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Abstract

Machine learning models are biased when trained on biased datasets. Many recent
approaches have been proposed to mitigate biases when they are identified a priori.
However in real-world applications, annotating biases is not only time-consuming but
also challenging. This thesis considers three different scenarios and presents novel
algorithms for learning robust models. These algorithms are efficient as they do not
require explicit annotations of the biases, enabling practical machine learning.

First, we introduce an algorithm that operates on data collected from multiple
environments, across which correlations between bias features and the label may
vary. We show that when using a classifier trained on one environment to make
predictions on examples from a different environment, its mistakes are informative
of the hidden biases. We then leverages these mistakes to create groups of examples
whose interpolation yields a distribution with only stable correlations. Our algorithm
achieves the new state-of-the-art on four text and image classification tasks.

We then consider the situation where we lack access to multiple environments, a
common scenario for new tasks or resource-limited tasks. We show that in real-world
applications related tasks often share similar biases. Based on this observation, we
propose an algorithm that infers bias features from a resource-rich source task and
transfers this knowledge to the target task. Compared to 15 baselines across five
datasets, our method consistently delivers significant performance gain.

Finally, we study automatic bias detection where we are only given a set of input-
label pairs. Our algorithm learns to split the dataset so that classifiers trained on
the training split cannot generalize to the testing split. The performance gap pro-
vides a proxy for measuring the degree of bias in the learned features and can there-
fore be used to identify unknown biases. Experiments on six NLP and vision tasks
demonstrate that our method is able to genreate spurious splits that correlate with
human-identified biases.

Thesis Supervisor: Regina Barzilay
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Deep learning has let to breakthroughs in nearly every field. We have language mod-

els that excel at language understanding [20, 123]. We have agents that are better at

playing games than human world champions [105, 19]. We have algorithms that make

highly accurate protein structure predictions [99, 59]. In the past decade, neural net-

works have already demonstrated their super powers as universal approximators [52].

Can we deploy and trust these models out-of-the-box in practical applications?

Not yet. Due to the idiosyncrasies of the data collection process, datasets are often

fraught with unwanted biases. In computer vision, image classes may be spuriously

associated with the demographic or geographic information [76, 21]. In natural lan-

guage processing, human-annotated labels can be easily predicted from spurious lin-

guistic clues [1, 83]. In medical imagining, models achieve super-human performance

by over-fitting to hospital-specific features [119]. Naively applying machine learning

algorithms on these biased datasets can and will lead to biased models, hampering

their generalization ability towards real-world applications.

Many approaches have been proposed to mitigate biases when they are known

beforehand.

• In natural language inference, we would like to identify the entailment relation-

ship between two sentences, hypothesis and premise. Even though our bench-

mark datasets are annotated by human, researchers have found out that using
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the hypothesis sentence alone is sufficient to make accurate predictions, 67.0%

vs. 34.3%, compared to the majority baseline [47]. [16, 109] propose an ad-

versarial training framework to reduce this hypothesis-only bias. By removing

the label information from the hypothesis representation through an adversarial

network, they enforce the model to reason the entailment relationship. Another

popular approach to tackle this particular type of bias is ensemble [29, 48, 78].

The idea is to first learn a biased model that only leverages information from

the hypothesis. Then we train another de-biased model that focuses on exam-

ples that cannot be predicted well by the previous biased model. As a result,

the de-biased model learns how to reason across the input sentences.

• Language models, despite their extraordinary performance at generating coher-

ent text, suffer from gender bias [36, 102]. For example, given the prompt “He

works in a hospital as a”, GPT-2 [91] produces “doctor.” If we change “He”

into “She”, the output becomes “nurse.” To mitigate gender disparity, [46] use

counterfactual role reversal to augment the training data. Specifically, they

manually crate a list of mapping between masculine and feminine words: male

↔ female, father ↔ mother, he ↔ she, etc. By applying this mapping to the

training data, they obtain a gender-balanced dataset. Distilling pre-trained lan-

guage models (such as GPT-2) on this augmented dataset improves generation

fairness.

• In image recognition, convolutional neural networks may make their predictions

based on local object textures rather than global object shapes. [43] conducted

48,560 phschophysical trials and found that while a cat image with an elephant

texture is still a cat to human observers, it is classified as an elephant to neural

networks. Later on, [50] show that applying naturalistic transformation (color

distortion, Gaussian blur, and Sobel filtering) to the image can substantially

decrease texture bias, while adding random-crop can increase texture bias. By

carefully balancing the data augmentation techniques, they managed to reduce

the unwanted texture bias.

24



While these approaches deliver robustness, they typically involve task-specific archi-

tectures or objectives and therefore require extra domain knowledge to generalize to

new tasks. Recently, distributionally robust optimization (DRO) has gained a lot

of interest due to its task-agnostic design. By minimizing the worst-case loss over

human-defined groups, DRO effectively learns robust models across multiple appli-

cations [54, 86, 94]. However, human experts still have to identify and annotate the

biases a priori, a process often as expensive as annotating the label itself [17, 37, 93].

In this thesis, I will propose efficient algorithms that can learn unbiased models

from biased datasets. The major departure from existing work is that our methods

do not require explicit annotations of the biases, enabling practical machine learning.

• Our first algorithm, Predict then Interpolate (pi), operates on data split

among multiple environments, across which correlations between bias features

and the label may vary [116, 88, 6]. Instead of handcrafting environments based

on explicit, task-dependent biases, these environments can be determined by

generic information that is easy to collect. For example, environments can

represent data collection circumstances, like location and time. The goal is to

promote correlations that are stable across these environments during training

so that the model can generalize to a new test environment that has the same

stable correlations.

• While it is easy to collect annotations from multiple environments for resource-

rich tasks, this procedure is infeasible for new tasks or resource-limited tasks.

Fortunately, in many real-world applications related tasks are often affected by

similar bias features. For instance, when classifying animals such as camels vs.

cows, their backgrounds (desert vs. grass) may constitute a spurious correla-

tion [14]. The same bias between the label and the background also persists in

other classification tasks (such as sheep vs. antelope). Based on this observa-

tion, we propose Transfer of Unstable Features (tofu), an algorithm that

infers bias features from the source environments and transfers this knowledge

to learn a robust model for the target task.
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• Finally, we study automatic bias detection, a more general setting where we

are only given the set of input-label pairs. We propose Learning to Split

(ls), an algorithm that simulates generalization failure directly from the given

dataset. Specifically, ls learns to split the dataset so that classifiers trained on

the training split cannot generalize to the testing split. The performance gap

provides a proxy for measuring the degree of bias in the learned features and

can therefore be used to identify unknown biases.

Machine learning models, especially modern deep neural networks, are very pow-

erful at learning the correlations between the input and the output. However, corre-

lation does not imply causation. Models that pick up spurious correlations will suffer

from unwanted biases.

I now provide a summary of the above three scenarios and briefly describe how

we tackle each one.

1.1 Predict then Interpolate: A Simple Algorithm

to Learn Stable Classifiers

We first consider the situation where our dataset contains multiple environments,

across which correlations between bias features and the label may vary. Instead of

handcrafting environments based on explicit, task-dependent biases, these environ-

ments can be determined by generic information that is easy to collect [88]. For

example, environments can represent data collection circumstances, like location and

time.

Our goal is to learn correlations that are stable across these environments so that

our model can generalize to test environments with the same stable correlations. Dif-

ferent from previous work that aims to directly learn an invariant representation [6],

we explicitly decompose our goal into two parts:

• Identifying biases (Stage 1 & 2). Our key idea follows from the intuition

that when using a classifier trained on one environment to make predictions
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on examples from a different environment, its mistakes are informative of the

unstable correlations. In fact, we prove that if the unstable features and the

label are positively correlated across all environments, the same correlation flips

to negative in the set of mistakes. Therefore, by interpolating the distributions

of correct and incorrect predictions, we can uncover an “oracle” distribution in

which only stable features are correlated with the label.

• Addressing biases (Stage 3). Although the oracle interpolation coefficients

are not accessible, we can minimize the worst-case risk over all interpolations,

providing an upper bound of the risk on the oracle distribution. This procedure

is also known as group distributionally robust optimization (DRO) [93].

Our algorithm is model agnostic and has been applied to different image classi-

fication and text classification tasks. We consider both synthetic environments and

real-world environments.
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f1(x) = x2Stage 1: Train a classifier      on    
<latexit sha1_base64="sNm8b7hHdtf55mgMnJVa/qa0G8g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hE0WPBi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fj25nffuLaiEQ94iTlQUyHSkSCUbTSQ9T3+9Wa53pzkFXiF6QGBRr96ldvkLAs5gqZpMZ0fS/FIKcaBZN8WullhqeUjemQdy1VNOYmyOenTsmZVQYkSrQthWSu/p7IaWzMJA5tZ0xxZJa9mfif180wuglyodIMuWKLRVEmCSZk9jcZCM0ZyokllGlhbyVsRDVlaNOp2BD85ZdXSevC9a9c7/6yVneLOMpwAqdwDj5cQx3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5A+uDjX4=</latexit>

f1

<latexit sha1_base64="lT+6SLLuG/6k/hnKvgWd6pKjGyc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hE0WNBBI8VrS20oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZemAqujed9O6WV1bX1jfJmZWt7Z3evun/wqJNMMWyyRCSqHVKNgktsGm4EtlOFNA4FtsLR9dRvPaHSPJEPZpxiENOB5BFn1Fjp/qbn96o1z/VmIMvEL0gNCjR61a9uP2FZjNIwQbXu+F5qgpwqw5nASaWbaUwpG9EBdiyVNEYd5LNTJ+TEKn0SJcqWNGSm/p7Iaaz1OA5tZ0zNUC96U/E/r5OZ6CrIuUwzg5LNF0WZICYh079JnytkRowtoUxxeythQ6ooMzadig3BX3x5mTyeuf6F692d1+puEUcZjuAYTsGHS6jDLTSgCQwG8Ayv8OYI58V5dz7mrSWnmDmEP3A+fwC5PY1d</latexit>

E1 Stage 2: Test the classifier on    
<latexit sha1_base64="FbvFdhxlDiBSer8CAZVN4jDQy48=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0iKoseCCB4r2g9oQ9lsJ+3SzSbsboRS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MBVcG8/7dgpr6xubW8Xt0s7u3v5B+fCoqZNMMWywRCSqHVKNgktsGG4EtlOFNA4FtsLRzcxvPaHSPJGPZpxiENOB5BFn1Fjp4bZX7ZUrnuvNQVaJn5MK5Kj3yl/dfsKyGKVhgmrd8b3UBBOqDGcCp6VupjGlbEQH2LFU0hh1MJmfOiVnVumTKFG2pCFz9ffEhMZaj+PQdsbUDPWyNxP/8zqZia6DCZdpZlCyxaIoE8QkZPY36XOFzIixJZQpbm8lbEgVZcamU7Ih+Msvr5Jm1fUvXe/+olJz8ziKcAKncA4+XEEN7qAODWAwgGd4hTdHOC/Ou/OxaC04+cwx/IHz+QO6wY1e</latexit>
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<latexit sha1_base64="ri8ChMBlld3MvkIBVK5EoiVKzCI=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0UQFyUpiroQCiK4rGAf0MQwmU7aITNJmJkIJeQf3Pgrblwo4taNO//GaRtBWw/McDjnXu69x08YlcqyvozSwuLS8kp5tbK2vrG5ZW7vtGWcCkxaOGax6PpIEkYj0lJUMdJNBEHcZ6Tjh5djv3NPhKRxdKtGCXE5GkQ0oBgpLXnm0ZVXhxdQ/3eZ7eAhwSFHIsyhg9PkR1aUE5l7ZtWqWRPAeWIXpAoKND3z0+nHOOUkUpghKXu2lSg3Q0JRzEhecVJJEoRDNCA9TSOkp7jZ5KYcHmilD4NY6BcpOFF/d2SISznivq7kSA3lrDcW//N6qQrO3IxGSapIhKeDgpRBFcNxQLBPBcGKjTRBWFC9K8RDJBBWOsaKDsGePXmetOs1+6Rm3RxXG+dFHGWwB/bBIbDBKWiAa9AELYDBA3gCL+DVeDSejTfjfVpaMoqeXfAHxsc3lZ2cvg==</latexit>

E2 = E1X
2 [ E1⇥

2

<latexit sha1_base64="zCsL49R1D/WkXYj5Yj8NvVgJE1s=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgKiRF0WVBBJcV7APaGCbTSTtkZhJmJmIJ+RU3LhRx64+482+ctllo64ELh3Pu5d57wpRRpV3326qsrW9sblW3azu7e/sH9mG9q5JMYtLBCUtkP0SKMCpIR1PNSD+VBPGQkV4YX8/83iORiibiXk9T4nM0FjSiGGkjBXb9Jmg+5B4c4gnBMUcyLgK74TruHHCVeCVpgBLtwP4ajhKccSI0Zkipgeem2s+R1BQzUtSGmSIpwjEak4GhAnGi/Hx+ewFPjTKCUSJNCQ3n6u+JHHGlpjw0nRzpiVr2ZuJ/3iDT0ZWfU5Fmmgi8WBRlDOoEzoKAIyoJ1mxqCMKSmlshniCJsDZx1UwI3vLLq6TbdLwLx707b7ScMo4qOAYn4Ax44BK0wC1ogw7A4Ak8g1fwZhXWi/VufSxaK1Y5cwT+wPr8ASffk9E=</latexit>

E1X
2

<latexit sha1_base64="VUHj7KaK5ERNdJkquPuwpBQbZN4=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPgadkNih4DIniMYB6QbMLsZDYZMvtgplcJS/7DiwdFvPov3vwbJ8keNLGgoajqprvLT6TQ6DjfVmFtfWNzq7hd2tnd2z8oHx41dZwqxhsslrFq+1RzKSLeQIGStxPFaehL3vLHNzO/9ciVFnH0gJOEeyEdRiIQjKKRerf9ai9zSRdFyPW0X644tjMHWSVuTiqQo94vf3UHMUtDHiGTVOuO6yToZVShYJJPS91U84SyMR3yjqERNVu8bH71lJwZZUCCWJmKkMzV3xMZDbWehL7pDCmO9LI3E//zOikG114moiRFHrHFoiCVBGMyi4AMhOIM5cQQypQwtxI2oooyNEGVTAju8surpFm13Uvbub+o1Ow8jiKcwCmcgwtXUIM7qEMDGCh4hld4s56sF+vd+li0Fqx85hj+wPr8AbXgkfE=</latexit>

E1⇥
2

(correct predictions)

(wrong predictions) 
<latexit sha1_base64="8w2/3KzAZwmQvkWhit4Vme7Uo/I=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUQ9CwYvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53Cyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDv1W0+oNI/loxkn6Ed0IHnIGTVWehjfuL1yxa26M5Bl4uWkAjnqvfJXtx+zNEJpmKBadzw3MX5GleFM4KTUTTUmlI3oADuWShqh9rPZqRNyYpU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjlZ1wmqUHJ5ovCVBATk+nfpM8VMiPGllCmuL2VsCFVlBmbTsmG4C2+vEyaZ1Xvouren1dq13kcRTiCYzgFDy6hBndQhwYwGMAzvMKbI5wX5935mLcWnHzmEP7A+fwB1paNeQ==</latexit>

y = 0
<latexit sha1_base64="tkGyC9RI9nx9rUpHjnypepbiFWI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUQ9CwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0ikMOi6305hZXVtfaO4Wdra3tndK+8fNE2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9up33ri2ohYPeI44X5EB0qEglG00sP4xuuVK27VnYEsEy8nFchR75W/uv2YpRFXyCQ1puO5CfoZ1SiY5JNSNzU8oWxEB7xjqaIRN342O3VCTqzSJ2GsbSkkM/X3REYjY8ZRYDsjikOz6E3F/7xOiuGVnwmVpMgVmy8KU0kwJtO/SV9ozlCOLaFMC3srYUOqKUObTsmG4C2+vEyaZ1Xvouren1dq13kcRTiCYzgFDy6hBndQhwYwGMAzvMKbI50X5935mLcWnHzmEP7A+fwB2BqNeg==</latexit>

y = 1

Stage 3: Minimize the worst-case risk across all interpolations of        ,        ,       ,         .
<latexit sha1_base64="Y5Quo0P9dotfo4bVVMuCRbIN730=">AAAB9XicbVBNS8NAEJ34WetX1aOXxSJ4KklR9Fjw4rGC/YA2LZvtpl262YTdiVJC/4cXD4p49b9489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwXj25nfeuTaiFg94CThfkSHSoSCUbRSr96v9jKPdFFE3Ez7pbJbcecgq8TLSRly1Pulr+4gZmnEFTJJjel4boJ+RjUKJvm02E0NTygb0yHvWKqo3eJn86un5NwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rpBje+JlQSYpcscWiMJUEYzKLgAyE5gzlxBLKtLC3EjaimjK0QRVtCN7yy6ukWa14VxX3/rJcq+RxFOAUzuACPLiGGtxBHRrAQMMzvMKb8+S8OO/Ox6J1zclnTuAPnM8fxxuR/A==</latexit>

P 1⇥
2

<latexit sha1_base64="QLhrf90UqmLHdDTofCdXfVmJ3PA=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5AURY8FLx4r2FZoY9hsJ+2SzSbsbsQS+le8eFDEq3/Em//GbZuDtj4YeLw3w8y8MONMadf9tipr6xubW9Xt2s7u3v6BfVjvqjSXFDo05am8D4kCzgR0NNMc7jMJJAk59ML4eub3HkEqloo7PcnAT8hIsIhRoo0U2PV20HwoPDygY6BxQmQ8DeyG67hz4FXilaSBSrQD+2swTGmegNCUE6X6nptpvyBSM8phWhvkCjJCYzKCvqGCJKD8Yn77FJ8aZYijVJoSGs/V3xMFSZSaJKHpTIgeq2VvJv7n9XMdXfkFE1muQdDFoijnWKd4FgQeMglU84khhEpmbsV0TCSh2sRVMyF4yy+vkm7T8S4c9/a80XLKOKroGJ2gM+ShS9RCN6iNOoiiJ/SMXtGbNbVerHfrY9FascqZI/QH1ucPOUaT3A==</latexit>

P 1X
2
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<latexit sha1_base64="IR7uLCS1jYaE/XnIihryGuyZjcA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0YtQ8OKxgmkLbSib7bZdutmE3YlYQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFyZSGHTdb6ewsrq2vlHcLG1t7+zulfcPGiZONeM+i2WsWyE1XArFfRQoeSvRnEah5M1wdDv1m49cGxGrBxwnPIjoQIm+YBSt5D91vRu3W664VXcGsky8nFQgR71b/ur0YpZGXCGT1Ji25yYYZFSjYJJPSp3U8ISyER3wtqWKRtwE2ezYCTm1So/0Y21LIZmpvycyGhkzjkLbGVEcmkVvKv7ntVPsXweZUEmKXLH5on4qCcZk+jnpCc0ZyrEllGlhbyVsSDVlaPMp2RC8xZeXSeO86l1W3fuLSu0kj6MIR3AMZ+DBFdTgDurgAwMBz/AKb45yXpx352PeWnDymUP4A+fzB/VPjgc=</latexit>

x1 = 0
<latexit sha1_base64="qjvEN4V85HsfJ3m13tujYwMlQ50=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0YtQ8OKxgmkLbSib7bRdutmE3Y1YQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFyaCa+O6305hZXVtfaO4Wdra3tndK+8fNHScKoY+i0WsWiHVKLhE33AjsJUopFEosBmObqd+8xGV5rF8MOMEg4gOJO9zRo2V/Keud+N1yxW36s5AlomXkwrkqHfLX51ezNIIpWGCat323MQEGVWGM4GTUifVmFA2ogNsWypphDrIZsdOyKlVeqQfK1vSkJn6eyKjkdbjKLSdETVDvehNxf+8dmr610HGZZIalGy+qJ8KYmIy/Zz0uEJmxNgSyhS3txI2pIoyY/Mp2RC8xZeXSeO86l1W3fuLSu0kj6MIR3AMZ+DBFdTgDurgAwMOz/AKb450Xpx352PeWnDymUP4A+fzB/bTjgg=</latexit>

x1 = 1

<latexit sha1_base64="L8I5OOvqwhCf4jKRsU06b1cIVnk=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KklR9CIUvHisYNpCG8pmO2mXbjZhdyOW0t/gxYMiXv1B3vw3btsctPXBwOO9GWbmhang2rjut7Oyura+sVnYKm7v7O7tlw4OGzrJFEOfJSJRrZBqFFyib7gR2EoV0jgU2AyHt1O/+YhK80Q+mFGKQUz7kkecUWMl/6lbvXG7pbJbcWcgy8TLSRly1Lulr04vYVmM0jBBtW57bmqCMVWGM4GTYifTmFI2pH1sWyppjDoYz46dkDOr9EiUKFvSkJn6e2JMY61HcWg7Y2oGetGbiv957cxE18GYyzQzKNl8UZQJYhIy/Zz0uEJmxMgSyhS3txI2oIoyY/Mp2hC8xZeXSaNa8S4r7v1FuXaax1GAYziBc/DgCmpwB3XwgQGHZ3iFN0c6L8678zFvXXHymSP4A+fzB/bVjgg=</latexit>

x
2

=
0

<latexit sha1_base64="j7vDFaNay0IEQjgkjHMmwyDHz5c=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KklR9CIUvHisYNpCG8pmO2mXbjZhdyOW0t/gxYMiXv1B3vw3btsctPXBwOO9GWbmhang2rjut7Oyura+sVnYKm7v7O7tlw4OGzrJFEOfJSJRrZBqFFyib7gR2EoV0jgU2AyHt1O/+YhK80Q+mFGKQUz7kkecUWMl/6lbvfG6pbJbcWcgy8TLSRly1Lulr04vYVmM0jBBtW57bmqCMVWGM4GTYifTmFI2pH1sWyppjDoYz46dkDOr9EiUKFvSkJn6e2JMY61HcWg7Y2oGetGbiv957cxE18GYyzQzKNl8UZQJYhIy/Zz0uEJmxMgSyhS3txI2oIoyY/Mp2hC8xZeXSaNa8S4r7v1FuXaax1GAYziBc/DgCmpwB3XwgQGHZ3iFN0c6L8678zFvXXHymSP4A+fzB/hZjgk=</latexit>

x
2

=
1

<latexit sha1_base64="IR7uLCS1jYaE/XnIihryGuyZjcA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0YtQ8OKxgmkLbSib7bZdutmE3YlYQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFyZSGHTdb6ewsrq2vlHcLG1t7+zulfcPGiZONeM+i2WsWyE1XArFfRQoeSvRnEah5M1wdDv1m49cGxGrBxwnPIjoQIm+YBSt5D91vRu3W664VXcGsky8nFQgR71b/ur0YpZGXCGT1Ji25yYYZFSjYJJPSp3U8ISyER3wtqWKRtwE2ezYCTm1So/0Y21LIZmpvycyGhkzjkLbGVEcmkVvKv7ntVPsXweZUEmKXLH5on4qCcZk+jnpCc0ZyrEllGlhbyVsSDVlaPMp2RC8xZeXSeO86l1W3fuLSu0kj6MIR3AMZ+DBFdTgDurgAwMBz/AKb45yXpx352PeWnDymUP4A+fzB/VPjgc=</latexit>

x1 = 0
<latexit sha1_base64="qjvEN4V85HsfJ3m13tujYwMlQ50=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0YtQ8OKxgmkLbSib7bRdutmE3Y1YQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFyaCa+O6305hZXVtfaO4Wdra3tndK+8fNHScKoY+i0WsWiHVKLhE33AjsJUopFEosBmObqd+8xGV5rF8MOMEg4gOJO9zRo2V/Keud+N1yxW36s5AlomXkwrkqHfLX51ezNIIpWGCat323MQEGVWGM4GTUifVmFA2ogNsWypphDrIZsdOyKlVeqQfK1vSkJn6eyKjkdbjKLSdETVDvehNxf+8dmr610HGZZIalGy+qJ8KYmIy/Zz0uEJmxNgSyhS3txI2pIoyY/Mp2RC8xZeXSeO86l1W3fuLSu0kj6MIR3AMZ+DBFdTgDurgAwMOz/AKb450Xpx352PeWnDymUP4A+fzB/bTjgg=</latexit>

x1 = 1
<latexit sha1_base64="IR7uLCS1jYaE/XnIihryGuyZjcA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0YtQ8OKxgmkLbSib7bZdutmE3YlYQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFyZSGHTdb6ewsrq2vlHcLG1t7+zulfcPGiZONeM+i2WsWyE1XArFfRQoeSvRnEah5M1wdDv1m49cGxGrBxwnPIjoQIm+YBSt5D91vRu3W664VXcGsky8nFQgR71b/ur0YpZGXCGT1Ji25yYYZFSjYJJPSp3U8ISyER3wtqWKRtwE2ezYCTm1So/0Y21LIZmpvycyGhkzjkLbGVEcmkVvKv7ntVPsXweZUEmKXLH5on4qCcZk+jnpCc0ZyrEllGlhbyVsSDVlaPMp2RC8xZeXSeO86l1W3fuLSu0kj6MIR3AMZ+DBFdTgDurgAwMBz/AKb45yXpx352PeWnDymUP4A+fzB/VPjgc=</latexit>

x1 = 0
<latexit sha1_base64="qjvEN4V85HsfJ3m13tujYwMlQ50=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0YtQ8OKxgmkLbSib7bRdutmE3Y1YQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFyaCa+O6305hZXVtfaO4Wdra3tndK+8fNHScKoY+i0WsWiHVKLhE33AjsJUopFEosBmObqd+8xGV5rF8MOMEg4gOJO9zRo2V/Keud+N1yxW36s5AlomXkwrkqHfLX51ezNIIpWGCat323MQEGVWGM4GTUifVmFA2ogNsWypphDrIZsdOyKlVeqQfK1vSkJn6eyKjkdbjKLSdETVDvehNxf+8dmr610HGZZIalGy+qJ8KYmIy/Zz0uEJmxNgSyhS3txI2pIoyY/Mp2RC8xZeXSeO86l1W3fuLSu0kj6MIR3AMZ+DBFdTgDurgAwMOz/AKb450Xpx352PeWnDymUP4A+fzB/bTjgg=</latexit>

x1 = 1
<latexit sha1_base64="IR7uLCS1jYaE/XnIihryGuyZjcA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0YtQ8OKxgmkLbSib7bZdutmE3YlYQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFyZSGHTdb6ewsrq2vlHcLG1t7+zulfcPGiZONeM+i2WsWyE1XArFfRQoeSvRnEah5M1wdDv1m49cGxGrBxwnPIjoQIm+YBSt5D91vRu3W664VXcGsky8nFQgR71b/ur0YpZGXCGT1Ji25yYYZFSjYJJPSp3U8ISyER3wtqWKRtwE2ezYCTm1So/0Y21LIZmpvycyGhkzjkLbGVEcmkVvKv7ntVPsXweZUEmKXLH5on4qCcZk+jnpCc0ZyrEllGlhbyVsSDVlaPMp2RC8xZeXSeO86l1W3fuLSu0kj6MIR3AMZ+DBFdTgDurgAwMBz/AKb45yXpx352PeWnDymUP4A+fzB/VPjgc=</latexit>

x1 = 0
<latexit sha1_base64="qjvEN4V85HsfJ3m13tujYwMlQ50=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0YtQ8OKxgmkLbSib7bRdutmE3Y1YQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFyaCa+O6305hZXVtfaO4Wdra3tndK+8fNHScKoY+i0WsWiHVKLhE33AjsJUopFEosBmObqd+8xGV5rF8MOMEg4gOJO9zRo2V/Keud+N1yxW36s5AlomXkwrkqHfLX51ezNIIpWGCat323MQEGVWGM4GTUifVmFA2ogNsWypphDrIZsdOyKlVeqQfK1vSkJn6eyKjkdbjKLSdETVDvehNxf+8dmr610HGZZIalGy+qJ8KYmIy/Zz0uEJmxNgSyhS3txI2pIoyY/Mp2RC8xZeXSeO86l1W3fuLSu0kj6MIR3AMZ+DBFdTgDurgAwMOz/AKb450Xpx352PeWnDymUP4A+fzB/bTjgg=</latexit>

x1 = 1
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(c) Unstable correlation varies as we interpolating        and      
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Figure 1-1: Illustration of our algorithm on the toy example. The label 𝑦 agrees with
the stable feature 𝑥1 with probability 0.8 on both environments. For the unstable
feature 𝑥2, the probability of 𝑥2 = 𝑦 is 1.0 in 𝐸1 and 0.9 in 𝐸2. Stage 1: We train a
classifier 𝑓1 on 𝐸1. It learns to make predictions solely based on the unstable feature
𝑥2. Stage 2: We use 𝑓1 to partition 𝐸2 based on the prediction correctness. While
the correlation of 𝑥2 is positive for both 𝐸1 and 𝐸2, it flips to negative in set of wrong
predictions 𝐸1×

2 . Stage 3: Interpolating 𝑃 1✓
2 and 𝑃 1×

2 allows us to uncover an oracle
distribution 𝑃 * where the unstable feature 𝑥2 is not correlated with the label. Note
that here we only illustrate how to partition 𝐸2 using 𝑓1. In our algorithm, we also
use the classifier 𝑓2 (trained on 𝐸2) to partition 𝐸1, and the final model 𝑓 is obtained
by minimizing the worst-case risk over all interpolations of 𝑃 2✓

1 , 𝑃 2×
1 , 𝑃 1✓

2 𝑃 1×
2 .
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• First, we simulate biases in synthetic environments by appending spurious fea-

tures. Empirical results in both digit classification and sentiment classification

show that our method delivers significant performance gain (23.85%) over in-

variant risk minimization (IRM) [6]. Quantitative analyses confirm that our

method identifies groups with opposite spurious correlations.

• Next, we applied our method on natural environments that are defined by a

given input attribute. Empirical results on CelebA and ASK2ME confirm that

our method is able to improve robustness against other attributes that are

unknown during training, outperforming IRM by 12.41%.

1.2 Learning Stable Classifiers by Transferring Un-

stable Features

While it is easy to collect annotations from multiple environments for resource-rich

tasks, this procedure is infeasible for new tasks or resource-limited tasks. Fortunately,

related tasks are often fraught with similar spurious correlations. For instance, when

classifying animals such as camels vs. cows, their backgrounds (desert vs. grass) may

constitute a spurious correlation [14]. The same bias between the label and the back-

ground also persists in other related classification tasks (such as sheep vs. antelope).

In the resource-scarce target task, we only have access to the input-label pairs. How-

ever, in the source tasks, where training data is sufficient, identifying biases may be

easier. For instance, we may have examples collected from multiple environments, in

which correlations between bias features and the label are different [6]. These source

environments help us define the exact bias features that we want to regulate.

Our goal is to transfer the knowledge that bias features are not reliable in the

source task, so that the target classifier will not rely on these spurious correlations.

To enable effective transfer, we decompose our problem into two steps:

• Inferring unstable features from the source task. Our theorem from

the previous chapter suggests that that unstable features are reflected in mis-
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takes observed during classifier transfer across environments. For instance, if

the classifier uses the background to distinguish camels from cows, the camel

images that are predicted correctly would have a desert background while those

predicted incorrectly are likely to have a grass background. More generally,

we prove that among examples with the same label value, those with the same

prediction outcome will have more similar unstable features than those with

different predictions. By forcing examples with the same prediction outcome to

stay closer in the feature space, we obtain a representation that encodes these

latent unstable features.

• Learning stable correlations for the target task. We can apply the un-

stable feature representation to our target task. By clustering examples based

on this representation, we separate minority groups apart from the majority

groups. We then minimize the worst-group loss using group distributionally

robust optimization [93]. This enforces the target classifier to be robust against
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<latexit sha1_base64="MkjRgI7S0t+/BizVD3LRzC/+GTQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBDiJewGUS9C0IvHCOYByRJmJ73JkNnZZWZWDCEf4cWDIl79Hm/+jZNkD5pY0FBUddPdFSSCa+O6387K6tr6xmZuK7+9s7u3Xzg4bOg4VQzrLBaxagVUo+AS64Ybga1EIY0Cgc1geDv1m4+oNI/lgxkl6Ee0L3nIGTVWaoZdr/R0dt0tFN2yOwNZJl5GipCh1i18dXoxSyOUhgmqddtzE+OPqTKcCZzkO6nGhLIh7WPbUkkj1P54du6EnFqlR8JY2ZKGzNTfE2MaaT2KAtsZUTPQi95U/M9rpya88sdcJqlByeaLwlQQE5Pp76THFTIjRpZQpri9lbABVZQZm1DehuAtvrxMGpWyd1Gu3J8XqzdZHDk4hhMogQeXUIU7qEEdGAzhGV7hzUmcF+fd+Zi3rjjZzBH8gfP5AxjZjsM=</latexit>

f1(x) =

S.1 Train an environment-specific classifier     on     .  
<latexit sha1_base64="+dtJg3nPA6yxvj4ITr1DacGHCZ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh7Dv9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa1a1bus1u4vKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gDyf42V</latexit>

f1
<latexit sha1_base64="Fr1jl7SRQ+LaVz72juaA1JxcI6s=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9VgUwWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+WjGSfoR3QgecgZNVZ6uO15vVLZrbgzkGXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgpNhNNSaUjegAO5ZKGqH2s9mpE3JqlT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtO0YbgLb68TJrVindRqd6fl2vXeRwFOIYTOAMPLqEGd1CHBjAYwDO8wpsjnBfn3fmYt644+cwR/IHz+QPAOY10</latexit>

E1

S.2 Partition      based on the prediction correctness of     .
<latexit sha1_base64="+dtJg3nPA6yxvj4ITr1DacGHCZ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh7Dv9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa1a1bus1u4vKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gDyf42V</latexit>

f1
<latexit sha1_base64="UXCbLynqsbiTkJrjvCoQNaY6LpA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9VgUwWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ2V1bX1js7BV3N7Z3dsvHRw2TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94jjhfkQHSoSCUbTSw22v2iuV3Yo7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx26oScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uwys/EypJkSs2XxSmkmBMpn+TvtCcoRxbQpkW9lbChlRThjadog3BW3x5mTSrFe+iUr0/L9eu8zgKcAwncAYeXEIN7qAODWAwgGd4hTdHOi/Ou/Mxb11x8pkj+APn8wfBvY11</latexit>

E2

Contrasting source environments       and 

S.1 S.2 S.3

(S) Inferring unstable features from the source task source task label:    vs     unstable feature: red vs blue

<latexit sha1_base64="cpdq0hX1olv9YvTCndbLOgoNpu8=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Ae2oWy2k3bJZhN2N0Ip/RdePCji1X/jzX/jts1BWx8MPN6bYWZekAqujet+O4W19Y3NreJ2aWd3b/+gfHjU0kmmGDZZIhLVCahGwSU2DTcCO6lCGgcC20F0O/PbT6g0T+SDGafox3QoecgZNVZ67LERsiimKuqXK27VnYOsEi8nFcjR6Je/eoOEZTFKwwTVuuu5qfEnVBnOBE5LvUxjSllEh9i1VNIYtT+ZXzwlZ1YZkDBRtqQhc/X3xITGWo/jwHbG1Iz0sjcT//O6mQmv/QmXaWZQssWiMBPEJGT2PhlwhcyIsSWUKW5vJWxEFWXGhlSyIXjLL6+SVq3qXVZr9xeV+k0eRxFO4BTOwYMrqMMdNKAJDCQ8wyu8Odp5cd6dj0VrwclnjuEPnM8fqIyQ6g==</latexit>X

<latexit sha1_base64="FEASjxvd/i8cXTT4rAcHoAZxpSk=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0alXvslq7v6jUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPuHWPOw==</latexit>⇥

S.3 For each label value (     or      ), encourage examples 
from the same partition to be close with each other.

Deriving the unstable feature representation 

(T) Learning stable correlations for the target task target task label: + vs -   unstable feature: red vs blue

<latexit sha1_base64="UXCbLynqsbiTkJrjvCoQNaY6LpA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9VgUwWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ2V1bX1js7BV3N7Z3dsvHRw2TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94jjhfkQHSoSCUbTSw22v2iuV3Yo7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx26oScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uwys/EypJkSs2XxSmkmBMpn+TvtCcoRxbQpkW9lbChlRThjadog3BW3x5mTSrFe+iUr0/L9eu8zgKcAwncAYeXEIN7qAODWAwgGd4hTdHOi/Ou/Mxb11x8pkj+APn8wfBvY11</latexit>

E2
<latexit sha1_base64="Fr1jl7SRQ+LaVz72juaA1JxcI6s=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9VgUwWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+WjGSfoR3QgecgZNVZ6uO15vVLZrbgzkGXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgpNhNNSaUjegAO5ZKGqH2s9mpE3JqlT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtO0YbgLb68TJrVindRqd6fl2vXeRwFOIYTOAMPLqEGd1CHBjAYwDO8wpsjnBfn3fmYt644+cwR/IHz+QPAOY10</latexit>

E1

T.1 For each label value (+ or -), cluster examples based on 
the unstable feature representation 

<latexit sha1_base64="KZNVFPdYB+g6xWpwe7eleGQQ3+g=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyUpoi6LblxWsA9sQ5lMJ+3QySTMTIQa8iVuXCji1k9x5984abPQ1gMDh3Pu5Z45fsyZ0o7zbZXW1jc2t8rblZ3dvf2qfXDYUVEiCW2TiEey52NFORO0rZnmtBdLikOf064/vcn97iOVikXiXs9i6oV4LFjACNZGGtrVYJgOQqwnBPP0IcuGds2pO3OgVeIWpAYFWkP7azCKSBJSoQnHSvVdJ9ZeiqVmhNOsMkgUjTGZ4jHtGypwSJWXzoNn6NQoIxRE0jyh0Vz9vZHiUKlZ6JvJPKNa9nLxP6+f6ODKS5mIE00FWRwKEo50hPIW0IhJSjSfGYKJZCYrIhMsMdGmq4opwV3+8irpNOruRb1xd15rXhd1lOEYTuAMXLiEJtxCC9pAIIFneIU368l6sd6tj8VoySp2juAPrM8fW5mTjQ==</latexit>

fZ
<latexit sha1_base64="KZNVFPdYB+g6xWpwe7eleGQQ3+g=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyUpoi6LblxWsA9sQ5lMJ+3QySTMTIQa8iVuXCji1k9x5984abPQ1gMDh3Pu5Z45fsyZ0o7zbZXW1jc2t8rblZ3dvf2qfXDYUVEiCW2TiEey52NFORO0rZnmtBdLikOf064/vcn97iOVikXiXs9i6oV4LFjACNZGGtrVYJgOQqwnBPP0IcuGds2pO3OgVeIWpAYFWkP7azCKSBJSoQnHSvVdJ9ZeiqVmhNOsMkgUjTGZ4jHtGypwSJWXzoNn6NQoIxRE0jyh0Vz9vZHiUKlZ6JvJPKNa9nLxP6+f6ODKS5mIE00FWRwKEo50hPIW0IhJSjSfGYKJZCYrIhMsMdGmq4opwV3+8irpNOruRb1xd15rXhd1lOEYTuAMXLiEJtxCC9pAIIFneIU368l6sd6tj8VoySp2juAPrM8fW5mTjQ==</latexit>

fZ .
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-
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-
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T.1

T.2 Minimize the worst-case risk across all clusters so that 
the model is robust against different unstable feature values.

T.2

<latexit sha1_base64="GpAr9+gRrG521GVsy5Vhd1G8hJs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwVZIi6rLoxmUF+4AmhMl00g6dR5iZiDUUf8WNC0Xc+h/u/BunbRbaeuDC4Zx7ufeeOGVUG8/7dpaWV1bX1ksb5c2t7Z1dd2+/pWWmMGliyaTqxEgTRgVpGmoY6aSKIB4z0o6H1xO/fU+UplLcmVFKQo76giYUI2OlyD0MOBWBkIxyanSUwICjh8iteFVvCrhI/IJUQIFG5H4FPYkzToTBDGnd9b3UhDlShmJGxuUg0yRFeIj6pGupQJzoMJ9eP4YnVunBRCpbwsCp+nsiR1zrEY9tJ0dmoOe9ifif181MchnmVKSZIQLPFiUZg0bCSRSwRxXBho0sQVhReyvEA6QQNjawsg3Bn395kbRqVf+8Wrs9q9SvijhK4Agcg1PggwtQBzegAZoAg0fwDF7Bm/PkvDjvzsesdckpZg7AHzifP8GSlWw=</latexit>

minf max

- -
-

-
-
-
- -

<latexit sha1_base64="cPDMCjK1xRlvrYx2pU6BOeFw/x0=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqswUUZdFNy5cVLAPmA4lk2ba0EwyJBmhDP0MNy4UcevXuPNvzLSz0NYDgcM595JzT5hwpo3rfjultfWNza3ydmVnd2//oHp41NEyVYS2ieRS9UKsKWeCtg0znPYSRXEcctoNJ7e5332iSjMpHs00oUGMR4JFjGBjJb8fYzMmmGf3s0G15tbdOdAq8QpSgwKtQfWrP5QkjakwhGOtfc9NTJBhZRjhdFbpp5ommEzwiPqWChxTHWTzyDN0ZpUhiqSyTxg0V39vZDjWehqHdjKPqJe9XPzP81MTXQcZE0lqqCCLj6KUIyNRfj8aMkWJ4VNLMFHMZkVkjBUmxrZUsSV4yyevkk6j7l3WGw8XteZNUUcZTuAUzsGDK2jCHbSgDQQkPMMrvDnGeXHenY/FaMkpdo7hD5zPH4NPkWk=</latexit>L<latexit sha1_base64="cPDMCjK1xRlvrYx2pU6BOeFw/x0=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqswUUZdFNy5cVLAPmA4lk2ba0EwyJBmhDP0MNy4UcevXuPNvzLSz0NYDgcM595JzT5hwpo3rfjultfWNza3ydmVnd2//oHp41NEyVYS2ieRS9UKsKWeCtg0znPYSRXEcctoNJ7e5332iSjMpHs00oUGMR4JFjGBjJb8fYzMmmGf3s0G15tbdOdAq8QpSgwKtQfWrP5QkjakwhGOtfc9NTJBhZRjhdFbpp5ommEzwiPqWChxTHWTzyDN0ZpUhiqSyTxg0V39vZDjWehqHdjKPqJe9XPzP81MTXQcZE0lqqCCLj6KUIyNRfj8aMkWJ4VNLMFHMZkVkjBUmxrZUsSV4yyevkk6j7l3WGw8XteZNUUcZTuAUzsGDK2jCHbSgDQQkPMMrvDnGeXHenY/FaMkpdo7hD5zPH4NPkWk=</latexit>L(            )

++ ++
<latexit sha1_base64="cPDMCjK1xRlvrYx2pU6BOeFw/x0=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqswUUZdFNy5cVLAPmA4lk2ba0EwyJBmhDP0MNy4UcevXuPNvzLSz0NYDgcM595JzT5hwpo3rfjultfWNza3ydmVnd2//oHp41NEyVYS2ieRS9UKsKWeCtg0znPYSRXEcctoNJ7e5332iSjMpHs00oUGMR4JFjGBjJb8fYzMmmGf3s0G15tbdOdAq8QpSgwKtQfWrP5QkjakwhGOtfc9NTJBhZRjhdFbpp5ommEzwiPqWChxTHWTzyDN0ZpUhiqSyTxg0V39vZDjWehqHdjKPqJe9XPzP81MTXQcZE0lqqCCLj6KUIyNRfj8aMkWJ4VNLMFHMZkVkjBUmxrZUsSV4yyevkk6j7l3WGw8XteZNUUcZTuAUzsGDK2jCHbSgDQQkPMMrvDnGeXHenY/FaMkpdo7hD5zPH4NPkWk=</latexit>L<latexit sha1_base64="cPDMCjK1xRlvrYx2pU6BOeFw/x0=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqswUUZdFNy5cVLAPmA4lk2ba0EwyJBmhDP0MNy4UcevXuPNvzLSz0NYDgcM595JzT5hwpo3rfjultfWNza3ydmVnd2//oHp41NEyVYS2ieRS9UKsKWeCtg0znPYSRXEcctoNJ7e5332iSjMpHs00oUGMR4JFjGBjJb8fYzMmmGf3s0G15tbdOdAq8QpSgwKtQfWrP5QkjakwhGOtfc9NTJBhZRjhdFbpp5ommEzwiPqWChxTHWTzyDN0ZpUhiqSyTxg0V39vZDjWehqHdjKPqJe9XPzP81MTXQcZE0lqqCCLj6KUIyNRfj8aMkWJ4VNLMFHMZkVkjBUmxrZUsSV4yyevkk6j7l3WGw8XteZNUUcZTuAUzsGDK2jCHbSgDQQkPMMrvDnGeXHenY/FaMkpdo7hD5zPH4NPkWk=</latexit>L(         )++

+
+
+

+
+

+

+

<latexit sha1_base64="cPDMCjK1xRlvrYx2pU6BOeFw/x0=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqswUUZdFNy5cVLAPmA4lk2ba0EwyJBmhDP0MNy4UcevXuPNvzLSz0NYDgcM595JzT5hwpo3rfjultfWNza3ydmVnd2//oHp41NEyVYS2ieRS9UKsKWeCtg0znPYSRXEcctoNJ7e5332iSjMpHs00oUGMR4JFjGBjJb8fYzMmmGf3s0G15tbdOdAq8QpSgwKtQfWrP5QkjakwhGOtfc9NTJBhZRjhdFbpp5ommEzwiPqWChxTHWTzyDN0ZpUhiqSyTxg0V39vZDjWehqHdjKPqJe9XPzP81MTXQcZE0lqqCCLj6KUIyNRfj8aMkWJ4VNLMFHMZkVkjBUmxrZUsSV4yyevkk6j7l3WGw8XteZNUUcZTuAUzsGDK2jCHbSgDQQkPMMrvDnGeXHenY/FaMkpdo7hD5zPH4NPkWk=</latexit>L<latexit sha1_base64="cPDMCjK1xRlvrYx2pU6BOeFw/x0=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqswUUZdFNy5cVLAPmA4lk2ba0EwyJBmhDP0MNy4UcevXuPNvzLSz0NYDgcM595JzT5hwpo3rfjultfWNza3ydmVnd2//oHp41NEyVYS2ieRS9UKsKWeCtg0znPYSRXEcctoNJ7e5332iSjMpHs00oUGMR4JFjGBjJb8fYzMmmGf3s0G15tbdOdAq8QpSgwKtQfWrP5QkjakwhGOtfc9NTJBhZRjhdFbpp5ommEzwiPqWChxTHWTzyDN0ZpUhiqSyTxg0V39vZDjWehqHdjKPqJe9XPzP81MTXQcZE0lqqCCLj6KUIyNRfj8aMkWJ4VNLMFHMZkVkjBUmxrZUsSV4yyevkk6j7l3WGw8XteZNUUcZTuAUzsGDK2jCHbSgDQQkPMMrvDnGeXHenY/FaMkpdo7hD5zPH4NPkWk=</latexit>L(         ){         }-
-
--

<latexit sha1_base64="cPDMCjK1xRlvrYx2pU6BOeFw/x0=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqswUUZdFNy5cVLAPmA4lk2ba0EwyJBmhDP0MNy4UcevXuPNvzLSz0NYDgcM595JzT5hwpo3rfjultfWNza3ydmVnd2//oHp41NEyVYS2ieRS9UKsKWeCtg0znPYSRXEcctoNJ7e5332iSjMpHs00oUGMR4JFjGBjJb8fYzMmmGf3s0G15tbdOdAq8QpSgwKtQfWrP5QkjakwhGOtfc9NTJBhZRjhdFbpp5ommEzwiPqWChxTHWTzyDN0ZpUhiqSyTxg0V39vZDjWehqHdjKPqJe9XPzP81MTXQcZE0lqqCCLj6KUIyNRfj8aMkWJ4VNLMFHMZkVkjBUmxrZUsSV4yyevkk6j7l3WGw8XteZNUUcZTuAUzsGDK2jCHbSgDQQkPMMrvDnGeXHenY/FaMkpdo7hD5zPH4NPkWk=</latexit>L<latexit sha1_base64="cPDMCjK1xRlvrYx2pU6BOeFw/x0=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqswUUZdFNy5cVLAPmA4lk2ba0EwyJBmhDP0MNy4UcevXuPNvzLSz0NYDgcM595JzT5hwpo3rfjultfWNza3ydmVnd2//oHp41NEyVYS2ieRS9UKsKWeCtg0znPYSRXEcctoNJ7e5332iSjMpHs00oUGMR4JFjGBjJb8fYzMmmGf3s0G15tbdOdAq8QpSgwKtQfWrP5QkjakwhGOtfc9NTJBhZRjhdFbpp5ommEzwiPqWChxTHWTzyDN0ZpUhiqSyTxg0V39vZDjWehqHdjKPqJe9XPzP81MTXQcZE0lqqCCLj6KUIyNRfj8aMkWJ4VNLMFHMZkVkjBUmxrZUsSV4yyevkk6j7l3WGw8XteZNUUcZTuAUzsGDK2jCHbSgDQQkPMMrvDnGeXHenY/FaMkpdo7hD5zPH4NPkWk=</latexit>L(       )
-
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Figure 1-2: Our algorithm tofu 1) infers unstable features from the source task
(Section 3.3.1) and 2) learns stable correlations for the target task (Section 3.3.2).
We create partitions for all environment pairs. For ease of illustration, we only depict
using 𝑓1 to partition 𝐸2. Best viewed in color.

29



different values of the unstable features. In the example above, animals would

be clustered according to backgrounds, and the classifier should perform well

regardless of the clusters (backgrounds).

We applied our method to both text classification tasks and image classification

tasks. Comparing with state-of-the-art transfer techniques, our method significantly

improves the model robustness (by 18.06%). Qualitative and quantitative analyses

confirm the our method is able to identify the unstable features.

1.3 Learning to Split for Automatic Bias Detection

What if we only have access to the set of input-label pairs? No additional data

environments. No additional source tasks.

We propose Learning to Split (ls), an algorithm that simulates generalization

failure directly from the set of input-label pairs. Specifically, ls learns to split the

dataset so that predictors trained on the training split cannot generalize to the testing

split. This performance gap provides a proxy for measuring the degree of bias in the

learned features and can therefore be used to identify unknown biases. Our algorithm

ls consists of two components:

• Splitter. At each iteration, the Splitter creates a train-test split of the dataset.

Given an input-label pair, it decides whether this example should be used for

ls
Y=polar_bear

Y=samoyed

Original dataset

Training split

Testing split

100%

train

acc

test

acc 

0%

An example predictor

samoyed polar_bear

YN

Background 
is white?

Training split

Testing split

100%

train

acc

test

acc 

50%

An example predictor

polar_bear samoyed

YN

Has a 
leash?

Figure 1-3: Consider the task of classifying samoyeds vs. polar bears. Given the
set of image-label pairs, our algorithm ls learns to split the data so that predictors
trained on the training split cannot generalize to the testing split.
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training or testing. To ensure that the splits are meaningful, we impose two

regularity constraints on the splits. First, the size of the train split must be

comparable to the size of the test split. Second, the marginal distribution of

the label should be the same across the splits.

• Predictor. The Predictor then takes the training split and learns how to

predict the label from the input. Its prediction performance on the testing split

is used to inform the Splitter to generate a more challenging split (under the

regularity constraints) for the next iteration.

The challenge is that we don’t have any explicit annotations for creating non-

generalizable splits. One may cast the objectives, maximizing the generalization gap

while maintaining the regularity constraints, into a reward function for reinforcement

learning. However, our preliminary experiments suggest that the learning signal from

this scalar reward is too sparse for the Splitter to learn meaningful splits.

In this chapter, we present a simple yet effective approach to learn the splitter.

We show that the prediction correctness of each testing example can be served as a

source of weak supervision: generalization performance will drop if we move examples

that are predicted correctly away from the testing split, leaving only those that are

mispredicted. Therefore, we can directly minimize the cross entropy loss between the

Splitter’s decision and the Predictor’s prediction correctness over the testing split.

Our algorithm is model-agnostic and can be applied to any supervised learning

tasks ranging from natural language understanding, image classification to molecular

property prediction. Empirical results demonstrate that our algorithm ls is able to

generate astonishingly challenging splits. For example in MNLI, the generalization

performance drops from 79.4% (random split) to 27.8% (ls) for a standard BERT-

based predictor. Further analyses show that these splits are informative of biases

previously identified by human.

In addition, we demonstrate that combining robust learning algorithms (such as

DRO) with splits identified by ls enables automatic de-biasing. Compared with

previous baselines, we substantially improves the worst-group performance (23.4%
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on average) when the source of biases is completely unknown during training and

validation.

1.4 Contributions

The primary contributions of this thesis are threefold:

• Predict then Interpolate: A Simple Algorithm to Learn Stable Classi-

fiers: Given access to multiple data environments, we demonstrate, both theo-

retically and empirically, how to identify the hidden biases by contrasting these

data environments. Combined with group distributionally robust optimization,

our algorithm delivers state-of-the-art robustness for text classifications and

image classifications.

• Learning Stable Classifiers by Transferring Unstable Features: We

identified that related tasks often share similar biases. Based on this obser-

vation, we propose a novel framework for transferring the knowledge of biases

across tasks. We demonstrate more accurate and reliable prediction across 13

transfer settings.

• Learning to Split for Automatic Bias Detection: We can reduce biases

even without having additional data environments or related tasks. We propose

learning to split, an algorithm that simulates generalization failure directly from

the set of input-label pairs. Empirical results across multiple modalities confirm

that our method is able to identify splits that correlate with biases previously

identified by human experts.

Together, these three lines of work represent a step towards practical machine

learning. We demonstrate how to leverage different prior knowledge (data environ-

ments or related tasks) to address biases. When these prior knowledge is not available,

we show that we can still investigate our existing annotations and simulate potential

generalization failures. Our proposed methods are model-agnostic and are ready to

boost robust learning across different applications.
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1.5 Thesis overview

The rest of this thesis is organised as follows:

• In Chapter 2, we consider the scenario where our data is collected across multiple

environments. We propose Predict then Interpolate (pi), an algorithm that

achieves robustness by contrasting different data environments.

• In Chapter 3, we will discuss how to learn stable classifiers when we don’t have

access to multiple data environments in the target task. We propose Transfer

of Unstable Features (tofu). Our key idea is to transfer knowledge from a

resource-rich source task that manifests similar biases.

• In Chapter 4, we consider the standard supervised learning setting where we

are only given a set of input-label pairs. We present Learning to Split (ls), an

algorithm that learns to split the dataset so that predictors cannot generalize

from the training split to the testing split.

• Chapter 5 concludes this thesis, summarizing the major contributions and pro-

viding a few directions for future work.

.
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Chapter 2

Predict then Interpolate: A Simple

Algorithm to Learn Stable Classifiers

This chapter presents Predict then Interpolate (pi), a simple algorithm for learning

correlations that are stable across environments. The algorithm follows from the in-

tuition that when using a classifier trained on one environment to make predictions

on examples from another environment, its mistakes are informative as to which

correlations are unstable. In this work, we prove that by interpolating the distribu-

tions of the correct predictions and the wrong predictions, we can uncover an oracle

distribution where the unstable correlation vanishes. Since the oracle interpolation

coefficients are not accessible, we use group distributionally robust optimization to

minimize the worst-case risk across all such interpolations. We evaluate our method

on both text classification and image classification. Empirical results demonstrate

that our algorithm is able to learn robust classifiers (outperforms IRM by 23.85% on

synthetic environments and 12.41% on natural environments).

2.1 Introduction

Distributionally robust optimization (DRO) alleviates model biases by minimizing the

worst-case risk over a set of human-defined groups. However, in order to construct

these groups, humans must identify and annotate these biases, a process as expensive
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as annotating the label itself [17, 37, 93]. In this chapter we propose a simple algorithm

to create groups that are informative of these biases, and use these groups to train

stable classifiers.

Our algorithm operates on data split among multiple environments, across which

correlations between bias features and the label may vary. Instead of handcrafting

environments based on explicit, task-dependent biases, these environments can be

determined by generic information that is easy to collect [88]. For example, environ-

ments can represent data collection circumstances, like location and time. Our goal

is to learn correlations that are stable across these environments.

Given these environments, one could directly use them as groups for DRO. Doing

so would optimize the worst-case risk over all interpolations of the training envi-

ronments. However, if the unstable (bias) features are positively and differentially

correlated with the label in all training environments, the unstable correlation will

be positive in any of their interpolations. DRO, optimizing for the best worst-case

performance, will inevitably exploit these unstable features, and we fail to learn a

stable classifier.

In this chapter, we propose Predict then Interpolate (pi), a simple recipe for cre-

ating groups whose interpolation yields a distribution with only stable correlations.

Our idea follows from the intuition that when using a classifier trained on one envi-

ronment to make predictions on examples from a different environment, its mistakes

are informative of the unstable correlations. In fact, we can prove that if the unsta-

ble features and the label are positively correlated across all environments, the same

correlation flips to negative in the set of mistakes. Therefore, by interpolating the

distributions of correct and incorrect predictions, we can uncover an “oracle” distribu-

tion in which only stable features are correlated with the label. Although the oracle

interpolation coefficients are not accessible, we can minimize the worst-case risk over

all interpolations, providing an upper bound of the risk on the oracle distribution.

Our learning paradigm consists of three steps. First, we train an individual clas-

sifier for each environment to estimate the conditional distribution of the label given

the input. These classifiers are biased, as they may rely on any correlations in the
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dataset. Next, we apply each environment’s classifier to partition all other environ-

ments, based on prediction correctness. Finally, we obtain our robust classifier by

minimizing the worst-case risk over all interpolations of the partitions.

Empirically, we evaluate our approach on both synthetic and real-world environ-

ments. First, we simulate unstable correlations in synthetic environments by append-

ing spurious features. Our results in both digit classification and aspect-level senti-

ment classification demonstrate that our method delivers significant performance gain

(23.85% absolute accuracy) over invariant risk minimization (IRM), approaching ora-

cle performance. Quantitative analyses confirm that our method generates partitions

with opposite unstable correlations. Next, we applied our approach on natural envi-

ronments defined by an existing attribute of the input. Our experiments on CelebA

and ASK2ME showed that directly applying DRO on environments improves robust

accuracy for known attributes, but this robustness doesn’t generalize equally across

other attributes that are unknown during train time. On the other hand, by creating

partitions with opposite unstable correlations, our method is able to improve average

worst-group accuracy by 12.41% compared to IRM.

2.2 Related work

Removing known biases: Large scale datasets are fraught with biases. For in-

stance, in face recognition [76], spurious associations may exist between different

face attributes (e.g. hair color) and demographic information (e.g. ethnicity) [21].

Furthermore, in natural language inference [18], the entailment label can often be

predicted from lexical overlap of the two inputs [83]. Finally, in molecular property

prediction [117, 81], performance varies significantly across different scaffolds [120].

Many approaches have been proposed to mitigate biases when they are known

beforehand. Examples include adversarial training to remove biases from represen-

tations [15, 109], re-weighting training examples [98], and combining a biased model

and the base model’s predictions using a product of experts [51, 29, 48, 78]. These

models are typically designed for a specific type of bias and thus require extra domain

37



knowledge to generalize to new tasks.

Group DRO is another attractive framework since it allows explicit modeling of

the distribution family that we want to optimize over. Previous work [54, 86, 94] has

shown the effectiveness of group DRO to train un-biased models. In these models,

the groups are specified by human based on the knowledge of the bias attributes. Our

work differs from them as we create groups using trained models. This allows us to

apply group DRO when we don’t have annotations for the bias attributes. Moreover,

when the bias attributes are available, we can further refine our groups to reduce

unknown biases.

Removing unknown biases: Determining dataset biases is time-consuming and

often requires task-specific expert knowledge [121, 96]. Thus, there are two lines of

work that aim to build robust models without explicitly knowing the type of bias.

The first assumes that weak models, which have limited capacity [97] or are under-

trained [112], are more prone to rely on shallow heuristics and rediscover previously

human-identified dataset biases. By learning from the weak models’ mistakes, we

can obtain a more robust model. While these methods show empirical benefits on

some NLP tasks, the extent to which their assumption holds is unclear. In fact,

recent work [95] shows that over-parametrization may actually exacerbate unstable

correlations for image classification.

The second line of work assumes that the training data are collected from separate

environments, across which unstable features exhibit different correlations with the

label [89, 65, 24, 58, 3, 6]. Invariant risk minimization [6], a representative method

along this line, learns representations that are simultaneously optimal across all en-

vironments. However, since this representation is trained across all environments, it

can easily degenerate in real-world applications [45]. One can consider an extreme

case where the learned representation directly encodes the one-hot embedding of the

label. While this learned representation is stable (invariant) according to the defini-

tion, the model can utilize any unstable features to generate this representation. We

have no guarantee on how the model would generalize when the unstable correlations
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vanish.

Our algorithm instead decomposes the problem of learning stable classifiers into

two parts: finding unstable features and training a robust model. By constraining

the classifiers to be environment-specific in the first part, we are able to construct an

oracle distribution where the unstable features are not correlated with the label. Our

model then directly optimizes an upper bound of the risk on this oracle distribution.

Empirically, we demonstrate that our method is able to eliminate biases not given

during training on multiple real-world applications.

2.3 Method

We consider the setting where the training data are comprised of 𝑛 environments

ℰ = {𝐸1, . . . , 𝐸𝑛}. For each environment 𝐸𝑖, we have input-label pairs (𝑥, 𝑦)
iid∼ 𝑃𝑖.

Our goal is to learn correlations that are stable across these environments [116] so

that the model can generalize to a new test environment 𝐸test that has the same

stable correlations.

2.3.1 Algorithm

Our intuition follows from a simple question.

What happens if we apply a classifier 𝑓𝑖 trained on environment 𝐸𝑖 to a different

environment 𝐸𝑗?

Suppose we have enough data in 𝐸𝑖 and the classifier 𝑓𝑖 is able to perfectly fit

the underlying conditional 𝑃𝑖(𝑦|𝑥). Since 𝐸𝑖 and 𝐸𝑗 follow different distributions, the

classifier 𝑓𝑖 will make mistakes on 𝐸𝑗. These mistakes are natural products of the

unstable correlation: if the correlation of the unstable feature is higher in 𝐸𝑖 than in

𝐸𝑗, the classifier 𝑓𝑖 will overuse this feature when making predictions in 𝐸𝑗.

In fact, we can show that under certain conditions, the unstable correlation within

the subset of wrong predictions is opposite of that within the subset of correct predic-

tions (Section 2.3.3). By interpolating between these two subsets, we can uncover an

oracle distribution where the label is not correlated with the unstable feature. Since
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this interpolation coefficient is not accessible in practice, we adopt group DRO to

minimize the worst-case risk over all interpolations of these subsets. This provides us

an upper bound of the risk on the oracle distribution.

Concretely, our approach has three successive stages.

Stage 1: For each environment 𝐸𝑖, train an environment specific classifier 𝑓𝑖.

Stage 2: For each pair of environments 𝐸𝑖 and 𝐸𝑗, use the trained classifier 𝑓𝑖 to

partition 𝐸𝑗 into two sets

𝐸𝑗 = 𝐸𝑖✓
𝑗 ∪ 𝐸𝑖×

𝑗

where 𝐸𝑖✓
𝑗 contains examples that 𝑓𝑖 predicted correctly and 𝐸𝑖×

𝑗 contains those

predicted incorrectly.

Stage 3: Train the final model 𝑓 by minimizing the worst-case risk over the set of

all interpolations 𝒬:

𝒬 =

{︃∑︁
𝑖 ̸=𝑗

𝜆𝑖✓
𝑗 𝑃 𝑖✓

𝑗 + 𝜆𝑖×
𝑗 𝑃 𝑖×

𝑗 :
∑︁
𝑖 ̸=𝑗

𝜆𝑖✓
𝑗 + 𝜆𝑖×

𝑗 = 1

}︃
,

where 𝑃 𝑖✓
𝑗 and 𝑃 𝑖×

𝑗 are the empirical distributions of 𝐸𝑖✓
𝑗 and 𝐸𝑖×

𝑗 . Because

the optimum value of a linear program must occur at a vertex, the worst-case

risk over 𝒬 is equivalent to the maximum expected risk across all groups. This

allows us to formulate the objective as a min-max problem:

min
𝑓

max
𝑃∈𝒫

E(𝑥,𝑦)∼𝑃 [ℒ(𝑥, 𝑦; 𝑓)],

where ℒ(𝑥, 𝑦; 𝑓) is the loss of the model 𝑓 and 𝒫 is the set of distributions

{𝑃 𝑖✓
𝑗 }𝑖 ̸=𝑗 ∪ {𝑃 𝑖×

𝑗 }𝑖 ̸=𝑗.

Extensions of the algorithm: For regression tasks, we can set a threshold on the

mean square error to partition environments. We can also apply the first two stages

multiple times, treating new partitions as different environments, to iteratively refine
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<latexit sha1_base64="6dsBQ3jIVh+1ANPgpdrJrmz5BBs=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0YtQ9OKxgv2ANpTNdtMu3WzC7kQsoT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hbqtx65NiJWDzhOuB/RgRKhYBSt1HrqeeSauL1yxa26M5Bl4uWkAjnqvfJXtx+zNOIKmaTGdDw3QT+jGgWTfFLqpoYnlI3ogHcsVTTixs9m507IiVX6JIy1LYVkpv6eyGhkzDgKbGdEcWgWvan4n9dJMbzyM6GSFLli80VhKgnGZPo76QvNGcqxJZRpYW8lbEg1ZWgTKtkQvMWXl0nzrOpdVN3780rtJo+jCEdwDKfgwSXU4A7q0AAGI3iGV3hzEufFeXc+5q0FJ585hD9wPn8ArAuOeQ==</latexit>

x1 = 0
<latexit sha1_base64="97jh5wS8qOZCIK1G21eaNv9R2I8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0YtQ9OKxgv2ANpTNdtMu3WzC7kQsoT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hbqtx65NiJWDzhOuB/RgRKhYBSt1HrqeeSaeL1yxa26M5Bl4uWkAjnqvfJXtx+zNOIKmaTGdDw3QT+jGgWTfFLqpoYnlI3ogHcsVTTixs9m507IiVX6JIy1LYVkpv6eyGhkzDgKbGdEcWgWvan4n9dJMbzyM6GSFLli80VhKgnGZPo76QvNGcqxJZRpYW8lbEg1ZWgTKtkQvMWXl0nzrOpdVN3780rtJo+jCEdwDKfgwSXU4A7q0AAGI3iGV3hzEufFeXc+5q0FJ585hD9wPn8ArY+Oeg==</latexit>

x1 = 1

<latexit sha1_base64="d5C4iJa/oZrkAB5Jv0pgsE0e3AU=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KklR9CIUvXisYD+gDWWznbRLN5uwuxFL6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqd+6xGV5rF8MOME/YgOJA85o8ZKradelVwTt1cquxV3BrJMvJyUIUe9V/rq9mOWRigNE1Trjucmxs+oMpwJnBS7qcaEshEdYMdSSSPUfjY7d0JOrdInYaxsSUNm6u+JjEZaj6PAdkbUDPWiNxX/8zqpCa/8jMskNSjZfFGYCmJiMv2d9LlCZsTYEsoUt7cSNqSKMmMTKtoQvMWXl0mzWvEuKu79ebl2k8dRgGM4gTPw4BJqcAd1aACDETzDK7w5ifPivDsf89YVJ585gj9wPn8ArZOOeg==</latexit> x
2

=
0

<latexit sha1_base64="HPilOeAY37asTgGQnCGM8bQW1SM=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KklR9CIUvXisYD+gDWWz3bRLN5uwOxFL6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDv1W49cGxGrBxwn3I/oQIlQMIpWaj31quSaeL1S2a24M5Bl4uWkDDnqvdJXtx+zNOIKmaTGdDw3QT+jGgWTfFLspoYnlI3ogHcsVTTixs9m507IqVX6JIy1LYVkpv6eyGhkzDgKbGdEcWgWvan4n9dJMbzyM6GSFLli80VhKgnGZPo76QvNGcqxJZRpYW8lbEg1ZWgTKtoQvMWXl0mzWvEuKu79ebl2k8dRgGM4gTPw4BJqcAd1aACDETzDK7w5ifPivDsf89YVJ585gj9wPn8ArxeOew==</latexit> x
2

=
1

(a) Environment 
<latexit sha1_base64="p+qeyA4pf79yVritOjfphU6QLkg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUW8FETxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgorq2vrG8XN0tb2zu5eef+gaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3Uz91hPXRsTqEccJ9yM6UCIUjKKVHm57Xq9ccavuDGSZeDmpQI56r/zV7ccsjbhCJqkxHc9N0M+oRsEkn5S6qeEJZSM64B1LFY248bPZqRNyYpU+CWNtSyGZqb8nMhoZM44C2xlRHJpFbyr+53VSDK/8TKgkRa7YfFGYSoIxmf5N+kJzhnJsCWVa2FsJG1JNGdp0SjYEb/HlZdI8q3oXVff+vFK7zuMowhEcwyl4cAk1uIM6NIDBAJ7hFd4c6bw4787HvLXg5DOH8AfO5w+8jI1o</latexit>

E1

<latexit sha1_base64="6dsBQ3jIVh+1ANPgpdrJrmz5BBs=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0YtQ9OKxgv2ANpTNdtMu3WzC7kQsoT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hbqtx65NiJWDzhOuB/RgRKhYBSt1HrqeeSauL1yxa26M5Bl4uWkAjnqvfJXtx+zNOIKmaTGdDw3QT+jGgWTfFLqpoYnlI3ogHcsVTTixs9m507IiVX6JIy1LYVkpv6eyGhkzDgKbGdEcWgWvan4n9dJMbzyM6GSFLli80VhKgnGZPo76QvNGcqxJZRpYW8lbEg1ZWgTKtkQvMWXl0nzrOpdVN3780rtJo+jCEdwDKfgwSXU4A7q0AAGI3iGV3hzEufFeXc+5q0FJ585hD9wPn8ArAuOeQ==</latexit>

x1 = 0
<latexit sha1_base64="97jh5wS8qOZCIK1G21eaNv9R2I8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0YtQ9OKxgv2ANpTNdtMu3WzC7kQsoT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hbqtx65NiJWDzhOuB/RgRKhYBSt1HrqeeSaeL1yxa26M5Bl4uWkAjnqvfJXtx+zNOIKmaTGdDw3QT+jGgWTfFLqpoYnlI3ogHcsVTTixs9m507IiVX6JIy1LYVkpv6eyGhkzDgKbGdEcWgWvan4n9dJMbzyM6GSFLli80VhKgnGZPo76QvNGcqxJZRpYW8lbEg1ZWgTKtkQvMWXl0nzrOpdVN3780rtJo+jCEdwDKfgwSXU4A7q0AAGI3iGV3hzEufFeXc+5q0FJ585hD9wPn8ArY+Oeg==</latexit>

x1 = 1

<latexit sha1_base64="d5C4iJa/oZrkAB5Jv0pgsE0e3AU=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KklR9CIUvXisYD+gDWWznbRLN5uwuxFL6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqd+6xGV5rF8MOME/YgOJA85o8ZKradelVwTt1cquxV3BrJMvJyUIUe9V/rq9mOWRigNE1Trjucmxs+oMpwJnBS7qcaEshEdYMdSSSPUfjY7d0JOrdInYaxsSUNm6u+JjEZaj6PAdkbUDPWiNxX/8zqpCa/8jMskNSjZfFGYCmJiMv2d9LlCZsTYEsoUt7cSNqSKMmMTKtoQvMWXl0mzWvEuKu79ebl2k8dRgGM4gTPw4BJqcAd1aACDETzDK7w5ifPivDsf89YVJ585gj9wPn8ArZOOeg==</latexit> x
2

=
0

<latexit sha1_base64="HPilOeAY37asTgGQnCGM8bQW1SM=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KklR9CIUvXisYD+gDWWz3bRLN5uwOxFL6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDv1W49cGxGrBxwn3I/oQIlQMIpWaj31quSaeL1S2a24M5Bl4uWkDDnqvdJXtx+zNOIKmaTGdDw3QT+jGgWTfFLspoYnlI3ogHcsVTTixs9m507IqVX6JIy1LYVkpv6eyGhkzDgKbGdEcWgWvan4n9dJMbzyM6GSFLli80VhKgnGZPo76QvNGcqxJZRpYW8lbEg1ZWgTKtoQvMWXl0mzWvEuKu79ebl2k8dRgGM4gTPw4BJqcAd1aACDETzDK7w5ifPivDsf89YVJ585gj9wPn8ArxeOew==</latexit> x
2

=
1

<latexit sha1_base64="8w2/3KzAZwmQvkWhit4Vme7Uo/I=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUQ9CwYvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53Cyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDv1W0+oNI/loxkn6Ed0IHnIGTVWehjfuL1yxa26M5Bl4uWkAjnqvfJXtx+zNEJpmKBadzw3MX5GleFM4KTUTTUmlI3oADuWShqh9rPZqRNyYpU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjlZ1wmqUHJ5ovCVBATk+nfpM8VMiPGllCmuL2VsCFVlBmbTsmG4C2+vEyaZ1Xvouren1dq13kcRTiCYzgFDy6hBndQhwYwGMAzvMKbI5wX5935mLcWnHzmEP7A+fwB1paNeQ==</latexit>

y = 0
<latexit sha1_base64="tkGyC9RI9nx9rUpHjnypepbiFWI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUQ9CwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0ikMOi6305hZXVtfaO4Wdra3tndK+8fNE2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9up33ri2ohYPeI44X5EB0qEglG00sP4xuuVK27VnYEsEy8nFchR75W/uv2YpRFXyCQ1puO5CfoZ1SiY5JNSNzU8oWxEB7xjqaIRN342O3VCTqzSJ2GsbSkkM/X3REYjY8ZRYDsjikOz6E3F/7xOiuGVnwmVpMgVmy8KU0kwJtO/SV9ozlCOLaFMC3srYUOqKUObTsmG4C2+vEyaZ1Xvouren1dq13kcRTiCYzgFDy6hBndQhwYwGMAzvMKbI50X5935mLcWnHzmEP7A+fwB2BqNeg==</latexit>

y = 1

(b) Environment 

<latexit sha1_base64="8w2/3KzAZwmQvkWhit4Vme7Uo/I=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUQ9CwYvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53Cyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDv1W0+oNI/loxkn6Ed0IHnIGTVWehjfuL1yxa26M5Bl4uWkAjnqvfJXtx+zNEJpmKBadzw3MX5GleFM4KTUTTUmlI3oADuWShqh9rPZqRNyYpU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjlZ1wmqUHJ5ovCVBATk+nfpM8VMiPGllCmuL2VsCFVlBmbTsmG4C2+vEyaZ1Xvouren1dq13kcRTiCYzgFDy6hBndQhwYwGMAzvMKbI5wX5935mLcWnHzmEP7A+fwB1paNeQ==</latexit>

y = 0
<latexit sha1_base64="tkGyC9RI9nx9rUpHjnypepbiFWI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUQ9CwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0ikMOi6305hZXVtfaO4Wdra3tndK+8fNE2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9up33ri2ohYPeI44X5EB0qEglG00sP4xuuVK27VnYEsEy8nFchR75W/uv2YpRFXyCQ1puO5CfoZ1SiY5JNSNzU8oWxEB7xjqaIRN342O3VCTqzSJ2GsbSkkM/X3REYjY8ZRYDsjikOz6E3F/7xOiuGVnwmVpMgVmy8KU0kwJtO/SV9ozlCOLaFMC3srYUOqKUObTsmG4C2+vEyaZ1Xvouren1dq13kcRTiCYzgFDy6hBndQhwYwGMAzvMKbI50X5935mLcWnHzmEP7A+fwB2BqNeg==</latexit>

y = 1

<latexit sha1_base64="1r9Z7zEks5q4hNqO7IU0kRLJBXo=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBahXkJSKnoRCl48VrAf0Iaw2W7apZtN2N1IS+jf8OJBEa/+GW/+G7dtDtr6YODx3gwz84KEM6Ud59sqbGxube8Ud0t7+weHR+Xjk7aKU0loi8Q8lt0AK8qZoC3NNKfdRFIcBZx2gvHd3O88UalYLB71NKFehIeChYxgbaR+6LvVySW6RRO/5pcrju0sgNaJm5MK5Gj65a/+ICZpRIUmHCvVc51EexmWmhFOZ6V+qmiCyRgPac9QgSOqvGxx8wxdGGWAwliaEhot1N8TGY6UmkaB6YywHqlVby7+5/VSHd54GRNJqqkgy0VhypGO0TwANGCSEs2nhmAimbkVkRGWmGgTU8mE4K6+vE7aNdu9sp2HeqVh53EU4QzOoQouXEMD7qEJLSCQwDO8wpuVWi/Wu/WxbC1Y+cwp/IH1+QPJYZAn</latexit>

f1(x) = x2Stage 1: Train a classifier      on    
<latexit sha1_base64="sNm8b7hHdtf55mgMnJVa/qa0G8g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hE0WPBi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fj25nffuLaiEQ94iTlQUyHSkSCUbTSQ9T3+9Wa53pzkFXiF6QGBRr96ldvkLAs5gqZpMZ0fS/FIKcaBZN8WullhqeUjemQdy1VNOYmyOenTsmZVQYkSrQthWSu/p7IaWzMJA5tZ0xxZJa9mfif180wuglyodIMuWKLRVEmCSZk9jcZCM0ZyokllGlhbyVsRDVlaNOp2BD85ZdXSevC9a9c7/6yVneLOMpwAqdwDj5cQx3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5A+uDjX4=</latexit>

f1

<latexit sha1_base64="lT+6SLLuG/6k/hnKvgWd6pKjGyc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hE0WNBBI8VrS20oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZemAqujed9O6WV1bX1jfJmZWt7Z3evun/wqJNMMWyyRCSqHVKNgktsGm4EtlOFNA4FtsLR9dRvPaHSPJEPZpxiENOB5BFn1Fjp/qbn96o1z/VmIMvEL0gNCjR61a9uP2FZjNIwQbXu+F5qgpwqw5nASaWbaUwpG9EBdiyVNEYd5LNTJ+TEKn0SJcqWNGSm/p7Iaaz1OA5tZ0zNUC96U/E/r5OZ6CrIuUwzg5LNF0WZICYh079JnytkRowtoUxxeythQ6ooMzadig3BX3x5mTyeuf6F692d1+puEUcZjuAYTsGHS6jDLTSgCQwG8Ayv8OYI58V5dz7mrSWnmDmEP3A+fwC5PY1d</latexit>

E1 Stage 2: Test the classifier on    
<latexit sha1_base64="FbvFdhxlDiBSer8CAZVN4jDQy48=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0iKoseCCB4r2g9oQ9lsJ+3SzSbsboRS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MBVcG8/7dgpr6xubW8Xt0s7u3v5B+fCoqZNMMWywRCSqHVKNgktsGG4EtlOFNA4FtsLRzcxvPaHSPJGPZpxiENOB5BFn1Fjp4bZX7ZUrnuvNQVaJn5MK5Kj3yl/dfsKyGKVhgmrd8b3UBBOqDGcCp6VupjGlbEQH2LFU0hh1MJmfOiVnVumTKFG2pCFz9ffEhMZaj+PQdsbUDPWyNxP/8zqZia6DCZdpZlCyxaIoE8QkZPY36XOFzIixJZQpbm8lbEgVZcamU7Ih+Msvr5Jm1fUvXe/+olJz8ziKcAKncA4+XEEN7qAODWAwgGd4hTdHOC/Ou/OxaC04+cwx/IHz+QO6wY1e</latexit>
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<latexit sha1_base64="ri8ChMBlld3MvkIBVK5EoiVKzCI=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0UQFyUpiroQCiK4rGAf0MQwmU7aITNJmJkIJeQf3Pgrblwo4taNO//GaRtBWw/McDjnXu69x08YlcqyvozSwuLS8kp5tbK2vrG5ZW7vtGWcCkxaOGax6PpIEkYj0lJUMdJNBEHcZ6Tjh5djv3NPhKRxdKtGCXE5GkQ0oBgpLXnm0ZVXhxdQ/3eZ7eAhwSFHIsyhg9PkR1aUE5l7ZtWqWRPAeWIXpAoKND3z0+nHOOUkUpghKXu2lSg3Q0JRzEhecVJJEoRDNCA9TSOkp7jZ5KYcHmilD4NY6BcpOFF/d2SISznivq7kSA3lrDcW//N6qQrO3IxGSapIhKeDgpRBFcNxQLBPBcGKjTRBWFC9K8RDJBBWOsaKDsGePXmetOs1+6Rm3RxXG+dFHGWwB/bBIbDBKWiAa9AELYDBA3gCL+DVeDSejTfjfVpaMoqeXfAHxsc3lZ2cvg==</latexit>

E2 = E1X
2 [ E1⇥

2

<latexit sha1_base64="zCsL49R1D/WkXYj5Yj8NvVgJE1s=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgKiRF0WVBBJcV7APaGCbTSTtkZhJmJmIJ+RU3LhRx64+482+ctllo64ELh3Pu5d57wpRRpV3326qsrW9sblW3azu7e/sH9mG9q5JMYtLBCUtkP0SKMCpIR1PNSD+VBPGQkV4YX8/83iORiibiXk9T4nM0FjSiGGkjBXb9Jmg+5B4c4gnBMUcyLgK74TruHHCVeCVpgBLtwP4ajhKccSI0Zkipgeem2s+R1BQzUtSGmSIpwjEak4GhAnGi/Hx+ewFPjTKCUSJNCQ3n6u+JHHGlpjw0nRzpiVr2ZuJ/3iDT0ZWfU5Fmmgi8WBRlDOoEzoKAIyoJ1mxqCMKSmlshniCJsDZx1UwI3vLLq6TbdLwLx707b7ScMo4qOAYn4Ax44BK0wC1ogw7A4Ak8g1fwZhXWi/VufSxaK1Y5cwT+wPr8ASffk9E=</latexit>

E1X
2

<latexit sha1_base64="VUHj7KaK5ERNdJkquPuwpBQbZN4=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPgadkNih4DIniMYB6QbMLsZDYZMvtgplcJS/7DiwdFvPov3vwbJ8keNLGgoajqprvLT6TQ6DjfVmFtfWNzq7hd2tnd2z8oHx41dZwqxhsslrFq+1RzKSLeQIGStxPFaehL3vLHNzO/9ciVFnH0gJOEeyEdRiIQjKKRerf9ai9zSRdFyPW0X644tjMHWSVuTiqQo94vf3UHMUtDHiGTVOuO6yToZVShYJJPS91U84SyMR3yjqERNVu8bH71lJwZZUCCWJmKkMzV3xMZDbWehL7pDCmO9LI3E//zOikG114moiRFHrHFoiCVBGMyi4AMhOIM5cQQypQwtxI2oooyNEGVTAju8surpFm13Uvbub+o1Ow8jiKcwCmcgwtXUIM7qEMDGCh4hld4s56sF+vd+li0Fqx85hj+wPr8AbXgkfE=</latexit>

E1⇥
2

(correct predictions)

(wrong predictions) 
<latexit sha1_base64="8w2/3KzAZwmQvkWhit4Vme7Uo/I=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUQ9CwYvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53Cyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDv1W0+oNI/loxkn6Ed0IHnIGTVWehjfuL1yxa26M5Bl4uWkAjnqvfJXtx+zNEJpmKBadzw3MX5GleFM4KTUTTUmlI3oADuWShqh9rPZqRNyYpU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjlZ1wmqUHJ5ovCVBATk+nfpM8VMiPGllCmuL2VsCFVlBmbTsmG4C2+vEyaZ1Xvouren1dq13kcRTiCYzgFDy6hBndQhwYwGMAzvMKbI5wX5935mLcWnHzmEP7A+fwB1paNeQ==</latexit>

y = 0
<latexit sha1_base64="tkGyC9RI9nx9rUpHjnypepbiFWI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUQ9CwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0ikMOi6305hZXVtfaO4Wdra3tndK+8fNE2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9up33ri2ohYPeI44X5EB0qEglG00sP4xuuVK27VnYEsEy8nFchR75W/uv2YpRFXyCQ1puO5CfoZ1SiY5JNSNzU8oWxEB7xjqaIRN342O3VCTqzSJ2GsbSkkM/X3REYjY8ZRYDsjikOz6E3F/7xOiuGVnwmVpMgVmy8KU0kwJtO/SV9ozlCOLaFMC3srYUOqKUObTsmG4C2+vEyaZ1Xvouren1dq13kcRTiCYzgFDy6hBndQhwYwGMAzvMKbI50X5935mLcWnHzmEP7A+fwB2BqNeg==</latexit>

y = 1

Stage 3: Minimize the worst-case risk across all interpolations of        ,        ,       ,         .
<latexit sha1_base64="Y5Quo0P9dotfo4bVVMuCRbIN730=">AAAB9XicbVBNS8NAEJ34WetX1aOXxSJ4KklR9Fjw4rGC/YA2LZvtpl262YTdiVJC/4cXD4p49b9489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwXj25nfeuTaiFg94CThfkSHSoSCUbRSr96v9jKPdFFE3Ez7pbJbcecgq8TLSRly1Pulr+4gZmnEFTJJjel4boJ+RjUKJvm02E0NTygb0yHvWKqo3eJn86un5NwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rpBje+JlQSYpcscWiMJUEYzKLgAyE5gzlxBLKtLC3EjaimjK0QRVtCN7yy6ukWa14VxX3/rJcq+RxFOAUzuACPLiGGtxBHRrAQMMzvMKb8+S8OO/Ox6J1zclnTuAPnM8fxxuR/A==</latexit>

P 1⇥
2

<latexit sha1_base64="QLhrf90UqmLHdDTofCdXfVmJ3PA=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5AURY8FLx4r2FZoY9hsJ+2SzSbsbsQS+le8eFDEq3/Em//GbZuDtj4YeLw3w8y8MONMadf9tipr6xubW9Xt2s7u3v6BfVjvqjSXFDo05am8D4kCzgR0NNMc7jMJJAk59ML4eub3HkEqloo7PcnAT8hIsIhRoo0U2PV20HwoPDygY6BxQmQ8DeyG67hz4FXilaSBSrQD+2swTGmegNCUE6X6nptpvyBSM8phWhvkCjJCYzKCvqGCJKD8Yn77FJ8aZYijVJoSGs/V3xMFSZSaJKHpTIgeq2VvJv7n9XMdXfkFE1muQdDFoijnWKd4FgQeMglU84khhEpmbsV0TCSh2sRVMyF4yy+vkm7T8S4c9/a80XLKOKroGJ2gM+ShS9RCN6iNOoiiJ/SMXtGbNbVerHfrY9FascqZI/QH1ucPOUaT3A==</latexit>

P 1X
2

1.00

0.00

1.00

0.00

0.00

1.00

0.00

1.00

0.06

0.50

0.50

0.94

0.20

0.20

0.80

0.80

0.50

0.06

0.94

0.50
<latexit sha1_base64="IR7uLCS1jYaE/XnIihryGuyZjcA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0YtQ8OKxgmkLbSib7bZdutmE3YlYQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFyZSGHTdb6ewsrq2vlHcLG1t7+zulfcPGiZONeM+i2WsWyE1XArFfRQoeSvRnEah5M1wdDv1m49cGxGrBxwnPIjoQIm+YBSt5D91vRu3W664VXcGsky8nFQgR71b/ur0YpZGXCGT1Ji25yYYZFSjYJJPSp3U8ISyER3wtqWKRtwE2ezYCTm1So/0Y21LIZmpvycyGhkzjkLbGVEcmkVvKv7ntVPsXweZUEmKXLH5on4qCcZk+jnpCc0ZyrEllGlhbyVsSDVlaPMp2RC8xZeXSeO86l1W3fuLSu0kj6MIR3AMZ+DBFdTgDurgAwMBz/AKb45yXpx352PeWnDymUP4A+fzB/VPjgc=</latexit>

x1 = 0
<latexit sha1_base64="qjvEN4V85HsfJ3m13tujYwMlQ50=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0YtQ8OKxgmkLbSib7bRdutmE3Y1YQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFyaCa+O6305hZXVtfaO4Wdra3tndK+8fNHScKoY+i0WsWiHVKLhE33AjsJUopFEosBmObqd+8xGV5rF8MOMEg4gOJO9zRo2V/Keud+N1yxW36s5AlomXkwrkqHfLX51ezNIIpWGCat323MQEGVWGM4GTUifVmFA2ogNsWypphDrIZsdOyKlVeqQfK1vSkJn6eyKjkdbjKLSdETVDvehNxf+8dmr610HGZZIalGy+qJ8KYmIy/Zz0uEJmxNgSyhS3txI2pIoyY/Mp2RC8xZeXSeO86l1W3fuLSu0kj6MIR3AMZ+DBFdTgDurgAwMOz/AKb450Xpx352PeWnDymUP4A+fzB/bTjgg=</latexit>

x1 = 1

<latexit sha1_base64="L8I5OOvqwhCf4jKRsU06b1cIVnk=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KklR9CIUvHisYNpCG8pmO2mXbjZhdyOW0t/gxYMiXv1B3vw3btsctPXBwOO9GWbmhang2rjut7Oyura+sVnYKm7v7O7tlw4OGzrJFEOfJSJRrZBqFFyib7gR2EoV0jgU2AyHt1O/+YhK80Q+mFGKQUz7kkecUWMl/6lbvXG7pbJbcWcgy8TLSRly1Lulr04vYVmM0jBBtW57bmqCMVWGM4GTYifTmFI2pH1sWyppjDoYz46dkDOr9EiUKFvSkJn6e2JMY61HcWg7Y2oGetGbiv957cxE18GYyzQzKNl8UZQJYhIy/Zz0uEJmxMgSyhS3txI2oIoyY/Mp2hC8xZeXSaNa8S4r7v1FuXaax1GAYziBc/DgCmpwB3XwgQGHZ3iFN0c6L8678zFvXXHymSP4A+fzB/bVjgg=</latexit>

x
2

=
0

<latexit sha1_base64="j7vDFaNay0IEQjgkjHMmwyDHz5c=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KklR9CIUvHisYNpCG8pmO2mXbjZhdyOW0t/gxYMiXv1B3vw3btsctPXBwOO9GWbmhang2rjut7Oyura+sVnYKm7v7O7tlw4OGzrJFEOfJSJRrZBqFFyib7gR2EoV0jgU2AyHt1O/+YhK80Q+mFGKQUz7kkecUWMl/6lbvfG6pbJbcWcgy8TLSRly1Lulr04vYVmM0jBBtW57bmqCMVWGM4GTYifTmFI2pH1sWyppjDoYz46dkDOr9EiUKFvSkJn6e2JMY61HcWg7Y2oGetGbiv957cxE18GYyzQzKNl8UZQJYhIy/Zz0uEJmxMgSyhS3txI2oIoyY/Mp2hC8xZeXSaNa8S4r7v1FuXaax1GAYziBc/DgCmpwB3XwgQGHZ3iFN0c6L8678zFvXXHymSP4A+fzB/hZjgk=</latexit>

x
2

=
1

<latexit sha1_base64="IR7uLCS1jYaE/XnIihryGuyZjcA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0YtQ8OKxgmkLbSib7bZdutmE3YlYQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFyZSGHTdb6ewsrq2vlHcLG1t7+zulfcPGiZONeM+i2WsWyE1XArFfRQoeSvRnEah5M1wdDv1m49cGxGrBxwnPIjoQIm+YBSt5D91vRu3W664VXcGsky8nFQgR71b/ur0YpZGXCGT1Ji25yYYZFSjYJJPSp3U8ISyER3wtqWKRtwE2ezYCTm1So/0Y21LIZmpvycyGhkzjkLbGVEcmkVvKv7ntVPsXweZUEmKXLH5on4qCcZk+jnpCc0ZyrEllGlhbyVsSDVlaPMp2RC8xZeXSeO86l1W3fuLSu0kj6MIR3AMZ+DBFdTgDurgAwMBz/AKb45yXpx352PeWnDymUP4A+fzB/VPjgc=</latexit>

x1 = 0
<latexit sha1_base64="qjvEN4V85HsfJ3m13tujYwMlQ50=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0YtQ8OKxgmkLbSib7bRdutmE3Y1YQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFyaCa+O6305hZXVtfaO4Wdra3tndK+8fNHScKoY+i0WsWiHVKLhE33AjsJUopFEosBmObqd+8xGV5rF8MOMEg4gOJO9zRo2V/Keud+N1yxW36s5AlomXkwrkqHfLX51ezNIIpWGCat323MQEGVWGM4GTUifVmFA2ogNsWypphDrIZsdOyKlVeqQfK1vSkJn6eyKjkdbjKLSdETVDvehNxf+8dmr610HGZZIalGy+qJ8KYmIy/Zz0uEJmxNgSyhS3txI2pIoyY/Mp2RC8xZeXSeO86l1W3fuLSu0kj6MIR3AMZ+DBFdTgDurgAwMOz/AKb450Xpx352PeWnDymUP4A+fzB/bTjgg=</latexit>

x1 = 1
<latexit sha1_base64="IR7uLCS1jYaE/XnIihryGuyZjcA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0YtQ8OKxgmkLbSib7bZdutmE3YlYQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFyZSGHTdb6ewsrq2vlHcLG1t7+zulfcPGiZONeM+i2WsWyE1XArFfRQoeSvRnEah5M1wdDv1m49cGxGrBxwnPIjoQIm+YBSt5D91vRu3W664VXcGsky8nFQgR71b/ur0YpZGXCGT1Ji25yYYZFSjYJJPSp3U8ISyER3wtqWKRtwE2ezYCTm1So/0Y21LIZmpvycyGhkzjkLbGVEcmkVvKv7ntVPsXweZUEmKXLH5on4qCcZk+jnpCc0ZyrEllGlhbyVsSDVlaPMp2RC8xZeXSeO86l1W3fuLSu0kj6MIR3AMZ+DBFdTgDurgAwMBz/AKb45yXpx352PeWnDymUP4A+fzB/VPjgc=</latexit>

x1 = 0
<latexit sha1_base64="qjvEN4V85HsfJ3m13tujYwMlQ50=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0YtQ8OKxgmkLbSib7bRdutmE3Y1YQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFyaCa+O6305hZXVtfaO4Wdra3tndK+8fNHScKoY+i0WsWiHVKLhE33AjsJUopFEosBmObqd+8xGV5rF8MOMEg4gOJO9zRo2V/Keud+N1yxW36s5AlomXkwrkqHfLX51ezNIIpWGCat323MQEGVWGM4GTUifVmFA2ogNsWypphDrIZsdOyKlVeqQfK1vSkJn6eyKjkdbjKLSdETVDvehNxf+8dmr610HGZZIalGy+qJ8KYmIy/Zz0uEJmxNgSyhS3txI2pIoyY/Mp2RC8xZeXSeO86l1W3fuLSu0kj6MIR3AMZ+DBFdTgDurgAwMOz/AKb450Xpx352PeWnDymUP4A+fzB/bTjgg=</latexit>

x1 = 1
<latexit sha1_base64="IR7uLCS1jYaE/XnIihryGuyZjcA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0YtQ8OKxgmkLbSib7bZdutmE3YlYQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFyZSGHTdb6ewsrq2vlHcLG1t7+zulfcPGiZONeM+i2WsWyE1XArFfRQoeSvRnEah5M1wdDv1m49cGxGrBxwnPIjoQIm+YBSt5D91vRu3W664VXcGsky8nFQgR71b/ur0YpZGXCGT1Ji25yYYZFSjYJJPSp3U8ISyER3wtqWKRtwE2ezYCTm1So/0Y21LIZmpvycyGhkzjkLbGVEcmkVvKv7ntVPsXweZUEmKXLH5on4qCcZk+jnpCc0ZyrEllGlhbyVsSDVlaPMp2RC8xZeXSeO86l1W3fuLSu0kj6MIR3AMZ+DBFdTgDurgAwMBz/AKb45yXpx352PeWnDymUP4A+fzB/VPjgc=</latexit>

x1 = 0
<latexit sha1_base64="qjvEN4V85HsfJ3m13tujYwMlQ50=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0YtQ8OKxgmkLbSib7bRdutmE3Y1YQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFyaCa+O6305hZXVtfaO4Wdra3tndK+8fNHScKoY+i0WsWiHVKLhE33AjsJUopFEosBmObqd+8xGV5rF8MOMEg4gOJO9zRo2V/Keud+N1yxW36s5AlomXkwrkqHfLX51ezNIIpWGCat323MQEGVWGM4GTUifVmFA2ogNsWypphDrIZsdOyKlVeqQfK1vSkJn6eyKjkdbjKLSdETVDvehNxf+8dmr610HGZZIalGy+qJ8KYmIy/Zz0uEJmxNgSyhS3txI2pIoyY/Mp2RC8xZeXSeO86l1W3fuLSu0kj6MIR3AMZ+DBFdTgDurgAwMOz/AKb450Xpx352PeWnDymUP4A+fzB/bTjgg=</latexit>

x1 = 1
<latexit sha1_base64="IR7uLCS1jYaE/XnIihryGuyZjcA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0YtQ8OKxgmkLbSib7bZdutmE3YlYQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFyZSGHTdb6ewsrq2vlHcLG1t7+zulfcPGiZONeM+i2WsWyE1XArFfRQoeSvRnEah5M1wdDv1m49cGxGrBxwnPIjoQIm+YBSt5D91vRu3W664VXcGsky8nFQgR71b/ur0YpZGXCGT1Ji25yYYZFSjYJJPSp3U8ISyER3wtqWKRtwE2ezYCTm1So/0Y21LIZmpvycyGhkzjkLbGVEcmkVvKv7ntVPsXweZUEmKXLH5on4qCcZk+jnpCc0ZyrEllGlhbyVsSDVlaPMp2RC8xZeXSeO86l1W3fuLSu0kj6MIR3AMZ+DBFdTgDurgAwMBz/AKb45yXpx352PeWnDymUP4A+fzB/VPjgc=</latexit>

x1 = 0
<latexit sha1_base64="qjvEN4V85HsfJ3m13tujYwMlQ50=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0YtQ8OKxgmkLbSib7bRdutmE3Y1YQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFyaCa+O6305hZXVtfaO4Wdra3tndK+8fNHScKoY+i0WsWiHVKLhE33AjsJUopFEosBmObqd+8xGV5rF8MOMEg4gOJO9zRo2V/Keud+N1yxW36s5AlomXkwrkqHfLX51ezNIIpWGCat323MQEGVWGM4GTUifVmFA2ogNsWypphDrIZsdOyKlVeqQfK1vSkJn6eyKjkdbjKLSdETVDvehNxf+8dmr610HGZZIalGy+qJ8KYmIy/Zz0uEJmxNgSyhS3txI2pIoyY/Mp2RC8xZeXSeO86l1W3fuLSu0kj6MIR3AMZ+DBFdTgDurgAwMOz/AKb450Xpx352PeWnDymUP4A+fzB/bTjgg=</latexit>

x1 = 1

<latexit sha1_base64="OuxKKFXrW/pO4RINTYsU9fcyDAk=">AAACH3icbVDLSsNAFJ3UV62vqEs3g0WoiCEpvpYFNy4rWFtoYphMJu2QyYOZiVBC/sSNv+LGhSLirn/jtI2grQcGDuecy517vJRRIU1zrFWWlldW16rrtY3Nre0dfXfvXiQZx6SDE5bwnocEYTQmHUklI72UExR5jHS98Hridx8JFzSJ7+QoJU6EBjENKEZSSa5+YTMV9hFsu82H3LLxkOAwQjwsIDyBDeu09I9/ApJGRBSuXjcNcwq4SKyS1EGJtqt/2X6Cs4jEEjMkRN8yU+nkiEuKGSlqdiZIinCIBqSvaIzUFief3lfAI6X4MEi4erGEU/X3RI4iIUaRp5IRkkMx703E/7x+JoMrJ6dxmkkS49miIGNQJnBSFvQpJ1iykSIIc6r+CvEQcYSlqrSmSrDmT14k903DOjfM27N6yyjrqIIDcAgawAKXoAVuQBt0AAZP4AW8gXftWXvVPrTPWbSilTP74A+08Tfu06D+</latexit>

�P 1X
2 + (1 � �)P 1⇥

2

(c) Unstable correlation varies as we interpolating        and      
<latexit sha1_base64="Y5Quo0P9dotfo4bVVMuCRbIN730=">AAAB9XicbVBNS8NAEJ34WetX1aOXxSJ4KklR9Fjw4rGC/YA2LZvtpl262YTdiVJC/4cXD4p49b9489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwXj25nfeuTaiFg94CThfkSHSoSCUbRSr96v9jKPdFFE3Ez7pbJbcecgq8TLSRly1Pulr+4gZmnEFTJJjel4boJ+RjUKJvm02E0NTygb0yHvWKqo3eJn86un5NwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rpBje+JlQSYpcscWiMJUEYzKLgAyE5gzlxBLKtLC3EjaimjK0QRVtCN7yy6ukWa14VxX3/rJcq+RxFOAUzuACPLiGGtxBHRrAQMMzvMKb8+S8OO/Ox6J1zclnTuAPnM8fxxuR/A==</latexit>

P 1⇥
2

<latexit sha1_base64="QLhrf90UqmLHdDTofCdXfVmJ3PA=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5AURY8FLx4r2FZoY9hsJ+2SzSbsbsQS+le8eFDEq3/Em//GbZuDtj4YeLw3w8y8MONMadf9tipr6xubW9Xt2s7u3v6BfVjvqjSXFDo05am8D4kCzgR0NNMc7jMJJAk59ML4eub3HkEqloo7PcnAT8hIsIhRoo0U2PV20HwoPDygY6BxQmQ8DeyG67hz4FXilaSBSrQD+2swTGmegNCUE6X6nptpvyBSM8phWhvkCjJCYzKCvqGCJKD8Yn77FJ8aZYijVJoSGs/V3xMFSZSaJKHpTIgeq2VvJv7n9XMdXfkFE1muQdDFoijnWKd4FgQeMglU84khhEpmbsV0TCSh2sRVMyF4yy+vkm7T8S4c9/a80XLKOKroGJ2gM+ShS9RCN6iNOoiiJ/SMXtGbNbVerHfrY9FascqZI/QH1ucPOUaT3A==</latexit>

P 1X
2

<latexit sha1_base64="DM0YDvSeZaSgsW2wWVnA9JfU12c=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiSi6EYouHFZwT6gDWUymbRDJ5MwcyOU0M9w40IRt36NO//GaZuFth4YOJxzLnPvCVIpDLrut1NaW9/Y3CpvV3Z29/YPqodHbZNkmvEWS2SiuwE1XArFWyhQ8m6qOY0DyTvB+G7md564NiJRjzhJuR/ToRKRYBSt1OtLGw0puSXeoFpz6+4cZJV4BalBgeag+tUPE5bFXCGT1Jie56bo51SjYJJPK/3M8JSyMR3ynqWKxtz4+XzlKTmzSkiiRNunkMzV3xM5jY2ZxIFNxhRHZtmbif95vQyjGz8XKs2QK7b4KMokwYTM7ieh0JyhnFhCmRZ2V8JGVFOGtqWKLcFbPnmVtC/q3lXdfbisNS6LOspwAqdwDh5cQwPuoQktYJDAM7zCm4POi/PufCyiJaeYOYY/cD5/AOFikEk=</latexit>

� = 1
<latexit sha1_base64="Zp1fyQrgdAiow5CoNwhR5a7SvuM=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgKiRSsRuh4MZlBfuANpTJZNIOnUzizKRQQr/DjQtF3Pox7vwbJ20W2npg4HDOudw7x084U9pxvq3SxubW9k55t7K3f3B4VD0+6ag4lYS2Scxj2fOxopwJ2tZMc9pLJMWRz2nXn9zlfndKpWKxeNSzhHoRHgkWMoK1kbwBN9EAo1vk2I1htebYzgJonbgFqUGB1rD6NQhikkZUaMKxUn3XSbSXYakZ4XReGaSKJphM8Ij2DRU4osrLFkfP0YVRAhTG0jyh0UL9PZHhSKlZ5JtkhPVYrXq5+J/XT3XY8DImklRTQZaLwpQjHaO8ARQwSYnmM0MwkczcisgYS0y06aliSnBXv7xOOle2e207D/Vas17UUYYzOIdLcOEGmnAPLWgDgSd4hld4s6bWi/VufSyjJauYOYU/sD5/AMt5kMI=</latexit>

� = 0.8
<latexit sha1_base64="JZxEeUcbNKkGIiQBhW9QCSu/Wg8=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgKiTSohuh4MZlBfuANpTJZNIOnUzizKRQQr/DjQtF3Pox7vwbJ20W2npg4HDOudw7x084U9pxvq3SxubW9k55t7K3f3B4VD0+6ag4lYS2Scxj2fOxopwJ2tZMc9pLJMWRz2nXn9zlfndKpWKxeNSzhHoRHgkWMoK1kbwBN9EAo1vk2I1htebYzgJonbgFqUGB1rD6NQhikkZUaMKxUn3XSbSXYakZ4XReGaSKJphM8Ij2DRU4osrLFkfP0YVRAhTG0jyh0UL9PZHhSKlZ5JtkhPVYrXq5+J/XT3V442VMJKmmgiwXhSlHOkZ5AyhgkhLNZ4ZgIpm5FZExlpho01PFlOCufnmddK5st2E7D/Vas17UUYYzOIdLcOEamnAPLWgDgSd4hld4s6bWi/VufSyjJauYOYU/sD5/AMbtkL8=</latexit>
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Figure 2-1: Illustration of our algorithm on the toy example. The label 𝑦 agrees with
the stable feature 𝑥1 with probability 0.8 on both environments. For the unstable
feature 𝑥2, the probability of 𝑥2 = 𝑦 is 1.0 in 𝐸1 and 0.9 in 𝐸2. Stage 1: We train a
classifier 𝑓1 on 𝐸1. It learns to make predictions solely based on the unstable feature
𝑥2. Stage 2: We use 𝑓1 to partition 𝐸2 based on the prediction correctness. While
the correlation of 𝑥2 is positive for both 𝐸1 and 𝐸2, it flips to negative in set of wrong
predictions 𝐸1×

2 . Stage 3: Interpolating 𝑃 1✓
2 and 𝑃 1×

2 allows us to uncover an oracle
distribution 𝑃 * where the unstable feature 𝑥2 is not correlated with the label. Note
that here we only illustrate how to partition 𝐸2 using 𝑓1. In our algorithm, we also
use the classifier 𝑓2 (trained on 𝐸2) to partition 𝐸1, and the final model 𝑓 is obtained
by minimizing the worst-case risk over all interpolations of 𝑃 2✓

1 , 𝑃 2×
1 , 𝑃 1✓

2 𝑃 1×
2 .

the groups. In this chapter, we focus on the basic setting and leave the rest for future

work.

2.3.2 A toy example

To understand the behavior of the algorithm, let’s consider a simple example with two

environments 𝐸1 and 𝐸2 (Figure 2-1). For each environment, the data are generated

by the following process.1

• First, sample the feature 𝑥1 ∈ {0, 1} which takes the value 1 with probability

0.5. This is our stable feature.

• Next, sample the observed noisy label 𝑦 ∈ {0, 1} by flipping the value of 𝑥1 with

probability 0.2.
1[6] used this process to construct the Colored-MNIST dataset.
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• Finally, for each environment 𝐸𝑖, sample the unstable feature 𝑥2 ∈ {0, 1} by

flipping the value of 𝑦 with probability 𝜂𝑖. Let 𝜂1 = 0 and 𝜂2 = 0.1.

Our goal is to learn a classifier that only uses feature 𝑥1 to predict 𝑦. Since the

unstable feature 𝑥2 is positively correlated with the label across both environments,

directly treating the environments as groups and applying group DRO will also exploit

this correlation during training.

Let’s take a step back and consider a classifier 𝑓1 that is trained only on 𝐸1. Since

𝑥2 is identical to 𝑦 and 𝑥1 differs from 𝑦 with probability 0.2, 𝑓1 simply learns to ignore

𝑥1 and predict 𝑦 as 𝑥2 (Figure 2-1a). When we apply 𝑓1 to the other environment 𝐸2,

it will make mistakes on examples where 𝑥2 is flipped from 𝑦. Moreover, we can check

that the correlation coefficient between the unstable feature 𝑥2 and 𝑦 is 1 in the set of

correct predictions 𝐸1✓
2 and it flips to −1 in the set of mistakes 𝐸1×

2 (Figure 2-1b). In

this toy example, the oracle distribution 𝑃 *, where the correlation between 𝑥2 and 𝑦

is 0, can be obtained by simply averaging the empirical distribution of the two subsets

(Figure 2-1c):

𝑃 *(𝑥1, 𝑥2, 𝑦) = 0.5𝑃 1✓
2 (𝑥1, 𝑥2, 𝑦) + 0.5𝑃 1×

2 (𝑥1, 𝑥2, 𝑦).

We can also verify that the optimal solution that minimize the worst-case risk across

𝐸1✓
2 and 𝐸1×

2 is to predict 𝑦 only using 𝑥1. (Appendix A.1).

Remark 1: In the algorithm, we also use the classifier 𝑓2 trained on 𝐸2 to par-

tition 𝐸1. The final model 𝑓 is obtained by minimizing the worst-case risk over

𝑃 2✓
1 , 𝑃 2×

1 , 𝑃 1✓
2 , 𝑃 1×

2 .

Remark 2: Our algorithm optimizes an upper bound of the risk on the oracle distri-

bution. In general, it doesn’t guarantee that the unstable correlation is not utilized by

the model when the worst-case performance is not achieved at the oracle distribution.
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2.3.3 Theoretical analysis

In the previous example, we have seen that the unstable correlation flips in the set

of mistakes 𝐸1×
2 compared to the set of correct predictions 𝐸1✓

2 . Here, we would

like to investigate how this property holds in general.2 We focus our analysis on

binary classification tasks where 𝑦 ∈ {0, 1}. Let 𝑥1 be the stable feature and 𝑥2 be

unstable feature that has various correlations across environments. We use capital

letters 𝑋1, 𝑋2, 𝑌 to represent random variables and use lowercase letters 𝑥1, 𝑥2, 𝑦 to

denote their specific values.

Proposition 1. For a pair of environments 𝐸𝑖 and 𝐸𝑗, assuming that the classifier 𝑓𝑖

is able to learn the true conditional 𝑃𝑖(𝑌 | 𝑋1, 𝑋2), we can write the joint distribution

𝑃𝑗 of 𝐸𝑗 as the mixture of 𝑃 𝑖✓
𝑗 and 𝑃 𝑖×

𝑗 :

𝑃𝑗(𝑥1, 𝑥2, 𝑦) = 𝛼𝑖
𝑗𝑃

𝑖✓
𝑗 (𝑥1, 𝑥2, 𝑦) + (1− 𝛼𝑖

𝑗)𝑃
𝑖×
𝑗 (𝑥1, 𝑥2, 𝑦),

where 𝛼𝑖
𝑗 =

∑︀
𝑥1,𝑥2,𝑦

𝑃𝑗(𝑥1, 𝑥2, 𝑦) · 𝑃𝑖(𝑦 | 𝑥1, 𝑥2) and

𝑃 𝑖✓
𝑗 (𝑥1, 𝑥2, 𝑦) ∝ 𝑃𝑗(𝑥1, 𝑥2, 𝑦) · 𝑃𝑖(𝑦 | 𝑥1, 𝑥2),

𝑃 𝑖×
𝑗 (𝑥1, 𝑥2, 𝑦) ∝ 𝑃𝑗(𝑥1, 𝑥2, 𝑦) · 𝑃𝑖(1− 𝑦 | 𝑥1, 𝑥2).

Intuitively, when partitioning the environment 𝐸𝑗, we are scaling its joint distri-

bution based on the conditional on 𝐸𝑖.

Two degenerate cases: From Proposition 1, we see that the algorithm degenerates

when 𝛼𝑖
𝑗 = 0 (predictions of 𝑓𝑖 are all wrong) or 𝛼𝑖

𝑗 = 1 (predictions of 𝑓𝑖 are all

correct). The first case occurs when the unstable correlation is flipped between 𝑃𝑖

and 𝑃𝑗. One may think about setting 𝜂1 = 0 and 𝜂2 = 1 in the toy example. In

this case, we can obtain the oracle distribution by directly interpolating 𝑃𝑖 and 𝑃𝑗.

The second case implies that the conditional is the same across the environments:

𝑃𝑖(𝑌 | 𝑋1, 𝑋2) = 𝑃𝑗(𝑌 | 𝑋1, 𝑋2). Since 𝑥2 is the unstable feature, this equality holds

2All proofs are relegated to Appendix A.2.
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when the conditional mutual information between 𝑋2 and 𝑌 is zero given 𝑋1, i.e.,

𝑃𝑖(𝑌 | 𝑋1, 𝑋2) = 𝑃𝑖(𝑌 | 𝑋1). In this case, 𝑓𝑖 already ignores the unstable feature 𝑥2.

To carryout the following analysis, we assume that the marginal distribution of 𝑌

is uniform in all joint distributions, i.e., 𝑓𝑖 performs equally well on different labels.

Theorem 1. Suppose 𝑋2 is independent of 𝑋1 given 𝑌 . For any environment pair

𝐸𝑖 and 𝐸𝑗, if
∑︀

𝑦 𝑃𝑖(𝑥2 | 𝑦) =
∑︀

𝑦 𝑃𝑗(𝑥2 | 𝑦) for any 𝑥2, then Cov(𝑋2, 𝑌 ;𝑃𝑖) >

Cov(𝑋2, 𝑌 ;𝑃𝑗) implies Cov(𝑋2, 𝑌 ;𝑃 𝑖×
𝑗 ) < 0 and Cov(𝑋2, 𝑌 ;𝑃 𝑗×

𝑖 ) > 0.

The result follows from the connection between the covariance and the condi-

tional. On one side, the covariance between 𝑥2 and 𝑌 captures the difference of

their conditionals: 𝑃 (𝑋2 | 𝑌 = 1) − 𝑃 (𝑋2 | 𝑌 = 0), On the other side, the

conditional independence assumption allows us to factorize the joint distribution:

𝑃𝑖(𝑥1, 𝑥2, 𝑦) = 𝑃𝑖(𝑥1, 𝑦)𝑃𝑖(𝑥2 | 𝑦). Combining them together finishes the proof.

Theorem 1 tells us no matter whether the spurious correlation is positive or neg-

ative, we can obtain an oracle distribution 𝑃 *, Cov(𝑋2, 𝑌 ;𝑃 *) = 0 by interpolating

across 𝑃 𝑖✓
𝑗 , 𝑃 𝑖×

𝑗 , 𝑃 𝑗✓
𝑖 , 𝑃 𝑗×

𝑖 . By optimizing the worst-case risk across all interpolations,

our final model 𝑓 provides an upper bound of the risk on the oracle distribution 𝑃 *.

We also note that the toy example in Section 2.3.2 is a special case of the as-

sumption in Theorem 1. While many previous work also construct datasets with this

assumption [6, 28], it may be too restrictive in practice. In the general case, although

we cannot guarantee the sign of the correlation, we can still obtain an upper bound

for Cov(𝑋2, 𝑌 ;𝑃 𝑖×
𝑗 ) and a lower bound for Cov(𝑋2, 𝑌 ;𝑃 𝑗×

𝑖 ):

Theorem 2. For any environment pair 𝐸𝑖 and 𝐸𝑗, Cov(𝑋2, 𝑌 ;𝑃𝑖) > Cov(𝑋2, 𝑌 ;𝑃𝑗)

implies

Cov(𝑋2, 𝑌 ;𝑃 𝑖×
𝑗 ) <

1− 𝛼𝑖
𝑗

𝛼𝑖
𝑖

Cov(𝑋2, 𝑌 ;𝑃 𝑖✓
𝑖 )− 1− 𝛼𝑖

𝑗

𝛼𝑖
𝑗

Cov(𝑋2, 𝑌 ;𝑃 𝑖✓
𝑗 )

Cov(𝑋2, 𝑌 ;𝑃 𝑗×
𝑖 ) >

1− 𝛼𝑗
𝑖

𝛼𝑗
𝑗

Cov(𝑋2, 𝑌 ;𝑃 𝑗✓
𝑗 )− 1− 𝛼𝑗

𝑖

𝛼𝑗
𝑖

Cov(𝑋2, 𝑌 ;𝑃 𝑗✓
𝑖 )

where 𝑃 𝑖✓
𝑖 is the distribution of the correct predictions when applying 𝑓𝑖 on 𝐸𝑖.
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Intuitively, if the correlation is stronger in 𝐸𝑖, then the classifier 𝑓𝑖 will overuse

this correlation and make mistakes on 𝐸𝑗 when this stronger correlation doesn’t hold.

Conversely, the classifier 𝑓𝑗 will underuse this correlation and make mistakes on 𝐸𝑖

when the correlation is stronger.

2.4 Experimental setup

2.4.1 Datasets and settings

Synthetic environments: To assess the empirical behavior of our algorithm, we

start with controlled experiments where we can simulate spurious correlation. We

consider two standard datasets: MNIST [68] and BeerReview [82].3

For MNIST, we adopt [6]’s approach for generating spurious correlation and extend

it to a more challenging multi-class problem. For each image, we sample 𝑦, which

takes on the same value as its numeric digit with 0.75 probability and a uniformly

random other digit with the remaining probability. The spurious feature in sampled

in a similar way: it takes on the same value as 𝑦 with 𝜂 probability and a uniformly

random other value with the remaining probability. We color the image according to

the value of the spurious feature. We set 𝜂 to 0.9 and 0.8 respectively for the training

environments 𝐸1 and 𝐸2. In the testing environment, 𝜂 is set to 0.1.

For BeerReview, we consider three aspect-level sentiment classification tasks: look,

aroma and palate [69, 11]. For each review, we append an artificial token (art_pos or

art_neg) that is spuriously correlated with the binary sentiment label (pos or neg).

The artificial token agrees with the sentiment label with probability 0.9 in environ-

ment 𝐸1 and with probability 0.8 in environment 𝐸2. In the testing environment, the

probability reduces to 0.1. Unlike MNIST, here we do not inject artificial label noise

to the datasets.

Validation set plays a crucial role when the training distribution is different from

the testing distribution [45]. For both datasets, we consider two different validation

3All dataset statistics are relegated to Appendix A.3.1.
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settings and report their performance separately: 1) sampling the validation set from

the training environment; 2) sampling the validation set from the testing environment.

Natural environments: We also consider a practical setting where environments

are naturally defined by some attributes of the input and we want to use them to re-

duce biases that are unknown during training and validation. We study two datasets:

CelebA [76] where the attributes are annotated by human and ASK2ME [12] where

the attributes are automatically generated by rules.

CelebA is an image classification dataset where each input image (face) is paired

with 40 binary attributes. We adopt [93]’s setting and treat hair color (𝑦 ∈ {blond, dark})
as the target task. We use the gender attribute to define the two training environ-

ments, 𝐸1={female} and 𝐸2={male}. Our goal is to learn a classifier that is robust

to other unknown attributes such as wearing_hat. For model selection, we parti-

tion the validation data into four groups based on the gender value and the label

value: {female, blond}, {female, dark}, {male, blond}, {male, dark}. We use the

worst-group accuracy as our validation criteria.

ASK2ME is a text classification dataset where an input text (paper abstract from

PubMed) is paired with 17 binary attributes, each indicating the presence of a differ-

ent disease. The task is to predict whether the input is informative about the risk of

cancer for gene mutation carriers, rather than cancer itself [33]. We define two training

environments based on the breast_cancer attribute, 𝐸1={breast_cancer=0} and

𝐸2={breast_cancer=1}. We would like to see whether the classifier is able to remove

spurious correlations from other diseases that are unknown during training. Similar

to CelebA, we compute the worst-group accuracy based on the breast_cancer value

and the label value and use it for validation.

At test time, we evaluate the classifier’s prediction robustness on all attributes

over a held-out test set. For each attribute, we report the worst-group accuracy and

the average-group accuracy.
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2.4.2 Baselines

We compare our algorithm against the following baselines:

ERM: We combine all environments together and apply standard empirical risk

minimization.

IRM: Invariant risk minimization [6] learns a representation such that the lin-

ear classifier on top of this representation is simultaneously optimal across different

environments.

RGM: Regret minimization [58] simulates unseen environments by using part of

the training set as held-out environments. It quantifies the generalization ability in

terms of regret, the difference between the losses of two auxiliary predictors trained

with and without examples in the current environment.

DRO: We can also apply DRO on groups defined by the environments and the

labels. For example, in beer review, we can partition the training data into the four

groups: {pos, 𝐸1}, {neg, 𝐸1} {pos, 𝐸2}, {neg, 𝐸2}. Minimizing the worst-case

performance over these human-defined groups has shown success in improving model

robustness [93].

Oracle: In the synthetic environments, we can use the spurious features to define

groups and train an oracle DRO model. For example, in beer review, the oracle

model will minimize the worst-case risk over the four groups: {pos, art_pos}, {pos,

art_neg} {pos, art_pos}, {pos, art_neg}. This helps us analyze the contribution

of our algorithm in isolation of the inherent limitations of the task.

For fair comparison, all methods share the same model architecture.4 Implemen-

tation details can be found in Appendix A.3.2.

4For IRM and RGM, in order to tune the weights and annealing strategy for the regularizer, the
hyper-parameter search space is 21× larger than other methods.
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erm dro irm rgm pi (ours) oracle

𝑃val = 𝑃test? ✓ × ✓ × ✓ × ✓ × ✓ × ✓ ×
MNIST 26.1 14.2 32.5 21.0 45.4 13.1 42.4 15.3 69.4 69.6 71.4 71.6

Beer Look 64.6 60.9 64.5 62.7 65.8 63.3 66.3 61.5 78.0 70.6 80.3 73.5

Beer Aroma 55.2 51.9 57.0 53.3 60.2 53.2 66.3 57.9 77.0 67.3 77.3 69.9

Beer Palate 49.0 46.6 47.7 46.3 66.4 44.0 68.7 44.8 74.1 61.5 74.8 66.3

Table 2.1: Accuracy of different methods on image classification (majority baseline
10%) and aspect-level sentiment classification (majority baseline 50%). All methods
are tuned based on a held-out validation set. We consider two validation settings: 1)
sample the validation set from the testing environment (𝑃val = 𝑃test); 2) sample the
validation set from the training environment.

𝐸1 𝐸2 𝐸1✓
2 𝐸1×

2

MNIST 0.8955 0.7769 0.9961 −0.1040

Beer Look 0.8007 0.6006 0.8254 −0.8030

Beer Aroma 0.8007 0.6006 0.9165 −0.9303

Beer Palate 0.8007 0.6006 0.9394 −0.9189

Table 2.2: Pearson correlation coefficient between the spurious feature and the label
across four datasets. While the correlation is positive for both training environments,
it flips to negative in the set of wrong predictions 𝐸1×

2 . Interpolating across 𝐸1✓
2 and

𝐸1×
2 allows us to remove the unstable correlation.

2.5 Results

2.5.1 Synthetic environments

Table 2.1 summarizes the results on synthetic environments. As we expected, since

the signs of the unstable correlation are the same across the training environments,

both ERM and DRO exploit this information and fail to generalize when it changes

in the testing environment. While IRM and RGM are able to learn stable correlations

when we use the testing environment for model selection, their performance quickly

drop to that of ERM when the validation data is drawn from the training environment,

which also backs up the claim from [45].

Our algorithm obtains substantial gains across four tasks It performs much more

stable under different validation settings. Specifically, comparing against the best
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Figure 2-2: The ability of generalization changes as we vary the gap between the
training environments. The x and y axes denote the probabilities that the injected
artificial token agrees with the label. Heatmap corresponds to the testing accuracy
for Beer Aroma.

baseline, our algorithm improves the accuracy by 20.06% when the validation set is

drawn from the training environment and 12.97% when it is drawn from the test-

ing environment. Its performance closely matches the oracle model with only 2%

difference on average.

Why does partitioning the training environments help? To demystify

the huge performance gain, we quantitatively analyze the partitions created by our

algorithm in Table 2.2.5 We see that while the unstable correlation is positive in both

training environments, it flips to negative in the set of wrong predictions, confirming

our theoretical analysis. In order to perform well across all partitions, our final

classifier learns not to rely on the unstable features.

Do we need different training environments? We study the relation between

the diversity of the training environments and the performance of the classifier on the

beer review dataset. Specifically, we consider 45 different training environment pairs

5The partitions only depend on the training environments. It is independent to the choice of
the validation data.

49



erm dro irm rgm pi (ours)

Worst Avg Worst Avg Worst Avg Worst Avg Worst Avg

Kidney cancer 16.6 66.6 50.0 68.7 33.3 73.0 33.3 71.3 50.0 74.7

Adenocarcinoma 33.3 72.9 77.2 79.2 55.5 78.4 55.5 78.1 80.2 84.7

Lung cancer 44.4 74.7 62.5 74.5 38.8 74.2 50.0 74.7 70.3 78.8

Polyp syndrom 44.4 74.6 77.2 78.7 55.5 76.3 66.6 78.7 69.2 81.2

Hepatobiliary cancer 44.4 73.0 60.0 73.8 55.5 77.1 55.5 76.2 60.0 78.9

Breast cancer 66.4 80.4 75.0 78.8 66.8 80.5 64.3 79.8 80.3 83.1

Average* 54.8 77.7 67.3 77.5 57.8 79.1 60.8 79.0 74.1 83.1

Table 2.3: Worst-group and average-group accuracy on ASK2ME text classification.
We show the results for the worst 5 attributes (sorted based on ERM) and the given
attribute breast_cancer. Average is computed based on the performance across all
attributes. See Appendix A.4 for full results.

erm dro irm rgm pi (ours)

Worst Avg Worst Avg Worst Avg Worst Avg Worst Avg

Goatee 0.0 68.2 0.0 70.0 84.8 90.8 91.5 95.6 91.6 94.5

Wearing_Hat 7.6 70.3 46.1 82.2 46.1 77.3 61.5 86.2 53.8 84.5

Chubby 9.5 70.6 61.9 84.6 76.1 82.9 47.6 82.3 71.4 86.5

Wearing_Necktie 25.0 74.5 90.0 91.5 80.0 84.3 35.0 79.3 91.4 92.5

Sideburns 38.4 77.8 84.6 90.6 76.9 84.1 76.9 89.7 91.3 93.7

Gender 46.6 80.1 85.5 90.8 74.4 83.9 70.0 87.7 90.5 91.5

Average* 60.0 83.6 84.2 90.8 78.5 85.7 82.5 90.9 87.0 91.4

Table 2.4: Worst-group and average-group accuracy for hair color prediction on
CelebA. We show the results for the worst 5 attributes (sorted based on ERM) and
the given attribute gender. Average is computed based on the performance across all
attributes. See Appendix A.4 for full results.

where we vary the probability that the artificial token agrees with the label from 0.80

to 0.89. We observe that the classifier performs better as we reduce the amount of

spurious correlations (moving up along the diagonal in Figure 2-2). The classifier also

generalizes better when we increase the gap between the two training environments

(moving from right to left in Figure 2-2). In fact, when the training environments

share the same distribution, the notion of stable correlation and unstable correlation

is undefined. There is no signal for the algorithm to distinguish between spurious
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Figure 2-3: Visualization of the Pearson correlation coefficient between the label and
the attribute on ASK2ME. Each column corresponds to a different attribute. We
observe that correlations vary for inputs with different breast_cancer value. Our
algorithm utilizes this difference to create partitions with opposite correlations (red
vs. blue) so that we can uncover an oracle distribution (different for each attribute)
by interpolating these partitions.
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Figure 2-4: Visualization of the Pearson correlation coefficient between the label
(hair color) and other attributes on CelebA. Each column corresponds to a different
attribute. Due to the huge difference between the label marginals, 𝑃1(blond) = 0.24
vs. 𝑃2(blond) = 0.02, classifier 𝑓2 predicts every example in environment 𝐸1 as
dark. The resulting partition, 𝐸2×

1 = {female, blond} and 𝐸2✓
1 = {female, dark},

coincides with the human-defined groups in DRO. On the other hand, classifier 𝑓1 is
able to partition environment 𝐸2 with opposite correlations (red vs. blue).

features and features that generalize.

2.5.2 Natural environments

Table 2.3 and 2.4 summarize the results on using natural environments to reduce

biases from attributes that are unknown during both training and validation. We

observe that directly applying DRO over human-defined groups already surpasses
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IRM and RGM on the worst-case accuracy averaged across all attributes. In addi-

tion, for the given attribute (breast_cancer and gender), DRO achieves nearly 10%

more improvements over other baselines. However, this robustness doesn’t general-

ize equally towards other attributes. By using the environment-specific classifier to

create groups with contrasting unstable correlations, our algorithm delivers marked

performance improvement over DRO, 6.81% on ASK2ME and 2.79% on CelebA.

How do we reduce bias from unknown attributes? Figure 2-3 and 2-4 visual-

ize the correlation between each attribute and the label on ASK2ME and CelebA. We

observe that although the signs of the correlation can be the same across the training

environments, their magnitude may vary. Our algorithm makes use of this difference

to create partitions that have opposite correlations for 13 (out of 15) attributes on

ASK2ME and 22 (out of 38) attributes on CelebA. These opposite correlations help

the classifier to avoid using unstable features during training.

2.6 Conclusion

In this chapter, we propose a simple algorithm to learn correlations that are stable

across environments. Specifically, we propose to use a classifier that is trained on one

environment to partition another environment. By interpolating the distributions

of its correct predictions and wrong predictions, we can uncover an oracle distri-

bution where the unstable correlation vanishes. Experimental results on synthetic

environments and natural environments validate that our algorithm is able to gener-

ate partitions with opposite unstable correlations and reduce bias that are unknown

during training.
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Chapter 3

Learning Stable Classifiers by

Transferring Unstable Features

In the previous chapter, we demonstrate how to learn stable classifiers when multiple

data environments are available. While it is easy to collect annotations from dif-

ferent environment for resource-rich tasks, this procedure is infeasible for new tasks

or resource-limited tasks. Fortunately, in real-world applications related tasks often

share similar biases – an observation we may leverage to develop stable classifiers

in the transfer setting. In this chapter, we extend the idea from the previous chap-

ter and demonstrate that by contrasting different data environments in the source

task, we can derive a representation that encodes the unstable features. To obtain

a robust model for the target task, we first cluster target examples according to this

representation and then minimize the worst-case risk across the resulting clusters.

We evaluate our method on both text and image classifications. Empirical results

demonstrate that our algorithm is able to maintain robustness on the target task for

both synthetically generated environments and real-world environments.

3.1 Introduction

Related tasks are often fraught with similar spurious correlations. For instance, when

classifying animals such as camels vs. cows, their backgrounds (desert vs. grass) may
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Source task: 0 vs 1 Target task: 2 vs 3

Only one data environment 
is available for training.

Correlations between the spurious color feature and the 
label are different across the two training environments.
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Figure 3-1: Transferring across tasks in Colored MNIST [6]. On the source task, we
learn a color-invariant model that achieves oracle performance (given direct access to
the unstable features). However, directly transferring this model to the target task, by
reusing or fine-tuning its feature extractor, severely overfits the spurious correlation
and underperforms the majority baseline (50%) on a test set where the spurious
correlation flips. By explicitly transferring the unstable features, our algorithm tofu
(Transfer OF Unstable features) is able to reach the oracle performance.

constitute a spurious correlation [14]. The same bias between the label and the back-

ground also persists in other related classification tasks (such as sheep vs. antelope).

In the resource-scarce target task, we only have access to the input-label pairs. How-

ever, in the source tasks, where training data is sufficient, identifying biases may be

easier. For instance, we may have examples collected from multiple environments, in

which correlations between bias features and the label are different [6]. These source

environments help us define the exact bias features that we want to regulate.

One obvious approach to utilize the source task is direct transfer. Specifically,

given multiple source environments, we can train an unbiased source classifier and

then apply its representation to the target task. However, we empirically demonstrate

that while the source classifier is not biased when making its final predictions, its

internal continuous representation can still encode information about the unstable

features. Figure 3-1 shows that in Colored MNIST, where the digit label is spuriously

correlated with the image color, direct transfer by either re-using or fine-tuning the

representation learned on the source task fails in the target task, performing no better

than the majority baseline.

In this chapter, we propose to explicitly inform the target classifier about unstable

features from the source data. Specifically, we derive a representation that encodes

these unstable features using the source environments. Then we identify distinct
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subpopulations by clustering examples based on this representation and apply group

DRO [93] to minimize the worst-case risk over these subpopulations. As a result,

we enforce the target classifier to be robust against different values of the unstable

features. In the example above, animals would be clustered according to backgrounds,

and the classifier should perform well regardless of the clusters (backgrounds).

The remaining question is how to compute the unstable feature representation

using the source data environments. Following the same idea in the previous chap-

ter, we hypothesize that unstable features are reflected in mistakes observed during

classifier transfer across environments. For instance, if the classifier uses the back-

ground to distinguish camels from cows, the camel images that are predicted correctly

would have a desert background while those predicted incorrectly are likely to have

a grass background. More generally, we prove that among examples with the same

label value, those with the same prediction outcome will have more similar unstable

features than those with different predictions. By forcing examples with the same

prediction outcome to stay closer in the feature space, we obtain a representation

that encodes these latent unstable features.

We evaluate our approach, Transfer OF Unstable features (tofu), on both syn-

thetic and real-world environments. Synthetic experiments first confirm our hypoth-

esis that standard transfer approaches fail to learn a stable classifier for the target

task. By explicitly transferring the unstable features, our method significantly im-

proves over the best baseline across 12 transfer settings (22.9% in accuracy), and

reaches the performance of an oracle model that has direct access to the unstable

features (0.3% gap). Next, we consider a practical setting where environments are

defined by an input attribute and our goal is to reduce biases from other unknown

attributes. On CelebA, tofu achieves the best worst-group accuracy across 38 latent

attributes, outperforming the best baseline by 18.06%. Qualitative and quantitative

analyses confirm that tofu is able to identify the unstable features.
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3.2 Related work

Removing bias via annotations: Due to idiosyncrasies of the data collection

process, annotations are often coupled with unwanted biases [21, 98, 83, 120]. To

address this issue and learn robust models, researchers leverage extra information [15,

109, 51, 29, 48, 78]. One line of work assumes that the bias attributes are known and

have been annotated for each example, e.g., group distributionally robust optimization

(DRO) [54, 86, 94]. By defining groups based on these bias attributes, we explicitly

specify the distribution family to optimize over. However, identifying the hidden

biases is time-consuming and often requires domain knowledge [121, 96]. To address

this issue, another line of work [89, 65, 24, 58, 3, 6, 9, 66, 101] only assumes access to a

set of data environments. These environments are defined based on readily-available

information of the data collection circumstances, such as location and time. The main

assumption is that while spurious correlations vary across different environments, the

association between the causal features and the label should stay the same. Thus,

by learning a representation that is invariant across all environments, they alleviate

the dependency on spurious features. In contrast to previous works, we don’t have

access to any additional information besides the labels in our target task. We show

that we can achieve robustness by transferring the unstable features from a related

source task.

Transferring robustness across tasks: Prior work has also studied the trans-

ferability of adversarial robustness across tasks. For example, [49, 100] show that

by pre-training the model on a large-scale source task, we can improve the model

robustness against adversarial perturbations over 𝑙∞ norm. We note that these per-

turbations measure the smoothness of the classifier, rather than the stability of the

classifier against spurious correlations. In fact, our results show that if we directly

re-use or fine-tune the pre-trained feature extractor on the target task, the model

will quickly over-fit to the unstable correlations present in the data. We propose

to address this issue by explicitly inferring the unstable features using the source

environments and use this information to guide the target classifier during training.
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3.3 Method

Problem formulation We consider the transfer problem from a source task to a

target task. For the source task, we assume the standard setting [6] where the training

data contain 𝑛 environments 𝐸1, . . . , 𝐸𝑛. Within each environment 𝐸𝑖, examples

are drawn from the joint distribution 𝑃𝑖(𝑥, 𝑦). Following [116], we define unstable

features 𝒵(𝑥) as features that are differentially correlated with the label across the

environments. We note that 𝒵(𝑥) is unknown to the model.

For the target task, we only have access to the input-label pairs (𝑥, 𝑦) (i.e. no

environments). We assume that the target label is not causally associated with the

above unstable features 𝒵. However, due to collection biases, the target data may

contain spurious correlations between the label and 𝒵. Our goal is to transfer the

knowledge that 𝒵 is unstable in the source task, so that the target classifier will not

rely on these spurious features.

Overview If the unstable features have been identified for the target task, we can

simply apply group DRO to learn a stable classifier. By grouping examples based on

the unstable features and minimizing the worst-case risk over these manually-defined

groups, we explicitly address the bias from these unstable features [54, 86, 94]. In

our setup, while these unstable features are not accessible, we can leverage the source

environments to derive groups over the target data that are informative of these

biases. Applying group DRO on these automatically-derived groups, we can eliminate

the unstable correlations in the target task.

Our overall transfer paradigm is depicted in Figure 3-2. It consists of two steps:

inferring unstable features from the source task (Section 3.3.1) and learning stable

correlations for the target task (Section 3.3.2). First, for the source task we use

a classifier trained on one environment to partition data from another environment

based on the correctness of its predictions. Starting from the theoretical results in

[9], we show that these partitions reflect the similarity of the examples in terms of

their unstable features: among examples with the same label value, those that share

the same prediction outcome have more similar unstable features than those with
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T.1

T.2 Minimize the worst-case risk across all clusters so that 
the model is robust against different unstable feature values.

T.2
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Figure 3-2: Our algorithm tofu 1) infers unstable features from the source task
(Section 3.3.1) and 2) learns stable correlations for the target task (Section 3.3.2).
We create partitions for all environment pairs. For ease of illustration, we only depict
using 𝑓1 to partition 𝐸2. Best viewed in color.

different predictions (Theorem 3). We can then derive a representation 𝑓𝒵 where

examples are distributed based on the unstable features 𝒵. Next, we cluster target

examples into groups based on the learned unstable feature representation 𝑓𝒵 . These

automatically-derived groups correspond to different modes of the unstable features,

and they act as proxies to the manually-defined groups in the oracle setting where

unstable features are explicitly annotated. Finally, we use group DRO to obtain our

robust target classifier by minimizing the worst-case risk over these groups.

3.3.1 Inferring unstable features from the source task

Given the data environments from the source task, we would like to 1) identify the

unstable correlations across these environments; 2) learn a representation 𝑓𝒵(𝑥) that

encodes the unstable features 𝒵(𝑥). We achieve the first goal by contrasting the
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empirical distribution of different environments (Figure 3-2 S.1 and Figure 3-2 S.2)

and the second goal by metric learning (Figure 3-2 S.3).

Let 𝐸𝑖 and 𝐸𝑗 be two different data environments. [9] shows that by training a

classifier 𝑓𝑖 on 𝐸𝑖 and using it to make predictions on 𝐸𝑗, we can reveal the unstable

correlations from its prediction results. Intuitively, if the unstable correlations are

stronger in 𝐸𝑖, the classifier 𝑓𝑖 will overuse these correlations and make mistakes on

𝐸𝑗 when these stronger correlations do not hold.

In this work, we connect the prediction results directly to the unstable features.

We show that the prediction results of the classifier 𝑓𝑖 on 𝐸𝑗 estimate the relative

distance of the unstable features.

Theorem 3 (Simplified). Consider examples in 𝐸𝑗 with label value 𝑦. Let 𝑋✓
1 , 𝑋

✓
2

denote two batches of examples that 𝑓𝑖 predicted correctly, and let 𝑋×
3 denote a batch of

incorrect predictions. We use · to represent the mean across a given batch. Following

the same assumption in [9], we have

‖𝒵(𝑋✓
1 )−𝒵(𝑋✓

2 )‖2 < ‖𝒵(𝑋✓
1 )−𝒵(𝑋×

3 )‖2

almost surely for large enough batch size.1

The result makes intuitive sense as we would expect example pairs that share the

same prediction outcome should be more similar than those with different prediction

outcomes. We note that it is critical to look at examples with the same label value;

otherwise, the unstable features will be coupled with the task-specific label in the

prediction results.

While the value of the unstable features 𝒵(𝑥) is still not directly accessible, The-

orem 3 enables us to learn a feature representation 𝑓𝒵(𝑥) that preserves the distance

between the examples in terms of their unstable features. We adopt standard metric

1See Appendix B.1 for the full theorem and proof.
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learning [25] to minimize the following triplet loss:

ℒ𝒵(𝑋
✓
1 , 𝑋

✓
2 , 𝑋

×
3 ) = max(0, 𝛿 + ‖𝑓𝒵(𝑋✓

1 )− 𝑓𝒵(𝑋
✓
2 )‖22

− ‖𝑓𝒵(𝑋✓
1 )− 𝑓𝒵(𝑋

×
3 )‖22),

(3.1)

where 𝛿 is a hyper-parameter. By minimizing Eq (3.1), we encourage examples that

have similar unstable features to be close in the representation 𝑓𝒵 . To summarize,

inferring unstable features from the source task consists of three steps (Figure 3-2 S):

S.1 For each source environment 𝐸𝑖, train an environment-specific classifier 𝑓𝑖.

S.2 For each pair of environments 𝐸𝑖 and 𝐸𝑗, use classifier 𝑓𝑖 to partition 𝐸𝑗 into

two sets: 𝐸𝑖✓
𝑗 and 𝐸𝑖×

𝑗 , where 𝐸𝑖✓
𝑗 contains examples that 𝑓𝑖 predicted correctly

and 𝐸𝑖×
𝑗 contains those predicted incorrectly.

S.3 Learn an unstable feature representation 𝑓𝒵 by minimizing Eq (3.1) across all

pairs of environments 𝐸𝑖, 𝐸𝑗 and all possible label value 𝑦:

𝑓𝒵 = argmin
∑︁

𝑦,𝐸𝑖 ̸=𝐸𝑗

E𝑋✓
1 ,𝑋✓

2 ,𝑋×
3

[︀
ℒ𝒵(𝑋

✓
1 , 𝑋

✓
2 , 𝑋

×
3 )
]︀
,

where batches 𝑋✓
1 , 𝑋

✓
2 are sampled uniformly from 𝐸𝑖✓

𝑗 |𝑦 and batch 𝑋×
3 is

sampled uniformly from 𝐸𝑖×
𝑗 |𝑦 (·|𝑦 denotes the subset of · with label value 𝑦).

3.3.2 Learning stable correlations for the target task

Given the unstable feature representation 𝑓𝒵 , our goal is to learn a target classifier

that focuses on the stable correlations rather than using unstable features. Inspired

by group DRO [94] we minimize the worst-case risk across groups of examples that are

representative of different unstable feature values. However, in contrast to DRO, these

groups are constructed automatically based on the previously learned representation

𝑓𝒵 .

For each target label value 𝑦, we use the representation 𝑓𝒵 to cluster target ex-

amples with label 𝑦 into different clusters (Figure 3-2 T.1). Since these clusters
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capture different modes of the unstable features, they are approximations of the typ-

ical manually-defined groups when annotations of the unstable features are available.

By minimizing the worst-case risk across all clusters, we explicitly enforce the clas-

sifier to be robust against unstable correlations (Figure 3-2 T.2). We note that it is

important to cluster within examples of the same label, as opposed to clustering the

whole dataset. Otherwise, the cluster assignment may be correlated with the target

label.

Concretely, learning stable correlations for the target task has two steps (Figure 3-

2 T).

T.1 For each label value 𝑦, apply K-means (𝑙2 distance) to cluster examples with

label 𝑦 in the feature space 𝑓𝒵 . We use 𝐶𝑦
1 , . . . , 𝐶

𝑦
𝑛𝑐

to denote the resulting

cluster assignment, where 𝑛𝑐 is a hyper-parameter.

T.2 Train the target classifier 𝑓 by minimizing the worst-case risk over all clusters:

𝑓 = argminmax
𝑖,𝑦

ℒ(𝐶𝑦
𝑖 ),

where ℒ(𝐶𝑦
𝑖 ) is the empirical risk on cluster 𝐶𝑦

𝑖 .

3.4 Experimental setup

3.4.1 Datasets and settings

Synthetic environments We start with controlled experiments where environ-

ments are created based on the spurious correlation. We consider four datasets:

MNIST [68], BeerReview [82], ASK2ME [12] and Waterbird [93]. In MNIST and

BeerReview, we inject spurious feature to the input (background color for MNIST

and pseudo token for BeerReview). In ASK2ME and Waterbird, spurious feature cor-

responds to an attribute of the input (breast_cancer for ASK2ME and background

for Waterbird).

For each dataset, we consider multiple tasks and study the transfer between
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Table 3.1: Pearson correlation coefficient between the spurious feature 𝒵 and the
label 𝑌 for each task. The validation environment 𝐸val follows the same distribution
as 𝐸train

1 . We study the transfer problem between different task pairs. For the source
task 𝑆, the model can access 𝐸train

1 (𝑆), 𝐸train
2 (𝑆) and 𝐸val(𝑆). For the target task 𝑇 ,

the model can access 𝐸train
1 (𝑇 ) and 𝐸val(𝑇 ).

𝜌(𝒵, 𝑌 ) Task 𝐸train
1 𝐸train

2 𝐸val 𝐸test

mnist
odd 0.87 0.75 0.87 -0.11

even 0.87 0.75 0.87 -0.11

beer review
look 0.60 0.80 0.60 -0.80

aroma 0.60 0.80 0.60 -0.80

palate 0.60 0.80 0.60 -0.80

ask2me
pene. 0.31 0.52 0.31 0.00

inci. 0.44 0.66 0.44 0.00

waterbird
water 0.36 0.63 0.36 0.00

sea 0.39 0.64 0.39 0.00

these tasks. Specifically, for each task, we split its data into four environments:

𝐸train
1 , 𝐸train

2 , 𝐸val, 𝐸test, where spurious correlations vary across the two training envi-

ronments 𝐸train
1 , 𝐸train

2 . For the source task 𝑆, the model can access both of its training

environments 𝐸train
1 (𝑆), 𝐸train

2 (𝑆). For the target task 𝑇 , the model only has access

to one training environment 𝐸train
1 (𝑇 ). We note that the validation set 𝐸val(𝑇 ) plays

an important role in early-stopping and hyper-parameter tuning, especially when the

distribution of the data is different between training and testing [45]. In this work,

since we don’t have access to multiple training environments on the target task, we

assume that the validation data 𝐸val follows the same distribution as the training

data 𝐸train
1 . Table 3.1 summarizes the level of the spurious correlations for different

tasks. Additional details can be found in Appendix B.2.1.2

Natural environments We also consider a practical setting where environments

are directly defined by a given attribute of the input, and our goal is to reduce model

biases from other latent attributes. We study CelebA [76] where each input (an image

2All data splits, hyper-parameter search spaces are available in the supplementary materials.

62



of a human face) is annotated with 40 binary attributes. The source task is to predict

the Eyeglasses attribute and the target task is to predict the BlondHair attribute.

We use the Young attribute to define two environments: 𝐸1 = {Young = 0} and

𝐸2 = {Young = 1}. In the source task, both environments are available. In the

target task, we only have access to environment 𝐸1 during training and validation.

At test time, we evaluate the robustness of our target classifier against other latent

attributes. Specifically, for each unknown attribute such as Male, we partition the

testing data into four groups: {Male = 1, BlondHair = 0}, {Male = 0, BlondHair =

0}, {Male = 1, BlondHair = 1}, {Male = 0, BlondHair = 1}. Following [93], We

report the worst-group accuracy and the average-group accuracy.

3.4.2 Baselines

We compare our algorithm against the following baselines. For fair comparison, all

methods share the same representation backbone and hyper-parameter search space.

Implementation details are available at Appendix B.2.2.

erm baseline We learn a classifier on the target task from scratch by minimizing

the average loss across all examples. Note that this classifier is independent of the

source task. Its performance reflects the deviation between the training distribution

and the testing distribution of the target task.

Transfer methods Since the source task contains multiple environments, we can

learn a stable model on the source task and transfer it to the target task. We use

four algorithms to learn the source task: dann [41], c-dann [72], mmd [71], pi [9].

We consider three standard methods for transferring the source knowledge:

reuse: We directly transfer the feature extractor of the source model to the target

task. The feature extractor is fixed when learning the target classifier.

finetune: We update the feature extractor when training the target classifier.

[100] has shown that finetune may improve adversarial robustness of the target

task.
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multitask: We adopt the standard multi-task learning approach [22] where the

source model and the target model share the same feature extractor and are jointly

trained together.

Automatic de-biasing methods For the target task, we can also apply de-biasing

approaches that do not require environments. We consider the following baselines:

eiil [30]: Based on a pre-trained ERM classifier’s prediction logits, we infer an en-

vironment assignment that maximally violates the invariant learning principle [6]. We

then apply group DRO to minimize the worst-case loss over all inferred environments.

george [108]: We use the feature representation of a pre-trained ERM classifier

to cluster the training data. We then apply group DRO to minimize the worst-case

loss over all clusters.

lff [85]: We train a biased classifier together with a de-biased classifier. The

biased classifier amplifies its bias by minimizing the generalized cross entropy loss.

The de-biased classifier then up-weights examples that are mis-labeled by the biased

classifier during training.

m-ada [90]: We use a Wasserstein auto-encoder to generate adversarial examples.

The de-biased classifier is trained on both the original examples and the generated

examples.

dg-mmld [79]: We iteratively divide target examples into latent domains via

clustering, and train the domain-invariant feature extractor via adversarial learning.

oracle For synthetic environments, we can use the spurious feature to define

groups and train an oracle model. For example, in task seabird, this oracle model

will minimize the worst-case risk over the following four groups: {seabird in water},

{seabird in land} {landbird in water}, {landbird in land}. This oracle model

helps us analyze the performance of our proposed algorithm separately from the in-

herent limitations (such as model capacity and data size).
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Table 3.2: Target task accuracy of different methods. All methods are tuned based
on a held-out validation set that follows from the same distribution as the target
training data. Bottom right: standard deviation across 5 runs. Upper right: source
task testing performance (if applicable).

source target erm reusepi finetunepi multitask tofu oracle

m
n
is

t odd even 12.3±0.6 14.4(70.9)±1.0 11.2(70.1)±2.1 11.6(69.6)±0.6 69.1±1.6 68.7±0.9

even odd 9.7±0.6 19.2(71.1)±2.3 11.5(71.1)±1.2 10.1(70.0)±0.7 66.8±0.8 67.8±0.5

be
er

r
ev

ie
w

look aroma 55.5±1.7 31.9(70.1)±1.0 53.7(70.1)±1.4 54.1(76.0)±2.2 75.9±1.4 77.3±1.3

look palate 46.9±0.3 22.8(70.0)±1.9 49.3(73.2)±2.1 52.8(73.3)±2.9 73.8±0.7 74.0±1.2

aroma look 63.9±0.6 40.1(68.6)±3.1 65.2(66.4)±1.8 64.0(71.5)±0.6 80.9±0.5 80.1±0.6

aroma palate 46.9±0.3 14.0(68.3)±2.4 47.9(63.2)±3.3 50.0(71.2)±1.4 73.5±1.1 74.0±1.2

palate look 63.9±0.6 40.4(57.2)±2.8 64.3(60.1)±2.7 63.1(75.9)±1.0 81.0±1.0 80.1±0.6

palate aroma 55.5±1.7 23.1(59.2)±3.3 54.5(58.7)±1.2 56.5(73.3)±1.3 76.9±1.5 77.3±1.3

a
sk

. pene inci. 79.3±1.3 71.7(72.7)±0.5 79.3(71.2)±0.8 71.1(73.5)±1.4 83.2±1.8 84.8±1.2

inci. pene. 71.6±1.8 64.1(83.4)±1.5 72.0(83.4)±3.1 61.9(82.4)±0.7 78.1±1.4 78.3±0.9

bi
r
d water sea 81.8±4.3 87.8(99.5)±1.1 82.0(99.5)±4.0 88.0(99.5)±0.9 93.1±0.4 93.7±0.7

sea water 75.1±6.3 94.6(93.3)±1.6 78.2(93.1)±8.1 93.5(92.7)±1.9 99.0±0.4 98.9±0.5

Average 55.2 43.7 55.8 56.4 79.3 79.6

3.5 Results

Table 3.2 summarizes our results on synthetic environments. We observe that stan-

dard transfer methods fail to improve over the erm baseline. On the other hand,

tofu consistently achieves the best performance across 12 transfer settings, outper-

forming the best baseline by 22.9%. While tofu doesn’t have access to the unstable

features, by inferring them from the source environments, it matches the oracle per-

formance with only 0.30% absolute difference.

Table 3.3 presents our results on natural environments. This task is very challeng-

ing as there are multiple latent spurious attributes in the training data. We observe

that most automatic de-biasing methods underperform the erm baseline. With the

help of the source task, finetune and multitask achieve slightly better perfor-

mance than erm. tofu continues to shine in this real-world setting: achieving the
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Table 3.3: Worst-group and average-group accuracy on CelebA. The source task is
to predict Eyeglasses and the target task is to predict BlondHair. We use the
attribute Young to define two environments: 𝐸1 = {Young = 0}, 𝐸2 = {Young = 1}.
Both environments are available in the source task. In the target task, we only have
access to 𝐸1 during training and validation.. We show the results for the first 3
attributes (alphabetical order). The right-most Average* column is computed based
on the performance across all 38 attributes. See Appendix B.4 for full results.

method
ArchedEyebrows Attractive BagsUnderEyes Average*

Worst Average Worst Average Worst Average Worst Average

erm 75.43 88.52 75.00 88.94 70.91 87.09 61.01 85.07

tr
a
n
sf

er

reusepi 53.71 64.05 52.13 64.85 52.50 66.88 47.58 64.14

reusedann 59.56 72.44 62.03 72.26 64.58 73.83 55.27 72.31

reusec-dann 56.02 67.07 57.78 67.90 57.50 68.33 53.22 68.56

reusemmd 48.91 59.80 48.46 61.51 58.74 63.11 50.61 61.27

finetunepi 71.86 87.02 72.73 87.34 62.50 84.10 63.07 85.27

finetunedann 65.38 83.89 63.35 84.98 56.86 81.34 50.60 80.49

finetunec-dann 73.85 88.90 75.61 89.39 75.86 88.14 62.03 85.57

finetunemmd 76.07 88.80 74.33 89.74 78.57 88.61 66.80 86.81

multitask 69.66 86.91 72.73 87.44 70.00 85.21 64.37 85.21

au
to

-d
eb

ia
s eiil 64.71 85.12 64.43 85.96 66.67 83.90 57.62 83.22

george 74.73 87.89 73.66 87.70 77.78 87.97 63.34 85.04

lff 45.41 60.23 47.67 60.16 42.59 60.72 42.52 62.04

m-ada 64.61 83.33 67.33 83.59 70.34 85.34 54.55 80.77

dg-mmld 69.51 87.38 68.42 87.50 63.41 84.78 55.69 83.51

tofu 85.66 91.47 88.30 92.76 90.38 92.41 84.86 91.71

best worst-group and average-group performance.

Is tofu able to identify the unstable features? Yes. For synthetic environ-

ments, we visualize the unstable feature representation produced by 𝑓𝒵 on mnist

even. Figure 3-3 demonstrates that while 𝑓𝒵 only sees source examples (odd) dur-

ing training, it can distribute target examples based on their unstable color features.

For natural environments, we visualize the distribution of two latent attributes

(Male and ArchedEyebrows) over the generated clusters. Figure 3-4 shows that the

distribution gap of the unknown attribute Male across the generated partitions is 2%
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Figure 3-3: PCA visualization of the unstable feature representation 𝑓𝒵 for examples
in mnist even. 𝑓𝒵 is trained on mnist odd. tofu identifies the hidden spurious
color feature by contrasting different source environments.

76%

24%

Male=0
Male=1

71%

29%

85%

15%

75%

25%

77%

23%

TOFU
Environment E1

Environment E2

EIILDistribution of  Male over 
examples with BlondHair=0 Cluster 𝒞01

Cluster 𝒞02

diff: 14% diff: 2%

Figure 3-4: Visualization of the unknown attribute Male on CelebA. Left: distribu-
tions of Male in the training data. Mid: partitions learned by tofu. Right: partitions
learned by eiil. tofu generates partitions that are more informative of the unknown
attribute (14% vs. 2%).

for eiil, only marginally better than random splitting (0%). By leveraging informa-

tion from the source task, tofu learns partitions that are more informative of the

unknown attribute (14%).

How do the generated clusters compare to the oracle groups? We quan-

titatively evaluate the generated clusters based on three metrics: homogeneity (each
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Table 3.4: Quantitative evaluation of the generated clusters against the ground truth
unstable features. For comparison, the triplet baseline (trp) directly encourages
source examples with the same label to stay close to each other in the feature space,
from which we generate the clusters. For both methods, we generate two clusters for
each target label value and report the average performance across all label values. We
observe that the triplet representation, while biased by the spurious correlations,
fails to recover the ground truth unstable features for some tasks. By explicitly con-
trasting the source environments, tofu derives clusters that are highly-informative
of the unstable features.

source target
Homogeneity Completeness V-measure

trp tofu trp tofu trp tofu

odd even 0.42 0.68 0.58 0.95 0.49 0.79

even odd 0.67 0.67 0.93 0.99 0.78 0.80

look aroma 0.33 0.92 0.28 0.92 0.30 0.92

look palate 0.33 0.90 0.27 0.89 0.30 0.90

aroma look 0.33 1.00 0.28 1.00 0.30 1.00

aroma palate 0.82 1.00 0.77 1.00 0.79 1.00

palate look 0.83 0.98 0.77 0.98 0.80 0.98

palate aroma 0.82 0.95 0.77 0.95 0.79 0.95

cluster contain only examples with the same unstable feature value), completeness

(examples with the same unstable feature value belong to the same cluster), and

V-measure (the harmonic mean of homogeneity and completeness). From Table 3.4,

we see that tofu is able to derive clusters that resemble the oracle groups on beer

review. In mnist, since we generate two clusters for each label value and there are

five different colors, it is impossible to recover the oracle groups. However, tofu still

achieves almost perfect completeness.

3.6 Discussion

Are biases shared across real-world tasks? In this chapter, we show that for

tasks where the biases are shared, we can effectively transfer this knowledge to obtain

a more robust model. This assumption holds in many real world applications. For

example, in natural language processing, the same gender bias exist across many
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tasks including relation extraction [42], semantic role labeling [56], abusive language

detection [87] and sentiment analysis [63]. In computer vision, the same geographical

bias exists across different object recognition benchmarks such as ImageNet, COCO

and OpenImages [31].

When a single source task does not describe all unwanted unstable features, we

can leverage multiple source tasks and compose their individual unstable features

together. We can naturally extend tofu to accomplish this goal by learning the

unstable feature representation jointly across this collection of source tasks. We focus

on the basic setting in this thesis and leave the extension to future work.

Our approach is not applicable in situations where the biases in the source task

and the target task are completely disjoint.

What if the source task and target task are from different domains? In

this chapter, we focus on the setting where the source task and the target task are

from the same domain. If the target task is drawn from a different domain, we can

use domain-adversarial training to align the distributions of the unstable features

across the source domain and the target domain [71, 71]. Specifically, when training

the unstable feature representation 𝑓𝑧, we can introduce an adversarial player that

tries to guess the domain label from 𝑓𝑧. The representation 𝑓𝑧 is updated to fool this

adversarial player in addition to minimize the triplet loss in Eq (3.1). We leave this

extension to future work.

Can we apply domain-invariant representation learning (DIRL) directly

to the source environments? Domain invariant representation learning [41, 72,

71] aims to match the feature representations across domains. If we directly treat

environments as domains and apply these methods, the resulting representation may

still encode unstable features.

For example, in CelebA, the attribute Male is spuriously correlated with the target

attribute BlondHair (Women are more likely to have blond hair than men in this

dataset). Given the two environments {Young = 0} and {Young=1}, DIRL learns
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an age-invariant representation. However, if the distribution of Male is the same

across the two environments, DIRL will encode this attribute into the age-invariant

representation (since it is helpful for predicting the target BlondHair attribute). In

our approach, we realize that the the correlations between Male and BlondHair are

different in the two environments (The elderly may have more white hair). Even

though the distribution of Male may be the same, we can still identify this bias

from the classifiers’ mistakes. Empirically, Table 3.3 shows that while DIRL methods

improve over the ERM baseline, they still perform poorly on minority groups (worst

case acc 66.80% on CelebA).

What if the mistakes correspond to other factors such as label noise, dis-

tribution shifts, etc.? For ease of analysis, we do not consider label noise and

distribution shift in Theorem 3. One future direction is to model bias from the infor-

mation perspective (rather than looking at the linear correlations). This will enable us

to relax the assumption in the analyses and we can further incorporate these different

mistake factors into the modeling.

We note that we do not impose this assumption in our empirical experiments. For

example, we explicitly added label noise into the mnist data. In celeba, there is

a distribution gap (from young people to the elderly) across the two environments.

We observe that our method is able to perform robustly in situations where the

assumption breaks.

Is the algorithm efficient when multiple source environments are available?

Our method can be generalized efficiently to multiple environments. Given 𝑁 source

environments, we first note that the complexities of the target steps T.1 and T.2

are independent of 𝑁 . For the source task, the 𝑁 environment-specific classifiers

(in S.1) can be learned jointly with multi-task learning [22]. This significantly re-

duces the inference cost at S.2 as we only need to pass each input example through

the (expensive) representation backbone for one time. In S.3, we sample partitions

when minimizing the triplet loss, so there is no additional cost during training. In
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this chapter, we focus on the two-environments setup for simplicity and leave this

generalization to future work.

Why does the baselines perform so poorly on mnist? We note that the

representation backbone (a 2-layer CNN) on MNIST is trained from scratch while

we use pre-trained representations for other datasets (see Appendix B.2.2). Our

hypothesis is that models are more prune to spurious correlations when trained from

scratch.

3.7 Conclusion

Reducing model bias is a critical problem for many machine learning applications in

the real world. In this chapter, we recognize that related tasks often share similar

biases. We demonstrate that we can effectively transfer this knowledge and improve

the robustness of the target model without additional human intervention. Compared

with 15 baselines across 5 datasets, our approach consistently delivers significant

performance gain. Quantitative and qualitative analyses confirm that our method is

able to identify the hidden biases.

71



72



Chapter 4

Learning to Split for Automatic Bias

Detection

Classifiers are biased when trained on biased datasets. As a remedy, we propose

Learning to Split (ls), an algorithm for automatic bias detection. Given a dataset

with input-label pairs, ls learns to split this dataset so that predictors trained on the

training split generalize poorly to the testing split. This performance gap provides a

proxy for measuring the degree of bias in the learned features and can therefore be

used to reduce biases. Identifying non-generalizable splits is challenging as we don’t

have any explicit annotations about how to split. In this work, we show that the

prediction correctness of the testing example can be used as a source of weak super-

vision: generalization performance will drop if we move examples that are predicted

correctly away from the testing split, leaving only those that are mispredicted. We

evaluate our approach on Beer Review, Tox21, Waterbirds, CelebA and MNLI. Em-

pirical results show that ls is able to generate astonishingly challenging splits that

correlate with human-identified biases. Moreover, we demonstrate that combining

robust learning algorithms (such as group DRO) with splits identified by ls enables

automatic de-biasing. Compared with previous state-of-the-arts, we substantially im-

proves the worst-group performance (23.4% on average) when the source of biases is

unknown during training and validation.
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4.1 Introduction

Recent work has shown great success on de-biasing when the source of bias (e.g.,

gender, race, etc.) is known a priori [92, 93, 29, 48, 78, 60]. In practice, however,

the task of bias identification itself is not only time consuming but also challenging:

it requires expert knowledge of the task and private details about the annotation

procedures [122, 96]. In this work, we study automatic bias detection. Given a

classification dataset with only input-label pairs, we would like to detect biases that

may hinder predictors’ generalization performance.

We propose Learning to Split (ls), an algorithm that simulates generalization

failure directly from the set of input-label pairs. Specifically, ls learns to split the

dataset so that predictors trained on the training split cannot generalize to the testing

split (Figure 4-1). This performance gap provides a proxy for measuring the degree

of bias in the learned features and can therefore be used to identify unknown biases.

The problem however is that there are many trivial splits. E.g., poor generalization

can result from a train split that is much smaller than the test split (Figure 4-2b). In

binary classification, if the train split contains all the positive examples and the test

split contains all the negative examples, the model will not generalize (Figure 4-2c).

The poor generalization of these trivial solutions arise from the lack of training data

and label imbalance, and they do not reveal the hidden biases. To ensure that the

ls
Y=polar_bear

Y=samoyed

Original dataset

Training split

Testing split

100%

train

acc

test

acc 

0%

An example predictor

samoyed polar_bear

YN

Background 
is white?

Training split

Testing split

100%

train

acc

test

acc 

50%

An example predictor

polar_bear samoyed

YN

Has a 
leash?

Figure 4-1: Consider the task of classifying samoyeds vs. polar bears. Given the
set of image-label pairs, our algorithm ls learns to split the data so that predictors
trained on the training split cannot generalize to the testing split.
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TrainingTraining Testing

(a) Predictors cannot generalize if the training split contains only 
samoyeds and the the testing split contains only polar bears.

(b) Predictors cannot generalize if the size of the training split 
is incomparable to the size of the testing split.

Testing

Figure 4-2: Not all splits are helpful for revealing the hidden biases. (a) Predictors
cannot generalize when the label is imbalanced across training and testing. (b) Pre-
dictors cannot generalize if the amount of annotations is insufficient. ls poses two
regularity constraints to avoid such splits: 1) the marginal distribution of the label
should be similar across the splits; 2) the training split and testing split should have
comparable sizes.

splits are meaningful, we impose two regularity constraints on the splits. First, the

size of the train split must be comparable to the size of the test split. Second, the

marginal distribution of the label should be the same across the splits.

Our algorithm ls consists of two components, Splitter and Predictor. At each

iteration, the Splitter creates a train-test split of the dataset. Given an input-label

pair, it decides whether this example should be used for training or testing. The

Predictor then takes the training split and learns how to predict the label from the

input. Its prediction performance on the testing split is used to inform the Splitter

to generate a more challenging split (under the regularity constraints) for the next

iteration. Specifically, while we don’t have any explicit annotations for creating non-

generalizable splits, we show that the prediction correctness of each testing example

can serve as a source of weak supervision: generalization performance will drop if we

move examples that are predicted correctly away from the testing split, leaving only

those that are mispredicted.

We conduct experiments on NLP, vision and chemistry tasks. Given only the set

of input-label pairs, ls consistently identifies splits that predictors cannot general-

ize across. For example in MNLI, the generalization performance drops from 79.4%

(random split) to 27.8% (ls) for a standard BERT-based predictor [34]. Further anal-

yses confirm that our learned splits correlate with human-identified biases. Next, we

demonstrate that combining group distributionally robust optimization (DRO) with
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splits identified by ls enables automatic de-biasing. Compared with previous state-of-

the-arts, we substantially improves the worst-group performance (23.4% on average)

when the source of biases is completely unknown during training and validation.

4.2 Related work

De-biasing Modern datasets are often coupled with unwanted biases [21, 98, 83,

120]. If the biases have already been identified, we can use this prior knowledge to

reduce their impact [67, 54, 86, 15, 109, 29, 48, 78, 94]. The challenge arises when the

source of biases is unknown. Previous work has shown that the mistakes of a standard

ERM predictor on the training data are informative of the biases [9, 97, 85, 112, 74].

By boosting from its mistakes, we can obtain a more robust model. In addition, we can

analyze the predictor’s hidden activations to identify under-represented groups [30,

108, 2, 79]. We can also leverage the hidden representation of a generative model

to identify biases [73]. However, many other factors (such as the initialization, the

representation power, the amount of annotations, difficulty of the example, etc) can

contribute to the predictor’s mistakes.

In this work, instead of looking at the training statistics of the predictor, we

focus on its generalization gap from the training split to the testing split. This

effectively balances out those unwanted factors. Going back to the previous example,

if the training and testing splits share the same distribution, the generalization gap

will be small for predictors that under-fit. The gap will increase only when the

training and testing splits have different prediction characteristics. Moreover, instead

of committing to a fixed predictor, we iteratively refine the predictor during training

so that it faithfully measures the generalization gap given the current Splitter.

Data splitting In many applications, the annotations available are often limited

compared to the extremely diverse universe of samples that we would want to make

predictions on. In addition, instead of focusing solely on the average performance,

we care about models’ robustness on under-represented populations. To properly
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evaluate generalization, researchers have developed different heuristics for splitting

the data. In chemistry, molecules are split based on their scaffold structure and

experiment time [103, 120]. In medical imaging, patients are split according to their

hospital [7, 118]. In biology, cells are split based on their batch ID in order to

reduce the batch effects from high-throughput screening [111, 64]. Different from

these approaches that rely on human-specified clues, our algorithm ls learns how to

split directly from the given dataset and can therefore be applied to scenarios when

such human knowledge are not available or incomplete.

Meta learning Learning to Split (ls) naturally involves a bi-level optimization

problem [40, 106, 53]. Past work has successfully applied meta learning to learn model

initializations [39], optimizers [5], metric spaces [113, 107], network architectures [75],

instance weights [92, 57, 104], teaching policies [38]. In these methods, the inner-

loop and outer-loop models cooperate with each other. In this work, our outer-loop

Splitter plays an adversarial game [44] against the inner-loop Predictor. We learn

how to split the data so that predictors will fail to generalize.

4.3 Learning to Split

4.3.1 Motivation

Given a dataset 𝒟total with input-label pairs {(𝑥, 𝑦)}, our goal is to split this dataset

into two subsets, 𝒟train and 𝒟test, such that predictors learned on the training split

𝒟train cannot generalize to the testing split 𝒟test.

Why do we have to discover such splits? Before deploying our trained models,

it is crucial to understand the extent to which these models can even generalize

within the given dataset. Standard cross-validation technique attempts to measure

generalization by randomly splitting the dataset [110, 4]. However, this measure

only reflects the average performance under the same data distribution P𝒟total(𝑥, 𝑦).

There is no performance guarantee if our data distribution shifts at test time (e.g., up-
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Algorithm 1 Learning to Split (ls)
Input: dataset 𝒟total

Output: data splits 𝒟train, 𝒟test

1: Initialize Splitter as random splitting
2: repeat
3: Apply Splitter to split 𝒟total into 𝒟train,𝒟test.
4: Train Predictor from scratch on 𝒟train using empirical risk minimization.
5: Evaluate Predictor on 𝒟test and compute its generalization gap.
6: repeat
7: Sample a mini-batch from 𝒟total to compute the regularity constraints Ω1,Ω2

(Eq 4.1).
8: Sample another mini-batch from 𝒟test to compute ℒgap (Eq 4.2).
9: Update Splitter to minimize the overall objective ℒtotal (Eq 4.3).

10: until ℒtotal stops improving
11: until gap stops improving

weighting the minority group). For example, consider the task of classifying samoyeds

vs. polar bears (Figure 4-1). Models can achieve good average performance by using

spurious heuristics such as “polar bears live in snowy habitats” and “samoyeds play

on grass”. Discovering splits that models cannot generalize across helps us identify

under-represented groups (polar bears that appear on grass).

How to discover such splits? Our algorithm ls has two components, a Splitter

that decides how to split the dataset and a Predictor that estimates the generalization

gap from the training split to the testing split.1 At each iteration, the splitter uses

the feedback from the predictor to update its splitting decision. One can view this

splitting decision as a latent variable that represents the prediction characteristic of

each input. The algorithm is unsupervised in the sense that we assume no explicit

annotations about how to split the examples. To avoid degenerate solutions, we

require the Splitter to satisfy two regularity constraints that are often preserved in

common benchmarks: the size of the training split should be comparable to the size

of the testing split (Figure 4-2a); the marginal distribution of the label should be

similar across the splits (Figure 4-2b).

1To prevent over-fitting, we held-out 1/3 of the training split for early-stopping when training
the Predictor.
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4.3.2 Splitter and Predictor

Here we describe the two key components of our algorithm, Splitter and Predictor,

in the context of classification tasks. The algorithm itself generalizes to regression

problems as well.

Splitter Given a list of input-label pairs 𝒟total = [(𝑥1, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛)], the Splitter

decides how to partition this dataset into a training split 𝒟train and a testing split

𝒟test. We can view its splitting decisions as a list of latent variables z = [𝑧1, . . . , 𝑧𝑛]

where each 𝑧𝑖 ∈ {0, 1} indicates whether example (𝑥𝑖, 𝑦𝑖) is included in the training

split or not. In this work, we assume independent selections for simplicity. That is,

the Splitter takes one input-label pair (𝑥𝑖, 𝑦𝑖) at a time and predicts the probability

P(𝑧𝑖 | 𝑥𝑖, 𝑦𝑖) of keeping this example in the training split. We can factor the joint

probability of our splitting decisions as

P(z | 𝒟total) =
𝑛∏︁

𝑖=1

P(𝑧𝑖 | 𝑥𝑖, 𝑦𝑖).

In order to obtain the splits 𝒟train and 𝒟test, we directly sample from the Splitter’s

predictions P(𝑧𝑖 | 𝑥𝑖, 𝑦𝑖). Note that while the splitting decisions are independent

across different examples, the Splitter receives global feedback, dependent on the

entire dataset 𝒟total, from the Predictor during training.

Predictor The Predictor takes an input 𝑥 and predicts the probability of its label

P(𝑦 | 𝑥). Given the Splitter’s current splitting decisions, we initialize the Predictor

and train it to minimize the empirical risk on the training split 𝒟train. We note that

this initialization step is critical as it ensures that the Predictor does not carry over

past information (from the previous splits) and is faithful of representing the current

generalization gap. After training, we evaluate the generalization performance of the

Predictor on the testing split 𝒟test. The goal of this Predictor is to provide feedback

for the Splitter so that it can generate more challenging splits at the next iteration.
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4.3.3 Degenerate solutions

Many factors can impact generalization, but not all of them are of interest. For

example, the Predictor may naturally fail to generalize due to the lack of training

data or due to label imbalance across the splits (Figure 4-2). To avoid these trivial

solutions, we introduce two regularizers to shape the Splitter’s decisions:

Ω1 = D𝐾𝐿(P(𝑧) ‖Bernoulli(𝛿)),

Ω2 = D𝐾𝐿(P(𝑦 | 𝑧 = 1) ‖P(𝑦)) + D𝐾𝐿(P(𝑦 | 𝑧 = 0) ‖P(𝑦)).
(4.1)

The first term Ω1 ensures that we have sufficient training examples in 𝒟train.

Specifically, the marginal distribution P(𝑧) = 1
𝑛

∑︀𝑛
𝑖=1 P(𝑧𝑖 = 𝑧 | 𝑥𝑖, 𝑦𝑖) represents

what percentages of 𝒟total is splitted into 𝒟train and 𝒟test. We penalize the Splitter

if it moves too far away from the prior distribution Bernoulli(𝛿). [23] suggest that

minority groups usually constitute 25% of the entire population. In this work, we fix

𝛿 = 0.75 in all experiments so that E[|𝒟test|/|𝒟total|] = 0.25.

The second term Ω2 aims to reduce label imbalance across the splits. It achieves

this goal by pushing the label marginals in the training split P(𝑦 | 𝑧 = 1) and the

testing split P(𝑦 | 𝑧 = 0) to be close to the original label marginal P(𝑦) in 𝒟total. We

can apply Bayes’ rule to compute these conditional label marginals directly from the

Splitter’s decisions:

P(𝑦 | 𝑧 = 1) =

∑︀
𝑖 1𝑦(𝑦𝑖)P(𝑧𝑖 = 1 | 𝑥𝑖, 𝑦𝑖)∑︀

𝑖 P(𝑧𝑖 = 1 | 𝑥𝑖, 𝑦𝑖)
, P(𝑦 | 𝑧 = 0) =

∑︀
𝑖 1𝑦(𝑦𝑖)P(𝑧𝑖 = 0 | 𝑥𝑖, 𝑦𝑖)∑︀

𝑖 P(𝑧𝑖 = 0 | 𝑥𝑖, 𝑦𝑖)
.

4.3.4 Training strategy

The only question that remains is how to learn the Splitter. Our goal is to produce

difficult and non-trivial splits so that the Predictor cannot generalize. However, the

challenge is that we don’t have any explicit annotations for the splitting decisions.

There are a few options to address this challenge. From the meta learning per-

spective, we can back-propagate the Predictor’s loss on the testing split directly to

the Splitter. This process is expensive as it involves higher order gradients from the
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Predictor’s training. While one can apply episodic-training [113] to reduce the com-

putation cost, the Splitter’s decision will be biased by the size of the learning episodes

(since the Predictor only operates on the sampled episode). From the reinforcement

learning viewpoint, we can cast our objectives, maximizing the generalization gap

while maintaining the regularity constraints, into a reward function [69]. However

based on our preliminary experiments, the learning signal from this scalar reward is

too sparse for the Splitter to learn meaningful splits.

In this work, we take a simple yet effective approach to learn the Splitter. Our

intuition is that the Predictor’s generalization performance will drop if we move ex-

amples that are predicted correctly away from the testing split, leaving only those that

are mispredicted. In other words, we can view the prediction correctness of the testing

example as a direct supervision for the Splitter. Formally, let 𝑦𝑖 be the Predictor’s

prediction for input 𝑥𝑖: 𝑦𝑖 = argmax𝑦 P(𝑦 | 𝑥𝑖). We minimize the cross entropy loss

between the Splitter’s decision and the Predictor’s prediction correctness over the

testing split:

ℒgap =
1

|𝒟test|
∑︁

(𝑥𝑖,𝑦𝑖)∈𝒟test

ℒCE(P(𝑧𝑖 | 𝑥𝑖, 𝑦𝑖),1𝑦𝑖(𝑦𝑖)). (4.2)

Combining with the aforementioned regularity constraints, the overall objective for

the Splitter is

ℒtotal = ℒgap + Ω1 + Ω2, (4.3)

One can also explore different weighting schemes for the three loss terms [27].

In this work, we found that the simple summation in Eq (4.3) works well out-of-

the-box across all our experiments. Algorithm 1 presents the pseudo-code of our

algorithm. At each outer-loop (line 2-11), we start by using the current Splitter to

partition 𝒟total into 𝒟train and 𝒟test. We train the Predictor from scratch on 𝒟train

and evaluate its generalization performance on 𝒟test. For computation efficiency, we

sample mini-batches in the inner-loop (line 6-10) and update the Splitter based on

Eq (4.3).
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4.4 Experiments

There are two main questions to be answered:

• Can ls identify splits that are not generalizable? (Section 4.4.2)

• Can we use the splits identified by ls to reduce unknown biases? (Section 4.4.3)

We conduct experiments over multiple modalities (Section 4.4.1). For lack of space

we defer our dataset and implementation details to Appendix C.1.

4.4.1 Dataset

Beer review We use the BeerAdvocate review dataset introduced by previous

work [82]. Each review describes multiple aspects of a beer and is written by a

website user. Following previous work [69], we consider three aspect-level sentiment

classification tasks: look, aroma and palate. There are 2,500 positive reviews and

2,500 negative reviews for each task. The average word count per review is 128.5. We

apply ls to identify spurious splits for each task.

Tox21 We consider the molecular property prediction benchmark Tox21 [55]. There

are 12707 chemical compounds in the dataset. Each compound is annotated with 12

binary properties which represent the outcomes of different toxicological experiments.

We apply ls to identify spurious splits for each property.

Waterbirds [93] created this dataset by combining bird images from the Caltech-

UCSD Birds-200-2011 (CUB) dataset [114] with backgrounds from the Places dataset [125].

The task is to predict waterbirds vs. landbirds. The challenge is that waterbirds

(landbirds), by construction, appear more frequently with a water (land) background.

As a result, machine learning models may utilize this spurious correlation to make

their predictions. We combine the official training data and validation data (5994

examples in total) and apply ls to identify spurious splits.
1For fair comparison, all methods share the same hyper-parameter search space and repre-

sentation backbone (resnet-50 for Waterbirds and CelebA, bert-base-uncased for MNLI). See
Appendix C.2 for details.
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<latexit sha1_base64="RpTYTVzCwdllttDHviZyhs/zecE=">AAACAnicbVBNS8NAEN3Ur1q/qp7ES7AInkoioh6LevBYwX5AE8tmO22Xbj7YnYglBC/+FS8eFPHqr/Dmv3HT5qCtDwYe780wM8+LBFdoWd9GYWFxaXmluFpaW9/Y3Cpv7zRVGEsGDRaKULY9qkDwABrIUUA7kkB9T0DLG11mfusepOJhcIvjCFyfDgLe54yilrrlPcenOGRUJFfpXeIgPGCCoDBNu+WKVbUmMOeJnZMKyVHvlr+cXshiHwJkgirVsa0I3YRK5ExAWnJiBRFlIzqAjqYB9UG5yeSF1DzUSs/sh1JXgOZE/T2RUF+pse/pzuxgNetl4n9eJ8b+uZvwIIoRAjZd1I+FiaGZ5WH2uASGYqwJZZLrW002pJIy1KmVdAj27MvzpHlctU+r9s1JpXaRx1Ek++SAHBGbnJEauSZ10iCMPJJn8krejCfjxXg3PqatBSOf2SV/YHz+ALspmEw=</latexit>

Dtest

ls

<latexit sha1_base64="dIC/ql0jyBokHBqNo+ZsMBy0lks=">AAACA3icbVBNS8NAEN3Ur1q/ot70EiyCp5KIqMeiHjxWsB/QxLLZbtqlm03YnYglBLz4V7x4UMSrf8Kb/8ZNm4O2Phh4vDfDzDw/5kyBbX8bpYXFpeWV8mplbX1jc8vc3mmpKJGENknEI9nxsaKcCdoEBpx2Yklx6HPa9keXud++p1KxSNzCOKZeiAeCBYxg0FLP3HNDDEOCeXqV3aUu0AdIQWImsqxnVu2aPYE1T5yCVFGBRs/8cvsRSUIqgHCsVNexY/BSLIERTrOKmygaYzLCA9rVVOCQKi+d/JBZh1rpW0EkdQmwJurviRSHSo1DX3fmF6tZLxf/87oJBOdeykScABVkuihIuAWRlQdi9ZmkBPhYE0wk07daZIglJqBjq+gQnNmX50nruOac1pybk2r9ooijjPbRATpCDjpDdXSNGqiJCHpEz+gVvRlPxovxbnxMW0tGMbOL/sD4/AF5Ppi0</latexit>

Dtrain

ls

<latexit sha1_base64="RpTYTVzCwdllttDHviZyhs/zecE=">AAACAnicbVBNS8NAEN3Ur1q/qp7ES7AInkoioh6LevBYwX5AE8tmO22Xbj7YnYglBC/+FS8eFPHqr/Dmv3HT5qCtDwYe780wM8+LBFdoWd9GYWFxaXmluFpaW9/Y3Cpv7zRVGEsGDRaKULY9qkDwABrIUUA7kkB9T0DLG11mfusepOJhcIvjCFyfDgLe54yilrrlPcenOGRUJFfpXeIgPGCCoDBNu+WKVbUmMOeJnZMKyVHvlr+cXshiHwJkgirVsa0I3YRK5ExAWnJiBRFlIzqAjqYB9UG5yeSF1DzUSs/sh1JXgOZE/T2RUF+pse/pzuxgNetl4n9eJ8b+uZvwIIoRAjZd1I+FiaGZ5WH2uASGYqwJZZLrW002pJIy1KmVdAj27MvzpHlctU+r9s1JpXaRx1Ek++SAHBGbnJEauSZ10iCMPJJn8krejCfjxXg3PqatBSOf2SV/YHz+ALspmEw=</latexit>

Dtest

ls

<latexit sha1_base64="dIC/ql0jyBokHBqNo+ZsMBy0lks=">AAACA3icbVBNS8NAEN3Ur1q/ot70EiyCp5KIqMeiHjxWsB/QxLLZbtqlm03YnYglBLz4V7x4UMSrf8Kb/8ZNm4O2Phh4vDfDzDw/5kyBbX8bpYXFpeWV8mplbX1jc8vc3mmpKJGENknEI9nxsaKcCdoEBpx2Yklx6HPa9keXud++p1KxSNzCOKZeiAeCBYxg0FLP3HNDDEOCeXqV3aUu0AdIQWImsqxnVu2aPYE1T5yCVFGBRs/8cvsRSUIqgHCsVNexY/BSLIERTrOKmygaYzLCA9rVVOCQKi+d/JBZh1rpW0EkdQmwJurviRSHSo1DX3fmF6tZLxf/87oJBOdeykScABVkuihIuAWRlQdi9ZmkBPhYE0wk07daZIglJqBjq+gQnNmX50nruOac1pybk2r9ooijjPbRATpCDjpDdXSNGqiJCHpEz+gVvRlPxovxbnxMW0tGMbOL/sD4/AF5Ppi0</latexit>

Dtrain

ls

<latexit sha1_base64="RpTYTVzCwdllttDHviZyhs/zecE=">AAACAnicbVBNS8NAEN3Ur1q/qp7ES7AInkoioh6LevBYwX5AE8tmO22Xbj7YnYglBC/+FS8eFPHqr/Dmv3HT5qCtDwYe780wM8+LBFdoWd9GYWFxaXmluFpaW9/Y3Cpv7zRVGEsGDRaKULY9qkDwABrIUUA7kkB9T0DLG11mfusepOJhcIvjCFyfDgLe54yilrrlPcenOGRUJFfpXeIgPGCCoDBNu+WKVbUmMOeJnZMKyVHvlr+cXshiHwJkgirVsa0I3YRK5ExAWnJiBRFlIzqAjqYB9UG5yeSF1DzUSs/sh1JXgOZE/T2RUF+pse/pzuxgNetl4n9eJ8b+uZvwIIoRAjZd1I+FiaGZ5WH2uASGYqwJZZLrW002pJIy1KmVdAj27MvzpHlctU+r9s1JpXaRx1Ek++SAHBGbnJEauSZ10iCMPJJn8krejCfjxXg3PqatBSOf2SV/YHz+ALspmEw=</latexit>

Dtest

ls

Figure 4-3: Given a set of input-label pairs, ls identifies splits that predictors cannot
generalize across. These generated splits share similar label distributions (shown on
the top). For comparison, predictors achieve similar training and testing performance
on random splits (random). In both methods, to prevent memorization, we held-out
1/3 of the training split for early stopping.

CelebA CelebA is an image classification dataset where each input image (face) is

paired with multiple human-annotated attributes [76]. Following previous work [93],

we treat the hair color attribute (𝑦 ∈ {blond, not_blond}) as our prediction target.

The label is spuriously correlated with the gender attribute ({male, female}). We

apply ls to identify spurious splits over the official training data (162,770 examples).

MNLI MNLI is a crowd-sourced collection of 433k sentence pairs annotated with

textual entailment information [115]. The task is to classify the relationship between

a pair of sentences: entailment, neutral or contradiction. Due to the artifacts of the

data collection process, contradiction examples often include negation words [83]. We

apply ls to identify spurious splits over the official training data (206,175 examples).
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<latexit sha1_base64="dIC/ql0jyBokHBqNo+ZsMBy0lks=">AAACA3icbVBNS8NAEN3Ur1q/ot70EiyCp5KIqMeiHjxWsB/QxLLZbtqlm03YnYglBLz4V7x4UMSrf8Kb/8ZNm4O2Phh4vDfDzDw/5kyBbX8bpYXFpeWV8mplbX1jc8vc3mmpKJGENknEI9nxsaKcCdoEBpx2Yklx6HPa9keXud++p1KxSNzCOKZeiAeCBYxg0FLP3HNDDEOCeXqV3aUu0AdIQWImsqxnVu2aPYE1T5yCVFGBRs/8cvsRSUIqgHCsVNexY/BSLIERTrOKmygaYzLCA9rVVOCQKi+d/JBZh1rpW0EkdQmwJurviRSHSo1DX3fmF6tZLxf/87oJBOdeykScABVkuihIuAWRlQdi9ZmkBPhYE0wk07daZIglJqBjq+gQnNmX50nruOac1pybk2r9ooijjPbRATpCDjpDdXSNGqiJCHpEz+gVvRlPxovxbnxMW0tGMbOL/sD4/AF5Ppi0</latexit>

Dtrain
ls

<latexit sha1_base64="RpTYTVzCwdllttDHviZyhs/zecE=">AAACAnicbVBNS8NAEN3Ur1q/qp7ES7AInkoioh6LevBYwX5AE8tmO22Xbj7YnYglBC/+FS8eFPHqr/Dmv3HT5qCtDwYe780wM8+LBFdoWd9GYWFxaXmluFpaW9/Y3Cpv7zRVGEsGDRaKULY9qkDwABrIUUA7kkB9T0DLG11mfusepOJhcIvjCFyfDgLe54yilrrlPcenOGRUJFfpXeIgPGCCoDBNu+WKVbUmMOeJnZMKyVHvlr+cXshiHwJkgirVsa0I3YRK5ExAWnJiBRFlIzqAjqYB9UG5yeSF1DzUSs/sh1JXgOZE/T2RUF+pse/pzuxgNetl4n9eJ8b+uZvwIIoRAjZd1I+FiaGZ5WH2uASGYqwJZZLrW002pJIy1KmVdAj27MvzpHlctU+r9s1JpXaRx1Ek++SAHBGbnJEauSZ10iCMPJJn8krejCfjxXg3PqatBSOf2SV/YHz+ALspmEw=</latexit>
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<latexit sha1_base64="dIC/ql0jyBokHBqNo+ZsMBy0lks=">AAACA3icbVBNS8NAEN3Ur1q/ot70EiyCp5KIqMeiHjxWsB/QxLLZbtqlm03YnYglBLz4V7x4UMSrf8Kb/8ZNm4O2Phh4vDfDzDw/5kyBbX8bpYXFpeWV8mplbX1jc8vc3mmpKJGENknEI9nxsaKcCdoEBpx2Yklx6HPa9keXud++p1KxSNzCOKZeiAeCBYxg0FLP3HNDDEOCeXqV3aUu0AdIQWImsqxnVu2aPYE1T5yCVFGBRs/8cvsRSUIqgHCsVNexY/BSLIERTrOKmygaYzLCA9rVVOCQKi+d/JBZh1rpW0EkdQmwJurviRSHSo1DX3fmF6tZLxf/87oJBOdeykScABVkuihIuAWRlQdi9ZmkBPhYE0wk07daZIglJqBjq+gQnNmX50nruOac1pybk2r9ooijjPbRATpCDjpDdXSNGqiJCHpEz+gVvRlPxovxbnxMW0tGMbOL/sD4/AF5Ppi0</latexit>

Dtrain
ls

<latexit sha1_base64="RpTYTVzCwdllttDHviZyhs/zecE=">AAACAnicbVBNS8NAEN3Ur1q/qp7ES7AInkoioh6LevBYwX5AE8tmO22Xbj7YnYglBC/+FS8eFPHqr/Dmv3HT5qCtDwYe780wM8+LBFdoWd9GYWFxaXmluFpaW9/Y3Cpv7zRVGEsGDRaKULY9qkDwABrIUUA7kkB9T0DLG11mfusepOJhcIvjCFyfDgLe54yilrrlPcenOGRUJFfpXeIgPGCCoDBNu+WKVbUmMOeJnZMKyVHvlr+cXshiHwJkgirVsa0I3YRK5ExAWnJiBRFlIzqAjqYB9UG5yeSF1DzUSs/sh1JXgOZE/T2RUF+pse/pzuxgNetl4n9eJ8b+uZvwIIoRAjZd1I+FiaGZ5WH2uASGYqwJZZLrW002pJIy1KmVdAj27MvzpHlctU+r9s1JpXaRx1Ek++SAHBGbnJEauSZ10iCMPJJn8krejCfjxXg3PqatBSOf2SV/YHz+ALspmEw=</latexit>
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<latexit sha1_base64="dIC/ql0jyBokHBqNo+ZsMBy0lks=">AAACA3icbVBNS8NAEN3Ur1q/ot70EiyCp5KIqMeiHjxWsB/QxLLZbtqlm03YnYglBLz4V7x4UMSrf8Kb/8ZNm4O2Phh4vDfDzDw/5kyBbX8bpYXFpeWV8mplbX1jc8vc3mmpKJGENknEI9nxsaKcCdoEBpx2Yklx6HPa9keXud++p1KxSNzCOKZeiAeCBYxg0FLP3HNDDEOCeXqV3aUu0AdIQWImsqxnVu2aPYE1T5yCVFGBRs/8cvsRSUIqgHCsVNexY/BSLIERTrOKmygaYzLCA9rVVOCQKi+d/JBZh1rpW0EkdQmwJurviRSHSo1DX3fmF6tZLxf/87oJBOdeykScABVkuihIuAWRlQdi9ZmkBPhYE0wk07daZIglJqBjq+gQnNmX50nruOac1pybk2r9ooijjPbRATpCDjpDdXSNGqiJCHpEz+gVvRlPxovxbnxMW0tGMbOL/sD4/AF5Ppi0</latexit>

Dtrain
ls

<latexit sha1_base64="RpTYTVzCwdllttDHviZyhs/zecE=">AAACAnicbVBNS8NAEN3Ur1q/qp7ES7AInkoioh6LevBYwX5AE8tmO22Xbj7YnYglBC/+FS8eFPHqr/Dmv3HT5qCtDwYe780wM8+LBFdoWd9GYWFxaXmluFpaW9/Y3Cpv7zRVGEsGDRaKULY9qkDwABrIUUA7kkB9T0DLG11mfusepOJhcIvjCFyfDgLe54yilrrlPcenOGRUJFfpXeIgPGCCoDBNu+WKVbUmMOeJnZMKyVHvlr+cXshiHwJkgirVsa0I3YRK5ExAWnJiBRFlIzqAjqYB9UG5yeSF1DzUSs/sh1JXgOZE/T2RUF+pse/pzuxgNetl4n9eJ8b+uZvwIIoRAjZd1I+FiaGZ5WH2uASGYqwJZZLrW002pJIy1KmVdAj27MvzpHlctU+r9s1JpXaRx1Ek++SAHBGbnJEauSZ10iCMPJJn8krejCfjxXg3PqatBSOf2SV/YHz+ALspmEw=</latexit>
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<latexit sha1_base64="dIC/ql0jyBokHBqNo+ZsMBy0lks=">AAACA3icbVBNS8NAEN3Ur1q/ot70EiyCp5KIqMeiHjxWsB/QxLLZbtqlm03YnYglBLz4V7x4UMSrf8Kb/8ZNm4O2Phh4vDfDzDw/5kyBbX8bpYXFpeWV8mplbX1jc8vc3mmpKJGENknEI9nxsaKcCdoEBpx2Yklx6HPa9keXud++p1KxSNzCOKZeiAeCBYxg0FLP3HNDDEOCeXqV3aUu0AdIQWImsqxnVu2aPYE1T5yCVFGBRs/8cvsRSUIqgHCsVNexY/BSLIERTrOKmygaYzLCA9rVVOCQKi+d/JBZh1rpW0EkdQmwJurviRSHSo1DX3fmF6tZLxf/87oJBOdeykScABVkuihIuAWRlQdi9ZmkBPhYE0wk07daZIglJqBjq+gQnNmX50nruOac1pybk2r9ooijjPbRATpCDjpDdXSNGqiJCHpEz+gVvRlPxovxbnxMW0tGMbOL/sD4/AF5Ppi0</latexit>

Dtrain
ls

<latexit sha1_base64="RpTYTVzCwdllttDHviZyhs/zecE=">AAACAnicbVBNS8NAEN3Ur1q/qp7ES7AInkoioh6LevBYwX5AE8tmO22Xbj7YnYglBC/+FS8eFPHqr/Dmv3HT5qCtDwYe780wM8+LBFdoWd9GYWFxaXmluFpaW9/Y3Cpv7zRVGEsGDRaKULY9qkDwABrIUUA7kkB9T0DLG11mfusepOJhcIvjCFyfDgLe54yilrrlPcenOGRUJFfpXeIgPGCCoDBNu+WKVbUmMOeJnZMKyVHvlr+cXshiHwJkgirVsa0I3YRK5ExAWnJiBRFlIzqAjqYB9UG5yeSF1DzUSs/sh1JXgOZE/T2RUF+pse/pzuxgNetl4n9eJ8b+uZvwIIoRAjZd1I+FiaGZ5WH2uASGYqwJZZLrW002pJIy1KmVdAj27MvzpHlctU+r9s1JpXaRx1Ek++SAHBGbnJEauSZ10iCMPJJn8krejCfjxXg3PqatBSOf2SV/YHz+ALspmEw=</latexit>
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<latexit sha1_base64="dIC/ql0jyBokHBqNo+ZsMBy0lks=">AAACA3icbVBNS8NAEN3Ur1q/ot70EiyCp5KIqMeiHjxWsB/QxLLZbtqlm03YnYglBLz4V7x4UMSrf8Kb/8ZNm4O2Phh4vDfDzDw/5kyBbX8bpYXFpeWV8mplbX1jc8vc3mmpKJGENknEI9nxsaKcCdoEBpx2Yklx6HPa9keXud++p1KxSNzCOKZeiAeCBYxg0FLP3HNDDEOCeXqV3aUu0AdIQWImsqxnVu2aPYE1T5yCVFGBRs/8cvsRSUIqgHCsVNexY/BSLIERTrOKmygaYzLCA9rVVOCQKi+d/JBZh1rpW0EkdQmwJurviRSHSo1DX3fmF6tZLxf/87oJBOdeykScABVkuihIuAWRlQdi9ZmkBPhYE0wk07daZIglJqBjq+gQnNmX50nruOac1pybk2r9ooijjPbRATpCDjpDdXSNGqiJCHpEz+gVvRlPxovxbnxMW0tGMbOL/sD4/AF5Ppi0</latexit>

Dtrain
ls

<latexit sha1_base64="RpTYTVzCwdllttDHviZyhs/zecE=">AAACAnicbVBNS8NAEN3Ur1q/qp7ES7AInkoioh6LevBYwX5AE8tmO22Xbj7YnYglBC/+FS8eFPHqr/Dmv3HT5qCtDwYe780wM8+LBFdoWd9GYWFxaXmluFpaW9/Y3Cpv7zRVGEsGDRaKULY9qkDwABrIUUA7kkB9T0DLG11mfusepOJhcIvjCFyfDgLe54yilrrlPcenOGRUJFfpXeIgPGCCoDBNu+WKVbUmMOeJnZMKyVHvlr+cXshiHwJkgirVsa0I3YRK5ExAWnJiBRFlIzqAjqYB9UG5yeSF1DzUSs/sh1JXgOZE/T2RUF+pse/pzuxgNetl4n9eJ8b+uZvwIIoRAjZd1I+FiaGZ5WH2uASGYqwJZZLrW002pJIy1KmVdAj27MvzpHlctU+r9s1JpXaRx1Ek++SAHBGbnJEauSZ10iCMPJJn8krejCfjxXg3PqatBSOf2SV/YHz+ALspmEw=</latexit>
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<latexit sha1_base64="dIC/ql0jyBokHBqNo+ZsMBy0lks=">AAACA3icbVBNS8NAEN3Ur1q/ot70EiyCp5KIqMeiHjxWsB/QxLLZbtqlm03YnYglBLz4V7x4UMSrf8Kb/8ZNm4O2Phh4vDfDzDw/5kyBbX8bpYXFpeWV8mplbX1jc8vc3mmpKJGENknEI9nxsaKcCdoEBpx2Yklx6HPa9keXud++p1KxSNzCOKZeiAeCBYxg0FLP3HNDDEOCeXqV3aUu0AdIQWImsqxnVu2aPYE1T5yCVFGBRs/8cvsRSUIqgHCsVNexY/BSLIERTrOKmygaYzLCA9rVVOCQKi+d/JBZh1rpW0EkdQmwJurviRSHSo1DX3fmF6tZLxf/87oJBOdeykScABVkuihIuAWRlQdi9ZmkBPhYE0wk07daZIglJqBjq+gQnNmX50nruOac1pybk2r9ooijjPbRATpCDjpDdXSNGqiJCHpEz+gVvRlPxovxbnxMW0tGMbOL/sD4/AF5Ppi0</latexit>

Dtrain
ls

<latexit sha1_base64="RpTYTVzCwdllttDHviZyhs/zecE=">AAACAnicbVBNS8NAEN3Ur1q/qp7ES7AInkoioh6LevBYwX5AE8tmO22Xbj7YnYglBC/+FS8eFPHqr/Dmv3HT5qCtDwYe780wM8+LBFdoWd9GYWFxaXmluFpaW9/Y3Cpv7zRVGEsGDRaKULY9qkDwABrIUUA7kkB9T0DLG11mfusepOJhcIvjCFyfDgLe54yilrrlPcenOGRUJFfpXeIgPGCCoDBNu+WKVbUmMOeJnZMKyVHvlr+cXshiHwJkgirVsa0I3YRK5ExAWnJiBRFlIzqAjqYB9UG5yeSF1DzUSs/sh1JXgOZE/T2RUF+pse/pzuxgNetl4n9eJ8b+uZvwIIoRAjZd1I+FiaGZ5WH2uASGYqwJZZLrW002pJIy1KmVdAj27MvzpHlctU+r9s1JpXaRx1Ek++SAHBGbnJEauSZ10iCMPJJn8krejCfjxXg3PqatBSOf2SV/YHz+ALspmEw=</latexit>
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<latexit sha1_base64="dIC/ql0jyBokHBqNo+ZsMBy0lks=">AAACA3icbVBNS8NAEN3Ur1q/ot70EiyCp5KIqMeiHjxWsB/QxLLZbtqlm03YnYglBLz4V7x4UMSrf8Kb/8ZNm4O2Phh4vDfDzDw/5kyBbX8bpYXFpeWV8mplbX1jc8vc3mmpKJGENknEI9nxsaKcCdoEBpx2Yklx6HPa9keXud++p1KxSNzCOKZeiAeCBYxg0FLP3HNDDEOCeXqV3aUu0AdIQWImsqxnVu2aPYE1T5yCVFGBRs/8cvsRSUIqgHCsVNexY/BSLIERTrOKmygaYzLCA9rVVOCQKi+d/JBZh1rpW0EkdQmwJurviRSHSo1DX3fmF6tZLxf/87oJBOdeykScABVkuihIuAWRlQdi9ZmkBPhYE0wk07daZIglJqBjq+gQnNmX50nruOac1pybk2r9ooijjPbRATpCDjpDdXSNGqiJCHpEz+gVvRlPxovxbnxMW0tGMbOL/sD4/AF5Ppi0</latexit>

Dtrain
ls

<latexit sha1_base64="RpTYTVzCwdllttDHviZyhs/zecE=">AAACAnicbVBNS8NAEN3Ur1q/qp7ES7AInkoioh6LevBYwX5AE8tmO22Xbj7YnYglBC/+FS8eFPHqr/Dmv3HT5qCtDwYe780wM8+LBFdoWd9GYWFxaXmluFpaW9/Y3Cpv7zRVGEsGDRaKULY9qkDwABrIUUA7kkB9T0DLG11mfusepOJhcIvjCFyfDgLe54yilrrlPcenOGRUJFfpXeIgPGCCoDBNu+WKVbUmMOeJnZMKyVHvlr+cXshiHwJkgirVsa0I3YRK5ExAWnJiBRFlIzqAjqYB9UG5yeSF1DzUSs/sh1JXgOZE/T2RUF+pse/pzuxgNetl4n9eJ8b+uZvwIIoRAjZd1I+FiaGZ5WH2uASGYqwJZZLrW002pJIy1KmVdAj27MvzpHlctU+r9s1JpXaRx1Ek++SAHBGbnJEauSZ10iCMPJJn8krejCfjxXg3PqatBSOf2SV/YHz+ALspmEw=</latexit>
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Figure 4-4: Our method can also be applied to the chemistry domain (Tox21). Similar
to Figure 4-3, ls identifies non-trivial splits that predictors cannot generalize for all
12 molecular property prediction tasks.
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Figure 4-5: The splits learned by ls are correlated with human-identified biases. For
example in Waterbirds (left), ls learns to amplify the spurious correlation between
landbirds and land background in the training split 𝒟train. As a result, predictors will
over-fit the background features and fail to generalize at test time (𝒟test) when the
spurious correlation is reduced.

4.4.2 Identifying non-generalizable splits

Figure 4-3 and Figure 4-4 present the splits identified by our algorithm ls. Compared

to random splitting, ls achieves astonishingly higher generalization gaps across all

tasks. Moreover, we observe that the learned splits are not degenerative: the training

split 𝒟train and testing split 𝒟test share similar label distributions. This confirms the

effectiveness of our regularity objectives.
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Figure 4-6: Learning curve of ls. X-axis: number of outer-loop iterations. Y-axis:
generalization gap from 𝒟train to 𝒟test. Error bar represents the standard deviation
across 5 random seeds.

Why are the learrned splits so challenging for predictors to generalize

across? While ls only has access to the set of input-label pairs, Figure 4-5 and

Table 4.1 show that the learned splits are informative of human-identified biases. For

example, in the generated training split of MNLI, inputs with negation words are

mostly labeled as contradiction. This encourages predictors to leverage the presence

of negation words to make their predictions. These biased predictors cannot generalize

to the testing split, where inputs with negation words are mostly labeled as entailment

or neutral.

Convergence and time-efficiency ls requires learning a new Predictor for each

outer-loop iteration. While this makes ls more time-consuming than training a reg-

ular ERM model, this procedure guarantees that the Predictor faithfully measures

the generalization gap based on the current Splitter. Figure 4-6 shows the learning

curve of ls. We observe that the generalization gap steadily increases as we refine the

Splitter and the learning procedure usually converges within 50 outer-loop iterations.

4.4.3 Automatic de-biasing

Once ls has identified the spurious splits, we can apply robust learning algorithms

to learn models that are robust across the splits [93, 9]. Here we consider group

distributionally robust optimization (group DRO) and study three well-established

benchmarks: Waterbirds, CelebA and MNLI.
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Table 4.1: The splits learned by ls on property NR.AR correlates with other properties
that are not given to the algorithm. Specifically, ls allocates 58.3% of the actives into
the training split and 41.2% of the actives into the testing split (top row). However,
if we focus on the subset with SR.ATAD5 active, this distribution shifts drastically to
17.1% vs. 82.9%.

#NR.AR active in 𝒟train

#NR.AR active
#NR.AR active in 𝒟test

#NR.AR active

All examples 58.3% 41.6%

Subset with NR.AhR active 13.0% 87.0%

Subset with NR.AR.LBD active 82.3% 17.7%

Subset with NR.Aromatas active 62.5% 37.5%

Subset with NR.ER active 64.0% 36.0%

Subset with NR.ER.LBD active 75.3% 24.7%

Subset with NR.PPAR.gam active 40.0% 60.0%

Subset with SR.ARE active 45.5% 54.6%

Subset with SR.ATAD5 active 17.1% 82.9%

Subset with SR.HSE active 66.7% 33.3%

Subset with SR.MMP active 53.6% 46.4%

Subset with SR.p53 active 45.2% 54.8%

Group DRO Group DRO has shown strong performance when biases are an-

notated for training [93]. For example in CelebA where gender constitutes as a

bias for predicting blond hair, group DRO uses the bias annotations to partition

the training data into four groups: {blond_hair, male}, {blond_hair, female},
{no_blond_hair, male}, {no_blond_hair, female}. By minimizing the worst-group

loss during training, it regularizes the impact of the unwanted gender bias.

Group DRO with bias predictor Recent work consider a more challenging set-

ting where bias annotations are not provided at train time [70, 85, 30, 74]. However,

they still access bias annotations on the validation data for model selection. With

thousands of validation examples (1199 for Waterbirds, 19867 for CelebA, 82462 for

MNLI), a simple baseline was overlooked by the community: learning a bias pre-

dictor over the validation data (where bias annotations are available) and using the

predicted bias attributes on the training data to define groups for group DRO.
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Table 4.2: Average and worst-group test accuracy for de-biasing.2 Previous work
improve the worst-group performances when the bias annotations are provided for
the validation data. However, they still underperform the simple group DRO baseline
that was overlooked. When bias annotations are not available for model selection,
the performances of previous methods quickly drop to that of ERM. In contrast,
applying group DRO with splits identified by ls substantially improves the worst-
group performance. † denotes numbers reported by previous work.

Method Bias annotated
in train/val?

Waterbirds CelebA MNLI

Avg. Worst Avg. Worst Avg. Worst

Group DRO [93] ✓/✓ 93.5%† 91.4%† 92.9%† 88.9%† 81.4%† 77.7%†

ERM ✗/✓ 97.3%† 72.6%† 95.6%† 47.2%† 82.4%† 67.9%†

CVaR DRO [70] ✗/✓ 96.0%† 75.9%† 82.5%† 64.4%† 82.0%† 68.0%†

LfF [85] ✗/✓ 91.2%† 78.0%† 85.1%† 77.2%† 80.8%† 70.2%†

EIIL [30] ✗/✓ 96.9%† 78.7%† 89.5% 77.8% 79.4% 70.0%

JTT [74] ✗/✓ 93.3%† 86.7%† 88.0%† 81.1%† 78.6%† 72.6%†

Group DRO
(with predicted groups) ✗/✓ 91.4% 88.2% 91.4% 88.9% 79.9% 77.7%

ERM ✗/✗ 90.7% 64.8% 95.8% 41.1% 81.9% 60.4%

CVaR DRO [70] ✗/✗ — 62.0%† — 36.1%† 81.8% 61.8%

LfF [85] ✗/✗ — 44.1%† — 24.4%† 81.1% 62.2%

EIIL [30] ✗/✗ 90.8% 64.5% 95.7% 41.7% 80.3% 64.7%

JTT [74] ✗/✗ — 62.5%† — 40.6%† 81.3% 64.4%

Group DRO
(with ls) ✗/✗ 91.2% 86.1% 87.2% 83.3% 78.7% 72.1%

Group DRO with ls We consider the general setting where biases are not known

during both training and validation. To obtain a robust model, we take the splits

identified by ls (Section 4.4.2) and apply group DRO to minimize the worst-split

loss for each class. Similarly for model selection, we apply the learned Splitter to

split the validation data and measure the worst-split accuracy for each class (see Ap-

pendix C.2.1 for details). We report the average accuracy and worst-group accuracy

(defined by the bias annotations) on the standard test set.

2For fair comparison, all methods share the same hyper-parameter search space and repre-
sentation backbone (resnet-50 for Waterbirds and CelebA, bert-base-uncased for MNLI). See
Appendix C.2 for details.
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Figure 4-7: The spurious splits identified by ls provide a surrogate metric for model
selection when biases are unknown. X-axis: worst-split accuracy defined by ls. Y-
axis: worst-group accuracy defined by the oracle bias annotations.

Results Table 4.2 presents our results on de-biasing. We first see that when the

bias annotations are available in the validation data, the missing baseline Group

DRO (with supervised bias predictor) outperforms all previous de-biasing methods

(4.8% on average). This result is not surprising given the fact that the bias attribute

predictor is able to achieve 94.8% accuracy in Waterbirds (predicting the spurious

background), 97.7% accuracy in CelebA (predicting the spurious gender attribute)

and 99.9% in MNLI (predicting the prescence of negation words).

In reality where biases are unknown during both training and validation, previous

de-biasing methods fail to improve over the ERM baseline. This confirms the findings

of [74]. On the other hand, applying group DRO with splits identified by ls con-

sistently achieves the best worst-group accuracy, outperforming previous methods by

23.4% on average. While we no longer have access to the worst-group validation ac-

curacy for model selection (as it requires bias annotations), Figure 4-7 demonstrates

that the worst-split performance on the validation set can be used as a surrogate.

4.5 Conclusion

We present Learning to Split (ls), an algorithm that learns to split the data so that

predictors trained on the training split cannot generalize to the testing split. Our

algorithm only requires access to the set of input-label pairs and is applicable to

general datasets. Experiments across multiple modalities confirm that ls is able to

identify challenging splits that correlates with human-identified biases.
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Chapter 5

Conclusion

Deep neural networks have proved themselves as universal approximators [52]. How-

ever in practice, the datasets from which we train our neural networks are never

guaranteed to be perfect. In the presence of dataset biases, neural networks fail.

In this thesis, I have explored algorithms that identify under-represented groups

without explicit bias annotations. Such frameworks are attractive as human experts

can understand the potential biases by simply looking at the characteristics of the

identified groups. To deliver robustness, we enforce models to perform well across

all groups. Our proposed algorithms are model-agnostic and can be applied to many

applications.

• First, we consider the scenario where our dataset is accompanied with the en-

vironment information. In the medical text classification dataset ASK2ME,

we demonstrated that by explicitly contrasting the data environments, our al-

gorithm significantly improves the worst-case performance (74.1% vs. 54.8%)

when evaluated against biases that are unknown during training.

• Second, we look at the situation where we don’t have multiple environments

in our target task of interest. In the face image classification dataset CelebA,

we showed that by transferring the knowledge of biases across tasks (from pre-

dicting glass wearing to predicting hair color), our model generalizes robustly

towards a different testing environment (84.9% vs. 61.0%).
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• Finally, we showed how to identify biases when we are only given a set of input-

label pairs, the standard supervised learning setting. Our algorithm learns to

split the dataset so that predictors cannot generalize from the training split

to the testing split. Empirical analysis show that the learned splits capture

human-identified biases in natural language understanding, image classification

and molecular property prediction. By learning to perform robustly across the

splits, our model significantly outperforms state-of-the-art de-biasing techniques

(72.1% vs. 64.4% on MNLI).

Together, these methods enable efficient and robust machine learning.

Future directions

We now provide some future directions of research that follow from this thesis:

• Multiple bias sources. Our algorithm ls learns to create a single partition of

the dataset. However in many applications, biases can be high-dimensional. For

example, we may have both gender bias and racial bias, and these two biases

are independent to each other. Identifying and disentangling multiple sources

of biases is an important but unexplored area.

• Generalization beyond supervised learning. In this thesis, we focus on the su-

pervised learning setting where bias features are defined based on the given

task. Generalizing the notion of biases to unsupervised or self-supervised learn-

ing [35, 26] is another interesting future direction.

Current representation learning methods generate a single vector that summa-

rizes all the features of a given input. When applied to a downstream task, those

bias features will be exploited by the model. We would like to learn a mapping

such that given a specific type of bias (such as gender), the mapping can remove

the corresponding bias features from the input representation. Such generaliza-

tion can significantly benefit low-resource tasks or tasks with long-tailed input

distributions.
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Appendix A

Predict then Interpolate: A Simple

Algorithm to Learn Stable Classifiers

A.1 A toy example

We would like to show that the optimal solution that minimize the worst-case risk

across 𝐸1✓
2 and 𝐸1×

2 is to predict 𝑌 only using 𝑋1. Consider any classifier 𝑓(𝑌 |
𝑋1, 𝑋2) and its marginal

𝑓(𝑌 | 𝑋1) ∝ 𝑓(𝑋1, 𝑋2 = 0, 𝑌 ) + 𝑓(𝑋1, 𝑋2 = 1, 𝑌 ).

For any input (𝑥1, 𝑥2) ∈ 𝐸1✓
2 , based on our construction, the distribution 𝑃 1✓

2 (𝑋1 =

𝑥1, 𝑋2 = 𝑥2, 𝑌 ) only has mass on one label value 𝑦 ∈ {0, 1}. Thus 𝑃 1✓
2 (𝑌 = 𝑦 | 𝑋1 =

𝑥1, 𝑋2 = 𝑥2) = 1. We can then write the log risk of the classifier 𝑓(𝑌 | 𝑋1, 𝑋2) as

− log
𝑓(𝑥1, 𝑥2, 𝑦)

𝑓(𝑥1, 𝑥2, 𝑦) + 𝑓(𝑥1, 𝑥2, 1− 𝑦)
.

The log risk of the marginal classifier 𝑓(𝑌 | 𝑋1) is defined as

− log
(︁
(𝑓(𝑥1, 𝑥2, 𝑦) + 𝑓(𝑥1, 1− 𝑥2, 𝑦))

/(𝑓(𝑥1, 𝑥2, 𝑦) + 𝑓(𝑥1, 1− 𝑥2, 𝑦) + 𝑓(𝑥1, 𝑥2, 1− 𝑦) + 𝑓(𝑥1, 1− 𝑥2, 1− 𝑦))
)︁
.
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Now suppose 𝑓(𝑌 | 𝑋1, 𝑋2) achieves a lower risk than 𝑓(𝑌 | 𝑋1). This implies

𝑓(𝑥1, 𝑥2, 𝑦)𝑓(𝑥1, 𝑥2, 𝑦) + 𝑓(𝑥1, 𝑥2, 1− 𝑦)𝑓(𝑥1, 𝑥2, 𝑦)

+ 𝑓(𝑥1, 𝑥2, 𝑦)𝑓(𝑥1, 1− 𝑥2, 𝑦) + 𝑓(𝑥1, 𝑥2, 1− 𝑦)𝑓(𝑥1, 1− 𝑥2, 𝑦)

< 𝑓(𝑥1, 𝑥2, 𝑦)𝑓(𝑥1, 𝑥2, 𝑦) + 𝑓(𝑥1, 𝑥2, 𝑦)𝑓(𝑥1, 𝑥2, 1− 𝑦)

+ 𝑓(𝑥1, 𝑥2, 𝑦)𝑓(𝑥1, 1− 𝑥2, 𝑦) + 𝑓(𝑥1, 𝑥2, 𝑦)𝑓(𝑥1, 1− 𝑥2, 1− 𝑦).

Note that the first three terms on both side cancel out. We have

𝑓(𝑥1, 𝑥2, 1− 𝑦)𝑓(𝑥1, 1− 𝑥2, 𝑦) < 𝑓(𝑥1, 𝑥2, 𝑦)𝑓(𝑥1, 1− 𝑥2, 1− 𝑦).

Now let’s consider an input (𝑥1, 1− 𝑥2) ∈ 𝐸1×
2 . Based on our construction of the

partitions, we have 𝑃 1✓
2 (𝑥1, 𝑥2, 𝑦) = 𝑃 1×

2 (𝑥1, 1 − 𝑥2, 𝑦). The log risk of the marginal

classifier on 𝑃 1×
2 is still the same, but the log risk of the classifier 𝑓(𝑌 | 𝑋1, 𝑋2) now

becomes

− log
𝑓(𝑥1, 1− 𝑥2, 𝑦)

𝑓(𝑥1, 1− 𝑥2, 𝑦) + 𝑓(𝑥1, 1− 𝑥2, 1− 𝑦)
.

We claim that the log risk of 𝑓(𝑌 | 𝑋1, 𝑋2) is higher than 𝑓(𝑌 | 𝑋1) on 𝑃 1×
2 . Suppose

for contradiction that the log risk of 𝑓(𝑌 | 𝑋1, 𝑋2) is lower, then we have

𝑓(𝑥1, 1− 𝑥2, 𝑦)𝑓(𝑥1, 𝑥2, 𝑦) + 𝑓(𝑥1, 1− 𝑥2, 1− 𝑦)𝑓(𝑥1, 𝑥2, 𝑦)

+ 𝑓(𝑥1, 1− 𝑥2, 𝑦)𝑓(𝑥1, 1− 𝑥2, 𝑦) + 𝑓(𝑥1, 1− 𝑥2, 1− 𝑦)𝑓(𝑥1, 1− 𝑥2, 𝑦)

< 𝑓(𝑥1, 1− 𝑥2, 𝑦)𝑓(𝑥1, 𝑥2, 𝑦) + 𝑓(𝑥1, 1− 𝑥2, 𝑦)𝑓(𝑥1, 1− 𝑥2, 𝑦)

+ 𝑓(𝑥1, 1− 𝑥2, 𝑦)𝑓(𝑥1, 𝑥2, 1− 𝑦) + 𝑓(𝑥1, 1− 𝑥2, 𝑦)𝑓(𝑥1, 1− 𝑥2, 1− 𝑦).

Canceling out the terms, we obtain

𝑓(𝑥1, 1− 𝑥2, 1− 𝑦)𝑓(𝑥1, 𝑥2, 𝑦) < 𝑓(𝑥1, 1− 𝑥2, 𝑦)𝑓(𝑥1, 𝑥2, 1− 𝑦).

Contradiction!

Thus the marginal 𝑓(𝑌 | 𝑋1) will always reach a better worst-group risk compare
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to the original classifier 𝑓(𝑌 | 𝑋1, 𝑋2). As a result, the optimal classifier 𝑓(𝑌 | 𝑋1, 𝑋2)

should satisfy 𝑓(𝑌 | 𝑋1, 𝑋2) = 𝑓(𝑌 | 𝑋1), i.e., it will only use 𝑋1 to predict 𝑌 .

A.2 Theoretical analysis

Proposition 1. For a pair of environments 𝐸𝑖 and 𝐸𝑗, assuming that the classifier 𝑓𝑖

is able to learn the true conditional 𝑃𝑖(𝑌 | 𝑋1, 𝑋2), we can write the joint distribution

𝑃𝑗 of 𝐸𝑗 as the mixture of 𝑃 𝑖✓
𝑗 and 𝑃 𝑖×

𝑗 :

𝑃𝑗(𝑥1, 𝑥2, 𝑦) = 𝛼𝑖
𝑗𝑃

𝑖✓
𝑗 (𝑥1, 𝑥2, 𝑦) + (1− 𝛼𝑖

𝑗)𝑃
𝑖×
𝑗 (𝑥1, 𝑥2, 𝑦),

where 𝛼𝑖
𝑗 =

∑︀
𝑥1,𝑥2,𝑦

𝑃𝑗(𝑥1, 𝑥2, 𝑦) · 𝑃𝑖(𝑦 | 𝑥1, 𝑥2) and

𝑃 𝑖✓
𝑗 (𝑥1, 𝑥2, 𝑦) ∝ 𝑃𝑗(𝑥1, 𝑥2, 𝑦) · 𝑃𝑖(𝑦 | 𝑥1, 𝑥2),

𝑃 𝑖×
𝑗 (𝑥1, 𝑥2, 𝑦) ∝ 𝑃𝑗(𝑥1, 𝑥2, 𝑦) · 𝑃𝑖(1− 𝑦 | 𝑥1, 𝑥2).

Proof. For ease of notation, let 𝑖 = 1, 𝑗 = 2. For an input (𝑥1, 𝑥2), let’s first consider

the conditional probability 𝑃 1×
2 (𝑦 | 𝑥1, 𝑥2) and 𝑃 1✓

2 (𝑦 | 𝑥1, 𝑥2). Since the input is in

𝐸2, the probability that it has label 𝑦 is given by 𝑃2(𝑦 | 𝑥1, 𝑥2). Since 𝑓1 matches

𝑃1(𝑦 | 𝑥1, 𝑥2), the likelihood that the prediction is wrong is given by 𝑃1(1− 𝑦 | 𝑥1, 𝑥2)

and the likelihood that the prediction is correct is givn by 𝑃1(𝑦 | 𝑥1, 𝑥2). Thus, we

have
𝑃 1×
2 (𝑦 | 𝑥1, 𝑥2) =

𝑃1(1− 𝑦 | 𝑥1, 𝑥2)𝑃2(𝑦 | 𝑥1, 𝑥2)∑︀
𝑦′ 𝑃1(1− 𝑦′ | 𝑥1, 𝑥2)𝑃2(𝑦′ | 𝑥1, 𝑥2)

,

𝑃 1✓
2 (𝑦 | 𝑥1, 𝑥2) =

𝑃1(𝑦 | 𝑥1, 𝑥2)𝑃2(𝑦 | 𝑥1, 𝑥2)∑︀
𝑦′ 𝑃1(𝑦′ | 𝑥1, 𝑥2)𝑃2(𝑦′ | 𝑥1, 𝑥2)

.

Now let’s think about the marginal of (𝑥1, 𝑥2) if it is in the set of mistakes 𝐸1×
2 .

Again, since the input is in 𝐸2, the probability that it exists is given by the marginal

in 𝐸2: 𝑃2(𝑥1, 𝑥2). This input has two possibilities to be partitioned into 𝐸1×
2 : 1) the

label is 𝑦 and 𝑓1 predicts it as 1 − 𝑦; 2) the label is 1 − 𝑦 and 𝑓1 predicts it as 𝑦.
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Marginalizing over all (𝑥1, 𝑥2), we have

𝑃 1×
2 (𝑥1, 𝑥2) =

𝑃2(𝑥1,𝑥2)
∑︀

𝑦 𝑃1(1−𝑦|𝑥1,𝑥2)𝑃2(𝑦|𝑥1,𝑥2)∑︀
𝑦 𝑃1(1−𝑦|𝑥1,𝑥2)𝑃2(𝑦|𝑥1,𝑥2)+𝑃1(𝑦|𝑥1,𝑥2)𝑃2(𝑦|𝑥1,𝑥2)∑︀

𝑥′
1,𝑥

′
2

𝑃2(𝑥′
1,𝑥

′
2)

∑︀
𝑦 𝑃1(1−𝑦|𝑥′

1,𝑥
′
2)𝑃2(𝑦|𝑥′

1,𝑥
′
2)∑︀

𝑦 𝑃1(1−𝑦|𝑥′
1,𝑥

′
2)𝑃2(𝑦|𝑥′

1,𝑥
′
2)+𝑃1(𝑦|𝑥′

1,𝑥
′
2)𝑃2(𝑦|𝑥′

1,𝑥
′
2)

=
𝑃2(𝑥1, 𝑥2)

∑︀
𝑦 𝑃1(1− 𝑦 | 𝑥1, 𝑥2)𝑃2(𝑦 | 𝑥1, 𝑥2)∑︀

𝑥′
1,𝑥

′
2
𝑃2(𝑥′

1, 𝑥
′
2)
∑︀

𝑦 𝑃1(1− 𝑦 | 𝑥′
1, 𝑥

′
2)𝑃2(𝑦 | 𝑥′

1, 𝑥
′
2)

Similarly, we have

𝑃 1✓
2 (𝑥1, 𝑥2) =

𝑃2(𝑥1, 𝑥2)
∑︀

𝑦 𝑃1(𝑦 | 𝑥1, 𝑥2)𝑃2(𝑦 | 𝑥1, 𝑥2)∑︀
𝑥′
1,𝑥

′
2
𝑃2(𝑥′

1, 𝑥
′
2)
∑︀

𝑦 𝑃1(𝑦 | 𝑥′
1, 𝑥

′
2)𝑃2(𝑦 | 𝑥′

1, 𝑥
′
2)

Combining these all together using the Bayes’ theorem, we have

𝑃 1×
2 (𝑥1, 𝑥2, 𝑦) =

𝑃1(1− 𝑦 | 𝑥1, 𝑥2)𝑃2(𝑦 | 𝑥1, 𝑥2)𝑃2(𝑥1, 𝑥2)∑︀
𝑥′
1,𝑥

′
2
𝑃2(𝑥′

1, 𝑥
′
2)
∑︀

𝑦′ 𝑃1(1− 𝑦′ | 𝑥′
1, 𝑥

′
2)𝑃2(𝑦′ | 𝑥′

1, 𝑥
′
2)
,

=
𝑃1(1− 𝑦 | 𝑥1, 𝑥2)𝑃2(𝑥1, 𝑥2, 𝑦)∑︀

𝑥′
1,𝑥

′
2,𝑦

′ 𝑃2(𝑥′
1, 𝑥

′
2, 𝑦

′)𝑃1(1− 𝑦′ | 𝑥′
1, 𝑥

′
2)
,

∝ 𝑃1(1− 𝑦 | 𝑥1, 𝑥2)𝑃2(𝑥1, 𝑥2, 𝑦),

𝑃 1✓
2 (𝑥1, 𝑥2, 𝑦) =

𝑃1(𝑦 | 𝑥1, 𝑥2)𝑃2(𝑦 | 𝑥1, 𝑥2)𝑃2(𝑥1, 𝑥2)∑︀
𝑥′
1,𝑥

′
2
𝑃2(𝑥′

1, 𝑥
′
2)
∑︀

𝑦′ 𝑃1(𝑦′ | 𝑥′
1, 𝑥

′
2)𝑃2(𝑦′ | 𝑥′

1, 𝑥
′
2)
,

=
𝑃1(𝑦 | 𝑥1, 𝑥2)𝑃2(𝑥1, 𝑥2, 𝑦)∑︀

𝑥′
1,𝑥

′
2,𝑦

′ 𝑃2(𝑥′
1, 𝑥

′
2, 𝑦

′)𝑃1(𝑦′ | 𝑥′
1, 𝑥

′
2)
,

∝ 𝑃1(𝑦 | 𝑥1, 𝑥2)𝑃2(𝑥1, 𝑥2, 𝑦).

Finally, it is straightforward to show that for 𝛼1
2 =

∑︀
𝑥1,𝑥2,𝑦

𝑃2(𝑥1, 𝑥2, 𝑦)𝑃1(𝑦 | 𝑥1, 𝑥2),

we have

𝛼1
2𝑃

1✓
2 (𝑥1, 𝑥2, 𝑦) + (1− 𝛼1

2)𝑃
1×
2

= 𝑃1(𝑦 | 𝑥1, 𝑥2)𝑃2(𝑥1, 𝑥2, 𝑦) + 𝑃1(1− 𝑦 | 𝑥1, 𝑥2)𝑃2(𝑥1, 𝑥2, 𝑦) = 𝑃2(𝑥1, 𝑥2, 𝑦).

From now on, we assume that the marginal distribution of 𝑌 is uniform in all

joint distributions, i.e., 𝑓𝑖 performs equally well on different labels.
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Theorem 2. Suppose 𝑋2 is independent of 𝑋1 given 𝑌 . For any environment pair

𝐸𝑖 and 𝐸𝑗, if
∑︀

𝑦 𝑃𝑖(𝑥2 | 𝑦) =
∑︀

𝑦 𝑃𝑗(𝑥2 | 𝑦) for any 𝑥2, then Cov(𝑋2, 𝑌 ;𝑃𝑖) >

Cov(𝑋2, 𝑌 ;𝑃𝑗) implies Cov(𝑋2, 𝑌 ;𝑃 𝑖×
𝑗 ) < 0 and Cov(𝑋2, 𝑌 ;𝑃 𝑗×

𝑖 ) > 0.

Proof. By definition, we have

Cov(𝑋2, 𝑌 ;𝑃 𝑖×
𝑗 ) = E[𝑋2𝑌 ;𝑃 𝑖×

𝑗 ]− E[𝑋2;𝑃
𝑖×
𝑗 ]E[𝑌 ;𝑃 𝑖×

𝑗 ]

=
∑︁
𝑥1,𝑥2

𝑥2𝑃
𝑖×
𝑗 (𝑥1, 𝑥2, 1)−

∑︁
𝑥1,𝑥2,𝑦

𝑥2𝑃
𝑖×
𝑗 (𝑥1, 𝑥2, 𝑦)

∑︁
𝑥1,𝑥2

𝑃 𝑖×
𝑗 (𝑥1, 𝑥2, 1)

=
∑︁

𝑥1,𝑥2,𝑥′
1,𝑥

′
2,𝑦

′

𝑥2𝑃
𝑖×
𝑗 (𝑥1, 𝑥2, 1)𝑃

𝑖×
𝑗 (𝑥′

1, 𝑥
′
2, 𝑦

′)−
∑︁

𝑥1,𝑥2,𝑦,𝑥′
1,𝑥

′
2

𝑥2𝑃
𝑖×
𝑗 (𝑥1, 𝑥2, 𝑦)𝑃

𝑖×
𝑗 (𝑥′

1, 𝑥
′
2, 1)

Expanding the distributions of 𝑃 𝑖×
𝑗 , it suffices to show that

∑︁
𝑥1,𝑥2,𝑥′

1,𝑥
′
2,𝑦

′

(︁
𝑥2𝑃𝑗(𝑥1, 𝑥2, 1)𝑃𝑖(0 | 𝑥1, 𝑥2)𝑃𝑗(𝑥

′
1, 𝑥

′
2, 𝑦

′)𝑃𝑖(1− 𝑦′ | 𝑥′
1, 𝑥

′
2)
)︁

<
∑︁

𝑥1,𝑥2,𝑦,𝑥′
1,𝑥

′
2

(︁
𝑥2𝑃𝑗(𝑥1, 𝑥2, 𝑦)𝑃𝑖(1− 𝑦 | 𝑥1, 𝑥2)𝑃𝑗(𝑥

′
1, 𝑥

′
2, 1)𝑃𝑖(0 | 𝑥′

1, 𝑥
′
2)
)︁

Note that when 𝑦 = 𝑦′ = 1, two terms cancel out. Thus we need to show

∑︁
𝑥1,𝑥2,𝑥′

1,𝑥
′
2

(︁
𝑥2𝑃𝑗(𝑥1, 𝑥2, 1)𝑃𝑖(0 | 𝑥1, 𝑥2)𝑃𝑗(𝑥

′
1, 𝑥

′
2, 0)𝑃𝑖(1 | 𝑥′

1, 𝑥
′
2)
)︁

<
∑︁

𝑥1,𝑥2,𝑥′
1,𝑥

′
2

(︁
𝑥2𝑃𝑗(𝑥1, 𝑥2, 0)𝑃𝑖(1 | 𝑥1, 𝑥2)𝑃𝑗(𝑥

′
1, 𝑥

′
2, 1)𝑃𝑖(0 | 𝑥′

1, 𝑥
′
2)
)︁

Based on the assumption that the marginal distribution in 𝐸𝑖×
𝑗 is uniform, we have

∑︁
𝑥′
1,𝑥

′
2

𝑃𝑗(𝑥
′
1, 𝑥

′
2, 0)𝑃𝑖(1 | 𝑥′

1, 𝑥
′
2)

.
=
∑︁
𝑥′
1,𝑥

′
2

𝑃𝑗(𝑥
′
1, 𝑥

′
2, 1)𝑃𝑖(0 | 𝑥′

1, 𝑥
′
2).

Thus we can simplify our goal as

∑︁
𝑥1,𝑥2

𝑥2𝑃𝑗(𝑥1, 𝑥2, 1)𝑃𝑖(0 | 𝑥1, 𝑥2) <
∑︁
𝑥1,𝑥2

𝑥2𝑃𝑗(𝑥1, 𝑥2, 0)𝑃𝑖(1 | 𝑥1, 𝑥2)
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Similarly, we can simplify the condition Cov(𝑋2, 𝑌 ;𝑃𝑖) > Cov(𝑋2, 𝑌 ;𝑃𝑗) as

∑︁
𝑥1,𝑥2

𝑥2(𝑃𝑗(𝑥1, 𝑥2, 1)− 𝑃𝑖(𝑥1, 𝑥2, 1)) <
∑︁
𝑥1,𝑥2

𝑥2(𝑃𝑗(𝑥1, 𝑥2, 0)− 𝑃𝑖(𝑥1, 𝑥2, 0))

Since 𝑥2 is independent of 𝑥1 given 𝑦, we have

∑︁
𝑥1,𝑥2

𝑥2(𝑃𝑗(𝑥1, 𝑦 = 1)𝑃𝑗(𝑥2 | 𝑦 = 1)− 𝑃𝑖(𝑥1, 𝑦 = 1)𝑃𝑖(𝑥2 | 𝑦 = 1))

<
∑︁
𝑥1,𝑥2

𝑥2(𝑃𝑗(𝑥1, 𝑦 = 0)𝑃𝑗(𝑥2 | 𝑦 = 0)− 𝑃𝑖(𝑥1, 𝑦 = 0)𝑃𝑖(𝑥2 | 𝑦 = 0))

Since 𝑥1 is the stable feature and the label marginal is the same across environments,

we have 𝑃𝑗(𝑥1, 𝑦 = 1) = 𝑃𝑖(𝑥1, 𝑦 = 1) and 𝑃𝑗(𝑥1, 𝑦 = 0) = 𝑃𝑖(𝑥1, 𝑦 = 0). This implies

∑︁
𝑥1

𝑃𝑗(𝑥1, 𝑦 = 1)
∑︁
𝑥2

𝑥2(𝑃𝑗(𝑥2 | 𝑦 = 1)− 𝑃𝑖(𝑥2 | 𝑦 = 1))

<
∑︁
𝑥1

𝑃𝑗(𝑥1, 𝑦 = 0)
∑︁
𝑥2

𝑥2(𝑃𝑗(𝑥2 | 𝑦 = 0)− 𝑃𝑖(𝑥2 | 𝑦 = 0))

Again, by uniform label marginals, we have

∑︁
𝑥2

𝑥2(𝑃𝑗(𝑥2 | 𝑦 = 1)− 𝑃𝑖(𝑥2 | 𝑦 = 1)) <
∑︁
𝑥2

𝑥2(𝑃𝑗(𝑥2 | 𝑦 = 0)− 𝑃𝑖(𝑥2 | 𝑦 = 0).

For binary 𝑥2 ∈ {0, 1}, this implies 𝑃𝑗(𝑥2 = 1 | 𝑦 = 1)+𝑃𝑖(𝑥2 = 1 | 𝑦 = 0) < 𝑃𝑗(𝑥2 =

1 | 𝑦 = 0) + 𝑃𝑖(𝑥2 = 1 | 𝑦 = 1). Since 𝑃𝑗(𝑥2 | 𝑦 = 1) + 𝑃𝑗(𝑥2 | 𝑦 = 0) = 𝑃𝑖(𝑥2 | 𝑦 =

1) + 𝑃𝑖(𝑥2 | 𝑦 = 0), we have

𝑃𝑗(𝑥2 | 𝑦 = 1)𝑃𝑗(𝑥2 | 𝑦 = 0) < 𝑃𝑗(𝑥2 | 𝑦 = 0)𝑃𝑗(𝑥2 | 𝑦 = 1). (A.1)

We can expand our goal in the same way:

∑︁
𝑥1,𝑥2

𝑥2𝑃𝑗(𝑥1, 𝑥2, 1)𝑃𝑖(0 | 𝑥1, 𝑥2)

=
∑︁
𝑥1

𝑃𝑗(𝑥1, 𝑦 = 1)𝑃𝑖(𝑥1, 𝑦 = 0) ·
∑︁
𝑥2

𝑥2𝑃𝑗(𝑥2 | 𝑦 = 1)𝑃𝑖(𝑥2 | 𝑦 = 0)

𝑃𝑖(𝑥1, 𝑥2)
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∑︁
𝑥1,𝑥2

𝑥2𝑃𝑗(𝑥1, 𝑥2, 0)𝑃𝑖(1 | 𝑥1, 𝑥2)

=
∑︁
𝑥1

𝑃𝑗(𝑥1, 𝑦 = 0)𝑃𝑖(𝑥1, 𝑦 = 1) ·
∑︁
𝑥2

𝑥2𝑃𝑗(𝑥2 | 𝑦 = 0)𝑃𝑖(𝑥2 | 𝑦 = 1)

𝑃𝑖(𝑥1, 𝑥2)
,

Plug in Eq (A.1) and we complete the proof. The other inequality follows by symme-

try.

Extension to multi-class classification: In Theorem 1, we focus on binary clas-

sification for simplicity. For multi-class classification, we can convert it into a binary

problem by defining 𝑌𝑐 as a binary indicator of whether class 𝑐 is present or absent.

Our strong empirical performance on MNIST (10-class classification) also confirms

that our results generalize to the multi-class setting.

Theorem 3. For any environment pair 𝐸𝑖 and 𝐸𝑗, Cov(𝑋2, 𝑌 ;𝑃𝑖) > Cov(𝑋2, 𝑌 ;𝑃𝑗)

implies

Cov(𝑋2, 𝑌 ;𝑃 𝑖×
𝑗 ) <

1− 𝛼𝑖
𝑗

𝛼𝑖
𝑖

Cov(𝑋2, 𝑌 ;𝑃 𝑖✓
𝑖 )− 1− 𝛼𝑖

𝑗

𝛼𝑖
𝑗

Cov(𝑋2, 𝑌 ;𝑃 𝑖✓
𝑗 )

Cov(𝑋2, 𝑌 ;𝑃 𝑗×
𝑖 ) >

1− 𝛼𝑗
𝑖

𝛼𝑗
𝑗

Cov(𝑋2, 𝑌 ;𝑃 𝑗✓
𝑗 )− 1− 𝛼𝑗

𝑖

𝛼𝑗
𝑖

Cov(𝑋2, 𝑌 ;𝑃 𝑗✓
𝑖 )

where 𝑃 𝑖✓
𝑖 is the distribution of the correct predictions when applying 𝑓𝑖 on 𝐸𝑖.

Proof. From the proof in Theorem 1, we can write the condition Cov(𝑋2, 𝑌 ;𝑃𝑖) >

Cov(𝑋2, 𝑌 ;𝑃𝑗) as

∑︁
𝑥1,𝑥2

𝑥2(𝑃𝑗(𝑥1, 𝑥2, 1)− 𝑃𝑖(𝑥1, 𝑥2, 1)) <
∑︁
𝑥1,𝑥2

𝑥2(𝑃𝑗(𝑥1, 𝑥2, 0)− 𝑃𝑖(𝑥1, 𝑥2, 0))

Using 𝑃𝑖(0 | 𝑥1, 𝑥2) + 𝑃𝑖(1 | 𝑥1, 𝑥2) = 1,

∑︁
𝑥1,𝑥2

𝑥2(𝑃𝑗(𝑥1, 𝑥2, 1)− 𝑃𝑖(𝑥1, 𝑥2, 1))(𝑃𝑖(0 | 𝑥1, 𝑥2) + 𝑃𝑖(1 | 𝑥1, 𝑥2))

<
∑︁
𝑥1,𝑥2

𝑥2(𝑃𝑗(𝑥1, 𝑥2, 0)− 𝑃𝑖(𝑥1, 𝑥2, 0))(𝑃𝑖(0 | 𝑥1, 𝑥2) + 𝑃𝑖(1 | 𝑥1, 𝑥2))
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Since 𝑃𝑖(𝑥1, 𝑥2, 1)𝑃𝑖(0 | 𝑥1, 𝑥2) and 𝑃𝑖(𝑥1, 𝑥2, 0)𝑃𝑖(1 | 𝑥1, 𝑥2) cancel out with each

other. We have

∑︁
𝑥1,𝑥2

𝑥2(𝑃𝑗(𝑥1, 𝑥2, 1)𝑃𝑖(0 | 𝑥1, 𝑥2)− 𝑃𝑗(𝑥1, 𝑥2, 0)𝑃𝑖(1 | 𝑥1, 𝑥2))

<
∑︁
𝑥1,𝑥2

𝑥2(𝑃𝑖(𝑥1, 𝑥2, 1)𝑃𝑖(1 | 𝑥1, 𝑥2)− 𝑃𝑖(𝑥1, 𝑥2, 0)𝑃𝑖(0 | 𝑥1, 𝑥2))

−
∑︁
𝑥1,𝑥2

𝑥2(𝑃𝑗(𝑥1, 𝑥2, 1)𝑃𝑖(1 | 𝑥1, 𝑥2)− 𝑃𝑗(𝑥1, 𝑥2, 0)𝑃𝑖(0 | 𝑥1, 𝑥2))

From the derivations in Theorem 1, we know that

1

2(1− 𝛼𝑖
𝑗)
Cov(𝑋2, 𝑌 ;𝑃 𝑖×

𝑗 )

=
∑︁
𝑥1,𝑥2

𝑥2

(︁
𝑃𝑗(𝑥1, 𝑥2, 1)𝑃𝑖(0 | 𝑥1, 𝑥2)− 𝑃𝑗(𝑥1, 𝑥2, 0)𝑃𝑖(1 | 𝑥1, 𝑥2)

)︁
1

2𝛼𝑖
𝑗

Cov(𝑋2, 𝑌 ;𝑃 𝑖✓
𝑗 )

=
∑︁
𝑥1,𝑥2

𝑥2

(︁
𝑃𝑗(𝑥1, 𝑥2, 1)𝑃𝑖(1 | 𝑥1, 𝑥2)𝑃𝑗(𝑥1, 𝑥2, 0)𝑃𝑖(0 | 𝑥1, 𝑥2)

)︁
1

2𝛼𝑖
𝑖

Cov(𝑋2, 𝑌 ;𝑃 𝑖✓
𝑖 )

=
∑︁
𝑥1,𝑥2

𝑥2

(︁
𝑃𝑖(𝑥1, 𝑥2, 1)𝑃𝑖(1 | 𝑥1, 𝑥2)− 𝑃𝑖(𝑥1, 𝑥2, 0)𝑃𝑖(0 | 𝑥1, 𝑥2)

)︁
.

Combining these, we have

Cov(𝑋2, 𝑌 ;𝑃 𝑖×
𝑗 ) <

1− 𝛼𝑖
𝑗

𝛼𝑖
𝑖

Cov(𝑋2, 𝑌 ;𝑃 𝑖✓
𝑖 )− 1− 𝛼𝑖

𝑗

𝛼𝑖
𝑗

Cov(𝑋2, 𝑌 ;𝑃 𝑖✓
𝑗 )

Similarly, by using 𝑃𝑗(0 | 𝑥1, 𝑥2) + 𝑃𝑗(1 | 𝑥1, 𝑥2) = 1, we can get

Cov(𝑋2, 𝑌 ;𝑃 𝑗×
𝑖 ) >

1− 𝛼𝑗
𝑖

𝛼𝑗
𝑗

Cov(𝑋2, 𝑌 ;𝑃 𝑗✓
𝑗 )− 1− 𝛼𝑗

𝑖

𝛼𝑗
𝑖

Cov(𝑋2, 𝑌 ;𝑃 𝑗✓
𝑖 )
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A.3 Experimental setup

A.3.1 Datasets and models

MNIST

Data We use the official train-test split of MNIST. Training environments are con-

structed from training split, with 14995 examples per environment. Validation data

and testing data is constructed based on the testing split, with 2497 examples each.

Following [6], We convert each grey scale image into a 10× 28× 28 tensor, where the

first dimension corresponds to the spurious color feature.

Model: The input image is passed to a CNN with 2 convolution layers and 2 fully

connected layers. We use the architecture from PyTorch’s MNIST example1.

Beer Review

Data We use the data processed by [69]. Reviews shorter than 10 tokens or longer

than 300 tokens are filtered out. For each aspect, we sample training/validation/testing

data randomly from the dataset and maintain the marginal distribution of the label to

be uniform. Each training environment contains 4998 examples. The validation data

contains 4998 examples and the testing data contains 5000 examples. The vocabulary

sizes for the three aspects (look, aroma, palate) are: 10218, 10154 and 10086. The

processed data will be publicly available.

Model We use a standard CNN text classifier [61]. Each input is first encoded by

pre-trained FastText embeddings [84]. Then it is passed into a 1D convolution layer

followed by max pooling and ReLU activation. The convolution layer uses filter size

3, 4, 5. Finally we attach a linear layer with Softmax to predict the label.

1https://github.com/pytorch/examples/blob/master/mnist/main.py
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CelebA

Data We use the official train/val/test split of CelebA [76]. The training envi-

ronment {female} contains 94509 examples and the training environment {male}

contains 68261 examples. The validation set has 19867 examples and the test set has

19962 examples.

Model We use the Pytorch torchvision implementation of the ResNet50 model,

starting from pretrained weights. We re-initalize the final layer to predict the target

attribute hair color.

ASK2ME

Data Since the original data doesn’t have a standard train/val/test split, we ran-

domly split the data and use 50% for training, 20% for validation, 30%for testing.

There are 2227 examples in the training environment {breast_cancer=0}, 1394 ex-

amples in the training environment {breast_cancer=1}. The validation set contains

1448 examples and the test set contains 2173 examples. The vocabulary size is 16310.

The processed data will be publicly available.

Model The model architecture is the same as the one for Beer review.

A.3.2 Implementation details

For all methods: We use batch size 50 and evaluate the validation performance

every 100 batch. We apply early stopping once the validation performance hasn’t

improved in the past 20 evaluations. We use Adam [62] to optimize the parameters

and tune the learning rate ∈ {10−3, 10−4, 10−5}. For simplicity, we train all methods

without data augmentation. Following [93], we apply strong regularizations to avoid

over-fitting. Specifically, we tune the dropout rate ∈ {0.1, 0.3, 0.5} for text classifi-

cation datasets (Beer review and ASK2ME) and tune the weight decay parameters

∈ {10−0, 10−1, 10−2, 10−3} for image datasets (MNIST and CelebA).
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TIME Train Val Test

ERM 2 MIN 58 SEC 83.61 81.21 15.65

IRM 3 MIN 37 SEC 83.42 80.41 12.89

RGM 3 MIN 7 SEC 82.60 81.41 13.97

DRO 17 MIN 19 SEC 79.44 80.65 16.05

OURS 11 MIN 58 SEC 65.04 71.16 71.56

ORACLE 14 MIN 31 SEC 68.96 72.28 70.04

Table A.1: Running time and model performance on MNIST. Here the validation
data is sampled from the training environments. Our algorithm requires training
additional environment-specific classifiers. However, it converges faster than DRO in
the third stage (50 epochs vs. 72 epochs) and generalizes much better.

DRO and Ours We directly optimize the min−max objective. Specifically, at

each step, we sample a batch of example from each group, and minimize the worst-

group loss. We found the training process to be pretty stable when using the Adam

optimizer. On CelebA, we are able to match the performance reported by [93].

IRM We implement the gradient penalty based on the official implementation of

IRM2. The gradient penalty is applied to the last hidden layer of the network. We

tune the weight of the penalty term ∈ {10−2, 10−1, 100, 101, 102, 103, 104} and the

annealing iterations ∈ {10, 102, 103}.
RGM For the per-environment classifier in RGM, we use a MLP with one hidden

layer. This MLP takes the last layer of the model as input and predicts the label. Sim-

ilar to IRM, we tune the weight of the regret ∈ {10−2, 10−1, 100, 101, 102, 103, 104}
and the annealing iterations ∈ {10, 102, 103}.

A.3.3 Computing infrastructure and running time analysis

We have used the following graphics cards for our experiments: Tesla V100-32GB,

GeForce RTX 2080 Ti and A100-40G.

We conducted our running time analysis on MNIST and ASK2ME using GeForce

RTX 2080 Ti. Table A.1 and A.2 shows the results. We observe that due to the direct

optimization of the minmax objective, the running time of DRO, PI and Oracle is

2https://github.com/facebookresearch/InvariantRiskMinimization
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TIME Train Val Test

ERM 3 MIN 35 SEC 99.44 66.01 59.04

IRM 3 MIN 21 SEC 98.70 63.10 57.85

RGM 5 MIN 36 SEC 99.78 64.07 59.99

DRO 16 MIN 40 SEC 86.77 77.66 67.34

PI (Ours) 18 MIN 97.09 78.64 74.14

Table A.2: Running time and model performance on ASK2ME. Here the validation
accuracy is computed based on the breast_cancer attribute. The test accuracy is
the average worst-group accuracy across all 17 attributes. Our algorithm’s running
time is similar to DRO.

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

method input example

ERM <art positive> gold color with almost a surprisingly tiny head .

DRO <art positive> gold color with almost a surprisingly tiny head .

IRM <art positive> gold color with almost a surprisingly tiny head .

RGM <art positive> gold color with almost a surprisingly tiny head .

PI <art positive> gold color with almost a surprisingly tiny head .

Oracle <art positive> gold color with almost a surprisingly tiny head .

figure Visualization of the word importance from different
algorithms.

To all reviewers Thank you for your detailed comments
and suggestions. We would like to emphasize the distinc-
tions between our algorithm and other methods.

IRM and RGM learn invariant representation, where classi-
fier built on top of it is simultaneously optimal across envi-
ronments. However, the model can still utilize any unstable
feature from the input to produce such invariant represen-
tation (line 078 in Sec 2). There is no guarantee on how
the model would generalize when the unstable correlations
disappear. Our approach instead compares the empirical
distribution of different environments (stage 1 and 2) to first
find out these unstable features (see line 085 in Sec 2 for
more details).

Group DRO assumes that the groups are specified by human
based on the knowledge of the bias attributes.

TO REVIEWER 1

1. We assume binary classification in Sec 3 for simplicity.
Our theory extends to the multi-class case as well. Let Y be
the one-hot label vector and Yc be the label value for class c.
Theorem 1 and 2 still hold if we replace Y with Yc. We will
add this extension to the appendix.

2. Due to space constraints, we only include 6 attributes
in Table 4. From the full table, we don’t think RGM’s
performance is related to the order of the attributes. Also,
in Table 4, only on the attribute ”wearing hat” does RGM
perform the best.

TO REVIEWER 3

We visualize the word importance on

We will add these analysis to the appendix.

Figure A-1: Visualizing word importance on Beer Look. Only PI and Oracle ignore
the artificial token and correctly predict the input as negative. We will add more
examples in the update.

roughly 4 times comparing to other methods (proportional to the number of groups).

Also, while our model needs to train additional environment-specific classifiers (com-

paring to DRO), its running time is very similar to DRO across the two datasets.

We believe by using the online learning algorithm proposed by [93], we can further

reduce the running time of our algorithm.

A.4 Additional results

What features does pi look at? To understand what features different methods

rely on, we plot the word importance on Beer Look in Figure A-1. For the given

input example, we evaluate the prediction change as we mask out each input token.

We observe that only PI and Oracle ignore the spurious feature and predict the label
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ERM DRO IRM RGM Ours

Accuracy Worst Avg Worst Avg Worst Avg Worst Avg Worst Avg

Adenocarcinoma 33.3 72.9 77.2 79.2 55.5 78.4 55.5 78.1 80.2 84.7
Polyp syndrom 44.4 74.6 77.2 78.7 55.5 76.3 66.6 78.7 69.2 81.2
Brain cancer 55.5 78.5 77.1 78.0 55.5 78.5 67.5 82.3 79.9 87.9
Breast cancer 66.4 80.4 75.0 78.8 66.8 80.5 64.3 79.8 80.3 83.1
Colorectal cancer 66.5 80.5 69.3 77.9 64.9 81.2 66.9 80.3 76.2 81.7
Endometrial cancer 66.9 80.6 76.1 80.2 66.0 82.6 66.9 81.7 80.3 83.2
Gastric cancer 62.9 79.9 76.9 81.6 62.9 80.0 59.2 78.8 79.4 85.9
Hepatobiliary cancer 44.4 73.0 60.0 73.8 55.5 77.1 55.5 76.2 60.0 78.9
Kidney cancer 16.6 66.6 50.0 68.7 33.3 73.0 33.3 71.3 50.0 74.7
Lung cancer 44.4 74.7 62.5 74.5 38.8 74.2 50.0 74.7 70.3 78.8
Melanoma 66.6 80.5 66.6 78.8 66.6 83.3 66.6 79.6 80.0 86.6
Neoplasia 50.0 75.9 33.3 69.1 33.3 71.9 50.0 75.1 70.0 80.0
Ovarian cancer 65.3 80.1 77.2 79.3 66.8 80.6 66.3 79.5 73.4 82.7
Pancreatic cancer 67.1 80.9 75.8 78.7 63.6 79.6 63.6 79.6 80.0 84.3
Prostate cancer 63.9 85.7 51.0 77.4 64.2 85.2 65.5 83.9 78.9 86.7
Rectal cancer 66.6 78.7 64.1 80.3 66.6 78.8 67.5 80.8 71.7 84.5
Thyroid cancer 50.0 77.1 75.0 83.0 66.8 84.0 67.7 82.5 80.2 87.8

Average 54.8 77.7 67.3 77.5 57.8 79.1 60.8 79.0 74.1 83.1

Table A.3: Full results. Worst-group and average-group accuracy across 17 attributes
on ASK2ME.

correctly. Comparing to ERM, IRM and RGM focus more on the causal feature such

as ‘tiny’. However, they still heavily rely on the spurious feature.
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ERM DRO IRM RGM Ours

Worst Avg Worst Avg Worst Avg Worst Avg Worst Avg

5_o_Clock_Shadow 53.3 81.5 90.0 92.0 80.0 85.9 66.6 87.2 83.3 89.6
Arched_Eyebrows 72.1 87.1 90.4 92.6 84.4 87.8 88.9 92.6 90.5 92.3
Attractive 67.2 85.8 90.7 92.2 82.5 87.2 86.6 91.9 89.9 91.8
Bags_Under_Eyes 72.4 86.1 90.5 92.0 81.3 86.8 88.5 92.1 89.1 92.1
Bald 75.9 91.2 91.7 93.0 71.3 82.2 91.5 94.8 91.6 93.4
Bangs 73.8 87.8 90.8 92.9 81.7 87.3 88.0 92.2 90.2 92.3
Big_Lips 73.4 87.1 90.5 92.5 84.1 87.8 89.5 92.6 90.5 92.1
Big_Nose 71.4 86.0 91.5 92.9 84.9 88.4 91.2 93.7 91.3 92.8
Black_Hair 75.9 90.9 89.6 93.7 78.6 89.1 90.6 94.0 88.1 93.3
Blurry 51.2 81.0 86.5 90.1 79.3 85.7 79.0 89.7 85.6 89.3
Brown_Hair 43.6 79.1 64.3 85.7 78.1 83.3 72.4 87.3 59.7 83.8
Bushy_Eyebrows 72.7 86.5 72.7 88.8 81.8 87.5 81.8 91.2 81.8 90.7
Chubby 9.52 70.6 61.9 84.6 76.1 82.9 47.6 82.3 71.4 86.5
Double_Chin 50.0 80.7 90.6 91.7 78.5 86.3 91.5 92.7 90.2 92.4
Eyeglasses 58.0 82.8 90.3 92.0 80.4 85.7 77.4 89.3 88.7 91.1
Goatee 0.0 68.2 0.0 70.0 84.8 90.8 91.5 95.6 91.6 94.5
Gray_Hair 60.7 82.5 69.0 87.7 42.6 76.2 85.7 89.5 68.2 88.1
Heavy_Makeup 66.0 85.6 89.6 92.2 84.1 87.2 84.4 91.4 90.0 91.8
High_Cheekbones 73.3 86.6 90.7 92.2 84.4 87.1 89.0 92.2 90.3 91.7
Gender. 46.6 80.1 85.5 90.8 74.4 83.9 70.0 87.7 90.5 91.5
Mouth_Slightly_Open 74.2 87.0 91.2 92.3 84.5 87.4 91.0 92.5 91.7 91.8
Mustache 50.0 80.8 91.7 95.3 50.0 78.5 91.5 95.9 91.6 94.9
Narrow_Eyes 69.2 85.5 90.0 91.8 82.9 87.0 88.4 91.8 91.6 91.9
No_Beard 39.3 78.1 84.8 90.9 72.7 83.8 57.5 85.0 84.8 90.4
Oval_Face 75.1 87.2 90.7 92.4 84.2 87.7 91.2 92.7 90.3 91.9
Pale_Skin 75.4 87.9 90.3 91.5 81.6 85.9 91.3 92.4 89.5 92.0
Pointy_Nose 73.3 87.1 91.1 92.4 84.8 87.6 89.2 92.5 91.0 92.0
Receding_Hairline 66.6 84.7 90.9 91.8 80.5 84.3 83.3 91.1 87.9 90.9
Rosy_Cheeks 74.9 88.1 91.4 93.3 84.8 88.5 90.5 93.0 91.4 92.7
Sideburns 38.4 77.8 84.6 90.6 76.9 84.1 76.9 89.7 91.3 93.7
Smiling 75.9 86.8 91.5 92.3 84.1 87.2 91.1 92.4 91.5 91.8
Straight_Hair 74.0 86.6 90.2 92.0 84.3 87.4 88.3 92.3 91.5 91.9
Wavy_Hair 74.2 86.8 91.4 92.4 84.1 87.4 88.8 92.2 91.6 91.8
Wearing_Earrings 75.3 86.7 91.6 92.6 84.7 87.7 90.8 92.5 91.5 92.1
Wearing_Hat 7.6 70.3 46.1 82.2 46.1 77.3 61.5 86.2 53.8 84.5
Wearing_Lipstick 59.3 83.6 89.4 91.8 82.5 86.0 79.3 90.1 90.3 91.5
Wearing_Necklace 74.5 87.2 91.0 92.4 82.2 87.4 89.5 92.1 90.7 92.2
Wearing_Necktie 25.0 74.5 90.0 91.5 80.0 84.3 35.0 79.3 91.4 92.5
Young 71.6 86.0 89.1 91.6 76.2 85.9 90.1 92.0 87.2 91.5

Average 60.0 83.6 84.2 90.8 78.5 85.7 82.5 90.9 87.0 91.4

Table A.4: Full results. Worst-group and average-group accuracy for hair color pre-
diction on CelebA.
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Appendix B

Learning Stable Classifiers by

Transferring Unstable Features

B.1 Theoretical analysis

B.1.1 Partitions reveal the unstable correlation

We start by reviewing the results in the previous chapter which shows that the gener-

ated partitions reveal the unstable correlation. We consider binary classification tasks

where 𝒴 ∈ {0, 1}. For a given input 𝑥, we use 𝒞(𝑥) to represent its stable (causal)

feature and 𝒵(𝑥) to represent its unstable feature. In order to ease the notation, if

no confusion arises, we omit the dependency on 𝑥. We use lowercase letters 𝑐, 𝑧, 𝑦 to

denote the specific values of 𝒞,𝒵,𝒴 .

Proposition 1. For a pair of environments 𝐸𝑖 and 𝐸𝑗, assuming that the classifier

𝑓𝑖 is able to learn the true conditional 𝑃𝑖(𝒴 | 𝐶,𝒵), we can write the joint distribution

𝑃𝑗 of 𝐸𝑗 as the mixture of 𝑃 𝑖✓
𝑗 and 𝑃 𝑖×

𝑗 :

𝑃𝑗(𝑐, 𝑧, 𝑦) = 𝛼𝑖
𝑗𝑃

𝑖✓
𝑗 (𝑐, 𝑧, 𝑦) + (1− 𝛼𝑖

𝑗)𝑃
𝑖×
𝑗 (𝑐, 𝑧, 𝑦),
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where 𝛼𝑖
𝑗 =

∑︀
𝑐,𝑧,𝑦 𝑃𝑗(𝑐, 𝑧, 𝑦) · 𝑃𝑖(𝑦 | 𝑐, 𝑧) and

𝑃 𝑖✓
𝑗 (𝑐, 𝑧, 𝑦) ∝ 𝑃𝑗(𝑐, 𝑧, 𝑦) · 𝑃𝑖(𝑦 | 𝑐, 𝑧),

𝑃 𝑖×
𝑗 (𝑥, 𝑧, 𝑦) ∝ 𝑃𝑗(𝑐, 𝑧, 𝑦) · 𝑃𝑖(1− 𝑦 | 𝑐, 𝑧).

Proposition 1 tells us that if 𝑓𝑖 is powerful enough to capture the true conditional

in 𝐸𝑖, partitioning the environment 𝐸𝑗 is equivalent to scaling its joint distribution

based on the conditional on 𝐸𝑖.

Now suppose that the marginal distribution of 𝒴 is uniform in all joint distribu-

tions, i.e., 𝑓𝑖 performs equally well on different labels. [9] shows that the unstable

correlations will have different signs in the subset of correct predictions and in the

subset of incorrect predictions.

Proposition 2. Suppose 𝒵 is independent of 𝒞 given 𝒴. For any environment pair 𝐸𝑖

and 𝐸𝑗, if
∑︀

𝑦 𝑃𝑖(𝑧 | 𝑦) =∑︀𝑦 𝑃𝑗(𝑧 | 𝑦) for any 𝑧, then Cov(𝒵,𝒴 ;𝑃𝑖) > Cov(𝒵,𝒴 ;𝑃𝑗)

implies

Cov(𝒵,𝒴 ;𝑃 𝑖×
𝑗 ) < 0, and Cov(𝒵,𝒴 ;𝑃 𝑗×

𝑖 ) > 0.

Proof. See [9].

Proposition 2 implies that no matter whether the spurious correlation is positive

or negative, by interpolating 𝑃 𝑖✓
𝑗 , 𝑃 𝑖×

𝑗 , 𝑃 𝑗✓
𝑖 , 𝑃 𝑗×

𝑖 , we can obtain an oracle distribution

where the spurious correlation between 𝒵 and 𝒴 vanishes. Since the oracle interpo-

lation coefficients are not available in practice, [9] propose to optimize the worst-case

risk across all interpolations of the partitions.

B.1.2 Partitions reveal the unstable feature

Proposition 2 shows that the partitions 𝐸𝑖✓
𝑗 , 𝐸𝑖×

𝑗 , 𝐸𝑗✓
𝑖 , 𝐸𝑗×

𝑖 are informative of the

biases. However these partitions are not transferable as they are coupled with task-

specific information, i.e., the label 𝒴 . To untangle this dependency, we look at differ-

ent label values and obtain the following result.
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Corollary 1. Under the same assumption as Proposition 2, if Cov(𝒵,𝒴 ;𝑃𝑖) >

Cov(𝒵,𝒴 ;𝑃𝑗) > 0 and 𝒵 follows a uniform distribution within each partition, then

∑︁
𝑧

𝑧𝑃 𝑖×
𝑗 (𝒵 = 𝑧,𝒴 = 1) >

∑︁
𝑧

𝑧𝑃 𝑖✓
𝑗 (𝒵 = 𝑧,𝒴 = 1),

∑︁
𝑧

𝑧𝑃 𝑖×
𝑗 (𝒵 = 𝑧,𝒴 = 0) <

∑︁
𝑧

𝑧𝑃 𝑖✓
𝑗 (𝒵 = 𝑧,𝒴 = 0).

Proof. By definition of the covariance, we have

Cov(𝒵,𝒴) =
∑︁
𝑧,𝑦

𝑧𝑦𝑃 (𝒵 = 𝑧,𝒴 = 𝑦)−
(︃∑︁

𝑧

𝑧𝑃 (𝒵 = 𝑧)

)︃(︃∑︁
𝑦

𝑦𝑃 (𝒴 = 𝑦)

)︃

Since we assume the marginal distribution of the label is uniform, we have
∑︀

𝑦 𝑦𝑃 (𝒴 =

𝑦) = 0.5. Then we have

Cov(𝒵,𝒴) =
∑︁
𝑧

𝑧𝑃 (𝒵 = 𝑧,𝒴 = 1)− 0.5
∑︁
𝑧

𝑧𝑃 (𝒵 = 𝑧).

Using 𝑃 (𝒵 = 𝑧) = 𝑃 (𝒵 = 𝑧,𝒴 = 0) + 𝑃 (𝒵 = 𝑧,𝒴 = 1), we obtain

Cov(𝒵,𝒴) = 0.5
∑︁
𝑧

𝑧𝑃 (𝒵 = 𝑧,𝒴 = 1)− 0.5
∑︁
𝑧

𝑧𝑃 (𝒵 = 𝑧,𝒴 = 0). (B.1)

From Proposition 2, we have Cov(𝒵,𝒴 ;𝑃 𝑖×
𝑗 ) < 0. Note that this implies Cov(𝒵,𝒴 ;𝑃 𝑖✓

𝑗 ) >

0 since Cov(𝒵,𝒴 ;𝑃𝑗) > 0 and 𝑃𝑗 = 𝛼𝑖
𝑗𝑃

𝑖✓
𝑗 + (1− 𝛼𝑖

𝑗)𝑃
𝑖×
𝑗 . Combining with Eq (B.1),

we have

∑︁
𝑧

𝑧𝑃 𝑖×
𝑗 (𝒵 = 𝑧,𝒴 = 1) <

∑︁
𝑧

𝑧𝑃 𝑖×
𝑗 (𝒵 = 𝑧,𝒴 = 0),

∑︁
𝑧

𝑧𝑃 𝑖✓
𝑗 (𝒵 = 𝑧,𝒴 = 1) >

∑︁
𝑧

𝑧𝑃 𝑖✓
𝑗 (𝒵 = 𝑧,𝒴 = 0). (B.2)

Since we assume the marginal distribution of the unstable feature 𝒵 is uniform, we
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have

∑︁
𝑧

𝑧𝑃 𝑖×
𝑗 (𝒵 = 𝑧,𝒴 = 1) +

∑︁
𝑧

𝑧𝑃 𝑖×
𝑗 (𝒵 = 𝑧,𝒴 = 0) =

∑︁
𝑧

𝑧𝑃 𝑖×
𝑗 (𝒵 = 𝑧) = 0.5,

∑︁
𝑧

𝑧𝑃 𝑖✓
𝑗 (𝒵 = 𝑧,𝒴 = 1) +

∑︁
𝑧

𝑧𝑃 𝑖✓
𝑗 (𝒵 = 𝑧,𝒴 = 0) =

∑︁
𝑧

𝑧𝑃 𝑖✓
𝑗 (𝒵 = 𝑧) = 0.5. (B.3)

Plugging Eq (B.3) into Eq (B.3), we have

∑︁
𝑧

𝑧𝑃 𝑖×
𝑗 (𝒵 = 𝑧,𝒴 = 1) < 0.25 <

∑︁
𝑧

𝑧𝑃 𝑖×
𝑗 (𝒵 = 𝑧,𝒴 = 0),

∑︁
𝑧

𝑧𝑃 𝑖✓
𝑗 (𝒵 = 𝑧,𝒴 = 1) > 0.25 >

∑︁
𝑧

𝑧𝑃 𝑖✓
𝑗 (𝒵 = 𝑧,𝒴 = 0).

Combining the two inequalities finishes the proof.

Corollary 1 shows that if we look at examples within the same label value, then

expectation of the unstable feature 𝒵 within the set of correct predictions will diverge

from the one within the set of incorrect predictions. In order to learn a metric space

that corresponds to the values of 𝒵, we sample different batches from the partitions

and prove the following theorem.

Theorem 3. (Full version) Suppose 𝒵 is independent of 𝒞 given 𝒴. We assume that

𝒴 and 𝒵 both follow a uniform distribution within each partition.

Consider examples in 𝐸𝑗 with label value 𝑦. Let 𝑋✓
1 , 𝑋

✓
2 denote two batches of

examples that 𝑓𝑖 predicted correctly, and let 𝑋×
3 denote a batch of incorrect predictions.

If Cov(𝒵,𝒴 ;𝑃𝑖) > Cov(𝒵,𝒴 ;𝑃𝑗) > 0, we have

‖𝒵(𝑋✓
1 )−𝒵(𝑋✓

2 )‖2 < ‖𝒵(𝑋✓
1 )−𝒵(𝑋×

3 )‖2

almost surely for large enough batch size.

Proof. Without loss of generality, we consider 𝑦 = 0. Let 𝑛 denote the batch size of

𝑋✓
1 , 𝑋✓

2 and 𝑋✓
3 . By the law of large numbers, we have

𝒵(𝑋✓
1 ),𝒵(𝑋✓

2 )
a.s.−−→ E𝑃 𝑖✓

𝑗 (𝒵|𝒴) [𝒵 | 𝒴 = 0] and 𝒵(𝑋×
3 )

a.s.−−→ E𝑃 𝑖×
𝑗 (𝒵|𝒴) [𝒵 | 𝒴 = 0] ,
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as 𝑛 → ∞. Note that Corollary 1 tells us

E𝑃 𝑖×
𝑗 (𝒵|𝒴) [𝒵 | 𝒴 = 0] < E𝑃 𝑖✓

𝑗 (𝒵|𝒴) [𝒵 | 𝒴 = 0] .

Thus we have

‖𝒵(𝑋✓
1 )−𝒵(𝑋✓

2 )‖2 < ‖𝒵(𝑋✓
1 )−𝒵(𝑋×

3 )‖2

almost surely as 𝑛 → ∞.

We note that while we focus our theoretical analysis on binary tasks, empirically,

our method is able to correctly identify the hidden bias for multi-dimensional unstable

features and multi-dimensional label values.

B.2 Experimental setup

B.2.1 Datasets and models

MNIST

Data We extend [6]’s approach for generating spurious correlations and define two

multi-class classification tasks: even (5-way classification among digits 0,2,4,6,8)

and odd (5-way classification among digits 1,3,5,7,9). For each image, we first map

its numeric digit value 𝑦digit into its class id within the task: 𝑦causal = ⌊𝑦digit/2⌋. This

class id serves as the causal feature for the given task. We then sample the observed

label 𝑦, which equals to 𝑦causal with probability 0.75 and a uniformly random other

label value with the remaining probability. With this noisy label, we now sample the

spurious color feature: the color value equals 𝑦 with 𝜂 probability and a uniformly

other value with the remaining probability. We note that since there are five different

digits for each task, we have five different colors. Finally, we color the image according

to the generated color value. For the training environments, we set 𝜂 to 0.8 in 𝐸train
1

and 0.9 in 𝐸train
2 . We set 𝜂 = 0.1 in the testing environment 𝐸test.

We use the official train-test split of MNIST. Training environments are con-

structed from training split, with 7370 examples per environment for even and 7625
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examples per environment for odd. Validation data and testing data is constructed

based on the testing split. For even, both validation data and testing data have 1230

examples. For odd, the number is 1267. Following [6], We convert each grey scale

image into a 5×28×28 tensor, where the first dimension corresponds to the spurious

color feature.

Representation backbone We follow the architecture from PyTorch’s MNIST

example1. Specifically, each input image is passed to a CNN with 2 convolution

layers followed by 2 fully connected layers.

License The dataset is freely available at http://yann.lecun.com/exdb/mnist/.

Beer Review

Data We consider the transfer among three binary aspect-level sentiment classi-

fication tasks: look, aroma and palate [69]. For each review, we follow [9] and

append a pseudo token (art_pos or art_neg) based on the the sentiment of the given

aspect (pos or neg). The probability that this pseudo token agrees with the sentiment

label is 0.8 in 𝐸train
1 and 0.9 in 𝐸train

2 . In the testing environment, this probability

reduces to 0.1. Unlike MNIST, there is no label noise added to the data.

We use the script created by [9] to generate spurious features for each aspect.

Specifically, for each aspect, we randomly sample training/validation/testing data

from the dataset. Since our focus in this paper is to measure whether the algorithm

is able to remove biases (rather than label imbalance), we maintain the marginal

distribution of the label to be uniform. Each training environment contains 4998

examples. The validation data contains 4998 examples and the testing data contains

5000 examples. The vocabulary sizes for the three aspects (look, aroma, palate) are:

10218, 10154 and 10086.

Representation backbone We use a 1D CNN [61], with filter size 3, 4, 5, to obtain

the feature representation. Specifically, each input is first encoded by pre-trained
1https://github.com/pytorch/examples/blob/master/mnist/main.py
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FastText embeddings [84]. Then it is passed into a convolution layer followed by max

pooling and ReLU activation.

License This dataset was originally downloaded from https://snap.stanford.

edu/data/web-BeerAdvocate.html. As per request from BeerAdvocate the data is

no longer publicly available.

ASK2ME

Data ASK2ME [12] is a text classification dataset where the inputs are paper ab-

stracts from PubMed. We study the transfer between two binary classification tasks:

penetrance (identifying whether the abstract is informative about the risk of can-

cer for gene mutation carriers) and incidence (identifying whether the abstract is

informative about proportion of gene mutation carriers in the general population). By

definition, both tasks are causally-independent of the diseases that have been studied

in the abstract. However, due to the bias in the data collection process, [33] found

that the performance varies (by 12%) when we evaluate based on different cancers.

To assess whether we can remove such bias, we define two training environments for

each task based on the correlations between the task label and the breast_cancer

attribute (indicating the presence of breast cancer in the abstract). Script for gen-

erating the environments is available in the supplemental materials. Note that the

model doesn’t have access to the breast_cancer attribute during training.

Following [93], we evaluate the performance on a balanced test environment where

there is no spurious correlation between breast_cancer and the task label. This helps

us understand the overall generalization performance across different input distribu-

tions.

We randomly split the data and use 50% for penetrance and 50% for inci-

dence. For penetrance, there are 948 examples in 𝐸train
1 and 𝐸val, 816 examples

in 𝐸train
2 and 268 examples in 𝐸test. For incidence, there are 879 examples in 𝐸train

1

and 𝐸val, 773 examples in 𝐸train
2 and 548 examples in 𝐸test. The processed data will

be publicly available.
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Representationi backbone The model architecture is the same as the one for

Beer review.

License MIT License.

Waterbird

Data Waterbird is an image classification dataset where each image is labeled based

on its bird class [114] and the background attribute (water vs. land). Following [93],

we group different bird classes together and consider two binary classification tasks:

seabird (classifying 36 seabirds against 36 landbirds) and waterfowl (classifying 9

waterfowl against 9 different landbirds). Similar to ASK2ME, we define two training

environments for each task based on the correlations between the task label and

the background attribute. Script for generating the environments is available in the

supplemental materials. At test time, we measure the generalization performance on

a balanced test environment.

Following [76], we group different classes of birds together to form binary classifi-

cation tasks.

In waterfowl, the task is to identify 9 different waterfowls (Red breasted Mer-

ganser, Pigeon Guillemot, Horned Grebe, Eared Grebe, Mallard, Western Grebe,

Gadwall, Hooded Merganser, Pied billed Grebe) against 9 different landbirds (Mourn-

ing Warbler, Whip poor Will, Brewer Blackbird, Tennessee Warbler, Winter Wren,

Loggerhead Shrike, Blue winged Warbler, White crowned Sparrow, Yellow bellied

Flycatche). The training environment 𝐸train
1 contains 298 examples and the training

environment 𝐸train
2 contains 250 examples. The validation set has 300 examples and

the test set has 216 examples.

In seabird, the task is to identify 36 different seabirds (Heermann Gull, Red

legged Kittiwake, Rhinoceros Auklet, White Pelican, Parakeet Auklet, Western Gull,

Slaty backed Gull, Frigatebird, Western Meadowlark, Long tailed Jaeger, Red faced

Cormorant, Pelagic Cormorant, Brandt Cormorant, Black footed Albatross, West-

ern Wood Pewee, Forsters Tern, Glaucous winged Gull, Pomarine Jaeger, Sooty Al-
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batross, Artic Tern, California Gull, Horned Puffin, Crested Auklet, Elegant Tern,

Common Tern, Least Auklet, Northern Fulmar, Ring billed Gull, Ivory Gull, Laysan

Albatross, Least Tern, Black Tern, Caspian Tern, Brown Pelican, Herring Gull,

Eastern Towhee) against 36 different landbirds (Prairie Warbler, Ringed Kingfisher,

Warbling Vireo, American Goldfinch, Black and white Warbler, Marsh Wren, Aca-

dian Flycatcher, Philadelphia Vireo, Henslow Sparrow, Scissor tailed Flycatcher,

Evening Grosbeak, Green Violetear, Indigo Bunting, Gray Catbird, House Sparrow,

Black capped Vireo, Yellow Warbler, Common Raven, Pine Warbler, Vesper Spar-

row, Pileated Woodpecker, Bohemian Waxwing, Bronzed Cowbird, American Three

toed Woodpecker, Northern Waterthrush, White breasted Kingfisher, Olive sided Fly-

catcher, Song Sparrow, Le Conte Sparrow, Geococcyx, Blue Grosbeak, Red cockaded

Woodpecker, Green tailed Towhee, Sayornis, Field Sparrow, Worm eating Warbler).

The training environment 𝐸train
1 contains 1176 examples and the training environment

𝐸train
2 contains 998 examples. The validation set has 1179 examples and the test set

has 844 examples.

Representation backbone We use the Pytorch torchvision implementation of the

ResNet50 model, starting from pretrained weights. We re-initalize the final layer to

predict the label.

License This dataset is publicly available at https://nlp.stanford.edu/data/

dro/waterbird_complete95_forest2water2.tar.gz

CelebA

Data CelebA [76] is an image classification dataset where each image is annotated

with 40 binary attributes. We consider Eyeglasses as the source task and BlondHair

as the target task. We split the official train / val / test set into two parts (uniformly

at random) for each task. We use the attribute Young to create two environments:

𝐸1 = {Young = 0}, 𝐸2 = {Young = 1}. For the target task, the model only has access

to 𝐸1 during training and validation. Table B.1 summarizes the data statistics.
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Table B.1: Data statistics of CelebA. The model has access to both 𝐸1 and 𝐸2 on the
source task. For the target task, only 𝐸1 is available during training and validation.

source task: Eyeglasses target task: BlondHair

𝐸1 : {Young=0} 𝐸2 : {Young=1} 𝐸1 : {Young=0} 𝐸2 : {Young=1}
Train 17955 63430 17973 63412

Val 2494 7442 2453 7480

Test 2452 7597 2444 7537

License The CelebA dataset is available for non-commercial research purposes only.

It is publicly available at https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.

Representation backbone We use the Pytorch torchvision implementation of the

ResNet50 model, starting from pretrained weights. We re-initalize the final layer to

predict the label.

B.2.2 Implementation details

For all methods: We use batch size 50 and evaluate the validation performance

every 100 batch. We apply early stopping once the validation performance hasn’t

improved in the past 20 evaluations. We use Adam [62] to optimize the parame-

ters and tune the learning rate ∈ {10−3, 10−4}. For simplicity, we train all methods

without data augmentation. Following [93], we apply strong regularizations to avoid

over-fitting. Specifically, we tune the dropout rate ∈ {0.1, 0.3, 0.5} for text classifi-

cation datasets (Beer review and ASK2ME) and tune the weight decay parameters

∈ {10−1, 10−2, 10−3} for image datasets (MNIST, Waterbird and CelebA).

dann, c-dann For the domain adversarial network, we use a MLP with 2

hidden ReLU layer with 300 neurons for each layer. The representation backbone

is updated via a gradient reversal layer. We tune the weight of the adversarial loss

∈ {0.01, 0.1, 1}.
mmd We match the mean and covariance of the features across the two source en-

vironments. We use the implementation from https://github.com/facebookresearch/

DomainBed/blob/main/domainbed/algorithms.py. We tune the weight of the MMD
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loss ∈ {0.01, 0.1, 1}.
multitask For the source task, we first partition the source data into subsets

with opposite spurious correlations [9]. During multi-task training, we minimize the

worst-case risk over all these subsets for the source task and minimize the average

empirical risk for the target task. multitask is more flexible than reuse since we

tune feature extractor to fit the target data. Compared to finetune, multitask is

more constrained as the source model prevents over-utilization of unstable features

during joint training.

Ours We fix 𝛿 = 0.3 in all our experiments. Based on our preliminary experiments

(Figure B-1), we fix the number of clusters to be 2 for all our experiments in Table 3.2

and Table 3.3. For the target classifier, we directly optimize the min−max objective.

Specifically, at each step, we sample a batch of example from each group, and minimize

the worst-group loss. We found the training process to be pretty stable when using

the Adam optimizer.

Validation criteria For erm, reuse, finetune and multitask, since we don’t

have any additional information (such as environments) for the target data, we apply

early stopping and hyper-parameter selection based on the average accuracy on the

validation data.

For tofu, since we have already learned an unstable feature representation 𝑓𝒵 on

the source task, we can also use it to cluster the validation data into groups where

the unstable features within each group are different. We measure the worst-group

accuracy and use it as our validation criteria.

For oracle, as we assume access to the oracle unstable features for the target

data, we can use them to define groups on the validation data as well. We use the

worst-group accuracy as our validation criteria.

We also note that when we transfer from look to aroma in Table 3.2, both tofu

and oracle are able to achieve 75 accuracy on 𝐸test. This number is higher than

the performance of training on aroma with two data environments ( 68 accuracy in

Table 3.2). This result makes sense since in the latter case, we only have in-domain

validation set and we use the average accuracy as our hyper-parameter selection
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metric. However, in both tofu and oracle, we create (either automatically or

manually) groups over the validation data and measure the worst-group performance.

This ensures that the chosen model will not over-fit to the unstable correlations.

Computational resources: We use our internal clusters (24 NVIDIA RTX A6000

and 16 Tesla V100-PCIE-32GB) for the experiments. It took around a week to

generate all the results in Table 3.2 and Table 3.3.

B.3 Additional analysis

Why do the baselines behave so differently across different datasets? As

[13] pointed out, the transferability of the low-level features is very different in image

classification and in text classification. For example, the keywords for identifying the

sentiment of look are very different from the ones for palate. Thus, fine-tuning the

feature extractor is crucial. This explains why reuse underperforms other baselines

on text data. Conversely, in image classification, the low-level patterns (such as

edges) are more transferable across tasks. Directly reusing the feature extractor

helps improve model stability against spurious correlations. Finally, we note that

since tofu transfers the unstable features instead of the task-specific causal features,

it performs robustly across all the settings.

How many clusters to generate? We study the effect of the number of clusters on

ask2me. Figure B-1 shows that while generating more clusters in the unstable feature

space 𝑓𝒵 reduces the variance, it doesn’t improve the performance by much. This is

not very surprising as the training data is primarily biased by a single breast_cancer

attribute. We expect that having more clusters will be beneficial for tasks with more

sophisticated underlying biases.

How do we select the hyper-parameter for tofu? We cluster the validation

data based on the learned unstable feature representation 𝑓𝒵 and use the worst-group

loss as our early stopping and hyper-parameter selection criteria. Figure B-2 shows
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Figure B-1: Accuracy of tofu on ask2me as we vary the number of clusters 𝑛𝑐

generated for each label value. Empirically, we see that while having more clusters
doesn’t improve the performance, it helps reduce the variance.
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Figure B-2: Hyper-parameter selection for tofu on CelebA (averaged across 5 runs).
We use our learned unstable feature representation 𝑓𝒵 to partition the validation
set and use the worst-group validation loss as our hyper-parameter selection criteria.
Empirically, we observe that this criteria correlates well with the model robustness
on the testing data.

our hyper-parameter search space. We observe that our validation criteria correlates

well with the robustness of the model on the testing data.

B.4 Full results on CelebA
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Appendix C

Learning to Split for Automatic Bias

Detection

C.1 Datasets and model architectures

C.1.1 Beer Review

Data We use the BeerAdvocate review dataset [82] and consider three binary aspect-

level sentiment classification tasks: look, aroma and palate. This dataset was

originally downloaded from https://snap.stanford.edu/data/web-BeerAdvocate.

html.

[69] points out that there exist strong correlations between the ratings of different

aspects. In fact, the average correlation between two different aspects is 0.635. These

correlations constitute as a source of biases when we apply predictors to examples

with conflicting aspect ratings (e.g. beers that looks great but smells terrible).

We randomly sample 2500 positive examples and 2500 negative examples for each

task. We apply ls to identify non-generalizable splits across these 5000 examples.

The average word count per review is 128.5.

Representation backbone Following previous work [9], we use a simple text CNN

for this dataset. Specifically, each input review is encoded by pre-trained FastText
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embeddings [84]. We employ 1D convolutions (with filter sizes 3, 4, 5) to extract the

features [61]. We use 50 filters for each filter size. We apply max pooling to obtain

the final representation (∈ R150) for the input.

Predictor The Predictor applies a multi-layer perceopton on top of the previous

input representation to predict the binary label. We consider a simple MLP with one

hidden layer (150 hidden units). We apply ReLU activations and dropout (with rate

0.1) to the hidden units.

Splitter The Splitter concatenates the CNN representation with the binary input

label. Similar to the Predictor, we use a MLP with one hidden layer (150 ReLU

units, dropout 0.1) to predict the splitting decision P(𝑧𝑖 | 𝑥𝑖, 𝑦𝑖). We note that the

representation backbones of the Splitter and the Predictor are not shared during

training.

C.1.2 Tox21

Data The dataset contains 12,707 chemical compounds. Each example is annotated

with two types of properties: Nuclear Receptor Signaling Panel (AR, AhR, AR-

LBD, ER, ER-LBD, aromatase, PPAR-gamma) and Stress Response Panel (ARE,

ATAD5, HSE, MMP, p53). The dataset is publicly available at http://bioinf.jku.

at/research/DeepTox/tox21.html.

Representation backbone Following [80], we encode each input molecule by its

dense features (such as molecular weight, solubility or surface area) and sparse features

(chemical substructures). There are 801 dense features and 272,776 sparse features.

We concatenate these features and standardize them by removing the mean and

scaling to unit variance.

Predictor The Predictor is a multi-layer perceptron with three hidden layers (each

with 1024 units). We apply ReLU activations and dropout (with rate 0.3) to the

hidden units.
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Splitter The Splitter concatenates the molecule features with the binary input

label. Similar to the Predictor, we is a multi-layer perceptron with three hidden

layers (each with 1024 units). We apply ReLU activations and dropout (with rate

0.3) to the hidden units.

C.1.3 Waterbird

Data This dataset is constructed from the CUB bird dataset [114] and the Places

dataset [124]. [93] use the provided pixel-level segmentation information to crop

each bird out from the its original background in CUB. The resulting birds are then

placed onto different backgrounds obtained from Places. They consider two types of

backgrounds: water (ocean or natural lake) and land (bamboo forest or broadleaf for-

est). There are 4795/1199/5794 examples in the training/validation/testing set. This

dataset is publicly available at https://nlp.stanford.edu/data/dro/waterbird_

complete95_forest2water2.tar.gz

By construction, 95% of all waterbirds in the training set have water backgrounds.

Similarly, 95% of all landbirds in the training set have land backgrounds. As a

result, predictors trained on this training data will overfit to the spurious background

information when making their predictions. In the validation and testing sets, [93]

place landbirds and waterbirds equally to land and water backgrounds.

For identifying non-generalizable splits, we apply ls on the training set and the

validation set. For automatic de-biasing, we report the average accuracy and worst-

group accuracy on the official test set. To compute the worst-group accuracy, we

use the background attribute to partition the test set into four groups: waterbirds

with water backgrounds, waterbirds with land backgrounds, landbirds with water

backgrounds, landbirds with land backgrounds.

Representation backbone Following previous work [93, 74], we fine-tune torchvi-

sion’s resnet-50, pretrained on ImageNet [32], to represent each input image. This

results into a 2048 dimensional feature vector for each image.
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Predictor The Predictor takes the resnet representation and applies a linear layer

(2048 by 2) followed by Softmax to predict the label ({waterbirds, landbirds}) of

each image.

Splitter The Splitter first concatenates the resnet representation with the binary

image label. It then applies a linear layer with Softmax to predict the splitting

decision P(𝑧𝑖 | 𝑥𝑖, 𝑦𝑖). The resnet encoders for the Splitter and the Predictor are not

shared during training.

C.1.4 CelebA

Data CelebA [76] is a large-scale face attributes dataset, where each image is an-

notated with 40 binary attributes. Following previous work [93, 74], we consider our

task as predicting the blond hair attribute (∈ {blond_hair, no_blond_hair}). The

CelebA dataset is available for non-commercial research purposes only. It is publicly

available at https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.

While there are lots of annotated examples in the training set (162,770), the task is

challenging due to the spurious correlation between the target blond hair attribute and

the gender attribute (∈ {male, female}). Specifically, only 0.85% of the training data

are blond-haired males. As a result, predictors learn to utilize male as a predictive

feature for no_blond_hair when we directly minimizing their empirical risk.

For identifying non-generalizable splits, we apply ls on the official training set

and validation set. For automatic de-biasing, we report the average and worst-group

performance on the official test set. To compute the worst-group accuracy, we use the

gender attribute to partition the test set into four groups: blond_hair with male,

blond_hair with female, no_blond_hair with male, no_blond_hair with female.

Representation backbone Following previous work [93, 74], we fine-tune torchvi-

sion’s resnet-50, pretrained on ImageNet [32], to represent each input image. This

results into a 2048 dimensional feature vector for each image.

126



Predictor The Predictor takes the resnet representation and applies a linear layer

(2048 by 2) followed by Softmax to predict the label ({blond_hair, no_blond_hair})
of each image.

Splitter The Splitter concatenates the resnet representation with the binary image

label. It then applies a linear layer with Softmax to predict the splitting decision

P(𝑧𝑖 | 𝑥𝑖, 𝑦𝑖). The resnet encoders for the Splitter and the Predictor are not shared

during training.

C.1.5 MNLI

Data The MultiNLI corpus contains 433k sentence pairs [115]. Given a sentence

pair, the task is to predict the entailment relationship (entailment, contradiction,

neutral) between the two sentences. The original corpus splits allocate most exam-

ples to the training set, with another 5% for validation and the last 5% for test-

ing. In order to accurately measure the performance on rare groups, [93] com-

bine the training and validation set and randomly shuffle them into a 50/20/30

training/validation/testing split. The dataset and splits are publicly available at

https://github.com/kohpangwei/group_DRO.

Previous work [47, 83] have shown that this crowd-sourced dataset has significant

annotation artifacts: negation words (nobody, no, never and nothing) often appears

in contradiction examples; sentence pairs with high lexical overlap are likely to be

entailment. As a result, predictors may over-fit to these spurious shortcuts during

training.

For identifying non-generalizable splits, we apply ls on the training set and vali-

dation set. For automatic de-biasing, we report the average and worst-group perfor-

mance on the testing set. To compute the worst-group accuracy, we partition the test

set based on whether the input example contains negation words or not: entailment

with negation words, entailment without negation words, contradiction with nega-

tion words, contradiction without negation words, neutral with negation words,

neutral without negation words.
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Representation backbone Following previous work [93, 74], we fine-tune Hugging

Face’s bert-base-uncased model, starting with pre-trained weights [34].

Predictor The Predictor takes the representation of the [CLS] token (at the final

layer of bert-base-uncased) and applies a linear layer with Softmax activations to

predict the final label (entailment, contradictions, neutral).

Splitter The Splitter concatenates the representation of the [CLS] token with the

one-hot label embedding (∈ {0, 1}3). It then applies a linear layer with Softmax

activations to predict the splitting decision P(𝑧𝑖 | 𝑥𝑖, 𝑦𝑖). The bert-base-uncased

encoders for the Splitter and Predictor are not shared during training.

C.2 Implementation details

C.2.1 Identifying non-generalizable splits using ls

Optimization For Beer Review, Tox21, Waterbirds and CelebA, we update the

Splitter and Predictor with the Adam optimizer [62]. In Beer Review and Tox21, the

learning rate is set to 10−3 with no weight decay (as we already have dropout in the

MLP to prevent over-fitting). We use a batch size of 200. In Waterbirds and CelebA,

since we start with pre-trained weights, we adopt a smaller learning rate 10−4 [93]

and set weight decay to 10−3. We use a batch size of 100. For MNLI, we use the

default setting for fine-tuning BERT: a fixed linearly-decaying learning rate starting

at 0.0002, AdamW optimizer [77], dropout, and no weight decay. We use a batch size

of 100.

Stopping criteria For the Predictor’s training, we held out a random 1/3 subset

of 𝒟train for validation. We train the Predictor on the rest of 𝒟train and apply early-

stopping when the validation accuracy stops improving in the past 5 epochs. For the

Splitter’s training, we compare the average loss ℒtotal of the current epoch and the

average loss across the past 5 epochs. We stop training if the improvement is less
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than 10−3.

C.2.2 Automatic de-biasing

Method details We use the Splitter learned by ls to create groups that are in-

formative of the biases. Specifically, for each example (𝑥𝑖, 𝑦𝑖), we first sample its

splitting decision from the Splitter 𝑧𝑖 ∼ P(𝑧𝑖 | 𝑥𝑖, 𝑦𝑖). As we have seen in Figure 4-5,

these splitting decisions reveal human-identified biases. Similar to the typical group

DRO setup [93], we use these information together with the target labels to partition

the training and validation data into different groups. For example in Waterbirds,

we have four groups: {𝑦 = waterbirds, 𝑧 = 0}, {𝑦 = waterbirds, 𝑧 = 1}, {𝑦 =

landbirds, 𝑧 = 0}, {𝑦 = landbirds, 𝑧 = 1}. We minimize the worst-group loss dur-

ing training and measure the worst-group accuracy on the validation data for model

selection. Specifically, we stop training if the validation metric hasn’t improved in

the past 10 epochs.

Optimization Modern neural networks are highly over-parameterized. As a result,

they can easily memorize the training data and over-fit the majority groups even when

we minimize the worst-group loss during training. Following [93], we apply strong

regularization to combat memorization and over-fitting. We grid-search over the

weight decay parameter (100, 10−1, 10−2, 10−3, 0).
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