
Algorithm-Agnostic System for Measuring
Susceptibility of Cryptographic Accelerators to

Power Side Channel Attacks
by

Brandon John
B.S. Electrical Science and Engineering,

Massachusetts Institute of Technology (2021)
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 6, 2022
Certified by. .

Mengjia Yan
Assistant Professor
Thesis Supervisor

Certified by. .
Brendon Chetwynd

Technical Staff, MIT Lincoln Laboratory
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

Algorithm-Agnostic System for Measuring Susceptibility of

Cryptographic Accelerators to Power Side Channel Attacks

by

Brandon John

Submitted to the Department of Electrical Engineering and Computer Science
on May 6, 2022, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Many digital devices, from secure enclaves to generic processors, often handle encryp-
tion of sensitive data. Protecting this sensitive data is a significant challenge, with
potential vulnerabilities extending from bugs in both software and hardware. One
major class of vulnerabilities under active research is the use of Power Side Channels
(PSCs), which involve precisely measuring the power consumption of a device over
time. However, current research is fairly disjoint, without a standardized set of tools
for quantifying protection techniques. This leads to the motivation of this project:
to create a standardized baseline system for evaluating power side channels and their
defenses.

This project makes several contributions to the power side channel community.
First, it enables calibration of Signal to Noise Ratio (SNR) measurements to a com-
mon baseline, and thus easier comparison between various defense techniques. Second,
it proposes a method of measuring SNR that requires a constant number of samples,
as compared to some techniques that keep sampling until some reference amount of
information is leaked. Third, it includes a case study of AES cores which yields a
better understanding of how a PSC amplification technique (specifically using many
identical cores in parallel) affects the PSC’s signal “strength” and thus time to suc-
cessfully extract the secret data. Finally, it makes public an ecosystem for quickly
starting power side channel research without the significant effort of implementing
everything from scratch before any research can begin.

Thesis Supervisor: Mengjia Yan
Title: Assistant Professor

Thesis Supervisor: Brendon Chetwynd
Title: Technical Staff, MIT Lincoln Laboratory

2

Acknowledgments

I would like to thank my advisors, Mengjia Yan and Brendon Chetwynd, for their

support from the beginning to the end of my journey to write this thesis, and their

patience as I procrastinated a bit too much. I’d also like to thank Kyle Ingols for

going above and beyond in helping me in all sorts of ways, from personally delivering

equipment to debugging broken servers.

I would also like to thank my partner, Cici, for supporting me throughout the

year and especially during the crunch time at the end, where I became effectively

nocturnal. And of course, I need to give a special shout out to my cat, Saturn, who

taught me to lock my computer overnight lest I return to thousands of lines of a

random letter typed wherever I had left off.

3

Contents

1 Introduction 8

2 Design and Implementation 11

2.1 Toolchain . 11

2.1.1 Hardware Setup . 12

2.1.2 FPGA Firmware . 15

2.1.3 Command and Analysis Software 21

2.2 SNR Calculation . 24

2.2.1 SNR Algorithm . 24

2.2.2 SNR Measurement Procedure 25

2.2.3 SNR Measurement Implementation 26

2.3 Modifications for Testing with the CEP 27

2.3.1 CEP on Sakura X: Hardware 27

2.3.2 CEP on Sakura X: Firmware 28

3 Validation 29

3.1 SCLAF Evaluation . 29

3.2 AES Case Study . 31

3.2.1 CEP on Sakura X . 33

4 Discussion 34

4.1 Limitations . 34

4.2 Future Work . 35

4

5 Conclusion 37

A FMC SD Adapter Schematic 38

5

List of Figures

2-1 Block diagram of hardware setup, including host computer, Sakura X,

oscilloscope, and network storage. 12

2-2 Photo of Sakura X inside the shielded isolation chamber including all

used connections. 13

2-3 Photo of oscilloscope capturing a FastFrame sequence. 14

2-4 Block diagram of data paths within the Sakura X. 15

2-5 Block diagram of data paths within the Spartan 6. 16

2-6 Block diagram of Kintex 7 as configured for AES core replication analysis. 20

2-7 Block diagram of host computer software architecture. 22

2-8 Picture of the final FMC adapter. 28

3-1 Plot of each trial’s average variance vs time of day. 31

3-2 Plot of the average correct-subkey correlation in a CPA attack vs num-

ber of averaged traces per trace set. 32

3-3 Plot of SNR vs number of AES cores enabled and number of noise cores

enabled. 33

6

List of Tables

2.1 Control-byte bit definitions . 18

2.2 S6 Response Command Byte Definitions 19

7

Chapter 1

Introduction

Power side channels (PSCs) are a well-known and widely-studied class of hardware

vulnerabilities. PSCs can be used to non-invasively infer the internal state of a piece

of hardware by measuring the power consumption over time. At a macro level, one

possible PSC would be measuring the power consumption of an entire computer in

order to determine when it is in use – periods of low power consumption may indicate

inactivity or a sleep mode, while high power consumption indicates that the computer

is actively processing data. Similarly, we can measure the power consumption at the

chip level to extract information that correlates to individual clock cycles [10]. This

thesis focuses on this class of PSC attacks, and specifically looks at PSCs targeting

Advanced Encryption Standard (AES) encryption accelerators [11].

Current PSC research is quite varied, and has yielded various attack algorithms

for extracting state information from power traces, defense techniques for reducing

attack surfaces, and methods of measuring how much and how quickly information

can be extracted from a particular PSC. One common testing methodology is the

Test Vector Leakage Assessment (TVLA) test, which determines if a side channel has

data dependent information that could potentially be exploited [1]. However, this

is a binary metric, and thus not particularly useful for comparing PSCs. A similar

method is to actually perform an attack using Correlation Power Analysis (CPA) or

Differential Power Analysis (DPA), and determine how many traces are required to

extract the secret key [2, 9]. However, doing this requires a leakage model, i.e. a

8

way of predicting how much power the algorithm will draw given an arbitrary set of

inputs [4]. This is especially problematic if the two implementations have different

leakage models, as it is hard to guarantee that both leakage models are equally good.

As such, it is generally difficult to rigorously compare the side channel leakage of two

different algorithm implementations.

Along with the note of most PSC research being quite varied in breadth, this is also

true for methods. While many FPGA PSC projects rely on the Sakura/Sasebo family

of hardware, and there are some open source libraries for software PSC research (such

as [12]), there is little commonality beyond this. As it is, most research still ends up

being 1-off projects, be it a particular ASIC or a fully custom FPGA implementation.

This has a few issues, namely that it is often hard to compare results from different

researchers, and that there is a huge startup cost for each researcher who wants to

investigate PSCs. In this work, we help alleviate this startup cost by introducing

SCLAF, the Side Channel Leakage Assessment Framework.

SCLAF is a software and hardware toolchain built to support measuring the PSC

leakage of FPGA-based cryptographic accelerator implementations. SCLAF focuses

on automation, allowing for large rapid testing of various implementations, and al-

lows for remote access for out-of-office efforts. SCLAF includes everything from the

firmware running on the Sakura X’s two FPGAs to the software to record power

traces and the algorithm to compute the Signal to Noise Ratio (SNR) of the Algo-

rithm Under Test (AUT). Specifically, SCLAF measures SNR as a ratio of variances,

as described in Section 2.2 [14]. This definition does not require a leakage model,

and as such, is implementation agnostic, allowing for automated direct comparisons

of various algorithm implementations.

Along with introducing SCLAF, in this work, we perform a case study of two

implementations of AES that differ in their S-Box implementation. The S-Box is a

non-linear byte-size substitution table used several times during each round of en-

cryption. The S-Box can be implemented in a few different ways, the first way we

investigate is a simple lookup table (LUT) based approach, with all possible sub-

stitutions pre-computed. We call the second implementation “composite”, as it uses

9

composite fields to dynamically compute S-Box substitutions. As the composite field

variant has more combinational logic changing state during its operation, we expect

to find that it leaks slightly more information via power side channels, and thus should

have a higher SNR.

In this case study, we also investigate the effects of both core replication and

added noise on SNR. For core replication, we instantiate up to 24 of a single core

type and have them all operate on the same data in parallel. In doing this, we find

that their contributions to the signal component of SNR are additive and outweigh

additional noise components, thus showing that replicating cores in parallel increases

SNR. When we add noise by instantiating circuitry that draws random amounts of

power over time, the measured noise increases and thus SNR decreases.

Finally, this work begins the process of investigating the impacts of realistic use

cases, where the AUT is on the same SoC as a processor and other accelerators. Such

an arrangement is likely to significantly decrease the SNR of any given algorithm,

and this work takes the first steps toward figuring that out. Specifically, we began

porting the CEP, an open source RISC-V processor, to the Sakura X as the first step

in the process of measuring the impact of a realistic use case.

10

Chapter 2

Design and Implementation

The following sections cover the design and implementation of SCLAF, our PSC

measurement system. We have integrated tooling for automating the capture and

analysis of power side channels with an implementation-agnostic side channel leakage

metric to create this platform for systematically evaluating the vulnerability of various

implementations of a particular algorithm to PSC attacks. We then performed a case

study using the SCLAF to analyze the effects of replicated AES cores and added

noise, then compared to a single core in a semi-realistic environment.

The overall architecture of SCLAF is described in detail in the following sec-

tions. First is Section 2.1, which covers the setup of the toolchain, from hardware

to software. Section 2.2 details how we define and measure SNR to make it a useful

cross-implementation definition. Finally, Section 2.3 covers how we will run the CEP

on a Sakura X.

2.1 Toolchain

The physical setup of SCLAF including the Sakura X and other hardware is detailed

in Section 2.1.1. Section 2.1.2 covers the FPGA firmwares, and the command and

analysis software is described in Section 2.1.3.

11

2.1.1 Hardware Setup

SCLAF’s physical setup has three major components: a Sakura X acting as the device

under test (DUT), an oscilloscope measuring the power consumed by the Sakura X,

and a computer coordinating the two. Additionally the oscilloscope and host com-

puter are connected to a shared network storage server. Figures 2-1 and 2-2 include

a block diagram and a photo of the setup.

Sakura X

USB Sense
Resistor

Trigger

Oscilloscope

Ethernet

Inputs
1+2

Trigger

Network Storage

Ethernet

Host Computer

USBcollect_run.py

Ethernet

analyze.py

Figure 2-1: Block diagram of hardware setup, including host computer, Sakura X,
oscilloscope, and network storage.

The primary component is the Sakura X, “a hardware security evaluation board”

that includes a Kintex-7 (K7) series FPGA on an isolated power rail for power side

channel attacks, and a Spartan-6 (S6) series fpga for command and control [7]. While

we chose the Sakura X as the hardware platform for this research, it should be noted

that there are many other viable options available - and we even used a custom setup

as described in Section 2.3 for a portion of the case study. The main advantages of

the Sakura X include the isolated power supply with integrated current sense resistor

and probe points, dual FPGA architecture mentioned above allowing for cleaner data

collection, and general commercial availability.

One of the first steps in any PSC attack is to find a way to measure the power

being consumed by the DUT. This is easy on the Sakura X, as it provides a pair of

SMA ports on either side of a 10mΩ sense resistor on the power rail feeding the VCORE

rail of the K7. Both of these SMA ports are then connected to the oscilloscope via

a set of length matched SMA->BNC connectors. The oscilloscope is then configured

12

Figure 2-2: Photo of Sakura X inside the shielded isolation chamber including all
used connections.

to calculate the difference in voltage between these two ports as the virtual MATH1

channel. This channel is then proportional to the current being consumed by the K7,

and can thus be used as the input to any power side channel attack.

For a PSC attack to be possible, the device must be powered. The Sakura X

includes a couple of different ways to be powered, namely via the USB port or a

discrete connector. In our informal testing, we found no significant difference in the

acquired signal based on which of the two power supplies we used, and thus decided

to stick with power via the USB port for simplicity.

PSC attacks also require some form of trace synchronization. For the purposes

of this research, all power traces were synchronized to the encryption process via the

help of an oracle, namely an output of the K7 used as the trigger for the scope. The

Sakura X has four such outputs. We connected one of these to the scope with another

13

Figure 2-3: Photo of oscilloscope capturing a FastFrame sequence.

SMA->BNC cable.

While these few connections would technically be enough to perform side channel

analysis, it would be an extremely manual process. This is one of the places where

SCLAF shines - the thorough connectivity and control allow for automated testing

and analysis. While these are all basic in a sense, they are also critically important.

The Sakura X has two FPGAs, each with their own JTAG port, we hooked up to

both with a pair of Xilinx Platform Cable USB II adapters, allowing both FPGAs

to be easily reprogrammed. We required a very large quantity of power traces, so we

connected the scope to the local network via ethernet to allow for automated data

collection. To round out these base connections, the Sakura X is hooked up to the

computer via another USB cable directly, for command and control operations as

discussed in the next section.

14

Finally, we found that the recorded data was significantly affected by the ambient

EM environment, as is discussed in Section 3.1. To mitigate these effects, the Sakura X

was placed inside a shielded isolation chamber, with only a USB hub and the JTAG

adapters inside. While the oscilloscope was kept outside of the chamber due to space

limitations, the sense wires leaving the chamber were shielded thus reducing the

impact of the scope’s location. Overall, we found that this arrangement significantly

improved the consistency of the results.

2.1.2 FPGA Firmware

The primary goal when designing the SCLAF was to create a platform from which

we could effectively and accurately measure SNR, and this had major implications

on the design of the firmware for the Sakura X’s FPGAs. The information flow in

the resulting physical layer of the SCLAF toolchain is summarized in Figure 2-4. In

order to accurately measure SNR, the SCLAF must both minimize the amount of

computation happening on the K7, and from there minimize the computations that

can be temporally correlated to the AUT.

Sakura X

Reference Clock
200MHz

Spartan 6

Sync
FIFO

Async

Control

+ Data

FTDI

Sync
FIFOUSB

Kintex 7

Async

Control

+ Data

AES Noise

Host Computer

USB

Figure 2-4: Block diagram of data paths within the Sakura X.

In order to minimize computation happening on the K7, the S6 on the Sakura X

acts as a translator between the serialized commands coming from the host computer

and a set of discrete parallelized asynchronous interfaces to the K7. This removes a

significant chunk of processing from the power traces entirely as the S6 has its own

power rail. This arrangement has the added benefit of allowing for a standardized

15

control interface, meaning K7 bitstreams can be generated with minimal effort beyond

the implementation of the AUT.

To minimize temporally correlated computations within the AUT, the K7 operates

with two different clock domains generated with two separate crystal oscillators. The

first is dedicated for support tasks such as communicating with S6 or generating

noise, and the second domain is exclusively used for running the AUT. By isolating

these clock domains, any fluctuations in power draw caused by the control circuitry

is guaranteed to be data- and time-independent when referencing the AUT clock

domain, and thus will only show up as noise in the SNR measurement.

2.1.2.1 FPGA Firmware: Spartan 6

Sakura X

Spartan 6

Synch FIFO:

FT245 style

Trigger x4

Control x4

Status x4

TX: Data x8

+ Write

+ Full

RX: Data x8

+ Write

+ Full

Command RX
Buffer

Data RX
Buffer

Data TX
Buffer

Parser

Command TX
Buffer

Config:
Data x8

Addr x16
Write

FTDI Kintex 7

Figure 2-5: Block diagram of data paths within the Spartan 6.

Figure 2-5 focuses on the S6, and how it was designed to minimize peripheral logic

within the K7. First, the S6 receives data from the FTDI USB adapter. Specifically,

a FT245 style interface connects the FT2232H built into the Sakura X to the S6[5].

This interface was chosen as it allows for the maximum transfer bandwidth between

16

the host computer and S6. Within the S6, data from the FT245 interface is held in

the RX FIFO buffer to allow for a simplified command parsing system. The parser

submodule takes a sequence of bytes from the RX buffer, and operates on them as

described in Section 2.1.2.2 below. This typically involves sending a signal to the

K7 via one of the discrete interfaces, or reporting data back to the host computer as

requested.

The S6 then has a plethora of interfaces to the K7. This design allows for the

K7 to use whatever interface best fits its requirements, typically as measured by the

amount of decoding hardware required. The first interface is the 4 trigger wires,

which allow the host to send a single cycle pulse over any of them to the K7. These

are targeted for use as a remote reset control or to trigger a round of encryption on

the K7. Next are the 4 control wires, which can each be set to high or low. These

are most useful for low level, simple configurations, such as enabling a subsystem or

as a debugging aid. Relatedly, there are 4 status wires which can be read back to

the host computer as needed. These are also most commonly used as a debugging

aid. Fourth is the pair of transmit and receive parallel ports, which provide a simple

interface to read or write one byte at a time. These are great for providing a plaintext

for encryption or reading back the results within the K7, and since they are parallel

ports they require only a small amount of logic on the K7 to transmit and receive.

Finally, the configuration port is excellent for writing a small set of data into registers

on the K7. This configuration bus transmits 8 bits of data at a time to any of 216

registers as defined by the 16 bit address. The data is considered valid on both the

rising and falling edges of the write pin. This allows for a fairly simple synchronization

circuit within the K7, and then lightweight decoding that can be distributed across

the fpga as needed. This interface is best used for defining operating modes, setting

encryption keys, and of course for debugging.

2.1.2.2 FPGA Firmware: Control Protocol

The SCLAF’s DUT control protocol is a relatively simple packet based protocol,

designed to maximize flexibility while keeping integration simple. Each packet starts

17

with a command byte, followed by up to 2 address bytes and up to 128 data bytes

depending on the command. This protocol has no error checking. The command

definitions are listed in Table 2.1.2.2. The BULK_TX, CONFIG_K7, and CONFIG_S6

commands each encode the number of data bytes to receive into the command byte,

while EXTERNAL_* commands each encode the entirety of the necessary data into the

command byte. The remaining command bytes are reserved and ignored by the S6 if

they are ever received.

Table 2.1: Control-byte bit definitions
B.7 B.6 B.5 B.4 B.3 B.2 B.1 B.0 Command
1 n n n n n n n BULK_TX
0 0 0 0 n n n n CONFIG_K7
0 0 0 1 n n n n CONFIG_S6
0 1 0 0 d d d d EXTERNAL_TRIG
0 1 0 1 d d d d EXTERNAL_CONTROL
0 1 1 0 0 d a a EXTERNAL_CONTROL_SINGLE

• n: Number of bytes in packet, minus 1.

• d: Value of control/trigger wire

• a: Selection of which control wire

BULK_TX transmits a sequence of data via the parallel TX port to the K7. The

remainder of the packet (up to 128 bytes) is sent directly to the K7 via said port. The

number of bytes to transmit is defined by the lower 7 bits of the BULK_TX command,

and can be calculated as num_bytes = (command_byte % 128) + 1. Transmissions

longer than 128 bytes are accommodated through multiple BULK_TX packets.

CONFIG_K7 and CONFIG_S6 commands are handled the same way, the only differ-

ence being whether the resulting parameters are sent to the K7’s configuration bus or

the S6’s internal bus. CONFIG_* commands support up to 16 sequential registers to

be written in a row, this quantity is defined similarly to BULK_TX by the formula

num_bytes = (command_byte % 16) + 1. Following the command byte are the two

address bytes in big-endian order, followed by num_bytes data bytes for sending to

the sequence of addresses following the specified address.

18

EXTERNAL_TRIG and EXTERNAL_CONTROL are 1-byte packets that operate in a sim-

ilar manner. One sends single clock pulses to the TRIGGER output port while the

other sets the state of the CONTROL output port. In the case of triggers, bits 3

through 0 correspond to trigger wires 3 through 0, which are each set high for 1 clock

cycle if the respective bit is a 1. The state of the control wires is directly set to the

value of the respective bit.

EXTERNAL_CONTROL_SINGLE allows for updating a single control wire, if the state

of the other wires is unknown or for simplicity of software development on the host.

Bits 1 and 0 set the index of which control wire will be adjusted, and bit 2 holds the

value that the wire will be set to.

SCLAF’s DUT can also send data from the K7 to the host computer. This is

normally in the form of directly passing on any data received on the parallel RX

port, but can also include special injected packets. All injected packets start with

the escape byte ‘@’ = 0x40, followed by a command byte and up to 16 data bytes; to

send a regular ‘@’ from the K7 to the host computer involves simply sending the ‘@’

byte twice.

Each command byte consists of a 4 bit command and 4 bits determining the data

length. This allows each packet to transmit up to 16 bytes. The relevant commands

are listed in Table 2.1.2.2.

Table 2.2: S6 Response Command Byte Definitions
Command Byte Command Name Description
0x0n SEND_VERSION Sending n+1 bytes describing the S6’s cur-

rent hardcoded version string; useful for
compatibility verification by the host.

0x1n SEND_STATUS Sending n+1 bytes of the current “status”
of the S6. This was implemented as a
packet with the current state of the status
input wires and the state of the physical
buttons and switches connected to the S6
on the Sakura X.

0x40 SEND_ESCAPE Special: no data, the sequence
[0x40, 0x40] = ‘@@’ replaces a sin-
gle ‘@’ received from the K7.

19

The initial mechanism for requesting a version or status packet involves sending

a configuration packet to the S6’s internal configuration bus. Setting address 0x0000

to 0x01 requests a version packet, and setting the same address to 0x02 requests a

status packet.

2.1.2.3 FPGA Firmware: Kintex 7

Sakura X

Kintex 7Spartan 6

Config:
Data x8

Addr x16
Write

num

AES

cores

num

noise

cores

Config
Parse AES Controller

AES Core

Enable

AES Core

Enable

AES Core

Enable

AES Noise Core

Key,
Plaintext Ciphertext

Enable

x24

SMA

Cycle

Trigger
AES Core

Enable

AES Core

Enable

AES Core

Enable

AES Core

Key,
Plaintext Ciphertext

BusyEnable

x24

Figure 2-6: Block diagram of Kintex 7 as configured for AES core replication analysis.

As the Sakura X’s K7 mainly holds the SCLAF’s AUT, its design can vary widely

based on the experiments being run. In this section we discuss the general require-

ments of the K7’s design, and then look at the specifics involved for the AES core

replication case study.

In order to effectively perform the analysis described in Section 2.2, the K7 must

minimize any operations that can be temporally correlated to the computations of the

AUT. To minimize these, the K7 operates with two different clock domains generated

with two separate crystal oscillators. The first is dedicated for support tasks such as

communicating with S6, while the second domain is exclusively used for running the

AUT. By isolating these clock domains, any fluctuations in power draw caused by the

control circuitry is guaranteed to be data- and time-independent when referencing the

20

AUT clock domain, and thus will only show up as noise in the SNR measurement.

For the purposes of the AES core replication case study, the K7 was designed as is

shown in Figure 2-6. The main feature is a set of 24 parallel AES cores, configured to

operate in unison. One of the configuration registers is then dedicated to controlling

the number of AES cores that are enabled. This acts as a method of parametrically

amplifying the signal of a single AES core - when all 24 cores are enabled, the current

draw of each operation is nominally 24x higher, and thus any leaked information is

24x stronger. All of these cores are on the same dedicated clock domain. Of note,

the first core is always enabled, and thus only that core’s busy signal and ciphertext

outputs are ever used. The rest are ignored.

There is a similar set of Composite AES Noise Cores, which can also be enabled

parametrically. These operate on the configuration clock domain, and simply recycle

the ciphertext as the next round’s plaintext. This creates a simulated noise source

which crucially is not temporally correlated to the AES core’s operations.

Finally, the AES Controller module can be configured a few different ways. The

main mode triggers another round of encryption every 255 clock cycles, giving the

system time to settle between rounds. This is used extensively when collecting data for

the SNR measurement. Alternatively, the controller can be configured in a loopback

mode, which passes the last computed ciphertext in as the next plaintext, again with

the 255 cycle loop rate. This mode is particularly useful for rapid data collection for

CPA/DPA analysis. The final mode is a manual mode, allowing for the S6 to send

discrete triggers to perform a single round of encryption.

2.1.3 Command and Analysis Software

In designing SCLAF, we had a few major goals for the host-side software toolchain

(shown in Figure 2-7). Primarily, we needed it to meet the requirement of effectively

and accurately measuring SNR. Beyond this, we strove to make it highly automated

and robust - when analyzing a large design space for PSC leakage, it is often desirable

to run a large number of tests, for which said goals can be a major benefit. Addition-

ally, we needed SCLAF to be flexible, as different users may have different equipment

21

Oscilloscope

Ethernet

Sakura X

USB

Host Computer

USB

Ethernet

scope_safety_wrapper

sakura_aes

sakura_x

mso64b

collect_run.py

Power Relay

Figure 2-7: Block diagram of host computer software architecture.

available or different target devices to test.

The first major software goal is automation - as these tests require thousands of

traces, manually collecting traces with an oscilloscope is infeasible. This naturally

affects most aspects of this project, the first being control of the AUT/DUT. Section

2.1.2.2 covers the ability to control the DUT via a USB port, and we created a

matching python module sakura_x to abstract away the serial protocol and provide

a high level API to control the S6 and its interfaces to the K7. This module also

handles parsing data returned from the Sakura X into the raw bytes sent by the K7

and the various packets that the S6 can inject.

The oscilloscope’s data collection and handling needs to be automated in parallel,

for the same reasons as above. We used a Tektronix MSO64b series oscilloscope for all

data collection in this project; this scope has a VISA interface that allows complete

control over the scopes operation [13]. We created a python module, mso64b, to

interface with the VISA port and control the scope. This module abstracts away the

VISA commands, providing interfaces such as acq_run() to initiate an acquisition

sequence or get_curve to download the raw samples of a recorded waveform after

the acquisition is complete.

Next is the sakura_aes module, a layer of abstraction that uses the mso64b and

sakura_x interfaces to run individual tests of an experiment, by collecting waveforms

of the AES core performing encryptions. For example, a call to runTestsFastFrame()

22

will first use the sakura_x module to configure the K7’s AES core(s) to use the spec-

ified secret key and plaintext (key-text-pair or KTP) and start encrypting said KTP

in an infinite loop. Then it will use the mso64b module to configure the oscilloscope to

record a certain number of encryptions in the FastFrame mode, initiate the collection

sequence, and finally download and return the collected waveforms.

One related advantage of modularizing both the sakura_x and mso64b controllers

is that both can be relatively easily replaced if different hardware is in use. This same

advantage applies to the sakura_aes module - when investigating an AUT other than

AES, this module can be modified or replaced as necessary to support the needs of

the new algorithm without having to rewrite any of the hardware interface code. For

example, upon updating the K7’s firmware this is often the only software module that

needs to be updated with new configuration parameter definitions.

With automation mostly handled, the next major goal was to make SCLAF ro-

bust, meaning that data collection runs should be reliable and unlikely to crash.

Throughout the course of this work, we had significant issues with long running data

collections failing part way through. This was generally attributed to one of three

things: random network errors, crashing the oscilloscope, or crashing the K7 on the

Sakura X. The solution to the random network errors is to simply try the failed com-

mand again a few seconds later, or at worst rerun the current test. Similarly, crashing

the K7 generally only required the current test be rerun. However, the oscilloscope

we used had more significant issues. In certain cases, its response time to VISA

commands would slow down so significantly that network operations would time out,

while in other cases it would stop responding to all input and require a reboot. For

the former, we found that reloading the setup file before it slowed to the point of

timing out would often fix this issue, while the hard crashes necessitated installing a

network-controlled power strip to force the complete power cycle.

We created collect.py to handle these errors. This module is effectively a

wrapper for the sakura_aes’s test procedures, but it adds multiple levels of error

checking. Whenever a test fails, collect.py’s wrapper functions first try simply

running the test again a few seconds later. This tends to resolve any failures due

23

to intermittent network faults or K7 crashes. Should this second attempt also fail,

collect.py’s scope_safety_wrapper method takes over. This method was designed

to handle all issues we found with our oscilloscope. Upon a test failing twice, the

scope_safety_wrapper attempts to reconfigure the oscilloscope by reloading the

current test’s setup file, and then runs the test again. This soft reset typically re-

solves any issues related to the scope slowing down, and is thus an efficient way of

resolving those issues. Should this also fail, the scope_safety_wrapper will force the

oscilloscope to reboot by power cycling it. This is a slow process, as our oscilloscope

took around 10 minutes to power on, but was quite reliable in resolving the hard

crashes. Once the oscilloscope is back online, scope_safety_wrapper attempts to

run the test one last time.

2.2 SNR Calculation

2.2.1 SNR Algorithm

Yano et al. propose Equation 2.1 as a way to efficiently calculate SNR, and show that

this value can be used as a design criteria when evaluating power side channel defense

mechanisms. Specifically, they find that this method can replace both of the two other

metrics that were commonly used for specifying SCA resistance criteria: maximum

correlation coefficient and minimum number of traces needed to disclose the secret

key [14]. Since decreasing SNR decreases correlation coefficients and increases the

number of trials required to extract a secret key via CPA, maximum SNR can be

used as a replacement design criteria.

SNRi =
Var(𝑉signal)

Var(𝑉noise)
(2.1)

Equation 2.1 is a measurement of the power side channel’s noise at any given time

within the AUT’s operation, and as such yields a curve representing SNR given a set

of traces measuring the AUT’s signal and noise components. The noise component

is collected by setting both the key and plaintext input to 0, and collecting a set of

24

traces of the AUT repeatedly operating on that KTP. This allows the calculation of

Var(𝑉noise) to only detect the random noise inherent to the system, and exclude any

variation that may be data dependent (as the KTP is constant) or process dependent

(as that is constant for each sample offset).

Measuring Var(𝑉signal) is similar, but requires an extra step to isolate the signal

component. For each trace, first select a random KTP, then collect a set of waveforms

using said KTP, and finally average together that set of waveforms on a per-sample

basis to generate the trace. Any random noise is thus removed from each trace by

collecting enough waveforms. Computing the variance of this set of traces removes

process-dependent variations, and only leaves a measurement of how data-dependent

the core’s power draw is.

One major advantage of using Yano’s definition of SNR over other leakage mea-

surement techniques are that it does not use a leakage model. Metrics that use leakage

models can struggle to compare differing algorithms - a suboptimal leakage model can

inaccurately indicate that said AUT is secure. As such, excluding a leakage model

makes this technique algorithm-agnostic.

Another benefit of using Equation 2.1 is that it does not require a huge and variable

number of traces to accurately measure. Measuring low-leakage designs often requires

hundreds of thousands of traces to extract information about the key and thus can

take an extremely long time to perform. With Yano’s design, increasing the number

of traces can shrink the SNR’s confidence interval, but otherwise doesn’t affect the

measured value. As such, Yano’s design does not require a huge number of iterations.

2.2.2 SNR Measurement Procedure

Our calculation of SNR is based on Yano’s, with some minor modifications to the

procedure. The biggest difference between our use of Equation 2.1 and Yano’s is

that when measuring Var(𝑉signal), we kept the number of averaged traces constant at

512 instead of just 50. This allows us to make an ideal signal strength measurement

without any noise added by our measurement system. We selected 512 traces as this

was enough to remove effectively all noise from our signal measurements, see Section

25

3.1 to see how we found this value.

Another minor change is that we only collected 4000 signal and 4000 noise traces,

instead of 10,000 of each. Once again, we found that increasing the number of col-

lected traces only affected our confidence interval, and that 4000 traces was plenty

for our purposes.

Finally, our goal was to return a single number representing SNR of an AUT,

not a set of values representing the SNR at each timestep within the trace. To

do this, we decided to simply return the maximum measured SNR (as in Equation

2.2). This aligns with attack algorithms (such as CPA) only operating on the sample

with maximum correlation. We further believe this to be valid as [6] also used the

maximum measured variance as their final output, though we will note that they used

a slightly different definition of SNR.

SNR = max(
Var(𝑉signal)

Var(𝑉noise)
) (2.2)

2.2.3 SNR Measurement Implementation

Measuring Var(𝑉noise) involves measuring 4000 traces, which we can do quite effi-

ciently using SCLAF. Specifically, the runTestsFastFrame function is designed to

gather a large set of waveforms in a row, by utilizing the oscilloscope’s FastFrame

mode. Once we have this set of traces, we can simply compute the per-sample vari-

ances, which will yield the desired Var(𝑉noise).

Measuring Var(𝑉signal) is a little harder, as it involves measuring 4000 averaged

traces, which are each a set of 512 individual waveforms. While this certainly could

be done in the same manner as Var(𝑉noise), this would not be particularly efficient due

to the large amounts of data that would have to be sent over the network from the

oscilloscope to the host computer. Instead, we can use another of the oscilloscope’s

modes, this time the FastAcq Average mode. This will create a running average of

the captured waveforms, allowing averaged traces to be downloaded directly. Once

again, we can simply compute the per-sample variances of this set of traces, which

will yield the desired Var(𝑉signal).

26

Finally, we calculate the SNR by following Equation 2.2, namely by selecting the

maximum of the per-sample SNR ratios.

2.3 Modifications for Testing with the CEP

A limitation of the methods used so far in this work is that they are all focused on

a device with only a single cryptographic accelerator. However, in the real world

most devices with cryptographic accelerators tend to have more circuitry inside them

operating in parallel. We have attempted to account for this by adding the random

noise cores to the case study. However, they are of inherently limited use as they are

only a rough simulation of what the remaining circuitry could look like. One way of

improving realism of the SNR measurements is to run them while integrated into a

representative processor. We have thus begun laying the groundwork for integration of

the Common Evaluation Platform (CEP) into SCLAF, and integration of SCLAFinto

the CEP [3]. The CEP is an open source RISC-V based System on a Chip, and is

designed to be a common platform for testing various tools and techniques in a system

representative of real world use. As such, it is an excellent target for combining with

SCLAF.

2.3.1 CEP on Sakura X: Hardware

The CEP has certain hardware requirements that the Sakura X does not meet out

of the box. Namely, the CEP requires an SD card to boot Linux, and it requires a

jtag port to debug the processor. Fortunately the Sakura X includes a FMC port

which allows for easy expansion of its IO, which allows us to relatively easily add the

necessary ports. Appendix A shows a schematic of the board, the only interesting

detail is the need for logic level converters U1 and U2. These are necessary due to

the K7’s io operating at 2.5v, while the SD card requires 3.3v. Figure 2-8 shows the

final board installed on a Sakura X.

27

Figure 2-8: Picture of the final FMC adapter.

2.3.2 CEP on Sakura X: Firmware

The CEP was originally designed to be run on a VC707 [8], which is a much more

capable FPGA than the K7 in a Sakura X. As such, porting the CEP to fit in the K7

is a non-trivial task which we are still working on as of this publishing.

28

Chapter 3

Validation

We evaluated the SCLAF by the following three metrics:

1. Functionality

2. Repeatability

3. Efficacy

All tests were performed with the entire SCLAF toolchain, except as noted below.

We used an MSO64B series oscilloscope configured to sample at 25GHz for 1 µs per

waveform. Inputs 1 and 2 were both set to AC coupling, 1MΩ impedance, and

20mV/div.

The Sakura X is configured as described in Section 2.1.1 and placed in a shielded

test enclosure. Its K7 is loaded with either the LUT based or composite AES core,

with configurable parallelism of up to 24 parallel AES cores and 24 noise cores.

3.1 SCLAF Evaluation

One of the first tests we performed on SCLAF was to validate that we could success-

fully perform a standard CPA attack on a sample LUT-AES core. For this test we

were not concerned with efficiency or quantifying the results, but only proving that

the SCLAF was correctly set up as a representative device for further analysis. As

29

such, the AUT is configured as a single core with no noise added. We collected 15,000

individual traces, and used the ChipWhisperer python library to analyze them [12].

Specifically, we used the last_round_state_diff leakage model to run the CPA at-

tack. We found that this set of data paired with this leakage model was sufficient to

extract all 16 subkeys. The correct keyguesses had an average correlation of 0.108

while the per-subkey 2nd best guess correlations averaged 0.035. This indicates a

very high confidence that the key is correctly guessed, and proves that the SCLAF

was capable of collecting usable data.

With this basic functionality confirmed, the next tests focused on repeatability - we

needed to make sure that for a given AUT, SCLAF yields a consistent SNR. For this,

we started by investigating the measurement of noise, Var(𝑉noise), and how much it

was impacted by environmental factors. The first iteration of this experiment had the

entire system sitting on a bench, with no attempts to shield it from the environment.

We performed a sequence of identical trials spaced out by 40 minutes each over the

course of a couple days. For each trial we collected 4000 traces (without tracewise

averaging), then calculated the variance curve of each trial in the same manner as we

do for SNR calculations. Finally we computed the average value of the variance curve

for each trial, and plotted them by time of sample collection (see Figure 3-1). When

we did so, we found that there was a massive spike in measurable noise during business

hours, with the maximum average variance almost 225% above the nighttime average.

Such a large variance in the variances was clearly not acceptable, so we migrated the

Sakura X into a shielded test chamber. This was a massive improvement, as the

peak average variance was reduced to merely 22% higher than the minimum. We also

discovered that this delta was reduced to only 1% over the weekend when no one was

working in the lab. As such, we decided to run all further experiments at night or on

weekends.

The next test was designed to determine the amount of tracewise averaging needed

for the later SNR analysis. For this test we used a similar setup to the one used for

the CPA test, but we used the composite AES core instead and only collected 2000

traces per experiment. Additionally, for each trial in this experiment, we varied

30

12
AM

3 AM
6 AM

9 AM
12

PM
3 PM

6 PM
9 PM

12
AM

1.0

1.5

2.0

2.5

3.0

3.5

×10−7 Measured Variance vs. Time Of Day

No isolation
RF Chamber, Weekday
RF Chamber, Weekend

Figure 3-1: Plot of each trial’s average variance vs time of day.

the amount of tracewise averaging between 2 and 2048. This means that instead of

collecting a single trace for each KTP, we actually collected a number of traces and

averaged said traces together. This is the same mechanism that is used for the signal

variance portion of the SNR algorithm. We then ran CPA on the resulting set of

averaged traces, and recorded the average correlation of the correct subkey guesses.

The resulting data is shown in Figure 3-2. In this plot we can see that the correlation

increases as we increase the number of averaged traces per KTP, until it plateaus

around 250 traces per KTP. This tells us that for our particular setup, we need to

average a minimum of 256 traces per KTP when calculating the signal variance as

part of the SNR measurement. We therefore decided to average 512 traces to give a

decent factor of safety.

3.2 AES Case Study

To validate the efficacy of SCLAF, we performed a case study measuring AES’s

SNR across three independent variables: S-Box implementation, core parallelism, and

added noise. The two S-Box implementations were the LUT and Composite models,

31

101 102 103

Number of averaged traces

0.12

0.14

0.16

0.18

0.20

C
or

re
la

ti
on

Correlation vs Tracewise Averaging Sets

Figure 3-2: Plot of the average correct-subkey correlation in a CPA attack vs number
of averaged traces per trace set.

specifically those provided with the Sakura X. We used a single bitstream for all LUT

trials, and a second bitstream for all Composite trials. In both cases, the number

of noise and AES cores enabled was set via a configuration register through the S6

interface, allowing for rapid testing without needing to compile a large number of

bitstreams. The AES and noise cores were configured as described in Section 2.1.2.3.

Figure 3-3 shows the results of this experiment. As expected, increasing the

number of signal cores increases the SNR, while increasing the number of noise cores

decreases the SNR. The SNR of the LUT and Composite designs were fairly similar,

but on average Composite AES cores tended to have a slightly higher SNR than their

LUT counterparts. This generally aligns with our expectations, though we note that

the difference in SNR between them is quite small and so is not entirely conclusive.

One limitation during this experiment is that we couldn’t actually reliably enable

all 24 signal and noise cores simultaneously, the Sakura X would often reboot as soon

as we enabled this mode. We suspect that total power draw was either too much for

the Sakura X’s power supply, or otherwise had too large of a slew rate and browned

out the entire K7 fpga.

32

0 5 10 15 20 25

Number of noise cores

10−3

10−2

10−1

100

SN
R

SNR vs Noise, Parallelized AES Cores

Composite x1
Composite x4
Composite x8
Composite x16
Composite x20

LUT x1
LUT x4
LUT x8
LUT x16

Figure 3-3: Plot of SNR vs number of AES cores enabled and number of noise cores
enabled.

3.2.1 CEP on Sakura X

While running the full CEP on a Sakura X is still a work in progress, we were able

to validate the hardware designed in Section 2.3.1. To do this we created a custom

bitstream for the K7 to read and write individual blocks on an SD card. We then used

the SCLAF toolchain to control the K7 to read and write data. We successfully wrote

initialized the SD card, wrote data to it, and read the correct data back, showing that

the hardware portion is ready to go.

33

Chapter 4

Discussion

While we have shown that SCLAF is a useful tool for rapidly analyzing AUTs for

leakage, it is certainly far from a perfect tool. In this chapter we discuss some of the

current limitations and how they can be mitigated in future versions of this tool.

4.1 Limitations

One major limitation of the current design is that it requires control over the input

KTP, and an oracle to trigger data collection by the oscilloscope. This means that for

the most part, SCLAF can only support DUTs that the investigator has full control

over. Devices found in the real world are unlikely to have convenient AUT synchro-

nization trigger ports available, significantly complicating the sample collection step.

KTP control may also be a challenge with arbitrary DUTs as this method requires

thousands of samples of each of a set of KTPs. However, this is still better than some

other methods of comparing leakage where the KTP must be known - the investigator

only needs the ability to replay an encryption sequence, and doesn’t have to know

the key or data being operated on to measure the DUT’s SNR.

Beyond operational challenges, the method’s SNR calculation has some nuanced

limitations. Namely, it currently selects the largest instantaneous value from the SNR

curve and uses that as the SNR of the device. However, there could be devices where

multiple samples per trace could be used together to achieve better results than a

34

single sample. The current method has no way of accounting for this.

4.2 Future Work

Looking forward, there is certainly plenty more work that can be done to improve

the SCLAF. One possible improvement is to upgrade the current probing scheme -

perhaps a local low-voltage differential probe could work to reduce the noise floor

beyond what is currently possible with several feet of cable and the math channel

subtracting the two sides.

There is also plenty of room to optimize the current data collection process. For

example, the scope is currently configured to sample at 25GHz, but the bandwidth

of the sense resistor probes are limited to 500MHz. Thus a reduction in the sampling

rate could correlate to an equivalent reduction in the amount of data that needs to

be processed, without any signal degradation. Likewise the recorded waveforms for

this thesis all began 0.1 µs before the AES encryption even began, and continued for

a while after the encryption round completed. SCLAF could be improved to allow

for cropping the waveforms to the relevant locations, which can speed up the analysis

step by reducing necessary computation proportionally to the reduction in data.

Another challenge involves comparing SNRs between devices. While we have

shown that this method can consistently measure SNR within a particular DUT,

we should investigate methods of calibrating across separate DUTs and measuring

equipment. It remains to be seen how factors such as sampling rate, scope proximity,

and even probing affect the SNR.

More broadly, the SNR calculation currently relies on the understanding that

max(SNRtrace) is a useful model-agnostic test. While this appears to be true given

the data collected in this thesis, this claim probably deserves further attention with

a broad array of AUTs.

Finally, we would like to see a proper comparison between isolated accelerator

cores and those integrated into a realistic processor. While the work in this paper

began this investigation using the CEP, the unfortunate reality is there were too many

35

uncontrolled variables to make a proper comparison. The next steps here will likely

involve porting the CEP onto the Sakura X to eliminate most of the variables, or

otherwise finding a good method of calibrating SNR measurements.

36

Chapter 5

Conclusion

Physical side channels are real and dangerous, and the security community must focus

on reducing their impact. While current research shows many potential avenues for

reducing their impact, it is often hard to directly compare the results of different side

channel prevention techniques. In that regard, SCLAF has significant potential to

help simplify the comparison of PSC defenses. First, it provides a common toolchain

to reduce the startup effort for new investigators, making it easier to have more

people begin studying PSC defenses. Second, it provides comprehensive automa-

tion, allowing for thorough testing of various search parameters with minimal manual

involvement. Finally, the use of variance-based SNR allows for algorithm-agnostic

comparisons of various algorithms.

37

Appendix A

FMC SD Adapter Schematic

38

39

Bibliography

[1] Georg T. Becker, Jim Cooper, Elizabeth K. DeMulder, Gilbert Goodwill, Joshua
Jaffe, Gary Kenworthy, T. Kouzminov, Andrew J. Leiserson, Mark E. Marson,
Pankaj Rohatgi, and Sami Saab. Test vector leakage assessment (tvla) method-
ology in practice. International Cryptographic Module Conference, 1001, 2013.

[2] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Lecture Notes in Computer Science, volume 3156,
volume 3156, pages 16–29, 08 2004.

[3] Brendon Chetwynd. mit-ll/CEP: CEP Release v3.41, September 2021.

[4] Julien Doget, Emmanuel Prouff, Matthieu Rivain, and François-Xavier Stan-
daert. Univariate side channel attacks and leakage modeling. Journal of Cryp-
tographic Engineering, 1:123–144, 04 2012.

[5] Future Technology Devices International. FT2232H Used in an FT245 Style
Synchronous FIFO Mode, 11 2015. Version 1.3.

[6] Sylvain Guilley, Laurent Sauvage, and Jean-Luc Danger. Quantifying the quality
of side-channel acquisitions. In COSADE 2011 - Second International Workshop
on Constructive Side-Channel Analysis and Secure Design, 2011.

[7] Yohei Hori, Toshihiro Katashita, Akihiko Sasaki, and Akashi Satoh. Sasebo-giii:
A hardware security evaluation board equipped with a 28-nm fpga. In The 1st
IEEE Global Conference on Consumer Electronics 2012, pages 657–660, 2012.

[8] Xilinx Inc. Xilinx Virtex-7 FPGA VC707 Evaluation Kit, May 2012.

[9] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings,
volume 1666 of Lecture Notes in Computer Science, pages 388–397. Springer,
1999.

[10] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks:
Revealing the Secrets of Smart Cards. Springer Publishing Company, Incorpo-
rated, 1st edition, 2010.

40

[11] National Institute of Standards and Technology. Advanced encryption standard.
Federal Information Processing Standards, 197, November 2001.

[12] Colin O’Flynn and Zhizhang David Chen. Chipwhisperer: An open-source plat-
form for hardware embedded security research. In COSADE, 2014.

[13] Tektronix. 5/6 Series MSO MSO54, MSO56, MSO58, MSO58LP, MSO64 Pro-
grammer Manual, July 2018.

[14] Yusuke Yano, Kengo Iokibe, Yoshitaka Toyota, and Toshiaki Teshima. Signal-to-
noise ratio measurements of side-channel traces for establishing low-cost coun-
termeasure design. In 2017 Asia-Pacific International Symposium on Electro-
magnetic Compatibility (APEMC), pages 93–95, 2017.

41

	Introduction
	Design and Implementation
	Toolchain
	Hardware Setup
	FPGA Firmware
	Command and Analysis Software

	SNR Calculation
	SNR Algorithm
	SNR Measurement Procedure
	SNR Measurement Implementation

	Modifications for Testing with the CEP
	CEP on Sakura X: Hardware
	CEP on Sakura X: Firmware

	Validation
	SCLAF Evaluation
	AES Case Study
	CEP on Sakura X

	Discussion
	Limitations
	Future Work

	Conclusion
	FMC SD Adapter Schematic

