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Abstract 

America faced crippling shortages of Personal Protective Equipment (PPE) during the 

COVID-19 pandemic from 2020-2021. In response to these recent shortages, policy makers, 

emergency responders, public health agencies and private healthcare facilities are investing 

significant time and money to ensure America is better equipped to meet the need for PPE in the 

next pandemic.  As America pours money into larger stockpiles and increased domestic 

manufacturing, it is crucial that decision makers understand PPE demand during COVID-19-type 

pandemics so they can allocate resources appropriately.  This thesis aims to answer two central 

questions: 1) How can planners forecast PPE use in acute care hospitals for future COVID-19-

type pandemics? 2) How can the model used to develop these forecasts contribute to a robust 

PPE preparedness plan? 

This thesis presents a simulation that can be used by planners to forecast PPE use in acute 

care hospitals. The simulation is then applied in a case study to demonstrate potential 

applications and identify opportunities to shape PPE demand through hospital policy. By 

implementing conservation policies, policy makers can decrease N95 facepiece respirator use by 

47%, and gown and glove use by over 50% in acute care hospitals during a COVID-19-type 

pandemic. In an environment where significant attention is being paid to increasing supply 

capacity, a focus on shaping demand at the source is an often neglected, but critical, aspect of 

enabling supply capacity to meet pandemic demand. 
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1. Motivation 

1.1 PPE shortages during COVID-19 

At the onset of COVID-19, hospitals across the country reported inadequate access to 

PPE, leaving them unable to provide sufficient supplies to support their staff (Grimm, 2020).  As 

internal PPE stockpiles ran out, healthcare facilities were left to fend for themselves in a 

marketplace that was said to resemble the “Wild West”, where prices were exorbitant and quality 

assurance was unreliable (Lagu et al., 2020).  Many healthcare facilities were forced to turn to 

the public to ask for donations, although the quality and quantity of donations was insufficient to 

meet the rising PPE demand (Goldberg, 2020).  The federal government stepped in to assist, but 

the strategic national stockpile (SNS) was woefully insufficient to meet national demand for 

PPE, especially demand for N95 respirators. This was to be expected, since by design, the SNS is 

meant to provide a temporary stopgap in short lived emergencies, not provide a steady stream of 

supply for the duration of a pandemic (Khazan, 2020).  SNS administrators were forced to 

prioritize requests from states that were in dire need, and even then, requests from those states 

were only partially filled (R. Crawford, 2020).  By April 1, 2020, well before the worst national 

level COVID-19 caseloads, N95s in the SNS were nearly depleted (Miroff, 2020).  In the face of 

these shortages, acquiring PPE during COVID-19 was left largely to the states, who were forced 

to hastily assemble state level stockpiles, often competing in the market with the healthcare 

facilities they were trying to assist (Altman, 2020).   

Despite rapidly rising demand and market shortages in 2020, potential new PPE 

producers, large and small, reported they were hesitant or unable to enter the market. Starting 

production involved investing in equipment and raw goods that had skyrocketed in price, such as 

the blowers needed to make the melt-blown polypropylene used to make N95s or the elastic 

needed for the ear loops that allow the mask to seal tightly to the face.  Even if producers had 

capital to procure the raw goods and equipment, they feared that by the time they received 

production equipment, much of which needed to be shipped from China, the COVID-19 demand 

surge would be over, and they would be left with expensive manufacturing plants that would lay 

dormant until the next pandemic (Lessons from COVID, 2021).  In the absence of a clear 

understanding of PPE demand, producers that could help relieve PPE shortages did not have the 

information they needed to enter the market. 
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1.2 Efforts to increase preparedness 

 In response to the PPE shortages in COVID-19, government responders at all levels have 

increased investment in PPE stockpiles to prevent shortages in the next pandemic.  The federal 

government plans to vastly increase the PPE stored in the SNS, including increasing stockpiled 

N95s from the 24 million held in January 2020 to 300 million and increasing stockpiled nitrile 

gloves from 22 million pairs held in November 2020 to 4.5 billion pairs (Evstatieva, 2020).  

States are also investing in increased PPE preparedness. Nine out of twelve states surveyed in 

July 2020 by the National Governors Association reported building or enhancing their own PPE 

stockpile (National Governors Association, 2020).  In December 2020, Washington state had 

more than 30 million N95s stockpiled and California announced plans to stockpile 100 million 

N95s and 200 million surgical masks (Reicher, 2020; Office of Governor Gavin Newsom, 2020). 

Some states are passing legislation to mandate PPE stockpiles in hospitals, including a 90-day 

PPE requirement in California and New York (Anderson, 2020; Smith, 2020).  

 In addition to buying time to respond by building PPE stockpiles, the federal government 

is attempting to address the underlying vulnerability in the PPE supply chain.  President Biden 

laid the foundation for this effort in his Executive Order on a Sustainable Public Health Supply 

Chain, published January 21, 2021. This order directs the government to identify points of failure 

in PPE supply chains and develop a multi-year implementation plan for domestic PPE 

production. It also directs authorities to use the Defense Production Act (DPA) to encourage PPE 

production by domestic firms that may be unwilling or unable to provide PPE to government 

agencies (Presidential Actions, 2021).    

 

1.3 Increased understanding of pandemic PPE demand is needed to drive 

these preparedness efforts 

 The national trauma from COVID-19 has encouraged the deployment of massive 

resources for PPE stockpiles and supply chain interventions. This increased funding and 

attention has the potential to prevent suffering caused by widespread PPE shortages in the next 

pandemic. However, these resources are bound to be inefficiently allocated or wasted without a 

thorough understanding of the underlying PPE demand during a pandemic like COVID-19. This 

thesis attempts to further understanding of pandemic PPE demand so policy makers can best 
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prepare for the next pandemic. This is this thesis’ first central research question:1) How can 

planners forecast PPE use in acute care hospitals for future COVID-19-type pandemics? 

Even with an understanding of pandemic demand, policy makers cannot prepare for 

every pandemic possibility. They will inevitably have to make trade-offs with limited resources 

that will leave the United States under prepared for the most extreme future pandemic scenarios. 

In light of this possibility, policy makers, public health officials, and healthcare leaders need to 

understand what levers they can pull to decrease PPE demand when there are PPE shortages. 

This thesis attempts to provide policy makers with that understanding through its second central 

research question: 2) How can the model used to develop these forecasts contribute to a robust 

PPE preparedness plan? 

To answer these research questions this thesis 1) presents a simulation model to predict 

PPE use in acute care hospitals given daily hospitalizations, 2) presents a case study of PPE use 

in acute care hospitals in Massachusetts from April 4, 2020 to April 3, 2021 to understand the 

key variable relationships in the simulation and provide an example for future application, and 3) 

discusses how policy makers can use this simulation and the PPE use process it illuminates to 

create a robust preparedness plan given limited resources. For the purposes of this thesis, PPE 

will include N95 filtering facepiece respirators (N95s), surgical/procedural disposable masks 

(surgical/procedural masks), nitrile exam gloves (gloves), level II and above disposable isolation 

gowns (gowns), and re-usable plastic eye protection (eye protection). 

 

1.4 Thesis format 

The format for this thesis is outlined below: 

 

The Relevant Literature section reviews previous work published on the topics related to this 

thesis. It also identifies the gaps in this current literature that this thesis aims to fill. 

 

The Methods section presents the simulation and demonstrates potential use of the simulation 

through a case study. The case study consists of four parts: 1) a simulation run where all 

variables are deterministic, 2) sensitivity analysis on the deterministic case study, 3) a simulation 

run using multiple epidemiological forecasts to produce an array of results, and 4) a Monte Carlo 

simulation where select variables are changed from deterministic to stochastic. 



 13 

 

The Discussion section reviews potential applications and limitations of the simulation. It then 

discusses the key lessons learned in the case study. Finally, this section explores how the 

simulation and lessons learned from the case study can be used as part of a holistic approach to a 

PPE preparedness plan and where future work is needed to further understanding of PPE demand 

in acute care hospitals. 

2. Relevant literature 

This section addresses literature that is relevant to this thesis and is broken into six 

sections: Demand forecasting in humanitarian logistics, pandemic PPE forecasting, publicly 

available PPE calculators, PPE conservation, demand planning for COVID-19, and Monte Carlo 

simulation. The literature was identified through Google Scholar key word searches including 

“demand forecasting humanitarian logistics”, “pre-positioned stock humanitarian logistics”, 

“COVID-19 PPE supply chain”, “flattening the curve”, “PPE calculator”, “PPE influenza 

pandemic”, “PPE conservation” and “Monte Carlo simulation”. Subsequently, a further search of 

papers that had been cited in the initial literature was conducted. This section concludes with a 

summary of the gaps in current literature that this thesis attempts to address. 

2.1 Demand forecasting in humanitarian logistics 

Demand forecasting is widely addressed in emergency response literature and is typically 

presented in two parts. First, there is a forecast for the total affected population by a future 

disaster. Second, there is a forecast for the supplies required by that affected population over 

time. Demand forecasting literature in humanitarian logistics focuses primarily on environmental 

disasters as opposed to pandemics. Pandemic forecasting literature will be addressed in the next 

section. 

           There have been varying efforts to forecast the total affected population for natural 

disasters. There is abundant research in fields such as climate science, geophysics, and fluid 

dynamics that discuss forecasting future extreme weather events (Done et al. 2015; Dore, 2003; 

Du et al., 2014; Jin et al., 2008; Musa et al., 2018; Vere-Jones, 1995; Zhang et al., 2018).  The 

United States Federal Emergency Management Agency (FEMA) uses its Hazus Program to 

estimate the risk of earthquakes, floods, tsunamis, and hurricanes in the United States (FEMA, 
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2021). There is also significant use of past disaster data to inform future disaster forecasts. The 

International Disaster Database (EM-DAT) provides information on the affected population of 

past disasters and has been relied upon in stockpile pre-positioning literature to model future 

disaster impact (Acimovic & Goentzel, 2016; Duran et al., 2011; Taskin & Lodree, 2010). Japan 

International Cooperation Agency and Tehran Red Crescent Society also have published 

information on possible earthquake scenarios that have been used by humanitarian logistics 

researchers (JICA, 2000; RCS, 2005).  

 Once the affected population is determined, researchers then forecast emergency supply 

use per affected individual to determine an overall needs forecast. Acimovic & Goentzel 

determine their per-person demand calculations by consulting the Sphere Handbook, which 

provides guidelines on typical relief supply use (2016; The Sphere Project, 2018). Duran et al. 

utilize operational guidelines published by the International Federation of the Red Cross (2000). 

There is limited research that uses historical demand data and more closely fits the demand 

forecasting conducted in private industry: Davis et al. (2016) analyzed food donation behavior to 

forecast future food donations, Holguin-Veras and Jaller (2011) utilized historical demand data 

to forecast relief supply demand for hurricanes and van der Laan et al. (2016) analyzed demand 

forecasting efforts at Médecins Sans Frontieres.  

This simulation will focus on the second step in humanitarian supply chain forecasting, 

determining the supplies required by a pre-defined affected population. Epidemiological 

forecasting is out of the scope of this thesis. The simulation instead uses COVID-19 

hospitalizations as a deterministic input that is used to determine PPE use. Although outside of 

the current scope, epidemiological forecasts can easily be integrated into the model for future 

applications. 

 

2.2 Pandemic PPE forecasting 

Pandemic PPE demand forecasting appears to have fallen outside the scope of traditional 

humanitarian supply chain literature, which focuses mainly on natural environmental disasters 

such as hurricanes, earthquakes, and tsunamis.  There have, however, been prior attempts to 

forecast PPE use in hospitals and other healthcare facilities for disease outbreaks and pandemics 

that are published in medical or public health focused journals.  These follow the same general 

approach to forecasting as the above referenced natural disaster supply forecasts. They begin by 
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forecasting the total population that will become infected or the total workforce interacting with 

infected personnel, they then forecast total PPE use per individual.   

In 2015, Carias et al. published the heavily cited prediction of 1.7 – 3.5 billion N95 

respirators needed for a hypothetical influenza pandemic in the United States (2015).  This paper 

utilized a spreadsheet-based calculation to predict N95 and surgical mask use across the United 

States for the entirety of a pandemic by using percentage of the United States population that 

would ultimately be infected as its patient input and combining this with respirator and surgical 

mask use per worker and per patient per day.  Hashikura & Kizu used a different approach when 

they published a tool to assist hospitals in deciding a PPE stockpile (2009).  They recommended 

hospitals multiply total sets of PPE used by different healthcare worker types each day by the 

population of their healthcare workforce to determine the PPE needed to cover an eight week 

pandemic.  Finally, Radonovich et al. utilized scenarios based off the United States 1918 

pandemic influenza event to estimate total population seeking medical care and length of stay. 

They combined those assumptions in a spreadsheet-based model with estimated patient 

encounters per patient day to determine total PPE needed for the United States Veterans 

Association medical system in a hypothetical influenza pandemic (2009).  

The simulation presented in this thesis builds off the work of Carias et al. and 

Radonovich et al. but differs significantly in approach and inputs.  Notably, the simulation 

presented here calculates daily PPE use as opposed to aggregate demand for the entire pandemic, 

includes more inputs based around hospital policy, and allows for dynamic calculations of staff 

interacting with the infected population based on the extent of patient concentration. 

Additionally, instead of using a hypothetical future outbreak, the case study in this thesis will 

utilize the historical data from actual COVID-19 cases and hospitalizations in Massachusetts 

from April 2020 – April 2021. 

 

2.3 Publicly available PPE calculators 

In addition to the traditional peer-reviewed pandemic PPE forecasts referenced above, 

there was a push to create publicly available PPE calculators and predictions specific to COVID-

19 at the onset of the pandemic.  The most notable publicly available aggregate calculator came 

out of Johns Hopkins Bloomberg School of Public Health Center for Health Security (PPE 

Assumptions, 2020).  This spreadsheet-based model used attack rate, length of stay, and PPE 
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changes per patient per day to calculate total expected PPE use for a 100-day pandemic wave in 

the United States.  Similar to Carias et al. and Hashikura & Kizu,, this model produces an 

aggregate prediction for PPE use over the entire 100-day period based on total population attack 

rate.   

In addition to the United States aggregate prediction from Johns Hopkins University, the 

office of the Assistant Secretary for Preparedness and Response (ASPR), the Center for Disease 

Control and Prevention (CDC), the Emergency Medical Services for Children (EMSC) Program, 

the University of Pennsylvania Perelman School of Medicine, and the Covid Staffing Project 

created tools to assist individual hospitals in predicting their own PPE use during COVID-19 

(JHU, 2020; ASPR, 2020; CDC, 2020; EMSC, 2020;  UPenn, 2020; Covid Staffing Project, 

2020).  These models did not use epidemiological case predictions but instead utilized data 

available to hospitals in real time such as staffing numbers, current hospitalized cases, PPE 

conservation strategies, and historic PPE burn rates to provide hospitals daily predictions of PPE 

use. 

Although these calculators corroborate the logic of the simulation presented in this thesis, 

the simulation model presented here more closely follows the previously published PPE 

forecasting techniques than the publicly available calculators because it forecasts PPE use for 

multiple facilities based on epidemiological forecasts and is meant to inform emergency planners 

and policy makers. These calculators are tools primarily meant for day to day use by hospital 

operators. 

 

2.4 PPE conservation  

 PPE conservation research is limited and only became available after the onset of 

COVID-19. Although there have been suggestions in published research and broad guidelines 

published from the CDC, PPE conservation guidance is still in no way comprehensive because 

the safety of PPE conservation is still being researched. As the CDC states on its website, “at this 

time, there is not known a maximum number of uses (donnings) the same facemask could be re-

used”. This holds true for other PPE types as well. The CDC provides broad guidance on 

prioritizing PPE when faced with a shortage and potentially using expired PPE, but generally 

leaves PPE conservation decisions to healthcare providers (CDC Strategies for Optimizing the 

Supply of Facemasks, 2021).  
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Although 54% of acute care hospitals reported implementing PPE conservation policies 

by March 2020 (Premier Inc, 2020), PPE conservation practices are not currently a part of 

published surgery guidelines. During COVID-19, PPE conservation practices were mainly left 

up to hospital discretion based on the severity of their shortage and their internal infection 

control guidelines (Agrawal et al., 2021). A range of research has been published recommending 

PPE conservation policies since the onset of COVID-19. Sampathkumar et al. recommended 

conserving PPE by classifying COVID-19 patients as “modified droplet precaution”, allowing 

staff to only wear N95s when treating those patients for aerosol generating procedures (AGP) 

(2020). Steuart et al. presented a list of conservation recommendations, including limiting large 

group rounds, dismissing non-essential personnel, clustering care, utilizing telemedicine when 

possible, identifying COVID-19 care teams, reusing PPE, and suspending PPE use for certain 

non-COVID-19 procedures (2020). Yorio et al. further validated the recommendation to reuse 

PPE, when possible, by creating a model showing the linear effect of PPE reuse policies on 

decreasing PPE demand (2020). Crosby et al., however, warned against the widespread use of 

aggressive conservation measures and instead recommended applying the precautionary 

principle when deciding the required PPE needed to treat each patient (Crosby et al., 2020). 

  The safety of different PPE conservation methods is the subject of ongoing research and 

is out of scope of this thesis. Instead, the case study explores how different PPE conservation 

policies that were utilized during COVID-19 affect total use so they can be prioritized for future 

implementation and research. This is an important contribution, because other than the model 

built by Yorio et al., there has been no published research on the quantitative effect of 

implementing PPE conservation practices, including cohorting, limiting patient contacts, and 

decreasing staff to patient ratios on total PPE demand.  

 

2.5 Decreasing PPE shortages during the COVID-19 pandemic 

There has been ample research surrounding the failure of PPE supply chains to meet 

COVID-19 pandemic demand. This research offers potential solutions on both the demand and 

supply side. Govindan et al. offer a solution to decrease healthcare facility demand by classifying 

the population into groups that are then given different mitigation measures to prevent the spread 

of disease (2020). This falls into the general realm of literature that focuses on “flattening the 

curve” to decrease demand in the healthcare system by decreasing hospitalizations (Kenyon, 
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2020; Ng et al., 2020; Kosir & Sorensen, 2020; Tarrataca et al., 2021; Thunstrom et al., 2020; 

Block et al., 2020). Public health interventions are out of the scope of this thesis. Instead, this 

thesis takes a different approach to decreasing pandemic PPE demand by instead focusing on 

decreasing PPE use through hospital policy, as opposed to through decreased community 

transmission. 

There is also a diverse field of research surrounding increasing supply chain capability to 

meet pandemic demand. Mehrotra et al. presents a stochastic optimization model to allocate 

limited ventilators to high demand areas (2021).  Shokrani et al. explores the possibility of 

retooling existing supply chains to meet demand for face shields (2020). Zhu et al. advocates that 

medical supply chains should be nationalized to allow for government control of medical 

resources (2020).  Although this is an important area for further research, increasing supply chain 

capabilities is not within the scope of this thesis. 

 

2.6 Monte Carlo simulation 

Monte Carlo simulations can be used to represent a dynamic system when inputs include 

uncertainty (Vitoriano et al., 2013). This technique has been used across many fields, including 

finance, construction, and operations management to inform decision makers and planners. 

Monte Carlo simulations model an event or series of events by running through multiple 

iterations, sometimes hundreds of thousands, drawing one or more of its input variables from a 

probability distribution. This simulation technique aims to represent the full range of possible 

outcomes and present a distribution of possible outcomes to decision makers so they can 

accurately assess risk. The goal of Monte Carlo simulations is to take a situation with uncertain 

inputs and produce an assessment of what could happen and what is likely to happen 

(Banomyong & Sopadang, 2010). 

Monte Carlo simulations have been used widely in operation management but have not 

had significant usage in humanitarian logistics and have not been used in previously published 

pandemic PPE forecasting. This is surprising, because humanitarian logistics consistently has 

uncertain inputs, including the severity of the event, the timing of the event, the extent of damage 

and the population affected (Behl & Dutta, 2018). In response to this uncertainty, Banomyong & 

Sopadang advocate increased usage of Monte Carlo simulation to select appropriate emergency 

response models to use in disasters (Banomyong & Sopadang, 2010). Behl & Dutta agree in their 
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2018 literature review of existing humanitarian supply chain research that simulation modeling is 

severely lacking in current humanitarian supply chain literature (Behl & Dutta, 2018). An 

exception to the generally scarce use of Monte Carlo simulations for humanitarian logistics 

research is Garrido et al. who incorporate uncertainty into their research on flood emergency 

response by utilizing a Monte Carlo simulation to determine possible flood relief demand 

scenarios.   

Monte Carlo simulations have gained more traction in traditional logistics and operations 

management. Examples of Monte Carlo simulations use include estimating the reliability of 

supply chain networks, identifying potential supply chain disruptions, solving vehicle routing 

problems, assisting in demand forecasting for products, and estimating the impacts of severe 

weather events (Ozkan & Kilic, 2019; Schmitt & Singh, 2009; Juan et al., 2009; Klug, 2011; 

Strader et al., 2016). This thesis utilizes a Monte Carlo simulation as part of its case study in 

section 4 and contributes to current PPE forecasting literature by using the Monte Carlo 

simulation to explore the effect of uncertain inputs on total PPE use. 

 

2.7 Gaps in current literature 

This thesis aims to fill the gaps identified in the literature review above. Although there is 

ample forecasting literature in the field of humanitarian logistics, this does not typically include 

forecasting for pandemics. The PPE demand forecasting that has been conducted for pandemics 

either aggregates use over an entire period, therefore preventing planners from making day by 

day decisions, or does not investigate the effect of policy decisions such as cohorting, decreasing 

patient contacts, or decreasing staff ratios on PPE use. PPE conservation methods have been 

recommended in a broad sense but have not been sufficiently researched to investigate their 

quantitative effect on total PPE demand. Finally, although many solutions have been presented to 

ease the shortage of PPE during COVID-19, most address decreasing demand through the lens of 

decreasing case load, whereas this thesis explores decreasing PPE demand through hospital PPE 

conservation policies. To address these gaps, this thesis presents a novel simulation model to 

forecast PPE demand that outputs daily PPE use in acute care hospitals and allows for varying 

epidemiological inputs and policy interventions (such as reuse, cohorting, etc.).  It then applies 

this simulation model to an exploratory case study to understand the factors that affect PPE use 

in hospitals, provide an example of potential future simulation applications, and explore the 
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effect of uncertainty in the simulation. Finally, it discusses next steps for policy makers to use 

this simulation to create a robust preparedness plan with limited resources.  

3. Methods 

This section describes the methods used to address the two central research questions for 

this thesis: 1) How can planners forecast PPE use in acute care hospitals for future COVID-19-

type pandemics? 2) How can the model used to develop these forecasts contribute to a robust 

PPE preparedness plan? This section starts discusses the research design and the simulation 

formulation. 

 

3.1 Research design 

This thesis presents a Python based simulation model to predict PPE use in acute care 

hospitals given daily hospitalization data for a contagious respiratory illness similar to COVID-

19. A simulation is used because the glass box nature of simple simulation allows for buy in 

from stakeholders who can understand the logic behind the results. It also lends itself to a step-

by-step exploration of the PPE use process, which can be used to understand how different input 

modifications effect the final output. As will be shown in the exploratory case study, the 

relationship between COVID-19 hospitalizations and PPE use is not linear. This is because 

COVID-19 patients concentrated in one location can be treated by fewer unique staff members 

than COVID-19 patients that are widely spread across different facilities. For example, as 

COVID-19 hospitalizations increase and multiple COVID-19 patients inhabit one floor in one 

hospital, the same N95 can be used by a single staff member to treat multiple patients. 

Simulation was determined to be the best way to explore this relationship along with other 

variable interactions, like the effect of COVID test turnaround time, which are best understood 

through multiple simulation runs. Ultimately, simulation allows policy makers to understand 

intuitively, not just mathematically, how COVID-19 hospitalizations and hospital policies 

combine to affect PPE use.  

Alternate methods for forecasting PPE were considered, such as utilizing more traditional 

time series analysis of historical PPE ordering history during COVID-19, but were ultimately not 

chosen due to a lack of reliable PPE consumption data from COVID-19 and an inability to 

impact future use predictions by changing hospital policy. A machine learning forecasting 
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approach was also considered but was not selected due to concerns about obtaining reliable input 

data in a rapidly changing context and selecting appropriate input variables without the insights 

gained from a simulation.  

In order to demonstrate the simulation and explore how different variables impact PPE 

use, an exploratory case study is used to predict acute care hospital PPE use in Massachusetts 

during the COVID-19 pandemic. The case study contains four steps: 1) All variables are held as 

deterministic inputs to create a base case output. 2) Certain input variables are altered to conduct 

sensitivity testing and explore alternate COVID-19 severity scenarios. 3) The simulation is run 

for the period of December 15, 2020 – January 11, 2021 using five different Massachusetts 

hospitalization forecasts made on December 13, 2020 as hospitalization inputs. 4) Certain 

variables are changed to stochastic variables with conditional triangular probability distributions 

in a Monte Carlo simulation approach with 5,000 iterations. 

The deterministic base case and sensitivity analysis uses COVID-19 case and 

hospitalization data in Massachusetts from April 4, 2020 to April 3, 2021 and selects input 

variables from reported Massachusetts hospital capacity, typical Massachusetts hospital policy 

collected from 30 interviews with subject matter experts, and PPE reuse guidelines published by 

the state. This approach is chosen because the recent lived experience with COVID-19 helps add 

intuitive understanding to the results and provide an accessible example for non-academic policy 

makers. It also allows for sensitivity analysis that reveals important interactions in the simulation 

and identifies policy levers that can decrease PPE use. 

Although applying previously reported actual COVID-19 hospitalization data to the 

simulation is useful to understand and analyze PPE use, it is unlikely that there will be one 

definitive epidemiological forecast in the next pandemic. To illustrate possible applications of 

this simulation model to future disease events with conflicting epidemiological forecasts, 

multiple four-week-ahead COVID-19 hospitalization forecasts made on December 13, 2020 for 

the period of December 15, 2020 – January 11, 2021 for the state of Massachusetts are used 

instead of the actual COVID-19 hospitalizations numbers. The simulation is run using the 

hospitalization numbers reported in five different forecasts: Columbia University, Google-

Harvard School of Public Health, Institute for Health Metrics and Evaluation (IHME), Johns 

Hopkins University (JHU), and University of California Los Angeles (UCLA). These results are 

then graphed to show the range of possible PPE use values for that four-week period that 
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decision makers could use to inform purchasing and stockpiling choices. This approach of using 

multiple epidemiological forecasts in the simulation to produce a range of values demonstrates a 

realistic and viable future application of this simulation. 

          Finally, the simulation is slightly modified by changing select variables with inherent 

uncertainty from deterministic to stochastic. A Monte Carlo simulation is then used to explore 

the effect of those uncertain inputs on total PPE use. The Monte Carlo approach allows for a 

presentation of thousands of iterations and presents the distribution of possible PPE use 

outcomes. This allows decision makers to understand the range of possible outcomes and gauge 

risk. Monte Carlo simulation is a useful tool for the purposes of this thesis but has notable 

setbacks. First, it requires significant computational power when the simulation is complex. 

Monte Carlo simulation is a viable option for this thesis because the simulation is 

computationally simple enough for execution time to remain low. Second, the outcome 

probability distributions that are produced may not appropriately communicate the risk of low-

probability events. As applied to this model, that could mean not adding sufficient weight to 

iteration with very large PPE demand. This thesis attempts to counteract this by presenting the 

entire outcome distribution, including the most extreme simulation outcomes, not just the 

distribution mean (Paolo, 2014).   

The goal of this thesis is to both present a simulation that can be tailored to future 

pandemics and to use insights from the simulation case study to help inform a robust PPE 

preparedness plan. The case study section uses different approaches to using the simulation in 

order to illustrate possible applications of the simulation and illuminate lessons learned from its 

application to the COVID-19 pandemic in Massachusetts.  

 

3.2 The simulation 

The simulation outlined in this section calculates daily PPE use in acute care hospitals 

given each day’s COVID-19 hospitalizations. The simulation takes in all epidemiological inputs, 

including COVID-19 intensive care unit (ICU) hospitalizations, COVID-19 inpatient 

hospitalizations, daily persons under investigation (PUI) in ICU, daily PUI in inpatient, and daily 

AGPs performed as deterministic inputs. This simulation is in no way meant to predict the 

severity of a future pandemic but instead is meant to be combined with epidemiological 
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scenarios to produce PPE use forecasts for a COVID-19-type pandemic given those disease 

scenarios. 

  The structure of the simulation, including variable selection and simulation logic, was 

created during a yearlong intensive collaboration between the MIT Humanitarian Supply Chain 

Lab and the Massachusetts General Hospital Center for Disaster Medicine that took place from 

June 2020 to June 2021. The simulation incorporates the healthcare process and treatment 

protocol expertise provided by members of the Massachusetts General Hospital Center for 

Disaster Medicine. The simulation is meant to capture the variables in healthcare settings that 

determine PPE use and to provide an understanding of the PPE used each day in acute care 

hospitals given that day’s COVID-19 hospitalization and PUI numbers. 

  The simulation takes in the static, stochastic, dynamic variables listed in Table 3.3.1 and 

runs through the five steps illustrated in Figure 3.3.2 for every day (i) of the simulation run to 

return the gloves, gowns, N95s, eye protection, and surgical/procedural masks used on that day. 

The static inputs are selected on day 0 of the simulation and stay as deterministic values for the 

duration of the simulation. The stochastic inputs are selected each day of the simulation from a 

defined probability distribution. Dynamic inputs are deterministic values that vary for each day 

of the model run depending on COVID-19 hospitalizations that day. Finally, the calculated 

values are held within the simulation and updated each day. 

The simulation operates under the following assumptions: 

• Contact precaution and droplet precaution patients are treated with the same PPE: 

Contact precaution and droplet precaution patients are combined into one single patient 

type referred to as “contact/droplet” and are treated with the same PPE. 

• PPE is used appropriately: It is assumed staff will use pre-defined PPE for each patient 

type. Staff treating standard precaution patients will wear gloves and a 

surgical/procedural mask. Staff treating contact/droplet precaution patients will wear a 

gown, gloves, and a surgical/procedural mask. Staff treating COVID-19 or PUI patients 

will wear a gown, gloves, eye protection, and an N95. Staff treating airborne precaution 

patients will wear eye protection, gloves, and an N95. It is assumed there will be perfect 

adherence to these PPE use policies and no staff members will over- or under-protect 

themselves for the patient type they are treating. 
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• All PPE lasts for the duration of the reuse policy: It is assumed no PPE is broken, 

spoiled, or disposed of before the end of its reuse policy. 

• Staffing protocols remain static:  It is assumed that the staff to patient ratios will 

remain the same regardless of the number of COVID-19 cases. There is no 

implementation of emergency staffing protocols or crisis standards of care. 

• PUI treatment precautions:  It is assumed that PUI patients are treated with COVID-19 

level PPE until they have received a negative COVID-19 test, which only occurs after the 

completion of the COVID-19 test turnaround time. 

• Care is not deferred and demand for services remains at typical levels: It is assumed 

non-COVID-19 patients, both inpatient and ICU, will seek hospital care at a constant 

rate, regardless of the severity of COVID-19 hospitalizations. 

• Concentration/Dispersion of cases in and among facilities: It is assumed there are no 

cohorting policies that purposefully segregate COVID-19 and PUI patients into their own 

facilities or wings of facilities. The concentration/dispersion of COVID-19 and PUI 

patients in the acute care hospital population is approximated as the ratio of COVID-19 

and PUIs to the entire patient/resident population. This ratio will be referred to as the 

concentration coefficient. 

• Efficient staffing for contact/droplet and standard precaution patients: It is assumed 

that contact/droplet and standard precaution patients are ubiquitous enough to ensure they 

are treated by the least number of staff possible. For example, if a single nurse can care 

for four patients, it is assumed that the same nurse will be able to care for four different 

contact/droplet patients in the simulation. For that to be true, it must be assumed that 

those four patients are all within the same facility and on the same floor. 

• Inefficient staffing for airborne precaution patients: It is assumed that airborne 

precaution patients are rare enough so that the same staff member would not care for 

more than one airborne patient at a time. For that to be true, it must be assumed that all 

airborne patients on each day are in different facilities or are on different hospital floors. 

• N95s and eye protection are not single use except for when conducting aerosol 

generating procedures (AGP):  It is assumed that N95s and eye protection are subject to 

a reuse policy that is specified as a certain number of shifts in the static inputs. The only 
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exception is when N95s are used for AGPs. N95s used for AGPs are discarded after the 

AGP is complete. 

• Gowns and gloves are single use:  It is assumed there are no reuse policies for gowns 

and gloves. All gowns and gloves are disposed of after each patient contact. 

• Surgical masks are sometimes single use: Surgical masks are single use only when 

used to treat contact/droplet precaution patients. All other surgical mask uses are 

specified as a certain number of shifts in the static inputs. 

• Hospitals continue to operate past their typical bed and staff capacity. The 

simulation will run for as long as input data is available and has no artificial stops built 

in, even when hospital capacity is surpassed. This choice was based on the assumption 

that in dire circumstances hospitals will allow themselves to surge well past typical 

capacity (Searle, 2020). Therefore, setting an artificial cap on capacity may underestimate 

PPE use.  
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Table 4.1.1: Simulation variables by function 
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Table 3.3.2: Simulation variables by type 

 

 

Figure 4.1.1: Simulation process 
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Step 1: Determining the Number of PUI Patients (Pi,a) 

          PUI patients are defined as patients who enter the hospital and are either exhibiting 

COVID-19 symptoms or are at risk of COVID-19 exposure. It is assumed PUI patients will be 

treated with COVID-19 precautions until they have received a negative COVID-19 test. PUI 

patients are a part of the typical sick population and are not considered COVID-19 patients until 

they receive a negative test result. In this step, the number of daily PUI patients in the hospital is 

calculated by determining how many of the previous day’s PUI patients have been cleared by a 

test and how many new PUI patients are entering care. Because the population of PUI patients 

cannot exceed the total number of non-COVID patients in the hospital, a constraint is then 

enforced to ensure PUIs do not exceed the total number of typical sick patients. 

 

Equation 3.2.1: Determining the number of PUI patients 

Pi,a = Pi-1,a – (Pi-1,a / t) + Hi,a  

If Pi,a > di,a, 

     then Pi,a = di,a 

 

Step 2: Determining the Number of Typical Sick Requiring Contact/Droplet, Airborne, and 

Standard Precautions 

          It is important to capture the PPE used when treating typical sick in addition to the PPE 

used for COVID patients.  Since PPE use depends on the precaution level for the patient that is 

being treated, the number of typical sick that fall into each precaution category each day is 

calculated.   

 

Equation 3.2.2: Determining the typical sick requiring contact/droplet, airborne, and standard 

precautions 

Ji,a = Ci,a + Pi,a 

Oi,a = (di,a - Pi,a) * K 

 Qi,a = (di,a - Pi,a) * k 

 Ri,a = di,a - Pi,a - Oi,a - Qi,a 

 

Step 3: Calculate Staff Working with Each Patient Type 
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          This step calculates how many staff members will be treating each type of patient in order 

to calculate how many staff members will be wearing an N95 or eye protection at some point 

during their shift.  First, the concentration coefficient (𝜙i) is calculated by determining the 

fraction of COVID plus PUI patients over the total hospital patient population. This coefficient is 

then used to determining the staff treating COVID-19 precaution patients. A concentration 

coefficient of 1 means that COVID and PUI patients are perfectly concentrated in one location so 

can be treated by the fewest possible staff members. A concentration coefficient of 0 means 

COVID and PUI patients are entirely spread out in different locations so must be treated by 

different staff members. As the concentration coefficient moves between 0 and 1, the number of 

unique staff members treating COVID and PUI patients moves proportionally between 1 staff 

member for each COVID or PUI patient and the fewest staff members possible for the group of 

COVID and PUI patients. Contact/droplet precaution patients and standard precaution patients 

are assumed to be optimally located to allow for the most efficient staff to patient ratios. 

Airborne patients are assumed to be inefficiently located due to their rare occurrence, and 

therefore all interact with unique staff members  

 

Equation 3.2.3: Calculate staff working with each patient type 

𝜙i = (Ci,a + Pi,a) / (Ci,a + Pi,a + (di,a - Pi,a)) 

Wi,a,j,COVID =  Ni,a,COVID * (Va,j + ((1 – 𝜙i) * (1 – Va,j))) * U 

Xi,a,COVID = Ni,a,COVID * (x + ((1 – 𝜙i) * (1 – x))) * u 

Wi,a,j,contact/droplet =  Nh,i,contact/droplet * Va,j * U 

Xi,a,contact/droplet = Nh,i,contact/droplet * x * u 

Wi,a,j,airborne =  Nh,i,airborne * U 

Xi,a,airborne = Nh,i,airborne * u 

Wi,a,j,standard =  Nh,i,standard * Va,j * U 

Xi,a,standard = Nh,i,standard * x * u 

Zi = Ii * z  

 

Step 4: Calculate PPE Use 
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N95s and Eye Protection:  It is assumed all staff working with COVID-19, PUI, and airborne 

precaution patients will require an N95 and eye protection during their shift.  It also assumes that 

on every day, regardless of the number of COVID-19 hospitalizations, every emergency room 

staff member and specialists likely to consult on a COVID-19 hospitalization (cardiologist, 

nephrologist, pulmonologist, infectious disease specialist, and rheumatologist) will wear an N95 

and eye protection during their shift.  To determine daily N95 or eye protection use, the daily use 

by staff members is divided by the reuse policy (shifts per N95 or eye protection).  The small 

number of N95s used for aerosol generating procedures (AGPs), which are always single use, is 

also calculated.   

 

Equation 3.2.4: Calculate N95s and eye protection used 

i = (( ∑ ∑  
𝑗
0

𝑎
0 Wi,a,j,COVID +  ∑ ∑  

𝑗
0

𝑎
0 Wi,a,j,airborne + ∑  𝑎

0 Xi,a,j, COVID  +  ∑  𝑎
0 Xi,a,airborne  + y + g) / 

  ) + Zi  

i = (∑ ∑  
𝑗
0

𝑎
0 Wi,a,j,COVID +  ∑ ∑  

𝑗
0

𝑎
0 Wi,a,j,airborne + ∑  𝑎

0 Xi,a,j, COVID  +  ∑  𝑎
0 Xi,a,airborne  + y + g) / b 

 

Gowns:  It is assumed that gowns are always single use and are disposed after each patient 

contact. Gown use is calculated by multiplying the number of COVID-19, PUI, and 

contact/droplet patients in the hospital that day by the number of daily contacts expected for each 

patient depending on their location (ED, ICU, Inpatient).   

 

Equation 3.2.5: Calculate gowns used 

i =  ((Oi,ICU  + Ci,ICU  + Pi,ICU) * ) + ((Oi,Inpatient  + Ci,Inpatient  + Pi,Inpatient) * )   + (E *  * 

) + Zi 

 

Gloves:  Similar to gowns, it is assumed gloves are always single use and therefore use is 

determined by total patient contacts per day.  Gloves are used for every patient type, so total 

daily glove use is calculated by multiplying the number of patients by the number of contacts 

expected for each patient depending on their location (ED, ICU, Inpatient).  
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Equation 3.2.6: Calculate gloves used 

i = 2 * (((Ci,ICU  + di,ICU) * ) + ((Ci,Inpatient  + di,Inpatient) * ) + (E *  ) + Zi 

 

Surgical/Procedural Masks: It is assumed that every staff member who works in the hospital is 

given a new surgical mask each day to wear in their office and that every patient in the hospital 

is given a surgical mask each day to wear in their room. We also assume staff treating patients 

with contact/droplet precautions will dispose of their mask after each patient contact and pick up 

a new one.   

 

Equation 3.2.7: Calculate surgical/procedural masks used 

i = ((∑ ∑ ∑  ℎ
0  

𝑗
0

𝑎
0 Wi,a,j,h  + ∑ ∑  ℎ

0
𝑎
0 Xi,a,h +  ) /  ) + E + Ai + (∑  

𝑗
0 Wi,ICU,j,contact/droplet * ) + 

(∑  
𝑗
0 Wi,Inpatient,j,contact/droplet * ) 

4. Case study  

The case study consists of four parts: 1) a simulation run where all variables are 

deterministic, 2) sensitivity analysis on the deterministic case study, 3) a simulation run using 

multiple epidemiological forecasts to produce an array of results, and 4) a Monte Carlo 

simulation where select variables are changed from deterministic to stochastic. The case study 

uses COVID-19 hospitalization published by the Massachusetts Department of Public Health 

(MDPH) from April 4, 2020 – April 3, 2021. This case study applies the simulation to predict the 

amount of PPE used in all acute care hospitals in Massachusetts during the specified time period. 

The static and stochastic inputs were determined through background research in nursing and 

medical journals, CDC provided resources, reports from the Bureau of Labor and Statistics, and 

extensive interviews with medical providers and support staff. This case study is presented as 

follows: First, all variables are held as deterministic inputs to create a base case output. Second, 

certain input variables are altered to conduct sensitivity testing and explore alternate COVID-19 

severity scenarios. Third, to demonstrate potential future applications of the simulation, the 

simulation is run for the period of December 15, 2020 – January 11, 2021 using five different 
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Massachusetts hospitalization forecasts made on December 13, 2020 as hospitalization inputs. 

The results are presented to show the range of values that would result from uncertain 

epidemiological inputs. Finally, certain variables are changed to stochastic variables with 

conditional triangular probability distributions in a Monte Carlo simulation approach with 5,000 

iterations. These iterations are then analyzed to identify the effects of input uncertainty. The end 

result is a thorough exploration of multiple applications of the simulation. 

4.1 Simulation with Deterministic Inputs 

In this simulation run, all variables are held as deterministic for the entirety of the 

simulation run. Although it is likely there is some uncertainty in the inputs, as described in 

sections 4.2 and 4.3, the deterministic run is important to explore the variables that affect PPE 

use and conduct sensitivity analysis. 

4.1.1 Simulation Variables 

There are two types of inputs in this simulation run, static inputs that remain the same for 

each day of the simulation and dynamic inputs containing epidemiological inputs such as 

COVID-19 hospitalization that change each day. The variables that were previously labeled in 

Table 3.3.1 as stochastic are held as deterministic and changed to static variables. 

4.1.1.1 Static Inputs 

A full list of static input data used in this case study is available in Appendix A. Select 

variables and their sources are described below. 

• Percent of typical sick population requiring airborne and contact/droplet 

precautions: Data on typical percentage of patients requiring airborne and 

contact/droplet precautions were obtained from historical infection control records from a 

Massachusetts hospital (Hospital system data analyst, 2020). 

• COVID-19 test turnaround time: COVID-19 test turnaround time was determined 

through historical records at a major Massachusetts hospital system (Hospital system data 

analyst, 2020). 

• Daily specialist and ED staff: This case study assumed all registered specialists in the 

fields of nephrology, pulmonology, cardiology, infectious disease, and rheumatology 

work with at least one COVID-19 patient each day. Total specialist numbers come from 
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the Massachusetts Board of Registration in Medicine (2021). Daily ED staff was 

determined through historical 2019 staffing records provided by Patient Care Link 

(2021).  

• Shifts per day for clinical and non-clinical staff: Shifts per day were chosen to match 

common healthcare staffing practices (Disaster Medicine Specialist, 2020). 

• Daily typical sick ED, inpatient, and ICU patients: Daily patients presenting to the ED 

was determined by the 2017 National Hospital Ambulatory Medical Care Survey 

published by the CDC (2017). This survey contained historic yearly ED visits in the 

United States. Daily inpatient population in Massachusetts was determined by historic 

United States hospital admission data from 1975 – 2016 published by the Center for 

Disease Control (Hospital admission, 2016). Finally, the daily ICU patient population 

was taken from a ventilator use study for the United States by Wunsch et al. These 

sources all reported values for the entire United States. To determine the value for 

Massachusetts, the United States aggregate value was multiplied by 0.021 to adjust for 

Massachusetts’ percentage of the total population as reported in 2019 (United States 

Population, 2019).  

• Shifts per N95, eye protection, and surgical masks: Shifts per N95 mask was 

determined by published guidance by the Massachusetts Department of Public Health 

(Comprehensive Personal Protective Equipment (PPE) Guidance, 2021). Following 

consultation with disaster medicine experts, shifts of use per eye protection and surgical 

mask were set to match the N95 reuse guidance (Disaster Medicine Specialist, 2020). 

• HCW visits per patient in ED, Inpatient, and ICU: Healthcare worker daily visits per 

inpatient and ICU patient were set to match the PPE assumptions in the Johns Hopkins 

University model (JHU, 2020). Healthcare worker daily visits per ED patient were 

determined through consultation with Massachusetts ED staff and disaster medicine 

experts (Disaster Medicine Specialist, 2020). 

• Staff per ICU and Inpatient: Medical doctor (MD), Registered Nurse (RN), Patient 

Care Assistant (PCA), and student ratios per ICU patient and Inpatient were determined 

using a combination of pandemic preparedness guidelines published by the University of 

Minnesota and publicly available Massachusetts hospital staffing data from 2019 from 
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Patient Care Link (Pandemic Influenza Planning Guidance for Healthcare Institutions, 

2007; Patient Care Link, 2019). 

4.1.1.2 Dynamic Inputs    

Dynamic input data used in this case study containing daily COVID-19 hospitalization 

and PUI populations is available in Appendix B. Select variables and their sources are described 

below. 

• Daily COVID-19 hospitalizations: Daily COVID-19 hospitalization data was obtained 

from publicly available data published by the Massachusetts Department of Public Health 

(Dashboard of Public Health Indicators, 2021).  

• New PUI in ICU and inpatient: PUI population data was extrapolated from data 

provided by a major Massachusetts hospital system (Hospital system data, 2021). This 

data showed that for every new COVID positive patient entering the hospital, roughly 

one additional patient was admitted as a PUI. To determine daily PUI patients entering 

inpatient, the total COVID-19 inpatient population was divided by 8 (the estimated length 

of stay for COVID-19 inpatients), to approximate the new COVID-19 inpatients that day. 

Since every new inpatient generates one new PUI, that number was used as the new 

inpatient PUI for that day. The same was done for ICU using a length of stay of 13 days 

determined by published findings from Lapidus et al. (Massachusetts Hospital System 

Data Analyst, 2021; 2020). 

• AGPs performed: Daily AGPs performed were approximated by taking the new daily 

ICU patients (as described above) and multiplying by 2. This represents the population 

being put on and taken off ventilators each day.  

• Percent of ED patients who are considered COVID-19 risk: The percent of ED 

patients who are considered COVID-19 risk was determined through historical ED 

records for a major Massachusetts hospital system obtained on December 14, 2020. 

Although it is likely this number should be more dynamic, it was kept constant for each 

day of the simulation due to lack of data availability (Hospital system data analyst, 2020). 
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4.1.2 Results 

The data described in the previous section was used in the simulation outlined in section 

3.3 to calculate the PPE used each day in acute care hospitals in Massachusetts from April 4th, 

2020 to April 3rd, 2021. The sum of the PPE use for that entire period is summarized in Table 

4.1.2.1 below along with the average day’s use and the use on the worst day of COVID-19 

hospitalizations. These results will be the base for the sensitivity analysis conducted in section 

4.1.4. 

 

Table 4.1.2.1: Massachusetts deterministic case study results 

 

4.1.3 Variable relationships identified in the deterministic simulation 

The initial deterministic simulation run helps identify the non-policy related variables 

that drive PPE use, such as COVID-19 hospitalizations and total patient population. Key drivers 

of use for each PPE type are described below along with a brief discussion of the concentration 

coefficient. The effect of policy-related variables on PPE use will be explored in the sensitivity 

analysis. 

4.1.3.1 The concentration coefficient increases with COVID-19 and PUI patients 

The concentration of COVID-19 and PUI patients within hospitals increases as COVID-

19 cases increase. This approximates the natural phenomenon of COVID-19 and PUI patients 

becoming widespread enough that multiple end up in the same hospitals and wards. See Figure 

4.1.3.1 below. The effect on the concentration coefficient on PPE use is significant and will be 

discussed in the sensitivity analysis. 
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Figure 4.1.3.1: Concentration coefficient in the Massachusetts deterministic case study 

 

 

4.1.3.2 The concentration coefficient is a key driver for the number of staff working with 

COVID-19 and PUI patients 

As the concentration coefficient increases, COVID-19 and PUI patients become 

concentrated within hospital wards. This allows a single staff member to treat multiple COVID-

19 and PUI patients during his or her shift. Although this effect is also seen in the current case 

study, in order to more easily visualize the dramatic effect of high concentration coefficients, the 

simulation was run with COVID-19 hospitalizations equal to 10X the rate seen in Massachusetts 

from April 4th, 2020 to April 3rd, 2021. At these high hospitalization levels, it is visually 

apparent how the rising concentration coefficient results in staff members treating COVID and 

PUI patients increasing non-linearly with COVID and PUI patient hospitalizations.  
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Figure 4.1.3.2: The effect of concentration coefficient as shown in a 10X COVID-19 scenario 

 

 

4.1.3.3 Number of staff working with COVID-19 and PUI patients daily determines N95 

and eye protection use 

N95s and eye protection use is directly related to the number of staff working with 

COVID-19 and PUI patients. The fewer unique staff members interacting with these patients, the 

less N95s and eye protection will be used. The slight gap between total N95 use and staff 

working with COVID/PUI patients is a result of the small number of AGPs that require a single 

use N95 and staff working with airborne patients. The slight gap between total eye protection use 

and staff working with COVID/PUI patients also comes from staff working with airborne 

patients. See Figure 4.1.3.3 and Figure 4.1.3.4 below. 
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Figure 4.1.3.3: Massachusetts deterministic case study daily N95 use 

 

Figure 4.1.3.4: Massachusetts deterministic case study daily eye protection use 

 

 

4.1.3.4 Total COVID-19 and PUI patients daily is the key driver of gown use 

Gown use is heavily dependent on COVID-19 and PUI patients. It is also affected 

slightly by the typical sick population due to the gown use for typical sick contact/droplet 

patients. Figure 4.1.3.5 shows this effect clearly at the two peaks at 2020-05 and 2021-01 and at 

the trough at 2020-09. At the two peaks the large number of COVID patients result in more of 

the typical sick population being treated as PUI patients, as seen by the dip in the typical sick 
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non-PUI population. This dip accounts for why the gown use at this period does not exactly align 

with the COVID and PUI trend. The trough at 2020-09 shows the opposite effect, where gown 

use well exceeds COVID and PUI patient use due to the gown use by the large typical sick non-

PUI patient population. 

 

Figure 4.1.3.5: Massachusetts deterministic case study daily eye gown use 

 

 

4.1.3.5 Total patient volume is the key driver of glove use 

Gloves are used across the patient population when interacting with all patient types, so 

glove use is directly related to the total patient population. See Figure 4.1.3.6 below. 
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Figure 4.1.3.6: Massachusetts deterministic case study daily glove use 

 

4.1.3.6  Surgical/procedural mask use has a high, almost constant base rate 

Surgical/procedural masks have a high base level use due to their use by all staff and 

visitors in the hospital daily. Surgical/procedural mask use above this base rate is determined by 

patient population. Increased patient population results in more surgical/procedural masks being 

given to patients each day and more surgical mask changes that occur after interactions with 

contact/droplet precaution patients. See Figure 4.1.3.7 below. 

 

Figure 4.1.3.7: Massachusetts deterministic case study daily surgical/procedural mask use 

 

4.1.4 Sensitivity Analysis 

Sensitivity analysis was conducted to explore the effects of slower COVID-19 diagnostic 

test turnaround times, increased reuse policies, decreased daily patient contacts by healthcare 
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workers, implemented COVID-19 and PUI cohorting, and more extreme COVID-19 scenarios. 

This analysis is critical to identify policy-related variables that can decrease PPE use and 

potentially be incorporated into pandemic preparedness and response plans. 

4.1.4.1 COVID-19 diagnostic test turnaround time 

The longer the COVID-19 diagnostic test turnaround time, the longer it takes to clear PUI 

patients with a negative test result. Increased diagnostic test turnaround times result in increased 

use of N95s, gowns, and eye protection. It does not affect glove use, as gloves are used across 

patient type and do not depend on precaution level. Counterintuitively, longer diagnostic test 

turnaround times actually decrease surgical mask use. This is due to more healthcare workers 

wearing N95s with PUIs who would otherwise have been cleared by a negative COVID-19 test 

and treated as contact/droplet patients using only a surgical mask. Although the impact of 

increased testing times is not severe, it is important to note that this impact would be 

significantly higher in scenarios where more than one PUI was produced for every new COVID-

19 case.  This would be the case in very densely populated areas or during a strong influenza 

season. See Table 4.1.4.1 below. 

 

Table 4.1.4.1: COVID-19 diagnostic test turnaround time sensitivity analysis 

 

 

4.1.4.2 Increased reuse policies 

Increasing the length of reuse policies has a linear effect on decreasing eye protection 

use, meaning increasing reuse from 1 shift to 5 shifts will decrease PPE use by 80%.  The effect 

of increasing reuse policies for N95s is close to linear but varies slightly because N95s used 

during AGPs are considered single use and are not affected by the reuse policy.  Increasing reuse 

policies for surgical masks has a small effect due to the assumption that patients will continue to 

be issued a new surgical mask every day regardless of reuse policy. Therefore, only staff are able 
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to reuse their surgical masks. Gowns and gloves are considered single use and are not affected by 

the reuse policy. See Table 4.1.4.2 below. 

 

Table 4.1.4.2: Reuse policy sensitivity analysis 

 

4.1.4.3 Decreased healthcare worker patient contacts 

Reducing healthcare worker patient contacts has a linear effect on use for gowns and 

gloves, meaning if healthcare workers visit a patient 10 times instead of 20 times per day, glove 

and gown use will be cut in half.  It has a much smaller effect on surgical masks due to the high 

base rate of surgical mask use for all patients and employees.  Reducing patient contacts only 

affects surgical mask use for contact/droplet precaution patients. Healthcare worker daily visits 

does not affect N95 or eye pro use. See Table 4.1.4.3 below. 

 

Table 4.1.4.3: Healthcare worker patient contacts sensitivity analysis 

 

 

4.1.4.4 Implemented cohorting of COVID-19 and PUI patients 

In the simulation it is assumed the concentration/dispersion of COVID-19 cases across 

and within acute care hospitals can be approximated by the ratio of COVID-19 and PUI patients 
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to the entire patient population.  This is meant to approximate how COVID-19 and PUI cases 

would occur without any intervention to segregate or cluster patients into a single facility or 

wing in a facility.  As the concentration coefficient increases, each COVID-19 and PUI patient is 

treated by fewer unique staff members. This is intuitive, because as wards are overwhelmed with 

COVID-19 and PUI patients, staff members are treating multiple COVID-19 and PUI patients on 

their shift, which allows them to use the same N95 for multiple patients. This sensitivity analysis 

explores the possible decrease in PPE that occurs if there is perfect cohorting, meaning every 

COVID-19 and PUI case is put into a single facility in order to be treated by the fewest staff 

members possible.  Although this is an unlikely scenario, it shows the potential impact of 

implemented cohorting policies. Cohorting patients only affects use of PPE items that are reused 

by staff members between patients, namely N95s and eye protection. Because patients are 

cohorted, the same staff member can use the same N95 or eye protection between patients 

without changing it. Additionally, because patients are treated efficiently, fewer total staff are 

working each day, resulting in slightly less surgical/procedural mask use. See Table 4.1.4.4 

below. 

 

 

Table 4.1.4.4: Implemented cohorting sensitivity analysis 

 

 

4.1.4.5 Higher COVID-19 hospitalization scenarios 

Increasing the severity of the COVID-19 pandemic has a non-linear effect on PPE use. In 

a scenario that is exactly 5X worse than COVID-19, meaning every day has 5X more COVID-19 

hospitalizations than was reported during the actual COVID-19 pandemic, the concentration 

coefficient approaches 1. This means that there are so many COVID-19 patients that they 
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naturally concentrate within hospitals. When the concentration of COVID-19 and PUI patients is 

high, the same healthcare worker is treating multiple COVID-19 and PUI patients. Since we 

assume healthcare workers can wear the same N95 and eye protection between patients during 

their shift, this means additional COVID-19 and PUI patients do not always require the use of 

additional N95s and eye protection by staff. This effect was shown clearly in the 10X COVID-19 

scenario shown in Figure 4.1.3.2, but is also evident in the 5X COVID-19 scenario shown in 

Figure 4.1.4.1.  

 

Figure 4.1.4.1: Concentration coefficient in 5X COVID-19 Massachusetts deterministic case 

study scenario 

 

 

A 5X COVID-19 scenario has a non-linear effect on gowns, gloves, and surgical masks 

due to their use with typical sick patients. Gowns are used with contact/droplet patients, which 

do not increase when COVID-19 patients increase. Gloves are used with all typical sick patients, 

which also stay constant in this scenario. Finally, surgical/procedural masks have a high base rate 

from being issued to staff and patients daily, so are not strongly affected by increases in COVID-

19 cases. 
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Table 4.1.4.5: 5X COVID-19 scenario sensitivity analysis results 

 

4.2 Example simulation application when faced with conflicting 

epidemiological forecasts 

The previous case study simulation application used actual reported COVID-19 

hospitalizations in Massachusetts for the purposes of demonstrating the simulation and 

identifying how different variables affect PPE use. In future real-world applications of this 

simulation, it is unlikely that there will be one definitive epidemiological model that provides 

hospitalization numbers for the dynamic inputs. It is much more likely that, like in COVID-19, 

there will be multiple, often conflicting, epidemiological forecasts being reported. In this section, 

an example application of five reported COVID-19 hospitalization forecasts for the state of 

Massachusetts from December 15, 2020 – January 11, 2021 is used to create a range of possible 

PPE outputs. This output range could then be used by decision makers to weigh risk and make 

informed PPE purchasing and stockpile decisions. 

4.2.1 Epidemiological input data 

Every week starting June 1, 2020 to present, forecasters from across the country 

submitted COVID-19 forecasts to the COVID-19 forecast hub and the CDC. These forecasts 

included four-week-ahead state-level forecasts on new COVID-19 hospitalizations (CDC 

Forecasting, 2021). For this portion of the case study, five different submitted forecasts covering 

the period of December 15, 2020 – January 11, 2021 in Massachusetts were used as the dynamic 

inputs for daily COVID-19 hospitalizations. The week of December 15, 2020 – January 11, 2021 

was chosen due to the presence of significant disagreement between forecasts, allowing for a 
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wide range of results. The simulation is run using the hospitalization numbers reported in five 

different forecasts: Columbia University, Google-Harvard School of Public Health, Institute for 

Health Metrics and Evaluation (IHME), Johns Hopkins University (JHU), and University of 

California Los Angeles (UCLA). These were chosen out of 11 possible choices because they best 

represented a diverse range of forecasts with little overlap. The forecasts are shown in Figure 

4.2.1.1 below along with the actual reported Massachusetts hospitalizations for that period. 

 

Figure 4.2.1.1: Submitted forecasts for December 15, 2020 – January 11, 2021 

 

 

4.2.2 Results 

Figure 4.2.2.1 through 4.2.2.5 show the PPE outputs produced for the specified four-

week period using the inputs from each of the five forecasts and the actual Massachusetts 

COVID-19 hospitalizations. These forecasts produce a wide range of predictions. The largest 

N95 daily predictions are over twice as large as the smallest N95 daily predictions. For gowns, 

the largest daily predictions are over six times as large as the smallest gown daily predictions. 

These varying results make it clear that the simulation is only as accurate as its epidemiological 

inputs and is not robust against error in COVID-19 hospitalization predictions. Although this 
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large spread in outputs makes it difficult to identify the “correct” PPE prediction,  seeing an 

array of output possibilities allows decision makers to weigh risk and make an informed choice 

in the face of uncertainty in disease progression. It is also worth noting that despite dependence 

on epidemiological inputs for PPE output accuracy, the simulation can still be used to explore the 

magnitude of the effects of different interventions as shown in previous sensitivity analysis. 

The five forecasts used for this analysis only forecasted new daily hospitalizations, not 

current hospitalizations. The simulation was initiated with the actual COVID-19 hospitalizations 

on December 14, 2020. The simulated PPE use for the IHME forecast, which had very low 

predictions for new COVID-19 hospitalization, decreases over the first eight days of the 

simulation because the simulation is initiated with higher current hospitalizations than forecasted 

by IHME. Those current hospitalizations leave the hospital over their eight-day length of stay 

and are not fully replaced by the low IHME new hospitalizations. After eight days, all of the 

initial hospitalizations have left the hospital and hospitalizations are only provided by the IHME 

forecast, hence the leveling off of PPE use. This effect is seen in all five forecasts but since the 

other four forecasts align more with the actual COVID-19 reported hospitalization the effect is 

not as stark. 

 

Figure 4.2.2.1: Daily N95 use predicted from multiple forecasts 
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Figure 4.2.2.2: Daily eye protection use predicted from multiple forecasts 

 

Figure 4.2.2.3: Daily gown use predicted from multiple forecasts 

 



 49 

Figure 4.2.2.4: Daily glove use predicted from multiple forecasts 

 

Figure 4.2.2.5: Daily surgical/procedural mask use predicted from multiple forecasts 

 

4.3 Understanding the effect of uncertainty with a Monte Carlo simulation 

The deterministic simulation runs using actual reported COVID-19 hospitalizations and 

COVID-19 hospitalization forecasts fail to account for uncertainty inherent in the static input 

variables. In this section, certain input variables are changed from deterministic to stochastic and 
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a Monte Carlo simulation is used to produce a range of PPE use outputs. Running a deterministic 

case study is important to identify key interactions between variables in the simulation and to 

conduct sensitivity analysis that can inform future policy. However, Monte Carlo simulation may 

be a better application for real time decision making because it allows for uncertainty in key 

variables that better reflects actual variation in use on the ground. 

4.3.1 Stochastic variables 

Table 4.3.1.1 below shows the variables that were converted to stochastic inputs along 

with their minimum, maximum, and starting mean values for their conditional triangle 

probability distributions. Two primary types of variables were chosen: 1) Healthcare worker 

daily visits to patients and 2) Staff per patient. These two variable types were chosen because 

they are dependent on hospital specific practices and on patient severity and care needs. Keeping 

them as set deterministic values would fail to capture the natural variations between hospitals 

and patients. Secondly, changes in these input variables have non-trivial effects on total PPE 

output as shown in the sensitivity analysis conducted in section 4.1.4.  
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Table 4.3.1.1: Stochastic variables for Monte Carlo simulation 

 

Minimum and maximum values were determined through guidance from a disaster 

medicine subject matter expert. Minimum values represent the lowest possible values that could 

be reached while still achieving required patient care standards. Minimum values would be 

accurate in either low acuity patients or in situations where resources are scarce and must be 

rationed. Maximum values represent the most resources and time that would be needed to treat a 

single patient. Maximum values would be accurate when treating extremely sick patients with 

maximum resources available.  
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These stochastic variables follow a conditional triangle distribution instead of a typical 

triangle distribution because each variable is correlated with the percent of hospital capacity that 

is being used. The mean values listed in Table 4.3.1.1 above represent the mean values when 

hospitals are operating at their typical volumes without the addition of COVID-19 patients. As 

hospitals become more crowded, these mean values will shift as healthcare workers and 

resources are strained. For example, as hospital patient populations move towards their 

maximum capacity, healthcare workers will be assigned to provide treatment to more patients at 

one time, therefore lowering the staff to patient rations. As these staff to patient ratios decrease, 

daily healthcare worker visits to patients will also decrease as healthcare staff have less time to 

check in on each patient. The minimum and maximum values never change as these are 

considered the extreme minimum and maximum for ethical patient care. To account for this 

correlation between hospital capacity and the mean values of the triangle distribution, a 

conditional triangle distribution was used where the mean shifts continuously towards the 

minimum values as percent of used hospital capacity increases. Once hospitals reach 100% used 

capacity, mean values are all equal to the minimum values in the distribution, making the 

triangle distribution one tailed to the right. The equation to shift the mean conditionally on 

hospital capacity is shown in Equation 4.3.1 below. Although only HCW visits per patient is 

shown, the same process is used for all staff per patient variables as well. 

Table 4.3.1.2: Variables for the mean adjustment process for the conditional triangle 

distributions 
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Equation 4.3.1: The mean adjustment process for the conditional triangle distribution – 

healthcare worker visits per patient example 

h = a / b 

f = (a + Ci) / b 

 k = d / e 

 g = (d + Ci) / e 

mean, i = mean – ((mean - min) * ((f – h)/ (1 – h)) 

if mean, I < min: 

 mean, I = min 

mean, i = mean – ((mean - min) * ((g – k) / (1 – k)) 

if mean, i  < min: 

 mean, i  = min 

 

4.3.2 Results 

A Monte Carlo simulation was run for 5,000 iterations using the stochastic variables with 

conditional triangle probability distributions described above. Table 4.3.2.1 shows the minimum, 

maximum, and average simulated PPE use across all iterations in acute care hospitals in 

Massachusetts for April 4, 2020 to April 3, 2021. 

 

Table 4.3.2.1: Monte Carlo simulation results 

 

 The addition of uncertainty in the form of stochastic variables has the strongest effect on 

gowns and gloves as shown in Figure 4.3.2.1 and 4.3.2.2.  
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Figure 4.3.2.1: Gown daily use Monte Carlo results 
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Figure 4.3.2.2: Glove daily use Monte Carlo results 

 

  

N95s and eye protection outputs show less variability as a result of the introduction of the 

stochastic variables. See Figure 4.3.2.3 and 4.3.2.4. 
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Figure 4.3.2.3: N95 daily use Monte Carlo results 
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Figure 4.3.2.4: Eye protection daily use Monte Carlo results 

 

The relatively small effect of the stochastic variables on total N95 and eye protection use 

is due to two factors: 1) the low concentration coefficient and 2) a baseline use from emergency 

room, specialist, and nonclinical staff that is held static in the Monte Carlo simulation. The low 

concentration coefficient keeps variability low because when COVID-19 cases are spread across 

facilities and within hospitals, changes in staff per patient ratios do not linearly decrease N95 and 

eye protection use. Even if staff to patient ratios are low, COVID-19 cases are being treated 

alongside typical sick patients, meaning many unique staff members still use N95 and eye 
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protection. To demonstrate this effect, Figure 4.3.2.5 and 4.3.2.6 below shows the effect of the 

introduction of stochastic variables when there is perfect cohorting, meaning every COVID-19 

patient is treated in one location. 

 

Figure 4.3.2.5: N95 daily use Monte Carlo simulation results with and without perfect cohorting 

 



 59 

Figure 4.3.2.6: Eye protection daily use Monte Carlo simulation results with and without perfect 

cohorting 

 

 

The Monte Carlo simulation run with perfect cohorting shows more variability along with 

lower overall use. When COVID-19 patients are cohorted, changes to staff to patient ratios have 

a stronger effect on N95 and eye protection use. This is clear when looking at the coefficient of 

variation for both the standard Monte Carlo simulation and the Monte Carlo simulation with 

perfect cohorting. See Figure 4.3.2.7 and 4.3.2.8 below. 
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Figure 4.3.2.7: Coefficient of variation for N95 daily use in Monte Carlo simulation with and 

without perfect cohorting 

 

 

Figure 4.3.2.8: Coefficient of variation for eye protection daily use in Monte Carlo simulation 

with and without perfect cohorting 

 

 Even with perfect cohorting, the coefficient of variation for N95s and eye protection 

remains lower than one would expect given the range in the triangle distributions for staff per 
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patient ratios. This is due to the baseline N95 and eye protection use caused by emergency room 

staff, specialists, and non-clinical staff. The simulation assumes that all emergency room staff 

and specialists will use eye protection and an N95 every shift regardless of daily COVID-19 

patients. The total number of emergency room staff and specialists are deterministic in the Monte 

Carlo simulation, resulting in a baseline N95 and eye protection use across all simulation runs. 

Non-clinical staff is calculated using a staff to patient ratio, but that ratio is held as deterministic 

in the simulation, adding to the baseline rate. This baseline use keeps the daily mean N95 and 

eye protection use high, therefore resulting in lower than expected coefficients of variation. 

Figure 4.3.2.9 and Figure 4.3.2.10 show the baseline N95 use from emergency department, 

specialist, and non-clinical staff. 

 

Figure 4.3.2.9: N95 baseline use by emergency room, specialist, and non-clinical staff in Monte 

Carlo simulation 

 



 62 

Figure 4.3.2.10: Eye protection baseline use by emergency room, specialist, and non-clinical 

staff in Monte Carlo simulation 

 

 

 When this baseline use is removed, the lower means allow for a higher coefficient of 

variation. Figure 4.3.2.11 and 4.3.2.12 show the addition of a Monte Carlo simulation run with 

all emergency department, specialist, and non-clinical staff removed. 

 

Figure 4.3.2.11: N95 daily use with emergency room, specialist, and non-clinical staff removed 

from Monte Carlo simulation 
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Figure 4.3.2.12: Eye protection daily use with emergency room, specialist, and nonclinical staff 

removed from Monte Carlo simulation 
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 The lower daily means from the run with no emergency room, specialist, and nonclinical 

staff use results in a higher coefficient of variation, as shown in Figure 4.3.2.13 and 4.3.2.14: 

 

Figure 4.3.2.13: Coefficient of variation for daily N95 use with and without emergency room, 

specialist, and non-clinical staff  
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Figure 4.3.2.14: Coefficient of variation for daily eye protection use with and without 

emergency room, specialist, and non-clinical staff 

 

Across all PPE types with the exception of surgical/procedural masks, the coefficient of 

variation is correlated with COVID-19 hospitalizations. See Figure 4.3.2.15 through Figure 

4.3.2.18. The correlation between COVID-19 cases and coefficient of variation is due to the 

conditional triangle distributions used for the stochastic variables. As used hospital capacity 

increases with COVID-19 hospitalizations, the means of the stochastic variable distributions 

decrease. The decreased means result in higher coefficients of variation for those stochastic 

variables, resulting in higher coefficients of variation for the PPE use that depends on them. See 

Figure 4.3.2.19. 
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Figure 4.3.2.15: Coefficient of variation for gowns presented with COVID-19 cases 

 

 

Figure 4.3.2.16: Coefficient of variation for gloves presented with COVID-19 cases 
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Figure 4.3.2.17: Coefficient of variation for N95s presented with COVID-19 cases 

 

Figure 4.3.2.18: Coefficient of variation for eye protection presented with COVID-19 cases 
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Figure 4.3.2.19: Example sampling of healthcare worker daily ICU visits from triangle 

distribution 

 

Surgical/procedural masks have very low coefficients of variation because they have a 

high baseline use rate that does not depend on COVID-19 cases. Surgical/procedural masks are 

issued to each staff member and patient every day, with the only other use coming from 

healthcare worker patient visits with contact/droplet precaution patients. Compared to the high 

base rate, the addition of uncertainty in daily healthcare worker visits to contact/droplet patients 

has relatively little effect. This can be seen in Figure 4.3.2.21. 
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Figure 4.3.2.20: Surgical/procedural mask daily use Monte Carlo simulation results 

 

 

 

Counterintuitively, there is an inverse relationship between COVID-19 hospitalizations 

and surgical/procedural mask variance. This is because as COVID-19 cases rise, there are more 

contact/droplet patients who become PUIs and are treated with an N95, making 

surgical/procedural masks slightly less affected by uncertainty in daily healthcare worker patient 

contacts. 
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Figure 4.3.2.21: Coefficient of variation for surgical/procedural masks presented with COVID-

19 cases 

 

 In summary, gowns and glove PPE use predictions showed high variability when 

uncertainty was added to the healthcare worker daily patient visits input variables, especially 

during periods with high COVID-19 hospitalizations. N95s and eye protection were more robust 

to the addition of uncertainty in clinical staff to patient ratios due to the effects of the 

concentration coefficient and the base rate of use by emergency room, specialist, and nonclinical 

staff. Surgical/procedural masks were also robust to the addition of uncertainty due to the very 

high base rate of use from issuing surgical/procedural masks to all staff and patients. 

5. Discussion  

This section will discuss the applications, limitations, and key findings from the 

simulation and case study. It will then offer next steps for policy makers to create a robust PPE 

preparedness plan given the simulation and case study findings. Finally, it will address areas 

where future research is needed to expand upon the findings in this thesis. 
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5.1 Simulation applications 

The simulation presented in this thesis is a novel approach to forecasting PPE demand in 

acute care hospitals for a COVID-19 type pandemic because it outputs daily PPE use as opposed 

to aggregate PPE use, includes hospital policy variables including staff per patient ratios, PPE 

reuse and healthcare worker daily visits to patients, and incorporates a concentration coefficient 

which accounts for the natural grouping of COVID-19 patients as their numbers increase. 

Although the case study applied the simulation to forecasting PPE use at the state level, the 

simulation can be used at the local or national level when provided the correct inputs. The 

simulation was initially presented with entirely deterministic inputs, however multiple 

epidemiological inputs can be run through the model to provide a range of possible outputs when 

future hospitalizations are uncertain, as shown in the example outputs from December 15, 2020 – 

January 11, 2021. Similarly, uncertain variables can be accounted for by modifying certain 

inputs from deterministic to stochastic, as shown in the Monte Carlo simulation portion of the 

case study.  

As local, state, and federal planners prepare to invest in PPE preparedness for the next 

pandemic, this simulation can be used to inform those efforts by running multiple 

epidemiological inputs through the simulation. Similar to the deterministic case study in the 

previous section, states can run actual COVID-19 hospitalization data to determine the estimated 

PPE used in acute care hospitals during the COVID-19 pandemic. To explore what would be 

needed for a COVID-19 type pandemic that was of much worse severity, those inputs can be 

multiplied, the shape of the epi-curve can be made steeper of flatter, additional waves can be 

added, and the time period can be extended.  

Through running multiple iterations of the simulation, planners can explore how different 

disease trajectories affect daily use. Understanding daily use, as opposed to total aggregate use, 

allows supply chain planners to make informed decisions on required days of supply on hand 

given the lead times they expect before resupply. Disease trajectories that result in enormous 

PPE use very quickly may require investment in stockpiles to meet demand until manufacturing 

can increase output. A slow-moving pandemic allows for more time to increase manufacturing 

capacity and may lend itself to investments in adaptive manufacturing practices. It is likely a 

combination of both will be required. The simulation presented in this thesis can serve as an 

important part of prioritizing those investments given different possible demand scenarios. It can 



 72 

also be used with epidemiological forecasts to serve as an early warning sign that current 

stockpiles may be insufficient to meet expected upcoming demand. 

5.2 Simulation limitations 

This simulation is useful in forecasting PPE use for a COVID-19-type event and 

understanding what factors influence daily PPE use, but it does have some limitations. The 

simulation was set up according to the precautions used when treating COVID-19 patients, so the 

simulation can only be used in its current form to predict PPE use in acute care hospitals for a 

COVID-19 similar event that requires the same PPE precautions. In order to use this simulation 

for other disease events, such as Ebola, the simulation would need to be modified to account for 

the different infection prevention and control requirements.  

The simulation only calculates PPE use in the acute care hospital setting. In future 

pandemics there will also be significant PPE demand from other medical sources, including long 

term care facilities and emergency medical services (EMS), along with non-medical services 

such as police, prisons, and essential utility workers. Acute care hospitals are large drivers of 

PPE demand in a pandemic, and the healthcare workers in those systems are put at serious risk 

without PPE, but a full PPE preparedness plan will need to include PPE demand from all sectors. 

It is assumed within the simulation that staff use PPE in perfect adherence to the infection 

control standards and reuse policy. Fear, peer pressure, or lack of knowledge of the standard 

could result in vastly longer or shorter reuse policies by staff than what is published in hospital 

guidance. As with all simulations of human behavior, there is reason to be skeptical that people 

will act like machines. Further research is needed to explore the extent of PPE conservation 

policy adoption during COVID-19 to better understand the relationship between published policy 

and actual use. 

Currently the simulation is created to take in a constant level of typical sick patients, 

meaning all routine patients continue to seek care at typical rates even in the height of the 

pandemic. It is likely that in actuality, patients who only need routine medical care will defer 

their care until after a pandemic, therefore cutting down on the typical sick patients seen daily. 

During COVID-19, hospitals reported over 20% decreases in non-COVID-19 admissions 

(Birkmeyer et al., 2020). Due to the conservative assumption that typical sick continue to seek 

care, it is likely the simulation slightly overestimates PPE use for contact-based use items 

including gloves, gowns, and surgical masks.  
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Finally, the simulation only outputs PPE use at acute care hospitals, not the total amount of 

PPE that will be ordered by acute care hospitals from producers or the amount of PPE that will 

be requested by acute care hospitals for state or federal support. Raw demand is a crucial 

building block in the planning process, but raw demand does not translate directly into orders to 

suppliers. The “bullwhip effect”, where small increases in demand can lead to much larger 

disruptions as it travels up the tiers of suppliers, will likely make this raw demand only a piece of 

the overall planning needed for a policy response.  

 

5.3 Lessons learned from the case study 

The case study section explored multiple applications of the simulation to COVID-19 in 

Massachusetts. First, the simulation was run with entirely deterministic inputs using data from 

actual COVID-19 hospitalizations in Massachusetts from April 4, 2020 - April 3, 2021. 

Sensitivity analysis was then conducted to explore the effect of changes in hospital policy 

variables on PPE use. Second, to demonstrate the simulation application when faced with 

multiple epidemiological forecasts, an example case study was run using data from published 

COVID-19 Massachusetts hospitalization forecasts from December 15, 2020 – January 11, 2021. 

Finally, to understand the impact of inherent uncertainty in some of the inputs, select inputs were 

changed from deterministic to stochastic and a Monte Carlo simulation was run with 5,000 

iterations. Each of these case study steps produced key lessons for policy makers on PPE use in 

acute care hospitals during pandemics and the effect of policy changes on daily PPE use. 

 

5.3.1 Key lessons from the deterministic inputs case study 

 Each PPE type has its own variables that drive total use. In general, PPE can be split up 

into two types, staff-based use items and contact-based use items.  

• N95s and Eye Protection use are staff-based. N95s and eye protection are staff-based 

use items because they are used by a single staff member between multiple patients over 

the course of his or her shift. New patients do not require the use of additional N95s and 

eye protection if those patients can be treated by an existing staff member who was 

already issued an N95 and eye protection for their shift. The key driver of staff-based 

PPE is the number of staff working with COVID-19 and PUI patients that day. That 

number depends on the total number of COVID-19 and PUI patients, staff per patient 
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ratios, and the concentration of COVID-19 and PUI patients within the population. 

Keeping the total number of unique staff members working with COVID-19 patients low 

will decrease total PPE use.  

• Gloves and gowns are contact-based. Glove and gown use are contact-based PPE 

because they are changed after each time a healthcare worker interacts with a patient 

requiring that PPE precaution. Glove use is driven by the total patient population, as 

every patient, regardless of precaution level requires gloves use. Gown use is driven by 

the total number of COVID-19, PUI, and contact/droplet precaution patients. Because 

both gloves and gowns are contact-based, the less times any staff member interacts with a 

patient the less is used.  

• Surgical/Procedural masks have a high base rate of use that stays relatively 

constant. Surgical/procedural masks do not fall neatly into either category and are mostly 

determined by the high base rate that comes from issuing surgical masks to all patients 

and staff members every day. Counter-intuitively, the addition of more COVID-19 

patients has a less than one-to-one effect on surgical/procedural mask use, because with 

more COVID-19 patients and PUIs, more staff are using N95s and opposed to 

surgical/procedural masks. This effect, however, is small, and is insignificant when 

compared to the high surgical/procedural mask base rate. 

• The concentration coefficient is crucial to understanding staff-based PPE use. A 

significant contribution from this simulation is the inclusion of the concentration 

coefficient, which approximates the concentration of COVID-19 and PUI patients within 

the entire patient population. The concentration coefficient is critical to determining staff-

based PPE use. A concentration coefficient of 1, meaning COVID-19 and PUI patients 

are perfectly concentrated in one location, would allow the least possible number of staff 

members to treat those patients, leading to minimal N95 and eye protection use. A 

concentration coefficient of 0, meaning COVID-19 and PUI patients are perfectly spread 

out across facilities or across wards and must each be treated by their own unique staff 

members, maximizes eye protection and N95 use. Even without any policy intervention 

to force COVID-19 and PUI cohorting, as COVID-19 and PUI patients increase, they 

will naturally begin to concentrate and eventually outnumber typical sick. In extreme 

cases, COVID-19 and PUI outnumber typical sick by so much that the concentration 
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coefficient approaches 1, such as in the 5X COVID-19 scenario sensitivity analysis. The 

concentration coefficient is crucial to understanding staff-based PPE use.  

 

5.3.2 Key lessons from sensitivity analysis 

 Sensitivity analysis was conducted on the deterministic inputs case study to explore the 

effects of changes in hospital policy, including decreased COVID-19 diagnostic test turnaround 

times, increased reuse policies, decreased daily patient contacts by healthcare workers, and 

implemented COVID-19 and PUI cohorting on PPE use. These variables were chosen because 

they represent possible policy levers that could be pulled by healthcare leaders to influence PPE 

use in the face of shortages. Each of the policy interventions decrease total PPE use but have 

different impacts on shaping demand. This section will review the key impact of each of these 

variables. The policy options associated with this analysis will be addressed in the later section 

on policy implications. 

• Diagnostic test turnaround time: Decreasing turn-around times means fewer patients 

classified as Persons Under Investigation (PUI) and treated with full PPE. In a situation 

with only one PUI generated for every COVID-19 case, like the one explored in this case 

study, increasing diagnostic test turn-around time has only a small effect. However, in 

scenarios where many PUIs are generated for every COVID-19 case, this effect would be 

more pronounced and may warrant increased investment. 

• Increased reuse policies: Increasing reuse policies has a linear effect on N95 and eye 

protection demand. For example, increasing N95 reuse from one use to five uses can 

decrease N95 demand by up to 80% depending on policy adoption and behavioral factors. 

• Decreased healthcare worker patient contacts: Decreasing the number of times staff 

interact with a patient each day limits the number of gown and glove changes required by 

staff members and has a linear effect on gown and glove use. Decreasing staff to patient 

contact rate by 50% results in a 50% decrease in gown and glove use. 

• Implemented cohorting of COVID-19 and PUI patients: Cohorting patients decreases 

demand for N95s and eye protection because it minimizes the number of unique staff 

members who are required to wear PPE. Perfect cohorting decreased N95 and eye 

protection use by 48% in the deterministic case study. 
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5.3.3 Key lessons from utilizing multiple hospitalization forecasts 

 In this case study, five published forecasts for Massachusetts COVID-19 hospitalizations 

from December 15, 2020 – January 11, 2021 were run through the simulation. PPE output varied 

widely depending on which forecast was used, implying that the model is not robust to incorrect 

COVID-19 hospitalization inputs. In other words, the simulation is only as good as the 

epidemiological inputs it uses. Future users of this simulation should consider using an array of 

forecasts when there is uncertainty in future hospitalizations and use the range of outputs to 

make a risk-based decision. The simulation is set up to run these multiple forecasts with little 

computational load, which will facilitate running many scenarios with many forecasts. 

 

5.3.4 Key lessons from the Monte Carlo simulation 

 In this case study, variables related to healthcare worker daily patient contacts and staff 

per patient ratios were modified from deterministic to stochastic to represent the natural 

fluctuation in these practices across different healthcare facilities. The results of the case study 

identify where variation exists in the output of the simulation and produced some key lessons 

when considering how and when uncertainty in these inputs affects total PPE use. 

• Output uncertainty depends on COVID-19 severity. As COVID-19 cases increase, so 

does the coefficient of variation for all PPE items. Although the coefficient of variation 

remained low in this Monte Carlo simulation, that would not be the case if alternative 

epidemiological inputs were used that reflected a COVID-19 type pandemic that was 

much more severe. 

• Implementing COVID-19 and PUI patient cohorting increases the effect of changes 

in staff per patient ratios. When COVID-19 and PUI patients are cohrorted, changing 

staff to patient ratios has a linear effect on N95 and eye protection use. With imperfect 

cohorting, however, the dispersed nature of COVID-19 and PUI patients keeps high 

numbers of unique staff members wearing N95s, even if staff are treating more patients at 

one time. 

• Identifying accurate healthcare worker patient visit inputs is crucial to accurate 

output. This case study used a wide triangle distribution for healthcare worker patient 

visits, resulting in high variability for contact-based PPE. Gown and glove coefficients of 

variation were close to 10X higher than those for N95 and eye protection when no 
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cohorting was implemented. This highly variable output shows the importance of 

understanding the accurate values for healthcare worker patient contacts. 

 

5.4 Policy implications and next steps towards a robust PPE preparedness 

plan 

This section will discuss how policy makers can best use this simulation and the lessons 

learned in the case study to build a robust PPE preparedness plan given limited resources. This 

section will first address how policy makers can use the raw demand outputs from the simulation 

to serve as the first step in a larger process of gaining an understanding of the total PPE support 

required by healthcare facilities in the next pandemic. It will then discuss how policy makers can 

hedge against under-preparedness by investing in policy levers that can decrease PPE demand 

during times of scarcity.  

 

5.4.1 Next steps to determine government investment in PPE preparedness 

The simulation presented in this thesis provides a tool planners can use to determine PPE 

demand at the acute care hospital level. In order to determine the level of government response 

that will be required for PPE assistance, there are additional steps planners must take to 

determine the residual demand. Residual demand is the gap between PPE demand and the PPE 

supply that healthcare facilities are able to supply for themselves through their own internal 

emergency stockpiles and resupply orders from the market. Residual demand is what will 

ultimately need to be met by external assistance from government relief. Determining PPE use in 

the simulation is the first step in this process, but in order to determine residual demand, planners 

must understand the internal supply capacity of acute care hospitals. To do this, planners must 

maintain awareness of the size of internal emergency stockpiles and understand the capacity of 

the PPE market to meet demand. Once facility supply capabilities are understood, policy makers 

can determine the amount of investment they are willing and able to make to cover the potential 

residual demand under different pandemic scenarios. This three-step process is outlined in Figure  

5.4.1.1 below. 
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Figure 5.4.1.1: Steps to determine government investment in PPE preparedness 

 

 

 Although a full investigation of current facility supply plans and potential government 

stockpile plans is out of the scope of this thesis, it is important to position the simulation in its 

proper place as the first step in a multi-step process towards crafting a PPE emergency response 

plan. COVID-19 has created urgency around PPE preparedness at all levels, including 

encouraging increased investment in preparedness at the hospital and hospital system level. 

Market forces have changed as well, with increased investment in PPE infrastructure that has 

increased PPE market capacity. In order to properly invest its resources, planners must not only 

understand potential PPE demand under difference disease scenarios, but also keep tabs on 

facility and market preparedness and adjust its investment accordingly. This will be especially 

important when distance from the COVID-19 pandemic decreases attention to PPE preparedness 

and leads to the inevitable dwindling of facility stockpiles and PPE manufacturing. 

 

5.4.2 Investing in policies that can decrease PPE demand in times of scarcity 

Given limited resources, the government will never be able to prepare for every possible 

pandemic scenario. Policy makers can hedge against under-preparedness by investing in levers 

that can be pulled to decrease PPE demand at the hospital level in times of scarcity. Many of 

these methods were deployed during COVID-19, but as discussed in section 2.4, guidance was 

often vague and conservation policies were unevenly applied across hospital systems. A 

disciplined approach to investing in smooth transitions to safe PPE conservation policies across 

all hospital systems could significantly decrease strain on the PPE market and decrease the need 
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for government assistance. This section will discuss the conservation policies that were identified 

in the simulation as having significant effect on decreasing PPE use and how those conservation 

policies can be invested in to improve adoption and ease of use. 

 

5.4.2.1 Identify sites and create standard operating procedures to cohort infected patients 

Cohorting infected and suspected patients so they can be treated by the minimum number 

of staff possible has a significant effect on decreasing N95 and eye protection use. The case 

study showed that implementing a perfect system of cohorting can decrease N95 and eye 

protection use by 48%. Although perfect cohorting is unlikely, any improvement in cohorting 

patients will decrease the number of unique staff members wearing an N95 and eye protection 

each day. Cohorting can be conducted at the hospital, local, or state level and is already a part of 

existing infection control guidelines to prevent disease transmission to non-infected patients 

(CDC, 2021).  

Efforts to cohort emerged during COVID-19, including the creation of dedicated facilities 

for treating only COVID-19 patients (Joseph, 2020). Creating predetermined cohorting plans can 

lead to wider adoption of cohorting and allow for the transition of regular facilities to dedicated 

facilities more quickly. This has already been explored for Ebola epidemics, where 69 healthcare 

facilities across states have been identified as Ebola treatment centers and will be prioritized to 

receive Ebola patients in a future outbreak (HHS, 2018).  

In areas that lack dedicated treatment centers, patients can still be cohorted within 

hospitals by designating specific disease floors or wards. If cohorting is logistically infeasible 

due to hospital infrastructure, the same decrease in N95 and eye protection use can be achieved 

by designating specific staff that treat all infected patients in the hospital across floors and wards.  

In order to decrease N95 and eye protection use, policy makers should invest in creating 

cohorting plans and infrastructure before the onset of the next pandemic. These cohorting 

policies can then be activated during pandemic scenarios to decrease N95 and eye protection 

demand before it strains the market and facility/government response capacity. 

 

5.4.2.2 Invest in sterilization technology that facilitates N95 reuse 

Reusing N95s has a linear effect on N95 use, meaning reusing N95s for five shifts instead 

of one shift will decrease use by 80%. Reuse policies were widely adopted during COVID-19 in 
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response to severe shortages of N95s. In May 2020, a National Nurses United survey reported 

87% of nurses had reused a single use disposable mask or N95 respirator (Cohen & Rogers, 

2020). At the onset of COVID-19, there were no published clinical studies on the safety of N95 

reuse and limited evaluation of N95 reuse safety in the laboratory (ECRI, 2020). Laboratory 

studies conducted during the COVID-19 pandemic showed that moist mask heating and 

vaporous hydrogen peroxide treatment provided reliable viral decontamination of N95 masks 

(Steinberg et al., 2020). These findings led the Food and Drug Administration (FDA) to approve 

15 emergency use authorizations (EUA) for N95 decontamination systems between March 2020 

and January 2021. Those EUAs have since been revoked due to the higher availability of N95 

masks on the market (FDA, 2021). During the approved period of the EUAs, N95 

decontamination allowed hospitals to collect N95s at the end of each shift and send them for 

sterilization before use on the next shift. If granted full FDA approval and purchased across 

hospital systems, these decontamination systems have the potential to make N95 reuse safe and 

uniform. These systems could also be developed for other PPE at high risk of shortage, such as 

isolation gowns or disposable hazmat suits. 

 

5.4.2.3 Invest in telemedicine solutions 

Decreasing healthcare worker daily visits to patients has a linear effect on gown and 

glove use, meaning decreasing daily healthcare worker patient visits from 40 to 20 cuts gown 

and glove use in half. Decreasing the number of times healthcare workers physically interact 

with patients does not have to decrease care standards when coupled with the appropriate use of 

telemedicine practices. The COVID-19 pandemic spurred a wave of investment in telehealth 

both inside and outside of hospitals. McKinsey & Company found that telehealth has increased 

38X from pre-COVID-19 levels and that both consumer and provider attitudes towards telehealth 

have improved. The widespread adoption of telehealth solutions resulted in a doubling of 

telehealth venture capital investment from 2019 to 2020, resulting in systems that were easier to 

use and more secure entering the market (Bestsennyy et al., 2021). The FDA granted approval 

for six EUAs related to telehealth technology from April- May 2020, demonstrating the FDA’s 

agreement that telehealth was crucial for infection control and PPE conservation (FDA, 2021).  

These telehealth solutions, including video conferencing with hospital inpatients and 

remote patient vital sign monitoring, deserve continued attention even as COVID-19 eventually 
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fades. Continued investment in these technologies and further research into how they affect 

patient outcomes will allow for improved telehealth usage in the next pandemic that may further 

decrease healthcare worker patient visits and decrease PPE use. Even if telehealth solutions are 

considered unnecessary for non-emergency use, a systematic plan on when and how to 

implement telehealth is crucial to quickly transitioning to telehealth solutions during future PPE 

shortages.  

 

5.4.2.4 Invest in diagnostic testing capability 

Lower diagnostic test turnaround times reduce PPE use of all types because it decreases 

the number of PUIs that need to be treated with full PPE precautions. Diagnostic testing faced 

serious delays during the onset of COVID-19 in March 2020, with backlogs and lack of testing 

supplies leaving patients without test results for up to a week (Ryan & Lazar, 2020). Although 

testing availability and turnaround time improved later in the pandemic, it did not come in time 

to decrease PPE use during the peak of PPE shortages in April 2020. Criticism of the COVID-19 

diagnostic testing rollout in the United States has been widespread and has been blamed for the 

failure to contain COVID-19 in the United States (Shear et al., 2020). Decreasing PPE use by 

decreasing PUIs is only a small portion of the benefit that can come from increased diagnostic 

testing infrastructure, which has the potential to significantly lower spread and decrease 

hospitalizations when coupled with contact tracing.  

Although it is impossible to know the genetic makeup of the next pandemic, policy 

makers can invest in infrastructure and standard operating procedures that will improve 

diagnostic test availability early in the next pandemic. Examples of these investments include 

safeguarding the supply chain of crucial testing supplies including medical swabs, streamlining 

the process to submit diagnostic test technology and protocols to the FDA for emergency 

approval, and pre-designating locations for local testing centers.  

 

5.5 Future research needs 

The simulation presented in this thesis can assist policymakers in forecasting PPE use in 

the next pandemic and help to inform a robust PPE preparedness plan. It is, however, only one 

piece of what is needed to prepare the United States to meet the PPE needs of an unknown future 

pandemic. Although there is much needed research in this area, including research into market 
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capacity, adaptive manufacturing, and stockpile management, this section will focus on further 

research specifically to improve understanding of acute care hospital PPE demand in pandemics. 

 

5.5.1 Understanding PPE conservation policy adherence 

As discussed in section 5.2, even if clear PPE conservation policies are mandated by 

acute care hospitals, it is not clear this will result in perfect adherence. Future research is needed 

to understand the effect of conservation policies on PPE consumption at hospitals and other 

facilities. This empirical research would improve the assumptions in the simulation and lead to 

more accurate PPE use forecasts. Additionally, behavioral research regarding factors that 

influence policy adoption can improve the crafting and strategy of PPE conservation policies. 

Simulating human behavior will always have limitations without an understanding of the 

nuances that cause people to act unpredictably and counterintuitively. 

 

5.5.1.1 Modifying the simulation for diseases requiring different PPE precaution levels 

COVID-19 requires treatment with an N95, eye protection, a level II or above isolation 

gown, and nitrile gloves. The simulation presented in this thesis was built to model PPE use 

given that required precaution level. Additional simulations or a modification to the simulation 

presented in this thesis is required to understand PPE us in a disease requiring a different PPE 

precaution level, such as Ebola. To create a full picture of potential PPE use in a future 

pandemic, multiple disease types should be explored.  

 

5.5.2 Understanding how PPE use translates to PPE orders 

This simulation calculates the actual PPE use on the floor in acute care hospitals. It does 

not predict how this use will be translated by supply chain professionals and hospital operations 

leaders into PPE orders in the private market. It is human nature to stockpile when there are fears 

of future shortages. This was seen clearly in the United States retail market for dry goods during 

March 2020 (Benveniste, 2020). Hospital systems are not immune to this practice. A cursory 

review of N95 orders placed by a major United States hospital system showed a significant 

attempt to stockpile at the onset of the COVID-19 pandemic along with a second bulk order in 

preparation for an expected second wave of COVID-19 (Anonymous Hospital Supply Chain 

Data, 2020). This anecdotal evidence suggests that PPE ordering behavior likely does not align 
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with COVID-19 hospitalizations, despite the simulation showing a correlation between COVID-

19 hospitalizations and N95 use. 

An initial surge in orders at the onset of a pandemic is not new to COVID-19. Healthcare 

facilities ordered much more PPE than was needed in preparation for the 2009 H1N1 influenza. 

United States healthcare facilities demonstrated the same behavior during the 2014 Ebola 

epidemic in West Africa, ordering massive quantities of full PPE before a single Unites States 

case was identified (Patel et al., 2017). This behavior is understandable. Hospital planners are 

attempting to ensure their hospital is ready for an unknown future caseload. It does, however, 

make it very difficult to understand true demand when typical demand signals are inflated due to 

excess order placement.  

The simulation presented in this thesis attempts to illuminate actual PPE use, but it is 

likely the strain on PPE supplies in the market will be much higher than is predicted by the use 

shown in the simulation due to the tendency to overorder during times of uncertainty and fear. 

Future research is needed to understand how use will transform into orders placed so planners 

can better prepare for the inevitable bullwhip effect that large initial orders will cause in the PPE 

supply chain. 

 

5.5.3 Extending the simulation method to other healthcare facility types 

Acute care hospitals were chosen as the focus for this work due to their comparatively 

large volume of PPE use. Long-term care facilities, however, also suffered devastating PPE 

shortages during COVID-19 and require further research into their pandemic PPE demand. 

Long-term care facilities are especially vulnerable to supply shortages because unlike acute care 

hospitals, their day-to-day non-pandemic medical supply needs are predictable and non-complex. 

The limited nature of long-term care non-pandemic medical supply needs mean many long-term 

care facilities do not employ full-time medical logistics professionals or have cultivated 

relationships with medical supply distributors (Milesky, 2020). This lack of logistics 

infrastructure makes it difficult for long-term care facilities to secure supply allocations during 

demand surges, making them more likely to need external support. 

An initial investigation into long-term care PPE demand shows that many of the same 

PPE conservation techniques presented in section 5.4.2 would be equally or more affective in the 

long-term care context. As part of this investigation, a skilled nursing facility and assisted living 
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facility simulation were created by altering the acute care PPE use simulation. These simulations 

were then run with case inputs for the state of Massachusetts from April 4, 2020 – April 3,2021. 

As expected, the linear effect of PPE reuse policies and HCW patient visits in both long-term 

care facility types equaled that seen in the acute care hospital simulation. The effect of 

implemented cohorting, however, was much more pronounced than the effect seen in acute care 

hospitals. Implementing perfect cohorting resulted in a 95.2% decrease in N95 use in skilled 

nursing facilities and a 93% decrease in N95 use in assisted living facilities. This was a 

significantly larger decrease than the 52% decrease in N95 use seen in the acute care hospital 

simulation run under the same COVID-19 scenario. The larger effect of cohorting is due to long-

term care facilities having few staff members caring for many residents and the expected 

dispersion of sick patients among many non-sick residents. The effect of COVID-19 test 

turnaround times was also more pronounced in the long-term care setting compared to the acute 

hospital setting. Increasing COVID-19 test turnaround time from one to two days in skilled 

nursing facilities resulted in a 28.2% increase in N95 use and a 29% increase in gown use 

compared to the 2-3% seen in acute care hospitals. This is because routine interactions between 

residents in long-term care facilities ensure each positive case results in many PUIs that must be 

tested, as opposed to acute care hospitals were PUIs are only entering the system if they need 

unrelated medical care. 

These preliminary results suggest that the dynamics of use in long-term care are likely 

different than acute hospitals and require further exploration. Long-term care may also face 

unique challenges implementing conservation policies due to the nature of their operation. 

Cohorting, for example, may be especially difficult for long-term care due to difficulties re-

locating older patients to new facilities without causing additional harm. The simulation provides 

evidence regarding the PPE impact that can inform decisions with such difficult tradeoffs. 

6. Conclusion 

In response to the severe PPE shortages experienced during the COVID-19 pandemic, the 

United States is currently investing significant resources into PPE stockpiles and supply chains. 

In order to appropriately prioritize those investments, policy makers need to understand the 

potential demand for PPE in the next pandemic. This thesis presented a novel simulation 

approach to forecast PPE use in acute care hospitals for a COVID-19-type pandemic given 
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hospitalization forecasts.  A case study was then presented using data from reported COVID-19 

hospitalizations in Massachusetts from April 4, 2020 – April 3, 2021 to demonstrate the potential 

applications of this simulation and explore the key drivers of PPE use from both case-driven and 

policy-driven variables.  

The glass box nature of the simulation with its daily output will allow policy makers to 

forecast PPE use for multiple COVID-19-type disease trajectories and create understandable PPE 

use scenarios that can be used to inform preparedness for the next pandemic. The low 

computational load allows for multiple simulation runs, including potential for thousands of runs 

in a Monte Carlo simulation when variables are changed from deterministic to stochastic. This 

simulation serves as a crucial starting point in the multi-step process of determining how 

government agencies should invest in PPE preparedness. Too often in humanitarian supply chain 

literature the focus on efficient inventory management and delivery is emphasized at the expense 

of understanding the root demand those inventories are meant to be serving. The purpose of this 

simulation is to provide a reliable method to understand acute care hospital PPE demand at its 

source, so future analysis can build from a reliable base. 

Even if policy makers understand PPE demand, they will not be able to prepare for every 

pandemic scenario. In order to build a robust preparedness plan, policy makers need to invest 

now in the PPE conservation policies that will need to be implemented in the face of future PPE 

shortages. The PPE shortages experienced in COVID-19 led to innovative efforts in diagnostic 

testing, telemedicine, N95 sterilization, and patient cohorting, but the lack of clear guidance and 

established best practices in these conservation efforts resulted in inconsistent use across hospital 

systems. The simulation case study shows that these PPE conservation policies can significantly 

decrease PPE use. Increased investments in key conservation strategies can improve their 

adoption in the next pandemic and help hedge against under-preparedness. 

There is more work to be done to fully understand PPE demand at acute care hospitals. 

Although PPE conservation policies decrease PPE use when fully adopted, future research is 

needed to understand the rate of policy adherence. Additional simulations or a modification to 

the simulation presented in this thesis is needed to model PPE use for diseases requiring different 

PPE precautions, such as Ebola. Finally, PPE use does not directly translate into orders. The 

tendency to stockpile in the face of potential shortages results in supply chain disruptions that 
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outsize actual PPE use. To prepare for these effects, policy makers need to know the extent of 

this magnification and when it is likely to occur.  
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