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Abstract

Soft materials subject to both static and dynamic loading are known to exhibit a
variety of mechanical instabilities which may lead to intricate surface deformation
patterns. In particular, creases and wrinkles have been found to play an important
role in the morphogenesis of soft tissues and tumor growth. Soft matter instabilities
are also relevant to a number of manufacturing and engineering applications such
as the fabrication of microlenses, and the development of soft robots, actuators and
ŕexible electronics. Static instabilities in soft matter have been well studied theo-
retically, and they are known to result from bifurcations of equilibrium due to loss
of convexity of the nearly-incompressible elastic strain energy function in the large
deformation range. Under dynamic loading, soft solids exhibit many instabilities that
are well known in ŕuids, including Rayleigh-Taylor, Faraday and Richtmyer-Meshkov
instabilities.

This thesis is concerned with the analysis and mechanistic explanation of a new
elastodynamic instability that was recently discovered at MIT. Laser-driven exper-
iments performed at the MIT Institute for Soldier Nanotechnologies have demon-
strated undulations along the surface of pressurized cylindrical specimens of soft hy-
drogels which develop on an intermediate timescale in between what is expected from
classic static and dynamic instability mechanisms. In contrast to prior work, the
novel instabilities have been observed only along external, as opposed to internal,
soft solid boundaries. The new instabilities have not been observed in experiments
using pure water and appear to be a unique and novel phenomenon. Motivated by
these intriguing differences between the new observations and instabilities considered
in the past, we aim to develop a theoretical and numerical framework geared to-
wards understanding the fundamental dynamics leading to the complex mechanical
deformations discovered at the Institute for Soldier Nanotechnologies. Among the
insights obtained, it is found that the ability of a soft material to sustain large tensile
hydrostatic stresses plays a pivotal role in generating the new surface undulations.
The observation of tension-driven, shock-induced surface instabilities in hydrogels is
indicative of hydrogel’s enhanced resistance to high strain rate cavitation when com-
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pared to pure water and may be of technological interest to a number of soft matter
applications such as the design of protective equipment or the development of impulse
resistant sealants, insulators and adhesives.

Thesis Supervisor: Raúl Radovitzky
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Previous Research on Soft Material

Interfacial Instabilities

Soft solids are characterized as possessing a small shear modulus compared to

their bulk modulus. These materials are ubiquitous in nature where a wide array of

soft biological tissues are found due to the high water content of living organisms.

Mechanical studies of human skin for instance report poisson ratios of 0.48 which

corresponds to a ratio of shear to bulk moduli or a ‘compressibility ratio’ of 4 % [1].

Many other naturally occurring materials have still smaller compressibility ratios.

Engineered soft solids are also extensively used as sealants, insulators, bearings and

adhesives [2ś4].

Due to their lack of shear stiffness, it is common to őnd complex morphologies

along the surface of soft solids. For instance, the formation of gyri and sulci in the

cerebral cortex of the brain [5] results from mechanical instability due to the softness

of cortical tissue and is illustrated schematically in Fig. 1-1. Wrinkles and folds can

also form along the surfaces of other organs in humans [6] and animals [7]. Notably

skin [8], esophagi and airways [9] frequently display wrinkles. Tumor growth can

demonstrate complex surface morphology and shape changes due to the softness of

cancerous tissues [10ś12]. Surface wrinkles naturally arise in a variety of soft foods

such as the morphology of baking dough which develops as it rises [13] Fig. 1-2.

The familiar wrinkles on raisins, peas [14] and other dried fruits and vegetables have
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also been widely studied theoretically and numerically. Engineered soft solids often

demonstrate surface instabilities such as the solvent swelling induced wrinkles [15] or

Schallamach wave surface patterns [16] shown in Fig. 1-3 which are often found near

contact lines on rubber or elastomer surfaces.

Figure 1-1: From left: illustration of brain sulci formation [5], morphology of spheroid
cervical tumor [12], human skin wrinkles [8], bovine airway and esaphogus wrin-
kles [9], and artiőcial wrinkle formation which mimics typical morphology of tumor
growth [11].

In addition to explaining curious surface patterns, the study of soft solid surface

morphology provides many practical beneőts. Manipulation of the geometric charac-

teristics of surface deformation patterns in engineering materials can be exploited for

the fabrication of microlens arrays [17, 18] and the development of soft robots [19],

actuators [20, 21] and ŕexible electronics [22ś24]. In the biological sciences, the study

of elastic instability has provided a means to predict defects during the formation

of optic vesicles [25]. Such defects in the optic cup are known to cause a variety of
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Figure 1-2: Left: Wrinkle formation along the surface of rising dough occurs due to
differentials in humidity [13]. Right: computer and experimental investigation of the
wrinkling of spherical fruits and vegetables such as peas as they dry [14].

Figure 1-3: Left: swelling of rubber in hydrocarbon solvents induces surface mor-
phology [15]. Right: Schallamach waves found where a sliding rigid body contacts a
soft silicone, in this case Polydimethylsiloxane or PDMS [16].

important congenital eye disorders [26ś28].

The complex and often multifaceted nature of soft solid surface instability mech-

anisms has motivated a number of mathematical and experimental studies over the

past seventy years. Theoretical efforts to understand elastic surface instabilities date

as far back as the 1950’s when Biot studied the formation of wrinkles along the

surface of an elastic half space under tangential compressive strain [29, 30]. Biot

considered the incremental elasticity relations for an incompressible elastic half-space
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with neo-Hookean deviatoric response. He found analytically that at a critical in-

plane compressive strain the incremental shear modulus vanishes which implies a loss

of stability of the homogeneous solution to the boundary value problem. The stress

associated with this critical strain is 3.08 times the shear modulus which highlights

that Biot type wrinkling instabilities occur when the shear modulus is small relative

to the applied loads. From a theoretical viewpoint, Biot’s instability can be viewed

as resulting from a vanishing wave speed due to a loss of the incremental stiffness in

a particular direction, but it is fundamentally a global bifurcation that results from

the loss of convexity of the hyperelastic strain energy function due to the incompress-

ibility constraint [31]. It is well known that real materials cannot possess a strain

energy function which is both objective and convex [31ś33] and that loss of convexity

allows for the non-monotonic mechanical response [34] commonly observed in many

soft solid and buckling instabilities [2, 35].

Wrinkle formation occurs in multiple settings due to different driving mechanisms

such as differential changes in temperature, humidity, pH and electric őeld in addition

to the mechanical compression studied by Biot [6]. These stimuli induce wrinkles

by producing heterogeneous or anisotropic growth that leads to compressive stress

tangential to the free surface. Homogeneous growth can also cause wrinkling if the

elastic body is spatially constrained [11]. In addition to parallel sinusoidal wrinkles,

complex two-dimensional wrinkling patterns have been described theoretically and

observed in experiment. Thin őlms on soft, compliant substrates often wrinkle into

herringbone patterns when the in-plane stress state is biaxial and compressive [36]

Fig. 1-4. These more complex surface morphologies have been predicted by both

numerical and analytical models [37]. Wrinkles can form on either ŕat or curved

surfaces and can adopt a number of different morphologies such as: checkerboard,

hexagonal, triangular and labyrinthine patterns [6].

Post-wrinkling, further morphological changes can occur along a free surface of

a soft solid. For instance, period doubling of wrinkles occurs as soft solids are com-

pressed beyond the initial bifurcation point. Period doubling causes the amplitude of

alternating wrinkles to either grow or decay smoothly as the compression is increased
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[38, 39]. The effect has been observed in soft PDMS substrates and has also been

simulated numerically [6, 38]. This process may occur repeatedly and lead to period

quadrupling [6, 38]. In contrast to the periodic and distributed nature of these ef-

fects, a thin őlm ŕoating on a Newtonian ŕuid typically produces a single fold [6,

39].

Figure 1-4: Period doubling [39], simulation of transition to herringbone and
labyrinthine wrinkles [37], and experimentally observed herringbone patterns forming
in thin gold őlms on PDMS substrates [36]

Contrary to the smooth post-bifurcation period doubling that may occur after

wrinkling, crease formation does not typically evolve smoothly. A crease is deőned

by a sharp cusp at a free surface, located where the surface comes into contact with

itself. Crease formation is sensitive to surface defects and does not occur after wrin-

kling. Furthermore, crease-induced deformations are spatially localized while wrinkle

formation produces smooth and fairly uniform deformation throughout a material [6].

Surface instabilities can also appear along cylinders of soft solids subject to axial

stretching. Such instabilities have been observed on rectangular and circular cylinders

of different aspect ratios and are termed ‘fringe’ and ‘őngering’ instabilities [2, 35]

Fig. 1-5. Fringe instabilities are manifested as surface undulations near the ends of a

long cylinder under axial tension. Fingering instability develops as ŕatter specimens

of soft solid are stretched and is manifested as surface undulations along the boundary

near the middle of the cylinder. These instabilities arise due to the loss of convexity

of the elastic strain energy in the large deformation regime. Numerical experiments
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indicate that fringe instabilities develop under monotonic loading, while elastic őnger-

ing is a distinct phenomenon that yields more complicated load-displacement curves

with a variety of snap-backs and snap-throughs [35]. Dynamic simulations of soft ma-

terial axial stretching indicate that these classes of instabilities form in the quasistatic

setting when the strain rate is smaller than unity. Experimental demonstrations of

fringe and őngering instabilities use still smaller strain rates [2]. These instabilities do

not depend strongly on the shear modulus so long as the hydrogel is sufficiently soft.

It is important to emphasize that the őngering of elastic materials is different from

the dynamic őngering that occurs between two viscous ŕuids of dissimilar properties.

Figure 1-5: Fringe instability in experiment (left) and simulation (right) [35].

Another difference between soft solid instabilities and ŕuid instabilities is that

some dynamic instability mechanisms in ŕuids can őnd equilibrium conőgurations

in soft solids. The elastic Rayleigh-Taylor instability is a quasi-static version of the

dynamic Rayleigh-Taylor instability of ŕuids which was discovered and explained by

G. I. Taylor as a type of instability that occurs at the interface of two ŕuids subject to

acceleration [40]. Taylor’s original paper stated that an interface between two ŕuids

𝜌𝑎 and 𝜌𝑏 with sinusoidal corrugation of amplitude 𝑎(𝑡) and wave-number 𝑘 will evolve
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in the presence of acceleration 𝑔(𝑡) according to Eq. 1.1:

𝜕2

𝜕𝑡2
𝑎(𝑡) = 𝑘𝑔(𝑡)𝑎(𝑡)

𝜌𝑎 − 𝜌𝑏
𝜌𝑎 + 𝜌𝑏

(1.1)

The relative density difference term 𝜌𝑎−𝜌𝑏
𝜌𝑎+𝜌𝑏

is known as the Atwood number. For pos-

itive Atwood number and acceleration, corrugations will grow. In soft solids, this

instability mechanism has been observed on the bottom side of unconstrained, hang-

ing layers of soft matter Fig. 1-6. Gravity provides a constant acceleration 𝑔(𝑡) in

the direction away from the heavier soft material and into the lighter air beneath the

hanging layer. Elastic Rayleigh-Taylor instabilities often őnd equilibrium conőgura-

tions that have hexagonal symmetry [41] though other morphologies have also been

observed [42].

Figure 1-6: Left: View from below a soft layer as gravity pulls material down and
induces elastic Rayleigh-Taylor instability [42]. Right: hexagonal symmetry in elastic
Rayleigh-Taylor instability [41].

Another example of a ŕuid dynamic instability which őnds equilibrium conőgu-

rations in soft solids is the elastic Rayleigh-Plateau instability which causes a thin

stream of liquid to break up into a sequence of droplets. In this instability mechanism,

surface tension drives the breakup of ŕuid streams by pushing ŕuid away from nar-

row regions. The effect is described mathematically by the Young-Laplace equation

shown in Eq. 1.2:

∆𝑝 = −𝛾(
1

𝑅1

+
1

𝑅2

) (1.2)

The Young-Laplace equation relates the pressure difference ∆𝑝 between the ŕuid
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inside the cylinder and the surrounding atmospheric pressure to the interfacial surface

tension 𝛾 and the two principal radii of curvature 𝑅1 and 𝑅2. For sufficiently thin

cylinders of ŕuid, any slight variation in the radius of the cylinder can produce signiő-

cant variation in ∆𝑃 . Thin necks in the ŕuid cylinder have small radii of curvature in

the angular direction which produces high pressure in the neck and pushes ŕuid away

from the thinned region. Eventually, this causes the cylinder to separate into two sep-

arate ŕuid domains. The dependence of ∆𝑝 on the other radius of curvature in the

axial direction prevents the growth of high wave-number instabilities. Consequently,

ŕuid columns often break up into droplets of a typical size. Along thin columns of

soft solid, surface tension effects can produce similar necking type instabilities, but

the elastic stresses become signiőcant as the neck thins and ultimately prevent the

instability from breaking up soft solids. Instead, thin columns of soft solids typically

form into undulating columns [43] Fig. 1-7.

Figure 1-7: Elastic Rayleigh Plateau instability induces undulations along thin
columns of soft materials [43].

Soft matter can exhibit true dynamic instability mechanisms as well. Recent re-

search into soft solid dynamics has highlighted elastocapillary waves and Faraday

instabilities in soft gels [44, 45]. These phenomena are dynamic counterparts to the

Rayleigh-Plateau instability in that they are also governed by surface tension and
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the Young-Laplace equation. Many of the other dynamic instability mechanisms of

interest are related to extensions of the Rayleigh-Taylor mechanism. For instance,

George Bell expanded on the Rayleigh-Taylor instability and derived analytical equa-

tions governing the evolution of small amplitude disturbances along incompressible

inviscid ŕuid domains in the cylindrical and spherical setting [46]. Bell studied in-

compressible ŕows using the classic technique of considering velocity őelds that are

the gradient of a harmonic potential function. The divergence of these ŕow őelds is

the Laplacian of the harmonic function (zero by construction) which enforces the in-

compressibility constraint. Bell’s őndings were signiőcant in that his results indicated

the rate of instability growth scales with the domain curvature. He extended his anal-

ysis to the setting of compressible ŕow by assuming homogeneous volumetric strain.

Interest in obtaining more realistic results for compressible ŕows led researchers to

utilize numerical methods and computer simulation.

Robert Richtmyer used computer simulation to consider an extension of the Rayleigh-

Taylor instability to settings when the interfacial acceleration 𝑔(𝑡) considered in

Eq. 1.1 varies extremely rapidly and approaches an impulsive acceleration [47]. Gases

moving through a shock wave experience violent accelerations which are well approxi-

mated by the assumption of a sudden and discrete change in the velocity őeld. Richt-

myer started his analysis by considering Eq. 1.1 in the limit of 𝑔(𝑡) ∝ 𝛿(𝑡) which

produces the following result:

𝜕

𝜕𝑡
𝑎(𝑡) = 𝑘𝐺𝑎(𝑡0)

𝜌𝑎 − 𝜌𝑏
𝜌𝑎 + 𝜌𝑏

(1.3)

Here 𝐺 represents the time integral of the acceleration őeld
∫︀

𝑔(𝑡)𝜕𝑡, which is őnite for

an impulsive acceleration. Taylor’s theory predicts that the amplitude of a corrugation

along an interface experiencing an impulsive acceleration should grow at a constant

rate after the passage of a shock. Richtmyer-Meshkov instability as the shock-driven,

impulsive limit came to be called is not necessarily governed by the above relation

for the following reasons highlighted by Richtmyer.

First, the growth rate of the interface 𝜕𝑎
𝜕𝑡

will be zero until there has been sufficient
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Figure 1-8: Left: Graphics from Richtmyer’s 1960 paper describing shock induced in-
stability of ŕuid interfaces [47]. Middle: Experimental results of Meshkov in 1969 [48].
Right: recent experimental study of Richtmyer-Meshkov instability along Air/𝑆𝐹6 in-
terface [49].

time for acoustic waves to travel from the crest to the trough along the corrugated

interface. The shock passing the interface will affect the crest and trough in the

same manner unless acoustic waves have had time to pass between the crests and

troughs. Second, a shock passing through a ŕuid compresses it which causes the

amplitude of a ŕuid interface to decrease immediately following shock transmission.

Such a compressibility effect does not occur in classic Rayleigh-Taylor instability, and

motivated Richtmyer to study the impulsive limit numerically in his 1960 paper. He

concluded that Eq. 1.1 is actually the correct asymptotic expression for the rate of

growth of a shocked, corrugated interface, but that there is ambiguity regarding if the

densities in Eq. 1.3 should be the values just prior to, or just after the passage of the

shock. His study showed that the right-hand side of Eq. 1.3 should be evaluated with

the amplitudes and densities expected after the passage of the shock. For the gas

dynamics problems of interest to Richtymer, this approach was found to be correct to

within an error of 5 to 10 %. Neglecting the compressive effects of the shock and using

the above relation as is led to errors an order of magnitude larger [47]. In essence,

Richtmyer showed that the Atwood number after the passage of the shock can vary
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signiőcantly depending on the shock strength and the particular equations of state for

the two ŕuids which has a dramatic impact on the evolution of perturbations along

shocked interfaces. This dependence on the particular equation of state is absent in

the incompressible Rayleigh-Taylor instability.

Experimental investigation of the problems considered by Richtmyer was reported

in 1969 when Meshkov showed that the linear growth rate predicted in Richtmyer’s

study is correct to leading order Fig. 1-8 [48]. Crucially, he also observed that in-

stability can develop in the case of shock waves passing through interfaces in either

direction irrespective of the sign of the Atwood number. This had not previously

been considered by Richtmyer and marks another fundamental difference between

Richtmyer-Meshkov instability and Taylor type mechanisms. In the case of shock

passage from a heavy into a light ŕuid, interfacial corrugations actually invert prior

to continued growth which causes a 180 degree shift in the corrugation phase [50].

From a practical engineering perspective, this appears to be instability growth be-

cause the inversion of the corrugated interface occurs rapidly and is not consequential

compared to the growth of large protrusions that develop after phase reversal. Phase

reversal typically occurs if the Atwood number is negative. Richtmyer-Meshkov insta-

bility was originally considered in the setting of gas dynamics, but has been studied

extensively in a variety of other geometries and materials [49, 51ś59].

Additional relevant experimental studies of interface instability consider the dy-

namics of Newtonian and viscoelastic ŕuid droplets and bubbles [60, 61]. In particular,

recent results by Ohl et al. on the study of laser-induced spherical Rayleigh-Taylor

instability along ŕuid droplet surfaces [62] have shown that jets form as droplet sur-

faces accelerate radially inward. The authors note surface acceleration depends on

the sign of the pressure gradient and that as droplets retract, the pressure gradient

switches direction and begins to push the boundary outward which results in ŕipping

of troughs along the surface into crests. This behavior is similar to the phase reversal

of Richtmyer-Meshkov instability [50]. Additionally, Ohl et al. found that sufficiently

large laser energy was needed to produce jet formation and that low Reynolds and

Weber number droplets produced smaller wave-number instabilities. Aside from their
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experimental observations, the authors presented an analytical model and a detailed

numerical modeling approach based on őnite volume methods for multiphase ŕows

which captures some key features of their experiment. A number of other scholars have

considered similar jet formation on the surface of other curved ŕuid domains [63ś66],

but this study is notable in that the authors describe oscillatory undulation growth

and phase inversion as the ŕuid boundary acceleration changes sign.

Figure 1-9: Top: Experimental results form Ohl et al. Bottom: Numerical results
from Ohl at Al. Undulation amplitude growth over time and the most unstable wave-
number as a function of Reynolds and Weber number.

In contrast to compressible ŕows which are not easily studied analytically and re-

quire numerical or experimental methods to investigate in detail, the incompressible

Rayleigh-Taylor instability has been the subject of continued mathematical investi-

gation since Bell’s extension to curved domains [46]. The approach of considering

divergence free velocity őelds (or isochoric deformation mappings) which arise as the

gradient of a harmonic velocity potential has been used repeatedly in the literature.

This approach leads to a number of well known results for the linear modal growth

rates of corrugations along bubbles and droplets in inviscid ŕuids [67, 68], viscous

ŕuids [69, 70] and more recently in elastic solids described in the Eulerian frame [71,

72]. It is worth mentioning that not all the literature on this topic is consistent and
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follows this method identically. For instance, the recent publication by Franck et

al. presented a linear stability analysis of cavities in soft solids, but considered only

the evolution of purely radial (though non-symmetric) perturbations [73]. Their

approach considered an incompressible ŕow őeld, but they did not analyze the full

space of incompressible perturbations that are possible. In general, the incompressible

ŕows or deformation mappings obtained from a potential function are not necessarily

purely radial and this additional restriction on the perturbation mode shape led to

disturbance evolution equations that are inconsistent with previous results [68, 69].

It is interesting to note that the approach considered by Franck et al. is not appli-

cable to modeling interior domains which lack compressible inclusions. There are no

nontrivial, isochoric, purely radial deformations of a disk or ball.

Figure 1-10: Top: Parametric instabilities in soft solids produced induced by ul-
trasound waves with amplitudes on the order of 10 kPa [74]. Scale bar is 100 𝜇m.
Bottom: Parametric instabilities in a 36 𝜇m radius water bubble generated by ap-
proximately 10 times larger ultrasound wave amplitudes [75].

Instabilities described by linear modal growth equations are easily excited by low

amplitude oscillatory forcing and are termed ‘parametric instabilities.’ Bubbles in

water [76, 77] and soft solids [71, 72, 74, 75] have been shown to demonstrate the
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parametric instabilities shown in Fig. 1-10. The wavelength of the forcing pressure sig-

nal used in this type of instability experiment signiőcantly exceeds the length scale of

the bubble so that pressure waves do not interact or scatter off the bubble. These in-

stabilities are excited using signals with amplitude below 10 kPa in soft solids though

larger amplitudes have been used in pure water. Typically these instabilities are cat-

egorized as distinct from the Rayleigh-Taylor type mechanisms [72, 76], but they are

described mathematically by assuming periodic motion with disturbances governed

by linear evolution equations similar to Taylor’s Eq. 1.1. A Mathieu equation follows

from these assumptions with nontrivial solutions described by Floquet theory [72, 78,

79], however, the underlying physics of parametric instabilities is ultimately based on

similar mechanics to Rayleigh-Taylor mechanisms.

1.1 New Instabilities Observed in Laser-Driven Shock

Experiments

Since the pioneering work of Biot, a wide variety of static and dynamic surface insta-

bility mechanisms have been considered. Surface instabilities can lead to either bifur-

cations of equilibrium or complex dynamical responses that exhibit surprising asym-

metry or inhomogeneity. Soft solids in the strongly nonlinear shock-loaded regime,

however, have received comparatively little attention. This thesis is concerned with a

new class of instability that arises along soft solid boundaries due to strongly nonlinear

pressure loading. The new instabilities were őrst demonstrated in recent experiments

using a new approach proposed by Professor Keith Nelson’s Research Group at MIT

for the study of material response to large amplitude pressure waves on small length

scales [80, 81]. In this experimental approach, a circular converging geometry is used

to focus wave energy and allow for direct visual observation of material response over

a large pressure range. Prior studies using this experimental setup have investigated

shock propagation and cavitation growth in thin layers of water [82]. The particular

experimental setup considered in this thesis is depicted schematically in Fig. 1-11. It
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is a 50 𝜇m-thick specimen of the soft hydrogel sandwiched between two 300 𝜇m-thick

glass plates.

Figure 1-11: Left: schematic of hydrogel specimen sandwiched between glass plates.
Center: detail of the initial circular 180𝜇m-diameter laser ring. Right: waves em-
anated from laser-ablated ring.

The particular hydrogel used in these experiments was prepared by mixing 10

ml aqueous solutions of 12% wt. acrylamide (A8887 Sigma-Aldrich), 5% wt. Epson

522 printer ink, 2.5% wt. sodium alignate (A2033 Sigma-Aldrich), 0.023 % wt. N,N-

methylenebisacrylamide (146072 Sigma-Aldrich) and 0.043% wt. ammonium persul-

phate (A3678 Sigma-Aldrich) and 0.03% wt. N,N,N’,N’-tetramethylethylenediamine

(T9281 Sigma-Aldrich). The mixture was poured onto a glass slide and covered with

a second slide. Crosslinking of the polyacrylamide network was induced using 254

nm UV light exposure with an energy deposition rate of 6 𝑊/𝑚2 for one hour. The

N,N-methylenebisacrylamide acted as the crosslinker. Ammonium persulphate acted

as a thermal initiator. N,N,N’,N’-tetramethylethylenediamine was used to accelerate

the crosslinking. This hydrogel mixture has been studied previously in the quasistatic

setting [83]. The printer ink was needed to absorb the laser energy that generates

shock waves.

Pressure loading was induced by a laser pulse of 8 ns duration containing 230 𝜇J

of energy focused on a 180 𝜇m-diameter ring of the specimen using the experimental

setup described in [80]. The laser energy melts material along the boundary of the

cylinder of hydrogel inside the ring and produces an intense pressure wave along the

circumference that propagates towards the center. A second, diverging wave also

moves outwards away from the ring, but the region of interest is on the interior of
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Figure 1-12: Time sequence of images obtained in laser-shock experiment on hydro-
gel. Pronounced unstable deformation patterns appear on the surface at some time
between 2.4 and 3.0𝜇s.

the ablation zone. Soft material-laser interactions have been studied for material

characterization purposes via inertial cavitation [84, 85], but typically these studies

use circular or spherical cavities. The approach developed at the MIT Institute for

Soldier Nanotechnologies is unique in the use of a cavity with toroidal topology con-

őned between stiff glass slides. In particular, this approach separates the elastic layer

into two distinct domains, which is different from the typical method of producing

circular or spherical laser ablation zones inside a single elastic body [73, 84, 85].

A high-frame-rate camera (SI-LUX640, Specialized Imaging) was used to acquire

sixteen images spaced equally in time. As an illuminating probe, a 640 nm wavelength

laser (Cavilux, Cavitar Ltd) of 30 𝜇s pulse duration, which is longer than the total

time required to acquire the sixteen frames with the high-frame-rate camera. Fig. 1-12

shows images obtained with a spacing in time of 0.6𝜇s.
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Experimental results obtained at the ISN are presented in Fig. 1-12 and clearly

depict the new class of surface instability. In the őrst frame at 𝑡 = 0, a dark ring

along the laser ablated zone is clearly visible. High temperature gases and plasma

absorb light and appear dark, obscuring the view in this region. At 𝑡 = 0.6 𝜇s, an

elliptical cavitation bubble is apparent in the center of the specimen. Cavitation is a

consequence of dilatational stress exceeding the tensile strength of the gel after the

shock initially focuses and begins to diverge [82]. This bubble grows to a radius on the

order of approximately 25 𝜇m over the next 3.6 𝜇s. At 3.0 𝜇s, the ablated zone has

cooled off and surface undulations emerge along the sides of the cylindrical specimen.

The undulations look sharper and larger between 4.2 and 6.0 𝜇s, but they do not

seem to move noticeably along the boundary. By 6.6 𝜇s, only the largest eruptions

along the boundary are still visible, and the high wave-number instabilities have

all but disappeared. Simultaneously, between 4.2 and 4.8 𝜇s the central cavitation

bubble retracts. By 7.8𝜇s, the bubble has vanished leaving the center of the domain

visibly undamaged. At no time during the course of the experiment are undulations

observed along the external boundary of the darkened, laser ablation zone. Additional

experimental results obtained using varying laser pulse energies and temporal spacing

between the images are presented in appendix C. Also included are results from

an identical experiment using pure water. Generally, hydrogels exhibit interesting

boundary undulations of the kind shown in Fig. 1-12, but pure water does not.

The images shown in Fig. 1-12 are in stark contrast with previous research on

analogous experiments in pure water [82]. The primary difference between the recent

experiment and the prior experiments using water is that the recent experiments have

replaced the 10 𝜇m thick layer of water studied in the past with a thicker 50 𝜇m layer

of hydrogel. In addition, the new results use slightly weaker laser pulses and smaller

domains. In [82], 500 𝜇J laser pulses were applied to domains of radius 95 𝜇m, while

in the recent experiments a variety of laser pulse energies were applied to slightly

smaller 90 𝜇m rings. Finally, the laser pulse duration of 8 ns is signiőcantly longer

than the 0.15 ns pulses considered previously. As a consequence of these differences,

the images shown in Fig. 1-12 differ greatly from prior results reproduced in Fig. 1-13.
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Figure 1-13: Experimental results from [82] obtained with a 500 𝜇J laser pulse.

In particular, in [82], the higher energy density causes the ablation ring to expand

signiőcantly. Additionally, the central cavitation bubble forms and decays in less

than 2.5 𝜇s, while in hydrogels the bubble grows more slowly and persists for longer.

Finally, in water a ‘tertiary bubble cloud’ is formed along the interior ablation zone

boundary which is absent in the hydrogel experiments.

When one analyzes the new experiment a few important features are evident. In

this material the shear and bulk acoustic wave speeds vary widely and are given in

terms of the density 𝜌, the bulk modulus 𝜅 and the shear modulus 𝜇 by: 𝑐𝑏𝑢𝑙𝑘 =
√︁

𝜅
𝜌
= 1414.2 meters per second and 𝑐𝑠ℎ𝑒𝑎𝑟 =

√︁

𝜇

𝜌
= 2.236 meters per second. The

separation of scales in the acoustic wave speeds implies that the characteristic time

for linear wave propagation across the experimental domain is also well separated.

Bulk acoustic waves traverse this domain in a time of 127.27 ns while shear waves

require 80.498 𝜇𝑠 to cross the domain. Instability formation occurring on a timescale

of microseconds as shown in Fig. 1-12 is slow compared to the timescale of acoustic

pressure wave propagation, but is fast compared to the timescale of shear wave propa-

gation. Nevertheless, the characteristic acoustic time for bulk wave propagation is not

small enough to consider these quasistatic instabilities. Experimental measurements

in pure water have conőrmed that acoustic pressure waves propagate multiple times

back and forth across the ablation ring during the őrst microsecond when undulations

may be developing. The MIT Institute for Soldier Nanotechnologies has discovered

a new impulse-driven instability which arises due to cycles of reŕecting large ampli-

tude pressure waves. The new instability is clearly different from both the typical
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parametric instabilities that are found in the acoustic range and the variety of non-

linear, shock wave instabilities that occur in bubbles or laser vaporized ŕuids which

form well before multiple wave reŕections have occurred [86ś88]. Additionally, the

instability formation of the kind observed in the new experiments only occurs along

the interior boundary of the laser ablation zone. Previous studies have found that

gas pressure inside a cavity can cause quasi-static elastic őngering in soft solids [89,

90], but the one-sided nature of the undulation growth along the interior ablation

zone boundary which is shown in Fig. 1-12 has not been reported. The intermediate

timescale, single sided nature of undulation formation, and lack of reproducibility in

pure water indicate a new type of dynamic instability which has not been observed

previously.

Motivated by these intriguing and unexplained characteristics of the new phe-

nomenon discovered at MIT, in this thesis we propose a mechanistic explanation

for the essential features of this class of instabilities which will explain the major

differences between the new experiment and prior studies. It will be shown that the

instability formation arises due to a combination of cylindrical Rayleigh-Taylor mech-

anisms and Biot type wrinkle formation. In stark contrast to previous work, the latter,

dominant mechanism is regulated by the material response under hydrostatic tension.

To illustrate the mechanics of the new instability as well as its agreement with the

observations shown in Fig. 1-12, a modeling approach for strongly nonlinear waves

in soft solids is proposed. Starting from a large deformation, Lagrangian őnite ele-

ment framework which has been shown to adequately model the full range of material

compressibility ratios including ŕuid-like behavior [91], a material frame indifferent

shock capturing scheme is implemented which resolves shocks without spurious os-

cillations or impeding acoustic propagation section 2.1Ðsection 2.3. The generality

of the approach is demonstrated via simulations of the classic Richtmyer-Meshkov

instability in soft solids in section 2.4. The computational framework is applied

to the new experiments and excellent agreement with experimental observations is

obtained section 3.1Ðsection 3.2. Salient features of the numerical model that un-

derscore the novelty of the instability mechanism are shown to be the development of
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both compressive circumferential hoop stress and negative radial acceleration due to

radial tension in the core of the computational domain section 3.3. A nondimensional

parameter study of the instability is performed which reveals a critical dependence

on the softening of the equation of state under hydrostatic tension section 3.5. We

conclude by discussing in turn each of the novel features of the new instabilities and

their relation to our computational results.
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Chapter 2

Computational Framework for

Modeling Shock Driven Instabilities

in Soft Materials

Modeling approaches geared toward the study of shocked soft solids have been pre-

sented by a number of authors. On the analytical modeling side, shock dynamics of

Newtonian ŕuids have been widely studied [92] and may be applicable to extremely

soft materials with negligible shear stiffness. Shocks in ŕuids in converging, diverg-

ing geometries are discussed extensively in Barenblatt’s textbook on scaling laws [93]

and are known to have drastically different stability characteristics when converging

or diverging. The simplest analytical approaches capturing this behavior describe

diverging shocks using the dimensional analysis famously advanced by Taylor, but

model converging, imploding shocks with a nonlinear eigenvalue problem. Additional

analytical studies and discussions of shock dynamics in ŕuids of particular relevance

to this thesis are found in Chapter 4 of Ben-Dor’s textbook on shock reŕection phe-

nomenon which covers unsteady shock dynamics in detail [94].

For applications to materials possessing shear stiffness, the theory is also well-

developed [95], though useful analytical models for engineering applications are more

complicated than for shocks in ŕuids. Additionally, interest in the complex spatial

temporal evolution of the new instabilities necessitates models which are capable of
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predicting inhomogeneous and asymmetric waves and deformations. Numerical meth-

ods are preferable for this reason, and Eulerian őnite volume methods have been used

extensively within the ŕuid mechanics community for this purpose [62, 96]. Difficulties

with the Eulerian depiction of solid mechanics arise when shear stiffness is incorpo-

rated. In Eulerian solid mechanics, the stress state depends on temporal integrals

of the spatial gradients of the primal variable, which adds considerable complexity

to either analytical [71] or numerical approaches. In some applications, it may be

beneőcial to consider such integral formulations of mechanical response, for instance

variational approaches to the Navier-Stokes system may utilize integrals in time [97].

But for many practical applications, it is preferable to consider the Lagrangian pic-

ture which is also applicable even in the limit of no shear stiffness [91]. Difficulties

encountered in the simulation of ŕowing solids or liquids using Lagrangian mechanics

can be overcome by recourse to remeshing [98], but in this thesis deformations are

limited to a range acceptably simulated on a single mesh which allows for easy and

explicit integration of the mechanical response using the standard solid mechanics

őnite element procedures.

2.1 Governing Equations

The framework considered in this thesis is based on large deformation kinematics

as described in [99, 100]. Material points in an undeformed body are mapped to a

deformed conőguration by the mapping 𝑥 = 𝜑(𝑋, 𝑡). The deformation gradient is

given in terms of the referential differentiation operator ∇0 by Eq. 2.1:

F =
𝜕𝜑

𝜕𝑋
= ∇0𝑢+ I (2.1)

The compatibility constraint requires ∇×F = 0. The equilibrium equation for large

deformation dynamics is Eq. 2.2:

∇0 · P(F) = 𝜌𝑎(𝑡) (2.2)
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Here the acceleration őeld is 𝑎(𝑡) = 𝜕2𝑢(𝑡)
𝜕𝑡2

, the referential density is 𝜌 and P is the őrst

Piola-Kirchhoff stress tensor. Conservation of angular momentum requires symmetry

of the Cauchy stress given by 𝜎 = 𝐽−1PF𝑇 .

The material model for hydrogel utilized in this work is a compressible neo-

Hookean hyperelastic model. It bears emphasis that many researchers have mod-

eled extremely soft solids as idealized incompressible elastic bodies [71ś74, 85, 101,

102]. More detailed descriptions of bubbles in soft solids often follow the approach

of Keller and Miksis which provides a őrst order correction to the incompressible

assumption that allows for energy transfer from acoustic pressure waves [84, 103ś

105]. When describing a material in either manner, the particular elastic equation of

state which describes nonlinear volumetric material response is not signiőcant because

large volume changes do not occur. As discussed in chapter 1, the new experiments

of interest involve strongly nonlinear pressure waves and signiőcant volume changes

which require an accurate equation of state to model appropriately. The volumetric

constitutive response of the gel considered here is modeled using the Tait equation of

state which is justiőed given the material’s large water content (∼ 85%) Eqs. 2.3ś2.4.

𝑊𝑣𝑜𝑙 =
𝜅

𝛾 − 1

(︂

𝐽−𝛾

𝛾
+ 𝐽 − 𝛾 + 1

𝛾

)︂

(2.3)

𝑃 (𝐽) =
𝜕𝑊𝑣𝑜𝑙

𝜕𝐽
= − 𝜅

𝛾 − 1

(︀

𝐽−𝛾−1 − 1
)︀

(2.4)

Here 𝐽 indicates the Jacobian of the deformation gradient F. The two required model

parameters 𝜅 and 𝛾 deőne the inőnitesimal bulk modulus at the origin and the degree

of stiffening in the nonlinear response. We adopt a bulk modulus 𝜅 at the origin of

2 GPa and a stiffening exponent 𝛾 of 6.15 [106], which correspond approximately to

the volumetric response of water. To simulate the deviatoric response of hydrogel a

neo-Hookean strain energy function is utilized Eq. 2.5:

𝑊𝑑𝑒𝑣 =
𝜇

2

(︂

𝐼

𝐽
2

3

− 3

)︂

(2.5)

𝐼 is the őrst invariant of the right Cauchy-Green tensor C = F𝑇F. Neo-Hookean
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elastic models have been shown to effectively describe the quasistatic response in

hydrogels [35, 41, 107ś110]. The required model parameter is selected so that the

shear modulus at the origin 𝜇 matches the stiffness of our specimen in its reference

conőguration at 5 kPa. The complete elastic strain energy function is given in terms

of the Jacobian of the deformation gradient 𝐽 and the őrst invariant of the right

Cauchy-Green tensor 𝐼:

𝑊 = 𝑊𝑣𝑜𝑙 +𝑊𝑑𝑒𝑣 =
𝜅

𝛾 − 1

(︂

𝐽−𝛾

−𝛾
− 𝐽 + 1 +

1

𝛾

)︂

+
𝜇

2

(︂

𝐼

𝐽
2

3

− 3

)︂

(2.6)

From this hyperelastic energy function the őrst Piola-Kirchoff stress is deőned as:

P =
𝜕𝑊

𝜕F
= (− 𝜅

𝛾 + 1
(𝐽−(𝛾+1) − 1)− 𝜇

3
(
𝐼

𝐽
5

3

))𝐽FC−1 +
𝜇

2𝐽
2

3

F (2.7)

Note that the relation F−𝑇 = FC−1 implies that all terms above are multiples of the

deformation gradient or its inverse transposed.

2.2 Numerical Discretization

Detailed őnite element simulations of shock loaded soft solids are conducted using our

research code
∑︀

MIT [111]. As is typical in őnite element programs [112, 113], the

compatibility equation and constitutive model are enforced strongly at each quadra-

ture point while the equilibrium equation (Eq. 2.2) is enforced weakly using the

following standard weak formulation.

𝐸
∑︁

𝑒=1

∫︁

Ω𝑒
0

P(F) · ∇0𝑁
𝑒
𝑎 + 𝑎(𝑡)𝜌0𝑁

𝑒
𝑎𝑑𝑉0 =

𝐸
∑︁

𝑒=1

∫︁

Ω𝑒
0
∩𝑆2

𝑇𝑁 𝑒
𝑎𝑑𝑆0 (2.8)

The space of the trial and test functions 𝑁 𝑒
𝑎 is the same and is the space of continuous

piece-wise linear functions that are linear over each element in the mesh.

The system of ordinary differential equations arising from the spatial discretization

is integrated in time using second-order explicit Newmark time integration with mass

lumping [114, 115]. The time integration scheme is implemented in
∑︀

MIT, see
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Eq. 2.9 - Eq. 2.11 below.

x
𝑛+1
𝑖 = x

𝑛
𝑖 +∆𝑡ẋ𝑛

𝑖 +∆𝑡2
[︂(︂

1

2
− 𝛽

)︂

ẍ
𝑛
𝑖 + 𝛽ẍ𝑛+1

𝑖

]︂

(2.9)

ẋ
𝑛+1
𝑖 = ẋ

𝑛
𝑖 +∆𝑡[(1− 𝛾)ẍ𝑛

𝑖 + 𝛾ẍ𝑛+1
𝑖 ] (2.10)

ẍ
𝑛+1
𝑖 = M

−1
𝑖 [f 𝑒𝑥𝑡 − f

𝑖𝑛𝑡]𝑛+1
𝑖 (2.11)

where M, f 𝑒𝑥𝑡, and f
𝑖𝑛𝑡 are the lumped mass matrix, the external force, and the inter-

nal force, respectively. The subscript 𝑖 represents the spatial discretization and the

subscript 𝑛 is the temporal discretization. The Newmark parameters 𝛾 and 𝛽 are set

to 0.5 and 0 respectively which reduces the Newmark equations to the explicit cen-

tral difference scheme Eq. 2.12 - Eq. 2.14. A conventional predictor corrector scheme

provides a simple implementation where the őrst the predictor evaluates Eq. 2.12 and

Eq. 2.13 assuming that ẍ
𝑛+1
𝑖 is zero and then Eq. 2.14 is evaluated to obtain the

correct accelerations ẍ
𝑛+1
𝑖 . Eq. 2.13 is then corrected accordingly. A CFL number of

one half is used in the selection of the integration time step to guarantee numerical

accuracy and stability.

x
𝑛+1
𝑖 = x

𝑛
𝑖 +∆𝑡ẋ𝑛

𝑖 +
∆𝑡2

2
ẍ
𝑛
𝑖 (2.12)

ẋ
𝑛+1
𝑖 = ẋ

𝑛
𝑖 +

∆𝑡

2
[ẍ𝑛

𝑖 + ẍ
𝑛+1
𝑖 ] (2.13)

ẍ
𝑛+1
𝑖 = M

−1
𝑖 [f 𝑒𝑥𝑡 − f

𝑖𝑛𝑡]𝑛+1
𝑖 (2.14)

2.3 Shock Capturing Scheme

As commonly required in simulations of shock-wave propagation, we add deviatoric ar-

tiőcial viscosity for shock stabilization using both linear and nonlinear viscosity [116].

The artiőcial viscosity scheme is a natural extension of the work by von Neumann and

Richtmyer for shock capturing in ŕuids [117]. Viscosity is added based on a suitable

scalar shock sensor that is chosen to satisfy material frame indifference. In this work,
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viscosity is a function of the Jacobian of the deformation at each time step and is

only added when 𝐽 = detF is decreasing. The artiőcial viscosity parameter 𝜈𝑎𝑟𝑡 is

given at time step 𝑛+ 1 by

𝜈𝑎𝑟𝑡 =
3

4

ℎ𝜌

𝐽𝑛+1
(𝑐2𝑎− 𝑐1ℎ

log (𝐽
𝑛+1

𝐽𝑛 )

∆𝑡
) (2.15)

Here the time step is ∆𝑡, the element length scale is ℎ, the density is 𝜌 and the acoustic

wave speed is 𝑎. The viscosity parameters 𝑐1 and 𝑐2 are set to 1.0 and 0.1 respectively.

Note that the acoustic speed 𝑎 varies with the deformation. The contribution to

the őrst Piola-Kirchoff stress provided by the viscosity, P𝑣𝑖𝑠𝑐, is computed from the

velocity gradient l = 𝜕F
𝜕𝑡

F−1 and the stretch tensor d = 1
2
(l+l𝑇 ) in the typical manner

of linear viscosity.

P𝑣𝑖𝑠𝑐 = 2𝐽𝜈𝑎𝑟𝑡d𝑑𝑒𝑣F
−𝑇 (2.16)

Here the deviatoric stretch is deőned as d𝑑𝑒𝑣 = d − I
𝑡𝑟(d)
3

. For stability purposes,

the spatial velocity gradient utilized is not the typical spatial velocity gradient. l is

computed from the current and previous deformation gradients F𝑛+1 and F𝑛 in the

following manner:

l =
F𝑛+1 − F𝑛

∆𝑡
F−1

𝑛 (2.17)

In the
∑︀

MIT implementation of constitutive models, the constitutive law is typ-

ically enforced implicitly at the current time step which would imply a calculation of

the form l = F𝑛+1−F𝑛

∆𝑡
F−1

𝑛+1. By instead using the alternative spatial velocity gradient

l deőned by Eq. 2.17, the nonlinear dependence of the viscosity model on the current

state is entirely due to the nonlinearity of the function 𝜈𝑎𝑟𝑡(𝐽) and geometric pull-back

terms deőned in Eq. 2.16 because l and hence d are linear functions of F𝑛+1.

A őnal consideration for the purposes of numerical stability is that time indepen-

dent loads along the domain boundary are stated in the deformed conőguration. Dead

loads stated in the reference conőguration as is typical in őnite element modeling led

to spurious numerical instabilities when considering strong loads on soft elements.
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Instead, the pressure loading along the boundary in the deformed conőguration is

computed by calculating the deformed area of all boundary faces and applying a

force normal to that face proportional to the area times the pressure. This force is

lumped one third to each node on the boundary face for őrst order triangular faces.

This procedure allows the model to sustain far larger amplitude waves without numer-

ical instabilities. In two dimensions the deformed edge length is considered instead

of a face area and the force is lumped one half to each boundary edge node. Proper

computation of the boundary normal vectors and edge areas or lengths should be per-

formed during the computation of the mechanical residual in between the Newmark

predictor and corrector deőned by Eq. 2.11. For this thesis, these calculations are

performed prior to the predictor. This nuance does not signiőcantly alter the compu-

tational results and sufficiently enhances the ability of the computational framework

to simulate large amplitude waves on soft elements when compared to the application

of dead loads.

2.4 Application of Computational Framework to Soft

Solid Richtmyer-Meshkov Instability

The framework considered in this thesis is based on Lagrangian mechanics which can

accurately simulate a wide variety of solid and ŕuid mechanical responses [91]. The

capabilities of the numerical approach are demonstrated by simulations of Richtmyer-

Meshkov instabilities along shocked interfaces in three dimensions. The simulations

model free surface interfaces which correspond to an Atwood number of negative one.

As is typical in studies of this kind, an initial corrugation along the surface of the

domain is introduced. In this case, the corrugation selected has spatial wave-numbers

of 1 and 2 in the x and y directions respectively.

Snapshots of simulation results are presented in Fig. 2-1. At 10 ns, the shock

capturing scheme stabilizes the shock as it advances towards the free surface. At 20

ns, the shock is midway through reŕecting off the free surface. The troughs in the
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interface have clearly interacted with the shock front and are placed under tension by

the reŕected wave. The dark blue regions of the free surface are under compression

due to the shock front, and the peaks of the corrugations are unstressed because have

not yet met the compression wave. By 30 ns, the Richtmyer-Meshkov instability has

started to form. At this point in time, the four distinct red regions are visible on

the surface of the domain where the four corrugation peaks were previously. These

regions are under signiőcant tension due to a geometric focusing effect which con-

centrates the reŕected wave beneath the protrusions and pulls them downwards. In

contradistinction, the four dimples in the free surface are under signiőcant hydrostatic

pressure and are being driven outwards by the instability. By 40 ns, these effects are

clearly visible as sharp jets emerge from what were previously four dimples in the free

surface. The jets in the bottom left and top right correspond to the locations of dim-

ples in the reference conőguration. It is noteworthy that the simulation framework

presented here adequately captures a wide variety of complex dynamics not found

in two-dimensional Richtymer-Meshkov instabilities. Sharper protrusions form along

the high wave-number direction as compared to the lower wave-number dimension.

Additionally, at 40 ns on the bottom left of the őgure, a curved reŕected pressure

wave is apparent. The shock capturing scheme adequately captures the large negative

pressures which form at triple points of curved three-dimensional shock fronts.

2.5 Extensions to the Computational Framework

A number of additional reőnements to the model were considered in this research but

have not proved necessary to capture the soft solid dynamic instabilities of primary

interest. In particular, a variety of schemes were implemented to model the soften-

ing of the material response that is expected to occur in the vicinity of cavitation

bubbles. It was found that setting the equation of state to be piecewise-deőned so

that the pressure becomes zero if 𝐽 is excessively large produced unacceptable strain

localization and led to a single large element. Attempts to regularize this behavior

by deőning a smooth equation of state which asymptotically approached zero as 𝐽
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𝑡 = 10 ns 𝑡 = 20 ns

𝑡 = 30 ns 𝑡 = 40 ns

Figure 2-1: Three-dimensional Richtmyer-Meshkov instability using
∑︀

MIT compu-
tational framework [111].
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becomes large but reverts to the Tait equation under compression were unsuccessful.

This approach also leads to strain localization because 𝑊 is no longer convex in 𝐽 .

In order to regularize strain localization, two similar phase őeld gradient damage

models are implemented in
∑︀

MIT. The őrst model is a modiőcation to the for-

mulation presented in [118] which is intended to model the quasistatic rupture of

elastomeric materials. This approach describes a microforce balance that regulates

the evolution of a damage variable 𝑑 which varies between zero and one. The dam-

age variable multiplies the stresses by a factor of (1− 𝑑)2 to soften the constitutive

response of an elastomeric material. The evolution equations of the model are given

by the following equations Eq. 2.18 and Eq. 2.19.

𝜁𝑑 = 2(1− 𝑑)𝐻 − 𝜖𝑓𝑅(𝑑− 𝑙2∆𝑑) (2.18)

𝐻 = max< 𝑊 − 𝜖𝑓𝑅
2

> (2.19)

In this formulation, Macaulay brackets in Eq. 2.19 ensure that the history variable

𝐻 remains nonnegative. In particular, when the elastic energy exceeds one half

the material parameter 𝜖𝑓𝑅, the history variable őrst becomes positive. The history

dependent source term on the right side of Eq. 2.18 acts to increase damage when 𝐻

is nonzero, i.e. in regions of the domain that have at some point in their history had

elastic energies in excess of 1
2
𝜖𝑓𝑅. The source term remains positive until total damage

at 𝑑 = 1 which drives stresses in these regions toward zero. The term 𝜖𝑓𝑅𝑙
2∆𝑑 diffuses

damage into nearby elements. Even undamaged elements with 𝐻 = 0, may attain

nonzero 𝑑 due to diffusion. This effect ensures that sharp gradients do not appear in

the damage variable and hence in the deformation.

A similar phase őeld model for brittle fracture was also described in [119]. In this

approach the damage variable begins at one and declines to zero and multiplies the

stresses by a factor 𝑐2. The microforce balance equation presented in this paper is an

elliptic equation with no dynamic terms and is given by:

2𝑐𝑊 −𝐺𝜖∆𝑐− 𝐺

𝜖
(1− 𝑐) = 0 (2.20)
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Both these damage models satisfactorily regularize strain localization and allow the

stress őeld to decay when 𝐽 becomes large. They do so by modeling the damage and

softening response as nonlocal dissipative mechanisms which introduce additional

characteristic length scales 𝑙
√︁

𝜖𝑓𝑅 and
√
𝐺𝜖 respectively. These models explicitly ac-

count for the energy lost due to damage using 𝜖𝑓𝑅 and 𝐺 respectively. They were

implemented in
∑︀

MIT using the following weak formulations Eq. 2.21 and Eq. 2.22.

𝐸
∑︁

𝑒=1

∫︁

Ω𝑒
0

𝜁𝑑− 2(1− 𝑑)𝐻 + 𝜖𝑓𝑅𝑑)𝑁
𝑒
𝑎𝜕𝑉0 = −𝜖𝑓𝑅𝑙

2

𝐸
∑︁

𝑒=1

∫︁

Ω𝑒
0

∇0𝑑∇0𝑁
𝑒
𝑎𝜕𝑉0) (2.21)

𝐸
∑︁

𝑒=1

∫︁

Ω𝑒
0

(2𝑐𝑊 − 𝐺

𝜖
(1− 𝑐))𝑁 𝑒

𝑎 +𝐺𝜖∇0𝑐∇0𝑁
𝑒
𝑎𝜕𝑉0 = 0 (2.22)

These formulations are linear in 𝑑 and 𝑐 respectively and are easily solved in
∑︀

MIT

using either Crank-Nicolson or backward Euler time integration. Implicit time in-

tegration is necessary to ensure that suitably large time steps can be taken. The

characteristic length scales in the model need to be larger than the element size (ap-

proximately őve times larger) to smooth out the damage őeld sufficiently. Large

characteristic length scales cause the maximum stable explicit time step for the inte-

gration of the parabolic equation Eq. 2.21 to be prohibitively small which necessitates

the proposed implicit time marching schemes. In addition, the elliptic problem de-

őned by Eq. 2.22 also requires solving a linear system. The linear systems arising

from these discretizations were solved using the PETSc library [120] implementation

of the conjugate gradient algorithm with an incomplete LU decomposition precondi-

tioner. Data is passed between the mechanics and damage evolution equations in a

staggered fashion so that only 𝑊 and either 𝑑 or 𝑐 is passed between the two systems

of equations. This approach was found to satisfactorily regularize the problem at the

expense of increased simulation time.

In this thesis, extensive results from these reőned models of the material response

are not presented because they do not provide additional mechanistic insight into

the essential features of the elastodynamic instabilities of interest. Nevertheless, the

gradient damage models considered here can successfully regularize numerical insta-
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Figure 2-2: Left and Middle: illustration of coupled implementation in
∑︀

MIT based
on the model of Talamini et al. [118]. Right: illustration of strain localizing in seven
distinct regions as the center approaches total damage using the model proposed
in [119].

bilities which arise due to loss of hyperbolicity of the elastodynamic problem and are a

promising area of research for modeling soft solid damage. In Fig. 2-2, the capability

of these approaches to distribute damage into multiple elements and thereby smooth

out strain localization is highlighted. Increasing the length scale of the damage equa-

tions will further regularize the damage zone but increases the computational cost.

Besides these promising model reőnements, there is an extensive body of literature

describing additional improvements which might be added to describe the response

of polymeric materials more accurately. Of particular interest, variationally consis-

tent porous plasticity models have been used to model dissipative mechanisms and

damage in soft solids and tissues [121]. Such an approach, or a more common rate

dependent rheological model such as a Kelvin-Voigt [73, 85] or a Prony series, could

easily be integrated into the computational framework and studied in the future.
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Chapter 3

Application to Laser-Driven Shock

Experiments

The aforementioned computational framework is used to simulate the new experi-

ments in the following chapter. In order to model these shock driven experiments, one

could contemplate describing the initial laser energy deposition process in detail using

the equations of Magneto-Hydrodynamics [122, 123], but our interest in the evolution

of the material deformation long after energy deposition motivates consideration of

mechanical boundary conditions which reproduce the effects of laser ablation. The

energy deposition process is represented by injecting mechanical energy into the ő-

nite element mesh using a pressure boundary condition. A variety of extensions to

this őrst order model of the ablation cavity can be found in the literature on large

amplitude bubble dynamics [105, 124, 125] though they are unnecessary for describ-

ing the instabilities of interest. Furthermore, the single sided nature of undulation

formation indicates that the details of the energy deposition process can be safely

neglected because the instabilities are related to dynamics inside the cylindrical do-

main. This approach is similar to prior studies of laser induced pressure waves which

have mechanically modeled a laser energy deposition process using an updated La-

grangian scheme [80]. In this thesis, only the domain inside the circular ablation ring

is simulated which allows for specifying the pressure wave using Neumann boundary

conditions and alleviates the need to model the material in the ablation zone with
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such an updated reference conőguration.

3.1 Simulation Setup

In the present study, Gaussian proőles along with piecewise-deőned linear and piecewise-

deőned quadratic proőles are considered for the particular functional form of the

applied boundary pressure loading, however, it is found that the particulars of the

boundary condition are insigniőcant because the wave rapidly steepens into the saw-

tooth shock front which is typical of large amplitude pressure waves. For simplicity,

the pressure pulse is taken to be a square wave with the duration 𝑡𝑝𝑢𝑙𝑠𝑒 set to match

the 8 ns duration of the applied laser excitation.

Accurate modeling of the new instability requires selection of an appropriate pres-

sure pulse amplitude which excites a comparable dynamic response to what is ob-

served in experiment. Speciőcally, the energy injected into the computational domain

must be of a similar scale to the energy deposited by the laser. Applied laser energies

considered in the new experiments ranged from 230 to 850 𝜇J, but no more than 50

% of the laser energy enters the interior of the ablation zone because the converging

wave is assumed to have the same energy as the wave which diverges away from the

ablation zone. In this thesis, the applied pressure pulse amplitude is tuned via an

iterative procedure wherein simulations are performed using various pulse amplitudes

until agreement is obtained with experimental results. Speciőcally, the evolution of

the total energy within the simulation domain is monitored as a post-processing step

and the boundary condition is selected to maintain approximate agreement with the

energy injection expected in the new experiment. The following results are obtained

with a pulse amplitude 𝑃𝑝𝑢𝑙𝑠𝑒 of 2 GPa which deposits approximately 75 𝜇J of energy

into the model Fig. 3-5. Additional studies of the impact of the applied pressure

loading and hence the total model energy are presented in section 3.5.

Plane strain deformations are assumed within the simulation domain and the

validity of this assumption is discussed in detail in appendix B. The particular spatial

discretization considered in this section is a circular mesh with initial radius 𝑅0 equal
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to 90 𝜇m consisting of 16,526 őrst order, triangular elements. The computational

framework presented in chapter 2 is capable of modeling three-dimensional shocks

in soft solids, but simpler two-dimensional calculations adequately demonstrate the

instabilities from the new experiments. The particular discretization used here is

generated using unstructured mesh generation software and is manually selected to

avoid unintentional symmetry in the computational mesh [126].

3.2 Pressure Wave Dynamics and Eruption Forma-

tion

In this section detailed results of the numerical simulation are presented. To visualize

the sequence of interesting events that take place during the various reŕections of the

stress waves, snapshots of the evolution of the relevant mechanical őelds are presented

at times of particular interest in Figs. 3-1Ð3-4. Upon loading, an initial hydrostatic

stress wave develops and shocks up as it converges towards the center. Convergence

of the wave in the center of the domain is achieved at 29 ns by which point the entire

domain is in compression Fig. 3-1. Immediately afterwards, the stress wave diverges

radially outwards and the center is placed under tension, a condition which persists

until 202 ns. At 50 ns, the diverging pressure wave approaches the boundary while

simultaneously the domain center remains in tension, as evidenced by the red center

of the computational domain in Fig. 3-1. Counterintuitively, tension develops in the

center even when the boundary is displaced inward. ‘Tension tails’ often follow planar

shocks and induce tension on the order of 10 MPa [121]. In this converging-diverging

geometry still larger stresses are attained.

At 55 ns, the shock wave reŕects off the boundary, accelerating it radially outward.

Subsequently, a tensile stress wave is reŕected back towards the center of the domain

Fig. 3-2. The reŕected, tensile wave moves far slower than the shock because the bulk

modulus decreases when under tension Fig. 3-3. It takes 147 ns for the tension wave

to focus into the center of the domain while the shock traversed the same distance in
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10 ns 20 ns

40 ns 50 ns

Figure 3-1: Hydrostatic stress contours on a scale from -2.5 to 0 GPa at 10, 20,
40 and 50 ns. The artiőcial viscosity scheme captures a steep shock front without
numerical oscillations.
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80 ns 110 ns

Figure 3-2: Hydrostatic stress contours plotted at times 80, 110 ns. on a ±0.3 GPa
scale. The tensile wave travels radially inwards.

26 ns. The central tensile region and the reŕection stress wave join into a common,

shrinking tensile core. Outside this region the hydrostatic stress is still positive, but

signiőcantly smaller.

At 202 ns, the central tensile region contracts to a point and the continued motion

of material inwards causes hydrostatic compression at the center which drives a second

diverging shock wave. This concludes one complete cycle of pressure oscillations.

Multiple additional cycles occur in the simulation until viscous effects damp them

out. Subsequent shock reŕections are found at 233, 428, 612, and 788 ns. The

sequence of highly nonlinear vibrations leads to the formation of eruptions along the

boundary of the computational domain Fig. 3-4.

A few features of the post-processed evolution of the energy distribution merit fur-

ther discussion. Energy decays monotonically after loading due to dissipative effects,

and it is apparent that the damping is increased when the domain contains a shock

which results in periodic variation of the energy decay rate Fig. 3-5. Even as energy

dissipates, salient features of this highly nonlinear mechanical system are evident in

the total kinetic and elastic energy curves. For instance, the two minima in the elastic

energy curves at 565 ns and 640 ns are closer in time than the minima around 640 ns

and 745 ns. The two different periods correspond to elastic energy storage while the
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170 ns 180 ns

170 ns 180 ns

Figure 3-3: While under signiőcant tension, the material model is highly nonlinear.
The center of the disk softens signiőcantly which leads to a decreased wave speed.
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213 ns 408 ns

592 ns 768 ns

Figure 3-4: Hydrostatic stress contours on a scale from -0.65 to 0 GPa at 213, 408,
592, and 768 ns. A diverging shock is visible in these frames taken 20 ns prior to each
of the őnal four reŕections. The simulations capture eruption formation.
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Energy [J]

Time [ns]

Figure 3-5: The evolution of the energy within the simulation domain. The boundary
condition has been tuned to maintain the total energy at similar levels to what occurs
in the new experiments.

domain is in compression, which is rapidly unloaded due to high shock speeds, and

the elastic energy storage under tension which persists for longer due to softening.

3.3 Mechanistic Interpretation of Simulated Insta-

bilities

An initial analysis of this simulation reveals a number of interesting features in addi-

tion to similar boundary undulations to those seen in experiment. To provide insight

into the formation of undulations, the evolution of the minimum (blue) and maximum

(red) radial displacements on the free surface is monitored in Fig. 3-6. For comparison

purposes a scalar metric of instability amplitude 𝐴 = 𝑚𝑎𝑥(𝑟(𝑅0,𝜃))−𝑚𝑖𝑛(𝑟(𝑅0,𝜃))
𝑅0

is shown

on the right axis. Here 𝑟(𝑅, 𝜃) denotes the radial component of the deformation

mapping 𝜑 and 𝑅0 is the initial radius of 90 𝜇m.
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Figure 3-6: Maximum (red) and minimum (blue) radial displacement along the
boundary plotted over time. The difference between the two has been normalized by
the initial radius of 90 𝜇m and is shown in green.
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During the őrst 55 ns of the simulation, it can be seen that symmetry is almost

preserved because the maximal and minimal radial displacements are similar. At this

point, the compression wave is steepening into a converging shock front and then

diverging towards the boundary. The maximal and minimal radial displacements

steadily diverge only after approximately 80 ns as evidenced by the upward sloping

green curve from 80 to beyond 200 ns in Fig. 3-6. This őgure also shows that dur-

ing this time interval, both the red and blue radial displacement plots have negative

curvature. Undulations develop after the inŕection point of the radial displacement

curves when the curvature of the displacement as a function of time őrst becomes

negative. The slope of the displacement as a function of time is not important and

Fig. 3-6 indicates undulation growth both as the boundary expands and retracts. At

233 ns, the second shock reŕection event occurs and imparts a large acceleration on

the domain boundary as evidenced by the sharp corner of the red and blue plots

around this time. The green curve measuring the maximum nondimensional undula-

tion amplitude 𝐴 decreases rapidly at 233 ns and then begins to rise steadily until after

420 ns. A preliminary decrease in undulation amplitude as the pressure wave meets

the boundary is typical of the phase reversal effect common in Richtmyer-Meshkov

instabilities of negative Atwood number which was discussed in chapter 1. A detailed

illustration of these effects is provided in Fig. 3-7 where the simulated phase reversal

that occurs during the third shock reŕection is presented. Regularization is due to

the focusing effect of the varying curvature of the boundary. The eruptions focus the

reŕected wave which causes large positive hydrostatic stress (red regions inside the

dimples in Fig. 3-7). This tension pulls the eruptions back radially inwards.

The fourth and őfth shock reŕections occur at 612, and 788 ns and cause analo-

gous effects to the initial shock reŕections in Fig. 3-6 even though the shock energy

dissipates with time Fig. 3-5. Each compression wave initially reduces the undulation

amplitude and accelerates the boundary outwards. Subsequent growth of instabili-

ties occurs as the radial displacement plots again curve downward. This őnding is

consistent to őrst order with Bell’s extension of the Rayleigh-Taylor instability to

cylindrical domains [46] which has been shown experimentally to cause instability
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𝑡 = 435 𝑡 = 440 𝑡 = 445

𝑡 = 450 𝑡 = 455 𝑡 = 460

Figure 3-7: Jacobian every 5 ns during the third shock reŕection. Observe that the
protrusions are regularized. The next sequence of eruptions will form in the regions
that were dimples prior to the shock reŕection.

growth as curved domains retract [62]. A sine qua non condition for the formation of

tension driven Rayleigh-Taylor instabilities is sufficient ultimate tensile strength to

sustain the required radial acceleration that generates such instabilities. The low cav-

itation strength of pure water prohibits instability formation in the new experiments

pure water as shown in appendix C. Speciőcally, the ‘tertiary bubble cloud’ shown in

Fig. 1-13 indicates that upon shock reŕection, water cannot sustain the concentrated

tensile stress of the reŕected wave [82]. The well known dependence of the criti-

cal cavitation stress on shear stiffness [127, 128] implies that the deviatoric material

response may play a signiőcant role in controlling this unique soft solid instability

mechanism.

The undulation amplitude increases linearly as the boundary accelerates inwards,

however, the proportional undulation growth shown here is different from that pre-

dicted by Richtymer’s theory in Eq. 1.3. In Fig. 3-6, it is apparent that the slope

of the green curve after the third and fourth shock reŕections is approximately the

same, even though these shocks meet corrugated boundaries with different initial cor-
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rugation amplitudes. The slight viscous dissipation shown in Fig. 3-5 does not fully

account for this apparently őxed proportional growth rate.

Instead, a second mechanism contributes to the growth of the surface instability,

namely the development of a circumferential compressive stress, which occurs when

the boundary is pulled radially inwards, Fig. 3-8. It bears emphasis that the hoop

compression of interest here occurs under radial tension and therefore contributes a

signiőcant deviatoric component to the state of stress. The lack of deviatoric stiffness

of the material model allows the boundary to form undulations in these conditions.

The maximum hoop compression that occurs due to radial tension along the boundary

is 11 MPa at 180 ns, but megapascal-scale hoop compression is also found in subse-

quent pressure cycles. Although these hoop stresses are diminutive compared to the

GPa-scale pressures arising from shock compression, they are large when compared

to the 5 kPa shear modulus of the soft hydrogel. The hoop stress induced eruption

growth is a dynamic version of the Biot type wrinkling instability that occurs along

the surface of an elastic half-space [30]. This effect requires the model to enter the

large deformation regime and necessitates large amplitude shock-induced vibrations.

The curved nature of the domain is essential because it is the retracting of the domain

boundary under tension which reduces the hoop strain and causes compressive cir-

cumferential stress. Similar computations modeling a ŕat boundary do not produce

tangential stresses and consequently fail to induce large scale eruption formation.

Radial tension causes instability growth in two separate ways: őrst it provides

the inwards acceleration which produces the incipient formation of instability growth

via an inertial effect similar to cylindrical Rayleigh-Taylor instability and second it

decreases the circumferential strain and leads to large compressive stress tangent

to the free surface. The őrst effect is possible along planar interfaces, though it

has not been reported in the literature on soft solids under shock loading, and it

causes only moderate instability growth. The second effect requires both a curved

domain boundary and large amplitude waves, but leads to far larger undulations. To

illustrate the combined effects, enlarged snapshots of the radial, hoop and von Mises

stress during the third shock reŕection when undulations are clearly noticeable are
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155 ns 180 ns

350 ns 375 ns

Figure 3-8: Top: Hoop stress on a ±10.0 MPa scale at 155 and 180 ns. Bottom:
Hoop stress on a ±10.0 MPa scale at 350 and 375 ns.

63



𝑡 = 440 𝑡 = 460 𝑡 = 480

Figure 3-9: Radial stress at 440, 460 and 480 ns. Note that the diverging pressure
wave is nearly circular, while the reŕected wave shows the complex structure expected
from reŕections off of curved surfaces.

presented in Figs. 3-9Ð3-11.

The radial and hoop stress őelds appear similar on the scale of 0.1 GPa, but

their differences are evident on the scale of 10 MPa as evidenced by distinct regions

of inhomogeneous von Mises stress Fig. 3-11. It is found that hoop stress is most

negative near protrusions where it enhances undulation growth Fig. 3-10 and that

the radial tension is non-uniform as is expected due to the presence of Rayleigh-

Taylor type mechanisms of instability. Hydrostatic pressure is greatest near regions of

higher surface curvature which motivates the additional studies of domains with non-

constant surface curvature presented appendix A. It is evident from the snapshots of

the third cycle of wave reŕections that the diverging pressure wave is nearly perfectly

circular as is typical of diverging shocks [93], but the reŕected tensile wave lacks axial

symmetry due to corrugations along the free surface.

Due to the softness of the shear response, the von Mises stress indicates signiő-

cant viscous effects and deformation. Fig. 3-11 clearly shows that the breakdown of

symmetry is not restricted to the surface of the computational domain because the

von Mises stress is asymmetric even in the interior of the disk. The reŕected waves

display complex spatial and temporal inhomogeneity which induces oscillatory stress

on the free surface and causes minute oscillations in the undulation growth rate.
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𝑡 = 440 𝑡 = 460 𝑡 = 480

Figure 3-10: Hoop stress at 440, 460 and 480 ns.

𝑡 = 460 𝑡 = 480 𝑡 = 500

Figure 3-11: Von Mises stress at 460, 480 and 500 ns.
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3.4 Modal Analysis of Undulation Formation

A striking feature of the computational results shown in Fig. 3-4 is the similarity

between the computed and experimentally observed instability wave-numbers. In

contrast to many works, which seed an initial instability mode of interest by studying

a pre-corrugated interface’s response to shock transmission [48ś50], here a circular do-

main with no predetermined instability mode is utilized, and it is found that multiple

Fourier modes are excited by the mechanisms described in section 3.3. In Fig. 3-12,

the evolution of ten Fourier modes of the radial displacement proőle along the bound-

ary are plotted as a function of time. Analysis of the initial stages of instability growth

just after the őrst inŕection point of the radial displacement as a function of time at

approximately 80 ns indicates that multiple modes are active and growing steadily at

rates on the order of 10 𝑚/𝑠. The growth rates of the various modes are not constant

due to the spatial and temporal oscillations in the reŕected tensile wave which drives

continued growth Figs. 3-9Ð3-11. The computed oscillations in the modal growth

rate are analogous to oscillations reported by Richtmyer [47] in his numerical study

of shocked gas interfaces. Richtmyer attributed his numerical oscillations to corruga-

tions in the reŕected and transmitted shocks that oscillate temporally long after the

initial shock-interface interaction. In the simulations considered here there is no shock

transmission across the interface, but corrugations in the tensile reŕected wave are

observed which induce comparable oscillations around the asymptotic modal growth

rates.

As instabilities develop further, large wavelengths are preferentially ampliőed, but

the largest wavelength undulations do not occur. In Fig. 3-13, two-dimensional col-

ored plots are displayed which represent the amplitude of various Fourier components

of the boundary radial displacement as a function of nondimensional time 𝑡 = 𝑡
𝑅0

√︁

𝜅
𝜌
.

The simulation captures the growth of many wave-numbers during the initial phase

when inertial instabilities arising from the radially inwards acceleration are dominant.

The large scale undulations of interest are of a moderate wave-number on the order

of 20, however, and they are preferentially ampliőed in later cycles when inertial ef-
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Figure 3-12: Left: The growth rates of Fourier modes 7-17 of the radial displacement
őeld along the boundary. Rates are computed using őnite difference estimates at
200 time steps. Right: For comparison the plot from Richtmyer’s original paper is
included which shows the growth rate of a particular mode that is present prior to
instability [47]. Unlike in Richtmyer’s study, the simulations presented in section 3.2
do not begin with any intentional asymmetry and a particular mode of interest cannot
be isolated.

fects are less dominant, but the hoop compression effect is still signiőcant Fig. 3-13.

Consistent with the work of Biot [30], the radius of curvature of the domain im-

poses a characteristic length which restricts the formation of the largest wavelength

undulations.

Though negative radial acceleration plays a key role in this and George Bell’s

cylindrical instability mechanism [46], the simulated instability modal evolution does

not match closely with Bell’s theoretical modal evolution equations due to the com-

pressible nature of the simulations and the existence of strong shocks and nonlinear

pressure waves. In Fig. 3-14, a direct comparison of the simulated rate of change

of modal growth rates (computed with a second order őnite difference scheme) with

George Bell’s incompressible theory is presented. Bell theorized that the rate of

change of a growth rate should be proportional to the mode number, mode amplitude

and the nondimensional surface acceleration given by the average value of 𝑟(𝑅0,𝜃)
𝑟(𝑅0,𝜃)

. His

incompressible theory drastically overestimates the rate of change of the instability

growth rate and fails to capture the preference for undulations of a particular wave-

length. The rates of change of the growth rates are also found to oscillate considerably
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Figure 3-13: Evolution of the Fourier modes of surface undulation in our calculations
(normalized by the domain radius 𝑅0 = 90 𝜇m) plotted against nondimensional time

𝑡 = 𝑡
𝑅0

√︁

𝜅
𝜌
= 63 ns. Observe that large scale hoop-compression driven instability

produces undulations of wave-number on the order of 20.
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due to the effects shown in Fig. 3-12. These oscillations are slightly out of phase which

gives the appearance of curved diagonal streaks at a nondimensional simulation time

of ≈ 7.5 and fainter streaks at a nondimensional simulation time of ≈ 4.1. Bell’s

theory does not account for such oscillations. The őgure shows an additional simi-

larity with Richtmyer’s work; the shock compresses the interface and decreases the

Fourier modes of the undulation amplitude [47]. This effect is most pronounced with

regard to the most active mode numbers and is apparent during the second shock

reŕection at a nondimensional simulation time of ≈ 3.6. During the third reŕection

event at a nondimensional simulation time of ≈ 6 decreasing modal growth rates

are observed for the lower wave-numbers before the higher wave-numbers because

the domain boundary is no longer approximately circular. Large troughs around the

boundary are met by the shock earlier which decreases the low wave-number modes

associated to the large troughs before the higher modes.

Besides the discordant comparison with Bell’s evolution equations, it is clear that

additional mechanisms beyond the Rayleigh-Taylor instability are at play because no

undulations are observed around the external ablation zone surface in the new exper-

iments. According to Bell’s theory, the external ablation zone should lose stability

as it accelerates radially outward (as opposed to the negative acceleration driving

undulation growth on the interior surface). The external ablation zone surface does

accelerate radially outward, but shows no loss of symmetry because this is not the

dominant mechanism for undulation formation. Hoop compression does not form

along the external surface as the laser ablated material pushes radially outward which

prohibits the new mechanism considered here from forming.

3.5 Nondimensional Analysis

The factors inŕuencing instability formation have been described qualitatively and

shown to be the radial acceleration and hoop compression which both result from

hydrostatic tension inside the domain. In turn, prolonged hydrostatic tension is pos-

sible due to extensive softening of the equation of state under large dilatation. These
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Figure 3-14: Comparison between the rates of change of the modal growth rates in
our simulation and assuming the incompressible Rayleigh-Taylor theory from George
Bell [46]. Finite difference estimates were used to compute time derivatives
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őndings are in contrast to typical large amplitude shock instabilities where the overall

response depends on the post-shock stiffening of material properties [47]. To highlight

this distinction and demonstrate the role of the two fundamental destabilizing effects,

a nondimensional study of the relevant physical parameters is presented in this sec-

tion. The following nondimensional groups span the space of parameters considered

in the initial simulations. In addition to the stiffening parameter - 𝛾, and the two

viscosity parameters 𝑐1 and 𝑐2, which are already nondimensional, a nondimensional

wave amplitude - 𝑃 , nondimensional pulse duration - 𝑡𝑝𝑢𝑙𝑠𝑒, and a compressibility

factor - 𝜇̄ are deőned as follows:

𝑃 =
𝑃𝑝𝑢𝑙𝑠𝑒

𝜅
, 𝑡𝑝𝑢𝑙𝑠𝑒 =

𝑡𝑝𝑢𝑙𝑠𝑒
𝑅0

√︂

𝜅

𝜌
, 𝜇̄ =

𝜇

𝜅
(3.1)

Here 𝜅 is the bulk modulus, 𝜇 is the shear modulus, 𝜌 is the density, 𝑅0 is the radius

of curvature, 𝑡𝑝𝑢𝑙𝑠𝑒 is the duration of applied loading, and 𝑃𝑝𝑢𝑙𝑠𝑒 is the amplitude of

the applied loading. The simulation time is normalized by the same timescale as the

nondimensional pulse duration. The nondimensional parameters took on the values

𝛾 = 6.15, 𝑃 = 1.0, 𝑡 = 0.1257, 𝜇̄ = 2.5 × 10−6 in the initial calculations. Starting

from these initial values, each parameter is explored in turn by varying them one at

a time from 50 % to 150 % of their initial values.

3.5.1 Analysis of the Undulation Amplitude

Increasing 𝑃 is the easiest parameter to control in the experiment and directly corre-

sponds to depositing additional energy in the simulation. Fig. 3-15 shows the results

of a parametric study performed using 61 simulations of the őrst cycle of the pressure

wave. The color in the two-dimensional plot indicates the nondimensional undulation

amplitude 𝐴 as a function of time along the horizontal axis for a variety of nondi-

mensional pulse amplitudes varied along the vertical axis. The 61 simulations are

integrated in time until 𝑡 = 4, which corresponds to the time required for acoustic

waves to cross the computational domain once, reŕect, and return to their starting

position. The nonlinear waves captured by these simulations can traverse this same
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domain faster or slower depending on the value of 𝑃 .

It was found that raising 𝑃 , ceteris paribus, increases instability growth by pro-

longing the tensile phase of the oscillation cycle which drives instability growth. No-

tably, the stronger shocks produced with larger 𝑃 are found to propagate faster, but

also lead to such prolonged tensile phases of vibration that the overall oscillation fre-

quency decreases Fig. 3-15. The increase in shock speed is indicated in the őgure by

a faint, darker streak starting at 𝑡 ≈ 0, 75 on the bottom of the chart, which slopes

upwards towards 𝑡 = 1 at the top of the chart. This dark region marks the time when

the őrst shock reŕects and leads to the őrst decrease in undulation amplitude. In the

baseline simulation this occurs at 55 ns, which is 𝑡 ≈ 0.87. Larger amplitude waves

traverse the domain in less time, while acoustic waves require more than 126 ns or

𝑡 = 2 to traverse this distance. The overall decrease in the oscillation frequency with

𝑃 is indicated by the dark blue in the upper right of Fig. 3-15. This more noticeable

region of the chart indicates the time when the second shock meets the boundary

and decreases the undulation amplitude a second time. In the baseline simulation

this second shock reŕection occurs at 233 ns, which is when 𝑡 = 3.66. Notice that for

larger values of 𝑃 the second reŕection occurs later in time while for smaller values

the reŕection occurs earlier. Bearing in mind that acoustic waves would reŕect ex-

actly when 𝑡 = 4, one őnds that small amplitude nonlinear waves shown at the top

of the chart actually have smaller oscillation periods than linear vibrations and hence

have a higher oscillation frequency. In contrast, large amplitude waves shown at the

bottom of the chart do not meet the boundary a second time prior to the end of these

simulations at 𝑡 = 4. These stronger waves produce larger oscillation periods, even

though large amplitude shocks travel faster because the tensile phase of vibrations is

slowed signiőcantly in this regime of the parameter space. The tensile phase of vibra-

tions is what initiates instability growth, so the larger 𝑃 produces larger undulation

amplitude 𝐴 as indicated by the brighter colors in the bottom of the plot.

Moreover, increasing 𝑡𝑝𝑢𝑙𝑠𝑒 also correlates directly with the energy injected into

the computational domain and enhances instability growth by prolonging the tensile

phase of the oscillation cycle in the same manner as raising 𝑃 . A larger duration of
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𝐴

Figure 3-15: Undulation amplitude 𝐴 plotted as a function of time 𝑡 (horizontal
axis) and nondimensional wave amplitude 𝑃 (vertical axis). Increasing 𝑃 increases
the nondimensional undulation amplitude 𝐴.

𝐴

Figure 3-16: Undulation amplitude 𝐴 plotted as a function of time 𝑡 (horizontal axis)
and nondimensional pulse duration 𝑡𝑝𝑢𝑙𝑠𝑒 (vertical axis). Increasing 𝑡𝑝𝑢𝑙𝑠𝑒 increases
nondimensional undulation amplitude 𝐴.

applied pressure produces stronger shocks and similar effects to directly increasing

𝑃 . Fig. 3-16. It is worth noting that the impact on the oscillation cycle period and

frequency of 𝑡𝑝𝑢𝑙𝑠𝑒 is qualitatively similar to 𝑃 , and if anything more dramatic. The

dark blue region on the upper right has more gradually sloped boundaries in Fig. 3-

16 than in Fig. 3-15 which indicates a stronger sensitivity of the cycle period to the

pulse duration than the pulse amplitude. On the other hand, the maximal undulation

amplitude excited in the latter chart is larger than in the former. A minor difference

between Fig. 3-15 and Fig. 3-16 is the shape of the blue region on the left side of these

őgures. 𝑡𝑝𝑢𝑙𝑠𝑒 increases linearly down the vertical axis in the second chart, leading to

the triangular blue region, but is held őxed in the őrst study which has a rectangular

dark blue region on the left side.
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𝐴

Figure 3-17: Undulation amplitude 𝐴 plotted as a function of time 𝑡 (horizontal
axis) and stiffening parameter 𝛾 (vertical axis). Increasing 𝛾 increases nondimensional
undulation amplitude 𝐴.

Increasing the nondimensional stiffening parameter 𝛾 does not correspond directly

to varying the loading conditions and is more challenging to study in an experimental

setting because it requires modifying material properties. Nevertheless, the com-

putational framework employed here easily allows for the study of this parameter

which is found to play an important role in the ensuing dynamics. Similar to 𝑃 and

𝑡𝑝𝑢𝑙𝑠𝑒, enhanced stiffening produces shocks that propagate faster but also slows the

tensile phase which leads to slower vibrations and more instability growth as shown

in Fig. 3-17. Raising 𝛾 decreases the maximum hydrostatic stress that the material

model can sustain 𝑃𝑚𝑎𝑥 = 𝜅
𝛾+1

which counterintuitively enhances all the effects aris-

ing from hydrostatic tension. When large amplitude shocks reŕect off the boundary,

their reŕected waves have to disperse or spread out because the constitutive law does

not allow any elastic hydrostatic stresses larger than 𝑃𝑚𝑎𝑥. By decreasing 𝑃𝑚𝑎𝑥, dis-

persion and softening is enhanced while the maximal tensile stress in the simulation

is reduced. Conversely, adding more energy increases the ratio of shock amplitude to

𝑃𝑚𝑎𝑥 which also causes more dispersion and softening. The magnitude of the radial

tension is ultimately of lesser signiőcance, and it is the dispersive nature of the stress

release waves converging after the shock reŕections which induces the hoop stress that

drives large scale eruption formation.

A number of features are apparent in Figs. 3-15Ð3-17 which merit further dis-

cussion. The time of the second shock reŕection, as indicated by the appearance of
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the blue regions in the upper right of the plots, seems to increase linearly with 𝛾, 𝑃

and 𝑡𝑝𝑢𝑙𝑠𝑒, however, in Fig. 3-17 for instance the impact of variations in 𝛾 changes

noticeably after 𝛾 = 𝛾∗ ≈ 5.75. This is indicated by a clear change in the slope of

the division between the bright and blue region at the upper left of the plot. Sim-

ilar behavior occurs in Fig. 3-15 and Fig. 3-16 when the pulse amplitude is greater

than 𝑃 = 𝑃 ∗ ≈ 0.95 or the pulse duration is greater than 𝑡𝑝𝑢𝑙𝑠𝑒 = 𝑡∗𝑝𝑢𝑙𝑠𝑒 ≈ 0.12, all

else being equal. For large nondimensional groups, the undulations appear to grow

monotonically until the shock meets the domain boundary while for smaller values

of the parameters, the undulations decrease in amplitude prior to the shock arrival.

This trend is most clearly visualized in Fig. 3-17 where a green streak from the top

of the chart at 𝑡 ≈ 2.8 runs diagonally downwards and indicates the peak undula-

tion amplitude. This peak occurs well before the arrival of the second shock which

indicates undulation amplitude decrease prior to the shock arrival. If 𝛾 = 4 for in-

stance, 𝐴 begins to decrease at 𝑡 = 3.2, but the second shock does not arrive until

𝑡 = 3.5. In contradistinction, toward the bottom of Figs. 3-15Ð3-17 instabilities grow

in a periodic sawtooth manner which is exempliőed explicitly by the green curve in

Fig. 3-6.

Small values of these three nondimensional groups 𝛾, 𝑃 and 𝑡𝑝𝑢𝑙𝑠𝑒 produce weakly

nonlinear waves which are weak in the sense that the celerity jump across the wave

front is small. Due to the smaller celerity jump in the weakly nonlinear calculations,

the boundary radial tension is relaxed prior to the arrival of the compression wave

because the wave speed under tension is large enough to propagate stress release

waves to the boundary prior to the next reŕection. Relaxing the boundary radial

tension before the diverging pressure pulse pushes the boundary outwards again slows

the formation of undulations and allows instabilities to decrease prior to the shock

arrival. By contrast to the blue and red curves in Fig. 3-6, the radial displacement

varies nearly sinusoidally in such weakly nonlinear simulations. In the case of strong

shocks when the parameters 𝛾, 𝑃 and 𝑡𝑝𝑢𝑙𝑠𝑒 are large, the celerity jump across the wave

front is signiőcant and waves cannot propagate to the boundary under tension due to

the extreme softening of the equation of state. The compression wave front appears to
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reach the boundary before radial tension has relaxed which is why undulation growth

continues up until the shock arrives in these calculations.

Additionally, in the case of strongly nonlinear waves the boundary is typically

displaced inwards while still under radial tension prior to the shock reŕection. This

situation corresponds to compressive hoop strain (and stress) while under radial ten-

sion, and it is this state of stress that leads to large scale undulation growth because

it has a signiőcant deviatoric component. Note that in Fig. 3-17 in particular, the

strongly and weakly nonlinear wave simulations indicate comparable rates of undu-

lation growth until 𝑡 ≈ 3.0. At this point in time, the strongly nonlinear simulations

begin to develop large deviatoric stress due to hoop compression which increases 𝐴.

In contrast, the weakly nonlinear simulations start to decrease their undulation am-

plitude since the model does not soften under tension sufficiently to maintain both

radial tension and negative radial displacements. The loading parameters 𝑃 and 𝑡𝑝𝑢𝑙𝑠𝑒

exhibit similar effects on the model which are evident in Figs. 3-15Ð3-16, but increas-

ing these parameters also increases the inertial mechanisms of instability as well by

directly increasing the energy in the model.

In summary, increasing the őrst three parameters 𝑃 , 𝑡𝑝𝑢𝑙𝑠𝑒 and 𝛾 pushes the equa-

tion of state farther into the nonlinear regime. All three parameters govern the

softening material response under tension and determine whether the model exhibits

strongly nonlinear dynamics that lead to the development of deviatoric stress which

is manifest as hoop compression and simultaneous radial tension. For moderately

nonlinear simulations the increased shock speed is the primary nonlinear effect, while

for strongly nonlinear simulations softening under tension plays a dominant role.

Nonlinear effects are necessary to excite these instabilities, and in contrast to the

Richtmyer-Meshkov instability undulation growth is controlled primarily by the dis-

persion, or a lack thereof, in the tensile phase of the pressure cycle. As discussed

in chapter 1, incompressible, acoustic and shock loaded surface instabilities have all

been studied previously, but here we present a unique strongly nonlinear instability

that relies on shock reŕection induced dispersion.

A őnal observation from the consideration of these őrst three nondimensional
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𝐴

Figure 3-18: Undulation amplitude 𝐴 plotted as a function of time 𝑡 (horizontal axis)
and second viscosity coefficient 𝑐2 (vertical axis). Increasing 𝑐2 decreases and slows
instability growth.

groups is the general őnding that increasing these groups increases undulation growth

is not strictly true, but is generally the case. Considering Figs. 3-15Ð3-17 during the

phase of undulation growth, it is not the case that these plots become strictly lighter

as one moves toward the bottom of these őgures. In particular, some light streaks in

Fig. 3-16 indicate that in rare instances slight increases to the applied pulse duration

may decrease the undulation amplitude at particular nondimensional times in the

simulation. Similar effects are noticeable in Fig. 3-15.

One őnal parameter which plays a key role in regulating instability growth is the

second viscosity parameter 𝑐2. Decreasing this parameter leads to enhanced instabil-

ity growth because the artiőcial viscosity model is necessary to stabilize numerical

oscillations due to the shock front Fig. 3-19. This parameter will not be considered

further since it is a numerical modeling parameter and does not represent any physical

effects.

Aside from the parameters which actively regulate physical and numerical mecha-

nisms of instability growth (𝑃 , 𝑡𝑝𝑢𝑙𝑠𝑒, 𝛾 and 𝑐2 ), variations in 𝜇̄ and 𝑐1 are also studied.

These parameters are not found to play a role in controlling instability formation and

varying them by ±50% has little impact on the simulations Figs. 3-19Ð3-20.

Fig. 3-20 indicates that for the small values of 𝜇̄ considered here, shear stiffness

does not actively control instability growth. This is a signiőcant distinction from

the őnding in [59], that elastic Richtmyer-Meshkov instabilities oscillate periodically

at frequencies that are proportional to the mode number divided by the shear wave
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𝐴

Figure 3-19: Undulation amplitude 𝐴 plotted as a function of time 𝑡 (horizontal axis)
and őrst viscosity coefficient 𝑐1 (vertical axis). Increasing 𝑐1 has little effect on the
simulation results.

𝐴

Figure 3-20: Undulation amplitude 𝐴 plotted as a function of time 𝑡 (horizontal axis)
and compressibility ratio 𝜇̄ (vertical axis). The vertical scale has been scaled by a
million. Increasing 𝜇̄ has little effect on the simulation results.

speed. In both these simulations and the new experiments, the pressure cycles far

faster than this frequency expected from classic elastic Richtmyer-Meshkov instability

because the domain curvature is large and the shear stiffness is small. In an elastic

Richtmyer-Meshkov instability deviatoric elastic energy provides a restoring force to

the boundary, but here the shock itself restores the boundary and hence the shear

stiffness is not a controlling effect.

The őnding that linear viscosity and shear stiffness do not actively regulate insta-

bility growth is consistent with prior studies of both dynamic droplet jet formation [62]

and quasistatic elastic őngering [2]. These parameters are similarity parameters of

the őrst kind and may be neglected if sufficiently small, but the importance of both

the extremely soft elastic response and the signiőcance of hoop compression found in

our simulations is underscored by the őnding that when the shear modulus exceeds
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𝜇̄ = 2.5× 10−6 𝜇̄ = 2.5× 10−5 𝜇̄ = 2.5× 10−4

𝜇̄ = 2.5× 10−3 𝜇̄ = 2.5× 10−2 𝜇̄ = 2.5× 10−1

Figure 3-21: Velocity magnitudes taken from six different simulations at 𝑡 = 425ns
(𝑡 = 6.74). 𝜇̄ is successively increased by a factor of 10 at a time beginning from
2.5× 10−6.

approximately 5 MPa, instability growth is regularized Fig. 3-21. In other words,

altering the shear modulus has no impact on the calculations until 𝜇̄ is increased

over a hundred-fold. Additionally, it is found that shear stiffness regularizes high

wavenumber instabilities őrst. A similar regularization is obtained by increasing the

linear viscosity parameter.

By raising the compressibility parameter by up to four orders of magnitude the

importance of the role of hoop compression is clearly visible Fig. 3-22. When the

hoop stress is of the same order of magnitude or larger than the shear modulus,

undulations grow rapidly. In contrast, when the shear modulus exceeds the hoop

compression, instabilities are regularized. Biot instability develops at a critical strain

for all neo-Hookean materials and the critical stress is related to the strain by the

shear modulus, but in the models shown here the value of the hoop stress is controlled

by the parameters regulating the shock dynamics and the value of the shear modulus

must be larger to regularize undulation growth.

The dynamics described in this thesis are similar to the two-step mechanism de-

scribed in the recent work of Ohl et al. [62]. In this paper the authors describe droplet
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𝐴

Figure 3-22: Increasing 𝜇̄ has a signiőcant regularizing effect on the simulations if 𝜇̄
exceeds the nondimensional value of the hoop stress during the tensile phase of the
vibrations.

jetting via a spherical Rayleigh-Taylor type mechanism that corresponds to the ten-

sion driven radial acceleration which initiates instability in our calculations. These

authors also discuss the phase reversal along the boundary due to pressure wave re-

ŕections. Their őndings are consistent with the present calculations and in particular

their models of three-dimensional high Reynolds number, low Weber number droplets

also produce instability wave-numbers of ≈ 20 Fig. 1-9. They model the cavitation

zone in the center of the droplet explicitly, and select a low Weber number which

corresponds to a large surface tension along the interior cavity of a small droplet.

These effects combine to exert signiőcant radial tension on the external boundary of

the droplet which may lead to jet formation very similar to the őndings of this thesis.

Their mechanistic interpretation, however, focuses solely on the discussion of baro-

clinic instabilities which are common in the ŕuid mechanics literature. In this thesis,

the importance of hoop compression is emphasized instead because it underscores the

importance of the small radius of curvature and marks the critical value of the shear

modulus beyond which the instability is regularized by deviatoric stiffness Fig. 3-22.

Having highlighted one at a time the role of the nondimensional parameters, the

parameter space is studied in more detail by varying the active parameters together

two at a time. Experimentally it is easiest to explore the space spanned by 𝑃 and

𝑡𝑝𝑢𝑙𝑠𝑒 simply by varying the applied laser loading. Increasing either of these param-

eters enhances undulation growth in the őrst pressure cycle. In Fig. 3-23 the peak
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Figure 3-23: Maximal 𝐴 during the őrst cycle (𝑡 between 0 and 4) as 𝑃 and 𝑡𝑝𝑢𝑙𝑠𝑒
varying independently. 121 simulations are used in this parameter study. Results
shown using bilinear interpolation.

undulation amplitude 𝐴 during the őrst pressure cycle (𝑡 between 0 and 4) is plotted

as a function of the pulse duration 𝑡𝑝𝑢𝑙𝑠𝑒 along the horizontal axis and the pulse am-

plitude 𝑃 along the vertical axis. The proőle of the colored region in the bottom right

of this plot indicates the scaling of undulation amplitude with the product 𝑃 × 𝑡𝑝𝑢𝑙𝑠𝑒

which is to őrst order directly proportional to the energy injected into the simulation.

Besides this easily controlled parameter space, the spaces spanned by 𝛾 and either

𝑃 or 𝑡𝑝𝑢𝑙𝑠𝑒 are studied using our computational framework Fig. 3-24 and Fig. 3-25.

It is difficult to tune the stiffening in a material’s equation of state in a manner that

would allow for exploration of this parameter space experimentally. Nevertheless, one

can observe that increasing the boundary condition parameters 𝑃 or 𝑡𝑝𝑢𝑙𝑠𝑒 always in-

creases undulation growth. Increasing 𝛾 at moderate levels of the boundary condition
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Figure 3-24: Maximal 𝐴 during the őrst cycle (𝑡 between 0 and 4) as 𝑃 and 𝛾 varying
independently. 121 simulations are used in this parameter study. Results shown using
bilinear interpolation.

parameters also increases undulation growth by decreasing 𝑃𝑚𝑎𝑥 and enhancing soft-

ening effects. At large values of the boundary condition parameters the dependence

on the stiffening parameter is non-monotonic. The shock capturing scheme likely

needs to be retuned to stabilize such shocks.

3.5.2 Undulation Wavelength Dependence on Shock Parame-

ters

Motivated by the apparent differences in amplitude and wave-number found in the

experimentally observed instabilities for different laser pulse amplitudes shown in ap-

pendix C, variations in the loading parameters 𝑡𝑝𝑢𝑙𝑠𝑒 and 𝑃𝑝𝑢𝑙𝑠𝑒 are considered in more

detail in this section. It is found that when increasing the parameter 𝑃𝑝𝑢𝑙𝑠𝑒 the model

produces larger instabilities with sharper, cusp-like features when compared with the

smooth and fairly periodic protrusions found in the initial calculations and experi-
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Figure 3-25: Maximal 𝐴 during the őrst cycle (𝑡 between 0 and 4) as 𝑡𝑝𝑢𝑙𝑠𝑒 and 𝛾
varying independently. 121 simulations are used in this parameter study. Results
shown using bilinear interpolation.
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mental results. In Fig. 3-26, sequences of snapshots taken from four simulations of

various 𝑃 are presented in descending order down the őgure. Consistent with the

őnding of the previous section, instabilities increase noticeably as 𝑃 is incremented

geometrically across the őgure. In particular, only the bottom right snapshot shows

signiőcant undulation formation. Additionally, it is found that at 𝑡 = 5 the largest

amplitude shock simulation shows a larger tensile core than the weak shock simula-

tions, which indicates that the larger amplitude shock model lags behind the weaker

shock simulations due to softening upon wave reŕection.

More, sharper undulations develop when 𝑃 is large due to the activation of higher

wave-number instability modes. At larger pulse amplitudes the preferential growth of

wave-numbers near 20 is not nearly as apparent. Fig. 3-27 presents a direct compari-

son between the modal analysis of the initial model shown in Fig. 3-13 and the modal

analysis obtained from simulations with a doubled pulse amplitude and highlights

that instability wave-numbers are not clustered as closely in the case of the stronger

shock. In particular, the őrst few most active Fourier modes in the initial simulation

have wave-numbers below 20, but after doubling the pulse amplitude the most active

mode number is over 20. Similarly, the modal growth rates at 𝑡 between 2 and 3 are

clustered around larger mode numbers.

Varying the boundary condition parameter 𝑡𝑝𝑢𝑙𝑠𝑒 also demonstrates similar effects

on the most active mode number Fig. 3-28. It is found that larger pulse durations

produce larger shocks and larger high wave-number instability amplitudes. These

additional and larger high wavenumber instability modes are prominent in the bottom

right of Fig. 3-29 where more surface undulations with a cusp-like appearance are

displayed. The original parameter was selected to correspond to the duration of the

applied laser pulse, but it is conceivable that the ablation zone exerts mechanical

loads on the interior region of the hydrogel for a prolonged time after the laser pulse

ends. In contrast to the pulse amplitude parameter 𝑃 , when maintaining the applied

loading for much larger durations it is found that the shock can traverse the entire

domain multiple times before the pressure is released Fig. 3-29, yet instabilities do

not form until 𝑡𝑝.
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Jacobian

𝑡 = 1

𝑡 = 2

𝑡 = 3

𝑡 = 4

𝑡 = 5

𝑡 = 6

𝑃 = 0.5625 𝑃 = 0.7500 𝑃 = 1.0000 𝑃 = 1.3333

Figure 3-26: Jacobians plotted in the deformed conőguration for a variety of times

𝑡 and wave amplitudes 𝑃 . 𝛾 = 6.15 and
𝑡𝑝𝑢𝑙𝑠𝑒
𝑅

√︁

𝜅
𝜌
= 0.1 From left to right the 𝑃

increase geometrically by a factor of 4
3

beginning at 0.5625. From top to bottom the

nondimensional simulation times 𝑡
𝑅

√︁

𝜅
𝜌

increase by 1 starting at 1.
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Figure 3-27: Left: reference modal analysis. Right: doubled pressure amplitude.
Note that increasing the amplitude increases the wave-number and amplitude of sur-
face undulations and also produces modal growth rates that are not clustered as
tightly in a particular range. This manifests as numerous, sharp undulations along
the boundary.

Figure 3-28: Left: reference modal analysis. Right: doubled pulse duration. Like
in the case of doubling the pulse amplitude, the higher energy wave produces larger
amplitude higher wave-number instabilities which are not as closely grouped in wave-
number.
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Jacobian

𝑡 = 1

𝑡 = 2

𝑡 = 3

𝑡 = 4

𝑡 = 5

𝑡 = 6

𝑡𝑝𝑢𝑙𝑠𝑒 = 0.1000 𝑡𝑝𝑢𝑙𝑠𝑒 = 0.3162 𝑡𝑝𝑢𝑙𝑠𝑒 = 1.0000 𝑡𝑝𝑢𝑙𝑠𝑒 = 3.1623

Figure 3-29: Jacobians plotted in the deformed conőguration for a variety of times
𝑡 and pulse durations 𝑡𝑝𝑢𝑙𝑠𝑒. 𝛾 = 6.15 and 𝑃 = 0.5625. From left to right the 𝑡𝑝𝑢𝑙𝑠𝑒
increase geometrically by a factor of

√
10 beginning at 0.1. From top to bottom the

nondimensional simulation times increase by 1 starting at 1.
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This őnding highlights the importance of nonlinear softening and dispersion in

our calculations. When pressurized, there is no signiőcant softening leading to hoop

compression under radial tension. Classic cylindrical Rayleigh-Taylor or parametric

instabilities may develop regardless of the scale of the hydrostatic stress because these

instabilities do not require nonlinear volumetric material response, but the instability

shown in the present study requires sufficiently large pressures and waves to neces-

sitate dispersion upon shock reŕection. Conversely, Richtmyer-Meshkov instabilities

also require a nonlinear equation of state but develop due to baroclinic effects induced

by compressive shock waves. Even in the setting of ‘reshocked’ Richtmyer-Meshkov

instability, where őrst a converging and then a diverging wave drive instability growth,

the domain does not typically enter the tensile phase of vibrations [50, 96].

In summary, the wave-number of instability is typically of a moderate value near

20 because the hoop compression mechanism preferentially ampliőes these modes. In

the initial stages of the calculation when shocks are strong, many additional modes

are activated. For increased values of the boundary loading parameters 𝑃𝑝𝑢𝑙𝑠𝑒 and

𝑡𝑝𝑢𝑙𝑠𝑒, the inertial effects are enhanced and multiple, large wave-number instability

modes are activated leading to cusp shaped instabilities. Increasing 𝑡𝑝𝑢𝑙𝑠𝑒 sufficiently

can delay instability formation by limiting the possibility of tensile softening until the

loading is released.
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Chapter 4

Summary and Conclusions

We have proposed and utilized a computational model for the simulation of a new

class of elastodynamic instabilities which arise along the surface of curved soft mate-

rials experiencing internal shock reŕections. These new dynamic instabilities appear

after multiple shock reŕections which endows them with a characteristic timescale of

growth that exceeds the acoustic timescale. In contrast to parametric instabilities in

soft solids [74, 75], the new mechanism relies on nonlinearity in the equation of state,

in addition to geometric nonlinearity, to produce surface undulations. In particular,

softening of the equation of state plays a pivotal role in generating instability forma-

tion. Typical shock-induced instabilities, such as Richtmyer-Meshkov, develop under

the action of compression waves and are insensitive to a material’s ultimate tensile

strength.

The recent discovery by members of Professor Keith Nelson’s research group at

the MIT Institute for Soldier Nanotechnologies of laser-induced surface undulations

along the boundary of soft hydrogel specimens motivated this study. The newly

discovered instabilities form only along the external boundary of hydrogel cylinders

because the new mechanism requires multiple internal reŕections. The external laser

ablation zone surface does not experience oscillatory loads or hoop compression and

does not exhibit the new mechanism. Furthermore, the well known increase of the

critical cavitation stress with shear stiffness allows a hydrogel to develop the new
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instability whereas pure water cannot. It should be emphasized that this instability

has only been described recently since it occurs along the boundary of shocked soft

solids with small radii of curvature. The new experimental setup considered at the

MIT Institute for Soldier Nanotechnologies is ideally suited for exploring this regime

of mechanical response.

Soft material response to large amplitude loading has potential biomedical ap-

plications to the study of shock wave lithotripsy [101, 121, 129, 130], histotripsy

cancer therapies [131ś133], traumatic brain [134, 135] and other soft internal organ

injuries [136]. Additionally, laser cavitation experiments similar to those modeled in

this thesis have recently furnished a valuable tool for the characterization of soft ma-

terial constitutive models, but only when such experiments maintain symmetry [84].

Observation and simulation of the new class of shock induced surface instabilities

considered here motivates continued study of nonlinear waves in soft materials which

may lead to progress in these important areas.
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Appendix A

Calculation With Non-Circular

Geometries

In this thesis, it is found that domain curvature plays a signiőcant role in surface

eruption. Motivated by this őnding, a simulation of a simple geometry with non

constant surface curvature is presented in this appendix. An applied pressure equal

to the 2 GPa bulk modulus is sustained for 20 ns along the boundary of a 540 𝜇𝑚

square domain with rounded corners of radius 90 𝜇𝑚. The same constitutive model

and shock capturing scheme presented in chapter 2 is employed here. The simulation

are presented in Fig. A-1 and they show that the pressure is ampliőed in regions

of curvature which causes the curved part of the shock front to travel faster than

the noncurved part [92, 137]. At 76.2 ns, transverse shocks form near triple points

in the shock front. Experimental evidence indicates transverse shocks play a key

role in focusing pressure inside the spike of a Richtmyer-Meshkov instability. Long,

skinny spikes and rounder bubbles typically form in Richtmyer-Meshkov (as opposed

to the sinusoidal instability of Taylor’s instability) because transverse shocks focus

the pressure into the spikes [49]. The faster speed of inwards curved shocks (and

slower speeds of shocks which curve outwards) causes the superstability of shock

fronts which Richtmyer attributes to Roberts [47] and which causes the cycles around

the asymptotic growth rate on the right side of Fig. 3-12.

It is interesting to observe that from 25.4 to 50.8 ns, the higher pressures in
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the corners causes the four corners to protrude outwards, but when the hydrostatic

tension is focused in the corners these four protrusions are retracted leading to eight

protrustions (two on either side of each corner) which persist from 101.6-203.2 ns. In

the circular geometry, this effect is the phase reversal which causes a periodic sequence

of protrusions to invert and become approximately the same instability modes 180

degrees out of phase. In this geometry, it is found that four protrusions become 8,

and then at later times 16. To the best of our knowledge, such shock driven dynamic

period doubling has yet to be reported.

Vorticity and rotation distribution at 50.8 ns are also presented in Fig. A-2. It is

found that the shock distributes vorticity in its wake which curls material into the

region of high pressure. Consistent with the theories from gas dynamics, shocks in

soft solids also induce signiőcant vorticity near regions of high shock curvature [138].

The shock capturing scheme stabilizes the rotation őeld better than the vorticity őeld

which has some slight oscillations.
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25.4 ns 50.8 ns 76.2 ns

101.6 ns 127 ns 152.4 ns

177.8 ns 203.2 ns 228.6 ns

254 ns 279.4 ns 304.8 ns
Jacobian

Figure A-1: Shock dynamics in a square domain. Frames show the Jacobian of
deformation every 25.4 ns.
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Figure A-2: Vorticity (curl of the velocity őeld) and rotation (curl of the displacement
őeld) at 50.8 ns.
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Appendix B

Validity of Plane Strain Assumptions

To determine the accuracy of the plane strain assumptions considered in chapter 3,

axisymmetric calculations of the out of plane displacements of the glass slides were

performed. The numerical models simulate the ablation zone as a Gaussian dis-

tributed vertical force with a square wave proőle in time. Polyacrylamide hydrogels

typically stick to glass slides [2], and it is possible that any deŕection of the glass out

of the plane of the experiment could be expected to strain the gel cylinder axially. It

was found that the timescale for wave propagation across the slides is on the order of

100 ns. Since the bulk modulus of glass is far larger than the pressures observed in

these simulations it is unlikely that out of plane deformation is signiőcant early on in

the experiment.

Nevertheless, if the loading in the ablation ring is sustained indeőnitely at even

moderate values such as 200 MPa, then vertical velocity in the glass is expected to

be on the order of 3 or 4 meters per second which could cause axial strains in the

hydrogel on the order of 10 % in less than a microsecond. Snapshots of the numerical

simulation with this indeőnitely sustained pressure boundary condition are presented

in Fig. B-1. It is likely that the gel would delaminate off the glass (which is observed

in some experiments) under such large stretching. In any event dynamic models of

elastic fringe and őngering instability have shown high strain rate stretching is does

not form elastic instabilities [35]. Furthermore, if the new experiments were strongly

impacted by out of plane effects they should demonstrate fringe or őngering on both

95



10 ns 20 ns

30 ns 40 ns

Figure B-1: Out of plane stress velocity waves in the glass slides. The boundary
condition is a sustained 200 MPa Gaussian pulse pressure applied vertically along the
ring. The Gaussian standard deviation is 10𝜇𝑚, and it is centered at 100 𝜇m. Here
detailed snapshots of the computational results are presented 10 ns apart in time.
Using symmetry only half of the upper glass slide is modeled.

sides of the ablation zone, which they do not.
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Appendix C

Additional Experimental Results

Additional experimental results were provided by Dmitro Martynowych who con-

ducted the new experiments at the MIT Institute for Soldier Nanotechnologies. We

present them here because they demonstrate the variation the undulation amplitude

and wave-number which is studied numerically in this thesis. Furthermore, they

clearly demonstrate the important őnding that water does not demonstrate the sur-

face undulations of interest whereas hydrogel does.
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1 𝜇s 2 𝜇s 3 𝜇s 4 𝜇s

5 𝜇s 6 𝜇s 7 𝜇s 8 𝜇s

9 𝜇s 10 𝜇s 11 𝜇s 12 𝜇s

13 𝜇s 14 𝜇s 15 𝜇s 16 𝜇s

Figure C-1: The laser pulse energy is 230 𝜇J. The material is polyacrylamide hydrogel
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1 𝜇s 2 𝜇s 3 𝜇s 4 𝜇s

5 𝜇s 6 𝜇s 7 𝜇s 8 𝜇s

9 𝜇s 10 𝜇s 11 𝜇s 12 𝜇s

13 𝜇s 14 𝜇s 15 𝜇s 16 𝜇s

Figure C-2: The laser pulse energy is 360 𝜇J. The material is polyacrylamide hydrogel
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1.5 𝜇s 3 𝜇s 4.5 𝜇s 6 𝜇s

7.5 𝜇s 9 𝜇s 10.5 𝜇s 12 𝜇s

13.5 𝜇s 15 𝜇s 16.5 𝜇s 18 𝜇s

19.5 𝜇s 21 𝜇s 22.5 𝜇s 24 𝜇s

Figure C-3: The laser pulse energy is 530 𝜇J. The material is polyacrylamide hydrogel
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1.0 𝜇s 1.1 𝜇s 1.2 𝜇s 1.3 𝜇s

1.4 𝜇s 1.5 𝜇s 1.6 𝜇s 1.7 𝜇s

1.8 𝜇s 1.9 𝜇s 2.0 𝜇s 2.1 𝜇s

2.2 𝜇s 2.3 𝜇s 2.4 𝜇s 2.5 𝜇s

Figure C-4: The laser pulse energy is 240 𝜇J. The material is polyacrylamide hydrogel
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1 𝜇s 2 𝜇s 3 𝜇s 4 𝜇s

5 𝜇s 6 𝜇s 7 𝜇s 8 𝜇s

9 𝜇s 10 𝜇s 11 𝜇s 12 𝜇s

13 𝜇s 14 𝜇s 15 𝜇s 16 𝜇s

Figure C-5: The laser pulse energy is 850 𝜇J. Water is used for comparison with the
hydrogel results. In contrast to the typically solitary gel cavities shown above, water
forms many smaller cavities which coalesce into one cavity over time. Also note that
water does not exhibit boundary undulations.
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