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Abstract

Interactions between a quantum system and its environment are usually inevitable
and could lead to decoherence limiting the performance of quantum devices. On the
one hand, to build robust quantum devices requires an in-depth characterization of
such decoherence mechanism. On the other hand, the extracted environmental infor-
mation brings us new approaches to investigate novel phases in quantum materials.
Thus, probing and characterizing environmental noise is an essential task for both fun-
damental physics and quantum applications. Existing noise reconstruction methods
in quantum systems rely on using approximated 𝛿-like frequency filtering to sample
the noise spectrum in frequency domain using dynamical decoupling sequences.

In this thesis, we propose a novel digital noise reconstruction method to recon-
struct the environmental noise both in frequency and time domains, which avoids
the 𝛿-function approximation for frequency filtering. By measuring the decoherence
of a qubit sensor under a set of Walsh modulation sequences, the (arithmetic) auto-
correlation of a stationary Gaussian noise that couples to the quantum sensor is
directly reconstructed and the corresponding noise spectrum is then reconstructed
through linear transformations (discrete Fourier transform).

We systematically compare the typical dynamical decoupling-based noise recon-
struction method (the Carr-Purcell- Meiboom-Gill reconstruction method) and the
Walsh reconstruction method by evaluating the reconstruction errors of both methods
under an Orstein-Unlenbeck noise model, which is commonly adopted to describe the
magnetic noise generated by a dipolarly coupled spin bath. Combining theoretical
and simulation results, we conclude that the accuracy of our Walsh reconstruction
method is only limited by the time-space sampling and can be easily suppressed by
increasing the reconstruction order.

We then perform a proof-of-principle demonstration using a single nitrogen-vacancy
center in diamond to characterize its environmental noise dominated by the 13𝐶 nu-
clear spin bath, and discuss the practical limitations of the reconstruction accuracy
and avenues for its improvement. Finally we also introduce several directions of in-
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Chapter 1

Introduction

1.1 Outline of this thesis

Overall, this thesis studies a novel digital noise reconstruction method termed as

Walsh spectroscopy, which utilizes a single qubit sensor subjected to spin flip control

pulses at time locations given by Walsh sequences. In particular, it compares the

Walsh reconstruction method with a representative of existing reconstruction methods

based on Carr-Purcell-Meiboom-Gill (CPMG) sequences.

Chapter 2 introduces the background of typical noise spectroscopy methods based

on dynamical decoupling control sequences, which are widely used in board research

topics such as coherence protection. In Section 2.1, great efforts are put into the

CPMG method, a general dynamical decoupling method which can be used to com-

pare with the Walsh method in terms of the effects of noise reconstruction.

Section 2.1 is divided into three subsections. After a general introduction to the

noise spectroscopy using a single qubit sensor system coupled to the time-dependent

noise field, its accumulated phase under the dynamical decoupling sequence, resulted

attenuation function of the system, as well as relation to the noise spectrum in the fre-

quency domain are reviewed. In greater detail, Section 2.1.1 uses two commonly used

dynamical decoupling methods - the periodic dynamical decoupling (PDD) method

and the CPMG dynamical decoupling method to introduce the background of dynam-

ical decoupling methods, to explicitly show their modulation dynamical decoupling
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sequences, the expressions of their filter functions, and visualizations of state evolution

by using the Bloch sphere. In Section 2.1.2, other interesting dynamical decoupling

methods including XY, CDD, UDD and KDD are briefly discussed. In Section 2.1.3,

noise spectroscopy based on the CPMG sequence is thoroughly discussed where the

accuracy of the CPMG method is quantified.

Section 2.2 comprehensively introduces the Walsh reconstruction method with

five subsections. In Section 2.2.1, we briefly overview the digital noise spectroscopy

method we proposed based on Walsh sequences, termed as Walsh noise reconstruction.

In Section 2.2.2, we formulize the entire Walsh operation chain as shown in Equa-

tion (2.52), where we start from the attenuation function measured by experiment,

to obtain the noise auto-correlation function and spectrum through linear transfor-

mations. In Section 2.2.3, the transfer functions related to the aforementioned linear

transformations in the Walsh operation chain (2.52) will be derived. In Section 2.2.4,

we introduce details on the discrete Fourier transform for both the CPMG reconstruc-

tion method and the Walsh reconstruction method. In Section 2.2.5, we summarize

the Walsh noise spectroscopy method.

Chapter 3 systematically compares the Walsh reconstruction method with the

CPMG reconstruction method through simulation. We firstly introduce the noise

model we use in our simulation in Section 3.1 given by the Ornstein-Uhlenbeck (OU)

process, which is usually used for considering the characteristic spectrum of a spin

qubit dipolarly coupled to spin bath [26]. Furthermore, in Section 3.3.1, we discuss

the characteristics of the OU process such as its explicit expression in the discretized

time series, auto-correlation and noise spectrum in theory. Then we define the metrics

to quantify reconstruction errors in Section 3.2, which are preparations for our recon-

struction comparison. We classify the metrics to quantify errors into two cases: the

average error (Equation (3.7)) characterizing the overall reconstruction performance

and the individual error (Equation (3.9)) characterizing time or frequency dependent

reconstruction performance. Next, we show the simulation results and then analyze

and draw conclusions from the results.

In Section 3.3, we present the reconstruction comparison between the CPMG and

18



Walsh reconstruction methods. In Section 3.3.1, we show an example of the compar-

ison with the number of sequence 𝑁 = 32 and sequence time length 𝑇 = 16 𝜇s. With

a focus on Figure 3-2 and Figure 3-3, we clearly point out the advantages, disadvan-

tages, and improvements of the Walsh method and the CPMG method respectively

via simulation, and then summarize them in Table 3.1. In addition to the overall per-

formance of the noise reconstruction discussed in Section 3.3.1, we then briefly look

into the individual error of the two reconstruction methods in Section 3.3.2 and con-

sequently draw conclusions from our simulation in Figure 3-4. Finally, in Section 3.4,

we conduct a statistical analysis of the OU noise model to further understand the po-

tential effects of insufficient numbers for averaging in practice or finite noise instances

in this section and draw conclusions from Figure 3-5.

Chapter 4 shows the experimental demonstrations of both the Walsh reconstruc-

tion method or the CPMG reconstruction method. In our experiment, we use a

single Nitrogen-vacancy (NV) center in the diamond sample as a quantum sensor to

characterize its environmental noise dominated by 13𝐶 nuclear spins. In Section 4.1,

we briefly introduce the background on the NV center especially its application as

a quantum sensor before we dive into experimental details. Then in Section 4.2 we

show the comparison of the two methods in noise reconstruction. In Section 4.2.1, we

introduce our homemade con-focal optical setup and electronic instruments we use in

experiments (Figure 4-2). In Section 4.2.2, we perform the proof-of-principle demon-

stration of the Walsh reconstruction methods in Figure 4-3, where we also discuss

the practical errors in experiment due to different factors and propose the avenues

for their improvement accordingly.

Chapter 5 is the last part of this thesis. It summarizes the conclusions we drew

from Chapter 2, Chapter 3 and Chapter 4, and propose several interesting topics we

can conduct for future research based on the work in this thesis.
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Chapter 2

Noise reconstruction with dynamical

decoupling methods

Quantum sensing [14, 1, 55, 74, 15, 65, 17, 76, 28] utilizes the quantum properties

of a quantum system to measure a physical quantity with high sensitivity [28]. Ide-

ally, a perfectly isolated quantum system can maintain its coherence but cannot be

manipulated [95], while an open quantum system interacts with the environment

and can be affected by control fields but also by noise, which will induce the loss

of coherence (we also call it decoherence [97, 75, 7]). There exist several methods

to eliminate the decoherence, such as quantum error correction [42] and dynamical

decoupling [92, 91, 90, 48, 94]. In this thesis, we focus on dynamical decoupling

methods. Dynamical decoupling methods as powerful tools can not only reduce deco-

herence [86, 27, 51, 9, 69, 80], but also reconstruct the spectrum of stochastic signals,

i.e. noise for open systems [28, 5, 13].

2.1 Noise spectroscopy with dynamical decoupling

methods

In terms of how to actually use dynamical decoupling methods to reconstruct the

noise spectrum, the answer is to apply 𝜋-pulse sequences. Dynamical decoupling
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methods consist of single or multiple 𝜋-pulse sequences [96], which can be used to

measure the on-resonance frequency components of the noise spectrum. By applying

the sequence of pulses to modulate a quantum sensor and measuring its decoherence,

the noise spectrum generated by quantum sensor-bath coupling can be reconstructed.

Once the noise model is reconstructed, one can decouple the quantum system from

its noisy environment by flipping the sign of the coupling and averaging the noise to

zero, which means we can ideally have an open quantum system free from noise and

decoherence.

The first developed dynamical decoupling protocol was the spin echo in nuclear

magnetic resonance [39]. Figure 2-1 (a) shows a spin echo sequence, which is also

called Hanh echo sequence, with a single 𝜋 pulse applied at the middle of the time

domain. Since then, more complex pulse-based sequences have been developed such

as PDD sequences [28], CMPG sequences [28], XY sequences [34], etc.

Generally, for a single qubit (spin 𝑆 = 1
2
) sensor coupled to time-dependent noise

field 𝜔(𝑡), the Hamiltonian of the interaction between the qubit and bath resulting in

dephasing [96] can be written as:

𝐻𝑆𝐸 =
𝜔(𝑡)

2
𝜎𝑧, (2.1)

where 𝜎𝑧 is one of the Pauli matrices defined in the 𝑧 direction.

Assume we start with a qubit pure state |0⟩. After applying a 𝜋/2 pulse, we

can have a qubit initial state |+⟩ = (|0⟩ + |1⟩)/
√
2. Each 𝜋 pulse will make the

spin flip once from its previous state (we will dive deeper into Section 2.1.1 with

visualization of different sequences by demonstrating the spin state changes in Bloch

sphere). Thereafter, during the free evolution time 𝑇 , the accumulated phase 𝜑(𝑇 )

is:

𝜑(𝑇 ) =

∫︁ 𝑇

0

𝜔(𝑡)𝑓(𝑡)𝑑𝑡, (2.2)

where time-dependent 𝑓(𝑡) is a dynamical decoupling modulation function with values

alternating between (+1) and (−1). Each time the function values change from (+1)

to (−1) or vice-versa, one (ideal) instantaneous 𝜋 pulse with zero width is applied at
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that switching moment.

The measurable population decay in state |+⟩ 𝑃|+⟩(𝑇 ) which represents the qubit

dephasing signal 𝑆(𝑇 ) can be written as:

𝑆(𝑇 ) = 𝑃|+⟩(𝑇 ) (2.3)

=
1

2
(1 + ⟨cos(𝜑(𝑇 ))⟩) (2.4)

=
1

2
(1 + 𝑒−𝜒) (2.5)

=
1

2
(1 + 𝑒−⟨𝜑2⟩/2), (2.6)

where 𝜒 is the attenuation function. Such a formula is an average result after sufficient

repetitions and here we assume the noise field is stationary, zero-mean, and Gaussian.

By analyzing the system in the rotating frame, the attenuation function 𝜒 of the

system is then expressed as:

𝜒 =
⟨𝜑2⟩
2

=
1

2

∫︁ 𝑇

0

∫︁ 𝑇

0

𝑑𝑡1𝑑𝑡2⟨𝜔(𝑡1)𝜔(𝑡2)⟩𝑓(𝑡1)𝑓(𝑡2). (2.7)

We define the auto-correlation function𝐺 (later on, 𝐺 will be more accurately denoted

as the arithmetic auto-correlation function) as:

𝐺(𝑡1, 𝑡2) = ⟨𝜔(𝑡1)𝜔(𝑡2)⟩, (2.8)

which analyzes the correlation of the noise field with a delayed copy of itself in the

time domain. Therefore, the attenuation function 𝜒 can be rewritten as:

𝜒 =
⟨𝜑2⟩
2

=
1

2

∫︁ 𝑇

0

∫︁ 𝑇

0

𝑑𝑡1𝑑𝑡2𝐺(𝑡1, 𝑡2)𝑓(𝑡1)𝑓(𝑡2). (2.9)

In particular, under the stationary and zero-mean Gaussian noise assumption, the

auto-correlation 𝐺 depends only on the time difference such that

𝐺(𝑡1, 𝑡2) = 𝐺(|𝑡1 − 𝑡2|). (2.10)
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Figure 2-1: Examples of dynamical decoupling sequences and the total time period
from 0 to 𝑇 . (a) spin echo sequence; (b) PDD sequence; (c) the unit of CPMG
sequence.

Note that, although in different experimental platforms the individual environmental

noise source is likely to be non-Gaussian, the model we discuss here can still be a

common approximation option if we have sufficient identical noise sources using the

central limit theorem [35].

We also define a filter function 𝐹 (𝜔) in the frequency domain as the Fourier

transform over a time 𝑇 of the dynamical decoupling modulation function 𝑓(𝑡) in the

time domain:

𝐹 (𝜔) =

∫︁ 𝑇

0

𝑓(𝑡)𝑒𝑖𝜔𝑡𝑑𝑡, (2.11)

where 𝐹 (𝜔) has units of time (more details in Section 2.1.1). The attenuation function

𝜒 then can be expressed in the frequency domain as the overlap of the filter function

generated by dynamical decoupling sequences and the real noise spectrum:

𝜒 =
1

2

∫︁ 𝑇

0

∫︁ 𝑇

0

𝑑𝑡1𝑑𝑡2𝑓(𝑡1)𝑓(𝑡2)

∫︁ +∞

−∞

𝑑𝜔

2𝜋
𝑆(𝜔)𝑒𝑖𝜔(𝑡1−𝑡2) (2.12)

=
1

2

∫︁ +∞

−∞

𝑑𝜔

2𝜋
𝑆(𝜔)(

∫︁ 𝑇

0

𝑓(𝑡1)𝑒
𝑖𝜔𝑡1𝑑𝑡1)(

∫︁ 𝑇

0

𝑓(𝑡2)𝑒
−𝑖𝜔𝑡2𝑑𝑡2) (2.13)

=
1

2

∫︁ +∞

−∞

𝑑𝜔

2𝜋
𝑆(𝜔)|𝐹 (𝜔)|2. (2.14)
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2.1.1 Periodic dynamical decoupling method and Carr-Purcell-

Meiboom-Gill method

As we mentioned earlier in Section 2.1, the simplest dynamical decoupling sequence

is the spin echo sequence [39], where a single 𝜋 pulse is applied at 𝑇/2 assuming the

total time period is 𝑇 , whose effectiveness relies on two underlying assumptions: (1)

time-independent (static) noise; (2) ideally instantaneous with zero width (i.e. Dirac

𝛿 function) pulses [19].

Next, we introduce another two common multi-pulse dynamical decoupling meth-

ods, which are PDD and CPMG method via three main aspects including their mod-

ulation sequences, filter functions and visualizations of state evolution in the Bloch

sphere.

Modulation sequences

As shown in Figure 2-1 (b), PDD [50] can be regarded as an extension of spin echo

since it consists of (𝑁 − 1) 𝜋-pulses with the equal inter-pulse duration 𝑇/𝑁 over

the total 𝑇 period. Here, we assume all the 𝜋-pulses are applied along the 𝑥 axis of

Bloch sphere (will be introduced in detail in the "Visualizations of state evolution by

using the Bloch sphere" part). In terms of the modulation sequence of CPMG [20]

method, the unit of its sequence is shown in Figure 2-1 (c), where over the total 𝑇

period, two 𝜋-pulses are applied separately at 𝑇/4 and 3𝑇/4. Therefore, for the 𝑁

𝜋-pulses CMPG sequence, the first 𝜋-pulse is applied at 𝑇/2𝑁 , the final 𝜋-pulse is

applied at (2𝑁 − 1)𝑇/2𝑁 , and the remaining 𝜋-pulses are applied at (1 + 2𝑗)𝑇/2𝑁

for 𝑗 = 1, · · · , (𝑁 − 2), and we have 𝑁 − 1 equally spaced inter-pulse duration 𝑇/𝑁

and the other 2 equally spaced duration 𝑇/2𝑁 . Note that 𝑁 for CMPG method must

be an even positive integer.

Filter functions

We have defined the general filter function as Equation (2.11) in Section 2.1. Next, we

derive the filter function for PDD modulation sequence first. For a (𝑁 − 1) 𝜋-pulses
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PDD with its pulse interval 𝑇/𝑁 , its filter function 𝐹𝑃𝐷𝐷(𝜔) can be calculated as:

|𝐹𝑃𝐷𝐷(𝜔)|2 = |
∫︁ 𝑇

0

𝑓𝑃𝐷𝐷(𝑡)𝑒
𝑖𝜔𝑡𝑑𝑡|2 (2.15)

=
4 sin2(𝑁(𝜋+𝜔𝜏)

2
) tan2(𝜔𝜏

2
)

𝜔2
(2.16)

=
4 sin2(𝑁𝜔𝜏

2
) tan2(𝜔𝜏

2
)

𝜔2
(2.17)

=
4 sin2(𝑁𝜔𝜏

2
) sin2(𝜔𝜏

2
)

𝜔2 cos2(𝜔𝜏
2
)

. (2.18)

Second, we derive the filter function for CPMG modulation sequence. For a 𝑁

𝜋-pulses CPMG with its pulse interval 𝑇/𝑁 , its filter function 𝐹𝐶𝑃𝑀𝐺(𝜔) can be

calculated as:

|𝐹𝐶𝑃𝑀𝐺(𝜔)|2 = |
∫︁ 𝑇

0

𝑓𝐶𝑃𝑀𝐺(𝑡)𝑒
𝑖𝜔𝑡𝑑𝑡|2 (2.19)

=
16 sin2(𝑁𝜔𝜏

2
) sin4(𝜔𝜏

4
)

𝜔2 cos2(𝜔𝜏
2
)

, (2.20)

where 𝑁 is an even integer.

Example of filter functions with specific numerical values for PDD and CPMG are

shown in Figure 2-2.

Visualizations of state evolution by using the Bloch sphere

First, we introduce what the Bloch sphere is. The Bloch sphere is a representation

of the state space available to qubits. Every pure state of a qubit is a point on the

surface of the Bloch sphere. In Figure 2-3, a pure arbitrary state can be defined by

two parameters 𝜃 and 𝜑 as:

|𝜓⟩ = cos
𝜃

2
|0⟩+ 𝑒𝑖𝜑 sin

𝜃

2
|1⟩ . (2.21)

Any point on the sphere can be transformed via a unitary transformation to another

point on the sphere, which means any pure state can transform to another pure state

via a unitary transformation on the Bloch sphere.
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Figure 2-2: An example of PDD filter function and CPMG filter function for 𝑁 = 8,
𝜏 = 1 𝜇s [19]. (a) PDD filter function; (b) CPMG filter function.
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Figure 2-3: The Bloch sphere is a 3D sphere with a radius of 1. A state can be well
regarded as a point in or on the surface of the Bloch sphere. If the state is a pure
state, it will be a point on the surface and can be explicitly written as an expression
of two parameters 𝜃 and 𝜑 while the others can be represented as points inside the
Bloch sphere. In addition, in this Figure, we can find that the states |0⟩ and |1⟩ are
both on the 𝑧 axis, and the states |0⟩+|1⟩√

2
and |0⟩−|1⟩√

2
are both on the 𝑥 axis, and the

states |0⟩+𝑖|1⟩√
2

and |0⟩−𝑖|1⟩√
2

are both on the 𝑦 axis.
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Figure 2-4: Visualization of a Ramsey sequence. Each sphere is a Bloch sphere. The
red arrow represents the averaged state of repeated experiments and each blue arrow
represents a state after a single experiment evolution

We then can visualize the state evolution from its pure state |0⟩ to its initial state

|+⟩ shown in Figure 2-4 by adding a 𝜋/2 pulse. On the Bloch sphere, to add a 𝜋/2

pulse along the 𝑥 axis means to rotate the vector representing the pure state |0⟩ 90°

around the 𝑥 axis. Therefore, the pure state |0⟩ is transformed to the initial state

|+𝑖⟩ shown in the 𝑦 axis with a radius 1.

Figure 2-4 represents the evolution process of a qubit state with a Ramsey se-

quence, where no 𝜋-pulse is added. Therefore, the evolution of the initial state is

free and random. As shown in the third and fourth Bloch spheres, each blue arrow

represents the potential evolution of a state and the red arrow represents the averaged

state of repeated experiments. After the other 𝜋/2-pulse added at the end of the time

period 𝑇 , the final state is inside the Bloch sphere which means at this moment, the

state is not a pure state any more. By measuring the population decay along 𝑧 axis,

we then can derive the attenuation function 𝜒 based on the dephasing signal with

Ramsey experiments.

Figure 2-5 represents the evolution process of a qubit state with a spin echo

sequence. The initialization is the same as the Ramsey sequence. After applying a

𝜋/2-pluse, we can obtain the pure initial state |+𝑖⟩. During the time period from
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Figure 2-5: Visualization of a spin echo sequence. A 𝜋-pulse is applied at 𝑡 = 𝑇/2,
which makes the free evolution become refocusing evolution.

𝑡 = 0 to 𝑡 = 𝑇/2, the evolution is still the same as the Ramsey free evolution period.

However, by applying a 𝜋-pulse at 𝑡 = 𝑇/2 along 𝑦 axis, the evolution of the states

in each experiment can offset its first 𝑇/2 period effect and refocus back to a pure

state which is symmetric compared to the initial state |+𝑖⟩ and can be denoted as

|−𝑖⟩. Therefore, after the other 𝜋/2-pulse, ideally we can obtain a final pure state

|0⟩ and the decay should be zero. However, in real experiments, the sequences can

be imperfect with finite pulse widths and pulse errors, and people have developed

various kinds of dynamical decoupling modulation sequences to cancel these effects.

Figure 2-6 represents the evolution process of a qubit state with a general and

arbitrary dynamical decoupling sequence. As shown in Figure 2-6, multi-𝜋 pulses

modulation sequences can finally make the measurable decay signal as:

𝑃 (|0⟩) = ⟨cos2(𝜑
2
)⟩. (2.22)

with 𝜑 defined as an accumulated phase:

𝜑(𝑇 ) =

∫︁ 𝑇

0

𝜔(𝑡)𝑓(𝑡)𝑑𝑡, (2.23)

where 𝜔(𝑡) is a time-dependent noise field and 𝑓(𝑡) is a modulation function corre-

sponding to a pulse sequence.
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Figure 2-6: Visualization of a general dynamical decoupling sequence. In total, 𝑛
𝜋-pulses are applied independently at 𝑡 = 𝑡1, 𝑡 = 𝑡2, · · · , 𝑡 = 𝑡𝑛−1, 𝑡 = 𝑡𝑛. Therefore,
during the evolution time with a dynamical decoupling sequence, the phase 𝜑 has been
accumulated, which will reflect on the final measurement of the |0⟩ state population
as a function of the phase 𝜑.

2.1.2 Other dynamical decoupling methods

In addition to the spin echo methods, the PDD methods, the CPMG methods, there

are also some other general dynamical decoupling methods such as the concatenated

dynamical decoupling (CDD) methods, the Uhrig dynamical decoupling (UDD) meth-

ods, the Knill dynamical decoupling (KDD) methods, and XYs dynamical decoupling

method [80, 4, 2, 34, 98, 77, 69, 53]. We will discuss them in the remaining part of

this section.

However, one to note here is that, under most circumstances, we only use the

CPMG dynamical decoupling sequences and the XYs dynamical decoupling sequences

in noise spectroscopy. In this thesis, we will only work on the comparison between

the CPMG reconstruction method and the Walsh reconstruction method.

XYs dynamical decoupling method

As indicated in the name of the XYs method [38, 58], it effect makes a state rotate

along both 𝑥 and 𝑦 axis, i.e. its 𝜋-pulses are applied as 𝜋𝑥 and 𝜋𝑦 corresponding

to 𝜋 rotations around the 𝜎𝑥 and 𝜎𝑦 operators for the qubit [34]. The XYs method

requires the total number of 𝜋-pulses is the multiple of 4. The XYs methods are
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Figure 2-7: Other dynamical decoupling sequence schemes including XY4, XY8,
CDD𝑛, UDD𝑛, KDD𝜙, and KDD𝜙,(𝜙+𝜋

2
) [4, 2, 34, 80].

designed to reduce the effects of 𝜋-pulse imperfections [2]. There are two main XYs

methods that have been commonly used, which are called the XY4 method [61] and

the XY8 method [2, 34], and their dynamical decoupling sequence schemes are shown

in Figure 2-7 respectively and can be explicitly written as:

𝑋𝑌 4 = (
𝜏

2
)𝜋𝑥(𝜏)𝜋𝑦(𝜏)𝜋𝑥(𝜏)𝜋𝑦(

𝜏

2
), (2.24)

where 𝜏 is a given time interval;

and

𝑋𝑌 8 = (
𝜏

2
)𝜋𝑥(𝜏)𝜋𝑦(𝜏)𝜋𝑥(𝜏)𝜋𝑦(𝜏)𝜋𝑥(𝜏)𝜋𝑦(𝜏)𝜋𝑥(𝜏)𝜋𝑦(

𝜏

2
), (2.25)

where 𝜏 is a given time interval.

Concatenated dynamical decoupling method

As indicated in the name of the CDD method, it is concatenated recursively. That

means, for the CDD method, as shown in Figure 2-7, its sequence scheme with 𝑛

pulses depends on the sequence scheme with (𝑛 − 1) pulses where its sequence with
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one single pulse is a PDD sequence, i.e. 𝐶𝐶𝐷𝑛=1 = 𝑃𝐷𝐷. The explicit recursive

relation of 𝐶𝐶𝐷𝑛 and 𝐶𝐶𝐷(𝑛−1) with 𝑛 > 1 can be written as:

𝐶𝐶𝐷𝑛 = (𝐶𝐶𝐷𝑛−1)𝜋𝑥(𝐶𝐶𝐷𝑛−1)𝜋𝑦(𝐶𝐶𝐷𝑛−1)𝜋𝑥(𝐶𝐶𝐷𝑛−1)𝜋𝑦, (2.26)

where 𝜋𝑥 and 𝜋𝑦 are 𝜋-pulses applied along 𝑥 direction and 𝑦 direction of the Bloch

sphere [4].

Compared to the PDD methods, theoretically, the CDD methods perform better

"asymptotic superiority" when the number of 𝜋-pulses is finite [48], and experimen-

tally, the CDD methods are more robust when it comes to pulse errors, which means

less oscillation pattern will be observed [4].

Uhrig dynamical decoupling method

For UDD method, as shown in Figure 2-7, its sequence scheme with 𝑛 pulses has

(𝑛+ 1) time intervals 𝜏1, · · · , 𝜏𝑛+1, which are defined by:

𝜏𝑗 = 𝜏𝑐(sin
2 (

𝑗𝜋

2(𝑛+ 1)
)− sin2 (

(𝑗 − 1)𝜋

2(𝑛+ 1)
)), (2.27)

where 𝑗 = 1, · · · , (𝑛+1), 𝜏𝑐 is the total time [4, 88, 89]. Therefore, the UDD sequence

scheme can be explicitly written as:

𝑈𝐷𝐷𝑛 = (𝜏1)𝜋𝑦(𝜏2)𝜋𝑦 · · · (𝜏𝑛)𝜋𝑦(𝜏𝑛+1), (2.28)

where 𝜋𝑦 represents a 𝜋-pulse applied along 𝑦 direction of the Bloch sphere, or rather,

a state rotates along its 𝑦 axis for 180° [4].

The UDD method is designed to minimize the interaction between system and

environment with specific 𝑛 𝜋-pulses [4, 88, 89] and it has been proved to behave best

to eliminate the decoupling of system due to its interaction with environment in the

low frequency region [25, 4, 88, 89]. As shown in the experimental part of Ref. [4],

the UDD methods perform similarly compared to the CPMG methods in terms of

decay time.
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Knill dynamical decoupling method

For KDD methods, as shown in Figure 2-7, its sequence scheme is:

𝐾𝐷𝐷𝜙 = ((𝜏/2)𝜋𝜙+𝜋
6
(𝜏)𝜋𝜙(𝜏)𝜋𝜙+𝜋

2
(𝜏)𝜋𝜙(𝜏)𝜋𝜙+𝜋

6
(𝜏/2))2, (2.29)

where 𝜙 denotes the rotation axis as (𝜎𝑥 cos𝜙 + 𝜎𝑦 sin𝜙) [77], and 𝜏 is a given time

interval. Note here the power of 2 means to repeat the same sequence twice. In

particular, when the rotation axis is 𝑥 axis, the sequence scheme of KDD𝑥 can be

written as:

𝐾𝐷𝐷𝑥 = ((𝜏/2)𝜋𝑥+𝜋
6
(𝜏)𝜋𝑥(𝜏)𝜋𝑥+𝜋

2
(𝜏)𝜋𝑥(𝜏)𝜋𝑥+𝜋

6
(𝜏/2))2. (2.30)

To better improve the robustness of the sequence, people also extend 𝐾𝐷𝐷𝜙 to

(𝐾𝐷𝐷𝜙 +𝐾𝐷𝐷𝜙+𝜋
2
) by applying a 𝜋/2 phase shift, which can be written as:

𝐾𝐷𝐷𝜙,(𝜙+𝜋
2
) = ((

𝜏

2
)𝜋𝜙+𝜋

6
(𝜏)𝜋𝜙(𝜏)𝜋𝜙+𝜋

2
(𝜏)𝜋𝜙(𝜏)𝜋𝜙+𝜋

6
(𝜏)𝜋𝜙+ 2𝜋

3
(𝜏)𝜋𝜙+𝜋

2
(𝜏)𝜋𝜙+𝜋(𝜏)𝜋𝜙+𝜋

2
(𝜏)𝜋𝜙+ 2𝜋

3
(
𝜏

2
))2.

(2.31)

Therefore, in particular, the KDD𝑥𝑦 sequence scheme can be written as:

𝐾𝐷𝐷𝑥𝑦 = ((
𝜏

2
)𝜋𝑥+𝜋

6
(𝜏)𝜋𝑥(𝜏)𝜋𝑥+𝜋

2
(𝜏)𝜋𝑥(𝜏)𝜋𝑥+𝜋

6
(𝜏)𝜋𝑥+ 2𝜋

3
(𝜏)𝜋𝑥+𝜋

2
(𝜏)𝜋𝑥+𝜋(𝜏)𝜋𝑥+𝜋

2
(𝜏)𝜋𝑥+ 2𝜋

3
(
𝜏

2
))2

(2.32)

= ((
𝜏

2
)𝜋𝑥+𝜋

6
(𝜏)𝜋𝑥(𝜏)𝜋𝑥+𝜋

2
(𝜏)𝜋𝑥(𝜏)𝜋𝑥+𝜋

6
(𝜏)𝜋𝑦+𝜋

6
(𝜏)𝜋𝑦(𝜏)𝜋𝑦+𝜋

2
(𝜏)𝜋𝑦(𝜏)𝜋𝑦+𝜋

6
(
𝜏

2
))2.

(2.33)

The KDD methods are the most robust dynamical decoupling methods used to

correct two specific pulse errors - off-resonance errors and flip-angle errors which are

the dominant two types of errors in many experimental cases [77, 34].
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2.1.3 Noise spectroscopy with the Carr-Purcell-Meiboom-Gill

reconstruction method

Overview of the CPMG method

CPMG sequence is the most common modulation sequence used in recent years to

reconstruct noise spectrum [28]. We will discuss the reconstruction by using the

CPMG method in this section. As we discussed in Section 2.1.1, the filter function

of a CPMG sequence with 𝑁 𝜋-pulses with inter-pulse duration 𝜏 is Equation (2.20).

This filter function can be approximated for large 𝑇 as a weighted sum over a series

of Dirac 𝛿 functions [96], which can be written as:

|𝐹𝐶𝑃𝑀𝐺(𝜔)|2 =
16 sin2(𝑁𝜔𝜏

2
) sin4(𝜔𝜏

4
)

𝜔2 cos2(𝜔𝜏
2
)

(2.34)

≈
∞∑︁
𝑘=0

8𝑇

𝜋2

1

(2𝑘 + 1)2
𝛿(𝜔 − (2𝑘 + 1)𝜋

𝜏
). (2.35)

Therefore, |𝐹 (𝜔)|2 have peak values at 𝜔 = (2𝑘 + 1)𝜋/𝜏 where 𝑘 is an arbitrary

integer. The attenuation function 𝜒 of CPMG sequences can be re-calculated and

simplified approximately by the following steps:

𝜒 =
1

2

∫︁ +∞

−∞

𝑑𝜔

2𝜋
𝑆(𝜔)|𝐹𝐶𝑃𝑀𝐺(𝜔)|2 (2.36)

≈ 1

𝜋

∫︁ +∞

−∞
𝑑𝜔
𝑆(𝜔)

𝜔2

𝑁𝜏𝜋

2

1

( 𝜏
2
)2

+∞∑︁
𝑘=−∞

𝛿(𝜔 − (2𝑘 + 1)𝜋

𝜏
) (2.37)

= 𝑇
4

𝜋2

+∞∑︁
𝑘=0

1

(2𝑘 + 1)2
𝑆(

(2𝑘 + 1)𝜋

𝜏
), (2.38)

where we make use of the symmetric relation of the noise spectrum 𝑆(𝜔) = 𝑆(−𝜔)

and apply the 𝛿-function approximation to the above calculation process:

∫︁ +∞

−∞

sin2(𝑎𝑥)

𝑥2
𝑑𝑥 = 𝑎𝜋,

sin2(𝑎𝑥)

𝑥2
|𝑎→∞ = 𝑎𝜋𝛿(𝑥). (2.39)
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From Equation (2.38), we can conclude that the attenuation 𝜒 is mainly influenced

by the components of noise spectrum at the resonance frequency 𝜋/𝜏 and also its

odd harmonics (2𝑘 + 1)𝜋 for 𝑘 is positive integers, where the effects of harmonics

decreases as 𝑘 increases due to the corresponding weighted item 1/(2𝑘 + 1)2 for each

𝑘. Therefore, the main component of noise spectrum 𝑆(𝜋/𝜏) can be reconstructed.

More accurately, the noise spectrum 𝑆(𝜔) can be reconstructed by varying the value

of inter-pulse duration 𝜏 in Equation (2.38) [96].

An example to better understand noise spectroscopy beforehand

To better understand the noise spectroscopy by using the CPMG method, we can

first look into the Ramsey example [54, 28]. For a Ramsey sequence, we can easily

calculate its filter function as:

|𝐹 (𝜔)|2 =
4 sin2(𝜔𝑇

2
)

𝜔2
. (2.40)

Then, we can derive the relation between the attenuation factor of Ramsey and its

noise spectrum as:

𝜒𝑅𝑎𝑚𝑠𝑒𝑦 =
1

𝜋

∫︁ +∞

−∞

sin2(𝜔𝑇
2
)

𝜔2
𝑑𝜔 (2.41)

≈ 1

𝜋

∫︁ +∞

−∞

𝑇𝜋

2
𝛿(𝜔)𝑆(𝜔)𝑑𝜔 (2.42)

=
𝑇

2
𝑆(0). (2.43)

Telling from Equation (2.43), since the attenuation factor 𝜒𝑅𝑎𝑚𝑠𝑒𝑦 is measurable, the

component of noise spectrum 𝑆(0) can be well reconstructed.

Accuracy of noise spectroscopy using the CPMG method

As we discussed above, the accuracy of noise spectroscopy heavily relies on the ap-

proximation to the Dirac comb structure of the filter function and correspondingly

is limited by the requirement of a large 𝑇 . Intuitively telling from Figure 2-2, when
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𝑁 = 8, the PDD and CPMG filter functions cannot be ideally regarded as a pure

delta function centered on a single frequency since there are some small peaks around

it and the width of the main peak is non-zero while the CPMG based filter function

is closer to an ideal delta function compared to the PDD one. From Ref.[82], we can

obtain the attenuation factor 𝜒 in the time domain written as:

𝜒 = 𝜒1 + 𝜒2, (2.44)

where

𝜒1 = 𝑇
∑︁
𝑚

|𝑐𝑚|2
∫︁ 𝑇

0

𝑑𝑡(1− 𝑡

𝑇
)𝐺(|𝑡|)𝑒𝑖𝑚𝜔𝑝𝑡, (2.45)

and

𝜒2 =
∑︁

𝑚1 ̸=−𝑚2

𝑐𝑚1𝑐𝑚2

(𝑚1 +𝑚2)𝜔𝑝

∫︁ 𝑇

0

𝐺(|𝑡|)(𝑒𝑖𝑚1𝜔𝑝𝑡 − 𝑒−𝑖𝑚2𝜔𝑝𝑡), (2.46)

where 𝑐𝑚 = 1
𝑇

∫︀ 𝑇

𝑜
𝑒−𝑖𝑚𝜔𝑝𝑡𝑓(𝑡)𝑑𝑡 is the Fourier component of the filter function at

frequency 𝑚𝜔𝑝, and 𝜔𝑝 = 2𝜋
𝑇

and 𝑓(𝑡) =
∑︀

𝑚 𝑐𝑚𝑒
𝑖𝑚𝜔𝑝𝑡 (0 ≤ 𝑡 ≤ 𝑇 ), therefore both

𝑐𝑚1 and 𝑐𝑚2 are well defined. Now, the attenuation factor 𝜒 is split into two parts,

the first term is a linear function of 𝑇 and we call it the "diagonal" term; the second

term is the remaining off-diagonal term so that we call it the "off-diagonal" term. For

a large 𝑇 in comparison to the noise correlation time 𝜏𝑐, both the “off-diagonal" term

and 𝑡/𝑇 part of the “diagonal" term in Equation (2.44) can be neglected.

Therefore, in particular, for a CPMG sequence with a large 𝑇 compared to the

noise correlation time 𝜏𝑐, we can have its attenuation factor 𝜒𝐶𝑃𝑀𝐺 as:

𝜒𝐶𝑃𝑀𝐺 = 𝑇

∞∑︁
𝑘=0

|𝑐𝑘|2𝑆(
(2𝑘 + 1)𝜋

𝜏
), (2.47)

37



where

|𝑐𝑘|2 =
16 sin4(𝑚𝜔𝑝𝜏

4
) sin2(𝜔𝑝𝑁𝜏

2
)

𝑚2𝜔2
𝑝𝑇

2 cos2(𝑚𝜔𝑝𝜏

2
)

|𝑚=2𝑘+1 (2.48)

=
4 sin2(𝑘𝑁𝜋)

(2𝑘 + 1)2𝜋2𝑁2 sin2(𝑘𝜋)
(2.49)

=
4

𝜋2

1

(2𝑘 + 1)2
, (2.50)

where 𝜔𝑝 = 𝜋/𝜏 , and 𝑚 = (2𝑘 + 1), 𝑘 = 0, 1, 2, · · · are odd numbers because of the

symmetric structure of CPMG sequences, which is consistent with Equation (2.38).

However, the approximation treating the filter function as a Dirac 𝛿 comb requires

that the noise spectrum around the resonance frequencies has a small variation with

respect to the peak width of the filter function for a reasonable approximation. The

same argument in time-space states that the sequence time 𝑇 has to be much larger

than the noise correlation time 𝜏𝑐. In Ref. [82], a precise analysis gives a relative error

of the calculated attenuation function using the 𝛿 approximation as

⃒⃒⃒⃒
∆𝜒(𝑇 )

𝜒(𝑇 )

⃒⃒⃒⃒
∼ 𝜏𝑐(1− 𝑒−

𝑇
𝜏𝑐 )

𝑇
. (2.51)

Although such an error can be suppressed by simply increasing the sequence time

𝑇 , sometimes the coherence time of the quantum system is not long enough for a high-

fidelity measurement with large 𝑇 , and increasing the sequence time 𝑇 also degrades

the sensitivity and efficiency of noise reconstruction. In addition, the experiment

apparatus might have limited resources for implementing a long sequence. Therefore,

it is important to find a more accurate and efficient way to reconstruct the noise, even

in time space which relates to the spectrum simply through a Fourier transformation.

2.2 Walsh reconstruction method

Rather than reconstructing the noise spectrum by applying periodic dynamical de-

coupling sequences such as CPMG sequences and approximating the filter function

with 𝛿 functions, the Walsh method uses a complete set of digital filters applied by
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non-periodic Walsh modulation sequences to reconstruct the auto-correlation of noise

in the time domain, which is intrinsically compatible with the sequence control and

time discretization [41, 23, 59].

The story of the Walsh reconstruction method begins from the Walsh matrix,

which is a 2𝑛 × 2𝑛 square matrix (𝑛 is a positive integer) with elements either 1 or

-1. Each row of the Walsh matrix is orthogonal to another and represents a pulse

sequence that will generate a pulse whenever an element of the row changes its sign

compared to the last element. Take 𝑛 = 3 as a simple example, we can get a 8 × 8

Walsh matrix as: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 −1 −1 1 1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 −1 −1 1 −1 1 1 −1

1 −1 1 −1 −1 1 −1 1

1 −1 1 −1 1 −1 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

According to what we have discussed above, the first row is a Ramsey sequence, the

second is a spin echo sequence, the third is a unit CPMG sequence, the fourth is a

PDD sequence, the fifth is another CPMG sequence, and the eighth is another PDD

sequence with a twice shorter period compared to the fourth one, while the sixth and

the seventh sequences are not typical dynamical decoupling sequences and they are

unique sequences components in Walsh sequence series when 𝑛 = 3.

Since the Walsh reconstruction method is based on a combination of sequences (we

call it Walsh modulation sequences, or Walsh sequences) instead of a single sequence,

its filter function is a combination of the corresponding filter functions. For 𝑛 = 2,

we can have the Walsh sequence as well as the Walsh filter function as shown in

Figure 2-8.

By using the Walsh method, the noise spectrum can be reconstructed through

three independent linear transforms starting from Walsh power spectrum 𝜒 [73]. First,
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Figure 2-8: An example of Walsh sequence with 𝑛 = 3 (i.e. 𝑁 = 8) and 𝑇 = 8 𝜇s
and its corresponding filter function.

we can get the logical auto-correlation function 𝐿 [73] by applying the inverse Walsh

transform to 𝜒. Second, the arithmetic auto-correlation function 𝐺 [73] can be derived

by applying the transfer matrix 𝑇𝐿−𝐴 to the logical auto-correlation function 𝐿. Third,

the noise spectrum 𝑆(𝜔) is the inverse Fourier transform of the the arithmetic auto-

correlation function 𝐺. Therefore, we have the following chain of operations:

𝑃𝑊
𝑊−1

−→ 𝐿
𝑇𝐿−𝐺−→ 𝐺

𝐹−1

−→ 𝑆(𝜔), (2.52)

where the Walsh power spectrum 𝑃𝑊 shown in the chain (2.52) can be obtained

through the attenuation function as 𝑃𝑊 = 2𝜒
𝑇 2 and 𝜒 can be directly obtained directly

from experiments (Section 4.2).

Note that the arithmetic auto-correlation function is now usually directly called

the auto-correlation function. Also note that the logical auto-correlation of the noise

is derived based on the "logical" Wiener-Khintchine theorem [73]. As a reminder,

we have derived the attenuation function 𝜒 at the beginning of Chapter 2 as Equa-

tion (2.9).
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2.2.1 Overview of discrete Walsh reconstruction method

Since in practical experiments we will obtain a discrete sampling of the correlation

function, our model is based on a discrete version. To explicitly present the procedure

of Walsh reconstruction method, here we define the time discretization and express

the transformations in the matrix form. The continuous time period 𝑇 is discretized

in 𝑁 equal time intervals 𝑇
𝑁

. The 𝑚𝑡ℎ Walsh modulation functions 𝑦𝑚(𝑡) are chosen

from the 𝑚𝑡ℎ row of the 𝑁×𝑁 Walsh matrix. The discretized logical and arithmetic

auto-correlation functions are 𝐿𝑁(𝑗) ≡ 𝐿( 𝑗𝑇
𝑁
), 𝐺𝑁(𝑗) ≡ 𝐺( 𝑗𝑇

𝑁
) for 𝑗 = 0, · · · , 𝑁 − 1.

Then, similarly as we discussed in the continuous time domain, we can follow the

steps for noise spectroscopy in the discrete time domain:

1. measure 𝜒𝑚 under the Walsh modulation function 𝑦𝑚(𝑡) for 𝑚 = 1, · · · , 𝑁 ;

2. derive the discrete logical auto-correlation 𝐿𝑁(𝑘) for 𝑘 = 1, · · · , 𝑁 ;

3. derive the discrete arithmetic auto-correlation 𝐺𝑁(𝑗) for 𝑗 = 1, · · · , 𝑁 ;

4. derive the discrete noise spectrum 𝑆(𝜔).

2.2.2 Detailed derivation of discrete Walsh reconstruction method

In greater detail, the attenuation 𝜒𝑚 can be calculated as:

𝜒𝑚 =
1

2

∫︁ 𝑇

0

∫︁ 𝑇

0

𝑑𝑡1𝑑𝑡2𝐺(𝑡1 − 𝑡2)𝑦𝑚(
𝑡1
𝑇
)𝑦𝑚(

𝑡2
𝑇
) (2.53)

=
𝑇 2

2𝑁2

∑︁
𝑘,𝑗

𝐺̄𝑁(𝑗 − 𝑘)𝑊𝑚(𝑗)𝑊𝑚(𝑘) (2.54)

≈ 𝑇 2

2𝑁2

∑︁
𝑘,𝑗

𝐺𝑁(𝑗 − 𝑘)𝑊𝑚(𝑗)𝑊𝑚(𝑘), (2.55)

where 𝑊𝑚(𝑗) is the discretized 𝑚𝑡ℎ Walsh modulation function and corresponds to

the value of 𝑦𝑚( 𝑡
𝑇
) at 𝑡 ∈ ( (𝑗−1)𝑇

𝑁
, 𝑗𝑇
𝑁
]. Moreover, here, we define 𝐺̄𝑁(𝑗 − 𝑘) as:

𝐺̄𝑁(𝑗 − 𝑘) =
𝑁2

𝑇 2

∫︁ 𝑘𝑇
𝑁

(𝑘−1)𝑇
𝑁

∫︁ 𝑗𝑇
𝑁

(𝑗−1)𝑇
𝑁

𝑑𝑡1𝑑𝑡2𝐺(𝑡1 − 𝑡2), (2.56)

41



which can be approximated by 𝐺𝑁(𝑗 − 𝑘) and 𝐺𝑁(𝑗 − 𝑘) = 𝐺( (𝑗−𝑘)𝑇
𝑁

).

The relation between the attenuation 𝜒 and the arithmetic auto-correlation func-

tion 𝐺𝑁 has been introduced in Equation (2.55). However, from the format of the

function:

𝐺𝑁(𝑗 − 𝑘) = 𝐺(
(𝑗 − 𝑘)𝑇

𝑁
) = ⟨𝜔(𝑗𝑇

𝑁
)𝜔(

𝑘𝑇

𝑁
)⟩ = ⟨𝜔𝑁(𝑗)𝜔𝑁(𝑘)⟩, (2.57)

we cannot directly and linearly transform the measured attenuation 𝜒 to the arith-

metic auto-correlation function𝐺𝑁 to get the final reconstructed noise spectrum 𝑆(𝜔).

Therefore, we introduce and define the logical auto-correlation function 𝐿𝑁 for the

discretized noise 𝜔(𝑗) as [73]:

𝐿𝑁(𝑗) =
1

𝑁

𝑁∑︁
𝑘=1

⟨𝜔(𝑘)𝜔(𝑘 ⊕ 𝑗)⟩, (2.58)

where ⊕ denotes the bit-by-bit modulo 2 addition of two numbers 𝑗 and 𝑘 and the

reason why we use bitwise binary modulo is that the Walsh sequences are defined

under the binary basis [wiki walsh]. As defined in Equation (2.58), we can have:

𝐿𝑁(𝑗) =
1

𝑁

𝑁∑︁
𝑘=1

⟨𝜔(𝑘)𝜔(𝑘 ⊕ 𝑗)⟩ = 1

𝑁

𝑁∑︁
𝑘=1

𝐺𝑁(𝑗 ⊕ 𝑘 − 𝑘), (2.59)

which shows that the transform from the logical auto-correlation function 𝐿𝑁 to the

arithmetic auto-correlation function 𝐺𝑁 is linear. In order to tell the relation between

the measured attenuation 𝜒𝑚 and the logical auto-correlation function 𝐿𝑁 , we recall

Equation (2.55) and Equation (2.59). By altering 𝑗 to 𝑗 ⊕ 𝑘 and applying the dyadic

composition 𝑊𝑚(𝑗)𝑊𝑚(𝑘) = 𝑊𝑚(𝑗 ⊕ 𝑘), ∀𝑗, 𝑘 ∈ 𝒩 as well to Equation (2.55), we
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have:

𝜒𝑚 ≈ 𝑇 2

2𝑁2

∑︁
𝑘,𝑗⊕𝑘

𝐺𝑁(𝑗 ⊕ 𝑘 − 𝑘)𝑊𝑚(𝑗 ⊕ 𝑘)𝑊𝑚(𝑘), (2.60)

=
𝑇 2

2𝑁2

∑︁
𝑘,𝑗⊕𝑘

𝐺𝑁(𝑗 ⊕ 𝑘 − 𝑘)𝑊𝑚((𝑗 ⊕ 𝑘)⊕ 𝑘), (2.61)

=
𝑇 2

2𝑁2

∑︁
𝑗

(
∑︁
𝑘

𝐺𝑁(𝑗 ⊕ 𝑘 − 𝑘))𝑊𝑚(𝑗), (2.62)

=
𝑇 2

2𝑁

∑︁
𝑗

𝐿𝑁(𝑗)𝑊𝑚(𝑗)., (2.63)

which shows that the logical auto-correlation 𝐿𝑁 can be derived from the measured

attenuation 𝜒𝑚. Therefore, by repeating our experiment with a series of 𝑁 Walsh

functions, we can reconstruct the local auto-correlation 𝐿𝑁 .

Now, we have showed the linear transforms from measured attenuation 𝜒𝑚, to

logical auto-correlation function 𝐿𝑁 , and to arithmetic auto-correlation function 𝐺𝑁 .

However, as shown in Equation (2.59), we are not able to interpret 𝐿𝑁 in terms of

physical parameters, and currently, we only have the definition of 𝐿𝑁 in a dyadic

format instead of in the real time domain, which leads to the difficulty to reconstruct

𝐺𝑁 from 𝐿𝑁 since 𝑢 = 𝑡1 − 𝑡2 and 𝑣 = 𝑡1 ⊕ 𝑡2 belong to different integration spaces.

2.2.3 Transfer functions

In order to solve the problem stated above, we introduce a bi-linear transfer function

𝑇𝑁 [73] and a diagonal matrix 𝐷𝑁 [73] to convert the arithmetic auto-correlation

function 𝐺𝑁 that is expressed in the discrete time domain where 𝑡1 − 𝑡2 =
(𝑗1−𝑗2)𝑇

𝑁
to

the logical auto-correlation function 𝐿𝑁 that is expressed in the dyadic domain where

𝑡1 ⊕ 𝑡2 =
𝑗1𝑇
𝑁

⊕ 𝑗2𝑇
𝑁

.

The bi-linear transfer matrix 𝑇𝑁 can be recursively generated by following:

𝑇𝑁 =

⎛⎝ 𝑇𝑁/2 0

𝑇𝑁/2𝑆𝑁/2 𝑇𝑁/2

⎞⎠ , (2.64)
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where 𝑆𝑁 is so called the 𝑁 ×𝑁 shuffling matrix [73] with unit elements "off to the

right of the SW-NE diagonal" and we have 𝑆1 = 0 and 𝑇1 = 1. To further get a

glance of the bi-linear transfer matrix 𝑇𝑁 in detail, since 𝑆1 = 0 and 𝑇1 = 1, we can

derive 𝑇2 based on the definition:

𝑇2 =

⎛⎝ 𝑇1 0

𝑇1𝑆1 𝑇1

⎞⎠ , (2.65)

=

⎛⎝1 0

0 1

⎞⎠ . (2.66)

Then based on 𝑇2 we get above and 𝑆2 =

⎛⎝0 0

0 1

⎞⎠ , we can get 𝑇4 as:

𝑇4 =

⎛⎝ 𝑇2 0

𝑇2𝑆2 𝑇2

⎞⎠ , (2.67)

=

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.68)

Then based on 𝑇4 we get above and 𝑆4 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0,

⎞⎟⎟⎟⎟⎟⎟⎠ , we can get 𝑇8, and then

𝑇16, 𝑇32, et al.

The diagonal matrix defined as 𝐷𝑁 can be generated with 𝐷𝑁(𝑘, 𝑘) = 21−𝛿(𝑘,0)−𝑉𝑘

where 𝛿(𝑘, 0) = 1 if and only if k=0, 𝑉𝑘 is the number of ones of 𝑘 represented in the

binary format [73].

Now, we have explained the methods to numerically and recursively construct

both the bi-linear transfer function 𝑇𝑁(𝑘, 𝑗) and the diagonal matrix 𝐷𝑁(𝑘, 𝑘), such
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that:

𝐿𝑁(𝑘) = 𝐷𝑁(𝑘, 𝑘)
∑︁
𝑗

𝑇𝑁(𝑘, 𝑗)𝐺𝑁(𝑗). (2.69)

Therefore, we have:

𝐺𝑁(𝑗) =
∑︁
𝑘

𝑇−1
𝑁 (𝑘, 𝑗)𝐷−1

𝑁 (𝑘, 𝑘)𝐿𝑁(𝑘), (2.70)

where 𝑇𝐿−𝐺 shown in the chain (2.52) corresponds to 𝑇−1
𝑁 𝐷−1

𝑁 here.

Since the arithmetic auto-correlation function 𝐺 is even-symmetric about the ori-

gin, i.e. 𝐺(𝑡) = 𝐺(−𝑡), we can also assume the discretized arithmetic auto-correlation

function 𝐺𝑁 satisfies a similar equation 𝐺𝑁(𝑗) = 𝐺𝑁(−𝑗) for 𝑗 = 1, · · · , 𝑁 . Then,

by using discrete Fourier transform (as a reminder, DFT will be discussed in Sec-

tion 2.2.4), we can reconstruct the discretized noise spectrum 𝑆(𝜔𝑘) with a set of

discretized frequencies 𝜔𝑘 =
𝑁𝑘𝜋

(𝑁−1)𝑇
where 𝑘 = 0, · · · , (𝑁 − 1).

2.2.4 Discrete Fourier transform

Since the reconstructed Walsh auto-correlation are values of 𝐺(𝑡) in the discrete time

domain and CPMG spectrum are values of 𝑆(𝜔) in the discrete frequency domain

rather than the mean value in each of the time or frequency piece, here we will slightly

modify the discrete Fourier transform to make it compatible with our protocols and

to give less errors than existing fast Fourier transform functions such as the "fft"

functions in MATLAB®.

For the noise reconstruction with the Walsh method using 𝑁 = 2𝑛 sequences with

time 𝑇 , we first obtain the discrete values of the auto-correlation 𝐺(𝑡𝑗) with 𝑡𝑗 =

0, 𝑇
𝑁
, · · · , 𝑇 (𝑁−1)

𝑁
where correspondingly 𝑗 = 0, 1, · · · , (𝑁 − 1). With the assumption

of a symmetric auto-correlation such that 𝐺(−𝑡) = 𝐺(𝑡), we can extend the time

range and obtain (2𝑁 − 1) points of discrete 𝐺(𝑡𝑗) with 𝑡𝑗 = 𝑗𝑇/𝑁 , 𝑗 = −(𝑁 −

1), · · · , 0, · · · , (𝑁 − 1). The corresponding discrete Fourier frequency components we

can obtain is then 𝑆(𝜔𝑘) with 𝜔𝑘 = 𝜋𝑘
𝑇 (𝑁−1)/𝑁

where 𝑘 = 0, · · · , 𝑁 − 1, which can be
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calculated as

𝑆(𝜔𝑘) =

∫︁ ∞

−∞
𝐺(𝑡)𝑒−𝑖𝜔𝑘𝑡𝑑𝑡 (2.71)

≈
𝑁−1∑︁

𝑗=−(𝑁−1)

𝐺(𝑡𝑗)𝑒
−𝑖𝜋 𝑘

𝑇 (𝑁−1)/𝑁
𝑗𝑇
𝑁 ∆𝑡 (2.72)

=
𝑁−1∑︁

𝑗=−(𝑁−1)

𝐺(𝑡𝑗)𝑒
−𝑖𝜋 𝑘𝑗

𝑁−1∆𝑡 (2.73)

where ∆𝑡 = 𝑇/𝑁 .

2.2.5 Summary of discrete Walsh reconstruction method

To sum up, based on the operational chain (2.52), we can reconstruct the noise

spectrum by using Walsh modulation functions and a series of different linear trans-

formation correspondingly in practice with following steps:

1. measure 𝜒𝑚 under the Walsh modulation function 𝑦𝑚(𝑡) for 𝑚 = 1, · · · , 𝑁 ;

2. calculate the discrete logical auto-correlation 𝐿𝑁(𝑘) for 𝑘 = 1, · · · , 𝑁 based on

𝐿𝑁(𝑘) =
2𝑁

𝑇 2

∑︁
𝑚

𝑊−1
𝑁 (𝑘,𝑚)𝜒𝑚; (2.74)

3. calculate the discrete arithmetic auto-correlation 𝐺𝑁(𝑗) for 𝑗 = 1, · · · , 𝑁 based

on Equation (2.70);

4. calculate the discrete noise spectrum 𝑆(𝜔) by applying the discrete Fourier

transform of the arithmetic auto-correlation 𝐺𝑁 based on Equation (2.73).
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Chapter 3

Comparison between the Walsh

reconstruction method and the

Carr-Purcell-Meiboom-Gill

reconstruction method

As we discussed in Section 2, before our work, only the CPMG dynamical decou-

pling sequences and the XYs dynamical decoupling sequences were used in noise

spectroscopy. Considering the numbers of 𝜋-pulses in Walsh sequences of the Walsh

reconstruction method are not always the multiples of 4, in this thesis and our real

work, we will only conduct the comparison between the CPMG reconstruction method

and the Walsh reconstruction method.

In this chapter, we will first introduce the noise model - the Ornstein–Uhlenbeck

(OU) process we use with aspects of its history and its key characteristics in Sec-

tion 3.1, and second introduce the metric in our work to quantify the reconstruction

errors including both the average error and the individual error in Section 3.2, and

then show the simulation results and corresponding analysis to compare the CPMG

reconstruction method and the Walsh reconstruction method in Section 3.3, and fi-

nally under the framework of the metrics we introduce and develop in Section 3.2,
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demonstrate the statistical analysis of the OU process in Section 3.4.

3.1 Noise model – the Ornstein-Uhlenbeck process

Different noise models such as Gaussian noise model, white noise model and Poisson-

Gaussian noise model, etc., have been developed to interpret and understand un-

avoidable noise in different circumstances [16].

In particular, the OU process, named after Leonard Salomon Ornstein and George

Eugene Uhlenbeck, is a Gauss-Markov stochastic process [87, 3]. The OU model has a

lot of applications in diverse areas such as mathematical finance [21, 56], physics [12]

and biology [60, 45]. In terms of the applications specifically in physics, the velocity

of massive Brownian particles with the impact of friction [33] can be modeled the OU

process and it is also the original physics application of the OU process model. Most

significantly, the characteristic spectrum of a spin qubit dipolarly coupled to a spin

bath also can be described by OU process [26], which is exactly the model we use for

noise modeling and simulation in this thesis.

3.1.1 Characteristics of the Ornstein-Uhlenbeck process

In Ref. [36, 37], the time trace of the OU noise 𝜔(𝑡) was defined as:

𝜔(𝑡+ 𝑑𝑡) = 𝜔(𝑡)𝑒−
𝑑𝑡
𝜏𝑐 + 𝑟

√︁
𝑏2(1− 𝑒−

2𝑑𝑡
𝜏𝑐 ), (3.1)

where 𝜏𝑐 characterizes the correlation time, 𝑏2 represents the strength of the noise,

and 𝑟 is a random number following a standard normal distribution. We only consider

the discrete OU process, which means that we have a time step ∆𝑡 regarded as the

smallest time interval we can address. Therefore, the time-dependent noise field 𝜔(𝑡)

of the OU noise can be traced as:

𝜔(𝑡+∆𝑡) = 𝜔(𝑡)𝑒−
Δ𝑡
𝜏𝑐 + 𝑟

√︁
𝑏2(1− 𝑒−

2Δ𝑡
𝜏𝑐 ). (3.2)
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In addition,the OU noise 𝜔(𝑡) has an auto-correlation:

𝐺(𝑡) = ⟨𝜔(𝑡)𝜔(0)⟩ = 𝑏2𝑒−
𝑡
𝜏𝑐 . (3.3)

Correspondingly, the noise spectrum is then written as:

𝑆(𝜔) =

∫︁ ∞

−∞
𝑑𝑡(𝐺(𝑡)𝑒−𝑖𝜔𝑡) =

∫︁ ∞

−∞
𝑑𝑡(𝑏2𝑒−

|𝑡|
𝜏𝑐 )𝑒−𝑖𝜔𝑡 =

2𝑏2𝜏𝑐
1 + 𝜔2𝜏 2𝑐

(3.4)

which is a Lorentzian spectral line shape.

Furthermore, as for the noise source with a nonzero frequency shift 𝜔𝑠 such that

the corresponding noise spectrum is modified to:

𝑆𝜔𝑠(𝜔) =
𝑏2𝜏𝑐

1 + (𝜔 − 𝜔𝑠)2𝜏 2𝑐
+

𝑏2𝜏𝑐
1 + (𝜔 + 𝜔𝑠)2𝜏 2𝑐

. (3.5)

Its auto-correlation function is modified to the formula as:

𝐺𝜔𝑠(𝑡) = ⟨𝜔(𝑡)𝜔(0)⟩ = 𝑏2𝑒−
𝑡
𝜏𝑐 cos(𝜔𝑠𝑡). (3.6)

Again, in the following analysis parts of this chapter, we will continue to use the

OU process as the noise model.

3.2 Metrics to quantify reconstruction errors

We have discussed how to reconstruct noise spectrum with the CPMG reconstruction

method and the Walsh reconstruction method in Section 2.2.4. Next, we will discuss

how to quantify reconstruction errors and then apply the metric to compare the errors

generated in the CPMG method process and the Walsh method process respectively.

In Section 3.2.1, we will recall the different processes of the Walsh reconstruction

method and the CPMG reconstruction method, and then establish the criteria we

need to develop the metrics to quantify errors. In Section 3.2.2, we will not only

introduce our metric to quantify the reconstruction average errors but also explain
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why the other commonly used average error metric does not work here. Finally, in

Section 3.2.3, we will discuss the individual metric we use to quantify errors.

3.2.1 Overview of the metrics to quantify errors

Errors will be introduced when the discrete Fourier transform is actually applied in

noise spectroscopy instead of Fourier transform. In order to evaluate the reconstruc-

tion in both time and frequency domains, we make them comparable through proper

normalization. Herein, we define two metrics to quantify the average error and the

individual error during the noise reconstruction process.

3.2.2 The metric to quantify the average error

For a reconstructed noise parameter 𝑂 and its corresponding theoretical value 𝑂0

(here 𝑂 can be either noise spectrum 𝑆(𝜔) in frequency domain or arithmetic noise

auto-correlation 𝐺(𝑡) in time domain), we define the average error as:

𝜖(𝑂) =

∑︀
𝑖(𝑂(𝑖)−𝑂0(𝑖))

2∑︀
𝑖(𝑂0(𝑖))2

. (3.7)

Another commonly used metric to quantify the average error can be written as:

𝜖(𝑂) =
∑︁
𝑖

(𝑂(𝑖)−𝑂0(𝑖))
2

(𝑂0(𝑖))2
. (3.8)

However, in our case, we cannot guarantee that, for each 𝑖 which represents a point

we analyze, each 𝑂0(𝑖) will be nonzero. Therefore, if there exists a theoretical zero

value of 𝑂0(𝑖), we then will not be able to normalize the errors of each individual

reconstructed point, and correspondingly the average error cannot be well defined.

Therefore, we use the metric defined in Equation (3.7) to quantity the average error.
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3.2.3 The metric to quantify the individual error

In addition, to discuss the error of noise reconstruction in different frequency or time

regions, we can define the error for an individual reconstructed point as:

𝐸(𝑂(𝑖)) =

⃒⃒⃒⃒
(𝑂(𝑖)−𝑂0(𝑖))

𝑂0(𝑖)

⃒⃒⃒⃒
, (3.9)

which is similar and comparable to the definition of the attenuation 𝜒 error in Ref. [82].

3.3 Simulation results and analysis

On the basis of the OU noise model, we will discuss the comparison between the Walsh

reconstruction method and the typical dynamical decoupling - CPMG reconstruction

method.

In this Section 3.3, we will first demonstrate the metric that we exclusively develop

to compare the two reconstruction methods and secondly look into the errors raised

by the two methods numerically and analytically in Section 3.3.1 with a focus on

Figure 3-2 and Figure 3-3. Then, in Section 3.3.2, different from the view of the

average errors discussed in Section 3.3.1, we will briefly elaborate the individual errors

led by the two reconstruction methods respectively.

3.3.1 Reconstruction comparison between the Carr-Purcell-

Meiboom-Gill method and the Walsh method with the

average error

In order to make a fair comparison, the first and last sequences for the CPMG

reconstruction method are designed to sample the same frequencies as the Walsh

reconstruction method such that the ranges of reconstructed spectrum 𝑆(𝜔) and

auto-correlation 𝐺(𝑡) are the same as (or very similar to) the Walsh reconstruction

method. In addition, the total sequence time ∼ 𝑁𝑇 for both methods should also

be similar to each other. More precisely, the first sequence of CPMG scheme is a
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Ramsey sequence with 𝑓(𝑡) = 1, and the 2𝑘, (2𝑘 + 1) sequences are both CPMG-𝑘

sequences with pulse interval 𝜏2𝑘 = 𝑇/(2𝑘 − 1), 𝜏2𝑘+1 = 𝑇/(2𝑘) respectively, where

the values of 𝑘 go from 1 to 𝑁/2. Such a set of CPMG sequences gives a sam-

pling in the frequency domain 𝜔𝑘 = 𝑘𝜋/𝑇 with 𝑘 = 0, · · · , 𝑁 . Assume a symmetric

spectrum such that 𝑆(−𝜔) = 𝑆(𝜔). Then we can extend the frequency range and

obtain discretized 𝑆(𝜔𝑘) with 2𝑁 + 1 points 𝜔𝑘 = −𝜋𝑁
𝑇
, · · · ,− 𝜋

𝑇
, 0, 𝜋

𝑇
, · · · , 𝜋𝑁

𝑇
where

𝑘 = −𝑁, · · · , 0, · · · , 𝑁 . The corresponding discretized auto-correlation we can obtain

is then 𝐺(𝑡𝑗) with 𝑡𝑗 = 𝑗𝑇
𝑁

where 𝑗 = 0, · · · , 𝑁 , which can be calculated as

𝐺(𝑡𝑗) =
1

2𝜋

∫︁ ∞

−∞
𝑆(𝜔)𝑒𝑖𝜔𝑡𝑗𝑑𝜔 (3.10)

≈ 1

2𝜋

𝑁∑︁
𝑘=−𝑁

𝑆(𝜔𝑘)𝑒
𝑖𝜋 𝑘

𝑇
𝑗𝑇
𝑁 ∆𝜔 (3.11)

=
𝑁∑︁

𝑘=−𝑁

𝑆(𝜔𝑘)𝑒
𝑖𝜋 𝑘𝑗

𝑁
∆𝜔

2𝜋
. (3.12)

An example of the comparison with 𝑁 = 32 and 𝑇 = 16 𝜇s is shown in Figure 3-1.

In Figure 3-1, to compare the CPMG reconstruction method and the Walsh recon-

struction method, the sequence time 𝑇 is fixed, the sampling of these two methods in

time and frequency domains are very similar. To maintain the same centers of peak

positions in the filter functions which are calculated as |𝐹 (𝜔)|2 = |
∫︀
𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡|2, the

only slight differences between these two methods happen in the CPMG-2𝑘 sequences

compared to the Walsh-2𝑘 sequences where 𝑘 = 1, . . . , 8. In this example, the total

sequence time for the Walsh method is 16× 16 𝜇s = 256 𝜇s, while the total sequence

time for the CPMG method is 256 𝜇s + (16
1
+ 16

3
+ · · · + 16

15
) 𝜇s ≈ 288 𝜇s, which is

around 12.6% longer.

At this moment, we have developed a metric to compare the Walsh reconstruction

method and the CPMG reconstruction method. Next, we will look into the simulation

results and draw conclusions about the two methods in terms of reconstruction and

errors (average errors discussion in this Section 3.3.1 and individual errors discussion

in the next Section 3.3.2).
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Figure 3-1: An example of the comparison by using the Walsh and CPMG sequences
respectively when 𝑁 = 32 and 𝑇 = 16 𝜇s. The filter functions in both (b) and (d)
are calculated as |𝐹 (𝜔)|2 = |

∫︀
𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡|2.
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Figure 3-2: (a) Arithmetic auto-correlation reconstruction. The OU noise parameters
we set here are 𝜏𝑐 = 4 𝜇s, 𝑏2 = 0.003125 𝜇s, 𝜔𝑠 = (2𝜋)0.3 MHz. The sequence time
for both Walsh method and CPMG method is 𝑇 = 32 𝜇s. To better visualize the
comparison, data is shown only from 0 to 15 𝜇s. (b) Noise spectrum reconstruction
with the same parameters as (a). The “Walsh fit" plots Equation (3.5) with the fitting
value of 𝑏2, 𝜏𝑐, 𝜔𝑠 from the corresponding arithmetic auto-correlation data in (a).

We consider the noise satisfying an OU model with a non-zero frequency shift 𝜔𝑠

and the correlation time denoted as 𝜏𝑐. In our simulation, the OU noise parameters we

set are 𝜏𝑐 = 4 𝜇s, 𝑏2 = 0.003125 𝜇s, 𝜔𝑠 = (2𝜋)0.3 MHz and the sequence time for both

of the Walsh method and the CPMG method is 𝑇 = 32 𝜇s. Figure 3-2 and Figure 3-

3 fully include the corresponding simulation results. The inset (a) of Figure 3-2

shows the arithmetic auto-correlation 𝐺(𝑡) reconstruction. To better visualize the

comparison, data is shown only from 0 to 15 𝜇s because the differences among all sets

of data become minor after 10 𝜇s. Both the Walsh method and the CPMG method

can well reconstruct the the arithmetic auto-correlation 𝐺(𝑡). As shown in the (a),

when 𝑛 is larger changing from 𝑛 = 5 to 𝑛 = 7, the Walsh method can perform 𝐺(𝑡)

reconstruction better. The inset (b) of Figure 3-2 shows the noise spectrum 𝑆(𝜔)

reconstruction. When 𝑛 is relatively small (𝑛 = 5), the CPMG method reconstructs

the noise spectrum 𝑆(𝜔) better than the Walsh method. However, when 𝑛 becomes

relatively larger (𝑛 = 7), the reconstruction of 𝑆(𝜔) via the Walsh method can be

significantly improved.

To better interpret the effects mentioned in Figure 3-2, we simulate and obtain
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Figure 3-3: (a) 𝑛 dependence of average reconstruction error. The OU noise param-
eters 𝜔𝑠, 𝑏

2, 𝜏𝑐 and the sequence time 𝑇 are the same as the inset (a) in Figure 3-2. (b)
𝜏𝑐 dependence of average reconstruction error. Parameters 𝑏2 and 𝑇 are same as (a).
𝑛 is fixed as 10. Two Walsh cases with 𝜔𝑠 = 0 and 𝜔𝑠 = (2𝜋)0.1 MHz are included as
a comparison. The color rules are the same as (a) except for notifications. The ana-
lytical curve plots the |∆𝜒/𝜒|2 in Equation (2.51). DFT-limited (Section 2.2.4) 𝜖(𝑆)
and 𝜖(𝐺) are the errors of noise spectrum and arithmetic auto-correlation obtained
respectively through DFT of discretized theoretical 𝐺(𝑡𝑗) and 𝑆(𝜔𝑗).

the reconstruction average errors by varying the number of sequences 𝑛, i.e. the

reconstruction average errors as a function of 𝑛. The results are shown in the inset (a)

of Figure 3-3. When 𝑛 becomes larger, the reconstruction average error of the Walsh

method keeps decreasing, while the reconstruction average error of the CPMG method

decreases at a similar rate, and then decreases faster, and then saturates and reaches

its plateau when 𝑛 = 6. The inset (a) demonstrates that, for either the arithmetic

auto-correlation 𝐺(𝑡) reconstruction or the noise spectrum 𝑆(𝜔) reconstruction, the

Walsh method can conduct a more accurate reconstruction as the number of sequences

𝑛 increases to a sufficient large one. However, the CPMG method can only provide

more information in the higher frequency range but has minor effects in the low

frequency range as 𝑛 increases with more samplings. The advantages of the Walsh

method become more prominent when the overall noise spectrum concentrates in a

low frequency range.

In Ref. [82], it was known that the average error of the CPMG method is dom-
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inated by the relation between the correlation time 𝜏𝑐 and the sequence time 𝑇 . To

validate the error of the Walsh method is not restricted by the relation, we analyze

the variation of the reconstruction error as a function of the correlation time 𝜏𝑐 in the

inset (b) of Figure 3-3 with 𝑛 = 10 fixed. As we discussed in Section 2.2, the Walsh

reconstruction method has two main types of errors:

• the error of arithmetic auto-correlation 𝐺(𝑡) reconstruction in time domain re-

sulted from discretization error;

• the error of noise spectrum 𝑆(𝜔) reconstruction in frequency domain caused by

DFT (Section 2.2.4).

To exclude the potential second error mentioned above, we firstly compare the aver-

age error of the arithmetic auto-correlation 𝐺(𝑡) reconstruction by using the Walsh

method with the average error of the noise spectrum 𝑆(𝜔) reconstruction by using

the CPMG method, which means we now only look into the 𝜖(𝑆)𝐶𝑃𝑀𝐺 related error

data (hollow red triangles) and the 𝜖(𝐺)𝑊𝑎𝑙𝑠ℎ related error data (solid blue dots) in

Figure 3-3 (b). We then can conclude that the 𝜖(𝑆)𝐶𝑃𝑀𝐺 fits well the analytical error

prediction line (the dark grey dashed line) [82], which increases as 𝜏𝑐 increases and fi-

nally reaches its plateau, while the 𝜖(𝐺)𝑊𝑎𝑙𝑠ℎ performs in an opposite direction, which

decreases as 𝜏𝑐 increases and saturates. Based on Equation (3.5), we can tell that, for

an OU noise with non-zero 𝜔𝑠, both 𝜔𝑠 and 𝜏𝑐 affect the reconstruction average error.

For a simpler situation, when 𝜔𝑠 is zero, the correlation time, or rather, the decay

time 𝜏𝑐 is the only factor that leads to the reconstruction average error theoretically

and the error decreases as 𝜏𝑐 becomes larger. Similarly, when 𝜔𝑠 is non-zero but 𝜏𝑐

is small, 𝜏𝑐 can lead to the imperfect sampling of the decay feature, which dominates

the average error. However, when 𝜔𝑠 is non-zero and 𝜏𝑐 is large, larger 𝜔𝑠 can re-

sult in the imperfect sampling of the oscillatory feature and also can contribute to a

larger saturation error which can be concluded from the inset (b) of Figure 3-3 (dark

and light grey dots). Therefore, the Walsh reconstruction method should be able to

accurately reconstruct the arithmetic auto-correlation 𝐺(𝑡) with sufficient sampling

in time domain.

56



After understanding the advantages the Walsh reconstruction method has in the

time domain, we will analyze the error of noise spectrum 𝑆(𝜔) reconstruction by using

the Walsh method, where the additional error caused by DFT should be taken into

consideration. This additional error may come from two causes:

• finite range of time domain that does not capture the full decay feature governed

by the noise correlation;

• finite sampling which does not capture the high frequency micro-motion.

In the inset (b) of Figure 3-3, we exclude the second possible cause by setting a

very large 𝑁 (𝑁 = 210 in our simulation) such that the limitation is only given by

the first cause. Then, we plot the DFT of the theoretical 𝐺(𝑡𝑗) (the green dashed

line), which dominates the noise spectrum reconstruction error 𝜖(𝑆)𝑊𝑎𝑙𝑠ℎ when 𝜏𝑐 is

large. Similarly, we plot the inverse DFT of the theoretical 𝑆(𝜔𝑗) (the red dashed

line), which dominates the auto-correlation reconstruction error 𝜖(𝐺)𝐶𝑃𝑀𝐺 when 𝜏𝑐 is

small due to the imperfect capture of high frequency component with finite frequency

range. We note that with the knowledge of the noise model, these limitations can

be overcome by fitting and extending the data to an infinite range before performing

Fourier transform.

As a summary for the average reconstruction errors in terms of the comparison

between the CPMG reconstruction method and the Walsh reconstruction method, we

have results and conclusions included in Table 3.1.

3.3.2 Reconstruction comparison between the Carr-Purcell-

Meiboom-Gill method and the Walsh method with the

individual error

In addition to the overall performance of the noise reconstruction discussed in Sec-

tion 3.3.1, in this Section, we discuss the error of individual points in the reconstructed

spectrum or the reconstructed arithmetic auto-correlation. The metric to quantify

the error of individual points has been defined as the Equation (3.9).
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Table 3.1: Summary of the comparison between the Walsh reconstruction method
and the CPMG reconstruction method.

Properties CPMG reconstruction method Walsh reconstruction method

Principle frequency-space sampling with
𝛿-like filter functions

time-space sampling, spectrum
obtained by Fourier transform

Error source 𝛿-function approximation of the
filter functions

(1) time-space sampling; (2)
Fourier transform of finite time
series (especially for 𝜏𝑐 ∼ 𝑇 )

Error analysis (1) 𝑇 ≫ 𝜏𝑐, almost perfect; (2)
𝑇 ∼ 𝜏𝑐, peak values bad, zero

frequency bad

(1) peak values better than CPMG
when 𝑇 ∼ 𝜏𝑐; (2) high frequency

part is usually bad due to
insufficient time-domain sampling

Improvement 𝜒 ∝ 𝑇𝑆(𝜔), measure the slope of
𝜒 ∼ 𝑇

(1) increase sampling; (2) properly
increase 𝑇

Advantages Easy and flexible to implement (1) the arithmetic auto-correlation
𝐺(𝑡) reconstruction is (almost)

perfect, only set by the sampling;
(2) low frequency (near zero

frequency) good performance; (3)
peak values accuracy simply

improved by increasing sampling

Disadvantages the arithmetic auto-correlation
𝐺(𝑡) reconstruction is both

affected by the accuracy of the
reconstructed noise spectrum 𝑆(𝜔)
and Fourier transform with finite

time series

the noise spectrum 𝑆(𝜔)
reconstruction is both affected by
the accuracy of the reconstructed
arithmetic auto-correlation 𝐺(𝑡),
sampling and Fourier transform

with finite time series
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In Figure 3-4, we show an example of the spectrum reconstruction error, where

the Walsh method has larger errors at larger frequencies due to insufficient time-

space sampling. When the number of sequences 𝑛 increases, the error for the Walsh

reconstruction method decreases for the overall frequencies while the error for the

CPMG reconstruction method decreases only for larger frequencies due to the effect

of considering more higher harmonics for the high frequency components.

Figure 3-4: Errors of individual points in the reconstructed noise spectrum 𝑆(𝜔) by
using the Walsh reconstruction method and the CPMG reconstruction method. The
parameters related to the OU noise model we set here are 𝜔𝑠 = 0, 𝜏 = 1 𝜇s, 𝑏2 =
0.003125 𝜇s.

3.4 Statistical analysis of the Ornstein-Uhlenbeck noise

model

As we discussed in Section 3.3, in terms of the noise reconstruction comparison,

we simulate the attenuation functions by directly calculating the integral in Equa-
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tion (2.7). However, those simulations assume an infinite number of experimental

averages or noise instances, which actually cannot be achieved in practical applica-

tions and cannot conduct a comprehensive evaluation on the possible errors induced

by the stochastic nature of the noise. Therefore, we additionally dive into the statis-

tical analysis of the OU noise model and draw conclusions about the potential effects

of insufficient numbers of experiments for averaging or finite noise instances in this

Section.

As shown in Section 3.1.1, we can use the Equation (3.1) defined in Ref. [36, 37] to

generate a static OU noise following a stationary Gaussian distribution. By updating

the time trace of the noise in the same fashion as the Equation (3.1), we can obtain

the noise functions at the following time nodes written as:

𝜔(𝑡+ 2𝑑𝑡) = 𝜔(𝑡+ 𝑑𝑡)𝑒−
𝑑𝑡
𝜏𝑐 + 𝑟1

√︁
𝑏2(1− 𝑒−

2𝑑𝑡
𝜏𝑐 ) (3.13)

= 𝜔(𝑡)𝑒−2 𝑑𝑡
𝜏𝑐 + 𝑟2

√︁
𝑏2(1− 𝑒−

2𝑑𝑡
𝜏𝑐 )𝑒−

𝑑𝑡
𝜏𝑐 + 𝑟1

√︁
𝑏2(1− 𝑒−

2𝑑𝑡
𝜏𝑐 ) (3.14)

· · · (3.15)

𝜔(𝑡+ 𝑘𝑑𝑡) = 𝜔(𝑡)𝑒−𝑘 𝑑𝑡
𝜏𝑐 +

(︁
𝑟1 + 𝑟2𝑒

− 𝑑𝑡
𝜏𝑐 + · · ·+ 𝑟𝑘𝑒

−(𝑘−1) 𝑑𝑡
𝜏𝑐

)︁√︁
𝑏2(1− 𝑒−

2𝑑𝑡
𝜏𝑐 ), (3.16)

where 𝑘 is a positive integer and is used to present the time node after 𝑘𝑑𝑡 since 𝑡.

Correspondingly, based on the Equation (3.3) defined in Section 3.1.1, the arith-

metic auto-correlation 𝐺(𝑘𝑑𝑡) is then calculated as:

𝐺(𝑘𝑑𝑡) = ⟨𝜔(𝑡+ 𝑘𝑑𝑡)𝜔(𝑡)⟩ = 𝑏2𝑒−
𝑘𝑑𝑡
𝜏𝑐 , (3.17)

where we use the fact that a chi-squared distribution can be constructed by squaring

a single standard normal distribution [47], which means that since 𝜔(𝑡)/𝑏 satisfying

a standard normal distribution, i.e. 𝜔(𝑡)/𝑏 ∼ 𝑁(0, 1), 𝜔(𝑡)2/𝑏2 is effectively a chi-

squared distribution, i.e. 𝜔(𝑡)2/𝑏2 ∼ 𝜒2
1. Note that when the noise trace is generated

from an initial time 𝑡0 with a constant value 𝜔(𝑡0) = const., the correlation between

times 𝑡 and 𝑡 + 𝑘𝑑𝑡 is ⟨𝜔(𝑡 + 𝑘𝑑𝑡)𝜔(𝑡)⟩ = 𝑏2𝑒−
𝑘𝑑𝑡
𝜏𝑐 (1− 𝑒−2

𝑡−𝑡0
𝜏𝑐 ), which can be reduced

to Equation (3.17) only when 𝑡 − 𝑡0 ≫ 𝜏𝑐 [37]. In practical simulation, we can set
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the initial point to a random number 𝜔(0) = 𝑏𝑟1 satisfying a Gaussian distribution

to avoid such a problem.

Since the Equation (3.17) is obtained under the assumption that sufficient numbers

of averages have been applied, it is crucial to have an estimate of the number of

averages required when it comes to practical implementations and applications. For

a single measurement (or noise instance), the "arithmetic auto-correlation" based on

the Equation (3.17) can be written as:

𝜔(𝑡+ 𝑘𝑑𝑡)𝜔(𝑡) = 𝜔(𝑡)2𝑒−
𝑘𝑑𝑡
𝜏𝑐 + 𝜔(𝑡)(𝑟1 + 𝑟2𝑒

− 𝑑𝑡
𝜏𝑐 + · · ·+ 𝑟𝑘𝑒

−(𝑘−1) 𝑑𝑡
𝜏𝑐 )

√︁
𝑏2(1− 𝑒−

2𝑑𝑡
𝜏𝑐 )

(3.18)

= 𝑏2𝑒−
𝑘𝑑𝑡
𝜏𝑐 + 𝜖0 + 𝜖1, (3.19)

where 𝜖0 and 𝜖1 both are zero-mean random variables corresponding to the first and

second terms in the Equation (3.18). The variance of the summation (𝜖0 + 𝜖1) can be

calculated through the following steps:

𝑣𝑎𝑟(𝜖0) = 2𝑏4𝑒−
2𝑘𝑑𝑡
𝜏𝑐 , (3.20)

𝑣𝑎𝑟(𝜖1) = 𝑏4(1− 𝑒−
2𝑑𝑡
𝜏𝑐 )(1 + 𝑒−

2𝑑𝑡
𝜏𝑐 + 𝑒−

4𝑑𝑡
𝜏𝑐 + · · ·+ 𝑒−

2(𝑘−1)𝑑𝑡
𝜏𝑐 ) (3.21)

= 𝑏4(1− 𝑒−
2𝑑𝑡
𝜏𝑐 )

1− 𝑒−
2𝑘𝑑𝑡
𝜏𝑐

1− 𝑒−
2𝑑𝑡
𝜏𝑐

(3.22)

= 𝑏4(1− 𝑒−
2𝑘𝑑𝑡
𝜏𝑐 ), (3.23)

𝑐𝑜𝑣(𝜖0, 𝜖1) = 0, (3.24)

𝑣𝑎𝑟(𝜖0 + 𝜖1) = 𝑣𝑎𝑟(𝜖0) + 𝑣𝑎𝑟(𝜖1) + 𝑐𝑜𝑣(𝜖0, 𝜖1) (3.25)

= 𝑏4(1 + 𝑒−
2𝑘𝑑𝑡
𝜏𝑐 ). (3.26)

Therefore, if the number of averages is finite and denoted by ⟨⟩𝑁 where the sub-

script 𝑁 represents the number of averages, the variance of the arithmetic auto-
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Figure 3-5: Variance of ⟨𝜔(𝑡)𝜔(0)⟩𝑁 in a simulated OU noise when 𝜏𝑐 = 4 𝜇s,
𝑏2 = 1 𝜇s, 𝜔𝑠 = 0 (Note that 𝜔𝑠 represents a nonzero frequency shift of the noise
source and we have defined it earlier in Section 3.1.1). (a) Variance of 𝐺(𝑡) in a
simulated static OU noise trace. We use a time step 0.03125 𝜇s and simulate the
noise from 0 to 32 𝜇s with 216 = 65536 repetitions. Then, the simulated noise traces
are correspondingly divided into 216−𝑛 groups with size 𝑁 = 2𝑛 such that the variance
of the mean value of different group size can be calculated. The theory curve is plotted
using the function 𝑏4(1+𝑒−2𝑡/𝜏𝑐 )

𝑁
. (b) The mean value of variances over all points in the

time traces for each 𝑁 in (a) plotted as a function of 𝑁 .

correlation can be written as:

𝑣𝑎𝑟(⟨𝜔(𝑡1)𝜔(𝑡2)⟩𝑁) =
𝑏4(1 + 𝑒−

2|𝑡1−𝑡2|
𝜏𝑐 )

𝑁
, (3.27)

and the ratio of the standard deviation to the arithmetic auto-correlation is then

derived as:
𝑠𝑡𝑑(⟨𝜔(𝑡1)𝜔(𝑡2)⟩𝑁)

⟨𝜔(𝑡1)𝜔(𝑡2)⟩
=

(1 + 𝑒
2|𝑡1−𝑡2|

𝜏𝑐 )√
𝑁

, (3.28)

which increases with the time difference. The relations derived above are validated

numerically in Figure 3-5, where we simulate an OU noise and plot the simulated

predicted variance of the arithmetic auto-correlation ⟨𝜔(𝑡)𝜔(0)⟩𝑁 and the theoretical

variance as well. For applications in practice, the Equations (3.27) and (3.28) can
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be used to evaluate whether the number of averages is sufficient enough or not. In

particular, when the number of averages is not adequate, the relative error in Walsh

reconstruction method may be instead dominated by the fluctuations of the noise

source itself especially for those points with larger 𝑡 in the arithmetic auto-correlation

𝐺(𝑡).

The analysis above only sets a theoretical upper bound without a precise value to

elaborate the error in the arithmetic auto-correlation reconstruction with the Walsh

method. The discretization of the continuous arithmetic auto-correlation takes the

average value of 𝜔(𝑡𝑗)𝜔(𝑡𝑘) (i.e. ⟨𝜔(𝑡𝑗)𝜔(𝑡𝑘)⟩) where 𝑡𝑗 ∈ [(𝑗 − 1)𝑇/𝑁, 𝑗𝑇/𝑁 ], 𝑡𝑘 ∈

[(𝑘 − 1)𝑇/𝑁, 𝑘𝑇/𝑁 ] as the 𝐺𝑁(𝑗 − 𝑘), which achieves an average effect and partly

decreases the influence of insufficient averages. In addition, under the stationary noise

assumption, the arithmetic auto-correlation is only dependent on the time difference,

so its reconstruction is an effective "average" of many "time pairs" in the time trace

with the same time difference, which yields less reconstruction errors as well. We

note that although these effects could potentially allow less averages for a satisfying

reconstruction, in Walsh experiments the minimal inter-pulse delay is usually set to

be smaller than the noise correlation time (for satisfying sampling in time dimension),

and the improvement of either aforementioned "average" effect is minor due to the

strong correlation within each inter-pulse delay.
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Chapter 4

Experimental demonstration of Walsh

noise spectroscopy with a single

nitrogen-vacancy center in diamond

Noise spectroscopy [66, 79], as a tool to characterize the noise within a quantum

system coupled with the external environment, plays an important role in quantum

technology and quantum engineering.

In practice, recently dynamical decoupling methods such as CPMG method and

XY method have been widely used to demonstrate various characterizations of noise

spectrum in terms of inclusive quantum sensors including solid state spins systems

such as quantum dots [63, 29] and nitrogen-vacancy (NV) centers in diamond [78, 9],

superconducting circuits such as superconducting flux qubit [18], et al. In our work, to

conduct noise reconstruction experimentally, we use a single nitrogen-vacancy (NV)

center in diamond as a quantum sensor.

In Section 4.1, we briefly introduce what is the NV center in diamond by showing

its crystal structure and its energy levels respectively, which can help understand why

a single NV center in diamond can be used as a quantum sensor in experiment. Next,

in Section 4.2, we will show the proof-of-principle demonstration of experimental

results. More specifically, in Section 4.2.1, we introduce the experimental setup used

for experiments such as multi-𝜋 pulse sequence generation et al. In Section 4.2.2,

65



we firstly recall the main conclusions we have drawn from Section 3.3.1 in terms of

the reconstruction comparison between the CPMG method and the Walsh method in

simulation. Then based on the experimental results, we will compare the simulation

conclusions with the experimental results and finally discuss several main potential

errors induced in experiment by using the Walsh reconstruction method and a few

corresponding potential ways to improve its experimental performance.

4.1 Nitrogen-vacancy centers in diamond

The NV center is a point defect in diamond and it is stable in the diamond crystal

structure [46, 31]. It consists of a nearest-neighbor pair of a nitrogen atom that sub-

stitutes in place of a carbon atom and a vacancy on an adjacent lattice site, resulting

in one of the defect’s symmetry axes being along four possible orientations, shown in

Figure 4-1 (a) [6, 81]. Analogous to energy level structures used in atomic physics, the

NV center has a triplet ground state, a triplet excited state and several meta-stable

states [30]. As shown in Figure 4-1 (b), the ground triplet state corresponding to

|𝑚𝑠 = 0⟩ and |𝑚𝑠 = ±1⟩ has a zero-field splitting 𝐷 ≈ 2.87𝐺𝐻𝑧 [68]. The |𝑚𝑠 = ±1⟩

states have an additional splitting proportional to an external magnetic field parallel

along the NV symmetry axis.

Figure 4-1: NV center in diamond. (a) The structure of a NV center. (b) Energy
levels of the NV center.

The atom-like properties of NV centers can help in its initialization and read-
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out [40]. The NV center can be excited from its ground state to its excited state

by a green laser (𝜆 ≈ 532𝑛𝑚) [68] and decay through the metastable singlet state

back to its ground state. The process is similar to the readout for the spin popula-

tion in |𝑚𝑠 = 0⟩ which is achieved by observing the intensity of the red fluorescence

(𝜆 ≈ 637𝑛𝑚) [68] while illuminating the system with a green laser. Then, the pop-

ulation will concentrate into the |𝑚𝑠 = 0⟩ state after the excitation and spontaneous

decay. By applying a microwave whose frequency is on resonance with the energy dif-

ference between |𝑚𝑠 = 0⟩ and |𝑚𝑠 = 1⟩ (or between |𝑚𝑠 = 0⟩ and |𝑚𝑠 = −1⟩), we can

create a superposition state between the corresponding two states, in a manner that

we could use a method for a two-level system to analyze the process. Subsequently,

we can control the coherent spin qubit to measure external physical quantities such

as external magnetic [86, 62, 8, 30] and electric [32] fields and time dependent noise.

4.2 Comparison of noise reconstruction

In this section, we will firstly introduce the experiment setup we use in the laboratory

and secondly demonstrate experimental results, and finally discuss the experimental

performance and corresponding improvements we can conduct in practice.

4.2.1 Experimental setup

We use a homemade confocal optical setup [93, 57], where the 532 𝑛𝑚 laser (SPROUT,

Lighthouse Photonics) is applied to prepare a spin qubit to its initial state, and the

red fluorescence is collected by a single photon detector (Perkin Elmer SPCM-AQRH-

14). We use a permanent magnet to generate a static magnetic field at around 460 𝐺

(i.e. 0.046 𝑇 ) along one of the NV axes to lift the degeneracy of the NV ground

states. In practice, two states |𝑚𝑆 = 0⟩ and |𝑚𝑆 = −1⟩ of the NV center are used as

a spin qubit. The 1.5 GHz microwave signal is generated by a RF signal generator

(Stanford Research System). The phase-controlled 50 MHz microwave signal is firstly

generated by an arbitrary waveform generator (WX1284C) and secondly amplified by

an amplifier (Mini-Circuits, ZHL-30W-252-S+) and then applied to the diamond by
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a 25 𝜇m diameter straight copper wire, which delivers the microwave (MW) control

fields to apply pulse sequences. These two microwave signals are mixed by an IQ

mixer. All these electronic and optical devices/instruments are synchronized by a

pulse blaster (PulseBlasterESR-PRO 500).

Figure 4-2: Experimental setup. (a) A single NV in diamond surrounded by a spin
bath of 13𝐶. (b) An example experiment sequence for the sixth Walsh sequence. (c)
XY con-focal scan to position a single NV center. The NV center we use at the depth
around 30 𝜇m of the diamond sample is highlighted by the white circle.

We use this setup to reconstruct noise spectrum with a specific quantum sensor - a

single NV center in diamond. As is shown in the inset (a) of Figure 4-2, at the depth

around 30 𝜇m of the diamond sample, 13𝐶 nuclear spins are the main composition of

the spin bath. The inset (b) of Figure 4-2 demonstrates an example sequence we use

in experiment, where the sixth Walsh sequence is applied. The inset (c) of Figure 4-2

shows how we position a single NV center through XY con-focal scan.

4.2.2 Experimental results and performance discussion

Before showing the experimental results, we first briefly recall the simulation results

and conclusions.

For the Walsh reconstruction method, we have:

• The arithmetic auto-correlation 𝐺(𝑡) is well reconstructed before the noise spec-

trum 𝑆(𝜔). The error of the arithmetic auto-correlation 𝐺(𝑡) is sourced from

the relation between the time-space sampling 𝑇/𝑁 and the characteristic noise

properties.
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For an OU noise with a frequency shift 𝜔𝑠, the characteristic timescale is given

by the correlation time 𝜏𝑐 and the noise period 𝑇𝑠 = 2𝜋/𝜔𝑠.

• The noise spectrum 𝑆(𝜔) is reconstructed through DFT of the arithmetic auto-

correlation 𝐺(𝑡). In addition to the error that linearly propagated from the

arithmetic auto-correlation 𝐺(𝑡), DFT of finite time series introduces the error

dominated by the relation between 𝜏𝑐 and 𝑇 .

For the CPMG reconstruction method, we have:

• The noise spectrum 𝑆(𝜔) is reconstructed before the arithmetic auto-correlation

𝐺(𝑡) and the error is dominated by the relation between the frequency-space

sampling 𝜋/𝑇 and the characteristic spectrum properties including noise fre-

quencies and linewidths. The main error is sourced from the 𝛿-function approx-

imation of the filter functions, which can be eliminated when 𝜏𝑐/𝑇 ≪ 1.

• 𝐺(𝑡) is reconstructed through DFT of 𝑆(𝜔). In addition the error that linearly

propagated from 𝑆(𝜔), DFT of finite time series introduces error dominated by

the relation between 𝜋/𝑇 and the characteristic spectrum properties including

the noise frequency shift 𝜔𝑠, linewidths ∼ 1/𝜏𝑐, as well as the frequency-sampling

range.

Proof-of-principle demonstration of experimental results

We reconstruct the arithmetic auto-correlation 𝐺(𝑡) and the noise spectrum 𝑆(𝜔)

by applying the CPMG sequences and the Walsh sequences respectively in the ex-

perimental setup demonstrated in Section 4.2.1. The sequence parameters we set in

experiment include that the sequence time is 𝑇 = 8 𝜇s, the number of sequences is

𝑁 = 25 = 32. As is shown in the panel (a) of Figure 4-3, both the Walsh method

and the CPMG method can reconstruct the arithmetic auto-correlation 𝐺(𝑡) with an

oscillation frequency around 0.5 MHz. Correspondingly, we can consistently conclude

that in the panel (b) of Figure 4-3, both methods can reconstruct the noise spectrum

with a peak around 0.5 MHz, which matches the the predicted Larmor frequency of
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Figure 4-3: Experimental results. (a) Reconstructed arithmetic auto-correlation
𝐺(𝑡). (b) Reconstructed noise spectrum 𝑆(𝜔). The same sequence time 𝑇 = 8 𝜇s and
number of sequences 𝑁 = 25 = 32 are used in (a) and (b).

the nuclear spin 13𝐶 considering 13𝐶 nuclear spins are the main composition of the

spin bath (Figure 4-2 (a)).

Performance discussion

In Section 3.3 (Figures 3-2 and 3-3), we conclude via simulation that the Walsh

method can (almost) perfectly reconstruct the arithmetic auto-correlation 𝐺(𝑡) and

can improve the reconstructed noise spectrum 𝑆(𝜔) by simply increasing its time-

space sampling, which indicates that the Walsh method can outperform the CPMG

reconstruction method with finite time series and a relatively large pulse number.

However, as is shown in Figure 4-3, the error bar of the reconstructed arithmetic

auto-correlation 𝐺(𝑡) and noise spectrum 𝑆(𝜔) by using the Walsh method is larger

than that by using the CPMG method. In addition, as time 𝑡 increases, the error bar

becomes larger for the Walsh method. These indicate that due to the existence of

other practical errors, the alignment between experimental results and the simulation

results may vary conditional on different scenarios with different parameters.

In the remaining part of Section 4.2.2, we will look into and analyze several main

factors that induced in experiment, from which some potential improvements we can
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conduct will be enlightened.

Figure 4-4: Error propagation. (a) The transform matrix from 𝜒(𝑗) to 𝐺(𝑖) when
using the Walsh reconstruction method. (b) The transform matrix from 𝜒(𝑗) to 𝑆(𝑖)
when using the CPMG reconstruction method. The same parameters 𝑇 = 32 and
𝑁 = 24 = 16 are used in (a) and (b).

Firstly, during the data collection, the error will be introduced. The relative error

of the attenuation 𝜒 (i.e. 𝜎𝜒

𝜒
) can be written as:

𝜎𝜒
𝜒

=
2𝜎𝑃 · 𝑒𝜒

𝑐 · 𝜒
, (4.1)

where 𝑐 is the signal contrast and 𝜎𝑃 is the uncertainty of the projective measurement,

which can be caused by photon shot-noise limit or projection limit [11]. Based on

the definition of Eq. (4.1), the minimal value of the relative error 𝜎𝜒

𝜒
can be reached

when the value of the attenuation 𝜒 is 1 and the uncertainty of the projective mea-

surement 𝜎𝑃 is independent of the attenuation 𝜒 [11]. Consequently, when either

the value of the attenuation 𝜒 increases or decreases, the relative error 𝜎𝜒

𝜒
will in-

crease. As we discussed in Chapter 2, the Walsh reconstruction method relies on

a series of pulse sequences while the typical dynamical decoupling methods used in

noise spectroscopy such as the CPMG reconstruction method only simply relies on a

single pulse sequence. Therefore, for the Walsh method, different sequence compo-

nents have different decoherence. For example, in Figure 3-1 (a), the 𝑤1 sequence is
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actually a Ramsey, which naturally has a much faster decoherence compared to the

remaining 𝑤2, 𝑤3, . . . , 𝑤16 sequences. Furthermore, since the Walsh reconstruction

method involves three linear transforms when the attenuation 𝜒 is being transformed

to the noise spectrum 𝑆(𝜔), the errors of the attenuation 𝜒 generated even only in

a few sequences, particularly in the first Ramsey sequence, are propagated from the

attenuation 𝜒 to the arithmetic auto-correlation 𝐺(𝑡) by using two non-diagonal ma-

trices (Section 2.2) and contaminate most points in the reconstructed arithmetic auto-

correlation 𝐺(𝑡); and then the errors spreading in the the arithmetic auto-correlation

𝐺(𝑡) are further propagated to the noise spectrum 𝑆(𝜔). On the other hand, for

the CPMG reconstruction method, the transformation from the attenuation 𝜒 to the

noise spectrum 𝑆(𝜔) is almost diagonal. The comparison of the transformations for

the Walsh method and the CPMG method with same parameter profile is explicitly

and respectively. shown in Figure 4-4 (a) and (b). The panel (a) is the transform

matrix used in the Walsh method transforming the discrete attenuation 𝜒(𝑗) through

a complicated non-diagonal matrix to the discrete arithmetic auto-correlation 𝐺(𝑖).

The panel (b) is the transform matrix used in the CPMG method transforming the

discrete attenuation 𝜒(𝑗) through a close-to-diagonal matrix to the discrete noise

spectrum 𝑆(𝑖) even after we take the higher order harmonics into consideration. This

error propagation effect in the Walsh method largely limits its performance in noise

spectroscopy in practice. One direct way to eliminate this limitation is to apply a

sequence consisting of 𝑀 concatenated Walsh sequence blocks and to measure the

decoherence as a function of 𝑀 . Then we can obtain a more precise value of the atten-

uation 𝜒 [83, 82] after correspondingly fitting the results to an exponential function

of 𝑀 .

Another error source can be the statistical averaging over sufficient realizations of

the noise process. When we discuss the Walsh reconstruction method in Section 2.2,

both of the auto-correlations (the arithmetic and the logical ones) are well defined

in Equation (2.55) and Equation (2.58) conditional on sufficient average of noise

instances such that:

⟨𝜔(𝑡)𝜔(0)⟩ = 𝐺(𝑡) + 𝜖(𝑡) ≈ 𝐺(𝑡). (4.2)
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However, when the average number of noise instances is large enough, we cannot

neglect the 𝜖(𝑡) term in Equation (4.2), and consequently cannot neglect the error

induced by the 𝜖(𝑡) term. For an OU process, as time 𝑡 increases, the relative variance

of the arithmetic auto-correlation 𝐺(𝑡) increases in an exponential-like trend due to

the exponential decrease of its average value, which will lead to a larger relative error

of the reconstructed arithmetic auto-correlation𝐺(𝑡) when 𝑡 becomes larger (the panel

(a) of Figure 4-3). Although the time discretization and the matrix transformations

during the Walsh reconstruction method can partially offset these effects, one direct

way to suppress the upper bound of the induced error is to increase the average

number in experiment.
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Chapter 5

Conclusion and outlook

In this thesis, we proposed and demonstrated a digital noise reconstruction method

called the Walsh method based on Walsh dynamical decoupling sequences. Our

method is intrinsically compatible with time discretization and the sequence control

in dynamical decoupling based experiments.

In Chapter 2, we introduce (i) several typical dynamical decoupling methods with

a focus on the dynamical decoupling-based noise reconstruction method - the CMPG

method; (ii) the Walsh reconstruction method in theory.

In Chapter 3, we compare the Walsh reconstruction method and the CPMG recon-

struction method by performing numerical simulation. From the simulation results,

we conclude that our Walsh method can (almost) perfectly reconstruct the arithmetic

auto-correlation and its performance can be easily improved under limited sequence

time by increasing the time-space sampling.

In Chapter 4, we show proof-of-principle experiments to characterize the environ-

mental noise of a single NV center in diamond with 13𝐶 nuclear spins as the main

composition of the spin bath. In addition, we discuss the potential sources of ex-

perimental errors during the method practical implementation and propose potential

improvements.

One direction of interest for future research based on the work mentioned in this

thesis is to extend the noise reconstruction to quantum-classical models, where both

the quantum and classical part of a noise bath can be reconstructed by the Walsh
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method efficiently [43, 72, 85, 49, 22]. Another direction of interest to explore but out

of the scope of the work is to study the dynamics of a quantum system under Walsh

sequences subjected to a non-classical or non-Gaussian noise [83, 64, 10, 24, 67], where

novel phenomena such as anomalous decoherence [44, 99] were discovered. Also, it

will be an interesting topic to apply Walsh sequences to reconstruct the polyspec-

tra of a non-Gaussian noise [64], or to perform cross-spectroscopy using multiple

qubits [52, 66, 84]. In addition, unlike periodic-dynamical decoupling-based noise

reconstruction methods where different pulse patterns contribute to the performance

improvement [43, 70, 58], the optimal control in Walsh noise reconstruction is a non-

trivial task due to the asymmetric pulse patterns [71], but is important for its practical

use.
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