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Abstract

With the rise in prominence of algorithmic-decision making, and numerous high-
profile failures, many people have called for the integration of ethics into the develop-
ment and use of these technologies. In the past five years, the field of “AI Ethics” has
risen to prominence to explore questions such as “how can ML algorithms be more
fair” and “what are the tradeoffs when incorporating values such as fairness or privacy
into models.” One common trend, particularly by corporations and governments, has
been a top-down, principles-based approach for setting the agenda. However, such
efforts are usually too abstract to engage with; everyone agrees models should be
fair, but there is often disagreement on what “fair” means. In this work, I propose
a bottom-up alternative: Evidence-based AI Ethics. Learning from other influential
movements, such as Evidence-based Medicine, we can consider specific projects and
examine them for “evidence.” We draw from complementary critical lenses, one based
on utilitarian ethics and one from intersectional feminism to analyze five case studies
I have worked on, ranging from automatically-generated radiology reports to tech
worker organizing.

Thesis Supervisor: Peter Szolovits
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Ethics is a branch of philosophy that tries to understand right and wrong. It seeks to

formulate whether given actions should be forbidden, permissible, or imperative. In

1980, Langdon Winner wrote “Do Artifacts Have Politics” which explored whether a

new technology (i.e., something which changes the way a process is done to be faster,

cheaper, more efficient, less complex, etc.) inherently has a political orientation [307].

Within the last decade, high profile failures of increasingly popular machine learn-

ing (ML) systems have led to another iteration of the fundamental conversation

around technological progress and its potential harms. Technologists, lawyers, ethi-

cists, and others have greatly increased the effort to study these problems in recent

years. Virtually everyone agrees that things should be “ethical,” but there seem to

be large disagreements on what “ethical” means. There is no single authority, instead

there is an ecosystem of actors, including academics, corporations, policymakers and

regulators, the public, media and journalists, think tanks, and more.

Within this ecosystem, actors operate within power structures, including the law,

public consensus, market forces, individual codes of ethics, etc. When one of those

structures is very clear (e.g. legal protections for intellectual property, market forces

discouraging explicitly racist algorithms, etc.) then actors are constrained. However,

as new technology moves interactions from well-understood terrain to “the wild west”

then powerful actors have freer reign to operate in the gray area. This could come

in the form of academics doing exploitative data collection practices [102] or corpo-
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rations employing dark patterns to nudge users into actions they wouldn’t otherwise

take [196].

1.1 Academic Studies

In this thesis, I primarily focus on how academics can participate in and contribute

to ethical AI. In the conclusion, I “zoom out” to discuss the broader ecosystem of

actors in which these efforts sit.

Conceptually, academics are meant to be truth-seeking scientists. They formulate

and validate hypotheses to understand the world without a market-driven goal. An

academic’s incentives essentially boil down to being able to publish papers that are

influential to other academics (as measured by citations, peer feedback, tenure, grants,

etc.).

There are many academic fields exploring tech+ethics issues, including work in

Sociology, Geography, Media and Communication Studes, Critical Data Studies, and

more. One prominent academic community for AI Ethics is the algorithmic fairness

conference Fairness, Accountability, and Transparency (FAccT). In 2018, FAccT was

launched to bring together “a wide array of disciplines and subfields including machine

learning, statistics, measurement and security, theoretical computer science, law, pol-

icy, philosophy, sociology, and interdisciplinary work touching on many of these fields”

[88]. The 208 FAccT papers generated between 2018-2021 included impactful work, in-

cluding scholarship which anchored the conversation for facial surveillance bans across

the US [43], improved a deployed ML model that was making racially-biased predic-

tions for millions of patients [210], and raised concerns about the un-sustainability of

large language models [22]. The 5 most-cited papers from FAccT, to date, are:

• Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Clas-

sification [43]

• Model Cards for Model Reporting [184]

• Explaining Explanations in AI [187]

• A Comparative Study of Fairness-Enhancing Interventions in Machine Learn-
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ing [89]

• Fairness and Abstraction in Sociotechnical Systems [254]

1.2 Principles vs. Practice

With such a large ecosystem of players, there is a lot of brain power devoted to

exploring the ethics of AI. Perhaps naively one might ask “why don’t we know the

answers yet?” One issue is that many of the available actions available are in setting

policies and cultures/norms. The situations they are applied to are often complex,

where a given policy might have unintended consequences. There is no shortage of

ideas that one could try, but there is a bottleneck on how an idea would play out if

it tried to be executed.

Abstract principles are often deliberately written so as to be acceptable to many

and paper over disagreements. When countries negotiate international standards,

the language is quite vague; the Organisation for Economic Co-operation and De-

velopment (OECD) Principles for Internet Policy Making carefully negotiated rec-

ommendations like “Maximise individual empowerment” and “Promote creativity and

innovation” in order to be agreeable to 34 countries [211]. Who could argue with

promoting creativity and innovation? A main obstacle is that there are too many

frameworks which all say very similar things, and it is unclear which ones are more

useful or how the reader would come to compare them.

In the case of AI Ethics, I contend that we already have an abundance of ideas,

and we need more validation of how those ideas play out in practice. As of December

2021, Algorithm Watch identifies at least 173 AI Ethics Guidelines in their global

inventory. Each set of principles seems reasonable enough, but they are all slightly

different and without some obvious way of identifying what approaches are working

well and which ones are not. Examples of the principles include:

• Microsoft Responsible AI Principles

– Fairness: AI systems should treat all people fairly

– Reliability and Safety: AI systems should perform reliably and safely
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– Privacy and Security: AI systems should be secure and respect privacy

– Inclusiveness: AI systems should empower everyone and engage people

– Transparency: AI systems should be understandable

– Accountability: People should be accountable for AI systems

• New York Times: Seeking Ground Rules for AI

– Transparency: Companies should be transparent about the design, inten-

tion and use of their A.I. technology.

– Disclosure: Companies should clearly disclose to users what data is being

collected and how it is being used.

– Privacy: Users should be able to easily opt out of data collection.

– Diversity: A.I. technology should be developed by inherently diverse teams.

– Bias: Companies should strive to avoid bias in A.I. by drawing on diverse

data sets.

– Trust: Organizations should have internal processes to self-regulate the

misuse of A.I. Have a chief ethics officer, ethics board, etc.

– Accountability: There should be a common set of standards by which com-

panies are held accountable for the use and impact of their A.I. technology.

– Collective Governance: Companies should work together to self-regulate

the industry.

– Regulation: Companies should work with regulators to develop appropriate

laws to govern the use of A.I.

– “Complementarity”: Treat A.I. as tool for humans to use, not a replacement

for human work.

• Google: Responsible AI Practices

– Use a human-centered design approach

– Identify multiple metrics to assess training and monitoring

– When possible, directly examine your raw data

– Understand the limitations of your dataset and model

– Test, Test, Test

– Continue to monitor and update the system after deployment
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• IBM: Principles for Trust and Transparency

– The purpose of AI is to augment human intelligence

– Data and insights belong to their creator

– New technology, including AI systems, must be transparent and explain-

able

• Intel: AI Policy Whitepaper

– Increased automation should not translate to less privacy protection;

– Explainability needs more accountability;

– Ethical data processing is built on privacy;

– Privacy protects who we are (how others see us and how we see ourselves);

– Encryption and de-identifcation help address privacy in AI.

• Philips: Five guiding principles for responsible use of AI in healthcare and

healthy living

– Well-being

– Oversight

– Robustness

– Fairness

– Transparency

• Sony: AI Engagement

– Supporting Creative Life Styles and Building a Better Society

– Stakeholder Engagement

– Provision of Trusted Products and Services

– Privacy Protection

– Respect for Fairness

– Pursuit of Transparency

– The Evolution of AI and Ongoing Education

Many of these seem like fine ideas, but what does it mean to care about fairness,

reliability, safety, privacy, security, inclusiveness, transparency, and accountability all

at once? What happens in a scenario where privacy and fairness might be in tension

with each other, such as wanting to audit an algorithm which requires collecting
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additional data? Facebook claims1 to have “Five Pillars of Responsible AI” which are:

Privacy and Security, Fairness and Inclusion, Robustness and Safety, Transparency

and Control, and Accountability and Governance. However, after a series of scandals,

it does not seem like they’re living up to their stated values of privacy [295], security

[172], fairness [72], or safety [262].

Bamberger and Mulligan [18] studied corporate privacy, and observed the differ-

ence between “privacy on the books” (i.e., what the official rules are) and “privacy on

the ground” (i.e., what is done in practice). This distinction similarly would apply

to these other values as well, even if they have not all been invesitgated as closely as

privacy practices have.

There is a need for examining not just what one says but what they do.

1.3 The Value of Case Studies

In contrast to abstract frameworks, case studies demonstrate how the competing

tensions of different values get resolved. Sometimes actors assert they can achieve

multiple values without a seemingly necessary trade off, but a case study analysis

shows whether that is true “when the rubber meets the road.” Additionally, case

studies are more likely to be useful even if the reader has different values than the

author, because the value-add is not from the answer but from demonstrating what

is interesting about the context of the decision. When frameworks are too abstract

so as to remove that context, they become less useful because there is not guidance

in how (let alone why) to resolve when different values collide.

To illustrate the benefits that case study analysis can contribute to decision-

making, I will use a field my reader is less likely to have much experience or knowledge

in: education policy. This will help simulate how policymakers — with their wide

portfolio of issues to legislate for — often must navigate areas they do not have much

expertise in. I demonstrate how case studies help adjudicate disputes where either

side makes a plausible-sounding argument.

1https://ai.facebook.com/blog/facebooks-five-pillars-of-responsible-ai
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1.3.1 Contextualized Knowledge

Another value of case studies is that they allow one to resolve empirical questions.

For example, the Obama administration upset some of their ideological allies with

their “Race to the Top” program, which incentivized states to change their education

policy, including with reforms which weakened teachers’ unions [41]. The policies in

question did things like expand standardized testing and allow principals to fire bad

teachers more easily. The administration argued that this would help identify which

teachers were hurting students (especially low-income and minority students) and

allow principals to rectify the situation. Teachers unions argued that standardized

tests were ineffective tools for measuring educational outcomes and that these rules

were a corporate-supported attack on unions and the middle class [139].

In the example above, one side says standardized testing will help students and the

other says that it won’t. Who is right? In 2009, the teachers unions (typically “anti-

testing”) worked with the Bill and Melinda Gates Foundation (typically “pro-testing”)

to run a study in 4 districts to pilot programs to study the impact of education

policy reforms. They found that it is not as simple as “tests are always good” or

“tests are always bad” but instead that these reform efforts depend on a lot of other

factors, including “a trust relationship between union and district leaders; a joint

focus on problem solving and learning together; teacher input in program design and

implementation; voluntary participation by teachers; flexibility in program design;

and an overall comprehensive approach to the entire effort” [268].

This more nuanced understanding of what solutions will or will not work allows for

the parties to work towards compromise which respects each of their goals: education

reformers want to ensure racial education gaps are measured and closed whereas

teachers unions want to make sure they have the power to protect their members

from unfair discipline and termination. This consensus-build and persuasion effect is

another benefit of case studies.
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1.3.2 Persuasion and Verifiability

Often times, people disagree because they are talking past each other: they can each

make a plausible argument with enough anecdotes supporting their beliefs. Because

pilots and case studies are able to reality-test those arguments, decision-makers end

up better equipped to understand the actual impacts of a given decision. Sometimes,

the results might even be surprising (e.g., if an education reform advocate thought

standardized testing made intuitive sense but didn’t appreciate the importance of

program implementation). Those instances of unexpected results to empirical ques-

tions can be an effective way for opposing sides to actually come to an agreement

because often times people are not receptive to abstract arguments based on first

principles if they don’t already agree with the conclusion.

In 2019, then-Presidential candidate Kamala Harris put forth a proposal which

both the education reformers and the teachers’ unions were happy with that proposed

increasing teacher salary in order to retain the best teachers and foster a relationship

of trust between schools and teachers [253]. Because there were existing successful

programs to reference, both sides were willing to trust that the proposal was not out

to quielty undermine their values while merely using using the right phrases to pay

lip service to them.

1.4 Evidence-based Medicine

In this section, I look at how the field of medicine has developed “evidence-based

medicine” as a deliberate practice for putting principles to practice. By working with

existing institutions as well as developing new ones, this effort was able to change

medicine’s professional culture and standards. I believe that we can learn from how

this movement was able to align around a framework, and then we can apply some

of those lessons to the new field of AI Ethics.

The field of medicine is thousands of years old, with roots as far back as ancient

Egyptian, Greek, Chinese, and more. The modern era of western medicine began

around the discovery of the smallpox vaccine in the early 1800s [51]. Medicine was

26



notorious for “snake oil”, and the desire to professionalize the field and drive out

the “quacks” motivated the 1847 formation of the American Medical Association [5].

During that time, the AMA created codes of medical ethics for practitioners and

aided the passage of US laws such as the Pure Food and Drug Act in 1906.

The professionalization of medicine has led to vastly improved outcomes for many,

though there is always room for improvement on the path to progress. A 2010

study estimated that only 20% of clinically significant decisions made by doctors

were “[based on] any prior published data and fewer than 3% of decisions were based

on a study specific to the question at hand” [65].

A recent approach towards medical progress is the “Evidence-based Medicine”

(EBM) movement. EBM started around 1990 to promote best practices for clinical

care. The first published instance of the term “evidence-based” was by David Eddy

in a 1990 article in the Journal of the American Medical Association (JAMA) which

laid out the principles of evidence-based guidelines and population-level policies [75].

At a high enough level, everyone would agree that making decisions is better when

based on evidence rather than based on nothing. What distinguishes EBM from

being a tautology is that it emphasizes increased reliance on up-to-date published

research, particularly clinical trials. It argues that because clinical judgment, mech-

anistic reasoning, and authoritative opinion are less reliable, their value should be

down-weighted when designing guidelines of best practices.

Because EBM has been advocating for improvements for the last 30 years, we can

look back on lessons to learn. Sheridan and Julian [260] survey both successes and

limitations of EBM. Some of its successes include contributing to the development

of clinical guidelines, calling for full disclosure of clinical trials, and contributing to

awareness of “overdiagnosis” and campaigns against “Too Much Medicine” [286]. On

the other hand, it has had some limitations, such as over-reliance on clinical trials and

systematic reviews to the detriment of clinical judgment and mechanistic reasoning

in guidelines, encouraging a bias towards “easily measurable” risks to the detriment of

other values such as patient experience and dignity, and exclusively focusing on drugs

and devices to the detriment of other levers such as policy and logistics/delivery.
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Randomized controlled trials are considered to be the strongest form of evidence

despite shortcomings like the unrepresentative-ness of clinical trial subjects (both by

demographics and by the removal of patients with comorbid diseases from trials) and

a conflation between average treatment effect and individual treatment effect.

Nonetheless, there is one thing that EBM has unequivocally done successfully:

align policymakers, educators, and practitioners around a framework for improvement

(namely, itself). A 2009 study of medical schools in the UK found that over half of

them incorporated some training of EBM practices [181]. Additionally, a primary

EBM institution (the Cochrane Collaboration) harnesses the efforts of nearly 40,000

volunteers to produce over 400 systematic reviews of clinical trials per year, which

had almost 4 million downloads in 2010 [260].

1.5 Evidence-based AI Ethics

I am interested in applying some of the lessons of Evidence-based Medicine successes

as well as their critiques. In particular — because we cannot run randomized con-

trolled trials for many AI Ethics questions — I am interested in further examining

the question of what counts as “evidence.”

To address this question, I will employ two complementary frameworks: Data

Feminism and some methodologies from Effective Altruism. Effective Altruism is

an attempt to embody utilitarian ethics, where practitioners try to measure and

optimize which actions are doing the most good for the most number of people. Data

Feminism, on the other hand, comes from intersectional feminism, and applies critical

examination of power. It elevates other forms of knowing, employing ethnographies

and user-centered design practices. These two approaches complement each other

well because utilitarianism tries to maximize an objective, often by playing to the

average, whereas Data Feminism purposefully tries to understand the marginalized

members of a space.
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1.5.1 Effective Altruism

Because EA cultural norms highly value transparency, most organizations publish

their methodologies and decision-making processes. The principal unit of analysis is

trying to understand the counterfactual of a given decision (i.e. attempting to explic-

itly characterize what the impact would be for each choice in a decision). Because

these decisions are analyzed within their given context (e.g. “Should I donate $100 to

the Humane League or the Against Malaria Foundation?”), they measure effectiveness

based on the marginal impact of the choice (i.e. instead of measuring which organi-

zation does more good overall, they would try to understand how each organization

would use that extra $100 and then determine which use results in more good).

GiveWell publishes2 its criteria for evaluating which charities to recommend: ev-

idence for effectiveness, cost-effectiveness, room for more funding, and transparency.

As mentioned above, GiveWell evaluates charities based on the marginal impact of

donating to them (i.e. room for more funding). Both their “evidence for effectivness”

and “transparency” criteria demonstrate their approach to what constitutes “evidence”

and how much they trust it. They published their 2012 criteria3 for assessing any ev-

idence (e.g. awards/recognition/reputation, testimony, broad trends in data, formal

studies) based on relevant reporting effects, attribution, representativeness, and con-

sonance with other observations. For formal studies, they have more formal criteria4

for scrutinizing the evidence, looking for:

• Do they measure attribution with RCTs, instrumental variables, regression dis-

continuity, controlling for confounders, or visual and informal reasoning?

• What are the likely motivations and hopes of the authors?

• Is the paper written in a neutral tone? Do the authors note possible alternate

interpretations of the data and possible objections to their conclusions?

• Is the study preregistered? Does it provide a link to the full details of its

analysis, including raw data and code?

2https://www.givewell.org/how-we-work/criteria
3https://blog.givewell.org/2012/08/17/our-principles-for-assessing-evidence/
4https://blog.givewell.org/2012/08/23/how-we-evaluate-a-study
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• How many outcomes does the study examine, and which outcomes does it em-

phasize in its summary?

• Is the study expensive? Were its data collected to answer a particular question?

• What is the effect size and p-value of the intervention?

In general, they believe “the property of being an RCT is probably the single most

encouraging (easily observed) property a study can have” although “it’s possible that

if preregistration were more common, [they’d] consider preregistration to be a more

important and encouraging property of a study than randomization.”

Relatedly, William MacAskill (an originator of Effective Altruism) focuses on iden-

tifying which causes to prioritize studying [174], as opposed to which charities are

effective within a given cause. The criteria he considers are:

1. Importance: How useful would it be to the world if this problem was solved?

2. Tractability: How much of a difference can you make towards solving this

problem?

3. Neglected-ness: How over-saturated is the space of solutions?

Finally, EA values self-criticism. For instance, GiveWell maintains a list5 of mis-

takes they have made and what they learned from it, including 11 “major” issues and

25 “smaller” issues. Similarly, 80,000 Hours also maintains a list6 of mistakes they

have made and what they’ve learned.

1.5.2 Data Feminism Analysis

In 2020, Professors Lauren Klein and Catherine D’Ignazio published Data Feminism,

a framework for critiquing and doing data science using concepts from the academic

discipline of intersectional feminism [64]. The book challenges the perceived neutrality

of data science, and treats data as a form of power. Inline with its feminist lineage,

the book explores “who?” questions (e.g., data science by who? data science about

who? data science using whose values?). The book is divided into 7 chapters, one

per principle of Data Feminism:

5https://www.givewell.org/about/our-mistakes
6https://80000hours.org/about/credibility/evaluations/mistakes
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1. Examine Power: “[A]nalyz[e] how power operates in the world.”

2. Challenge Power: “[C]halleng[e] unequal power structures and working toward

justice.”

3. Elevate Emotion and Embodiment: “[V]alue multiple forms of knowledge,

including the knowledge that comes from people as living, feeling bodies in the

world.”

4. Rethink Binaries and Hierarchies: “[C]hallenge the gender binary, along

with other systems of counting and classification that perpetuate oppression.”

5. Embrace Pluralism: “[T]he most complete knowledge comes from synthesiz-

ing multiple perspectives, with priority given to local, Indigenous, and experi-

ential ways of knowing.”

6. Consider Context: “[D]ata are not neutral or objective. They are the products

of unequal social relations, and this context is essential for conducting accurate,

ethical analysis.”

7. Make Labor Visible: “The work of data science, like all work in the world, is

the work of many hands. Data feminism makes this labor visible so that it can

be recognized and valued.”

By embracing pluralism and “synthesizing multiple perspectives, with priority

given to local, Indigenous, and experiential ways of knowing,” D’Ignazio and Klein [64]

do not mean ‘everything is equally correct and nothing has meaning’. Feminist scholar

Sandra Harding developed the concepts of feminist objectivity and standpoint theory,

which challenge the notion that there is a “view from God” that can ever be neutral

[113]. Instead, feminist objectivity accounts for the situated nature of knowledge and

brings together multiple “partial perspectives” into a more whole understanding. In

particular, standpoint theory empowers marginalized perspectives to challenge the

dominant view. For instance, a vast majority of scientific studies are conducted by

men using male subjects, but the results are often generalized to women [170]. In

critically analyzing such studies, we would consider the standpoints of the researchers

and cohort with an emphasis on the experience of the marginalized subjects. In

doing so, we are able to learn from the ones who might most acutely experience the
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implications of a given design choice.

The third principle of Data Feminism calls for elevating emotion and embodiment.

This is somewhat at odds with one of the criteria GiveWell used for evaluating studies

in the Effective Altruism framework: “Is the paper written in a neutral tone? Do the

authors note possible alternate interpretations of the data and possible objections

to their conclusions?” Whereas GiveWell is looking for presented neutrality as an

indication that the study is not putting a “thumb on the scale” towards a given result,

Data Feminism would suggest that those are two separate dimensions of analysis: 1)

no study is truly objective; but 2) conflicts of interest should be taken very seriously.

In adjudicating conflicts of interest, DF offers strong critiques of how money and

power influence the creation of classification systems and how structures encode val-

ues. For instance, Facebook allows users to identify as non-binary on the surface but

it still internally categorizes them as a binary gender for determining what advertise-

ments to display (because their revenue comes from ads) [26]. This example illustrates

that incentives inseparably shape the way systems and studies are designed.

In further considering the context of a data creation process, we are also reminded

of the “paradox of exposure” in which marginalized members might prefer to remain

invisible to their oppressors. For instance, in 2019, there was a Republican-led effort

to add a citizenship question to the US Census [306]. Unauthorized immigrants,

fearing the risk of deportation if they were counted, were less likely to complete

their census, and were under-counted in the allocation of political representation and

financial assistance. By explicitly considering the influence of power on marginalized

data subjects, we can examine potential sources of missing data in a study. This also

reinforces the seventh principle of Data Feminism: make labor visible. By uncovering

some of the invisible work, you can see some of the biases of the invisible forces which

generated the data.

Both EA and Data Feminism call out the difficulty in conveying uncertainty.

Whereas EA scrutinizes p-values, DF looks for the ways in which the work uses tools

for emotional impact, such as dynamic or stochastic visualizations. Much like how

GiveWell would look for neutral tone as an indication of the work’s competence, a
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data feminist might keep an eye out for how effective the work is at incorporating

affect into the visualization.

1.5.3 Putting it Together

Taking elements from these two frameworks, I plan to describe five case studies and

analyze them to understand their impact.

Because these case studies are my own, I will be able to make the labor visible

more easily than one would be able to do from an outside perspective. This can help

clarify the context the work was created in and allow for a discussion of potential

conflicts of interest or areas of scrutiny.

In examining what constitutes “evidence” I will consider the project’s “outputs”

(e.g., published papers, influence on the field, citations, number of reproductions /

github forks, estimates of patients impacted), environment (e.g., estimate of likeli-

hood similar work would be publsihed by others) and “inputs” (e.g., project team

discussions, conflicts of interests, initial hypothesis).

1.6 Chapters

In this thesis, I hope to demonstrate a case study-oriented approach forward for AI

Ethics. Chapters 2–6 describe five case studies in AI Ethics and analyze them with

the frameworks above (Data Feminism and Effective Altruism). In the final chapter, I

zoom out to discuss how the contributions of this thesis (the need for and methodology

of case study analysis) fits into the broader consensus-building required for the new

field of AI Ethics.
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Chapter 2

Radiology Report Generation

In this chapter, I describe a case study where computer scientists provided a technical

contribution to a research question. By working with clinicians to understand a

problem and design a solution, this demonstrates one opportunity for the value that

data scientists can bring to interdisciplinary problems. Using advanced deep learning

techniques, we build a state-of-the-art radiology report generation model.

In Chapter 3, I demonstrate the importance and challenges of deeply evaluating

the quality of such generated reports, which is an essential piece of the pipeline of

technological innovation.

This work was done in collaboration with Guanxiong Liu, Tzu-Ming Harry Hsu,

Matthew McDermott, Wei-Hung Weng, Peter Szolovits, and Marzyeh Ghassemi [168].

2.1 Problem Definition

Radiology is a medical discipline that uses medical imaging to diagnose and treat

diseases. Using imaging techniques like X-Rays, CT, MRI, and ultrasound, radi-

ologists are able to measure what is ailing their patients. Typically, a patient has

a non-radiologist clinician (e.g., primary care, emergency medicine, intensivist, etc)

that orders radiology exams to better understand the patient’s problems. A radiolo-

gist then performs the imaging and writes a report to communicate their findings to

the ordering physician. These reports are often a critical piece of the patient’s care,
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Figure 2-1: Synthetic example of a deidentified radiology report in MIMIC.

informing whether there are any diagnoses to confirm or rule out.

Like all processes involving humans, radiological practices have some variation that

leads to errors and discrepancies in their findings. Limitations such as fatigue and

cognitive biases can inhibit intended performance, as demonstrated by the “gorilla

effect.” The gorilla effect (also called “tunnel vision” or “inattentional bias”) was

named for a famous study in which 83% of radiologists were so focused on searching

for lung nodules in a thorax CT that they failed to notice that an image of a gorilla

(48 times the size of the average nodule) was inserted in the last case that was

presented [70]. Some studies estimate radiology studies have a real-time day-to-day

radiologist error rate average of 3-5% [212, 40]. These errors and discrepancies offer

an opportunity for machine learning to improve upon the status quo. Although ML

is not a silver bullet that will fix every problem, it does have specific qualities that

it can do well, including performing tasks very quickly and performing tasks with

consistency. These aspects allow ML to operate at scale, without getting tired, and

with measures to mitigate known biases.
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A written radiology report typically consists of sections such as history, examina-

tion reason, findings, and impressions. As shown in Figure 2-1, the findings section

contains a sequence of positive, negative, or uncertain mentions of either disease obser-

vations or instruments including their detailed location and severity. The impression

section, by contrast, summarizes diagnoses considering all report sections above and

previous studies on the patient.

The recent release of many Chest X-Ray datasets has prompted a lot of interest

in radiology report generation. Whereas the impression section is meant to be a

summarization of the relevant takeaways (given the context, reason for exam, etc.),

the findings section is merely meant to convey the factual observations without too

much interpretation. Because that would make for a more consistent starting point,

automatic report generation has typically been framed as an image captioning task

as shown in Figure 2-2, where the machine takes an image of the X-Ray as input and

generates the findings section of the radiology report.

2.2 Related Work

2.2.1 Radiology Report Generation

In the last five years, there has been a large increase in the number of Chest X-Ray

datasets available for deep learning structured prediction tasks. In 2017, NIH released

ChestX-ray8, containing 109,000 frontal X-Ray images where 8 labels were extracted

using NLP on non-public radiology reports [299]. In 2019, Stanford and MIT jointly

Figure 2-2: Radiology report generation as an image captioning task.
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released CheXpert and MIMIC-CXR-JPG, respectively, which collectively totalled

450,000 images annotated with the same 14 labels derived from the CheXpert tool

[127, 133] The following year, Stanford released CheXphoto, a subset of the CheX-

pert photos and labels where the images are real-world camera pictures of the image

rendered on a screen [127]. In 2021, researchers from Vietnamese hospitals released

VinDr-CXR, a 100,000 Chest X-Ray images with 28 labels [201].

It has been more rare to find datasets which make the corresponding radiology

reports available to accompany the images. Indiana University released a public Chest

X-Ray dataset on Open-I containing 7,000 images and 4,000 reports [67]. The year

after MIMIC-CXR-JPG’s release, MIT released MIMIC-CXR, which made available

the reports for nearly 250,000 radiographic studies [133]. Additionally, PadChest

is a public dataset of 160,000 Chest X-Rays along with both structured labels and

radiology reports in Spanish [45].

There have been numerous recent attempts to generate reports for X-Ray studies.

Gale et al. [91] trained an RNN on templated source data to be able to produce a text

description of their structured predictions for pelvic X-Rays. Hsu et al. [122] learned a

joint representation for reports and Chest X-Ray images through unsupervised align-

ment of cross-modal embedding spaces. Zhang et al. [321] use text-based descriptions

of patient clinical history, exam technique, prior exam, and radiology findings section

to generate a short summary of the radiology impressions section. Wang et al. [300]

used a CNN-RNN architecture with attention to generate reports that describe Chest

X-Rays. Jing, Xie, and Xing [131] use a CNN to encode the Chest X-Ray image and

a hierarchical LSTM with attention to decode it into a written report. Li et al. [162]

generated Chest X-Ray reports using reinforcement learning to tune a hierarchical

decoder that chooses (for each sentence) whether to use an existing template or to

generate a new sentence, optimizing for language fluency metrics.

2.2.2 Deep Learning and Image Captioning

As the deep learning revolution started taking form in 2012–2014, one of the first big

tasks for image captioning was from the Microsoft COCO dataset [165]. For a given
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image, generate a readable, accurate, and linguistically correct caption. This task has

received significant attention with the success of Show and Tell [293] and its followup

Show, Attend, and Tell [312]. Due to the leaderboard-style COCO competition, other

works quickly emerged showing strong results: Yao et al. [317] used boosting meth-

ods, Lu et al. [171] employed adaptive attention, and Rennie et al. [240] introduced

reinforcement learning as a method for fine-tuning generated text. Devlin et al. [68]

performed surprisingly well using a 𝐾-nearest neighbor method. They observed that

since most of the true captions were simple, one-sentence scene descriptions, there

was significant redundancy in the dataset.

Within the last few years, many have explored the very impressive results of deep

learning for text generation. Graves [103] outlined best practices for RNN-based

sequence generation. The following year, Sutskever, Vinyals, and Le [278] introduced

the sequence-to-sequence paradigm for machine translation and beyond. However,

Wiseman, Shieber, and Rush [308] demonstrated that while RNN-generated texts are

often fluent, they have typically failed to reach human-level quality.

Recent efforts have also begun employing reinforcement learning due to its capa-

bility to optimize for indirect target rewards, even when the targets themselves are

often non-differentiable. Li et al. [161] used a crafted combination of human heuris-

tics as the reward while Bahdanau et al. [17] incorporated language fluency metrics.

They were among the first to apply such techniques to neural language generation, but

to date, training with log-likelihood maximization [309] has been the main working

horse.

Alternatively, Rajeswar et al. [233] and Fedus, Goodfellow, and Dai [84] have tried

using Generative Adversarial Neural Networks (GANs) for text generation. However,

Caccia et al. [46] observed problems with training GANs and show that to date, they

are unable to beat canonical sequence decoder methods.
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2.3 Model Design

This work focuses on generating a clinically useful radiology report from a Chest X-

Ray image. This task has been explored multiple times, but directly transplanting

natural language generation techniques onto this task only trains the model to produce

reports that look real rather than ones that are clinically correct. A more immediate

focus for the report generation task is thus to produce accurate disease profiles to

power downstream tasks such as diagnosis and care providing.

Many traditional image captioning approaches are designed to produce far shorter

and less complex pieces of text than radiology reports. Further, these approaches do

not capitalize on the highly templated nature of radiology reports. Additionally,

generic natural language generation (NLG) methods prioritize descriptive accuracy

only as a byproduct of readability, whereas providing an accurate clinical description

of the radiograph is the first priority of the report. Prior works in this domain have

partially addressed these issues, but significant gaps remain towards producing high-

quality reports with maximal clinical efficacy.

In this section, I describe our model design in two steps. In subsection 2.3.1, I

describe the model architecture. In subsection 2.3.2, I describe a technical improve-

ment to the system motivated by clinical considerations. To summarize briefly the

process depicted in Figure 2-3:

1. The model encodes the Chest X-Ray image as a fixed-dimensional embedding.

2. The image embedding is decoded into a sequence of unconstrained “topic vec-

tors” by a sentence-level LSTM.

3. Each “topic vector” is decoded into a sequence of words by a word-level LSTM,

using attention over the original image.

4. The model is optimized using reinforcement learning in order to maximize both

a traditional natural language generation score (CIDEr [291]) and a clinical

accuracy score (CheXpert [127]).
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Figure 2-3: The model for clinically-accurate report generation.

2.3.1 CNN-RNN-RNN Model Architecture

As illustrated in Figure 2-3, we aim to generate a report as a sequence of sentences

Z = (z1, ..., z𝑀), where 𝑀 is the number of sentences in a report. Each sentence

consists of a sequence of words z𝑖 = (𝑧𝑖1, ..., 𝑧𝑖𝑁𝑖
) with words from a vocabulary

𝑣𝑖𝑗 ∈ V, where 𝑁𝑖 is the number of words in sentence 𝑖.

The image is fed through the image encoder CNN to obtain a visual feature map.

The feature is then taken by the sentence decoder RNN to recurrently generate vectors

that represent the topic for each sentence. With the visual feature map and the topic

vector, a word decoder RNN tries to generate a sequence of words and attention maps

of the visual features. This hierarchical approach is in line with Krause et al. [155]

where they generate descriptive paragraphs for an image.

Image encoder CNN The input image 𝐼 is passed through a CNN head to obtain

the last layer before global pooling, and the feature is then projected to an embed-

ding of dimensionality 𝑑, which is identical to the word embedding dimension. The

resulting map V = {v𝑘}𝐾𝑘=1 of spatial image features will be descriptive features for

different spatial locations of an image. A mean visual feature is obtained by averaging

all local visual features

v̄ =
1

𝐾

∑︁
𝑘

v𝑘 (2.1)
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Sentence decoder RNN Given the mean visual feature v̄, we adopt Long Short-

Term Memory (LSTM) and model the hidden state as

h𝑖,m𝑖 = LSTM(v̄;h𝑖−1,m𝑖−1), (2.2)

where h𝑖−1 and m𝑖−1 are the hidden state vector and the memory vector for the

previous sentence (𝑖− 1) respectively. From the hidden state h𝑖, we further generate

two components, namely the topic vector 𝜏 𝑖 and the stop signal 𝑢𝑖 for the sentence,

as

𝜏 𝑖 = ReLU(W⊤
𝜏 h𝑖 + b𝜏 ) (2.3)

𝑢𝑖 = 𝜎(w⊤
𝑢 h𝑖 + 𝑏𝑢) (2.4)

where W’s and b’s are trainable parameters, and 𝜎 is the sigmoid function. The stop

signal acts as as the end-of-sentence token. When 𝑢 > 0.5, it indicates the sentence

decoder RNN should stop generating the next sentence.

Word decoder RNN After we decode the sentence topics, we can start to decode

the words given the topic vector 𝜏 𝑖. For simplicity, we drop the subscript 𝑖 as this

process applies to each sentence. We adopted the visual sentinel [171] that modulates

the feature map V with a sentinel vector. This formulation enables the model to look

at different parts on the image while having the option of “looking away” at a sentinel

vector. The hidden states and outputs are again modeled with LSTM, generating

the posterior probability p𝑗 over the vocabulary with (1) the mean visual feature

v̄, (2) the topic vector 𝜏 , and (3) the embedding of the previously generated word

e𝑗−1 = E𝑧𝑗−1
, where E ∈ R𝑑×|V| is the trainable word embedding matrix. At training

time, the next word is sampled from the probability 𝑧𝑗 ∼ 𝑝(𝑧 | ·) = (p𝑗)𝑧, or the 𝑧-th

element of p𝑗.

We calculate the sentinel vector s𝑗, the attention over the 𝐾 regions of the images

and the sentinel gate 𝛼̂𝑗, the mixture context vector ĉ𝑗, and the probability p𝑗 over
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the vocabulary as

h𝑗, s𝑗,m𝑗 = LSTM([v̄, 𝜏 , e𝑗−1];h𝑗−1,m𝑗−1) (2.5)

𝛼𝑗 = w⊤
𝛼 tanh

(︀[︀
W⊤

𝑣𝛼V,W⊤
𝑠𝛼s𝑗

]︀
+
(︀
W⊤

ℎ𝛼h𝑗

)︀
1⊤)︀ (2.6)

𝛼̂𝑗 = softmax (𝛼𝑗) (2.7)

ĉ𝑗 = [V, s𝑗]𝛼̂𝑗 (2.8)

p𝑗 = softmax
(︀
W⊤

𝑝 (ĉ𝑗 + h𝑗)
)︀
, (2.9)

where h𝑗−1 and m𝑗−1 again are the hidden state vector and the memory vector for

the previous step, W’s are weights to be learned. (·, ·) denotes matrix concatenation,

and 1 denotes a vector of all one’s. Note that this hierarchical encoder-decoder CNN-

RNN-RNN architecture is fully differentiable.

We observed our model to sometimes repeat the findings multiple times. We

apply post-hoc processing where we remove exact duplicate sentences in the generated

reports. This proves to improve the readability but interestingly slightly degrades

NLG metrics.

Full implementation details, including layer sizes, training details, etc., are pre-

sented in the Appendix A.

2.3.2 Clinical Coherence

One major downside with the approach outlined so far is that traditional objective

functions would prioritize generating output that looks good but fails to distinguish

between reports that are factually correct (e.g. “pleural effusion is present”) and

factually incorrect (e.g. “pleural effusion is not present”). Negative judgments on

diseases are critical components of the reports; the ordering physician cares much

more about getting the correct information than they do about the readability.

To measure the clinical correctness of a given report, we use the CheXpert sentence

labeler, which is a rule-based system that extracts 14 categories1 of key findings from

112 types of thoracic diseases or X-Ray related diagnoses, the presence of support devices, and
“no finding”.
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a report. By feeding both the generated text and the associated image’s reference

report to CheXpert, we are able to identify which findings were correctly identified, as

well as false positive and false negative findings. Although the labeler does require a

baseline level of grammaticality, this evaluation largely ignores readability or marginal

increases in grammaticality.

Because naively optimizing with cross entropy or traditional language models

may misguide the model to mention only the disease names as opposed to correctly

positively/negatively describe the disease states, we incorporate CheXpert directly

into the model’s objective function. Because CheXpert is not differentiable with

respect to the model parameters, we demonstrate how reinforcement learning can

propagate the clinical signal to the model. We propose training the model with this

CheXpert-derived “Clinically Coherent Reward” (CCR).

We consider the case of self-critical sequence training (SCST) [240] which utilizes

the REINFORCE [305] algorithm, and minimize the negative expected reward as a

function of the network parameters 𝜃, as

ℒNLG(𝜃) = −E(𝑢,Z)∼𝑝𝜃(𝑢,Z)[𝑟NLG(Z,Z
*)− 𝑟NLG(Z

𝑔,Z*)], (2.10)

where 𝑝𝜃 is the distribution over output spaces, 𝑟NLG is a metric evaluation function

acting as a reward function that takes a sampled report Z and a ground truth report

Z*. The baseline in SCST has been replaced with the reward obtained with testing

time greedily decoded report Z𝑔.

For each label type 𝑡 in CheXpert, there are four possible outcomes for the labeling:

(1) positive, (2) negative, (3) uncertain, or (4) absent mention; or, 𝑙𝑡(Z) ∈ {p, n, u, a}.
This outcome can be used to model the positive/negative disease state 𝑠𝑡 ∈ {+,−}
as 𝑠𝑡 ∼ 𝑝𝑠|𝑙(·|𝑙𝑡(Z)), the value of which will be discussed further later. CCR is then

defined, dropping the subscripts for distribution for convenience, as

𝑟CCR(Z,Z
*) =

∑︁
𝑡

𝑟CCR,𝑡(Z,Z
*) ≡

∑︁
𝑡

∑︁
𝑠∈{+,−}

𝑝(𝑠|𝑙𝑡(Z)) · 𝑝(𝑠|𝑙𝑡(Z*)), (2.11)

aiming to maximize the correlation of distribution over disease states between the
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generated text Z and the ground truth text Z*. Unfortunately, as the true diagnostic

state 𝑠 of novel reports is unknown, we need to make several assumptions regarding the

performance of the rule based labeler, allowing us to infer the necessary conditional

probabilities 𝑝(𝑠|𝑙).

To motivate these assumptions, first note that these diseases are universally rare,

or, 𝑝(+) ≪ 𝑝(−). Presuming the rule based labeler has any discriminative power,

we can thus conclude that if the labeler assigns a negative or an absent label (𝑙− is

one of {n, a}), 𝑝(+|𝑙−) < 𝑝(+) ≪ 𝑝(−) < 𝑝(−|𝑙−). For sufficiently rare conditions,

a reasonable assumption and simplification is to therefore take 𝑝(+|𝑙−) ≈ 0 and

𝑝(−|𝑙−) ≈ 1. We further assume that the rule based labeler has a very high precision,

and thus 𝑝(+|p) ≈ 1. However, given an uncertain mention u, the desired output

probabilities are difficult to assess. As such, we define a reward-specific hyperparam-

eter 𝛽u ≡ 𝑝(+|u), which in this work we take to be 0.5. All of these assumptions

could be easily adjusted, but they perform well for us here.

We also wish to use a baseline for the reward 𝑟𝐶𝐶𝑅. Instead of using a single

exponential moving average (EMA) over the total reward, we apply EMA separately

to each term as

ℒ𝐶𝐶𝑅(𝜃) = −E(𝑢,Z)∼𝑝𝜃(𝑢,Z)

[︃∑︁
𝑡

𝑟𝐶𝐶𝑅,𝑡(Z,Z
*)− 𝑟𝐶𝐶𝑅,𝑡

]︃
, (2.12)

where 𝑟𝐶𝐶𝑅,𝑡 is an EMA over 𝑟𝐶𝐶𝑅,𝑡 updated as

𝑟𝐶𝐶𝑅,𝑡 ← 𝛾𝑟𝐶𝐶𝑅,𝑡 + (1− 𝛾)𝑟𝐶𝐶𝑅,𝑡(Z,Z
*) (2.13)

We wish to pursue both semantic alignment and clinical coherence with the ground

truth report, and thus we combine the reinforcement learning rewards for CheXpert

(clinical correctness, i.e. “CCR”) and CIDEr (readability, i.e. “NLG”) in a weighted

fashion. Specifically, ℒ(𝜃) = ℒNLG(𝜃) + 𝜆ℒ𝐶𝐶𝑅(𝜃), where 𝜆 controls the relative

importance.
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Hence the derivative of the combined loss with respect to 𝜃 is thus

∇𝜃ℒ(𝜃) = −E(𝑢,Z)∼𝑝𝜃(𝑢,Z)

⎡⎣[𝑟NLG(Z,Z
*) + 𝜆𝑟CCR(Z,Z

*)]∇𝜃

∑︁
𝑖

⎛⎝log 𝑢𝑖 +
∑︁
𝑗

log (p𝑖𝑗)𝑧𝑖𝑗

⎞⎠⎤⎦,
(2.14)

where p𝑖𝑗 is the probability over vocabulary. We can approximate the above gradient

with Monte-Carlo samples from 𝑝𝜃 and average gradients across training examples in

the batch.

2.4 Methodology

2.4.1 Data

In this work, we use two Chest X-Ray datasets: MIMIC-CXR [133] and Open-I [67].

MIMIC-CXR is the largest radiology dataset to date and consists of 473, 057

Chest X-Ray images and 206, 563 reports from 63, 478 patients2. Among these im-

ages, 240, 780 are of anteroposterior (AP), 101, 379 are of posteroanterior (PA), and

116, 023 are of lateral (LL) views. Furthermore, we eliminate duplicated radiograph

images with adjusted brightness level or contrast as they are commonly produced for

clinical needs, after which we are left with 327, 281 images and 141, 783 reports. The

radiological reports are parsed into sections, among which we extract the findings

section. We then apply tokenization and keep tokens with at least 5 occurrences in

the corpus, resulting in 5, 571 tokens in total.

Open-I is a public radiography dataset collected by Indiana University with 7, 471

Chest X-Ray images and 3, 955 reports. The reports are in XML format and include

pre-parsed sections. We then exclude the entries without the findings section and are

left with 6, 471 images and 3, 336 reports. Tokenization is done similarly, but due to

the relatively small size of the corpus, we keep tokens with 3 or more occurrences,

ending up with 948 tokens.

2This work used an alpha version of MIMIC-CXR instead of the publicly released version where
the images are more standardized and split into official train/test sets.

46



Both datasets are partitioned by patients into a train/validation/test ratio of

7/1/2 so that there is no patient overlap between sets. Words that are excluded were

replaced by an “unknown” token, and the word embeddings are pretrained separately

for each dataset.

2.4.2 Models

We compare our methods with state-of-the-art image captioning and medical report

generation models as well as some simple baseline models:

• 1-NN, in which we query in the image embedding space for the closest neighbor

in the train set. The corresponding report of the neighbor is used as the output

for this test image;

• Show and Tell (S&T) [293];

• Show, Attend, and Tell (SA&T) [312]; and

• TieNet [300].

To allow comparable results in all models, we slightly modify previous models

to also accept the view position embedding which encodes AP/PA/LL as a one-hot

vector to utilize the extra information available at image acquisition. This includes

Show and Tell, Show, Attend, and Tell, and our re-implementation of TieNet, which

is detailed in Appendix A.2 because the authors did not release their code.

Additionally, we train a baseline LSTM which generates free text without condi-

tioning on input radiograph images, which we denote as Noise-RNN. The purpose of

this model is to serve as a sanity check by contextualizing how easy/hard this task is

(e.g., report complexity, report variance, sensitivity of evaluation metrics, etc.).

To evaluate our model, we perform several ablation studies to inspect the contri-

bution of various components of our model. In particular, we assess

• Ours (NLG): Use 𝑟𝑁𝐿𝐺 only for reinforced learning, as often is the case with

the prior state-of-the-art.

• Ours (CCR): Use 𝑟𝐶𝐶𝑅 only and do not care about aligning the natural language

metrics.

• Ours (full): Considers both rewards.
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All recurrent models, including prior works and our models, use beam search with

a beam size of 4.

2.4.3 Evaluation

To compare with other models including prior state-of-the-art and baselines, we adopt

several different metrics that focus on different aspects ranging from a natural lan-

guage perspective to clinical adequacy.

There are a number of evaluation metrics for text generation approaches, such as

BLEU [221], CIDEr [291], METEOR [19], ROUGE [163], and SPICE [9]. Even in the

general domain, these metrics have known shortcomings related to their propensity

for favoring surface-level similarity in texts [32] and exhibiting weak correlations with

human judgment [48]. Nonetheless, there are likely to be shortcomings with any

automatic method, and researchers need some standardized metrics. Wang et al.

[300] employ BLEU, METEOR, and ROUGE; Xu et al. [311] evaluate with BLEU-

4, METEOR, and CIDEr; Gale et al. [91] use BLEU; the COCO leaderboard uses

BLEU, METEOR, ROUGE and CIDEr. In this work, we use BLEU and ROUGE

— two of the oldest and most widespread metrics — and CIDEr — a more recently

developed metric which has intitutive design and stronger demonstrated correlation

with annotations [291]

One concern with such statistical measures is that with a limited scope from

the 𝑛-grams (𝑛 up to 4) we are unable to capture disease states, as previously dis-

cussed in Section 2.3.2. As such, we also include CheXpert-derived scores as metrics.

Specifically, we compare the generated text to the reference text to compute the true

positives, false positives, and false negatives. With this, we then derive the accuracy

and precision of the generated text.
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Model Natural Language Clinical

CIDEr ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 Accu-
racy

M
IM

IC
-C

X
R

Major Class - - - - - - 0.828
Noise-RNN 0.716 0.272 0.269 0.172 0.113 0.074 0.803
1-NN 0.755 0.244 0.305 0.171 0.098 0.057 0.818
S&T 0.886 0.300 0.307 0.201 0.137 0.093 0.837
SA&T 0.967 0.288 0.318 0.205 0.137 0.093 0.849
TieNet 1.004 0.296 0.332 0.212 0.142 0.095 0.848
Ours (NLG) 1.153 0.307 0.352 0.223 0.153 0.104 0.834
Ours (CCR) 0.956 0.284 0.294 0.190 0.134 0.094 0.868
Ours (full) 1.046 0.306 0.313 0.206 0.146 0.103 0.867

O
p
en

-I

Major Class - - - - - - 0.911

Noise-RNN 0.747 0.291 0.233 0.130 0.087 0.061 0.914
1-NN 0.728 0.201 0.232 0.116 0.051 0.018 0.911
S&T 0.926 0.306 0.265 0.157 0.105 0.073 0.915
SA&T 1.276 0.313 0.328 0.195 0.123 0.080 0.908
TieNet 1.334 0.311 0.330 0.194 0.124 0.081 0.902
Ours (NLG) 1.490 0.359 0.369 0.246 0.171 0.115 0.916
Ours (CCR) 0.707 0.244 0.162 0.084 0.055 0.036 0.917
Ours (full) 1.424 0.354 0.359 0.237 0.164 0.113 0.918

Table 2.1: Automatic Evaluation Scores. The table is divided into natural language
metrics and clinical finding accuracy scores. BLEU-𝑛 counts up 𝑛-gram for evaluation, and
accuracy is the averaged macro accuracy across all clinical findings. Major class always
predicts negative findings.

49



2.5 Results

2.5.1 Quantitative Results

Overall Model Performances Table 2.1 shows a comprehensive assessment for

baseline models, prior works, and variants of our model, evaluated using BLEU,

ROUGE, CIDEr, and CheXpert accuracy.

The Noise-RNN baseline establishes the floor of “completely unremarkable perfor-

mance” for each metric. This can be very useful for trying to suss out how impressive

a given model’s performance is. For instance, we can see that the 1-NN model was

virtually on par with Noise-RNN, suggesting that unlike COCO (with sentence com-

plexity “A car parked in front of a building”), radiology reports are much more complex

and far less interchangeable.

We see that, as expected, Show and Tell performs marginally worse than Show,

Attend, and Tell, which in turn performs very similarly to TieNet. Additionally, our

full model outperforms those prior works.

The ablation study demonstrates that when we exclusively optimise for CIDEr,

our model does the best on NLG metrics, at the expense of clinical accuracy. Similarly,

when we exclusively optimize for CheXpert correctness, our model does the best on

CheXpert metrics, at great expense to performance on natural language metrics. The

full model is able to maintain the strong performance on clinical correctness as the

CCR-only model while still enjoying large gains in natural language metrics.

Clinical Efficacy In Table 2.2 we examine the clinical correctness performance

more closely. Because the labeling process generates discrete binary labels as opposed

to predicting continuous probabilities, we are unable to obtain discriminative metrics

such as the Area Under the Receiver Operator Characteristic (AUROC). Recognizing

that accuracy is not a good metric and that there may be noteworthy trends across

the 14 labels, we report per-label and aggregate CheXpert precision.

Our model achieves the best aggregate precision; the full version outperforms all

other baselines and prior work, and when we optimize for CCR exclusively, we achieve
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Label Count 1-NN S&T SA&T TieNet Ours
(NLG)

Ours
(CCR)

Ours
(full)

M
IM

IC
-C

X
R

Total 69,031 - - - - - - -
Support Devices 22,227 0.534 0.823 0.847 0.827 0.794 0.849 0.880
Airspace Opacity 21,972 0.432 0.607 0.592 0.571 0.453 0.640 0.460
Cardiomegaly 19,065 0.440 0.535 0.438 0.464 0.000 0.678 0.704
Atelectasis 16,161 0.374 0.490 0.496 0.470 0.385 0.476 0.521
No Finding 15,677 0.432 0.299 0.349 0.339 0.339 0.491 0.405
Pleural Effusion 15,283 0.534 0.550 0.545 0.735 0.487 0.683 0.689
Edema 6,594 0.265 0.331 0.244 0.405 0.266 0.280 0.000
Enlarged
Cardiomediastinum 6,064 0.123 0.134 0.163 0.179 0.180 0.202 0.167

Pneumonia 3,068 0.065 0.106 0.091 0.082 0.075 0.000 0.400
Pneumothorax 2,636 0.079 0.034 0.095 0.081 0.081 0.039 0.098
Fracture 2,617 0.059 0.000 0.000 0.000 0.000 0.000 0.000
Lung Lesion 2,447 0.064 0.333 0.223 0.000 0.000 0.000 0.000
Consolidation 2,384 0.076 0.013 0.180 0.151 0.089 0.037 0.000
Pleural Other 1,285 0.039 0.000 0.103 0.000 0.000 0.000 0.000
Precision (macro) 0.253 0.304 0.312 0.307 0.225 0.313 0.309
Precision (micro) 0.383 0.414 0.430 0.473 0.419 0.634 0.586

Table 2.2: Clinical Finding Scores. The precision scores for each of the labels are listed
and aggregated into the overall precision scores. Macro denotes averaging the numbers in the
table directly and micro accounts for class prevalence. Rows are ordered by class prevelance.

even higher performance. We notice that the higher-performing models (full, CCR,

and TieNet to some extent) perform very well on highly prevelant tasks, and have

precisions of 0.0 on very rare labels. The poorly-performing models (1-NN, S&T

to some extent) perform marginally better on the low-prevelance labels but notably

worse on the common labels.

2.5.2 Qualitative Results

Evaluation of Generated Reports Table 2.3 demonstrates the qualitative results

of our full model. In general, our models are able to generate descriptions that align

with the logical flow of reports written by radiologists, which start from general infor-

mation (such as views, previous comparison), positive, then negative findings, with

the order of lung, heart, pleura, and others. TieNet also generates report descriptions

with such logical flow but in slightly different orders. For the negative findings cases,

both our model and TieNet do well on generating reasonable descriptions without

significant errors. Regarding the cases with positive findings, TieNet and our full
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Ground Truth TieNet Ours (full)

cardiomegaly is moderate. bibasilar
atelectasis is mild. there is no
pneumothorax. a lower cervical spinal
fusion is partially visualized. healed right
rib fractures are incidentally noted.

ap portable upright view of the
chest. there is no focal
consolidation, effusion, or
pneumothorax. the
cardiomediastinal silhouette is
normal. imaged osseous
structures are intact.

pa and lateral views of the
chest. there is mild
enlargement of the cardiac
silhouette. there is no
pleural effusion or
pneumothorax. there is no
acute osseous
abnormalities.

as compared to the previous radiograph,
the monitoring and support devices are
unchanged. unchanged bilateral pleural
effusions, with a tendency to increase, and
resultant areas of atelectasis. the air
collection in the bilateral soft tissues is
slightly decreased. unchanged right picc
line. no definite evidence of pneumothorax.

as compared to the previous
radiograph, the patient has
received a nasogastric tube. the
course of the tube is
unremarkable, the tip of the tube
projects over the middle parts of
the stomach. there is no evidence
of complication, notably no
pneumothorax. the other
monitoring and support devices
are constant. constant
appearance of the cardiac
silhouette and of the lung
parenchyma.

as compared to the previous
radiograph, there is no
relevant change.
tracheostomy tube is in
place. there is a layering
pleural effusions. NAME
bilateral pleural effusion
and compressive atelectasis
at the right base. there is
no pneumothorax.

the course of the dobbhoff feeding catheter
is unremarkable, and its tip is seen
projecting over the stomach. there is no
evidence of complications, specifically no
pneumothorax. as compared to the prior
radiograph dated DATE, there has been no
other significant interval change.

ap portable upright view of the
chest. overlying ekg leads are
present. there is no focal
consolidation, effusion, or
pneumothorax. the
cardiomediastinal silhouette is
normal. imaged osseous
structures are intact.

as compared to the previous
radiograph, there is no
relevant change. the
endotracheal tube
terminates approximately 3
cm above the NAME. the
endotracheal tube extends
into the stomach. there is
no evidence of
complications, notably no
pneumothorax. there is no
pleural effusion or
pneumothorax.

interval placement of a left basilar pigtail
chest tube with improving aeration in the
left mid to lower lung and near complete
resolution of the pleural effusion. there are
residual patchy opacities within the left
mid and lower lung as well as at the right
base favoring resolving atelectasis. no
pneumothorax. heart remains stably
enlarged. mediastinal contours are stably
widened, although this NAME be related to
portable technique and positioning. this
can be better evaluated on followup
imaging. no pulmonary edema.

as compared to the previous
radiograph, the patient has been
extubated. the nasogastric tube
is in unchanged position. the
lung volumes remain low.
moderate cardiomegaly with
minimal fluid overload but no
overt pulmonary edema. no larger
pleural effusions. no pneumonia.

ap upright and lateral views
of the chest. there is
moderate cardiomegaly.
there is no pleural effusion
or pneumothorax. there is
no acute osseous
abnormalities.

Table 2.3: Sample images along with ground truth and generated reports. Note
that upper case tokens are results of anonymization.
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model both cannot identify all radiological findings. Our full model is able to identify

the major finding in each demonstrated case. For example, cardiomegaly in the first

case, pleural effusion and atelectasis in the second case.

A formerly practicing clinician co-author reviewed a larger subset of our generated

reports manually. They drew several conclusions. First, our full model tends to gen-

erate sentences related to pleural effusion, atelectasis, and cardiomegaly correctly—

which is aligned with the clinical finding scores in Table 2.2. TieNet instead misses

some positive findings in such cases. Second, there are significant issues in all gen-

erated reports, regardless of the source model, which include the description of sup-

portive lines and tubes, as well as lung lesions. For example, TieNet is prone to

generate nasogastric tube mentions while our model tends to mention tracheostomy

or endotracheal tube, and yet both models have difficulty identifying some specific

lines such as chest tube or PICC line. Similarly, both systems do not generate the

sentence with positive lung parenchymal findings correctly.

Learning Meaningful Attention Maps Attention maps have been a useful tool

in visualizing what a neural network is attending to, as demonstrated by Rajpurkar

et al. [237]. Figure 2-4 shows the intermediate attention maps for each word when

it is being generated. As we can observe, the model is able to roughly capture the

location of the indicated disease or parts, but we also find, interestingly, that the

attention map tends to be the complement of the actual region of interest when the

disease keywords follow a negation cue word. This behavior has not been widely

discussed before, partially because attention maps for negations are not the primary

focus of typical image captioning tasks, and most attention mechanisms employed in

a clinical context were on classification tasks where they also do not specifically focus

on negations.
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Figure 2-4: Visualization of the generated report and image attention maps.
Different words are underlined with its corresponding attention map shown in the same
color. Best viewed in color.

2.6 Project “Evidence”

In this work, we develop a Chest X-Ray radiology report generation system which

hierarchically generates topics from images, then words from topics. The final system

is also optimized with reinforcement learning for both readability (via CIDEr) and

clinical correctness (via the novel Clinically Coherent Reward). Our system outper-

forms a variety of compelling baseline methods across readability and clinical efficacy

metrics on both MIMIC-CXR and Open-I datasets.

The goals of this section are two-fold. First, I apply tools from Effective Altruism

and Data Feminism to this project as a case study to demonstrate how one can think

through the choice and impact of potential research directions they are considering.

Second, I examine the impact this specific project has had in the three years since it

was published.

2.6.1 Evaluating a Choice of Project

Effective Altruism

As discussed in Section 1.5.1, many effective altruists adopt the “ITN” Framework

(Importance, Tractability, and Neglected-ness) to measure the expected impact of a
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given organization or program.

• Importance: How useful would it be to the world if this problem was solved?

• Tractability: How much of a difference can one make towards solving this prob-

lem?

• Neglected-ness: How over-saturated is the space of solutions?

The EA organization 80,000 Hours elaborates further3 on how they implement these

values. The assessments do not occur in a vacuum, but are meant to help compare

multiple choices (e.g., where to donate $1000, what kind of career to pursue). Al-

though some of the concepts will need translation, these tools can be a helpful starting

point in assessing the impact of this project’s scope.

The importance of the effort, of course, depends on what kind of effort is done.

The expected value of the project is a function of both 1) how meaningful would the

project be if it is successful; and 2) how likely is the project to be successful. 80,000

Hours estimated4 “Positively shaping the development of artificial intelligence” to be

one of the highest priority areas because even though investing in research is less likely

to pay off in the short-term than investing in scaling up a known intervention, they

estimated the upside of AI safety is very, very high. They also considered investing in

short-term interventions, and found that the most effective approaches are ones that

deliver life-saving services to residents of developing countries5 (e.g., malaria bed

nets, sustained TB treatment with antibiotics, anti-retroviral drugs for HIV, etc).

Therefore, the scoping of a project’s ambitions is done in conjunction with the other

two factors of tractability and neglected-ness to choose a project that has the best

expected value for one’s risk tolerance.

Importance. Within the US, there are opportunities for technology to speed

up care, just as telehealth has done, and to improve the workflow of radiologists.

Some companies like viz.ai have been able to obtain FDA approval to market AI

for radiology products which fit into the workflow for the care team and for which

hospitals have paid $1,000 per patient [209]. However, in general, the healthcare sector

3https://80000hours.org/articles/problem-framework
4https://80000hours.org/problem-profiles/positively-shaping-artificial-intelligence
5https://80000hours.org/problem-profiles/health-in-poor-countries
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is slow to adopt new technological advances for many reasons, including ambiguity

related to federal-stare law interactions, reimbursements, licensure, efficacy, ease of

use, data sharing and privacy, fear of lawsuits, and more [159]. Typically, effective

altruists have found that interventions in the developing world are able to have orders

of magnitude more impact because of greater needs and fewer barriers [174].

Radiology report generation can be a very important area to work on. In the

United States, radiologists’ share of the overall physician workforce declined by 8.8%

over the last 20 years [246]. A patient safety study at the US Department of Veterans

Affairs found that unread radiology exams — caused by unfinished dictations, tech-

nologist errors, and inefficient radiologist work tools — resulted in delays to critical

patient care [20]. Under-resourced areas, including rural regions, developing countries

— and the intersection thereof — face an even more dire situation. In 2020, Rwanda

(population 13 million) only had 15 radiologists, and nearly 75% of them were based

in Kigali, which contains less than 10% of the country’s population [249, 247].

Although EAs try to use precise or pseudo-precise measurements6 like Quality-

adjusted Life Years (QALYs) to quantify just how impactful something could be, I

don’t think such estimates are feasible or appropriate to apply to the selection of a

research topic.

Neglected-ness. When trying to estimate the expected impact of an interven-

tion, effective altruists attempt to forecast the potential outcomes (colloquially known

as the “counterfactuals”). The question of interest is “How much better would the

world be if I worked on this problem as opposed to if I didn’t work on this problem?”

Therefore, it is a question of marginal value, meaning that ignoring low-hanging fruit

or startup costs, how much more value would come from one more unit of input (e.g.,

one more hour worked, one more dollar donated, etc.). Areas which others have not

worked on as much are less likely to have their low-hanging fruit picked already. For

this reason, 80,000 Hours uses a “crowdedness score” based on how much funding or

full-time staff different causes have.7

6https://80000hours.org/articles/problem-framework/#definition
7https://80000hours.org/articles/problem-framework/#how-to-assess-it-2
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Figure 2-5: Number of papers citing each public diagnostic captioning dataset’s paper
per year.

One way to approximately quantify crowdedness of this task’s space is to look at

usage of the main datasets over time. Pavlopoulos et al. [227] identified five pub-

licly available datasets for diagnostic captioning: IU X-RAY Open-I [67], MIMIC-

CXR [133], PadChest [45], PEIR GROSS [137], ICLEFCAPTION [93]. However, they

conclude that PEIR GROSS and ICLEFCAPTION suffer from “severe shortcomings”

both in size (less than a few hundred images) and quality (contain photographs and

captions from the figures of scientific articles, instead of real diagnostic medical im-

ages). CheXpert [127] and ChestX-Ray8 [299] both release large Chest X-Ray datasets

but without any public reports, thus making them ill-suited as proxies for interest in

report generation. Therefore, we focus on Open-I, MIMIC-CXR, and PadChest.

Figure 2-5 shows how many times each of these three datasets’ papers have been

cited each year since being published. The release of Chest X-Ray datasets with

non-public reports in 2018 (Chest X-Ray8 [299]) and January 2019 (CheXpert [127]

and MIMIC-CXR-JPG [133]) created a lot of interest in X-Ray classification and

segmentation tasks. In early 2019, there was much research attention energy dedicated

to radiology report generation.
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Tractability. Different endeavours have different risk profiles for likelihood to

succeed. Machine learning for healthcare is an applied ML field, whose ultimate

goal is usually to use tools in practice to help people. One of the most common

kinds of project researchers work on is to build proof-of-concept models on observa-

tional/retrospective data to see whether a task is worth investing more time and effort

into [232, 156, 112]. Researchers also develop tools that are useful to the commu-

nity [127, 4]. If a task/model shows promise for eventual deployment, more research

effort is invested into evaluating it more thoroughly, such as studying more realistic

framings of how the model would fit into a workflow [90], scrutinizing models for bias

[257], comparing against human judgment instead of automatic metrics [34], and in-

vestigating how performance holds under dataset shift [200]. Tasks and models that

have sufficiently matured may eventually get tested in real-life hospitals and clinics,

either through research [256, 315] or through for-profit products [23].

This project is an example of early stage problem exploration. Image-based ML

has proven more successful than other forms such as language, though innovations in

deep learning continued to improve NLP in the last few years [16, 241, 155]. Many

research projects take general domain ML models and adapt them to healthcare

settings (e.g., predicting on healthcare data [4]; changing the structure of the model

to account for missing data [55], disease progression dynamics [298], etc.). Examples

of early-field contributions can make include building tools other researchers benefit

from and helping shape the task definition and initial approaches.

This research effort was the first to publish radiology report generation on MIMIC-

CXR because it had access to an alpha version of that dataset pre-release. This

opportunity allowed us to shape some of the approaches that other papers followed,

which is elaborated on further in Section 2.6.2.

Data Feminism

The lens of Data Feminism offers another perspective in the formulation of this task

and its potential consequences.

Examine Power. The first principle of Data Feminism is to examine power.
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Within the US, radiologists are currently still the authority for reading X-Rays; how-

ever, technological advancements have been chipping away at this power [294]. As

machine learning augments human ability to understand the X-Ray, this “de-skills”

the task. However, that direction is not pre-ordained. An alternative path forward is

that AI tools are built for the radiologists, themselves, in order to help them do their

job in a faster and more consistent way. Electronic Health Record (EHR) configura-

tions have codified and imposed workflows onto healthcare workers [294]. If this new

technology were to be deployed, it would further change the workflow, resulting in

some winners and some losers. One can consider the different interests of the involved

stakeholders:

• Radiologist: help them read the images (e.g. faster, more consistently, safer,

etc.).

• Ordering doctor: answer the question they are studying about what is wrong

with the patient.

• Patient: deliver better, safer care equitably.

• Hospital: standardize practice (e.g. efficiency, enforce compliance with internal

procedures) and more easily bill the insurer.

• Insurer: check justification for why patient was billed for certain procedures.

We have already begun to see some of the basic, structured radiology AI predictions

be deployed [150, 315]. As more tools are brought to practice, there will likely be

power struggles among the stakeholders.

Challenge Power. Beyond the US, radiology report generation has the potential

to play a large role in healthcare for developing countries. Rwanda barely has 1

radiologist per million people (whereas US has 100 radiologists per million), and

most of them are clustered in a single city [249, 247]. The Rwandan startup Insightiv

Technologies addresses this issue using technology; it developed a platform which uses

both teleradiology and artificial intelligence to allow patients to be treated remotely

faster and at lower cost [224]. Audace Nakeshimana, founder and executive chairman

of Insightiv, hopes that within 10 years, the organization can reach at least 10% of the

undiagnosed population, which could help tens of thousands of patients get treated
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for cancer earlier. I spoke with Audace about how radiology report generation could

help, and he said that they currently use ML for classification but their radiologists

do not always find this helpful. They would like to focus on localization, perhaps

starting with segmented classification but eventually moving toward “mini captions”

for sub-regions in the image which the teleradiologists can interact with in their

platform.

Companies like Insightiv are able to benefit from technical advancements because

of organizations like Norrsken’s Healthtech Hub Africa8 program, which seeks to

invest tens of millions of dollars into development and deployment of health tech.

These kinds of initiatives allow impacted communities to build their own capacity for

translating this kind of technology into solutions for their problems.

Embrace Pluralism. Relatedly, one common challenge throughout NLP — even

in the general domain — is that the super-majority of non-translation work is done

on English-only datasets. This can bias the solutions to reflect models which favor

English sentence structures. One obvious opportunity for future work in non-English

report generation is to use PadChest [45], whose text is in Spanish. Coincidentally

to what Audace expressed interest in, PadChest’s texts is not the full reports, like

in MIMIC-CXR, but are instead “text snippet[s] extracted from the original report

containing the radiographical interpretation.” This offers yet another opportunity to

distinguish itself from MIMIC-CXR and Open-I in report generation tasks.

Rethink Binaries and Hierarchies. Because structured classification tasks

are easier to model than open-ended text generation (and because data is easier to

deidentify and share), early ML for radiology work focused there [166]. However,

the benefit of natural language over structured representation is that it allows for

rich nuance (e.g., “Projecting over the right costophrenic sinus, a soft tissue density

has newly appeared. The density corresponds to an area of pleural thickening”) and

uncertainty (e.g., “In addition, there is blunting of the left costophrenic sinus, so

that the pleural effusion cannot be excluded.”) in the read. This less-structured task

embraces the Data Feminist principle to rethink binaries and hierarchies; if some

8https://www.norrsken.org/hthubafrica
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subset of disorders were categorized for classification, it would de facto push out

solutions for patients that are harder to slot into a category.

Consider Context. One area where the task definition could improve is through

the DF principle to consider context. Our model is formulated to generate a report

from the input of one image. Depending on the use case intended, this may or

may not be a useful research problem. It could be a simplified way to test the

basic extraction of findings and description modules that could be part of a larger-

scale effort for report generation. On the other hand, such a task would prove an

inadequate substitute for the full radiologist workflow; the salience of certain findings

in the radiology report may be influenced by the reason for exam, clinical history, and

demographics. Additionally, the radiology study often has multiple images (frontal

and lateral) as well as access to previous studies to compare against. Although some

of the general concerns may be mitigated by working on the findings section instead of

the impressions section, prior work found that nearly half of the reports examined in

a few-hundred report selection of MIMIC-CXR included a comparison to the previous

radiological study [34]. Without doing something to provide some of that context of

the workflow, then the model would not be able to replicate the situated knowledge of

the reports actually in the EHR. This is certainly one area of improvement for future

work.

2.6.2 Project Impact Evaluation

As discussed in Section 2.6.1, this work is an early stage model on public, observational

data to explore the feasibility of a given task. The “impact” of this project does not

come from downstream metrics like lives improved or costs saved; it is research whose

aim is to influence other research. As of February 2022, the paper describing this

work was cited 89 times since being published in April 2019. To assess the impact

of this work, I read through these works to understand how it has influenced future

areas of research.

Of the 89 articles:

• 44 generate Chest X-Ray reports from images;
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• 2 build upon techniques in the paper (evaluation metrics [34]; differentiable

chexpert optimization [179]) without a dedicated focus on doing report genera-

tion, themselves;

• 10 were surveys, including of medical report generation [227, 182], medical ML

broadly [251], and general domain NLP [129];

• 27 cite us in their related work sections, pointing to the work as representative

of the “generating radiology reports” field;

• 5 were duplicate entries;

• and 1 was neither in English nor accessible inside the J-STAGE paywall.

Of the 44 works which generate reports, 16 compare their model against ours (1

got our code working [121], 1 re-implemented our model [188], 1 re-implements a sub-

set of our model which they attribute to us [203], 13 reported the numbers straight

from our paper). All 44 evaluate their models using standard natural language gen-

eration metrics (e.g., BLEU, CIDEr, METEOR) and 23 additionally use some other

metric, such as CheXpert [121, 203, 192], MeSH [123], MIRQI [320], and manual

clinician evaluation [167]. The most frequent non-NLG metric is CheXpert-based

accuracy/precision/recall, which numerous works attribute to comparing against our

work [151, 15, 192].

Evaluation. Many of the most popular natual language metrics like BLEU and

CIDEr have been widely criticised [239]. Boag; et al. [35] demonstrated that these

natural language generation metrics disagreed with a CheXpert-derived score about

which generative model was better: a simple tri-gram decoder conditioned on a clinical

context (i.e., correct but ungrammatical) or a randomly-selected report from the

training set (i.e., grammatical but irrelevant to the image). The natural language

metrics were rating the random model as better, preferring surface-level text similarity

over clinical correctness. Given that level of discrepancy, how much faith should we

be putting in these papers’ evaluations, especially when many of the models score

within a few points of each other? As will be discussed further in Chapter 3, Boag;

et al. [34] cites this work in their pilot study investigating effective ways to evaluate

Chest X-Ray report generation.
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Optimizing for Clinical Coherence. One of the primary contributions of this

work is incorporating domain knowledge into the objective function by using REIN-

FORCE to optimize for the CheXpert-based Clinically Coherent Reward instead of

just CIDEr. This contribution has been adopted by many other papers as well, using

RL to improve the clinical correctness of generated report [205, 121, 192, 202, 204].

Xu et al. [313] extends the RL approach, adding a repetition penalty to encourage

diversity in generated sentences to address the duplicate sentence issue we encounter.

However, Nguyen et al. [202] observes, “reinforcement learning methods are often

computationally expensive and practically difficult to convergence [sic].” Later works

built upon this by predicting a continuous and differentiable version of CheXpert

to allow for clinically coherent optimization without the technical complexities of

RL [188, 169, 192, 179].

System Generalizability. In another improvement to our system, the very

well-done work by Miura et al. [188] observes “Our work is most related to Liu et al.

(2019); their system, however, is dependent on a rule-based information extraction

system specifically created for Chest X-Ray reports and has limited robustness and

generalizability to different domains within radiology.” To address this, they did not

use CheXpert, but instead implemented an RL model based on textual entailment

(i.e., “contradiction detection”) using Stanza [230], an open-source Python natural

language processing toolkit supporting 66 human language. This approach would

generalize more naturally both to non-radiology generation tasks and also non-English

generation tasks (e.g, PadChest).

Bias We fail to measure performance with respect to different patient identities.

In the year following when this work was published, Seyyed-Kalantari et al. [257] find

state-of-the-art deep learning classifiers for X-Ray images are biased with respect to

protected attributes. Although model performance bias is just one part of how ma-

chine learning can cause disparate harm, and bias analysis shouldn’t be the only area

of research focus for AI Ethics communities, it is nonetheless important to measure

and address. In the 2021 FDA framework for regulating medical machine learning,

the agency emphasizes “Because AI/ML systems are developed and trained using data
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from historical datasets, they are vulnerable to bias – and prone to mirroring biases

present in the data. Health care delivery is known to vary by factors such as race,

ethnicity, and socio-economic status; therefore, it is possible that biases present in

our health care system may be inadvertently introduced into the algorithms” and that

there is great need for “the identification and elimination of bias” [82]. This offers

another potential opportunity of work which is as of yet addressed: are their biases

in radiology reports, and would report generation models exacerbate any disparities?

Reproducibility Reproducibility is essential not only for works which would

like to be the gold standard to compare against but also for all projects, especially

ones working on public datasets. Indeed, the MIMIC-CXR data use agreement9

stipulates that “any publication which makes use of the data will also make the

relevant code available.” This paper incorporated many technical sophistications:

hierarchical LSTMs, attention, and reinforcement learning for discrete signals. Given

the complexity of this system, such work would be very hard to re-implement from

scratch. Although we did make the code available,10 it is difficult to run. The

github repo has no forks and only one star as of February 2022 (nearly three years

post-publication). On top of typical dependency installation challenges, it has many

configuration settings (e.g. unspecified environment variables) which need to be set

as well as assumptions about data preprocessing and formatting, none of which are

addressed in the (empty) README.

There is only one published work that was able to get this code to run [121].

Another published work re-implemented11 our model themselves [188]. However, the

5 papers which compare their proposed models against ours [14, 280, 270, 320, 3]

do so by reporting the paper’s numbers directly (despite being from an alpha of

MIMIC-CXR with different preprocessing, train/test split, and evaluation scripts),

resulting in a comparison which is not apples-to-apples. Further, the implementation

difficulties likely discourage additional direct comparisons, because over 15 works cite

this paper and propose their own models but do not compare against our model,

9https://physionet.org/content/mimic-cxr/2.0.0
10https://github.com/stmharry/interpretable-report-gen
11https://github.com/ysmiura/ifcc/blob/master/clinicgen/models/cnnrnnrnn.py
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choosing instead to compare against other models whose source code is available,

such as R2Gen [57], TopDown [8], TieNet [300], CoAtt [131], etc.
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Chapter 3

Evaluating Quality of Generated Text

In Chapter 2, I described a successful effort to generate state-of-the-art radiology re-

ports automatically. This was done by hierarchically generating topics from images,

then sentences from topics. The final system is also optimized with reinforcement

learning for both readability (via CIDEr) and clinical correctness (via the novel Clin-

ically Coherent Reward). Our system outperformed a variety of compelling baseline

methods across readability and clinical efficacy metrics on both MIMIC-CXR and

Open-I datasets.

However, as was briefly discussed earlier, evaluating the quality of generated text

is very difficult. Researchers have struggled to validate their NLG evaluations in

both the general domain [207, 145] and clinical domain [35]. The gold standard of

a report’s “good-ness” would be how well it improves outcomes for the patient or

hospital: perhaps it catches more illnesses than a bad report would, or perhaps it

saves time/money for hospital operations. Of course, one cannot run a randomized

controlled trial because a bad model would result in significant harm to patients. That

is why the clinical domain needs an appropriate metric to serve as a proxy when the

true outcome itself cannot be obtained. The difficult challenge is in determining

whether a proxy is appropriate; BLEU is a proxy, but the field has spent over a

decade pointing out the many flaws it has.

In this chapter, I describe a long-term project to characterize what makes clinical

text uniquely challenging and make numerous attempts to evaluate the quality of
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automatically-generated radiology reports.

This work was done in collaborations with:

• Section 3.1: Tzu-Ming Harry Hsu, Matthew McDermott, Gabriela Berner,

Emily Alsentzer, and Peter Szolovits [168].

• Section 3.2: Hassan Kané, Saumya Rawat, Jesse Wei, and Alexander Goehler [34].

• Section 3.3: Hassan Kané, Saumya Rawat, Alexander Goehler, Vikram Venkatesh,

and Patricia Balcacer.

3.1 Flaws in Standard Evaluation Metrics

Existing metrics in the general domain can be broadly categorized into using n-gram

matching, embedding matching, or learned functions. There are also domain-specific

metrics for clinical tasks using basic information extraction tools.

The most commonly used metrics for text generation count the number of n-

grams that occur in the reference and candidate text. BLEU and ROUGE are the

most widely used metric in machine translation [220, 164]. They leverage precision

and recall over different values of n-gram overlaps to obtain a final score. METEOR

relaxes the n-gram overlap approaches and enables synonyms overlap [19]. In addi-

tion to BLEU, ROUGE and METEOR, we also included more recently introduced

metrics based on Transformer architectures. These include BERTScore, NUBIA and

BLEURT [319, 255, 140].

Specific to the domain of radiology report generation, CheXpert uses rules-based

approaches to identify the presence or absence of 14 specific diagnoses [127]. Met-

rics can be derived by extracting the diagnostic information from the reference and

candidate reports and computing agreement (e.g., precision, recall, accuracy, etc.).

Evaluation metrics are meant to be proxies for bepoke human evaluations, there-

fore any new metric that is developed is measured to demonstrate its correlation with

some form of human judgment. The original BLEU paper had human evaluators score

candidate translations from 1 (very bad) to 5 (very good) and then demonstrated that

BLEU ranks 5 systems in the same order that human annotators do [220]. CIDEr
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was created in 2014 for image captioning, and became very popular for benchamrk-

ing on the MS COCO dataset [289]. CIDEr annotators were asked to decide which

of two candidate captions better agrees with a reference caption, and then CIDEr

was shown to agree with the annotator rankings more strongly than previous metrics

like BLEU and METEOR. Several papers have proposed moving away from correla-

tion and more towards multidimensional evaluation where sentence corruptions are

introduced as “unit tests” for how well the metric responds [32, 141].

Many of the most popular metrics have been widely criticised [239]. In the con-

text of text simplification, BLEU has a very weak – and in some cases, negative

– correlation with human judgment on grammaticality, meaning preservation, and

simplicity [277]. Even in the context of machine translation (for which it was origi-

nally created), BLEU correlates poorly with human judgment on both adequacy (i.e.,

whether the hypothesis sentence fully captures the meaning of the reference sentence)

and on fluency (i.e., the quality of language in the hypothesis sentence) [49].

These concerns are likely especially true in the clinical domain, where we care

not only about free-text readability, but also about the accuracy of the stated clinical

conclusions. Further, these metrics were designed to be all-purpose tools, independent

of any domain, which limits how reliable they might be expected to be for a highly

specialized area such as medicine. It may prove true that these tools are sufficient

proxies for even doctor judgment, but that has not yet been shown – these metrics

were validated based on correlation with human judgment on generic sentences with

a large number of reference sentences.

3.1.1 Inconsistent Ranking of Methods

In Chapter 2, we evaluated the generative models using both NLG and CheXpert-

based metrics. In this subsection, I demonstrate that such a combination is insufficient

for determining the quality of generated text. I do this through a not-quite-toy, but

simplified, scenario where the metrics are used to evaluate some baselines. I find

that the NLG and CheXpert-based metrics disagree on which models are better,

even when the outcome should be intuitively clear from knowledge about the baseline
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Table 3.1: Automatic evaluation metrics of baseline methods for image captioning
task.

CheXpert CheXpert CheXpert
Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr Accuracy Precision F1
Random 0.265 0.137 0.070 0.036 0.570 0.770 0.146 0.148
3-gram 0.206 0.107 0.057 0.031 0.435 0.782 0.225 0.185

approaches.

This work uses the MIMIC-CXR dataset, which consists of chest x-ray images and

reports from 63,478 patients. We subdivide the data into a train set of 75,147 and a

test set of 19,825 images, with no overlap of patients between the two. Radiological

reports are parsed into sections and we use the findings section. The baseline models

are as follows:

• Random Retrieval (Random): Ignore the query image, and instead draw a

random report from the training set as the “generated” text.

• 3-gram Language Model (3-gram): Identify the 100 train images that are

closest to the query image (in a CNN-extracted 1024-dim space). Learn a 3-

gram language model from their reports. Sample from that model to generate

a report for the query image.

We would expect the random retrieval baseline’s reports would be readable, but

not relevant to the query image at all; as such, they would be unlikely to score well

either on the text-generation metrics or on our measures of clinical relevance.

Table 3.1 shows the results of this experiment across the NLG and CheXpert

metrics. As expected, the random sentences score lower than the 3-gram model on

the clinical correctness metric, because the 3-gram model samples from similar cases.

On the other hand, the random sentences model unexpectedly scores higher than the

3-gram model on standard NLG tasks. In retrospect, this makes sense because the

NLG metrics are essentially looking at simple n-gram overlap with template-heavy

reference reports. Although the random sentences may be completely irrelevant to

the query image, it is undoubtedly true they look just like how a report is supposed

to look.
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This should give some pause about what “good” performance on these tasks looks

like. Standard NLG metrics are ill-equipped to measure the quality of clinical text.

The over-reliance on n-gram overlap causes these metrics to favor irrelevant-but-fluent

reports over correct-but-ungrammatical ones. The code for this work is publicly

available.1

3.1.2 Challenges of the Clinical Domain

Although these metrics have been used in evaluating radiology report generation [168],

they are often designed for other contexts with underlying assumptions about the

number of reference sentences available as well as the complexity of the sentences to

be analyzed. When CIDEr was introduced, its authors demonstrated that “humans

and CIDEr agree with a high correlation,” but they did so when there were 20-50

reference captions per images as well as very low-complexity image captions (e.g., “a

cow is standing in a field”). It is not clear whether these findings would hold in the

clinical domain, where there is: only one reference report, many more tokens, and a

strong emphasis on factual correctness.

To better understand the differences between the simple general domain image

descriptions and clinical text, we use standard readability scores to assess the com-

plexity of a given piece of text. The Dale–Chall readability formula and Gunning-Fog

index measures the years of formal education a person needs to understand the text on

the first reading [53, 107]. In the case of Gunning-Fog, the score is meant to directly

indicate the number of school years (e.g., 7 means 7th grade, 12 means 12th grade,

etc) and Dale-Chall works similarly but on a 1-10 scale. The Flesh readability score

rates documents on a 100-point scale based on the number of words and sentence and

syllables per word [85]. Unlike the previous two indices, higher Flesch scores indicate

easier-to-read documents.

Table 3.2 demonstrates many of the differences between PASCAL-50S (a dataset

introduced in the CIDEr paper) and MIMIC-CXR. We observe that PASCAL-50S

indeed has 50 reference reports, each of which has 5 times fewer tokens than a MIMIC-
1https://github.com/wboag/cxr-baselines
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Table 3.2: Linguistic characteristics of PASCAL-50S (CIDEr’s annotations) and the
MIMIC-CXR radiology reports.

Average Characteristic PASCAL-50S MIMIC-CXR
number of references (per image) 50.00 ± 0.0 1.00 ± 0.0
sentence count (per reference) 1.00 ± 0.0 5.29 ± 1.9
word count (per reference) 9.82 ± 3.2 55.25 ± 25.2
Dale–Chall readability score (per reference) 5.23 ± 3.2 9.61 ± 1.0
Gunning-Fog index (per reference) 11.20 ± 4.7 20.06 ± 2.8
Flesch readability score (per reference) 96.08 ± 15.6 63.26 ± 12.5

CXR report. Additionally, the Dale-Chall and Gunning-Fox readability scores suggest

that nearly twice as many yeears of formal education are required to understand

radiology reports than simple image descriptions. Clinical text is demonstrably more

complicated than the general domain text that previous metrics were developed for.

3.2 Attempt 1: Pilot Study in Clinician Judgment

Upon realizing metrics like BLEU and CIDEr were especially too unreliable for the

clinical domain (where clinical correctness is critical), I brought together machine

learning experts with radiologists to co-design a better evaluation metric. The inter-

disciplinary collaborative process involved outreach, multiple interviews beforehand,

a pilot annotation process, and an exit reflection with the radiologist annotators.

The long-term goal is to eventually design a better evaluation metric for deter-

mining whether an automatically-generated radiology report is good. However, the

challenges involved would likely not be solved on the first attempt. In this pilot study,

we provide three main contributions:

• We develop and conduct an annotation task to collect clinical judgment on

400 candidate reports from 100 radiology images. This provides much-needed

guidance on what makes a report good or bad.

• We examine what radiologists look at when evaluating a report. This is useful

both to understand the current limitations of the task framing and also to help
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inform future development of a better evaluation metric for Chest X-Ray report

generation.

• We demonstrate some of the outreach tools we used for initial contact with

domain experts to help create discussions and eventual partnerships.

Our findings highlight the need for data scientists to work closely with clinical

experts to build meaningful tasks and models.

3.2.1 Methodology

This collaborative effort was done in two parts: qualitative discussions to design the

task, followed by analysis. We conducted interviews with radiologists from three hos-

pitals (two from Boston, MA and one from Atlanta, GA). After these conversations,

we collected annotations from 2 radiologists and analyzed the results.

Designing the Annotation Task

Based on prior work in radiology report generation [35] and evaluation metric creation

[220, 289], we had a rough idea of the collaboration and data collection approach that

we had in mind: radiologists need to read generated reports and decide (in some way,

shape, or form) whether they are good or not.

The simplest way to go about this could be to display an image + report and

ask the radiologist to rank how good it is from 1-to-5. Unfortunately, this approach

suffers from broader design issues: behavioral economics demonstrates that humans

can be inconsistent. We can see an example of this from the Sentences Involving

Composition Knowledge (SICK) dataset [177], where prior work observes that the

same kind of sentence transformations can be scored inconsistently [32]:

1. A man is holding a frog had a 2.1/5 similarity with

There is no man holding a frog.

2. A man is playing soccer had a 4.8/5 similarity with

There is no man playing soccer.

Although some of these annotator calibration concerns can be solved with mean nor-
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Figure 3-1: Three different annotation tasks we considered for the radiologists to
perform.

malization, ensuring that a particularly harsh annotator doesn’t distort the average,

the larger problem is that annotators are not only inconsistent with one another,

but they can also be inconsistent with themselves depending on their context and

priming [283].

With this in mind, we explored a few potential ways to pose the annotation task

for doctors. Figure 3-1 demonstrates a few ways to ask annotators to make judgments,

such as a ranking-based approach (3-1b) or image selection (3-1c).

Interviews with Radiologists

In order to reach out to radiologists to discuss this project, we created a “1-pager” to

send to them before our call, inspired by the Collabsheets list of “simple” questions

for computer scientists and clinicians to discuss [250]. The 1-pager is shown in Figure

3-2, and its purpose is to give a background on where we are coming from and focus

the conversation on the kinds of questions that seemed important to us.

On many questions, there was a strong consensus among the radiologists. They all

agreed that clinical correctness is the most important factor in determining whether a

report is good. Additionally, each radiologist talked about their field’s move towards

more structured, templated reports, with some suggesting that perhaps an evaluation

metric should try to favor regularity. Finally, there was overall agreement that for
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an annotation task like this (where they were not being asked to write their own

reports) it might be nice to have a DICOM image viewer that could allow them to

zoom, adjust contrast, etc., but such functionality would not be necessary.

During the course of the interviews, there were a few other concepts raised by

radiologists which we had not considered when designing the 1-pager in Figure 3-2,

including:

• Many images are simply “normal heart, normal lungs, etc.” We should purpose-

fully select a diversity of diagnoses in the annotation set.

• When designing a metric eventually, it may be useful to look for words conveying

levels of uncertainty (e.g., “consistent with” vs. “suggests”).

There was, however, some disagreement among the clinicians. Interestingly, the

notion that different doctors could disagree on healthcare expert opinions was surpris-

ing for some computer scientists on the team. As an analogy: doctors can disagree

on report structure and evaluation in the same way that computer scientists disagree

over the promise vs. hype of different deep learning methods. No field is a monolith.

One radiologist questioned whether any of the proposed annotation tasks (direct

assessment, caption ranking, and image selection) were the most meaningful thing to

measure. They suggested perhaps we should create an interface where the generated

report is a “first draft” for the annotator to modify until they are satisfied with the

final product. This would, however, be a much more involved undertaking for our

annotators. Additionally, radiologists disagreed over whether it was worth including

background information about the patient (e.g., “51 y/o female suffering from cough”).
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Figure 3-2: This “1-pager” document was sent to radiologists during outreach when
setting up initial conversations about this project’s goals.
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Figure 3-3: An example instance of the chosen annotation task.

Pilot Study: Annotation Task

Based on the feedback from initial conversations, we conducted a data collection

pilot study. Two radiologists annotated 100 images (400 captions) apiece. Figure 3-3

demonstrates one instance of this task: for a given image, radiologists needed to rank

4 possible reports based on how well they describe the findings of the image. Each

radiologist viewed the same images in the same order.

For each image, we presented the annotator with the following statements:

1. “The four following reports are all trying to describe this image (some of them

might be factually incorrect). Please rank them from best (1) to worst (4).”

2. “Briefly describe how you arrived at this ordering (a few simple bullet points is

fine)”

3. “Confidence that another radiologist would arrive at the same choice for best

report (1=Not confident at all, 5=Very confident)”

For each image, we generate four different reports using the following methods:

reference, 3-gram, nearest neighbor (1-NN), and random-report. The “reference” re-

port refers to the actual report written by the radiologist, logged in the EHR. The

nearest neighbor (1-NN) report is produced by returning the report of the closest

image (in the DenseNet-induced feature space) training set. Similarly, the “random-

report” is the associated report of a randomly selected image from the training set.

Finally, the “3-gram” is produced by retrieving the 100 closest images and fitting a
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tri-gram model from their associated reports.

Performance of Evaluation Metrics

Ranking the four reports for a single image produces 6 comparisons (i.e., best > the

other three, the second best > the other two, the third best > the worst), though

3 of those comparisons involve the reference sentence. To determine how strongly a

given metric agrees with radiologist judgment, we compute the specific metric score

for each of the 3 non-reference candidates2 and determine the number of pairwise

comparisons where the metric agrees with the experts. When the two experts did not

agree on a pairwise comparison, that ranking was excluded.

For the metrics, we evaluate many evaluation metrics, including baselines (random-

score, length), readability scores (Dale-Chall), n-gram (BLEU, CIDEr), embedding

(BERTScore), and CheXpert accuracy.

3.2.2 Results

For 100 images, ranking 4 reports results in 600 binary comparisons. Of those 600

comparisons, the annotators agreed with each other on 459 (i.e., 76.5% of the time).3

Of the 300 rankings which did not include the reference report, radiologists agreed

on 199 rankings (i.e., 66% of the time).

In line with prior work [35], the clinical correctness of the 3-gram model (0.353) is

higher than the random-report model (0.319) but the nearest neighbor achieves the

highest level (0.437).

Table 3.3 shows how often each metric agreed with consensus radiologist rankings.

We include the “random-score” metric (not to be confused with the “random-report”

method) as a sanity check: if the metric were randomly assigning numbers, it would

get the ranking correct 50% of the time. The “Percent Ties” column denotes how often

2We do not compute the metric on the reference because, by definition, it would score 100% as
you would be comparing the reference against itself.

3There were 5 data entry errors where two reports were given the same ranking (e.g., ranking
of 1,2,3,3 or 1,2,4,4) even though the task did not allow for ties. For those five entries, the authors
used the given explanations to infer what the annotator meant and broke the ties.
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Table 3.3: Of the 199 consensus comparisons, how often would each metric rank the
two reports the same way the radiologists did?

Metric Percent Agree Percent Ties
random-score 50.0% 0
choose shorter report 54.3% 0.5%
Dale-Chall Readability Index 58.3% 0
BLEU-1 53.3% 0
BLEU-4 50.8% 0
ROUGE-1 56.3% 1%
CIDEr 58.8% 0
BERTScore 61.3% 0
chexpert-accuracy 43.7% 24.6%
chexpert-accuracy + .001*CIDEr 57.3% 0.5%

Table 3.4: Top n-grams from the explanations provided by annotators for decision-
making. Phrases containing stop words were removed.

unigram Count
“factually” 16
“all” 17
“wrong” 18
“not” 21
“correct” 24

bigram Count
“even though” 6
“most correct” 7
“hard to” 9
“factually wrong” 10
“all but” 13

trigram Count
“are factually wrong” 3
“one and two” 3
“not sure if” 4
“all but one” 5
“is hard to” 6

a given metric was not able to pick either report (e.g., if two reports were each correct

on 9/14 findings, then chexpert-accuracy would be tied at 64% a piece). Because this

is so common for chexpert-accuracy metrics, we also report how well it would perform

when CIDEr is used to break the ties (i.e. + .001*CIDEr) BERTScore attains the

top performance of 61.3%; CheXpert only achieves 57.3%.

Self-Reported Annotator Rationale

We were curious to understand how radiologists would decide to rank reports. Would

they focus on style, factual correctness, grammar, concision, or potentially other

factors?

One of the annotators qualitatively described their process for completing the
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ranking task in an interview. They made it clear that the top criterion is factual

correctness: “It doesn’t matter how nice or brief a report is. If it’s factually wrong,

then it’s bad.” To rank the candidates, they would do an initial pass to group reports

into two buckets: “plausible” and “wrong.” From there, they would look at each bucket

and identify which errors were more egregious (e.g., the report with a rare type of

error was ranked worse than a report with a common type of error). Whenever two

reports were both plausible without any disqualifyingly bad mistakes, they would look

to see which one was more complete, especially since some omissions (e.g., failure to

mention a lung lesion) would be more glaring than others.

Based on the quantitative results, the other annotator seemed to agree about

the importance of correctness. After each image’s ranking, annotators were asked to

“Briefly Describe How You Arrived at This Ordering (a few simple bullet points is

fine).” Table 3.4 depicts the top-5 most frequent unigrams, bigrams, and trigrams

of the rationales experts gave in response. We can see through uses of phrases like

“correct”, “wrong”, “factually”, and “are factually wrong” that they are explaining their

decisions as decisions of factual correctness. Additionally, they convey the challenges

of comparing two non-perfect candidates through phrases like “most correct” and “all

but one.”

In both the qualitative and quantitative analyses, there was little to no discussion

of readability or grammaticality.

Why Do Radiologists and CheXpert Disagree on 3-grams?

One surprising part about these “factual correctness”-based explanations is that Table

3.3 shows the Dale-Chall Readability Index agreed with the radiologists (58.3%) more

often than any of the CheXpert-based metrics (57.3%). This finding continues the

discrepancy initially discovered in [35] where 3-gram outperformed the random-report

model on CheXpert’s clinical correctness but underperformed on standard evaluation

metrics [35].

We can see in Table 3.5 that ngram-based reports tend to have higher variance

of readability, suggesting there may be especially difficult-to-read reports which are
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Table 3.5: Readability scores of the 100 ngram-generated reports vs. the 100 random-
report candidates.

Average Characteristic random-report 3-gram
Dale–Chall readability score 9.61 ± 0.9 9.10 ± 1.5
Gunning-Fog index 20.03 ± 2.6 19.2 ± 3.7
Flesch readability score 63.66 ± 13.0 65.90 ± 17.3

still coherent enough for CheXpert’s rules to parse correctly. It may be the case that

especially ungrammatical reports came across as “non-sensical” to annotaors, which

could be considered part of “correctness.”

Additionally, many reports reference previous x-ray images, some directly (e.g.,

“prior study” or “picc line removed”) and others subtly (e.g., “interval placement of

a right picc line” and “have mildly increased”). This suggests that the single image

alone might not contain enough information to assess whether a report is correct or

not. Of the 400 reports shown to annotators, 231 of them contain a mention of at

least one of the following:

• “previous”

• “comparison”

• “compared”

• “prior”

• “from DATE”

• “unchanged”

Relatedly, 54/400 allege the existence of a lateral radiograph to accompany the AP

view. These “missing inputs” make it difficult for annotators to correctly assess the

quality of radiology reports, and suggest the report generation will require more than

fitting generative models to map from an EHR’s stored image to its accompanying

report.
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3.3 Attempt 2: Multi-Dimensional Evaluation

The pilot study had shortcomings which prevented its collected data from being

as useful as was initially hoped. However, we incorporated some lessons from that

effort into a second annotation attempt to measure the quality of generated radiology

reports.

Once again, we found that this second attempt additionally did not produce final

data which was as valuable as initially hoped. The aim of this section is to once again

help others learn from the design and analysis of this case study. In particular, our

contributions are as follows:

• We build upon our work framing the annotation task in a way that would be

useful.

• We collect annotations for 501 reports from 167 images.

• We demonstrate the challenges that arose in working with an interdisciplinary

team.

• We present analysis which is able to interrogate and “sanity check” collected

data to self-assess its consistency and value.

3.3.1 Methodology

First, we motivate an improved way to assess text quality by separating different

concepts (e.g., correctness, grammar, etc) into different dimensions of measurement.

We then reflect on shortcomings of the previous attempt and describe the collaborative

process of working with radiologists to design a second attempt. Finally, we analyze

the results of the radiologist annotations.

Designing the Annotation Task

One shortcoming of the first attempt was that it was sample inefficient; annotators

would essentially read two full reports and give 1 bit of information (“which one

is better?”). Although we had additionally requested the annotators give written

explanations for their decisions, the rationales appeared to not tell the whole story
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(e.g., claimed factual correctness as most important factor, despite text simplicity

scores correlating higher with judgment than CheXpert information extraction) and

were difficult to test because of their unstructured nature. A second shortcoming of

the ranking-based approach is that by wrapping all decision-making into one binary

choice, it obscured the multiple kinds of ways a report could be deficient. This makes

it difficult disaggregate false positives vs. false negatives vs. style vs. brevity, etc.

Finally, the radiologists we spoke preferred to be able to rate things on a scale (e.g.,

1-5, 1-7).

Existing automated metrics such as BLEU, CIDEr, and even CheXpert, have

struggled to sufficiently serve as useful indicators of success in report generation.

One main reason for this is that there are many different ways that a report can

be wrong, and any one 0-1 scale will be too reductive. Consider the following three

reference-candidate pairs:

1. “There is a man playing a guitar” vs.

“There is no man playing a guitar”

2. “There is a man playing a guitar” vs.

“There is a guitar playing a man”

3. “There is a man playing a guitar” vs.

“There is a rabbit eating a flower”

Which of these pairs should have the lowest similarity? The sentences in the first

pair — despite having the same subject, object, etc — are semantically opposite in

meaning. In the second pair, the exact same set of words are used, but the second

sentence is absurd and has a different meaning. Finally, in the third sentence, they

aren’t even in the same topic. This example illustrates the challenge in coming up

with a scheme which satisfyingly crams all forms of similarity into one axis of quality.

To address this, our second attempt adopted a multi-dimensional assessment of:

factual correctness, comprehensiveness, style, and overall quality. Emphasizing the

multiple different aspects of quality both serves a diagnostic role (i.e., could help

research teams debug models’ shortcomings) and also facilitates conversations around

values and requirements for the intended use case. For instance, if a model is the “last
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line of defense” then it must not miss any important findings, whereas if a model is

looking for high priority cases that can “cut the line” but the default process is the

standard of care, then you should work to avoid false positives and “alarm fatigue.”

Interviews with Radiologists

To demonstrate the value in multiple dimensions of evaluation, we worked as an

interdisciplinary team of computer scientists and radiologists to define meaningfully

different criteria: factual correctness, comprehensiveness, and presentation/style. We

created a worksheet to facilitate communication between the computer scientists and

radiologists on the team, which can be seen in Figures 3-4 and 3-5.

Radiologists had numerous interesting suggestions, including:

• It was not intuitive for them to try to evaluate separably different dimensions

of a report was not, because that is not what they were trained to do.

• They worried that the original report would be so much better than all of the

generated reports that it could bias the annotator in choosing the 2nd best

through 4th best report because by comparison they all look very bad.

• It would be helpful to have a PACS-like dicom viewer so that they could inspect

the images much more closely than last time.

• Unlike in the pilot (which was a google form that required submitting all of

the annotations at once), it would be better to use a google sheet, which saved

partial submissions so that busy radiologist annotators could spread their work

out across multiple sittings.
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Figure 3-4: We iteratively filled in this 2-page document (1 of 2) between meetings
with our radiologist collaborator. Walking through it together helped build a shared
understanding with them about what was important to measure and why.
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Figure 3-5: We iteratively filled in this 2-page document (2 of 2) between meetings
with our radiologist collaborator.
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Conducting the Annotation Task

After iterating on possible criteria to see which aspects were relevant when compar-

ing why radiologists preferred one report over another one, we finally arrived at the

criteria described in Figure 3-6. One of the main distinctions we ultimately made

was to separately measure the analogs of false positives (i.e., were the stated claims

correct?) and false negatives (i.e., did you mention all the things you were supposed

to?). These concepts correspond to “factual correctness” and “comprehensiveness,”

respectively. Finally, we look at “presentation / style” because reports can be correct

but poorly written (or vice versa). We also include a more traditional “overall” as-

sessment which tries to measure the more standard, generic goodness that collapses

all of the different forms of quality into one single dimension.

We incorporated generated captions alongside the reference caption for each of

our 167 images. Images and candidate reports were selected so that no candidates

(including the reference) contained references to previous exams. We use stronger

generation techniques than last time, and further instead of using the same 4 methods

for all images, we randomly select the reference and 3 of the following for an image:

• Reference Report

• Nearest Neighbor from training set [35]

• Random Report from training set [35]

• Show, Attend, and Tell [312] with beam size 5

• TieNet [300] with beam size 1

• TieNet [300] with beam size 5

The final annotation task is depicted in Figure 3-7. Annotators examined 167

selected images, each containing four captions. The annotator scored each caption

for each of the four criteria based on the scoring guidelines in Figure 3-6. The image

was viewable to the radiologist using the pacsbin software, which allowed them to

use the PACS format to view the image (i.e., can zoom in, adjust contrast, etc). To

address the concern of inconsistency, the annotator was shown all 4 reports for an

image at the same time, allowing them to contextualize whether a report is really bad
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Figure 3-6: Scoring Guidelines provided to radiologists.
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Figure 3-7: Task presented to radiologists, where all captions are shown at the same
time.

or if they merely have nitpicks. We had 3 radiologists complete the scoring task.

3.3.2 Results

For a given image, the annotations allow us to compare the quality of four different

reports across four evaluation criteria according to three radiologists. We assess the

hypothesis that different dimensions are able to effectively capture different strengths

and weaknesses of a report.
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Table 3.6: Correlations between dimensions. Each image had 4 dimensions, each
dimension’s 3 annotator scores were averaged into one score per dimension.

Correctness Comprehensiveness Presentation Overall
Correctness 1.00 0.89 0.81 0.92

Comprehensiveness 0.89 1.00 0.76 0.92
Presentation 0.81 0.76 1.00 0.82

Overall 0.92 0.92 0.82 1.00

Table 3.7: Correlations between dimensions, separated by annotator. “FC” stands for
factual correctness, “C” stands for comprehensiveness, “P/S” stands for presentation
/ style, and “O” stands for overall.

Annotator 1 (all images)
FC C P/S O

FC 1.00 0.85 0.82 0.84
C 0.85 1.00 0.78 0.89
P/S 0.82 0.78 1.00 0.83
O 0.84 0.89 0.83 1.00

Annotator 2 (all images)
FC C P/S O

FC 1.00 0.92 0.53 0.91
C 0.92 1.00 0.49 0.93
P/S 0.53 0.49 1.00 0.56
O 0.91 0.93 0.56 1.00

Annotator 3 (all images)
FC C P/S O

FC 1.00 0.58 0.41 0.73
C 0.58 1.00 0.37 0.72
P/S 0.41 0.37 1.00 0.43
O 0.73 0.72 0.43 1.00

The Independent Dimension Hypothesis

The hypothesis of this work is that asking annotators about multiple dimensions

at once could allow them to disaggregate why a report is good or bad. Ideally,

it would find not just good vs. bad reports, but instead allow for a more nuanced

analysis where a report might be factually correct in its stated claims without com-

prehensively addressing all of the abnormal findings in the image. Table 3.6 shows

the correlations between the annotators’ scores for each dimension. I had expected

that these dimensions could be decently independent of each other (i.e., good style

shouldn’t necessarily indicate good correctness). However, all of the dimensions have

a surprisingly high correlation with each other. The pairwise correlations between

the three non-overall dimensions are 0.89, 0.81, and 0.76.

In order to understand this phenomenon more closely, we qualitatively investigate

the scores assigned to a few of the images by each annotator. Table 3.7 presents the

dimension correlations for each annotator. Annotators 1 and 2 had significantly higher

dimension correlations than Annotator 3 did. In retrospect, this can be attributed to

Annotator 3 being the sole radiologist with whom we iteratively defined the criteria.

Even within Annotators 1 and 2, there was a disagreement where Annotator 1 rated all
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four criteria strongly correlated with each other (six pairwise comparisons all between

0.78–0.89) whereas Annotator 2 felt that correctness, comprehensiveness, and overall

were even more strongly correlated (0.92, 0.91, and 0.93) and that all three were much

more different from presentation (0.53, 0.49, 0.56).

In an after-the-fact discussion with Annotator 3, they reiterated their prior con-

cern that the distinctions between the dimensions might be too unintuitive. This

suggests problems in the task’s design, communication, or both. Not only did the

other two annotators not understand the intention of trying to measure decoupled

dimensions, but even the interviewed radiologist, as it turns out, had a different con-

ception than we did of what “Factual Correctness’ and “Comprehensiveness” mean.

Per the descriptions from Figure 3-6, we envisioned correctness and comprehensive-

ness were effectively analogous to precision (i.e., “of stated claims, how many are

correct?”) and recall (i.e., “did you identify all of the important things you were

supposed to?”). However, even Annotator 3 didn’t follow the guidelines exactly as

written; they’d thought of “Factual Correctness” as something of a catch-all to pe-

nalize reports both for incorrect stated claims and missing important claims that felt

obvious based on the image. On the other hand, they thought of “Comprehensive-

ness” as refering to the structure of the report (i.e., “does it talk about the heart? the

lungs? support devices? etc.”) instead of thinking about comprehensiveness of the

salient/active observations.

3.4 Project “Evidence”

The original goal of the project was to evaluate the quality of generated reports.

Ideally, I hoped to collect expert-annotated data and develop a new clinically-informed

metric which agrees with the annotators better than previous metrics do. However,

neither data collection resulted in satisfyingly high quality data.

Some effective altruists engage in the practice of self-critique. GiveWell4 and

4https://www.givewell.org/about/our-mistakes
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80,000 Hours5 each maintain a public directory of mistakes they have made and

what they’ve learned. Although some psychologists argue that self-critique can be

counterproductive because it elicits demobilizing reactions [180], others argue that it

can be part of the path to increased self-awareness and associated with many benefits

[79]. Julia Galef – a member of the Rationalist community, which has overlap in

methods and membership with Effective Altruism – recommends that individuals

and institutions should adopt the “scout mindset,” seeing the world as it is rather

than as we want it to be [92]. In particular, she argues that a mindset focused

on learning and improvement is able to adapt to adversity more readily than one

whose identity often feels threatened from challenges to core beliefs. Throughout

this section, I demonstrate the constructive value of self-critiques to identify areas for

improvement.

In the early 1980s, Boeing developed the “Plus-Delta” reflection tool (also known

as “Do Again / Do Better”) to identify both bright spots and challenges at the end

of meetings and projects [189]. This can be a helpful tool both because it identifies

actionable information and also because it pairs constructive criticism with compli-

ments, which might allow responders to feel more comfortable giving feedback without

being seen as negative. For each annotation experiment, I do a Plus-Delta reflection,

and then I summarize lessons learned.

3.4.1 Self-Critiques of Attempt 1

For the first round of annotations, we conducted an annotation task to for two radi-

ologists to rank 400 candidate reports from 100 radiology images.

Plus (Bright Spots)

Not Overselling Data Quality. One successful effort from this project is that

the radiologist annotations were not reflexively reported as the unimpeachable truth.

There have been instances of human annotations which later works have demonstrated

5https://80000hours.org/about/credibility/evaluations/mistakes
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inconsistencies or human error [32], but this work did not fall into that framing. In-

stead, upon identifying that the judgments had inconsistencies and design limitations,

the effort was framed as a learning opportunity / pilot study instead of glossing over

those challenges and marketing the dataset as useful for any researchers doing their

own evaluations of generated reports.

Collaboration Tools. To that end, we did a good job creating the tools for

collaborate with radiologists, particularly the “1-pager” shown in Figure 3-2. This

document helped both with identifying radiologists interested in talking (i.e., circulate

the 1-pager to our network and see who responds) and also with orienting the clinicians

towards the kinds of trends we would like to study. These conversations helped

identify areas of consensus amongst the three radiologists: correctness as a stated

priority, a move towards regular structure in the field, and that the PNG format of

images (instead of DICOM) was fine for this task. One radiologist mentioned the

importance of having images which contain a diversity of diagnoses.

New Annotation Task Framing. Based on the pre-annotation interviews, we

also saw successes in designing the annotation task: using a ranking-based approach

allowed for annotators to provide judgment more consistently than trying to assign an

objective, overall “goodness’ score to candidate reports in a vacuum. Particularly, this

format encouraged us to display multiple candidates at once, thus priming annotators

to rate reports as good/bad in context, depending on whether there will small nitpicks

between two good candidates or whether one report is obviously worse than another.

Annotator Explanations and Confidence Scores. Finally, it was useful to

ask annotators for explanations and to estimate their confidence. This allows re-

searchers to both sanity check the annotations and to learn what factors radiologists

seem to identify as important to their process. By asking whether they felt confident

that a fellow radiologist would correctly identify the best candidate, we were able to

measure how replicable they felt their “easy” judgment was without worrying whether

lower quality models would have reports that were ranked slightly differently. The

wording of this question was well-suited for this task.
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Delta (Opportunities to do Better)

Weak Generative Models. One shortcoming is that the caption generation meth-

ods were very simple. Although a subset of trigram, random report, and nearest

neighbor could serve as useful baselines, there are no deep learning models generating

plausible reports. As shown by the annotators, reference reports were rated the best,

and no other reports were even close. This does allow for measuring the quality of

reports in broad strokes, but it does not allow collecting annotations that would allow

for fine-grained differentiation between two high-quality candidates.

Reports Not Following “Image Captioning” Framing. Another limitation

encountered in this work is that many of the reports in the dataset were not fully

grade-able, because they did not capture everything a radiologist would have available

to them when really performing their work. Over half of all reports in the annotation

pilot referenced previous radiographs, which meant annotators needed to make their

best guesses about unseen data. Additionally, although we only show the frontal chest

x-ray, reports are usually written using multiple views, such as frontal and lateral.

Information Inefficiency of Ranking-based Task. This task adopted a

rating-based approach, however the comparisons did not offer enough information

about why a given report was good or bad. Some lowest-rated reports were egre-

giously low-quality whereas other ones may have been adequate but unfortunately

faced even better competition. Simply using a ranking-based approach does not

allow for annotators to signal whether a report is really well-done or completely in-

comprehensible. Maybe with thousands of such reports that might be fine, but data

is more expensive to collect from expert annotations; one radiologist estimated that

annotating 200 studies may fetch as much as $5,000 if done for a pharma study.

Lessons Learned

Summarizing the positives and negatives from this experiment, a followup study

(which we ultimately did perform, as seen in Section 3.3) would build upon this

work by focusing on:
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• Continuing to use collaboration tools such as interviews and the 1-pager in

Figure 3-2.

• Generating candidate reports using better language models.

• Filtering the experiment’s reports to be information self-contained within the

x-ray image (i.e., no reports which reference previous scans).

• Selecting a different annotation task framing to allow annotators to convey more

information than mere ranking allows.

3.4.2 Self-Critiques of Attempt 2

For the second experiment, we collected annotations for 501 reports from 167 images

using. We used strong baselines and deep learning methods to generate these reports.

The reports were evaluated using multiple dimensions of quality: factual correctness,

comprehensiveness, presentation / style, and overall quality. Although this work was

informed by lessons learned from the prior annotation study, it also suffered from

shortcomings to learn from.

Plus (Bright Spots)

Learned from Previous Mistakes. The first thing this study did was learn from

the Plus-Delta of the previous experiment. This can be seen with:

• Better generative models (TieNet and Show-Attend-and-Tell instead of 3-gram)

for annotators to contrast multiple plausible reports.

• Improved annotation task, where annotators can combine the benefits of both

ranking (comparisons to help contextualize differences) and rating (express

whether a report is slightly worse or much worse than another report) by giving

1-5 scores to all four candidate reports at once. Additionally, we did not use

the same four generative models for every image, but instead we mixed the use

of models just in case there had been a bias introduced by a particularly bad

generative method.

• Continued using collaborative tools for the design of the task with radiologists.
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Using the worksheet in Figure 3-4, we were able to iterate on which dimensions

could be a meaningful way to break down how to assess the quality of a report.

Designing Better Annotator Experience. Seeking the feedback from radi-

ologist collaborators allowed us to identify ways to improve the experience of the

volunteer annotators. For instance, the radiologist who served as an annotator for

both experiments suggested that we should try using a DICOM viewer (which allows

for zooming and changing the contrast) after all for the second attempt. Additionally,

they identified that the previous submission form (google form) forced the annotators

to do the task in batches of 25, which was difficult to fit into their day. By switching

to a google sheet (with links to the images), annotators were able to make partial

progress more easily.

Strong Baselines. We find that neural network approaches offer the strongest

performance on these models, however 1-NN methods are robust contenders, partic-

ularly with regards to clinical efficacy as measured by CheXpert predicted label F1

scores. In light of this — and the ease with which one can implement nearest neigh-

bor methods — I recommend including a 1-NN baseline for future report generation

projects as a new best practice. This will help disentangle the benefits of better image

encoding vs. better feature-to-text decoding. This is especially relevant because we

expect that with transformer-based language modeling, it is likely that feature-to-text

decoding will improve in the near future.

Delta (Opportunities to do Better)

Miscommunications with Radiologists. Despite our attempts to integrate clin-

ical collaborators into the annotation design task, we nonetheless ran into serious

miscommunication challenges. To varying degrees, all three annotators misunder-

stood the criteria for the different dimensions. For the two radiologists that were not

able to attend design meetings and only participated in reading+annotating, they had

strong correlations across all dimensions (thus defeating the experiment’s attempt to

measure meaningfully different aspects of quality). However, even the radiologist

who did participate did not annotate as we’d anticipated: their understanding of
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correctness and comprehensiveness was different from our understanding. This likely

indicates that we did not present the definitions in an accessible way; the wall of text

explaining the definitions was likely scanned quickly, similar to how some participants

quickly scan over terms of service forms for software.

Lack of Diversity in Diagnosis. One issue in retrospect is that more x-ray

images were normal and without any medical issues than originally realized. This

was a programming bug in interpreting CheXpert’s different labels (1, 0, -1, and u).

Because CheXpert evaluates for 14 diagnoses, there are 414 unique CheXpert profiles.

As a result, merely checking for a unique CheXpert output profile was insufficient.

For instance, the following two reports would register as having different CheXpert

output profiles:

• “lung volumes are normal. there is no central vascular congestion or overt

pulmonary edema. mediastinal and hilar contours are normal. heart size is

normal.”

• “ap and lateral chest radiographs were obtained. the lungs are well expanded

and clear. there is no focal consolidation, effusion, or pneumothorax. there is

no free air under the diaphragm. gastric distention is better appreciated on the

abdomenal radiograph.”

Although they both essentially say “the patient is fine and nothing is abnormal,” they

have different explicitly negative conditions. The first report only describes a few

CheXpert categories which are affirmately not present (e.g., enlarged heart, edema).

On the other hand, the second report explicitly states there is no consolidation,

effusion, or pneumothorax. When conditions are explicitly mentioned, CheXpert

labels them with 0 (negative) whereas when they are unspecified, it is labeled with u

(uncertain) despite implicitly being a negative indication. A majority of studies were

not abnormal, which on the one hand is representative of the MIMIC-CXR database

but on the other hand has diminishing returns in how valuable it is to rate how

many ways a report can adequately say “the patient does not have problems.” Future

studies should select for a diversity of images and manually inspect them before the

full-scale annotation task. The domain expertise barrier intimidated and discouraged
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members of the computer science team from feeling able to notice this problem before

the annotation task began.

Lessons Learned

Multiple issues, including both the lack of disease diversity and the confusion in

dimension definitions could have been mitigated by having each annotator do a 10-

20 image mini-pilot / sanity check to identify any such hiccups. A common barrier

for these pilots can be wanting to batch the requests to annotators, especially if

they are volunteering their time. These concerns could be mitigated through upfront

communication, workload expectations, and (ideally) funds to compensate annotators

for their time [250]. At the very least, we should have spoken with each annotator

to discuss the evaluation guidelines instead of merely including it on the cover page

that they likely did not inspect very closely.
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Chapter 4

Racial Disparities in End-of-Life Care

In this chapter, I describe a case study where I extend prior work by deploying a

model to address racial disparities in end-of-life care. Although the specifics around

the deployment are proprietary, I discuss a similar kind of model trained on public

data. The contribution of this work is not one of technical innovation. Instead, this

work demonstrates the importance of framing a problem actionably and working to

deploy it.

4.1 Disparate Treatments During End-of-Life

Previous studies have identified that different patients experience end-of-life (EOL)

differently [190, 158, 109]. Researchers looked at “invasive” care (i.e., interventions

that are unpleasant, such as when a tube is inserted into the patient’s throat to try

to prolong life) vs. comfort-based case (i.e., hospice). The main finding was that

white patients received smaller amounts of invasive care than nonwhite (in partic-

ular African American and Hispanic) patients. Renowned author and surgeon Atul

Gawande has found that patients who are empowered to make informed EOL deci-

sions overwhelmingly choose to live their final months “with dignity” at home instead

of pursuing overly medicalized procedures cooped up in a hospital [97]. So why did

these studies find that white patients seemed to be transitioning to hospice care earlier

and at higher rates?
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Hanchate et al. [109] suggest that “this may stem from distrust of the medical care

system or from economic constraints.” When further invasive procedures are unlikely

to return a patient to a normal lifestyle, their doctor may recommend withdrawing

treatment and transitioning to comfort-based measures to ensure the patient does not

suffer. However, if the patient (or healthcare proxy) doesn’t trust the doctor to really

be acting in their interests, then it could lead them to question the assessment (e.g.,

maybe the hospital doesn’t want to use resources), and instead demand additional

invasive interventions [95]. Poor trust has specifically been shown to impact end-of-

life care; family members of African American patients are more likely to cite absent

or problematic communication with physicians about EOL care [114].

To better understand and contextualize where some Black patients’ distrust could

be coming from, we can look to Harriet Washington’s 2007 book Medical Apartheid,

which argues that the exploitation of African Americans by medical institutions

throughout American history has created “Black Iatrophobia” [301]. Most readers will

likely be familiar with one of the most high-profile examples: the Tuskegee Syphilis

Study, where a group of African American men with syphilis were denied treatment

for three decades because doctors wanted to study the progression of the disease [52].

Washington contends this was not an isolated issue but is the most infamous example

of a broader pattern where experimentation happens on the marginalized populations

which are least able to fight back. Going back to 1801, Thomas Jefferson injected 80

of his own slaves with smallpox to prototype vaccines [130]. In the late 1840’s, Dr.

James Marion Sims (considered by some to be "the Father of Gynecology") surgically

experimented on and mutilated his female slaves without anesthesia [160].

In my 2018 Master’s Thesis [30], I analyzed the role that mistrust can play in

these disparate EOL treatments/outcomes. I found that statistically-derived proxies

for mistrust (e.g., likelihood for doctors to mention “noncompliance” with recommen-

dations or instructions) were even more indicative of EOL disparities than race. The

features most associated with high levels of mistrust scores were about how the pa-

tients interacted with the care team: agitated, in pain, and sometimes physically

restrained. Additionally, I found higher levels of mistrust in the Black patient popu-
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lation than the white patient population [29, 30].

Racial disparities caused by differences in treatment and institutional access re-

flect a systemic bias that should be addressed. But how could one try to act upon

insights derived from a research study? There are multiple interventions to address

these disparities. One approach could be interventions such as training and recom-

mendations to the hospital care staff about how to recognize and mitigate the biases

that arise. However, this could be difficult because if the patient has had negative

experiences with medical institutions for decades, it is unlikely that any training

would be able to equip medical strangers with enough ability to earn the patient’s

trust [301]. Advance care planning (ACP) tools allow a patient to express their EOL

preferences after ample time for reflection, though white patients have higher rates of

ACP usage than Black and Hispanic patients [266, 135, 267]. A preventative solution

could be to try to equalize ACP rates between races before any of them arrive at the

hospital. This would allow patients to decide their own treatment plan without the

pressures and fears of making the “wrong” decision in-the-moment.

In Section 4.2, I describe a model, trained on public data, which shows a proof

of concept for how to build a mortality risk stratification model on clinical data. In

Section 4.3, I describe how deploying this model for preventative care can identify

more patients which would benefit from pre-hospital advance care planning.

4.2 Building ML: EOL Risk Prediction

Advance directives – such as living wills and designated healthcare proxies – are

written, legal instructions about what actions should be taken for one’s health if they

are unable to make decisions for themself. Because “[u]nexpected end-of-life situations

can happen at any age,” the Mayo Clinic recommends that “it’s important for all

adults to prepare these documents” [272]. However, only 1-in-3 American adults have

completed an advance directive [314]. In an ideal world, every patient would have

a conversation with their doctor and family about advance care planning. However,

with limited resources, it may be necessary to identify the patients at highest near-
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Table 4.1: Rates of patients who pass away within one year of discharge rates by race.
This uses the MIMIC cohort of patients with a recorded post-discharge death date.

race N # positive % positive
White 6654 3492 52.5
Not Specified 1086 420 38.7
Black 602 370 61.5
Other 320 171 53.4
Hispanic 177 81 45.8
Asian 153 104 68.0
Total 9144 4699 51.4

term mortality risk for intervention. If anyone should have their wishes codified and

their papers in order, it should be them. To address this, there have been efforts

to build machine learning models to predict which patients are at highest risk for

near-term mortality [13].

In this section, I demonstrate a simple machine learning model for 1-year mortality

risk stratification. This model is trained on public EHR data, and has not been

deployed. The code for this model is publicly available.1

4.2.1 Data

I use MIMIC III, a publicly available dataset of ICU stays [132]. The task is a

binary prediction of whether a discharged patient will pass away within 12 months of

discharge.

Because of a data collection bias detailed in the bias audit described in Section

4.4.1, we only predict for patients that we know passed away at some point post-

discharge; patients reportedly still alive are filtered out. We filter out patients who

have a code status of “comfort measures only,” have an ICD code for palliative care,

are under 18 years old, or are discharged to hospice. The cohort contains 9,144

patients. Table 4.1 shows the breakdown in 1-year mortality rates by race.

Features for the model are extracted from the EHR, including demographics (race,

gender, age), risk score (SOFA, OASIS, SAPS II), Elixhauser Comorbidities [77],
1https://github.com/wboag/eol-mort-pred
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Table 4.2: Model performance by race, evaluated on the cohort from Table 4.1. We
report the mean across 20 runs, plus or minus the standard deviation.

race N AUC Precision Recall
White 6654 0.717± 0.009 0.832± 0.025 0.165± 0.007
Not Specified 1086 0.697± 0.024 0.857± 0.093 0.100± 0.023
Black 602 0.674± 0.034 0.865± 0.067 0.200± 0.046
Other 320 0.729± 0.036 0.906± 0.088 0.172± 0.059
Hispanic 177 0.681± 0.041 0.747± 0.239 0.166± 0.086
Asian 153 0.644± 0.082 0.841± 0.119 0.281± 0.068

Total 9144 0.716± 0.008 0.837± 0.020 0.165± 0.004

final code status, and admission metadata (elective/emergency, admission location,

discharge location, insurance, religion, marital status).

4.2.2 Methods

The data is split 70/30 into train and test sets. The top 10% highest risk patients in

the test set are predicted as “will die within a year.” The AUC, precision, and recall

of models are reported from averaging across 20 randomly generated train/test splits.

I employ a gradient boosting model using the XGBoost software package.2

4.2.3 Results

Table 4.2 lists the performance of the model when evaluated on just the patients

within each racial group. One overall trend is that the average is largely determined

by performance on the white patients, which represents nearly 75% of the dataset.

Additionally, the more patients in a racial group, the better the AUC for that group

tends to be, because the training process optimizes the model to do well on the most

commonly occurring patterns. Finally, we can see that groups with the highest recalls

(i.e., the groups which benefit most from this intervention), Black patients and Asian

patients, are exactly the ones with the highest mortality rates in Table 4.1.

Figure 4-1 shows the distribution of risk scores for Black, Asian, and white pa-

2https://xgboost.ai
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Figure 4-1: Distribution of risk scores for white, Black, and Asian patients. The
dotted line indicates the median risk score for that group.

tients; as expected, the groups with higher risk scores are the same groups with higher

recalls. The property of an intervention which structurally targets the areas in highest

need is analogous to what political scientists call a “thermostatic model” [269]. Not

all prediction models have this property. For instance, using a sparser and higher-

dimensional set of features (just demographics and bag-of-ICD codes) achieves very

similar AUCs but sees Black and white patients achieving virtually identical recall

scores, despite having different baseline rates of 1-year mortality.

From an inspection of which features are most informative, we find that SOFA

score, presence of the metastatic cancer Elixhauser comorbidity, being discharged to

a short-term hospital, and a code status of “dncpr” (i.e., if patient cannot breathe,

“Do Not attempt CPR”) are most associated with 1-year mortality. On the other

hand, the following were most associated with 1-year survival: a code status of “full

code,” (i.e. if patient cannot breathe, do everything you can to save them) having

a life partner, being discharged home, and having an elective admission in the first

place.
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4.3 Upstream Intervention: ML for ACP

Academic papers describing models like the one above don’t directly help patients.

In Chapter 2, I examine the impact of an academic paper; its goal was not to save

lives itself, but instead, the work helped shape design choices for later researchers’

followup investigations. In this section, I discuss one pathway for translating these

tools into the clinic to improve outcomes for patients. Because the actual work itself

was proprietary, I do not report on what the specific, measurable outcomes that have

been collected since deployment. However, I discuss the approach and why it was

very well-suited to address the issues identified in prior work.

As suggested by [109] and explored further in my Masters thesis, one barrier to

health equity in EOL is mistrust in the doctor-patient relationship. And even after

a staff training or two, it is unlikely that the hospital care team will be able to earn

the patient’s trust in a high pressure environment. Instead, I propose to intervene

upstream by working with primary care physicians (PCPs) who patients already have

an existing relationship with.

After 2018, I worked with a healthcare company to deploy a model which identified

patients at high risk for 12-month mortality. Patients most at risk were flagged in

the population health app used by their primary care doctors partnering with the

organization. This addressed a large problem: not only is the PCP more trusted

than unfamiliar hospital workers, but this solution also tackles the problem while the

patient is still conscious and able to decide for themselves whatever it is they want

to do.

The proof of concept model in Section 4.2 makes predictions for patients dis-

charged from the hospital, but in practice that tool would not be as useful. Patients

who spend time as inpatients are already interacting with the healthcare system, and

especially if they have been to the ICU, they may have already had an ACP discus-

sion. On the other hand, by partnering with a primary care doctor, a model could

run on observational data for all patients in their practice. Further, it would have

access not just to inpatient data but also other information such as outpatient visits

105



and perhaps medication refills. By predicting for the whole population of patients,

there is the opportunity to engage in outreach to high-risk patients that have had

little contact with healthcare systems who might otherwise “slip through the cracks.”

One shortcoming of this approach is that by working with primary care doctors

and through their network, we are not able to identify any patients who don’t have a

doctor (either because they don’t have health insurance or because they are strongly

disconnected from the healthcare system). In principle, public health organizations

should be able to apply similar kinds of strategies to identify and treat those hardest-

to-reach patients. In Rockford, Illinois, an interdisciplinary team of social workers,

firefighters, nonprofit staffers, etc., was able to eliminate chronic homelessness [116].

The team cited data as one of the ingredients, though the most important part was

not technical; the essential element was uniting the right people and engaging in

productive communication across the agencies.

4.4 Project “Evidence”

For this case study, I demonstrate the importance of algorithmic audits for the models

that we build. Of course audits are not all that must be done, but they is an important

first step in responsible machine learning.

4.4.1 Algorithmic Audit

Algorithmic audits have been one of the most impactful components of AI Ethics

research and journalism in the last decade. In 2016, ProPublica’s “Machine Bias” in-

vestigation of racial biases in crime prediction [11] attracted immense attention to the

field of algorithmic bias and AI ethics. The influential FAccT paper to date is “Gen-

der Shades” (2415 citations vs. 574 for the second-most-cited FAccT paper), which

focuses on the intersectional (by gender and skin color) biases in facial recognition

tools [43]. Additional high-profile works also audit machine learning models: Bender

et al. [22] critique the environmental and financial costs of training large language

models, Ribeiro et al. [242] analyze over 330,000 videos to better understand how
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youtube’s recommendation algorithm enhances radicalization, Raghavan et al. [231]

examine the claims and practices of companies offering algorithms for employment

assessment, and Obermeyer and Mullainathan [210] find racial biases in the labels

being used to guide health decisions for 70 million people. In a systematic review of

algorithmic accountability, Wieringa [303] identifies 93 core articles which model a

range of methods in algorithmic accountability across actors, forums, relationships,

content, and consequences. Senators Booker and Wyden have even introduced the

Algorithmic Accountability Act [37], which would require companies to fix flawed

computer algorithms that result in inaccurate, unfair, biased decisions.

Enacting a core principle of Data Feminism, algorithmic audits challenge power by

scrutinizing the tools being used for high-stakes decision making. When analyzing this

task, I found that the model was outputting surprising results. When I interrogated

the reason further, I identified a bias in the labels, which — similar to Obermeyer and

Mullainathan [210] — mistakenly recommended over-allocating resources for white

patients. In this section, I demonstrate how an algorithmic audit provides actionable

opportunities to identify and address biases that arise.

I demonstrate the audit on a cohort different from the one used in Section 4.2

(i.e., the “filtered” cohort); this audit cohort (i.e., the “unfiltered” cohort) includes all

(adult, non-CMO) patients discharged from the hospital, not just ones which have a

recorded post-discharge death rate. The reason for the different cohorts is explained

in further detail below, but essentially: this audit detected a bias in the “unfiltered”

cohort, so the “filtered” cohort was constructed during the audit’s “mitigation plan”

step.

I use the audit methodology from Raji et al. [234], which proposes the SMACTR

(Scoping, Mapping, Artifact Collection, Testing and Reflection) framework. I apply

each stage of the framework to the model trained on the “unfiltered” cohort.

Scoping

.

In this stage, we specify the requirements and expectations of the product or
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feature. Raji et al. [234] suggest creating Ethical Review of System Use Case or

Social Impact Assessment documents. This stage begins to anticipate potential use

cases, motivations, intended impact, and risks.

The predictive model attempts to satisfy multiple goals from different stakehold-

ers. If everything is working as intended, the patients at highest risk for near-term

mortality are able to have an ACP conversation with their PCP that they trust. This

process aims to address the disparity in advance care planning rates between white

and nonwhite patients, and pursues this by working through the existing relationship

the patient has with their PCP. Two potential harms that might arise include:

• Algorithmic Bias: If the model amplifies existing biases (e.g., by race, gender,

religion), then this tool will not achieve the goal of equity.

• Losing Trust: This intervention is done in partnership with PCPs to “level

up” the analysis so that it could be used in a meaningful and helpful way

to the patient. It would be counterproductive if the tool “leveled down” the

relationship between the doctor and patient, eroding the existing relationship.

The risk of algorithmic bias is nontrivial, and will merit investigation for common

pitfalls during the “Testing” stage.

The risk of the algorithm undermining the patient-PCP relationship can be miti-

gated through the interface of deployment and how the PCP approaches the conver-

sation with the patient. Hospice workers understand these are delicate conversations

with vulnerable people, and they have a recommended set of principles for bringing

the topic up [97]; the PCP will need to devise an appropriate way to initiate the

conversation. Likely, they would get the risk alert, and tailor it to that patient (e.g.,

“Sarah, I noticed you’re 73 and are still living independently, but we don’t have any

records on file about what your priorities are and what sacrifices would you be willing

to make, or not make, to maintain those priorities.”) as opposed to saying something

distant and alarming like “the AI said you are at high risk, so we should probably

talk about this now.”
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Table 4.3: 1-year mortality rates by race for the “unfiltered” cohort.

race N # positive % positive
White 22482 3492 15.5
Not Specified 2860 420 14.7
Black 2435 370 15.2
Other 1825 171 9.4
Hispanic 1107 81 7.3
Asian 730 104 14.2
Men 18042 2525 14.0
Women 13412 2113 15.8
Total 31892 4699 14.7

Mapping

.

This is a stage for reviewing what is already in place, including the roles and

responsibilities of internal stakeholders and collaborators. Recommended documents

for this stage include a Stakeholder Map and Ethnographic Field Study, which are

defined in more detail in Raji et al. [234].

If a model were to be deployed, the most meaningful pre-deployment metric would

be recall (on the heldout test data), because it measures ‘of all of the patients who

should receive the intervention, how many actually do?” Once a model has been

adopted into the clinical workflow, it is more important to measure the model’s actual

impact, for instance by comparing whether ACP rates have changed from the previous

year or if the racial EOL treatment gap is closing.

Artifact Collection

.

The artifact collection stage is when the documents from the prior stages are

aggregated to prioritize opportunities for testing. The output of this process can take

the forms of a Design Checklist and producing a Datasheet for the Dataset [98] and

Model Card [184].

Because not every Datasheet question is about the data generating process, I
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present an abbreviated Datasheet here. One challenge using a public dataset is that

many of the questions pertaining to collection methods and intended use don’t have

natural answers. The documentation for MIMIC can be found here.3 Answers to a

few relevant questions include:

• Q: What data does each instance consist of? “Raw” data or features?

– demographics (race, gender, age);

– risk score (SOFA, OASIS, SAPS II) derived from EHR measurements such

as body temperature, oxygen saturdation, and more;

– Elixhauser Comorbidities [77] derived by clustering important ICD-9 codes

together;

– final code status from the EHR; and

– admission metadata (elective/emergency, admission location, discharge lo-

cation, insurance, religion, marital status).

• Q: Is there a label or target associated with each instance? If so, please provide

a description.

– Yes, the date of death. Per MIMIC-III documentation,4 dates of death

were obtained from both the EHR (for in-hospital) and social security

master death index (for out-of-hospital). This project will make use of the

social security-collected data.

• Q: Does the dataset identify any subpopulations (e.g., by age, gender)? If so,

please describe how these subpopulations are identified and provide a descrip-

tion of their respective distributions within the dataset

– Yes, we have information on patient gender, race, and age. This informa-

tion is entered into the EHR. Sometimes race is not able to be identified

and is entered as “Not Specified.” Table 4.3 demonstrates the breakdown

by demographic.

• Q: Is any information missing from individual instances? If so, please provide

a description, explaining why this information is missing (e.g., because it was

3https://mimic.mit.edu/docs/iii/tables
4https://mimic.mit.edu/docs/iii/tables/patients
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Table 4.4: Model performance by race, trained on the “unfiltered” cohort. We report
the mean across 20 runs, plus or minus the standard deviation.

race AUC Precision Recall
White 0.839± 0.004 0.546± 0.013 0.377± 0.013
Not Specified 0.828± 0.016 0.500± 0.051 0.319± 0.043
Black 0.829± 0.019 0.524± 0.067 0.341± 0.052
Other 0.823± 0.026 0.486± 0.088 0.285± 0.061
Hispanic 0.843± 0.035 0.432± 0.118 0.211± 0.071
Asian 0.871± 0.021 0.512± 0.064 0.418± 0.081

Total 0.839± 0.005 0.536± 0.012 0.363± 0.010

unavailable). This does not include intentionally removed information, but

might include, e.g., redacted text.

– The MIMIC-III documentation does not specifically mention anything.

This is one large shortfall of using a large public dataset; there proba-

bly are forms of missing data, but because of how many workers (nurses,

doctors, technicians, researchers) contributed to assembling it, it may be

too difficult to identify the many ways missingness may manifest.

Testing

.

In this stage, we execute tests to gauge how well the system complies with the

prioritized ethical values from earlier stages.

I fit the model on the data from Table 4.3, and show those results in Table 4.4.

Although the model’s AUC being better for white patients than Black patients is not

necessarily surprising, it was unexpected for me to see that the model has a higher

recall for white patients than Black patients. Looking back at Table 4.3, we can

see that white patients are said to have the highest post-discharge mortality rates,

which goes against a large body of work that indicates Black patients have worse

health outcomes across a large number of settings, including severity of illness and

life expectancy [304].

I inspect this surprising result further in Figure 4-2, which shows a Kaplan Meier

111



Figure 4-2: Kaplan Meier curve of patients that die post-discharge.

curve of mortality post-discharge. More inline with my expectations: of the patients

who do die, Black patients die at a faster rate. Therefore, why does the “unfiltered”

cohort indicate that white patients are at higher risk for mortality than Black pa-

tients?

Upon closer look, I find this discrepancy is caused by a collection / missing data

error.5 MIMIC-III uses social security records to collect patient mortality information

for patients who passed away outside of the hospital. But in 2011, the Social Security

administration reinterpreted section 205(r) of the Social Security Act to prohibit the

agency from sharing data obtained from state records [198]. The result was “a 40%

drop in the capture of deaths.” In particular, it seems that Black patient deaths are

being disproportionately under-counted, resulting in an under-estimate of their risk.

Reflection

.

In this final stage, we examine the results of the tests and analyze their relation-

ships with expectations clarified in the Scoping section. The essential output of this

process includes recommendations for mitigating any harms that have been identi-

fied. These recommendations can take the forms of an Algorithmic Use-related Risk
5https://github.com/MIT-LCP/mimic-code/issues/1199

112



Analysis and FMEA, a Remediation and Risk Mitigation Plan, an Algorithmic Design

History File, or an Algorithmic Audit Summary Report, which are defined further in

Raji et al. [234].

Another principle in Data Feminism is to consider context [64], including how the

data generating process shapes the data we work with. Often, data is presented as if it

is fully “cooked,” and its assumptions and imperfections are not properly understood

by the data scientist. We were able to identify the mechanism through which this

bias arose (i.e., SSA 2011 policy change in data sharing practices) because it was

discussed on a public MIMIC-III forum.6 However, there are even more challenging

scenarios where the biases are so invisible that one will never find them without

talking to the care workers that entered the data themselves. For instance, during

a discussion with a nurse from Beth Israel Deaconess Medical Center (the hospital

MIMIC is from), I asked about how to understand the coded items in the chartevents

table. She described how some of these entries come from an overwhelming number

of pop-ups in the EHR which few people would have enough time to comprehensively

fill out. Further, she said that data entry can vary from nurse to nurse and although

some nurses do code “met with the family” in the structured chart, she has only ever

indicated family meetings in her nursing notes. As was discussed earlier, scenarios

like this demonstrate the difficulty of using large public datasets because researchers

have less access to the participants in the data generating process.

This audit is very similar to Obermeyer and Mullainathan [210] which also found

a racial bias in the labels being used to train a model for targeting resources. The

label bias in both models led to a systemic under-estimating of Black patient’s health

needs. A critical part of the responsibility for a tool like that is to ensure the service

is mitigating biases rather than exacerbating them.

Specifically to address the identified problem of unreliable labels, I filter the cohort

to only contain patients who have passed away (some within a year, some not). Doing

this ensures we have accurate data about the dates of death for all patients in the

data. The filtered cohort is the one in Table 4.1, for which the case study initially

6https://github.com/MIT-LCP/mimic-code/issues/1199
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reports results.
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Chapter 5

Tech Worker Collective Action

Of course data scientists have many technical contributions to make to ethical AI, but

they are also well-situated to push their influential employers to act more ethically. In

this chapter, I shift from computation-centered projects and explore the under-studied

landscape of tech worker collective action as a mechanism for ethical computing. One

of the seven principles of Data Feminism is to “make labor visible;” in this chapter, I

examine that principle both literally and conceptually.

This work was done in collaboration with Bianca Lepe, Harini Suresh, and Cather-

ine D’Ignazio [33].

5.1 Problem Definition

Since Fairness, Accountability, and Transparency (FAccT) launched as a conference in

2018, the community has experienced rapid growth. The 208 FAccT papers published

between 2018-2021 feature impactful work, including scholarship that anchored the

conversation for facial surveillance bans across the US [43], improved a deployed ML

model that was making racially-biased predictions for millions of patients [210], and

challenged powerful corporate interests [22]. Other work has built useful toolkits to

audit systems for censorship [316], exclusionary design [2], community authorship

diversity [58], context-sensitive documentation [183], and more.

In FAccT and beyond, there has been very thoughtful research that offers tangible
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visions for how tech companies could be applying responsible computing practices,

such as a procedure for internal algorithmic audits [235], co-designing checklists for

AI fairness with practitioners [176], and a series of questions for self-assessment of

whether AI products are respecting human rights [274].

However, most of these approaches require voluntary commitment from relevant

corporations. Although corporate buy-in can make ethical computing easier, it is

often the case that profit-maximizing organizations resist these efforts precisely where

they are most needed.

For instance, Facebook’s revenue model comes from selling ad placements to dis-

play to its users, which incentivizes the organization to try to maximize user engage-

ment. There has not been a dearth of what responsible social media metrics could

look like; in 2018, Cortico developed four indicators of conversational health: shared

attention, shared reality, variety of opinion, and receptivity [248]. Although Facebook

CEO Mark Zuckerburg has claimed that the Facebook algorithm does not optimize

for “what [users] click on or will make us the most revenue,” but rather “what people

actually find meaningful and valuable” [148], this characterization is disputed. The

company resisted calls to fact-check political misinformation for years [142], but ac-

cording to anonymous Facebook employees, it actually did employ a “kill switch” for

its algorithm from November 3-8, 2020 to prevent a US Presidential candidate from

falsely declaring victory. This setting demoted the rankings of news sources Facebook

deemed untrustworthy, and the so-called “nicer newsfeed” resulted in a decrease both

in misinformation but also in user engagement/sessions. By the end of the month, the

algorithm was essentially reset to its previous setting, because according to one em-

ployee, “the bottom line is that we couldn’t hurt our bottom line. Mark still wanted

people using Facebook as much as possible, as often as possible” [87].

When a tech company does not live up to its purported values, employees can

serve as a meaningful check on the company’s actions. Labor is well suited to be a

countervailing force, because employees are relevant authorities with their technical

expertise and knowledge of company goings-on. As issues arise, employee activism

and collective power can be utilized to prevent technology companies from negatively
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impacting society.

In this project, I explore the use of tech worker collective action as a legitimate

lever for doing AI Ethics: pushing companies to act in line with their stated values.

First, I outline related work both in algorithmic accountability and social movements.

Next, I profile three case studies of worker-led campaigns to push tech companies to

avoid building harmful products. Using frameworks from political scientist Gene

Sharp and labor organizer Jane McAlevey, I analyze an archive of hundreds of doc-

umented tech worker collective actions over the decades. I then discuss aspects that

distinguish tech worker organizing from other forms of labor organizing. Finally, I

use the Data Feminist principle to “make labor visible” to interrogate this overview

for its own “project evidence.”

5.2 Background and Related Work

5.2.1 Accountable Algorithms

Audits and case studies critically examine a system to determine if it is functioning

the way it was intended and advertised. In foundational work for the algorithmic

fairness community, Buolamwini and Gebru demonstrated bias in commercial facial

recognition software towards women, towards people with dark skin, and towards the

intersections of those groups [43]. Chouldechova et al. audit an algorithm-assisted

child maltreatment hotline screening system and identify many of the challenges in

implementing such an investigation in practice [60]. Yang et al. demonstrate how

political censorship of Wikipedia can affect the pre-trained models used for general

domain NLP algorithms [316]. Bender and Gebru et al. critically examine the en-

vironmental and financial costs first of large language models and offer some rec-

ommendations for curating and documenting datasets more carefully [22]. In an

audit of a non-computational system, Cheong et al. examine the citation networks

of many computer science-related fields and demonstrate that members are under-

citing researchers from marginalized backgrounds (e.g., women) and recommend that
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the Association for Computing Machinery (ACM) has a duty of care to address this

problem [58].

Excitingly, FAccT has increasingly been embracing theories of change beyond

problem identification, computational methods, and philosophical discussions. Ge-

bru et al. and Mitchell et al. introduce Datasheets for Datasets [98] and Model Cards

for Model Reporting [185], respectively, for standardizing the transparency of algo-

rithmic system development. Going one step further, Raji et al. develop a framework

for algorithmic auditing to be applied throughout the internal organization develop-

ment life-cycle and discuss the challenges of maintaining an independent and objec-

tive viewpoint during the execution of an audit [235]. Vincent et al. explore ways

for users to influence tech companies through data leverage, where the users of a sys-

tem “threaten[] to engage in or directly engag[e] in data-related actions that harm

that organization’s technologies or help its competitors’ technologies” [292]. An in-

terdisciplinary group from Computer Science departments, Sociology departments,

the ACLU of Washington, and many other organizations built the Algorithmic Eq-

uity Toolkit, a set of reflective tools to increase public participation in technology

advocacy for AI policy action [152].

In “Activism in the AI Community,” Belfield observes the role that tech workers

have played in shaping the societal and ethical implications of AI [21]. However,

Belfield only engages with a handful of examples: Googlers resisting Project Maven,

Googlers resisting Project Dragonfly, Googlers opposing workplace sexual harassment,

and tech workers from many firms opposing corporate partnerships with Immigration

and Customs Enforcement (ICE) and Customs and Border Protection (CBP). These

examples, while high profile, represent a very narrow view of tech workers organizing

for ethical computing practices. Additionally, that work largely considers industry-

wide factors such as low union density and the widespread use by tech companies of

non-disclosure agreements (NDAs). It does not yet form a convincing theory of why

some campaigns succeed and others fail. In order to understand that further, we look

to the literature on social movements and labor organizing.
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5.2.2 Social Movements and Labor Organizing

Social change is the product of structural determinants (e.g., population change)

and processes and mechanisms (e.g., political conflict and accommodation) [108].

Many philosophers, economists, historians, and political scientists have characterized

different theories of change. Stephan and Chenoweth found that when resisting an

oppressive government, nonviolent social movements are twice as likely to succeed

than violent campaigns, and similarly that nonviolent movements are more likely to

peacefully transition to a stable democracy. Through quantitative and qualitative

analysis, they conclude this is because nonviolent methods allow for larger and more

diverse movements, which engender increased resiliency, flexibility of tactics, and

loyalty shifts from cross-pressured powerful actors [273].

Dr. Gene Sharp is one of the most influential theoreticians of nonviolent action; his

methods were influential to pro-democracy campaigns in Serbia, Georgia, Kyrgyzstan,

and Belarus. His work rejects the belief that people are fundamentally dependent

upon the good will of their governments, and instead argues that governments are

fundamentally dependent on “the people’s good will, decisions and support” [259].

In his 1973 book ‘The Politics of Nonviolent Action,” he explores the theory behind

nonviolent resistance; its success does not rely solely on persuading the opponent but

rather often by persuading the other stakeholders on whom the opponent depends.

He enumerates1 198 kinds of nonviolent actions (e.g., letters of opposition, singing,

etc.) to demonstrate the power of a movement and pressure the opponent [259].

Sharp’s enumeration of tactics is extensive though certainly not comprehensive;

other resources also enumerate organizing tactics as well as describe how to perform

an action in greater depth. For instance, the national rank-and-file union the United

Electrical, Radio and Machine Workers of America (UE) host a public strike guide

which gives high-level advice for how to plan for a successful worker’s strike,2 including

by forming the right committees, setting up food distribution and travel for workers,

ensuring utilities and rent/mortgage assistance, obtaining legal expertise, and more.

1https://www.aeinstein.org/nonviolentaction/198-methods-of-nonviolent-action
2https://www.ueunion.org/strikes
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Unions have a rich history of “bargaining for the common good” [12], which is an

approach of using contract fights to organize local stakeholders to fight for demands

which would benefit people beyond the bargaining unit. For instance, after hosting

community listening sessions, the 2018 LA teachers union strike included demands

for green space for children and an immigrant defense fund for parents [101].

After decades of successful trade union organizing, Jane McAlevey got a PhD

analyzing US labor movements in the 21st century [178]. Her work connects social

movements with labor organizing and argues that the two do not have a clear distinc-

tion. She argues that democracy in the workplace is one of the most effective tools

available to ordinary people for social progress, like the US saw in the labor movement

in the 1930s-1940s and the Civil Rights Movement in the 1950s-1960s. Her analysis

identifies the strategies, methods, and discipline behind successful and unsuccessful

campaigns. We explore her work further in Section 5.5.

5.3 Tech Worker Campaigns: Three Case Studies

In 2017, Ossola pointed out that for industries like medicine, the government vets

and tracks tools susceptible to abuse, in contrast with the tech industry, where that

responsibility falls to individual companies [214]. However, after a series of scandals,

it does not seem like companies are living up to their stated values of privacy [296],

security [173], fairness [73], or safety [263]. In the past 5 years, tech workers have

taken on a more active role than in previous years in discussing the social impact of

their companies’ products.

Often times, meaningful channels for change do not already exist, and employees

must organize and pressure their employer to take such actions. In this work, we refer

to a goal-oriented, long-term effort as a “campaign,” which is composed of a series of

individual “actions.”

The most comprehensive collection of such actions, to our knowledge, can be found

at the Collective Action in Tech (CAIT) archive [282]. This project was created by

former tech workers, union organizers, and a sociologist “to create a space for us to

120



reflect on the tech worker movement’s past, and invent its future.” This archive is not

guaranteed to be comprehensive and it largely consists of external vantages of how

tech worker campaigns played out. Nonetheless, we notice some chronological trends

as certain political issues increased in salience.

In this section, we highlight three successful tech worker campaigns: opposing a

Muslim registry industry-wide, opposing a Department of Defense contract at Google,

and opposing facial surveillance as a service.

5.3.1 Muslim Registry (2017)

While on the campaign trail in November 2015, then-candidate Donald Trump was

asked if he would implement a database system tracking Muslims in the United States.

He responded “I would certainly implement that. ... There should be a lot of systems,

beyond databases. We should have a lot of systems” [119]. After he won the 2016

election, his transition team suggested the administration may pursue “extreme vet-

ting” of some immigrants and bring back a Bush-era surveillance program (National

Security Entry-Exit Registration System) which had been criticized for targeting im-

migrants from Muslim-majority countries (Of the 25 counties on the list, 24 were

Muslim-majority, plus North Korea) [245] .

Many became increasingly worried that the Trump administration would follow

through on its campaign promises to build a Muslim registry. In a (rare at the time)

direct challenge to their employer, a group of over 50 IBM engineers authored a

public letter calling for the firm to allow employees to “refuse participation in any

U.S. contracts that violate constitutional and civil liberties” [25].

Tech workers launched NeverAgain.tech, which pledged to resist attempts to build

databases to target individuals based on religion or national origin. 2,843 tech workers

signed the pledge, including employees from Amazon, Apple, Google, and Microsoft.3

Before the pledge, Twitter had been the only large tech firm that publicly opposed a

Muslim registry, but after the Never Again campaign, there were also similar commit-

ments from Facebook, Apple, Google, Twitter, IBM, Microsoft, Uber, Lyft Medium,
3http://neveragain.tech
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and Salesforce [244]. After the tech community drew a clear, bright line about refus-

ing to build a Muslim registry, the Trump administration did not pursue that specific

policy.

5.3.2 Project Maven (2018)

In April 2017, the Department of Defense (DoD) established the Algorithmic Warfare

Cross-Function Team to accelerate DoD’s integration of big data and machine learn-

ing. As part of this effort, Google signed a contract with DoD for Project Maven, a

$9 million project to build computer vision for drones, which was seen by many as a

trial run for the much larger $10 billion JEDI contract [80].

When Google employees learned of Project Maven, many were concerned about

whether Google was getting into “the business of war.” Employees wrote a petition

[258], signed by 4,000 Googlers, calling for the company to “cancel the Project Maven

contract and publicly state Google and contractors will never build tech for war.”

After much discussion on Google’s internal messaging boards and public pressure

from media attention, the company executives hosted a discussion for Googlers to

view in April 2018 between themselves and some of the petition authors. The town

hall did not ease the concerns of employees, and frustrations began to mount.

In order to compete for secure government contracts, Google needed to implement

“air gap” technology so that there would be physical separation between machines with

government data and other machines. The influential group of software engineers

tasked with building that tech for Google surprised their bosses by refusing to work

on it [28]. They became known as the “Group of Nine” amongst their colleagues

at Google, and their refusal increased pressure on the firm, which did not want to

alienate or circumvent those influential engineers. However, without this tool, Google

would be at a major competitive disadvantage in bidding for defense contracts against

Amazon and Microsoft.

In June 2018, Google announced that it would be dropping the Maven project (i.e.,

declining to renew its contract the following year). A week later, Google announced

the new Google AI Principles [229]. These principles include some abstract values,
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but also a few conceptual areas for which Google claims it won’t pursue or deploy AI,

such as “[w]eapons or other technologies whose principal purpose or implementation

is to cause or directly facilitate injury to people.”

5.3.3 Face Surveillance

Amid mass protests across the US in support of Black Lives Matter and criminal

justice reform in 2020, many companies (Amazon, Microsoft, and IBM) suspended

the sales of facial surveillance services [284]. But how did this happen? It took years

of scholarship and activism [111] to get these companies to the point where that choice

was the “safe” option, at least for the time, including:

• October 2016: Academic researchers (Garvie, Bedoya, and Frankle) published

“The Perpetual Lineup” which warned that law enforcement agencies are using

unregulated facial recognition technology to be able to surveil over 100 million

Americans [96].

• February 2018: Academic researchers (Buolamwini and Gebru) published

“Gender Shades,” which found that computer vision models performed worse

on dark skinned and female subjects [43].

• May 2018: The ACLU and a coalition of 48 civil rights organizations called

on Amazon to stop allowing governments to use their Rekognition software in

2018 because the company’s materials describe “person tracking” as an “easy

and accurate” way to investigate and monitor people, such as undocumented

immigrants or Black activists [47].

• June 2018: Citing the ACLU report, 500 Amazon employees signed an open

letter4 calling Amazon to “stop selling facial recognition service to law enforce-

ment” and to “stop providing infrastructure to Palantir and any other Amazon

partners who enable ICE.”

• July 2019: A group of Amazon employees sent an email to internal employee

mailing lists, demanding that Palantir be removed from Amazon’s cloud for

violating its terms of service and for Amazon to take a stand against ICE by
4https://www.scribd.com/document/382334740/Dear-Jeff

123



making a statement [54].

• June 2020: After tens of millions of protesters took to the streets over the

murder of George Floyd by police, IBM announced it would discontinue selling

facial recognition software. The following day, Amazon announced a one-year

moratorium on police use of Rekognition.

• May 2021: Amazon announced that it would indefinitely prohibit police de-

partments from using Rekognition.

Unlike individual firm campaigns that take place at one single company, this

industry-wide effort was able to stigmatize the unregulated use of this new technology

enough that it changed the market. For years, many scholars and activists had worked

to slow the development of unaccountable facial surveillance technology, but mostly

did not “move the needle” on company priorities. However, when the 2020 Black Lives

Matter protests demonstrated energy for change, many corporations reached for the

solutions that were fleshed out and based upon research.

Of course, without legislation, this is still a live issue wherein vendors could decide

to reverse course and begin production again if they no longer fear the potential

backlash.

5.4 Tech Worker Actions: A Wider Analysis

In this section, we provide a more systematic analysis of tech worker collective actions.

We categorize a set of 150 actions from the CAIT archive [282] into Sharp’s framework

of nonviolent actions. Our goal is to understand the broader space of tech worker

collective actions in recent years, both to examine actions that have been widely

utilized as well as demonstrate the much broader space of possible actions to explore.

Sharp’s framework categorizes the methods of nonviolent action into a few broad

categories, including nonviolent protest and persuasion, social noncooperation, eco-

nomic boycotts, the strike, political noncooperation, and nonviolent intervention.

Table 5.1 contains a subset of particularly relevant nonviolent methods that he enu-

merates.
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Table 5.1: Subset of nonviolent methods enumerated by Sharp.

Overarching Methods Action Groups Example Actions

Nonviolent Protest
and Persuasian

Formal statements Letters of opposition, public speeches

Honoring the dead Mock funerals, political mourning

Public Assemblies Teach-ins, assemblies of protest

Social Noncoopera-
tion

Withdrawal from the
social system Stay-at-home, collective disappearance

Economic
Noncooperation:
Economic Boycotts

Actions by consumers Consumers’ boycott, non-consumption of
boycotted goods

Action by middlemen Suppliers’ and handlers’ boycott

Economic
Noncooperation:
The Strike

Strikes by Special
Groups Craft strike, professional strike

Restricted Strikes Slowdown strikes, working-to-rule strikes

Political
Noncooperation

Citizens’ noncooperation
with government

Refusal of assistance to enforcement agents,
removal of own signs and placemarks

Nonviolent
Intervention

Physical intervention Sit-in, nonviolent occupation

Social intervention Overloading of facilities, alternative com-
munication system)
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Figure 5-1: Depiction of the collective actions tagged as “ethics” in the CAIT archive.
Each action was categorized into Sharp’s framework. The axes of this figure do not
signify quantitative meaning.
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To categorize collective actions according to Sharp’s framework, we first filtered

the CAIT archive by those actions tagged with “ethics”, in order arrive at a set of 139

entries more relevant to our focus.5 Each action was tagged by me or one of my co-

authors, and cases where there was uncertainty or disagreement were solved through

joint discussion and further research into the particular event. If a particular entry in

the archive seemed to describe multiple actions (e.g., an event involving both a letter

of opposition and a protest strike), we considered that as two separate actions for the

analysis. This resulted in 150 actions in the final coded archive. Fig. 5-1 depicts the

summarization of each action and its categorization.

Overall, we found that Sharp’s framework was broad and detailed enough to cat-

egorize the range of tech worker collective actions described in the CAIT archive.

However, there were also entries in the archive for which there was not an existing

category in the Sharp hierarchy. In many cases, these indicated innovative avenues

5The full table with each action and our codes can be found at https://docs.google.com/
spreadsheets/d/1QDFJiNvwYL-MFdfS5ZobDB9DBFITHi-Uu6J7dkUfeio/edit?usp=sharing
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for collective action that are opened due to modern technology and/or the nature of

the tech industry (e.g., social media campaigns, pressure from company shareholders,

virtual walk-outs via “closing laptops”). There were also a few types of actions in the

archive not covered by the framework—in particular, because Sharp focuses primarily

on labor power, actions such as lawsuits that utilize other forms of power (i.e., legal

power) are not covered.

Examining the distribution of actions, we found that letters of support/opposition

and group petitions make up the majority (𝑛=73). Actions such as assemblies of

protest or support (𝑛=13), protest strikes (𝑛=11), and alternative social institutions

(e.g., unions, 𝑛=9) are much less common, but have still been moderately explored in

different contexts. Most of Sharp’s other 198 actions types have not been explored, or

have just one or a handful of instances (e.g., suppliers and handlers boycott, guerilla

theater, civil disobedience of “illegitimate” laws).

While not all of the actions in the CAIT archive were effective, there are many

examples of successful demonstrations of collective power. Here, we highlight some

specific instances of strong actions (many of which were situated in broader move-

ments or campaigns), demonstrating the type of action(s) utilized and how they fall

within Sharp’s framework (numbers in parenthesis indicate the number of the corre-

sponding action in Sharp’s full framework linked to in Section 5.2.2).

Never Again Pledge: In December 2016, a group of tech workers circulated

an online pledge refusing to participate in developing technology or collecting data

that could aid in identifying people by race, religion, or national origin. The pledge

was specifically created in response to the Trump presidential campaign’s comments

around creating a “Muslim registry.” 2,843 tech workers signed the pledge, which

created a significant amount of media coverage, public attention, and spurred state-

ments of refusal from a range of tech companies. In Sharp’s framework, this action

fall under letters of opposition or support (#2) and group or mass petitions (#6).

It also utilizes slogans, caricatures, and symbols (#7) — i.e., the strong rhetoric of

“Never Again.”

Industry Refusal to Build Muslim Registry: In part spurred by the Never
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Again Pledge, there was an effective industry-wide effort to resist building surveillance

tech against religious minorities. This action is consistent with Sharp’s refusal of

industrial assistance (#84) as well as boycott of government depts., agencies, and

other bodies (#126).

Caviar Memorial: In June 2018, after a gig worker died during a delivery for

Caviar, fellow gig workers organized a memorial and raised money for the funeral [223].

They demanded Caviar pay for the funeral expenses, classify riders as employees (not

independent contractors), give a starting salary of $20/hour, and respect workers’

rights to organize a union. Following this, in July 2018, Caviar began offering accident

insurance to all driver actively picking up or delivering an order. This action was

the only example we encountered in the archive that utilized demonstrative funerals

(#45).

FAccT 2021 Dropping Google as Sponsor: Between December 2020 and

Febrary 2021, Dr. Timnit Gebru and Dr. Margaret Mitchell—the co-leads of Google’s

Ethical AI team—were fired from Google. In response, the FAccT research community

suspended Google’s sponsorship of the FAccT 2021 conference [134]. There was not

an immediate demand associated with the action, but a reasonable interpretation is

that it was taken to act as a deterrence for similar behavior from companies in future

situations. This action is an example of a suppliers’ and handlers’ boycott (#80).

Amazon Worker-backed Shareholder Resolution: In April 2019, Ama-

zon employees publicly supported a shareholder resolution requesting that Amazon’s

Board of Directors “prepare a public report as soon as practicable describing how

Amazon is planning for disruptions posed by climate change, and how Amazon is

reducing its company-wide dependence on fossil fuels” [61]. Although the resolution

was voted down by shareholders (70% opposed, 30% supported) Amazon Employees

for Climate Justice continued with collective actions, leading to Amazon creating The

Climate Pledge to meet the Paris Agreement 10 years early. This shareholder resolu-

tion tactic does not appeal directly to labor power, but rather through public pressure

targeting the shareholders. This resolution did not immediately require ratification

in order to be a successful demonstration; by pressuring the shareholders through
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Delivering symbolic objects (#21), workers demonstrated a diversity of tactics for

pressuring Amazon.

Exercising Legal Workplace Protections: In addition to labor power, workers

sometimes also have legal power on their side. In April 2020, Amazon fired two of

its tech workers after they publicly criticized the company’s warehouse workplace

conditions amid COVID-19 [105]. The employees alleged their terminations were

retaliation for their advocacy around both coronavirus working conditions and climate

advocacy at Amazon. Although employers often have more resources — and therefore

are better able to draw out long legal battles — when employees do exercise their

legal rights, it can serve as disincentive for companies considering pushing the line of

legal gray areas. Increasing the chances that inappropriate behavior actually would

lead to legal battles arms employees with a credible threat and serves as a check

on employer power. The employees settled their case with Amazon, receiving an

undisclosed amount of money [106]. Because this action utilizes legal power (i.e., a

lawsuit), it is not described in Sharp’s framework.

5.5 Building Tech Worker Power

A successful action (and especially a successful campaign) does not just happen on

its own. There is almost always a lot of invisible labor that goes into building the

social infrastructure to coordinate large collective actions. In this section, we examine

the methods of prominent labor organizer Dr. Jane McAlevey and discuss how those

concepts could be applied to tech.

McAlevey analyzes many union campaigns, and her conclusion for how to win

a strong contract is not complicated: 1) map out an honest theory of power, 2)

create a credible plan to win, and 3) execute that plan with strong methods and

discipline [178]. She argues that most modern social movements fail to develop a

theory of power, and as a result, unwittingly set themselves up to fail. Critically, she

emphasizes that many people involved in social movements conflate two importantly

distinct concepts: “organizing” and “mobilizing.” A lot of people think they are doing
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organizing when in reality they are only talking to people who already agree with

them. Organizing, on the other hand, involves bringing new people into the campaign

and growing the base of collective power from which one can mobilize later. Going

back to the theory of power, McAlevey concludes that if a campaign can “creat[e] a

crisis for the employer” then they will win and if they cannot do that then they will

lose. She analyzes many union campaigns (some successful and some unsuccessful)

and demonstrates that the only way to win hard fights is to do genuine organizing

in order to build super-majority support of workers. Only with that level of support

can workers have a credible threat (e.g., by striking) in order win a strong outcome.

The first two steps of McAlevey’s process for a successful campaign are to map

power and set a corresponding credible plan to win. Depending on how difficult

the goal is, different tactics will need to be employed: a minority of vocal workers

could win the “Justice for Janitors” campaign because concessions were low-cost to

the employer, but in order for hospital nurses to win costly nurse-to-patient ratios,

a nursing strike may be required [178]. As she summarizes: “High concession costs

require high power.”

The third step of the process is to execute that plan using effective methods and

discipline. But what are those methods? In this section, we distill her organizing

concepts and discuss how they can be applied to the tech sector.

5.5.1 McAlevey: Organizing for Power

McAlevey runs trainings for how workers can build power and win the material bene-

fits they’d like to see.6 She contextualizes the points above, working backwards from

understanding what it would take to build a movement strong enough to win. Rec-

ognizing that workers’ power doesn’t come from money or status, but instead from

large numbers and taking collective actions together, she discusses the methods and

disciplines of successful labor organizing campaigns. The fundamental unit of work is

the one-on-one “organizing conversation” between two coworkers, where the organizer

6https://podcasts.apple.com/us/podcast/a-master-class-in-organizing/
id1081584611?i=1000468514310
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identifies their colleague’s issues and connects them to solutions rooted in collective

action.

Throughout her trainings and scholarship, she identifies some critical concepts

that successful organizers use. For each one, we demonstrate corresponding examples

in the tech sector. Sometimes, such as when describing a campaign’s strategy, we are

left to speculate and make reasonable guesses about the intention of the organizers

behind the action/campaign.

Issue Identification: Organizers must identify what issues are important to their

coworkers during a one-on-one by asking open ended questions. An effective way to

identify actionable issues they wish would improve is by asking “If you could change 3

things at work tomorrow, what would they be?” By identifying their priorities, orga-

nizers can then discuss how those issues connect to collective solutions by coworkers

with similar concerns.

Many high-profile campaigns in tech were in reaction to a big political event, such

as the Never Again Pledge in response to the Trump campaign suggesting a Muslim

registry [245]. In other campaigns, tech workers came to understand that they had

the power and responsibility to solve a problem even if the issue wasn’t front-and-

center politically. For both Project Maven and Face Surveillance, many employees

who ordinarily did not want to “rock the boat” felt that they had to be part of the

solution, because if not them, then who?

Raising Expectations: People will not fight for more unless they believe that

they deserve more and that they could actually have more. One of the most effective

ways to convince people that things can be better than they are now is by showing

successes elsewhere.

For instance, in March 2021, the Glitch union signed the first collective bargaining

agreement for software engineers [154]. The contract did not set wage floors or salary

rules but instead focused on “protecting basic labor rights, challenging discriminatory

pay and hiring practices, and even pushing companies to be held accountable for

the products they build.” Less than a month later, when the workers at Mobilize

announced the formation of their own union, they pointed to the Glitch workers as
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an example they took inspiration from: “Like Glitch, I think that we can serve as an

example for other employers to see ... that we can work together to figure out what

workers want” [153].

Credible Plan to Win: Organizers must do a power analysis to understand the

concession costs associated with their goals, and then plan how to generate enough

power to achieve that success. As McAlevey observes in her dissertation “An incorrect

power analysis might lead people who want to end capitalism to think that small

numbers of demonstrators occupying public spaces like parks and squares and tweeting

about it will generate enough power to collapse Wall Street” [178].

Creating this credible plan will involve mapping out a set of plausible steps which

can ladder up to a successful campaign. For instance, looking at the Never Again

pledge, organizers were able to pressure individual firms one at a time. Each time

another firm made a public statement, it served as a domino, making it easier for the

next firm to make an announcement too. Eventually, the campaign was able to build

a consensus around industry-wide opposition to the proposed Muslim registry.

Structure-based Organizing: Within any workplace, there are already exist-

ing structures and social networks—perhaps by floor, by department, by communi-

ties/clubs, etc. These structures have existing social dynamics and relationships of

trust which one should organize within, as opposed to trying to build an entirely new

structure from scratch.

One (but by no means the only) opportunity for identifying coworkers with mutual

interests is through Employee Resource Groups (ERG). The modern ERG emerged

as part of the civil rights movement when Xerox workers created the National Black

Employee Caucus to “push back against racist business practices and systems” [191].

ERGs are quite common in tech companies; Google has 16 ERGs for nearly 25%

of the workforce (35,000 of 140,000 as of 2021) [69]. In 2019, workers on Google’s

LGBT ERG (Gayglers) organized a petition to pressure Google to change its policy

on YouTube’s moderation decisions affecting the LGBTQ+ community [81].

Organic Leader Identification: Many unsuccessful campaigns are lost because

the wrong leaders were selected, causing them to be out of step with the broader mem-
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bership and make decisions which fail to attract buy-in. Within any given structure,

there are the most trusted members of that group. Naive questions like “who is your

leader?” or “who do you respect most?” often lead to incorrect leader identification

because words like “leader” are imprecise and people’s plain-use understanding of the

word might not lead to thinking of the right leaders for the campaign. Just because

someone shows up to meetings or gives a good speech, that does not mean a majority

of their coworkers trust them. Instead, organizers can identify the organic leader by

asking a majority of the members of the group questions like “If your manager asks

you to do something, and you’re not sure how to do it, who do you ask for help from?”

Structure Tests: In order to measure the health of the campaign (including

whether one has identified the organic leaders in the relevant units), organizers should

run a series of structure tests to see if their organizing network is as strong as they

think it is. First, organizers decide on an action they’d like everyone to take, and then

second, they communicate that through their action network. By gauging participa-

tion from each subdivision of their organization, they can measure their capacity for

mobilizing. The goal is to realize where improvement is necessary before flexing col-

lective power publicly. Is there a given floor, department, or team where participation

in the structure test is much lower than average?

Examples of structure tests include majority petitions, photo posters, sticker days,

wearing t-shirts with union emblems, and rallies. For example, the Alphabet Workers

Union has a zoom background which workers can use [288]. Additionally, the United

Auto Workers (UAW) and Communication Workers of America (CWA) encourage

locals to participate in events like “Red Shirt Wednesdays,” where members pledge to

all wear red on a given day.7

Framing the Hard Choice: During an organizer’s one-on-one organizing con-

versation, their colleague might agree that a problem exists, but perhaps they are

hesitant to take a stand about it. The important thing is for them to come to the

conclusion themself about who has the power to change the situation and whether

that person will ever do that without being pressured to do it by their employees.

7https://uaw.org/wp-content/uploads/2016/06/Red-Shirt-Wednesday.pdf
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McAlevey recommends leveling with the coworker and demonstrating that the orga-

nizer shares their concern but then asking how else the issue will be resolved unless

employees band together and stand up for what is right.

For instance, in May 2020, then-President Trump incited violence against protesters

with his “when the looting starts, the shooting starts” dog whistle on social media,

which echoed statements of Walter E. Headley and George Wallace [44]. Twitter

and Facebook both chose to keep the post up; Facebook in particular took no ac-

tion at all despite it violating Facebook’s previously stated community guidelines,

leading to employees’ survey-reported confidence in Facebook leadership to plummet

from 75% to 47% and pride in the company from 73% to 48% in a matter of weeks

[216]. After the January 6 insurrection happened, Facebook and Twitter employees

no longer trusted management to address the problem without being pushed [138].

A potentially effective framing could be: “Every day nothing happens is another day

of hurting our users. If we don’t band together to do something, how else is this ever

going to change?”

Inoculation: Another way campaigns can fail is if the organizers do not ad-

equately prepare to withstand management’s tactics to undermine the movement.

This is not hypothetical; employers hire outside consultants8 that specialize in sow-

ing confusion and fear to get employees to second guess taking collective action.

During the end of the first one-on-one conversation, McAlevey recommends “giv[ing]

the worker a little bit of the ‘poison’ they will hear from management” in order to

reduce the anxiety for when it does happen. This can be accomplished by asking

something like “do you think your boss is going to like it if their employee signed an

open letter calling for change? Why?”

Although this might sound like overkill, tech companies have been ramping up

professional efforts to undermine tech worker organizing. In 2019, Google hired IRI

Consultants, a top union busting firm in the United States whose website adver-

tises their success in avoiding labor organizing and in conducting union vulnerability

assessments [252]. According to reporting, Amazon uses a “heat mapping” tool to

8https://www.youtube.com/watch?v=Gk8dUXRpoy8
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identify Whole Foods stores at risk of unionizing based on factors including the num-

ber of complaints filed to the NLRB, the poverty rate for the store’s zip code, the

racial and ethnic diversity of a store, the average employee compensation, and how

employees felt about their workplace [228].

Stakeholder Organizing: When the organizer is mapping power as part of the

credible plan, they will encounter additional stakeholders on whom the firm depends

(e.g., customers, vendors, positive media coverage, school internship pipelines, etc).

Successful campaigns are often able to build connections with other stakeholders to

coordinate putting pressure on management from multiple directions.

We can see an example of this from a pressure campaign on Microsoft-owned

GitHub. In October 2019, hundreds of GitHub employees signed an open letter

calling on the company to cancel its contract with ICE [99]. In December 2019, over

700 developers that use GitHub also signed an open letter supporting the workers’

calls for GitHub to cancel its contract with ICE [287]. However, GitHub currently

boasts tens of millions of developers using its platform, and the amount of power that

the campaign amassed was not enough to win the concession cost of dropping the

contract with ICE.

Credible Threat: The credible threat (as demonstrated by a successful structure

test or previous action) is the leverage for the campaign to bargain with the employer.

The most clever plan or rhetoric in the world is not a substitute for whether the

employer looks across the bargaining table and sees a super-majority of the workers

saying “We don’t want to go on strike, but we are prepared to if our needs are not

met.”

In November 2018, more than 20,000 Google employees (over 25% of the work-

force) participated in a worldwide walkout to protest how Google handled cases of

sexual harassment [297]. They demanded transparency, the presence of an employee

representative, and the public filings of each sexual assault case. As a result, the

company published an internal report of sexual assault cases, and in February 2019,

ended the practice of forced arbitration.

135



5.6 Discussion

There is a lot we can learn from both previous instances of tech worker collective

action and theories for organizing and social movements.

5.6.1 Theory of Power

As McAlevey observes, campaigns are won and lost based on whether the leaders had

a good strategy (aka “credible plan to win”). It is important to understand who has

the power to make the desired change and how much rank-and-file power would need

to be built to push them [178]. The instances from the CAIT archive demonstrate

examples of how tech workers have utilized different forms of power: public pressure

(e.g., public letters), legal power (e.g., suing companies for violating labor laws),

shareholder power (e.g., workers backing a shareholder resolution), labor power (e.g.,

walkouts), and more.

To that end, we observed from Section 5.4 that there was a very large number of

open letters, internal letters, and petitions. Of course, these are an important part of

demonstrating collective power and rallying external stakeholders to one’s cause, but

their power is less strong when they are not accompanied with a (either explicit or

implicit) credible threat. Walkouts and protest strikes (e.g., Googler’s 20,000-person

walkout about sexual harassment) are a closer demonstration of commitment from

the workers to cause sufficient disruption to win demands with large concession costs.

There are not yet examples of a majority strike in the archive.

There were instances of some early successful actions, especially in 2017-2018,

where a vocal minority (1-3%) of the workers created public pressure and were able

to win their goals. However, in the years since, companies have also learned from

these examples and adapted their responses so that they are more willing to take a

cycle of bad press and try to wait the campaign out. This is in line with a similar

finding in social science theory, where Dr. Leah Cardamore Stokes observes that new

tactics or policies often start with a “Fog of Enactment” where powerful incumbents

do not initially understand the impact of a new policy and they miscalculate how
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to respond [275]. Eventually, however, the incumbent learns how to more accurately

assess the policy and is able to counter it more effectively in later efforts.

Ultimately, companies hire workers because labor keeps the company running.

Organizing a majority strike is still a gold standard of leverage. Jerry Brown, the

retired President of 1199NE, said “[t]he strike muscle is like any other muscle, you have

to keep it in good shape or it will atrophy.” Under Brown, his union of Connecticut

nursing home workers went on strike over 100 times and won a large number of their

bargaining goals [178].

5.6.2 Expectations and Timeline

In order to build the requisite amount of people power to win hard campaigns for

more ethical products, tech workers will need to organize.

The most traditional model of labor organizing involves getting a large group of

workers to participate in collective actions, where the ultimate leverage comes from

the threat of a strike. In order to create a such a large campaign, organizers must

raise the expectations of people who currently believe either the status quo is good

enough or even if it is not that it won’t change. Identifying the bright spots of other

successful campaigns can be an effective way to show what else is possible, and help

tech workers understand the power they might not have realized that they have [117].

One challenge with raising expectations is that workers run the risk of getting their

hopes up for what is possible only to run into disillusionment if they are not able to

achieve everything they want. By looking to previous efforts, we see that successful

campaigns require sustained action: tech workers continued pushing against facial

surveillance tools for years in the forms of academic scholarship, internal letters,

and open letters. The years of effort have (thus far) paid off because when external

forces (i.e., millions of Americans marching for racial justice in 2020) put additional

pressure on Amazon, they reached for the solutions that organizers had spent years

engineering.

137



5.6.3 Tech-specific Considerations

Although we employ Sharp’s framework for categorizing the many forms of collective

actions, this ontology does not perfectly reflect the state of tech worker organizing. We

hope that the large action space of Sharp’s methods can serve a generative purpose to

help identify action types which have not yet been attempted in tech but could prove

useful. Additionally, there are some types of actions which are unique to tech and thus

not included in Sharp’s general framework. We explore some of those considerations

here.

One recurring tactic not captured in the Sharp framework is expert assessment of

feasibility. In 1986, dozens of technical experts, including Herbert Simon (recipient

of both the Nobel Prize and Turing Award) and John Backus (the inventor of FOR-

TRAN), came out against President Reagan’s “Star Wars” defense program, on the

grounds that it was technically infeasible to build and test such a complex system

for something as high stakes as a bug-caused nuclear strike [36]. In the 1990s, the

Clinton administration pushed for Clipper Chip technology to allow for law enforce-

ment to access encrypted data, but tech experts argued9 that the technology was too

technically flawed and insecure [1]. Most recently, for the past 5+ years, machine

learning experts have been cautioning against sweeping deployment of ML — includ-

ing facial surveillance tools — because the algorithms often exhibit racial biases [10].

Sharp’s framework does not presuppose its practitioners are domain experts, so it

does not explore the ways expertise can enable additional forms of public pressure on

decision-makers.

To this end, McAlevey also recognizes that power is not always evenly distributed

across all workers. While typically a feasible theory of power might require a super-

majority (e.g., to pull off a strong strike), she also provides examples of successful

campaigns that utilize critical workers [178]. In her dissertation, she analyzes a union

drive at a Smithfield Foods pork factory where Livestock was a “key department”

because workers could stop letting hogs off trucks, which both stopped the factory

line and caused a massive traffic blockcade on the major interstate highway. A high-
9http://cpsr.org/prevsite/program/clipper/cpsr-electronic-petition.html
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impact action didn’t need the entire factory organized in order to work, it would just

need to start with Livestock [178]. We expect to see many similar situations in the

tech sector, where a small number of critical, specialized workers have an outsized

effect on systems that are built. The closest example of this from the CAIT archive

is the “Group of Nine” influential cloud engineers from the Google Project Maven

campaign that refused to build the air gap technology. Although this is similar to

the Livestock example, it does not fully capture the concept; reporting suggests “[the

air gap] feature is not technically very difficult, so Google could easily find other en-

gineers to do the work” [28]. Nonetheless, this serves as a potential blueprint for how

an influential or specialized team can recognize and leverage their power in the tech

industry. The most powerful groups will likely feel a sense of duty and reluctance

to use that power carelessly, which can serve as a check on over-use. Just as “high

concession costs require high power”, conversely for low-power campaigns, there is no

need to kill an ant with a sledgehammer.

Workers at a company usually would rather not “create a crisis” without a good

reason, but how could they do that even if they wanted to? Different organizations

have different power structures that determine which stakeholder’s support is critical

to the mission. For instance, gig workers have a traditional labor model wherein

they could stop the service if they stopped working. On the other hand, there is not

an immediate, acute harm to the organization if software engineers aren’t patching

bugs or building new features to compete with competitors. That harm becomes a

long-term one which is harder to measure. Reporter Peter Kafka observes, “these

companies live and die on their ability to recruit and retain top talent. That’s a large

part of what drives them to make these decisions” [138]. Companies are competing

against each other for hiring top talent, and the fear of losing out contributed to the

success of some early open letters. However, as that tactic has been used over the

last 5 years, organizations have learned that if the only action will be an open letter,

then they can wait the concern out without much cost. To effect change, workers will

need to correspondingly organize additional kinds of collective actions. This suggests

that one possible, relatively unexplored point of leverage could be exploring ways to
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interact with the company’s recruiting, such as through unauthorized climate surveys

or accountability scorecards that show responsiveness to employee requests.

5.7 Project “Evidence”

In this work, I move beyond individual computational case studies in order to study

how tech workers have been able to practice AI Ethics beyond research and publica-

tions. Using Sharp’s and McAlevey’s frameworks, we explore the landscape of tech

worker campaigns and actions to push companies to act more ethically. We can reflect

on this effort by analyzing it against the Data Feminism principle to make labor

visible. This concept applies in more ways than one, referring both to the work of

doing this research project and also increasing the salience of labor organizing efforts.

In the subsections below, we discuss how each of these relate to the broader impacts

of ethical computing.

5.7.1 Reconstructing the Work of This Project

We begin by considering the labor that went into this research. First, other researchers

created the archive documenting hundreds of tech worker collective actions. Then, we

analyzed that archive using frameworks from political scientists and labor organizers.

The CAIT Archive

The Collective Action in Tech (CAIT) project began as a project to document those

tech workers pushing their companies “in the right direction’ using collective action

[282]. It is a volunteer-run organization maintained by:

• Ben Tarnoff, a tech worker, writer, and cofounder of Logic Magazine

• Clarissa Redwine, former Kickstarter union organizer

• JS Tan, a former tech worker and writer

• Kristen Sheets, a tech worker and writer

• Nataliya Nedzhvetskaya, a sociologist who researches tech and labor and is

supported by funding from the Jain Family Institute

140



The archive was constructed using NexisUni news archives, where the creators

searched for articles about the computing and IT industry where employment terms

(employee, worker, contract, labor) occured within 25 tokens of collective action terms

(protest, petition, strike, open letter, walk out, union, boycott, letter, lawsuit, discuss,

negotiat). For now, the effort primarily uses English-speaking news publications,

though one of the co-founders writes about tech, labor, and China. As of 2021,

approximately 5% of entries have been added through crowdsourcing [199].

Our Research

In this section, I recapitulate how this work was done. Although such work is usually

left out of the public eye, there is value to this analysis both by making the goals

of the project more explicit for reflection and also by allowing other researchers to

reconstruct a similar effort for themselves if they want to build on the project. We

want to use extracted “evidence” from projects to decide what projects were effective,

and also how we could do conduct/promote similar efforts.

This project came together from the convergence of a few parallel efforts:

• Bianca Lepe and I were organizers for a 2020 collective action campaign for

anti-discrimination;

• the December 2020 ousting of Dr. Timnit Gebru from Google sent shockwaves

through the algorithmic fairness community; and

• I discovered the CAIT archive in Spring 2021.

As these efforts intersected in Spring 2021, Bianca and I began discussing a research

project related to organizing.

Initially, the project could have gone in multiple directions, depending on whether

the focus would be emphasizing tech worker organizing in general, diversity, equity,

and inclusion (DEI) organizing, the relationship between diversity and ethical com-

puting, and more. In July, we met with Dr. Catherine D’Ignazio for guidance on

scoping the project into one that could be studied. We began to converge on the

idea of using existing frameworks (e.g., McAlevey) to study the CAIT archive. The

student team (Bianca, myself, and also eventually Harini) met weekly from July 2021
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to January 2022, checking in with the Catherine at least once a month.

In late July, the team created a spreadsheet of the CAIT entries to better un-

derstand the lay of the land, coding each article for action, number of participants,

demands, outcome, and quantified estimate of success where possible. We did not

initially have a framework for categorizing this into a standardized form.

We then made a spreadsheet of all 2018 FAccT papers from 2018–2021. We read

the abstracts of all 82 FAccT 2021 papers and selected other FAccT 2018–2020 papers

to read based on relevant titles, authors, and citation counts. This landscape analysis

helped us more confidently identify some of the conference’s strengths (e.g., high-

profile standards and recommendations such as Datasheets for Datasets [98] and the

SMACTR audit framework [235]) and some areas for growth (e.g., a lot of the work

relies on voluntary buy-in, which might not always be realistic). Data Leverage [292]

from the 2021 conference was the closest to what we had in mind; it proposed a

similar argument for corporate accountability but discussed what users could try to

do, rather than workers.

The first framework we used to analyze the CAIT entries was the McAlevey tools

for organizing. We read her dissertation, books [178], “organizing for power” training,

and a 2020 interview.10

We initially were unsure how to visualize the collective actions. We sketched a 1.0

figure to iterate upon based on feedback. We were unsure what, specifically to plot

and what the axes should correspond to (e.g., number of participating employees,

intensity of action, degree of success, etc). The most common advice we received

was to change the unit of analysis from types of action (e.g., “petition” or “email

campaign”) to specific actions (e.g., “the 2016 Never Again pledge”).

In the Fall, we met with Harini to discuss effective ways to visualize the analysis

and the actions. She brought theory and expertise to our previously ad hoc effort,

and excitedly she joined the team. Her visualizations were much closer to what would

eventually become Figure 5-1 after a few more rounds of feedback. One initial insight

was to avoid the axes corresponding to specific measurements (e.g., degree of success)

10https://podcasts.apple.com/us/podcast/a-master-class-in-organizing/id1081584611?i=1000468514310
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because the archive entries were news article that were far too imprecise and devoid

of context to try categorizing and ordering all of the actions. Instead, the new figure

was inspired by Crystal Lee et al.’s “Viral Visualizations” Figure 1 [157].

In November, a colleague in Political Science recommended a second framework

for understanding the collective actions. Where the McAlevey tools help demonstrate

how workers built power for the actions, Gene Sharp’s “The Politics of Nonviolent

Action” [259] categorized 198 types of actions. This framework became central to the

revised analysis; we re-coded the archive entries into Sharp’s categories and clustered

the visualization’s entries based on those labels.

The final pieces of the project came together through iterative writing and dis-

cussion sections during December 2021 and January 2022.

5.7.2 Increasing Awareness of Current Labor Organizing

The seventh principle of Data Feminism is to “make labor visible.” Interpreting that

guidance literally, this chapter aims to make organized labor more visible. But what

does it mean for something to be visible? Is it a binary visible/invisible or a spectrum?

And visible to whom? In this reflection, we interrogate these concepts further.

Visible to Whom?

To understand whether employee-driven ethical computing is already visible to the

algorithmic fairness community, we explore how often these topics are discussed.

Table 5.2 shows the 14 (out of 208 total) FAccT papers whose abstracts mention

at least one employment or collective action term identified by the creators of the

CAIT archive [282]. The two most cited works in that list (Chouldechova et al. [60]

and Passi and Barocas [225]) both explore the role that workers have in shaping how

computational systems should be designed in order to be useful and ethical. However,

many of these papers have not received much traction in the community.

This collection demonstrates both that such a topic is within the domain of FAccT

and that there is room to grow. Such a state represents an opportunity to increase
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Table 5.2: FAccT papers (2018-2021) whose abstracts use the employment and collective
terms developed by the creators of the Collective Action in Tech archive.

Type of Term Reference Term Citations How It Was Used

Employment

Chouldechova et
al. 2018 worker 176

Considering the perspective/workflow of the
workers at child maltreatment hotline that uses
algorithm-assisted decision making

Babaei et al.
2019 worker 24 Uses “Mechanical Turk workers” for annotations.

Harrison et al.
2020 worker 38

Measured the fairness preferences of Mechanical
Turkers when presented with 2 imperfect models.

Terzis et al.
2020 worker 8

Discusses the philosophy of a multi-stakeholder
(including CEOs and workers) “AI Ethics” round
table, which it characterizes as “a futile battle
doomed to dangerous abstraction.”

Jacovi et al.
2021 contract 49

N/A (referring to “contractual trust” between AI
and user, not employer-employee)

Miceli et al.
2021 worker 16

Interviewed 30 data workers in industry about
data documentation and reflexivity.

Celis et al.
2021 employee 2

Studying the effect of policy (the Rooney Rule)
on hiring employees.

Lussier et al.
2021 labor 0

A historical computerization case study how IP
considerations, labor, technology, and expertise
shaped the deployment of a program.

Collective
Action

Passi et al.
2019 negotiat 80

Through six months of ethnographic fieldwork
with a corporate data science team, examines
how stakeholders (including workers) negotiate
problem formulation and its ethical implications.

Young et al.
2019 strike 32 N/A (says something “strikes a balance”)

Marcinkowski et
al. 2020 protest 45

Found that data subjects (prospective students)
were less likely to protest the results of an al-
gorithmic decision-making than human decision-
making from a study in German universities.

Kaminski et al.
2021 union 26 N/A (refering to the European Union)

Shen et al. 2021 negotiat 11
Value Cards help communicate how different
models and deployment contexts have trade-offs
to be negotiated amongst stakeholders.

Mulder et al.
2021 strike 5

Studied framing effects of news media, gave
“farmer’s strike” as an example topic.
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the salience of the role that data workers can play in defining the ethical trade-offs

of a computational system. In the following section, we discuss visibility beyond a

yes/no binary formulation.

Rethinking Visibility Beyond a Binary

Because this work’s primary contribution is analyzing tech worker campaigns reported

in public articles, technically speaking the work is already “visible” to anyone who

looks for it. However, there is too much information on the internet for anyone

to be able to follow everything. Instead, the goal of this work is to analyze and

distill important lessons from tech worker organizing and present those findings to

the algorithmic fairness research community. As an analogy, consider an iceberg: the

tip of it is visible to people, but the underlying structures beneath the surface are not

apparent.

We begin by looking at the individual newspaper articles in the archive, which

correspond to the tip of iceberg above water. A few of the actions and campaigns

were high-profile enough for people to have heard about, but most actions did not

receive as much coverage.

Next, we use Sharp’s framework to categorize the landscape of actions that are

happening. Seeing the scope and nature of the actions being taken has a normalizing

effect: when workers see other workers in similar roles organize and win, it shows

that such actions are available to them too. Using Sharp’s framework, we can iden-

tify which tactics are frequently employed (e.g., petitions) and which tactics might

still be worth exploring (e.g., majority strikes, noncooperation such as go-slows, etc).

By drawing attention to this “negative space” of (so far) less frequently used meth-

ods, Sharp’s framework provides broader visibility into the landscape beyond what is

immediately in front of our eyes.

One challenge in the landscape analysis is that this archive shows tech worker

collective actions, not campaigns. This means that each entry will, at best, con-

textualize the action in the previous efforts at the time of writing, but the current

structure would not be able to show how a particular action contributed to the success
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or failure of the overall campaign. Just as campaign wins can arrive on a long time

horizon, similarly backsliding on progress may occur in future years, for instance, if

the campaign loses momentum or the company fires the lead organizers. This makes

it difficult to readily evaluate the effectiveness of a given action.

Deeper still, we use McAlevey’s framework to see how organizers build that power

outside of the public eye in general. Whereas mobilizing involves taking visible ac-

tions with large groups of people, organizing involves a lot of behind-the-scenes 1-on-1

conversations. Such work is hard to convey in articles, and is often left out of cov-

erage. However, failing to understand that work leaves out a critical component for

understanding why some campaigns succeed and others fail.

Finally, not included in this particular project, would be interviewing the cam-

paign organizers themselves to understand their strategy and decision-making. Be-

cause this project makes use of public articles and academic frameworks, we “impute”

the kind of organizing work that is required for successful campaigns into the “missing

data” from the archive. In reality, no campaign plays out exactly the way its leaders

expect; the most informative lessons learned usually come from ethnographic and

autobiographical works examining the decisions that the campaign leaders made [27,

178]. Further, the reported articles do not have standardized descriptions (e.g., ex-

pected goal, number of participants in an action, etc). It will take important followup

work in order to get that next level of visibility into the various campaigns.
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Chapter 6

Analyzing Differential Privacy

In this chapter, I investigate differential privacy’s ability (or lack thereof) to mitigate

traditional tradeoffs in data sharing. By generating synthetic data with varying pri-

vacy budgets, I perform an empirical investigation into how well differential privacy is

able to improve data sharing practices. I then reflect on how this work both reinforces

and challenges binary modelling decisions.

6.1 Introduction

The convergence of newly available data, machine learning algorithms, and improved

computing resources has greatly increased the efficiency of technical methods to ad-

dress the large challenges in healthcare. Data scientists have access to computing

resources and machine learning algorithms, but the final ingredient for research is

data (e.g., from hospitals, insurers, pharmaceutical companies, etc).

In 1996, Congress passed the Health Insurance Portability and Accountability Act

(HIPAA) to govern the flow of healthcare information and regulate how individually-

identifiable information must be protected by covered entities like hospitals and health

insurers. In 2003, the U.S. Department of Health and Human Services (HHS) released

the HIPAA Privacy Rule, which prohibited the use and sharing of Protected Health

Information (PHI) except for the specific reasons enumerated, such as with a patient’s

consent or in lieu of that to facilitate treatment, payment, health care operations,
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or law enforcement requests. Typically, covered entities can only share data with

researchers once PHI has been removed, which can be costly.

To understand the potential harms of privacy leaks and data breaches, imagine

the worst case scenario. Suppose a hospital’s electronic health record (EHR) was

posted on the internet for everyone to access without any password requirements.

Patients with mental health-related disorders could be discriminated against in ways

that are hard to legally contest (e.g., a potential employer who decides to not return

an applicant’s call). Similar behavior, including interpersonal conflict, could happen

if a patient is pregnant or HIV positive. Private notes written by caregivers could

reveal information about sexual activity and sexual orientation. And the insurance

forms likely contain a patient’s phone number, address, and possibly social security

number. Access to such information could result in harassment and identity theft.

And because this information is not available to everyone, there is also the risk that

a hacker who obtains unauthorized access to this information could use it as leverage

to extort money from the hospital or patients. In other words, the stakes of privacy

and security are understandably quite high.

There are great harms that could come to patients if sensitive data is leaked,

either directly or through reconstruction [94] and re-identification attacks [76]. Best

practices in data sharing (e.g., ethics training, guardrails in the platform interface,

secure cloud-based computing, etc.) can mitigate many of these risks, but no approach

is ever 100% risk-free. One hope that some have shared is that technical methods

might further help sidestep some of these tradeoffs, such as by generating synthetic

data which has the same kinds of patterns as in the shared data but without any of

the specific individually-identifiable information.

Because of the potential for leakage of training data in generative models, re-

searchers have explored whether Differential Privacy (DP) could ameliorate the issue

[271]. Differential Privacy is a technique to add a calibrated amount of noise to the

query of a dataset such that it is indistinguishable whether the dataset did or didn’t

contain any one datapoint [71]. DP provides a “privacy budget” where small budgets

give strong privacy guarantees by adding large amounts of noise. In contrast, a large
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budget would mean a small amount of noise (more accurate) but a necessarily larger

risk of leakage. Ideally, scientists would like to be able to create a synthetic dataset

which has perfect utility (e.g., a model trained on the synthetic data performs just as

well as a model trained on the real PHI-laden data) and negligible privacy risk (e.g.,

the model is resistant to reconstruction and re-identification attacks).

We build upon prior work to quantify how effectively differential privacy is able

to maintain data utility while decreasing privacy risk. Although Stadler, Oprisanu,

and Troncoso [271] demonstrate that using differential privacy does not yield mod-

els which are both high-utility and low-risk, they do so by measuring risk based on

whether they have a large privacy budget or a small privacy budget. Because dif-

ferential privacy is just one approach for generating hopefully-“safe” synthetic data,

such a study does not allow for comparisons against other non-differentially private

approaches for generating data to share. In this work, we define measurable notions

of privacy, other than the privacy budget, which we then use to measure whether a

given dataset is at higher or lower risk for leaking sensitive information.

Our contributions are as follows:

• We review the literature of privacy risks in data sharing.

• We quantify multiple (though by no means all) notions of a dataset’s privacy

risk in a way independent of how the dataset was generated.

• We generate differentially private datasets (for many values of privacy budget)

and characterize the utility-privacy tradeoff curves.

• We conclude that differential privacy continues to not achieve the “sweet spot”

of high-utility, low-risk models that some have hoped for.

6.2 Related Work

As interest in data sharing has grown in recent decades, so too have efforts to demon-

strate the failures of deidentification techniques.

In 1997, Sweeney was able to identify Massachusetts Governor Weld’s medical

records in an anonymized dataset by matching his birth date, gender, and zip code [7].
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In later work, Sweeney proposed k-anonymity as a method to improve privacy protec-

tions [279]. However, k-anonymity is vulnerable to homogeneity attacks (i.e., if the

attacker narrows it down to 5 patients, and they all have cancer, then they know the

patient has cancer) and background knowledge attacks (i.e., the attacker narrows it

down to 5 patients but only one of them is listed to have blue eyes, which the attacker

knows) [175].

In their landmark paper, Narayanan et al. 2008 demonstrate that records from

the anonymized dataset for the Netflix Prize challenge could be reidentified by linking

against public IMDB reviews [193]. Extending this work further, Datta et al. 2012

prove theorems about a variant of the Narayanan-Shmatikov algorithm, and demon-

strate suceptibility to isolation attacks and information amplification attacks [66].

Over a decade after their original Netflix Prize attack, Narayanan et al. 2019 reflect

that “the core technical insight goes back at least 60 years: a small number of data

points about an individual, none of which are uniquely identifying, are collectively

equivalent to an identifier” [194].

Generating synthetic data is a generalization of de-identifying data; the goal is to

create a dataset without PHI which can be shared. De-identifying the PHI is one of the

simplest approaches, though by maintaining the original records, it leaves the dataset

much more vulnerable to a linkage attack. The canonical way to create synthetic data

is by training a generative model on the sensitive data and then sampling from the

generative model to obtain synthetic records. The generative model could be simple

(e.g., n-gram counts [146]) or complex (e.g., Generative Adversarial Networks [59]).

Complex models involving deep learning or GANs have become powerful enough to

generate realistic samples, though sometimes by copying records from the training

data [50]. Models might leak information about the training data in a few ways,

including:

1. Shokri et al. [261] attack models to find which patients they were trained on.

This could reveal sensitive information if the training cohort was constructed

using a sensitive attribute (e.g., a model trained on HIV patients).
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2. Izzo et al. [128] find that models trained after-the-fact to forget information

about sensitive attributes often fail to achieve this as well as intended .

3. Webster et al. [302] finds that some GANs generate images copied from the

training set. Generating a real record in its entirety would present obvious

privacy harms to that patient.

Even without individual reidentification, there can still be system-level harms,

such as when Strava published anonymized walking routes, it showed the location of

secret military bases [118].

6.3 Methodology

In this work, we build upon prior work to quantify how effectively differential privacy

is able to maintain data utility while decreasing privacy risk. Specifically, we will

construct a real dataset, 𝐷𝑅, which will be used to train a model, 𝑀𝑅 for a given

task. Then, we will train a generative model, 𝐺(𝐷; 𝜖) based on summary statistics

of a dataset D, with DP privacy budget 𝜖. For various values of epsilon, 𝜖1, ...𝜖𝑛,

we will build synthetic datasets, 𝐷𝑆1, ...𝐷𝑆𝑛, by sampling from the generative models

𝐺(𝐷𝑅, 𝜖1), ...𝐺(𝐷𝑅, 𝜖𝑛). We will then use multiple metrics to quantify the privacy risk

of the real dataset (𝐷𝑅) and the synthetic datasets (𝐷𝑆1, ...𝐷𝑆𝑛). Finally, we will then

train models 𝑀𝑆1, ...𝑀𝑆𝑛 from the synthetic datasets and evaluate the performance

of these models.

The result of this procedure will be to create many synthetic datasets for which

we can compare their utility and risk for privacy leakage.

6.3.1 Data

To construct the real dataset, 𝐷𝑅, we use the MIMIC-III dataset [132], which contains

EHR data of patients who visited the ICU of Beth Israel Deaconess Medical Center

from 2001–2012. We use the first hospital admission for 32,660 adult patients. We
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filter out the 14 patients whose discharge time is reported to have taken place before

their admission time.

For each patient, we obtain:

• age (in years),

• length of stay,

• SOFA score [136],

• OASIS score [74],

• race (Asian / Black / Hispanic / Native American / White / unlisted)

• gender (Male / Female),

• admission location (Clinical Referral or Premature Delivery / Emergency Room

/ Physician Referral or Normal Delivery / Transfer from Hospital / unlisted),

• marital status (Married / Single / unlisted),

• whether patient is a recipient of Medicaid,

• some ICD-9 ontology groupings,1 and

• some Elixhauser Comorbidity [77] groupings.2

Categorical variables were encoded with one-hots. Additionally, in order to quantify

the risk to a patient’s privacy, we collect a small number of “sensitive attributes,”

including:

• whether the patient suffers from alcohol abuse;

• whether the patient suffers from drug abuse;

• whether the patient is HIV positive; and

• whether the patient has cancer;

In this work, we treat nonsensitive attributes as vectors of attack from adversaries

with linkable datasets. In other words, we consider attacks along the lines of “suppose

I could re-identify someone based on their age, marital status, etc. Would pairing

that ability with this dataset allow me to conclude whether they are HIV positive?”

This real dataset is split 70/30 into train/test sets, 𝐷𝑅train and 𝐷𝑅test , respectively.

1ICD groups for infectious (1-139), neoplasms (140-239), respiratory diseases (460-519), skin
diseases (680-709), and injury (800-999).

2Elixhauser groups for: weight loss, pulmonary circulation disorder, paralysis, blood loss anemia,
chronic pulmonary disease, drug abuse, and alcohol abuse.
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The real training set will be used to generate differentially private synthetic datasets,

𝐷𝑆𝑖, from. Both 𝐷𝑅train and the many 𝐷𝑆𝑖 datasets will be evaluated for privacy

leakage and how much clinical utility they retain. The real test set, 𝐷𝑅test , will be

used to measure the clinical utility of the above datasets, as described in Section

6.4.1.

6.3.2 Generative Model

In this section, we describe how we build a differentially private generative model

𝐺(𝐷; 𝜖) by learning summary statistics of a given dataset 𝐷 and adding noise accord-

ing to the “privacy budget” 𝜖.

Differential privacy is a system for sharing data publicly while maintaining formal

guarantees about resistance to membership inference attacks. Differential privacy is

not a particular method but is instead a definition: a query Q (e.g., count, sum,

etc.) that operates on a dataset is said to be 𝜖-differentially private if for all pairs of

datasets 𝐷1 and 𝐷2 which differ by only a single element and all events 𝑆 (e.g., query

returns a value of 15):

𝑃𝑟[𝑄(𝐷1) ∈ 𝑆] ≤ 𝑒𝜖 · 𝑃𝑟[𝑄(𝐷2) ∈ 𝑆] (6.1)

This is best understood with a motivating example: suppose I have a running tally

of how old everyone in the classroom is, and then someone 105 years old enters the

room. My exact count would increase by 105, and I might be able to reverse engineer

who entered the room because of how few people are that exact age. On the other

hand, if my running tally were differentially private, then the reported results of the

query might not say someone 105 entered the room; noise is added to the aggregate

count which obscures the exact contribution of any one participating individual. We

could add a large amount of noise (at the cost of accuracy) or a small amount of noise

(at the cost of privacy), and this knob is determined by the privacy budget 𝜖.

Differential privacy is closed under compositionality. Specifically, there are rules

for sequential compositionality (e.g., querying average age of everyone, and then

153



querying average age of everyone not named William) and parallel compositional-

ity (i.e., performing a query over disjoint groups, such as querying the number of

people below 30 years old and querying the number of people above 30 years old).

For sequential compositionality, the output of performing an 𝜖1-differentially private

query and an 𝜖2-differentially private query is also differentially private, with a budget

of 𝜖1+ 𝜖2 [71]. On the other hand, parallel compositionality allows for combining dis-

joint queries “costlessly,” where the output of performing an 𝜖1-differentially private

query and a disjoint 𝜖2-differentially private query is also differentially private, with a

budget of max(𝜖1, 𝜖2). This is often used to publish differentially private histograms

with low cost to the privacy budget [310].

Researchers have also discovered methods used for adding differential privacy into

the machine learning training process, using techniques such as Differentially Private

Stoachstic Gradient Descent (DP-SGD) [236] and Private Aggregation of Teacher

Ensembles (PATE) [219]. IBM developed a public differential privacy library, fittingly

named “DiffPrivLib” [120]. It uses the “Smooth Sensitivity” method to train the

random forest classifier [86].

Building the Generative Model

To build the generative model, 𝐺(𝐷; 𝜖), we partition the feature space into three

sections:

1. demographic binary features (13 dim);

2. ICD-based binary features (13 dim); and

3. continuous features (age, OASIS, SOFA, length of stay).

We build six separate generative models, two count-based models (one for each of

sections 1 and 2) and four diffprivlab-based models (one per continuous feature).

Following the structure of the original data, we enforce constraints that a given

patient can have at most one race, marital status, admission location, and gender.

This is done by collapsing these variables into non-binary categorical variables before

counting co-occurrences. To avoid the exponential “blow up” of 226 combinations (or

even the ≈ 220 combinations after collapsing demographic variables to be non-binary),
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we make a simplifying assumption that demographic variables are independent from

ICD-based variables. Although such an assumption is not strictly true, it allows

us to decompose the task into learning significantly smaller generative models (360

combinations and 8192 combinations) and concatenating the results.

We construct two histograms, one per section, 𝑆, to determine exact counts for

how many patients contain each combination of features. Because of parallel com-

positionality, partitioning a dataset into 𝑘 mutually exclusive sets before performing

the query only costs one charge to the privacy budget instead of 𝑘 charges [71]. We

add noise using the Laplace mechanism to each section with privacy budget 𝜖𝑆. For

an overall privacy budget of 𝜖 for 𝐺(𝐷; 𝜖), both histograms are allocated a budget of

𝜖𝑆 = 𝜖
6
. This amounts to adding Laplace(0, 𝜖

6
), independently sampled, to each cell

of each histogram.

For the age, SOFA, and OASIS features — which are non-binary — we use IBM’s

diffprivlib library to learn a differentially private random forest to predict those three

attributes from the 26 earlier binary features. Each random forest has 100 estimators,

a max depth of 3, and a privacy budget of 𝜖
6
. In order to ensure the generative model

is stochastic, we perform classification instead of regression; we discretize each target

into ten equally-sized bins and then learn to predict which bin is associated with the

features. This allows us to select the appropriate bin and then stochastically select

that feature’s value uniformly from the bin. Differential privacy requires specifying the

maximum value (rather than inferring it from the data, which could leak information),

so we clip all age values to 90 years old, SOFA scores to 22, and OASIS scores to 70.

The final attribute, length of stay, is also a non-binary variable whose value we

generate with a diffprivlib random forest. One difference from above is that this

model uses a 29-dimensional feature vector, because age, SOFA, and OASIS values

are concatenated to the earlier 26-dimensional vector.

We can sample from 𝐺(𝐷; 𝜖) by:

1. sampling 13 dimensions from the demographic DP-histogram;

2. sampling 13 dimensions from the ICD-based DP-histogram;

3. concatenating the demographic and ICD-based features into a 26-dimensional
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binary vector;

4. predicting which age, SOFA, and OASIS bins are most associated with that

feature vector using their respective differentially private random forests;

5. randomly sampling values from each selected bin;

6. concatenating the age, SOFA, and OASIS scores onto the demographic and

ICD-based features into a 29-dimensional feature vector;

7. predicting which length of stay bin is most associated with that 29-dimensional

feature vector using the differentially private length-of-stay random forest; and

8. randomly sampling a length of stay from the selected bin.

This procedure is run 200 times to generate 200 synthetic datasets. Using the

definitions of utility and privacy risk defined in Section 6.4, each dataset is evaluated

for its utility (i.e., how well a model trained on it performs on the heldout real test

data) and its privacy (i.e., four Membership Distance metrics and four Attribute

Inference metrics). We construct eight utility-privacy curves, each one showing the

utility and privacy of each of the 200 synthetic datasets.

By the sequential compositional property of differential privacy, the individual

privacy budgets for each procedure sum to an overall privacy budget of:

𝜖

6
+

𝜖

6
+

𝜖

6
+

𝜖

6
+

𝜖

6
+

𝜖

6
= 𝜖 (6.2)

6.4 Measuring Utility and Risk

In this section, we describe how to evaluate the clinical utility and privacy risk of a

datset, whether it is the real data 𝐷𝑅train or synthetic data, 𝐷𝑆𝑖.

6.4.1 Utility: Model Performance

For a given dataset 𝐷, we build a model, 𝑀𝐷, to predict the patient’s length of stay.

We use an XGBoost regressor [56] model with 100 estimators and a max depth of 6.

We then evaluate this model by measuring the absolute error when trying to predict

the lengths of stay from patients in the real test set, 𝐷𝑅𝑡𝑒𝑠𝑡 .
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6.4.2 Privacy: Membership Distance

As prior work has shown, sparse, high-dimensional data is often at high risk for privacy

attacks [193]. In high dimensions, data subjects are vulnerable to being singled

out [63]. Even in approximated scenarios [279], adversaries can learn information

if they can narrow their search down to a smaller number of candidates.

For intuition, suppose the real dataset had an 83-year-old Native American mar-

ried woman who is HIV positive. Further, suppose a dataset is shared which contains

an 82-year-old Native American married woman. Even though the age is not an exact

match, an adversary might conclude (if the syntethic data was derived from real data)

that the public “synthetic” row accidentally memorized a real row. This membership

inference attack would allow the advserary to re-identify the woman and could then

perform additional attacks based on linked datasets.

For this privacy metric, we formalize that intuition by trying to identify each real

patient’s synthetic “doppelganger.” To evaluate a dataset, 𝐷, we have one metric

per sensitive attribute. For each sensitive attribute, 𝐴, we first obtain the group

of patients who have that sensitive attribute (i.e., the group of patients who have

cancer); this set of patients is denoted 𝑃𝐴 for the real dataset and 𝐹𝐴 for the synthetic

dataset. For each patient 𝑝 ∈ 𝑃𝐴, we find the synthetic patient from 𝐹𝐴 that has the

highest similarity with 𝑝 when comparing only the nonsensitive attributes (i.e., its

“doppelganger”). Finally, we aggregate across all patients in 𝑃𝐴 by taking the median

Euclidean distance between each real patient and their doppelganger:

𝑃𝑟𝑖𝑣𝐷𝑖𝑠𝑡𝐴 = 𝑚𝑒𝑑𝑖𝑎𝑛p∈𝑃𝐴
(𝑚𝑖𝑛f∈𝐹𝐴

||p𝑛𝑜𝑛𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 − f𝑛𝑜𝑛𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒||) (6.3)

An exact match between a real patient and its doppelgangers would have a distance

of 0, which would indicate both datasets list someone with attribute 𝐴 and identical

nonsensitive attributes. On the other hand, a high value for this metric would indicate

that real patients do not have obvious “doppelgangers” in the public data.
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6.4.3 Privacy: Attribute Inference

If there are correlations between the sensitive attributes and some of the nonsensitive

attributes, an attacker might be able to probabilistically infer that information about

patients. Certainly this is part of what makes privacy so difficult to preserve with-

out any tradeoffs; associations between the features and target (length of stay) are

considered useful whereas associations between the features and sensitive attributes

could be potential privacy leakage.

As above, to evaluate a dataset, 𝐷, we have one metric per sensitive attribute.

For each sensitive attribute, 𝐴, we train a classifier, 𝐶𝐴,𝐷 to impute whether the

patient has the sensitive attribute based upon the sparse nonsensitive features. This

classifier is an XGBoost classifier trained with 50 estimators and a max depth of 2.

This learns what relationships the shared dataset makes between sensitive attributes

and sparse, high-dimensional features that adversaries may have access to. We then

compute the recall of identifying patients with that sensitive attribute in the test data

𝐷𝑅test . To avoid the chance that this is “gamed” by a classifier which always predicts

positive, our classifier only predicts 𝑛𝐷 patients to be positive, where 𝑛𝐷 is the actual

number of positive patients in 𝐷. Using recall allows for an intuitive understanding

of this metric: a score of 0.3 indicates that an adversary which knows the patient’s

age, gender, nonsensitive ICD groups, etc. would be able to correctly identify 30% of

patients which have sensitive attribute 𝐴 (e.g., drug abuse).

6.5 Results

In this section, we report the 8 utility-privacy curves for the Membership Distance

(4 sensitive attributes) and Attribute Inference (4 sensitive attributes). Additionally,

we explore these curves more closely for the ICD=Cancer sensitive attribute metrics.
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Figure 6-1: Membership Distance curves of each sensitive attribute. This notion of
utility is defined in Section 6.4.1. This notion of privacy is the Membership Distance
definition found in Section 6.4.2. The x-axis is Euclidian distance units and the y-
axis is Mean Absolute Error. Each point’s color corresponds to that dataset’s privacy
budget, 𝜖.

Figure 6-2: Attribute Inference curves of for each sensitive attribute. This notion
of utility is defined in Section 6.4.1. This notion of privacy is the Attribute Inference
definition found in Section 6.4.3. The x-axis is recall from an attribute prediction
classifier and the y-axis is Mean Absolute Error. Each point’s color corresponds from
the privacy budget, 𝜖, used to generate that dataset.
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6.5.1 Utility-Privacy Curves

Membership Distance

Figure 6-1 shows the utility-distance curves for the Membership Distance definition

of privacy from Section 6.4.2.

The yellow point in each figure corresponds to the real dataset. The real data

was not generated via the generative model described in Section 6.3.2, which causes

it to have a discontinuity from the rest of the curve for most sensitive attributes.

This is because the generative model has non-reversible encodings, such as the the

continuous variables (age, SOFA, OASIS, length of stay) being encoded and decoded

at the granularity of “which of the ten bins does this fall into?” Even without any

differential privacy noise, such a process does not allow perfect reconstruction.

All four curves have similar trends, which we will explore in more depth in Section

6.5.2. There is a near-proportional relationship between the privacy metric and the

model performance. The metric measures the median distance between patients with

that attribute and their closest “doppelganger” with that attribute. The larger the

median distance is, the more difficult it is to “single out” patients who have the

sensitive attribute.

Because of the strong correlation between error rate and difficulty-from-singling-

out, this generative model demonstrates the same utility vs. privacy tradeoff that

plagues traditional synthetic data. Even though differential privacy has mathematical

guarantees about the kind of noise it is adds, those properties do not allow the

generative model to produce low-risk models that are able to retain clinical utility.

Attribute Inference

Figure 6-2 shows the utility curves for the Attribute Inference definition of privacy

from Section 6.4.2.

The discontinuity between the real (yellow) point and all synthetic points is even

more stark than in Figure 6-1. This likely is due to the independence assumptions in

the generative model, where some attributes were assumed to be independent from
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Figure 6-3: Restating the Membership Distance (A) and Attribute Inference (B)
curves for the cancer metric. Each curve is labeled with four letters (A-D, E-H)
where each letter corresponds to a dataset visualized in Figure 6-5.

each other (and then were combined to generate the target variable in a differentially

private way). Modelling assumptions — most notably that ICD-based features and

demographic features were assumed to be independent — severed relationships be-

tween attributes which likely were useful for attribute inference. As a result, every

single synthetic dataset makes it much harder than the real data to infer sensitive

attributes based on nonsensitive attributes.

6.5.2 Closer Look: Privacy for Cancer Patients

In this section, we analyze the utility-risk curves a little more closely to better under-

stand what kinds of datasets are being generated. Figure 6-3 shows the Membership

Distance and Attribute Inference curves for the cancer-based privacy metrics. These

figures identify representative points along their curves, labeled A-H, which we will

examine further.

In order to visualize these datasets, they must be projected from 30 dimensions

down to 2 dimensions. Because the data has a mix of sparse, high-dimensional data

(26 dimensions) and dense, continuous variables (4 dimensions), methods like t-SNE

and PCA are liable to distort the direct values. Instead, we visualize the data by

projecting onto 2 of the dense dimensions: age and OASIS. Figure 6-4 shows the

relationship between these two attributes in the real dataset.

When comparing the real data against the projections in Figure 6-5, we see that all
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Figure 6-4: 2-dimensional visualizations of the real dataset. This view is a projection
of the OASIS (x-axis) and age (y-axis) dimensions.

of these generative models are limited by the bin-based generative model for producing

age and OASIS. Both dimensions are generated via differentially private random

forests which predict which of ten bins to sample from. But once a bin is selected, the

sampling is done over a uniform distribution in that range. As a result, the generative

model “throws away” the fine-grained relationship between variables. Although we

can see in the real data a modest positive correlation between age and OASIS, the

synthetic datasets largely indicate no correlation between the two dimensions.

Points A, B, E, and F achieve relatively good clinical utility in Figure 6-3. Their 2d

projections have much less noise than points C, D, and H. Although these higher util-

ity points are constrained by the generative model bin-based structure, they nonethe-

less do concentrate probability mass in the appropriate region of the space. Points

C, D, and H add too much noise to the point where all signal is lost.

On the whole, this demonstrates the noise mechanism at work: adding a lot of

noise (i.e., a small privacy budget) will distort the relationships between variables

that are able to be captured. Although, yes, it does lead to higher levels of privacy,

it achieves this by degrading the meaningful signals as well.
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Figure 6-5: 2-dimensional visualizations of the 8 datasets identified in Figure 6-3. For
comparison with Figure 6-4, the OASIS score is the x-axis and the age is the y-axis.
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6.6 Discussion

A benefit of differential privacy is that it allows the user to control how much “privacy

leakage” they can allow from their data. By adding more noise or less noise, the user

is able to guarantee bounds on whether an adversary could determine whether an

individual contributed their data. However, that alone is not enough to sidestep the

difficult issues in data sharing.

Even aside from differential privacy techniques, the so-called “Holy Grail” that

researchers are hoping to develop is an anonymization mechanism which removes all

privacy risk without impacting the data’s utility. However, as we saw, the line between

utility and privacy is not always as clearly defined. Certainly medical conditions such

as HIV status and pregnancy are considered sensitive by most people, however, other

attributes such as marital status or even gender may be very sensitive to others.

Although there is a desire for technical experts to design a “scrubber” which acts as a

“one stop shop,” the task of ensuring privacy is quite challenging. Arvind Narayanan

has been critical of efforts which hope to deidentify data sufficiently to be able to

release for public use with sufficient privacy protections [195].

Differential privacy is a useful tool in the right situations, but policymakers should

be aware of what it can do as well as what it cannot do. One open challenge that

policymakers have struggled with is what is the appropriate way to set their privacy

budget; the unit-less 𝜖 variable is useful in the definition of differential privacy, but the

current state of research offers little practical advice of how to find the right tradeoff.

For the most part, selecting the tradeoff point is not a technical issue. Instead, re-

searchers must work with knowledgeable domain experts to map the privacy interests

and the threat models to defend against. But to the extent that technical methods

can facilitate the process, researchers should further develop approaches for measur-

ing privacy risk. Much like the past 6 years have seen a plethora of mathematical

definitions of fairness [186], so too could experts model different quantifiable notions.

Then the right tool could be selected for a given context (e.g., by presenting a few

options to domain experts and discussing the important areas of focus).
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This work presents contributions in that direction by bypassing the privacy budget

when evaluating differentially private methods. Because stakeholders and policymak-

ers will have no intuition for how to answer a question like “Is a budget of 𝜖=0.8

sufficient to keep these records safe enough?” it is important that we move to inter-

pretable notions.

6.7 Project “Evidence”

In this work, I moved beyond a privacy budget-driven notion of privacy loss to quantify

the utility-privacy tradeoff curve offered by a case study in differential privacy. Just as

we use principles of Data Feminism to reflect on the Tech Worker Organizing project

in Chapter 5, so to can we use another principle to interrogate the assumptions of this

work. The fourth principle of Data Feminism is to “rethink binaries and hierarchies.”

This work both made its own reductive, binary modelling assumptions (e.g., sensitive

variables) and also directly challenged the notion that differential privacy, itself, is

a binary design choice (as opposed to a spectrum, whose guarantees of privacy are

highly dependent on the amount of noise).

6.7.1 Spectrum of Differential Privacy

Since differential privacy was created in 2006, it has garnered a lot of attention as a

tractable way to quantify the degree to which sensitive information could be shared.

Multiple efforts to employ differential privacy attracted initial praise from privacy ad-

vocates, but as their implementation rolled out, numerous challenges emerged. One

such challenge was the concern that using extraordinarily large privacy budgets effec-

tively nullified any benefits from theoretical guarantees and likely led to data whose

quality has been lowered without a provable benefit in practical privacy protections.

I begin with an overview of two such examples and then discuss this work’s contri-

bution to whether a project claiming it “uses differential privacy” is meaningful in its

own right.

2020 US Census. Every ten years, the US Census enumerates all people living in
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the United States and releases aggregate statistics, which are used for many purposes:

determining proportions for Congressional representation, determining whether Con-

gressional districts comply with the Voting Rights Act, allocating funding resources,

and more. With the sharp increase in computational resources, officers at the Census

Bureau worried that despite deidentification methods, a large number of respondents

could be reconstructed from aggregated summary statistics [94]. In response to these

concerns, the Bureau released the 2020 Census using differential privacy to add noise

to the counts. As documented by danah boyd [94], this process led to numerous chal-

lenges and growing pains. In addition to critics who argue that deliberately adding

noise to census data is bad policy with little-to-no measurable upside [318], others

worry that the technology of differential privacy is too immature to use effectively.

For instance, the Bureau chose to add less noise (i.e., larger privacy budget cost) on

the “spine” of the counting process [39], to ensure the most important information for

Congressional apportionment was not too far from reality, but its not clear how to

“strike the right balance.” The overall Census reporting totaled a privacy budget of

𝜖 = 19.61. Is that too much noise? Too little noise? Is the noise correctly distributed

to prioritize the right accounting? Mathematically speaking, a privacy budget that

large suggests a nearly meaningless privacy guarantee: the ratio of probabilities for

how much one element’s exclusion could change the reported data is upper bounded

by a factor of 𝑒19.61 = 328, 484, 431.

Apple. Whereas the Census Bureau obtained an exact count and then used dif-

ferential privacy to add noise to the publicly released aggregated statistics, Apple also

used differential privacy but did so in a decentralized manner. In 2016, Apple an-

nounced they would be using local differential privacy to collect data about their users

and sending noisy values to their centralized servers for analysis [281]. Although the

differential privacy research community applauded the effort, many offered critiques

on the execution, including Frank McSherry — one of the inventors of differential

privacy — who said that “Apple has put some kind of handcuffs on in how they inter-

act with your data. It just turns out those handcuffs are made out of tissue paper”

[104]. The researchers who reverse engineered Apple’s code found a privacy budget
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as high as 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 43 under some settings, but McSherry commented that “any

[value of epsilon] much bigger than one is not a very reassuring guarantee. Using an

epsilon value of 14 per day strikes me as relatively pointless.” Much like with the cen-

sus, experts are skeptical that merely using “differential privacy” added meaningful

protections to the data.

In this work, I create a differentially private model and explore 200 sampling

runs with different values of privacy budget. Doing this allowed me to trace the

“utility-privacy” curve(s). Notably, one major observation that we saw was that

differential privacy allowed for a relatively graceful transition between good utility

and good privacy. On the one hand, the use of differential privacy was disappointingly

unable to sidestep the traditional tradeoffs between two values in tension with each

other. On the other hand, having this mechanism does allow for more fine-grained

control by the data producers to determine the quality of published data depending

on their risk tolerance. However, more work is required for publishers to determine

the right privacy metrics for their particular task and then they must effectively

engage with stakeholders to understand where on the tradeoff curve could be sufficient.

Historically, such fine-grained control has not been available in this way, which means

there will likely be mistakes and growing pains if differential privacy continues to be

used for high-profile data publishing.

Of course, it may also prove to be the case that negative receptions of differential

privacy case studies may deter future data publishers from adopting the technology;

to date, it has been seen as a binary design improvement that can earn a cycle of

good publicity, though perhaps that may change.

6.7.2 (Multi-)Spectrum of Data Sensitivity

In Section 6.3.1, I introduced a distinction between “sensitive” attributes and non-

sensitive attributes. This binary sensitive/nonsensitive paradigm is a simplifying as-

sumption, both because there is a spectrum of how sensitive information is (e.g., right

handedness is less sensitive than weight, which is likely less sensitive than a family

history of substance abuse) and also because different people have different notions of
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which attributes are most sensitive for themselves. Such value determinations must

be taken into account when modeling the risks and threats in order to understand

what is trying to be protected by a notion of privacy.

Because of the diversity in values, we would require the addition of other principles

of Data Feminism — including “Examine Power” and “Embrace Pluralism” — to

fully characterize how different forms of oppression act on the data subject based on

their intersecting identities. For instance, after Narayanan et al. 2008 demonstrated

they could reidentify users in the anonymized Netflix prize challenge dataset [193],

a closeted lesbian woman sued Netflix because she could be outed if people saw her

history of watching LGBT films [264]. Similarly, although many data subjects would

consider “gender” to be not particularly sensitive, that is far from true for everyone;

transgender users of an online platform might not be out to all of their online friends

(e.g., to family back home).

In this project, I make modeling assumptions about which features are sensitive,

but more work must be done to explore how to account for the distribution of con-

cerns. For example, one notion may involve focusing on consensus areas of sensitivity

whereas a different notion may measure progress by how well the modeling performs

for the worst-case. The complex nature of diverging values is in tension with the

fine-grained level of control that differential privacy affords to data publishers. It

will be essential to analyze case studies with specific threat models and examine how

effectively each one was able to account for protecting the attributes that its data

subjects are concerned about.
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Chapter 7

Conclusion

Although hundreds of organizations are creating top-down statements of principles

and values, such efforts are hampered by vagueness. Of course everyone agrees that

a process should be “fair,” but we do not have the policies or norms in place to

adjudicate whether a given thing is or isn’t fair as issues arise. Instead, I propose we

employ Evidence-based AI Ethics: we should learn bottom-up from case studies. In

Chapters 2–6, I demonstrate how to use critical lenses (e.g., Effective Altruism and

Data Feminism) to extract “evidence” from projects. In this final chapter, I sketch

the crucial next steps: how institutions can learn from this evidence and put relevant

policies and norms into place.

The rest of this chapter is as follows: in Section 7.1 I describe many of the relevant

actors in the AI Ethics ecosystem and their incentives, and in Section 7.2 I demon-

strate two examples of efforts to build norms and advocate for policies informed by

case studies.

7.1 Who is Doing AI Ethics?

In Chapter 1, I discuss the role and incentives that academics face. In this section, I

overview the roles and incentives of other actors that contribute to AI Ethics.
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7.1.1 Corporations

Corporations — particularly “Big Tech” companies like Facebook, Google, Microsoft,

etc. — play a large role in the norms that are created for developers and engineers.

Whereas academic institutions canonically do basic research, corporations are in-

tended to translate that research into products and services that are valuable enough

to people that customers will buy them. In simple models, long-term incentives of

rational actors would compel corporations to always act ethically, but other factors

(e.g., information asymmetries, cognitive biases, calculated risk of getting caught,

cost-benefit tradeoffs) can cause them to deviate from those simple models. As such,

most of the other actors in the ecosystem sometimes monitor corporations to hold

them accountable.

As mentioned in Chapter 1, there are dozens of corporate principles of AI Ethics.

However, it’s not clear how meaningful or effective these guidelines are in general, and

there is likely large variation from firm to firm. Using Google as an example, Google

created its AI Principles1 in response to employee activism to protest the company’s

contract with the Department of Defense for drone technology. The firm also created

a review process2 to translate these principles into an assessment of each product,

and (according to Google) the assessment convinced them “to hold off on offering

functionality before working through important technology and policy questions” for

general-purpose facial recognition API. However, others contend that the current

assessment process is insufficient, citing examples such as how its dermatology app

was not tested sufficiently on darker skin [83]. Additionally, after the contentious

departures of both leads of Google’s Ethical AI team, the rest of that team is raising

concerns about the insufficiency of internal processes [100].

7.1.2 AI Workers

Chapter 5 discussed the role of tech workers in AI Ethics and oversight in great

detail. In particular, workers can play a very important role in holding corporations
1https://blog.google/technology/ai/ai-principles
2https://ai.google/responsibilities/review-process
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accountable through a large spectrum of tactics.

7.1.3 Policymakers and Regulators

Companies often respond to public perception and market forces, but they might

not always do that. Sometimes — such as in the case of market failures or when

a negative externality would cause harm without sufficient disincentive to the actor

— legal power is the best way to address a problem. For instance, the Federal

Trade Commission (FTC) has a broad mandate to protect consumers from fraud and

deception in the marketplace. If the FTC finds that a company is engaging in unfair

or deceptive acts or practices, then they can hold the firm accountable with lawsuits

and civil penalties. Likewise, Congress has oversight abilities (backed by subpoena

power) to call companies to testify before them as they consider writing new laws.

Ideally, the goal of policymakers is to represent the will of the people and to trans-

late popular opinions into law. In practice, there is a wide distribution of competing

incentives among politicians running for re-election. But because this is not a po-

litical science thesis, we can use the simpler model that policymakers are trying to

pass laws which codify popular will. Other actors, including academics, corporations,

think tanks, the public, and more often meet with them to influence the decisions

that they make.

Historically, US policymakers have a bad track record of ensuring the law keeps

up to date with technological progress. For instance, in 1986, Congress passed the

Electronic Communications Privacy Act (ECPA) to extend restrictions on government

wire taps of telephone calls to include transmissions of electronic data by computer.

However, this law was based on a 1980s understanding of data, where emails were

only stored on the owner’s computer. To balance interests at the time, Congress

concluded that if an email were on someone else’s server for 180 days or more, then

the data would be considered “abandoned” and the police would no longer need a

warrant to access it. This model is no longer striking the intended balancing of

privacy interests now that cloud-based web services (e.g. gmail) store all emails on a

third-party server like Google’s. Despite the law being over 30 years old, the “180 day
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rule” is still technically the law (although in practice, courts have decided to ignore

that rule).

7.1.4 Think Tanks and Advocacy Groups

Congress does not have enough in-house technical expertise to be able to keep up

with advancements in technology, so other organizations — such as think tanks —

have emerged to develop a body of knowledge relevant to specialized interests. These

organizations are typically funded by donors or grants, and focus on a specific in-

terest, such as the Electronic Frontier Foundation (EFF), an international non-profit

digital rights group which often weighs in to Congress and the Courts about questions

involving digital privacy.

Other nonprofits, such as the Center for Humane Technology, focus on raising

public awareness about the harms or benefits of new technology. The EFF and

American Civil Liberties Union (ACLU)3 file lawsuits to defend civil liberties like

privacy and free speech.

Their incentive is to convince their donors they are sufficiently making a positive

impact.

7.1.5 Media and Journalists

The purpose of the media and journalists is to keep the public informed. Much like

with policymakers, there are interesting aspects of media organizations’ incentives

which will be left for others to study [149], but the main takeaway is that media

organizations compete for attention of their viewers as the way to financially support

themselves.

Investigative journalists and watchdog organizations have played an oversight role

in AI Ethics behavior, especially since the US government has mostly taken a “light

touch” regulatory approach for the tech industry. One early high-profile discussion

of the current wave of AI Ethics discourse came from ProPublica’s “Machine Bias”
3Disclosure: I interned for the ACLU of Massachusetts in 2021
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investigation of a risk assessment tool, showing that Black suspects were more likely

than white suspects to be incorrectly given a “high risk” assessment [11]. Although

fairness is arguably the most-discussed topic in AI Ethics in 2021, other challenges

have also been covered by media, including self-driving cars [110, 38], algorithmically-

amplified misinformation [144], and biometric surveillance [265]. Ouchchy, Coin, and

Dubljevi [215] read a comprehensive set of 254 media articles written 2013–2018

about AI Ethics, and found that the tone of the articles has become increasingly

critical as additional high-profile instances become public, with particular emphases

on unintended consequences, accountability, and a lack of ethics.

The media has a large influence on public discourse. Many books aimed at a gen-

eral audience have spoken about the potential harms of tech, including Algorithms

of Oppression [206], Weapons of Math Destruction [208], Automating Inequality [78]

Data Feminism [64], Artificial Unintelligence [42], Technology After Race [24], The

Ugly Truth [87], and more. Relatedly, numerous documentaries have sought to cri-

tique massive data collection [6], targeted and behavioral advertising [213], and facial

surveillance [143]. These artifacts allow for broadcasting of concepts and critiques to

the public.

7.1.6 The Public

In some sense, the public is the most powerful domain because all of the other domains

derive their power and legitimacy through public will. A lot of what the public under-

stands is filtered through the media, and to a certain extent academics, politicians,

think tanks, and corporations directly.

Because of the public’s influence on all of the other domains, changes in public

opinion can have large impacts on how the other agents behave. For instance, since

the 2018 reveal of Facebook’s scandal involving Cambridge Analytics (and numerous

additional scandals since), politicians have been much more openly critical of Face-

book, and the company has changed its data sharing practices to try to avoid further

scrutiny.
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7.2 Building Norms and Policies

There are many different kinds of actors in the space: academia, regulators, media

and journalism, think tanks, corporations, and the public. This “alignment” of shared

understanding which actions are/aren’t ethical does not just happen on its own. As we

have seen from Evidence-based Medicine, there is a lot of meta-organizing work which

goes into building the consensus within a field that can promote desirable behaviors

(e.g., medical practices likely to help patients, data collection practices which respect

subject preferences) and discourage undesirable behaviors (e.g., promoting harmful

content online to increase user engagement).

To build this movement of ethical uses of AI, institutions will need do the work

of generating consensus:

• e.g. Academics will need to organize more conferences to discuss AI Ethics,

particularly around the analysis of and lessons learned from case studies.

• e.g. Journalists will need to continue to serve as watchdogs and do investigative

journalism to uncover how existing practices are operating.

• e.g. Academics will need to develop curricula which teach the values.

• e.g. Companies will hopefully compete on ethics in their brand.

• e.g. Regulators and courts will create and iterate on the legal frameworks for

governing data practices.

I demonstrate two efforts I’ve contributed to which have worked to build better

norms and policies.

7.2.1 Policy Synthesis: AI Policy Forum

The MIT AI Policy Forum (AIPF) is a global effort convened by MIT to formulate

concrete guidance for how governments and companies can handle emerging issues

that arise in AI. In Spring 2022, AIPF hosted three workshops where diverse groups

of stakeholders discussed policy implications of AI in healthcare, finance, and mobil-

ity/transportation.

I worked with the healthcare workshop organizers. The event was across two
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days in January 2022. The AIPF convened a group of AI health policy experts

from academia, the non-profit sector, government and commercial services, spanning

disciplines including computer science, medicine, law, and anthropology. Twenty-

four speakers presented their work: deploying AI in hospitals, creating data sharing

policies for nonprofits and governments, using data to inform Greece’s COVID testing

allocation, technical assessments of data sharing tools, ethical frameworks for machine

learning, and more.

The result of the discussion was a report [31] which made a series of policy recom-

mendations based on specific bright spots and challenges identified by the case studies.

For instance, Nightingale Open Science found that data publishers and researchers

struggled with navigating a patchwork of policies from differing organizations’ IRBs

and data use agreements. In response, Nightingale created a Legal Toolkit4 of a tem-

plated IRB and a data use agreement that is simpler than most others currently are

to help future data publishers navigate common challenges and avoid costly mistakes.

Additionally, data sharing efforts from All of Us [285], UK BioBank [276], MIMIC

[132], US Centers for Medicare and Medicaid Services [62], and the US Department

of Veterans’ Affairs [197] have collectively shown trends in data sharing. One bright

spot to further encourage is that most efforts have been moving towards cloud-based

data sharing, which allows for increased security against data breaches as well as the

option for equity in computing resources for researchers.

Working with the AIPF has given useful insight into a key role that academics

can play, both by convening workshops of experts to distill best practices and also by

sharing those recommendations with policymakers. The AIPF has built upon earlier

efforts of the MIT AI Policy Congress, which brought technical experts and policy-

makers (including members of Congress, Presidential nominees, and civil servants)

together to discuss emerging challenges that result from AI.

4https://www.nightingalescience.org/legal-toolkit
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7.2.2 Building Norms: Privacy Watchdog

Section 7.1.3 discusses how laws often lag behind technology, sometimes by decades.

Further, even when there are policies on the books, companies may not follow them

[18]. This might be because of a calculated decision based on the (un-)likelihood of

being caught or it might be because of norms that have developed (e.g., developers

might view poor data hygeine as analogous to speeding 5 miles per hour above the

speed limit).

In any matter, the legal model of accountability (e.g., law enforcement going after

bad actors who violate the law), is a reactive process which occurs after tangible harm

is done. To address this issue with an upstream solution (i.e., before harm occurs),

Quentin Palfrey founded the International Digital Accountability Council5 (IDAC)

in 2020. During a June 2020 panel discussion with both Palfrey and Massachusetts

Deputy Attorney General Sara Cable, Cable articulated that “there is an absence of

real rules of the road” for mobile app developers. In response, Palfrey discussed how

traditional law enforcement is only a subset of accountability tools: “I think one of

the important things as you develop an ecosystem for accountability in the mobile

app space is to combine the robust measures [that] the DPA or the FTC or the State

AGs can do with the more nimble nonprofit actors that are still aggressive [and] still

have teeth ... and really working to make sure that best practices are followed but

that they have an orientation towards early intervention.”

IDAC is a privacy watchdog for mobile apps, both calling out bad behavior and

offering education in best practices for developers. IDAC partners with Good Re-

search to instrument Android phones with special hardware to conduct static and

dynamic tests on apps. Its investigations can reveal:

• static: Phone permissions requested by app.

• static: Software development kits present in the app.

• dynamic: What user data is being transmitted to and received from 3rd parties.

• dynamic: Who is the data going to?

In addition to technical analysis, IDAC also employs lawyers and fellows to con-
5Disclosure: I interned for IDAC from 2020–2021
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duct policy analysis. This can take the form of grading dozens of apps’ privacy policies

as good or bad, reading platform (e.g., Google Play store) policies to identify viola-

tions at the platform-level, and reading FTC and State AG case law to determine

whether legal action is appropriate.

When IDAC identifies a problem, it uses a “sliding scale of engagement” protocol

for determining what level of intervention is appropriate.6

For small problems (e.g., a healthcare app using a template privacy policy which

doesn’t reflect the usage or purpose of how data will be used), IDAC will first try a

‘polite shoulder tap’ to try to resolve the issue. Many developers respond positively to

the non-hostile outreach, and if they resolve the issue, then an anonymized description

of the incident is reported in IDAC’s “Dogs That Don’t Bark” series [125] without

hurting that developer’s reputation.

If the developer does not fix the problem, they get publicly called out, and the

pressure from users often leads to policy change. In June 2020, IDAC looked at the

privacy and security practices over 100 COVID apps and called out particularly bad

behavior [218]. After the report was released, many apps which we publicly flagged

addressed issues by: adding privacy policies, improving privacy policies, and stopped

collecting persistent identifiers. Two particularly bad apps were removed altogether.

When public pressure is not enough to convince the developers to address the

problem, the next step is to identify if there are any platform (e.g., Google Play,

Apple App Store) policies that they are in violation of. Private platforms can move

much faster than law enforcement and may have easier-to-meet standards for the

less intrusive intervention of suspending or removing an offending app. For instance,

in October 2020, we flagged three apps to Google which violated the Google Play

Store’s developer policies that put guard rails on shadow profiling [126]. As a result,

these apps were removed from the Play Store until they stopped collecting multiple

identifiers that allowed them to link patient profiles across apps.

Finally, if IDAC identifies egregious misconduct by an app, they will notify law

enforcement. We did this in August 2020, where we found a fertility app was collecting

6https://digitalwatchdog.org/policy-and-procedures-summary
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personally identifying user data and sending it to China without notifying its users.

As a result of this failure to disclose overseas transfer of data, we wrote a letter to

both the FTC and the relevant state Attorney General asking them to investigate

the company [217]. In response, Senators Warren, Klobuchar, and Moore Capito also

urged the FTC to investigate the company’s practices [243].

In the future, there will need to be more efforts like AIPF, IDAC, media/documentaries,

and more in order to develop policies and norms around AI Ethics that are informed

by lessons learned from case studies.
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Appendix A

Radiology Report Model

Implementation Details

A.1 Our Model Implementation

We briefly describe the details of our implementation in this section.

Encoder The image encoder CNN takes an input image of size 256 × 256 × 3.

The last layer before global pooling in a DenseNet-121 are extracted, which has a

dimension of 8 × 8 × 1024, and thus 𝐾 = 64. Densenet-121 [124] has been shown

to be state-of-the-art in the context of classification for clinical images. The image

features are then projected to 𝑑 = 256 dimensions with a dropout of 𝑝 = 0.5.

Since typically in the X-ray image acquisition we are provided with the view

position indicating the posture of the patient related to the machine, we conveniently

pass this into the model as well. Indicated by a one-hot vector, the view position

embedding is concatenated with the image embedding to form an input to the later

decoders.

Decoder As previously mentioned, the input image embedding to the LSTM has a

dimension of 256, and it is the same for word embeddings and hidden layer sizes. The

word embedding matrix is pretrained with Gensim [238] in an unsupervised manner.
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Training Details We implement our model on PyTorch [226] and train on 4

GeForce GTX TITAN X GPUs. All models are first trained with cross-entropy loss

with the Adam [147] optimizer using an initial learning rate of 10−3 and a batch size

of 64 for 64 epochs. Other than the weights stated above, the models are initialized

randomly. Learning rates are annealed by 0.5 every 16 epochs and we increase the

probability of feeding back a sample from the posterior p by 0.05 every 16 epochs.

After this bootstrapping stage, we start training with REINFORCE for another 64

epochs. The initial learning rate for the second stage is 10−5 and is annealed on the

same schedule.

Indicated by [240], we adopt CIDEr-D [290] metric as the reward module used in

𝑟NLG. For the baseline for CCR, we choose a EMA momentum 𝛾 = 0.95. A weighting

factor 𝜆 = 10 has been chosen to balance the scales of the rewards for our full model.

A.2 TieNet Re-implementation

Since the implementation for TieNet [300] is not released, we re-implement it with

the descriptions provided by the original authors. The re-implementation details are

described in this section.

Overview TieNet stands for Text-Image Embedding Network. It consists of three

main components: image encoder, sentence decoder with Attention Network, and

Joint Learning Network. It computes a global attention encoded text embedding using

hidden states from a sentence decoder and saliency weighted global average pooling

using attention maps from the attention network. The two global representations are

combined as an input to the joint learning network. Finally, it outputs the multi-label

classification of thoracic diseases. The end products are automatic report generation

for medical images and classification of thoracic diseases.

Encoder An image of size 256× 256× 3 is taken by the image encoder CNN as an

input. The last two layers of ResNet-101 [115] are removed since we are not classifying
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the image. The final encoding produced has a size of 14×14×2048. We also fine-tune

convolutional blocks conv2 through conv4 of our image encoder during training time.

Decoder We also include the view position information by concatenating the view

position embedding with the image embedding to form input. The view position

embedding is indicated by a one-hot vector. At each decoding step, the encoded

image and the previous hidden state with a dropout of 𝑝 = 0.5 is used to generate

weights for each pixel in the attention network. The previously generated word and

the output from the attention network are fed to the LSTM decoder to generate the

next word.

Joint Learning Network TieNet proposed an additional component to automat-

ically classify and report thoracic diseases. The joint learning network takes hidden

states and attention maps from the decoder and computes global representations for

report and images, then combines the result as the input to a fully connected layer

to output disease labels.

In the original paper, 𝑟 indicates the number of attention heads, which we set as

𝑟 = 5; 𝑠 is the hidden size for attention generation, which we set as 𝑠 = 2000. One key

difference from the original work is that we are classifying the joint embeddings into

CheXpert [127] annotated labels, and hence we have the class count 𝑀 = 14. The

disease classification cross-entropy loss 𝐿𝐶 and the teacher-forcing report generation

loss 𝐿𝑅 are combined as 𝐿overall = 𝛼𝐿𝐶 + (1 − 𝛼)𝐿𝑅, in which 𝐿overall is the loss for

which the network optimizes. However, the value 𝛼 was not disclosed in the original

work and we use 𝛼 = 0.85.

Training We implement TieNet on PyTorch [226] and train on 4 GeForce GTX

TITAN X GPUs. The decoder is trained with cross-entropy loss with the Adam [147]

optimizer using an initial learning rate of 10−3 and a mini-batch size of 32 for 64

epochs. Learning rate for the decoder is decayed by a factor of 0.2 if there is no

improvement of BLEU [222] score on the development set in 8 consecutive epochs.

The joint learning network is trained with sigmoid binary cross-entropy loss with the
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Adam [147] optimizer using a constant learning rate of 10−3.

Result Since we are not able to access the original implementation of TieNet and

we additionally inject view position information to the model, we might have small

variations in result between the original paper and our re-implementation. We only

compare the report generation part of TieNet to our model.
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