
Software and Hardware Infrastructure for
Visual-Inertial SLAM

by

Mubarik M. Mohamoud

S.B. Electrical Engineering and Computer Science
Massachusetts Institute of Technology, 2017

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

May 6, 2022

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Luca Carlone

Associate Professor
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee



2



Software and Hardware Infrastructure for Visual-Inertial

SLAM

by

Mubarik M. Mohamoud

Submitted to the Department of Electrical Engineering and Computer Science
on May 6, 2022, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

One of the challenges faced by researchers in the field of robot localization and map-
ping is finding a reliable infrastructure to test their ideas. That infrastructure could
be a simulation platform, suitable hardware, or a sensor interface. A useful simulation
platform needs to capture the dynamics and the sensor modalities that meet the re-
searchers’ needs. A suitable hardware needs to have the capability to navigate, sense
the environments, and use onboard computers to run the software it was designed
for. A sensor interface allows adapting and testing algorithms on novel sensors.

In this research, we develop an essential hardware and software infrastructure for
aiding the development and testing of visual-inertial Simultaneous Localization and
Mapping (SLAM) systems. SLAM is a fundamental problem in robot navigation and
enables constructing or updating a representation (map) of an environment utilizing
sensors on board a robot while concurrently using that representation to localize the
robot itself. In visual-inertial SLAM the onboard sensors are cameras (monocular or
stereo) and an inertial measurement unit (IMU).

The contribution of this thesis is threefold. First, we develop a hardware platform
consisting of a real drone capable of running state-of-art metric-semantic SLAM; this
infrastructure allows us to test advanced SLAM algorithms using real sensors and
real robot dynamics. Second, we develop a multi-robot simulation platform that in-
cludes dynamically accurate, photo-realistic drones; this platform allows extending
our tests to multi-robot SLAM systems. Finally, we develop a new sensor interface;
in particular, we integrate and test an omnidirectional stereo frontend in Kimera, an
open-source visual-inertial SLAM pipeline. The thesis presents the design, implemen-
tation, and testing of each contribution.

Thesis Supervisor: Luca Carlone
Title: Associate Professor

3



4



Acknowledgments

I would like to express my gratitude to Professor Luca Carlone for the unlimited

support that he has shown me through this program. None of this would have been

possible without Luca’s support and I could not be more thankful for his time, advice,

and financial support. I would also like to thank all the researchers in the SPARK

Lab including Marcus Abate, Yun Chang, Jingnan Shi, and Samuel Ubellacker who

have been helpful throughout this project.

5



6



Contents

1 Introduction 15

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Drone Design 17

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Design Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Final Product and Future Work . . . . . . . . . . . . . . . . . . . . . 22

3 Multi-Robot Simulation Infrastructure 25

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Multi-robot Simulation Platforms . . . . . . . . . . . . . . . . 27

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 TESSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.2 TESSE-Multi in Unity . . . . . . . . . . . . . . . . . . . . . . 29

3.4.3 Multi Agent TESSE ROS Bridge . . . . . . . . . . . . . . . . 31

3.4.4 Multi-Robot Trajectory Optimization . . . . . . . . . . . . . . 31

3.4.5 Multi-Robot Controllers . . . . . . . . . . . . . . . . . . . . . 32

3.5 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.1 Testing with Multiple Instances of Kimera . . . . . . . . . . . 34

7



3.5.2 Testing with Kimera-Multi Centralized . . . . . . . . . . . . . 36

3.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 39

3.6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6.2 Improving data transmission efficiency . . . . . . . . . . . . . 40

4 Omnidirectional Stereo Interface for Kimera 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Implementation Choices . . . . . . . . . . . . . . . . . . . . . 45

4.2.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.3 Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Experimental Setup and Results . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Comparison with the Realsense T265 Camera Tracking and Vicon 55

4.3.2 Comparing to Kimera Pinhole . . . . . . . . . . . . . . . . . . 57

4.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.1 Improving the Feature Matching . . . . . . . . . . . . . . . . . 62

4.4.2 Improving the Camera Calibration . . . . . . . . . . . . . . . 63

5 Conclusion and Future Work 65

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A Omnidirectional Interface 67

A.1 Frontend Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.2 Backend Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8



List of Figures

2-1 The Intel Aero Ready to Fly drone components (figure in courtesy of

[19]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2-2 This figure shows the final components of the SPARK drone including

the frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2-3 The A203 carrier board which was used to replace the Jetson Xavier

NX developer Kit (image courtesy of [21]). . . . . . . . . . . . . . . . 21

2-4 This figure shows the coordinate frame definitions for the SPARK

Drone body and sensors. . . . . . . . . . . . . . . . . . . . . . . . . 24

3-1 A block diagram showing a typical visual navigation pipeline from the

course Visual Navigation for Autonomous Vehicles (VNAV) [30] [1]. . 26

3-2 The main system diagram of the TESSE simulation which shows the

main sensor and communication layers (figure courtesy [42]) . . . . . 28

3-3 Quadrotor model (courtesy of [32]) . . . . . . . . . . . . . . . . . . . 32

3-4 A visualization of the office scene for this section (figure courtesy of [42] 34

3-5 The aligned trajectory estimate (colored) of Kimera-VIO and the ground

truth odometry (dashed) for the first robot (a) and the second robot (b). 35

3-6 The absolute translation errors after trajectory alignment. . . . . . . 35

3-7 As presented by Carlone et al. [14], Smart Factors is a compact rep-

resentation of factors of a factor graph by eliminating large sets of

support variables without losing the information they contain. Valid

smart factors contain visual measurements that are considered correct

for the VIO estimator. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

9



3-8 Random sample consensus [23], or RANSAC, is an iterative method

for estimating a mathematical model from a data set that contains

outliers. The RANSAC algorithm works by identifying the outliers

in a data set and estimating the desired model using data that does

not contain outliers. In this case, the data is a set of frame-to-frame

key-points for mono ransac and left-to-right keypoints for stereo while

the model is relative rotation and translation or a pose. Higher inliers

means higher chance that the estimated model is correct. . . . . . . 37

3-9 Kimera-Multi centralized architecture (courtesy of Yun Chang [17]) . 38

3-10 Aligned trajectory of the two robots showing loop closure detections. 38

3-11 Unaligned trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4-1 Mean reprojection errors per image for multiple calibration refinement 51

4-2 Number of stereo matches passing the depth constraint check (green),

number of stereo matches with negative depth (red), and number of

matches failing depth constraints (blue). . . . . . . . . . . . . . . . . 52

4-3 This figure shows that after our initial calibration some left to right

keypoints failed depth constraints while being valid matches. This

issue was mitigated by repeating several calibration iterations. Note

that not all of the shown keypoint matches are valid. Some of them

are correctly filtered out as wrong matches, but a few of them in one

region are actually valid matches that are wrongly filtered. . . . . . . 53

4-4 Drone setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4-5 Figure (a) shows the trajectory (colored) of Kimera-VIO with the

Omnidirectional camera model and the odometry of the RealSense

T265(dashed). Figure (b) shows the absolute translation error of the

aligned Kimera-VIO Omni trajectory with respect to the T265 odom-

etry. This data was collected with a SPARK Drone in a Vicon Room.

The accuracy of the T265 was benchmarked against the Vicon position

which shown in Figure 4-6 . . . . . . . . . . . . . . . . . . . . . . . . 57

10



4-6 This figure shows the trajectory estimate(colored) of the drone by the

T265 odometry vs the ground truth (dashed) trajectory of the drone

from Vicon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4-7 Hand held experiment setup. . . . . . . . . . . . . . . . . . . . . . . . 59

4-8 Figure (a) shows the trajectory (color) of Kimera-VIO with the pinhole

distortion model versus the Intel RealSense T265 odometry (dashed).

Figue (b) shows the trajectory (color) of Kimera-VIO with the omni-

directional distortion model versus the Intel RealSense T265 odometry

(dashed). In general the Omni showed less drift than the Pinhole model. 60

4-9 Figure (a) shows the trajectory (color) of Kimera-VIO with the pinhole

distortion model versus the Intel RealSense T265 odometry (dashed).

Figue (b) shows the trajectory (color) of Kimera-VIO with the omni-

directional distortion model versus the Intel RealSense T265 odometry

(dashed). The Omni model shows significant drift in the first long

hallway but stays close to the reference (T265) odometry for most of

the way. On the other hand, Kimera with the Pinhole camera model

shows continuous drift through the trajectory. . . . . . . . . . . . . . 61

4-10 Figure (a) is showing the translation errors of Kimera-VIO using the

low distortion pinhole model with respect to the odometry of the Re-

alSense T265. Figure (b) is showing the translation errors of Kimera-

VIO using the high distortion omnidirectional camera model with re-

spect to the odometry of the RealSense T265. Relevant error metrics

including residual mean squared error (rmse), median, mean, and stan-

dard deviation of errors are displayed within each plot. . . . . . . . . 62

4-11 Feature tracking and matching. . . . . . . . . . . . . . . . . . . . . . 64

11



12



List of Tables

2.1 The important specifications of carrier boards to replace the Jetson

Xavier NX Developer Kit carrier board. . . . . . . . . . . . . . . . . . 22

2.2 The specifications for candidate compute modules to replace the Intel

Aero compute board. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Network port mapping for two agents . . . . . . . . . . . . . . . . . . 31

3.2 Important terms in equations (3.2) and (3.3). . . . . . . . . . . . . . 34

4.1 IMU noise default parameters and parameter settings for the hand held

and flying drone experiments. . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Error statistics for Kimera-VIO Pinhole and Kimera-VIO Omni . . . 61

A.1 Complete list of frontend parameters . . . . . . . . . . . . . . . . . . 69

A.2 Complete list of backend parameters . . . . . . . . . . . . . . . . . . 71

13



14



Chapter 1

Introduction

1.1 Background

The last two decades have seen breathtaking progress in the field of robotics. A

fundamental problem to enable robot navigation is Simultaneous Localization and

Mapping (SLAM) [20] [4]. SLAM is the computational problem of constructing or

updating a representation (map) of an environment utilizing sensors on board a robot

while concurrently using that representation to localize the robot itself. Many may

consider SLAM as a solved problem, however there are many interesting outstanding

challenges including some of the problems discussed in [13], and researchers are con-

tinuously coming up with clever improvements for interesting sub-problems. Others,

including researchers in SPARK Lab [22] have been putting painstaking effort into

pushing the boundary of SLAM towards metric-semantic mapping and high-level 3D

scene understanding. The most significant of those efforts include the development

of Kimera [48] [47] [49] [17] and 3D Dynamic Scene Graphs (DSGs) [46] [27]. Some

of those most recent efforts, including Kimera-Multi [17], enable the extension of

the capabilities of SLAM to multi-robot navigation. The general approach is to al-

low multiple robots navigating the same environment to exchange partial trajectory

estimates to cooperatively build a map of the environment.

One of the challenges faced by researchers in this field is finding a reliable robotic

infrastructure to test their ideas. The infrastructure includes simulation platforms

15



that capture the dynamics and the sensor modalities that meet the researchers needs

as well as hardware, whether it is a drone, a ground robot or any other robot, that

has the capabilities to navigate and capture the environments that the software was

designed for.

Even though there are many datasets for SLAM research, including [12] [55] [36],

it is common for researchers to spend valuable time developing their own hardware

and software to fully test their work. Other times, they have to stop short of thorough

testing. In the case of Kimera, the researchers at the SPARK Lab have shown im-

pressive results on datasets including [12], however, they did not have the necessary

hardware in place to test Kimera in a real world environment and especially on a

flying drone.

To fill this gap, this thesis was dedicated to developing hardware and software in-

frastructure that can be used to test and further improve the performance of Kimera

and other SLAM systems. The infrastructure includes the design of a drone capable

of running Kimera on board, and a multi-robot simulation infrastructure. To fur-

ther enhance the real world capability of Kimera, an omnidirectional stereo camera

interface was integrated and tested.

1.2 Thesis Outline

The remainder of this thesis contains four chapters. Chapter 2 will discuss the hard-

ware infrastructure, that is, the drone developed during this research. Chapter 3 will

discuss the multi-robot simulation infrastructure. Chapter 4 will discuss the integra-

tion and testing of an omnidirectional stereo distortion model in Kimera, and finally

Chapter 5 will conclude the thesis by summarizing our findings, lessons learned, and

potential future research.

16



Chapter 2

Drone Design

The first objective of this work was to design and build a drone that has the compu-

tational capabilities to run SLAM pipelines like Kimera on board and payload range

to carry over 1kg of sensors and a soft gripper [24]. Figure 2-2 shows the platform

developed in this thesis and the main components of what we call the SPARK Drone.

2.1 Motivation

Figure 2-1: The Intel Aero Ready to Fly drone components (figure in courtesy of
[19]).

17



This research aims at developing hardware and software infrastructure for Kimera,

primarily. The core of Kimera is Kimera-VIO, a Visual-Inertial Odometry (VIO)

library. VIO and Visual Inertial Navigation (VIN) consist in estimating the state of a

robot using visual and inertial sensors. VIO is well suited for unmanned aerial vehicles

(UAVs). This is not only because VIO or VIN are a powerful and mature technology,

but also because they rely on lightweight sensor payload which makes them the default

option for UAV navigation. Kimera has shown impressive performance on benchmark

datasets including, [12]. However, it has not been tested on an actual drone, primarily

because there were no drones available off-the-shelf that met the sensing and onboard

computation power requirements that were necessary for Kimera.

This presented an opportunity to simultaneously study the hardware and the

software that makeup an autonomous aerial vehicle and create a valuable platform

for researchers in the SPARK Lab and beyond.

2

4 32

1
5

5

5

5

3

1

2 6

7

8

8

1

8

7

6

2

3

4

5

Jetson Xavier NX 

PX4 Mini 

RealSense T265 

RealSense D455 

Intel Aero Motors 

PX4 Power Distribution Board

Soft Gripper

9

9 Tekko F4 4in1 Mini 45A ESC

Spektrum DSMX  FPV Autobind Serial Receiver (SPM4648) 

Figure 2-2: This figure shows the final components of the SPARK drone including
the frame.

18



2.2 Related Work

Drone design is a well studied research problem and there has been much research in

understanding and analyzing the performance of UAVs. Research publications includ-

ing [40] and [10] analyze and explain the thrust-to-weight ratio problem for UAVs.

The thrust-to-weight ratio is a dimensionless quantity that captures the proportion

between the thrust the motors of a drone can produce and how much weight it can

carry. This knowledge allows the researcher to adjust the weight and as a consequence

endurance of the drone given motor thrust and the propeller efficiency. Other papers

such as [38] present a literature review of the current design practices.

Despite the maturity of UAV design, there are no easy-to-use, off-the-shelf and

capable drone platforms out there for research. It is common practice that researchers

design a drone that is tailored for their experiments. Antonini et al. [3] built their

own drone with a Jetson TX2 to collect the Blackbird dataset. This design is similar

to the SPARK Drone in terms of on board computation components, but they used

a DJI Snail propulsion system. Tian et al. [60] built their own quadcopters to

conduct search and rescue operations in a Forest. Their design includes an Intel

NUC onboard computer. They also used a DJI propulsion system. UAV papers from

Kumar’s lab including [59] and [28] used a Snapdragon propulsion system, but their

236g quadcopter is much smaller and lighter weight than what was required from the

SPARK Drone, which is required to carry multiple sensors and a soft gripper.

Although all of the mentioned works guided the design considerations of the

SPARK Drone, the main references used were the Intel Aero Ready to Fly drone

documentations [18] and [19]. The SPARK Drone propulsion system, to be discussed

as part of the contribution, is a modified Intel Aero Ready to Fly drone, but the

computation components and sensors were specifically designed to allow deployment

of modern SLAM systems.

19



2.3 Design Decisions

Scholars in the SPARK Lab have been using the Intel Aero Ready to Fly drone for

research and teaching for several years now. One of the more recent publications using

the Intel Aero Ready to Fly drone is the award winning paper, Dynamic Grasping

with a "soft" Drone: From Theory to Practice by Fishman et al. [24]. The goal of

the research was to have a drone locate an object in the environment, pick up the

object using a soft gripper and drop it off at a known location. The researchers faced

two major challenges with the Intel Aero Ready to Fly drone: First, the compute

board on the Intel Aero Ready to Fly drone did not have the computational capacity

to run a VIO or VIN library like Kimera on board, which means the researchers had

to rely on external motion capture system both for locating the target object and

for tracking the location of the drone. Second, the drone was heavy because of the

attached gripper, which severely limited the flight time.

The new SPARK drones were designed to address those two limitations. It needed

to have the computational capabilities necessary to run Kimera on board while being

lighter than the Intel Aero Ready to Fly drone.

To solve the computation issue without increasing the weight, extensive research

has been done to compile a set of candidate on board computation modules. Table

2.2 shows the specifications under consideration for the final set of candidate compute

modules. Among those, the most important parameters are weight, power consump-

tion GPU/CPU, memory, and footprint. The Jetson TX2 beats the Jetson Nano

on all measures except the weight, power consumption, and footprint. However, the

Jetson Nano is still a powerful computer and has a reduced weight and form-factor.

But the clear winner in Table 2.2 is the Jetson Xavier NX which beats the Nano

on computation, memory, and storage, but also has the same footprint. The Xavier

NX is slightly heavier than the Jetson Nano and the weight difference also increases

with the suitable heat-sink. In addition, the Jetson Nano has slightly lower power

consumption, but all of these modules are low power. At the end, the Jetson Xavier

NX was selected as the main compute board for the SPARK Drone.

20



Figure 2-3: The A203 carrier board which was used to replace the Jetson Xavier NX
developer Kit (image courtesy of [21]).

The Xavier NX is a powerful supercomputer with the form-factor of a credit

card, but it comes with a carrier board that does not meet our weight and form-

factor constraints. Again, extensive research was done to compile a list of custom

carrier boards to replace the Jetson Xavier NX carrier board which is also known

as the Jetson Xavier NX developer Kit. Weight and footprint were very important

parameters under considerations for a carrier board, but the available input-output

interfaces were also very important, especially the availability of enough serial ports

to accommodate two RealSense Cameras and the soft gripper. Table 2.1 shows the

important specifications under consideration for candidate carrier boards.

The A203 V2 custom carrier board for the Jetson Nano/NX (see Figure 2-3) was

used to replace the NX carrier board. A203 V2 provides two USB 3.0 type-A ports

as well as a USB 3.0 ZIF connector. The 2 USB type-A ports were used for the

RealSense cameras while the USB ZIF connector was used to connect the Arduino

module that is used to control the soft gripper.

21



spec NX Dev board A203 Quark Carrier EN715
Weight 97g 55g 33g 57g
Serial connec-
tors

4xUSB 3.0 type
A

2xUSB 3.0
Type-A and
USB 3.0 ZIF

1x USB 3.1
Type-C and
USB0 OTG

2x USB 3.0
Type-A

Display HDMI and DP HDMI None HDMI
Footprint 100mmx80mm 87mmx52mm 82.6mmx58.8mm 87mmx70.6mm

Table 2.1: The important specifications of carrier boards to replace the Jetson Xavier
NX Developer Kit carrier board.

To further minimize the weight, the Pixhawk mini flight controller and Tekko32

F4 4in1 mini 45A electronic speed controller were used. The Intel Aero Ready to Fly

drone comes with four electronic speed controllers (ESCs) each weighing 17-grams

(measured) and with a combined weight of 68-grams. Tekko32 F4 Mini weighs only

8-grams which is a 60-grams reduction. This reduction is more than the entire weight

of the A203 carrier board.

The weight was further reduced by re-designing the frame and removing all un-

necessary parts including stand-offs (with combined weight of 68-grams), the GPS

module, and the on board sensors (including the RealSense R200, front facing RGB

camera, and down-ward facing optical flow camera), and bottom plate which are

all shown on Figure 2-1. This removed an additional estimated weight of 200-grams

which made space for state-of-the-art RealSense T265 and D455 shown on Figure 2-2.

With these components on the customized Intel Aero Frame and propulsion system,

the initial drone was about 100-grams lighter than the Intel Aero ready to fly. Figure

2-2 shows the major components on board the SPARK Drone.

2.4 Final Product and Future Work

The SPARK Drone prototype is shown in Figure 2-2. We will evaluate its capability

in Chapter 4, where we also introduce an interface to use the omnidirectional camera

(tested with Realsense T265).

The design can be further improved by replacing the motors with more efficient

22



Spec Jetson TX2 Jetson Xavier
NX

Jetson Nano

AI Performance 1.3 TFLOPS
(FP16)

6 TFLOPS
(FP16) 21
TOPS (INT8)

0.5 TFLOPS
(FP16)

Power 7.5-15W 10-15 W 5-10W
Memory 8GB 128b

LPDDR4 Mem-
ory 1866 MHx -
59.7 GB/s

8GB 128-bit
LPDDR4x
59.7GB/s

4 GB 64-bit
LPDDR4 25.6
GB/s

GPU 256-core
NVIDIA Pascal
GPU architec-
ture with 256
NVIDIA CUDA
cores

384-core
NVIDIA Volta™
GPU with 48
Tensor Cores

128-core
NVIDIA
Maxwell™ GPU

CPU Dual-Core
NVIDIA Den-
ver 2 64-Bit
CPU Quad-Core
ARM Cortex-
A57 MPCore

6-core NVIDIA
Carmel
ARM®v8.2
64-bit CPU 6
MB L2 + 4 MB
L3

Quad-core ARM
A57 @ 1.43 GHz

Storage 32GB eMMC 5.1 16 GB eMMC
5.1

Weight 85 grams 24 grams 19 grams
Foot print 50 x 87 mm 45 mm x 70mm 45 mm x 70mm

Table 2.2: The specifications for candidate compute modules to replace the Intel Aero
compute board.

and powerful motors. There has been more research on studying and improving

the electric propulsion of drones. Some of the research that may guide optimization

of the thrust-to-weight ratio of the SPARK Drone includes Soohun Oh et al. [40]

which presented a solution that enables the performance analysis and optimal design

of multicopter drones. The work Electric Multirotor Propulsion System Sizing for

Performance Prediction and Design Optimization by Bershadsky et al. [10] also

proposed a thorough method of propulsion selection for multi-copter UAVs.

23



Figure 2-4: This figure shows the coordinate frame definitions for the SPARK Drone
body and sensors.

24



Chapter 3

Multi-Robot Simulation

Infrastructure

3.1 Motivation

"Rome wasn’t built in a day" is a globally known and self-evident truth; what is

equally true is that Rome was not built by one person working alone. As collaboration

is paramount for human productivity, it will also be critical for robot effectiveness.

To bring the societal impact of robotics to the next level, researchers in the SPARK

Lab and beyond have focused on extending the capability of SLAM to multi-robot

systems. The most recent efforts, including Kimera-Multi [17], have shown promis-

ing results in enabling communication and awareness among a set of SLAM-enabled

robots navigating or working in the same environment by allowing them to share in-

sights they have individually or collectively learned about the environment and build

their beliefs based on information consensus.

The continuity of those efforts rely on the availability of reliable and easy-to-use

robotic infrastructure. This infrastructure can be hardware or simulated. Chapter 2 of

this thesis discussed the development of the SPARK Drone which has the capabilities

to cover the hardware needs of those efforts. This chapter will discuss the development

of a multi-robot simulation environment.

25



3.2 Objectives

The goal of the research described in this chapter is to develop a multi-robot, simu-

lated environment that SLAM researchers can use to test their ideas. The environ-

ment needs to be photo-realistic and dynamically capable, but also easy to use. To

achieve these goals, the simulation environment needed to have the following func-

tionality:

• Enable multiple robots to operate in the same environment.

• Allow the researchers to easily stream the sensor data from all robots as topics

and messages in the Robotics Operating System (ROS).

• Create the infrastructure needed to separately and simultaneously control mul-

tiple robots.

Figure 3-1: A block diagram showing a typical visual navigation pipeline from the
course Visual Navigation for Autonomous Vehicles (VNAV) [30] [1].

Figure 3-1 shows the typical high-level architecture of a visual navigation pipeline

and how SLAM interacts with the other components of the robot’s software stack.

26



The goal of the work in this chapter is three-fold: First, we implement the blocks on

the top row (black boxes) in Figure 3-1 for a multi-robot system. That is the path

planning, trajectory optimization, controller, and most importantly simulating the

robot itself. Second, we test the entire pipeline shown in Figure 3-1 simultaneously for

multiple robots navigating the same environment using multiple instances of Kimera-

VIO. Third, we test Kimera-Multi [17] which enables multiple robots navigating the

same environment to build a shared map and trajectory estimate by exchanging the

optimized pose graph and loop closures. This communication enables the robots to

merge their trajectory estimates in a distributed or centralized fashion.

3.3 Related Work

3.3.1 Multi-robot Simulation Platforms

Some of the publications reviewed for this research on multi-robot simulation plat-

forms, including [62] and [41], studied the performance and usability of existing sim-

ulation platforms. Ramli et al. [41] studied several simulation platforms and their

usability for multi-robot simulations. The platforms they have reviewed include NetL-

ogo, GAMA Platform, Webots, Player/Stage, and V-REP. The researchers suggested

NetLogo for multi-robot simulation, but NetLogo is more suitable for a 2D simulation

setups. For more photo-realistic 3D based multi-robot environments, Lackele et al.

[31] presented SwarmSimX.

Even though the above research provided some inspirations in terms of parallel

efforts in multi-robot simulation, the platform used for this research was TESSE [42].

TESSE, which will be discussed further in this chapter, is a Unity based, photo-

realistic simulation platform that has been extensively used by the SPARK Lab.

Because of that prior know-how and infrastructure, it made most sense to extend

that platform to multi-robot operation instead of introducing a new system.

27



3.4 Implementation

3.4.1 TESSE

Figure 3-2: The main system diagram of the TESSE simulation which shows the main
sensor and communication layers (figure courtesy [42])

The multi-robot simulation developed during this research is an extension of the

Task Execution with Semantic Segmentation Environments (TESSE) simulator [42].

TESSE is an open-source Unity plugin that enables users to develop robotic, computer

vision, and reinforcement learning technologies. TESSE was selected as the starting

point for this work for the following reasons.

• TESSE does not require many dependencies.

• It provides access to different types of sensors, including red-green-blue (RGB)

cameras and depth sensors. It also provides a semantic segmentation for each

camera image.

• It provides access to physics information for the agent (robot) including position,

velocity, and orientation.

28



• It provides network interfaces to allow sending control commands to Unity and

receiving sensor data.

• Researchers in SPARK Lab have been using TESSE for several years including

developing their own robotics agents.

The range of cameras available in TESSE and the ability to access physics information

supply the complete set of sensor modalities needed for visual-inertial SLAM. The

high rate position, velocity, and orientation updates are used to construct virtually

noiseless ground-truth odometry and IMU data. The network interfaces available for

sending and receiving data over TCP or UDP ports allowed the streaming of sensor

and agent state information from Unity and sending control and setup commands to

Unity.

Some of the most significant research projects out of the SPARK Lab, including

[49], [46], were tested on the single agent version of TESSE, and courses including [1]

[30] and Robotics Sciences and Systems (RSS) [2] use TESSE for teaching robotics.

Through that multi-year experience, the researchers collected or developed a variety

of simulated environments and infrastructure for single robot applications.

3.4.2 TESSE-Multi in Unity

Since TESSE was not designed with multi-robot operation in mind, the bulk of the

work went into understanding the code and the architecture of TESSE and Unity

to figure out a safe and clean way to add additional robots. TESSE robots live in

a dedicated scene called tesse_multiscene. tesse_multiscene is an empty scene that

does not contain any physics objects other than the robot itself. This empty scene

can additively load other scenes which permits TESSE projects to contain multiple

scenes that can be switched between. The most logical way to add new robots was to

add them in a tesse_multiscene that already contains another robot. The following

steps describe how one may add and integrate a new fully functioning robot to an

existing tesse_multiscene.

Adding new agents in Unity: The first step is to drop or copy and paste the

29



agent into the scene. When this is done, various errors may appear and one needs to

fix them one by one. The first error one may encounter is a "multiple audio listeners"

error. Unity allows one and only one audio listener for an open scene and one needs to

uncheck the audio listener box for all the other robots. You may also see warnings and

errors on camera displays. Unity provides 8-camera displays and one needs to map

the cameras to those eight different displays such that no two cameras are attempting

to use the same display.

Playing and building the scene: After adding a new agent into the scene,

attempting to build or play the scene in game mode will encounter two main issues:

1) By default all robots will attempt to initialize the same scenes which will cause

instabilities as this process will attempt to spawn multiple collision-enabled objects

such as walls in the same physical locations. 2) All robots will be spawned on the

same spot which prevents spawning due to collision issues. To stop all robots from

loading the scenes, the position interface which handles scene loading, positioning,

and scene changes was modified to allow only one robot to load all the scenes. To

initialize the scene the robot needs to have a is_master flag set to true. Only the

robot with that is_master flag set will be able to load the scene.

To resolve the issue of multiple robots spawning at the same location, the base_controller

was modified to allow robots to be spawned at predefined positions with predefined

orientations. Since the experiments done for this thesis involved only two robots, the

is_master flag was used to select the position of the robot. A switch mechanism

based on robot id could work for more than two robots.

Enabling Communication: By default, all agents use the same network ports

which means connecting to any agent using the TESSE Python Interface will not

be possible. It is necessary to give each robot a unique set of communication ports.

Table 3.1 shows the ports used for the two robot experiments tested for the current

setup.

30



Port Agent 1 Agent 2
Pos_listen_port 9000 8000
Met_listen_port 9001 8001
Img_listen_port 9002 8002
Pos_update_port 9003 8003
Step_listen_port 9005 8005
Lidar_listen_port 9006 8006
Pos_send_port 9000 8000

Meta_send_port 9001 8001
Img_send_port 9002 8002

Met_broadcast_port 9004 8004
Lidar_send_port 9006 8006

Table 3.1: Network port mapping for two agents

3.4.3 Multi Agent TESSE ROS Bridge

TESSE ROS Bridge is a ROS package in python that processes the information re-

ceived by the TESSE Python Interface over the network into ROS messages and

then publishes them into appropriate topics. The messages published by this pack-

age include image data, IMU, odometry, transformations and sensor information (e.g.

camera intrinsics).

Extending this package to multi-agent support, running multiple, properly names-

paced instances was not going to work as the design allowed only single connection

over the network to a single Unity Instance. To enable multi-agent functionality, the

connection setup procedure and the message request and response procedures were

separated. This allows us to establish the connection with a single instance of TESSE

Interface and have that communicate with Unity by properly mapping requests and

commands to the right agent using the communication port enabled for that robot.

3.4.4 Multi-Robot Trajectory Optimization

The primary reason why TESSE was chosen as the starting point for this work was

to minimize the time it takes researchers in the SPARK Lab to set up and use the

platform. With this platform, researchers will be able to collect data in any Unity

scene by dropping their agents in predefined locations and have them fly around on

31



a trajectory that they defined by selecting a set of way-points in free space.

The trajectory optimization which is based on the implementation of Polynomial

Trajectory Planning for Aggressive Quadrotor Flight in Dense Indoor Environments

[44] by Richter et al. was first tested for a project for VNAV [1]. The implementation

uses MAV Trajectory Generation [37] by Achtelik et al.

Polynomial trajectory planning for aggressive quadrotor flight in dense indoor

environments [44] uses multi-segment polynomial trajectory optimization and lever-

aging the differential flatness property of a quadrotor. With the provided package,

all the researcher needs to provide is a csv file containing a set of way-points for each

robot.

3.4.5 Multi-Robot Controllers

Figure 3-3: Quadrotor model (courtesy of [32])

For the tracking controller of a quadrotor, we used the geometric controller by

Lee et al. [32] which we first implemented as part of VNAV [1]. The quadrotor

UAV dynamics is expressed globally on the configuration manifold of the Special

Euclidean group SE(3) which allows it to avoid singularities and complexities that

arise as a result of using local coordinates. Equation (3.1) shows the mapping between

the quadrotor propeller forces (also illustrated in Figure 3-3) and the overall thrust

and torque of the platform:

32



⎡⎢⎢⎢⎢⎢⎢⎣
𝑓

𝑀1

𝑀2

𝑀3

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1 1

0 −𝑑 0 𝑑

𝑑 −𝑑 0 0

−𝑐𝜏𝑓 −𝑐𝜏𝑓 𝑐𝜏𝑓 −𝑐𝜏𝑓

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑓1

𝑓2

𝑓3

𝑓4

⎤⎥⎥⎥⎥⎥⎥⎦ (3.1)

Where 𝑓1,𝑓2,𝑓3, and 𝑓4 are the propeller force commands send to Unity, 𝑓 is the total

thrust, and 𝑀1,𝑀2, and 𝑀3 are the moments in the body fixed frame. The control

laws for 𝑓 and 𝑀 = [𝑀1,𝑀2,𝑀3] are given in equations (3.2) and (3.3) respectively.

(3.3) correspond to a tracking controller on SO(3) that stabilizes the attitude tracking

error, while (3.2) corresponds to a tracking controller for the translation dynamics

on R3 [32]. The definitions of all the terms in equations (3.2) and (3.3) are included

in Table 3.2 and more extensive documentation can be found in [32]. The portion

involving Ω𝑑 (−𝐽(Ω̂𝑅𝑇𝑅𝑑Ω𝑑 −𝑅𝑇𝑅𝑑Ω̂𝑑)) of Equation (3.3) was ignored in the imple-

mentation for this project. Also the ignored terms are not listed in Table 3.2

𝑓 = −(−𝑘𝑥𝑒𝑥 − 𝑘𝑣𝑒𝑣 −𝑚𝑔𝑒3 +𝑚𝑥̈𝑑).𝑅𝑒3 (3.2)

𝑀 = −𝑘𝑅𝑒𝑅 − 𝑘Ω𝑒Ω + Ω× 𝐽Ω− 𝐽(Ω̂𝑅𝑇𝑅𝑑Ω𝑑 −𝑅𝑇𝑅𝑑Ω̂𝑑) (3.3)

The TESSE Multi Robot packages include the 𝐶 + + controller discussed with

all the documentation and namespacing provided to allow the user to effortlessly

integrate new robots. The user will be able to add a new robot to the main launch

file by specifying the robot names. The launch file will automatically namespace all

messages coming from that robot using the robot name. All the messages concerning

that robot, including control commands, are expected to use that namespace as well.

for example, if the name of the new robot is 𝑡𝑒𝑠𝑠𝑒2, the robot state topic is expected

to be /𝑡𝑒𝑠𝑠𝑒2/𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.

For tuning the controllers to get a desired behavior, the user will be able to adjust

the coefficients of the controllers 𝑘𝑥, 𝑘𝑣, 𝑘𝑅, and 𝑘Ω via a provided yaml file.

33



Term Definition
𝑘𝑥 Distance error
𝑒𝑥 Distance error coefficient
𝑘𝑣 Velocity error coefficient
𝑒𝑣 Velocity error
𝑚 The total mass
𝑔 Gravity constant
𝑒3 [0, 0, 1]
𝑥̈𝑑 desired acceleration
𝑅 The rotation matrix from the body-fixed frame to the inertial frame
𝑒𝑅 Rotational error
𝑘𝑅 Rotational error coefficient
𝑒Ω Angular error
𝑘Ω Angular error coefficient
Ω the angular velocity in the body-fixed frame
𝐽 The inertia matrix with respect to the body-fixed frame

Table 3.2: Important terms in equations (3.2) and (3.3).

3.5 Testing

Figure 3-4: A visualization of the office scene for this section (figure courtesy of [42]

3.5.1 Testing with Multiple Instances of Kimera

Experimental Setup: A ROS bagfile of two drones simultaneously exploring the

Office Scene (shown in Figure 3-4) was collected. Then two instances of Kimera-VIO

were run on the bag file and the frontend and backend statistics were collected using

34



(a) robot 1 (b) robot 2

Figure 3-5: The aligned trajectory estimate (colored) of Kimera-VIO and the ground
truth odometry (dashed) for the first robot (a) and the second robot (b).

(a) robot 1 (b) robot 2

Figure 3-6: The absolute translation errors after trajectory alignment.

our Kimera-Multi simulator.

Results: Figures 3-5a and 3-5b show the aligned Kimera-VIO estimates (col-

ored) and the ground truth trajectory (dashed) for the two robots. The estimated

trajectories can be seen to qualitatively remain close to the ground truth. Over time,

35



the VIO estimate will gradually drift from the ground truth as expected (we dis-

abled loop closure detection for this experiment). The absolute translation errors

after trajectory alignment are shown in Figures 3-6a and 3-6b. The translation er-

ror at keyframe i is the magnitude of the vector computed as the difference between

the ground truth position of the robot at keyframe i and the Kimera-VIO estimated

position of the robot at keyframe i after alignment:

𝑡𝑖𝑒𝑟𝑟𝑜𝑟 = ||𝑡𝑖𝑔𝑡 − 𝑡𝑖𝑘𝑖𝑚𝑒𝑟𝑎||2 (3.4)

The RMSE of the absolute translation errors remain under 1m for robot 1 and below

0.5m for robot 2. The trajectories are over 100 meters long each.

(a) robot1: Smart factors (b) robot2: Smart factors

Figure 3-7: As presented by Carlone et al. [14], Smart Factors is a compact repre-
sentation of factors of a factor graph by eliminating large sets of support variables
without losing the information they contain. Valid smart factors contain visual mea-
surements that are considered correct for the VIO estimator.

The high number of RANSAC inliers shown in Figures 3-8a and 3-8b and the

high smart factors in Figure 3-7 confirm that the visual interface between Unity and

Kimera works correctly.

3.5.2 Testing with Kimera-Multi Centralized

Experimental Setup: In the previous experiment, we have shown the feasibility

of running two instances of Kimera-VIO in parallel on the sensor data provided by

36



(a) Robot 1 RANSAC inliers

(b) Robot 2 RANSAC Inliers

Figure 3-8: Random sample consensus [23], or RANSAC, is an iterative method
for estimating a mathematical model from a data set that contains outliers. The
RANSAC algorithm works by identifying the outliers in a data set and estimating
the desired model using data that does not contain outliers. In this case, the data
is a set of frame-to-frame key-points for mono ransac and left-to-right keypoints for
stereo while the model is relative rotation and translation or a pose. Higher inliers
means higher chance that the estimated model is correct.

two simulated drones flying in the same environment. In this experiment, we added a

Kimera-Multi-Centralized base-station as shown in figure 3-9. This setup of Kimera-

37



Figure 3-9: Kimera-Multi centralized architecture (courtesy of Yun Chang [17])

Figure 3-10: Aligned trajectory of the two robots showing loop closure detections.

Multi-Centralized enables detecting loop closures between multiple robots exploring

the same environment and as result aligning their trajectories in real-time. Note that

only one agent is shown in the architecture in Figure 3-9 connected to the base-station,

38



but additional agents can be added the same way.

Results: Figure 3-10 shows the aligned trajectories of the two robots. The blue

lines show the loop closure detections. Note that some of the loop closures are for

a single robot trajectory. The inter-robot loop closures which connect the green and

red trajectories are the ones used for trajectory alignment. Figure 3-11 shows the

unaligned trajectories when the inter-robot loop closure detection was disabled.

Figure 3-11: Unaligned trajectories

3.6 Conclusion and Future Work

3.6.1 Summary

At the beginning of this chapter, we stated the following three main objectives:

• Enable multiple robots to operate in the same environment.

• Allow the researchers to easily stream the sensor data from all robots as topics

and messages in the Robotics Operating System (ROS).

39



• Create the infrastructure needed to separately and simultaneously control mul-

tiple robots.

In Section 3.4.2 we discussed how we enabled multiple robots to operate in the same

environment. In Section 3.4.2 and 3.4.3 we discussed how the communication of

multiple robots through the TESSE Python Interface and separated communication

ports allowed streaming to ROS and sending commands back to TESSE for a multi-

robot setup. And finally, in sections 3.4.5 and 3.4.4 we discussed how trajectory

optimization and geometric controllers were used to separately and simultaneously

control multiple robots in the same Unity environment. That means all the main

objectives were met.

To further verify the functionality of the multi-robot system, in Section 3.5 we dis-

cussed and presented the performance of Kimera and Kimera-Multi using the multi-

robot setup developed.

3.6.2 Improving data transmission efficiency

Sending image data over the network from Unity to Tesse is very slow. With a single

robot transmitting stereo images only, the frame rate is around 30Hz. This rate drops

to around 15 hz with two robots transmitting twice the image data. Obviously 15

Hz is very slow and needs to be sped up. Some of the approaches could be taken

to improve the image transmission rates including rewriting the TESSE interfaces in

C++ and fixing compression and gray-scale conversion on the Unity side.

The processing of the image data with Python takes significant bandwidth and

may only be usable with a power-full computer. Rewriting the TESSE Interface in

C++ would increase the efficiency significantly. And using compression for image

transmission on the Unity is currently even less efficient than sending images uncom-

pressed. Sending single channel (gray-scale) images is also less efficient then sending

three-channel (RGB) images. Fixing the compression and gray-scale conversion pro-

cesses are also expected to speed up the data rate significantly.

40



Chapter 4

Omnidirectional Stereo Interface for

Kimera

4.1 Introduction

In this chapter, we will discuss the integration and testing of an omnidirectional stereo

camera interface for Kimera-VIO. This work extends an existing implementation of

monocular omnidirectional distortion camera model in Kimera-VIO by implementing

and testing the stereo matching and rectification. In particular, while the monocular

omnidirectional camera model has been implemented by Marcus Abate, a collaborator

in the SPARK Lab, the extension to stereo cameras is a contribution of this thesis.

The omnidirectional distortion model is applicable to a broad range of cameras,

including both omnidirectional cameras (which have 360 degree field of view) as well

as wide field-of-view fisheye cameras. In our case, we tested the model on a panoramic

fisheye stereo camera mounted on the SPARK Drone.

4.1.1 Motivation

The majority of open source VIN projects including Kimera are tested for low dis-

tortion, narrow field of view cameras. The narrow field of view presents some serious

limitations for weight-constrained unmanned aerial vehicles. The first limitation is

41



the reduced ability to avoid obstacles. Regular pinhole cameras (planar projection

cameras) provide a windowed view of the world which limits the observer’s ability to

see much of the surrounding environment therefore leading to less effective obstacle

avoidance. For ground robots, it is possible to put multiple sensors on board as com-

putation and payload are less constrained. However, that is not an option for small

battery powered unmanned aerial vehicles (UAVs) due to computation and weight

constraints. The maximum flight time of a battery powered UAV is normally around

10-30 minutes and maximum take off weight is typically around 2kgs. This means the

on board computation is limited by both power consumption and weight and every

extra sensor adds more weight and power requirement.

The windowed view of the world also limits the number of track-able features that

are visible to the observer and that are used by VIN to estimate the trajectory of the

robot. As the agent moves around, the length of the feature tracks decreases signifi-

cantly. This makes the VIN system more susceptible to drift and even divergence if

the agent maneuvers too quickly.

Those two limitations make planar projection cameras less suitable as a long term

solution for Visual Inertial Navigation for UAVs. That’s why leading UAV companies

such as Skydio use wide field-of-view cameras [58]. This has presented an opportunity

for the researcher to integrate omnidirectional stereo vision into Kimera-VIO.

4.1.2 Related Work

Camera Calibration Theory and Techniques

Camera calibration focuses on how to identify a model that describes the relationship

between 3D real world coordinates and 2D images coordinates. The most straightfor-

ward model is that of the normal pinhole camera which is free of distortion. In the

normal pinhole case, 𝑥 = 𝛼𝑃𝑋 fully describes the relationship between the 2D image

point 𝑥 and the pictured 3𝐷 world point 𝑋 where 𝑃 is a known projection matrix

fully specified by the focal length and camera center. 𝛼 is a scaling factor which can

be resolved with two or more views picturing the same point 𝑋.

42



There has been significant research into modeling omnidirectional and wide field-

of-view cameras which are characterized by severe distortion that might not be cap-

tured by the standard pinhole model. Some of the research reviewed for this thesis

includes the Plenoptic Function and the Elements of Early Vision by Adelson and

Bergen [9], which is one of the earliest research describing image formation. Later

publications, including Spherical Imaging in Omnidirectional Camera Networks by

Tosic and Frossard [61], describe how omnidirectional images captured by different

types of mirrors or lenses can be uniquely mapped to spherical images, and present

calibration methods that are specific to omnidirectional cameras.

More recently, the research community in computer vision, and robotics has pro-

duced a plethora of omnidirectional camera calibration techniques. Most of the tech-

niques, including [15] and [6], use prior knowledge about the environment. Tech-

niques including [26] compute calibration parameters without prior knowledge and

work mainly for specific sensor types such as hyperbolic and parabolic mirrors or

fisheye lenses. More recent research including Scaramuzza et al. [53] [52] as well as

[66] and [7] apply to all kinds of central omnidirectional lenses. Wang et al. [63]

discuss stereo calibration and rectification for omnidirectional multi-camera systems

and [54] proposes a method for high-quality omnidirectional 3D reconstruction of

augmented Manhattan worlds by joint depth optimization.

Omnidirectional SLAM

Rituerto et al. [45] studied monocular omnidirectional vision in Simultaneous Lo-

calization and Mapping (SLAM) problems and observed that the omnidirectional

camera gives much better orientation accuracy, improving the estimated camera tra-

jectory. Kim and Chung [29] presented a SLAM algorithm for an autonomous mobile

robot using an omnidirectional stereo sensor and observed superior robustness to drift.

Chang [16] developed a benchmarking suite for visual SLAM to study the feasibility

of omnidirectional fisheye cameras for SLAM and compare them to the standard pin-

hole model. The reported results show improved tracking performance in traditional

SLAM systems when using omnidirectional fisheye cameras compared the narrow field

43



of view pinhole model.

Additionally, Liu et al. [34] extended the monocular ORB-SLAM2 [39] to work

with wide-angle fisheye cameras. They reported very high accuracy and improve-

ments over the standard pinhole based monocular ORB-SLAM2 in small indoor en-

vironments.

The improvements in orientation accuracy observed by [34] [45] and the robustness

mentioned by [29] motivated the implementation in this research. Our experimental

analysis, presented later in this chapter, confirms these findings.

Feature Matching for Omnidirectional Cameras

High-distortion lenses create further challenges in stereo matching. The geometry

based template matching used in [11] does not apply, and traditional 2D orientation

based feature matching techniques struggle as well [43]. Researchers have been at-

tempting to address this challenge by coming up with techniques that improve stereo

correspondence finding for spherical or omnidirectional vision. Lee et al. [33] used

proximity matrix and an SSD-based similarity matrix to find dominant corresponding

feature pairs. Won et al. [64] proposed an end-to-end deep neural network model for

omnidirectional depth estimation from a wide-baseline multi-view stereo setup. Resch

et al. [43] proposed local image feature matching improvements for omnidirectional

camera systems which refine the orientation of the features that traditional feature

matching algorithms such as SIFT, SURF or ORB rely on. Their proposed method

uses 3D orientations instead.

4.1.3 Chapter Outline

The rest of this chapter will discuss the implementation and integration of an omni-

directional stereo camera model in Kimera [49]. The experimental setups and results

will be presented including comparison between the developed Kimera-VIO Omni,

and the standard Kimera-VIO system, named Kimera-VIO Pinhole, which uses popu-

lar planar projection model. Finally, potential future improvements will be discussed.

44



4.2 Implementation

4.2.1 Implementation Choices

Sparse Descriptor Matching

Kimera relies on template matching [11] to establish stereo correspondences. Tem-

plate matching matches image patches between the left and right camera image along

the epipolar line. Therefore, it requires undistorted and rectified stereo images. This

was not feasible for the omnidirectional model for two reasons: 1) Undistorting the

entire image is computationally expensive. 2) Undistorting the entire image leads to

information loss and prevents us from taking full advantage of the camera’s field of

view. To avoid these two issues, a sparse descriptor matching approach was chosen.

The sparse descriptor matching procedure follows three main steps: 1) keypoint

detection, 2) descriptor extraction, 3) Descriptor matching. We first introduce our

choice of keypoint detector and then describe each step below.

Keypoint Detector

The keypoint detection step attempts to locate the most describable features in the

image. After detecting all the keypoints, they can then be ranked based on a feature

cornerness score which permits the selection of the strongest keypoints through a

procedure known as non maximum suppression.

There are many good feature detection algorithms including Scale Invariant Fea-

ture Transform (SIFT) [35] [35], Oriented FAST and Rotated BRIEF (ORB) [50],

and Speeded Up Robust Features (SURF) [8] which are included in major Computer

Vision libraries including OpenCV. However, one of the challenges is that most of

those algorithms do not provide the user with any control over where the detected

keypoints are located. It is usually undesirable to have all of the keypoints close to

each other as this can hinder the tracking performance, as discussed in [57]. To avoid

this issue, we used OpenCV’s implementation of Good Features to Track [57], which

allows specifying a minimum distance between keypoints to space them apart.

45



Sparse Stereo Matching Implementation

Keypoint detection: The sparse stereo matcher module expects a stereo frame

with the left frame already populated by the tracker module. The tracker module

performs optical-flow operations followed by filtering steps to detect a number of

trackable keypoints in the left frame. Those keypoints are used for the monocular

Kimera and the stereo needs to detect corresponding keypoints on the right frame.

However, the keypoint data structure populated on the left frame is OpenCV point2f.

Essentially, much of the information describing a keypoint including the size, orien-

tation, and response are dropped. This design decision in Kimera was made based

on the fact that for each keypoint all of those components change as the camera

moves around in subsequent optical-flow steps. Unfortunately, the retained informa-

tion which is just the 2D pixel location is insufficient for descriptor computation and

stereo matching.

The first step was to re-detect the same left keypoints that came with the stereo

frame. The tracked left frame keypoints can not be modified so the re-detected

keypoints are kept separate in a one-to-one index mapping and they are only used for

finding matching keypoints on the right.

We observed that the keypoint detector does not always detect the same keypoints.

The first attempted approach was to detect more features than the ones that are

tracked and then search the coordinates of each of the tracked keypoints in the re-

detected keypoints. When a tracked keypoint is found, it is stored for matching.

And if a keypoint is not found, a new keypoint with the coordinates of the tracked

keypoint, with size of zero, and with OpenCV default values for orientation, response

and other parameters is stored for matching. Note that in the second case, with the

size of zero, that keypoint has a very small chance of being matched against the right

camera image.

This approach was partially successful, but struggled at times. The second ap-

proach was to use OpenCV masks to force the keypoint detector to only detect key-

points in circular areas around the tracked keypoints. The diameter of the circular

46



region around the keypoint was set to be twice as the minimum distance between

keypoints.

Finally, the right keypoints were also detected. To increase the chance of detect-

ing the tracked features on the right frame, a larger number of right keypoints was

detected. Detecting twice as many right keypoints as the number of left keypoints

gave the best performance.

Descriptor Computation: The OpenCV implementation of ORB is used to

compute the descriptors for both the left and right keypoints. Since we maintain the

original tracked keypoints on the left frame, it is important that the left keypoints

used for descriptor computation map one-to-one to those tracked left keypoints by

index. The OpenCV Feature2d compute function, which is used to compute the

descriptors, sometimes removes keypoints if meaningful descriptors cannot be com-

puted. To maintain the same number of keypoints, additional keypoints are detected

and added.

This feature was throwing off the one-to-one mapping of the detected and tracked

keypoints which led to wrong associations when populating the right frame. To solve

this problem, we search for the left keypoints among the newly detected features and

remap them to the original tracked features by creating a hash table that maps the

indices of the corresponding keypoints.

Descriptor matching and filtering: K-nearest neighbors approach was used

for descriptor matching. For each left descriptor, the top three candidate matches

were returned. The left keypoint and the three candidate matches are undistorted

and rectified. The undistort and rectification steps are described in section 4.2.2.

Finally, a epipolar constraint check was performed to see if any of the candidates

pass geometric verification. Only the matching candidates that passed the epipolar

check are used to populate the right frame and kept for further processing in the

pipeline.

Depth Computation: From the stereo matches, we can compute the depth

for each keypoint. Towards this goal, we used the same approach already in Kimera,

but the minimum and maximum depth distances are slightly adjusted to account for

47



inaccuracy in the distortion model.

4.2.2 Calibration

Calibration Technique

For this research, we chose a general calibration model that supports any kind of

omnidirectional sensor type to allow future researchers to pick new omnidirectional

sensors without reimplementing the distortion model. It was also important to select a

model that was shown to work well in practice and has an easy to use implementation.

Towards that goal, the model proposed by Scaramuzza et al. [53] [52] was used for

this work as it is shown to work well in practice and has a well documented toolbox

in Matlab.

Scaramuzza’s Omnidirectional Model

Camera calibration consists in identifying a model that describes the relationship be-

tween 3D real world coordinates and 2D image coordinates. The most straightforward

model is that of the normal pinhole camera which is free of distortion:

𝑥 = 𝛼𝑃𝑋 (4.1)

In the normal pinhole case, (4.1) fully describes the relationship between the 2D

image point 𝑥 and the pictured 3𝐷 world point 𝑋 where 𝑃 is a known perspective

projection matrix. 𝑃 is fully specified by the focal length and camera center and 𝛼

is a scaling factor which can be resolved with two or more views picturing the same

world point 𝑋.

According to Scaramuzza’s omnidirectional model, we have a non-linear imaging

function 𝑔 that transforms a 3D half-ray emanating from viewpoint 𝑋 to pixel point

𝑥:

𝜆𝑔(𝑥′) = 𝜆𝑔(𝐴𝑥+ 𝑡) = 𝑃𝑋, 𝜆 > 0 (4.2)

in the previous equation 𝑥′ is the projection of 𝑋 onto the sensor plane (see figure 1

48



in ([53]) and 𝑥′ = 𝐴𝑥+ 𝑡 is an affine transformation from image plane to sensor plane.

Again, 𝜆 is the scale factor which can be resolved with two or more view points. The

job of omnidirectional calibration is to estimate 𝐴 and 𝑡 and 𝑔. 𝑔(𝑥′) can be written

as follows:

𝑔(𝑢′, 𝑣′) = (𝑢′, 𝑣′, 𝑓(𝑢′, 𝑣′))𝑇 (4.3)

𝑢′ and 𝑣′ are the coordinates of 𝑥′ on the sensor plane. The final general assumption

is that 𝑔 is rotationally symmetric about the sensor axis. This assumption means

that 𝑓 is only related to 𝑥′ through 𝜌′ = ‖𝑥′‖ =
√
𝑢′2 + 𝑣′2.

Different calibration approaches differ on what form of 𝑓 to use based on the

lens or mirror construction. Scaramuzza’s model is designed for general central lens

or mirror. The model uses a Taylor series approximation of 𝑓 , which results in the

following polynomial form:

𝑓(𝑢′, 𝑣′) = 𝑎0 + 𝑎1𝜌
′ + 𝑎2𝜌

′2...+ 𝑎𝑛𝜌
′𝑛 (4.4)

The coefficients 𝑎0, .., 𝑎𝑛, the order of the polynomial 𝑛 (typically chosen to be either

4 or 5), 𝐴 and 𝑡 are what the calibration procedure needs to estimate. This means

Equation (4.2) becomes the following expression:

𝜆

⎡⎣ 𝐴𝑥+ 𝑡

𝑎0 + 𝑎1𝜌
′ + 𝑎0 + 𝑎2𝜌

′2...+ 𝑎𝑛𝜌
′𝑛

⎤⎦ = 𝑃𝑋 (4.5)

The calibration estimates the polynomial coefficients 𝑎0, .., 𝑎4 and the polynomial

order 𝑛 separately from 𝐴 and 𝑡. To recover 𝑋 given the estimated coefficients and

the order, (4.2) is written as follows:

𝜆

⎡⎢⎢⎢⎣
𝑢′

𝑣′

𝑎0 + 𝑎1𝜌
′ + 𝑎0 + 𝑎2𝜌

′2...+ 𝑎𝑛𝜌
′𝑛

⎤⎥⎥⎥⎦ = 𝑋 (4.6)

Note that the projection matrix 𝑃 is dropped and the sensor coordinates are used. 𝑃

49



is not needed as it only acts as scale which 𝜆 accounts for and (𝑢′, 𝑣′) can be recovered

from the pixel coordinates (𝑢, 𝑣) as follows:

⎛⎝𝑢

𝑣

⎞⎠ =

⎛⎝𝑐 𝑑

𝑏 1

⎞⎠⎛⎝𝑢′

𝑣′

⎞⎠+

⎛⎝𝑐𝑥

𝑐𝑦

⎞⎠ (4.7)

⎛⎝𝑐 𝑑

𝑏 1

⎞⎠ and

⎛⎝𝑐𝑥

𝑐𝑦

⎞⎠ are called the stretch matrix and omni center and are both esti-

mated by the calibration procedure. The order of the polynomial 𝑓 is set to 4 and 𝑎1

is always zero [65].

Calibration Procedure

The initial calibration procedure is straightforward using the Matlab Calibration tool-

box. The toolbox takes a small set of calibration images showing a checkerboard as

well as the dimensions of the checkerboard. In practice, the calibration procedure al-

ways captures the distortion of some regions of the image better than others. It took

meticulous refinement to produce satisfactory results. Figure 4-3 shows that after our

initial calibration many keypoint matches were discarded since they led to negative

depth estimates or failed to meet depth constraints set in Kimera. Those keypoints

are mainly concentrated in one region of the image. To improve the calibration and

attempt to capture that region better, more images where the calibration target is in

that region were taken and then the calibration procedure was repeated.

Another way to visualize the calibration performance is to look at the per image

mean reprojection errors and see which images show high reprojection errors. We

may then want to take some pictures that are close to the images with higher mean

reprojection errors. Figure 4-1 shows the per image mean re-projection errors for

multiple calibration refinements. For each step, Figure 4-2 shows the number of

stereo matches passing the depth constraints (green), the number of stereo matches

that have negative depth (red), and the number of stereo matches that failed minimum

or maximum depth constraints.

50



Figure 4-1: Mean reprojection errors per image for multiple calibration refinement

For each calibration iteration, the mean reprojection error per image and the

number of valid keypoints that are failing the depth constraints are considered to

decide where to add the additional images. Note that the number of matches that

are passing the depth constraint checks and the total number of keypoints that are

passing the epipolar check are gradually increasing 4-2. The number of valid keypoints

that are failing the depth constraint (not shown here) are also decreasing. We remark

51



Figure 4-2: Number of stereo matches passing the depth constraint check (green),
number of stereo matches with negative depth (red), and number of matches failing
depth constraints (blue).

52



that - while we observe good performance after several calibration refinements - we

believe that the calibration process is made more challenging because of the choice

of camera. The RealSense T265 uses fisheye lenses which can not be described as

central omnidirectional cameras as they do not necessarily satisfy the single view

point property [5]. Scaramuzza et al. [53] [52] demonstrated their model works well

for central omnidirectional cameras, but made no claims that it may work for non-

central omnidirectional cameras.

Figure 4-3: This figure shows that after our initial calibration some left to right
keypoints failed depth constraints while being valid matches. This issue was mitigated
by repeating several calibration iterations. Note that not all of the shown keypoint
matches are valid. Some of them are correctly filtered out as wrong matches, but a
few of them in one region are actually valid matches that are wrongly filtered.

53



4.2.3 Parameter Tuning

IMU Noise Parameters

Kimera-VIO worked better with high IMU noise parameters. Two experiments were

conducted where in the first one the cameras were hand held and the second the

camera was mounted on a flying drone. The noise density and random walk noise

parameters were increased by two orders of magnitude for the first experiment and

more than four orders of magnitude for the second experiment from the manufacturer

provided IMU parameters. Table 4.1 shows the parameters settings for each experi-

ment as well as the default parameters.

IMU noise parameters
parameter/setting Default Hand Held Flying
Gyro Noise Density 5.148e-6 5.148e-4 5.148e-2
Gyro Random Walk 5.0e-7 5.0e-5 5.0e-3
Accelerometer Noise Density 6.695e-5 6.695e-3 6.695e-1
Accelerometer Random Walk 1.0e-5 1.0e-3 1.0e-2

Table 4.1: IMU noise default parameters and parameter settings for the hand held
and flying drone experiments.

Frontend Parameter Turning

The following frontend parameters were tuned to get a better performance from

Kimera-VIO Omni.

• Min distance between features: The best performance in Kimera-VIO

Omni was achieved with the distance between features set to 15.

• Ransac outlier rejection threshold: The outlier rejection threshold for

Ransac Mono was increased by an order of magnitude from the default value of

10𝑒− 6 to 10𝑒− 5 to account for the inaccuracy in the calibration.

• Number of tracked features: The best results were observed when the

54



maximum number of tracked features were set to 300 with non maximum sup-

pression enabled.

Table A.1 in Appendix shows the complete Kimera-VIO Omni frondend parameter

settings and the default (master branch) parameter settings. Complete backend pa-

rameter settings for both master and the omnidirectional Kimera-VIO can be found

in Table A.2.

4.3 Experimental Setup and Results

This section discusses the experiments conducted to test the performance of Kimera-

VIO Omni. The first experiment was to compare the performance of the omnidi-

rectional Kimera-VIO to that of the pinhole model. The second experiment was to

compare the omnidirectional Kimera-VIO trajectory estimate to that of a commercial

localization system. In particular, we compared Kimera-VIO Omni with the visual-

inertial odometry provided by the RealSense T265. The following two subsections

discuss the experimental setup for each case and present relevant results.

4.3.1 Comparison with the Realsense T265 Camera Tracking

and Vicon

Experimental Setup

As Figure 4-4 shows, the Intel RealSense T265 was mounted on the SPARK Drone

with Vicon markers. A two minute flight with aggressive maneuvering was conducted

in a Vicon room. The motion capture system can precisely track the position and

the orientation of the drone using the motion capture markers to fully determine the

translation and the rotation of the drone in global coordinates. The Intel RealSense

T265 can also track its position, orientation, and velocity with high accuracy.

During the flight, ROS bag file of the T265 fisheye stereo images, IMU data,

and odometry as well as the Vicon determined drone position and orientation data

were collected. The Vicon markers and the T265 mounting are shown in Figure 4-4.

55



Figure 4-4: Drone setup.

The IMU and image data were fed into Kimera to estimate the trajectory of the

drone offline. First the Vicon tracking was compared against the T265 odometry and

Kimera-VIO was compared to the T265 odometry. Unfortunately, the Kimera-VIO

tracking was not compared to the Vicon tracking due to unresolved alignment issues.

The results for both comparisons are presented in the following section.

Results

Figure 4-5 shows the results of the comparison between T265 odometry and Kimera-

VIO Omni. Overall, Kimera-VIO shows little drift with root mean squared error

(rmse) of 0.172 meters (see Figure 4-5(b)) in aligned absolute translation error. Other

56



statistics on the translation errors are also shown on Figure 4-5(b). To confirm the

stability of the T265 tracking, it was compared to that of an external motion capture.

Figure 4-6 shows the comparison of the T265 odometry to the ground truth provided

by the Vicon motion capture system. From Figure 4-6, we can see the T265 tracking

does not diverge from the ground truth position of the drone, measured by Vicon.

(a) T265 odometry(dashed) vs Kimera Omni
Trajectory (color)

(b) Translation Errors

Figure 4-5: Figure (a) shows the trajectory (colored) of Kimera-VIO with the Omni-
directional camera model and the odometry of the RealSense T265(dashed). Figure
(b) shows the absolute translation error of the aligned Kimera-VIO Omni trajectory
with respect to the T265 odometry. This data was collected with a SPARK Drone
in a Vicon Room. The accuracy of the T265 was benchmarked against the Vicon
position which shown in Figure 4-6

4.3.2 Comparing to Kimera Pinhole

Experimental Setup

As Figure 4-7 shows, the Intel RealSense T265 and the D455 were mounted on a

carbon fiber plate. The former is a wide field-of-view camera, while the latter is

a standard camera with a narrower field of view. Two experiments with varying

complexity were conducted. In both experiments, the researcher walked with the

57



Figure 4-6: This figure shows the trajectory estimate(colored) of the drone by the
T265 odometry vs the ground truth (dashed) trajectory of the drone from Vicon.

cameras handheld facing forward while collecting the IMU and image data from each

camera as well as the odometry estimate from the T265. In both experiments, the

Fisheye images and IMU data recorded from of the T265 were fed into Kimera-VIO

Omni to estimate the trajectory of the cameras and the planar projection images

58



Figure 4-7: Hand held experiment setup.

and the IMU data collected from the D455 were fed into Kimera-VIO Pinhole to also

determine the trajectories of the cameras.

Finally, the Kimera trajectory estimates were compared to those of the T265

odometry estimate and the relevant results are presented in the following subsection.

Figure 4-7 shows the two camera mounting configurations used for this experiment.

59



Results

(a) T265 odometry (dashed) vs Kimera-
VIO Pinhole Trajectory (color)

(b) T265 odometry(dotted) vs Kimera
Omni Trajectory (color)

Figure 4-8: Figure (a) shows the trajectory (color) of Kimera-VIO with the pinhole
distortion model versus the Intel RealSense T265 odometry (dashed). Figue (b) shows
the trajectory (color) of Kimera-VIO with the omnidirectional distortion model versus
the Intel RealSense T265 odometry (dashed). In general the Omni showed less drift
than the Pinhole model.

For this comparison, two experiments were conducted. For the first experiment

shown in Figure 4-8, data was collected by walking with the cameras from room 31-

219 and around the lounge area of the floor 2 of building 31 at MIT in a single loop.

Overall, Kimera performs well compared to the ground truth (T265) odometry with

Kimera Omni qualitatively showing slightly better performance.

For the second experiment, data was collected by walking with the camera in a

larger and more complex space with 20 office cubicles. In this experiment, Kimera

Omni again achieves slightly better performance, in particular in terms of translation

error. For this experiment, Figures 4-9 shows a side-by-side view of the Kimera

trajectory estimates (colored) versus the T265 odometry. On this trajectory, which

is over 200-meters long, both versions of Kimera-VIO perform robustly on trajectory

tracking with loop closure disabled. However, Kimera-VIO Omni (Figure 4-9(b))

does better than the standard pinhole version. Figure 4-10 shows the plots of the

absolute translation errors for Kimera-VIO pinhole (Figure 4-9(a)) and Kimera-VIO

60



(a) T265 Odometry (dashed) vs Kimera-
VIO Pinhole Trajectory (color)

(b) T265 Odometry(dotted) vs Kimera
Omni Trajectory (color)

Figure 4-9: Figure (a) shows the trajectory (color) of Kimera-VIO with the pinhole
distortion model versus the Intel RealSense T265 odometry (dashed). Figue (b) shows
the trajectory (color) of Kimera-VIO with the omnidirectional distortion model versus
the Intel RealSense T265 odometry (dashed). The Omni model shows significant drift
in the first long hallway but stays close to the reference (T265) odometry for most of
the way. On the other hand, Kimera with the Pinhole camera model shows continuous
drift through the trajectory.

omni (Figure 4-9(b)), and the error statistics for Figure 4-9 are summarized in Table

4.2. The root mean squared error (rmse) of the Kimera-VIO Omni tracking is about

25% lower than that of the standard pinhole version.

Error Metric Kimera-VIO Pinhole Kimera-VIO Omni
RMSE 1.465 1.096
Mean 1.383 0.808

Median 1.372 0.892

Table 4.2: Error statistics for Kimera-VIO Pinhole and Kimera-VIO Omni

61



0 200 400 600 800 1000 1200 1400
Keyframe index [-]

0.5

1.0

1.5

2.0

2.5

VI
O 

AT
E 

in
 M

et
er

s T
26

5 
tra

ck
er

(re
f) 

vs
 K

im
er

a 
VI

O 
PI

NH
OL

E(
tra

j) 
m

VIO ATE in Meters T265 tracker(ref) vs Kimera VIO PINHOLE(traj)
error
rmse (1.46464)
median (1.38258)
mean (1.37219)
std (+/- 0.51212)

(a) Pinhole Translation Errors (b) Omni Translation Errors

Figure 4-10: Figure (a) is showing the translation errors of Kimera-VIO using the
low distortion pinhole model with respect to the odometry of the RealSense T265.
Figure (b) is showing the translation errors of Kimera-VIO using the high distortion
omnidirectional camera model with respect to the odometry of the RealSense T265.
Relevant error metrics including residual mean squared error (rmse), median, mean,
and standard deviation of errors are displayed within each plot.

4.4 Future work

While the performance of the omnidirectional stereo interface for Kimera-VIO was

satisfactory within the goals of this research, there is still room for improvement

to fully realize the potential of omnidirectional vision for Kimera and similar SLAM

platforms. Those improvements can be done in camera calibration as well as in feature

detection and matching. The following two subsections propose potential approaches

in improving feature matching and camera calibration.

4.4.1 Improving the Feature Matching

Traditional feature detection and matching algorithms such as SIFT, SUFT, and ORB

rely on orientation invariance of the features. As discussed in [43], image distortion

and non-monotonic mapping from camera rotations to image rotations makes those

traditional orientation based descriptors unsuitable for feature matching for omnidi-

rectional images. Those limitations have also been observed during this work. Figure

62



4-11 shows the side by side view of the number of features tracked and the number

of stereo matches before and after RANSAC outlier rejection for Kimera-VIO pin-

hole (4-11a) and Kimera-VIO Omni (4-11b). Both the pinhole and omni model use

Good Features to Track [57] for keypoint detection and ORB [50] for feature match-

ing. However, both feature tracking and stereo matching are more successful in the

pinhole model case.

There are multiple potential areas of exploration to improve the feature tracking

and matching including [43] and similar research, but we believe the most promising

approach is using machine learning algorithms.

There are successful end-to-end feature detection and matching approaches out

there including [56] and [25] that attempt to learn to extract a highly distinguishable

set of matching correspondences from pairs of images. There are also joint correspon-

dence optimization based methods including [51] that try to find the optimal set of

matching correspondences from sets of pre-detected keypoints.

4.4.2 Improving the Camera Calibration

Scaramuzza’s model worked well enough to show the advantages of a wide field-of-view

camera for SLAM over the standard pinhole model. Unfortunately, the calibration

was never good enough to achieve the stereo matching quality of the pinhole model.

Even with our best efforts to refine the calibration, a number of valid stereo correspon-

dences were still producing negative depth due calibration inaccuracy. Improving the

calibration, whether it requires adopting a new calibration model and tools or com-

ing up with a better way to refine the estimates from the matlab toolbox, would be

an impactful project for future researchers interested in omnidirectional vision for

Kimera.

63



(a) Kimera-VIO pinhole feature tracking and matching

(b) Kimera-VIO omni feature tracking and matching with T265

Figure 4-11: Feature tracking and matching.

64



Chapter 5

Conclusion and Future Work

5.1 Conclusions

This thesis focused on the design and implementation of simulation and hardware

platforms to test simultaneous localization and mapping (SLAM) systems. A useful

simulation platform needs to capture the robot dynamics and the sensor modalities

typically used for SLAM (in our case, we focus on visual-inertial SLAM). A suitable

hardware platform (an unmanned aerial robot in our case) needs to have the capability

to navigate, sense the environments, and use onboard computers to run the software it

was designed for; such platforms might also need sensor interfaces that allow adapting

and testing algorithms on novel sensors.

This thesis includes three contributions: 1) The development of a hardware plat-

form consisting of a real drone capable of running state-of-art metric-semantic SLAM.

2) the development of a multi-robot simulation platform that includes dynamically

accurate, photo-realistic drones. 3) the integration of an omnidirectional stereo fron-

tend in Kimera, a state-of-the-art system for visual-inertial localization and mapping.

In particular, Chapter 2 presented the design and prototyping of a new drone plat-

form, the SPARK Drone. The drone has the computational and sensing capabilities

needed to run SLAM systems like Kimera on board, and payload range to carry over

1kg of sensors and a soft gripper. Chapter 3 described the development of the multi-

robot simulation infrastructure and provided an experimental evaluation of Kimera

65



and its multi-robot counterpart (Kimera-Multi) in our simulator. The simulator al-

lows multiple robots to operate in the same environment, enables communication

between robots through the TESSE Python Interface, and allows streaming sensor

data and receiving commands via the Robot Operating System (ROS). The simulator

also integrates algorithms for trajectory optimization and geometric control. Chapter

4 described how to interface Kimera with an omnidirectional camera and reports on

the implementation of an omnidirectional stereo frontend in Kimera. The chapter

also provides an evaluation of Kimera using the omnidirectional frontend, showing its

effectiveness in trajectory estimation.

5.2 Future Work

Even though all three contributions have led to platforms and implementations achiev-

ing satisfactory performance, there is still room for improvement. For the SPARK

Drone, the last section of Chapter 2 discussed how the performance of the propul-

sion system could be improved to increase the endurance and payload of the drone.

For the multi-robot system, the conclusion and future work section of Chapter 3 dis-

cussed how the image transmission rate over the TCP/UDP ports could hinder the

performance of the simulation platform especially when more than two robots are

integrated; the section also suggests computational improvements to speed up the

image-processing steps involved in the image transmission. For the omnidirectional

camera frontend, in the conclusion and future work section of Chapter 4, we dis-

cussed how the stereo matching and feature tracking in the omnidirectional version of

Kimera — while leading to more robust trajectory estimates— are performing worse

than the standard (pinhole) camera model in Kimera. Potential improvements can

be achieved by adopting other types of visual features or using novel learning-based

approaches for feature matching to replace the traditional descriptor-based matching

used in this thesis.

66



Appendix A

Omnidirectional Interface

A.1 Frontend Parameters

parameter Master Omni

klt_win_size 24 24

klt_max_iter 30 30

klt_max_level 4 4

klt_eps 0.1 0.1

maxFeatureAge 25 25

feature_detector_type 3 3

maxFeaturesPerFrame 300 300

quality_level 0.001 0.001

min_distance 20 20

block_size 3 3

use_harris_detector 0 0

k 0.04 0.04

scale_factor 1.2

nlevels 8

edge_threshold 31

first_level 0

67



WTA_K 2

score_type 0

patch_sze 31

fast_threshold 20

fast_thresh 10 10

equalizeImage 0 0

nominalBaseline 0.11 0.11

toleranceTemplateMatching 0.15 0.15

templ_cols 101 101

templ_rows 11 11

stripe_extra_rows 0 0

minPointDist 0.5 0.5

maxPointDist 10 10

bidirectionalMatching 0 0

max_nr_keypoints_before_anms 2000

enable_non_max_suppression 1 1

non_max_suppression_type 6 4

nr_horizontal_bins 7

nr_vertical_bins 5

binning_mask []

enable_subpixel_corner_finder 1 1

max_iters 40 40

epsilon_error 0.001 0.001

window_size 10 10

zero_zone -1 -1

subpixelRefinementStereo 0 0

useSuccessProbabilities 1 1

useRANSAC 1 1

68



minNrMonoInliers 10 10

minNrStereoInliers 5 5

ransac_threshold_mono 1e-06 1e-4

ransac_threshold_stereo 1 1

ransac_use_1point_stereo 1 1

ransac_use_2point_mono 1 1

ransac_max_iterations 100 100

ransac_probability 0.995 0.995

ransac_randomize 0 0

intra_keyframe_time 0.2

min_intra_keyframe_time 0.2

max_intra_keyframe_time 5.0

max_disparity_since_lkf 1000

minNumberFeatures 0 0

useStereoTracking 1 1

disparityThreshold 0.5 0.5

optical_flow_predictor_type 1 1

use_2d2d_tracking 1 1

2d2d_algorithm 1 1

optimize_2d2d_pose_from_inliers 0 0

use_3d3d_tracking 1 1

optimize_3d3d_pose_from_inliers 0 0

use_pnp_tracking 0 false

pnp_algorithm 3 3

min_pnp_inliers 20 20.0

ransac_threshold_pnp 1.0 1.0

optimize_2d3d_pose_from_inliers 0 0

Table A.1: Complete list of frontend parameters

69



A.2 Backend Parameters

parameter Master Omni

backend_modality 0 0

autoInitialize 0 0

roundOnAutoInitialize 0 0

initialPositionSigma 1e-05 1e-05

initialRollPitchSigma 0.174533 0.174533

initialYawSigma 0.00174533 0.00174533

initialVelocitySigma 0.001 0.001

initialAccBiasSigma 0.1 0.1

initialGyroBiasSigma 0.01 0.01

linearizationMode 0 0

degeneracyMode 1 1

rankTolerance 1 1

landmarkDistanceThreshold 10 10

outlierRejection 3 3

retriangulationThreshold 0.001 0.001

smartNoiseSigma 3.0 3.0

monoNoiseSigma 1.8 1.8

monoNormType 2 2

monoNormParam 4.6851 4.6851

stereoNoiseSigma 1.8 1.8

stereoNormType 2 2

stereoNormParam 4.6851 4.6851

regularityNoiseSigma 0.03 0.03

regularityNormType 1 1

regularityNormParam 0.04 0.04

addBetweenStereoFactors 0 0

70



betweenRotationPrecision 0 0

betweenTranslationPrecision 100 100

relinearizeThreshold 0.01 0.01

relinearizeSkip 1 1

zero_velocity_precision 1000 1000

no_motion_position_precision 1000 1000

no_motion_rotation_precision 10000 10000

constant_vel_precision 100 100

numOptimize 1 1

nr_states 25

horizon 6

wildfire_threshold 0.001 0.001

useDogLeg 0 0

pose_guess_source 0 0

mono_translation_scale_factor 0.1 0.1

Table A.2: Complete list of backend parameters

71



72



Bibliography

[1] 16.485 - VNAV-Visual Navigation for Autonomous Vehicles (VNAV). MIT
Course, 2021.

[2] 6.141/16.405 - robotics: Science and systems course (RSS): MIT course.
https://github.com/mit-rss, 2021.

[3] Amado Antonini, Winter Guerra, Varun Murali, Thomas Sayre-McCord, and
Sertac Karaman. The blackbird dataset: A large-scale dataset for uav perception
in aggressive flight, 2018.

[4] T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping (slam):
part ii. IEEE Robotics Automation Magazine, 13(3):108–117, 2006.

[5] S. Baker and S.K. Nayar. A theory of catadioptric image formation. In Sixth In-
ternational Conference on Computer Vision (IEEE Cat. No.98CH36271), pages
35–42, 1998.

[6] H. Bakstein and T. Pajdla. Panoramic mosaicing with a 180/spl deg/ field of
view lens. In Proceedings of the IEEE Workshop on Omnidirectional Vision 2002.
Held in conjunction with ECCV’02, pages 60–67, 2002.

[7] J.P. Barreto and H. Araujo. Geometric properties of central catadioptric line im-
ages and their application in calibration. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(8):1327–1333, 2005.

[8] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust
features. In European conference on computer vision, pages 404–417. Springer,
2006.

[9] James R Bergen and Edward H Adelson. The plenoptic function and the elements
of early vision. Computational models of visual processing, 1:8, 1991.

[10] Dmitry Bershadsky, Steve Haviland, and Eric N Johnson. Electric multirotor uav
propulsion system sizing for performance prediction and design optimization. In
57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, page 0581, 2016.

[11] Roberto Brunelli. Template matching techniques in computer vision: theory and
practice.

73



[12] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern Rehder,
Sammy Omari, Markus W Achtelik, and Roland Siegwart. The euroc micro aerial
vehicle datasets. The International Journal of Robotics Research, 35(10):1157–
1163, 2016.

[13] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza,
José Neira, Ian Reid, and John J. Leonard. Past, present, and future of si-
multaneous localization and mapping: Toward the robust-perception age. IEEE
Transactions on Robotics, 32(6):1309–1332, 2016.

[14] Luca Carlone, Zsolt Kira, Chris Beall, Vadim Indelman, and Frank Dellaert.
Eliminating conditionally independent sets in factor graphs: A unifying perspec-
tive based on smart factors. In 2014 IEEE International Conference on Robotics
and Automation (ICRA), pages 4290–4297, 2014.

[15] C. Cauchois, E. Brassart, L. Delahoche, and T. Delhommelle. Reconstruc-
tion with the calibrated syclop sensor. In Proceedings. 2000 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS 2000) (Cat.
No.00CH37113), volume 2, pages 1493–1498 vol.2, 2000.

[16] Raphael M. Chang. Significance of omnidirectional fisheye cameras for feature-
based visual slam. https://dspace.mit.edu/handle/1721.1/129885, 2020.

[17] Yun Chang, Yulun Tian, Jonathan P. How, and Luca Carlone. Kimera-multi:
a system for distributed multi-robot metric-semantic simultaneous localization
and mapping, 2020.

[18] Intel Corporation. Intel® aero compute board hardware features and usage.
https://www.intel.com/content/dam/support/us/en/documents/drones/development-
drones/intel-aero-compute-board-guide.pdf, 2017.

[19] Intel Corporation. Intel® aero platform for uavs github.
https://github.com/intel-aero, 2018.

[20] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: part
i. IEEE Robotics Automation Magazine, 13(2):99–110, 2006.

[21] Mouser Electronics. Seeed Studio A203 2 Version Carrier Board.
https://www.mouser.com/new/seeed-studio/seeed-studio-a203-2-version-
board/, 2022.

[22] Luca Carlone et al. Sensing Perception Autonomy and Robot Kinetics (SPARK)
Laboratory. https://mit.edu/sparklab/, 2022.

[23] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

74



[24] Joshua Fishman, Samuel Ubellacker, Nathan Hughes, and Luca Carlone. Dy-
namic grasping with a" soft" drone: From theory to practice. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 4214–
4221. IEEE, 2021.

[25] Georgios Georgakis, Srikrishna Karanam, Ziyan Wu, Jan Ernst, and Jana
Košecká. End-to-end learning of keypoint detector and descriptor for pose in-
variant 3d matching. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1965–1973, 2018.

[26] J. Gluckman and S.K. Nayar. Ego-motion and omnidirectional cameras. In Sixth
International Conference on Computer Vision (IEEE Cat. No.98CH36271),
pages 999–1005, 1998.

[27] Nathan Hughes, Yun Chang, and Luca Carlone. Hydra: A real-time spatial
perception engine for 3d scene graph construction and optimization, 2022.

[28] Laura Jarin-Lipschitz, Rebecca Li, Ty Nguyen, Vijay Kumar, and Nikolai Matni.
Robust, perception based control with quadrotors, 2020.

[29] Jae-Hean Kim and Myung Jin Chung. Slam with omni-directional stereo vision
sensor. In Proceedings 2003 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2003) (Cat. No.03CH37453), volume 1, pages 442–
447 vol.1, 2003.

[30] L. Carlone, K. Khossoussi, V. Tzoumas, G. Habibi, M. Rhyl, R. Talak, J. Shi,
and P. Antonette. Visual navigation for autonomous vehicles: An open-source
hands-on robotics course at MIT. 2022 In IEEE Intl. Conf. on Integrated STEM
Education Conference (ISEC), Oct 2022.

[31] Johannes Lächele, Antonio Franchi, Heinrich H Bülthoff, and Paolo
Robuffo Giordano. Swarmsimx: Real-time simulation environment for multi-
robot systems. In International Conference on Simulation, Modeling, and Pro-
gramming for Autonomous Robots, pages 375–387. Springer, 2012.

[32] Taeyoung Lee, Melvin Leok, and N. Harris McClamroch. Geometric tracking
control of a quadrotor uav on se(3). In 49th IEEE Conference on Decision and
Control (CDC), pages 5420–5425, 2010.

[33] Young Jin Lee, Do-Yoon Kim, and Myung Jin Chung. Feature matching in
omnidirectional images with a large sensor motion for map generation of a mobile
robot. Pattern Recogn. Lett., 25(4):413–427, mar 2004.

[34] Shuoyuan Liu, Peng Guo, Lihui Feng, and Aiying Yang. Accurate and robust
monocular slam with omnidirectional cameras. Sensors, 19(20), 2019.

[35] David G Lowe. Distinctive image features from scale-invariant keypoints. Inter-
national journal of computer vision, 60(2):91–110, 2004.

75



[36] András L Majdik, Charles Till, and Davide Scaramuzza. The zurich urban micro
aerial vehicle dataset. The International Journal of Robotics Research, 36(3):269–
273, 2017.

[37] Helen Oleynikova Rik Bähnemann Marija Popović Markus Achtelik,
Michael Burri. mav trajectory generation. https://mav-trajectory-
generation.readthedocs.io/en/latest/, 2018.

[38] Rico Merkert and James Bushell. Managing the drone revolution: A systematic
literature review into the current use of airborne drones and future strategic
directions for their effective control. 2020.

[39] Raul Mur-Artal and Juan D. Tardós. ORB-SLAM2: an open-source SLAM
system for monocular, stereo and RGB-D cameras. CoRR, abs/1610.06475, 2016.

[40] Soohun Oh, Minwoo Kim, Hyeongseok Kim, Daejin Lim, Kwanjung Yee, and
Dongmin Kim. The solution development for performance analysis and optimal
design of multicopter-type small drones. In 2020 International Conference on
Unmanned Aircraft Systems (ICUAS), pages 975–982, 2020.

[41] Nur Raihan Ramli, Sazalinsyah Razali, and Mashanum Osman. An overview
of simulation software for non-experts to perform multi-robot experiments. In
2015 International Symposium on Agents, Multi-Agent Systems and Robotics
(ISAMSR), pages 77–82, 2015.

[42] Zachary Ravichandran, J Daniel Griffith, Benjamin Smith, and Costas Frost.
Bridging scene understanding and task execution with flexible simulation envi-
ronments. arXiv preprint arXiv:2011.10452, 2020.

[43] Benjamin Resch, Jochen Lang, and Hendrik P.A. Lensch. Local image feature
matching improvements for omnidirectional camera systems. In 2014 22nd In-
ternational Conference on Pattern Recognition, pages 918–923, 2014.

[44] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial trajectory planning
for aggressive quadrotor flight in dense indoor environments. In Robotics Re-
search, pages 649–666. Springer, 2016.

[45] Alejandro Rituerto, Luis Puig, and J.J. Guerrero. Visual slam with an omnidi-
rectional camera. In 2010 20th International Conference on Pattern Recognition,
pages 348–351, 2010.

[46] A. Rosinol, A. Gupta, M. Abate, J. Shi, and L. Carlone. 3D dynamic scene
graphs: Actionable spatial perception with places, objects, and humans. In
Robotics: Science and Systems (RSS), 2020.

[47] Antoni Rosinol, Marcus Abate, Yun Chang, and Luca Carlone. Kimera: an
open-source library for real-time metric-semantic localization and mapping. In
IEEE Intl. Conf. on Robotics and Automation (ICRA), 2020.

76



[48] Antoni Rosinol, Andrew Violette, Marcus Abate, Nathan Hughes, Yun Chang,
Jingnan Shi, Arjun Gupta, and Luca Carlone. Kimera: From slam to spatial
perception with 3d dynamic scene graphs. The International Journal of Robotics
Research, 40(12-14):1510–1546, 2021.

[49] Antoni Rosinol, Andrew Violette, Marcus Abate, Nathan Hughes, Yun Chang,
Jingnan Shi, Arjun Gupta, and Luca Carlone. Kimera: From slam to spatial
perception with 3d dynamic scene graphs. The International Journal of Robotics
Research, 40(12-14):1510–1546, 2021.

[50] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An
efficient alternative to sift or surf. In 2011 International Conference on Computer
Vision, pages 2564–2571, 2011.

[51] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superglue: Learning feature matching with graph neural networks, 2019.

[52] Davide Scaramuzza, Agostino Martinelli, and Roland Siegwart. A flexible tech-
nique for accurate omnidirectional camera calibration and structure from mo-
tion. In Fourth IEEE International Conference on Computer Vision Systems
(ICVS’06), pages 45–45. IEEE, 2006.

[53] Davide Scaramuzza, Agostino Martinelli, and Roland Siegwart. A toolbox for
easily calibrating omnidirectional cameras. In 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 5695–5701. IEEE, 2006.

[54] Miriam Schönbein and Andreas Geiger. Omnidirectional 3d reconstruction in
augmented manhattan worlds. In 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 716–723. IEEE, 2014.

[55] David Schubert, Thore Goll, Nikolaus Demmel, Vladyslav Usenko, Jorg Stuck-
ler, and Daniel Cremers. The tum vi benchmark for evaluating visual-inertial
odometry. 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Oct 2018.

[56] Xuelun Shen, Cheng Wang, Xin Li, Zenglei Yu, Jonathan Li, Chenglu Wen, Ming
Cheng, and Zijian He. Rf-net: An end-to-end image matching network based on
receptive field, 2019.

[57] Jianbo Shi and Tomasi. Good features to track. In 1994 Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, pages 593–600, 1994.

[58] Skydio. Inside The Mind Of The Skydio 2: A Revolution In Drone Technology.
https://www.skydio.com/blog/inside-the-mind-of-the-skydio-2/, 2019. [Online;
December 17 2019].

[59] Dinesh Thakur, Giuseppe Loianno, Laura Jarin-Lipschitz, Alex Zhou, and Vijay
Kumar. Autonomous inspection of a containment vessel using a micro aerial

77



vehicle. In 2019 IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR), pages 1–7, 2019.

[60] Yulun Tian, Katherine Liu, Kyel Ok, Loc Tran, Danette Allen, Nicholas Roy,
and Jonathan P. How. Search and rescue under the forest canopy using multiple
uavs, 2019.

[61] Ivana Tošic and Pascal Frossard. Spherical imaging in omni-directional camera
networks. Multi-Camera Networks, Principles and Applications, 2009.

[62] Richard Vaughan. Massively multi-robot simulation in stage. Swarm intelligence,
2(2):189–208, 2008.

[63] Yanchang Wang, Xiaojin Gong, Ying Lin, and Jilin Liu. Stereo calibration and
rectification for omnidirectional multi-camera systems. International Journal of
Advanced Robotic Systems, 9(4):143, 2012.

[64] Changhee Won, Jongbin Ryu, and Jongwoo Lim. Omnimvs: End-to-end learning
for omnidirectional stereo matching. CoRR, abs/1908.06257, 2019.

[65] Math Works. Fisheye calibration basics.
https://www.mathworks.com/help/vision/ug/fisheye-calibration-basics.html,
2007.

[66] Xianghua Ying and Zhanyi Hu. Catadioptric camera calibration using geometric
invariants. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(10):1260–1271, 2004.

78


