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Abstract

In this thesis, methods are proposed for co-optimizing the shape and motion of robotic ef-
fectors for planar tasks. An effector is a device, typically at the end of a robotic arm, used
to interact with the environment. While planning object and robot-object contact trajecto-
ries is extensively studied, designing an effector that can execute the planned trajectories
receives less attention. As such, this thesis includes a framework that synthesizes an ob-
ject trajectory and object-effector contact trajectory into an effector trajectory and shape
that (a) does not penetrate the object, (b) makes contact with the object as specified, and
(c) optimizes a user-specified objective. This simplifies manipulator control by encoding
task-specific contact information in the effector’s geometry. The key insight is posing these
requirements as constraints in the effector’s reference frame, preventing the need for ex-
plicit parameterization of the effector shape. This prevents artificial restrictions on the
shape design space. Importantly, it also facilitates posing the shape and motion design
problem as a tractable nonlinear program. This method is particularly useful for problems
where the shape of the effector surface must be precisely chosen to achieve a task. This
work is then extended to parallel-jaw grasping problems, in which grasp stability is consid-
ered while optimizing over contact locations, effector shape, and grasp configuration. This
provides a path forward for future work in which effectors with multiple internal degrees of
freedom are co-optimized with motion. Methods are demonstrated on example problems,
including jar-opening, picking up objects in constrained spaces, and stably grasping sets of
nonconvex objects. The algorithms’ results and computational cost are evaluated. A phys-
ical experiment demonstrates a robotic arm picking up a screwdriver from a table using
a tool that was designed using the proposed framework and manufactured to the derived
shape.
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Title: Senior Member of the Technical Staff at Draper

3



4



Acknowledgments

I thank Draper, and the Draper Scholar Program, for funding this work. Draper has sup-

ported me in exploring research directions at the intersection of robotics and space appli-

cations, while learning from a network of seasoned engineers.

Thanks to Ravi Gondhalekar, my advisor at Draper, for being deeply supportive. Your

technical knowledge and creative ideas have enabled our research and inspired me to think

critically in these last two years. You have been patient, spending many cumulative hours

talking with me, discussing my good ideas, discussing my bad ideas, helping me become a

good researcher, and engaging in a little intellectual frolic.

I thank Alberto Rodriguez, my advisor at MIT, for helping me acclimate to the world

of robotics research. You have continuously exceeded how kind, understanding, and sup-

portive I expect an advisor to be. In the ups and downs of research, knowing that I have

you on my team assures me that we will ultimately accomplish our goals.

To Neel Doshi, thank you for your phenomenal mentorship. Our weekly discussions

brought many creative ideas and led me to keep educating and challenging myself as we

delved into them.

To my academic advisor Richard Linares, thank you for supporting my journey in the

AeroAstro department while I research in a Mechanical Engineering lab.

Thank you Andy Ruina, for pushing me to go to grad school, when I had previously not

seen myself as a researcher. I know that my life would look very different now had I not

had your support and advice in the years before I came to MIT.

John Wirzburger, thank you for having been an incredible leader during my time at

The Johns Hopkins University Applied Physics Lab, and for helping me grow and find

my direction in career and life. Your passion for space exploration and your engineering

ideology stay with me and will continue to influence me throughout my career.

Finally, an acknowledgement to my cats, Emmy and Fritz, who have made many sug-

gested edits to my code and writing that I ultimately undid, and who have been incredible

officemates during the work-from-home days.

5



6



Contents

1 Introduction 17

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Design and use of effectors . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.1 Effector shape and motion optimization . . . . . . . . . . . . . . . 22

1.3.2 Parallel-jaw gripper optimization . . . . . . . . . . . . . . . . . . . 23

1.4 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Contact trajectory satisfaction 25

2.1 The shape and motion problem . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Problem formulation and notation . . . . . . . . . . . . . . . . . . 25

2.1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Continuity constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Non-penetration constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 The optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Rock-climbing cam . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.2 Square slide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.3 Pickup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.4 Jar opener . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.5 Screwdriver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Parameters and computation . . . . . . . . . . . . . . . . . . . . . . . . . 40

7



3 Grasping 41

3.1 The grasp collection problem . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Grasp stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Mathematical program formulation . . . . . . . . . . . . . . . . . 44

3.2.2 A grasp quality metric . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Non-penetration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 The optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.1 Compact grippers . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.2 Modifications for robustness to external torques . . . . . . . . . . . 55

3.5.3 Modifications for preventing effector interpenetration . . . . . . . . 62

3.6 Parameters and computation . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Conclusions 67

4.1 Contact trajectory satisfaction . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Grasping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Optimizing over contact existence and edge correspondence . . . . 68

4.2.2 Form closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A Signed distance function smoothness 71

Bibliography 74

8



List of Figures

1-1 Input, process, and output of tool for synthesizing rigid effectors. . . . . . . 21

2-1 A trajectory visualized in the effector frame and the world frame. . . . . . . 27

2-2 Visualization of the continuity constraint. . . . . . . . . . . . . . . . . . . 29

2-3 Example of the composite shape. . . . . . . . . . . . . . . . . . . . . . . . 30

2-4 Signed distance representations of shapes. . . . . . . . . . . . . . . . . . . 31

2-5 Rock-climbing cam solution error as a function of 𝑁𝑡 . . . . . . . . . . . . 33

2-6 Square slide problem input and solutions. . . . . . . . . . . . . . . . . . . 34

2-7 Pickup problem input and solutions. . . . . . . . . . . . . . . . . . . . . . 35

2-8 Jar opener problem input and solutions. . . . . . . . . . . . . . . . . . . . 37

2-9 Screwdriver problem solution and experiment snapshots. . . . . . . . . . . 38

3-1 Intuitively good and bad grasps for a square. . . . . . . . . . . . . . . . . . 47

3-2 Optimized grasp stability metric 𝐽*
𝐺 plotted as a function of 𝜃𝐸 . . . . . . . . 49

3-3 Effector-frame sweeps for several grasps for a square object. . . . . . . . . 51

3-4 Best-cost compact gripper solution for convex shapes. . . . . . . . . . . . . 53

3-5 Second-best-cost compact gripper solution for convex shapes. . . . . . . . 53

3-6 Third-best-cost compact gripper solution for convex shapes. . . . . . . . . 54

3-7 Fourth-best-cost compact gripper solution for convex shapes. . . . . . . . . 54

3-8 Fifth-best-cost compact gripper solution for convex shapes. . . . . . . . . . 55

3-9 Best-cost compact, torque-robust gripper solution for convex shapes. . . . . 57

3-10 Second-best-cost compact, torque-robust gripper solution for convex shapes. 57

3-11 Third-best-cost compact, torque-robust gripper solution for convex shapes. . 58

3-12 Fourth-best-cost compact, torque-robust gripper solution for convex shapes. 58

9



3-13 Fifth-best-cost compact, torque-robust gripper solution for convex shapes. . 59

3-14 Best-cost compact, torque-robust gripper solution for complex shapes. . . . 60

3-15 Second-best-cost compact, torque-robust gripper solution for complex shapes. 60

3-16 Third-best-cost compact, torque-robust gripper solution for complex shapes. 61

3-17 Fourth-best-cost compact, torque-robust gripper solution for complex shapes. 61

3-18 Fifth-best-cost compact, torque-robust gripper solution for complex shapes. 62

3-19 Grasp solution that leads to interpenetration between the two effector jaws. 63

3-20 NLP solution that leads to interpenetration, with interpenetration keep-out

shapes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3-21 Swept objects shown in effector frames for solution with effector interpen-

etration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3-22 Swept objects shown in effector frames for solution without effector inter-

penetration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3-23 Proposed shape for effector feature, bounded by interpenetration keep-out

shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3-24 Grasp solution that does not lead to interpenetration between the two effec-

tor jaws. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A-1 SDFs of a circle, square, and star. . . . . . . . . . . . . . . . . . . . . . . . 72

A-2 Non-smooth region of SDF of screwdriver composite shape. . . . . . . . . 72

A-3 Approximated swept area of screwdriver in the effector frame. . . . . . . . 73

10



List of Tables

2.1 Computational parameters for the example problems in Sec. 2.5. . . . . . . 39

3.1 Computational parameters for the example problems in Sec. 3.5. . . . . . . 66

11



Nomenclature

𝑁𝑡 Number of timesteps

𝑁𝑐 Number of contacts (Chap. 2)

𝑁𝑐[𝑘] Number of contacts at index 𝑘 (Chap. 3)

𝑁𝑑 Number of allowed effector degrees of freedom

𝑁𝑝 Number of parameters used to define effector state

𝑁𝑖𝑡𝑒𝑟 Number of re-initializations of the NLP solver

𝑇𝑠 Time taken to solve a problem

𝐸 Effector frame (Chap. 2)

𝐸𝑗 Effector frame for 𝑗th jaw (Chap. 3)

𝑂 Object frame

𝑊 World frame

Ψ𝐴[𝑘] Object in reference frame 𝐴 at index 𝑘

d𝐴
𝑖 [𝑘] Tangent for contact 𝑖 in reference frame 𝐴 at index 𝑘

p𝐴
𝑖 [𝑘] Position of contact 𝑖 in reference frame 𝐴 at index 𝑘

p𝑊
𝐸 [𝑘] Position of the effector in the world frame at index 𝑘

𝑠𝑖[𝑘] Path length parameter for contact 𝑖 at index 𝑘

Ω𝐴[𝑗] The 𝑗th obstacle, in the reference frame 𝐴

𝜃𝐸[𝑘] Orientation of the effector at index 𝑘

𝒫 Concatenation of effector positions 𝑝𝑊𝐸 [𝑘] over all 𝑘, 𝒫 :=

{p𝑊
𝐸 [0], ...,p𝑊

𝐸 [𝑁𝑡]}

Θ Concatenation of effector orientations 𝜃𝐸[𝑘] over all 𝑘, Θ :=

{𝜃𝐸[0], ..., 𝜃𝐸[𝑁𝑡]}

𝒮 Concatenation of path length parameters 𝑠𝑖[𝑘] over all 𝑖 and 𝑘, 𝒮 :=

{𝑠0[1], ..., 𝑠0[𝑁𝑡], ..., 𝑠𝑁𝑐−1[1], ..., 𝑠𝑁𝑐−1[𝑁𝑡]}

𝜑[𝑘] Signed distance function of the composite shape at index 𝑘

ℎ[𝑘] Timestep at index 𝑘
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Chapter 1

Introduction

1.1 Motivation

A growing number of in-space technology goals, including large telescopes, artificial grav-

ity, and solar-electric propulsion, involve assembling large structures in space [8]. How-

ever, launch vehicle size and weight limits inhibit launching large structures. Furthermore,

launches are expensive, and crewed servicing missions are rare; until robots are capable

of a broad range of complex spacecraft servicing tasks, there is little opportunity to re-

pair or improve in-space assets. Consequently, currently: (a) engineering conservatism

raises cost while sacrificing performance, (b) one failure can cause loss of mission, (c) fly-

ing technology is not updated to match new developments, and (d) fuel limitations restrict

capability and lifetime. In anticipation of future robotic capabilities, the National Aero-

nautics and Space Administration (NASA) has proposed a new paradigm where spacecraft

known as Persistent Assets (PAs) [14] are intended to have long lifetimes, be assembled

in space, be upgraded as technology improves or as budget becomes available, and be ser-

viced and maintained as needed. In a complementary concept by the Defense Advanced

Research Projects Agency (DARPA), Payload Orbital Deliveries (PODs) are sent to a ser-

vicing spacecraft on orbit, containing spare tools or parts, new components to augment

or upgrade a client spacecraft, or modular building blocks for assembling a new space-

craft [49].

Robotic effectors will hold a central role in assembling and servicing PAs. No sin-
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gle effector can perform all necessary tasks. For example, DARPA’s Robotic Servicing of

Geosynchronous Satellites mission includes the German Aerospace Center (DLR) Space-

hand, as well as separate tools for POD capture, grappling a client spacecraft, and applying

controlled forces and torques [1]. Likewise, NASA’s On-orbit Servicing, Assembly, and

Manufacturing 1 mission includes individual tools for grasping and berthing, and for ma-

nipulating and cutting thermal blankets [50]. Tailoring effectors to tasks raises the key

question: What is the optimal effector for a given task? Indeed, the NASA Technology

Roadmap, Technology Area (TA) 4.3.2 – Robotic Manipulation – calls for design of physi-

cal manipulators and their motions [5]. Obviously, designing an effector involves selecting

its physical form. However, its intended motion is an equally significant part of the solu-

tion. The form of a screwdriver is meaningless without the intention to hold the tip to the

screw head and rotate, as is the shape of a parallel-jaw gripper surface without the intention

to position the jaws around an object and close. In this thesis, methods are proposed for

finding the optimal manipulator form and motion for a given task.

TA 4.3.2 also emphasizes the need for grasping various object geometries. The pro-

posed method addresses precisely this problem, with a tool that synthesizes optimized

effectors with stable grasps for a collection of input objects. This framework can help

minimize the number of distinct tools needed for a set of objects, a priority mentioned in

TA 4.3.2. Indeed, grasping is central in recent demonstrations. Orbital ATK’s Commercial

Infrastructure for Robotic Assembly and Services demonstration used a parallel-jaw “Uni-

versal Grabber Tool” to manipulate trusses and solar arrays [2]. Langley Research Center’s

SAMURAI robot grasps a truss strut with two grippers simultaneously [15]. SpiderFab (by

Tethers Unlimited) used a gripper with the particular form and compliance needed to align

a truss strut, allowing for error in end effector position [27]. DLR presents gripper fingers

shaped to create form-closure grasps on assembly kit parts and a screwdriver tool [42].

All of these effectors, manually designed, must precisely and stably align assembly ele-

ments. The framework developed in this thesis provides a preliminary step in the direction

of optimizing these effectors.
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1.2 Design and use of effectors

The performance of a robot is a matter of both its morphology and control: The optimal

effector lies in the shared design space of shape and motion. However, in robotics we

typically select an effector without optimizing for an intended task, and only subsequently

design a corresponding effector motion [37, 38, 41, 52, 56]. Pre-selecting an effector pre-

emptively constrains the space of feasible motions unnecessarily.

Several works avoid this restriction by taking an object-centric approach, optimizing

directly over contact locations and object trajectory [3, 12, 16, 33, 35]. However, these

frameworks result in disembodied contact points; the shape and motion of the effector that

contacts these points remain unspecified. One solution is to use a dexterous hand with

an individual finger to track each contact point [12, 35]; however, this incurs substantial

mechanical and control complexity. Instead, particularly in settings where the same task

is to be repeated many times, a minimally actuated task-specialized effector can reduce

complexity and simplify task execution.

In this thesis, a framework is presented for co-optimizing shape and motion of this

task-specialized effector given trajectories for the object and object-effector contact points.

Co-optimizing effector shape and motion is challenging. This is largely due to difficulties

in representing the effector shape in a way that (a) can be integrated into an optimization

algorithm, (b) is expressive enough to allow the emergence of useful design features, (c)

is conducive to expressing constraints, and (d) is computationally tractable. The proposed

framework addresses these issues by circumventing the need to explicitly parameterize the

effector shape.

This is accomplished by leveraging a key insight from Rodriguez and Mason [43, 44],

who examine how task-specific contact trajectories induce a relationship between the ef-

fector’s motion and the shape of its contact surface. The effector contact surface must meet

prescribed points in space while traveling along its trajectory. Equivalently, these points,

when represented in a reference frame fixed to the effector, must lie on its contact surface.

This allows the contact points that encode the desired task to also implicitly represent the

effector’s shape as a function of its motion.
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The key contribution of this thesis is to use this insight to pose the simultaneous ef-

fector shape and motion optimization as a tractable nonlinear program (NLP) over only

motion variables. Focusing first on rigid effectors with given contact trajectories, this the-

sis introduces two key constraints on these motion variables that enforce feasibility of the

physical effector: continuity and non-penetration. Continuity enforces a viable effector

shape, and non-penetration globally prevents object-effector and effector-environment in-

terpenetration. Fig. 1-1 summarizes the proposed framework for rigid effectors. The inputs

to the framework are shown in Fig. 1-1a. In an example infeasible candidate solution,

visualized in the effector frame in Fig. 1-1b (left), some contact points penetrate the ob-

ject, and contact points are scattered and not aligned. These issues are corrected through

the optimization process, leading to Fig. 1-1b (right). Fig. 1-1c shows the output, an op-

timized feasible shape and motion of the effector. The cost function is specified by the

user, allowing the framework to flexibly synthesize effectors with application-specific de-

sirable qualities. This thesis also includes an extension of the framework for optimizing

parallel-jaw effectors, establishing a path forward to incorporate internal effector degrees

of freedom (DOFs), force balance, and optimization over contact location.
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(a)

(b)

(c)

Figure 1-1: a) Input: Desired object and contact constraints in world frame. b) Infeasible
(left) and feasible (right) candidate solutions during the optimization process, visualized
in the effector frame. Blue: union of object representations in the effector frame across
timesteps. c) Final effector solution.
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1.3 Related work

1.3.1 Effector shape and motion optimization

A common method of co-optimizing shape and motion is to use an existing geometry and

optimize a few tunable parameters, as is commonly done in legged locomotion [13, 18,

21, 34, 39, 40, 46, 54]. This approach has been demonstrated for manipulation tasks using

gradient-based optimization [26], sampling-based motion planning [7], the implicit func-

tion theorem [23], and reinforcement learning [11]. While these works have achieved suc-

cess in their intended applications, their physical representations are limited; they are not

expressive enough to enable discovering geometries vastly different from the initial design,

or permit characterizing fine details of a contact surface whose precise form determines its

feasibility.

There is less work on shape and motion optimization using more expressive geometric

representations. Like in the proposed approach, Xu et al. [57] use gradient-based optimiza-

tion to co-design effector shape and motion. They begin with an initial geometry made up

of effector components from a database, and distort these components using a cage-based

deformation technique [28]. Using their own dynamics simulator that is differentiable with

respect to the cage vertices, they simultaneously optimize over morphology and control.

Taylor and Rodriguez [51] formulate an NLP to optimize spline parameters representing

the shape and motion of a rigid planar effector performing dynamic manipulation tasks.

However, they do not handle multiple contacts, do not permit sliding contact, and do not

enforce global non-penetration, all of which would be additions that significantly increase

problem size and introduce nonconvexities. Moreover, their approach requires significant

manual supervision of spline parameters and regularization constraints. While the approach

proposed in this thesis does not enforce dynamics, as they are assumed to be satisfied in

the input trajectories, the presented approach allows multiple contacts and enforcement

of global non-penetration, and can extend to effectors with internal DOFs as discussed in

Chap. 3.

The representations in Xu et al. [57] and Taylor and Rodriguez [51] are still more re-
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strictive than the proposed method, which does not explicitly parameterize the effector

shape. However, Kawaharazuka et al. [29] control effector shape pixel-by-pixel, provid-

ing a very general shape representation. They use a neural network to optimize the shape

and motion of a rigid planar tool represented by an image. Their method succeeds for the

simple task of sliding a circular object from one point on a surface to another, but requires

collecting data from physical experiments requiring “randomized” tools to be manufac-

tured. Additionally, their work does not explore more complex tasks.

1.3.2 Parallel-jaw gripper optimization

Ha et al. [22] and Alet et al. [4] present learning-based frameworks for optimizing parallel-

jaw grippers. Both of these works evaluate grasps by simulation of the grasping process,

encouraging robustness by simulating with multiple initial object poses. Like in the ap-

proach proposed in this thesis, Alet et al. design grippers for sets of objects. These two

works show good tolerance to uncertainty, but do not fully leverage model information or

the powerful tools of grasp stability analysis to design grippers with highly tailored ge-

ometry. Schwartz et al. [47] likewise define a grasp metric based on success of grasping

simulations (with a single object), within an optimization loop in a model-based approach.

They avoid being constrained by effector geometry parameterization by using the negative

of the object shape to generate the matching effector geometry, similarly to the method

proposed in Sec. 3.1.2. Yako et al. [58] and Wolniakowski et al. [55] select dimensions

and other mechanical parameters for effectors for grasping. Wolniakowski et al. simulate

grasps to evaluate their quality, while Yako et al. use a potential energy map approach to un-

derstand grasping behavior without simulation. These low-dimensional parameterizations

are successful at selecting some effector characteristics, but are limited in their expressivity

when designing effectors without any priors. Finally, Brown et al. [10] design grippers by

arranging pins to create form closure grasps, rejecting solutions that cannot geometrically

close the jaws around the object. Similarly to the present work, they reason about grasps

from a point-contact perspective, geometrically reason about non-penetration during jaw

closure, and score grasp quality. However, they assume a given object orientation within

the jaws, and thus lack this important optimization space freedom.

23



1.4 Outline of this thesis

This thesis first describes a framework for optimizing rigid effectors for contact trajectory

satisfaction in Chap. 2, and subsequently in Chap. 3 describes extensions of the concepts

from this framework to allow internal effector DOFs, consideration of force balance, and

optimizing over contact locations in the context of grasping. Sec. 2.1 develops the core

concept of this work, posing the shape and motion problem as an NLP over only motion

variables. The NLP constraints are developed in Secs. 2.2 and 2.3, and the NLP itself for

rigid effectors is composed in Sec. 2.4. Sec. 2.5 gives example results, and Sec. 2.6 shows

a real-world experiment. Computation is discussed in Sec. 2.7.

In figures throughout Chap. 2, an object color gradient from white to blue signifies pro-

gression in time, orange points represent object-effector contact points, orange arrows rep-

resent contact tangents, orange curves represent effector contact surfaces, and gray curves

are (non-optimized) connectors for clarity. Gray regions are user-defined obstacles.

Sec. 3.1 explains the extension of the framework from Chap. 2 to grasping, adding the

notion of grasp stability in Sec. 3.2, updating the non-penetration constraint in Sec. 3.3, and

formulating the updated NLP in Sec. 3.4. Sec. 3.5 gives example results for the grasping

framework. Computation is discussed in Sec. 3.6

In figures throughout Chap. 3, red features refer to the left jaw, and orange features

refer to the right jaw. Colored points represent contact points. An object color gradient

from white to blue signifies progression in time. The effector jaw axis is horizontal. Un-

less otherwise specified the effectors shown are generated using the approach outlined in

Sec. 3.1.2.
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Chapter 2

Contact trajectory satisfaction

2.1 The shape and motion problem

This section discusses the proposed framework, including the problem formulation and

representation, and how feasibility of a candidate solution is assessed. The non-penetration

and continuity constraints are introduced in the context of an example problem, the design

of a rock-climbing cam.

2.1.1 Problem formulation and notation

The following items are required problem inputs:

• A polygonal object, Ψ𝑂[𝑘], in its own reference frame (superscript 𝑂), at all times

𝑘 = 0, ..., 𝑁𝑡. The object geometry may evolve over time.

• A discretized trajectory of the object: the orientations 𝜃𝑂[𝑘] and positions p𝑊
𝑂 [𝑘] of

the object (subscript 𝑂) in the world frame (𝑊 ) at all times.

• Contact constraints: contact point position, p𝑂
𝑖 [𝑘], and contact tangent, d𝑂

𝑖 [𝑘] at all

times, and for all contacts 𝑖 = 0, ..., 𝑁𝑐 − 1, where 𝑁𝑐 is the number of contacts. The

contact tangent is colinear with the object edge unless the contact point is an object

vertex. In this case, the tangent and its antiparallel direction must not point into the
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object, but are otherwise free. The effector must contact the object at the contact

points with its surface tangent to the contact tangents.

• A cost function on the effector motion, shape, or function. Sec. 2.5 shows examples.

• The allowed effector DOFs. The effector is rigid and has between one and three

DOFs (𝑁𝑑) in the plane.

If a solution is found, the framework outputs:

• p𝑊
𝐸 [𝑘] and 𝜃𝐸[𝑘], the position and orientation of the effector (𝐸), at all times. These

trajectories are abbreviated as 𝒫 := {p𝑊
𝐸 [0], ...,p𝑊

𝐸 [𝑁𝑡]}, Θ := {𝜃𝐸[0], ..., 𝜃𝐸[𝑁𝑡]}.

• The value, for all timesteps, and for all contacts, of a path length parameter, 𝑠𝑖[𝑘], that

modulates the distances between contact points along the contact surface, motivated

in Sec. 2.2. 𝒮 := {𝑠0[1], ..., 𝑠0[𝑁𝑡], ..., 𝑠𝑁𝑐−1[1], ..., 𝑠𝑁𝑐−1[𝑁𝑡]}.

• 𝑁𝑐 sets of points, each discretizing an effector contact surface that meets a contact

constraint at all times when traveling along the output effector trajectory.

The proposed approach, detailed in Sec. 2.1.2, relies on expressing variables in the

effector frame (𝐸). Let Ψ𝐸[𝑘], p𝐸
𝑖 [𝑘], and d𝐸

𝑖 [𝑘] denote the object, position of the 𝑖th

contact point, and 𝑖th contact tangent, represented in 𝐸 at time 𝑘.

2.1.2 Approach

For a candidate effector motion, the object and the contact constraints are represented in a

frame fixed to the effector. As is discussed in this section, this prevents the need to param-

eterize the effector shape, circumventing some key limitations in related works. Instead, in

the effector frame 𝐸, two core constraints are formulated, the non-penetration and conti-

nuity constraints, that ensure that the effector motion leads to a feasible effector shape.

In the continuous problem (𝑁𝑡 → ∞), the continuum of contact points, when repre-

sented in the effector frame, must coincide with the effector surface in order for the effector

to meet these contact points. Thus, we can treat the discrete points p𝐸
𝑖 [0], ...,p

𝐸
𝑖 [𝑁𝑡] as a

discretization of the effector surface corresponding to an effector motion. We optimize over
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Figure 2-1: a) Object and contact constraints for all times for the rock-climbing cam prob-
lem, in the world frame. The goal is to design a surface that, when articulated, meets all
five contacts shown (see Fig. 16 in [43] for further explanation). b) Illustration of a solution
for the effector shape and motion in the rock-climbing cam problem. Blue object snapshots
are shown in the world frame. The contact surface of the effector is shown, but the rest of
the effector body is not defined; its motion (pure rotation) is demonstrated by the rotation
of effector-frame basis vectors. Gray object snapshots with their corresponding contact
constraints are shown in the effector frame. Effector-frame basis vectors are shown, static
in the effector frame. Notice that the contact points and tangents define the contact surface.

effector motion and extract the corresponding effector surface geometry from the contact

points.

As an example to demonstrate what makes an effector shape and motion feasible, con-

sider the rock-climbing cam design problem from Fig. 16 of Rodriguez and Mason [43]. A

rock-climbing cam is a device with two spring-loaded surfaces that wedge in rock cracks.

In order to transmit the necessary forces, the cam is required to contact rock walls at a

constant contact angle, independent of the wall distance. The contact angle is defined as

the angle between the horizontal and the line that passes through the pivot and the contact

27



point. Fig. 2-1a shows input information for this problem, and Fig. 2-1b visualizes the

output in 𝐸 and in 𝑊 . We take advantage of the symmetry of the problem and design only

one cam. A coarse time discretization is used for the sake of clear visual illustrations.

The continuity constraint. In Fig. 2-1b, p𝐸
0 [𝑘] form the same shape as the effector

solution. This is because the contact points, represented in the effector frame, make up the

effector surface geometry. We use the contact points in the effector frame as the discrete

representation of the continuous effector surface. In Fig. 2-1b, as previously in Fig. 1-1b

(right), p𝐸
0 [𝑘] align in a curve that respects the contact tangents. In contrast, the contact

points in Fig. 1-1b (left) do not, and thus the candidate motion shown there is infeasible.

This behavior is constrained by the continuity constraint, formalized in Sec. 2.2.

The non-penetration constraint. In Fig. 2-1b, when represented in the effector frame,

the contact points, p𝐸
0 [𝑗], do not penetrate the object, Ψ𝐸[𝑘], in this case the gray wall, at

any time. This condition must hold for any feasible solution; otherwise, the effector would

have to penetrate the object at some time in order to meet a contact constraint at some other

time. The non-penetration constraint is formalized in Sec. 2.3.

2.2 Continuity constraints

Sec. 2.1.2 suggests that the effector contact surface can be recovered by connecting consec-

utive contact points, p𝐸
𝑖 [𝑘]. However, in order to respect the contact tangents while doing

so, an additional constraint is needed.

Rodriguez and Mason [43, 44] determine an effector surface geometry by calculating

an integral curve in a vector field of contact tangents, relying on the assumption that these

contact tangents align in a way that allows this. The framework proposed in this thesis

borrows the key insight that the effector surface must be an integral of the continuum of

tangents, and imposes this via the contact points. That is, the proposed method enforces

that, in the effector frame, the contact points approximate an integral of the contact tan-

gents. This is referred to as the continuity constraint, and is enforced via the trapezoidal
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(a) (b) (c)

Figure 2-2: Example problem with 𝑁𝑡 = 1, 𝑁𝑐 = 2, 𝑁𝑑 = 3. 𝑘 = 0 and 𝑘 = 1 represented
in gray and black respectively, with an unrealistically large timestep for the sake of illus-
tration. a) Object and contact constraints shown in the world frame. b-c) Effector-frame
representations of continuity-feasible solutions with 𝜃𝐸[0] = 0𝑜 and 𝜃𝐸[1] = −15𝑜 (b),
𝜃𝐸[1] = −45𝑜 (c). Black dashed lines are parallel to the averages of contact tangents from
times 0 and 1 (RHS of Eq. (2.1)). The shown solutions are continuity-feasible because in-
deed these quantities are equal to the displacements of contact points between times 0 and
1 (LHS of Eq. (2.1)).

rule for numerical integration [6]:

p𝐸
𝑖 [𝑘]− p𝐸

𝑖 [𝑘 − 1] =
𝑠𝑖[𝑘]

2

(︀
d𝐸
𝑖 [𝑘 − 1] + d𝐸

𝑖 [𝑘]
)︀
. (2.1)

Here, 𝑠𝑖[𝑘] is a free parameter that determines how far the 𝑖th contact point moves in the

effector frame between times 𝑘 − 1 and 𝑘. This constraint is similar to the trapezoidal col-

location scheme [9], frequently used in trajectory optimization. This continuity constraint

formulation creates 𝑁𝑡 · 𝑁𝑐 optimization variables, 𝑠𝑖[𝑘]. Fig. 2-2 shows a toy problem to

help visualize the continuity constraint. In this problem, where 𝑁𝑑 − 𝑁𝑐 = 1, specifying

𝜃𝐸[1] fully determines the effector state at time 𝑘 = 1 relative to the state at 𝑘 = 0.

2.3 Non-penetration constraints

As discussed in Sec. 2.1.2, in order for the candidate effector shape and motion to not cause

effector penetration of the object, each contact point must lie outside of the object in the

effector frame at each time. The signed distance function (SDF) is used to express this
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Figure 2-3: Example of the composite shape with 𝑁𝑡 = 2. a) Shapes in effector frame. b)
Composite shapes for 𝑘 = 0, 1, 2.

constraint.

The SDF 𝜑(p), defined with respect to a shape, is negative for points p inside the shape,

positive for p outside, and zero for p on the boundary. 𝜑(p) has magnitude equal to the

shortest distance from p to the boundary of the shape. To enforce the condition for non-

penetration, that all contact points be outside the object in the effector frame at all times,

Ψ𝐸[𝑘], 𝑘 = 0, ..., 𝑁𝑡,

𝜑[𝑘](p𝐸
𝑖 [𝑘]) ≥ 0,∀𝑖, 𝑘, (2.2)

is imposed, where 𝜑[𝑘] is the SDFs of
⋃︀

𝑗 ̸=𝑘 Ψ
𝐸[𝑗]. Ψ𝐸[𝑘] is omitted from the non-penetration

constraint at time 𝑘 because contact point p𝐸
𝑖 [𝑘] by definition lies on the boundary of

Ψ𝐸[𝑘]. Thus, if instead the SDF of
⋃︀

𝑗 Ψ
𝐸[𝑗] were used, the LHS of Eq. (2.2) would equal

zero for all non-penetration-feasible solutions, resulting in a loss of gradient information.⋃︀
𝑗 ̸=𝑘 Ψ

𝐸[𝑗] is referred to as the composite shape at time 𝑘, and is visualized in Fig. 2-3.

There are several alternative options to this method. Non-penetration for each time

could be left separate, with a separate constraint on the SDF of each Ψ𝐸[𝑘]. Alternatively,

the minimum over the SDFs of the individual Ψ𝐸[𝑘] could be used in place of the SDF of

the composite shape. Both of these options, however, are more numerically challenging in a

gradient-based framework. Eq. (2.2) consolidates the information from the separate Ψ𝐸[𝑘]

and provides information about the depth of points within the composite shape rather than

just the individual shapes, which yields fewer local minima. This idea is illustrated in

Fig. 2-4.
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Figure 2-4: a) Top: rectangular shape, with black dashed line indicating where the SDF in
the bottom figure is sampled. Bottom: rectangle SDF along slice from top figure. The SDF
crosses 0 at the two rectangle boundary points on the sampling slice, is positive outside
the shape, and is negative inside. The minimum SDF value, equal to half the rectangle
width, is attained at the center of the rectangle. b) Top: two overlapping rectangles, with
black dashed line indicating where the SDFs in the bottom figure are sampled. Bottom:
Blue/green: individual SDFs of correspondingly colored shapes. Magenta: minimum over
individual SDFs. Black dashed: SDF of union of rectangles. These three representations
agree on which points are outside of both rectangles, but the SDF of the union has the
simplest gradient information.
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2.4 The optimization problem

As developed in Secs. 2.2 and 2.3, the constraints can be posed as functions of the effec-

tor motion alone. This makes it possible to avoid parameterizing the effector geometry

and simply optimize over motion variables. The optimized effector motion, 𝒫*,Θ*,𝒮*, is

solved for, as defined below:

(𝒫*,Θ*,𝒮*) := argmin
𝒫,Θ,𝒮

𝐽(𝒫 ,Θ,𝒮) (2.3a)

s.t. p𝐸
𝑖 [𝑘]− p𝐸

𝑖 [𝑘 − 1] =
𝑠𝑖[𝑘]

2

(︀
d𝐸
𝑖 [𝑘 − 1] + d𝐸

𝑖 [𝑘]
)︀
, ∀𝑖, 𝑘, 𝑘 ̸= 0 (2.3b)

𝜑[𝑘](p𝐸
𝑖 [𝑘]) ≥ 0, ∀𝑖, 𝑘 (2.3c)

𝜑Ω(p
𝐸
𝑖 [𝑘]) ≥ 0, ∀𝑖, 𝑘 (2.3d)

|p𝑊
𝐸 [𝑘]− p𝑊

𝐸 [𝑘 − 1]| ≤ ℎ[𝑘]ṗ𝑚𝑎𝑥, ∀𝑘, 𝑘 ̸= 0 (2.3e)

|𝜃𝐸[𝑘]− 𝜃𝐸[𝑘 − 1]| ≤ ℎ[𝑘]𝜃𝑚𝑎𝑥, ∀𝑘, 𝑘 ̸= 0 (2.3f)

Equality constraint (2.3b) is continuity, and inequality constraint (2.3c) is non-penetration.

Inequality constraint (2.3d) is an optional addition for non-penetration of obstacles, where

𝜑Ω(p) is the SDF of
⋃︀

𝑗 Ω
𝐸[𝑗], the union of obstacles represented in the effector frame. Fi-

nally, because the intention is to approximate continuous motion, the effector position and

orientation are constrained to not change between timesteps by more than some selected

rates of change, ṗ𝑚𝑎𝑥 and 𝜃𝑚𝑎𝑥, multiplied by the timestep ℎ[𝑘]. Inequality constraints

(2.3e) and (2.3f) impose this.

As an optional alternative to the formulation in Problem (2.3), the effector motion can

be parameterized by 𝑁𝑑 − 𝑁𝑐 optimization variables at each time, and the continuity con-

straint, Eq. (2.1), can be used to solve for the remaining effector state variables. This

removes the continuity constraint from Problem (2.3) and reduces the number of optimiza-

tion variables. This is useful when it is challenging to find a continuity-feasible solution.

In particular, this is done for the problems with 𝑁𝑑 = 3, 𝑁𝑐 = 2 in Sec. 2.5.
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Figure 2-5: Error in solution found for the rock-climbing cam problem, plotted against
number of timesteps. Error is defined as the average distance between discretized effector
points in the solution found with the proposed framework and in the analytical solution,
non-dimensionalized by the total horizontal travel distance of the wall (the same for all
𝑁𝑡).

2.5 Examples

Here, results are presented for example problems. The problems already introduced con-

tinue to be discussed, and two new tasks are introduced: scooping a disk off a table, and

opening jars with varying lid sizes. NLPs are solved using SNOPT [19,20] and MATLAB’s

fmincon [36].

2.5.1 Rock-climbing cam

The rock-climbing cam problem, introduced in Sec. 2.1.2, is fully constrained, with 𝑁𝑑 =

𝑁𝑐 = 1. The unique solution is a logarithmic spiral [43]. Fig. 2-5 compares solutions found

with the proposed method to the analytical solution. Even with coarse discretizations,

the solutions match closely, and, as expected, finer time discretization results in closer

agreement.

2.5.2 Square slide

Fig. 2-2 shows a simple problem that illustrates the continuity constraint. Here, the prop-

erties of a similar problem, shown in Fig. 2-6a, are explored. Over the timespan of the

problem, one contact point slides from the bottom-right corner of the square to the bottom-

left corner, and a second contact point slides from the bottom-left corner to the top-left

corner of the square. Specifying only the rotation angle of the effector at each time fully
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(a)

Initial guess
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Figure 2-6: a) Object and contact constraints for the square slide problem in world frame.
The object is stationary, so we see only one object instance in this image. b) Initial guess
and optimized solution using the cost function 𝐽𝑑. c) Usage of the optimized effector.

determines the effector state relative to that of the previous time, as 𝑁𝑑 − 𝑁𝑐 = 1. Only

𝜃𝐸[1], ..., 𝜃𝐸[𝑁𝑡] are optimized over. With three effector DOFs, the effector contact surface

can arbitrarily be anywhere in the effector frame. Therefore p𝑊
𝐸 [0] = [0, 0]𝑇 , 𝜃𝐸[0] = 0 is

set without loss of generality.

A stationary, L-shaped effector is actually a solution. If the effector undergoes no mo-

tion, the objects and constraints in the effector frame appear as in Fig. 2-6a, in which

continuity and non-penetration are respected. However, instead of contacting just the con-

tact point specified for each time, the resulting effector contacts every contact point at every

time. Depending on the application, this may not be a desirable outcome. This inspires a
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Figure 2-7: a) Object and contact constraints for the pickup problem in world frame. Gray
regions represent obstacles (cropped). b-d) Solutions. Gray lines connect the effector sur-
face to the center of rotation. b) and c) are solutions to the pickup problem with 𝜃 and
vertical DOFs, minimizing 𝐽𝑦, without and with the vertical obstacle, respectively. d) is the
solution to the pickup problem with 𝜃 and horizontal DOFs, minimizing 𝐽𝑠.

cost function that penalizes unintended proximity to the object:

𝐽𝑑 := −
𝑁𝑡∑︁
𝑘=0

𝜑[𝑘](p𝐸
𝑖 [𝑘]).

Minimizing this cost function maximizes the signed distances from contact points to the

composite shapes. Figs. 2-6b and 2-6c show a resulting solution that achieves the goal of

this user-specified cost function: The effector maintains greater distance from the object,

except at the intended contact points, at all times.

2.5.3 Pickup

The goal of the pickup problem is to lift a disk from a surface, with two fingers contacting

the disk symmetrically with contact-invariant geometry (the contact point remains the same

relative to the object over time). The fingers may pivot, and translate vertically. A 24-sided
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polygon is used to approximate a disk.

Using symmetry, just one finger is designed and then mirrored for the full solution.

Fig. 2-7a depicts the input for the problem, in which obstacles prevent the effector from

penetrating the ground, and prevent the symmetric fingers from penetrating each other.

Limiting vertical motion is desirable in scenarios where space is limited. Rodriguez

and Mason [44] solve a similar problem without the vertical-direction DOF, but produce a

solution where the two fingers penetrate each other. A cost to minimize vertical movement

is used,

𝐽𝑦 :=
𝑁𝑡∑︁
𝑘=1

(︀(︀
p𝑊
𝐸 [𝑘]− p𝑊

𝐸 [𝑘 − 1]
)︀
· 𝚥
)︀2

,

where 𝚥 is a world-frame vertical-direction unit vector. Indeed, removal of the vertical ob-

stacle results in a solution without vertical-direction movement of the effector base, shown

in Fig. 2-7b. Including the vertical obstacle results in the solution shown in Fig. 2-7c, where

the fingers no longer penetrate each other, but a small amount of vertical translation occurs.

Instead of allowing vertical effector motion, by allowing horizontal motion and mini-

mizing a measure of the length of the effector surface,

𝐽𝑠 :=
𝑁𝑐−1∑︁
𝑖=0

𝑁𝑡∑︁
𝑘=1

𝑠𝑖[𝑘]
2, (2.4)

a simple solution is found: a single-point effector, shown in Fig. 2-7d.

2.5.4 Jar opener

The specification for the jar opener problem, introduced in [43], is shown in Fig. 2-8a.

The goal is to create a versatile jar-opening tool that contacts jar lids all with the same

contact geometry regardless of their radii. Like in Sec. 2.5.2, all DOFs are allowed and

p𝑊
𝐸 [0] = [0, 0]𝑇 , 𝜃𝐸[0] = 0. With 𝑁𝑑−𝑁𝑐 = 1, the effector state is parameterized by 𝑠0[𝑘],

which is conducive to the objective functions used with this problem.

Suppose the goal is to use as little material as possible to generate this tool. In this case,

we can minimize the total effector length using the cost function 𝐽𝑠 defined in Eq. (2.4).

With this cost function, a simple and intuitive solution is found, shown in Fig. 2-8b.
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(a)

(b)

(c)

Figure 2-8: Color scheme is as defined in Sec. 1.4, except here instead of time, the object
shape evolves (jar lid radius decreases) as 𝑘 progresses. a) Object and contact constraints
for the jar opener problem in world frame. b-c) Solutions using the cost functions 𝐽𝑠 and
𝐽𝑠0 respectively.

Alternatively, suppose we use an expensive, high-quality material on one side of the

tool for its frictional properties, so we wish to minimize the length of only that side. Using

a similar cost function,

𝐽𝑠0 :=
𝑁𝑡∑︁
𝑘=1

𝑠0[𝑘]
2,

the solution shown in Fig. 2-8c is found, where all contact points on one side converge to a

single point on the effector.

These two solutions for the jar opener are qualitatively quite different, but both make

sense for their respective cost functions. A range of solutions between the two extremes

are feasible, but are not optimized for either of these costs.

2.5.5 Screwdriver

In reality, sometimes the only objective is to find a feasible effector. Arbitrary cost func-

tions can harm the solution by pushing it toward the boundaries of the feasible set, which
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Figure 2-9: Top: solution to the screwdriver problem. Bottom: Robot demonstration of the
solution to the screwdriver problem.

can cause edge cases that are not desired if this cost function was not selected deliberately.

In the screwdriver problem, introduced in Sec. 1.2, a feasible solution to a complex problem

is found, without focusing on optimality. The constant cost function

𝐽𝑐𝑜𝑛𝑠𝑡 := 1

is used in order to use the optimizer for constraint satisfaction. This problem requires two

effector surfaces whose precise forms work in concert with one another in two phases of

motion: scooping and sliding. The effector scoops a screwdriver off a table by the corner
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Problem 𝑁𝑡 𝑁𝑑 𝑁𝑐 𝑁𝑝 ṗ′
𝑚𝑎𝑥 𝜃′𝑚𝑎𝑥 Solver 𝑇𝑠(𝑠)

square slide 10 3 2 1 0.5 30 fmincon 98.6
pickup 1 10 2 1 2 0.21 20 fmincon 13.3
pickup 2 10 2 1 2 0.21 20 fmincon 58.8
pickup 3 10 2 1 2 0.21 20 fmincon 4.8

jar opener 1 10 3 2 1 0.05 10 SNOPT 44.6
jar opener 2 10 3 2 1 0.05 10 SNOPT 22.2
screwdriver 20 3 2 1 0.06 5 fmincon 1.3

Table 2.1: Computational parameters for the example problems in Sec. 2.5. Here, 𝑁𝑝 is the
number of parameters used to represent motion at each time (see explanation of optional
motion parameter reduction in Sec. 2.4). ṗ′

𝑚𝑎𝑥 is ṗ𝑚𝑎𝑥 nondimensionalized by 𝐿/ℎ, where
L is the maximum object bounding box dimension. 𝜃′𝑚𝑎𝑥 is 𝜃𝑚𝑎𝑥 nondimensionalized by ℎ.
𝑇𝑠 is the time taken to solve the problem. “pickup 1” and “pickup 2” refer to the vertical-
DOF pickup problems, without and with the vertical obstacle respectively. “pickup 3”
refers to the horizontal-DOF pickup problem. “jar opener 1” and “jar opener 2” refer to the
jar opener problem with cost 𝐽𝑠 and 𝐽𝑠0 respectively.

of the handle, and then slides further onto the handle. The effector has full in-plane DOFs.

Like in Sec. 2.5.2, p𝑊
𝐸 [0] = [0, 0]𝑇 , 𝜃𝐸[0] = 0. For most of the trajectory, state is

parameterized by 𝜃𝐸[𝑘] alone (𝑁𝑑 − 𝑁𝑐 = 1). Toward the end, the contact tangents d𝑂
0 [𝑘]

and d𝑂
1 [𝑘] are parallel, causing a degenerate case where 𝜃𝐸[𝑘] cannot be chosen freely but

rather must be such that the object orientation remains constant in the effector frame. Code

detects this condition and changes to parameterize by 𝑠0[𝑘] for the remaining times.

The solution is shown in Fig. 2-9 (top). Intuitively, the bottom surface consists of a

cupped feature for scooping, and then a flat surface for sliding in the later phase. The

top surface consists of a curved feature that slides along the upper screwdriver surface, in

harmony with the curvature of the lower surface, followed by a flat surface for the later

phase. While the solution agrees with intuition, the precise shape of the effector could not

have been designed with intuition alone.

2.6 Experiment

A demonstration was performed, shown in Fig. 2-9 (bottom), of the screwdriver pickup

task with a robotic arm, on a high-friction surface. Models of the screwdriver and the

effector geometry generated by the proposed framework were 3D printed and used for this
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experiment. Using compliance control to follow the trajectory generated by the proposed

framework, the effector successfully lifts the screwdriver from the table.

2.7 Parameters and computation

The problem formulation scales well: The number of optimization variables is linear in

𝑁𝑡, and all presented problems are solved in under 100 seconds on a computer with Intel

Core i7-10750H 2.60GHz CPU. Parameters used in the presented examples are shared in

Table 2.1. The square slide problem solves slowly because the objective function involves

evaluating SDFs. In contrast, the screwdriver problem is fast to solve because the reduced

parameterization ensures that the continuity constraint is satisfied, and the cost is constant,

meaning that the solver must only ensure that non-penetration is satisfied. Effector design

is always performed offline, and not expected to be fast; therefore, computational efficiency

has not been a focus, and the implementation could be further optimized for speed.

Several computational bottlenecks are of note. Firstly, unioning polygons is slow, and

𝑁𝑡 polygons must be unioned 𝑁𝑡 + 1 times per call of the constraint function, in order to

find the composite shapes. Secondly, evaluating a signed distance is expensive, and must

be performed 𝑁𝑐 · (𝑁𝑡 + 1) times per call of the constraint function. These two issues may

be jointly mitigated by pre-computing the SDF of each shape along a grid, and evaluating

the SDF of the composite shape directly, as there exist algorithms for computing SDFs of

unions of shapes [17].

Finally, SDFs are neither smooth nor convex, as discussed in Appendix A. SDFs can

have sharp ridges along manifolds where points are equidistant from at least two closest

boundary points. This can be challenging for NLP solvers and can lead to settling in local

minima. This could be partially mitigated by smoothing the SDFs.
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Chapter 3

Grasping

3.1 The grasp collection problem

While Chap. 2 discussed rigid effectors for contact trajectory satisfaction, this work has not

yet been extended to effectors with internal DOFs, or problems where contact locations are

free, and force balances must be considered. Both of these challenging extensions would

increase the generality of the proposed framework. The present chapter introduces a pre-

liminary extension to a grasping framework, in which the contact surfaces of parallel-jaw

effectors are co-optimized with contact locations and effector configuration for grasping.

The value of this work is primarily to demonstrate that contact location optimization, force

balances, and internal effector DOFs can be incorporated into this NLP framework. The

approach in this work optimizes over only contact location along a given polygonal ob-

ject face, and leaves number of contacts, contact-face assignment, and contact-effector-jaw

assignment optimization as a future extension, as discussed in Sec. 4.2.1.

The present grasping framework synthesizes effectors that can stably grasp every object

in a set of objects input by the user. Designing a stable parallel-jaw grasp of a single object

can often be done via intuition. However, designing an effector to stably grasp multiple

objects of different geometries is more challenging. The framework from Chap. 2 provides

a natural extension to consider multiple different objects; instead of indexing over time,

the grasping problem indexes over objects. Constraints for non-penetration between object

and effector are enforced for both effector jaws, for each object. This is done similarly
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to in Chap. 2, but instead of a single effector frame, there is an effector frame for each

jaw. Unlike in Chap. 2, where contact locations are pre-specified, contact locations are

optimized, and a grasp quality metric is considered to ensure the developed effectors lead

to stable grasps. There is no notion of continuity, as there is no longer an approximation

of continuous motion. Unlike in Chap. 2, without continuity, there is not a unique way

to extract a global effector geometry from contact point locations; there remains freedom

in how to do this. This work primarily focuses on ensuring that a feasible effector can be

extracted, but briefly discusses potential algorithms for doing so, in order to reasonably

visualize the effector results.

3.1.1 Problem formulation

The following items are required problem inputs:

• A set of polygonal objects, Ψ𝑂[𝑘], in the object reference frame (superscript 𝑂), at

all object indices 𝑘 = 0, ..., 𝑁𝑡.

• The orientation 𝜃𝑂[𝑘] and position p𝑊
𝑂 [𝑘] of each object (subscript 𝑂) in the world

frame (𝑊 ).

• An object edge assignment, 𝑣𝑖[𝑘], for all contacts 𝑖 = 0, ..., 𝑁𝑐[𝑘]− 1, where 𝑁𝑐[𝑘] is

the number of contacts on object 𝑘, and a set of contact indices 𝑀𝑗[𝑘] := {𝑖| contact

𝑖 on object 𝑘 belongs to jaw 𝑗} for each jaw, for all objects.

If a solution is found, the framework outputs:

• Effector configurations: p𝑊
𝐸 [𝑘], 𝜃𝐸[𝑘], and 𝛾[𝑘], the position, orientation, and jaw

opening distance of the effector (𝐸), for grasping each object. 𝒫 := {p𝑊
𝐸 [0], ...,p𝑊

𝐸 [𝑁𝑡]},

Θ := {𝜃𝐸[0], ..., 𝜃𝐸[𝑁𝑡]}, Γ := {𝛾[0], ..., 𝛾[𝑁𝑡]}.

• Contact positions along edges: 𝑡𝑖[𝑘], the 𝑖th contact’s position distance from an

edge vertex, normalized by the edge length, for all contacts on all objects. t[𝑘] :=

[𝑡0[𝑘], ..., 𝑡𝑁𝑐[𝑘]−1[𝑘]]
𝑇 , and 𝒯 := {t[0], ..., t[𝑁𝑡]}.

• Two polygons, each representing the shape of an effector jaw.
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As in Chap. 2, the approach relies on expressing variables in the effector frames. As the

parallel-jaw gripper has an internal DOF, let 𝐸0 and 𝐸1 denote the two effector frames,

and let Ψ𝐸𝑗 [𝑘] and p
𝐸𝑗

𝑖 [𝑘] denote object 𝑘 and position of the 𝑖th contact point on object 𝑘,

represented in 𝐸𝑗 , 𝑗 ∈ {0, 1}.

3.1.2 Approach

At each iteration while solving the NLP, a candidate solution, {𝒫 ,Θ,Γ, 𝒯 }, is evaluated

for effector-object penetration, and for grasp stability. The non-penetration constraint is

assessed similarly to in Sec. 2.3, extended in Sec. 3.3 via the notion that the effector jaws

approach each object on a linear trajectory (the motion of the jaw closure).

Grasp stability is assessed via a quadratic program (QP), described in Problem (3.1).

A grasp quality metric is defined, based on the optimal solution to this QP, and enters the

NLP objective function. As the QP constraint matrices are functions of the NLP variables,

the QP is re-solved at each NLP iterate. An alternative option to explicitly solving the QP

is to merge the QP variables and constraints into the NLP variables and constraints. The

advantage of explicitly solving the QP is that the global optimum is guaranteed. While

it would be possible to include the Karush–Kuhn–Tucker (KKT) conditions in the NLP

constraints to ensure that any feasible NLP solution attains the QP global optimum, there

would be no guarantee of finding a feasible solution to this program, even if one exists.

Furthermore, the complementary slackness KKT condition is not smooth, which could

lead to numerical issues in solving the NLP.

The NLP is nonconvex and the geometry of the feasible space makes the program dif-

ficult to solve. In particular, as discussed in Sec. 3.3, the non-penetration constraint makes

it difficult for solvers to globally traverse the feasible space. This can be mitigated by

running the NLP solver multiple times with randomized initial guesses. In particular, due

to the nature of the nonconvexity discussed in Sec. 3.3, the initial guesses for the vertical

coordinates of the effector positions are randomized. While repeated initial guess random-

ization has been chosen for simplicity, other methods such as simulated annealing [32] or

particle swarm optimization [30] could yield improvements.

The NLP constraints and objective encourage the conditions on the contact points and
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effector configurations that allow a feasible effector with good grasps of the input set of

objects. However, after the NLP solver terminates there remains freedom in extracting the

effector geometry based on the NLP solution. Selecting the effector shape based on the

NLP solution is not the focus of this work, but the following is one simple method that is

used for visualizing results in Sec. 3.5. For each jaw 𝑗:

1. Sort p𝐸𝑗

𝑖 [𝑘] for all 𝑘 and 𝑖 ∈ 𝑀𝑗[𝑘] by vertical coordinate.

2. Add to this set any other points desired on the effector, e.g., horizontally offset points

to give width to the effector jaw.

3. Form a polygon from these points by connecting consecutive points with line seg-

ments.

4. Subtract the composite shape,
⋃︀

𝑘 Ψ̃
𝐸𝑗 [𝑘], explained in Sec. 3.3, from this polygon.

3.2 Grasp stability

3.2.1 Mathematical program formulation

In order to optimize effectors for grasping objects, it is necessary to be able to check

whether a candidate grasp is stable. In particular, it is necessary to check whether the

grasping configuration and contact placement allow the object to be in static equilibrium.

Traditionally, this is approached by searching for contact forces that satisfy the equilibrium

equations. However, as grasps are generally statically indeterminate, many sets of contact

forces satisfy equilibrium equations, but would not arise passively. For example, consider

grasping a square between two flat parallel-gripper jaws, with an external force pulling

the square perpendicular to the jaw axes. There exist sets of contact forces that result in

static equilibrium. For example, a solution where the jaws “squeeze” the square, creating

normal forces large enough to support friction forces that resist the external force. How-

ever, it is clear that this set of forces does not arise unless the grasp is preloaded, i.e., the

internal forces that “squeeze” the square must be applied by the effector. To resolve this

issue, the proposed framework borrows two concepts from Haas-Hegar [25]: specifying
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preload in the grasping model, and a compliance model for resolving static indeterminacy.

The analysis in the present section is for an individual object; grasp stability is considered

independently for each 𝑘.

To specify preload in the grasp, the horizontal (jaw axis direction) force on the left jaw

is constrained to equal some selected value 𝐹 , via the following relation:

[1, 0](𝒥 [𝑘](𝜃𝐸, t))
𝑇c− 𝐹 = 0,

where 𝒥 [𝑘](𝜃𝐸, t) denotes the hand matrix [48] for object 𝑘, which is a function 𝜃𝐸 and t

for a given object. The left jaw has been chosen arbitrarily to set the preload, as constraining

the preload at both jaws would overconstrain the system.

The compliance model from Haas-Heger et al. [25] is used, in which contact normal

forces are governed by a linear-spring compliance model, while tangent forces are not

affected by the virtual springs, but are constrained to lie within their friction cones. Denote

the normal and tangent forces at the 𝑖th contact 𝑐𝑖,𝑛, 𝑐𝑖,𝑡 respectively, and concatenate

c := [𝑐0,𝑛, 𝑐0,𝑡, ..., 𝑐𝑁𝑐−1,𝑛, 𝑐𝑁𝑐−1,𝑡]
𝑇 .

The compliance model requires the introduction of displacements, 𝑑𝑖,𝑛 and 𝑑𝑖,𝑡, which

indicate how far the virtual spring at the 𝑖th contact deforms in the contact normal and

tangent directions respectively. These displacements must be made consistent with a rigid-

body displacement, r, of the object and jaw motions, q, via the following relation [24]:

d := [𝑑0,𝑛, 𝑑0,𝑡, ..., 𝑑𝑁𝑐−1,𝑛, 𝑑𝑁𝑐−1,𝑡]
𝑇 = (𝒢[𝑘](𝜃𝐸, t))𝑇 r− 𝒥 [𝑘](𝜃𝐸, t)q,

where 𝒢[𝑘](𝜃𝐸, t) is the grasp matrix [48] for object 𝑘. The compliance model relation is

simply [24]

𝑐𝑖,𝑛 = −𝑑𝑖,𝑛, ∀𝑖,

where a spring constant of unity has been used. This seemingly arbitrary selection serves

only to scale the displacements, whose units are arbitrary.
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Virtual spring normal displacements 𝑑𝑖,𝑛 are constrained to be non-positive, signifying

that the virtual springs can only compress (contact normal forces must be non-negative).

For a given external wrench w, and object index 𝑘, the grasp stability program, Problem

(3.1), can be considered.

𝐽*
𝐺[𝑘](𝜃𝐸, t) :=min

r,q,c
𝐽𝐺(r,q) (3.1a)

s.t. 𝒢[𝑘](𝜃𝐸, t)c+w = 0 (3.1b)

𝑐𝑖,𝑛 = −𝑑𝑖,𝑛 ∀𝑖 (3.1c)

𝑑𝑖,𝑛 ≤ 0 ∀𝑖 (3.1d)

[1, 0](𝒥 [𝑘](𝜃𝐸, t))
𝑇c− 𝐹 = 0 (3.1e)

− 𝜇𝑐𝑖,𝑛 ≤ 𝑐𝑖,𝑡 ≤ 𝜇𝑐𝑖,𝑛 ∀𝑖. (3.1f)

where the objective function 𝐽𝐺(r,q) is developed in Sec. 3.2.2, and 𝜇 is the coefficient of

friction. Inequality constraint (3.1b) gives the static equilibrium balance of the object, and

inequality constraints (3.1f) enforce that the contact forces lie within their friction cones.

3.2.2 A grasp quality metric

This section motivates and defines a grasp quality metric, 𝐽𝐺(r,q), tailored for parallel-jaw

grasps. The constraints in Problem (3.1) sufficiently prevent infeasible grasps. However,

they allow grasps that are intuitively poor.

Fig. 3-1 shows two candidate grasps for a square object. Throughout this work, the

axis of the jaws is assumed to be horizontal. In Fig. 3-1, the configuration on the left is

an intuitively good way to grasp the square object. In particular, the axis of jaw action is

aligned with contact normal directions, and contacts on either side of the square are ver-

tically aligned. Thus, a firm grasp can be formed by tightening the jaws, without relying

on friction forces in order to achieve a preloaded equilibrium in the absence of external

wrenches. In contrast, in the right configuration in Fig. 3-1, the jaw axis has small com-

ponents in the contact normal directions. Additionally, the large vertical distance between
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Figure 3-1: Left: An intuitively good grasp. Right: an intuitively bad grasp. The contact
points are the same relative to the object, but the whole configuration is rotated by 80𝑜

relative to the gripper, compared to the grasp on the left. The red/orange arrow reminds the
reader of the horizontal axis of action of the parallel-jaw gripper.

the contacts on the left and right sides of the square risks a torque resulting from forces

in the jaw axis direction at these points. However, this grasp is feasible under Problem

(3.1), corresponding to large jaw displacements q that achieve compression of the virtual

springs and thus normal contact forces. Generally, grasps that are worse-suited for achiev-

ing contact-normal preload correspond to larger displacements r and q.

This observation motivates the grasp quality metric,

𝐽𝐺(r,q) =
1

𝐿2
(r𝑇 r+ q𝑇q), (3.2)

where 𝐿[𝑘] is a characteristic length, to nondimensionalize. In numerical experiments,

𝐿[𝑘] :=
1

𝑁𝑐[𝑘]

𝑁𝑐[𝑘]∑︁
𝑖=0

||p𝑂
𝑖 [𝑘]||,

the average contact point distance from the reference point of the object, is used.
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Eq. (3.2) uses a 2-norm, as opposed to a 1-norm. While only the virtual spring com-

pressions d relate the displacements r and q to the contact forces and therefore equilibrium,

there are multiple values of r and q that lead to the same spring compressions. The spring

compressions are equal to 𝐵[r𝑇 ,q𝑇 ]𝑇 , where 𝐵 is a matrix containing every other row

of the matrix [𝒢[𝑘](𝜃𝐸, t)𝑇 ,−𝒥 [𝑘](𝜃𝐸, t)], mapping from displacements to spring com-

pressions. Minimizing the 2-norm of [r𝑇 ,q𝑇 ]𝑇 ensures that there is no component in the

nullspace of 𝐵, removing dependency on arbitrary differences of expression of displace-

ments that are effectively the same. This 2-norm makes Problem (3.1) a quadratic program.

Solving Problem (3.1) at a particular 𝜃𝐸 , for a particular object index 𝑘, with contact

locations t yields a 𝐽*
𝐺 value. In Fig. 3-2, these values are plotted for four polygons with

some selected contact placements. These polygons are perturbed versions of regular poly-

gons, in order to prevent result dependency on precise features such as parallel edges or

equal contact point distances. The shown slices of this metric display several desirable

qualities in these plots: 𝐽*
𝐺 increases rapidly when effector orientation 𝜃𝐸 approaches in-

feasible regions, 𝐽*
𝐺 appears smooth and convex, and 𝐽*

𝐺 is minimized at configurations that

are intuitively good grasps. In experiments, 𝐹 = 1 is used in equality constraint (3.1e), i.e.,

the force exerted in the jaw axis direction by the left jaw on the object is unity. As there

are no specified units, this seemingly arbitrary selection dictates only that the preload is

positive; for some scalar 𝛼 ≥ 0, scaling 𝐹 −→ 𝛼𝐹 results in 𝐽*
𝐺[𝑘](𝜃𝐸, t) −→ 𝛼2𝐽*

𝐺[𝑘](𝜃𝐸, t)

without affecting feasibility.

3.3 Non-penetration

As in Sec. 2.4, non-penetration between effector and object is imposed via object SDFs. As

the parallel-jaw effector has an internal DOF, there is no longer a single effector frame 𝐸

that can remain fixed to every part of the effector. Instead, there are two effector frames, 𝐸𝑗 ,

where 𝑗 ∈ {0, 1} indexes over the two jaws. Non-penetration is enforced in both effector

frames.

Grasps are assumed to be achieved via pure translation of both jaws along the jaw axis,

and results must allow effectors that are free of collisions with the objects along this path.
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Figure 3-2: Optimized grasp stability metric 𝐽*
𝐺 plotted as a function of 𝜃𝐸 for constant

contact positions relative to object, for four perturbed polygons. Red regions indicate that
the grasp is infeasible. The objects’ orientations in the 𝐸-frame (no distinction between
𝐸0 and 𝐸1 because only rotation matters) are shown above significant transitions in 𝐽*

𝐺

behavior over 𝜃𝐸 . The objects rotate clockwise relative in the 𝐸-frame as 𝜃𝐸 increases.
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Equivalently, the objects must be able to be swept along this axis in the effector frames

without being penetrated by any contact points. For example, in Figs. 3-3c and 3-3d, a

contact point lies within this sweep, making the grasp infeasible. In contrast, Figs. 3-3a, 3-

3b, 3-3e and 3-3f show the same object swept in the effector frames for two other 𝜃𝐸 values,

which do not result in penetration. To represent this, each object in each effector frame

Ψ𝐸𝑗 [𝑘] is swept to form Ψ̃𝐸𝑗 [𝑘], before forming the composite shape in 𝐸𝑗 ,
⋃︀

𝑘 Ψ̃
𝐸𝑗 [𝑘], and

enforcing

𝜑𝑗(p
𝐸𝑗

𝑖 [𝑘]) ≥ 0, ∀𝑗, 𝑘, 𝑖 ∈ 𝑀𝑗[𝑘] (3.3)

where 𝜑𝑗 is the SDF of
⋃︀

𝑘 Ψ̃
𝐸𝑗 [𝑘]. In non-penetration constraint (2.3c), 𝜑[𝑘], the SDF of⋃︀

𝑗 ̸=𝑘 Ψ
𝐸[𝑗], was used, as removing Ψ𝐸[𝑘] from the non-penetration constraint for p𝐸

𝑖 [𝑘]

helps improve constraint gradient information. In the present setting, however, as Ψ𝐸𝑗 [𝑘]

do not approximate a continuum over 𝑘,
⋃︀

𝑗 ̸=𝑘 Ψ̃
𝐸𝑗 [𝑗] may be disjoint, which can cause

complications.

In the effector frames, these horizontally swept objects are wide obstacles for the con-

tact points to avoid. Over the NLP solver iterates, in order for the vertical ordering of

objects to change, Eq. (3.3) must become violated as the objects pass through each other

vertically, before it can again be resolved. Thus, vertical reordering of the objects relative to

the ordering in the initial guess is not expected, motivating the initial guess randomization

over vertical coordinates explained in Sec. 3.1.2.

3.4 The optimization problem

The constraints and objective can be posed as functions of the effector configurations for

all 𝑘 (𝒫 , Θ, and Γ), and the contact coordinates 𝒯 . The full NLP is formalized as Problem

(3.4).

𝐽* := min
𝒫,Θ,Γ,𝒯

𝑤𝐽𝑃 (𝒫 ,Θ,Γ, 𝒯 ) +
𝑁𝑡∑︁
𝑘=0

𝐽*
𝐺[𝑘](𝜃𝐸[𝑘], t[𝑘]) (3.4a)

s.t. 𝜑𝑗(p
𝐸𝑗

𝑖 [𝑘]) ≥ 0, ∀𝑗, 𝑘, 𝑖 ∈ 𝑀𝑗[𝑘] (3.4b)

50



(a) (b)

(c) (d)

(e) (f)

Figure 3-3: Effector-frame sweeps, Ψ̃𝐸0 ((a), (c), (e)) and Ψ̃𝐸1 ((b), (d), (f)), for a square
object, with three different effector angles, 𝜃𝐸 = 0 deg ((a), (b)), 𝜃𝐸 = 100 deg ((c), (d)),
and 𝜃𝐸 = 80 deg ((e), (f)). The grasping configuration in (c) and (d) has penetration and is
thus infeasible, as the contact points are within the object sweep in the effector frames.

where 𝐽𝑃 is a user-specified cost function, and 𝑤 is a scalar for tuning the relative weighting

of the cost terms. Here, the grasp quality metric from Sec. 3.2.2 is incorporated in the NLP

cost linearly, summing the values over all 𝑘. Note that for the set of Θ that define an

infeasible grasp for at least one 𝑘, the second term in the cost (3.4a) is undefined. However,

as noted in Sec. 3.2.2, 𝐽*
𝐺[𝑘](𝜃𝐸, t[𝑘]) increases rapidly as its arguments approach infeasible

values for object index 𝑘. Therefore, with Problem (3.4) being solved in a gradient-based

scheme with a reasonable step size, if the solver is initialized with an assignment that leads

to feasible grasps, in practice it remains feasible over the iterates. The initial guess need

not be non-penetration-feasible. Finding an initial guess that leads to feasible grasps is

typically easy to do via intuition.
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3.5 Examples

This section discusses results obtained by the presented framework for several different

example problems and cost functions, and slight variations to the framework. As the NLP

solver is repeatedly run with randomized initial guesses, multiple results are obtained. The

five best-cost solutions are presented for each example problem.

3.5.1 Compact grippers

A potential reason to design a single parallel-jaw gripper that can grasp multiple objects is

that it is desirable to multipurpose features of the effector. This goal may be motivated by

conserving effector material or space limitations. Results in this section optimize a simple

cost function that encourages the contact points to be near each other in the effector frames,

effectively encouraging the necessary effector contact surface to be compact:

𝐽𝑃𝐶 :=
1∑︁

𝑗=0

𝑁𝑡∑︁
𝑘=0

∑︁
𝑖∈𝑀𝑗 [𝑘]

||p𝐸𝑗

𝑖 [𝑘]− 𝑝𝑗||2,

where 𝑝𝑙 is the centroid of points in 𝐸𝑗 ,

𝑝𝑗 :=
1

𝑁𝑡 + 1

𝑁𝑡∑︁
𝑘=0

∑︁
𝑖∈𝑀𝑗 [𝑘]

p
𝐸𝑗

𝑖 [𝑘].

The external wrench is set to w = [0, 0, 0]𝑇 in these experiments. Figs. 3-4 to 3-8 show

results for this example problem with four slightly perturbed regular polygon objects.
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Figure 3-4: Best-cost compact gripper solution for convex shapes.

Figure 3-5: Second-best-cost compact gripper solution for convex shapes.
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Figure 3-6: Third-best-cost compact gripper solution for convex shapes.

Figure 3-7: Fourth-best-cost compact gripper solution for convex shapes.
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Figure 3-8: Fifth-best-cost compact gripper solution for convex shapes.

In these results, as grasp quality has been assessed with respect to zero external wrench,

some results are clearly not tolerant to exernal torques. Note how contact points tend to

bunch up on the square and smaller hexagons, resulting in low ability to react torques. This

shortcoming motivates a modification to the formulation, discussed in Sec. 3.5.2.

3.5.2 Modifications for robustness to external torques

While w = [0, 0, 0]𝑇 has been used until now, assigning w in Problem (3.1) is a viable

way to evaluate grasps with respect to an external wrench. However, the correct choice

of w is not obvious. This section explains why, in fact, evaluating grasps with respect to

w = [0, 0, 1]𝑇 and w = [0, 0,−1]𝑇 is a reasonable choice.

As the contacts are assumed to be frictional, and the grasp is preloaded, the grasps

generated are automatically tolerant to external forces. Therefore, in lieu of particular

knowledge about actual intended loading, it is reasonable to select w to evaluate grasps

with respect to only torques. Consider Problem (3.1) and suppose now that 𝐹 is free.

Then, for some scalar 𝛼 ≥ 0, scaling w −→ 𝛼w results in 𝐽*
𝐺[𝑘](𝜃𝐸, t) −→ 𝛼2𝐽*

𝐺[𝑘](𝜃𝐸, t)

without affecting feasibility. Therefore, this modified quadratic program, Problem (3.5),

with w = [0, 0, 1]𝑇 or w = [0, 0,−1]𝑇 , can be used to evaluate a grasp with respect to any
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positive or negative torque respectively.

𝐽*
𝐺[𝑘](𝜃𝐸, t,w) := min

r,q,c,𝐹
𝐽𝐺(r,q) (3.5a)

s.t. (𝒢[𝑘](𝜃𝐸, t)c+w = 0 (3.5b)

𝑐𝑖,𝑛 = −𝑑𝑖,𝑛 ∀𝑖 (3.5c)

𝑑𝑖,𝑛 ≤ 0 ∀𝑖 (3.5d)

[1, 0](𝒥 [𝑘](𝜃𝐸, t))
𝑇c− 𝐹 = 0 (3.5e)

− 𝜇𝑐𝑖,𝑛 ≤ 𝑐𝑖,𝑡 ≤ 𝜇𝑐𝑖,𝑛 ∀𝑖. (3.5f)

The resulting objective function to replace cost (3.4a) is

𝐽 = 𝑤𝐽𝑃 (𝒫 ,Θ,Γ, 𝒯 )+
𝑁𝑡∑︁
𝑘=0

(︀
𝐽*
𝐺[𝑘](𝜃𝐸[𝑘], t[𝑘], [0, 0, 1]

𝑇 ) + 𝐽*
𝐺[𝑘](𝜃𝐸[𝑘], t[𝑘], [0, 0,−1]𝑇 )

)︀
.

Figs. 3-9 to 3-13 show results for this modified formulation with the four slightly per-

turbed regular polygon objects, again using the cost function 𝐽𝑃𝐶 from Sec. 3.5.1.
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Figure 3-9: Best-cost compact, torque-robust gripper solution for convex shapes.

Figure 3-10: Second-best-cost compact, torque-robust gripper solution for convex shapes.
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Figure 3-11: Third-best-cost compact, torque-robust gripper solution for convex shapes.

Figure 3-12: Fourth-best-cost compact, torque-robust gripper solution for convex shapes.
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Figure 3-13: Fifth-best-cost compact, torque-robust gripper solution for convex shapes.

Indeed, the contact points on the square and small hexagon move away from each other,

providing more torque resilience in the resulting grasps. While the contacts on the large

hexagon remain near each other, the contact normal directions are such that the contacts

near each other are not redundant, and the grasp is able to react torques.

With this successful result, let us now study a more complex set of objects using the

same problem formulation and same cost function. Figs. 3-14 to 3-18 show results for a set

of five objects with significant nonconvexities.
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Figure 3-14: Best-cost compact, torque-robust gripper solution for complex shapes.

Figure 3-15: Second-best-cost compact, torque-robust gripper solution for complex shapes.
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Figure 3-16: Third-best-cost compact, torque-robust gripper solution for complex shapes.

Figure 3-17: Fourth-best-cost compact, torque-robust gripper solution for complex shapes.
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Figure 3-18: Fifth-best-cost compact, torque-robust gripper solution for complex shapes.

3.5.3 Modifications for preventing effector interpenetration

The proposed method has not prevented effector-effector interpenetration such as in Fig. 3-

19. Thus far, the contact points themselves, in the effector frames, have been the only

knowledge of the effector surfaces within the NLP optimization routine. However, as the

points occupy no volume in the plane, it is not possible to check penetration between the

two sets of points. To address this, each contact point can be assumed to be accompanied by

some amount of material on the effector. For example, in the grasps defined by the contact

points shown in Fig. 3-20 (the same solution as is illustrated in Fig. 3-19), without con-

structing the full effector jaw geometry, we can choose to assume that each contact is met

by effector material within the trapezoids. We can then transform these trapezoids into the

opposing effector’s frame, sweep them along the linear path of relative motion of the two

effectors, similarly to the process in Sec. 3.3, and add them to the composite shapes. The

NLP solution used in Fig. 3-19 is visualized in the effector frames with these trapezoidal

interpenetration keep-out shapes in Fig. 3-21, where the interpenetration near the bottom of

the effector can be predicted by the fact that some contact points lie within some trapezoidal
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Figure 3-19: Grasp solution that leads to interpenetration between the two effector jaws.

keep-out shapes. In contrast, the solution visualized in Fig. 3-22, where the contact points

lie outside all shapes in the effector frames, respects the new non-penetration constraint

developed to prevent effector-effector interpenetration.

Upon solving the NLP such that contact points lie outside the composite shapes includ-

ing the interpenetration keep-out shapes, the effector can be composed without causing

effector-effector interpenetration by constructing features within these trapezoids. For ex-

ample the rounded feature in Fig. 3-23 would be a reasonable choice because it is enveloped

by the trapezoid. Repeating this feature once to meet each contact point in the feasible so-

lution shown in Fig. 3-22 leads to the effector solution shown in Fig. 3-24, which indeed

has no effector-effector interpenetration.

It would be more precise to enforce that the trapezoids do not intersect each other or the

objects. The present formulation has simply enforced that the trapezoids do not intersect the

contact points, as the non-penetration constraint is constructed to measure signed distance

between shapes and points. However, this could be extended to measure distances between

shapes, for example, by calculating the minimum distance between the sets. However, with

polygonal keep-out shapes and objects, this constraint would suffer from even more issues

with non-smoothness than the current SDF constraint does.
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Figure 3-20: NLP solution that leads to interpenetration between the two effector jaws,
with interpenetration keep-out shapes shown as red and yellow trapezoids.

(a) (b)

Figure 3-21: Swept objects shown in the effector frames, Ψ̃𝐸0 (a), Ψ̃𝐸1 (b), for solution with
effector interpenetration shown in Fig. 3-19. Yellow trapezoids in (a) are interpenetration
keep-out shapes corresponding to contact points from effector 1, and red trapezoids in (b)
are interpenetration keep-out shapes corresponding to contact points from effector 0. This
solution leads to effector-effector interpenetration, which can be identified by the fact that
the bottom contact point in each effector frame lies inside a trapezoidal interpenetration
keep-out shape.
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(a) (b)

Figure 3-22: Swept objects shown in the effector frames, Ψ̃𝐸0 (a), Ψ̃𝐸1 (b), for solution
without effector interpenetration shown in Fig. 3-24. Yellow trapezoids in (a) are interpen-
etration keep-out shapes corresponding to contact points from effector 1, and red trapezoids
in (b) are interpenetration keep-out shapes corresponding to contact points from effector 0.
Contact points are drawn as large circles for illustration, which may create the illusion that
they penetrate shapes in this figure, but only the centers of these circles must be outside all
shapes.

Figure 3-23: Proposed shape for effector feature (gray), bounded by interpenetration keep-
out shape (yellow).

Figure 3-24: Grasp solution that does not lead to interpenetration between the two effector
jaws.
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Problem 𝜇 𝑤 𝑁𝑖𝑡𝑒𝑟 𝑇𝑠 (hours)
Compact grippers – regular polygons 0.3 1 195 5
Torque robustness – regular polygons 0.3 1 20 0.5

Torque robustness – nonconvex 0.3 0.2 90 12

Table 3.1: Computational parameters for the example problems in Sec. 3.5. Here, 𝑁𝑖𝑡𝑒𝑟

is the number of NLP runs (each with a different randomized initial guess). 𝑇𝑠 is the
approximate duration of the entire run (including all NLP runs).

3.6 Parameters and computation

The number of optimization variables is linear in 𝑁𝑡. All presented problems are solved

on a computer with Intel Core i7-10750H 2.60GHz CPU. As discussed in Sec. 3.1.2, the

NLP is repeatedly rerun with different initial guesses. When to terminate this process is a

decision that can be made by a user. Parameters used in the presented examples are shared

in Table 3.1. NLPs are solved using MATLAB’s fmincon [36].
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Chapter 4

Conclusions

NLP formulations are presented for co-optimizing effector shape and motion for robotic

tasks in two dimensions. Discretized continuous-time tasks with specified contact trajecto-

ries for rigid effectors are handled in Chap. 2, and the algorithms are extended to include

internal effector DOFs, optimization over contact locations, and force balance in Chap. 3.

Future work will leverage these extensions in two ways. First, it will incorporate con-

tact trajectory optimization in the continuous problem, so that the full design space of all

motions is simultaneously considered with shape. Second, it will leverage the ability to

include internal DOFs in the continuous problem, adding the option to include additional

joints.

Finally, this work may be generalized to three dimensions, where instead of design-

ing one-dimensional effector curves, the framework can design two-dimensional effector

surfaces. The non-penetration constraint extends to three dimensions, as SDFs can be com-

puted for three-dimensional objects. In the continuity constraint, tangent vectors become

tangent planes. Three-dimensional effectors with additional DOFs would be able to execute

more interesting tasks and take on richer geometries.

4.1 Contact trajectory satisfaction

In Chap. 2, an NLP framework is proposed for co-optimizing shape and motion of rigid ef-

fectors, in particular for applications where sliding contact and detailed effector geometries
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are important. Instead of parameterizing the effector geometry, the framework represents

the object and contact constraints in a frame that moves with the effector and impose that, in

this frame, the contact points (a) do not penetrate the object and (b) lie on an integral of the

contact tangents. This formulation yields solutions to several example problems, which val-

idate that the framework can recover known solutions, optimize a variety of user-specified,

application-specific cost functions, and find feasible solutions to complex problems that are

difficult to solve with existing methods. This work also includes an experimental demon-

stration of a synthesized effector being used by a robotic arm.

4.2 Grasping

Chap. 3 provides a demonstration of an extension of the framework presented in Chap. 2

to include force balances and internal effector DOFs. As this work has focused less on

extracting the effector geometry from the NLP solution, additional work in this area may

improve the usefulness of the results. Secs. 4.2.1 to 4.2.3 discuss additional challenges and

future directions for this work.

4.2.1 Optimizing over contact existence and edge correspondence

It has been assumed that the user inputs the correspondence between both contacts and

effector jaws, and contacts and object edges, and thus also implicitly specifies the number

of contacts. Relaxing any of these assumptions, and instead optimizing over these variables,

would expand the optimization space, improving the generality of this approach. However,

these factors are intrinsically discrete, and therefore would necessarily introduce integer

variables to the program, transforming the problem into a mixed-integer nonlinear program

(MINLP). While MINLPs are challenging to solve, they can be approached via methods

such as branch-and-bound and convex relaxation [45]. The increased size and complexity

of the optimization space introduced by these integer variables would lead to significantly

longer solve times, which may be acceptable depending on the application. However, the

problem could become intractable as the number of objects and number of contacts and

edges per object grows.
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4.2.2 Form closure

A form closure grasp is a grasp that restrains an object from undergoing any motion, inde-

pendent of external wrenches [48]. Form closure grasps do not rely on frictional contact

forces, but rather use contacts to geometrically prevent object motion. Thus, they can be

desirable for ensuring that objects remain securely grasped under high or uncertain loads.

As form closure is highly reliant on the geometry of the interactions between effector and

object, optimizing form closure grasps may be a natural extension of the proposed method.

For example, sets of contact placements for form closure grasps can be pre-computed [53],

and these sets can be optimized over, within the proposed method to design corresponding

effectors.

4.2.3 Robustness

Thus far, no notion of robustness has been discussed in this work. Consider the grasp of

the M shape in Fig. 3-15. In particular, at the upper-right corner of the M, slight changes

to the object geometry, the effector geometry, or the position of the effector relative to the

object would prevent contact from being made as planned. Likewise, in the grasp of the

T shape in Fig. 3-14, slight errors in the vertical positioning of the effector would cause

the effector to fail to close around the shape. The presented framework could be improved

by, for example, including a robustness metric, such as is developed by Kim et al. using a

Monte Carlo approach [31].

A potential use of the presented framework is to design effectors robust to object shape

variations. As the framework designs effectors that can grasp sets of objects, it can be

used to design an effector for a set of variations of a single object geometry. In fact, if the

set of objects approximates a continuum of variations over some parameters, the problem

takes on some attributes of the continuous shape and motion problem from Chap. 2. The

continuity constraint becomes once again relevant, and can be used to help construct the

effector geometry from the NLP solution.

69



70



Appendix A

Signed distance function smoothness

SDFs are smooth at points not equidistant from ≥ 2 closest points on the boundary of the

shape. Shown in Fig. A-1, this equidistant condition for SDF non-smoothness occurs for a

circle at the center of the circle, for a square in four linear ridges inside the square, and for

a star in five ridges outside the star and five (different) ridges inside the star.

Fig. A-2 shows how the screwdriver problem, first introduced in Chap. 1, is prone to

having a region of non-smooth SDF. This sometimes causes problems in the gradient

descent algorithm, particularly because there are contact points in this region and so the

SDFs will be sampled there. Note that in this case, the "zig-zag" ridges in the composite

shape are an artifact of the discretization of the motion – if the composite shape were

generated via a continuous sweep of the shape, the corner shown in Fig. A-2a would trace

a smooth curve.

The swept area can be more accurately approximated by taking the union of 𝑁 approx-

imate swept areas between each pair of consecutive timesteps. The 𝑘th approximate swept

area (between timesteps 𝑘 and 𝑘+1) is found by taking the union of effector-frame objects

from these timesteps (𝑢[𝑘] := Ψ𝐸[𝑘] ∪Ψ𝐸[𝑘 + 1], 𝑘 = 0, . . . , 𝑁𝑡 − 1), and removing from

𝑢[𝑘] vertices that (a) are not object vertices and (b) fall between instances of the same ob-

ject vertex. For example, the internal corners of the "zig-zag" feature noted in Fig. A-2a

would be removed, as seen in Fig. A-3, because they (a) are not vertices of the original

object and (b) fall between instances of of the bottom-left vertex of the screwdriver shape,

when traversing around the boundaries of the unions of consecutive Ψ𝐸s. This computation
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Figure A-1: SDFs of a circle, square, and star.

(a) (b)

Figure A-2: (a) Corner zoom-in of the effector-frame representation of a solution to the
screwdriver problem. (b) SDF of this shape, near this area. The thick black curve is the
zero level set (shape boundary).

is more expensive than the original discrete union method, but offers some benefit to the

optimizer.
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Figure A-3: Overlay of multiple frames of a shape moving through a trajectory, laid on top
of the approximated swept area (yellow).
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