
Algorithmic Aspects of Perception-Aware Motion
Planning on Resource-Constrained Platforms

by
Igor Spasojevic

B.A., University of Cambridge (2016)
M.Math., University of Cambridge (2016)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Autonomous Systems
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Aeronautics and Astronautics

May 17, 2022
Certified by. .

Sertac Karaman
Associate Professor of Aeronautics and Astronautics

Thesis Supervisor
Certified by. .

John Tsitsiklis
C. J. Lebel Professor of Electrical Engineering and Computer Science

Thesis Committee Member
Certified by. .

Munther Dahleh
W. A. Coolidge Professor of Electrical Engineering and Computer

Science
Thesis Committee Member

Accepted by .
Jonathan P. How

R. C. Maclaurin Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee

2

Algorithmic Aspects of Perception-Aware Motion Planning on

Resource-Constrained Platforms

by

Igor Spasojevic

Submitted to the Department of Aeronautics and Astronautics
on May 17, 2022, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Autonomous Systems

Abstract

Autonomous micro aerial vehicles (MAVs) are becoming an integral tool in numerous
applications involving time-critical missions in GPS-denied environments. Due to
their small size and lean energy budget, MAVs are often equipped with a camera
to aid ego-localization. This introduces at least two fundamental challenges. First,
cameras are of little use for state estimation if there is an insufficient quantity of visual
information in the environment of the robot. Second, MAVs only display a limited
amount of onboard computational resources. Should extracting motion estimates
require excessive computational effort, in order to prevent fatal crashes, these agents
would be confined to such low speeds that their deployment would be of questionable
value.

This thesis studies algorithmic aspects of the question: “How quickly can a vision-
driven MAV traverse a given path, while maintaining accurate state estimates at all
times?” We seek tractable families of problems involving designing a time-optimal
open-loop sequence of controls for a MAV subject to both actuation as well as per-
ception constraints that allow the robot leverage its onboard camera for accurate state
estimation. Prior work has either focused on asymptotically optimal search-based ap-
proaches which are challenging to implement in real time, or fast local-optimization-
based methods with no guarantees on global constraint satisfaction, stability, or op-
timality.

We present three contributions. First, we extend optimality guarantees of a ro-
bust, computationally efficient algorithm for the time-optimal path parametrization
problem. Second, we demonstrate the convexity of a general family of perception
constraints which require a quadrotor to maintain a sufficient amount of information
within field of view of its forward-facing onboard camera. Third, we devise com-
putationally efficient algorithms for guiding the visual attention of a fully-actuated
multirotor to traverse a path in minimum time while keeping the computational bur-
den of extracting incremental motion estimates below a set threshold. Together,
these contributions serve as stepping stones towards allowing MAVs execute missions
autonomously at operational speeds.

3

Thesis Supervisor: Sertac Karaman
Title: Associate Professor of Aeronautics and Astronautics

4

Acknowledgments

Firstly, I would like to extend my deepest gratitude to my advisor Sertac Karaman,

not least for always encouraging me to pursue projects I found interesting, and in the

way I saw fit. Furthermore, I would like to thank Munther Dahleh and John Tsitsiklis

for incisive comments that ultimately led to what I believe is a significant clarification

of this thesis. I was also fortunate to have had numerous discussions about robotics

with Kaveh Fathian and Vasileios Tzoumas - I found a lot of inspiration in their work.

On the logistic side, none of this would have been possible without the AeroAstro

and LIDS staff ensuring things go smoothly from start to finish. I would like to

thank Beth Marois and Beata Shuster for sending reminders and instructions about

important course milestones, and for promptly answering the myriad of emails I had

sent them. On numerous occasions, Brian Jones kindly helped me with tech-related

issues, including setting up a hybrid thesis defense in the wake of a difficult COVID-

19 period. And, finally on this note, I would like to offer a big thank you to Jin Gao

and Francisco Jaimes for helping out with various organizational tasks, ranging from

finding available seminar rooms at short notice to getting lab equipment.

I have naturally had the pleasure of meeting many friends and colleagues at MIT

and beyond. For a start, a big shoutout to my talented collaborators Varun Murali and

Winter Guerra is in order. Same goes for the numerous folks affiliated with AeroAs-

tro: Bai Liu, Soumya Sudhakar, Andres Sisneros, John Aleman, Dave McCoy, Ezra

Tal, Gilhyun Ryou, Guilherme Venturelli Cavalheiro, and Thomas Sayre-McCord.

It would also be fair to say that I had spent a lot of my time in graduate school

in Building 32 - “Stata”. Thank you to Elaheh Fata, Flora Meng, Jennifer Tang,

Aviv Adler, Fangchang Ma, Oscar Mickelin, David Miculescu, Amir Nouripour, Hajir

Roozbehani, and Tuhin Sarkar for all the fun times, especially on the eve of a paper

or project deadline.

Ultimately, I cannot find the words to express how grateful I am to my family.

Without them, I would not be here.

5

6

Contents

1 Introduction 15

1.1 MAVs: Capabilities and Constraints 15

1.2 Towards Optimization-Based Autonomy 16

1.3 Setting and Structure of the Thesis 18

1.3.1 Contributions . 19

2 Asymptotic Optimality of a Time Optimal Path Parametrization

Algorithm 21

2.1 Introduction . 21

2.2 Problem Statement . 27

2.2.1 Square Speed Profile . 28

2.2.2 Excursion into Non-Smooth Analysis 31

2.2.3 Putting the Ingredients Together 34

2.3 Algorithm . 34

2.4 Analysis . 36

2.4.1 Analytical Characterization of Optimum 36

2.4.2 Asymptotic Optimality . 42

2.5 Simulation Results . 52

2.6 Conclusion . 53

3 Perception-aware Time Optimal Path Parametrization for Quadro-

tors 55

3.1 Introduction . 55

7

3.2 Problem Statement . 58

3.2.1 Dynamics Model . 58

3.2.2 Sensing Model . 60

3.2.3 Task: Traversing a “Flat” Path in Minimum Time 61

3.2.4 Dynamic Constraints . 61

3.2.5 Perception Constraints . 62

3.2.6 Mathematical Formulation . 63

3.3 Algorithm . 65

3.3.1 Perception Constraint Generation 65

3.3.2 Regularized TOPP . 66

3.3.3 Alpha Scaling . 67

3.4 Analysis . 68

3.4.1 Dynamic Constraints . 68

3.4.2 Perception Constraints . 69

3.5 Simulation Results . 76

3.5.1 Perception Constraint Generation Simulations 76

3.5.2 Comparison with Generic Nonlinear Optimization Baseline . . 79

3.5.3 Dependence of Scaling and Penalty Hyperparameter 80

3.6 Conclusion . 82

4 Joint Landmark Selection and Time Optimal Path Parametrization

for High-Speed Vision-Aided Navigation 83

4.1 Introduction . 83

4.2 Problem Statement . 87

4.2.1 Geometric Path and Dynamic Model 88

4.2.2 Perception Model . 88

4.2.3 Perception Constraints . 89

4.2.4 Mathematical Formulation . 90

4.3 Algorithms . 91

4.3.1 Mixed Integer Formulation . 92

8

4.3.2 K-Fastest Algorithm . 93

4.3.3 Incremental Greedy Algorithm 93

4.4 Analysis . 95

4.4.1 Separation Principle . 95

4.4.2 Algorithm Guarantees . 96

4.4.3 Changing Selection of Landmarks 107

4.5 Simulation and Experimental Results 109

4.5.1 Experimental Setup . 109

4.5.2 Algorithm Comparison . 112

4.5.3 Feature Tracking experiment 113

4.6 Conclusion . 114

5 Conclusion 115

5.1 Recapitulation of Contributions . 115

5.2 Limitations of Results and Future Work 116

9

10

List of Figures

2-1 Backward-Forward Algorithm . 35

2-2 Illustration of the Proof of Condition (3) of Theorem 3 38

2-3 Overview of Step One of the Proof of Asymptotic Optimality of the

Backward-Forward Algorithm . 44

2-4 Overview of Step Two of the Proof of Asympotic Optimality of the

Backward-Forward Algorithm . 44

2-5 Pictorial Summary of Inductive Step of Lemma 1 46

2-6 Empirical Evidence of Asymptotic Optimality of Algorithm 1 53

3-1 Quadrotor tasked with following a user-given path while keeping spec-

ified landmarks (in the set ℳ(𝑠)) in field of view (shown in the red

cone). 57

3-2 Timing Results for Conjunctive Constraint Generation 77

3-3 Timing Results for Disjunctive Constraint Generation 78

3-4 Example where Regularized-TOPP algorithm outperforms baseline . . 80

3-5 Example where baseline outperforms Regularized-TOPP 80

3-6 Traversal time of path as a function of regularization factor 81

3-7 Required scaling factor versus regularization factor 81

4-1 An MAV navigating an indoor environment. The selection of land-

marks in the environment that allow the fastest execution of the path

is shown in green. 84

4-2 Image captured at the start of the trajectory 110

4-3 Image captured at the end of the trajectory 110

11

4-4 Features chosen using the quality metric of GoodFeaturesToTrack . . 110

4-5 Features chosen by the K-Fastest method 111

4-6 The Arc trajectory . 111

4-7 The Figure 8 trajectory segment . 111

4-8 The Oval trajectory segment . 112

4-9 The Slalom trajectory segment . 112

12

List of Tables

3.1 Conjunctive Constraint Generation [𝜇𝑠] 77

3.2 Disjunctive Constraint Generation [𝜇𝑠] 78

3.3 Performance relative to Baseline Method 79

4.1 Results of the algorithm comparison 113

4.2 Table showing the number of successfully tracked landmarks over the

trajectory with k=100 . 113

13

14

Chapter 1

Introduction

1.1 MAVs: Capabilities and Constraints

Rapid progress in autonomous micro aerial vehicle (MAV) technology has secured

its place in numerous application domains such as package and aid delivery [16],

precision agriculture [65], infrastructure inspection [91], disaster response [46], and

even scientific exploration. Key to realizing the full potential of these vehicles to boost

task productivity by flying faster, accurately execute increasingly delicate missions,

and extend our reach by venturing into unknown environments without any human

oversight, lies in developing algorithms endowing them with ever higher levels of

autonomy [36].

Successful operation of autonomous robotic platforms typically entails the synergy

of several components, traditionally divided into estimation, planning, and control

modules. Each involves manipulating its own copy of the logical core of the system -

its state, which comprises a collection variables capturing the necessary and sufficient

information required to predict how the system will evolve. The estimation module

fuses measurements from various sensors on board the agent to form an estimate of

its pose, how fast it is moving, as well as where the obstacles in its environment lie.

The planner supplies a nominal trajectory of states the vehicle should follow in order

to execute a specified task, while the controller seeks to mitigate any deviation from

the plan that might arise due to inherently noisy, or even unmodelled, aspects of the

15

dynamics of the agent.

Despite unrelenting technological advancements, MAVs are resource-constrained

agents [70]. They can only display a limited supply of power as well as a limited

amount of computational resources on board. A state-of-the-art quadrotor platform

currently cannot execute aggressive maneuvers for periods longer than 15 minutes

without having to recharge its batteries. Similarly, graphical processing units (GPUs)

as well as field-programmable gate arrays (FPGAs) have only been a recent addition

to the hardware stack of cutting-edge robots emerging out of research labs around the

world [67]. Such cyber-physical constraints ultimately shape not only the hardware

design of MAVs, but the algorithms that allow them to achieve the limits of their true

capabilities.

The limited power supply of MAVs influences their assortment of onboard sensors,

rendering a pairing of an inertial measurement unit (IMU) and a camera a common

design choice. IMUs are interoceptive sensors, measuring the acceleration and angular

velocity of the vehicle. Though accurate over short time scales, their inherent noise

and hidden time-varying biases imply they cannot be solely relied upon for longer

missions. A second, exteroceptive, sensor such as a camera is necessary for accurate

state estimation, although leveraging it effectively does come with a set of challenges.

Firstly, the camera can only yield motion estimates in the presence of a sufficient

quantity of visual cues in the environment. Second, the raw sensory output of the

camera consists of billions of pixel array intensities per frame, now commonly captured

at rates exceeding 100 Hz. Extracting information from such a high-dimensional,

high-frequency stream of data incurs a non-negligible computational burden.

1.2 Towards Optimization-Based Autonomy

This thesis deals with algorithms for perception-aware motion planning. In other

words, we seek the sequence of open-loop controls that optimizes some notion of

performance of the agent subject to both its actuation bounds as well as appropriately

chosen perception constraints. Before going further, we pause to elaborate on the

16

broader place of such a family of problems in the field of control, which primarily

addresses the task of synthesizing optimal feedback policies [4, 5].

Conceptually, any algorithm may be regarded as a rulebook mapping a query

input to the desired output. For example, a state estimation algorithm maps sen-

sory readings of the agent to a representation of the set of (statistically) consistent

states. Similarly, a control algorithm or a policy maps the state of the agent to

suitable actuator inputs. In the earliest days of embedded systems, such maps were

represented as hard-coded circuits. However, with advances in electronic hardware,

as well as more challenging mission specifications, attention has steadily shifted to

optimization-based control and estimation algorithms [31, 32, 50, 63, 64]. Simply put,

the modern rulebook replaces the hard-coded circuit with the solution to an optimiza-

tion problem parametrized by readings of the sensors in the case of the estimator, or

the state of the agent in the case of the controller.

Optimization problems arising in implementation of various autonomy modules

involve overcoming a number of computational challenges. In particular, such modules

rely on algorithms for dynamic decision making, which often involve solving high-

dimensional, non-convex problems. The high-dimensional nature typically comes from

the need to consider the trajectory of states throughout a range of time points. The

non-convexity usually arises due to nonlinear dynamic and measurement models. As

a result, these problems are predominantly addressed using local, gradient-descent-

based algorithms, which can in general converge only to local and unsatisfactory

optima. Furthermore, such algorithms are often not run until convergence, but for

several dozen iterations due to time requirements. Also, some problems entail a

mixture of both combinatorial and continuous optimization. Common combinatorial

problems in robotics involve instances of the travelling salesman, maximum clique,

as well as the set over problem. It is somewhat unfortunate that such problems are

not only hard to solve but NP-hard to approximate to within a constant factor by

polynomial time algorithms. Moreover, the overarching problem of mapping sensory

inputs to optimal actions is PSPACE-hard; this is a common phenomenon when

contingency plans are involved [56].

17

In an effort to compute near-optimal decisions in real time, numerous modelling,

architectural, and optimization approximations are employed. In terms of architec-

ture, it is common to adopt hierarchical decision making algorithms. For example, in

the case of trajectory planning for quadrotors, a typical scenario involves planning an-

gular velocities which are then delegated to a lower level body-rate controller. Some-

times it is advantageous to speed up motion planning using altered dynamic models

that are easier to optimize, and yet capture the leading order trade-offs present in

the actual dynamics of the vehicle. Likewise, optimization algorithms often employ

convex relaxations of certain cost functions in order to speed up convergence to a

local optimum.

1.3 Setting and Structure of the Thesis

An approximate motion planning method central to this thesis will be the path-

velocity decomposition [38]. From planning trajectories for robotic manipulators [6]

to robot teams [57], it decomposes the motion planning task of finding the optimal

trajectory from start to goal region by first finding a suitable collision-free path in

configuration space, and then endowing the resulting path with a time parametriza-

tion that is dynamically feasible for the system. The central problem we will address

will be the second, time-optimal path parametrization stage. This is of particular

relevance either when the path has been supplied by a higher level module of the

task planner, or is naturally given due to the obstacle-rich nature of the environment.

In the general case, an optimization algorithm would alternate between selecting the

path and endowing it with an optimal time parametrization [89].

The underlying theme of this text will involve bringing to bear the aforementioned

methodology to the nascent area of perception-aware motion planning. The latter

considers the problem of which trajectory should an agent take from start to goal

location in order to optimally execute a given task subject to two classes of constraints.

The first class involves hard bounds on actuator inputs, as has been studied studied

in the fields of motion planning and trajectory optimization since their inception.

18

The second, perception-aware, class of constraints will be imposed to ensure the

agent maintains a steady stream of percepts that enables it maintain accurate state

estimates at all times.

To give a stark example, consider a vision-driven quadrotor navigating an indoor

environment. To arrive at a specified goal region it has to choose between two trajecto-

ries. With oracle-provided state estimates, the first trajectory has a shorter execution

time. However, it involves flying through environments with poor ambient lighting,

whereas the second involves navigating well-lit, textured regions of space. Opting for

the first trajectory, the vehicle would quickly loose its bearings, and not be able to

effectively leverage its controller to damp disturbances to stay on track. This simple

example motivates us to consider planning trajectories, that in addition to minimizing

execution time, also maintain a sufficient quantity of distinctive visual cues within

field of view of the camera on board the agent. Furthermore, we design trajectories

that ensure the latest visual percepts can be extracted from the high-dimensional,

high-frequency data source such as a camera without undue computational effort.

We shall strive to develop algorithms with provable performance guarantees. From

a practical standpoint, this ties back to the requirement that all modules forming an

autonomy stack have to yield approximately optimal decisions in real time. Formally,

this involves guarantees on underlying algorithms both in terms of precison, or bounds

on suboptimality, as well as bounds on execution time to allow the agent to perform

at operational speeds. It is natural to seek algorithms that come with such desiderata

a priori, without requiring excessive resources to validate them experimentally.

1.3.1 Contributions

The following is a chapter-by-chapter outline of the novel ideas in this thesis:

1. We first present the asymptotic optimality of a computationally efficient, nu-

merically robust algorithm for the time-optimal path parametrization problem

for a broader class of agents than previously known. We provide a novel way

to derive an intuitive characterization of its optimum from first principles using

19

tools from non-smooth analysis. The results from this chapter are instrumental

to the development of Chapter 4 (item 3 below).

2. Second, we demonstrate the convexity of a broad family of perception con-

straints involving minimizing the traversal time of a specified path by a quadro-

tor with a forward-facing camera. These include maintaining desired informa-

tive regions of the environment within the field of view of the robot’s camera,

as well as determining which subset of given regions allows for fastest execution

time under appropriate assumptions on the environment.

3. The third part of the thesis addresses the problem of designing trajectories that

ensure a computationally efficient extraction of visual percepts. In particular,

it involves solving a continuous-discrete combinatorial optimization problem,

for which we propose simple, polynomial-time algorithms and delineate a rele-

vant subclass of motions for which we prove instance-dependent approximation

guarantees.

Finally, we conclude with directions for future work both on the theoretical as

well as implementational front.

20

Chapter 2

Asymptotic Optimality of a Time

Optimal Path Parametrization

Algorithm

2.1 Introduction

Seminal works on the time-optimal path parametrization problem (TOPP) dealt with

planning dynamically feasible trajectories for robotic manipulators. The latter were

typically modelled as linked robots actuated by motors at the joints. Actuation

constraints took the form of bounds on their velocities and accelerations, as well as

torques exerted by the motors. A key insight of [6] was the existence of a one-to-one

correspondence between sets of time parametrizations of a path and speed profiles,

functions specifying the speed of the agent as a function of distance it has traveled

along the path. In this way, TOPP was reduced to an equivalent fixed horizon optimal

control problem. In particular, arc length, the speed of the agent, and its acceleration

took on the roles of the independent parameter (otherwise most commonly time),

the state, and control input, respectively. The requirement of following the path

was handled automatically in favour of state and parameter-varying constraints on

feasible accelerations.

21

The first successful class of scalable TOPP algorithms, initiated in [6], are now re-

ferred to as numerical integration (NI) approaches. NI algorithms consist of two main

steps. The first involves calculating the maximum velocity curve (MVC), a function

(taking values in extended non-negative reals) specifying for each point along the

path, the infimal speed above which there exists no feasible acceleration. The sec-

ond step is theoretically grounded on Pontryagin’s Maximum Principle, which implies

that the optimal profile is either in the regime of maximal acceleration or maximal

deceleration in the region below the MVC [6,72]. Therefore, this step involves search-

ing for appropriate parameter-speed coordinates of switch points where the optimal

profile undergoes a change between the two extremal regimes, or potentially, slides

along the MVC. NI methods almost exclusively vary in the second step, striving to

make it more computationally efficient and numerically robust.

Before listing the various improvements to the method, we describe the route

taken by [6], as it forms of the core of later NI approaches. The method proceeds in

iterations until reaching the end of the path as follows. At the start of every iteration

it maintains three objects: a path parameter 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡; the optimal profile 𝑏*𝑐𝑢𝑟𝑟𝑒𝑛𝑡 for

tracking the restricted path 𝛾|[0,𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡]; and finally 𝑣𝑚𝑎𝑥 ≜ 𝑏*𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡). For

example, at the start of the very first iteration 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 0, 𝑏*𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≡ 𝑣𝑖𝑛𝑖𝑡, and

𝑣𝑚𝑎𝑥 = 𝑣𝑖𝑛𝑖𝑡, where 𝑣𝑖𝑛𝑖𝑡 represents the specified initial speed of the agent. Then, the

method forward integrates the profile of maximal acceleration from (𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑣𝑚𝑎𝑥),

until first hitting the parameter axis, or the MVC. In the first case, the algorithm

terminates prematurely, correctly concluding the path is untraversable. In the second

case, the point of intersection with the MVC is denoted by (𝑠𝑛𝑒𝑥𝑡, 𝑣𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦), where

𝑠𝑛𝑒𝑥𝑡 > 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡. At this point, the the method searches for the highest speed 𝑣𝑛𝑒𝑥𝑡

lying in the interval [0, 𝑣𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦] from which the profile of maxima deceleration stays

below the remainder of the MVC. It updates 𝑏*𝑐𝑢𝑟𝑟𝑒𝑛𝑡 by integrating backward from

(𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡) the profile of maximum deceleration until hitting 𝑏*𝑐𝑢𝑟𝑟𝑒𝑛𝑡, thereby

obtaining a new switch point. The iteration concludes by updating 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑣𝑚𝑎𝑥

to 𝑠𝑛𝑒𝑥𝑡 and 𝑣𝑛𝑒𝑥𝑡, respectively. The main room for improvement in computational

efficiency of the method lies in working around the search for 𝑣𝑛𝑒𝑥𝑡.

22

The efficiency of the NI approach was enhanced in [73], leveraging the insight that

switch points from maximal acceleration to maximal deceleration can only occur on

the MVC. They use the problem data to efficiently calculate the set of candidates for

such points which they partition into three classes. The first class of potential switch

points are located where the MVC is discontinuous. These typically occur where the

specified geometric path has discontinuous curvature. The second class consists of

parameter-speed points on the MVC at which the tangent to the MVC exists and is

collinear with the unique allowed acceleration. The final set of candidates are singular

points where the MVC is continuous but not differentiable; at such points there is a

whole interval of feasible accelerations due to one of the acceleration constraints being

void. The method would proceed to construct limit curves (LCs) emanating from

aforementioned candidate switch points by integrating forward profiles of maximal

acceleration and integrating backward profiles of maximal deceleration until reaching

the MVC. The optimal profile was then recovered as the pointwise minimum of the

LCs. In spite of reducing the computational complexity of NI methods, an overlooked

aspect of this approach was a principled way of handling construction of LCs at

singular points.

Selecting the appropriate acceleration at singular points would prove to be a cen-

tral topic of future improvements and debate in NI algorithms [37, 72]. The matter

was settled only recently [61]. With careful analysis, the authors showed that the ap-

propriate value of acceleration at a singular point can be recovered by considering the

constraint inducing the singularity in its vicinity. Nonetheless, despite the progress

towards ensuring numerical robustness of the NI approach, a major stumbling block

for NI algorithms lay in handling direct velocity bounds (not arising solely from the

MVC). Some works considered explicitly determining trap regions, areas below the

bound on maximum speed where no feasible speed profile could venture into without

subsequently breaking the speed or acceleration constraints [90]. However the trap

regions were determined by a brute force grid search over in the region below the

speed bound, which was a time consuming procedure that somewhat defeated the

original purpose of a fast algorithm for TOPP.

23

Another class of approaches to TOPP that bypass issues of numerical instabil-

ities, and which can seamlessly handle direct velocity bounds, is based on convex

optimization (CO). Namely, instead of finding the optimal speed profile, these meth-

ods recover the optimal square speed profile. Although such a reparametrization was

discovered early, it saw initial use only as an aid for integration of maximum accel-

eration and deceleration profiles [59]. Nevertheless, researchers uncovered that such

a reparametrization in fact rendered a wide class of TOPP problems convex [82]. In-

deed, by reparametrizing the problem in terms of the square speed profile, actuation

constraints such as bounds on velocities, accelerations and torques induced convex

constraints on the square speed profile. Furthermore, execution time was also a con-

vex function of the latter variable.

The first step of CO approaches involves transforming the continuous TOPP prob-

lem into one consisting of a finite set of decision variables. The latter are typically

values of the optimal square speed profile at a predetermined set of discretization

points along the path. There is small room for variation in how actuation constraints

that ought to hold for the whole trajectory translate into constraints on the aforemen-

tioned finite set of decision variables, but they are often enforced to hold pointwise at

individual discretization points. Regardless of the transcription method, the resulting

finite dimensional optimization problem remains convex. Beyond this point, various

methods in literature predominantly differ in terms of the efficiency of the partic-

ular CO algorithm they employ. Indeed, by exploiting additional structure of the

particular problem at hand, some approaches develop faster tailor-made algorithms

compared to ones which can handle a broader class of problems.

The CO approach to TOPP was first introduced as a method for optimizing tra-

jectories of a seven degree of freedom robotic manipulator [82]. Furthermore, this

work showed the resulting problem of minimizing the execution time of the path,

together with other desiderata such as total energy expenditure and smoothness of

the trajectory, subject to velocity, acceleration and torque bounds of the joints could

be cast as a second order conic program (SOCP). The work of [26] addresses the

task of interpolating a sequence of static keyframes for a walking bi-pedal robot by

24

a dynamically feasible trajectory. It involves connecting the keyframes by a suitable

geometric path, which is then endowed with a feasible time parametrization. The

author employs a custom trust-region gradient descent method, reducing the corre-

sponding TOPP problem to a sequence of linear programs, for which more efficient

solvers exist. This enables the task of computing dynamically feasible trajectories for

robots with hundred degrees of freedom in a matter of seconds. The idea was further

developed in [51], reducing the original task of TOPP for robotic manipulators to a

related linear program. Ultimately, [41] employ a specialized interior point method

for solving TOPP problems for a variety of agents, ranging from thrust vectored space

vehicles to a model of a four-wheel-drive car. Interior point methods typically work

by pushing the convex inequality constraints into the objective function. At every

step of the way, the method performs a Newton gradient descent step recovered as the

solution to a banded system of KKT equations, which can be extracted in time that

scales linearly with the number of discretization points. Nevertheless, the runtime of

the latter method is not guaranteed as the number of required descent steps can be

large. In fact, [61] note that CO approaches are an order of magnitude slower than

NI approaches; what they gain in numerical robustness and generality they loose in

computational efficiency.

The most recent class of approaches to TOPP are iterative methods (I). They

possesses the speed of NI algorithms, numerical robustness of CO approaches, and, to

an extent, the versatility of the latter. There have been two sub-classes of I-methods,

differing mainly in the way they were presented. We will first describe one such

algorithm, TOPP-RA (TOPP via Reachability Analysis) by [60], which additionally

illustrates the workings of others.

The method recovers values of the optimal square speed profile at a specified set

of discretization points along the path in a pair of passes. In the first, backward

pass, starting from the end of the path, TOPP-RA incrementally calculates at every

discretization point the interval of square speeds from which there exists a feasible

profile leading to the end of the path. In the second, forward pass, starting from the

beginning of the path, TOPP-RA recovers the interval of speeds at every discretiza-

25

tion point which can additionally be reached by a feasible square speed profile from

the start of the path. Ultimately, the method outputs the upper endpoints of such

intervals as values of the optimal square speed profile.

There have been several variations and applications of the latter algorithm for

solving TOPP problems. The original application of [60] deals with planning trajec-

tories for manipulators and humanoid robots. In similar vein, [12] develop a method

using an efficient custom solver for linear programs in two variables arising when

incrementally calculating the reachable square speeds at discretization points. They

enable optimizing trajectories for manipulators with hundreds of discretization points

in less than a millisecond. Relatedly, [13] plan minimum time trajectories for a double

integrator point mass model of the car subject to spatially varying bounds on tan-

gential and normal acceleration. The work of [15] solves TOPP for the waiter motion

problem, which involves finding the time optimal way to transport a mass on a tray

in a way that the force of static friction is sufficient to prevent it from slipping.

However, the issue with I-approaches was that they were only proven optimal for a

subclass of problems solved by convex optimization approaches. For example, [13,60]

show optimality in the presence of polytopic acceleration constraints, whereas [12]

relax the latter requirement but still require certain monotonicity assumptions, that

need not always hold.

Contributions

In this chapter, we show that the algorithm proposed in [60] is not only numerically

robust, and computationally efficient, but it is also asymptotically optimal for all

problems amenable to the more computationally-intensive CO approaches. Towards

this end, we provide a novel characterization of the solution of the TOPP problem

by leveraging tools from non-smooth analysis that have not been previously used in

this context to the best of our knowledge. To complement our theoretical results,

we also provide empirical evidence of asymptotic optimality of the aforementioned

algorithm by comparing its output with a semi-analytic solution. Much of the work

in this chapter can be found in the journal paper [74].

26

2.2 Problem Statement

This section gives a mathematical formulation of the time-optimal path parametriza-

tion problem. To this end, we elaborate on two key ingredients: the equations of

motion of the agent at hand, and ultimately, the specification of the path it has to

traverse.

The ensuing framework is rich enough to capture the task for a wide class of

actuation-constrained agents with second order dynamics. The discerning character-

istic of such vehicles is that the combination of the zeroth, first, and second time

derivatives of the trajectory of their configuration directly corresponds to the tra-

jectory of their state (configuration together with its higher order time derivatives)

and inputs required to induce them. Examples of such agents are robotic manipula-

tors, the Dubins and kinematic cars, as well as models of certain space vehicles [10].

Throughout the remainder of the chapter, we will consider the time-optimal path

parametrization problem for one such agent we will refer to as the kinematic plane.

Roughly speaking, the kinematic plane is a direct product of the kinematic car

model and the second order integrator along the vertical axis. Its dynamics are given

by: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥̇

𝑦̇

𝑧̇

𝜃̇

𝑣̇ℎ𝑜𝑟

𝑣̇𝑣𝑒𝑟

𝜔̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟ ⏞

𝑞̇

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣ℎ𝑜𝑟 cos 𝜃

𝑣ℎ𝑜𝑟 sin 𝜃

𝑣𝑣𝑒𝑟

𝜔

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟ ⏞

𝑑𝑟𝑖𝑓𝑡

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

𝑎ℎ𝑜𝑟

𝑎𝑣𝑒𝑟

𝜏

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟ ⏞
𝑖𝑛𝑝𝑢𝑡𝑠

(2.1)

The configuration of the kinematic plane consists of its position [𝑥, 𝑦, 𝑧] ∈ R3, together

with its orientation encoded by 𝜃 ∈ [0, 2𝜋), representing the angle the projection of

the longitudinal axis of the vehicle forms with the 𝑥 axis of the world frame. The

state of the kinematic plane additionally contains the horizontal speed 𝑣ℎ𝑜𝑟 ∈ R along

27

its longitudinal axis, its vertical speed 𝑣𝑣𝑒𝑟 ∈ R, as well as its yaw rate 𝜔 ∈ R. The

inputs consist of longitudinal acceleration 𝑎ℎ𝑜𝑟 ∈ R, vertical acceleration 𝑎𝑣𝑒𝑟 ∈ R,

and slew rate 𝜏 ∈ R.

In spite of being a simplified model, the kinematic plane retains several appealing

properties that capture the actuation capabilities and limitations of a typical aerial

vehicle. First, both its orientation and position behave like second order integrators,

much like Euclidean counterparts of the two corresponding components of pose in

general rigid body dynamics. Second, the model can succinctly represent a range of

different actuation constraints including bounds on (components as well as magni-

tudes of) speed, acceleration, yaw, and slew rate. Moreover, we will soon see that

modelling bounds on combinations of, say, acceleration and slew rate comes at no

extra cost. The latter aspect is particularly powerful in situations where a given

budget of control authority must be optimally allocated in order to effectively control

translational and rotational motion of the actual vehicle.

The second ingredient in the problem definition includes the path specification. In

particular, a path is a smooth curve 𝛾 : [0, 𝑆𝑒𝑛𝑑]→ R the center of mass of the agent

ought to traverse in minimal time while respecting stipulated actuation constraints.

The two requirements we impose on 𝛾 are: regularity, meaning 𝛾′(𝑠) ̸= 0 ∀𝑠 ∈ [0, 𝑆𝑒𝑛𝑑];

and smoothness, namely 𝛾(·) ∈ 𝐶2 is a twice continuously differentiable function. For

our running example of the kinematic plane, we will additionally assume we are given

a generic path in that its projection onto the horizontal world plane is a regular curve.

2.2.1 Square Speed Profile

The key decision variable in the problem is the square speed profile:

ℎ : [0, 𝑆𝑒𝑛𝑑]→ [0,∞)

ℎ : 𝑠 ↦→
(︂
𝑑𝑠

𝑑𝑡
(𝑠)

)︂2 (2.2)

the function giving the speed of the agent as a function of distance is has travelled

along the path. Intuitively, the profile states how much time the agent should spend

28

on every infinitesimal leg of the journey. As noted earlier, considering the square

speed profile over simply the speed profile uncovers a hidden convexity of the time

optimal path parametrization problem, as we will now see.

To begin with, as 𝑥 ↦→ 𝑥−
1
2 is convex on (0,∞), the execution time of the path

given by

∫︁ 𝑆𝑒𝑛𝑑

0

𝑑𝑡 =

∫︁ 𝑆𝑒𝑛𝑑

0

𝑑𝑡

𝑑𝑠
𝑑𝑠 =

∫︁ 𝑆𝑒𝑛𝑑

0

(︂
𝑑𝑠

𝑑𝑡

)︂−1

𝑑𝑠 =

∫︁ 𝑆𝑒𝑛𝑑

0

1√︀
ℎ(𝑠)

𝑑𝑠 (2.3)

is a convex functional of ℎ. Furthermore, numerous actuation constraints also take

the form of convex constraints on ℎ. Indeed, noting the relation 𝑑
𝑑𝑡
= 𝑑𝑠

𝑑𝑡
𝑑
𝑑𝑠

=
√︀
ℎ(𝑠) 𝑑

𝑑𝑠

and denoting differentiation by 𝑠 with a prime(′), we have the following expressions

for the velocity and acceleration of the vehicle at point 𝑠 ∈ [0, 𝑆𝑒𝑛𝑑]:

v(𝑠) = 𝛾′(𝑠)
√︀
ℎ(𝑠)

a(𝑠) =
1

2
𝛾′(𝑠)ℎ′(𝑠) + 𝛾′′(𝑠)ℎ(𝑠).

(2.4)

Let Πℎ𝑜𝑟 : R3 → R2 (Π𝑣𝑒𝑟 : R3 → R), defined by Πℎ𝑜𝑟([𝑥, 𝑦, 𝑧]) = [𝑥, 𝑦] (Π𝑣𝑒𝑟([𝑥, 𝑦, 𝑧]) =

𝑧), denote the projection onto the world 𝑥− 𝑦 plane (𝑧 axis). In this case, bounds on

components of the state of the vehicle of the form

𝑣ℎ𝑜𝑟 ≤ 𝑣𝑚𝑎𝑥ℎ𝑜𝑟 and 𝑣𝑣𝑒𝑟 ≤ 𝑣𝑚𝑎𝑥𝑣𝑒𝑟 (2.5)

translate into

ℎ(𝑠) ≤
(︂

𝑣𝑚𝑎𝑥ℎ𝑜𝑟

||Πℎ𝑜𝑟𝛾′(𝑠)||2

)︂2

and ℎ(𝑠) ≤
(︂

𝑣𝑚𝑎𝑥𝑣𝑒𝑟

||Π𝑣𝑒𝑟𝛾′(𝑠)||2

)︂2

, (2.6)

respectively. Note that squaring the constraints in Equation (2.5) was lossless since

the agent can only move “forward” along the path, and as a result 𝑑𝑠/𝑑𝑡(𝑠) ≥ 0 ∀𝑠 ∈
[0, 𝑆𝑒𝑛𝑑]. Similarly, a bound on the magnitude of the speed of the vehicle

𝑣𝑚𝑎𝑥 ≥ ||v(𝑠)||2 =
√︁
||𝑣ℎ𝑜𝑟(𝑠)||22 + 𝑣𝑣𝑒𝑟(𝑠)2 (2.7)

29

translates into

ℎ(𝑠) ≤
(︂

𝑣𝑚𝑎𝑥

||𝛾′(𝑠)||2

)︂2

. (2.8)

For the kinematic plane, we also have the relation

𝜃 = 𝜃(𝛾′) = arctan

(︂
𝑒2 · 𝛾′
𝑒1 · 𝛾′

)︂
⇒ 𝜔 = 𝜃̇ = 𝜃′

√︀
ℎ(𝑠) (2.9)

and as a result, a bound on yaw rate

|𝜔| ≤ 𝜔𝑚𝑎𝑥 (2.10)

becomes upon squaring

ℎ(𝑠) ≤
(︂
𝜔𝑚𝑎𝑥

𝜃′

)︂2

. (2.11)

Next we turn to bounds on inputs of the agent. For example, bounds on compo-

nents of translational inputs, and combinations thereof, such as

|𝑎𝛽| ≤ 𝑎𝑚𝑎𝑥𝛽 , (2.12)

where 𝛽 ∈ {ℎ𝑜𝑟, 𝑣𝑒𝑟, ∅}, with Π∅ = 𝐼3 and 𝑎𝑚𝑎𝑥∅ enforcing an upper bound on the

norm of total acceleration, are equivalent to

||Π𝛽a(𝑠)||2 ≤ 𝑎𝑚𝑎𝑥𝛽 ⇔

||1
2
Π𝛽𝛾

′(𝑠)ℎ′(𝑠) + Π𝛽𝛾
′′(𝑠)ℎ(𝑠)||2 ≤ 𝑎𝑚𝑎𝑥𝛽 ⇔

ℎ′(𝑠) ∈

⎡⎣−2𝛾′(𝑠)𝑇Π𝛽𝛾
′′(𝑠)

𝛾′(𝑠)𝑇Π𝛽𝛾′(𝑠)
± 2

√︃
𝛾′(𝑠)𝑇Π𝛽𝛾′′(𝑠)

𝛾′(𝑠)𝑇Π𝛽𝛾′(𝑠)
−
𝛾′′(𝑠)𝑇Π𝛽𝛾′′(𝑠)ℎ(𝑠)2 − (𝑎𝑚𝑎𝑥𝛽)2

𝛾′(𝑠)𝑇Π𝛽𝛾′(𝑠)

⎤⎦
(2.13)

respectively, where we used the abbreviation [𝑎 ± 𝑏] := [𝑎 − 𝑏, 𝑎 + 𝑏]. Similarly, due

to the following expression for slew rate

𝜏 = 𝜔̇ =
1

2
𝜃′(𝑠)ℎ′(𝑠) + 𝜃′′(𝑠)ℎ(𝑠) (2.14)

30

an actuation bound of the form

|𝜏 | ≤ 𝜏𝑚𝑎𝑥 (2.15)

becomes
− 𝜏𝑚𝑎𝑥 ≤ 1

2
𝜃′(𝑠)ℎ′(𝑠) + 𝜃′′(𝑠)ℎ(𝑠) ≤ 𝜏𝑚𝑎𝑥 ⇔

ℎ′(𝑠) ∈
[︂
−2ℎ(𝑠)𝜃′′(𝑠)

𝜃′(𝑠)
± 2𝜏𝑚𝑎𝑥

|𝜃′(𝑠)|

]︂
.

(2.16)

2.2.2 Excursion into Non-Smooth Analysis

The equations above clearly show that we can express all actuation constraints on

the vehicle for the problem at hand in terms of a pair of inequalities

ℎ′(𝑠) ≤ 𝑓+(𝑠, ℎ(𝑠))

ℎ′(𝑠) ≥ 𝑓−(𝑠, ℎ(𝑠))
(2.17)

where, roughly speaking, 𝑓+ (𝑓−) encodes the minimum (maximum) of the allowed

upper (lower) bounds on ℎ′ across all the various constraints derived earlier.

However, there is a problem. It may happen there does not exist an optimal

profile ℎ that is differentiable on the whole interval [0, 𝑆𝑒𝑛𝑑]. Indeed, consider a

vehicle following a straight line trajectory at level altitude from hover to hover state.

It is easy to see that its optimal acceleration is of a bang-bang nature: accelerating full

throttle before breaking as hard as possible. This results in an optimal square speed

profile that has a discontinuous slope at the point where the control switches from

maximal acceleration to maximal deceleration. For this reason, we have to consider

a wider class of continuous functions for representing the square speed profile, and

reinterpret constraints (2.17) accordingly.

We allow the class of functions ℎ to be the set of all continuous functions on

[0, 𝑆𝑒𝑛𝑑]. The key change we make is turning to a special kind of derivative - the Dini

derivative, as we recall next.

Definition 1. [33] For a continuous function ℎ : [𝑎, 𝑏] → R, we define functions

31

𝐷+ℎ, 𝐷−ℎ : [𝑎, 𝑏)→ R ∪ {±∞} given by

𝐷+ℎ(𝑠) = lim sup
𝑠′↓𝑠

ℎ(𝑠′)− ℎ(𝑠)
𝑠′ − 𝑠 , 𝐷−ℎ(𝑠) = lim inf

𝑠′↓𝑠

ℎ(𝑠′)− ℎ(𝑠)
𝑠′ − 𝑠 ,

for all 𝑠 ∈ [𝑎, 𝑏). Additionally, ℎ is called Dini differentiable if both 𝐷+ℎ and 𝐷−ℎ

take on values strictly in R.

Dini derivatives are defined for all continuous functions, which are a strict superset

of the class of differentiable functions. In particular, a differentiable function is also

Dini-differentiable but not necessarily vice versa. Mathematically, the distinction

comes from loosening a limit in favour of a supremal and infimal limit. Clearly,

𝐷+ℎ(𝑠) ≥ 𝐷−ℎ(𝑠) for all 𝑠 ∈ [𝑎, 𝑏), and ℎ is right differentiable at 𝑠 if and only if

𝐷+ℎ(𝑠) = 𝐷−ℎ(𝑠) ∈ R, in which case its right derivative equals 𝐷+ℎ(𝑠). Focusing

on the right-hand limit is also intuitive from a control-theoretic perspective. Indeed,

viewing the square speed profile as a variable to be controlled along the extent of the

path, with distance playing the role of time, and derivative the role of the virtual

control, the one sided limit allows the control to vary independently of its trajectory

of values in its infinitesimal past.

Nevertheless, the Dini differentiation operator shares many characeristics of its

smooth counterpart. For every pair of Dini differentiable functions ℎ1 and ℎ2, non-

negative 𝜃 ∈ R, and right differentiable function 𝑓 :

1. 𝐷+(ℎ1 + ℎ2) ≤ 𝐷+ℎ1 +𝐷+ℎ2

2. 𝐷−(ℎ1 + ℎ2) ≥ 𝐷−ℎ1 +𝐷−ℎ2

3. 𝐷±(𝜃ℎ1) = 𝜃 𝐷±ℎ1

4. 𝐷+(−ℎ1) = −𝐷−ℎ1

5. 𝐷±(ℎ+ 𝑓) = 𝐷±ℎ+ 𝑓 ′.

The first and third property above directly follow from subadditivity and positive

homogeneity of supremal limits, whereas the fifth property effectively says that there

32

is no distinction between the action of the actual and Dini differentiation operator on

(right) differentiable functions.

One of the fundamental theorems of real analysis is Cauchy’s Mean Value Theo-

rem, which relates the infinitesimal rate of change of a differentiable function to its

variation over a longer interval of time. The following theorem may be viewed as a

generalization of the former, being one of the key results of non-smooth analysis we

shall heavily rely on in the remainder of the chapter.

Theorem 1. [33] Let ℎ : [𝑎, 𝑏] → R be a continuous function. The following are

equivalent:

1. ℎ is monotonically decreasing (increasing) on [𝑎, 𝑏]

2. 𝐷−ℎ(𝑠) ∈ [−∞, 0] (𝐷−ℎ(𝑠) ∈ [0,∞]) for all 𝑠 ∈ [𝑎, 𝑏)

3. 𝐷+ℎ(𝑠) ∈ [−∞, 0] (𝐷+ℎ(𝑠) ∈ [0,∞]) for all 𝑠 ∈ [𝑎, 𝑏).

We now provide an illustrative application of the latter claim we shall later need.

To begin with, let us recall

Definition 2. A function ℎ : [𝑎, 𝑏]→ R is said to be 𝜆-Lipschitz if

|ℎ(𝑠2)− ℎ(𝑠1)| ≤ 𝜆|𝑠2 − 𝑠1| ∀𝑠1, 𝑠2 ∈ [𝑎, 𝑏]. (2.18)

Example 1. Let ℎ : [𝑎, 𝑏]→ R be a continuous function. We then have

ℎ is 𝜆-Lipschitz ⇔ −𝜆 ≤ 𝐷−ℎ(𝑠) ≤ 𝐷+ℎ(𝑠) ≤ 𝜆 ∀𝑠 ∈ [𝑎, 𝑏]. (2.19)

Proof. Consider an arbitrary pair of numbers 𝑠1 < 𝑠2 ∈ [𝑎, 𝑏], and define the function

𝑔 : 𝑠 ↦→ ℎ(𝑠)− ℎ(𝑠1)− 𝜆(𝑠− 𝑎) ∀𝑠 ∈ [𝑎, 𝑏].

By Property 5, we have 𝐷+𝑔(𝑠) = 𝐷+ℎ(𝑠)−𝜆 ≤ 0. As a result, by Theorem 1, 𝑔 is a

decreasing function, which implies ℎ(𝑠2) ≤ ℎ(𝑠1)+𝜆(𝑠2−𝑠1). Similarly, by redefining

𝑔 : 𝑠 ↦→ ℎ(𝑠) − ℎ(𝑠1) + 𝜆(𝑠 − 𝑎), we conclude ℎ(𝑠2) ≥ ℎ(𝑠1) − 𝜆(𝑠2 − 𝑠1). Since the

33

pair (𝑠1, 𝑠2) was arbitrary, the claim follows. As an aside, by virtue of Theorem 1,

the statement would be in place without explicit bounds on both 𝐷+ and 𝐷−.

2.2.3 Putting the Ingredients Together

Assembling the dynamic constraints within the analytical framework in the previous

section, our problem becomes 𝑃 (𝐵𝑢, 𝐵𝑙, 𝑓
+, 𝑓−):

minimize
ℎ:[𝑎,𝑏]→[0,∞)

∫︁ 𝑏

𝑎

𝑑𝑠√︀
ℎ(𝑠)

subject to 𝐷+ℎ(𝑠) ≤ 𝑓+(𝑠, ℎ(𝑠)), 𝑠 ∈ [𝑎, 𝑏),

𝐷−ℎ(𝑠) ≥ 𝑓−(𝑠, ℎ(𝑠)), 𝑠 ∈ [𝑎, 𝑏),

𝐵𝑙(𝑠) ≤ ℎ(𝑠) ≤ 𝐵𝑢(𝑠), 𝑠 ∈ [𝑎, 𝑏].

(2.20)

2.3 Algorithm

We now turn to an algorithm for numerically solving Problem (2.20), which in its

current form is an infinite dimensional optimization problem. To find, represent,

and ultimately use its solution on a digital computer, we seek a finite dimensional

approximation of the optimal profile in terms of values it attains at a discrete mesh

of points along the interval [0, 𝑆𝑒𝑛𝑑].

A discretization 𝐷 = 𝐷([𝑎, 𝑏], (𝑠𝑖)
𝑛
𝑖=0) of interval [𝑎, 𝑏] is an increasing sequence

of points (𝑠𝑖)
𝑛
𝑖=0 satisfying 𝑎 = 𝑠0 < ... < 𝑠𝑛 = 𝑏. We denote its cardinality by

|𝐷| = 𝑛 + 1, and its resolution by ∆(𝐷) = max1≤𝑖≤𝑛 |𝑠𝑖 − 𝑠𝑖−1|. Thus, given a

discretization 𝐷 and problem 𝑃 (𝐵𝑢, 𝐵𝑙, 𝑓
+, 𝑓−), a numerical procedure aims to find

approximations (ℎ̂𝑖)𝑛𝑖=0 to the optimal solution ℎ = ℎ(𝑃) at points (𝑠𝑖)𝑛𝑖=0. Its error is

defined as 𝜌((ℎ̂𝑖)𝑛𝑖=0, 𝑃,𝐷) = max0≤𝑖≤𝑛 |ℎ̂𝑖 − ℎ(𝑠𝑖)|, and it is said to be asymptotically

optimal if 𝜌 → 0 as ∆(𝐷) → 0. Below we present the algorithm in [60] that was

designed to produced time optimal trajectories for robotic manipulators and legged

robots.

The algorithm operates in a pair of passes along the discretization points in 𝐷.

First, for every discretization point, the backward pass recovers the highest square

34

Algorithm 1: Backward-Forward Algorithm
Data: 𝐷 = (𝑠𝑖)

𝑛
𝑖=0, (𝐵𝑙(𝑠𝑖))

𝑛
𝑖=1, (𝐵𝑢(𝑠𝑖))

𝑛
𝑖=1, 𝑓+, 𝑓−

Result: (ℎ̂𝑖)
𝑛
𝑖=0

ℎ
(𝑏)
𝑛 = 𝐵𝑢(𝑠𝑛)

for 𝑖 = 𝑛− 1 to 0 do
ℎ
(𝑏)
𝑖 ← max{ℎ | ℎ ≤ 𝐵𝑢(𝑠𝑖), ℎ+ 𝑓−(𝑠𝑖, ℎ)(𝑠𝑖+1 − 𝑠𝑖) ≤ ℎ

(𝑏)
𝑖+1}

if ℎ(𝑏)𝑖 = −∞ then
return null

end
end
ℎ
(𝑓)
0 = ℎ

(𝑏)
0

for 𝑖 = 1 to 𝑛 do
ℎ
(𝑓)
𝑖 ← max{ℎ | ℎ ≤ ℎ

(𝑏)
𝑖 , ℎ ≤ ℎ

(𝑓)
𝑖−1 + 𝑓+(𝑠𝑖−1, ℎ

(𝑓)
𝑖−1)(𝑠𝑖 − 𝑠𝑖−1)}

if ℎ(𝑓)𝑖 = −∞ then
return null

end
end
return (ℎ̂𝑖)

𝑛
𝑖=0 = (ℎ

(𝑓)
𝑖)𝑛𝑖=0

speed which extends to a feasible profile for the remaining leg of the path. The forward

pass, effectively mirroring the former, obtains the highest square speeds which can

be reached by a feasible profile from the start of the path. Key to the computational

efficiency of the algorithm is its incremental way of using the value of the optimal

profile calculated for one discretization point, to calculate its corresponding value at

a subsequent, adjacent discretization point.

The memory complexity of the algorithm is 𝑂(|𝐷|). Its running time is also

ℎ

𝑆𝑒𝑛𝑑0

𝐵

𝑠𝑛−1𝑠𝑖+1𝑠𝑖𝑠1 · · ·

ℎ
(𝑏)
𝑛

ℎ
(𝑏)
𝑛−1

ℎ
(𝑏)
𝑖+1

ℎ
(𝑏)
𝑖

ℎ
(𝑏)
1

ℎ
(𝑏)
0

ℎ
(𝑓)
0

ℎ
(𝑓)
1 ℎ

(𝑓)
𝑖

ℎ
(𝑓)
𝑖+1 ℎ

(𝑓)
𝑛−1

ℎ
(𝑓)
𝑛

Figure 2-1: Backward-Forward Algorithm

35

𝑂(|𝐷|), where the asymptotic 𝑂-notation hides a multiplicative factor equal to the

amount of time necessary to solve the convex optimization problem at each iteration

of the two passes. In general, this depends on the functional form of 𝑓±. Often 𝑓+

(𝑓−) is specified as a minimum (maximum) of 𝑚 concave (convex) functions, in which

case the latter factor is 𝑂(𝑚).

The main advantage of the algorithm over other convex optimization-based ap-

proaches is its computational efficiency. However, it was initially only proved to

converge to the optimal solution when 𝑓± are linear in their second variables. This

is not the case for various planning constraints we might wish to impose. The key

contribution of this chapter is that optimality continues to hold when 𝑓+ and 𝑓− are

merely required to be concave and convex in their second arguments, respectively.

2.4 Analysis

2.4.1 Analytical Characterization of Optimum

The main result of this section is presented in Theorem 3. We prove that the function

defined as the pointwise supremum of all functions that are feasible for problem 𝑃

is also feasible and therefore optimal (Theorem 3(a)). We use this characterization

to show continuity of the optimum with respect to a natural parameter quantifying

the degree of relaxation of constraints of 𝑃 (Theorem 3(b)). Finally, we prove that

the feasible set of 𝑃 is convex (Theorem 3(c)). To begin with, we note a useful result

from Lipschitz analysis, whose proof we include for the sake of completeness.

Theorem 2. [28] Let {ℎ𝛼}𝛼∈𝐴 be an arbitrary non-empty family of uniformly bounded

𝜆-Lipschitz functions defined on interval [𝑎, 𝑏]. Functions ℎ, ℎ : [𝑎, 𝑏]→ R, defined by

ℎ(𝑠) = sup
𝛼∈𝐴

ℎ𝛼(𝑠), ℎ(𝑠) = inf
𝛼∈𝐴

ℎ𝛼(𝑠),

for all 𝑠 ∈ [𝑎, 𝑏], are well-defined and 𝜆-Lipschitz.

36

Proof. Consider an arbitrary pair of numbers 𝑠1, 𝑠2 ∈ [𝑎, 𝑏]. By definition, we have

ℎ𝛼(𝑠2)− ℎ𝛼(𝑠1) ≤ 𝜆|𝑠2 − 𝑠1| ∀𝛼 ∈ 𝐴

⇒ ℎ𝛼(𝑠2) ≤ ℎ𝛼(𝑠1) + 𝜆|𝑠2 − 𝑠1| ∀𝛼 ∈ 𝐴

⇒ ℎ𝛼(𝑠2) ≤ sup
𝛼′∈𝐴

ℎ𝛼′(𝑠1) + 𝜆|𝑠2 − 𝑠1| ∀𝛼 ∈ 𝐴

⇒ sup
𝛼′∈𝐴

ℎ𝛼′(𝑠2) ≤ sup
𝛼′∈𝐴

ℎ𝛼′(𝑠1) + 𝜆|𝑠2 − 𝑠1| ∀𝛼 ∈ 𝐴

⇒ ℎ(𝑠2)− ℎ(𝑠1) ≤ 𝜆|𝑠2 − 𝑠1|.

(2.21)

By interchanging 𝑠1 and 𝑠2 above, we also obtain ℎ(𝑠2)− ℎ(𝑠1) ≤ 𝜆|𝑠2 − 𝑠1| and the

claim for ℎ follows. By an analogous argument, one may derive the same conclusion

for ℎ.

Theorem 3. Let 𝐵𝑙, 𝐵𝑢 : [𝑎, 𝑏] → R be a pair of continuous functions with 𝐵𝑢(𝑠) ≥
𝐵𝑙(𝑠) for all 𝑠 ∈ [𝑎, 𝑏]. Define region 𝐹 := {(𝑠, ℎ) | 𝑠 ∈ [𝑎, 𝑏], 𝐵𝑙(𝑠) ≤ ℎ ≤ 𝐵𝑢(𝑠)}.
Suppose 𝑓+, 𝑓− : 𝐹 → R are a pair of continuous functions with 𝑓+(𝑠, ℎ) ≥ 𝑓−(𝑠, ℎ)

for all (𝑠, ℎ) ∈ 𝐹 . In particular, |𝑓±| ≤ 𝐵 for some 𝐵 > 0. For a real number 𝜉 ≥ 0,

a function ℎ : [𝑎, 𝑏]→ R is called 𝜉-feasible if it satisfies the following conditions:

1. ℎ is continuous

2. 𝐵𝑙(𝑠) ≤ ℎ(𝑠) ≤ 𝐵𝑢(𝑠) for all 𝑠 ∈ [𝑎, 𝑏]

3. 𝐷−ℎ(𝑠) ≥ 𝑓−(𝑠, ℎ(𝑠))− 𝜉 for all 𝑠 ∈ [𝑎, 𝑏]

4. 𝐷+ℎ(𝑠) ≤ 𝑓+(𝑠, ℎ(𝑠)) + 𝜉 for all 𝑠 ∈ [𝑎, 𝑏].

Let 𝐴𝜉 denote the set of 𝜉-feasible functions.

a) Assume ∅ ≠ {ℎ𝛼}𝛼∈𝐶 ⊆ 𝐴𝜉 for some (possibly uncountable) index set 𝐶. Then,

ℎ, ℎ : [𝑎, 𝑏]→ R, defined by

ℎ(𝑠) = sup
𝛼∈𝐶

ℎ𝛼(𝑠), ℎ(𝑠) = inf
𝛼∈𝐶

ℎ𝛼(𝑠),

for all 𝑠 ∈ [𝑎, 𝑏], are 𝜉-feasible functions.

37

b) Assume 𝐴0 ̸= ∅. Define ℎ𝜉 = supℎ∈𝐴𝜉 ℎ, with the understanding that suprema

of functions is interpreted pointwise. Then,

⃒⃒⃒⃒
ℎ𝜉 − ℎ0

⃒⃒⃒⃒
∞ → 0 as 𝜉 → 0.

c) Assume functions 𝑓+ and 𝑓− are concave and convex in their second arguments,

respectively. For every 𝜉 ≥ 0, for every pair of 𝜉-feasible functions ℎ1 and ℎ2,

and for every 𝜃 ∈ [0, 1], the function ℎ𝜃 = 𝜃ℎ1 + (1− 𝜃)ℎ2 is also 𝜉-feasible.

Proof. (a) We only give detailed proof of the claim for 𝜉 = 0 and ℎ. The corresponding

result for ℎ when 𝜉 > 0 can be recovered from the result for 𝜉 = 0 by redefining

𝑓± → 𝑓± ± 𝜉. Similarly, the result for ℎ can be recovered from the result for ℎ by

redefining 𝐵𝑙 → −𝐵𝑢, 𝐵𝑢 → −𝐵𝑙, 𝑓± → −𝑓∓ and using Properties (1)-(5) of Dini

derivatives.

Since functions 𝐵𝑢 and 𝐵𝑙 are continuous on [𝑎, 𝑏], they are bounded. As 𝐶 ̸= ∅,
ℎ is well defined. For arbitrary 𝑠 ∈ [𝑎, 𝑏], taking the supremum over 𝛼 ∈ 𝐶 of the

inequality 𝐵𝑙(𝑠) ≤ ℎ𝛼(𝑠) ≤ 𝐵𝑢(𝑠), we verify ℎ satisfies Condition (2). In particular,

𝑓+ and 𝑓− are defined at all points
(︀
𝑠, ℎ(𝑠)

)︀
for 𝑠 ∈ [𝑎, 𝑏].

By using the (⇐) component of the equivalence from Example 1, the fact that

|𝑓±| ≤ 𝐵 implies ℎ𝛼 is 𝐵-Lipschitz for all 𝛼 ∈ 𝐶. By Theorem 2, ℎ is also 𝐵-Lipschitz;

in particular ℎ is continuous, verifying Condition (1).

s0 − δs s0 s0 + δss1

h(s0)− δh

h(s1)

h(s0)

h(s0) + δh

slope = f− (
s0, h(s0)

)

slope = f− (
s0, h(s0)

)
− ε

2

slope = f− (
s0, h(s0)

)
− ε

hα(s1)

hα(s0)δ

Figure 2-2: Illustration of the Proof of Condition (3) of Theorem 3

38

Next, we show ℎ satisfies Condition (3). Assume, for a contradiction,

𝐷−ℎ(𝑠0) < 𝑓−(𝑠0, ℎ(𝑠0)) (2.22)

for some 𝑠0 ∈ [𝑎, 𝑏). Hence, there exists 𝜖 > 0 such that 𝐷−ℎ(𝑠0) < 𝑓− (︀𝑠0, ℎ(𝑠0))︀− 𝜖.
Continuity of 𝑓− implies there exist 𝛿𝑠, 𝛿ℎ > 0 such that

𝑓− (𝑠, ℎ) ≥ 𝑓− (︀𝑠0, ℎ(𝑠0))︀− 𝜖

2
(2.23)

for all (𝑠, ℎ) ∈ 𝐹 ∩ [𝑠0 − 𝛿𝑠, 𝑠0 + 𝛿𝑠]×
[︀
ℎ(𝑠0)− 𝛿ℎ, ℎ(𝑠0) + 𝛿ℎ

]︀
. Keeping 𝛿ℎ intact while

shrinking 𝛿𝑠 if necessary, we may assume

𝛿ℎ > (𝐵 + 𝜖)𝛿𝑠. (2.24)

The definition of 𝐷− implies there exists a strictly decreasing sequence (𝑠𝑛)𝑛≥1 of real

numbers such that

𝑠𝑛 ↓ 𝑠0, and
ℎ(𝑠𝑛)− ℎ(𝑠0)

𝑠𝑛 − 𝑠0
≤ 𝑓− (︀𝑠0, ℎ(𝑠0))︀− 𝜖 ∀𝑛 ≥ 1. (2.25)

In particular, we may assume 𝑠1 ∈ (𝑠0, 𝑠0 + 𝛿𝑠) satisfies

ℎ(𝑠1) ≤ ℎ(𝑠0) +
(︀
𝑓− (︀𝑠0, ℎ(𝑠0))︀− 𝜖)︀ (𝑠1 − 𝑠0) . (2.26)

Define

𝛿 = min
(︁ 𝜖
2
(𝑠1 − 𝑠0), 𝛿ℎ −𝐵𝛿𝑠

)︁
, (2.27)

where we note 𝛿 > 0 by virtue of Equation (2.24). The definition of ℎ implies there

exists 𝛼 ∈ 𝐶 such that

ℎ(𝑠0)− 𝛿 < ℎ𝛼(𝑠0) ≤ ℎ(𝑠0). (2.28)

This will ultimately let us apply the non-smooth Mean Value Theorem, namely The-

orem 1 to the function ℎ𝛼 on the interval [𝑠0, 𝑠1]. From here, a contradiction will

easily follow.

39

Since ℎ𝛼 is 𝐵-Lipschitz, it follows that for all 𝑠 ∈ [𝑠0, 𝑠1] we have

⃒⃒
ℎ𝛼(𝑠)− ℎ(𝑠0)

⃒⃒
=
⃒⃒
ℎ𝛼(𝑠)− ℎ𝛼(𝑠0) + ℎ𝛼(𝑠0)− ℎ(𝑠0)

⃒⃒
≤ |ℎ𝛼(𝑠)− ℎ𝛼(𝑠0)|+

⃒⃒
ℎ𝛼(𝑠0)− ℎ(𝑠0)

⃒⃒
≤ 𝐵(𝑠− 𝑠0) + 𝛿

≤ 𝐵𝛿𝑠 + 𝛿ℎ −𝐵𝛿𝑠 = 𝛿ℎ.

(2.29)

Hence, for all 𝑠 ∈ [𝑠0, 𝑠1]

(𝑠, ℎ𝛼(𝑠)) ∈ 𝐹 ∩ [𝑠0 − 𝛿𝑠, 𝑠0 + 𝛿𝑠]×
[︀
ℎ(𝑠0)− 𝛿ℎ, ℎ(𝑠0) + 𝛿ℎ

]︀
,

implying

𝐷−ℎ𝛼(𝑠) = 𝑓− (𝑠, ℎ𝛼(𝑠)) ≥ 𝑓− (︀𝑠0, ℎ(𝑠0))︀− 𝜖

2
. (2.30)

By another application of Theorem 1,

ℎ𝛼(𝑠1) ≥ ℎ𝛼(𝑠0) +
(︁
𝑓− (︀𝑠0, ℎ(𝑠0))︀− 𝜖

2

)︁
(𝑠1 − 𝑠0)

> ℎ(𝑠0)− 𝛿 +
(︁
𝑓−(𝑠0, ℎ(𝑠0))−

𝜖

2

)︁
(𝑠1 − 𝑠0)

≥ ℎ(𝑠0)− (𝑠1 − 𝑠0)
𝜖

2
+
(︁
𝑓−(𝑠0, ℎ(𝑠0))−

𝜖

2

)︁
(𝑠1 − 𝑠0)

≥ ℎ(𝑠1),

(2.31)

where the last inequality follows from Equation (2.26). However, Equation (2.31)

violates the definition of ℎ at 𝑠1. This gives the desired contradiction, and shows ℎ

satisfies Condition (3). The proof that ℎ satisfies Condition (4) is omitted since it

can be derived analogously.

(b) Consider arbitrary real numbers 0 ≤ 𝜉1 ≤ 𝜉2. According to part (a) of Theorem

3, ℎ𝜉1 ∈ 𝐴𝜉1 ⊆ 𝐴𝜉2 . This implies ℎ𝜉1 ≤ ℎ𝜉2 . Hence, for every 𝑠 ∈ [𝑎, 𝑏], ℎ𝜉(𝑠) is

monotonically increasing in 𝜉 ≥ 0 and bounded below by ℎ0(𝑠). As a result, function

ℎ̃ : [𝑎, 𝑏]→ R, given by ℎ̃(𝑠) = inf𝜉>0 ℎ𝜉(𝑠) for all 𝑠 ∈ [𝑎, 𝑏], is well defined and satisfies

ℎ̃ ≥ ℎ0.

On the other hand, monotonicity of ℎ𝜉(𝑠) implies ℎ̃(𝑠) = inf0<𝜈≤𝜉 ℎ𝜈(𝑠) for every

40

𝜉 > 0. Since ℎ𝜈 ∈ 𝐴𝜈 ⊆ 𝐴𝜉 for every 𝜈 ≤ 𝜉, another application of part (a) of

Theorem 3 to the non-empty set of functions
(︀
ℎ𝜈
)︀
0<𝜈≤𝜉 ⊆ 𝐴𝜉 yields ℎ̃ ∈ 𝐴𝜉. Since

𝜉 > 0 was arbitrary, we have ℎ̃ ∈ ∩𝜉>0𝐴𝜉 = 𝐴0. By definition of ℎ0, we thus have

ℎ0 ≥ ℎ̃.

Combining previous observations, we get ℎ̃ = ℎ0. Thus, ℎ𝜉(𝑠) ↓ ℎ0(𝑠) as 𝜉 ↓ 0

for all 𝑠 ∈ [𝑎, 𝑏]. Since functions (ℎ𝜉)𝜉≥0 are continuous on interval [𝑎, 𝑏], uniform

convergence follows.

(c) Consider any 𝜉 ≥ 0 and 𝜃 ∈ [0, 1]. Function ℎ𝜃 clearly satisfies Conditions (1)

and (2) of Theorem 3, so we turn to deriving Condition (3). As in part (a), the proof

of Condition (4) is omitted as it can be derived analogously. We have:

𝐷−ℎ𝜃(𝑠) = 𝐷−(𝜃ℎ1 + (1− 𝜃)ℎ2)(𝑠)

≥ 𝜃𝐷−ℎ1(𝑠) + (1− 𝜃)𝐷−ℎ2(𝑠)

≥ 𝜃(𝑓−(𝑠, ℎ1(𝑠))− 𝜉) + (1− 𝜃)(𝑓−(𝑠, ℎ2(𝑠))− 𝜉)

≥ 𝑓−(𝑠, 𝜃ℎ1(𝑠) + (1− 𝜃)ℎ2(𝑠))− 𝜉

= 𝑓−(𝑠, ℎ𝜃(𝑠))− 𝜉.

(2.32)

The first inequality above follows from Properties (2) and (3) of Dini derivatives,

whereas the second inequality follows from 𝜉-feasibility of ℎ1 and ℎ2. Finally, the last

inequality follows from convexity of 𝑓− in its second argument.

Two remarks are in order. The first pertains to continuity of problem data. The

theorem holds without any continuity assumptions on 𝐵𝑙 and 𝐵𝑢 provided functions

𝑓± can be bounded uniformly on 𝐹 . Furthermore, closer examination of the proof of

part (a) shows that 𝑓± need only be assumed continuous from the right in that for

all 𝜖 > 0, and for all (𝑠0, ℎ0) ∈ 𝐹 , there exist 𝛿𝑠, 𝛿ℎ > 0 such that

(𝑠, ℎ) ∈ [𝑠0, 𝑠0 + 𝛿𝑠)× (ℎ0 − 𝛿ℎ, ℎ0 + 𝛿ℎ)⇒ |𝑓±(𝑠, ℎ)− 𝑓±(𝑠0, ℎ0)| < 𝜖. (2.33)

The second is the role of convexity in the existence and nature of optimal solutions

to the problem considered. In particular, it is worth emphasizing that the results of

41

part (a) and (b) place no assumptions on convexity properties of 𝑓± in their second

argument. Furthermore, the region 𝐹 need not be delimited by only two functions

- it can also have arbitrary disallowed regions without altering the conclusion of the

theorem. However, it is critical that the Dini derivative of ℎ be allowed values in a

whole interval. Suppose, for the sake of argument, it was allowed to take only two

values, +𝐵 and −𝐵. In such a scenario, taking 𝐵𝑙 ≡ 0 and 𝐵𝑢 <
𝑏−𝑎
2𝐵

, it is easy to

see that an optimal solution in the space of continuous profiles would not exist.

2.4.2 Asymptotic Optimality

The main result of this section is Theorem 5 which proves asymptotic optimality of

Algorithm 1 for all feasible problems 𝑃 amenable to convex optimization approaches.

First, in Theorem 4 we recall an important result, which:

a) characterizes a lower bound on the length of the interval on which a solution to

an ordinary differential equation is defined

b) proves that a continuous function can never exceed a differentiable function

whose derivative upper bounds the former’s Dini derivative.

Theorem 4. [35] In addition to the setup of Theorem 3, let:

1. 𝐵𝑢 and 𝐵𝑙 satisfy 𝐵𝑢 > 𝐵𝑙

2. for every pair of continuous functions 𝑈,𝐿 : [𝑎, 𝑏] → R such that 𝐵𝑙 < 𝐿 <

𝑈 < 𝐵𝑢, there exist 𝜆𝑠, 𝜆ℎ > 0 such that 𝑓+ and 𝑓− are 𝜆𝑠-Lipschitz and

𝜆ℎ-Lipschitz on {(𝑠, ℎ)|𝑠 ∈ [𝑎, 𝑏], 𝐿(𝑠) ≤ ℎ ≤ 𝑈(𝑠)} in their first and second

arguments respectively.

Consider arbitrary 𝑔 ∈ {𝑓+, 𝑓−}, 𝑠0 ∈ [𝑎, 𝑏), and ℎ0 such that 𝐿(𝑠0) < ℎ0 < 𝑈(𝑠0).

a) There exists 𝛿 > 0 such that the initial value problem

ℎ′(𝑠) = 𝑔(𝑠, ℎ(𝑠)) subject to ℎ(𝑠0) = ℎ0

42

admits a unique solution on interval [𝑠0, 𝑠0 + 𝛿]. Furthermore, we may choose

𝑠0 + 𝛿 = min (𝑏, inf{𝑠 ≥ 𝑠0|ℎ(𝑠) /∈ (𝐿(𝑠), 𝑈(𝑠))}) .

b) Every continuous function ℎ̃ : [𝑠0, 𝑠0 + 𝛿̃] → R, such that 𝐿(𝑠) < ℎ̃(𝑠) < 𝑈(𝑠)

and 𝐷+ℎ̃(𝑠) ≤ 𝑔(𝑠, ℎ̃(𝑠)) for all 𝑠 ∈ [𝑠0, 𝑠0 + 𝛿̃), satisfies

ℎ̃(𝑠) ≤ ℎ(𝑠)

for all 𝑠 ∈ [𝑠0, 𝑠0 +min(𝛿, 𝛿̃)].

Before turning to the main result of the section, we give a definition. For a prob-

lem 𝑃 (𝐵𝑢, 𝐵𝑙, 𝑓
+, 𝑓−) and discretization 𝐷([𝑎, 𝑏], (𝑠𝑖)

𝑛
𝑖=0), we call a sequence (ℎ𝑖)

𝑛
𝑖=0

admissible if:

𝐵𝑙(𝑠𝑖) ≤ ℎ𝑖 ≤ 𝐵𝑢(𝑠𝑖)

for all 0 ≤ 𝑖 ≤ 𝑛, and

𝑓−(𝑠𝑖, ℎ𝑖) ≤
ℎ𝑖+1 − ℎ𝑖
𝑠𝑖+1 − 𝑠𝑖

≤ 𝑓+(𝑠𝑖, ℎ𝑖)

for all 0 ≤ 𝑖 ≤ 𝑛 − 1. Additionally, we will denote by ℎ(𝑃) (ℎ(𝑃)) the pointwise

supremum (infimum) of all feasible functions for 𝑃 .

Theorem 5. Assume in addition to the setup of Theorem 4, problem 𝑃 (𝐵𝑢, 𝐵𝑙, 𝑓
+, 𝑓−)

is feasible and ℎ := ℎ(𝑃) > ℎ(𝑃) =: ℎ. For every 𝜖 > 0, there exists an 𝜂 > 0 such

that for every discretization 𝐷([𝑎, 𝑏], (𝑠𝑖)
𝑛
𝑖=0) with resolution ∆(𝐷) ≤ 𝜂, Algorithm 1

returns an admissible sequence (ℎ̂𝑖)
𝑛
𝑖=0 with 𝜌((ℎ̂𝑖)𝑛𝑖=0, 𝑃,𝐷) < 𝜖.

Before embarking on the rigorous proof of the stated theorem, we provide high-

level intuition of our line of approach. The proof is split across two steps. The

first involves showing that Algorithm 1 never produces a solution which drops far

below the optimum. Roughly, this is accomplished by showing that sufficiently fine

discretizations allow squeezing an admissible sequence of profile values between any

43

two feasible solutions, provided one dominates the other (see Figure 2-3). The second

involves showing that by considering a small downward translation of the fictive

profile, obtained by piecewise linear interpolation of computed profile values, results

in a near-feasible profile for the original problem (see Figure 2-4). Having the latter

two figures at hand might streamline picturing the formal proof to follow.

ℎ

0 𝑆𝑒𝑛𝑑

𝐵𝑢

ℎ

ℎ

ℎ− 𝜖

𝑠𝑖−1 𝑠𝑖 𝑠𝑖+1 𝑠𝑖+2.𝑠𝑘−1 𝑠𝑘 𝑠𝑘+1 𝑠𝑘+2

𝑦𝑘+2
𝑦𝑘+1

𝑦𝑘
𝑦𝑘−1

𝑦𝑖+2

𝑦𝑖+1
𝑦𝑖

𝑦𝑖−1

𝑧𝑘+2
𝑧𝑘+1𝑧𝑘

𝑧𝑘−1

𝑧𝑖+2

𝑧𝑖+1

𝑧𝑖
𝑧𝑖−1

ℎ
(𝑏)
𝑘+2

ℎ
(𝑏)
𝑘+1

ℎ
(𝑏)
𝑘

ℎ
(𝑏)
𝑘−1

ℎ
(𝑏)
𝑖+2

ℎ
(𝑏)
𝑖+1

ℎ
(𝑏)
𝑖

ℎ
(𝑏)
𝑖−1

ℎ
(𝑓)
𝑖−1

ℎ
(𝑓)
𝑖

ℎ
(𝑓)
𝑖+1

Figure 2-3: Overview of Step One of the Proof of Asymptotic Optimality of the
Backward-Forward Algorithm

ℎ

0 𝑆𝑒𝑛𝑑

𝐵𝑢

ℎ

ℎ𝜉 ≤ ℎ + 𝜖

𝑠𝑖 𝑠𝑖+1 𝑠𝑘· · · · · · · · ·

ℎ̂0

ℎ̂𝑖

ℎ̂𝑖+1ℎ̂𝑖+1

ℎ̂𝑘

Figure 2-4: Overview of Step Two of the Proof of Asympotic Optimality of the
Backward-Forward Algorithm

44

Proof. Since ℎ < ℎ are continuous functions defined over the compact interval [𝑎, 𝑏],

the function ℎ− ℎ achieves its maximum 𝑀 and minimum 𝑚 satisfying

0 < 𝑚 < 𝑀. (2.34)

Fix an arbitrary 𝜖 > 0 where, without loss of generality, 𝜖 < 𝑚.

The proof will consist of two parts. The first (second) part will show there exists

𝜂1 > 0 (𝜂2 > 0) such that for every discretization 𝐷([𝑎, 𝑏], (𝑠𝑖)
𝑛
𝑖=0) with resolution at

most 𝜂1 (𝜂2), Algorithm 1 produces an admissible sequence (ℎ̂𝑖)
𝑛
𝑖=0 satisfying

ℎ̂𝑖 ≥ ℎ(𝑠𝑖)− 𝜖 (ℎ̂𝑖 ≤ ℎ(𝑠𝑖) + 𝜖) ∀0 ≤ 𝑖 ≤ 𝑛. (2.35)

Setting 𝜂 = min(𝜂1, 𝜂2) will yield the proof of the theorem.

For proving the first part, consider feasible functions ℎ𝑙 and ℎ𝑢 such that

ℎ− 𝜖 < ℎ𝑙 < ℎ𝑢 < ℎ. (2.36)

To see such functions exist, according to part (c) of Theorem 3, we may restrict

attention to ℎ𝑢 (ℎ𝑙) of the form

ℎ𝑢 = (1− 𝜃𝑢)ℎ+ 𝜃𝑢ℎ
(︀
ℎ𝑙 = (1− 𝜃𝑙)ℎ+ 𝜃𝑙ℎ

)︀
, (2.37)

where 𝜃𝑙, 𝜃𝑢 ∈ [0, 1]. The inequality ℎ𝑙 < ℎ𝑢 < ℎ holds whenever 𝜃𝑙 < 𝜃𝑢 ∈ (0, 1),

while

ℎ− 𝜖 < ℎ𝑙 ⇔ (1− 𝜃𝑙)(ℎ− ℎ) < 𝜖 ⇔ 𝜃𝑙 > 1− 𝜖

𝑀
. (2.38)

Thus, setting 𝜃𝑙 = 1− 𝜖/2𝑀 and 𝜃𝑢 = 1− 𝜖/4𝑀 , relation (2.36) holds.

Define 𝛿1 = inf𝑠∈[𝑎,𝑏](ℎ−ℎ𝑢), 𝛿2 = inf𝑠∈[𝑎,𝑏](ℎ𝑢−ℎ𝑙), and 𝛿3 = inf𝑠∈[𝑎,𝑏](ℎ𝑙−(ℎ−𝜖)).
Continuity of feasible profiles and compactness of [𝑎, 𝑏] imply 𝛿1, 𝛿2, 𝛿3 > 0. Set

𝛿 = min
{︀
𝛿1
3
, 𝛿2

3
, 𝛿3

3

}︀
. By assumption, there exist 𝜆𝑠, 𝜆ℎ > 0 such that for all

(𝑠1, ℎ1), (𝑠2, ℎ2) ∈ 𝐺 := {(𝑠, ℎ)|𝑠 ∈ [𝑎, 𝑏], ℎ𝑙(𝑠)− 𝛿 ≤ ℎ ≤ ℎ𝑢(𝑠) + 𝛿}, (2.39)

45

we have ⃒⃒
𝑓±(𝑠1, ℎ1)− 𝑓±(𝑠2, ℎ2)

⃒⃒
≤ 𝜆𝑠|𝑠2 − 𝑠1|+ 𝜆ℎ|ℎ2 − ℎ1|. (2.40)

Recalling that |𝑓±| ≤ 𝐵, and assuming without loss of generality 𝐵 > 1, we may

choose

𝜂1 = 𝛿𝑒−𝜆ℎ𝐵(𝑏−𝑎) min

{︂
1

2𝐵
,

𝐵𝜆ℎ
𝜆𝑠 +𝐵𝜆ℎ

}︂
. (2.41)

We claim that for any discretization 𝐷([𝑎, 𝑏], (𝑠𝑖)
𝑛
𝑖=0) with resolution ∆(𝐷) ≤ 𝜂1,

Algorithm 1 produces an admissible sequence (ℎ̂𝑖)
𝑛
𝑖=0 satisfying ℎ̂𝑖 ≥ ℎ(𝑠𝑖)− 𝜖 for all

0 ≤ 𝑖 ≤ 𝑛. The proof of the claim will proceed in two stages. The first will show

the sequence (ℎ
(𝑏)
𝑖)𝑛𝑖=0 generated by the backward pass satisfies ℎ(𝑏)𝑖 ≥ ℎ𝑢(𝑠𝑖) − 𝛿 for

all 0 ≤ 𝑖 ≤ 𝑛. The second will show the sequence (ℎ
(𝑓)
𝑖)𝑛𝑖=0 generated by the forward

pass satisfies ℎ(𝑓)𝑖 ≥ ℎ𝑙(𝑠𝑖)− 𝛿 ≥ ℎ(𝑠𝑖)− 𝜖 for all 0 ≤ 𝑖 ≤ 𝑛.

sk sk+1 si si+1

hu(sk)

yk
hu(sk+1)

yk+1

h+(sk+1)

h−(sk+1)

zk

zk+1

h
(b)
i

yi

h
(f)
i

zi

h
(b)
i+1

yi+1

zi+1

τ

h̃i+1

hu + δ

hu − δ

hu

hl + δ

hl

hl − δ

.

yk + f+(sk, yk)∆s

yk + f−(sk, yk)∆s

Figure 2-5: Pictorial Summary of Inductive Step of Lemma 1

Lemma 1. There exist admissible sequences (𝑦𝑘)
𝑛
𝑘=0 and (𝑧𝑘)

𝑛
𝑘=0 such that for every

0 ≤ 𝑘 ≤ 𝑛, we have |𝑦𝑘 − ℎ𝑢(𝑠𝑘)| ≤ 𝛿 and |𝑧𝑘 − ℎ𝑙(𝑠𝑘)| ≤ 𝛿 (see Figure 2-5).

Proof. We only prove existence of (𝑦𝑘)𝑛𝑘=0 as that of (𝑧𝑘)𝑛𝑘=0 follows analogously. To

this end, define 𝑒 : [𝑎, 𝑏]→ R given by

𝑒(𝑠) = 𝛿𝑒−𝜆ℎ𝐵(𝑏−𝑎)
(︂
𝑒𝜆ℎ𝐵(𝑠−𝑎) − 1

2

)︂
(2.42)

for all 𝑠 ∈ [𝑎, 𝑏]. Clearly 0 < 𝑒 < 𝛿. We will inductively construct an admissible

46

sequence (𝑦𝑘)
𝑛
𝑘=0 which satisfies |𝑦𝑘 − ℎ𝑢(𝑠𝑘)| ≤ 𝑒(𝑠𝑘), thus proving the lemma.

Set 𝑦0 = ℎ𝑢(𝑠0). Assume we have defined an admissible sequence (𝑦𝑗)𝑗≤𝑘 satisfying

|𝑦𝑗 − ℎ𝑢(𝑠𝑗)| ≤ 𝑒(𝑠𝑗) for all 0 ≤ 𝑗 ≤ 𝑘 ≤ 𝑛 − 1. We now define 𝑦𝑘+1. Consider the

pair of initial value problems

ℎ′±(𝑠) = 𝑓±(𝑠, ℎ±(𝑠)) subject to ℎ±(𝑠𝑘) = ℎ𝑢(𝑠𝑘). (2.43)

First, we verify they have unique solutions on interval 𝑠 ∈ [𝑠𝑘, 𝑠𝑘+1]. In what follows,

we focus on ℎ+, as the observation for ℎ− will hold analogously. Part (a) of Theorem

4 implies that the corresponding IVP has a unique solution on [𝑠𝑘, 𝑠𝑘 + 𝛿𝑠] where

𝛿𝑠 > 0 is implicitly specified by

𝑠𝑘 + 𝛿𝑠 = 𝑚𝑖𝑛 (𝑏, inf{𝑠 ≥ 𝑠𝑘 | ℎ+(𝑠) /∈ (ℎ𝑙(𝑠)− 𝛿, ℎ𝑢(𝑠) + 𝛿)}) . (2.44)

It remains to show 𝑠𝑘+𝛿𝑠 ≥ 𝑠𝑘+1. Suppose, for a contradiction, this was not the case.

Then, let

𝑠̃ = inf{𝑠 ∈ [𝑠𝑘, 𝑠𝑘+1] | ℎ+(𝑠) /∈ (ℎ𝑙(𝑠)− 𝛿, ℎ𝑢(𝑠) + 𝛿)}. (2.45)

By our former assumption, 𝑠̃ ∈ (𝑠𝑘, 𝑠𝑘+1), and by continuity of ℎ+, ℎ𝑢, ℎ𝑙 we must

have ℎ+(𝑠̃) ∈ {ℎ𝑢(𝑠) + 𝛿, ℎ𝑙(𝑠)− 𝛿}, and therefore

|ℎ+(𝑠̃)− ℎ𝑢(𝑠̃)| ≥ 𝛿. (2.46)

However, by Cauchy’s Mean Value Theorem coupled with the fact |𝑓±| ≤ 𝐵, we have

|ℎ+(𝑠̃)− ℎ+(𝑠𝑘)| ≤ 𝐵|𝑠̃− 𝑠𝑘| and |ℎ𝑢(𝑠̃)− ℎ𝑢(𝑠𝑘)| ≤ 𝐵|𝑠̃− 𝑠𝑘| (2.47)

implying

|ℎ+(𝑠̃)− ℎ𝑢(𝑠̃)| ≤ 2𝐵|𝑠̃− 𝑠𝑘| < 2𝐵𝜂1 ≤ 𝛿, (2.48)

contradicting Equation (2.46). With existence and uniqueness of solutions to the IVPs

in place, part (b) of Theorem 4 implies ℎ−(𝑠) ≤ ℎ𝑢(𝑠) ≤ ℎ+(𝑠) for all 𝑠 ∈ [𝑠𝑘, 𝑠𝑘+1].

In particular, ℎ−(𝑠𝑘+1) ≤ ℎ𝑢(𝑠𝑘+1) ≤ ℎ+(𝑠𝑘+1). Define ∆𝑠 = 𝑠𝑘+1 − 𝑠𝑘. Lipschitz

47

continuity of 𝑓± and Equation (2.43) imply (see Figure 2-5)

⃒⃒
ℎ±(𝑠𝑘+1)− (ℎ±(𝑠𝑘) + 𝑓±(𝑠𝑘, ℎ𝑢(𝑠𝑘))∆𝑠)

⃒⃒
≤ 1

2
(𝜆𝑠 +𝐵𝜆ℎ)∆𝑠

2. (2.49)

Similarly,
|(𝑦𝑘+𝑓±(𝑠𝑘, 𝑦𝑘)∆𝑠)− (ℎ±(𝑠𝑘) + 𝑓±(𝑠𝑘, ℎ𝑢(𝑠𝑘))∆𝑠)|

≤ (1 +𝐵𝜆ℎ∆𝑠) |𝑦𝑘 − ℎ𝑢(𝑠𝑘)| .
(2.50)

Since an admissible value of 𝑦𝑘+1 can take on any value in the interval [𝑦𝑘 +

𝑓−(𝑠𝑘, 𝑦𝑘)∆𝑠, 𝑦𝑘 + 𝑓+(𝑠𝑘, 𝑦𝑘)∆𝑠], Equations (2.49) and (2.50) imply the existence of

admissible 𝑦𝑘+1 satisfying

|𝑦𝑘+1 − ℎ𝑢(𝑠𝑘+1)| ≤
1

2
(𝜆𝑠 +𝐵𝜆ℎ)∆𝑠

2 + (1 +𝐵𝜆ℎ∆𝑠)|𝑦𝑘 − ℎ𝑢(𝑠𝑘)|

≤ 1

2
(𝜆𝑠 +𝐵𝜆ℎ)∆𝑠

2 + (1 +𝐵𝜆ℎ∆𝑠)𝑒(𝑠𝑘)

≤ 1

2
𝐵𝜆ℎ𝛿𝑒

−𝜆ℎ𝐵(𝑏−𝑎)∆𝑠+ (1 +𝐵𝜆ℎ∆𝑠)𝛿𝑒
−𝜆ℎ𝐵(𝑏−𝑎)

(︂
𝑒𝜆ℎ𝐵(𝑠𝑘−𝑎) − 1

2

)︂
= 𝛿𝑒−𝜆ℎ𝐵(𝑏−𝑎)

(︂
𝐵𝜆ℎ∆𝑠

2
+ (1 +𝐵𝜆ℎ∆𝑠)

(︂
𝑒𝜆ℎ𝐵(𝑠𝑘−𝑎) − 1

2

)︂)︂
= 𝛿𝑒−𝜆ℎ𝐵(𝑏−𝑎)

(︂
𝐵𝜆ℎ∆𝑠

2
+ (1 +𝐵𝜆ℎ∆𝑠)𝑒

𝜆ℎ𝐵(𝑠𝑘−𝑎) − 1

2
(1 +𝐵𝜆ℎ∆𝑠)

)︂
≤ 𝛿𝑒−𝜆ℎ𝐵(𝑏−𝑎)

(︂
𝑒𝜆ℎ𝐵Δ𝑠𝑒𝜆ℎ𝐵(𝑠𝑘−𝑎) − 1

2

)︂
= 𝑒(𝑠𝑘+1).

(2.51)

This completes the proof of the inductive step and the lemma.

We now return to proofs of stages one and two. Assume sequences (𝑦𝑖)
𝑛
𝑖=0 and

(𝑧𝑖)
𝑛
𝑖=0 have been constructed as in Lemma 1. Existence of (𝑦𝑖)𝑛𝑖=0 immediately implies

the sequence (ℎ
(𝑏)
𝑖)𝑛𝑖=0 is well-defined and satisfies ℎ(𝑏)𝑖 ≥ 𝑦𝑖 ≥ ℎ𝑢(𝑠𝑖) − 𝛿 for all 0 ≤

𝑖 ≤ 𝑛. This finishes the proof of stage one.

For stage two, we prove by induction on 𝑖 that ℎ(𝑓)𝑖 is well-defined and satisfies

𝑧𝑖 ≤ ℎ
(𝑓)
𝑖 ≤ ℎ

(𝑏)
𝑖 for all 0 ≤ 𝑖 ≤ 𝑛. The base case 𝑖 = 0 follows from ℎ

(𝑓)
0 = ℎ

(𝑏)
0 ≥ 𝑦0 >

𝑧0. For the inductive hypothesis, assume the statement holds for 𝑖. We now show it

48

also holds for 𝑖+1. The definition of the backward pass implies there exists ℎ̃𝑖+1 such

that

ℎ
(𝑏)
𝑖+1 ≥ ℎ̃𝑖+1 = ℎ

(𝑏)
𝑖 + 𝑓−(𝑠𝑖, ℎ

(𝑏)
𝑖)(𝑠𝑖+1 − 𝑠𝑖). (2.52)

We recall assumption |𝑓±| ≤ 𝐵 along with feasibility of ℎ𝑢 implies ℎ𝑢 is 𝐵-

Lipschitz. Thus,
ℎ̃𝑖+1 ≥ ℎ

(𝑏)
𝑖 −𝐵(𝑠𝑖+1 − 𝑠𝑖)

≥ ℎ𝑢(𝑠𝑖)− 𝛿 −𝐵(𝑠𝑖+1 − 𝑠𝑖)

≥ ℎ𝑢(𝑠𝑖+1)− 𝛿 − 2𝐵(𝑠𝑖+1 − 𝑠𝑖).

(2.53)

Since 𝑠𝑖+1 − 𝑠𝑖 ≤ 𝛿
2𝐵

, we have

ℎ
(𝑏)
𝑖+1 ≥ ℎ̃𝑖+1 ≥ ℎ𝑢(𝑠𝑖+1)− 2𝛿 ≥ ℎ𝑙(𝑠𝑖+1) + 𝛿 ≥ 𝑧𝑖+1. (2.54)

Since 𝑧𝑖 ≤ ℎ
(𝑓)
𝑖 ≤ ℎ

(𝑏)
𝑖 (see Figure 2-5), there exists 𝜃 ∈ [0, 1] such that ℎ(𝑓)𝑖 =

𝜃ℎ
(𝑏)
𝑖 + (1− 𝜃)𝑧𝑖. Consider 𝜏 = 𝜃ℎ̃𝑖+1 + (1− 𝜃)𝑧𝑖+1. Equation (2.54) implies

𝑧𝑖+1 ≤ 𝜏 ≤ ℎ
(𝑏)
𝑖+1. (2.55)

Furthermore,

𝜏 − ℎ(𝑓)𝑖 = 𝜃(ℎ̃𝑖+1 − ℎ(𝑏)𝑖) + (1− 𝜃)(𝑧𝑖+1 − 𝑧𝑖)

≥
(︁
𝜃𝑓−(𝑠𝑖, ℎ

(𝑏)
𝑖) + (1− 𝜃)𝑓−(𝑠𝑖, 𝑧𝑖)

)︁
(𝑠𝑖+1 − 𝑠𝑖)

≥ 𝑓−(𝑠𝑖, 𝜃ℎ
(𝑏)
𝑖 + (1− 𝜃)𝑧𝑖)(𝑠𝑖+1 − 𝑠𝑖)

= 𝑓−(𝑠𝑖, ℎ
(𝑓)
𝑖)(𝑠𝑖+1 − 𝑠𝑖),

(2.56)

where the first inequality above follows from Equation (2.52) and admissibility of

(𝑧𝑖)
𝑛
𝑖=0, and the second inequality from convexity of 𝑓− in its second argument. Sim-

ilarly, we obtain

𝜏 − ℎ(𝑓)𝑖 ≤ 𝑓+(𝑠𝑖, ℎ
(𝑓)
𝑖)(𝑠𝑖+1 − 𝑠𝑖). (2.57)

Equations (2.55), (2.56), and (2.57) imply ℎ(𝑓)𝑖+1 is well-defined and satisfies ℎ(𝑓)𝑖+1 ≥ 𝑧𝑖+1.

49

This finishes the proof of the inductive step, the proof of stage two and of the first

part of the theorem.

To prove the second part, consider 𝜉 > 0 such that ℎ𝜉 ≤ ℎ+ 𝜖
2
. Such 𝜉 exists due

to part (b) of Theorem 3. Uniform continuity of 𝑓± implies there exists

𝛿1 ∈ (0, 𝜖/2) (2.58)

such that for all (𝑠1, ℎ1), (𝑠2, ℎ2) ∈ 𝐹 we have

|𝑠1 − 𝑠2|+ |ℎ1 − ℎ2| ≤ 𝛿1 ⇒ |𝑓±(𝑠1, ℎ1)− 𝑓±(𝑠2, ℎ2)| ≤ 𝜉/2. (2.59)

Uniform continuity of 𝐵𝑢 implies there exists

𝜂2 <
𝛿1

1 +𝐵
(2.60)

such that for all 𝑠1, 𝑠2 ∈ [𝑎, 𝑏] we have

|𝑠1 − 𝑠2| ≤ 𝜂2 ⇒ |𝐵𝑢(𝑠1)−𝐵𝑢(𝑠2)| ≤ 𝛿1. (2.61)

Consider arbitrary discretization 𝐷([𝑎, 𝑏], (𝑠𝑖)
𝑛
𝑖=0) with ∆(𝐷) ≤ 𝜂2. Let (ℎ̂𝑖)𝑛𝑖=0 be

the sequence output by Algorithm 1. Define function ℎ̃ : [𝑎, 𝑏]→ R via ℎ̃(𝑠𝑖) = ℎ̂𝑖−𝛿1
for all 0 ≤ 𝑖 ≤ 𝑛, and

ℎ̃(𝑠) =
𝑠− 𝑠𝑖
𝑠𝑖+1 − 𝑠𝑖

ℎ̃(𝑠𝑖+1) +
𝑠𝑖+1 − 𝑠
𝑠𝑖+1 − 𝑠𝑖

ℎ̃(𝑠𝑖) (2.62)

for all 𝑠 ∈ [𝑠𝑖, 𝑠𝑖+1] and 0 ≤ 𝑖 ≤ 𝑛− 1. By construction, ℎ̃ is continuous. In fact, we

show ℎ̃ ∈ 𝐴𝜉.

First, we will prove ℎ̃ ≤ 𝐵𝑢. Consider any 0 ≤ 𝑖 ≤ 𝑛 − 1. Since ℎ̃ is linear

on [𝑠𝑖, 𝑠𝑖+1], ℎ̃(𝑠) ≤ max(ℎ̃(𝑠𝑖), ℎ̃(𝑠𝑖+1)) for all 𝑠 ∈ [𝑠𝑖, 𝑠𝑖+1]. Thus, it suffices to show

ℎ̃(𝑠𝑖), ℎ̃(𝑠𝑖+1) ≤ min𝑠∈[𝑠𝑖,𝑠𝑖+1]𝐵𝑢(𝑠). To this end, consider arbitrary 𝑠 ∈ [𝑠𝑖, 𝑠𝑖+1]. Since

|𝑠 − 𝑠𝑖| ≤ 𝜂2, Equation (2.61) implies 𝐵𝑢(𝑠) ≥ 𝐵𝑢(𝑠𝑖) − 𝛿1. Admissibility of (ℎ̂𝑖)𝑛𝑖=0

50

implies 𝐵𝑢(𝑠𝑖) ≥ ℎ̂𝑖 and so

𝐵𝑢(𝑠) ≥ 𝐵𝑢(𝑠𝑖)− 𝛿1 ≥ ℎ̂𝑖 − 𝛿1 = ℎ̃(𝑠𝑖). (2.63)

Since 𝑠 was arbitrary, we obtain ℎ̃(𝑠𝑖) ≤ min𝑠∈[𝑠𝑖,𝑠𝑖+1]𝐵𝑢(𝑠). The corresponding in-

equality for ℎ̃(𝑠𝑖+1) follows analogously, and so ℎ̃ ≤ 𝐵𝑢 holds.

Next, we show𝐷+ℎ̃(𝑠) ≤ 𝑓+(𝑠, ℎ̃(𝑠))+𝜉 for all 𝑠 ∈ [𝑎, 𝑏). Again, consider arbitrary

0 ≤ 𝑖 ≤ 𝑛− 1 and 𝑠 ∈ [𝑠𝑖, 𝑠𝑖+1). We have

𝐷+ℎ̃(𝑠) =
ℎ̃(𝑠𝑖+1)− ℎ̃(𝑠𝑖)

𝑠𝑖+1 − 𝑠𝑖
=
ℎ̂𝑖+1 − ℎ̂𝑖
𝑠𝑖+1 − 𝑠𝑖

≤ 𝑓+(𝑠𝑖, ℎ̂𝑖). (2.64)

Also,

|𝑠− 𝑠𝑖|+ |ℎ̃(𝑠)− ℎ̃(𝑠𝑖)| = |𝑠− 𝑠𝑖|
(︂
1 +

⃒⃒⃒⃒
ℎ𝑖+1 − ℎ𝑖
𝑠𝑖+1 − 𝑠𝑖

⃒⃒⃒⃒)︂
≤ |𝑠− 𝑠𝑖|(1 +𝐵) ≤ 𝛿1

(2.65)

where the first equality follows from linearity of ℎ̃ on [𝑠𝑖, 𝑠𝑖+1], and the second in-

equality from admissibility of (ℎ̂𝑖)𝑛𝑖=0 and the fact |𝑓±| ≤ 𝐵. Equations (2.59) and

(2.65) imply

𝑓+(𝑠𝑖, ℎ̃(𝑠𝑖)) ≤ 𝑓+(𝑠, ℎ̃(𝑠)) +
𝜉

2
. (2.66)

Similarly, |ℎ̃(𝑠𝑖)− ℎ̂𝑖| ≤ 𝛿1 implies

|𝑓+(𝑠𝑖, ℎ̂𝑖)− 𝑓+(𝑠𝑖, ℎ̃(𝑠𝑖))| ≤
𝜉

2
. (2.67)

Combining the latter pair of inequalities, we derive

𝐷+ℎ̃(𝑠) ≤ 𝑓+(𝑠, ℎ̃(𝑠)) + 𝜉. (2.68)

Similarly,

𝐷−ℎ̃(𝑠) ≥ 𝑓−(𝑠, ℎ̃(𝑠))− 𝜉, (2.69)

and so we obtain ℎ̃ ∈ 𝐴𝜉. As a result, by definition of ℎ𝜉, we have ℎ̃ ≤ ℎ𝜉. This

51

implies for every 0 ≤ 𝑖 ≤ 𝑛

ℎ𝑖 = ℎ̃(𝑠𝑖) + 𝛿1 ≤ ℎ𝜉(𝑠𝑖) + 𝛿1 ≤ ℎ(𝑠𝑖) +
𝜖

2
+ 𝛿1 ≤ ℎ(𝑠𝑖) + 𝜖 (2.70)

where the last inequality follows from Equation (2.58). This completes the second,

and final, part of the proof of the theorem.

2.5 Simulation Results

In this section, we present a numerical example of the performance of Algorithm 1 on

one instance of the TOPP problem that would be solved optimally by CO approaches.

To this end, let 𝛾 be a planar path formed by concatenating a line segment of length

𝑙1 = 20 and two semicircular paths with radii 𝑅1 = 12 and 𝑅2 = 4. In what follows,

numerical bounds on actuation values have been set in such a way that the direction

(up/down) of the binormal to the two curved segments of the path makes no difference.

Set ||a||2 ≤ 2, 𝑣𝑚𝑎𝑥 = 5, and assume, for the sake of simplicity, these constraints

automatically imply bounds on |𝜔|, |𝜏 | and |𝑎ℎ𝑜𝑟| are satisfied (e.g. by choosing them

suitably large post hoc). In this case, we can compare the solution of Algorithm 1

with the optimum ℎ which admits a semi-analytic form:

ℎ(𝑠) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑣2𝑚𝑎𝑥 𝑠 ∈ [0, 𝑠0]

𝑣2𝑚𝑎𝑥 − 2𝑎𝑚𝑎𝑥(𝑠− 𝑠0) 𝑠 ∈ [𝑠0, 𝑙1]

𝑅1𝑎𝑚𝑎𝑥 𝑠 ∈ [𝑙1, 𝑠1]

𝑅1𝑎𝑚𝑎𝑥 cos
(︁

2
𝑅1
(𝑠− 𝑠1)

)︁
𝑠 ∈ [𝑠1, 𝑙1 + 𝜋𝑅1]

𝑅2𝑎𝑚𝑎𝑥 𝑠 ≥ 𝑙1 + 𝜋𝑅1,

(2.71)

where 𝑠0 = 𝑙1 − 𝑣2𝑚𝑎𝑥−𝑅1𝑎𝑚𝑎𝑥
2𝑎𝑚𝑎𝑥

, and 𝑠1 = 𝑙1 + 𝜋𝑅1 − 𝑅1

2

(︁
𝜋
2
− arcsin(𝑅2

𝑅1
)
)︁
. Empirical

evidence of asymptotic optimality of Algorithm 1 may be observed in Figure 2-6.

A glance at Figure 2-6 might lead one to suspect that the rate of convergence of

52

Figure 2-6: Empirical Evidence of Asymptotic Optimality of Algorithm 1

Algorithm 1 satisfies

𝜌⏟ ⏞
𝑒𝑟𝑟𝑜𝑟

∝ |𝐷|−1. (2.72)

This would certainly be true in the special case of 𝑓+ ≡ 𝑓− and 𝐵𝑢 ≡ ∞, as this

would then be restating the known rate of convergence of the Forward Euler method

for integrating ordinary differential equations. The latter would amount to a single

forward pass of Algorithm 1. However, our problem is more involved. We suspect

that the rate of convergence of Algorithm 1 predicted by Equation (2.72) is true, but

proving it would involve further analysis.

2.6 Conclusion

In this chapter we characterized the solution to the TOPP problem for a wide range

of agents with second order dynamics. The first novelty was a characterization of the

optimal solution, which comes about naturally when the space of decision variables

and constraints imposed on them are defined in a suitable way. We then demonstrated

the asymptotic optimality of a recently proposed computationally-efficient, robust

algorithm for the TOPP problem.

53

54

Chapter 3

Perception-aware Time Optimal Path

Parametrization for Quadrotors

3.1 Introduction

State estimation is a critical building block of the software stack enabling autonomous

quadrotors. Due to their small size and limited power budget, they often rely on a

combination of an inertial measurement unit (IMU) and camera for ego-localization.

Information fusion from the two sensor modalities is crucial for the task to succeed.

Sole reliance on noisy, biased measurements of acceleration and angular velocity sup-

plied by the IMU results in state estimates that quickly yield to drift. The camera

can significantly reduce such errors, provided there is a sufficient quantity of visual

cues in the environment. Such cues can include points [17], lines [30], or even whole

objects [54].

Due to varying lighting conditions, occluding obstacles, and spatial variation of

textured surfaces, some trajectories allow for better localization accuracy than oth-

ers. This chapter deals with a particular problem in the area of perception-aware

trajectory optimization for quadrotors [1, 14, 47, 66]. Conceptually, we solve an opti-

mization problem for which the objective is minimizing execution time of a geometric

path subject to hard actuation bounds of the quadrotor, as well as perception con-

straints necessary for the vehicle to maintain accurate state estimates at all times [76].

55

Even without perception constraints, trajectory planning for quadrotors is a com-

putationally challenging task. The landmark paper [45] established differential flat-

ness [23] of quadrotor dynamics, showing that the trajectories of four flat outputs

consisting of positions and heading angles of the vehicle are functionally independent,

and furthermore, uniquely determine the trajectory of states and inputs in which they

are embedded. This result allowed planning in a four instead of the ambient twelve

dimensional state space of the quadrotor. Additionally, the same work initiated a

line of papers using piecewise polynomials to represent trajectories of flat outputs.

For example, [45] designed trajectories that visit a set of waypoints at given times by

solving a quadratic program. The efficiency of such an approach was later improved

in [62] with a clever reparametrization of flat outputs. Adopting a somewhat different

paradigm using randomized motion primitives, [27,48] used the result of [45] for real-

time planning of dynamically feasible motions, using the polynomial representation

to quickly pick promising trajectories from a large set of randomly sampled ones.

The graph-based approach of [42] performed a search in a subspace of flat outputs to

generate collision-free trajectories which minimize a linear combination of execution

time and the magnitude of jerk.

Numerous works have devised approximate solutions to variations of the trajectory

planning problem with perception constraints. For example, [58] planned locally

optimal minimum time trajectories between two states by optimizing a family of flat

trajectories parametrized by b-splines. Relatedly, [69] designed trajectories that finish

at a given position, while minimizing the length of the path traced out by projections

of landmarks desired to lie in the final field of view. The work of [19] adopted an

MPC framework to incorporate a soft perception constraint minimizing the speed

of projections of specified landmarks in the environment while navigating from start

to goal position. Some of the most recent works, such as [49], included even more

sophisticated perception constraints that optimize the co-visibility of given landmarks

between consecutive keyframes, while also minimizing execution time. The elegant

work of [80] leveraged the Hopf fibration to plan perception-aware trajectories for

multirotors, albeit with simplified dynamic constraints.

56

𝑥𝑊

𝑦𝑊

𝑧𝑊

𝛾(0)

𝜓(0)

𝛾(1)

𝜓(1)

0 1𝑠

𝛾(
𝑠)

𝜓(𝑠)

𝑥𝐵

𝑦𝐵

𝑧𝐵

𝛼

𝑙𝑛

𝑙1
𝑙2

𝑙𝑖

ℳ(𝑠)

Figure 3-1: Quadrotor tasked with following a user-given path while keeping specified
landmarks (in the setℳ(𝑠)) in field of view (shown in the red cone).

Contributions

The main contribution of this chapter lies in unravelling the hidden structure of a

whole class of perception-aware motion planning problems for quadrotors equipped

with a forward-facing camera. In particular, we show that various constraints requir-

ing the agent to maintain a sufficient amount of information within field of view of

its onboard camera induce convex (in fact linear) constraints in the resulting TOPP

problem. We also show that for a certain, perhaps somewhat restricted, layout of

landmarks in the environment, our method can select to have within view subsets of

landmarks with a desired amount of information, so as to induce the shortest execu-

tion time of the path. Ultimately, we show how to losslessly compress the number of

perception constraints by at least an order of magnitude, in an efficient way that is

further amenable to parallelized implementation. This is particularly important when

applying interior-point methods (IPMs) which typically add a Lagrange multiplier for

every constraint.

Finally, we use constructed perception constraints in a competitive solution for

the non-convex perception-aware TOPP problem for quadrotors with hard bounds on

thrusts of its individual motors. We compare the performance of our algorithm to

a strong, to the best of our knowledge novel, baseline method based on a general-

purpose IPM that takes order of magnitude longer to compute.

57

3.2 Problem Statement

This section provides a mathematical formulation of two related classes of perception-

aware time-optimal path parametrization (PA-TOPP) problems. After laying out the

dynamics and sensing models of a typical quadrotor agent, we give details of the path-

traversal task specification in addition to dynamic constraints imposed on the vehicle.

Ultimately, we furnish two classes of perception constraints, each corresponding to

its particular PA-TOPP problem we consider.

3.2.1 Dynamics Model

We adopt a common framework specifying the rigid body dynamics of a quadrotor. Its

state, q ∈ 𝑆𝐸(3)× 𝑇𝑆𝐸(3), consists of its position x ∈ R3 and orientation 𝑅 ∈ 𝑆𝑂(3)
with respect to an inertial world frame, as well as its translational velocity v ∈ R3 and

angular velocity 𝜔 ∈ R3. Inputs of the agent are the four thrusts 𝑢1, 𝑢2, 𝑢3, 𝑢4 ∈ R of

its individual motors, giving rise to the following equation of motion⎡⎢⎢⎢⎢⎢⎢⎣
ẋ

v̇

Ṙ

𝜔̇

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
v

g

R[𝜔×]
−J−1(𝜔 × J𝜔)

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
0

𝑅e3 𝑐

0

J−1 𝜏

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.1)

in which g ∈ R3 represents the gravitational acceleration with respect to the world

frame, [𝜔×] := [𝜔× e1 | 𝜔× e2 | 𝜔× e3] ∈ R3×3, and the cumulative thrust 𝑐 ∈ R and

resultant torque 𝜏 ∈ R3 are given by

⎡⎣𝑐
𝜏

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1 1

−𝑘𝐿 𝑘𝐿 𝑘𝐿 −𝑘𝐿
−𝑘𝐿 −𝑘𝐿 𝑘𝐿 𝑘𝐿

−𝑘𝑀 𝑘𝑀 −𝑘𝑀 𝑘𝑀

⎤⎥⎥⎥⎥⎥⎥⎦
⏟ ⏞

fixed control matrix F ∈ R4×4

⎡⎢⎢⎢⎢⎢⎢⎣
𝑢1

𝑢2

𝑢3

𝑢4

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.2)

Last but not least, J ∈ R3×3 represents the momement of inertia of the quadrotor.

58

Characteristic Aspects of Quadrotor Dynamics

Trajectory optimization for quadrotors is challenging for several different reasons.

Firstly, their nonlinear dynamics makes it difficult to adapt corresponding analyti-

cal results available for linear systems with quadratic or minimum-time objectives.

Second, their twelve-dimensional state space precludes grid-based methods that are

based on a naive discretization of allowed ranges of individual components of their

state. Ultimately, quadrotors live in a non-Euclidean state space; even numerically

integrating their state forward in time for a fixed trajectory of inputs requires care.

The landmark paper of [45] established differential flatness of quadrotor dynamics.

Intuitively, this means there exists a vector function of time derivatives of states and

inputs of the quadrotor, which my be specified independently of one another, and

whose time derivatives yield the underlying trajectory of states and inputs required

to induce them. In particular, for quadrotors such a vector function consists of two

interpretable quantities: the position, x(𝑡), and the heading angle, 𝜓(𝑡), of the vehicle.

For the purpose of this chapter, it is particularly important to recall the following

part of the result of [45]. Indeed, from Equation (3.1), the acceleration of the vehicle

is related to its orientation via

𝑅e3⏟ ⏞
z𝐵

𝑐 = ẍ− g ⇒

⎧⎪⎨⎪⎩𝑐 = ||ẍ(𝑡)− g||2
z𝐵(𝑡) =

ẍ(𝑡)−g
𝑐

.

(3.3)

If we define the perpendicular to the heading vector as follows

𝜓⊥(𝑡) := e3 × [cos(𝜓(𝑡)), sin(𝜓(𝑡)), 0]𝑇 , (3.4)

we also get

x𝐵(𝑡) =
𝜓⊥(𝑡)× z𝐵(𝑡)

||𝜓⊥(𝑡)× z𝐵(𝑡)||2
. (3.5)

Combined with the relation y𝐵(𝑡) = z𝐵(𝑡)×x𝐵(𝑡), we get that the orientation of the

quadrotor, R(𝑡), is fully specified by x(𝑡), ẋ(𝑡), ẍ(𝑡), and 𝜓(𝑡). Differentiating two

more times and using Equation (3.1), [45] show there exists a smooth function Φ so

59

that for generic, sufficiently smooth trajectories x(·) and 𝜓(·), we have

⎡⎣q(𝑡)
u(𝑡)

⎤⎦ = Φ

(︃(︂
𝑑𝑛

𝑑𝑡𝑛
x(𝑡)

)︂
𝑛=0,1,2,3,4

,

(︂
𝑑𝑛

𝑑𝑡𝑛
𝜓(𝑡)

)︂
𝑛=0,1,2

)︃
. (3.6)

An important corollary of the flatness property, first explicitly used in [62], is that

every sufficiently smooth trajectory of positions and heading angles can be “slowed

down” so that it is dynamically feasible for the quadrotor, given the sensible assump-

tion that it can operate in “hover” mode. Slowing down a trajectory mathematically

amounts to simply dilating its interval of definition in the time domain by the ap-

propriate factor, whereas a hover mode is any state q which is an equilibrium state

for Equation (3.1) for inputs 𝑢𝑖 = ||g||2
4
∀1 ≤ 𝑖 ≤ 4. We shall also adopt the latter

assumption for the remainder of the chapter.

3.2.2 Sensing Model

We assume the quadrotor is equipped with a monocular forward-facing camera, a

common setup for micro aerial vehicles operating in indoor environments. Geometri-

cally, this means the body 𝑥-axis of the vehicle is aligned with the 𝑧(i.e. optical)-axis

of the camera. The latter is modelled using the pinhole projection principle [79]. In

particular, a point with coordinates p𝒞 with respect to the camera frame, is registered

as a point (︂
p𝒞
1

p𝒞
3

,
p𝒞
2

p𝒞
3

)︂
(3.7)

provided it lies inside the field of view (FOV) of the camera. We model the latter as

a symmetric circular cone i.e. a point p ∈ R3 lies within the FOV if and only if

p𝒞
3 ≥ 0,

1

p𝒞
3

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣p𝒞

1

p𝒞
2

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
2

≤ tan𝛼,

where 𝛼 ∈ (0, 𝜋
2
) denotes the extent of the FOV around the optical axis.

60

3.2.3 Task: Traversing a “Flat” Path in Minimum Time

The objective of our problems will lie in minimizing the traversal time of a specified

path of flat outputs

(𝛾, 𝜓) : [0, 𝑆𝑒𝑛𝑑]→ R3 × 𝑆1 (3.8)

by a quadrotor with dynamics described in Section 3.2.1 under various dynamic and

perception constraints. As in Section 2.2.1, the decision variable of interest will be

the square speed profile ℎ : 𝑠 ↦→
(︀
𝑑𝑠
𝑑𝑡
(𝑠)
)︀2. Using the relation 𝑑

𝑑𝑡
=
√︀
ℎ(𝑠) 𝑑

𝑑𝑠
, we may

see that we can express the first four (two) temporal derivatives (i.e. wrt 𝑡) of x (𝜓) in

terms of the first three spatial derivatives (i.e. wrt 𝑠) of ℎ. Using the flat transform in

Equation (3.6), for an appropriately chosen smooth function Φ𝛾×𝜓, we can therefore

write ⎡⎣q(𝑠)
u(𝑠)

⎤⎦ = Φ𝛾×𝜓

(︃(︂
𝑑𝑖ℎ

𝑑𝑠𝑖
(𝑠)

)︂
𝑖=0,1,2,3

)︃
∀𝑠 ∈ [0, 𝑆𝑒𝑛𝑑]. (3.9)

3.2.4 Dynamic Constraints

In addition to dynamic constraints in the form of thrust bounds

0 ≤ 𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥 ∀1 ≤ 𝑖 ≤ 4, (3.10)

we shall assume we are given a path

(n, 𝛽) : [0, 𝑆𝑒𝑛𝑑]→ 𝑆2 ×
[︁
0,
𝜋

2

)︁
(3.11)

of unit vectors and angles, denoting constraints that the body 𝑧 axis of the quadrotor

should form an angle at most 𝛽(𝑠) with vector n(𝑠) when its center of mass is located

at position 𝛾(𝑠). For example, the latter requirement arises in planning trajectories in

which the agent, modelled as an oblate spheroid, has to pass through narrow gaps [20].

Additionally, it can represent a constraint preventing the vehicle from tipping over,

and thus not encountering the singularity in the differentially flat representation when

its z𝐵 axis is parallel to the horizontal world plane.

61

3.2.5 Perception Constraints

The core theme of this chapter lies in perception constraints. They require the quadro-

tor to maintain a sufficient amount of visual information within the field of view of

its camera so as to be able to localize itself accurately. We shall state two slightly

different types of perception constraints. From a high-level view, the first will involve

a nonlinear optimization problem with continuous decision variables only, whereas

the second, more general one, will introduce additional discrete selection variables.

We assume there is a set

ℒ = {𝑙1, 𝑙2, ..., 𝑙𝑁} (3.12)

of 𝑁 landmarks in the environment of the agent with known, fixed, positions with re-

spect to the world frame. With the setup of a forward-facing camera, a landmark will

lie within view precisely when its displacement from the optical center of the camera,

assumed to lie at the center of mass of the quadrotor (a negligible approximation),

makes an angle at most 𝛼 with the x𝐵 axis of the vehicle. Ultimately, we are given a

set function

ℳ : [0, 𝑆𝑒𝑛𝑑]→ 2ℒ (3.13)

that takes on slightly different meanings for the two classes of perception constraints

we consider.

The first type of constraint, we shall refer to as the conjunctive constraint for

reasons that will be clarified momentarily, is as follows. At any point 𝑠 ∈ [0, 𝑆𝑒𝑛𝑑]

along the flat path (see Equation (3.8)), the quadrotor must have all landmarks in the

setℳ(𝑠) within FOV of its camera. The nomenclature is clear: the agent/planner has

no freedom in selecting which subset of landmarks to have within FOV, but merely

how navigate as quickly as possible while adhering to stipulated constraints.

The second type of constraint, we call the disjunctive constraint, aims to relax

the potentially restrictive nature of conjunctive constraints. In this case, for every

𝑠 ∈ [0, 𝑆𝑒𝑛𝑑], the set ℳ(𝑠) represents a set of candidate landmarks from which the

agent is additionally allowed to choose the subset that contains a sufficient amount of

visual information, while offering the agent the opportunity to execute the given path

62

in less time. To measure the amount of visual information, we introduce a general

set function

ℱ : {(𝑠, 𝑉) | 𝑠 ∈ [0, 𝑆𝑒𝑛𝑑], 𝑉 ⊆ℳ(𝑠)} → R (3.14)

specifying the utility of having the collection of landmarks in set 𝑉 (𝑠) within FOV

when the agent is at point 𝑠 along the path. With the threshold function

𝜆𝑚𝑖𝑛 : [0, 𝑆𝑒𝑛𝑑]→ R (3.15)

encoding the minimum acceptable utility, and denoting the subsets of landmarks

within field of view by

𝑉 : [0, 𝑆𝑒𝑛𝑑]→ ℒ, (3.16)

the new perception constraint reads

ℱ(𝑠, 𝑉 (𝑠)) ≥ 𝜆𝑚𝑖𝑛(𝑠) ∀𝑠 ∈ [0, 𝑆𝑒𝑛𝑑]. (3.17)

Beyond the minimal requirement that ℱ be a pointwise increasing set function in

that

∀𝑠 ∈ [0, 𝑆𝑒𝑛𝑑] 𝐴 ⊆ 𝐵 ⊆ℳ(𝑠) ⇒ ℱ(𝑠, 𝐴) ≤ ℱ(𝑠, 𝐵), (3.18)

we place no other restrictions on ℱ . The monotonicity assumption is a rather natural

one, intuitively saying that a larger number of landmarks within FOV allows higher

localization accuracy. We have purposely kept the details of the function ℱ hidden

for now. Section 3.4.2 will hilight two natural choices for ℱ that are useful in vision-

driven navigation.

3.2.6 Mathematical Formulation

We finally put together previous elements of the PA-TOPP problem for quadrotors.

To avoid cluttered notation, we separately state the subclass of problems with con-

junctive constraints and those with disjunctive constraints.

63

PA-TOPP Problem with Conjunctive Constraints

min
ℎ:[0,𝑆𝑒𝑛𝑑]→[0,∞)

∫︁ 𝑆𝑒𝑛𝑑

0

𝑑𝑠√︀
ℎ(𝑠)

𝑠.𝑡. ∀𝑠 ∈ [0, 𝑆𝑒𝑛𝑑] :⎡⎣q(𝑠)
u(𝑠)

⎤⎦ = Φ𝛾×𝜓

(︃(︂
𝑑𝑖ℎ

𝑑𝑠𝑖
(𝑠)

)︂
𝑖=0,1,2,3

)︃

∠(z𝐵(𝑠), 𝑛(𝑠)) ≤ 𝛽(𝑠)

0 ≤ u(𝑠) ≤ 𝑢𝑚𝑎𝑥

ℎ(𝑠) ≤ 𝐵𝑢(𝑠)

∠(x𝐵(𝑠), 𝑙𝑖 − 𝑥(𝑠)) ≤ 𝛼 ∀𝑖 ∈ℳ(𝑠).

(3.19)

PA-TOPP Problem with Disjunctive Constraints

min
ℎ,𝑉 :[0,𝑆𝑒𝑛𝑑]→[0,∞)×2ℒ

∫︁ 𝑆𝑒𝑛𝑑

0

𝑑𝑠√︀
ℎ(𝑠)

𝑠.𝑡. ∀𝑠 ∈ [0, 𝑆𝑒𝑛𝑑] :⎡⎣q(𝑠)
u(𝑠)

⎤⎦ = Φ𝛾×𝜓

(︃(︂
𝑑𝑖ℎ

𝑑𝑠𝑖
(𝑠)

)︂
𝑖=0,1,2,3

)︃

∠(z𝐵(𝑠), 𝑛(𝑠)) ≤ 𝛽(𝑠)

0 ≤ u(𝑠) ≤ 𝑢𝑚𝑎𝑥

ℎ(𝑠) ≤ 𝐵𝑢(𝑠)

∠(x𝐵(𝑠), 𝑙𝑖 − 𝑥(𝑠)) ≤ 𝛼 ∀𝑖 ∈ 𝑉 (𝑠)

ℱ(𝑠, 𝑉 (𝑠)) ≥ 𝜆𝑚𝑖𝑛(𝑠).

(3.20)

Problem (3.19) with conjunctive constraints is challenging as it is a nonlinear

programming problem with a potentially large number of perception constraints. In

Problem (3.20), disjunctive constraints introduce a new layer of difficulty with a

mixed integer component. Our algorithms will involve two layers of contributions; the

first addressing forming a succint summary of perception constraints, and the second

providing a way of dealing with the non-trivial resulting optimization problem.

64

3.3 Algorithm

In this section, we provide our algorithms for addressing Problems (3.19) and (3.20).

We start by describing and motivating the way of transcribing aforementioned, func-

tional, optimization problems into a form amenable to numerical manipulation.

We consider a discretization 𝐷 of points 0 = 𝑠0 < 𝑠1 < · · · < 𝑠𝑁 = 𝑆𝑒𝑛𝑑. The

square speed profile ℎ is represented as a third order integrator with constant input

on each interval [𝑠𝑖, 𝑠𝑖+1]; any such profile is thus a piecewise polynomial function of

degree three with continuous second derivatives. One of the motivations for such a

representation goes back to the differentially flat transform in Equation (3.6): a third

order integrator is in general necessary to render the expression well-defined.

In broad strokes, our method works as follows. We first translate perception

constraints into those on the square speed profile. Furthermore, we initially switch

off given actuation bounds in favour of requiring the magnitude of the acceleration of

the quadrotor to be at most the sum of maximal specific thrusts of its four motors, as

well as including limits on the bank angle, preventing the vehicle from ‘tipping over’.

Enforcing such constraints at the discretization points, we solve the 𝑙2-regularized time

optimal path parametrization problem stated in Section 3.3.2. Finally, we linearly

scale down the resulting square speed profile until all individual motor thrust bounds

are satisfied. The following subsections describe of each of these stages in more detail.

3.3.1 Perception Constraint Generation

We form perception constraints at each discretization point in turn, noting however

that they can be computed in parallel, independently of one another. For any land-

mark, at an arbitrary point along the path, we extract the interval of elevation angles

of the body x axis of the quadrotor (the angle it forms with the horizontal world

plane) for which the landmark lies in FOV.

Depending on the nature of the constraint, we then follow slightly different proce-

dures. For the conjunctive constraint, we effectively seek the intersection of all such

intervals, which we can accomplish with a single linear pass through their endpoints.

65

For the disjunctive constraint, we first sort the endpoints of all computed intervals,

and then find the extremal angles which satisfy the constraint in a single linear pass.

Assuming the resulting interval of elevations at point 𝑠 is [𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥], defining the

perception normals via

p+(𝑠) := (cos(𝜃𝑚𝑎𝑥)𝜓(𝑠) + e3 sin(𝜃𝑚𝑎𝑥))

p−(𝑠) := (cos(𝜃𝑚𝑖𝑛)𝜓(𝑠) + e3 sin(𝜃𝑚𝑖𝑛))
(3.21)

with 𝜓(𝑠) = [cos(𝜓(𝑠)), sin(𝜓(𝑠)), 0]𝑇 being the heading vector, the equivalent con-

straint on the square speed profile ℎ is given by

c(𝑠) · p+(𝑠) ≥ 0, c(𝑠) · p−(𝑠) ≤ 0 (3.22)

where c(𝑠) = Re3𝑐 is the total thrust from Equation (3.1).

3.3.2 Regularized TOPP

Since we assume the square speed profile to be a third order integrator: ℎ(3)(𝑠) = 𝜌(𝑠),

the new objective includes a time-optimality term and a regularization term penalizing

the 𝑙2 norm of the effective input 𝜌. Computed perception as well as bank angle

constraints remain intact, while we substitute bounds on individual motor inputs

using a simple upper bound on the norm of the total thrust - the sum of maximal

thrusts of the four motors. Thus, for a suitably chosen hyperparameter 𝜆 > 0, using

the discretization described at the beginning of the section, this stage solves:

∫︁ 𝑆𝑒𝑛𝑑

0

𝑑𝑠√︀
ℎ(𝑠)⏟ ⏞

execution time

+ 𝜆

∫︁ 𝑆𝑒𝑛𝑑

0

𝜌(𝑠)2𝑑𝑠⏟ ⏞
regularization penalty

𝑠.𝑡. ∀𝑠 ∈ [0, 𝑆𝑒𝑛𝑑] :

||c(𝑠)||2 ≤ 4𝑢𝑚𝑎𝑥 (thrust)

c(𝑠) · n(s) ≥ ||c(𝑠)||2 cos(𝛽) (bank angle)

c(𝑠) · p+(𝑠) ≥ 0, 𝑐(𝑠) · p−(𝑠) ≤ 0 (perception)

(3.23)

66

We solve the discretized version of the latter problem using ECOS [18], a performant,

robust interior point solver for second order conic programs. Its running time is

𝑂(𝑁 ·𝑁𝑖𝑡𝑒𝑟𝑠), where 𝑂(𝑁𝑖𝑡𝑒𝑟𝑠) accounts for the number of “gradient descent” steps.

3.3.3 Alpha Scaling

The final stage of the procedure finds the largest 𝛼 ∈ [0, 1] such that the square

speed profile ℎ𝑠𝑜𝑙 := 𝛼ℎ satisfies given motor thrusts. With the natural assumption

that any hover state for the quadrotor is dynamically feasible, a strictly positive 𝛼

is guaranteed to exist. Furthermore, any 𝛼 ∈ [0, 1] is guaranteed not to violate the

perception and bank angle constraints that have been satisfied by the procedure in

section 3.3.2. This statement is a consequence of the convexity of such constraints,

which will be elaborated in some detail in section 3.4. In practice, we find 𝛼 by

searching a uniformly discretized grid on [0, 1]. Denoting the number of candidates

for 𝛼 by 𝑁𝛼, the latter procedure runs in time 𝑂(𝑁𝛼𝑁).

Algorithm Summary

Algorithm 2: PA-TOPP Algorithm
Data: 𝐷 = (𝑠𝑖)

𝑁
𝑖=0, (l𝑗)𝑛𝑗=1, 𝑢𝑚𝑎𝑥, 𝛽, 𝜆, ℱ(·, 𝑠𝑖)𝑁𝑖=0, 𝜆𝑚𝑖𝑛(𝑠𝑖)𝑁𝑖=0, (𝛾(·), 𝜓(·)), 𝑁𝛼

Result: ℎ ≡ (ℎ|[𝑠𝑖,𝑠𝑖+1] ∈ 𝑠𝑝𝑎𝑛{1, 𝑠, 𝑠2, 𝑠3})𝑁−1
𝑖=0

for 𝑖 = 1 to 𝑛 do
𝜃𝑚𝑖𝑛 ← 𝑀𝑖𝑛𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛(𝑠𝑖,ℱ(·, 𝑠𝑖), 𝑤𝑚𝑖𝑛(𝑠𝑖))
𝜃𝑚𝑎𝑥 ← 𝑀𝑎𝑥𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛(𝑠𝑖,ℱ(·, 𝑠𝑖), 𝑤𝑚𝑖𝑛(𝑠𝑖))
𝑝
(𝑖)
+ , 𝑝

(𝑖)
− ← 𝐴𝑛𝑔𝑙𝑒𝑠𝑇𝑜𝑁𝑜𝑟𝑚𝑎𝑙𝑠(𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥)

end
ℎ← 𝑅𝑒𝑔𝑇𝑂𝑃𝑃 ((𝑝

(𝑖)
+)𝑁𝑖=0, (𝑝

(𝑖)
−)𝑁𝑖=0, 𝑢𝑚𝑎𝑥, 𝜆, 𝛽)

for 𝑖 = 𝑁𝛼 to 0 do
if ℎ← ℎ 𝑖

𝑁𝛼
feasible then

return ℎ
end

end

The running time of the whole algorithm is 𝑂(𝑁(𝑛 log 𝑛 + 𝑁𝑖𝑡𝑒𝑟𝑠 + 𝑁𝛼)) for dis-

junctive and 𝑂(𝑁(𝑛+𝑁𝑖𝑡𝑒𝑟𝑠 +𝑁𝛼)) for conjunctive perception constraints.

67

3.4 Analysis

The key part of this section lies in demonstrating convexity of various perception as

well as relaxations of dynamic constraints on the square speed profile.

3.4.1 Dynamic Constraints

𝑛(𝑠)

𝑐(𝑠)𝛽
𝑐𝑚𝑎𝑥

Using the differentially flat transform in Equation (3.6), we have that the vector

thrust of the vehicle is given by

c = ẍ− g ⇒ c(𝑠) =
1

2
𝛾′(𝑠)ℎ′(𝑠) + 𝛾′′(𝑠)ℎ(𝑠)− g ∀𝑠 ∈ [0, 𝑆𝑒𝑛𝑑]. (3.24)

Since 𝛾(·) is fixed, the latter represents an affine operator on ℎ. In particular, any

convex membership constraints on c(·) will translate into convex membership con-

straints on ℎ. Examples of such constraints relevant to Problems (3.19) and (3.20)

include bounds on the magnitude of total thrust

||c(𝑠)||2 ≤ 𝑐𝑚𝑎𝑥 ⇔
⃒⃒⃒⃒⃒⃒⃒⃒
1

2
𝛾′(𝑠)ℎ′(𝑠) + 𝛾′′(𝑠)ℎ(𝑠)− g

⃒⃒⃒⃒⃒⃒⃒⃒
2⏟ ⏞

convex in ℎ

≤ 𝑐𝑚𝑎𝑥 (3.25)

as well as bank angle constraints

∠(c(𝑠),n(𝑠)) ≤ 𝛽(𝑠) ⇔(︂
1

2
𝛾′(𝑠)ℎ′(𝑠) + 𝛾′′(𝑠)ℎ(𝑠)− g

)︂
· n(𝑠)⏟ ⏞

affine in ℎ

≥
⃒⃒⃒⃒⃒⃒⃒⃒
1

2
𝛾′(𝑠)ℎ′(𝑠) + 𝛾′′(𝑠)ℎ(𝑠)− g

⃒⃒⃒⃒⃒⃒⃒⃒
2

cos 𝛽(𝑠)⏟ ⏞
convex in ℎ

.

(3.26)

68

3.4.2 Perception Constraints

The aim of this subsection is to derive relations induced by perception constraints on

the square speed profile. We shall begin by considering implications of requiring only

a single landmark to lie within the FOV at just one point along the path, followed by

an argument behind the convexity of such a constraint. After that, we will describe

theoretical and application-orientated extensions towards multiple, spatially-varying

sets of landmarks. In what follows, the angle between the x𝐵 axis of the quadrotor

and its projection onto the horizontal world plane will be referred to as the elevation

angle.

𝑥𝑊

𝑦𝑊

𝑧𝑊

𝛾

𝜓

𝑙𝜃

𝑥𝐵

𝑧𝐵

𝑦𝐵

𝜃𝑚𝑎𝑥

𝜃𝑚𝑖𝑛

𝜓⊥

𝑝+

𝑝−

𝑐(𝑠)

Theorem 6. Let 𝛾 and 𝜓 be the position and heading angle of the quadrotor with

FOV angle 𝛼. Then, a landmark with position 𝑙 lies within the FOV for an interval

of elevation angles 𝜃, say [𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥], which might be empty.

Proof. With slight abuse of notation, denote the heading vector of the vehicle by

𝜓 = [cos(𝜓), sin(𝜓), 0]𝑇 , and let the unit vector parallel to the displacement from its

center of mass to the landmark be

d̂ :=
l− 𝛾
||l− 𝛾||2

.

69

Since x𝐵 = 𝜓 cos(𝜃) + e3 sin(𝜃), we have l ∈ FOV if and only if:

∠(x𝐵, d̂) = ∠(𝜓 cos(𝜃) + e3 sin(𝜃), d̂) ≤ 𝛼

⇔ [𝜓 cos(𝜃) + e3 sin(𝜃)] · d̂ ≥ cos(𝛼)

⇔ [𝜓 · d̂] cos(𝜃) + [e3 · d̂] sin(𝜃) ≥ cos(𝛼).

(3.27)

Define 𝑅 =

√︁
[𝜓 · d̂]2 + [e3 · d̂]2. We distinguish two cases:

1. 𝑅 < cos(𝛼). In this case, the landmark lies too far aside, and the interval in

question is empty.

2. 𝑅 ≥ cos(𝛼). Now the constraint becomes

𝜓 · d̂
𝑅

cos(𝜃) +
e3 · d̂
𝑅

sin(𝜃) ≥ cos(𝛼)

𝑅

⇔ ∠(

[︃
𝜓 · d̂
𝑅

,
e3 · d̂
𝑅

]︃
⏟ ⏞

unit vector

, [cos(𝜃), sin(𝜃)]) ≤ arccos

(︂
cos(𝛼)

𝑅

)︂
(3.28)

Recall we seek the set of 𝜃 ∈ [−𝜋
2
, 𝜋
2
] satisfying the equation above. To this end,

we define

∆ := arccos

(︂
cos(𝛼)

𝑅

)︂
∈ [0,

𝜋

2
),

and

𝜃𝑐 := 𝑎𝑡𝑎𝑛2

(︃
e3 · d̂
𝑅

,
𝜓 · d̂
𝑅

)︃
∈ (−𝜋, 𝜋].

We distinguish two sub-cases:

(a) If 𝜃𝑐 > 𝜋
2
+∆ or 𝜃𝑐 < −𝜋

2
−∆, then the interval in question is empty - the

landmark lies behind the possible fields of view.

(b) Otherwise, the interval of feasible elevation angles 𝜃 is

[𝐵(𝜃𝑐 −∆), 𝐵(𝜃𝑐 +∆)], where 𝐵(𝜃) := −𝜋
2
∨ (

𝜋

2
∧ 𝜃).

70

Theorem 7. For an arbitrary point along the path, say corresponding to parameter

𝑠 ∈ [0, 𝑆𝑒𝑛𝑑], the requirement that the elevation angle of the body x axis of the quadrotor

lies in interval [𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥] ⊆ [−𝜋
2
, 𝜋
2
] induces a convex constraint on the square speed

profile ℎ.

Proof. As noted in Equation (3.24), the total thrust vector c(𝑠) at a given point is

an affine function of the square speed profile. Given c(𝑠), the body z and x axes of

the vehicle are
z𝐵(𝑠) =

c(𝑠)

||c(𝑠)||2
and

x𝐵(𝑠) =
𝜓⊥(𝑠)× c(𝑠)

||𝜓⊥(𝑠)× c(𝑠)||2
,

(3.29)

respectively, where 𝜓⊥ := e3 × 𝜓(𝑠). The elevation angle of the body x axis lies in

interval [𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥] precisely when x𝐵(𝑠) belongs to the (pointed) two dimensional

convex cone 𝒦 delimited by rays

𝜂𝑚𝑎𝑥 = {𝑡 (𝜓(𝑠) cos(𝜃𝑚𝑎𝑥) + e3 sin(𝜃𝑚𝑎𝑥)) | 𝑡 ≥ 0},

and

𝜂𝑚𝑖𝑛 = {𝑡 (𝜓(𝑠) cos(𝜃𝑚𝑖𝑛) + e3 sin(𝜃𝑚𝑖𝑛)) | 𝑡 ≥ 0}.

(3.30)

Hence, the constraint is equivalent to requiring

𝜓⊥(𝑠)× c(𝑠)

||𝜓⊥(𝑠)× c(𝑠)||2
∈ 𝒦 ⇔ 𝜓⊥(𝑠)× c(𝑠) ∈ 𝒦 (3.31)

where the latter equivalence follows from the definition of a cone. Since 𝜓⊥(𝑠)× c(𝑠)

is an affine function of the square speed profile, and preimages of convex sets under

affine maps are convex, the result follows.

Finally, note that Condition (3.31) can be unravelled further. Indeed, 𝜓⊥(𝑠)×
may be interpreted as a projection onto the orthogonal complement of 𝜓⊥(𝑠) followed

by a rotation around 𝜓⊥(𝑠) by 𝜋/2. Thus, we get that Condition (3.31) is equivalent

to requiring that the projection of c(𝑠) onto the plane orthogonal to 𝜓⊥(𝑠) lies in the

71

angle delimited by rays 𝜂𝑚𝑖𝑛 and 𝜂𝑚𝑎𝑥 rotated by −𝜋/2 around 𝜓⊥(𝑠). The latter is

in turn equivalent to

c(𝑠) · p+(𝑠) ≥ 0 and c(𝑠) · p−(𝑠) ≤ 0,

where we recall the definitions

p+(𝑠) = (cos(𝜃𝑚𝑎𝑥)𝜓(𝑠) + e3 sin(𝜃𝑚𝑎𝑥))

p−(𝑠) = (cos(𝜃𝑚𝑖𝑛)𝜓(𝑠) + e3 sin(𝜃𝑚𝑖𝑛))

from Equation (3.21) for the sake of completeness.

Equipped with Theorems 6 and 7, we are in a position to derive a key structural

property of the PA-TOPP Problem (3.19) with conjunctive perception constraints.

Theorem 8. The perception constraints in Problem (3.19) induce a convex constraint

on the square speed profile.

Proof. Consider a point 𝑠 ∈ [0, 𝑆𝑒𝑛𝑑]. As before, let 𝜃 denote the elevation angle of

the quadrotor. According to Theorem 6, for any 𝑖 ∈ ℳ(𝑠), there exists an interval

[𝜃
(𝑖)
𝑚𝑖𝑛, 𝜃

(𝑖)
𝑚𝑎𝑥] so that l𝑖 lies within FOV when the quadrotor is at point 𝑠 along the path

if and only if 𝜃 ∈ [𝜃
(𝑖)
𝑚𝑖𝑛, 𝜃

(𝑖)
𝑚𝑎𝑥]. In case the latter is empty, the task is automatically

infeasible, and we henceforth disallow such situations.

As a result, all landmarks inℳ(𝑠) lie inside the FOV exactly when

𝜃 ∈
⋂︁

𝑖∈ℳ(𝑠)

[𝜃
(𝑖)
𝑚𝑖𝑛, 𝜃

(𝑖)
𝑚𝑎𝑥] = [max

𝑖∈ℳ(𝑠)
𝜃
(𝑖)
𝑚𝑖𝑛, min

𝑖∈ℳ(𝑠)
𝜃(𝑖)𝑚𝑎𝑥]. (3.32)

However, by Theorem 7, this amounts to a convex constraint on ℎ. The same argu-

ment holds regardless of the value of 𝑠 ∈ [0, 𝑆𝑒𝑛𝑑]: the perception constraint at each

individual point 𝑠 is convex when expressed in terms of ℎ. Since an arbitrary con-

junction of convex constraints amounts to an intersection of convex feasible regions,

which in turn is convex, the claim follows.

72

We now turn to several modelling implications of the statement above, as well

as how it allows us to handle a wider class of perception constraints. In particular,

the current statement of the problem involves a set of known, spatially-localized

landmarks. This is a realistic assumption if the quadrotor is navigating environments

thoroughly mapped in previous exploration missions, or if it is fully aware of its

artificially structured surroundings such as when performing routine infrastructure

monitoring tasks. Nevertheless, numerous missions require the agent to venture into

the unknown. In such a scenario, aforementioned assumptions fail, and we now discuss

how we might alleviate challenges that arise.

Roughly speaking, we now require having specified regions instead of just desig-

nated landmarks within field of view of the on-board camera. For example, consider

a quadrotor exploring a new environment. It uses a learned depth estimation module

to estimate positions of landmarks for future localization, and to which it initially

only receives a bearing [43]. It forms corresponding confidence sets of their individual

positions in the form of ellipses or polytopes, and requires those regions to stay within

view while traversing a planned path. Alternatively, leveraging recent developments

in semantic mapping and localization, we may wish the quadrotor to keep whole ob-

jects within its field of view [54]. We will now see that such generalized constraints

come at no extra computational cost given the results we had previously derived.

Theorem 9. Let ℒ = {𝒮1, . . . ,𝒮𝑁} denote a set of 𝑁 regions in the environment with

region 𝑖 specified as the convex hull of points in the finite set 𝒮𝑖 for all 1 ≤ 𝑖 ≤ 𝑁 .

Then, an arbitrary mapℳ : [0, 𝑆𝑒𝑛𝑑]→ 2ℒ designating the indices of regions required

to lie within field of view at each point along the path induces a convex constraint on

ℎ.

Proof. Indeed, defining a set of fictive landmarks ℒ̃ =
⋃︀

1≤𝑖≤𝑁 𝒮𝑖, and a modified map

ℳ̃ : [0, 𝑆𝑒𝑛𝑑]→ 2ℒ̃ defined by ℳ̃(𝑠) =
⋃︀
𝑖∈ℳ(𝑠) 𝒮𝑖, the statement follows directly from

Theorem 8. Here, we have implicitly used the observation that due to the convexity

of the field of view, a set of points in space fully lies within it if and only if its convex

hull does.

73

Next, we uncover some of the structural properties of Problem (3.20) with disjunc-

tive perception constraints. As promised at the end of Section 3.2.5, we shall start by

providing two examples of utility functions ℱ . We will delineate natural situations

in which these combinatorial, disjunctive constraints, induce a convex constraint on

the square speed profile.

Example. One simple example of such a function ℱ involves assigning a weight

𝑤𝑖 > 0 to every landmark 𝑖 ∈ ℒ, and defining

ℱ(𝑠, 𝑉) =
∑︁
𝑖∈𝑉

𝑤𝑖, 𝑉 ⊆ 𝑆. (3.33)

A “physical” interpretation of 𝑤𝑖 might involve visual discernability of the landmark

or an estimate of the probability with which it can be tracked successfully.

Example. Another illustrative example is the following. In monocular visual-

inertial navigation, it is typically more challenging to accurately estimate the trans-

lational rather than the rotational component of the pose of the vehicle. Consider,

again, a scenario in which there are 𝑁 landmarks in the environment, with known

positions with respect to the world frame. If we assume the agent can accurately

estimate its orientation using the gyroscope, its camera may be assumed to yield a

bearing measurement. We let

𝑓(l,x) =
l− x

||l− x||2
: R3 × R3 → 𝑆2 (3.34)

denote the function, giving the unit bearing vector from the vehicle with position x

to a landmark with position l. At any point 𝑠 along the path, the quadcopter can

capture a noisy measurement

y(𝑖)⏟ ⏞
𝑓(l(𝑖),𝛾(𝑠))+Δy(𝑖)

= 𝑓(l(𝑖), x⏟ ⏞
𝛾(𝑠)+Δx

) + 𝜖(𝑖)⏟ ⏞
meas. error

∀𝑖 ∈ℳ(𝑠), (3.35)

which upon linearization preceded by projection onto the tangent space of 𝑆2 at each

74

of 𝑓(l(𝑖), 𝛾(𝑠)), with a slight abuse of notation, reads

∆y(𝑖) =
𝜕𝑓

𝜕𝑥
(l(𝑖), 𝛾(𝑠)) ∆x+ 𝜖(𝑖) ∀𝑖 ∈ℳ(𝑠). (3.36)

Assuming, for the sake of simplicity, that 𝜖(𝑖) are independent random variables

distributed according to 𝑁(0,Σ(𝑖)), and an improper “flat” prior on ∆x, we have

that its posterior distribution upon taking bearing measurements of landmarks in set

𝑉 ⊆ℳ(𝑠) is normally distributed with information (inverse covariance) matrix

ℐ(𝑉) =
∑︁
𝑖∈𝑉

𝜕𝑓

𝜕𝑥
(l(𝑖), 𝛾(𝑠))𝑇 (Σ(𝑖))−1𝜕𝑓

𝜕𝑥
(l(𝑖), 𝛾(𝑠)). (3.37)

To minimize the error in our state estimate, we would like ℐ(𝑉) to be as “large” as

possible. Since ℐ(𝑉) ∈ 𝑆3×3 is a matrix-monotone function of 𝑉 , measures of its size

can include determinant, trace, and even the smallest eigenvalue. The latter,

ℱ(𝑠, 𝑉) := 𝑚𝑖𝑛𝐸𝑖𝑔(ℐ(𝑉)) (3.38)

is particularly appealing since it measures the inverse radius of the uncertainty ball

capturing the position of the agent.

Theorem 10. Assume that at any point 𝑠 along the path, there exists an elevation

angle of the body x axis of the quadrotor from which all the candidate landmarks in

ℳ(𝑠) are within FOV. Then, constraint (3.17) induces a convex constraint on the

square speed profile.

Proof. By the argument of the proof of Theorem 8, it suffices to show that the set of

feasible elevation angles at any particular point along the path is an interval. To this

end, consider an arbitrary 𝑠 ∈ [0, 𝑆𝑒𝑛𝑑], and let [𝜃(𝑖)𝑚𝑖𝑛, 𝜃
(𝑖)
𝑚𝑎𝑥] be the interval of elevation

angles for which landmark 𝑖 ∈ℳ(𝑠) is visible. By assumption,

𝜃0 ∈
⋂︁

𝑖∈ℳ(𝑠)

[𝜃
(𝑖)
𝑚𝑖𝑛, 𝜃

(𝑖)
𝑚𝑎𝑥]. (3.39)

75

Noting the elementary fact that

𝜃 ↦→ {𝑖 ∈ℳ(𝑠)|𝜃 ∈ [𝜃
(𝑖)
𝑚𝑖𝑛, 𝜃

(𝑖)
𝑚𝑎𝑥]} (3.40)

is a decreasing (increasing) function on [𝜃0,
𝜋
2
) ((−𝜋

2
, 𝜃0]) with respect to set inclusion,

and noting that ℱ(𝑠, ·) is an increasing function, the claim follows.

Remark 1. The assumption that all candidate landmarks are visible from a single

elevation angle at a given point along the path is somewhat strict. However, it will

hold if, at every point, we restrict attention to candidate landmarks ℳ(𝑠) that are

visible when the quadrotor is in a near-hover state.

3.5 Simulation Results

We now turn to studying the numerical performance of critical aspects of our al-

gorithm. We start by shedding light on the speed of computation/compression of

perception constraints, before venturing to show the relative performance of our pro-

posed algorithm for TOPP to a strong baseline method based on a general purpose

constrained trust-region nonlinear optimization solver [7].

3.5.1 Perception Constraint Generation Simulations

In this section, we give numerical results on the running time of the perception con-

straint generation and compression procedure. We generate a simulated environment

so that at every point of a densely discretized randomly chosen path of flat outputs,

we sample a large quantity of landmarks that are designed to lie within view when

the quadrotor is in a state of hover at the corresponding point along the path.

We perform timing results for two classes of constraints. The first involves the

conjunctive formulation (Problem 3.19), requiring the quadroter to keep a designated

set of landmarks within view. The second, disjunctive formulation (Problem 3.20)

involves the quadrotor maintaining at least ten landmarks within field of view at

all times - in our framework (Equation (3.17)), this amounts to choosing ℱ(𝑠, 𝑉) =

76

|𝑉 | and 𝜆𝑚𝑖𝑛 ≡ 10. The results for numbers of discretization points up to 240 in

increments of 40, and numbers of candidate landmarks up to 300 in increments of 60

are given in Tables 3.1 and 3.2 and corresponding figures lying below them. All times

are reported in microseconds, and each data point is the average of five runs.

𝑁ind

𝑁disc 40 80 120 160 200 240

50 298 569 837 1089 1315 1580
100 562 1084 1559 2072 2600 2981
150 818 1569 2336 3075 3568 3955
200 1064 2097 3049 3468 4178 4875
250 1308 2557 3385 3915 4962 5828
300 1571 2784 3632 4803 5812 7010

Table 3.1: Conjunctive Constraint Generation [𝜇𝑠]

Figure 3-2: Timing Results for Conjunctive Constraint Generation

Plots in Figures 3-2 and 3-3 confirm that the running time of the two algorithms

is almost linear in the number of discretization points. Furthermore, the perception

constraints can be calculated independently for different points. Extraploting from

graphs above, for a single discretization point, and as much as 300 candidate land-

marks, the time required to compute perception constraints is tens of microseconds.

77

𝑁ind

𝑁disc 40 80 120 160 200 240

50 648 1036 1510 1996 2351 3524
100 1078 2078 2980 4022 4783 5552
150 1624 3046 4755 5574 6712 7657
200 2139 4326 5575 6982 8345 10094
250 2724 4987 7206 8434 10158 12154
300 3237 6171 7914 10044 12203 14579

Table 3.2: Disjunctive Constraint Generation [𝜇𝑠]

Figure 3-3: Timing Results for Disjunctive Constraint Generation

The practical significance of this result is that by using a highly parallelized archi-

tecture, such as a GPU, the running time of perception constraint generation would

be reduced further. Nevertheless, even without such sophisticated implementations,

the current one is able to compress a nonlinear optimization problem specificiation

with tens of thousands of perception constraints into one with just a few hundred.

Typically, nonlinear optimization solvers have running time complexity that scales

super-linearly with the number of constraints. In these scenarios, our algorithm of-

fers significant downstream computational savings at a neglible cost.

78

3.5.2 Comparison with Generic Nonlinear Optimization Base-

line

path length [m] 8.3 8.3 8.4 9.7
b-line execution time [s] 3.14 3.36 3.58 3.76
our execution time [s] 4.49 3.66 3.42 5.12
b-line compute time [s] 5.3× 103 9.0× 103 5.1× 103 4.7× 103

our compute time [s] 6.8× 10−2 7.3× 10−2 9.4× 10−2 9.1× 10−2

Table 3.3: Performance relative to Baseline Method

The aim of this subsection is a comparison of the quality of solutions to Problems

3.19/3.20 generated by our algorithm with those of a strong baseline method based

on a general-purpose nonlinear optimization solver. The latter will produce feasible

trajectories that often exceed the performance of ones of our algorithm. However,

whereas the compute time of the baseline method is on order of magnitude of hours

for a single problem instance, our algorithm runs in a fraction of a second.

First, we describe the algorithm we use for the baseline procedure, which might

be of independent interest. We represent the square speed profile as a piecewise

polynomial function consisting of 𝑁 = 25 segments (not to be confused with the

discretization points at which we enforce various constraints), each formed as a linear

combination of Bernstein basis polynomials of degree 𝑑 = 5. In this representation,

the problem amounts to finding optimal coefficients encoding the linear combination

of bases for each segment. Perception constraints, speed bounds, and bank angle con-

straints are enforced at all discretization points, whereas thrust bounds are enforced

at every second discretization point. Finally using the former ingredients for tran-

scription of Problem 3.19/3.20, we employ a constrained trust region optimization

algorithm [7].

In particular, we illustrate the relative performance of the two algorithms on the

task of traversing a randomly generated path of length approximately eight meters,

requring the quadrotor to start and finish at near-hover states (vanishing speed, and

bank angle not exceeding 2∘). At each discretization point, we sample a random set

79

of points in the environment and enforce the perception constraint that at least 10 of

these be within field of view when the quadrotor is at the corresponding point along

the path. The specific thrust of each of the four motors of the robot is approximately

1.5𝑔, and the FOV angle is 𝜋
4

radians.

Figure 3-4: Example where Regularized-TOPP algorithm outperforms baseline

Figure 3-5: Example where baseline outperforms Regularized-TOPP

3.5.3 Dependence of Scaling and Penalty Hyperparameter

In this subsection we consider the effects of scaling the square speed profile on a single

randomly generated problem instance. Figure 3-6 illustrates the execution time of

the trajectory as a function of the regularization parameter, while Figure 3-7 shows

80

the largest 𝛼 in the range [0, 1] (discretized into 50 equally spaced points) at which

all constraints are satisfied. Note in particular, the elbow-like shape of the graph in

Figure 3-6. It shows that when the regularization term is too weak, the intermediate

profile it too aggressive at some point along the path and the whole profile has to

be scaled down by a significant factor. On the other hand, past a given point, the

regularization term precludes the profile from being aggressive where it can afford to

be so. The value of 𝜆 is the only hyperparameter of the algorithm that has to be

tuned. In our expriments we used the value of 10−3.

Figure 3-6: Traversal time of path as a function of regularization factor

Figure 3-7: Required scaling factor versus regularization factor

81

3.6 Conclusion

We considered the perception-aware time optimal path parametrization problem for

quadrotors. We showed how to losslessly compress the number of perceptions con-

straints in the resulting optimization problem, making this procedure useful for any

gradient descent optimization scheme that uses time superlinear in the horizon of

the problem to calculate search directions. Finally we showed how to transform the

solution of a convex relaxation problem of the original problem to one feasible for the

full rigid body dynamics of the quadrotor.

82

Chapter 4

Joint Landmark Selection and Time

Optimal Path Parametrization for

High-Speed Vision-Aided Navigation

4.1 Introduction

To avoid fatal crashes, fast flight in time-critical missions demands maintaining ac-

curate current state estimates at all times. However, relating raw, and often high-

dimensional, measurements of sensors on board an MAV to its state involves several

stages of processing. Each stage requires computation, which in turn produces a de-

lay. The larger the delay, the smaller the agility of maneuvers within the perception-

actuation limits of the agent. This chapter develops efficient algorithms for designing

near-time-optimal trajectories with consideration of such limits. It serves as a step-

ping stone towards allowing robotic platforms execute missions at operational speeds

while ensuring their safety.

Data association is one of the core challenges of landmark-based visual naviga-

tion. It involves determining which subset of pixels of an image taken at one point

in space and time registers the same region in the environment (namely, a landmark)

as another, usually different, subset of pixels of an image taken at a different point in

83

Figure 4-1: An MAV navigating an indoor environment. The selection of landmarks
in the environment that allow the fastest execution of the path is shown in green.

space and time. When the vantage points of the pair of images are distant, one often

has to resort to re-detecting and matching projections of landmarks across the differ-

ent frames. Despite tremendous progress in improving the efficiency and robustness

of the latter procedure [3, 21, 83, 84], it still carries a non-negligible computational

burden. In some applications, such as structure from motion [2, 79], this seems dif-

ficult to avoid. However, in visual odometry, successive images are captured from

proximate vantage points, allowing for a significantly more efficient approach to data

association [44].

The Lucas-Kanade-Tomasi feature tracker [71] is a popular, computationally effi-

cient, approach to measuring the change in bearing to a particular landmark between

successive images. It is an iterative search method, with the area of search constrained

by some understanding of the maximum distance between projections of landmarks

in consecutive frames. As a result, the computational burden of such a method of

data association grows with the range of motion underwent by tracked features. In

general, higher feature speeds make the tracking task more difficult for two reasons.

Firstly, the area of search has to be suitably increased. Second, larger projection

speeds are increasingly afflicted by motion blur.

This motivates us to consider a problem at the intersection of landmark selection

and motion planning: which subset of landmarks of desired cardinality should the

84

agent track, so it can traverse a given geometric path in minimum time subject to

maintaining projection speeds of selected landmarks below a specified threshold. The

upper bound on projection speed serves as a proxy for an upper bound on the compu-

tational burden of data association (i.e. feature tracking). Similarly, the cardinality

constraint captures the fact that tracking a larger set of landmarks leads to more

visual measurements, which in turn yields more accurate state estimates. Therefore,

our problem involves both a continuous and discrete optimization component. The

continuous one effectively amounts to finding the time-optimal scheduling of accel-

erations and decelerations along the path that respect the actuation and perception

constraints of the vehicle. The discrete part involves choosing the subset of perception

constraints which allow for the fastest possible execution time.

Before shedding light on related work, we pause to answer a natural question:

why not use additional sensors, such as an inertial measurement unit, to guide the

search for reprojections of landmarks? Indeed, such an approach is viable. However,

it introduces several practical challenges. Firstly, measurements from the IMU have

to be properly synchronized with those of the camera [34]. This makes the state esti-

mation module more complex. Second, such a method would still leave unanswered

the problem of dealing with motion blur. Finally, the reliance on IMU would leave

open the challenge of how to behave should it fail.

Landmark selection alone pertains to scenarios where the robot must select a set

of future visual measurements of given cardinality without altering the trajectory

it follows. In this case, upper bounds on cardinality arise from the desire to limit

the computational complexity of optimization algorithms that have to run in real

time. Some of the earliest works in this direction, such as [40], considered select-

ing a cardinality-constrained subset of known landmarks lying within field of view

of the camera on board a UAV in order to minimize the uncertainty of a weighted

combination of components of its pose. Similarly, [87] dealt with the problem of se-

lecting measurements of projections of landmarks triangulated throughout a SLAM

mission that allow the most accurate estimate of the future pose of the camera. The

heart of their procedure involved selecting a triplet of previously triangulated land-

85

marks whose stripped observability matrix has the largest minimal singular value.

Their subsequent work [86] resulted in an approximation algorithm for selecting a

cardinality-constrained subset of landmarks that maximize the latter quantity. Re-

latedly, [8] addressed the task of enhancing the state estimate obtained from inertial

measurements with those of a camera registering the change in bearing to previ-

ously unknown landmarks in the environment. Their algorithm chooses measuring

the bearing to a near-optimal subset of approximately localized landmarks that are

anticipated to remain within field of view.

There have been a couple of recent papers closely related to the problem we

consider here. As mentioned in chapter 3, [19, 39] plan trajectories for quadrotors in

a receding horizon fashion, incorporating the penalty on the magnitude of the speed

of the projection of a specified landmark into the objective function minimized at

each decision step. As a result, their method handles the latter class of bounds as a

soft constraint, and cannot guarantee the projection speed lies below a set threshold.

In general, problems involving discrete (measurement/landmark) selection compo-

nents are computationally challenging to solve, with various gradations of hardness.

One particularly relevant problem to informative sensor selection is the maximum

cover problem (MCP) [55]. MCP addresses selecting a given number of elements of a

family of subsets with the largest union. Though efficient approximation algorithms

for this NP-hard problem do exist, it is hard to approximate with arbitrary precision

by a polynomial time algorithm [22]. Other relevant complexity-theoretic hardness

results include [11,78,85].

Approximation algorithms are ways of dealing with combinatorially-difficult prob-

lems. For budgeted maximization problems, one of the most common tools in robotics

involves submodularity of objective functions, capturing a notion of diminishing re-

turns [52,68]. In many ways, what concavity is for continuous maximization, submod-

ularity is for discrete maximization. Even when functions are not submodular, it is

possible to give approximation guarantees using the notion of approximate submod-

ularity, a measure of how far a given function is from being a submodular one [81].

Another line of research uses the notion of discrete curvature [29, 77]. The latter

86

intuitively captures the distance of a given set function from simply being the sum of

its parts.

Contributions

This chapter has several contributions on the theoretical and practical front. On

the practical end, algorithms developed in this chapter allow for a computationally

efficient algorithm for guiding the focus of a vision-driven vehicle on regions of its

environment that let it traverse a specified path as fast as possible while maintaining

accurate up-to-date state estimates at all times. Unlike previous approaches, our

method satisfies hard perception constraints, which we believe to be necessary to

ensure safety of the vehicle. We also find that our algorithm produces solutions

that are empirically close to ones output by an exponential-time globally-optimal

algorithm.

On the theoretical end, we separate two different contributions. The first involves

a separation principle, somewhat akin to that of [81], of computing the optimal square

speed profile and selecting the optimal subset of landmarks. Second, we provide a

novel take on the underlying combinatorial optimization problem, viewing it as a

noisy version of a non-combinatorial one. This is to alleviate the fact that we are

dealing with a problem whose naive generalizations are NP-hard to approximate to

within an arbitrary constant factor [11, 78]. Roughly speaking, the level of noise

controls the approximation quality of our algorithm; lower noise leads to stronger

optimality bounds. This allows us to develop strong suboptimality guarantees for a

subclass of problems we consider. Results of this chapter are a substantial extension

of the conference paper [75].

4.2 Problem Statement

This section builds up the joint landmark selection and time optimal path parametriza-

tion (JLS-TOPP) problem. As in chapter 3, we start by describing dynamical aspects

of the path traversal task, followed by a general family of pertinent perception con-

87

straints. After translating latter requirements into those on the square speed profile,

we give a compact formulation of the JLS-TOPP problem.

4.2.1 Geometric Path and Dynamic Model

We focus on regularly-parametrized geometric paths

(𝛾,R) : [0, 𝑆𝑒𝑛𝑑]→ R3 × 𝑆𝑂(3), (4.1)

that specify both positions and orientations of the vehicle. Additionally, we assume

the agent can execute any such path in a quasi-static manner. The latter two re-

quirements implicitly restrict both the nature of such paths, as well as the type of

vehicles that can traverse them. One viable example of such an agent-path coupling

is a kinematic plane (Equation 2.1), together with a translational path which implic-

itly specifies the orientation of the vehicle by aligning its body x and z axes with

the projection of its direction of motion onto the horizontal plane and the z axes of

the world frame, respectively. A more general class of agents include fully-actuated

MAVs, such as hexarotors with tilted motors [53]. Their dynamics are modelled as

⎡⎢⎢⎢⎢⎢⎢⎣
ẋ

v̇

𝑅̇

𝜔̇

⎤⎥⎥⎥⎥⎥⎥⎦
⏟ ⏞

q̇

=

⎡⎢⎢⎢⎢⎢⎢⎣
v

g

𝑅[𝜔]×

−𝐽−1 𝜔 × 𝐽𝜔

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
0 0

𝑅 0

0 0

0 𝐽−1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎣c
𝜏

⎤⎦
⏟ ⏞

effective input u

, (4.2)

where the effective input u ∈ R6 is subject to suitable convex membership constraints

determined by thrust bounds and the geometric configuration of the motors.

4.2.2 Perception Model

We assume the relative pose between the agent and its on-board camera (WLOG

with unit focal length), given by the transformation (𝐵t𝐶 ,
𝐵R𝐶), is fixed. When the

88

pose of the agent is (𝑊 t𝐵,
𝑊R𝐵) = (𝛾(𝑠),R(𝑠)), landmark 𝑊 l𝑖 has coordinates

𝐶l𝑖(𝑠) =
𝐶R𝐵

𝐵R𝑊 (𝑠)(𝑊 l𝑖 − 𝛾(𝑠)−R(𝑠)𝐵t𝐶)⏟ ⏞
function of 𝑠 and 𝑊 l𝑖 only

(4.3)

with respect to 𝐶, the reference frame of the camera, and is captured as point[︁
𝐶 l𝑖(𝑠)1
𝐶 l𝑖(𝑠)3

,
𝐶 l𝑖(𝑠)2
𝐶 l𝑖(𝑠)3

]︁𝑇
.

4.2.3 Perception Constraints

We are given a set of landmarks with known static positions with respect to the world

frame:

ℒ = {𝑊 l1, ...,
𝑊 l𝑛}. (4.4)

For most of this chapter, we assume that all landmarks in ℒ remain within field of

view throughout the traversal of the path. This is a statement about the geometric

relationship of (𝛾(·), 𝑅(·)) with ℒ, and involves no component of decision-making.

Such an assumption may fail to hold in obstacle-rich environments where landmarks

often get occluded. At the end of Section 4.4, we show how to handle this issue.

The agent can successfully track a landmark whose projection speed lies below

a set threshold 𝜋𝑚𝑎𝑥. Equation (4.3) readily implies that for all 1 ≤ 𝑖 ≤ 𝑛, the

projection speed of l𝑖 is below 𝜋𝑚𝑎𝑥 if and only if

𝑑𝑠

𝑑𝑡
(𝑠) ≤ 𝑈𝑖(𝑠) :=

𝜋𝑚𝑎𝑥⃒⃒⃒⃒
𝑑
𝑑𝑠
(𝐶l𝑖(𝑠)/(𝐶l𝑖(𝑠) · e3))

⃒⃒⃒⃒
2

∀𝑠 ∈ [0, 𝑆𝑒𝑛𝑑]. (4.5)

Defining 𝑀𝑖 := 𝑈2
𝑖 , the latter is equivalent to the following constraint on the square

speed profile (recall ℎ(𝑠) ≡ (𝑑𝑠
𝑑𝑡
(𝑠))2)

ℎ(𝑠) ≤𝑀𝑖(𝑠) ∀𝑠 ∈ [0, 𝑆𝑒𝑛𝑑]. (4.6)

To specify perception constraints, we introduce a monotonically increasing set func-

tion

ℱ : 2ℒ → [0,∞). (4.7)

89

Similarly to chapter 3, ℱ(𝑉) denotes the utility of being able to track projections of

all landmarks in the set 𝑉 ⊆ ℒ while traversing the path. The monotonicity of ℱ
captures the intuitive property that tracking a larger set of landmarks yields more

measurements, and thus results in more accurate state estimates. Ultimately, the

perception constraint amounts to the requirement

ℱ(𝑉) ≥ 𝜆𝑚𝑖𝑛 (4.8)

for a fixed 𝜆𝑚𝑖𝑛 > 0. The value of 𝜆𝑚𝑖𝑛 serves as a lower bound on a suitable

localization metric [9].

4.2.4 Mathematical Formulation

Denote our agent by 𝒜. We seek the shortest execution time of the geometric path

(𝛾(·), 𝑅(·)) by 𝒜 that is (i) dynamically feasible, and (ii) maintains the projection

speed of each landmark in some fixed subset 𝑉 ⊆ ℒ, with ℱ(𝑉) ≥ 𝜆𝑚𝑖𝑛, onto the

canvas of the camera on-board 𝒜 below a specified threshold 𝜋𝑚𝑎𝑥. The tradeoff is

that larger subsets of landmarks get closer to satisfying the perception constraint,

while imposing stricter bounds on the square speed profile, and thus increasing the

traversal time of the path. In summary, the problem reads:

minimize
ℎ:[𝑎,𝑏]→[0,∞)

𝑉⊆ℒ

∫︁ 𝑏

𝑎

𝑑𝑠√︀
ℎ(𝑠)

subject to 𝐷+ℎ(𝑠) ≤ 𝑓+(𝑠, ℎ(𝑠)), 𝑠 ∈ [𝑎, 𝑏),

𝐷−ℎ(𝑠) ≥ 𝑓−(𝑠, ℎ(𝑠)), 𝑠 ∈ [𝑎, 𝑏),

0 ≤ ℎ(𝑠) ≤ min
𝑗∈𝑉

𝑀𝑗(𝑠), 𝑠 ∈ [𝑎, 𝑏]

ℱ(𝑉) ≥ 𝜆𝑚𝑖𝑛.

(4.9)

90

4.3 Algorithms

We describe three related methods for solving Problem 4.9. A solution consists of

two components: a subset of landmarks 𝑉 with ℱ(𝑉) ≥ 𝜆𝑚𝑖𝑛, and a dynamically

feasible square speed profile which allows tracking selected landmarks. We numeri-

cally represent our estimate of the optimal square speed profile, ℎ*, by its sequence of

values (ℎ̂𝑖)
𝑁
𝑖=0 at a set of discretization points 𝐷 = 𝐷([𝑎, 𝑏], (𝑠𝑖)

𝑁
𝑖=0) of the path. We

approximate the execution time of a profile (ℎ𝑖)
𝑁
𝑖=0 by

∑︀𝑁−1
𝑖=0

2(𝑠𝑖+1−𝑠𝑖)√
ℎ𝑖+1+

√
ℎ𝑖

.

All three methods can be formulated as two-stage procedures, the first stage being

common to all three. We first compute the time optimal square speed profile for

tracking every landmark individually. This is done using Algorithm 1 from chapter

2. Knowledge of the location of the landmark allows us to translate the bound on

its maximal projection speed to a pointwise bound on the square speed profile as

obtained from Equation (4.5). As a reminder, the algorithm calculates the optimal

square speed profile in a pair of backward and forward passes along the sequence

of discretization points, incrementally computing for each point the highest speed

which can be reached from the start feasibly and from which there exists a feasible

trajectory to reach the goal.

In Section 4.4, we will see that the optimal profile for tracking a subset of land-

marks is just the pointwise minimum of the optimal profiles for tracking its individual

elements. Hence, the second stages of the three methods primarily differ on how they

use the information obtained from the first stage of the algorithm. The first method,

developed specifically for modular functions ℱ (i.e. for which ℱ(𝑉) ≡∑︀𝑣∈𝑉 𝑤𝑣 with

𝑤(·) > 0), recasts the problem as a mixed integer linear program, which can then

be solved by off-the-shelf packages, such as Gurobi [25]. The second method, “K-

Fastest”, sorts the optimal profiles associated with landmarks in order of increasing

execution time, and selects the 𝑘 fastest profiles that together satisfy the perception

constraint. The third method, “Incremental-Greedy”, starts with an empty set of

landmarks and incrementally adds an unselected landmark which induces a minimal

increase in execution time, until the perception constraint is satisfied.

91

4.3.1 Mixed Integer Formulation

The mixed integer formulation is suitable for producing ground truth solutions in the

following family of scenarios. Each landmark l𝑖 is assigned a weight 𝑤𝑖 > 0, and we

choose some 𝜆𝑚𝑖𝑛 > 0 and ℱ(𝑉) =
∑︀

𝑖∈𝑉 𝑤𝑖. Let the time-optimal profile for tracking

landmark l𝑖 alone be ℎ̂
(𝑖)

for 1 ≤ 𝑖 ≤ 𝑛.

The task of selecting the optimal subset 𝑉 together with the optimal speed profile

can be recovered from the following binary mixed integer linear program:

min
(𝜁1:𝑛, 𝑦1:𝑁)

𝑁∑︁
𝑖=1

(𝑠𝑖 − 𝑠𝑖−1) 𝑦𝑖

𝑠.𝑡. 𝑦𝑖 ≥ 𝜁𝑗
2√︁

ℎ̂
(𝑗)
(𝑠𝑖−1) +

√︁
ℎ̂
(𝑗)
(𝑠𝑖)

∀ 1 ≤ 𝑖 ≤ 𝑁

𝑛∑︁
𝑗=1

𝑤𝑗𝜁𝑗 ≥ 𝜆𝑚𝑖𝑛

𝜁 ∈ {0, 1}𝑛, 𝑦 ∈ R𝑁 .

(4.10)

Denoting the optimal solution by (𝜁*1:𝑛, 𝑦
*
1:𝑁), selected landmarks may be read off via

𝑉 * = {𝑗 | 𝜁*𝑗 = 1}, (4.11)

whereas the optimal square speed profile may be approximated as

ℎ*(𝑠𝑖) =
1

(𝑦*(𝑠𝑖))2
∀1 ≤ 𝑖 ≤ 𝑁. (4.12)

Here, the approximation error vanishes as the maximal spacing between consecutive

elements of 𝐷 tends to zero.

This approach, however, has worst-case running time exponential in 𝑛. The re-

maining two algorithms will sacrifice optimality in favour of substantial gains in com-

putational efficiency. They will also be able to handle the general class of perception

constraints described in Section 4.2.3.

92

4.3.2 K-Fastest Algorithm

The K-Fastest algorithm is the simplest approach we consider. The complexity of

computing optimal profiles for tracking all landmarks in ℒ (|ℒ| = 𝑛) individually

across 𝑝 processors is 𝑂(𝑁𝑛/𝑝), and that of sorting them in order of increasing du-

ration is 𝑂(𝑛 log 𝑛). Starting from an empty set, K-Fastest adds landmarks to 𝑉

in order of increasing execution time of corresponding profiles until the perception

constraint is satisfied. Adding an element to 𝑉 involves two bookkeeping operations:

updating the current profile and computing the incremental gain of ℱ in 𝑂(𝑁) and

𝑂(𝐺) time, respectively. For modular functions ℱ , for example, 𝐺 = Θ(1). Bringing

everything together, the running time of K-Fastest is 𝑂(𝑛(𝑁 + log 𝑛+𝐺)).

Algorithm 3: K-Fastest Algorithm
Data: 𝐷 = (𝑠𝑖)

𝑁
𝑖=0, (𝑊 l𝑗)

𝑛
𝑗=1, 𝑓+, 𝑓−, ℱ

Result: (ℎ̂(𝑠𝑖))
𝑁
𝑖=0, 𝑉 ⊆ ℒ

for 𝑗 = 1 to 𝑛 do
(𝑀𝑗(𝑠𝑖))

𝑁
𝑖=0 ← 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑(𝐷, 𝛾,𝑊 l𝑗)

(ℎ̂
(𝑗)
(𝑠𝑖))

𝑁
𝑖=0, 𝑇

𝑗 ← Backward-Forward(𝐷,𝑀𝑗, 𝑓
+, 𝑓−)

end
𝜋 ← 𝑆𝑜𝑟𝑡((𝑇 𝑗)𝑛𝑗=1)
𝑉 ← ∅
𝑖← 0
ℎ̂← +∞
while ℱ(𝑉) < 𝜆𝑚𝑖𝑛 do

ℎ̂← ℎ̂ ∧ ℎ̂(𝜋(𝑖))
𝑉 ← 𝑉 ∪ {𝑖}
𝑖← 𝑖+ 1

end
return (ℎ̂(𝑠𝑖))

𝑁
𝑖=0, 𝑉

4.3.3 Incremental Greedy Algorithm

A potential source of suboptimality in the K-Fastest algorithm is that it selects ele-

ments of 𝑉 oblivious to how they interact with one another to influence the execution

time of the resulting speed profile. The Incremental Greedy algorithm seeks to par-

tially address this apparent blind spot. While the perception constraint still has not

93

been satisfied, the present algorithm adds the single unselected landmark that induces

the smallest increment in execution time of the intermediate profile. As a result, the

complexity of this stage of the algorithm is quadratic in the number of landmarks,

and so its cumulative running time is 𝑂(𝑛2𝑁 + 𝑛𝐺). Due to the quadratic scaling

with 𝑛, Incremental Greedy is in theory an order of magnitude slower than K-Fastest.

However, it has the potential to detect combinatorial interactions between the various

landmarks that K-Fastest ignores.

Algorithm 4: Incremental Algorithm
Data: 𝐷 = (𝑠𝑖)

𝑁
𝑖=0, (𝑊 l𝑗)

𝑛
𝑗=1, 𝑓+, 𝑓−, ℱ

Result: (ℎ̂(𝑠𝑖))
𝑁
𝑖=0, 𝑉

for 𝑗 = 1 to 𝑛 do
(𝑀𝑗(𝑠𝑖))

𝑁
𝑖=0 ← 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑(𝐷, 𝛾,𝑊 l𝑗)

(ℎ̂
(𝑗)
(𝑠𝑖))

𝑁
𝑖=0 ← Backward-Forward(𝐷,𝑀𝑗, 𝑓

+, 𝑓−)
end
𝑉 ← ∅
ℎ̂← +∞
while ℱ(𝑉) < 𝜆𝑚𝑖𝑛 do

𝑗𝑜𝑝𝑡 ← null
𝜏 ′𝑜𝑝𝑡 ← +∞
for 𝑗′ ∈ {1, 2, · · · , 𝑛} ∖ 𝑉 do

ℎ̃← ℎ̂ ∧ ℎ̂(𝑗)
𝜏 ′ ← ∑︀𝑁−1

𝑖=0
2(𝑠𝑖+1−𝑠𝑖)√︁

ℎ̃
(𝑗)

(𝑠𝑖+1)+

√︁
ℎ̃
(𝑗)

(𝑠𝑖)

if 𝜏 ′ < 𝜏 ′𝑜𝑝𝑡 then
𝜏 ′𝑜𝑝𝑡 ← 𝜏 ′

𝑗𝑜𝑝𝑡 ← 𝑗′

end
end

ℎ̂← ℎ̂ ∧ ℎ̂(𝑗𝑜𝑝𝑡)
𝑉 ← 𝑉 ∪ {𝑗𝑜𝑝𝑡}

end
return (ℎ̂𝑖)

𝑁
𝑖=0, 𝑉

In the previous two algorithms, we assumed that calculating increments of ℱ is

not the computational bottleneck of the procedure. However, when all known efficient

(polynomial-time) algorithms can calculate ℱ only to within a constant factor 𝜑, we

may terminate the selection of landmarks the moment ℱ(𝑉) ≥ 𝜆𝑚𝑎𝑥/𝜑. This may

94

readily be translated into bicriteria guarantees [88] using analysis we delve into next.

4.4 Analysis

An overview of this section is as follows. First, we present a “separation principle”

involving a modular framework for calculating the optimal square speed profile and

selecting a favourable subset of landmarks. Then, we show that for straight line

motions, both the K-Fastest and Incremental Greedy algorithms have strong instance-

dependent suboptimality guarantees. At the end of the section, we show how to adapt

our algorithms for scenarios in which the selection of landmarks necessarily involves

changes due to occlusions by obstacles.

4.4.1 Separation Principle

We draw upon several results in [74] that tell us that for any fixed selection of land-

marks, the set of feasible square speed profiles is closed under: (a) pointwise suprema

and infima; and (b) convex combinations. The following claim justifies an efficient

method for recovering the optimal speed profile for tracking a desired subset of land-

marks from the optimal profiles for tracking each of its elements individually. One

practical significance of this result is that it makes a difference between the linear and

quadratic complexity of the K-Fastest algorithm.

Claim 1. Suppose the optimal square speed profile for tracking landmark 𝑗 is ℎ
(𝑗)

, for

𝑗 ∈ {1, 2, ..., 𝑛}. Then, the optimal square speed profile for tracking all landmarks in

the set 𝒮 = {𝑗1 < 𝑗2 < · · · < 𝑗𝑘} is given by

ℎ
(𝒮)

(𝑠) := min
1≤𝑟≤𝑘

ℎ
(𝑗𝑟)

(𝑠) ∀𝑠 ∈ [0, 𝑆𝑒𝑛𝑑].

Proof. Landmark 𝑗 can be tracked with profile ℎ if and only if the latter is dynamically

feasible and does not exceed 𝑀𝑗. Thus, the optimal such profile, ℎ𝑗, is the pointwise

supremum of all dynamically feasible profiles which are at most 𝑀𝑗. Additionally,

landmark 𝑗 can be tracked with any dynamically feasible profile ℎ such that ℎ ≤ ℎ
𝑗.

95

Let ℎ be the optimal profile for tracking all landmarks in 𝒮. Consider any 𝑗 ∈ 𝒮.

Since landmark 𝑗 can be tracked with ℎ, from the supremal characterization of ℎ𝑗, we

know that ℎ ≤ ℎ
𝑗. Since 𝑗 ∈ 𝒮 was arbitrary, ℎ is no greater than ℎ

(𝒮). Conversely,

the profile ℎ(𝒮) is dynamically feasible as a pointwise minimum of feasible profiles,

and furthermore, satisfies the desired upper bounds on the speed at every point of

the path, finishing the proof of the claim.

4.4.2 Algorithm Guarantees

In what follows, we will use 𝜏(·) to denote the function mapping any sequence of

square speed profiles to the execution time of their pointwise minimum:

𝜏(𝑝1, 𝑝2, ..., 𝑝𝑛) = 𝜏(𝑝1 ∧ 𝑝2 ∧ · · · ∧ 𝑝𝑛).

Furthermore, since 𝜏(ℎ) =
∫︀ 𝑆𝑒𝑛𝑑
𝑠=0

𝑑𝑠√
ℎ(𝑠)

, for every 𝜖 > 0 we have

𝜏(𝜖ℎ) =
𝜏(ℎ)√
𝜖
.

Also, 𝜏 is is monotonically decreasing: if ℎ1 ≥ ℎ2 then 𝜏(ℎ1) ≤ 𝜏(ℎ2).

Claim 2. Assume the zero profile ℎ ≡ 0 is feasible. For an arbitrary strictly positive

upper bound on the profile, say 𝑀 , let ℎ𝑀 be the optimal feasible square speed profile

that does not exceed 𝑀 . For an arbitrary 𝜖 > 0, define ℎ𝑀(1+𝜖) analogously. Then,

we have:
ℎ𝑀 ≤ ℎ𝑀(1+𝜖) ≤ (1 + 𝜖)ℎ𝑀

𝜏(ℎ𝑀(1+𝜖)) ≤ 𝜏(ℎ𝑀) ≤
√
1 + 𝜖 𝜏(ℎ𝑀(1+𝜖))

(4.13)

Proof. The inequality on the left hand side follows from the fact that any dynamically

feasible profile that does not exceed 𝑀 also does not exceed 𝑀(1 + 𝜖), together with

the characterization of ℎ𝑀(1+𝜖) as the pointwise supremum of the set of feasible profiles

that do not exceed the latter bound.

The inequality on the right hand side may be argued as follows. The convexity of

96

the set of feasible square speed profiles implies that

𝜖

1 + 𝜖
0 +

1

1 + 𝜖
ℎ𝑀(1+𝜖)

is a feasible square speed profile that does not exceed 𝑀 . The extremal characteri-

zation of ℎ𝑀 as the square speed profile that is the pointwise supremum of feasible

square speed profiles not exceeding 𝑀 settles the claim (the inequalities for 𝜏 follow

from remarks preceding the claim).

Corollary 1. In the setting of Claim 2, let 𝑃 and 𝑄 be two arbitrary upper bounds

on the square speed profile such that⃒⃒⃒⃒⃒⃒⃒⃒
𝑃

𝑄

⃒⃒⃒⃒⃒⃒⃒⃒
∞
,

⃒⃒⃒⃒⃒⃒⃒⃒
𝑄

𝑃

⃒⃒⃒⃒⃒⃒⃒⃒
∞
≤ 1 + 𝜖, (4.14)

and let ℎ𝑃 and ℎ𝑄 be the time-optimal dynamically feasible square speed profiles not

exceeding 𝑃 and 𝑄, respectively. Then⃒⃒⃒⃒⃒⃒⃒⃒
ℎ𝑃
ℎ𝑄

⃒⃒⃒⃒⃒⃒⃒⃒
∞
,

⃒⃒⃒⃒⃒⃒⃒⃒
ℎ𝑄
ℎ𝑃

⃒⃒⃒⃒⃒⃒⃒⃒
∞
≤ 1 + 𝜖. (4.15)

Proof. By virtue of relation (4.13), we have

ℎ𝑃 ≤ ℎ((1+𝜖)𝑄) ≤ (1 + 𝜖)ℎ𝑄

and similarly

ℎ𝑄 ≤ ℎ((1+𝜖𝑃)) ≤ (1 + 𝜖)ℎ𝑃 ,

and so the result follows.

The following theorem is one of the two key theoretical results of the chapter. It

paves the way for viewing our combinatorial problem as a noisy version of a non-

combinatorial one, where the level of noise translates into suboptimality guarantees.

Theorem 11. Let 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑛} and 𝑄 = {𝑞1, 𝑞2, ..., 𝑞𝑛} be two sets of square

speed profiles, referred to as 𝑝-profiles and 𝑞-profiles, respectively. Let ℱ : 2[𝑛] →

97

[0,∞) be a monotonically increasing set function and let 𝜆𝑚𝑖𝑛 be a given threshold.

Let 𝜖 > 0 be a positive real number such that⃒⃒⃒⃒⃒⃒⃒⃒
𝑝𝑖
𝑞𝑖

⃒⃒⃒⃒⃒⃒⃒⃒
∞
,

⃒⃒⃒⃒⃒⃒⃒⃒
𝑞𝑖
𝑝𝑖

⃒⃒⃒⃒⃒⃒⃒⃒
∞
≤ 1 + 𝜖

for all 1 ≤ 𝑖 ≤ 𝑛. In addition, assume that 𝑄 can be completely ordered 𝑞1 ≥ 𝑞2 ≥ ... ≥
𝑞𝑛: if 𝑖 < 𝑗 then 𝑞𝑖(𝑠) ≥ 𝑞𝑗(𝑠) for all 𝑠 ∈ [0, 𝑆𝑒𝑛𝑑]. Defining 𝑇

𝑃
(𝑘)
*

and 𝑇
𝑃

(𝑘)
*

to be the

execution times of the pointwise minimum of the optimal subset of 𝑝-profiles and the

subset of individually fastest 𝑝-profiles meeting the set constraint (4.8), respectively,

we have:

𝑇
𝑃

(𝑘)
*
≤ (1 + 𝜖)𝑇

𝑃
(𝑘)
*
. (4.16)

Proof. Let

𝒮 = {𝑝𝑖1 , 𝑝𝑖2 , . . . , 𝑝𝑖𝑙} (4.17)

be the set of 𝑝-profiles chosen by the K-Fastest algorithm, and let

𝒮* = {𝑝𝑗1 , 𝑝𝑗2 , . . . , 𝑝𝑗𝑘} (4.18)

be an optimal set of profiles. Assume

𝜏(𝑝𝑗𝑘) ≥ 𝜏(𝑝𝑗𝑟) ∀1 ≤ 𝑟 ≤ 𝑘, and 𝜏(𝑝𝑖𝑙) ≥ 𝜏(𝑝𝑖𝑟) ∀1 ≤ 𝑟 ≤ 𝑙. (4.19)

In other words, 𝑝𝑗𝑘 and 𝑝𝑖𝑙 are the slowest profiles in an optimal set of profiles and

those chosen by the K-Fastest algorithm, respectively.

We claim

𝜏(𝑝𝑗𝑘) ≥ 𝜏(𝑝𝑖𝑙). (4.20)

Indeed, assume this was not the case: 𝜏(𝑝𝑗𝑘) < 𝜏(𝑝𝑖𝑙). By the definition of the

K-Fastest algorithm, this would imply

𝒮* ⊆ 𝒮 ∖ {𝑝𝑖𝑙}, (4.21)

98

and since 𝒮* satifies the set constraint, the algorithm would have terminated by the

time it had to select the 𝑙-th profile, a contradiction. As a result, we have

𝜏(𝒮*) ≥ 𝜏(𝑝𝑗𝑘) ≥ 𝜏(𝑝𝑖𝑙). (4.22)

Consider the 𝑞-profiles 𝑞𝑖1 , 𝑞𝑖2 , . . . , 𝑞𝑖𝑙 matched with 𝑝𝑖1 , 𝑝𝑖2 , . . . , 𝑝𝑖𝑙 . Let 𝑞𝑖𝑚 be the

lowest, and therefore slowest, of the latter sequence of 𝑞-profiles:

𝑞𝑖𝑚(𝑠) ≤ 𝑞𝑖𝑟(𝑠) ∀𝑠 ∈ [0, 𝑆𝑒𝑛𝑑], ∀1 ≤ 𝑟 ≤ 𝑙. (4.23)

Then, for every 1 ≤ 𝑟 ≤ 𝑙, we have

𝑝𝑖𝑟 ≥
𝑞𝑖𝑟

1 + 𝜖
≥ 𝑞𝑖𝑚

1 + 𝜖
(4.24)

and so

𝑝𝑖1 ∧ 𝑝𝑖2 ∧ · · · ∧ 𝑝𝑖𝑙 ≥
𝑞𝑖𝑚
1 + 𝜖

(4.25)

implying that

𝜏(𝒮) ≤
√
1 + 𝜖 𝜏(𝑞𝑖𝑚). (4.26)

By assumption (4.19), we know

𝜏(𝑝𝑖𝑚) ≤ 𝜏(𝑝𝑖𝑙), (4.27)

implying

𝜏(𝑝𝑖𝑚) ≥ 𝜏((1 + 𝜖)𝑞𝑖𝑚) =
𝜏(𝑞𝑖𝑚)√
1 + 𝜖

. (4.28)

As a result,

𝜏(𝑞𝑖𝑚) ≤
√
1 + 𝜖 𝜏(𝑝𝑖𝑙). (4.29)

99

Finally, putting the latter observations together, we obtain

𝜏(𝒮) ≤
√
1 + 𝜖 𝜏(𝑞𝑖𝑚)

≤ (1 + 𝜖)𝜏(𝑝𝑖𝑙)

≤ (1 + 𝜖)𝜏(𝑝𝑗𝑘)

≤ (1 + 𝜖)𝜏(𝒮*).

(4.30)

The following theorem is the second core result of the chapter. It sheds light on

further structure underlying the apparent combinatorial difficulty of Problem (4.9).

Theorem 12. Consider the task in which the agent has to traverse a path 𝛾 with

constant orientation R with respect to the world frame. For this theorem, we assume

𝛾 is a segment of length 𝐿 that belongs to line 𝜌. Suppose the depth of all 𝑛 landmarks

lying within field of view of the on-board camera lies in the range [𝜅1𝐿, 𝜅2𝐿] at every

point along the path, where 0 < 𝜅1 ≤ 𝜅2 ≤ +∞. Then, the K-Fastest algorithm

produces a feasible square speed profile whose execution time is within a factor of(︁
1+1/𝜅1
1+1/𝜅2

)︁
of the optimum.

Proof. To avoid excessive notation, assume the origin of the reference frame of the

camera coincides with the origin of the body frame of the agent. This is also a

sound approximation in the setting where the dimensions of the agent are negligible

compared to its distance from landmarks in the environment. Note that⃒⃒⃒⃒⃒⃒⃒⃒
𝑑

𝑑𝑠

(︂
𝐶l

e3 · 𝐶l

)︂⃒⃒⃒⃒⃒⃒⃒⃒
2

=

⃒⃒⃒⃒⃒⃒⃒⃒
𝐶l′(e3 · 𝐶l)− 𝐶l(e3 · 𝐶l′)

(e3 · 𝐶l)2
⃒⃒⃒⃒⃒⃒⃒⃒
2

=

⃒⃒⃒⃒⃒⃒⃒⃒
e3 × (𝐶l′ × 𝐶l)

(e3 · 𝐶l)2
⃒⃒⃒⃒⃒⃒⃒⃒
2

.

(4.31)

Next, we have
𝐶l′ =

𝑑

𝑑𝑠
(R𝑇 (𝑊 l− 𝛾))

= (R′)𝑇 (𝑊 l− 𝛾)−R𝑇𝛾′

= −R𝑇𝛾′,

(4.32)

100

where the second and third equalities follow from assumptions that l is stationary

with respect to the world frame and that R is constant, respectively. Putting the

latter two observations together, we get⃒⃒⃒⃒⃒⃒⃒⃒
𝑑

𝑑𝑠

(︂
𝐶l

e3 · 𝐶l

)︂⃒⃒⃒⃒⃒⃒⃒⃒
2

=

⃒⃒⃒⃒⃒⃒⃒⃒
(R𝑇z𝐶)× ((−R𝑇𝛾′)× (R𝑇 (𝑊 l− 𝛾)))

((R𝑇z𝐶) · (R𝑇 (𝑊 l− 𝛾)))2
⃒⃒⃒⃒⃒⃒⃒⃒
2

=

⃒⃒⃒⃒⃒⃒⃒⃒
z𝐶 × (𝛾′ × (l− 𝛾))

(z𝐶 · (l− 𝛾))2
⃒⃒⃒⃒⃒⃒⃒⃒
2

.

(4.33)

We now claim vector z𝐶 × (𝛾′ × (l − 𝛾)) is constant for given l as a function of 𝑠.

Indeed, this follows from noting that

𝑑

𝑑𝑠
(z𝐶×(𝛾′×(l−𝛾))) = z′𝐶×(𝛾′×(l−𝛾))+z𝐶×(𝛾′′×(l−𝛾))+z𝐶×(𝛾′×(l−𝛾)′) = 0.

(4.34)

The first term vanishes since z𝐶 is constant, the second since 𝛾 is a straight line

segment parametrized by arc length (and so 𝛾′′ = 0), and the third due to the fact

that l is fixed (and so 𝛾′ × (l − 𝛾)′ = −𝛾′ × 𝛾′ = 0). As a result, the speed bound

imposed by the requirement of tracking landmark l𝑖 amounts to

ℎ(𝑠) ≤

⎛⎝ 𝜋𝑚𝑎𝑥⃒⃒⃒⃒⃒⃒
𝑑
𝑑𝑠

(︁
𝐶 l

e3·𝐶 l

)︁⃒⃒⃒⃒⃒⃒
2

⎞⎠2

= 𝑐𝑖 (z𝐶 · (l𝑖 − 𝛾(𝑠)))4
(4.35)

where

𝑐𝑖 =

(︂
𝜋𝑚𝑎𝑥

||z𝐶 × (𝛾′ × (l𝑖 − 𝛾))||2

)︂2

∈ R ∪ {∞} (4.36)

is a constant depending on landmark 𝑖. To finish off the proof, we will use the following

auxiliary result, which allows us to give an upper bound on the level of “noise” of our

algorithms in light of the paragraph preceding the statement of Theorem 11.

Lemma 2. Fix 0 < 𝑑, 0 < 𝑘1 < 𝑘2 ≤ ∞, and let {𝑓𝑘}𝑘∈[𝑘1,𝑘2] be a family of functions

on [0, 𝑑] defined via

𝑓𝑘(𝑥) = (𝑥+ 𝑘)4 ∀𝑥 ∈ [0, 𝑑], ∀𝑘 ∈ [𝑘1, 𝑘2]. (4.37)

101

Then, there exists a function 𝑔 : [0, 𝑑]→ (0,∞) and a family {𝛼𝑘}𝑘∈[𝑘1,𝑘2] of positive

real numbers such that for every 𝑘 ∈ [𝑘1, 𝑘2],⃒⃒⃒⃒⃒⃒⃒⃒
𝑓𝑘
𝑔𝛼𝑘

⃒⃒⃒⃒⃒⃒⃒⃒
∞
,

⃒⃒⃒⃒⃒⃒⃒⃒
𝑔𝛼𝑘
𝑓𝑘

⃒⃒⃒⃒⃒⃒⃒⃒
∞
≤ 1 + 𝑑/𝑘1

1 + 𝑑/𝑘2
. (4.38)

Proof. We start with the following observation. Given any pair of strictly positive

continuous functions 𝑓 and 𝑔 on [0, 𝑑], choosing

𝛼 =

(︃⃒⃒⃒⃒⃒⃒⃒⃒
𝑓

𝑔

⃒⃒⃒⃒⃒⃒⃒⃒
∞

⃒⃒⃒⃒⃒⃒⃒⃒
𝑔

𝑓

⃒⃒⃒⃒⃒⃒⃒⃒−1

∞

)︃1/2

(4.39)

we can ensure ⃒⃒⃒⃒⃒⃒⃒⃒
𝑓

𝛼𝑔

⃒⃒⃒⃒⃒⃒⃒⃒
∞
,

⃒⃒⃒⃒⃒⃒⃒⃒
𝛼𝑔

𝑓

⃒⃒⃒⃒⃒⃒⃒⃒
∞
≤
(︂⃒⃒⃒⃒⃒⃒⃒⃒

𝑓

𝑔

⃒⃒⃒⃒⃒⃒⃒⃒
∞

⃒⃒⃒⃒⃒⃒⃒⃒
𝑔

𝑓

⃒⃒⃒⃒⃒⃒⃒⃒
∞

)︂1/2

. (4.40)

Note that the upper bound in the latter inequality remains unchanged by scaling

either 𝑓 or 𝑔 by an arbitrary positive scalar. As a result, in order to settle the claim,

we may redefine 𝑓𝑘 via

𝑓𝑘(𝑥) =
(𝑥+ 𝑘)4

𝑘4
∀𝑥 ∈ [0, 𝑑], ∀𝑘 ∈ [𝑘1, 𝑘2]. (4.41)

In the same vein, it suffices to look for 𝑔 of the form

𝑔 = 𝑓𝑘 (4.42)

for a suitable value of 𝑘 ∈ [𝑘1, 𝑘2]. To this end, note that for any 𝑘𝑙 < 𝑘ℎ ∈ [𝑘1, 𝑘2]

𝑓𝑘ℎ(𝑥)

𝑓𝑘𝑙(𝑥)
=

(︂
𝑘𝑙
𝑘ℎ

)︂4(︂
𝑥+ 𝑘ℎ
𝑥+ 𝑘𝑙

)︂4

=

(︂
𝑘𝑙
𝑘ℎ

)︂4(︂
1 +

𝑘ℎ − 𝑘𝑙
𝑥+ 𝑘𝑙

)︂4

(4.43)

is a decreasing function of 𝑥 ∈ [0, 𝑑], with 𝑓𝑘ℎ (0)

𝑓𝑘𝑙 (0)
= 1, implying

⃒⃒⃒⃒⃒⃒⃒⃒
𝑓𝑘𝑙
𝑓𝑘ℎ

⃒⃒⃒⃒⃒⃒⃒⃒
∞

=
𝑓𝑘𝑙(𝑑)

𝑓𝑘ℎ(𝑑)
and

⃒⃒⃒⃒⃒⃒⃒⃒
𝑓𝑘ℎ
𝑓𝑘𝑙

⃒⃒⃒⃒⃒⃒⃒⃒
∞

= 1. (4.44)

102

As a result, we have

⃒⃒⃒⃒⃒⃒⃒⃒
𝑓𝑘
𝑔

⃒⃒⃒⃒⃒⃒⃒⃒
∞

⃒⃒⃒⃒⃒⃒⃒⃒
𝑔

𝑓𝑘

⃒⃒⃒⃒⃒⃒⃒⃒
∞

=

⎧⎪⎨⎪⎩𝑓𝑘(𝑑)/𝑓𝑘(𝑑), if 𝑘 ∈ [𝑘, 𝑘2]

𝑓𝑘(𝑑)/𝑓𝑘(𝑑), if 𝑘 ∈ [𝑘1, 𝑘].

(4.45)

From the relation

𝑓𝑘(𝑑) =

(︂
1 +

𝑑

𝑘

)︂4

, (4.46)

we immediately get that 𝑓𝑘(𝑑) is a decreasing function of 𝑘, and due to (4.45):⃒⃒⃒⃒⃒⃒⃒⃒
𝑓𝑘
𝑔

⃒⃒⃒⃒⃒⃒⃒⃒
∞

⃒⃒⃒⃒⃒⃒⃒⃒
𝑔

𝑓𝑘

⃒⃒⃒⃒⃒⃒⃒⃒
∞
≤ max

{︂
𝑓𝑘(𝑑)

𝑓𝑘2(𝑑)
,
𝑓𝑘1(𝑑)

𝑓𝑘(𝑑)

}︂
∀𝑘 ∈ [𝑘1, 𝑘2]. (4.47)

The minimum value of the right hand side,√︃
𝑓𝑘1(𝑑)

𝑓𝑘2(𝑑)
, (4.48)

is attained for 𝑘 such that

𝑓𝑘(𝑑) =
√︀
𝑓𝑘1(𝑑)𝑓𝑘2(𝑑) ∈ [𝑓𝑘2(𝑑), 𝑓𝑘1(𝑑)], (4.49)

which exists due to the fact that 𝑓𝑘(𝑑) is a continuous function of 𝑘 ∈ [𝑘1, 𝑘2]. Ulti-

mately, putting together 4.40, and 4.49, we get there exists a positive function 𝑔 = 𝑓𝑘

and positive reals {𝛼𝑘}𝑘∈[𝑘1,𝑘2] such that for all 𝑘 ∈ [𝑘1, 𝑘2]

⃒⃒⃒⃒⃒⃒⃒⃒
𝑓𝑘
𝑔𝛼𝑘

⃒⃒⃒⃒⃒⃒⃒⃒
∞
,

⃒⃒⃒⃒⃒⃒⃒⃒
𝑔𝛼𝑘
𝑓𝑘

⃒⃒⃒⃒⃒⃒⃒⃒
∞
≤
(︂⃒⃒⃒⃒⃒⃒⃒⃒

𝑓𝑘
𝑔

⃒⃒⃒⃒⃒⃒⃒⃒
∞

⃒⃒⃒⃒⃒⃒⃒⃒
𝑔

𝑓𝑘

⃒⃒⃒⃒⃒⃒⃒⃒
∞

)︂1/2

≤
(︂
𝑓𝑘1(𝑑)

𝑓𝑘2(𝑑)

)︂1/4

=
1 + 𝑑/𝑘1
1 + 𝑑/𝑘2

(4.50)

and the result follows.

Now, we apply the lemma to functions

𝑠 ↦→ (z𝐶 · (l𝑖 − 𝛾(𝑠)))4 (4.51)

103

expressed in a slightly different form. Defining

n =
𝛾(𝐿)− 𝛾(0)

𝐿
(4.52)

to be the unit vector parallel to the path, we may write

𝛾(𝑠) = 𝛾(0) + 𝑠n, ∀𝑠 ∈ [0, 𝐿]. (4.53)

Let 𝑠 = 𝐿− 𝑠. Then, we have

(z𝐶 · (l𝑖 − 𝛾(𝑠)))4 = (z𝐶 · l𝑖 − z𝐶 · (𝛾(𝐿)− n𝑠))4

= ((z𝐶 · l𝑖 − z𝐶 · 𝛾(𝐿)) + z𝐶 · n𝑠)4

= (z𝐶 · n)4
(︂
𝑠+

z𝐶 · (l𝑖 − 𝛾(𝐿))
z𝐶 · n

)︂4

.

(4.54)

From the conditions of the theorem, we know that for all 𝑖

z𝐶 · (l𝑖 − 𝛾(𝐿)) ∈ [𝜅1𝐿, 𝜅2𝐿] ⇒ z𝐶 · (l𝑖 − 𝛾(𝐿))
z𝐶 · n

∈
[︂
𝜅1

𝐿

z𝐶 · n
, 𝜅2

𝐿

z𝐶 · n

]︂
.

Hence we may now set

𝑘1 → 𝜅1
𝐿

𝑧𝐶 · n
, 𝑘2 → 𝜅2

𝐿

𝑧𝐶 · n
, 𝑑→ 𝐿 (4.55)

in Lemma 2 to get that there exists a positive function 𝑔 and positive reals {𝛼1, . . . , 𝛼𝑛}
such that for all 𝑖⃒⃒⃒⃒⃒⃒⃒⃒

𝑐𝑖 (z𝐶 · (l𝑖 − 𝛾(𝑠)))4
𝛼𝑖𝑔

⃒⃒⃒⃒⃒⃒⃒⃒
∞
,

⃒⃒⃒⃒⃒⃒⃒⃒
𝛼𝑖𝑔

𝑐𝑖 (z𝐶 · (l𝑖 − 𝛾(𝑠)))4
⃒⃒⃒⃒⃒⃒⃒⃒

∞
≤

1 + z𝐶 ·n
𝜅1

1 + z𝐶 ·n
𝜅2

. (4.56)

Let 𝑞𝑖 and 𝑝𝑖 be optimal square speed profiles not exceeding 𝛼𝑖𝑔 and 𝑐𝑖 (z𝐶 ·(l𝑖−𝛾(𝑠)))4,
respectively. An application of Corollary 2 then yields⃒⃒⃒⃒⃒⃒⃒⃒

𝑝𝑖
𝑞𝑖

⃒⃒⃒⃒⃒⃒⃒⃒
∞
,

⃒⃒⃒⃒⃒⃒⃒⃒
𝑞𝑖
𝑝𝑖

⃒⃒⃒⃒⃒⃒⃒⃒
∞
≤

1 + z𝐶 ·n
𝜅1

1 + z𝐶 ·n
𝜅2

, (4.57)

104

as well as the fact that the set of profiles {𝑞𝑖}𝑛𝑖=1 may be completely ordered. Thus,

a direct application of Theorem 11 implies the K-Fastest algorithm is suboptimal by

at most a factor of (︃
1 + 𝑧𝐶 ·n

𝜅1

1 + 𝑧𝐶 ·n
𝜅2

)︃
≤
(︃
1 + 1

𝜅1

1 + 1
𝜅2

)︃
, (4.58)

as desired.

We now give instance-dependent approximation guarantees for the Incremental

Greedy algorithm under slightly more stringent assumptions than those used for the

K-Fastest algorithm. We begin with an analogue of Theorem 11.

Theorem 13. Let 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑛} be a set of square speed profiles, referred to as

𝑝-profiles. Suppose the 𝑞-profiles, 𝑃 = {𝑞1, 𝑞2, ..., 𝑞𝑛} are scalar multiples of a single

positive profile 𝑞: 𝑞𝑖 = 𝛼𝑖𝑞 with 𝛼𝑖 > 0 for all 1 ≤ 𝑖 ≤ 𝑛. Let ℱ : 2[𝑛] → [0,∞) be a

monotonically increasing set function and let 𝜆𝑚𝑖𝑛 be a given threshold. Let 𝜖 > 0 be

a positive real number such that⃒⃒⃒⃒⃒⃒⃒⃒
𝑝𝑖
𝑞𝑖

⃒⃒⃒⃒⃒⃒⃒⃒
∞
,

⃒⃒⃒⃒⃒⃒⃒⃒
𝑞𝑖
𝑝𝑖

⃒⃒⃒⃒⃒⃒⃒⃒
∞
≤ 1 + 𝜖

for all 1 ≤ 𝑖 ≤ 𝑛. Defining 𝑇
𝑃

(𝑘)
*

and 𝑇
𝑃

(𝑘)
*

to be the execution times of the pointwise

minimum of the optimal subset of 𝑝-profiles meeting the set constraint (4.8) and the

subset of 𝑝-profiles chosen by the Incremental Greedy algorithm,

𝑇
𝑃

(𝑘)
*
≤ (1 + 𝜖)2𝑇

𝑃
(𝑘)
*
. (4.59)

Proof. Let

𝒮 = {𝑝𝑖1 , 𝑝𝑖2 , . . . , 𝑝𝑖𝑙} (4.60)

be the set (sequence) of 𝑝-profiles (in order) chosen by the Greedy algorithm, and let

𝒮* = {𝑝𝑗1 , 𝑝𝑗2 , . . . , 𝑝𝑗𝑘} (4.61)

105

be an optimal set of profiles. Since 𝒮* satisfies the set constraint, we know that

𝒮* ⊈ 𝒮 ∖ {𝑝𝑖𝑙},

and assume without loss of generality

𝑝𝑗𝑘 ∈ 𝒮* ∖ (𝒮 ∖ {𝑝𝑖𝑙}). (4.62)

We now claim that for all 1 ≤ 𝑟 ≤ 𝑙

𝑝𝑖𝑟 ≥
𝑝𝑗𝑘

(1 + 𝜖)4
. (4.63)

Indeed, suppose this was not the case. Then, there exists some 𝑠 ∈ [0, 𝑆𝑒𝑛𝑑] such that

𝑝𝑖𝑟(𝑠) <
𝑝𝑗𝑘(𝑠)

(1 + 𝜖)4
. (4.64)

This implies
𝑞𝑖𝑟(𝑠) ≤ (1 + 𝜖)𝑝𝑖𝑟(𝑠)

<
𝑝𝑗𝑘(𝑠)

(1 + 𝜖)3

≤ (1 + 𝜖)𝑞𝑗𝑘(𝑠)

(1 + 𝜖)3

≤ 𝑞𝑗𝑘(𝑠)

(1 + 𝜖)2
.

(4.65)

However, by the conditions of the theorem, 𝑞𝑖𝑟 and 𝑞𝑗𝑘 are related by a scalar multiple

and so

𝑞𝑖𝑟 <
𝑞𝑗𝑘

(1 + 𝜖)2
. (4.66)

This implies

𝑝𝑖𝑟 ≤ (1 + 𝜖)𝑞𝑖𝑟 <
𝑞𝑗𝑘
1 + 𝜖

≤ 𝑝𝑗𝑘 ; (4.67)

in other words, the profile 𝑝𝑖𝑟 is strictly dominated by profile 𝑝𝑗𝑘 and hence cannot

106

be selected in its stead by the Incremental Greedy algorithm. As a result, we have

𝜏(𝒮) = 𝜏(𝑝𝑖1 ∧ 𝑝𝑖2 ∧ · · · ∧ 𝑝𝑖𝑙)

≤ 𝜏

(︂
𝑝𝑗𝑘

(1 + 𝜖)4

)︂
= (1 + 𝜖)2𝜏(𝑝𝑗𝑘)

≤ (1 + 𝜖)2𝜏(𝒮*)

(4.68)

and the claim follows.

Ultimately, we have the following analogue of Theorem 12.

Theorem 14. Consider the task in which the agent has to traverse a path 𝛾 with

constant orientation R with respect to the world frame. For this theorem, we assume

𝛾 is a segment of length 𝐿 that belongs to line 𝜌. Suppose the depth of all 𝑛 landmarks

lying within field of view of the on-board camera lies in the range [𝜅1𝐿, 𝜅2𝐿] at every

point along the path, where 0 < 𝜅1 ≤ 𝜅2 ≤ +∞. Then, the Incremental Greedy

algorithm produces a feasible square speed profile whose execution time is within a

factor of
(︁

1+1/𝜅1
1+1/𝜅2

)︁2
of the optimum.

4.4.3 Changing Selection of Landmarks

In this section, we consider selecting the optimal subset of landmarks for every given

leg of the journey, where the chosen set is allowed to vary from one leg to another.

We show that we may use either of K-Fastest or the Incremental Greedy algorithm

for every stage separately and combine resulting subsets to give an algorithm with

instance-dependent optimality guarantees. An interesting artifact is that the approx-

imation factor approaches unity as the size of the longest leg of the journey tends to

zero.

Theorem 15. Let 𝒫 be a set of 𝑝-profiles defined on [0, 𝑆𝑒𝑛𝑑], partitioned into 𝐻

groups:

𝒫 = 𝒫1 ⊔ 𝒫2 ⊔ · · · ⊔ 𝒫𝐻 . (4.69)

107

For every 1 ≤ 𝑖 ≤ 𝑞, we assume there exists a set of completely ordered profiles

{𝑞(𝑖)𝑗 = 𝛼
(𝑖)
𝑗 𝑟𝑖 | 𝛼(𝑖)

𝑗 ∈ (0,∞), 𝑟𝑖 ∈ 𝐶([𝑎𝑖, 𝑏𝑖], (0,∞)))}𝑗∈𝒫𝑖 such that for every 𝑗 ∈ 𝒫𝑖
we have ⃒⃒⃒⃒

⃒
⃒⃒⃒⃒
⃒ 𝑝𝑗𝑞(𝑖)𝑗

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
∞

,

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒𝑞

(𝑖)
𝑗

𝑝𝑗

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
∞

≤ 1 + 𝜖. (4.70)

Consider the task of choosing subsets 𝒮1 ⊆ 𝒫1, . . . ,𝒮𝐻 ⊆ 𝒫𝐻 which minimize the

execution time of their pointwise minimum

𝜏(∧
1≤𝑖≤𝐻

∧
𝑗∈𝒮𝑖

𝑝𝑗) (4.71)

subject to the constraint that

ℱ 𝑖(𝒮𝑖) ≥ 𝜆
(𝑖)
𝑚𝑖𝑛 ∀1 ≤ 𝑖 ≤ 𝐻. (4.72)

Then, applying the K-Fastest/Incremental Greedy algorithm to each partition of 𝒫
individually and combining the resulting profiles yields a feasible profile with execution

time by at most a factor of (1 + 𝜖)2 slower than the optimum.

Proof. Suppose an optimal selection of subsets of profiles consists of

𝒮*
𝑖 ⊆ 𝒫𝑖. (4.73)

By the same argument as in the proof of Theorem 13, we know that

∧
𝑖∈𝒮𝑖

ℎ𝑖 ≥
1

(1 + 𝜖)4
∧
𝑖∈𝒮*

𝑖

ℎ𝑖, (4.74)

and so

∧
1≤𝑖≤𝐻

∧
𝑖∈𝒮𝑖

ℎ𝑖 ≥
1

(1 + 𝜖)4
∧

1≤𝑖≤𝐻
∧
𝑖∈𝒮*

𝑖

ℎ𝑖. (4.75)

The result now follows by remarks on properties of 𝜏(·) given before Claim 2.

The specific application of this theorem would be as follows. Let [0, 𝑆𝑒𝑛𝑑] be

108

partitioned into 𝐻 intervals [𝑎1, 𝑏1], . . . , [𝑎𝐻 , 𝑏𝐻], where

0 = 𝑎1 < 𝑏1 = 𝑎2 < 𝑏2 · · · 𝑎𝐻 < 𝑏𝐻 = 𝑆𝑒𝑛𝑑.

Let 𝒫𝑖 consist of upper bounds on the square speed profile induced by landmarks that

are visible for the portion of the path that corresponds to [𝑎𝑖, 𝑏𝑖]. In particular, any

such profile 𝑝𝑗 ∈ 𝒫𝑖 is of the form

𝑝𝑗(𝑠) =

⎧⎪⎨⎪⎩𝑀𝑗(𝑠), 𝑠 ∈ [𝑎𝑖, 𝑏𝑖]

+∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(4.76)

Then, seeking 𝑞(𝑖)𝑗 of the same form (finite on [𝑎𝑖, 𝑏𝑖] and infinite otherwise), we get

via Lemma 2

(1 + 𝜖) ≤ max
1≤𝑖≤𝐻

1 + 𝑧𝐶 ·n(𝑏𝑖−𝑎𝑖)
𝜅1

1 + 𝑧𝐶 ·n(𝑏𝑖−𝑎𝑖)
𝜅2

. (4.77)

An important property of the relation above is that

max
1≤𝑖≤𝐻

1 + 𝑧𝐶 ·n(𝑏𝑖−𝑎𝑖)
𝜅1

1 + 𝑧𝐶 ·n(𝑏𝑖−𝑎𝑖)
𝜅2

→ 0 as max
1≤𝑖≤𝐻

(𝑏𝑖 − 𝑎𝑖)→ 0. (4.78)

In other words, as the frequency with which the agent can switch its choice of land-

marks to track increases, our conceptually simple and efficient algorithm converges

to the optimal solution.

4.5 Simulation and Experimental Results

4.5.1 Experimental Setup

For simplicity, we assume that the quadrotor used in the experiments is modelled as a

double integrator with a camera attached on a 2-axis stabilized gimbal. The camera

is assumed to be oriented to face the direction of heading of the quadrotor. Thus, the

109

Figure 4-2: Image captured at the start of the trajectory

Figure 4-3: Image captured at the end of the trajectory

Figure 4-4: Features chosen using the quality metric of GoodFeaturesToTrack

dynamics of the quadrotor can be simply written as:⎡⎢⎢⎢⎣
𝑥̈

𝑦

𝑧

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑎𝑥 − 𝑔
𝑎𝑦

𝑎𝑧

⎤⎥⎥⎥⎦ , 𝑅𝑊
𝐶 =

⎡⎢⎢⎢⎣
cos(𝜓) − sin(𝜓) 0

sin(𝜓) cos(𝜓) 0

0 0 1

⎤⎥⎥⎥⎦ (4.79)

110

Figure 4-5: Features chosen by the K-Fastest method

Figure 4-6: The Arc trajectory

Figure 4-7: The Figure 8 trajectory segment

where 𝜓 is the angle the projection of the body 𝑥 axis of the quadrotor onto the world

𝑥-𝑦 plane forms with the world 𝑥 axis. The navigation environment (see Figure 4-2)

is generated using the FlightGoggles photorealistic simulator described in [24]. For

the experiments we generate four trajectory segments shown in Figures 4-6, 4-7, 4-8,

and 4-9.

111

Figure 4-8: The Oval trajectory segment

Figure 4-9: The Slalom trajectory segment

4.5.2 Algorithm Comparison

In this experiment, we consider the performance of all of the algorithms mentioned

in Section 4.3. The key performance indices measured in this experiment are the

execution time and the computation time. We report these indices for the problem

of selecting 50 landmarks from an available 500 landmarks in the environment. For

all the timing experiments, the speed profiles corresponding to individual landmarks

are precomputed and the timing only includes the combinatorial selection component

of the task. All experiments for computation time are performed using an intel i9

7900X computer using a python implementation of the algorithms presented here,

and the optimization package [25] was allowed to use all available 40 threads. The

results of this evaluation are summarized in Table 4.1. As can be seen in the table,

the execution times generated by the algorithms are nearly identical, but the compute

time of the K-Fastest algorithm is orders of magnitude smaller.

112

Algorithm Execution Time [s] Computation Time [s]
Trajectory Arc Slalom Arc Slalom
K-fastest 2.3465 2.9094 0.0006 0.0006

Incremental algorithm 2.3565 2.8889 2.1481 3.7412
MILP (Gurobi) 2.2828 2.8669 258.4733 48.97485

Table 4.1: Results of the algorithm comparison

4.5.3 Feature Tracking experiment

For this experiment, a point cloud is generated using stereo matching and the pixels

with valid depth values are then used for corner extraction using GoodFeaturesTo-

Track. The extracted corners form the candidate point cloud for landmark selection.

We use the same double order integrator model of the quadrotor, even though its ac-

tual dynamics are significantly more involved. The rationale for this lay in assessing

whether our idealized planning procedure would naturally transfer to more compli-

cated, but related dynamics models. The trajectory and features are specified by the

K-Fastest algorithm. We compare the number of features tracked by a standard KLT

tracker for the same number of features selected by the quality metric and the K-

Fastest method. An example of landmarks selected by the two algorithms is shown in

Figures 4-4 and 4-5. The results are summarized in Table 4.2. As can be seen in the

table, the K-Fastest algorithm consistently results in a higher number of successfully

tracked landmarks.

Trajectory Number of Tracked Landmarks
GFTT Quality K-Fastest

Oval 34 46
Figure 8 23 44
Slalom 45 58

Table 4.2: Table showing the number of successfully tracked landmarks over the
trajectory with k=100

113

4.6 Conclusion

In this chapter, we considered the problem of joint landmark selection and time

optimal path parametrization for a wide range of second order integrator agents. The

problem is challenging as it involves a mixture of discrete and continuous optimization.

For modular criteria on feasibility of selections of landmarks, we reduced the problem

to a mixed integer linear optimization problem. For general set functions, we proposed

two computationally efficient algorithms for which we developed instance-dependent

suboptimality guarantees for a relevant subclass of motions. Future work, however,

will address whether guarantees for these algorithms hold up for all sufficiently smooth

geometric paths.

114

Chapter 5

Conclusion

5.1 Recapitulation of Contributions

In this thesis, we considered three problems in the area of perception-aware motion

planning on board micro aerial vehicles. The underlying theme lay in discovering

and analyzing computationally efficient algorithms with performance guarantees that

bring us a step closer to allowing such agile vehicles execute tasks autonomously at

operational speeds.

The first problem we considered addressed demonstrating the asymptotic optimal-

ity of a time-optimal path parametrization algorithm for a wide class of second order

agents. For this, we ventured into the field of non-smooth analysis to characterize

the optimal solution from first principles, and used the characterization to show the

convergence of the solution output by the algorithm to its true value.

The second of the three problems required maintaining desired landmarks within

field of view of the camera on board a quadrotor while minimizing its traversal time

of a specified path. We demonstrated the convexity such constraints impose on the

time parametrization of the path and we also showed how to losslessly compress

them in an efficient, parallelizable way. Ultimately, this let us develop an intuitive

algorithm, Regularized-TOPP, that computes feasible time parametrizations with

objective values competitive to those output by a generic nonlinear optimization

solver taking orders of magnitude longer to compute.

115

The high level goal of the third problem lay in ensuring computationally-efficient

acquisition of future visual measurements via motion planning. Indeed, extracting

the change in bearing to desired landmarks between consecutive images incurs a

computational burden that grows with the range of their apparent motion on the

sensor array of the camera. The latter, in turn, increases with the speed of the

agent. As a result, we considered the problem of minimizing the traversal time of

a specified path, while maintaining the projection speeds of a sufficient number of

landmarks below a specified threshold. We presented two polynomial-time algorithms

that are empirically performant with respect to a globally-optimal exponential-time

algorithm, and we showed their instance-dependent approximation guarantees for a

relevant subclass of problems.

5.2 Limitations of Results and Future Work

Nevertheless, the work presented in this thesis is only a stepping stone towards achiev-

ing our aim of developing fully autonomous, robust MAVs. While listing necessary

future steps for such a problem with many moving parts may be a futile exercise,

we do use the opportunity here to discuss ways in which results in this thesis can be

strengthened.

The problem from chapter 2 leaves open a natural question: for a given error toler-

ance, what is the necessary discretization size necessary to attain it? It goes without

saying that there is a huge difference between knowing the problem can be solved

with one hundred instead of one million discretization points. It is highly likely the

key to answering such a question lies in developing convergence rates that were hinted

at the very end of chapter 2. We posited, but were not able to show, that for the

stated algorithm, the error is inversely proportional to the spacing between consecu-

tive discretization points. To put matters into context, this amounts to increasing the

number of discretization points tenfold in order to gain one digit in accuracy. Even if

true, such state of affairs might be unsatisfactory for some applications. We believe

that one interesting line of work might bring in the analogy from the literature on

116

numerical integration of ordinary differential equations. Indeed, we mentioned that

the algorithm in chapter 2 may be viewed, with a slight stretch of imagination, as

a generalization of the Forward Euler method for ODEs. However, we know there

are many other, more accurate methods for this procedure, a simple example being

the Trapezoidal rule. If the analogy from literature on differential equations were to

carry over to our case, an adaptation of the Trapezoidal transcription rule would yield

huge savings: two decimal digits of additional precision for a tenfold increase in the

number of discretization points. Naturally, whether this is actually true is still un-

known. However, resolving such a question would further increase the computational

efficiency of the studied algorithm.

In chapter 3, we considered the perception-aware TOPP problem for a quadrotor

equipped with a forward-facing camera. Such a configuration is common for vehi-

cles designed to navigate indoor, cluttered environments. However, for large-scale

applications such as surveillance missions, a downward-facing camera might be more

appropriate. In these circumstances, maintaining desired regions within field of view

at every point along the path is still a convex problem. However, it seems that loss-

lessly compressing field of view constraints in such a scenario is not amenable to the

approach we had described. Dealing with such constraints might be one interesting

line of future work that can build off of the insights developed in this thesis. Another

aspect of our problem we were not able to solve was answering the following question:

given a path of flat outputs, can the quadrotor traverse it subject to bounds on its

individual motor thrusts as well as perception constraints. Of course, the key diffi-

culty here is that the quasi-static trajectory might not satisfy perception constraints.

In such a scenario, our approach for selecting landmarks would not work, and it is

not clear how much more difficult the latter problem would be from a computational

standpoint, even if we were to assume the control input of the quadrotor was its

cumulative thrust (i.e. its moment of inertia matrix was negligible).

The mathematical core of chapter 4 was a subset selection problem that arose out

of a specific geometric setup. The first question we would like to have answered was:

is it NP-hard? For example, if the translational path was specified as a concatena-

117

tion of polynomials with rational coefficients, and if the coordinates of the landmarks

were rational too, what would be the minimum execution time of the path subject to

maintaining the projection speed of a suitably large fixed subset of landmarks below

a given threshold? However, with a more optimistic outlook, the question still re-

mains: is the K-Fastest algorithm suboptimal by a constant factor for a general class

of motions, and not just those involving straight line motion with no gyration? How

about the Incremental Greedy algorithm? We believe that answering such questions,

in addition to being interesting in their own right from a complexity-theoretic stand-

point, might serve as guides for future development of algorithms for visual attention

of computationally-constrained MAVs.

118

Bibliography

[1] Markus W Achtelik, Simon Lynen, Stephan Weiss, Margarita Chli, and Roland
Siegwart. Motion- and Uncertainty-aware Path Planning for Micro Aerial Vehi-
cles. Journal of Field Robotics, 31(4):676–698, 2014.

[2] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless,
Steven M Seitz, and Richard Szeliski. Building Rome in a day. Communications
of the ACM, 54(10):105–112, 2011.

[3] Pasquale Antonante, Vasileios Tzoumas, Heng Yang, and Luca Carlone. Outlier-
Robust Estimation: Hardness, Minimally Tuned Algorithms, and Applications.
IEEE Transactions on Robotics, 38(1):281–301, 2022.

[4] Karl Johan Åström and Richard M. Murray. Feedback Systems: An Introduction
for Scientists and Engineers. Princeton University Press, 2010.

[5] Dimitri Bertsekas. Dynamic Programming and Optimal Control: Volume I.
Athena Scientific, 2012.

[6] James Bobrow, S. Dubowsky, and J. S. Gibson. Time-Optimal Control of Robotic
Manipulators Along Specified Paths. International Journal of Robotics Research
- IJRR, 4:3–17, 09 1985.

[7] Richard H. Byrd, Mary E. Hribar, and Jorge Nocedal. An Interior Point Algo-
rithm for Large-Scale Nonlinear Programming. SIAM Journal on Optimization,
9(4):877–900, 1999.

[8] Luca Carlone and Sertac Karaman. Attention and Anticipation in Fast Visual-
Inertial Navigation. IEEE Transactions on Robotics, 35(1):1–20, 2019.

[9] Henry Carrillo, Ian Reid, and José A. Castellanos. On the comparison of un-
certainty criteria for active SLAM. In 2012 IEEE International Conference on
Robotics and Automation, pages 2080–2087, 2012.

[10] H. Chitsaz and S. M. LaValle. Time-optimal Paths for a Dubins airplane. In
2007 46th IEEE Conference on Decision and Control, pages 2379–2384, 2007.

[11] Eden Chlamtáč, Michael Dinitz, and Yury Makarychev. Minimizing the Union:
Tight Approximations for Small Set Bipartite Vertex Expansion. In Proceedings

119

of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 881–899. SIAM, 2017.

[12] L. Consolini, M. Locatelli, A. Minari, Á. Nagy, and I. Vajk. Optimal Time-
Complexity Speed Planning for Robot Manipulators. IEEE Transactions on
Robotics, 35(3):790–797, 2019.

[13] Luca Consolini, Marco Locatelli, Andrea Minari, and Aurelio Piazzi. An optimal
complexity algorithm for minimum-time velocity planning. Systems & Control
Letters, 103:50–57, 05 2017.

[14] Gabriele Costante, Jeffrey Delmerico, Manuel Werlberger, Paolo Valigi, and Da-
vide Scaramuzza. Exploiting Photometric Information for Planning Under Un-
certainty, pages 107–124. Springer International Publishing, Cham, 2018.

[15] Gábor Csorvási, Ákos Nagy, and Istvan Vajk. Near Time-Optimal Path Tracking
Method for Waiter Motion Problem. volume 50, pages 4929–4934, 07 2017.

[16] Raffaello D’Andrea. Guest Editorial Can Drones Deliver? IEEE Transactions
on Automation Science and Engineering, 11(3):647–648, 2014.

[17] Andrew Davison. Real-time simultaneous localisation and mapping with a sin-
gle camera. In Proceedings Ninth IEEE International Conference on Computer
Vision, pages 1403–1410 vol.2, 2003.

[18] Alexander Domahidi, Eric Chu, and Stephen Boyd. ECOS: An SOCP solver
for Embedded Systems. In 2013 European Control Conference (ECC), pages
3071–3076, 2013.

[19] Davide Falanga, Philipp Foehn, Peng Lu, and Davide Scaramuzza. PAMPC:
Perception-Aware Model Predictive Control for Quadrotors. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1–8,
2018.

[20] Davide Falanga, Elias Mueggler, Matthias Faessler, and Davide Scaramuzza.
Aggressive quadrotor flight through narrow gaps with onboard sensing and com-
puting using active vision. In 2017 IEEE International Conference on Robotics
and Automation (ICRA), pages 5774–5781, 2017.

[21] Kaveh Fathian, Kasra Khosoussi, Yulun Tian, Parker Lusk, and Jonathan P.
How. CLEAR: A Consistent Lifting, Embedding, and Alignment Rectification
Algorithm for Multiview Data Association. IEEE Transactions on Robotics,
36(6):1686–1703, 2020.

[22] Uriel Feige. A Threshold of ln n for Approximating Set Cover. Journal of the
ACM (JACM), 45(4):634–652, 1998.

120

[23] Michel Fliess, Jean Lévine, Philippe Martin, and Pierre Rouchon. Flatness and
defect of non-linear systems: introductory theory and examples. International
Journal of Control, 61(6):1327–1361, 1995.

[24] Winter Guerra, Ezra Tal, Varun Murali, Gilhyun Ryou, and Sertac Karaman.
Flightgoggles: Photorealistic Sensor Simulation for Perception-driven Robotics
using Photogrammetry and Virtual Reality. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 6941–6948, 2019.

[25] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022.

[26] Kris K. Hauser. Fast interpolation and time-optimization with contact. The
International Journal of Robotics Research, 33:1231 – 1250, 2014.

[27] Markus Hehn and Raffaello D’Andrea. Real-Time Trajectory Generation for
Quadrocopters. IEEE Transactions on Robotics, 31(4):877–892, 2015.

[28] Juha Heinonen. Lectures on Lipschitz analysis. Rep. Dept. Math. Stat, 100, 01
2005.

[29] Rishabh K. Iyer and Jeff A. Bilmes. Submodular Optimization with Submodular
Cover and Submodular Knapsack Constraints. Advances in Neural Information
Processing Systems, 26, 2013.

[30] Woo Yeon Jeong and Kyoung Mu Lee. Visual SLAM with Line and Corner
Features. In 2006 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 2570–2575, 2006.

[31] Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John J
Leonard, and Frank Dellaert. iSAM2: Incremental smoothing and mapping using
the Bayes tree. The International Journal of Robotics Research, 31(2):216–235,
2012.

[32] Michael Kaess, Ananth Ranganathan, and Frank Dellaert. iSAM: Incremental
smoothing and mapping. IEEE Transactions on Robotics, 24(6):1365–1378, 2008.

[33] R. Kannan and C.K. Krueger. Advanced Analysis: on the Real Line. Universitext.
Springer New York, 2012.

[34] Jonathan Kelly, Nicholas Roy, and Gaurav S. Sukhatme. Determining the Time
Delay Between Inertial and Visual Sensor Measurements. IEEE Transactions on
Robotics, 30(6):1514–1523, 2014.

[35] Hassan K Khalil. Nonlinear systems; 3rd ed. Prentice-Hall, Upper Saddle River,
NJ, 2002.

[36] Vijay Kumar and Nathan Michael. Opportunities and challenges with au-
tonomous micro aerial vehicles. The International Journal of Robotics Research,
31(11):1279–1291, 2012.

121

[37] Tobias Kunz and Mike Stilman. Time-Optimal Trajectory Generation for Path
Following with Bounded Acceleration and Velocity. 07 2012.

[38] Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[39] Keuntaek Lee, Jason Gibson, and Evangelos A. Theodorou. Aggressive
Perception-Aware Navigation Using Deep Optical Flow Dynamics and Pix-
elMPC. IEEE Robotics and Automation Letters, 5(2):1207–1214, 2020.

[40] Ronen Lerner, Ehud Rivlin, and Ilan Shimshoni. Landmark Selection for Task-
Oriented Navigation. IEEE Transactions on Robotics, 23(3):494–505, 2007.

[41] Thomas Lipp and Stephen Boyd. Minimum-time speed optimisation over a fixed
path. International Journal of Control, 87, 02 2014.

[42] Sikang Liu, Kartik Mohta, Nikolay Atanasov, and Vijay Kumar. Search-Based
Motion Planning for Aggressive Flight in SE(3). IEEE Robotics and Automation
Letters, 3(3), 2018.

[43] Fangchang Ma and Sertac Karaman. Sparse-to-Dense: Depth Prediction from
Sparse Depth Samples and a Single Image. In 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 4796–4803, 2018.

[44] Yi Ma, Stefano Soatto, Jana Košecká, and Shankar Sastry. An Invitation to 3-D
Vision: From Images to Geometric Models, volume 26. Springer, 2004.

[45] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and
control for quadrotors. In 2011 IEEE International Conference on Robotics and
Automation, pages 2520–2525, 2011.

[46] Nathan Michael, Shaojie Shen, Kartik Mohta, Vijay Kumar, Keiji Nagatani,
Yoshito Okada, Seiga Kiribayashi, Kazuki Otake, Kazuya Yoshida, Kazunori
Ohno, Eijiro Takeuchi, and Satoshi Tadokoro. Collaborative Mapping of an
Earthquake Damaged Building via Ground and Aerial Robots, pages 33–47.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[47] Christian Mostegel, Andreas Wendel, and Horst Bischof. Active Monocular Lo-
calization: Towards Autonomous Monocular Exploration for Multirotor MAVs.
In 2014 IEEE International Conference on Robotics and Automation (ICRA),
pages 3848–3855, 2014.

[48] Mark W. Mueller, Markus Hehn, and Raffaello D’Andrea. A Computation-
ally Efficient Motion Primitive for Quadrocopter Trajectory Generation. IEEE
Transactions on Robotics, 31(6):1294–1310, 2015.

[49] Varun Murali, Igor Spasojevic, Winter Guerra, and Sertac Karaman. Perception-
aware trajectory generation for aggressive quadrotor flight using differential flat-
ness. In 2019 American Control Conference (ACC), pages 3936–3943, 2019.

122

[50] Richard M. Murray. Optimization-Based Control. California Institute of Tech-
nology, CA, pages 111–128, 2009.

[51] Akos Nagy and Istvan Vajk. LP-based Velocity Profile Generation for Robotic
Manipulators. International Journal of Control, 91:1–19, 01 2017.

[52] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis
of approximations for maximizing submodular set functions—I. Mathematical
programming, 14(1):265–294, 1978.

[53] Huy Nguyen and Quang Cuong Pham. Time-Optimal Path Parameterization
of Rigid-Body Motions: Applications to Spacecraft Reorientation. Journal of
Guidance, Control, and Dynamics, 39:1–5, 01 2016.

[54] Kyel Ok, Katherine Liu, Kris Frey, Jonathan P. How, and Nicholas Roy. Robust
Object-based SLAM for High-speed Autonomous Navigation. In 2019 Interna-
tional Conference on Robotics and Automation (ICRA), pages 669–675, 2019.

[55] Alex Olshevsky. Minimal Controllability Problems. IEEE Transactions on Con-
trol of Network Systems, 1(3):249–258, 2014.

[56] Christos H. Papadimitriou and John N. Tsitsiklis. The Complexity of Markov
Decision Processes. Mathematics of Operations Research, 12(3):441–450, 1987.

[57] Jufeng Peng and Srinivas Akella. Coordinating Multiple Robots with Kinody-
namic Constraints Along Specified Paths. I. J. Robotic Res., 24:295–310, 04
2005.

[58] Bryan Penin, Riccardo Spica, Paolo Robuffo Giordano, and François Chaumette.
Vision-based minimum-time trajectory generation for a quadrotor UAV. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 6199–6206, 2017.

[59] Friedrich Pfeiffer and Rainer Johanni. A Concept for Manipulator Trajectory
Planning. IEEE Journal of Robotics and Automation, RA-3:115 – 123, 05 1987.

[60] Hung Pham and Quang Cuong Pham. A New Approach to Time-Optimal
Path Parameterization Based on Reachability Analysis. IEEE Transactions on
Robotics, 34:645 – 659, 06 2018.

[61] Quang Cuong Pham. A General, Fast, and Robust Implementation of the Time-
Optimal Path Parameterization Algorithm. IEEE Transactions on Robotics, 30,
12 2013.

[62] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial Trajectory Planning
for Aggressive Quadrotor Flight in Dense Indoor Environments, pages 649–666.
Springer International Publishing, Cham, 2016.

123

[63] David M Rosen, Luca Carlone, Afonso S Bandeira, and John J Leonard. SE-Sync:
A certifiably correct algorithm for synchronization over the special Euclidean
group. The International Journal of Robotics Research, 38(2-3):95–125, 2019.

[64] David M. Rosen, Michael Kaess, and John J. Leonard. RISE: An Incremental
Trust-Region Method for Robust Online Sparse Least-Squares Estimation. IEEE
Transactions on Robotics, 30(5):1091–1108, 2014.

[65] Inkyu Sa, Zetao Chen, Marija Popović, Raghav Khanna, Frank Liebisch, Juan
Nieto, and Roland Siegwart. weedNet: Dense Semantic Weed Classification
Using Multispectral Images and MAV for Smart Farming. IEEE Robotics and
Automation Letters, 3(1):588–595, 2018.

[66] Seyed Abbas Sadat, Kyle Chutskoff, Damir Jungic, Jens Wawerla, and Richard
Vaughan. Feature-rich path planning for robust navigation of MAVs with Mono-
SLAM. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 3870–3875, 2014.

[67] Thomas Sayre-McCord, Winter Guerra, Amado Antonini, Jasper Arneberg,
Austin Brown, Guilherme Cavalheiro, Yajun Fang, Alex Gorodetsky, Dave Mc-
Coy, Sebastian Quilter, Fabian Riether, Ezra Tal, Yunus Terzioglu, Luca Carlone,
and Sertac Karaman. Visual-Inertial Navigation Algorithm Development Using
Photorealistic Camera Simulation in the Loop. In 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 2566–2573, 2018.

[68] Manohar Shamaiah, Siddhartha Banerjee, and Haris Vikalo. Greedy sensor se-
lection: Leveraging submodularity. In 49th IEEE Conference on Decision and
Control (CDC), pages 2572–2577, 2010.

[69] Matthew Sheckells, Gowtham Garimella, and Marin Kobilarov. Optimal Visual
Servoing for differentially flat underactuated systems. In 2016 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 5541–5548,
2016.

[70] Shaojie Shen, Nathan Michael, and Vijay Kumar. Autonomous multi-floor in-
door navigation with a computationally constrained MAV. In 2011 IEEE Inter-
national Conference on Robotics and Automation, pages 20–25, 2011.

[71] Jianbo Shi and Tomasi. Good features to track. In 1994 Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, pages 593–600, 1994.

[72] Zvi Shiller and Hsueh-Hen Lu. Computation of Path Constrained Time Optimal
Motions With Dynamic Singularities. Journal of Dynamic Systems Measurement
and Control-transactions of The Asme - J DYN SYST MEAS CONTR, 114, 03
1992.

[73] J. J. E. Slotine and H. S. Yang. Improving the efficiency of time-optimal path-
following algorithms. IEEE Transactions on Robotics and Automation, 5(1):118–
124, 1989.

124

[74] Igor Spasojevic, Varun Murali, and Sertac Karaman. Asymptotic Optimality of a
Time Optimal Path Parametrization Algorithm. IEEE Control Systems Letters,
3:835–840, 2019.

[75] Igor Spasojevic, Varun Murali, and Sertac Karaman. Joint Feature Selection and
Time Optimal Path Parametrization for High Speed Vision-Aided Navigation.
In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5931–5938, 2020.

[76] Igor Spasojevic, Varun Murali, and Sertac Karaman. Perception-aware time
optimal path parameterization for quadrotors. In 2020 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 3213–3219, 2020.

[77] Maxim Sviridenko, Jan Vondrák, and Justin Ward. Optimal approximation for
submodular and supermodular optimization with bounded curvature. Mathe-
matics of Operations Research, 42(4):1197–1218, 2017.

[78] Zoya Svitkina and Lisa Fleischer. Submodular approximation: Sampling-based
algorithms and lower bounds. SIAM Journal on Computing, 40(6):1715–1737,
2011.

[79] Richard Szeliski. Computer Vision: Algorithms and Applications. Springer Sci-
ence & Business Media, 2010.

[80] Jesus Tordesillas and Jonathan P. How. PANTHER: Perception-Aware Trajec-
tory Planner in Dynamic Environments. IEEE Access, 10:22662–22677, 2022.

[81] Vasileios Tzoumas, Luca Carlone, George J. Pappas, and Ali Jadbabaie. LQG
Control and Sensing Co-Design. IEEE Transactions on Automatic Control,
66(4):1468–1483, 2021.

[82] Diederik Verscheure, Bram Demeulenaere, Jan Swevers, Joris De Schutter, and
Moritz Diehl. Time-Optimal Path Tracking for Robots: A Convex Optimization
Approach. IEEE Transactions on Automatic Control, 54:2318 – 2327, 11 2009.

[83] Heng Yang, Pasquale Antonante, Vasileios Tzoumas, and Luca Carlone. Gradu-
ated Non-Convexity for Robust Spatial Perception: From Non-Minimal Solvers
to Global Outlier Rejection. IEEE Robotics and Automation Letters, 5(2):1127–
1134, 2020.

[84] Heng Yang, Jingnan Shi, and Luca Carlone. TEASER: Fast and Certifiable
Point Cloud Registration. IEEE Transactions on Robotics, 37(2):314–333, 2021.

[85] Lintao Ye, Sandip Roy, and Shreyas Sundaram. On the Complexity and Ap-
proximability of Optimal Sensor Selection for Kalman Filtering. In 2018 Annual
American Control Conference (ACC), pages 5049–5054, 2018.

125

[86] Guangcong Zhang and Patricio A. Vela. Good features to track for visual SLAM.
In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1373–1382, 2015.

[87] Guangcong Zhang and Patricio A. Vela. Optimally observable and minimal car-
dinality monocular SLAM. In 2015 IEEE International Conference on Robotics
and Automation (ICRA), pages 5211–5218, 2015.

[88] Haifeng Zhang and Yevgeniy Vorobeychik. Submodular optimization with rout-
ing constraints. In Proceedings of the AAAI conference on artificial intelligence,
volume 30, 2016.

[89] Zhijie Zhu, Edward Schmerling, and Marco Pavone. A convex optimization
approach to smooth trajectories for motion planning with car-like robots. In
2015 54th IEEE Conference on Decision and Control (CDC), pages 835–842,
2015.

[90] Leon Zlajpah. On time optimal path control of manipulators with bounded joint
velocities and torques. Proceedings of IEEE International Conference on Robotics
and Automation, 2:1572–1577 vol.2, 1996.

[91] Tolga Özaslan, Giuseppe Loianno, James Keller, Camillo J. Taylor, Vijay Ku-
mar, Jennifer M. Wozencraft, and Thomas Hood. Autonomous Navigation and
Mapping for Inspection of Penstocks and Tunnels With MAVs. IEEE Robotics
and Automation Letters, 2(3):1740–1747, 2017.

126

	Introduction
	MAVs: Capabilities and Constraints
	Towards Optimization-Based Autonomy
	Setting and Structure of the Thesis
	Contributions

	Asymptotic Optimality of a Time Optimal Path Parametrization Algorithm
	Introduction
	Problem Statement
	Square Speed Profile
	Excursion into Non-Smooth Analysis
	Putting the Ingredients Together

	Algorithm
	Analysis
	Analytical Characterization of Optimum
	Asymptotic Optimality

	Simulation Results
	Conclusion

	Perception-aware Time Optimal Path Parametrization for Quadrotors
	Introduction
	Problem Statement
	Dynamics Model
	Sensing Model
	Task: Traversing a ``Flat'' Path in Minimum Time
	Dynamic Constraints
	Perception Constraints
	Mathematical Formulation

	Algorithm
	Perception Constraint Generation
	Regularized TOPP
	Alpha Scaling

	Analysis
	Dynamic Constraints
	Perception Constraints

	Simulation Results
	Perception Constraint Generation Simulations
	Comparison with Generic Nonlinear Optimization Baseline
	Dependence of Scaling and Penalty Hyperparameter

	Conclusion

	Joint Landmark Selection and Time Optimal Path Parametrization for High-Speed Vision-Aided Navigation
	Introduction
	Problem Statement
	Geometric Path and Dynamic Model
	Perception Model
	Perception Constraints
	Mathematical Formulation

	Algorithms
	Mixed Integer Formulation
	K-Fastest Algorithm
	Incremental Greedy Algorithm

	Analysis
	Separation Principle
	Algorithm Guarantees
	Changing Selection of Landmarks

	Simulation and Experimental Results
	Experimental Setup
	Algorithm Comparison
	Feature Tracking experiment

	Conclusion

	Conclusion
	Recapitulation of Contributions
	Limitations of Results and Future Work

