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Abstract

Despite impressive advances that have made it the mainstream route towards build-
ing human-like AI, deep learning suffers from key limitations that make it unlikely
to replicate human intelligence on its own. Specifically, it is very data-hungry, often
generalizes poorly to new scenarios, and is not very interpretable, lacking features
like compositionality that characterize human knowledge. Given these shortcomings,
we explore a different approach to engineering human-like AI called program synthe-
sis, in which learned knowledge is represented in the form of a symbolic program.
Programs can be learned from limited data and can interpretably capture a wide
variety of structured knowledge. However, existing synthesis methods do not scale
to long programs that model very complex datasets. In this thesis, we expand the
horizon of programs that can be realistically synthesized by bridging methods from
two orthogonal communities within programming languages: the functional synthesis
and automata synthesis communities. We focus on the particular domain of causal
mechanism discovery in Atari-style grid worlds, and develop a synthesis algorithm
that infers a program describing the causal rules of the world from a sequence of
observations. We evaluate our algorithm on two benchmark datasets, including one
that we constructed using a new programming language called Autumn. Our ongo-
ing results signal the promise of our method, both for modeling efficient, human-like
causal discovery and in synthesis and learning contexts more broadly.

Thesis Supervisor: Armando Solar-Lezama
Title: Professor

Thesis Supervisor: Joshua B. Tenenbaum
Title: Professor

Thesis Supervisor: Zenna Tavares
Title: Associate Research Scientist, Columbia University

3



4



Acknowledgments

I am incredibly grateful to my advisors, Armando Solar-Lezama, Joshua Tenenbaum,

and Zenna Tavares, for all of their guidance in bringing this thesis to reality, and in

helping me become the researcher I am today. When I joined Armando’s lab as one

of Zenna’s undergraduate research assistants in March 2020, I knew almost nothing

about programming languages, even less about cognitive science, even less about what

it meant to be a good researcher, and even less about what on earth I wanted to do

with my life. Now, two years later, while I still have an enormous amount to learn, I

can say that I have achieved much clarity thanks to the interactions and discussions

I’ve had with them. I am especially grateful for all of the challenging but ultimately

very insightful conversations about how to best speak to the programming language

community versus the AI community versus the cognitive science community about

our work, which helped me figure out which communities I’d most like to be a part

of after my MEng. I am also thankful for the degree of independence they permitted

me to have during the MEng, even though there were many, many months in the

beginning when it really wasn’t clear if what I was working on had any value at all

(I was sure that Armando was going to fire me for wasting his money!). Beyond the

research, I also deeply appreciate all of the general life advice they gave me, especially

in the last few months as I tried to figure out what to do after graduating.

I owe special acknowledgement to Zenna in particular. Not only was the original

idea to study an Autumn-like domain his own, but his generosity in sharing his

visions both about the project and about the science of intelligence in general greatly

influenced my own interests and approaches. He is also incredibly generous in offering

his time whether I want to talk about low-level technical problems I’m having, higher-

level direction-setting questions, or just life generally. I am still in disbelief that he

has responded to so many of my late night/weekend cries for help across time zones

and continents, and hope that he will be able to take more relaxing vacations now

that I am graduating. Despite my frequent venting about life, I am extremely glad

that the other UROP adviser whose job posting I was considering two years ago took

5



too long to respond to my email.

Finally, I’d like to thank my friends and family, without whose encouragement this

thesis and MEng journey would have never happened. There were many moments in

the last few years when I almost give up. I’d have done so if it weren’t for the people

who picked up my phone calls and responded to my messages regardless of the hour,

and for them I am extremely grateful.

6



Contents

1 Introduction 17

1.1 A Bird’s Eye View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Bridging Functional and Automata Synthesis . . . . . . . . . . . . . . 20

2 Background and Related Work 29

2.1 Program Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Scientist as Child: Theory Learning in Children . . . . . . . . . . . . 31

2.3 Neurosymbolic Learning . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 The Autumn Domain 33

3.1 The Autumn Language . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 The Causal Inductive Synthesis Corpus (CISC) . . . . . . . . . . . . 38

3.3 Web Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 The AutumnSynth Algorithm 41

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Sample Execution . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 AutumnSynth Details . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Phase I: Object Perception . . . . . . . . . . . . . . . . . . . . 46

4.2.2 Phase II: Object Tracking . . . . . . . . . . . . . . . . . . . . 47

4.2.3 Phase III: Update Function Synthesis . . . . . . . . . . . . . . 48

4.2.4 Phase IV: Cause Synthesis . . . . . . . . . . . . . . . . . . . . 52

7



5 Evaluation 63

5.1 CISC Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 External Benchmark Suite: Preliminary Results . . . . . . . . . . . . 66

6 Conclusion and Future Work 75

6.1 Short-Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Long-Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A Additional Evaluation Details 79

8



List of Figures

1-1 An observation trace from the Mario program. Black arrows indicate

user keypresses and circles indicate user clicks. . . . . . . . . . . . . . 22

1-2 Sequence of grid frames from the Ice program. At times 1 and 4, the

user presses down (red arrow), releasing a blue water particle from

the gray cloud. The water moves down to the lowest possible height,

moving to the side (time 10) if necessary to reach this height. The user

presses down again at time 12, and then clicks anywhere (red circle)

at time 15. The click causes the sun to change color and the water to

turn to ice, which stacks rather than tries to reach the lowest height.

A down press at time 19 releases another ice particle from the cloud.

Finally, a click at time 24 changes the sun color back to yellow and

turns the ice back to water, which again seeks the lowest possible height. 23

1-3 A sample of Autumn programs. Clockwise from top-left: water inter-

acting with a sink and sink plug a clone of Space Invaders, plants grow-

ing under sunlight and water, a simplified implementation of Mario, a

simplified clone of Microsoft Paint, a weather simulation, snow falling

left or right with varying wind, an alternative gravity simulation, a

sand castle susceptible to destruction by water, and ants foraging for

food. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

9



1-4 (a) Diagram of automaton representing the numCoins latent variable

synthesized for the Mario program. The start value is zero, and the

accept values (i.e. the values during which clicked causes a bullet to

be added to the scene) are 1 and 2. (b) Description of the numCoins

latent variable in the Autumn language. . . . . . . . . . . . . . . . 26

3-1 Autumn program for the Sandcastle model, with frames (ordered, but

with time jumps in between) taken from a sample evaluation. The last

of the top two buttons clicked dictates whether a sand particle or water

particle is added upon clicking a free position. If water is adjacent to

sand, it changes the dry field of the sand, so that it changes color

and behaves as a liquid (i.e. moves to the lowest reachable height) as

opposed to stacking. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3-2 Autumn program describing the Water Plug model. In the first frame,

the purple structure at the bottom is a vessel, and the orange structure

is a plug that does not let water pass into the vessel. Excluding the

top row of buttons, purple squares are vessel particles, orange squares

are plug particles, and blue squares are water particles. Clicking an

uncolored (free) position adds a particle to that position, where the

type of particle depends on which of the top-left three buttons was

clicked last. The right-side frames are in order (from top to bottom)

but with time jumps: the user events during these jumps are the fol-

lowing: 1-2: clicking several free positions (new purple); 2-3: clicking

top orange button then several free positions (new orange); 3-4: click-

ing top blue button then several free positions (new blue, though water

moves down rather than being stationary); 4-5: clicking black button

(orange removed); 5-6: clicking red button (all removed). . . . . . . . 36

3-3 Still from the web interface for writing and interacting with Autumn

programs, showing the Water Plug program from the benchmark suite. 39

10



4-1 Sample execution of the AutumnSynth algorithm on an input se-

quence taken from the Mario example. The event and automata syn-

thesis steps together compose the cause synthesis step (Phase IV) as

described in Section 4.1.1. . . . . . . . . . . . . . . . . . . . . . . . . 43

4-2 Update Function Synthesis. Each cell of the update function matrix

contains a set of update functions that each describes the change un-

dergone by the object with object_id equal to the row index during a

particular time step (column index). A list of concrete update function

matrices, with one update function per cell, is extracted via frequency-

based heuristic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4-3 Bird’s-eye view of the automata synthesis problem, using the example

of the Mario program. The bullet addition update function, indicated

by addObj, does not have a matching trigger event. The closest event

is clicked, which co-occurs with bullet addition but also is true at

false positive times. We seek a latent variable that is true at one set of

times (accept values) and false at another set of times (reject values),

so that the conjunction of clicked and that latent variable perfectly

matches addObj’s times. As shown in the solution, this latent variable

initially has value zero, and changes to one then two on agent-coin

intersection, and changes back down on clicks. . . . . . . . . . . . . 57

4-4 Three variant methods for automata synthesis, shown for Gravity I.

The blue blocks move left, right, up, or down depending on the button

last clicked. The transition label left abbreviates (clicked leftButton),

etc. See note in Sec. 4.3.2. . . . . . . . . . . . . . . . . . . . . . . . . 61

11



5-1 Runtimes for the variant AutumnSynth algorithms on each of the

benchmark programs solved by at least one algorithm. Note that the

first 6 benchmarks (Ants, Chase, Magnets, Invaders, Sokoban, and Ice)

all do not contain latent state, so we currently evaluate only one of the

algorithms (Heuristic) on them (see Table 5.1 caption for further expla-

nation). We also note that the runtimes that exceed the size of the plot

did not finish before the timeout, and that synthesis success is defined

as producing a program that matches the observations—not necessar-

ily being semantically equivalent to the ground-truth program. Finally,

we note that while these results provide a snapshot of the current state

of our project, they are subject to change as we continue to develop

our variant algorithms. In particular, yet-to-be-implemented general-

izations of the Heuristic method and optimizations to the Sketch-based

algorithms could lead to different relative runtimes across the three al-

gorithms (e.g. lower Sketch runtimes and higher Heuristic runtimes)

for some benchmarks. See Section 5.1 for a more detailed discussion. 68

12



5-2 Sample latent state automata synthesized by AutumnSynth. (a)

Paint model. Each state corresponds to a different color, indicating the

color of the block added when a user clicks on an empty grid square.

Pressing up cycles through the colors. (b) Gravity III model. Each

state corresponds to one of the nine directions of motion formed by

crossing three possible x-directions (-1, 0, 1) with y-directions (-1, 0, 1).

(c) Water Plug model. Clicking one of three colored buttons changes

the color of the block added when a user clicks an empty grid cell to the

color of the button. (d) Wind model. Snow particles fall downward,

left-diagonally, and right-diagonally, depending on the wind state that

changes with left/right arrow keys. (e) Count IV model. Instead

of giving the Autumn language description for this automaton, we

show the on-clauses for the update functions that depend on the latent

variable instead. Here, a particle moves left if the total number of

left presses is greater than the total number of right presses up to a

maximum difference of 4. It moves right according to a similar rule,

and is stationary in state zero. . . . . . . . . . . . . . . . . . . . . . 69

5-3 Stills from a sample of programs in the EMPA suite, resized to fit

neatly into the figure. (a) Avoid George, where the dark blue agent

must avoid the yellow enemy, which chases it and the randomly moving

green objects. (b) Missile Command, in which the dark blue agent must

get to the green goal before the gates close. (c) Portals, in which some

blocks teleport the agent to other blocks. (d) My Aliens, in which the

agent collects orange and is killed by purple objects. (e) Plaque Attack,

in which the agent can shoot at orange enemies before they reach the

yellow goals. (f) Bees and Birds, where the randomly moving yellow

objects can kill the enemy before it reaches the green goal. . . . . . . 72

13



5-4 The Aliens program from the EMPA corpus. Pressing arrow keys

moves the blue agent left and right, and clicking causes it to shoot

a pink bullet upward, as long as there are no other pink bullets already

in the frame. Gold enemies are regularly created at the top-left corner,

and move right once every three time steps. The enemies randomly

shoot red bullets, which move down every two time steps. Pink bul-

lets kill enemies, red bullets kill the agent, and both bullets destroy

the gray shield blocks. The latent variables are the enemy and pink

bullet speeds: the bullets do not move in sync but rather every two

or three time steps from the time of their creation, so object-specific

latent fields are used to track when they move. . . . . . . . . . . . . 73

14



List of Tables

3.1 Descriptions of the 32 benchmark programs in the Causal Inductive

Synthesis Corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Table of input/output lengths and algorithm runtimes on each of the

benchmark programs. A bottom symbol indicates timeout after 12

hours. An X symbol indicates that the benchmark’s solution was out-

side the support of the synthesis algorithms (described in more detail

in Section 5.1) and thus we did not time the algorithms on these bench-

marks. We will add these evaluations in the final version of the paper,

when we have added the generalizations that alleviate these limitations.

In addition, the N/A’s for the Sketch and D&C Sketch runtimes on the

first seven benchmarks are there because those models do not possess

latent state, while the three algorithms vary only in their latent au-

tomata synthesis procedures. Since we wanted to highlight the runtime

differences arising from core automata synthesis differences instead of

lower-level algorithmic choices needed to support them (which would

be more prominent in models without latent state), we have only eval-

uated the Heuristic algorithm on these non-latent-state based models

for our first evaluation. Finally, Coins I, II, and III are marked with

an asterisk to indicate we only ran those models with the “single-cell”

object parsing algorithm rather than both algorithms in turn, due to

lack of time. This will also be updated in the future. . . . . . . . . . 67

15



5.2 Preliminary results from running AutumnSynth on the EMPA bench-

mark suite. The runtimes indicate that the synthesis algorithm termi-

nated with a synthesized program, not that the synthesized program

necessarily exactly matches the input frame, since that is challenging to

automatically check due to the randomness exhibited by most models

(exact match checks are performed for the eight deterministic models

in the suite, however). As such, it is possible that some of these syn-

thesis successes are not perfect matches to the input sequence, since

our checks by manual inspection may not be complete. This will be

updated for the final version of our paper. . . . . . . . . . . . . . . . 74

16



Chapter 1

Introduction

1.1 A Bird’s Eye View

In the history of artificial intelligence (AI), the last decade will be remembered as the

breakout years of deep learning. From conversational agents like Siri, to machines

that can beat human experts at games like Go and chess, to advances in the natural

sciences like AlphaFold, neural network-based architectures have promised to touch

nearly all aspects of our lives [18, 11]. The versatility of this modeling paradigm have

led some to ask whether deep learning alone will be sufficient to achieve the original

dream of artificial intelligence, as espoused in the mid-twentieth century: a machine

that learns as flexibly as humans do.

Despite their many triumphs, however, deep learning approaches still lag behind

human abilities in several key ways, suggesting they are not the end-all solution to

the problem of replicating human intelligence. In particular, they are (1) very data-

hungry, requiring magnitudes of training data to learn concepts that humans can learn

much more efficiently [15, 10, 21]. For example, children can learn how a new toy

or video game works in just seconds, while DeepMind’s Atari-playing agent MuZero

requires significantly more gameplay before learning how to win [18]. Moreover, (2)

the learned knowledge in these models, in the form of neural network weights and

other latent values, often does not generalize to out-of-distribution scenarios [16].

This flaw manifests in the fact that an agent may make pathological—even danger-
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ous, in the case of robots or self-driving cars, for example—mistakes on new inputs

despite behaving correctly in old scenarios, due to spurious intricacies deep within its

network layers [5]. Finally, the un-human-like generalization mistakes made by these

models are particularly troublesome because (3) models learned via deep learning are

effectively black boxes that are challenging to interpret [13]. This makes it difficult

to ascertain what exactly a model has learned and thereby catch errors before they

happen, a feature less present in human learning.

Given these shortcomings, in this thesis, we explore an alternative approach to

engineering human-like artificial intelligence that answers some of these challenges.

Specifically, we posit that using symbolic programs as the representation of knowledge

learned by an artificial system, as opposed to deep networks, may lead to stronger gen-

eralization properties while also being more data-efficient and interpretable. Learn-

ing a symbolic program as a model of data is a form of program synthesis, a field

that sits at the intersection of AI and programming languages. Traditionally, pro-

gram synthesis was viewed as a technique for automating programming tasks, such

as automatically generating (“synthesizing”) a tricky function one may encounter in

day-to-day programming from a set of input-output examples demonstrating that

function’s behavior. In the last few years, however, three advantages of programs

over deep learning models have fueled the nascent hypothesis that programs may

also be a useful modeling mechanism in artificial intelligence contexts. These advan-

tages are (1) programs can very compactly and interpretably express a wide variety

of structured knowledge; (2) they can often be synthesized from very small input

datasets, thanks to the inductive bias embedded in the underlying domain-specific

language (DSL) in which the program is expressed; and (3) they often generalize well

on new inputs, thanks to their concise forms that protect against overfitting. Recent

work has demonstrated the potential of using programs as a model representation in

a number of domains, such as synthesizing computer-aided design (CAD) programs

from 3D drawings [17].

Unfortunately, for all of its advantages, program synthesis does face several ob-

stacles before it can develop into a mainstream route towards more human-like AI.
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One major hurdle is the scalability of program synthesis algorithms. Most traditional

methods for program synthesis do not scale to synthesizing long programs that model

very complex, intricate datasets. This is because the search space of possible programs

that may be expressed in a language is combinatorially large. Further, standard syn-

thesis approaches are general-purpose algorithms, which trade off performance to be

applicable to a wide breadth of problems. As a result, most successes of program syn-

thesis in the past have occurred in fairly constrained domains, where the synthesized

programs are not much longer than a few lines. In order for program synthesis to

become more widely useful, advances must be made to expand the class of programs

that can be realistically synthesized beyond just these fairly small programs.

In this work, we make progress on this elusive front by developing a new synthesis

algorithm that expands the horizon of programs that could be synthesized with ex-

isting techniques. In particular, we develop an algorithm for synthesizing programs

known as functional reactive programs (FRPs) from observation data in a particular

domain. Functional reactive programs are programs that describe the evolution of a

system over time, where the system can change in reaction to external signals in ad-

dition to its normal, unperturbed evolution. The functional descriptor indicates that

the state of the system is a pure function of its state at the previous time, without any

side effects. Since real-world phenomena are time-varying, reactive programs may be

used to model a wide variety of useful real-world settings, from industrial equipment

controllers to the changing environment of a robot or self-driving car over time. For

our purposes, we instantiate our synthesis algorithm in the particular domain of time-

varying, Atari-style grid worlds, and synthesize a program that encodes the causal

dynamics or “rules” underlying the game from an observed sequence of grid frames

and player actions. Beyond providing a simple environment in which to explore the

fundamental nature of our algorithm, learning models of video game dynamics is also

a relevant application to cognitive science, where scientists have studied how children

learn “theories” of how games work. In the following section, we provide more con-

crete details about this connection to cognitive science as well as about our specific

algorithmic contribution, which will set the stage for the rest of this thesis.
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1.2 Bridging Functional and Automata Synthesis

Much of the work at the intersection of program synthesis and AI can be framed

as addressing the challenge of theory induction: Given an observation, what is the

underlying theory or model that generates or explains that observation? We use theory

to mean not just formal scientific theories, but also everyday cognitive explanations

that humans derive on the fly to explain new observations. For example, a child who

has figured out how a new toy works after a few minutes of play has come up with

a theory of the toy’s mechanism. While there are many possibilities for the choice of

theory representation in AI systems, programs offer the benefits that they can often

be synthesized from small data (sample-efficiency) and that their concise, modular

form often gives them strong generalization properties. These features have made

program synthesis popular in cognitive AI as a potential route to building artificial

agents that learn theories from observation as effectively as humans.

Despite the promise of formulating theory induction as program synthesis, existing

methods of program synthesis are not yet suited to capture the richness of the space

of theories that humans can learn from data, be it scientific or casual. One critical

limitation is that many real world phenomena are reactive, time-varying systems,

which update in reaction to new inputs at every time. However, current methods of

inductive program synthesis, or synthesizing programs from input-output examples,

cannot synthesize non-trivial reactive models. This is because synthesizing time-

varying unobserved state or latent state, the key step in learning any interesting

reactive model, is a fundamental problem that standard inductive program synthesis

techniques were not designed to handle.

Specifically, most existing inductive program synthesis approaches are purely func-

tional, meaning that both the inputs and outputs are fully observed, and the task

is to construct a function taking one to the other. For instance, a classic teaching

example for inductive program synthesis is a synthesizer that takes the set of input-

output pairs {(2, 5), (3, 7), (4, 9)} and outputs the function 𝑓(𝑥) {2𝑥+1} expressed in

some programming language. In other words, there are no concerns about identifying
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latent state, as both the inputs and outputs are fully known. In a few other cases,

inductive synthesis has also been applied to tackle the setting of unsupervised learn-

ing, in which hidden (latent) state representations are learned from partially observed

inputs. However, neither of these method classes attempt to solve the full latent state

learning problem that underlies the reactive setting. There, not only what the latent

state representation is for every input (time point) must be learned, as is the case

in unsupervised learning, but also how that latent state evolves over time must be

identified, in the form of programmatic rules.

For concreteness, we introduce the simple yet rich domain of Atari-style, time-

varying 2D grid worlds that we study in this thesis (Figures 1-1, 1-2, and 1-3), which

demonstrates these shortcomings of inductive program synthesis. In the Mario-style

game in this domain that is shown in Figure 1-1, an agent (red) moves around with

arrow key presses and can collect coins (yellow). If the agent has collected a positive

number of coins, when the human player clicks, a bullet (gray) is released upwards

from the agent’s position, and the agent’s coin count is decremented. Otherwise,

clicking does nothing. Notably, the number of coins that the agent possesses is not

displayed anywhere on the grid at any time (i.e. it is not observable), so the only

way to write a program that models this behavior is to define an unobserved or latent

variable, which tracks the number of coins (bullets) possessed by the agent. In other

words, there is no way to express why bullet addition takes place using just the current

visible state of the program: the objects (with their locations and shapes) and current

user action (click, key press, or none). Instead, we must define an invisible variable

that can distinguish between two grid frames that are visually equivalent, but in which

the agent has collected different numbers of coins (zero vs. some). Synthesizing this

latent variable involves both identifying the variable’s initial value, as well as learning

functions that dictate when (on what stimulus) and how (increment, decrement, etc.)

that value will change. Crucially, learning this dynamical latent state-based program

from observations alone (a sequence of grid frames and user actions) is not feasible

with standard techniques.
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Figure 1-1: An observation trace from the Mario program. Black arrows indicate user
keypresses and circles indicate user clicks.
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Figure 1-2: Sequence of grid frames from the Ice program. At times 1 and 4, the
user presses down (red arrow), releasing a blue water particle from the gray cloud.
The water moves down to the lowest possible height, moving to the side (time 10)
if necessary to reach this height. The user presses down again at time 12, and then
clicks anywhere (red circle) at time 15. The click causes the sun to change color and
the water to turn to ice, which stacks rather than tries to reach the lowest height. A
down press at time 19 releases another ice particle from the cloud. Finally, a click at
time 24 changes the sun color back to yellow and turns the ice back to water, which
again seeks the lowest possible height.

To address this gap between current inductive program synthesis approaches and

the reactive setting, we develop a novel program synthesis algorithm that unites

two largely orthogonal communities within programming languages: the functional

synthesis and automata synthesis communities. Specifically, we show that we can

inductively synthesize reactive programs by splitting synthesis into two procedures, a

functional synthesis procedure and an automata synthesis procedure. The functional

synthesis step attempts to synthesize the parts of the program that do not depend

on latent state. If functional synthesis fails to synthesize a program component ex-

plaining an observation, the automata synthesis procedure is called. The automata
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synthesis procedure is so named because the time-varying latent state in a reactive

system can be viewed as a finite state automaton, where the labels on the automaton

transitions are predicates in the underlying domain-specific language (DSL) used for

synthesis (Figure 1-4). At a high level, based on the specifics of how the functional

synthesis step failed, the automata synthesis procedure enriches the original program

state with particular new latent structure (e.g. a time-varying latent variable like

number of coins) that then allows that functional step to succeed.

By combining functional and automata synthesis techniques, our approach ex-

pands the horizon of synthesis problems that can be solved by either method alone.

In particular, while the functional synthesis community has demonstrated impressive

performance at synthesizing complex functional transformations from input-output

data, the applicability of their techniques is limited by the fact that they cannot

synthesize state-based models, including reactive systems, which are plentiful in the

real world. On the other hand, the automata synthesis community has seen great

success at synthesizing finite-state automata or transition systems from traces, but

their methods do not scale to domains with intricate functional data transformations

or very large numbers of states (which are often more compactly represented using

program abstractions).

We suspect that this concept of integrating functional and automata synthesis is

valuable to a wide breadth of synthesis domains, though in this paper, we concentrate

on the domain of 2D Atari-style grid-worlds. We develop a DSL called Autumn (from

automaton) that is designed to concisely express a variety of causal dynamics within

these grid worlds. The inductive synthesis problem addressed by our algorithm is,

given a sequence of observed grid frames and corresponding user actions (clicks and

keypresses), to synthesize the program in the Autumn language that generates the

observations. Since Autumn programs encode causal dynamics, this synthesis prob-

lem is one of causal theory induction, and is important in both cognitive science and

AI. This interest stems from the fact that humans are able to learn causal theories—or

full explanations of which stimuli cause which changes in the environment—of grid

worlds incredibly quickly, a feat yet to be replicated by AI systems. Since these fields
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Figure 1-3: A sample of Autumn programs. Clockwise from top-left: water inter-
acting with a sink and sink plug a clone of Space Invaders, plants growing under
sunlight and water, a simplified implementation of Mario, a simplified clone of Mi-
crosoft Paint, a weather simulation, snow falling left or right with varying wind, an
alternative gravity simulation, a sand castle susceptible to destruction by water, and
ants foraging for food.

aspire to the goal of developing such an artificial agent that can learn causal theo-

ries as well as humans can, our hybrid functional-automata synthesis approach offers

a potential route towards a solution where program synthesis is the computational

engine replicating human theory induction.

Our synthesis algorithm, named AutumnSynth, has three variant implementa-

tions, each differing in the algorithm used to perform automata synthesis from ob-

served data. Two of these algorithms rely on the Sketch symbolic synthesis system to

discover a minimal latent state automaton from examples, while the third algorithm

is a cognitively-inspired, heuristic approach that greedily searches through the space

of automata. We construct a benchmark suite of 32 Autumn programs designed to

express the diversity of time-varying causal models that may be manifested in 2D

grids, as well as find an externally-sourced benchmark suite of 27 grid-world envi-

ronments, and evaluate our algorithm implementations on these benchmarks. While
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Figure 1-4: (a) Diagram of automaton representing the numCoins latent variable
synthesized for the Mario program. The start value is zero, and the accept values
(i.e. the values during which clicked causes a bullet to be added to the scene) are 1
and 2. (b) Description of the numCoins latent variable in the Autumn language.

we are continuing to improve each of the three algorithms, we currently find that

our heuristic algorithm and one of the Sketch implementations solve the majority of

the benchmarks and do so with similar runtimes, except for a few benchmarks that

possess larger automata, on which the domain-specific tricks embedded in the heuris-

tic algorithm currently give it better performance. Our evaluation on the external

benchmark remains ongoing, but our preliminary results also show that our algorithm

is capturing the underlying causal structures, an exciting confirmation. These em-

pirical results signals the promise of our formulation, and we are eager to continue

developing and evaluating our method in the future.

To summarize, we make the following contributions:

(1) a functional reactive, domain-specific programming language called Autumn

for expressing interesting causal dynamics in 2D, time-varying grid-worlds;

(2) a benchmark dataset of Autumn programs to evaluate and spur the develop-

ment of new learning algorithms;

(3) a novel inductive program synthesis algorithm that learns causal reactive pro-

grams from observation data (AutumnSynth); and

(4) a guiding example of how to design synthesis algorithms that integrate func-

tional and automata synthesis, enabling synthesis of programs beyond the scope
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of either alone.
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Chapter 2

Background and Related Work

2.1 Program Synthesis

The idea of automated programming is an old one, tracing its roots back to the early

days of computing and AI. As early as 1945, Alan Turing claimed the following:

“Instruction tables will have to be made up by mathematicians with computing ex-

perience and perhaps a certain puzzle-solving ability . . . This process of constructing

instruction tables should be very fascinating. There need be no real danger of it ever

becoming a drudge, for any processes that are quite mechanical may be turned over

to the machine itself” [3]. Indeed, the ideas behind modern theories of computation

and the idea to automate the very automation of computation itself did not arise too

distantly from each other in the history of the field.

Over the decades, interest in program synthesis has waned and waxed, as new

techniques fought with the fundamental challenge of computational tractability that

plagues search in a combinatorially large program space. In the last fifteen years,

however, the field has seen quite rapid growth thanks to a few fundamental strides

forward—like that of the Sketch synthesis engine [20] in the late 2000s—as well as

the growing accessibility of large amounts of computational power. An example of

program synthesis in the real world today include the FlashFill system shipped with

Microsoft Excel, which generalizes a small number of spreadsheet rows written by a

user to many rows by synthesizing a small program that maps entries between a row’s
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cells [9].

With respect to our particular problem setting—learning functional reactive pro-

grams that describe the causal dynamics of grid world environments—the most rele-

vant prior work are approaches that synthesize reactive models as finite state machines

(FSMs). For example, techniques exist to synthesize communication protocols or em-

bedded controllers like those used in autonomous systems from logical descriptions of

their desired behavior over time, including constraints such as what the system should

do until some event or always under a condition [1]. These methods, however, cannot

handle model state as complex as our framing, in which objects may be created and

destroyed and may each have their own hidden state in addition to coordinates [23].

More precisely, learning a finite state machine as a model of grid world dynamics is

at best very computationally intensive and at worst impossible, because even just the

visible state of the grid has so many configurations, resulting in an extremely large

state space, and the number of objects in the world over time may also be unbounded

(i.e. no longer finite). In addition, the specifications in the form of logical formulas

that these FSM synthesis approaches begin with provide richer information about the

solution space than just raw observations, as we use instead [14].

The other line of related work is that of functional synthesis approaches that can

synthesize transformations on very complex data structures, but have no concerns

about discovering latent state. An example of this class of approach is work by Ellis

et. al. on inferring graphics programs from hand-drawn images [4]. There, a program

that specifies how a particular image should be generated by a computational drawing

engine is reverse-engineered from the image itself. There is no latent state involved

in this procedure, as all the information needed to perform this reverse-engineering

from image to program is visible in the image. In contrast, each grid frame in our

problem setting may have invisible state in addition to visible state that affects how

the state evolves through subsequent grid frames, and we must learn the value of that

invisible state in addition to functions that describe how it changes across time.
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2.2 Scientist as Child: Theory Learning in Children

Outside of the traditional programming languages community, there has also been

interest in program synthesis from cognitive scientists. In particular, young children

have been shown to build structured causal theories of their environments [19, 8, 7]

in ways very similar to how scientists themselves develop theories. This connection is

concisely captured in the phrase “scientist as child,” the title of a 1996 study on the

topic by cognitive scientist Alison Gopnik [6]. While there has been progress on several

related fronts, no artificial system has yet been created that can learn causal theories

of new mechanisms as efficiently and flexibly as children can. Current approaches fall

short of the goal of human-like causal model discovery from observations in two ways.

First, the choice of model representation, e.g. the popular class of causal graphical

models, is often not expressive enough to concisely capture the complexity of real-

world causal mechanisms. Second, even when the model representation is sufficiently

rich, e.g. in deep learning, the model learning algorithm is often unrealistically data-

hungry, requiring large numbers of observations while humans can generalize from

much less.

On the other hand, using programs as models of knowledge learned by an artificial

system overcomes both of these concerns, and also gives rise to additional similarities

with human cognition. Programs can succinctly express a richer space of theories

than graphical representations, and further can often be learned with very little data,

unlike deep learning models. Moreover, the compositional structure of programs lends

itself well to modeling the flexible ways in which humans use knowledge, such as easily

abstracting known concepts into higher-level categories and composing disparate ideas

to imagine new ones. Foundational work in computational cognitive science has begun

to concretize this connection between programs and cognition, including work by Lake

et. al. that models the human ability to learn concepts of handwritten characters as

a form of probabilistic program induction [12]. We take inspiration from these earlier

milestones in our thesis, as we try to apply the same technique of employing inductive

program synthesis to model human learning in the new, more complex domain of
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reactive game-style environments.

2.3 Neurosymbolic Learning

Lastly, a recent exciting development in the broader machine learning community

known as neurosymbolic learning has some notable connections with our work in this

thesis. Neurosymbolic algorithms are a class of techniques that blend deep learning

and symbolic methods to take advantage of the strengths of both [2]. More specifically,

these algorithms are designed to exploit the ability of deep learning to flexibly recog-

nize complex patterns in data, in concert with the ability of symbolic representations

to model higher-level structures and concepts. Examples of neurosymbolic algorithms

include methods that synthesize programs where some of the primitives in the pro-

grams were neurally learned functions rather than pre-specified in the language, as

well as program synthesis engines where enumerative search through a program space

is sped up by a neural “guide” suggesting which search paths to check first.

Since the deep learning component of these methods mitigates the impact of the

shortcomings of program synthesis, like the need to hand-curate DSLs to apply in

different domains as well as the poor scaling of enumerative search, neurosymbolic

techniques are a very promising path forward for making program synthesis a more

practical route towards human-like AI. As part of future work, we plan to integrate

elements of deep learning into the program synthesis algorithm we develop in this

thesis to improve its performance and generalizability, as we discuss in Chapter 6.
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Chapter 3

The Autumn Domain

In this chapter, we describe the Autumn domain, which we developed to explore

interesting questions at the intersection of program synthesis, causal inference, ma-

chine learning, and human cognition. Beyond just the specific directions explored

in this thesis, our founding vision for the domain comprised of the following broad

objectives:

(1) to highlight the shortcomings of current learning algorithms—from structure

learning of causal graphical models (DAGs) to deep learning to program syn-

thesis—when it comes to capturing the complexities inherent in time-varying,

real-world causal dynamics given just a few observations;

(2) to provide a substrate to spur the development of new learning algorithms that

are able to learn these kinds of generalizable models from minimal training data;

(3) to serve as a platform for designing and running cognitive science experiments

with human subjects to gain further insight into how humans learn these in-

tricate causal models so efficiently, where those insights can then be used to

further inspire computational approaches.

Notably, while we elected to pursue the development of a new program synthesis

algorithm to overcome the limitations highlighted in the Autumn domain (due to

the advantages of program synthesis that we described previously), attempting to
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develop neural or other approaches is also an interesting problem, and at the very

least would be important baselines to compare our method against. We leave these

directions as future work.

In the following sections, we describe the design of the Autumn language, in

which a wide variety of interesting causal models in 2D grid worlds may be expressed

(Section 3.1); a benchmark suite of Autumn programs, which we call the Causal

Inductive Synthesis Corpus (CISC), that showcases the expressibility of the language

(Section 3.2); and a web interface using which Autumn programs can be written and

visualized, which we plan to use as the base for a more robust platform for performing

cognitive science experiments in upcoming future work (Section 3.3).

3.1 The Autumn Language

Autumn was designed to concisely express a rich variety of causal mechanisms in

interactive 2D grid worlds (Figure 1-3). These mechanisms range from distillations of

real-world, everyday causal phenomena, such as water interacting with a sink or plants

growing upon exposure to sunlight, to video game-inspired domains such as Atari’s

Space Invaders. The language is functional reactive, meaning that it augments the

standard functional language definition with primitive support for temporal events.

Importantly, there is no notion of “reward” in the Autumn language, unlike in stan-

dard reinforcement learning contexts, which at a glance may look somewhat similar

to the Autumn domain. The absence of rewards from our design was a conscious

choice made because our focus is on learning models of the causal dynamics of these

kinds of environments, also known as “world models,” rather than how to win. In

fact, “winning” is not a meaningful concept in most of the Autumn programs we

have written, since they need not be games at all.

We next describe the structure of an Autumn program (Figures 3-1 and 3-2).

Every Autumn program is composed of four parts. The first part defines the grid

dimensions and background color. The second part defines object types, which are

simply structs which define an object shape, or a list of 2D positions each associated
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Figure 3-1: Autumn program for the Sandcastle model, with frames (ordered, but
with time jumps in between) taken from a sample evaluation. The last of the top
two buttons clicked dictates whether a sand particle or water particle is added upon
clicking a free position. If water is adjacent to sand, it changes the dry field of
the sand, so that it changes color and behaves as a liquid (i.e. moves to the lowest
reachable height) as opposed to stacking.
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Figure 3-2: Autumn program describing the Water Plug model. In the first frame,
the purple structure at the bottom is a vessel, and the orange structure is a plug that
does not let water pass into the vessel. Excluding the top row of buttons, purple
squares are vessel particles, orange squares are plug particles, and blue squares are
water particles. Clicking an uncolored (free) position adds a particle to that position,
where the type of particle depends on which of the top-left three buttons was clicked
last. The right-side frames are in order (from top to bottom) but with time jumps: the
user events during these jumps are the following: 1-2: clicking several free positions
(new purple); 2-3: clicking top orange button then several free positions (new orange);
3-4: clicking top blue button then several free positions (new blue, though water moves
down rather than being stationary); 4-5: clicking black button (orange removed); 5-6:
clicking red button (all removed).
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with a color, as well as a set of internal fields, which store additional information

about the object (e.g. a Boolean healthy field may store an indicator of the ob-

ject’s health). The third part defines object instances, which are concrete instanti-

ations of the object types defined previously, as well as latent variables, which are

values with type int, string, or bool. Object instances and latent variables are

defined using a primitive Autumn language construct called initnext, which de-

fines a stream of values over time via the syntax var = init expr1 next expr2.

The initial value of the variable (expr1) is set with init, and the value at later

time steps is defined using next. The next expression (expr2) is re-evaluated at

each subsequent time step to produce the new value of the variable at that time.

Further, the previous value of a variable may be accessed using the primitive prev,

e.g. prev var. The next expression frequently utilizes the prev primitive to express

dependence on the past. For example, the definition of the agent object in the Mario

program from the introduction is agent = init (Agent (Position 7 15)) next

(moveDownNoCollision (prev agent)), indicating that later values of the agent

should move down one unit from the previous value whenever that is possible with-

out collision.

Finally, the fourth segment of an Autumn program defines what we call on-

clauses, which are expressed via the high-level form

on event

intervention,

where event is a predicate and intervention is a variable update of the form var =

expr, or multiple such updates. As suggested by the name intervention, an on-clause

represents an override of the default modification to a variable that is defined in the

next clause. In particular, when the event predicate evaluates to true, the new value

of the variable var at that specific time is computed by evaluating the associated

intervention instead of the standard next expression. Each on-clause may contain

multiple update statements for different variables, and a single program may contain

multiple on-clauses. In the latter scenario, the on-clauses are evaluated sequentially,
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with the effect that later on-clauses may update a variable in a way that composes

with updates from earlier on-clauses, or completely overrides it. In the rest of the

discussion, we use the term update function to mean the same as intervention.

3.2 The Causal Inductive Synthesis Corpus (CISC)

Using the Autumn language, we constructed a benchmark suite of 32 Autumn pro-

grams that we call the Causal Inductive Synthesize Corpus, where the name indicates

that the purpose of the dataset is to serve as a challenge suite for algorithms that

inductively synthesize causal models. Brief descriptions of each of the models in the

benchmark are given in Table 3.1. Some of the models describe simplified, grid-world

versions of real world phenomena such as falling rain and snow or growing plants,

while other models are inspired by classic video games like Atari Space Invaders and

Super Mario. Still others are more abstract, such as simulations of blocks moving

under changing gravities. Six of the Autumn programs in the suite do not contain

any latent variables, indicating that the state of the program at any time is fully

encoded in the visual state, while the remaining 26 models all contain at least one la-

tent variable, which must be inferred from the observations in order to synthesize the

correct program. We discuss these models further and in the context of our synthesis

algorithm in our evaluation section (Chapter 5).

3.3 Web Interface

To make it easier to write, run, and interact with Autumn programs (human-written

or automatically synthesized), we developed a web interface that provides these func-

tionalities. A still from the interface is displayed in Figure 3-3. On the left half of the

interface, a text editor with syntax highlighting enables users to write Autumn pro-

grams, currently expressed in the form of Lisp-style S-expressions. On the right side,

these programs may be visualized and interacted with, where the control buttons for

the simulation (not including the standard arrow key presses and grid clicks that are
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Figure 3-3: Still from the web interface for writing and interacting with Autumn
programs, showing the Water Plug program from the benchmark suite.

read by the Autumn program itself) are a run/pause button, a restart button that

resets the program state to the initial state, a replay button that lets a user view the

sequence of observations just created, and a save button that writes the sequence of

observed grid frames and associated sequence of user events to the local file system.

While this web interface has been used for our own language and algorithm develop-

ment purposes so far, we plan to extend it into a broader platform for others to write

and view their own and others’ Autumn programs, as well as for use in cognitive

science experiments with human subjects, as part of near-term future work.
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Table 3.1: Descriptions of the 32 benchmark programs in the Causal Inductive Syn-
thesis Corpus.
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Chapter 4

The AutumnSynth Algorithm

We next describe the AutumnSynth algorithm, which synthesizes Autumn pro-

grams from a sequence of observed grid frames and associated user actions. We begin

with a brief overview that explains how the algorithm synthesizes the Mario program

from the introduction, and follow with a more detailed treatment of each of the steps

of the procedure.

4.1 Overview

Synthesizing the correct Autumn program from observed data involves determin-

ing the object types, object instance and latent variable definitions, and on-clauses

described in the previous chapter. The AutumnSynth algorithm, as an end-to-

end synthesis algorithm taking images as input, consists of four distinct steps, each

producing a new representation of the input sequence. These steps are

1. object perception, in which object types and instances are parsed from the

observed grid frames;

2. object tracking, which involves assigning each object in a frame to either (1)

an object in the subsequent frame, deemed to be its transformed image in the

next time, or (2) no object, indicating the object was removed in the next time;
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3. update function synthesis, in which Autumn expressions, called update

functions, describing each object-object mapping from Step 2 are found; and

4. cause synthesis, in which Autumn events (predicates) that cause each update

function from Step 3 are sought, and new latent state in the form of automata

is constructed upon event search failure.

We give details for these steps in Section 4.2, with greatest space given to the

step of cause synthesis, since that procedure represents the most novel aspect of our

work. First, we provide some intuition by briefly describing how these steps are used

to synthesize the Mario program (Figure 4-1).

4.1.1 Sample Execution

Phase I: Object Perception

The object perception step first extracts the object types and object instances from

the input sequence of grid frames. The object types are (1) a general single-cell type

with a string color parameter corresponding to the (red) agent, (yellow) coin, and

(gray) bullet objects; (2) a platform type that is a row of three orange cells; and

(3) an enemy type that is a rectangle of six blue cells. A list of object instances

is extracted from each grid frame in the input sequence, where an object instance

describes the object’s type, position, and any field values. For example, the object

instances for the first grid frame are a red single-celled object (agent) at position (7,

15); three yellow single-celled objects (coins) at positions (4, 12), (7, 4), and (11, 6);

three platform objects at positions (4, 13), (8, 10), and (11, 7); and an enemy object

at position (6, 0).

Phase II: Object Tracking

Next, the object tracking step determines how each object in each grid frame changes

to become a new object in the next grid frame. For example, it identifies that the

42



Figure 4-1: Sample execution of the AutumnSynth algorithm on an input sequence
taken from the Mario example. The event and automata synthesis steps together
compose the cause synthesis step (Phase IV) as described in Section 4.1.1.
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agent object at position (7, 15) in the second grid frame corresponds to the agent

object at position (6, 15) in the third grid frame (i.e. it moved left). Intuitively, this

step tracks the changes undergone by every object across all grid frames.

Phase III: Update Function Synthesis

In the third step of update function synthesis, for each mapping between an object in

one grid frame and an object in the next that is determined in Step 2, an Autumn ex-

pression is sought that describes that object-object mapping. For example, this step

identifies that the expression agent = moveLeft (prev agent) accurately describes

the change undergone by the agent object between the first and second grid frames.

Often, there are multiple such expressions that match any given mapping. For ex-

ample, the agent’s left movement during the first time step might also be described

by agent = moveLeftNoCollision (prev agent) or agent = moveClosest (prev

agent) Platform, where the latter indicates movement one unit towards the nearest

object of type Platform. The update function synthesis step collects a set of these

possibilities for each object mapping. Ultimately, one update function is selected as

the single description for each object-object mapping during the final step of cause

synthesis.

Phase IV: Cause Synthesis

Finally, the cause synthesis step searches for an Autumn event or predicate that

triggers each update function identified in Step 3. For now, we will assume that

we have already selected a single update function that matches each object-object

mapping from the set of all possible update functions that do so; we will explain

how we perform this selection process in Section 3. To find an Autumn event that

triggers a particular update function, we collect the set of times that the update

function takes place, and enumerate through a space of Autumn events until we find

one that evaluates to true at each of those times. For example, say that the agent

object in Mario undergoes the update function agent = moveLeft (prev agent) at

times 1, 4, and 5. If the Autumn event left, which indicates that a left keypress

44



has occurred, evaluates to true at those three times, then the on-clause

on left

agent = moveLeft (prev agent)

accurately describes that particular update function’s occurrence. The search space

of Autumn predicates is defined over the program state, which consists of the current

object instances, latent variables, and user events. At the start of this step in the

algorithm, there are not yet any latent variables in the program state, so the pos-

sible events use only the objects and user events (e.g. clicked, clicked agent, or

intersects bullet enemy). Lastly, this event-finding process is complicated slightly

by the fact that on-clauses may override each other, so perfect alignment between

trigger event and observed update function is not always necessary. This nuance will

be explained in Section 4.2.

The interesting case in the cause synthesis step is what happens when a matching

Autumn event cannot be found for a particular update function. In the Mario

example, this happens with the update function bullets = addObj (prev bullets)

(Bullet (Position agent.origin)), which describes a bullet object being added

to the list of objects named bullets. Bullet addition takes place at times 32, 41,

and 57, but no event is found that evaluates to true at exactly those times. Since

the existing program state does not give rise to any matching events, we augment

the program state by inventing a new latent variable that can be used to express the

desired predicate.

Specifically, we proceed by finding the “closest” event that aligns with the update

function in a subset of the event space called the co-occurring event space. This

“closest” event co-occurs with every update function occurrence, but may also occur

during false positive times : times when the event is true but the update function does

not occur. For bullet addition, this event is clicked, as every bullet is added when a

click takes place, but some clicks do not add a bullet (specifically, at times 8, 9, 47, and

59). Having identified this closest event, our goal is then to construct a latent variable

that acts as a finite state automaton that switches states between the false positive
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times and true positive times (i.e. the times when clicked is true and the update

function occurs). To be precise, the new variable takes one set of values during the

false positive times, and another set of values during the true positive times. Calling

the values taken by the latent variable during true positive times accept values, and

those taken during the false positive times non-accept values, the event

clicked && (latentVar in [/* accept values */])

perfectly matches the observed update function times. This is because clicked is

true during a set of false positive times, and latentVar is in non-accept values at

exactly those times, so bullet addition does not take place, as desired. The full Au-

tumn definition of latentVar, including the transition on-clauses that change its

value over time, is shown in Figure 1-4. The variable name numCoins is substituted

to note the equivalence to a number of collected coins tracker.

The challenge in constructing this latent variable is learning the transition on-

clauses that update the value of the variable at the appropriate times. Note that

these transition on-clauses represent edges in the automaton diagrammed in Figure

1-4 (hence the use of the term accept values or states). We perform the transition

learning step as part of a general automaton search procedure, implemented via a

SAT solver as well as heuristically, to be discussed in Section 4.2.4.

4.2 AutumnSynth Details

We now describe each of these four steps of the synthesis algorithm in more detail.

4.2.1 Phase I: Object Perception

In the perception step, each frame in the observation sequence is parsed into a set of

object variables. Each object variable is characterized by a shape, which is a list of

2D grid positions relative to (0, 0) that are each associated with a color, as well as an
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origin, which indicates the location of the object in the grid frame (the positions of

the shape are translated by the origin to obtain the final rendering of each object).

We use two different object parsing algorithms, each of which produces a different

representation. We perform the rest of the synthesis procedure atop both of these

parsing results one at a time, and take the output program from the first parsing

using which the procedure succeeds.

The first parsing algorithm (“multi-cell”) is based on a breadth-first search pixel

crawler, which identifies groups of adjacent cells with the same color as multi-celled

objects. This approach currently supports only uniform-colored objects instead of

individual objects composed of multiple colors. Extending this algorithm to handle

more diverse object renderings is an area of future work. Object types are extracted

from the union of the parsed object sets over all frames by finding shapes that contain

the same 2D positions (i.e. have the same shapes), though not necessarily the same

colors. Shapes that support multiple colors are described by object types that have

a custom field ⟨𝑐𝑜𝑙𝑜𝑟, string⟩, which allows individual instances of the object type

to specify a particular color. The second parsing algorithm (“single-cell”) simply

identifies each colored cell in a frame as an individual object, with the set of object

types being the set of single-celled shapes each with a particular fixed color.

4.2.2 Phase II: Object Tracking

Together, the second and third steps in the synthesis procedure answer the question,

“What does each object do at each time step?” Concretely, this means identifying

the update function undergone by each object in each frame to produce the object’s

rendering in the subsequent frame. The first element of answering this question is

object tracking (Step 2), which involves assigning each object in a frame either to

(1) an object in the subsequent frame, which is considered to be the transformed

image of the object after the time step, or (2) no object, which means that the

object has been removed after the time step. Multiple objects may not map to the

same object in the subsequent frame, and further, objects in the subsequent frame

without a pre-image in the previous frame are deemed to have been just added to
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the program in the current time. The algorithm that performs this mapping is based

upon a heuristic that embodies the following prior assumption about object motion

in Autumn: Objects are unlikely to move very far in a single time step. As such, the

tracking algorithm performs assignments based on a proximity metric that tries to

maximally assign objects in one frame to their closest objects (with the same object

type) in the next frame.

4.2.3 Phase III: Update Function Synthesis

The update function synthesis procedure computes an Autumn expression, the up-

date function, that describes every object-object mapping. This includes update

functions describing object addition and removal, which are represented as mappings

with a null or non-existent object: a null-object mapping indicates object addition

and an object-null mapping indicates object removal. These update functions will

eventually become part of the on-clauses in the final output program.

To identify a matching update function, the procedure simply enumerates through

a fixed, finite space of update function expressions, such as obj = moveLeft obj or

obj = nextLiquid obj. Some of these update function options are simple transla-

tions, like moveLeft obj and move obj -2 0, while others are more abstract options

that describe multiple concrete translations under different circumstances. For exam-

ple, the nextLiquid function causes an object to move down when there is no object

below it (i.e. there is no chance of collision), and to the left or right if there is an

object below but there exists a path to a lower height in the left or right direction.

There are typically multiple update functions in the space that describe any given

object assignment, so the procedure collects all of these possibilities.

At the end of this process, the synthesized update functions may be visualized in a

matrix depiction, which we call the update function matrix (Figure 4-2). In the update

function matrix, the rows represent object_id’s, where objects are assigned the same

object_id if one is transformed into the other over time, and the columns represent

times in the observation sequence (in increasing order). Each cell in the update

function matrix contains the set of possible update function expressions corresponding
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to that particular object_id at that particular time, or more precisely, those possibly

undergone by the object between the frame at that time and the frame at the next

time.

Ultimately, rather than a set of update functions for each object_id at each time,

we want a single update function. This is because we will eventually search for

Autumn predicates that evaluate to true at the times that each update function

takes place, to form the on-clauses of the final synthesized program. Different choices

for the single update function in each cell in the update function matrix changes the

sets of times at which matching predicates must be true. For example, say that the

sets of possible update functions undergone by an object in a three-frame observation

sequence are { moveLeft }, { nextLiquid, moveLeft }, and { nextLiquid, moveLeft

}. It is possible that there exists an event that is true at exactly the times 1, 2, and 3,

which means that selecting moveLeft in all three matrix cells gives rise to a matching

event. However, it is also possible that no event exists that is true exactly at time

1 or exactly at times 2 and 3, so the sequence of single update functions moveLeft,

nextLiquid, nextLiquid does not produce matching events. Though a latent state

automaton may possibly be constructed that alleviates this latter event search failure,

automata search may also fail. Thus, the selection of a single update function in each

cell of the update function matrix can make or break the success of the later cause

synthesis step. Further, there might be multiple such selections that ultimately result

in the success of the full synthesis procedure, but not every produced output program

will be the desired solution.

To handle this uncertainty with regard to which single update function in each

matrix cell will allow matching events to be found for all update functions, we take

the following approach. Let a concrete update function matrix be a “filtering” of the

original matrix that contains just one option in each cell from the original options.

There are a combinatorially large number of concrete matrices corresponding to any

given full update function matrix. We select a small fixed set of concrete matrices from

49



Figure 4-2: Update Function Synthesis. Each cell of the update function matrix
contains a set of update functions that each describes the change undergone by the
object with object_id equal to the row index during a particular time step (column
index). A list of concrete update function matrices, with one update function per
cell, is extracted via frequency-based heuristic.
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this large space using a heuristic that selects a single update function within a cell

based on that update function’s frequency across all rows of the matrix with the same

object type. More frequent update functions across an object type are more likely to

be selected than less frequent ones. Specifically, the heuristic operates by determining

the top-𝑘 most frequent update functions across each object type in the program,

and constructs a concrete matrix by choosing the 𝑖th most frequent update function

whenever it exists in a cell, for 𝑖 in 1 through 𝑘, independently for each object type

(Figure 4-2). In other words, the output is a list of possible concrete matrices, where

the first matrix is constructed by choosing the first most common update function for

every object type, the second matrix was constructed by choosing the second most

common update function for the first object type but the first most common update

function for the rest of the types, the third was creating by choosing the second

most common update function for the second type and the first most common for all

the others, and so on. Hence, there are a maximum of 𝑘𝑛 concrete update function

matrices produced if there are 𝑛 distinct object types and each combination produces

a unique filtering. In the three-frame and single-object-type example observation

sequence described previously, the update function sequence moveLeft, moveLeft,

moveLeft would be selected for the first concrete matrix, because moveLeft occurs

three times in update function matrix while nextLiquid occurs only twice.

The intuition behind this heuristic is that selecting more frequent update func-

tions minimizes the number of distinct update functions within the concrete matrix

for which corresponding events must be found. This can be viewed as trying to

”maximally share” update functions across the cells of the matrix, resulting in an

overall output program with fewer on-clauses if the cause synthesis step succeeds.

This procedure is summarized in Figure 4-2.

Nondeterminism in Autumn Programs and CISC

Before discussing the subsequent cause synthesis phase of the algorithm, we briefly

comment on support for writing nondeterministic programs in the Autumn language.

Autumn provides a built-in function called uniformChoice, which selects one ele-
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ment uniformly at random from a non-empty list. Using this operator, a vast range

of interesting causal probabilistic Autumn programs can be written. However, since

inferring the correct probability distribution described by a probabilistic Autumn

program adds a completely new level of complexity, our current synthesis algorithm

is focused only on synthesizing deterministic Autumn programs, with one very small-

scoped exception. This exception is non-nested use of the uniformChoice operator

at the update function level of an on-clause, but not at the event level.

Specifically, if no deterministic Autumn program is found by the synthesizer, i.e.

cause synthesis fails on every concrete update function matrix identified through the

update function synthesis step, the algorithm will try to construct new concrete ma-

trices using uniformChoice-based update functions. Currently, the algorithm only

allows these random update functions to have the form addObj (uniformChoice [

\* list of object positions *\ ]). For example, it is possible that the set of

possible update functions in the unfiltered matrix for a certain object at a certain time

is { addObj (Bullet (Position 5 5)), addObj (Bullet (uniformChoice (map

(-> obj obj.origin) sourceObjects))) }, if (5, 5) is the location of an object in

the list. The Space Invaders model in CISC displays this structure, as the bullets in

that program are shot out of a randomly selected enemy object at regular time inter-

vals. Hence, it is possible that a matching event may be found for a uniformChoice-

based update function, even if none are found for deterministic update functions,

so this limited form of nondeterminism in Autumn programs is supported by the

synthesizer when a deterministic solution cannot be found.

4.2.4 Phase IV: Cause Synthesis

By this stage in the synthesis process, the object types, the object instance definitions,

and the possible update functions undergone by each object at every time have been

identified. Remaining to be synthesized are the event predicates associated with the

update functions in on-clauses, and potentially latent variables that are necessary for

the appropriate events to exist. At a high level, this step proceeds by enumerating

through each concrete update function matrix in the list identified in the previous
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step, and searching for events and latent state that explain each distinct update

function. If this process succeeds for a given concrete matrix, the overall algorithm

terminates, returning the final program. If this process fails on the current concrete

matrix, it is repeated on the next concrete matrix in the list until success or until the

end of the list is reached, which indicates overall synthesis failure.

To synthesize events, we first define a finite set of Autumn predicates, which

roughly embodies a prior about what types of events are likely to be triggers of

changes in the grid world. We call these predicates atomic events, because we ulti-

mately enumerate both through the events themselves as well as conjunctions and

disjunctions of those atoms when searching for a matching event. The atomic event

set includes global events, including user events like clicked, clicked obj1, and

left as well as object contact events like intersects obj1 obj2 and adjacent

obj1 obj2, among other forms. These stand in contrast to the other type of event in

the atomic event set, called an object-specific event, which takes different values for

distinct object_id’s in addition to distinct times. These events are used as functions

in a filter operation; for example, the event obj.color == “red” is true for an object

if the object is contained in the filtered list

filter (obj -> (obj.color == “red”)) objects,

where objects denotes a set of objects at the current time. We note that while the

evaluation of a global event over time consists of a single vector of true/false values

(one per time), the full evaluation of an object-specific event consists of a set of such

vectors, one per distinct object_id.

Next, we describe the set of update functions for which we must find associated

events in a given concrete update function matrix. In our setting, we make the

assumption that objects that belong to the same object type are all controlled by

the same set of on-clauses. This means that if two objects both undergo the update

moveLeft and the objects have the same object type, then a single event (on-clause)

caused both of them to undergo the update. In contrast, if two objects undergo

moveLeft and belong to different object types, we must synthesize a different event
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associated with each one, since a different on-clause caused each object type’s update.

Thus, we synthesize events by enumerating through the object types, and finding an

event for each distinct update function that appears across objects of that type.

Lastly, for each update function under consideration, we construct what is called

an update function trajectory, which is a set of vectors 𝑣 ∈ {−1, 0, 1}𝑇 that describes

the times when the update function took place versus did not take place (𝑇 is the

length of the observation sequence). There is one vector for each object_id with the

object type under consideration. Each vector position is 1 if the update function took

place at that time for that object_id, 0 if it did not take place, and −1 if it may

have taken place but could have been overridden by another update function. This

third scenario is interesting, and arises because we structure synthesized Autumn

programs so on-clauses with update functions that are more frequent in the observed

sequence are ordered before on-clauses with less frequent update functions. Thus,

those later on-clauses will always override the earlier ones. With respect to event

search, an event is a match for an update function if it is true for every time and

object_id for which the update function trajectory vector is 1, and false whenever it

is 0. The event may be either true or false when the update function trajectory value

is −1.

Notably, if the number of unique vectors in an update function trajectory is 1,

then the matching event may be a global event, because there is no variance based

on object-specific features. Otherwise, if there is more than one unique vector in

the trajectory, then the matching event must be an object-specific event, since the

evaluated vector depends on the particular object_id. It is possible that a matching

event may not be found in either of these cases, which signals that we must enrich the

program state with new elements that were not used in the original event space. For

simplicity, in the rest of the section, we focus only on the case where the unmatched

update function trajectory contains a single unique vector. This setting is called

global latent state synthesis ; the alternative setting, called object-specific latent state

synthesis, is a straightforward extension.
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Automata Synthesis

The input to the automata synthesis step is a set of update function trajectories, one

for each unmatched update function from the previous step. Each update function

trajectory is a single vector 𝑣 ∈ {−1, 0, 1}𝑇 . The goal of the automata synthesis

procedure is to construct the simplest latent state automaton that enables us to write

latent-state-based event predicates matching each 𝑣. For ease of exposition, we will

begin by describing the automata synthesis procedure for the scenario in which there

is exactly one unmatched update function for which a latent-stated-based predicate

must be constructed. We will then describe the extension to the more general scenario

of multiple unmatched update functions.

To start, we frame our overall problem with respect to the classic formulation of

automata synthesis given input-output examples. Classically, the problem of induc-

tive automata synthesis is to determine the minimum-state automaton that accepts

a given set of accepted input strings (positive examples) and rejects a given set of

rejected input strings (negative examples). In our scenario, these positive and nega-

tive input “strings” may be determined from the sequence of program states (one per

time) corresponding to the observation sequence. In particular, we consider the set

of prefixes (sub-arrays starting from the first position) of the program state sequence

that have, as their last element, a program state where the optimal co-occurring event

is true (Figure 4-3). The optimal co-occurring event is defined to be the event that

co-occurs with the update function in question, and has the minimum number of false

positive times, i.e. times when the event is true but the update function does not

occur. Since there may be multiple such co-occurring events with the same minimal

number of false positives, we further restrict search for this event to a co-occurring

event space that is smaller than the full event space, and contains events that are

more likely to be correct co-occurring events, based on our knowledge of the domain.

In the Mario example, this co-occurring event is clicked. We then partition the set

of program state sequence prefixes into those that end with a program state in which

the update function took place and those in which it did not take place. The former
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set is the set of positive examples and the latter is the set of negative examples in

our automata synthesis problem.

This definition of positive and negative input strings may be understood by consid-

ering the fact that, if there existed a latent state automaton that fit this specification,

then the event

co_occurring_event && (latent_var in [/* accepting state labels */])

would be a perfect match for the update function. This is because the co-occurring

event is true during a set of false positive times with respect to the update function

trajectory, and the latent automaton is in rejecting states at exactly those times (since

those times correspond to the rejected program state prefixes). Thus, finding such

an automaton would mean we would have an event that matches the update function

under consideration.

Having discussed this simpler setting in which there is just one unmatched up-

date function in need of latent state, we now return to the full problem setting, in

which there may be multiple unmatched update functions. In this scenario, each un-

matched update function specifies its own inductive automata synthesis problem—a

set of positive and negative input strings—that if solved will give rise to a matching

latent-state-based predicate. One solution to this “multi-automata” synthesis prob-

lem is to construct a distinct latent automaton (variable) that satisfies each update

function. However, a smaller number of latent variables is often sufficient to explain

all the update functions. In fact, the product of all the individual update function

automata is a single automaton that satisfies all specifications, up to changing the

accept states for each update function. However, taking the product of the small-

est automata satisfying individual update functions does not necessarily produce the

smallest product automaton: It is possible that larger component automata will mul-

tiply to form this minimal product instead. Thus, optimizing each individual update

function’s automaton and multiplying is not a sufficient solution.

56



Figure 4-3: Bird’s-eye view of the automata synthesis problem, using the example of
the Mario program. The bullet addition update function, indicated by addObj, does
not have a matching trigger event. The closest event is clicked, which co-occurs
with bullet addition but also is true at false positive times. We seek a latent variable
that is true at one set of times (accept values) and false at another set of times (reject
values), so that the conjunction of clicked and that latent variable perfectly matches
addObj’s times. As shown in the solution, this latent variable initially has value zero,
and changes to one then two on agent-coin intersection, and changes back down on
clicks.

57



We now discuss three distinct algorithms for solving this inductive automata syn-

thesis problem: Full Sketch, Divide-and-Conquer Sketch, and Heuristic. We note

that at the current stage of this ongoing work, we synthesize latent automata that

satisfy all unmatched update functions within each object type, as opposed to shar-

ing automata for use across different object types. The reason for this is because

the human-written Autumn programs in our benchmark suite use different latent

variables for each type—a choice that appears to make the programs more human-

understandable than having one large product—and these sets of type-level latent

automata are also often more concisely expressed in the Autumn language than a

single product.

Algorithm 1: Full Sketch

In the Full Sketch approach, Sketch is tasked with identifying the minimal automa-

ton that, for a set of unmatched update functions, accepts each update function’s

language as specified by the observed examples up to changing just the accept states

corresponding to each update function. Specifically, the set of all unmatched update

functions for each object type is divided into groups that have the same co-occurring

event, and Sketch tries to find a satisfying automaton (i.e. latent variable) for each

of these groups. As an example, consider the Autumn program named Gravity I

shown in Figure 4-4. The blue blocks continuously move left, right, up, or down

depending on which of the four colored buttons was last pressed. A matching event

cannot be found for any of the four update functions moveLeft, moveRight, moveUp,

or moveDown, and they all have the same co-occurring event of true, so their update

function trajectories are fed to the Sketch solver to produce the 4-state automaton

shown in Figure 4-4a. This new latent variable then allows a matching predicate to

be written for each of the four update functions: true && latentVar == 1, true

&& latentVar == 2, true && latentVar == 3, and true && latentVar == 4.
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Algorithm 2: Divide-And-Conquer Sketch

Rather than attacking multi-automata synthesis problems head on, Divide-And-Conquer

Sketch tasks Sketch with solving each update function’s automata synthesis problem

individually, and then combines those solutions together via product. The intuition

behind this approach is that synthesizing an automaton matching multiple update

functions at once could face scalability challenges, but finding an automaton match-

ing a single update function, which is likely smaller, may be easier. As described

previously, the smallest automaton satisfying a single update function may not give

to rise to the smallest product, so the Divide-and-Conquer algorithm identifies a small

set of automata matching each update function instead. It then takes the product

over all update functions’ automata sets, and computes the minimal automaton from

that product space. We illustrate this algorithm again with the Gravity I example

(Figure 4-4b). The algorithm first identifies a set of automata that solve the automata

synthesis problems corresponding to the four unmatched update functions. Note that

each of these automata have just two states instead of the full 4-state solution found

in the Full SAT approach. Next, it computes all automata products over these four

automata sets, and takes the minimal automaton from this product set, which is the

4-state solution seen previously.

(A note about Figure 4-4b: For reasons of tractability, we employ a simple heuristic

to downsize each individual update function’s automata set before taking the product

across all automata sets. At a high level, this heuristic identifies subsets of the

full automata set that are observationally equivalent with respect to the given input

observation sequence, and keeps just one automaton from each of these equivalence

classes. This step is not shown in the figure. We will give a more detailed explanation

of this procedure and definition of observational equivalence in the final version of

this paper.)
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Algorithm 3: Heuristic

Despite the simplicity of the Sketch-based formulations of automata synthesis, their

scalability to problem settings with large automata is unclear, due to known lim-

itations of SAT solvers. As such, we also implemented a heuristic algorithm that

synthesizes an automaton satisfying a set of update function trajectories via a se-

ries of greedy updates to an initial automaton (Figure 4-4c). At a high level, this

approach begins with an automaton with a small number of states, and repeatedly

splits states into two based on a heuristic related to the search for transition events.

More precisely, the algorithm begins by searching for transition events (edges) that

result in an automaton that produces a particular initial state sequence that has few

distinct states. If transition search fails, one of the original states is split into two,

and transition search is repeated. Since state splitting changes the specifications for

the desired transition events, in other words by changing when the transition event

must be true versus false to produce the desired state sequence, it enables transition

search after a first failure. This cycle of transition search and state splitting continues

until a satisfying automaton is identified.

Lastly, we note that the descriptions in this chapter provide a high-level view of

our synthesis algorithm, omitting some lower-level heuristic variations and details.

We will formalize and include these elements for the final version of this paper.
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Figure 4-4: Three variant methods for automata synthesis, shown for Gravity I. The
blue blocks move left, right, up, or down depending on the button last clicked. The
transition label left abbreviates (clicked leftButton), etc. See note in Sec. 4.3.2.
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Chapter 5

Evaluation

5.1 CISC Benchmark

As our evaluation remains ongoing, for our preliminary results, we manually con-

structed an input user action sequence for each benchmark program, and ran the

three synthesis algorithms—Full Sketch, Divide-and-Conquer Sketch, and Heuris-

tic—on these sequences. We declared a success for a synthesis algorithm if it pro-

duced an output program that matched the observation sequence, though it need

not be perfectly equivalent to the ground-truth program (for the benchmarks with

random behavior, this equivalence was checked by manual inspection, since it is oth-

erwise difficult to determine if a particular observed sequence could be produced by

a nondeterministic Autumn program). Both of these aspects will be updated in our

final evaluation, in which we plan to measure the success of our synthesis algorithms

on input sequences generated by several human subjects interacting with the models,

and define success to be how frequently the synthesized program is equivalent to the

ground-truth program on an independent test set of input sequences.

The results of our evaluation are shown in Table 5.1 and Figure 5-1. While

these results are subject to change as we continue to finalize our work, the Heuristic

algorithm is currently most effective on this suite: It solves all but three of the

benchmarks, and mostly does so in less time or very close to the time of the best

of the other two algorithms (the runtime is very similar to Full Sketch’s runtime on
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many models). The Divide-and-Conquer Sketch algorithm is notably slower than

both the Heuristic and Full Sketch algorithms on all but one of the models that all

three methods solve. Further, while the vast majority of the programs synthesized by

the Heuristic and Full Sketch algorithms either exactly or almost exactly match the

ground-truth programs, some of the programs synthesized by the Divide-and-Conquer

method do not generalize as accurately. This is a result of the fact that we do not

enumerate the entire space of automata matching each individual update function

before taking the product. We instead just enumerate a small, finite subset, so the

computed product is often not optimal.

The most interesting result in our evaluation is the following: For seven of the

benchmark programs—Counts III, Count IV, Count V, Double Count II, Coins I,

Coins II, and Coins III—both Sketch-based algorithms timed out after 12 hours with-

out producing a solution, while the Heuristic algorithm solved all those models in

minutes to hours: 1.5, 2.0, 2.5, 13.7, 47.8, 163.3, and 560.3 minutes, respectively. The

poor performance of the Full Sketch method on these models is due to the fact that

the models’ underlying latent automata have large numbers of hidden states, which

are extra accept states for any of the state-based update functions. More precisely,

every update function triggered by a latent-state-based event must have at least one

accept state in the automaton. For this reason, the number of states in the automa-

ton must be at least the number of update functions, so the Sketch solver begins its

search for a satisfying automaton by searching among automata with this minimum

state count. If a solution is not found, Sketch will keep incrementing this state count

until it finds a correct automaton. Hence, when the actual number of states in the

desired automaton is much larger than the number of update functions (e.g. of the

ten states in the Coins III automaton, 8 states are hidden), the underlying SAT solver

does not terminate quickly, resulting in the observed timeouts. Divide-and-Conquer

Sketch fails for the same reason, because while individual-update-function-level au-

tomata may sometimes be smaller than the overall automaton, in these models, each

individual automaton is actually the same as the full automaton. Hence, Sketch again

does not terminate in the Divide-and-Conquer framing.
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We also comment on the benchmark programs that none of our algorithms were

able to synthesize. For these models, many of the fixes are lower-level modifications

to the overall algorithm. For example, for the Grow II and Egg programs, an event

predicate needed to express the program is actually just missing from the atomic event

space we use for search, so it should be added to the space. Another limitation is

that sometimes the optimal co-occurring event computed for a particular latent-state-

based update function is incorrect, causing synthesis to fail. However, the second-best

co-occurring event—that with the second smallest number of false positives rather

than the smallest—may be correct, or the third-best, etc. This general kind of failure

can be reduced by implementing a form of “multiplicity handling” with respect to

co-occurring events, where instead of trying only the best event and terminating if it

causes the rest of synthesis to fail, we try the top-k best events until one hopefully

succeeds. These kinds of updates to our current algorithm are ongoing.

Finally, we emphasize that our benchmark results are still preliminary and are

subject to change as we continue to modify both the Heuristic and the Sketch-based

algorithms, including with the generalizations described above. Some of these modi-

fications will affect all three algorithms’ runtimes, like the previously described “mul-

tiplicity handling” generalization, while others will affect individual algorithms’ run-

times. For example, optimizations to the Sketch implementations could decrease the

Sketch-based algorithms’ runtimes, while improvements that make the Heuristic al-

gorithm less brittle/more general would increase the Heuristic algorithm’s runtimes.

More precisely, while the Heuristic algorithm works well on the current benchmark

suite, the nature of it being a heuristic means that there are certainly classes of

models on which it will fail, which we can patch somewhat with more intricate al-

gorithms. These kinds of changes are likely necessary for the method to generalize

both to other Autumn programs we may add to the benchmark suite, as well as

alternative user action sequences on the current programs beyond just those inputs

that we hand-curated. With respect to different user input sequences in particular,

we currently have selected inputs that we knew were compatible with the heuristics

embedded in our algorithm (including the state synthesis heuristics), so modifica-
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tions will be necessary to ensure success on other inputs, including those generated

by users without knowledge of the synthesizer. Lastly, further thinking about our

evaluation design, including potentially running the Sketch solver with a few different

parameter options to fend against blowup, to ensure the fairest possible comparison

between the three algorithms also remains part of future work. These modifications

may result in different relative runtimes across the variant algorithms than we cur-

rently observe (e.g. potentially lower Sketch runtimes and higher Heuristic runtimes

on some benchmarks).

5.2 External Benchmark Suite: Preliminary Results

In addition to our manually-constructed dataset, we also wanted to evaluate our

method on an externally-sourced benchmark. We elected to use the suite of grid

world games developed by Tsividis et. al. as part of their work titled “Human-Level

Reinforcement Learning through Theory-Based Modeling, Exploration, and Plan-

ning” [22]. In that paper, the authors designed a set of 27 distinct grid world games

that each have two to five levels, making for a total of 90 games when all levels are

included (Figures 5-3 and 5-4). They used these games to train a video game playing

agent called EMPA (for the Exploring, Modeling, and Planning Agent), so we refer

to their benchmark suite as the EMPA suite for the rest of this section. The games

were written in the PyVGDL language for describing grid-world-based video games,

and exhibit a number of differences from Autumn programs. These include that the

games are all run on very large grids, such as 330 pixels by 900 pixel grids, while most

Autumn programs run on 16 by 16 grids (the unit size of a cell in the visual Autumn

grid is larger than a single pixel). In addition, they are all games, with a single mov-

able player agent and specific win states and lose states, whereas Autumn programs
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Table 5.1: Table of input/output lengths and algorithm runtimes on each of the
benchmark programs. A bottom symbol indicates timeout after 12 hours. An X sym-
bol indicates that the benchmark’s solution was outside the support of the synthesis
algorithms (described in more detail in Section 5.1) and thus we did not time the
algorithms on these benchmarks. We will add these evaluations in the final version
of the paper, when we have added the generalizations that alleviate these limita-
tions. In addition, the N/A’s for the Sketch and D&C Sketch runtimes on the first
seven benchmarks are there because those models do not possess latent state, while
the three algorithms vary only in their latent automata synthesis procedures. Since
we wanted to highlight the runtime differences arising from core automata synthesis
differences instead of lower-level algorithmic choices needed to support them (which
would be more prominent in models without latent state), we have only evaluated the
Heuristic algorithm on these non-latent-state based models for our first evaluation.
Finally, Coins I, II, and III are marked with an asterisk to indicate we only ran those
models with the “single-cell” object parsing algorithm rather than both algorithms in
turn, due to lack of time. This will also be updated in the future.
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Figure 5-1: Runtimes for the variant AutumnSynth algorithms on each of the bench-
mark programs solved by at least one algorithm. Note that the first 6 benchmarks
(Ants, Chase, Magnets, Invaders, Sokoban, and Ice) all do not contain latent state,
so we currently evaluate only one of the algorithms (Heuristic) on them (see Table 5.1
caption for further explanation). We also note that the runtimes that exceed the size
of the plot did not finish before the timeout, and that synthesis success is defined as
producing a program that matches the observations—not necessarily being semanti-
cally equivalent to the ground-truth program. Finally, we note that while these results
provide a snapshot of the current state of our project, they are subject to change as
we continue to develop our variant algorithms. In particular, yet-to-be-implemented
generalizations of the Heuristic method and optimizations to the Sketch-based algo-
rithms could lead to different relative runtimes across the three algorithms (e.g. lower
Sketch runtimes and higher Heuristic runtimes) for some benchmarks. See Section
5.1 for a more detailed discussion.
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Figure 5-2: Sample latent state automata synthesized by AutumnSynth. (a) Paint
model. Each state corresponds to a different color, indicating the color of the block
added when a user clicks on an empty grid square. Pressing up cycles through the
colors. (b) Gravity III model. Each state corresponds to one of the nine directions of
motion formed by crossing three possible x-directions (-1, 0, 1) with y-directions (-1,
0, 1). (c) Water Plug model. Clicking one of three colored buttons changes the color
of the block added when a user clicks an empty grid cell to the color of the button.
(d) Wind model. Snow particles fall downward, left-diagonally, and right-diagonally,
depending on the wind state that changes with left/right arrow keys. (e) Count
IV model. Instead of giving the Autumn language description for this automaton,
we show the on-clauses for the update functions that depend on the latent variable
instead. Here, a particle moves left if the total number of left presses is greater than
the total number of right presses up to a maximum difference of 4. It moves right
according to a similar rule, and is stationary in state zero.
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need not fit into this format. Finally, they also exhibit a considerable amount of ran-

dom behavior, including dynamics such as objects being randomly added with some

small probability at every time.

We have just begun to test how well the AutumnSynth algorithm can synthesize

Autumn programs that model EMPA games, and take care to emphasize that our

current set of results is very preliminary. In order for the algorithm to be successful in

this new domain, we have modified several lower-level details of the algorithm, while

maintaining the gists of the high-level phases discussed previously. These modifica-

tions include adding a few library functions to the Autumn standard library that

more concisely capture some of the behaviors demonstrated in EMPA games, modify-

ing the search space for update function synthesis to use these new library functions

and removing some elements that were no longer useful, and modifying the event

search spaces by adding and removing some events. We also modified the heuristic

algorithms used to perform update function synthesis as well as added new heuris-

tics to handle the kinds of random behavior displayed in the EMPA suite. Finally,

since the objects in all but one of the EMPA games consist of 30 pixel by 30 pixel

squares, we changed the object parsing heuristic to take advantage of this informa-

tion. However, the size of these grid frames compared to the CISC grid frames means

that additional improvements will be necessary to make the object parsing step suf-

ficiently fast. As a result, for now, we skip the object parsing step in our EMPA

evaluation by providing the correct objects through other means, so we can ensure

that the other steps of the algorithm are operating first. We will certainly add this

phase of the algorithm back in the final version of the paper.

With all of these modifications as well as some other low-level ones (e.g. some

minor modifications to the algorithm between different benchmark runs that will

ultimately be standardized), we ran AutumnSynth on the first level of each of the 27

games in the EMPA suite. These preliminary results are provided in Table 5.2, where

certain cells are marked with TBD to designate that a particular experiment has not

yet been performed. We find that AutumnSynth, using the heuristic state synthesis

algorithm, synthesizes a program for almost all of the 27 games, with runtimes ranging
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from about a few minutes to several hours depending on the size of the model (i.e. the

length of the manually-constructed input sequence, the number of on-clauses that had

to be learned, the number of objects involved, etc.). We note, however, that since

most of these games display random behavior and thus the synthesized Autumn

programs describe random elements, it is difficult to automatically check whether the

input observation trace can be produced by the synthesized random program. As a

result, we only perform this automatic check for the non-random models (8 out of 27

in the suite), and assess whether the other programs are correct just by inspection.

This correctness check will certainly be revised in the final version of this paper to

be more systematic, but we emphasize that the current results should thus be taken

with a grain of salt: It is possible that some of the synthesized programs are less ideal

models of the underlying behavior than they could be or even are incorrect, since we

may have overlooked details during manual inspection (though more rigorous testing

on one spot-checked random program suggests the method is working).

Nonetheless, the fact that AutumnSynth seems to work at all on programs in

this externally-sourced benchmark is promising. In particular, the Heuristic algorithm

was able to synthesize Autumn programs containing very large automata, such as

that in the Aliens program, which has 14 states and 20 transitions. This is larger

than any of the automata in the CISC programs, an impressive feat. Successfully

synthesizing a large portion of the EMPA benchmark will concretize the generality of

our approach, and we are excited about continuing to pursue this line in the future.
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Figure 5-3: Stills from a sample of programs in the EMPA suite, resized to fit neatly
into the figure. (a) Avoid George, where the dark blue agent must avoid the yellow
enemy, which chases it and the randomly moving green objects. (b) Missile Command,
in which the dark blue agent must get to the green goal before the gates close. (c)
Portals, in which some blocks teleport the agent to other blocks. (d) My Aliens, in
which the agent collects orange and is killed by purple objects. (e) Plaque Attack, in
which the agent can shoot at orange enemies before they reach the yellow goals. (f)
Bees and Birds, where the randomly moving yellow objects can kill the enemy before
it reaches the green goal.
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Figure 5-4: The Aliens program from the EMPA corpus. Pressing arrow keys moves
the blue agent left and right, and clicking causes it to shoot a pink bullet upward,
as long as there are no other pink bullets already in the frame. Gold enemies are
regularly created at the top-left corner, and move right once every three time steps.
The enemies randomly shoot red bullets, which move down every two time steps.
Pink bullets kill enemies, red bullets kill the agent, and both bullets destroy the gray
shield blocks. The latent variables are the enemy and pink bullet speeds: the bullets
do not move in sync but rather every two or three time steps from the time of their
creation, so object-specific latent fields are used to track when they move.
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Table 5.2: Preliminary results from running AutumnSynth on the EMPA
benchmark suite. The runtimes indicate that the synthesis algorithm terminated
with a synthesized program, not that the synthesized program necessarily exactly
matches the input frame, since that is challenging to automatically check due to
the randomness exhibited by most models (exact match checks are performed for
the eight deterministic models in the suite, however). As such, it is possible that
some of these synthesis successes are not perfect matches to the input sequence,
since our checks by manual inspection may not be complete. This will be updated
for the final version of our paper.
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Chapter 6

Conclusion and Future Work

In this thesis, we have developed a new programming language (Autumn) and bench-

mark suite (Causal Inductive Synthesis Corpus) for exploring few-shot learning of

causal dynamics models, as well as demonstrated a proof-of-concept for a new syn-

thesis approach (AutumnSynth) that succeeds on these problems. Our synthesis

algorithm operates by uniting techniques from two disparate communities within the

field of programming languages—the functional synthesis and automata synthesis

communities—and widens the scope of problems that either community can solve

on its own. The key innovation of our method is that symbolic latent state can be

tractably synthesized by employing error-driven search, where the errors derive from

an initial solution attempt using functional synthesis.

While our results so far are promising, we remain most excited by the many

potential avenues of future work that are engendered by our current progress. These

may be divided into short-term future directions and long-term future directions, each

of which we discuss next in turn.

6.1 Short-Term

Beyond the previously described standardizations to our current evaluation setup,

short-term extensions to our work include measuring (1) how well programs syn-

thesized by the AutumnSynth algorithm generalize on inputs beyond the given
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input sequence, and (2) how well AutumnSynth can synthesize programs from

user-generated inputs, rather than just expert-generated ones.

More precisely, with respect to the former, while we currently declare a success

if the synthesis algorithm produces a program that matches the input observation

sequence, we are ultimately interested in how well the synthesized program matches

the ground-truth program from which the input was produced. If the synthesized

program is able to generalize from a relatively short observation sequence to other

input sequences as well as humans can, that is strong evidence that the method is

likely capturing some aspects of how humans learn these kinds of causal models. We

can measure this generalization performance by creating a test set of observation

sequences from the ground truth, and identifying the fraction of these test sequences

on which the synthesized program and the ground-truth program produce the same

output. In other words, we can use a traditional train/test split that is generally used

in the machine learning community to evaluate our algorithm, where the split is one

training sequence and 𝑛− 1 test sequences.

In addition, we currently select the input sequences fed to our synthesis algorithm

manually, in a way that we know is compatible with the heuristics embedded in our

algorithm, from the update function synthesis step to the automata synthesis step.

We are interested in how well the algorithm performs when fed input traces created

by users who are not as familiar with the internals of the procedure. As such, we will

run user studies in which participants are asked to interact with Autumn programs

via our web interface. We will record these interaction traces under two different

experimental contexts: (1) a demonstration context, in which participants are asked

to first figure out how an Autumn program works by interacting with it and then

create a recorded input sequence demonstrating how it works, and (2) an exploration

context, where the initial exploratory interactions by users are all recorded until they

feel they have understood how the model works.

For both of these additional evaluation metrics (train/test split evaluation and

user-generated input sequences), generalizations will need to be made to lower-level

aspects of the algorithm in order to achieve high performance. These improvements
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include changes like iterating through the set of co-occurring events for an unsolved

update function in order of increasing false positive count, as opposed to always

taking the top one and giving up if that choice fails as is currently done, as well as

better curating the different event search spaces used in the algorithm so there is

less event ambiguity in general. We will also experiment with modifications to the

object parsing and mapping heuristics used by the algorithm so that they handle a

wider range of scenarios, as well as generalize some details of our heuristic-driven

automata synthesis algorithm. With these sorts of modifications, we are hopeful that

this expanded evaluation suite will further establish the generality of our high-level

approach.

6.2 Long-Term

The original dream that inspired the development of the Autumn domain and syn-

thesis algorithm was to create learning algorithms that are able to infer causal models

of the world as easily as humans do. The AutumnSynth method is one step in this

direction, but to ultimately create such a versatile artificial learner, much work re-

mains. One direction is determining how to best blend symbolic techniques like those

developed in this thesis with deep learning-based approaches, to overcome brittle-

nesses that have long plagued attempts at building symbolic AI. Some examples of

this thrust are applying synthesis procedures like AutumnSynth over object rep-

resentations and mappings learned using deep-learning-based object detection and

tracking algorithms, or using neural-guided program search to speed up some of the

more enumerative aspects of the synthesis process. Another important line of future

work is more formally handling uncertainty in the synthesized programs—in other

words, inferring probabilistic programs from the observation sequences. Yet another

crucial direction is developing a synthesis algorithm that produces an output program

in an online or incremental way, for example by producing a hypothesis program after

the first pair of frames and then continually revising that hypothesis program with

each new frame until the end of the observed sequence. Such an algorithm would
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more closely align with the incremental way in which humans arrive at hypotheses

about how the world works over time. Progress on all of these directions and more

will be needed to create a truly human-like causal model learner, which operates not

just in 2D environments, but in the uncertain, messy, and 3D real world as well. We

look forward to taking inspiration and lessons from work on the Autumn domain as

we build towards this future.
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Appendix A

Additional Evaluation Details

Instead of completely raw images, we currently send a slightly more processed ver-

sion of the images to the synthesis engine as input, namely a list of 2D pixel positions

with colors. The significance of this representation is that, if two objects overlap

at one pixel, the synthesizer does not need to figure out from that pixel’s color and

transparency value (all Autumn renderings are partially transparent) that there are

really two overlapping colors there. Instead, the input will already include two ele-

ments with the same x-y coordinates and color, e.g. {(𝑥, 𝑦, 𝑐𝑜𝑙𝑜𝑟), (𝑥, 𝑦, 𝑐𝑜𝑙𝑜𝑟)}. This

detangling of pixels with overlap into their individual components can be trivially

performed by storing a mapping between all RGBA values formed via overlaps of a

finite number of colors, and the lists of colors that compose them. We will implement

this procedure in the final version of the algorithm.

Finally, we note that the current benchmark runtimes were measured not just

on one machine but across a few machines, so we will standardize our evaluation by

running all experiments on one machine in the final paper. We also currently run

each model 1-3 times (more for the faster benchmarks and less for the longer/timeout

benchmarks), and that a few very minor bug fixes were made to the implementation

between some of the experiments, which are very unlikely to affect the relative run-

times of the three algorithms. We will standardize these in the final version of this

work as well (e.g. by averaging runtimes over larger number of runs, etc.).
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