3.4.1 Intuition: Extracting Temporal Conflicts

With our temporal subsolver, we leverage the insight that some assignments to de-

cision variables will always yield temporally infeasible plans. We may encode these

problematic assignments in our logical constraint base by performing temporal rea-

soning on our temporal network, extracting temporal conflicts, and representing the

44

conflict as a logical constraint. As an example, if the assignment of decision variable

𝑥1 to choice 𝑐1 always yields a temporally infeasible plan, we encode the constraint

̸= (𝑥1 = 𝑐1) to represent that 𝑥1 may never take the value 𝑐1.

Furthermore, we’re interested in gleaning an assignment order from our temporal

conflicts. To extract a variable ordering, we are able to calculate a precedence rela-

tion for the events occurring in our temporal network from graph-based algorithms.

We extend this precedence relation to the choices being made at those events; from

these precedence relations we may infer a variable order. Of course, our precedence

relation may have ambiguity between two given events; in this case, our agent should

choose a worst-case variable order wherein it assumes it will have to make control-

lable choices before observing uncontrollable observations. This pessimistic thinking

ensures that the agent’s estimation of risk will be an upper bound of the prob-

lem’s actual risk. Grounding this intuition in reality, we consider the case where

the temporal constraints over events {𝑒𝑣1, 𝑒𝑣2, 𝑒𝑣3, 𝑒𝑣4} infer the precedence relations

𝑒𝑣1 ≺ 𝑒𝑣2, 𝑒𝑣3 ≺ 𝑒𝑣4, signifying that the ordering of events 𝑒𝑣2 and 𝑒𝑣3 is ambiguous.

Let 𝑒𝑣2 and 𝑒𝑣3 be associated with the uncontrollable decision 𝐻2 and controllable

decision 𝑅3. In our pessimistic algorithm, we want controllable assignments to pre-

cede uncontrollable assignments, so our desired variable ordering 𝒱order is then given

by the precedence list 𝑒𝑣1 ≺ 𝑒𝑣3 ≺ 𝑒𝑣2 ≺ 𝑒𝑣4.

45

46

Chapter 4

Weighted CSCSP Subsolver

In our problem statement, we identified the need to represent conditional, stochastic

problems with weights on assignments to variables as a dynamic policy. Recognizing

that our chosen policy representation—the Reduced, Ordered Binary Decision Di-

agram—has no inherent representation of conditionality, our compilation subsolver

must first eliminate the problem’s conditional variables. Once this task is completed,

the compilation process may proceed, incrementally building up a policy from the

problem’s set of newly-unconditional constraints. This coordination process is repre-

sented visually in Figure 4-1.

In this chapter, we describe the Weighted CSCSP solver, which compiles con-

straints into a policy. Building on the intuition established in 3.2, we leverage the

insights that (a) we may extend our problem’s state space of variables with a set of

simple compilation procedures, and (b) we may use efficient, canonical operations on

a Stochastic CSP to compile our constraints into a compact policy representation.

We will begin by developing the formal problem statement for the Weighted

CSCSP subsolver that meets the needs highlighted in Section 3.2, describe the high-

level algorithm that coordinates between the Conditional CSP Subsolver and Con-

straint Compiler, and describe in detail the two modules that accomplish our goal of

compiling out the problem’s expressive set of constraints.

47

Figure 4-1: An enhanced view of the WCSCSP Subsolver architecture.

4.1 Problem Statement: Weighted CSCSPs

As described in Section 3.2, our Weighted CSCSP subsolver must accept a problem

with variables that are either uncontrollable or controllable and either conditional

or unconditional and a set of weights on those variables; in response, the WCSCSP

subsolver should yield a Policy BDD, represented as a Reduced, Ordered Binary

Decision Diagram. Here, we define our formal problem statement for the Weighted

CSCSP problem. We begin by establishing the formal heritage of our input, the

Weighted Conditional, Stochastic Constraint Satisfaction Problems for which our

solver is named.

Definition 3. (Weighted Conditional, Stochastic Constraint Satisfaction Problem).

A Weighted Conditional, Stochastic Constraint Satisfaction Problem (WCSCSP) ex-

tends the constraint satisfaction problem to encode assignment preferences to vari-

ables. Formally, a WCSCSP can be defined as a tuple 𝑃 = ⟨𝒲 ,CSCSP⟩, where:

• 𝒲 , a set of weights that maps assignments of decision variables to reals R. This

set of weights may be arbitrarily defined over the set of decision variables, repre-

senting a set of single attribute utility functions or it may represent a probability

distribution Pr formatted as a Bayesian network or influence diagram.

• CSCSP is a triple ⟨𝒱 ,𝒟, 𝒞⟩, where:

48

– 𝒱 is the set of all the variables in the problem. Each variable 𝑣𝑖 ∈ 𝒱 is

associated with a domain 𝐷𝑣𝑖 = {𝑑𝑘1, ...𝑑𝑘𝑛1}, which describes the set of

values the variable may take.

– 𝒱𝑈 ⊆ 𝒱 is the set of stochastic variables, which have uncontrollable out-

comes.

– 𝒱active ⊆ 𝒱 is the subset of conditional variables that may or may not be

active. Stochastic variables may be conditional.

– 𝒞 is the set of constraints over those variables, where each 𝐶𝑖 ∈ 𝒞 constrains

the valid assignments to variables. If 𝑣𝑖 ∈ 𝒱active, then all constraints 𝐶𝑖

that contain 𝑣𝑖 are “vacuously satisfied” when 𝑣𝑖 is inactive.

Definition 3 combines the Conditional, Stochastic CSP from [11] with the Optimal

CSP from [18]. It lends more expressiveness to the CSCSP formulation by supporting

probabilistic constraints but not explicitly requiring them. We leverage notions from

the Optimal CSP, which provides a formulation that supports a multi-attribute utility

function expressed over assignments to decision variables.

Input

• A Weighted CSCSP, 𝑃 = ⟨𝒲 ,CSP⟩ (Definition 3).

• 𝒱order, an ordering over the variables 𝒱 that specifies the order in which the

variables are assigned.

Output

• A Reduced, Ordered Binary Decision Diagram (Definition 1) that represents

the compiled constraints to the OCSP.

• 𝒲 , a set of weights on the nodes of the ROBDD.

49

4.2 Approach: Combining Two Solvers

Here, we describe the algorithm that coordinates between the two subsolvers (CCSP

and the Constraint Compiler) as well as with the parent solver dcc-OpSat. In short,

the Weighted CSCSP subsolver first compiles out the conditional constraints, modify-

ing the problem’s state space with an auxiliary set of variables and their constraints

using the CCSP Subsolver. Note that if a probability distribution Pr is provided,

this process modifies the probability distribution with the auxiliary set of variables

created in the compilation process. Pr′, the modified probability distribution, is saved

and distributed to the the Bayesian Inference subsolver by the parent solver.

Once Bayesian inference has been performed, the Weighted CSCSP solver can

begin to compile the conditional constraints into a dynamic policy represented as an

ROBDD. The constraint compilation process leverages canonical BDD operations to

incrementally build up a policy from the assignments to decision variables referenced

in the policy.

Algorithm 2 wCSCSP Subsolver
Input: A Weighted CSCSP, 𝑃 = ⟨𝒲 ,CSP⟩
Output: An ROBDD and set of weights 𝒲 .

1: if the problem contains conditional constraints then
2: Compile out conditional constraints
3: end if
4: Hand off Pr to the Bayesian Inference subsolver
5: Wait for Bayesian Inference to be performed
6: Modify WCSCSP with additional probabilistic information
7: Compile constraints from modified WCSCSP

Algorithm 2 describes the high-level procedure our Weighted CSCSP solver fol-

lows. Note the coordination with the Bayesian Inference subsolver (Chapter 5), which

is responsible for turning probabilistic information modified by the Weighted CSCSP

subsolver into logical constraints that may be compiled into our knowledge base of

constraints.

50

4.3 Conditional CSP Subsolver

Recall that our problem statement may include a set of conditional variables that may

or may not be active. While conditional variables allow a more expressive encoding,

they are challenging to reason over with existing techniques. To deal with these prob-

lems, we leverage insights proposed in [11] by “compiling out” conditional variables

from the CSCSP and translate our problem into a Stochastic CSP. The Conditional

CSP Subsolver is responsible for the compilation of conditional variables, modifica-

tion of existing probabilistic information to include the newly compiled variables, and

returning a formulation with universally activated variables and constraints.

4.3.1 Problem Statement: Conditional CSPs

To better understand the CCSP Subsolver’s input, we define the Stochastic Constraint

Satisfaction Problem, which encodes problems where not all assignments to variables

are controllable.

Definition 4. (Weighted Stochastic Constraint Satisfaction Problem (SCSP)). A

weighted stochastic CSP (WSCSP) extends [17] and is defined by ⟨𝒱 ,𝒱𝑈 , 𝒞,𝒲⟩. As

before, 𝒞 is the set of constraints constraints on variables’ domains. 𝒱 is an ordered

set of variables. 𝒱𝑈 ⊆ 𝒱 is the subset of uncontrollable variables whose values cannot

be controlled by the agent (and, in our case, a solver). 𝒲 is again a set of weights on

assignments to decision variables; 𝒲 may be either arbitrary weights or probabilistic

information defined by a Bayesian network or influence diagram Pr.

Unlike the Weighted Conditional Stochastic Constraint Satisfaction Problem, the

WSCSP does not have conditional variables or constraints. Instead, it is an uncondi-

tional formulation that may then be represented as a Policy BDD.

Note that traditional formulations of the SCSP [17] and CSCSP [11] include the

notion of probabilistic constraints by encoding a distribution on assignments Pr and

a risk bound ∆. Here, we extend this risk-bounded formulation to permit arbitrary

weights on assignments to decision variables, allowing us to encode a more diverse set

of problems.

51

Our Conditional CSP subsolver reasons on a CSCSP and compiles it into an SCSP.

The output from the Conditional CSP solver may then be handed to the Bayesian

Inference subsolver that, in turn, encodes the problem’s probabilistic constraints as

weights on assignments to decision variables.

Input

• A Weighted CSCSP given by ⟨𝒱 ,𝒱𝑈 ,𝒱active, 𝒞,𝒲⟩ (Definition 3).

• A variable ordering 𝒱order.

Output

• A Weighted SCSP with conditional variables and constraints “compiled out”

given by ⟨𝒱 ,𝒱𝑈 , 𝒞,𝒲⟩ (Definition 4).

• If there are conditional constraints, a modified Bayesian network Pr′, which

contains the active𝑣𝑖 constraints as outlined in Section 4.3.3.

Here, the inputs are the same as in Section 4.1; however, now instead of com-

piling out to a Reduced, Ordered Binary Decision Diagram we are performing the

incremental step of compiling out the conditional variables.

4.3.2 Introducing Another Example

Here, we’ll introduce another example that illustrates several features of our condi-

tional CSP subsolver. While closely related to Example 1, we introduce an additional

controllable variable 𝑅2 and mark our uncontrollable 𝐻1 as conditional. Furthermore,

we eliminate all of the temporal constraints, as they’re not relevant to the Conditional

CSP subsolver and serve only to further obfuscate the relevant details.

Example 4. We introduce the simple Weighted CSCSP as follows:

• 𝒱 , the state space, consists of the ordered sequence of variables ⟨𝐻1, 𝑅1, 𝑅2⟩.

Each variable has the domain {𝑐1, 𝑐2}.

52

• 𝒱𝑈 , the set of uncontrollable variables, is simply {𝐻1}.

• 𝒱active, the set of conditional variables, is simply {𝐻1}. 𝐻1 must be activated

to activate an constraints that reference 𝐻1.

• 𝒞, the set of constraints, is simply {(𝐻1 = 𝑐1)⇒ ((𝑅1 = 𝑐1) ∧ (𝑅2 = 𝑐2))}.

• 𝒲 , our set of weights, simply defines the likelihood of assignments to the single

uncontrollable variable 𝐻1:

𝐻1 = 𝑐1 0.6
𝐻1 = 𝑐2 0.4

4.3.3 Approach: Compiling out Conditional Variables

To go from a Conditional, Stochastic CSP to a Stochastic CSP, we compile out the

conditional variables by introducing an auxiliary set of variables, modifying existing

conditional variable’s domains, and introducing some additional constraints to reason

over these conditional variables with our unconditional Policy BDD structure.

This conditional variable compilation, originally outlined in [11], is composed of

three steps:

1. Domain modification. For every conditional variable 𝑣𝑖, we add the value ∘

to its domain. ∘ represents the 𝑣’s inactive value—that is, the value the variable

is assigned to when it is not active.

2. Auxiliary active𝑣𝑖 creation. For every conditional variable 𝑣𝑖, we add an

auxiliary proposition active𝑣𝑖 with the domain {⊤,⊥}. If 𝑣𝑖 is active, then the

proposition active𝑣𝑖 must hold.

3. Auxiliary constraints. A variable takes a value in its domain if and only if

it is activated. To encode this explicitly in our SCSP, we add the constraint:

(active𝑣 = ⊤)⇔

⎛⎜⎜⎝ ⋁︁
𝑑𝑖∈Domain(𝑣)

𝑑𝑖 ̸=∘

𝑣 = 𝑑𝑖

⎞⎟⎟⎠
53

4. Probabilistic Modifications. If we have a probability distribution as our

input Pr, we must add an additional conditional probability table that defines

the active𝑣𝑖 as the parent of conditional variable 𝑣𝑖. This table is specified as

follows:

• For rows where 𝑣𝑖 takes a value from its domain that is not ∘ and active𝐻1

= ⊤, the probability remains the same.

• For rows where 𝑣𝑖 takes the value ∘ and active𝐻1 = ⊤, the probability is 0,

representing the fact that 𝑣𝑖 can never take the value ∘ when it is active.

• For rows where 𝑣𝑖 takes a value from its domain that is not ∘ and active𝐻1

= ⊥, the probability is 0, representing the fact that 𝑣𝑖 can never take a

value from its domain when it is inactive.

• For rows where 𝑣𝑖 takes the value ∘ and active𝐻1 = ⊥, the probability is

1, representing the fact that 𝑣𝑖 must take the value ∘ when it is inactive.

Table 4.1 shows a concrete example if we view our example problem’s weights

as encoding a Bayesian network.

Consider the conditional variable 𝐻1 from our simple example. When 𝐻1 is en-

countered by our Conditional CSP subsolver, its domain is modified from {𝑐1, 𝑐2} to

{𝑐1, 𝑐2, ∘}. Next, an active𝐻1 proposition is added with the domain {⊤,⊥}. Finally,

the auxiliary constraint from (3) is added: active𝐻1 = ⊤ ⇔ ((𝐻1 = 𝑐1) ∧ (𝐻1 = 𝑐2)).

In this way, we can explicitly represent a variable’s activation status and remove the

conditionality from a given CSP.

If assignments to our conditional variable are assigned weights from 𝒲 , we leave

them untouched and assigned the inactive value to the weight 0, thereby preserving

the weighting scheme from the input Weighted CSCSP. Therefore, the outputs of our

example Weighted CSCSP compilation are as follows:

1. 𝒱𝐶 = {active𝐻1}, where active𝐻1 has the domain {⊤,⊥}

2. 𝒞𝐶 = {active𝐻1 = ⊤ ⇔ ((𝐻1 = 𝑐1) ∨ (𝐻1 = 𝑐2))}

54

𝐻1 = ∘ 0.0

3. 𝒲𝐶 , the auxiliary weights, are given by:

As one additional detail, our auxiliary variables 𝒱𝐵 are added to the end of any

existing variable order.

Note that if our weights𝒲 were marked as a Bayesian network Pr, we would have

to add an additional conditional probability table Pr(𝐻1|active𝐻1) to follow Step (4)

in our procedure:

𝐻 ′
1 active𝐻1 Pr (𝐻1|active𝐻1)
𝑐1 ⊤ 0.6
𝑐2 ⊤ 0.4
∘ ⊤ 0
𝑐1 ⊥ 0
𝑐2 ⊥ 0
∘ ⊥ 1

Table 4.1: The resultant CPT added to our influence diagram

This modified probabilistic information would then be passed to the Bayesian

inference subsolver and returned to the Constraint Compiler.

4.4 Constraint Compiler

The Constraint Compiler actually compiles out our constraints into dynamic policy.

Recall that our policy can be represented by an explicit graph, which encodes the

assignment possibilities given a history of previous assignments. By navigating down

the explicit graph, following the set of observations made so far, the agent may de-

termine which assignments do not violate the problem’s constraints, informing online

decision-making. We can efficiently generate a policy by incrementally building up

from decision variable assignments into a treelike data structure that efficiently rep-

resents the problem’s constraints. Our Constraint Compiler module is responsible for

managing this processing, taking in a set of variables, weights, and logical constraints

55

and returning a Reduced, Ordered Binary Decision Diagram (ROBDD) and set of

weights on the nodes of the ROBDD.

4.4.1 Problem Statement: Constraint Compiler

Recall that our input is no longer conditional and our probabilistic information has

been encoded into an auxiliary set of variables, constraints, and weights. Of course,

we are attempting to generate a policy which responds to uncontrollable choices, so

our input remains stochastic.

Input

• A Weighted SCSP given by ⟨𝒱 ,𝒱𝑈 , 𝒞,𝒲⟩ (Definition 4). Note that 𝒱 is now an

ordered set of variables, which is provided by either our problem input or the

ordering inferred from the temporal constraints.

Output

• An ROBDD as defined in Definition 1.

• 𝒲 , a set of weights on the nodes in the ROBDD.

4.4.2 Simple Example: Continued

Now that we have compiled out our conditional variables, it is time to coordinate

with the constraint compiler. Returning to our example, we take in the following:

• 𝒱 = 𝒱∪𝒱𝐶 consists of the sequence ⟨H1, 𝑅1, 𝑅2, active𝐻1⟩. The variable active𝐻1

has the domain {⊤,⊥}, 𝐻1’s domain has been augmented to be {𝑐1, 𝑐2, ∘}, and

𝑅1 and 𝑅2 keep their original domains of {𝑐1, 𝑐2}.

• 𝒱𝑈 consists again of 𝐻1, the lone uncontrollable variable in our example.

56

• 𝒞 = 𝒞 ∪ 𝒞𝐶 is now:

{((𝐻1 = 𝑐1)⇒ ((𝑅1 = 𝑐1) ∧ (𝑅2 = 𝑐2)))), (4.1)

active𝐻1 = ⊤ ⇔ ((𝐻1 = 𝑐1) ∨ (𝐻1 = 𝑐2))}

• 𝒲 =𝒲 ∪𝒲𝐶 is now:

𝐻1 = 𝑐1 0.6
𝐻1 = 𝑐2 0.4
𝐻1 = ∘ 0.0

Now that we have a state space of variables 𝒱 , a set of constraints 𝒞, and an

efficient variable ordering, we may begin to construct our Policy BDD using the

canonical BDD operations described in Section 3.1.1. Rather than constructing a

Policy BDD by building the entire explicit graph, which describes every possible as-

signment to variables, we take a more efficient conflict-directed approach and leverage

the constraints themselves to build up a Policy BDD assignment-by-assignment.

4.4.3 Approach: Constructing the Policy BDD

Recall that a binary decision diagram represents a boolean formula 𝑓 . Remembering

that we can use the construction of an assignment to a decision variable to condense

our arbitrarily large discrete domains in the state space 𝒱 to a series of binary nodes,

we construct BDDs symbolically by building up our constraints from decision variable

assignments to their logical equivalents. We use the operations described in [2] to

perform various logical operations on any two boolean formulas 𝑓1 and 𝑓2 (i.e., 𝑓1∧𝑓2,

𝑓1 ∨ 𝑓2, and ¬𝑓1). Algorithm 3 can be summarized as follows, and is stated more

formally (as it originates in [11]) below:

1. Create decision variable assignments representing every node that appears in

the constraint list 𝒞.

57

2. Create a BDD node 𝑓𝑐𝑖 that represents the boolean formula contained in con-

straint 𝑐𝑖 ∈ 𝒞.

3. Take a conjunction of all the resulting 𝑓𝑐𝑖 , resulting in the knowledge base

KB← 𝑓𝑐1 ∧ 𝑓𝑐2 ∧ ...

Algorithm 3 Constraint-Compilation
Input: ⟨𝒱 , 𝒞,𝒱order,𝒲⟩
Output: A weighted, reduced, ordered binary decision diagram KB

1: for 𝑐𝑖 ∈ 𝒞 do
2: 𝑁(𝑐𝑖)← []
3: for every decision variable assignment 𝑣 = 𝑑 do
4: Create a BDD node 𝑛𝑖 ∈ 𝒢 representing the assignment 𝑣 = 𝑑
5: Add 𝑛𝑖 to 𝑁(𝑐𝑖)
6: end for
7: Build a BDD 𝑓𝑐𝑖 with the appropriate BDD operations on the nodes 𝑛𝑖 ∈ 𝑁(𝑐𝑖)
8: KB← KB ∧ 𝑓𝑐𝑖
9: end for

10:
11: Add 𝒲 to the appropriate nodes in the KB return The BDD KB

Example Policy BDD

Let’s return to our example problem after we have compiled out the conditional

constraints. Recall the relevant problem input from Section 4.4.

We’ll step through creating the policy for constraint 4.1, and show the resulting

Policy BDD for all constraints in 𝒞 at the end. Following the recursive nature of

the constraint to our first decision variable assignment, we encounter the assignment

(𝑅1 = 𝑐1) and create a node 𝑓1 representing this assignment.

We then go to the other “innermost” constraint and encounter the assignment

(𝑅2 = 𝑐2), creating a node 𝑓2 to represent this assignment. We create a node 𝑓3

that is composed of the conjunction of nodes 𝑓1 and 𝑓2 to represent the constraint

((𝑅1 = 𝑐1) ∧ (𝑅2 = 𝑐2)). Following a similar procedure, we observe that we have an

implication constraint; recall that 𝐴⇒ 𝐵 can be equivalently represented as ¬𝐴∨𝐵.

To take the negation of a BDD node, we simply swap the high and low children.

58

Figure 4-2: The node 𝑓1 corresponding to the decision variable assignment (𝑅1 = 𝑐1).

Figure 4-3: The resultant BDD node 𝑓7 corresponding to the example constraint
active𝐻1 ⇒ ((𝐻1 = 𝑐1)⇒ ((𝑅1 = 𝑐1) ∧ (𝑅2 = 𝑐2)))).

We then take the disjunction of nodes 𝑓3 and 𝑓4 to get a resulting node 𝑓5. Finally,

we follow the same procedure with the node 𝑓6 representing active𝐻1 = ⊤, connecting

logical subexpressions appropriately with the node 𝑓5. In this way, we build up a

BDD node 𝑓7 resulting our example constraint, as showing in Figure 4-3. Recall that,

of course, our variable order is ⟨𝐻1, 𝑅1, 𝑅2, active𝐻1⟩, and notice that node 𝑓7 respects

this ordering.

To construct a BDD node that represents our entire knowledge base, we simply

build up each constraint using the procedure described above, starting from decision

variable assignments and applying the appropriate logical connections to subexpres-

sions. Then, we create one BDD node that represents the conjunction of all the

59

constraint BDD nodes, as shown in Figure 4-4.

Adding Weights

Adding weights is relatively simple. Recall that our input 𝒲 simply maps an as-

signment to a decision variable; to add weights to the Policy BDD, we simply take

the decision variable assignments referenced in𝒲 , find the corresponding BDD node,

and add the weight to the node in the Policy BDD. All other nodes receive a weight

of 1. In this case, the node representing (𝐻1 == ∘) receives a weight of 1, the

nodes representing (𝐻1 = 𝑐1) receive a weight of 0.6, and the nodes representing

(𝐻1 = 𝑐2) receive a weight of 0.4. Thus, we have satisfied the problem statement

for our Weighted CSCSP subsolver! We went from a Weighted CSCSP and variable

ordering to a Reduced, Ordered Binary Decision Diagram with weights on the nodes

representing a policy. This ROBDD respects our original variable ordering.

60

Figure 4-4: The resultant Policy BDD, which compactly encodes all of our constraints.

61

62

Chapter 5

Bayesian Network Compilation

A critical component of our problem statement was the ability to reason efficiently

on probabilistic information. Our hybrid solver approaches this problem by hand-

ing the appropriate probabilistic information to a Bayesian Inference subsolver.

Similarly to Chapter 4, we leverage the insight that by augmenting and reformulat-

ing our input with auxiliary variables and constraints, we can use existing solution

methods to perform Bayesian and temporal inference. In this chapter, we’ll outline

the functionality and key insights of the Bayesian Inference subsolver which creates

additional constraints, coordinates via the parent solver, and passes additional vari-

ables and constraints back to the constraint compiler. Then, we’ll discuss in brief the

approach from [11], which allows us to reason on this probabilistic information using

the Policy BDD from 4 and a set of algorithms to find the set of solutions which

satisfy some chance constraint online as an example of how this Bayesian information

can be applied.

5.1 Problem Statement: Bayesian Inference

In this section, we’ll define the formal problem statement for our Bayesian inference

subsolver, which leverages techniques from [11] to efficiently represent a problem’s

probabilistic information as a set of additional variables and constraints.

63

5.1.1 Background: Probabilistic Graphical Models

Before we begin our problem statement, we discuss the requirements for our input.

We leverage common probabilistic graphical models—the Bayesian Network and its

generalization the Influence Diagram —to factorize our probabilistic information and

develop our intuition for information. In short, a Bayesian network is a probabilistic

graphical model used to represent the relatively likelihoods of assignments to deci-

sion variables. Nodes in the graph represent random variables, and edges represent

the conditional probabilty distributions over those variables. More formally, for any

random variable 𝑥𝑖 in the network with parent edges 𝑥𝑖,𝑝𝑎𝑟1 , 𝑥𝑖,𝑝𝑎𝑟2 , ..., 𝑥𝑖,𝑝𝑎𝑟𝑘 , there is

an associated conditional probability distribution Pr(𝑥𝑖|𝑥𝑖,𝑝𝑎𝑟1 , 𝑥𝑖,𝑝𝑎𝑟2 , ..., 𝑥𝑖,𝑝𝑎𝑟𝑘).

The Influence Diagram [8] generalizes this notion by adding in decision nodes and

utility nodes. A decision node is a node controlled by the agent; they may appear

in the conditional probability table of chance nodes and therefore permit a decision

node to influence its uncontrollable children. Grounding this in the human-robot

collaboration domain, the robot’s decision to place a piece on the chessboard will

likely impact its human partner’s future choices. Central to the influence diagram is

the notion of information arcs, which are edges from chance to decision nodes that do

not encode probabilistic information. Instead, an arc from node 𝑦 to decision node 𝑥

indicates that 𝑥 will be chosen after observing the value of 𝑦.

5.1.2 Formal Problem Statement

Inputs

• Pr, a probability distribution expressed as either a Bayesian network or influence

diagram which satisfies the constraints above.

• 𝒱 , a reference state space used for constructing the auxiliary constraints. Be-

cause

64

Outputs

• 𝒱𝐵, an auxiliary set of variables which encode the Bayesian network or influence

diagram.

• 𝒲𝐵, a set of weights on the variable domain elements (𝑣𝑖 = 𝑑𝑗) ∈ 𝐷(𝑣1)∀𝑣𝑖 ∈ 𝒱𝐵
which represent the information from the conditional probability tables.

• 𝒞𝐵, an auxiliary set of constraints on the variables 𝒱𝐵 ∪ 𝒱 expressed in propo-

sitional state logic.

Additional Requirements on Bayesian Networks and Influence Diagrams

Our problem demands additional requirements of our input probabilistic information

due to the ordering requirements, stochasticity, and conditionality encoded in our

problem statement (as established in [11]). If we choose to use a Bayesian network

as our Pr input, it must meet the following specifications:

• Every uncontrollable variable 𝑣𝑢 ∈ 𝒱𝑈 must appear as a chance node with-

out a parent variable (representing the prior distribution of the uncontrollable

variable). That is to say, an uncontrollable variable may not be probabilisti-

cally dependent on a controllable variable. If we wish to encode controllable

influence, then we must use an influence diagram instead.

• The Bayesian network must respect the variable ordering; that is, a variable

may not have a “parent” which appears after the variable in 𝒱order.

Similarly, if we choose to use an Influence Diagram as our Pr input, it satisfy the

following constraints:

1. Every uncontrollable variable 𝑣𝑢 ∈ 𝒱𝑈 must appear as a chance node.

2. Every controllable variable 𝑣 ∈ 𝒱 that appears in Pr must be a decision node,

and not all controllable variables must appear in Pr.

65

3. Any uncontrollable decision variable 𝑣𝑢 ∈ 𝒱𝑈 with a conditionally-modified

domain (i.e., ∘ is present in the variable’s domain) must have the auxiliary

variable active𝑣𝑢 appear as the parent decision node of 𝑣𝑢. The conditional

probability table for 𝑣𝑢 | active𝑣𝑢 , ... must enforce the constraint that a variable

takes a value from its domain when it is active (i.e., Pr(𝑣𝑢 = ∘ | active𝑣𝑢 =

⊥, ...) = 1; Pr(𝑣𝑢 = 𝑑𝑗 | active𝑣𝑢 = ⊥, ...) = 0; Pr(𝑣𝑢 = ∘ | active𝑣𝑢 = ⊤, ...) =

0).

4. For any uncontrollable variable in 𝒱𝑈 that precedes a controllable variable, there

may not be an information arc (directed path) from the controllable variable

to the uncontrollable variable. This information arc encodes variable ordering

and is a concept introduced in influence diagrams. This requirement enforces

the overall variable ordering.

When a Bayesian network is selected as the input and the problem contains

stochastic variables, it is first compiled into the equivalent Influence Diagram sat-

isfying the constraints above. This pre-compilation process makes it easier to reason

over the problem’s probabilistic constraints and encapsulate the influence (encoded

as conditional probability tables) of variables over other variables in the problem. Be-

cause Influence Diagrams explicitly reason over controllable and stochastic variables,

it is easier to turn a Bayesian network when a problem is fully controllable.

5.2 Approach: Performing Bayesian Compilation

We will again leverage insights from [11] and the Weighted Model Counting (WMC)

community which take a conditional probability table and turn it into additional

variables and set of constraints. Such an approach allows us to encode the factored

structure of a Bayesian network or influence diagram to improve inference perfor-

mance. Instead of treating the probabilistic constraints as simple weights, we are

able to encode the probabilistic information as a sequence of variables and set of con-

straints which speed up our probabilistic inference drastically. The Weighted Model

66

Counting (WMC) encoding procedure, which is outlined in greater detail in [11], is

described in brief below.

Given an influence diagram, which is composed of a set of conditional probability

tables that encode the likelihoods of decision variables, we add the following constraint

to 𝒞𝐵 and 𝒱𝐵 in each row of each conditional probability table as follows:

• If the probability 𝑝 associated with the row is 0 < 𝑝 < 1, we introduce a

new uncontrollable variable 𝜃 for the row and the associated constraint (where

𝑥𝑖 = 𝑣𝑗 denotes an assignment of variable 𝑥𝑖 to value in its domain 𝑣𝑗:

𝜃 ⇔
⋀︁

𝑥𝑖=𝑣𝑗 in row

𝑥𝑖 = 𝑣𝑗

• If the probability 𝑝 associated with the row is 0, we add the constraint

¬

⎛⎝ ⋀︁
𝑥𝑖=𝑣𝑗 in row

𝑥𝑖 = 𝑣𝑗

⎞⎠
Returning to Example 1, we consider the following CPT for the prior distribution

on the uncontrollable variable 𝐻1:

𝐻1 = 𝑐1 0.1
𝐻2 = 𝑐2 0.9

Table 5.1: The conditional probability table (CPT) for our simple influence diagram.

We introduce new variables to 𝒱𝐵 as shown in Table 5.2.

𝐻1 Pr (𝐻1) WMC
𝑐1 0.1 𝜃1
𝑐2 0.9 𝜃2

Table 5.2: The added WMC vars

These new variables will be added back into our 𝒱 by our parent solver when

coordinating between the Bayesian inference subsolver and the Weighted CSCSP

67

subsolver. Similarly, we add the following set of constraints to the constraint list 𝒞𝐵
with the new variables 𝜃1, 𝜃2 from 𝒱𝐵:

𝜃1 ⇔ (𝐻1 = 𝑐1)

𝜃2 ⇔ (𝐻1 = 𝑐2)

Finally, we add the following weights onto our literals as follows:

𝒲(𝐻1) =𝒲(𝑅1) = 1.0

𝒲(¬𝐻1) =𝒲(¬𝑅1) = 1.0

𝒲(¬𝜃1) =𝒲(¬𝜃2) = 1.0

𝒲(𝜃1) = 0.2

𝒲(𝜃2) = 0.9

In further constraining our problem and adding weights for the newly-defined

literals, we make it much easier to reason over the probabilistic variables encoded in

our problem. When returning an assignment over decision variables to a consumer,

one may simply skip over the auxiliary literals to obtain a full assignment to the

decision variables of the original state space 𝒱 .

5.2.1 A More Complex Example

Now that we’ve built up our intuition on a simple example, let’s see what happens

when we have a conditional probability table that involves a more complex set of

distributions, including a conditional variable. Here, we return to Example 4. Con-

sider the CPT 5.3 which arises from our conditional compilation procedure outlined

in Section 4.3. In the far right column, we see the added WMC variables; note how

68

we still only add two WMC variables, 𝜃1 and 𝜃2 in order to respect the procedure

outlined in Section 5.2.

𝐻1 active𝐻1 Pr (𝐻1|active𝐻1) WMC
𝑐1 ⊤ 0.6 𝜃1
𝑐2 ⊤ 0.4 𝜃2
∘ ⊤ 0
𝑐1 ⊥ 0
𝑐2 ⊥ 0
∘ ⊥ 1

Table 5.3: A more complex example to demonstrate our WMC encoding.

Similarly, we add the following set of constraints to 𝒞𝐵 with our auxiliary variables

𝜃1, 𝜃2.

𝜃1 ⇔ (𝐻1 = 𝑐1) ∧ (active𝐻1 = ⊤)

𝜃2 ⇔ (𝐻1 = 𝑐2) ∧ (active𝐻1 = ⊤)

¬((𝐻1 = ∘) ∧ (active𝐻1 = ⊤))

¬((𝐻1 = 𝑐1) ∧ (active𝐻1 = ⊥))

¬((𝐻1 = 𝑐2) ∧ (active𝐻1 = ⊥))

Finally, we add the weights onto our literals as follows:

𝒲(𝐻1) =𝒲(𝑅1) =𝒲(𝑅2) = 1.0

𝒲(¬𝐻1) =𝒲(¬𝑅1) =𝒲(¬𝑅2) = 1.0

𝒲(¬𝜃1) =𝒲(¬𝜃2) = 1.0

𝒲(𝜃1) = 0.6

𝒲(𝜃2) = 0.4

69

In further constraining our problem and adding weights for the newly-defined

literals, we make it much easier to reason over the probabilistic variables encoded in

our problem. When returning an assignment over decision variables to a consumer,

one may simply skip over the auxiliary literals to obtain a full assignment to the

decision variables of the original state space 𝒱 .

70

Chapter 6

Temporal Constraint Subsolver

This thesis is motivated by the need to combine temporal constraints with logical

constraints, allowing an agent to quickly infer if an assignment to finite-domain, dis-

crete decision variables will violate a problem’s temporal constraints. In this chapter,

we describe the Temporal Constraint Subsolver, which effectively turns tem-

poral constraints into logical constraints via an efficient offline temporal reasoning

algorithm.

In this section, we focus our attention on the temporal reasoning module that

leverages the graph-based algorithms to infer temporal conflicts from a network of

events and temporal constraints. The Temporal Constraint Subsolver gathers a

set of guarded temporal constraints, events, and the controllable decision variables

observed at those events, forming a labeled simple temporal network (STN) defined

below in Definition 5. Then, the Temporal Constraint Subsolver uses the modified

labeled APSP algorithm from Pike [11], based on the APSP algorithm from Drake

[4] to generate a matrix where each entry is a Labeled Value Set (LVS) to infer a

variable ordering and set of temporal conflicts. A Labeled Value Set encodes the

tightest possible set of temporal constraints between two events conditioned on a set

of choices. We leverage extensively from [11] as our temporal constraint subsolver

inherits directly from the Riker and Pike executives that extract a set of temporal

conflicts and variable ordering from a temporal network.

71

6.1 Problem Statement: Temporal Subsolver

In short, the Temporal Subsolver takes in a representation of temporal constraints,

decision variables, and constraints between them to yield an auxiliary set of decision

variables and constraints.

Definition 5. (Labeled Simple Temporal Network (labeled STN)) [11], [4]. A TPN

[11] is defined by ⟨𝒱 , ℰ , 𝒞⟩.

• 𝒱 is set of choice variables.

• ℰ is a set of events, or notable points in time. Each event 𝑒 is associated with

a guarded simple temporal constraint in 𝒞. Some events are associated with a

choice variable 𝑣𝑖 = 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒− 𝑎𝑡− 𝑒𝑣𝑒𝑛𝑡(𝑒) denoting that variable 𝑣𝑖 must be

assigned by the time 𝑒 is executed.

• 𝒞 is the set of labeled simple temporal constraints over 𝒱 . Each 𝑐 ∈ 𝒞 is a

tuple ⟨𝑒𝑠, 𝑒𝑓 , 𝑙, 𝑢, 𝜓𝑐⟩, where 𝑒𝑠 is the “start” event, 𝑒𝑓 is the “end” event, 𝜓𝑐 is

a “guard” (or label) denoting a conjunction of choice variable assignments, and

𝑙, 𝑢 ∈ R represent the temporal constraint 𝜓𝑐 ⇒ (𝑙 ≤ 𝑒𝑓 − 𝑒𝑠 ≤ 𝑢). Simply put,

a temporal constraint must hold if its guard is activated. Each simple temporal

constraint is associated with a guard and two events. Events are executed iff

they are activated (the guard 𝜓𝑐 = ⊤).

Input

• A labeled STN ⟨𝒱 , ℰ , 𝒞⟩.

Output

• 𝒞𝑇𝐶 , a set of inconsistent assignments that represent the conflicts extracted from

temporal reasoning.

• A worst-case variable ordering 𝒱order inferred from the problem’s temporal con-

straints.

72

6.2 Approach: The Temporal Reasoning Algorithm

Much like our Bayesian Inference subsolver, our approach is informed by the notion

that we may reduce a problem into a formulation on which existing solvers may

reason. We closely mirrors the approach of Drake, as employed by Pike [11]. In

short, it calculates the labeled All Pairs Shortest Path (APSP) of a labeled STN 𝒯

and returns a set of temporal conflicts and a variable ordering to the parent solver.

High-level pseudocode for the temporal compilation procedure is shown in Algorithm

4.

Algorithm 4 Temporal-Reasoning
Input: A labeled STN 𝒯
Output: A set of logical constraints 𝒞𝑇𝐶 , auxiliary variables 𝒱𝑇𝐶 , and variable

𝒱order

1: 𝐷𝑖,𝑗 ← the labeled APSP of 𝒯
2: 𝒞𝑇𝐶 ← Conflict-Extraction(𝐷𝑖,𝑗)
3: 𝒱order ← the inferred variable ordering from 𝐷𝑖,𝑗 return 𝒞𝑇𝐶 ,𝒱𝑇𝐶 ,𝒱order

6.2.1 Background: Graph-Based Temporal Reasoning

Riker [11] proposes a modified labeled APSP algorithm, which can extract the tight-

est possible temporal constraints given a a set of choices 𝑉 ∈ 𝒱 . This thesis employs

Riker’s modified labeled APSP algorithm, describing in brief key concepts and how

the Labeled APSP algorithm is used in our Temporal Reasoning subsolver.

Background: Labeled APSP

The Labeled APSP Algorithm, originally proposed in [4] and modified to be more

efficient in [11] is a strict generalization of the Floyd Warshall algorithm. The Floyd

Warshall algorithm is common for reasoning on graph-based temporal problems be-

cause it provides an efficient representation of timing constraints extracted from a

weighted, directed graph called a “distance graph” [5]. The modified Labeled APSP

algorithm takes in a labeled STN and turns it into a matrix 𝐷𝑖,𝑗, where each entry

73

(𝑖, 𝑗) in the matrix is the shortest path between events 𝑒𝑖 and 𝑒𝑗 represented as a

labeled value set as formalized in Definition 9.

The labeled value set (LVS) was introduced in Drake’s temporal reasoning al-

gorithms [4] and compactly records the tightest possible value for a constraint as

a function of choice. To accomplish this compactness, it removes unnecessary rela-

tions and uses the notion of an environment (Definition 6) to efficiently represent

values over many different scenarios. An LVS operates with respect to some order-

ing relation <𝑅, which provides a total ordering over elements; this relation may be

strictly numerical (as in our temporal reasoning algorithms), or precedence-based (as

in temporal reasoning with flexible time constraints).

Definition 6. (Environment). An environment 𝜙 is a partial assignment to choice

variables in the state-space 𝒱 . In an environment, not all choice variables must

be assigned. In this thesis, we denote an environment 𝜙 as a set of assignments

{𝑥𝑖 = 𝑣𝑖, 𝑥𝑗 = 𝑣𝑗, ...}.

{} represents all possible environments to the variables; logically, it corresponds

to ⊤. In addition to using the concept of an environment, an LVS leverages the

definition of a labeled value pair, which represents under which environments some

constraint holds.

Definition 7. (Labeled Value Pair). A labeled value pair is a tuple (𝑎𝑙, 𝜙𝑙), where 𝑎𝑙

is some value and 𝜙𝑙 is an environment.

Grounding Definition 7 in an example, with the relation < over some variable 𝑡,

the labeled value (𝑎𝑙, 𝜙𝑙) means that 𝜙𝑙 ⇒ 𝑡 < 𝑎𝑙. Notice that some constraints will

be dominated by other constraints. For example, if we have two labeled value pairs

(2, {}) and (3, {}) (encoding that 𝑡 is always < 2 and 𝑡 is always < 3, respectively)

over a variable 𝑡, we know that LVP (3, {}) is dominated by LVP (2, {}) because the

constraint encoded by LVP (2, {}) is tighter than 𝑡 < 3. We formalize this notion in

Definition 8.

Definition 8. (Dominance). A labeled value (𝑎𝑑, 𝜙𝑑) dominates a weaker labeled

value (𝑎2, 𝜙𝑤) iff 𝑎𝑑 <𝑅 𝑎𝑤 and 𝜙𝑤 |= 𝜙𝑑, where |= encodes entailment.

74

Finally, we define a Labeled Value Set in Definition 9, which is simply a set of

labeled value pairs satisfying a non-dominance constraint. All of these concepts are

described in greater detail in [11].

Definition 9. (Labeled Value Set). A labeled value set (LVS) 𝐿 = {(𝑎1, 𝜙1), (𝑎2, 𝜙2), ...}

is a set of labeled value pairs such that no pair in the set dominates any other pair.

6.2.2 Modified Labeled APSP

Now that we’ve gone through some relevant background, it is time to discuss the

modified APSP algorithm. The modified APSP algorithm performs the same function

as the APSP algorithm, returning a matrix of labeled value sets representing the

shortest path distance between pairs of events. However, in [11] it was noted that

the original APSP algorithm from [4] often included labeled value sets that were not

as efficient as possible. That is, they contained labeled values that were subsumed

(or implied) by other labeled values based on the domain restrictions of the choice

values over that the labeled value set was defined. Modified Labeled APSP improves

the query quality by calculating the implications of labeled values before merging two

labeled value sets, removing those that are redundant for more efficiently formulated

tightest constraints.

As an example, consider the finite-domain variable 𝑥 with domain {1, 2}. If we

then have a labeled value set given by:

𝑡 < {(3, {𝑥 = 1}), (4, {𝑥 = 2})}

and we want to know the tightest constraint on 𝑡 over all environment domains, we can

infer a tighter bound than the one returned by the original Labeled APSP algorithm.

That is, labeled APSP fails to recognize that (𝑥 = 1) ∪ (𝑥 = 2) actually represents

all possible environments for 𝑥. Instead, Labeled APSP only determines the loosest

possible time bound of 𝑡 <∞. However, we actually know that 𝑡 < 4 for all possible

environments! A modification that considers variables’ domains allows us to extract

stricter time bounds for event scheduling in our matrix 𝐷𝑖𝑗 and so represents a greater

75

set of temporal conflicts. By constraining our problem even more, we make it easier

for our agent to reason online as it does not have to explore a large set of infeasible

options.

Here, we describe the high-level procedure in Algorithm 5, describing the details

intuitively but leaving detailed explanation to [11], where this procedure was originally

introduced.

Algorithm 5 Temporal-Reasoning
Input: A labeled STN ⟨𝒱 , ℰ , 𝒞⟩
Output: 𝐷𝑖,𝑗, a matrix of LVSs representing the shortest path distances between

pairs of events
1: for each 𝑖, 𝑗 ∈ ℰ do
2: 𝐷𝑖𝑗 ← {(∞, {})}
3: end for
4: for each 𝑖 ∈ ℰ do
5: 𝐷𝑖𝑖 ← {(0, {})}
6: end for
7: for each ⟨𝑖, 𝑗, 𝑙, 𝑢, 𝜙⟩ ∈ 𝒞 do
8: 𝐷𝑖𝑗 ← {(𝑢, 𝜙}
9: 𝐷𝑗𝑖 ← {(−𝑙, 𝜙)}

10: end for
11: for each 𝑘 ∈ ℰ do
12: for each 𝑖 ∈ ℰ do
13: for each 𝑗 ∈ ℰ do
14: 𝐶𝑖𝑗 = LVSBinaryOp(+, 𝐷𝑖𝑗, 𝐷𝑘𝑗)
15: 𝐷𝑖𝑗 = MergeWithCompletions𝐷𝑖𝑗, 𝐶𝑖𝑗)
16: end for
17: end for
18: end for
19: return 𝐷

Lines 1 through 10 of Algorithm 5 (introduced in [11]) initialize a matrix 𝐷𝑖𝑗 with

a new LVS for each pair of events. In Lines 4-6, we encode the fact that the shortest

distance from an event to itself can be encoded by the LVS {(0, {})}. Similarly, off-

diagonal entry weights are added in Lines 7-10 with the corresponding lower and upper

bounds for each pair of events, and all others are set to {(∞, {})}. In Lines 11-18,

we see the traditional triple-for-loop from Floyd-Warshall, where we iterate through

double-pairs of events to improve the shortest paths between them. On Line 14, we

76

add two LVS’s together and then perform the MergeWithCompletions procedure

outlined in [11]. In short, MergeWithCompletions takes in two labeled value sets

and merges them into a new labeled value set leveraging the notion of a completion.

Let’s return to our simple example to formally describe the notion of a completion,

which is a new labeled value set which is logically implied by others in the LVS.

Consider the example from [11]:

𝑡 < {(3, {𝑥 = 1}), (4, {𝑥 = 2})}

where 𝑥 is a finite-domain variable with domain {1, 2}.

Given this constraint, we want to know the tightest constraint on 𝑡 over all en-

vironments, represented by the query operator 𝑄𝐿({}). Because neither (𝑥 = 1) nor

(𝑥 = 2) is entailed by all environments, we can’t apply any bound definitively, leaving

us with the loosest possible time bound 𝑄𝐿({}) =∞. If we consider the finite domain

of the variable 𝑥, however, we realize that we actually can learn something about the

tightest possible constraint because we know that one of the two labeled values ap-

ply. Therefore, the LVS could actually be {(3, {𝑥 = 1}), (4, {})}. Such information

is called a completion, and [11] outlines a procedure to find all of the completions

of a given LVS and variable. In short, this procedure leverages insights from hyper-

resolution in boolean logic to augment an LVS with new labeled value pairs that are

logically implied by other labeled values, thereby changing the tightness of our query

operator 𝑄𝐿. By incrementally building up from the weakest possible completion

(∞𝑅, {}) and updated for each possible variable assignment 𝑥 = 𝑣𝑖 in variable 𝑥’s

domain. This procedure finds the completions for a given LVS and was originally

proposed in [11].

Now that we have a way of finding completions that increase the efficiency of our

LVS, we need an analog for the Merge operator proposed in [4] that leverages these

completions. This is our MergeWithCompletions procedure, which merges two

labeled value sets and finds the valid completions. As a result of the MergeWith-

Completions procedure, our resultant matrix 𝐷𝑖𝑗 contains a reduced number of

77

environments in a given Labeled Value Set. Now, we have built up our intuition for

creating our matrix 𝐷𝑖𝑗 using the more efficient completions representation provided

by [11].

Extracting Temporal Conflicts

Recall that one of our temporal subsolver’s goals is to encode a set of temporal conflicts

that can be extracted simply from our APSP matrix 𝐷𝑖𝑗. Because our matrix 𝐷𝑖𝑗

encodes the shortest possible path between two events 𝑒𝑖 and 𝑒𝑗, we know that there

is a temporal conflict iff there exists some environment where an event 𝑒𝑖’s shortest

self-path (i.e., shortest path back to 𝑒𝑖) is negative. This statement has its theoretical

inheritance from the concept of negative cycles in a distance graph from [5]. We state

the formal definition of a temporal conflict in Definition 10.

Definition 10. (Temporal Conflict). An environment 𝜙 is called a temporal conflict

iff 𝑄𝐷𝑒𝑖,𝑒𝑖
(𝜙) < 0 for any event 𝑒𝑖.

Given a matrix 𝐷𝑖𝑗, we need to develop a procedure to extract the full set of

temporal conflicts that we may then encode as a set of logical constraints for output

as 𝒞𝑇𝐶 , corresponding to Line 9 of Algorithm 4. Algorithm 6 uses the fact that each

entry in matrix 𝐷𝑖𝑗 is associated with an environment 𝜙𝐶 , which represents a partial

assignment of decision variables {𝑥𝑖, 𝑥𝑗, ...} to generate a logical constraint from the

partial assignment. In short, if environment 𝜙𝐶 = {(𝑥𝑖 = 𝑎𝑖), (𝑥𝑗 = 𝑎𝑗), ...} yields a

temporal infeasibility, then we add the conflict ¬𝜙𝐶 = ¬{(𝑥𝑖 = 𝑎𝑖), (𝑥𝑗 = 𝑎𝑗), ...} to

our set of constraints 𝒞𝑇𝐶 .

Inferring Variable Ordering

We may infer the ordering of our decision variables using graph-based topological

sort algorithms and the event precedence from our input labeled STN 𝒯 and APSP

matrix 𝐷𝑖𝑗. This procedure, introduced in [11] as ChooseBestPessimisticVari-

ableOrder() is reproduced in Algorithm 7 and described below.

78

Algorithm 6 ConflictExtraction
Input: An ASPSP matrix 𝐷𝑖𝑗

Output: 𝒞𝑇𝐶 , a set of temporal constraints
1: 𝒞𝑇𝐶 ← {}, the empty set of logical constraints
2: for each 𝑖 ∈ ℰ do
3: for each pair (𝑎𝑖, 𝜙𝑖) ∈ 𝐷𝑖𝑖 do
4: if 𝑎𝑖 < 0 then
5: 𝜙𝐶 ← ¬𝜙𝑖

6: end if
7: end for
8: end for
9: return 𝒞𝑇𝐶

Algorithm 7 ChooseBestPessimisticVariableOrder
Input: An ASPSP matrix 𝐷𝑖𝑗 and TPNU 𝒯
Output: 𝒱order for every variable 𝑣 ∈ 𝒱

1: Initialize an empty graph 𝐺
2: 𝒱order ← []
3: for each 𝑣 ∈ 𝒱 do
4: Add node 𝑣 to graph 𝐺
5: end for
6: for each pair (𝑣𝑖, 𝑣𝑗) ∈ 𝒱 do
7: if 𝑄𝐷𝑒𝑗 ,𝑒𝑖

(𝜙𝑒𝑖 ∧ 𝜙𝑒𝑗 ∧ {}) < 0 then ◁ 𝑒𝑖 precedes 𝑒𝑗
8: Add an edge from 𝑣𝑖 to 𝑣𝑗
9: end if

10: end for
11: while nodes remain in G do
12: if there exists some controllable 𝑣 ∈ 𝑉 with no incoming edges in G then
13: 𝑣𝑛𝑒𝑥𝑡 ← 𝑣
14: else
15: 𝑣𝑛𝑒𝑥𝑡 ← any uncontrollable 𝑣 ∈ 𝑉 with no incoming edges in 𝐺
16: end if
17: Add 𝑣𝑛𝑒𝑥𝑡 to the end of our 𝒱order

18: Remove 𝑣𝑛𝑒𝑥𝑡 and any associated edges from 𝐺
19: end while
20: return 𝒱order

79

We use a graph-based topological sort algorithm, inferring precedence from our

APSP matrix 𝐷𝑖𝑗 as the basis for our graph. In Lines 5 through 10, we add an

edge in the graph from variable 𝑣𝑖 to 𝑣𝑗 if the events at which decision variable 𝑣𝑖 is

observed (𝑒𝑣𝑖) precedes event 𝑒𝑣𝑗 . We may infer precedence from our APSP matrix

𝐷𝑖𝑗 if 𝐷𝑖𝑗 < 0 for the environment {} that compactly encodes a “forall” environment,

as stated more formally in Definition 11.

Definition 11. (Precedence). Event 𝑒𝑖 with guard 𝜙𝑖 precedes event 𝑒𝑗 with guard

𝜙𝑗 given context 𝜙𝐶 (𝑒𝑖 ≺ 𝑒𝑗|𝜙𝐶
) iff 𝑄𝐷𝑒𝑗 ,𝑒𝑖

(𝜙𝑒𝑖 ∧𝜙𝑒𝑗 ∧𝜙𝐶) < 0. If 𝑒𝑖 ≺ 𝑒𝑗, then event

𝑒𝑖 will be executed before 𝑒𝑗 in all temporally consistent executions where both events

are activated. If 𝜙𝐶 ̸= {}, then 𝑒𝑖 will be executed before 𝑒𝑗 when environment 𝜙𝐶

holds.

Once we have inferred the precedence of events, we begin to apply our topological

sorting algorithm (in this case, we borrow from [11] a modified version of Kahn’s

algorithm [10] that attempts to pick controllable nodes before uncontrollable nodes

to efficiently generate a pessimistic variable ordering), repeatedly selecting nodes with

no incoming edges, adding it to the end of our orering, and removing it and its edges

from the graph. Kahn’s algorithm will terminate when no nodes are left in the graph

𝐺— that is, there is a topological ordering for our decision variables.

Recall from Chapter 3 how we intuited the need for a pessimistic variable order-

ing, which reasons on an upper bound of risk to create systems that act safely during

their online executions. In this case, by biasing our topological sort towards control-

lable variables, we tend to find pessimistic variable orderings faster than the original

variation of Kahn’s algorithm that selects nodes from the graph 𝐺 at random.

Example 5. Let’s see what our algorithm does for a simple example given a prece-

dence graph 𝐺 given in Figure 6-1, recalling the example from Section 3.4, with

events 𝑒𝑣1, 𝑒𝑣2, 𝑒𝑣3, and 𝑒𝑣4. Our precedence is given as follows: 𝑒𝑣1 ≺ 𝑒𝑣2, 𝑒𝑣1 ≺ 𝑒𝑣3,

𝑒𝑣2 ≺ 𝑒𝑣4, 𝑒𝑣3 ≺ 𝑒𝑣4, but we don’t know anything about the precedence relations of

𝑒𝑣2 and 𝑒𝑣3. Each event is associated with a choice; variables starting with 𝑅 are con-

trollable (made by the robot) and variables starting with 𝐻 (𝐻2) are uncontrollable.

80

Figure 6-1: A simple precedence graph. Nodes representing decision variables are
annotate with their associated events.

The precedence graph is showing these relationships is given above. We first pick

a random controllable variable with no incoming edges in 𝐺, per Line 12 of our Al-

gorithm 7. 𝑅1 is the only variable that meets this specification. We add 𝑅1 to our

variable ordering and remove it (and its associated edges) from the graph. Next,

we notice that there exists another controllable 𝑣 ∈ 𝒱 with no incoming edges: 𝑅3.

Picking 𝑅3 and adding it to our variable order so 𝒱order = [𝑅1, 𝑅3], we remove all of

𝑅3’s associated edges and continue. Now, we notice that there are no remaining con-

trollable variables without incoming edges, forcing us to pick 𝐻2 as the uncontrollable

variable without incoming edges. Following the same procedure, we add 𝐻2 and then

𝑅4 to our variable order, resulting in a variable ordering 𝒱order = [𝑅1, 𝑅3, 𝐻2, 𝑅4] as

desired.

The set of extracted temporal conflicts and the inferred variable ordering are

enough for our temporal subsolver to pass the temporal constraints 𝒞𝑇𝐶 and variable

ordering 𝒱order back to the parent solver for use by the Constraint Compiler.

81

82

Chapter 7

Discussion and Future Work

In this chapter, we will summarize the key insights from this thesis—notably, by

leveraging the notion of a hybrid solver we can combine the best elements from

the constraint programming and planning communities to create a solver capable of

handling a rich set of problems and constraints— before highlighting some interesting

open questions and directions for future work.

7.1 Discussion

In this thesis, we presented a hybrid solver dcc-OpSat that can reason on a rich

set of stochastic constraints by coordinating amongst three subsolvers. In stochastic

environments where agents are acting autonomously, it is essential that we develop

an approach that (1) results in risk-bounded behavior, (2) encodes a dynamic policy

conditioned on a set of observations, and (3) preserves temporal feasibility and flexi-

bility. Most prior art solves a subset of these problems in isolation or is over-specified

to a particular domain, resulting a constrained set of problems that the solver may

handle. By coordinating between subsolvers that leverage existing techniques, this

thesis allows richer expressions to be solved for efficient online reasoning.

At a high level, dcc-OpSat works by transforming its input into a set of constraint

satisfaction problems with particular characteristics. By coordinating between these

constraint satisfaction problems, we are able to leverage existing compilation tech-

83

niques to encode a policy (here, a Policy BDD) that enables fast online reasoning. Our

chosen subsolvers build on key insights from the knowledge compilation, SAT, and

temporal reasoning communities, providing us with a way to reason on problems with

probabilistic information, temporal constraints, action models, conditionality, risk, and

uncertainty. In short, dcc-OpSat is a highly flexible architecture that combines the

best aspects from much prior work to solve dynamic, chance-constrained CSPs with

mixed logical and temporal constraints.

7.2 Future Work

There are a number of interesting avenues for future work that build on the hybrid

solver proposed in this thesis! We discuss a few here.

Figure 7-1: An alternative encoding of the constraint (𝑅1 = 𝑐1).

While the Policy BDD is an excellent representation of binary variables, it is not

as efficient for variables with more than two values in their domain. As an example,

if a variable 𝑅1 has the domain {𝑐1, 𝑐2, 𝑐3}, encoding the constraint (𝑅1 = 𝑐1) may

be equivalently represented as ¬(𝑅1 = 𝑐2) ∧ ¬(𝑅1 = 𝑐3) as shown in Figure 7-1. Be-

cause we do not consider ordering over decision variable assignments, only decision

variables, and we know that BDD size efficiency is dramatically impacted by the or-

dering of its nodes, there are possibilities for making this Policy BDD representation

even more efficient when considering variables with non-binary domains. Another

84

alternative would be considering a different encoding of the policy entirely (for ex-

ample, Multivalued Decision Diagrams [3]), or providing the hybrid solver with a

more expressive and generic policy representation so that a use may pick their chosen

alternative that specializes on these alternatives.

Additionally, our uncertainty comes from decision variables, not temporal con-

straints. While a useful representation for the set of problems described above, an

interesting extension would be one that allows contingent temporal constraints, or

temporal constraints that have uncontrollable durations. Grounding this notion in

reality, if the time that the human took to do the rivets depended on whether or

not they were using a battery-powered rivet gun or one connected to an outlet. It is

possible that we could leverage insights from this work to encode the flexible duration

as a function of some decision variable; alternative, we could represent the temporal

uncertainty as a probability distribution and reason about the controllability of the

schedule using the concepts from STNUs [14] or pSTNs [16]. A pSTN would likely

be the most natural extension as we already support probabilistic information in the

form of Bayesian networks and Influence Diagrams; encoding temporal uncertainty

probabilistically would be a fascinating extension to this work.

Finally, it would be interesting to investigate avenues in which a robot takes

actions to observe when it is uncertain, rather than just waiting for the problem’s

risk to decrease. It is possible to leverage insights from [1] to increase our human-

robot’s likelihood of success through pointed, useful questions which allow our agent

to reason on its environment. By folding the innovations from [1] into this hybrid

architecture, we may create a more capable agent capable of resolving uncertainty.

85

86

Appendix A

Extensions

In this chapter, we discuss some extensions to our hybrid solver that make it useful in

planning problems. First, we’ll talk about how to reason on a Policy BDD, extracting

a best policy from the explicit graph using the Bdd-MaxΣΠ algorithm introduced in

[11]. Then, we’ll discuss some extensions to our temporal reasoning algorithms that

allow us to encode activities with preconditions and effects, reasoning over the causal

links to determine which activities must occur in order to have a successful execution.

A.1 Extension: Reasoning on a Policy BDD

First, we discuss briefly a set of algorithms which allow us to determine the “best”

future assignment given a history of assignments to decision variables. These algo-

rithms are not a core component of our hybrid solver. Instead, they demonstrate one

use case for flexibly human-robot collaboration which our hybrid solver supports and

enables. This approach is directly informed by [11], who designed these algorithms

to enable risk-bounded collaboration in a human-robot team. This thesis references

them only as one application of dcc-OpSat to human-robot collaboration.

In this section, we’ll build up the intuition for extracting the best policy from a

Policy BDD, starting from an explicit graph without the the added WMC constraints,

adding in the WMC constraints, and finally extending the concepts to a Policy BDD.

Querying the Policy BDD to find the best policy enables a consumer of the BDD

87

to determine which choice is the best given a partial assignment to controllable and

uncontrollable decision variables and how to act optimally in the future. Such algo-

rithms are useful for online execution, whereby an executive is able to quickly reason

over its observations and make choices to geared towards success.

A.1.1 Background: Extracting the Best Policy from Explicit

Graphs

Recall that our BDD performs two tasks: first, encoding all possible candidate solu-

tions to a conditional, stochastic CSP. Second, it allows us to reason quickly online

to determine if there exists some full assignment given a partial assignment to vari-

ables that satisfies a chance constraint and which full assignment has the greatest

likelihood of success. We will build up to the BDD-MaxΣΠ algorithm proposed in

[11] by first discussing how to extract the best policy from a graph without the struc-

tural encoding of the probability distribution described in Section 5.2. Then, we will

demonstrate that correct probabilistic information can be extracted from the explicit

graph with the auxiliary Weighted Model Counting variables.

Policy Extraction Without WMC Constraints

The intuition for generating the weight 𝛽𝑛 to node 𝑛 is rooted in the theoretical

basis of the expectimax or average-out and fold-back algorithms developed by the

stochastic game search community ([17], [9], [12]) for search over explicit graphs and

extended to Policy BDDs in [11]. To review, we’ll examine the expectimax algorithm

in the context of an explicit graph over a sequence of uncontrollable and controllable

assignments to decision variables.

Recall the simple explicit graph introduced in Section 3.1.1 and annotated with

the resultant 𝛽𝑛 from following the described algorithm, as shown in Figure A-1. Note

that the values at the leaf nodes are generated arbitrarily for pedagogical purposes,

and their generation is not described within this thesis.

We traverse the graph from leaf to root, working bottom-up to store a value 𝛽𝑛 in

88

Figure A-1: A simple explicit graph, with a uniform prior distribution..

node n. For a leaf node 𝜓𝑠 in the explicit graph, 𝛽𝑛 = Pr(𝜓𝑠)1𝑠𝑎𝑡(𝜓𝑠), which represents

the joint probability of 𝜓𝑠 if interpretation 𝜓𝑠 satisfies the problem’s constraints and

0 otherwise (the path terminates in the 0 value). Moving up to the node’s parents,

we assign the parent value based on its variable type:

𝛽𝑛 =

⎧⎪⎪⎨⎪⎪⎩
max

𝑛𝑖 child of 𝑛
{𝛽𝑛𝑖
} 𝑣 is controllable∑︀

𝑛𝑖 child of 𝑛
𝛽𝑛𝑖

𝑣 is uncontrollable

As the process moves up the tree, it takes the appropriate maximum or sum; if

taking the max, the algorithm records the node that resulted in the maximum value.

Once the root node 𝑛root is reached, the optimal policy 𝜋* is extracted by tracing down

the tree along the children that yielded the best values. Note that the probability

of satisfying the constraints for the optimal policy 𝜋* is conveniently represented as

𝛽𝑛𝑟𝑜𝑜𝑡 , making it efficient to determine if there is a policy that satisfies the chance

constraint.

89

Policy Extraction With WMC Constraints

In Section 5.1.2, we described the procedure by which we encode probabilistic infor-

mation explicitly in the policy of a Conditional, Stochastic CSP. Now, we’ll use the

weights on the 𝜃𝑖 variables to calculate the 𝛽𝑛 for nodes in an explicit graph with

the WMC variables included using the ComputeBetaTree algorithm originally

proposed in [11] and reproduced below in Algorithm 8 for convenience.

Algorithm 8 ComputeBetaTree
Input: A node 𝑛 representing variable 𝑣
Output: The value 𝛽𝑛

1: if n is a terminal node then

2: 𝛽𝑛 ←

{︃
0 if 𝑛 is terminal 0
1 if 𝑛 is terminal 1

3: else
4: 𝛽𝑛𝑖

, ... ← ComputeBetaTree(𝑛𝑖) for each child 𝑛𝑖 of 𝑛 corresponding to
assignment 𝑣 = 𝑑𝑖

5: 𝛽𝑛 =

⎧⎨⎩ max
𝑛𝑖 child of 𝑛

{𝛽𝑛𝑖
} 𝑣 is controllable∑︀

𝑛𝑖 child of 𝑛
𝒲(𝑣 = 𝑑𝑖)𝛽𝑛𝑖

𝑣 is uncontrollable

6: end if
7: return 𝛽𝑛

Algorithm 8 is remarkably similar to the approach for finding the best policy

without the WMC constraints. This new method, however, allows us to reason over

an influence diagram that captures relationships between variables, rather than just

reasoning on the prior distribution of the leaf nodes. Recall that we consider the

𝜃𝑖 variables to be uncontrollable; by chaining the 𝜃𝑖 variables together, Algorithm

8 allows us to correctly compute the joint probability of their associated nodes, as

demonstrated and described more fully in [11].

A.1.2 Extracting the Best Policy from the Policy BDD

Now that we have the background of policy extraction from an explicit graph, we ex-

tend policy extraction to Policy BDDs using the BDD-MaxΣΠ algorithm developed

in [11]. While the intuition is similar to Algorithm 8, there are two key considerations

90

for operating on a BDD with WMC constraints explicitly encoded. First, variables

may be skipped along a path from root to leaf if either value for those variables

could be chosen. Therefore, we must consider all the possible assignments along paths

with variables omitted. Second, BDD nodes may be re-used due to the compact

and efficient structure of BDDs.

As with the explicit graph, we associate each node in the Policy BDD with a value

𝛽𝑛, which again represents the likelihood of success if the agent acts optimally from

that point on. As before 𝛽𝑛 is computed recursively from the children of node 𝑛 and

cached at each node; this caching allows us to avoid re-computation, as BDD nodes

should be immutable and so their 𝛽𝑛 values will never changed.

[11] introduces the concept of a path factor to account for skipped variables in a

traversal of a Policy BDD. In short, if two subtrees of the explicit graph are identical,

the redundant substructure is collapsed in the Binary Decision Diagram, and the

variable is skipped. The BDD-MaxΣΠ algorithm is described in great detail in [11,

p. 266]; here, we simply use the results to evaluate the likelihood of success given the

partial assignment to a set of decision variables.

A.1.3 Using the Policy BDD in Online Execution

An executive is generally responsible for scheduling and dispatching an agent’s ac-

tivities and monitor the execution to determine if the agent will fails or has already

failed to execute a problem correctly, subject to some constraints. Central to the

success of a dynamic executive is the ability to reason quickly about the choices made

by the agent and its environment. The OpSat CSP solver is used by executives to

quickly, but lazily, compile out constraints and find a single optimal set of decisions

using Conflict-Directed A* search [18].

A.2 Extension: Solving a Planning Problem

Here, we discuss how a planner might interact with dcc-OpSat, using its action model

to represent the notion of causality which can be encoded as a set of additional tem-

91

poral constraints for our hybrid solver, dcc-OpSat. This extension demonstrates one

application of the dcc-OpSat solver, which allows us to solve dynamic human-robot

collaboration problems. Consider the human-robot collaboration example, where a

human and robot are working together to prepare the human for a busy workday. If

the robot does not pump up the bike’s tires, then the human cannot ride their bike

to work. This simple demonstration suggests the notion of labeled causal links and

producer and consumer events. The theoretical inheritance of these structures and

algorithms are described in great detail in [11]; here, we simply examine the input

and output and describe the algorithm’s functionalities in brief.

We extend the algorithm and problem statement to accept a Temporal Plan Net-

work under Uncertainty (TPNU) rather than a labeled STN and an action model,

which encodes actions precondition’s and effects. As an example, the effect of the

pump tires actions would be that the bicycle’s tires are pumped. Additionally, we

modify our temporal reasoning algorithm to run twice: first to extract the labeled

causal links which can encode additional temporal constraints, generating a second

TPNU 𝒯 ′, and the second time to extract temporal conflicts from the modified TPNU.

These modifications demonstrate how our hybrid solver can be applied to solve plan-

ning problems; because the formulation is so flexible, it allows for the encoding of

additional extensions.

Definition 12. (Temporal Plan Network (TPN)) [11], [4]. A TPN [11] is defined by

⟨𝒱 , ℰ , 𝒞,𝒜⟩.

• 𝒱 is set of choice variables.

• ℰ is a set of events, or notable points in time. Each event 𝑒 is associated with

a guarded simple temporal constraint in 𝒞. Some events are associated with a

choice variable 𝑣𝑖 = 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒− 𝑎𝑡− 𝑒𝑣𝑒𝑛𝑡(𝑒) denoting that variable 𝑣𝑖 must be

assigned by the time 𝑒 is executed.

• 𝒞 is the set of guarded simple temporal constraints over 𝒱 . Each 𝑐 ∈ 𝒞 is a

tuple ⟨𝑒𝑠, 𝑒𝑓 , 𝑙, 𝑢, 𝜓𝑐⟩, where 𝑒𝑠 is the “start” event, 𝑒𝑓 is the “end” event, 𝜓𝑐 is

92

a “guard” denoting a conjunction of choice variable assignments, and 𝑙, 𝑢 ∈ R

represent the temporal constraint 𝜓𝑐 ⇒ (𝑙 ≤ 𝑒𝑓 − 𝑒𝑠 ≤ 𝑢). Simply put, a

temporal constraint must hold if its guard is activated. Each simple temporal

constraint is associated with a guard and two events. Events are executed iff

they are activated (the guard 𝜓𝑐 = ⊤).

• 𝒜 is a set of activities, which denote the actions that must be executed during a

particular temporal constraint. Stated formally, each activity 𝑎 ∈ 𝒜 is a tuple

⟨𝑐, 𝛼⟩, where 𝑐 is a temporal constraint and 𝑎 is an action that must be executed

online. Action 𝛼 starts when 𝑒𝑠 is scheduled and ends when 𝑒𝑓 is scheduled.

Input

• A TPNU ⟨𝒱 , ℰ , 𝒞,𝒜⟩.

• An action model which specifies the preconditions and effects for each activity

𝑎 ∈ 𝒜.

Output

• 𝒞𝑇𝐶 , a set of additional propositional constraints which represent the conflicts

extracted from temporal reasoning.

• 𝒱𝑇𝐶 , variables representing producer and consumer events if an action model

𝒜 is provided in the input.

• A worst-case variable ordering 𝒱order inferred from the problem’s temporal con-

straints.

Before getting started with the action model portion of our problem, it is helpful

to define the concept of a producer event, a consumer event, and a labeled

causal link as outlined in [11].

Definition 13. (Producer and Consumer Event). A producer event is an event 𝑒𝑃

which has an effect 𝑝 that is a precondition of the consumer event 𝑒𝑐.

93

Algorithm 9 Modified-Temporal-Reasoning
Input: A TPNU 𝒯 and an optional action model 𝒜
Output: A set of logical constraints 𝒞𝑇𝐶 , auxiliary variables 𝒱𝑇𝐶 , and variable

𝒱order

1: 𝐷𝑖,𝑗 ← the labeled APSP of 𝒯
2: Extract the labeled causal links from 𝒯 using 𝐷𝑖,𝑗

3: Generate an augmented TPNU 𝑇 ′ using 𝒯 and labeled causal links
4: 𝒱𝑇𝐶 ← the added producer and consumer events
5: 𝒞𝑇𝐶 ← the conflicts extracted from the labeled causal links
6: if any temporal constraints were added to𝒯 ′ then
7: 𝐷𝑖,𝑗 ← the labeled APSP of 𝒯 ′

8: end if
9: 𝒞𝑇𝐶 ← Conflict-Extraction(𝐷𝑖,𝑗)

10: 𝒱order ← the inferred variable ordering from 𝐷𝑖,𝑗 return 𝒞𝑇𝐶 ,𝒱𝑇𝐶 ,𝒱order

Grounding our definition back in our example, the producer event would be the

event where the robot pumps the tires, and the consumer event is the one where the

human begins riding their bike to work.

Generating 𝒯 ′ from Causal Links

Given a totally ordered plan and action model, inferring causal links is straight-

forward; we simply work backwards and find the latest producer event for a given

consumer event. We then know that there is a causal link between the latest producer

and the consumer event; we may encode this causal link as an additional temporal

constraint. In general, though, this is challenging for partially-ordered plans with

metric temporal constraints. Consider two producer actions whose associated events

do not have a strict temporal precedence; in this case, it is unclear which producer is

the “later” producer and therefore relevant to the causal link structure. As a result,

there may be multiple possible candidate causal links. Additionally, a key part of

our problem statement was the notion of choice — that is, the activation of certain

producer events is conditioned upon choices made by the agent and its environment.

To solve this problem, we replicate the approach produced in [11], which introduces

the notion of labeled causal links, whereby a traditional causal link is labeled with the

choices that guard the activation of its events.

94

Definition 14. (Labeled Causal Link) [11]. A labeled causal link is a tuple ⟨𝑒𝑃 , 𝑒𝑐, 𝑝, 𝜙⟩,

where 𝑒𝑃 is the producer event with 𝑝 ∈ Effects(𝑒𝑃), 𝑒𝑐 is a consumer event occur-

ring after 𝑒𝑃 with 𝑝 ∈ Preconditions(𝑒𝑐), 𝑝 is a predicate, and the label 𝜓 is an

execution environment 𝑒𝑃 , 𝜙𝑒𝑃 .

We can also generalize the notion of a threat, where an action’s effects negate

the preconditions of another action. While an agent can never work to remedy the

inactivation of its latest causal link, it can react to a threat by taking an action whose

effects undo the threat actions’ effects. Stated more formally, if a threat 𝑒𝑡 has ¬𝑝 as

its effects, and is activated (and the related consumer and producer are activated),

the executive could either deactivate the consumer or try to produce the effect with

another action later in the execution.

Finally, we define the notion of the dominance of causal links, which simply says

that some causal links are irrelevant because they will always be subsumed by other

causal links.

Definition 15. (Labeled Causal Link Dominance) [11]. A labeled causal link ⟨𝑒𝑃𝑖
, 𝑒𝑐, 𝑝, 𝜙𝑒𝑃𝑖

⟩

dominates another labeled causal link ⟨𝑒𝑃𝑗
, 𝑒𝑐, 𝑝, 𝜙𝑒𝑃𝑗

⟩ iff:

• 𝜙𝑒𝑃𝑖
≺ 𝑒𝑐|𝜙𝑒𝑃𝑗

• 𝜙𝑒𝑃𝑗
|= 𝜙𝑒𝑃𝑖

• 𝜙𝑒𝑃𝑗
≺ 𝑒𝑃𝑖

|𝜙𝑒𝑐

Because these causal links are dominated, we can keep our augmented TPNU 𝒯 ′

small by pruning them as their dominance is discovered. In this case, we leverage

insights from [11] to extract these causal links, treating their results as a given from

a black box and describing in detail the logical encoding of causality, producers, and

consumers.

In short, we use the labeled causal links to encode additional temporal constraints

and logical constraints in our problem. We then run the Modified APSP algorithm

described in Section 6.2.2 on the modified temporal network, extracting a new set

of temporal conflicts to be added to 𝒱𝑇𝐶 . We describe the procedure intuitively,

95

beginning with determining which producers support the precondition 𝑝 of some event

𝑒𝑐. As is a theme, we add an auxiliary variable which encodes which of the different

possible producer events will enforce the support for precondition 𝑝 of event 𝑒𝑐; that

is to say, which event will be the producer in the associated causal link. This new

variable 𝑠𝑝,𝑒𝑐 choosing between, as an example, two events 𝑒𝑃1 and 𝑒𝑃2 is defined as

follows:

𝑠𝑝,𝑒𝑐 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑒𝑃1 if 𝑒𝑃1 will be the producer

𝑒𝑃2 if 𝑒𝑃2 will be the producer

∘ if neither will be the producer

Note that 𝑠𝑝,𝑒𝑐 is a conditional variable; it may be inactivated if 𝑒𝑐 is inactive.

Therefore, we must also add a variable active𝑠𝑝,𝑒𝑐 to respect our conditional formula-

tion from Section 4.3.

If there is a threat, we define the controllable variable 𝑜𝑝,𝑒𝑐,𝑒𝑃1
,𝑒𝑇1

where 𝑒𝑃1 is the

producer event and 𝑒𝑇1 is a threat event as follows:

𝑜𝑝,𝑒𝑐,𝑒𝑃1
,𝑒𝑇1

=

⎧⎪⎨⎪⎩−1 if 𝑒𝑇1 precedes 𝑒𝑃1

+1 if 𝑒𝑇1 succeeds 𝑒𝑃1

Note that, again, 𝑜𝑝,𝑒𝑐,𝑒𝑃1
,𝑒𝑇1

is conditional and may not be active.

Finally, we add a set of additional logical constraints encoding these causal links

and temporal constraints to generate our augmented TPNU 𝒯 ′ as shown in Table

A.1.

Once we have added our auxiliary logical and temporal constraints, we re-run

labeled APSP on our new TPNU 𝒯 ′ to generate an additional set of temporal conflicts

𝒞 ′𝑇𝐶 . Finally, we return the complete set of temporal conflicts 𝒞𝑇𝐶∪𝒞 ′𝑇𝐶 , the additional

variables 𝒱𝑇𝐶 , and logical constraints 𝒞𝑇𝐶 to our parent solver. Now, our Temporal

Subsolver has completed its reasoning!

96

Constraint Reason
Propositional for 𝒞𝐶𝑇 :
𝜙𝑒𝑐 ⇒

⋀︀
𝑒𝑃𝑖

∈𝑃 (𝑠𝑝,𝑒𝑐 = 𝑒𝑃𝑖
∧ 𝜙𝑒𝑃𝑖

) At least one activated producer
¬𝜙𝐶 Avoid definite threat
¬((𝑠𝑝,𝑒𝑐 = 𝑒𝑃) ∧ 𝜙𝑒𝑐 ∧ 𝜙𝑒𝑃 ∧ 𝜙𝑒𝑇) Avoid definite threat
¬𝜙𝐶 Avoid temporal conflict
active𝑠𝑝,𝑒𝑐 ⇒

⋁︀
𝑖

(︁
(𝑠𝑝,𝑒𝑐 = 𝑒𝑃𝑖

) ∧ 𝜙𝑒𝑃𝑖

)︁
Effect is produced and maintained

𝜙𝑒𝑐 ⇔ active𝑠𝑝,𝑒𝑐 𝑠𝑝,𝑒𝑐 is activated when 𝑒𝑐 is exe-
cuted

𝜙𝑒𝑣 ⇔ active𝑣 A variable must be assigned when
the event it is associated with will
execute

(𝑠𝑝,𝑒𝑐 = 𝑒𝑃) ∧ 𝜙𝑒𝑐 ∧ 𝜙𝑒𝑃 ∧ 𝜙𝑒𝑇 ⇔ active𝑜𝑝,𝑒𝑐,𝑒𝑃1
,𝑒𝑇1

Threat conditionality
Temporal for 𝒯 ′

𝑒𝑃𝑖

[𝜖,∞]−−−→ 𝑒𝑐 : {𝑠𝑝,𝑒𝑐 = 𝑒𝑃𝑖
} ∧ 𝜙𝑒𝑃𝑖

∧ 𝜙𝑒𝑐 Producers precede consumers

𝑒𝑐
[𝜖,∞]−−−→ 𝑒𝑇𝑗

: 𝜙𝐶 Force threat after consumer

𝑒𝑇𝑗

[𝜖,∞]−−−→ 𝑒𝑃𝑖
: 𝜙𝐶 Force threat before producer

𝑒𝑇𝑗

[𝜖,∞]−−−→ 𝑒𝑃𝑖
: {𝑝𝑝,𝑒𝑐,𝑒𝑃𝑖

,𝑒𝑇𝑗
= −1} ∧ 𝜙𝐶 Force threat before producer

𝑒𝑐
[𝜖,∞]−−−→ 𝑒𝑇𝑗

: {𝑝𝑝,𝑒𝑐,𝑒𝑃𝑖
,𝑒𝑇𝑗

= +1} ∧ 𝜙𝐶 Force threat after consumer

Table A.1: The additional propositional constraints for 𝒱𝐶𝑇 and 𝒯 ′

97

98

Appendix B

Implementation

Here, we’ll talk about how to actually use dcc-OpSat, translating a mathematical

problem statement into a CSP represented in MiniZinc [15]. First, we’ll talk about

the systems involved: Odo (our CSP modeling language), OpSat, and Riker. Then,

we will explicitly describe the inputs and outputs, examining the extracted temporal

conflcits, auxiliary, constraints, and resultant ROBDD. Finally, we’ll disuss a few of

the implementation details which were not central to the theoretical background of

this thesis but are useful to anyone who wishes to continue this work.

B.1 Systems Used

In this section, we introduce the systems used to solve this problem.

B.1.1 Odo

Odo provides an end user with extensible, flexible CSP modeling capabilities and the

ability to translate from the MiniZinc modeling language into a formulation accepted

by our CSP solvers. In this thesis, we focus on the existing API for CSPs, which are

in turn composed of a state space of variables and set of constraints on those

variables. Our architecture extends Odo with the following representations necessary

to fully model the CSCSP and pTPN problem statements:

99

1. Bayesian Networks and Influence Diagrams. In order to encode prob-

abilistic information about the problems, it was necessary to provide a user

with a way of modeling Bayesian Networks and their generalization, Influence

Diagrams. We based the Odo API on the Riker implementation, allowing a

user to parse Bayes nets and Influence Diagrams from their respective open

standards (XMLBIF and PGMX) and represent them in a way the subsolvers

can understand.

2. Policy BDD. A problem’s constraints and state space are compiled into a

Policy BDD. Odo’s modeling language is augmented to provide a user with a

standard API for interacting with a Policy BDD, allowing them to query it for

solutions and determine if a given set of decisions yields a solvable sub-problem.

B.1.2 Riker

Riker is the theoretical backbone of our hybrid architecture. Originally proposed

(and implemented) in [11], it is capable of taking in a pTPN, Bayesian network,

and PDDL action model to produce a Policy BDD which reasons on the pTPN’s

implicit constraints. Riker also interfaces with the Pike executive, operating on a

Policy BDD to greedily make choices based on a history of assignments to a problem’s

decision variables. This work leverages the following subcomponents of Riker:

1. CSCSP Modeling Language. Riker implements a CSCSP modeling lan-

guage, which is capable of representing a state space of variables in an efficient,

hash-table-based memory structure. Furthermore, it can model assignments to

those decision variables and reason on them quickly online.

2. Bayesian Network Parsing and Implementation. Riker provides a user

with libraries for parsing and modeling Bayesian Networks (and their general-

izations, Influence Diagrams). The hybrid architecture proposed in this thesis

uses these parsing libraries for convenience and bases the extensions to the Odo

modeling language loosely on the Riker Bayesian Network implementation in-

cluded in Riker.

100

3. Policy BDDs. Riker uses a Policy BDD (among other representations) to

store its knowledge base of constraints, which represents the fully compiled set of

constraints. Rather than reinvent the wheel with a novel policy representation,

our hybrid architecture leverages the Policy BDD structure and several Riker-

specific implementation details.

4. Temporal Reasoning. Riker is capable of extracting a Conditional, Stochas-

tic CSP from a probabilistic Temporal Plan Network using the techniques out-

lined in [11]. We leverage this infrastructure for our Temporal Constraint sub-

solver (Section 3.4.

B.1.3 OpSat-v3

OpSat-v3 is a Conflict-Directed A* search CSP solver. Traditionally, OpSat has taken

in a CSP (composed of variables and constraints) and returned the single optimal

solution by searching over the state space of variables and propagating constraints

to prune invalid portions of the search tree. Central to this search is the notion of

lazily compiling constraints as they are relevant. In this thesis, we extend OpSat’s

architecture to compile out all of the constraints online to create a Policy BDD

when an input CSP contains uncontrollable variables. In this way, we augment an

optimal satisfiability solver to solve a broader set of problems more useful for domains

involving human-robot collaboration.

B.2 Our Simple Example

Recall Example 1. We reproduce the problem here and explicitly describe the full set

of logical and temporal constraints.

B.2.1 Problem Statement

Our state space consists of the following:

The temporal constraints 𝒞𝑇 are given Table B.2.

101

Figure B-1: A visual representation of our mixed-logic temporal CSP. Edges denote
temporal constraints with of the form [lower bound, upper bound], denoting the tem-
poral distance between events. Controllable choices are marked by a double circle,
with uncontrollable choices marked by a dashed circle.

Variable Domain
Logical
𝑅1 {𝑐1, 𝑐2}
𝐻1 {𝑐1, 𝑐2}
Temporal
𝑒𝑣9, 𝑒𝑣1, 𝑒𝑣2, 𝑒𝑣3, 𝑒𝑣4,
𝑒𝑣10 𝑒𝑣5, 𝑒𝑣6, 𝑒𝑣7, 𝑒𝑣8, 𝑒𝑣12

[−∞,∞]

Table B.1: State space for our example problem.

The logical constraints 𝒞𝐿 are given simply by {(𝐻1 = 𝑐1)⇒ (𝑅1 = 𝑐1)}. Finally,

our influence diagram is given by Table B.3

B.2.2 Extracted Temporal Conflicts

Temporal reasoning extracts the conflict ¬(𝑅1 = 𝑐1). This is because setting (𝑅1 = 𝑐1)

will enforce that we have a minimum temporal distance between events 9 (our start

event) and 12 (our end event) of 12 (⌊[10, 20]⌋ + ⌊[2, 4]⌋ = 12). Recall that we have

a time constraint between events 9 and 12 stating that our overall execution time

may not exceed 10; therefore, we are left with a temporal conflict! Our temporal

reasoning algorithm correctly extracts this conflict and adds it to the knowledge base

of conflicts. Finally, we may also extract the variable ordering ⟨𝑅1, 𝐻1⟩ following the

variable ordering procedure outlined in Algorithm 7.

102

Start Event End Event STC Guard
𝑒𝑣9 𝑒𝑣1 [0,∞] 𝑅1 = 𝑐1
𝑒𝑣1 𝑒𝑣2 [10, 20] 𝑅1 = 𝑐1
𝑒𝑣9 𝑒𝑣10 [0,∞] 𝑅1 = 𝑐1
𝑒𝑣9 𝑒𝑣3 [0,∞] 𝑅1 = 𝑐2
𝑒𝑣3 𝑒𝑣4 [2, 4] 𝑅1 = 𝑐2
𝑒𝑣4 𝑒𝑣10 [0,∞] 𝑅1 = 𝑐2
𝑒𝑣10 𝑒𝑣11 [0,∞] -
𝑒𝑣11 𝑒𝑣5 [0,∞] 𝐻1 = 𝑐1
𝑒𝑣5 𝑒𝑣6 [2, 4] 𝐻1 = 𝑐1
𝑒𝑣6 𝑒𝑣12 [0,∞] 𝐻1 = 𝑐1
𝑒𝑣11 𝑒𝑣7 [0,∞] 𝐻1 = 𝑐2
𝑒𝑣7 𝑒𝑣8 [2, 4] 𝐻1 = 𝑐2
𝑒𝑣8 𝑒𝑣12 [0,∞] 𝐻1 = 𝑐2
𝑒𝑣9 𝑒𝑣12 [0, 10] -

Table B.2: Temporal constraints for the simple example problem.

𝐻1 = 𝑐1 0.1
𝐻2 = 𝑐2 0.9

Table B.3: The conditional probability table (CPT) for our simple influence diagram.

B.2.3 Resultant BDD

After compiling our WMC variables using our Bayesian Inference subsolver, we are

left with the Conditional Probability Table in B.4 (as shown in Chapter 5).

𝐻1 Pr (𝐻1) WMC
𝑐1 0.1 𝜃1
𝑐2 0.9 𝜃2

Table B.4: The added WMC vars

yielding the Reduced, Ordered Binary Decision Diagram in Figure B-2.

B.3 Converting Between Modeling Languages

To implement this thesis’ work, we found it necessary to translate between two repre-

sentations of a set of variables 𝒱 and constraints. While the implementation details of

these modeling changes are not relevant to the theoretical foundation of this thesis,

103

Figure B-2: The final resultant BDD for our example problem.

we would be remiss to not mention the challenges and data structures we used to

implement the research.

Here, we’ll describe in brief the procedure we use to translate constraints from

one modeling language to the other, noting some key differences between the way the

two choose to express things, and some of the challenges we encountered during the

implementation.

B.3.1 Semantic Differences

Before diving into the technical details of different modeling techniques for CSCSPs

and their constituent components, we shall investigate the semantic differences of

the two modeling languages. Most importantly, the way Odo and Riker concep-

104

tualize conditional constraints are fundamentally different. In Odo, if a variable is

not activated, then all constraints containing this variable are vacuously satisfied. In

Riker, however, constraints must always be satisfied regardless of the activation of

the variables in its scope. In practice, this means an assignment to a variable encoded

in the CSCSP means that the variable is active.

Consider the constraint from our example problem in Section 4.3.2, (𝐻1 = 𝑐1)⇒

((𝑅1 = 𝑐1) ∧ (𝑅2 = 𝑐2)). In the Riker modeling language, this constraint can be

translated into plain English as “𝐻1 is active and assigned 𝑐1 if 𝑅1 is active and as-

signed 𝑐1 and 𝑅2 is active and assigned 𝑐2.” In the Odo modeling language, however,

this constraint can be translated into plain English as “𝐻1 is assigned 𝑐1 if 𝑅1 is

assigned 𝑐1 and 𝑅2 is assigned 𝑐2 or any of the variables (𝐻1, 𝑅1, or 𝑅2) is inac-

tive." The Odo modeling language reflects the traditional conditional CSP approach

as outlined in [13]. While the Riker constraint expression allows us to easily en-

code disjunctive activation, we choose to enforce the Odo semantic philosophy on

Riker’s constraint expression to bring the semantics in line with those accepted by

the constraint modeling community for our CSCSP solver.

To appropriately encode an Odo constraint in Riker, we preface every constraint

that contains conditional variables with a “guard” consisting of a conjunction of our

induced activity variables. Returning to our simple example, if our Odo constraint 𝑐 is

defined as (𝐻1 = 𝑐1)⇒ ((𝑅1 = 𝑐1)∧ (𝑅2 = 𝑐2)) and 𝑅1 is a conditional variable, then

our Riker constraint 𝑐′ becomes active𝐻1 ⇒ ((𝐻1 = 𝑐1)⇒ ((𝑅1 = 𝑐1)∧ (𝑅2 = 𝑐2)))).

B.3.2 Conversion into Riker’s modeling language

In order to convert a CSCSP represented as an Odo CSCSP to a Pike SCSP, it is

necessary to convert all of the constituent pieces. This corresponds to Algorithm 10,

which takes in a CSCSP represented in the Odo modeling language, compiles out

the conditional variables, and represents the resulting SCSP in the Riker modeling

language. In turn, Algorithm 10 relies on Algorithm 11 to create a new state space,

set of constraints, influence diagram, risk bound, and variable order expressed in the

Riker modeling language. In this way, we can represent a Weighted CSCSP in a

105

standard modeling language, hand it off to a CSCSP solver, and translate it into a

format understood by the Riker policy generator.

Algorithm 10 CSCSP-Conversion
Input: A CSCSP represented in the Odo modeling language
Output: An SCSP represented in the Riker modeling language

1: Convert constraints using Constraint-Conversion, compiling out conditional
variables

2: Convert the Bayesian network to an influence diagram using Influence-
Diagram-Conversion

3: for 𝑣active ∈ 𝒱 do
4: Add the constraint (active𝑣 = ⊤)⇔

⋀︀
𝑑𝑖 ̸=∘ 𝑣 = 𝑑𝑖

5: end for
6: Convert the chance constraint
7: Use the resulting state space 𝒱 ′, set of constraints 𝒞 ′, ∆′, Pr′ and inferred variable

order 𝒱order to define an SCSP

Algorithm 11 converts constraints from the Odo modeling language into the Riker

modeling language. Our Constraint-Conversion algorithm leverages the recur-

sive constraint structure to maintain a list of variables in a constraint while building

up equivalent constraints in the desired modeling language. Taking an example con-

straint ((𝐻1 = 𝑐1) ⇒ ((𝑅1 = 𝑐1) ∧ (𝑅2 = 𝑐1))), we can further describe Algorithm

11’s helper procedure Conversion-Helper graphically to build up our intuition of

the conversion libraries. In short, Conversion-Helper builds up constraints using

a modified depth-first search approach, treating each sub-constraint as a sub-tree of

the search graph. Equality constraints correspond to the leaf nodes of our search tree;

when a leaf node is encountered, the corresponding decision variable assignment is

then “passed up" the search tree for integration into the Odo-modeled constraint.

In Figure B-3, green corresponds to the constraint conversion. Correctly converted

constraints expressed in the Riker modeling language are denoted with a ′ marker.

Blue denotes the addition of variables into a state space. Red corresponds with

the (labeled) algorithmic steps by which constraints are recursively converted and

generated. The black boxes represent a call to the Conversion-Helper procedure

with the given input. Stepping through the graphical representation step-by-step, we

take our input constraint ((𝐻1 = 𝑐1)⇒ ((𝑅1 = 𝑐1)∧ (𝑅2 = 𝑐1))), represented in Odo,

106

Algorithm 11 Constraint-Conversion
Input: 𝑐, an Odo constraint, and 𝒱 ′, an optional Riker state space
Output: 𝑐′, a Pike constraint representing the Odo constraint

1: for 𝑐 ∈ 𝒞 do
2: 𝒞 ′ ← Conversion-Helper(𝑐)
3: if 𝑐 contains conditional variables then
4: Add the proposition active𝑣𝑖 for every conditional variable 𝑣𝑖 ∈ 𝑉 (𝑐)
5: Modify 𝑐 into a constraint guarded by active𝑣𝑖 = ⊤
6: Add the constraint that ensures if a variable’s guard is active, it is assigned

to a domain value that is not ∘
7: end if
8: end for
9: procedure Conversion-Helper (CH)(𝑐)

10: if 𝑐 is an equality constraint then ◁ Base case.
11: Convert variable Riker equivalent
12: Add variable to Riker state space.
13: 𝑐′ ← the equivalent Pike assignment constraint
14: else if 𝑐 is an implication constraint then
15: 𝑐′ ← {CH(implicant) ⇒ CH(consequent)}
16: else if 𝑐 is an equivalence constraint then
17: 𝑐′ ← {CH(lhs) ⇔ CH(rhs)}
18: else if 𝑐 is an conjunction constraint then
19: 𝑐′ ← {

⋀︀
CH(conjuncts(𝑐))}

20: else if 𝑐 is a disjunction constraint then
21: 𝑐′ ← {

⋀︀
CH(disjuncts(𝑐))}

22: else if 𝑐 is a disjunction constraint then
23: 𝑐′ ← ¬CH(𝑐)
24: end if
25: end procedure

107

Figure B-3: A visual depiction of the Constraint-Helper procedure.

and feed it into the Conversion-Helper procedure. We immediately recognize this

is an implication constraint, triggering line 13 of our algorithm, which converts the

implication constraint into the appropriate Riker constraint and calls Conversion-

Helper on the contents of the implicant and contents of the consequent.

Arriving at the second level of the tree, we notice that (𝐻1 = 𝑐1) is an equality

constraint that contains a conditional variable. This is our base case represented in

line 9 of Algorithm 11. First, we check to see if a variable with the same name as

the one represented in the constraint already exists in the state space of variables.

If it does, Conversion-Helper uses the pre-existing variable in the constraint. If

a variable with the same name does not already exist, Conversion-Helper will

convert the variable to its equivalent Riker representation using Algorithm 12, add

it to the state space, and use this variable in the constraint expression. This check

avoids the unnecessary representation of identical variables in the state space and

is relatively efficient due to the internal hash table structure of a given state space.

Next, Conversion-Helper creates an assignment to the given decision variable

and passes (𝐻1 = 𝑐1)
′ back up to its parent caller. Finally, because the variable is

108

conditional, we define an auxiliary variable active𝐻1 which takes the value of ⊤ when

𝐻1 is active and ⊥ otherwise and extend the domain of variable 𝐻 ′
1 to be {𝑐1, 𝑐2, ∘}.

This auxiliary activity variable is also added into our generated state space. These

two modifications “compile out” the conditional constraint as outlined in Section 4.3.3.

Now we’ve encountered a leaf node (decision variable assignment), we move in

a depth-first fashion over to the right side of our conversion tree to examine the

consequent ((𝑅1 = 𝑐1)∧(𝑅2 = 𝑐2)). We recognize that this is a conjunction, triggering

line 17 of Algorithm 11. Unlike an implication constraint, a conjunction can be

formed of a theoretically unlimited amount of conjuncts. To solve this problem, we

map the ∧ operator onto a list returned by the Constraint-Helper procedure

(this procedure corresponds to line 18 of Algorithm 11).

Moving down to our third level of recursion, we notice that our first conjunct is

just an equality constraint. Following the steps outlined in lines 9-12 of Algorithm

11, we check to see if this decision variable is already in the state space, create it if not,

and pass the resulting decision variable assignment (𝑅1 = 𝑐1)
′ up to the second level

of the tree. We perform the same procedure on the 𝑅2 = 𝑐2 node, though 𝑅2 is not

conditional so we do not need to add an auxiliary activity variable. Now that there

are no more conjuncts to explore, we apply our ∧ operator to the list of generated

constraints to form ((𝑅1 = 𝑐′1 ∧ (𝑅2 = 𝑐2)
′)′. This Riker-modeled constraint is then

passed up to the first level of the search tree and combined with the left side of our

search tree to form the converted constraint ((𝐻1 = 𝑐1)
′ ⇒ ((𝑅1 = 𝑐1)

′∧(𝑅2 = 𝑐2)
′)′)′.

Now that we have created an equivalent constraint in Riker using our Conversion-

Helper procedure, it is time to modify the semantics as outlined in Section B.3.1

by encoding a guard so that constraints may be vacuously satisfied if the vari-

ables that appear in the constraint are not encoded. This is done by performing

a search over the generated state space to find all of the activity variables and en-

coding a guard. Our resultant constraint (and state space) is now represented as

active𝐻1 ⇒ ((𝐻1 = 𝑐1)
′ ⇒ ((𝑅1 = 𝑐1)

′ ∧ (𝑅2 = 𝑐2)
′)′)′)′.

Algorithm 12 deals with two problems: first, it translates all Odo variables in to

Riker variables. In parallel, it compiles out conditional variables by adding in an

109

Algorithm 12 Variable-Conversion
Input: 𝑣, a variable represented in the Odo modeling language
Output: 𝑣′, a variable represented in the Riker modeling language

1: 𝒱 ← 𝑣′, where 𝑣′ is the translation from Odo to Riker
2: if 𝑣 is conditional then
3: 𝐷(𝑣′)← ∘ ◁ Adds “inactive” value to variable domain
4: 𝒱 ← active𝑣′ ◁ Adds active proposition to the state space
5: end if

“inactive” value to conditional variable’s domains and the auxiliary active proposition

to the state space. By explicitly representing a variable’s activation status in our

CSP formulation, we are able to use canonical BDD algorithms to compile out our

constraints. Recall that our BDD structure allows us to reason over a huge number

of policies to make controllable decision variables; because the BDD does not permit

conditional variables, we must compile away the conditional nature of the constraints

(as outlined in Section 4.3.3).

110

Bibliography

[1] Jacob Broida. Active Policy Querying for Dynamic Human-Robot Collaboration
Tasks. PhD thesis, Massachusetts Institute of Technology, 2021.

[2] Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35(8):677–691, August 1986.

[3] Andre Cire and Willem-Jan van Hoeve. Multivalued Decision Diagrams for Se-
quencing Problems. Operations Research, 61, December 2013.

[4] Patrick R Conrad and Brian C Williams. Drake: An Efficient Executive for
Temporal Plans with Choice. Journal of Artificial Intelligence Research, 42:53,
December 2011.

[5] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Ar-
tificial Intelligence, 49(1):61–95, May 1991.

[6] Cheng Fang. Efficient algorithms and representations for chance-constrained
mixed constraint programming. Thesis, Massachusetts Institute of Technology,
September 2021. Accepted: 2022-02-07T15:12:01Z.

[7] Esther Gelle and Mihaela Sabin. Solving methods for conditional constraint
satisfaction. In In IJCAI-2003, pages 7–12, 2003.

[8] Ronald A. Howard and James E. Matheson. Influence Diagrams. Decision Anal-
ysis, 2(3):127–143, September 2005. Publisher: INFORMS.

[9] Finn V. Jensen and Thomas D. Nielsen. Bayesian Networks and Decision Graphs.
Information Science and Statistics. Springer, New York, NY, 2007.

[10] A. B. Kahn. Topological sorting of large networks. Communications of the ACM,
5(11):558–562, November 1962.

[11] Steven James Levine. Risk-bounded coordination of human-robot teams through
concurrent intent recognition and adaptation. Thesis, Massachusetts Institute of
Technology, 2019. Accepted: 2019-07-15T20:31:07Z.

[12] D. Michie. CHAPTER 8 - GAME-PLAYING AND GAME-LEARNING AU-
TOMATA. In L. Fox, editor, Advances in Programming and Non-Numerical
Computation, pages 183–200. Pergamon, January 1966.

111

[13] Sanjay Mittal and Brian Falkenhainer. Dynamic Constraint Satisfaction Prob-
lems, 1990.

[14] Paul Morris, Nicola Muscettola, and Thierry Vidal. Dynamic control of plans
with temporal uncertainty. In Proceedings of the 17th international joint confer-
ence on Artificial intelligence - Volume 1, IJCAI’01, pages 494–499, San Fran-
cisco, CA, USA, August 2001. Morgan Kaufmann Publishers Inc.

[15] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gre-
gory J. Duck, and Guido Tack. MiniZinc: Towards a Standard CP Modelling
Language. In Christian Bessière, editor, Principles and Practice of Constraint
Programming – CP 2007, volume 4741, pages 529–543. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2007. Series Title: Lecture Notes in Computer Science.

[16] Ioannis Tsamardinos. A Probabilistic Approach to Robust Execution of Tempo-
ral Plans with Uncertainty. In Proceedings of the Second Hellenic Conference on
AI: Methods and Applications of Artificial Intelligence, SETN ’02, pages 97–108,
Berlin, Heidelberg, April 2002. Springer-Verlag.

[17] Toby Walsh. Stochastic constraint programming. In Proceedings of the 15th
European Conference on Artificial Intelligence, ECAI’02, pages 111–115, NLD,
July 2002. IOS Press.

[18] Brian C. Williams and Robert J. Ragno. Conflict-directed A* and its role in
model-based embedded systems. Discrete Applied Mathematics, 155(12):1562–
1595, June 2007.

112

	Introduction
	Representative Scenario
	Approach in a Nutshell
	A Simple Example

	Thesis Structure

	Problem Statement
	The Need for an Expressive Chance-Constrained CSP Solver
	Motivating Examples
	Problem Requirements

	Formal Problem Statement
	Chapter Summary

	Approach
	Hybrid Solver Architecture
	Policy Representation

	The Weighted CSCSP Subsolver
	Conditional CSP Subsolver
	Constraint Compiler

	Bayesian Inference Subsolver
	Intuition: Performing Bayesian Inference

	Temporal Subsolver
	Intuition: Extracting Temporal Conflicts

	Weighted CSCSP Subsolver
	Problem Statement: Weighted CSCSPs
	Approach: Combining Two Solvers
	Conditional CSP Subsolver
	Problem Statement: Conditional CSPs
	Introducing Another Example
	Approach: Compiling out Conditional Variables

	Constraint Compiler
	Problem Statement: Constraint Compiler
	Simple Example: Continued
	Approach: Constructing the Policy BDD

	Bayesian Network Compilation
	Problem Statement: Bayesian Inference
	Background: Probabilistic Graphical Models
	Formal Problem Statement

	Approach: Performing Bayesian Compilation
	A More Complex Example

	Temporal Constraint Subsolver
	Problem Statement: Temporal Subsolver
	Approach: The Temporal Reasoning Algorithm
	Background: Graph-Based Temporal Reasoning
	Modified Labeled APSP

	Discussion and Future Work
	Discussion
	Future Work

	Extensions
	Extension: Reasoning on a Policy BDD
	Background: Extracting the Best Policy from Explicit Graphs
	Extracting the Best Policy from the Policy BDD
	Using the Policy BDD in Online Execution

	Extension: Solving a Planning Problem

	Implementation
	Systems Used
	Odo
	Riker
	OpSat-v3

	Our Simple Example
	Problem Statement
	Extracted Temporal Conflicts
	Resultant BDD

	Converting Between Modeling Languages
	Semantic Differences
	Conversion into Riker's modeling language

