
Self-Training for Natural Language Processing

by

Hongyin Luo

B.E., Tsinghua University (2016)
S.M., Massachusetts Institute of Technology (2019)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 13, 2022

Certified by. .
James R. Glass

Senior Research Scientist
Computer Science and Artificial Intelligence Laboratory

Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Self-Training for Natural Language Processing

by

Hongyin Luo

Submitted to the Department of Electrical Engineering and Computer Science
on May 13, 2022, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Data annotation is critical for machine learning based natural language processing
models. Although many large-scale corpora and standard benchmarks have been
annotated and published, they cannot cover all possible applications. As a result, it is
difficult to transfer models trained with public corpora to tasks that require domain-
specific knowledge, different inference skills, unseen text styles, and explainability.
In this thesis, we explore self-training methods for mitigating the data distribution
gaps between training and evaluation domains and tasks. In contrast to traditional
self-training methods that study the best practice of training models with real data
and pseudo labels, we also explore the possibility of automatically generating synthetic
data for better explainability, robustness, and domain adaptation performance. We
show the performance improvement achieved by our methods on different natural
language understanding and generation tasks, including question answering, question
generation, and dialog response selection.

Thesis Supervisor: James R. Glass
Title: Senior Research Scientist
Computer Science and Artificial Intelligence Laboratory

3

4

Acknowledgments

I worked as a TA for three semesters since 2019, because I felt bad about taking RA

supports without producing impactful research. At that point, I wanted to escape

from the Ph.D. journey as soon as possible.

However, together with my advisor, Dr. James Glass, lab members of SLS, my

parents, and friends, I managed to put together this Ph.D. thesis. The communications

became more difficult because of the pandemic, but there have been constant supports

that encouraged me to focus on my own research. After years of exploring, we final

found a topic to pursue. The wondering and painful experience is the greatest gift I

received during the journey. I want to thank everyone and everything that encouraged

me not to give up thinking and trying.

I would like to thank Jim for always being nice and supportive. I was encouraged

to explore any interesting directions, try different ideas, and fail. Every time I got

frustrated, I managed to restart my exploration because of Jim’s support and patience.

Thanks to Jim, I did not give up, and the experience of keeping trying and failing

has become the most important experience and I have learned a lot from it. I am

also grateful to receive valuable suggestions from my committee members, professor

Peter Szolovitz and Yoon Kim. Your suggestions make the thesis much better than I

originally imagined.

I would like to thank Professor Regina Barzilay, who admitted me to MIT. However,

I did not join her group because of a misunderstanding about the admission. I believe

this is one of the chocolates that I have to take in my life, and I’m also grateful about

being recognized and admitted by Regina. I also appreciate the kind support and

help from the EECS graduate office, especially Prof Leslie Kolodziejski, Ms. Janet E.

Fisher, and Ms. Alicia Duarte.

I once felt difficult to communicate with my parents when I was an undergraduate

student, but I finally found that their understanding and support are very important

for me to keep trying and finally complete the journey. I want to sincerely thank my

parents for their unconditional love and support.

5

I would like to thank Mr. Ming Liao and Prof. Xinwang Zhou, who encouraged me

to apply for MIT when I was hesitating. It was a big decision that made a significant

difference in my life. I deeply appreciate their encouragement and support.

I want to thank Shang-Wen Li, Shuyan Dong, Mengyang Yuan, Yuchen Wang,

Meitong Li, Mingye Gao, Zhantao Chen, Mantian Xue, Felix Wong, Mo Deng, Tao

Feng, Di Jin, Wenjie Yao, and Yuan Gong for being the greatest friends and advisors.

Jun Wan, Kaixuan Yao, Xinliang Zhong, Shaoying Tan, Shuyun Xiao, Yuheng Zhong,

Ran Yan, Jiachuan Zhang, Yuanxi Wang, Yu Xia, Xiang Li, Xin Qian, Ruogu Gao,

Xu Liu, and Jiarui Xu, getting through the pandemic and finishing the thesis became

easier because of your online supports.

Alpha and Blizzard, living with the troubles you have caused helps me calm down

about the thesis and COVID. Your novel ways of destroying my home have always

been inspiring. Thank you and please be good pets!

This research was supported in part by funds from FinTech@CSAIL initiative and

by a grant from the Hong Kong Innovation AI program.

6

Contents

1 Introduction 19

1.1 Thesis Scope . 21

2 Background 23

2.1 Neural Language Models . 23

2.2 Training and Finetuning Language Models 28

2.3 Reinforcement Language Modeling 29

2.4 Transfer Learning . 30

3 Joint Retrieval-Extraction Training for Evidence-Aware Dialog Re-

sponse Selection 33

3.1 Introduction . 33

3.2 Related Work . 35

3.3 Cross-Encoders . 36

3.4 REX Encoder . 38

3.4.1 Bridging Retrieval and Extraction 38

3.4.2 Transformed Extraction Scores 38

3.4.3 Unsupervised Extraction Learning 42

3.4.4 Overall Architecture . 43

3.5 Experiments . 44

3.5.1 Task and Corpus . 44

3.5.2 Implementation Details . 45

3.5.3 Retrieval Performance . 46

7

3.5.4 Effects of Regularization . 47

3.5.5 Which Task is More Important 47

3.5.6 Multi-tasking vs. Pooling . 48

3.5.7 Evidence Extraction . 52

3.6 Chapter Summary . 52

4 Prototypical Q Networks for Automatic Conversational Diagnosis

and Few-Shot New Disease adaptation 55

4.1 Introduction . 55

4.2 Related Work . 57

4.2.1 Deep Q Networks . 57

4.2.2 Spoken Dialog Systems . 58

4.2.3 Meta-Learning . 59

4.3 Method . 59

4.3.1 Dialog State Representations 59

4.3.2 Prototypical Q Networks . 60

4.4 Experiments . 64

4.4.1 Data and Experiment Settings 64

4.4.2 Fully Supervised Learning . 66

4.4.3 Few-shot New Disease adaptation 66

4.5 Chapter Summary . 67

5 Self-trained Prompt Composition for Domain Adaptation in Question

Answering 69

5.1 Method . 71

5.1.1 Background: Soft Prompt Tuning 71

5.1.2 Prompt Composition . 71

5.1.3 Mixed-task & Mixed-domain Training 72

5.2 Experiments . 74

5.3 Results and Analysis . 76

5.4 Chapter Summary . 78

8

6 Cooperative Self-training of Machine Reading Comprehension 79

6.1 Introduction . 79

6.2 Related Work . 82

6.3 RGX Framework . 84

6.3.1 Data Synthesis . 84

6.3.2 Cooperative Self-training . 86

6.4 Experiments . 89

6.4.1 Modules . 89

6.4.2 Data . 89

6.4.3 Answer Entity Recognition Details 90

6.4.4 Implementation Details . 92

6.4.5 Experimental Results . 94

6.4.6 Analysis . 98

6.5 Chapter Summary . 102

7 Entailment Self-training for Language Task Adaptation 103

7.1 Introduction . 103

7.2 QA-based Fact Checking . 104

7.2.1 QA-based Fact-checking Pipeline 105

7.2.2 Improved RGX for Fact Checking 107

7.2.3 Fact Checking Results . 108

7.3 Self-training for Robust Language Understanding 110

7.3.1 Related Work . 113

7.3.2 Method: Adversarial Self-training 114

7.3.3 Synthetic Data Generation Pipeline 115

7.3.4 Experiments . 117

7.4 Chapter Summary . 119

8 Conclusions 121

9

10

List of Figures

1-1 Overview of the structure of this thesis. 22

2-1 Architecture of a MLP-based language model for next-word prediction

[Bengio et al., 2003]. 23

2-2 Architecture of the ELMO model [Peters et al., 2018a], which generates

contextualized word embeddings by combining the hidden states output

by both LSTM networks. 25

2-3 The training and finetuning illustration of the BERT model. The image

is created by the authors of [Devlin et al., 2018]. 26

2-4 Left-to-right and sequence-to-sequence language generation models. . 27

2-5 A summarization of the development of neural language models. . . . 27

2-6 Prompt tuning of pretrained language models. 29

3-1 An example of a dialog response selection. The phrase in red is the

reason why the first candidate is the best response for the given dialog

history. Human can tell the best response as well as the reason or

evidence in a dialog response selection task. 34

11

3-2 The REX-encoder model and an example of target retrieval and extrac-

tion scores. In the REX-encoder in (a), the inner block contains the

standard cross-encoder architecture, and the REX encoder consists of a

cross-encoder model and an unsupervised extraction module. As shown

in (b), retrieval and extraction are opposite to each other. The first

token of the ground-truth candidate should receive a high retrieval score

and a low extraction score. Each row stands for a candidate responses,

and each column stands for tokens in the utterances. 41

3-3 The loss function for training the REX encoder. 44

3-4 Example dialog of the ConvAI2 task. 45

3-5 R@1 performance of different 𝛽 settings. 49

3-6 Visualization of the learned extraction model on the DSTC7 test set.

The model attends to the evidence in the true response, and to the

[CLS] token in a negative candidate. 50

3-7 Visualization of the learned extraction model on the DSTC7 test set.

The model attends to the evidence in the true response, and to the

[CLS] token in a negative candidate. 51

4-1 An example of a dialog between a patient and a medical agent. First,

the patient provides a self report. Then the agent conducts a dialog by

requesting symptoms and concludes by making a decision about the

disease. 56

4-2 Calculating prototypical embeddings of dialog actions using the history

of training dialogs. 61

4-3 Performances of ProtoQN and DQN on 4 noise levels. Each figure

stands for noise, while the blue bars stand for the performances of

DQNs, and the orange bars stand for the performances of ProtoQNs. 65

5-1 Overview of our mixed-task, mixed-domain prompt tuning pipeline. . 72

12

6-1 The pipeline of semi-supervised question answering (machine reading

comprehension) by RGX. The answer entity Recognition agent recog-

nizes answer entity from a given passage; the question Generator outputs

a question based on the passage and entity; the question-answering

eXtractor predicts answers from the question and passage. 80

6-2 Overview of the self-training QA framework. 81

6-3 The cooperative learning pipeline for question answering. The pipeline

starts from a passage and follows the steps: (1) recognizing a potential

answer entity, (2) generating a question asking about the answer entity,

and (3) answering the question by extracting the answer span in the

passage. 82

6-4 Pipeline of the answer entity recognition (AER) model. 85

6-5 Generated questions about the same answer entity classified into differ-

ent types by EM. 99

6-6 An example of a passage in the training set of the SQuAD corpus. We

list the annotated question-answer pairs, and the question-answer pairs

generated by the models pretrained on NQ and finetuned by RGX. The

bold texts are annotated or recognized answer entities. Adapting from

NQ is difficult since the questions in NQ do not strictly coherent with

a given context. 101

7-1 The architecture of the QA-based fact-checking system. 106

7-2 The architecture of hierarchical RGX for fact checking. 108

7-3 Results of QA-based fact checking system on the Wild-Forums data. . 109

7-4 Results of QA-based fact checking system on the Wild-Synthetics data. 110

7-5 Results of QA-based fact checking system on the FactChecker data. . 111

13

7-6 The pipeline of the adversarial self-training algorithm includes four

steps: 1. synthetic data generation, 2. discriminator training using

randomly sampled synthetic and human-labeled training data, 3. data

selection with the discriminator and weighting with the pretrained

classifier, and 4. updating both generator and classifier with selected

and weighted synthetic data. 112

14

List of Tables

3.1 Retrieval performance of the baseline models and the proposed REX

encoder on ConvAI2 and DSTC7 track 1 challenge, where the cross-

encoder is the previous state-of-the-art model. We compare both the

reported performance trained with 8 Volta 100 GPUs and batch size

16, and the performance reproduced by training on our machine with 2

Volta 100 GPUs and batch size 8. The latter is denoted as Cross-encoder

(Ours). The experiment results of bi-, poly-, and cross-encoders are

reported by [Shuster et al., 2020b]. 47

3.2 Comparing the improvement of different model pairs. The improvement

of our model over baseline is significant, since the performance gap

between REX- and cross-encoders is larger than the improvement of

the cross-encoder over the bi-encoder. 48

3.3 The comparison of the REX-encoder with and without the distribution

bridging regularization. 48

3.4 Comparing the REX-encoder with baseline models that also explicitly

use all the output embeddings of the cross-encoder with different pooling

methods. 49

4.1 Experimental results of ProtoQN and DQN on supervised learning. . 66

4.2 Average success rates (%) of the meta-learning tasks with DQN and

ProtoQN under different noise levels. 67

15

5.1 Results of different prompt tuning strategies with the T5-Base model

on the MRQA out-of-domain datasets. The baseline is the soft prompt

tuning model proposed in [Lester et al., 2021] 74

5.2 Answer F1 results on MRQA with T5-Large model. “TQA” represents

TextbookQA; “Avg.” represents average results from all 6 test datasets. 75

6.1 Number of synthetic QA of each MRQA domain. 90

6.2 The performance of the question answering models in the semi-annotated

setting. RGX stands for our cooperative training approach, and Coop.

ST stands for cooperative self-training. 94

6.3 The QA performance evaluation on the out-of-domains of the MRQA

benchmark by pretaining on NaturalQuestions. RGX stands for our

method, MMI stands for maximum mutual information inference, EM

stands for question selection with EM, and CST stands for the cooper-

ative self training. 95

6.4 The QA performance evaluation on out-of-domain subsets of the MRQA

benchmark by pretraining on SQuAD v1.1. 95

6.5 Comparison of different self-training methods. XQ stands for “Natu-

ralQuestions or SQuAD”. 96

6.6 Comparison of different AER strategies. NER stands for the BERT

named entity recognition model trained on the CONLL 2003 shared task. 97

6.7 Comparison between maximum mutual information inference perfor-

mance grounded on AER results and top-k (𝑘 = 20) predictions of the

QA model. 97

6.8 The vocabulary sizes and lengths of Annotated and generated questions

on SQuAD under both semi- and zero-annotated settings in unseen

domains . 98

6.9 Evaluation of the answer hit rates and question BLEU scores of the

synthetic data. 98

7.1 The performance of different training methods on AdversarialGLUE. 118

16

7.2 The performance of different training methods on GLUE. 118

17

18

Chapter 1

Introduction

One of the ultimate goals of artificial intelligence (AI) research is building systems

that can interact with humans using natural language. Natural language processing

(NLP) is the field focusing on this goal, and it consists of two significant research

areas, natural language understanding (NLU) and natural language generation (NLG).

Traditionally, both NLU and NLG mainly rely on large-scale human-annotated corpora

for model development. Although it is possible to get annotations for popular languages

and tasks, large-scale human annotation is prohibitively time-consuming and costly,

especially if domain knowledge is needed. Furthermore, it is challenging to conduct

real-time labeling with throughput sufficient for building mainstream NLP models on

streaming data and use cases. These problems hinder the democratization of NLP

research to more applications.

The problems and difficulties associated with getting humans to annotate data for

NLP tasks impacts the performance for machine learning models since vast quantities

of potentially useful data are unable to be leveraged due to lack of annotation. In

real-world applications, human-annotated data is often lacking in one or more of the

following aspects:

• Domain knowledge - It is normal that models are applied to process texts

containing knowledge about specific domains that requires additional knowledge

to understand, for example, finance, medicine, etc. Since new knowledge and

19

concepts are created everyday, it is not possible for human annotators to cover

and follow all available domain knowledge.

• Difficulty of reasoning - Some complex texts are difficult to understand and

generate in different ways, for example, text style, implications, language con-

ventions, and noise/typos, etc. It is impossible for human annotators to cover

all possibilities since the number of possible natural text is infinite.

• Explainability - Most annotated benchmarks only contain input-label pairs, but

do not include the reason for making a prediction. As a result, a machine learning

model has to learn the input-lable mappings in a black-box style. However in

practice, it is dangerous to trust model predictions without explanations in many

areas.

To address the annotation bottleneck, previous studies have proposed different

methods for few-shot learning [Finn et al., 2017] and transfer learning [Bengio, 2012].

Few-shot learning stands for the situation where only a few training cases are available,

while transfer learning aims at generalizing a model pretrained on a source training set

to a target task. Under both settings, there is a gap between the source training data

and the target task caused by the difference of domain, difficulty, language style, etc.

In other words, the target task has a different data distribution. Existing solutions for

the problem are:

Model agnostic meta-learning (MAML) [Finn et al., 2017] introduces a second-

order optimization on the source training data to learn a good initialization parameter

setting for adapting to the new task by learning a small training set of the target task.

This method requires an annotated training set including different tasks or domains,

and learns to minimize the transferring difficulty among different training tasks.

Although achieving impressive improvement on few-shot learning, the disadvantage

of this method is obvious. Firstly, it needs a fine-grained training set annotation,

and secondly, the computation of second-order gradients is very expensive, making it

difficult to conduct this method on modern large-scale neural network-based language

models.

20

Large-scale pretrained language models (PLM) was originally proposed by

[Peters et al., 2018b] for contextualized word representation learning, but later stud-

ies found that training large-scale transformer [Vaswani et al., 2017] language mod-

els on large corpora can improve the finetuning performance on downstream NLP

tasks [Devlin et al., 2018, Brown et al., 2020b]. The PLMs are pretrained with self-

supervised learning on large corpora, for example, the entire Wikipedia corpus, to

learn as much knowledge as possible. This pretraining strategy leads to fast and stable

finetuning of downstream tasks. Pretraining also mitigates the domain and language

gaps between the training and target datasets, since a wide range of vocabulary and

sentences have been learned by the model. In this chapter, we will introduce the

development of different neural language models, and then present the target and

scope of this thesis.

1.1 Thesis Scope

In this thesis, we explore self-training methods for different natural language processing

tasks. We first focus on learning soft label presentations in dialog response and action

selection tasks to improve both accuracy and interpretability. In Chapter 3, we propose

an interpretable dialog response selection by learning an evidence extraction model

with pseudo-labels generated by a retrieval model. In Chapter 4, we propose a few-shot

dialog action selection model for automatic diagnosis by learning prototypical dialog

action embeddings in a self-supervised manner. Experiments show that learning with

soft labels can improve the performance of both dialog-related tasks.

To further explore the potential of self-training models, we propose models for

zero-shot domain adaptation for question answering (QA) models. In chapter 5, we

proposed a self-supervised prompt pretraining method that learns domain knowledge

before prompt tuning QA models. In Chapter 6, we explore directly training QA

models on synthetic textual data generated by a cooperative question generation and

answering pipeline, RGX.

For question generation (QG), we propose a sequence-to-sequence generation model

21

Self-training for Natural Language Understanding (NLU)

Dialog system Question answering
with zero-shot domain adaptation

Other NLU tasks

Dialog response selection
Self-training for interpretability

Dialog action selection
self-training for

new disease adpation

Domain self-training

Synthetic QA generation

Fact checking
with synthetic QA pairs

Robust NLU with
adversarial self-training

Figure 1-1: Overview of the structure of this thesis.

based on an answer-entity recognition. The question generation model can be further

improved by using the pseudo labels generated by pretrained question answering

models, with an appropriate synthetic data selection method.

For question answering (QA), we extend previous studies that train QA models

with synthetic QA pairs by jointly tuning QA and QG models in a cooperative self-

training pipeline, which encourages the QG model to generate non-trivial questions to

improve the QA training. With the jointly learned QA and QG models, we build a

system that automatically generates diverse and accurate synthetic QA pairs.

In Chapter 7, we extend the self-training method to other natural language un-

derstanding tasks, including fact checking and language entailment. We propose a

QA-based fact checking pipeline, which achieved better performance under unsuper-

vised settings comparing to supervised end-to-end models. We propose an adversarial

self training method for the language entailment tasks, and present the experiment

results on both regular and adversarial language understanding benchmarks.

The overview of the thesis is shown in Figure 1-1.

22

Chapter 2

Background

2.1 Neural Language Models

Figure 2-1: Architecture of a MLP-based language model for next-word prediction
[Bengio et al., 2003].

Language modeling is a task that requires models to estimate the distribution of

words given surrounding context. To improve the generalization ability of traditional N-

23

gram language models, [Bengio et al., 2000] proposed a neural network-based language

model that predicts the next word based on given contexts using multi-layer perceptron

(MLP). The architecture of the model is shown in Figure 2-1. By learning to estimate

the probability

𝑃 (𝑤𝑡|𝑤0, 𝑤1, . . . , 𝑤𝑡−1) (2.1)

the neural network gains semantic and syntactic knowledge about the language it pro-

cesses. Although applying different neural network architectures, later language models,

including the latest ones, are trained with similar methods that models the probabil-

ity of a word given its context. [Mikolov et al., 2013a] and [Pennington et al., 2014]

proposed models that learn distributed word embeddings by maximizing the mutual

information between words with their surrounding contexts with linear models.

To improve the performance of the language models on different tasks, more compli-

cated neural networks are applied in language modeling, including long short-term mem-

ory (LSTM) [Hochreiter and Schmidhuber, 1997] and transformer [Vaswani et al., 2017]

networks. [Merity et al., 2017] proposed AWD-LSTM, concluding that recurrent neu-

ral network (RNN) based language models can achieve low generation perplexity after

careful regularization. [Dai et al., 2019] proposed Transformer-XL, which improves

language perplexity by processing longer contexts. Both LSTM and transformer mod-

els are also used for different language understanding and generation tasks, including

coreference resolution [Lee et al., 2017], question answering [Rajpurkar et al., 2016],

machine translation [Bahdanau et al., 2014], text retrieval and dialog response selec-

tion [Humeau et al., 2019a].

Although achieving significant improvement on different NLP tasks with compli-

cated neural language models, there is an obvious gap between the language modeling

task itself and other downstream NLP tasks, including language understanding and

generation. For downstream tasks, the models are trained on annotated training sets.

However, language modeling does not require human annotation since the training

dataset labels itself - the inputs are contexts, and the label is the next word. As a result

of this difference, training models for downstream NLP tasks heavily relies on human

24

LSTM LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM LSTM

X1 X2 X3 X4 X5

Figure 2-2: Architecture of the ELMO model [Peters et al., 2018a], which generates
contextualized word embeddings by combining the hidden states output by both
LSTM networks.

annotation, but language model training can be conducted on any publicly available

texts with self-supervised learning. To utilize this advantage of language model learn-

ing, [Peters et al., 2018a] proposed a contextualized word embedding method, where

a bi-directional LSTM is pretrained on large corpora for a bi-directional language

modeling task. For other NLP tasks, the pretrained LSTM can be finetuned as an

encoder of input texts. Compared with a randomly initialized neural network, the

pretrained LSTM provides a high-quality prior for better training generalization since

it has already learned to process a large amount of text data and gains richer semantic

and syntactic knowledge. The architecture of the proposed model, ELMO, is shown

in Figure 2-2.

A similar idea is also implemented with the stronger transformer model. The

authors of [Devlin et al., 2018] proposed a masked language model task for language

model pretraining. For a piece of given context, a transformer model is trained to

recover randomly masked or replaced tokens. Note that the masked language model is

25

similar to the continous bag-of-words model proposed in [Mikolov et al., 2013b], but

instead of training a linear maximum mutual information model, BERT learns word-

context knowledge with a deep transformer network. To better represent sequence-level

information for sequence-level tasks, BERT is pretrained to predict the next sentences

in addition to masked word prediction. Like ELMO, BERT can also be finetuned

for downstream NLP tasks. The fact that transformer models do not have recurrent

architecture leads to two benefits. Firstly, the transformer model does not need a

bidirectional architecture since it processes sequences as a batch of ordered words,

and secondly, transformer models are easier to train so a larger numbers of layers and

trainable parameters can be utilized. As a result, the BERT model proposed in this

study significantly outperformed the LSTM-based ELMO model. An example of the

masked language modeling task is shown in Figure 2-3.

Figure 2-3: The training and finetuning illustration of the BERT model. The image is
created by the authors of [Devlin et al., 2018].

While ELMO and BERT models are mainly applied as the encoder for language

encoding and understanding, neural language models are also pretrained on large

corpora for language generation tasks. GPT-2 [Brown et al., 2020b] is a pretrained

left-to-right generative language model, while BART [Lewis et al., 2019a] and T5

[Raffel et al., 2019] employ a sequence-to-sequence architecture. These models can be

finetuned to solve language generation tasks, for example machine translation, text

summarization, and narrative question answering, while they can also solve language

26

understanding tasks in a generative manner. The architecture of left-to-right and

sequence-to-sequence language generators are shown in Figure 2-4.

Input text Output text

Input text

Output text

Left-to-right language generator Sequence-to-sequence language generator

Figure 2-4: Left-to-right and sequence-to-sequence language generation models.

Besides the pretrained language models for general tasks, some language mod-

els are pretrained for different downstream tasks with tast-specific training strategies or

datasets. For example, DialoGPT [Zhang et al., 2019] and BlenderBot [Shuster et al., 2020a]

are pretrained on conversational corpora for dialog generation. Realm [Guu et al., 2020]

and DPR [Karpukhin et al., 2020a] are pretrained for passage retrieval and open-

domain question answering. All models listed above are pretrained with a self-

supervised strategy and can be finetuned for related downstream NLP tasks. A

summarization of proposed pretrained language models is shown in Figure 2-5.

AWD-LSTM

Transformer-XL

Transformer
Language

Model

BERT

RoBERTa

XLNet

GPT-2

Seq2seq-
LSTM

Transformer
Translation

Model

BART

DistilBERT

ALBERT

LSTM Era Transformer Invented Pretrained
contextualized word embedding

& Language generator

Model
Pruning

Language understanding

Language generation

Auto-
Regressive

Seq2seq

DistilGPT

Novel Training

T5

DialoGPT

BlenderBot

Task-oriented

ELECTRA

DeBerta

Prompt-tuning
+ LM

DPR
SpanBERT

REALM

Discriminator

Span Completion

Decoding augmented

T0

Task generalization

Bi-LSTM Transformer

ELMO

Figure 2-5: A summarization of the development of neural language models.

27

2.2 Training and Finetuning Language Models

The language models introduced in the previous section are trained with large corpora

using a self-supervised training strategy, which models the coherence of a piece of text

𝑥 with its context 𝑐

𝑃 (𝑥|𝑐) = LM(𝑐) (2.2)

where LM stands for neural language models. For BERT-like models, 𝑥 can be

a masked token, word, span, or the following sentences. For left-to-right language

models like GPT-2, 𝑐 stands for the current input and 𝑥 is the next word. For

sequence-to-sequence models, 𝑐 represents the input sequence and 𝑥 is the target

output. The models are usually trained with cross entropy losses for each token to

maximize the likelihood that 𝑥 is observed around context 𝑐. Some additional training

strategies can improve the finetuning performance for specific tasks. For example,

modeling word replacement can improve the accuracy of extractive question answering

[Clark et al., 2020], and pretraining with a maximum mutual-information objective

benefits both dialog generation and machine translation models [Zhang et al., 2019].

Language encoders can be improved with decoding-aware training [He et al., 2020],

and pretraining can become more efficient with downstream-aware task generalization

[Sanh et al., 2021].

Finetuning pretrained language models can follow the regular task-specific training

pipeline to tune all parameters, while another option is prompt tuning [Lester et al., 2021].

In prompt tuning, model parameters are fixed and 𝑁 prompt tokens, each with a

𝑑−dimensional trainable prompt embedding, are concatenated to the input texts.

As a result, instead of tuning a large number of parameters in the language model,

the size of training parameters in prompt tuning is only 𝑁 · 𝑑. Experiments in

[Lester et al., 2021] showed that by fixing the majority of parameters, prompt-tuned

models are more robust against domain and task switch by mitigating the overfitting

led by regular whole-model tuning. The prompt tuning method is shown in Figure

2-6. Because of the nature of data-driven, maximum-likelihood optimization methods,

the performance of both model tuning and prompt tuning strategies is influenced

28

Input Tokens

Input Embeddings

Prompt Tokens

Prompt
Embeddings

Encoder Decoder

Output Tokens

Output hidden States

Trainable

Fixed

Figure 2-6: Prompt tuning of pretrained language models.

when there is not enough data for downstream tasks. A common solution to this is

processing as much information as possible in the pretraining phase.

2.3 Reinforcement Language Modeling

Besides regular pretraining and finetuning on large text corpora and task benchmarks,

there are situations that we hope the language models can be trained dynamically

where the available annotated task data is not enough. To achieve this goal, the

models are tuned with policy gradients to optimize undifferentiable objectives.

Self-critical sequence training [Rennie et al., 2017] if proposed for directly opti-

mizing the BLEU and Rouge scores for image captioning models using reinforcement

learning, since the BLEU and Rouge scores between generated and annotation caption-

ing texts are not differentiable w.r.t. model parameters. A similar method is proposed

in [De Vries et al., 2017], where an image caption model and an image retrieval model

29

collaborate to complete an image guessing game. To successfully retrieval the target

image, the captioning model needs to provide a natural and accurate description. The

success of image retrieval is also undifferentiable, thus policy gradient is applied to

encourage the captioning model to generate informative queries.

Another task is generating natural texts that are similar to human-generated sen-

tences. To achieve this goal, adversarial generative training [Goodfellow et al., 2014]

is applied to train sequence generation models, namely SeqGAN [Yu et al., 2017].

There is no downstream task provided for the generative training, but a discriminator

is trained to classify machine- and human-generated texts. The text generator is

rewarded if it successfully makes the discriminator to make a wrong prediction. Since

the sequence is discrete so that the entire pipeline is not differentiable as GANs that

generates images, the training signals are also propagated with policy gradients.

2.4 Transfer Learning

Although PLMs have led to significant improvements on different NLP benchmarks

and mitigated the difficulty of applying language models to different tasks and domains,

the data distribution gap between training and evaluation domains remains a difficult

problem to solve since self-supervised pretraining does not involve any information

about downstream tasks, which is crucial for finetuning, for example, question answer-

ing and sentiment analysis. With the pretrained parameters, the language models can

converge quickly during finetuning, but also can overfit simple training cases. The

finetuning performance can be decreased to the level of random guessing by creating

adversarial evaluation sets [Bartolo et al., 2020, Wang et al., 2021].

Another method for transfer learning is automatically generating training data

on unlabeled corpora using pretrained models, and train a new model on the syn-

thetic data, namely self-training in related preliminary studies [Rosenberg et al., 2005,

Zoph et al., 2020, He et al., 2019]. Although it is obvious that the synthetic data

is more noisy than human annotated data and the domain / task gap still exists,

training language models with synthetic data allows the model to process the texts

30

of the target domain and partly capture the data distribution of the target domain.

[He et al., 2019] also points out that training on synthetic labels benefits the training

as a smoothing regularization. However, the proposed self-training methods for NLP

tasks are straightforward, and there is no systematic study to explore the best practice

of self-training for natural language processing.

31

32

Chapter 3

Joint Retrieval-Extraction Training for

Evidence-Aware Dialog Response

Selection

3.1 Introduction

In this chapter, we propose a self-training method that learns interpretable dialog

response generation by generating soft pseudo labels.1 Dialog response selection is an

important function in a complete dialog system to retrieve human generated texts or

re-rank machine generated responses. Given an input query and candidate texts, an

encoder is applied to encode, score, and rank the query-candidate pairs. To achieve

this goal, the models are optimized for assigning higher scores to the ground-truth

candidates as compared to negative candidates during training [Dinan et al., 2019,

Gunasekara et al., 2019].

State-of-the-art dialog response selection systems apply the Transformer architec-

ture [Vaswani et al., 2017] with pre-trained parameters, for example BERT [Devlin et al., 2018]

and ConveRT [Henderson et al., 2019a]. The model architecture that achieves the best

scoring performance with a pre-trained transformer model is called a cross-encoder

1Based in part on the paper “Joint Retrieval-Extraction Training for Evidence-Aware Dialog
Response Selection,” by H Luo, J Glass, G Lalwani, Y Zhang, SW Li, in Proc. Interspeech, 2021.

33

!

:I just watched the movie “The Wandering Earth”.

Oh, is its story authored by Liu Cixin?

Sounds good!

It’s a good restaurant on the Main st!

"#$ %

Figure 3-1: An example of a dialog response selection. The phrase in red is the reason
why the first candidate is the best response for the given dialog history. Human can
tell the best response as well as the reason or evidence in a dialog response selection
task.

[Humeau et al., 2019b]. By concatenating the input query with each candidate and

encoding them jointly with a transformer network, improved representations of query-

candidate pairs are generated. The candidate score of a sequence is obtained by feeding

the output embedding of the first token of the entire sequence (e.g. [CLS] in BERT)

into a linear layer. The sequence which is assigned with the highest score among

all candidates is selected as the retrieved result. Under this setting, the information

encoded in other positions / tokens is not used explicitly.

On the other hand, extractive question answering (QA) and reading comprehen-

sion [Rajpurkar et al., 2016, Gao et al., 2019] models apply similar architectures for

sequence scoring but utilize output embeddings of all the tokens during training and

inference. Each question and context passage are concatenated into a sequence, and the

embedding of each token in the sequence is fed into standard feed-forward and softmax

layers to compute the token score. These token scores are used to extract the span of

tokens that can answer the question given the context. The question is predicted as

not answerable given the context if the [CLS] token yields the maximum score. The

architecture suggests that token-level (i.e., span extraction) and sequence-level (i.e.,

answerable or not) tasks can be modeled jointly.

34

Motivated by the joint modeling of token- and sequence-level information, we

propose a novel Retrieval-EXtraction (REX) training strategy for dialog response

selections. In REX, we design two objectives for retrieval and extraction, which guides

the model to select the correct responses and attend to the relevant token-level evidence

respectively. As compared to the conventional cross-encoder, the evidence attention

improves both performance and interpretability. It is worth noting that in REX the

retrieval scores from the embedding of the first-token ([CLS]) and the extraction scores

work in the opposite manner as compared to QA - higher scores from [CLS] in REX

represents possible responses. In addition, most dialog response selection corpora

annotate no token-level evidence that explains the best response. To learn the evidence

without human annotation, we design a transformation and a regularization function

to relate the retrieval and extraction scores properly, learn token-level attention in an

unsupervised way, and stabilize the training. We evaluate REX with the ConvAI2

and DSTC7 Track 1 challenges, showing REX achieves the state-of-the-art (SOTA)

result by a large margin. To summarize our main contributions:

• We propose a combined retrieval and extraction training method for cross-encoder

models (REX-encoder).

• We design a transformation and a regularization function to relate the retrieval

and extraction scores, encourage the attention to token-level evidence, and

stabilize model training.

• We show REX achieves a new SOTA in the popular dialog response selection

corpus, DSTC7, and demonstrate that the learned evidence attention improves

interpretability.

3.2 Related Work

There are many tasks that adopt the setup of scoring or ranking a set of candidates given

some query (context). One of the most common tasks is Dialog Response Selection.

The task is either employed by dialog retrieval systems or in general conversational

systems for evaluating their language understanding capabilities. Recently, it has

35

become popular to use this task as one of the pre-training strategies for learning

powerful pre-trained representations to be leveraged in conversational systems instead

of BERT. [Henderson et al., 2019b, Henderson et al., 2019a, Humeau et al., 2019b]

use a dialogue response selection objective and a huge Reddit conversational corpus to

pre-train more conversational encoders. Experiments show the encoders yield better

performance as compared to general BERT representations pre-trained with Wikipedia

data. [Wu et al., 2020] jointly learn a response contrastive loss and masked language

modeling loss to train a more task-oriented dialog pre-trained model initialized from

BERT parameters. The neural language models are widely applied in the domain

of goal-oriented dialog systems [Ramadan et al., 2018, Wen et al., 2017b], end-to-end

dialog generation [Zhao et al., 2019, Liu et al., 2018, Wen et al., 2017a], dialog state

tracking [Williams, 2014].

Besides dialogs, sequence scoring is directly applicable to Open Domain QA

[Chen et al., 2017a, Lee et al., 2019]. In the task, the first step is to retrieve top

relevant context passages or documents that may contain the answer, and then apply

machine comprehension models to extract a token span for answers [Chen et al., 2017b].

Recent approaches like [Lee et al., 2019, Karpukhin et al., 2020b] leverage pre-trained

transformer models to encode a question and documents, and then retrieve rele-

vant documents using cosine similarity between these encodings. More recently,

sequence scoring is also used in obtaining language agnostic sentence representa-

tions [Feng et al., 2020] by ranking various target sentences based on similarity in

cross-lingual embedding space.

3.3 Cross-Encoders

In this section, we introduce two of the most popular methods for sequence scoring

with the transformer models. In the following, we refer to dialog context or questions

as queries and sequences for selecting response or answer spans as candidates. The

first method for scoring query-candidate pairs is a bi-encoder, that generates the query

and candidate embeddings separately and calculates their inner products as scores. A

36

bi-encoder is fast to calculate since the embeddings can be pre-computed separately

and reused, but yields suboptimal performance. In contrast, a cross-encoder, the

type of method explored in this work, yields state-of-the-art (SOTA) performance for

sequence scoring. The method encodes the concatenation of query 𝑄, candidates 𝐶,

and special tokens,

𝐸𝑖 = 𝑇 ([𝐶𝐿𝑆], 𝑄, [𝑆𝐸𝑃], 𝐶𝑖, [𝑆𝐸𝑃])

𝑋𝑖 = 𝐸𝑖 ·𝑊

where 𝑄 = [𝑞1, 𝑞2, . . . , 𝑞𝑚] is the input query, 𝐶𝑖 = [𝑐𝑖1, 𝑐
𝑖
2, . . . , 𝑐

𝑖
𝑛] is the 𝑖−th candidate

sequence, 𝑇 stands for a transformer model, 𝐸𝑖 = [𝑒𝑖1, 𝑒
𝑖
2, . . . , 𝑒

𝑖
𝑚+𝑛+3] are output

embeddings of all tokens in the concatenated sequence including special tokens, and 𝑊

represents a linear layer. The final output scores are 𝑋𝑖 = [𝑥𝑖
0, 𝑥

𝑖
1, . . . , 𝑥

𝑖
𝑚+𝑛+3]. Given

that the cross-encoder considers concatenated query-candidate pairs and computes

self-attention over entire concatenated sequence, it is much more expensive than a

bi-encoder.

In a retrieval task such as dialog response selection, the model is trained to select

the best candidate sequence. Given a set of candidates, the retrieval probability of

candidate sequence 𝑖 is calculated with a Softmax using the scores of the first tokens

or the candidates,

𝑃𝑅(𝑖) =
exp(𝑥𝑖

0)∑︀
𝑗 exp(𝑥

𝑗
0)

=
exp(𝑥𝑖

0)

𝑍𝑅

(3.1)

Where the superscripts 𝑖 and 𝑗 stand for sequence IDs, and the subscript 0 stands for

the token ID within a sequence. On the other hand, in an extraction task, such as

extractive question answering or dialog state tracking, the goal of a model is to extract

an answer span if a reasonable answer exists. For simplicity, we assume the extraction

targets are single-token, so that the probability a token 𝑘 extracted in candidate 𝑖 is

𝑃𝐸(𝑘)
𝑖 =

exp(𝑥𝑖
𝑘)∑︀

𝑗 exp(𝑥
𝑖
𝑗)

=
exp(𝑥𝑖

𝑘)

𝑍𝑖
𝐸

(3.2)

where 𝑍𝑅 and 𝑍𝑖
𝐸 are retrieval and extraction potentials respectively. If no answer is

available, the model extracts the first token, [CLS], of the input sequence.

37

3.4 REX Encoder

3.4.1 Bridging Retrieval and Extraction

In our work, we propose a combined supervised Retrieval, unsupervised EXtraction

learning algorithm based on cross encoders (REX encoder) for dialog response selection.

The retrieval and extraction task guides the model to rank candidate texts and to

attend to supporting evidence respectively. The REX encoder learns retrieval- and

extraction- probabilities jointly by assuming that when the training converges, both

retrieval and extraction probabilities (𝑃𝑅 and 𝑃𝐸) follow the properties below. If

sequence 𝑖 is the true candidate, then

𝑃𝑅(𝑖) = 𝑃𝐸(𝑘)
𝑖 = 1,∃𝑘 > 0 (3.3)

𝑃𝑅(𝑖) is the probability of sequence 𝑖 being the true candidate. 𝑃𝐸(𝑘)
𝑖 = 1,∃𝑘 > 0

indicates that a token other than [CLS] in the sequence is extracted as the answer. If

sequence 𝑖 is not the true candidate (i.e., negative sequence), the retrieval probability

is 0 and the model extracts the [CLS] token as the answer. That is,

𝑃𝑅(𝑖) = 0;𝑃𝐸(0)
𝑖 = 1 (3.4)

With the above properties, we expect that for all candidate sequences, when the

training converges,

𝑃𝑅(𝑖) = 1− 𝑃𝐸(0)
𝑖 (3.5)

3.4.2 Transformed Extraction Scores

Note that in the retrieval task, a large 𝑥𝑖
0 score indicates that the sequence should

be selected, while in the extraction, a large 𝑥𝑖
0 score means that the context does not

contain the answer. As a result, it is necessary to resolve this conflict when computing

𝑃𝑅(𝑖) and 𝑃𝐸(𝑘)
𝑖 in a combined model.

To derive the solution, we first formulate the retrieval and extraction probability

38

with the token scores. Given the raw outputs from the model 𝑋𝑖 = [𝑥𝑖
0, 𝑥

𝑖
1, . . . , 𝑥

𝑖
𝑁], we

use 𝑥𝑖
0 to compute the retrieval probability with Equation 3.1. For extraction, we first

transform 𝑥𝑖
𝑘 with a function 𝑓(·), and then apply Softmax to obtain the probability

𝑃𝐸(𝑘)
𝑖 =

exp(𝑓(𝑥𝑖
𝑘))∑︀

𝑗 exp(𝑓(𝑥
𝑖
𝑗))

=
exp(𝑓(𝑥𝑖

𝑘))

𝑍𝑖
𝐸

(3.6)

Obviously, to avoid a conflict, we need 𝑓(𝑥) to be small when 𝑥 is large and vice

versa. In the following, we show that 𝑓(𝑥) can be as simple as −𝑥, and derive some

modification required in training loss for making the transformation.

Theorem 1. If 𝑓(𝑥) = −𝑥, our ultimate goal, Equation 3.5, holds when

• true candidates and log𝑍𝑖
𝐸 = log𝑍

𝑖,[1:𝑁]
𝐸 ,

• wrong candidates and − log
∑︀𝑁

𝑗=1 𝑒
−𝑥𝑗

𝑖 = log𝑍𝑅.

Proof. To derive the exact form of the transformation function 𝑓(·), we rewrite

Equation 3.5 in log probability space, and we can get the following equation

log𝑍𝑖
𝐸 − log𝑍

𝑖,[1:𝑁]
𝐸 = −𝑥0

𝑖 + log𝑍𝑅 (3.7)

where 𝑁 is the length of the entire sequence and

𝑍
𝑖,[1:𝑁]
𝐸 = 𝑍𝑖

𝐸 − exp(𝑓(𝑥0
𝑖)) (3.8)

which is the potential of the sequence without the [CLS] token. Note that log𝑍𝐸 and

log𝑍𝑖
𝐸[1 : 𝑁] are 𝐿𝑜𝑔𝑆𝑢𝑚𝐸𝑥𝑝 functions, which smoothly approximate the maximum

extraction scores

log𝑍𝑖
𝐸 ≈ max(𝑓(𝑥𝑖)

𝑁
0) (3.9)

If the candidate is true, it is trivial that when both model converges,

log𝑍𝑖
𝐸 − log𝑍

𝑖,[1:𝑁]
𝐸 ≈ −𝑥0

𝑖 + log𝑍𝑅 ≈ 0 (3.10)

With the approximations, we attempt to calculate 𝑓(·) by assuming 𝑓(𝑥) = −𝑥+ 𝑐,

39

where 𝑐 is a constant scalar. Consider the left hand side of Equation 3.7 and assume

the sequence is not the retrieval result. In this case, 𝑥𝑖
0 is low and 𝑓(𝑥𝑖

0) is the highest

extraction score among all tokens

log𝑍𝑖
𝐸 − log𝑍

𝑖,[1:𝑁]
𝐸

= log
𝑁∑︁
𝑗=0

𝑒−𝑥𝑖
𝑗+𝑐 − log

𝑁∑︁
𝑗=1

𝑒−𝑥𝑖
𝑗+𝑐

= log
𝑁∑︁
𝑗=0

𝑒−𝑥𝑖
𝑗 + 𝑐− log

𝑁∑︁
𝑗=1

𝑒−𝑥𝑖
𝑗 − 𝑐

≈ −𝑥𝑖
0 − log

𝑁∑︁
𝑗=1

𝑒−𝑥𝑖
𝑗

(3.11)

The last line of Equation 3.11 suggests that the value of 𝑐 is irrelevant to the residual

value of the two extraction potentials. Thus, we can simply set

𝑓(𝑥) = −𝑥 (3.12)

For Equation 3.7 to hold, we should make sure that

−𝑥𝑖
0 − log

𝑁∑︁
𝑗=1

𝑒−𝑥𝑖
𝑗 = −𝑥𝑖

0 + log𝑍𝑅 (3.13)

We can eliminate 𝑥𝑖
0 on both sides of the equation and obtain − log

∑︀𝑁
𝑗=1 𝑒

−𝑥𝑖
𝑗 = log𝑍𝑅.

To encourage the trained model satisfying − log
∑︀𝑁

𝑗=1 𝑒
−𝑥𝑖

𝑗 = log𝑍𝑅 (and thus Equation

3.5) when converged, we add a regularization term, called distribution bridging loss,

during training

𝑙𝑖𝑏𝑟𝑖𝑑𝑔𝑒 = || − log
𝑁∑︁
𝑗=1

𝑒−𝑥𝑖
𝑗 − log𝑍𝑅||1 (3.14)

Note that the term only applies to the negative sequences.

40

[CLS] Dialog History [SEP] Dialog Response x

Transformer - Cross Encoder

… …

Linear

Evidence
Score

…

Linear

Evidence
Score

Linear

Evidence
Score

Linear

Evidence
Score

Softmax

[CLS] w1 w2 w3 w4 w5

Retrieval
Score

F

F

REX_Encoder

Cross-Encoder

(a) REX-encoder architecture

Retrieval Target

Retrieval Target
Retrieval
Scores

Evidence
Scores

F

(b) Learned retrieval and evidence scores

Figure 3-2: The REX-encoder model and an example of target retrieval and extraction
scores. In the REX-encoder in (a), the inner block contains the standard cross-
encoder architecture, and the REX encoder consists of a cross-encoder model and
an unsupervised extraction module. As shown in (b), retrieval and extraction are
opposite to each other. The first token of the ground-truth candidate should receive
a high retrieval score and a low extraction score. Each row stands for a candidate
responses, and each column stands for tokens in the utterances.

41

3.4.3 Unsupervised Extraction Learning

In most retrieval tasks and corpora, only the true passages for retrieval are annotated

and there are no explicit token-level labels for supporting evidence. Thus, it is difficult

to obtain supervised extraction learning signals. With this limitation, we introduce

an unsupervised method for the extraction learning, to train the model to focus on

the [CLS] tokens for negative sequences and attend to keywords for true candidates.

Negative Sequences

For negative sequences, we expect the extraction model to focus on the [CLS] token

because there is no evidence that supports the sequences to be good retrieval targets.

To achieve this goal, we generate a one-hot label that highlights the [CLS] token

𝑙 = [1, 0, 0, · · · , 0] (3.15)

Then, we train the extraction model with an extraction loss, which is the cross-entropy

loss based on 𝑙 plus the distribution bridging loss discussed in Equation 3.14.

𝑙𝑖,𝑛𝑒𝑔𝐸 = 1 · log exp 𝑓(𝑥0)

𝑍𝑖
𝐸

+ 𝜆 · 𝑙𝑏𝑟𝑖𝑑𝑔𝑒 (3.16)

Here the label 𝑙 is used to make the model focus on the [CLS] token in negative

sequences. Since we generate 𝑙 from the retrieval label automatically, the extraction

learning for negative sequences is unsupervised.

True Sequences

For true sequences, the goal of the extraction model is to extract keywords, or evidence,

from the text instead of paying attention to the [CLS] token. In this case, a trained

model should assign small values to 𝑓(𝑥0
𝑖). Hence, our approximation in Equation

3.11, which assumes that 𝑓(𝑥0
𝑖) is the largest extraction score in a sequence, does not

work anymore.

42

Instead, for a true sequence 𝑖, the model should assign a high retrieval probability

log𝑃𝑅(𝑖) = 𝑥0
𝑖 − log𝑍𝑅 ≈ 0 (3.17)

and low extraction score 𝑓(𝑥0) that makes

log𝑍𝑖
𝐸 − log𝑍

𝑖,[1:𝑁]
𝐸 ≈ 0 (3.18)

with the above approximations, Equation 3.7 holds

log𝑍𝑖
𝐸 − log𝑍

𝑖,[1:𝑁]
𝐸 ≈ −𝑥𝑖

0 + log𝑍𝑅 ≈ 0 (3.19)

Note that −𝑥𝑖
0 + log𝑍𝑅 = 0 is the objective function of the retrieval training, and we

force the leftmost part to approach zero by minimizing it as our extraction loss:

𝑙𝑖,𝑡𝑟𝑢𝑒𝐸 = log𝑍𝑖
𝐸 − log𝑍

𝑖,[1:𝑁]
𝐸 (3.20)

Since we usually do not have any annotation on the extraction target (i.e., evidence

or keywords), we design the implicit supervision to reward any attention distributed

on text tokens and penalize the attention assigned to the [CLS].

To sum up, for a query and a set of candidates including one true sequence, 𝑖,

and others as negative samples, we propose the overall loss function for unsupervised

extraction learning

𝑙𝐸 = 𝑙𝑖,𝑡𝑟𝑢𝑒𝐸 +
∑︁

𝑗∈𝑁𝐸𝐺

(𝑙𝑗,𝑛𝑒𝑔𝐸 + 𝜆 · 𝑙𝑗𝑏𝑟𝑖𝑑𝑔𝑒) (3.21)

3.4.4 Overall Architecture

As mentioned above, we combine a supervised-retrieval and an unsupervised-extraction

task to train the REX encoder. We show the complete architecture of the proposed

REX-encoder model in Figure 3-2a along with an example of the learned retrieval

and extraction scores in Figure 3-2b. The overall loss function for REX training is a

43

Psg 1

Psg i

Psg i+1

Psg N

Query

P_r1

P_ri

P_rN

P_r(I+1) [CLS] …… Word
N

Word
m

p_evidence

Word n …………

Loss_all = a * Loss_ret + b * Loss_ext

Figure 3-3: The loss function for training the REX encoder.

weighted combination of retrieval and extraction losses with coefficients 𝛼 and 𝛽,

𝐿 = 𝛼 · 𝑙𝑅 + 𝛽 · 𝑙𝐸 (3.22)

where 𝑙𝐸 has been shown in Equation 3.21 and

𝑙𝑅 = − log
exp(𝑥𝑖

0)

𝑍𝑅

(3.23)

In the following sections, we will evaluate REX on dialog response selection and explore

the effect of the values of 𝛼 and 𝛽. The loss function is illustrated in Figure 3-3.

3.5 Experiments

3.5.1 Task and Corpus

We evaluate the dialog response selection performance of the model on the Con-

vAI2 [Dinan et al., 2019] task and the DSTC7 challenge Track 1 Ubuntu dialog

corpus [Gunasekara et al., 2019]. ConvAI2 is based on the persona-chat dataset

[Zhang et al., 2018] where each participant of a conversation is given a persona The

dataset contains 1, 155 personas, each consisting of at least 5 profile sentences. The

44

Persona 1:
I like to ski
My wife does not like me anymore
I have went to Mexico 4 times this year
I hate Mexican food
I like to eat cheetos

Persona 2:
I am an artist
I have four children
I recently got a cat
I enjoy walking for exercise
I love watching Game of Thrones

[PERSON 1:] Hi
[PERSON 2:] Hello ! How are you today ?
[PERSON 1:] I am good thank you , how are you.
[PERSON 2:] Great, thanks ! My children and I were just about to watch Game of Thrones.
[PERSON 1:] Nice ! How old are your children?
[PERSON 2:] I have four that range in age from 10 to 21. You?
[PERSON 1:] I do not have children at the moment.
[PERSON 2:] That just means you get to keep all the popcorn for yourself.
[PERSON 1:] And Cheetos at the moment!
[PERSON 2:] Good choice. Do you watch Game of Thrones?
[PERSON 1:] No, I do not have much time for TV.
[PERSON 2:] I usually spend my time painting: but, I love the show.

Figure 3-4: Example dialog of the ConvAI2 task.

dataset contains 17, 878 conversations for training and 1, 000 conversations for evalua-

tion An example conversation is shown in Figure 3-4. The DSTC7 corpus contains

conversations about Ubuntu-related topics, most of which are questions and answers

among users of the Ubuntu community. The entire corpus contains 135,078 dialog

threads. The annotations of the challenge only contains true responses, with no

token-level evidence. Some examples are shown in Figure 3-6 and 3-7. We con-

duct supervised retrieval training with the annotated ground-truth responses and

unsupervised extraction training following the process described in Section 3.4.3.

3.5.2 Implementation Details

We implemented our model with the ParlAI framework2 based on its cross-encoder

implementation. We used the BERT-large model pre-trained on the Reddit dialog

corpus [Mazaré et al., 2018] provided by ParlAI. Following [Shuster et al., 2020b], we

2https://parl.ai/

45

apply the Adam [Kingma and Ba, 2015] optimizer with 0.01 weight decay rate. We

initialize the learning rate as 5𝑒− 5 with 1000 warmup steps and the decay rate for

every half epoch is 0.4. In practice, we set 𝛼 = 1, 𝛽 = 5, and the regularization

coefficient 𝜆 = 10−5. The authors of [Shuster et al., 2020b] trained the state-of-the-art

model with 8 Volta 100 GPUs with batch size as 16. Due to limited computational

resources, we trained our model on 2 Volta 100 GPUs and the largest batch size we

were able to use is 8. As a result, we are comparing our model with both the reported

performance in [Shuster et al., 2020b] and our reproduced state-of-the-art baseline

performance on our own machines. We conduct all experiments with the settings

described above unless specified otherwise.

3.5.3 Retrieval Performance

We evaluate our model on the dialog response selection task with two metrics, Recall@1

(R@1) given 𝐶 candidates, and mean reciprocal rank (MRR). The experiment results

are summarized in Table 3.1. Since the test set ConvAI2 challenge is not publicly

available, we evaluate our model on the development set. For a fair comparison,

we used the officially recommended hyper-parameter settings3 without any tuning.

Experiments show that the REX encoder outperforms the original SOTA model on

ConvAI2 Dev set and achieved new state-of-the-art performance on the DSTC7 Track

1 challenge despite the fact that we have limited computational resources.

Analyzing the performance gaps according to R@1/100 scores on the DSTC7

corpus suggests that REX yields significant improvement. As shown in Table 3.2,

the improvement achieved by applying the poly-encoder instead of the bi-encoder is

0.5%, while the state-of-the-art cross-encoder model outperformed the bi-encoder by

0.8%. Meanwhile, our model outperforms our own cross-encoder by 2.1%, and even

the reported state-of-the-art performance of cross-encoders by 1.2%, which is still

larger than both the reported Cross vs Bi and Poly vs Bi performance gaps.

3https://parl.ai/projects/polyencoder/

46

Models R@1 MRR

ConvAI2-Dev
Cross-encoder (Ours) 90.0 94.1
Rex-encoder 90.5 94.3

DSTC7
[Gu et al., 2018] 60.8 69.1
[Chen and Wang, 2019] 64.5 73.5
Bi-encoder 70.9 78.1
Poly-encoder 360 71.4 78.3
Cross-encoder 71.7 79.0

Cross-encoder (Ours) 70.8 78.0
Rex-encoder 72.9 79.4

Table 3.1: Retrieval performance of the baseline models and the proposed REX encoder
on ConvAI2 and DSTC7 track 1 challenge, where the cross-encoder is the previous
state-of-the-art model. We compare both the reported performance trained with
8 Volta 100 GPUs and batch size 16, and the performance reproduced by training
on our machine with 2 Volta 100 GPUs and batch size 8. The latter is denoted as
Cross-encoder (Ours). The experiment results of bi-, poly-, and cross-encoders are
reported by [Shuster et al., 2020b].

3.5.4 Effects of Regularization

We further analyze the effect of the distribution-bridging regularization with the

bridging loss 𝑙𝑏𝑟𝑖𝑑𝑔𝑒 described in Equation 3.14. Results with and without the bridging

regularization are listed in Table 3.3. According to the results, the regularization

improves the retrieval performance under our best model setting.

3.5.5 Which Task is More Important

As we discussed before, we combine the retrieval and extraction losses with coefficients

𝛼 and 𝛽. While the primary task is retrieval, it is interesting to explore different 𝛼

and 𝛽 settings. If 𝛼 is larger, the training is mostly guided by the retrieval loss; if 𝛽 is

larger than 𝛼, the majority of training signals would come from the extraction task.

For better visualization of the importance of the retrieval and extraction sub-tasks,

we fix 𝛼 = 1 and show the performance of different choices of 𝛽. The performance of

different settings of task weighting is shown in Figure 3-5. The plot indicates that

47

Comparisons R@1/100 Gaps

Poly vs Bi 0.5
Cross vs Bi 0.8

REX vs Poly 1.5
REX vs Cross 1.2
REX vs Cross (Ours) 2.1

Table 3.2: Comparing the improvement of different model pairs. The improvement of
our model over baseline is significant, since the performance gap between REX- and
cross-encoders is larger than the improvement of the cross-encoder over the bi-encoder.

Metrics REX-Encoder w/o Reg.
R@1/100 72.9 71.9
MRR 79.4 78.6

Table 3.3: The comparison of the REX-encoder with and without the distribution
bridging regularization.

applying a large value of 𝛽 (i.e., having more training signals from the extraction

tasks) leads to better performance, but we did not observe any improvement beyond

𝛽 = 5. The result suggests that the token-level information is more important than

sequence-level for the REX encoder.

3.5.6 Multi-tasking vs. Pooling

As we discussed above, one advantage of the REX-encoder model is that it utilizes

all the output embeddings during training. There are other simple ways to use all

the embeddings such as pooling. To show that the unsupervised extraction learning

provides additional knowledge as compared to the simple approach, we compare the

REX-encoder to cross-encoder with the following pooling methods,

• Scores mean and max pooling (S-mean/max): feed the output embedding of

each token to a linear scorer, and calculate the retrieval score of the sequence by

pooling the output scores of the linear layer.

• Embedding mean and max pooling (E-mean/max): pool the output embedding

of each token, and calculate the retrieval score of the sequence by feeding the

48

1-0.2 1-0.5 1-1 1-2 1-5
- pairs

71.25

71.50

71.75

72.00

72.25

72.50

72.75
R@1/100

Figure 3-5: R@1 performance of different 𝛽 settings.

Strategies R@1/100 MRR
[CLS] 70.8 78.0
S-Mean 70.1 77.2
S-Max 69.8 77.3
E-Mean 71.1 78.4
E-max 70.7 78.2
REX 72.9 79.4

Table 3.4: Comparing the REX-encoder with baseline models that also explicitly use
all the output embeddings of the cross-encoder with different pooling methods.

pooled sequence embedding to a linear layer.

The above strategies make it possible for the cross-encoder model to use the output

embedding of each token of the given sequence explicitly. Also, we use [CLS]-pooling

to denote the original cross-encoder model.

The experimental results in Table 3.4 showed that the no pooling strategy signifi-

cantly outperforms the baseline. Except for the E-mean strategy that obtains slightly

higher accuracy, all other strategies perform worse than the standard cross-encoder

model applying the [CLS] pooling strategy. The result suggests that the embeddings

of other tokens cannot provide additional information to improve the sequence-level

embedding for response prediction if no extraction training signal is provided.

49

Dialog History: I ordered a bunch of CD's a couple of weeks back, and on shipit
it says they were sent to shipping company, but I was ordering Breezy CD's.. How
does that add up?

Response: they are sending the order to the company prolly to ok ur order.
custom arnt automaticlly accepted

(a)

Dialog History: I run mpd as my local user, so I have to chown -R
brandon:audio /var/run/mpd

Response: ah then your problem ist just in mpd conf. just add hier, that mpd is
run with your user. so the init script will do the right thing

(b)

Dialog History: anybody here got a Logitech QuickCam Messenger up and
running? …. I don’t understand

Response: do you have the package qc-usb-source installed?

(c)

Figure 3-6: Visualization of the learned extraction model on the DSTC7 test set.
The model attends to the evidence in the true response, and to the [CLS] token in a
negative candidate.

50

Dialog History: History: participant 1: OK sweet. then I will just use the RAID to
store critical data and my databases

Response: we went over this already :(why must we repeat?. symlink media
directories like ~/Downloads,. oops - ~/Music ~/Pictures etc. to the RAID volume.

(a)
Dialog History: had a few weird happenings with the laptop …., a Lenovo
Ideapad Z570

Response (Negative): is your video card designed to be fualhead, or is it just
single head using dual outputs?

(b)

Dialog History: Okay.. Is a system reboot required after that ics guide?

Response: nope.. it should work once you've run all the commands

(c)

Figure 3-7: Visualization of the learned extraction model on the DSTC7 test set.
The model attends to the evidence in the true response, and to the [CLS] token in a
negative candidate.

51

3.5.7 Evidence Extraction

In this section, we analyze the quality of the learned extraction function. We calculate

the extraction attention for each token with the learned model and visualize the scores

in Figure 3-6 and 3-7 for sequences randomly sampled from the test set of DSTC7. The

example in Figure 3-7b shows a negative candidate, while the others are ground-truth

responses.

Visualizing the calculated extraction scores shows that the model attends to the

[CLS] token in a negative candidate in Figure 3-7b. For the true candidates, the

model attends to the response text and highlight the words that are coherent with

the dialog history. In the example in Figure 3-6a the extraction model focuses on

words "aren’t" and "accepted" to answer the shipment question. The dialog history

of Figure 3-6b discusses about mdp configurations, and the ground-truth is a long

response containing three short sentences. the extraction model attends to each period.

The most important part of Figure 3-6c is "qc-usb-source". The model successfully

attends to "qc", "usb", and "source". In Figure 3-7a, the model focuses on the word

"download" and "pictures", which link to the dialog history that discusses about

critical and non-critical data. In Figure 3-7c, the dialog history asks about if a reboot

is needed and the extraction focuses on "run commands" to answer the question.

3.6 Chapter Summary

In this chapter, we proposed a supervised-Retrieval, unsupervised-EXtraction (REX)

method based on the cross-encoder transformer neural network to improve the ac-

curacy and interpretability of dialog response selection. To achieve better retrieval

performance with token-level evidence, we designed an extraction score transformation

function and a regularization term for joint training. Experiments showed that REX

significantly outperforms the cross-encoder baseline and achieves the new SOTA per-

formance on the DSTC7 Track 1 challenge, without increasing the number of trainable

parameters. Our analysis suggests that the proposed unsupervised extraction training

leads to more improvement than simple poolings. The visualizations of the extraction

52

results demonstrate that the model attends to evidence keywords helping determine

whether the candidate is a good response, and thus enhance interpretability. The

overall results showed that the self-training method based on soft pseudo evidence

labels improves both accuracy and interpretability of dialog response selection systems.

53

54

Chapter 4

Prototypical Q Networks for

Automatic Conversational Diagnosis

and Few-Shot New Disease adaptation

4.1 Introduction

The previous chapter discussed dialog response selection, and in this chapter, we apply

a self-training method for dialog action selection in an automatic diagnosis systems

by learning prototypical label embeddings in a self-supervised manner.1 Recently,

spoken dialog systems have been a popular research topic in the human language

technology (HLT) area with various applications. Among these applications, the

dialog system for clinical conversation (i.e., medical agent) is a rising direction for

its widespread and impactful use [Wei et al., 2018]. A medical bot assists medical

practitioners to converse with patients, collecting information about their symptoms,

physical and mental conditions, or even making suggestions on the diagnosis. The

bot has significant potential to make the diagnostic procedure more efficient. An

example of an automatic diagnosis dialog system is shown in Figure 4-1. Starting

1Based in part on the paper “Prototypical Q Networks for Automatic Conversational Diagnosis
and Few-Shot New Disease adaptation,” by H Luo, SW Li, and J Glass, 2020. Proc. Interspeech
2020.

55

from a self-report, the medical bot collects and distills symptom information before it

makes the disease prediction.

Dialog
Agent

The baby sneezes and has a
runny nose

Does the baby have a cough?

Yes

Does the baby have a fever?

Not sure

The baby might have an
upper respiratory infection.

Figure 4-1: An example of a dialog between a patient and a medical agent. First,
the patient provides a self report. Then the agent conducts a dialog by requesting
symptoms and concludes by making a decision about the disease.

One of the core challenges of building such a dialog system is to design and train

a dialog policy manager that can reason and decide the action to take based on the

understanding of user intentions and conversation context. It is more challenging

for a medical bot because of the need to integrate medical knowledge for reasoning

and decision making. [Wei et al., 2018] proposed a reinforcement learning (RL) frame-

work with multi-layer perceptron deep Q networks (MLP-DQN) [Mnih et al., 2013].

[Xu et al., 2019] extended the study by enhancing the DQN with hand-crafted features

among diseases and symptoms, generated from the training set. However, both models

cannot directly learn from real doctor-patient conversations. For the RL agent to fully

explore the entire action space, the agent can only learn by interacting with rule-based

56

user simulators, which can not learn from the dialog histories between real doctors

and patients.

Another difficulty faced by the RL-based dialog manager is adapting a trained

policy to new tasks (e.g., adapting trained medical bot to serve new diseases), since

adaptation data is usually limited and hard to collect. On the other hand, Meta-

learning algorithms are proposed to improve the model performance when training

or adaptation data is limited. [Finn et al., 2017, Snell et al., 2017]. Since both many-

and few-shot learning methods depend heavily on the quality of learned representations,

these studies encouraged us to combine meta-learning and deep reinforcement learning

models to improve the dialog agents for automatic diagnosis in both scenarios by

learning better representations of dialog actions and domain knowledge.

In this chapter, we propose prototypical Q networks (ProtoQN), borrowing the ideas

of prototypical networks [Snell et al., 2017] and matching networks [Vinyals et al., 2016].

We evaluate the model in the medical dialog domain since it is important and the medi-

cal conversations are a scarce resource. The model makes full use of real doctor-patient

conversations by calculating prototype disease and symptom embeddings by encoding

the dialog histories in the training set. Experimental results have shown that by

learning a shared prototype embedding space, the ProtoQN outperforms MLP-DQN

under both experiment settings. The experiments in this chapter focus on medical

dialog to show the benefit of the proposed method, but we believe the conclusion can

be generalized to other domains since we do not use handcrafted features or external

domain-specific information.

4.2 Related Work

4.2.1 Deep Q Networks

The deep Q networks (DQNs) are proposed in [Mnih et al., 2013] for handling Atari

video games. [Silver et al., 2016] proposed a deep reinforcement learning architec-

ture for mastering the game of GO. In the area of dialog systems, the DQN is a popular

57

model for building dialog managers and learning dialog policies [Zhao and Eskenazi, 2016,

Yang et al., 2017, Lipton et al., 2016, Peng et al., 2017, Fazel-Zarandi et al., 2017].

The goal of the DQN [Mnih et al., 2013] is to estimate 𝑞(𝑠, 𝑎), the Q value of

taking action 𝑎 at state 𝑠. At each time step, a DQN-based agent selects an action

with a 𝜖-greedy strategy, i.e., epsilon % of the time selecting action with largest Q

value given current state, and picking a random action for the rest. Meanwhile, the

transition of the current step, (𝑆𝑡, 𝐴𝑡, 𝑅𝑡, 𝛾, 𝑆𝑡+1), is added to a memory buffer for

future learning [Lin, 1992]. Here, 𝑆𝑡 is the state at time 𝑡, 𝐴𝑡 is the action taken at

time 𝑡, 𝑅𝑡 stands for the immediate reward at time step 𝑡, and 𝛾 is a discount rate.

The objective function for training the neural network is

𝐿 = (𝑅𝑡 + 𝛾𝑚𝑎𝑥𝑎′𝑞𝜃(𝑆𝑡+1, 𝑎
′)− 𝑞𝜃(𝑆𝑡, 𝐴𝑡))

2

where 𝜃 stands for the parameters set of the current network and 𝜃 is the parameters

of the target network. The parameters are updated by stochastic gradient descent

(SGD).

4.2.2 Spoken Dialog Systems

Spoken dialog systems aim at completing specific tasks [Papineni et al., 2001, Scheffler and Young, 2002,

Young et al., 2010, Luo et al., 2019b] by interacting with users through natural lan-

guage. Conventionally, a dialog manager is built to learn the dialog policy, which

decides actions by reasoning from dialog state (the combined representation of user

intentions and context). Dialog management is often formulated as a partially ob-

servable Markov decision process (POMDP), and solved as a reinforcement learning

(RL) problem [Young et al., 2013]. As of late, many state-of-the-art dialog systems

achieve satisfactory results by leveraging DQNs [Mnih et al., 2013, Silver et al., 2014],

to learn policy and manage dialogs [Zhao and Eskenazi, 2016].

58

4.2.3 Meta-Learning

Recently meta-learning has gained attention among the machine learning field for

improving model performance when little labeled training data is available. Model-

Agnostic Meta-Learning [Finn et al., 2017] optimizes parameter initialization over mul-

tiple out-of-domain subtasks for the initialization to be generalizable in targeted tasks

after fine-tuning on in-domain labels. Neural Turing machines [Graves et al., 2014]

augment neural models with memory modules to improve performance in the limited-

data regime. Metric-based meta learning, such as prototypical networks (ProtoNets)

[Snell et al., 2017], siamese neural networks [Koch et al., 2015], matching networks

[Vinyals et al., 2016], and structure induction models [Shen et al., 2017, Luo et al., 2019a]

learn embedding or metric spaces such that the space can be adapted to domains

unseen in the training set with only a few examples from the unseen domains. Meta-

learning models have also been applied in dialog generation [Qian and Yu, 2019] for

quick policy adaptation in different dialog domains. In this chapter, our proposed

model is evaluated in the medical domain that requires not only dialog policy, but

also multi-step reasoning with domain-specific knowledge.

4.3 Method

4.3.1 Dialog State Representations

Following the method proposed in [Wei et al., 2018] for vectorizing the dialog states,

each dialog state consists of 4 parts:

I. UserAction: The user action of the previous dialog turn:

• Request: A user sends a self-report containing a set of explicit symptoms and

request for diagnosis.

• Confirm: A user confirms the existence of an agent-inquired symptom.

• Deny: A user denies the existence of a symptom.

• NotSure: A user is not sure about the inquired symptom, which usually happens

when an unrelated symptom is inquired.

59

II. AgentAction: The previous action of the dialog agent:

• Initiate: The agent initiates the dialog and asks the user to self-report.

• Request: The agent asks the user if a symptom exists.

• Inform: The system predicts and informs the user of the disease.

III. Slots: The set of symptoms that appear in the dialog history and their status.

Each symptom has 4 possible status levels:

• Confirmed: The existence of the symptom is confirmed.The existence is denied

by the user.

• Unrelated: The symptom is not necessary for the doctor to make an accurate

diagnosis.

• NotInquired: The symptom has not been inquired about.

IV. NumTurns: The length of the dialog history, in other words, the current number

of turns.

In each dialog turn, we represent UserAction, AgentAction, and NumTurns with

one-hot vectors 𝑎𝑢, 𝑎𝑟, and 𝑛 respectively. We use a 66-dimension vector 𝑠 to represent

the Slots, where each dimension indicates the status of a symptom. A confirmed,

denied, unrelated, and not inquired symptom possesses values 1, −1, −2, and 0 in the

corresponding dimension. The final input of the neural network at the 𝑡-th turn is

represented as

𝑠𝑡 = [𝑎𝑢𝑡 , 𝑎
𝑟
𝑡 , 𝑛𝑡, 𝑠𝑡] (4.1)

4.3.2 Prototypical Q Networks

For modeling dialogs, we propose the prototypical Q networks (ProtoQNs) as well as

corresponding training and evaluation pipelines, based on conventional DQNs and

ProtoNets.

We first define the notation of our dataset as follows. The dataset 𝑆 contains 𝑁

doctor-patient conversations, {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑁 , 𝑦𝑁)}, where 𝑦𝑖 stands for the

disease label of the 𝑖−th training case, and 𝑥𝑖 stands for the corresponding dialog

60

history, where 𝑥𝑖 can be further represented as

𝑥𝑖 =
{︀
𝑢𝑖
0 = 𝐸𝑖, (𝑎𝑖1, 𝑢

𝑖
1), . . . , (𝑎

𝑖
𝑘, 𝑢

𝑖
𝑘), 𝑎

𝑖
𝑘+1 = 𝐷𝑖

}︀
(4.2)

Here 𝐸 stands for explicit symptoms reported at the beginning of each dialog, 𝑎

stands for agent follow-up inquiries, 𝑢 stands for user responses, and 𝐷 stands for the

predicted disease.

The core of the ProtoNets [Snell et al., 2017] is calculating and updating the

prototype embeddings of the output classes. The network classifies examples by

comparing the input embedding with the prototypes and predicts the class with its

prototype closest to the input embedding. As compared to other single-stage reasoning

tasks, such as image classification or object detection [Snell et al., 2017], medical

dialog requires multi-stage reasoning to infer dialog action through states. As a result,

we propose a method for computing action prototypes via dialog state embedding.

The calculation process of prototypical embeddings is shown in Figure 4-2

A_x

A_x

Dialog 1

Dialog 2

Dialog history and actions

M
LP

M
LP

History 2

History 1

Prototypical embedding
Of Dialog action A_x

Figure 4-2: Calculating prototypical embeddings of dialog actions using the history of
training dialogs.

61

Dialog state embedding

For each training conversation, 𝑥𝑖, as defined in Equation 4.2, the dialog state 𝑠𝑖𝑗 at

time step 𝑗 can be represented as

𝑠𝑖𝑗 =
{︀
𝑢0, (𝑎

𝑖
1, 𝑢

𝑖
1), . . . , (𝑎

𝑖
𝑗−1, 𝑢

𝑖
𝑗−1)

}︀
(4.3)

𝑠𝑖𝑗 is then converted into a representation vector following Equation 4.1, denoted as

𝑓𝑒𝑛𝑐, to obtain the state embedding, 𝑒𝑖𝑗. That is

𝑒𝑖𝑗 = 𝑓𝑒𝑛𝑐(𝑠
𝑖
𝑗) (4.4)

With the approach described above, for any conversation we can get 𝑒𝑡, the embedding

of the dialog state at time step t (i.e., 𝑠𝑡).

Dialog action prediction

At each step of a dialog, the dialog system is provided a dialog state encoding 𝑠𝑡

in Equation 4.1. With the same encoder 𝑓𝑒𝑛𝑐 for embedding dialog states in the

training set, we calculate the embedding of the input dialog state 𝑒𝑡 in the new dialogs

generated in both training and evaluation phases with Equation 4.4.

Then we can further compute prototypes and predict dialog action. First, with the

state embedding 𝑒𝑡, the protoQNs calculate the Q value of the 𝑚-th dialog actions 𝑎𝑚

by

𝑞(𝑎 = 𝑎𝑚) = 𝑒𝑡 · 𝑃𝑚 (4.5)

where 𝑎𝑚 is the embedding of the 𝑚-th dialog action, generated by mean-pooling a

number of dialog states followed by 𝑎𝑚, and

𝑃𝑚 =

∑︀
𝑖,𝑗∈𝐷 𝑣(𝑎𝑖𝑗) · 1(𝑎𝑖𝑗 = 𝑎𝑚)∑︀

𝑖,𝑗∈𝐷 1(𝑎𝑖𝑗 = 𝑎𝑚)
(4.6)

Here, 1(·) is the indicator function, and 𝐷 is the set of examples used for computing

prototypes. In training, 𝐷 is a small subset of dialog states sampled from the training

62

set followed by action 𝑎𝑚. In evaluation, 𝐷 is the entire training set. In Algorithm 1,

we show the calculation of prototype embeddings.

Algorithm 1 Calculating prototype embeddings
Function 𝑝𝑟𝑜𝑡𝑜𝐸𝑚𝑏𝑒𝑑(𝐴,𝐻)
Inputs: dialog action set 𝐴, entire dialog history in the training corpus 𝐻 =
{(𝑠1, 𝑎1), . . . , (𝑠𝑚, 𝑎𝑚)}.
Outputs: Prototype embeddings of dialog actions 𝑃 .
1: for 𝑎′ ∈ 𝐴 do
2: 𝐴𝑎′ = {(𝑠𝑘, 𝑎𝑘) ∈ 𝐻, 𝑎𝑘 = 𝑎′}
3: if Training then
4: Sample D from 𝐴𝑎′ with size = 10
5: else if Evaluating then
6: D = 𝐴𝑎′

7: end if
8: Calculate 𝑃𝑎′ with Equation 4.6
9: end for

Disease prediction and training

Each dialog starts from an explicit symptom set provided by a user goal, and the

model inquires about a set of symptoms before making the final disease prediction.

For each inquiry, the user simulator replies based on the implicit symptom set as

described in Section 4.3.1. The conversation stops when the systems output a disease

prediction. Summarizing the previous sections and descriptions, we provide the

complete procedure of a medical dialog in Algorithm 2.

For each simulated dialog described above, the model sees a success or failure

reward when it informs the user of a predicted disease. The ProtoQN updates its

weights based on the reward with stochastic gradient descent (SGD) following the

standard pipeline of training a DQN applied in [Wei et al., 2018, Xu et al., 2019].

For evaluation, the ProtoQN generates prototype embeddings only once before the

evaluation begins with all real dialog histories in the training corpus.

63

Algorithm 2 Automatic diagnosis dialog process
Inputs: Explicit symptom set 𝐸, initial turn Id 𝑡 = 1, empty implicit symptom set
𝐼 = {}, dialog history for training 𝐻, encoder 𝑓𝑒𝑛𝑐
Outputs: Final disease prediction 𝐷.
1: 𝑃 = 𝑝𝑟𝑜𝑡𝑜𝐸𝑚𝑏𝑒𝑑(𝐴,𝐻)
2: while Dialog not end do
3: 𝑠𝑡 = 𝑆𝑡𝑎𝑡𝑒(𝐸, 𝐼, 𝑡) with Equation 4.1
4: ℎ𝑡 = 𝑓𝑒𝑛𝑐(𝑠𝑡)
5: 𝑎𝑡 =𝑎 ℎ𝑡 · 𝑃 𝑇

𝑎 with Equation 4.5
6: if 𝑎 ∈ Symptom then
7: 𝑢𝑡 = user response
8: 𝐼 = 𝐼 + (𝑎𝑡, 𝑢𝑡)
9: 𝑡 = 𝑡+ 1

10: else if 𝑎 ∈ Disease then
11: 𝐷 = 𝑎𝑡
12: 𝑒𝑛𝑑𝐷𝑖𝑎𝑙𝑜𝑔()
13: end if
14: end while

4.4 Experiments

4.4.1 Data and Experiment Settings

We evaluate the dialog models on Muzhi dataset [Wei et al., 2018]. The dataset

contains 710 medical dialogs between real doctors and patients, and each is annotated

as a user goal, covering 4 different diseases and 66 symptoms. For our experiments,

we apply the official train-test split. 568 user goals are used for training and the other

142 are used for evaluation.

We apply a simulator for providing user responses in conversations. To simulate

speech noise and mistakes led by user knowledge biases, we apply intent and slot

noise to the simulator [Xu et al., 2019] in order to evaluate the model performances

under different levels of noise. In our experiments, we apply 0%, 10%, 20%, and 30%

error rates, i.e., the probability that the status of an inquired symptom is sampled at

random rather than based on annotation.

We also conduct two groups of experiments for evaluating model performance

under various conditions. First, we train both ProtoQN and DQN on the entire

training set. This is conventional with a fully supervised learning setting. Second,

64

(a) Noise = 0.0 (b) Noise = 0.1

(c) Noise = 0.2 (d) Noise = 0.3

Figure 4-3: Performances of ProtoQN and DQN on 4 noise levels. Each figure stands
for noise, while the blue bars stand for the performances of DQNs, and the orange
bars stand for the performances of ProtoQNs.

we adopt a meta-learning-like setting to evaluate the model performance at few-shot

learning. We pre-train the models with three diseases and fine-tune the models with

randomly selected training samples from the trained diseases plus a few cases of the

new disease. In both learning tasks, the neural models are evaluated on the entire

public test set. For our experiments we set the success reward of ProtoQN to 20, the

failure reward to 0, and the maximum number of turns is 44. For DQN, we keep the

settings in [Wei et al., 2018].

65

4.4.2 Fully Supervised Learning

We first compare the ProtoQN with DQN in the normal supervised learning setting to

evaluate their ability to learn dialog policy with enough training data. Experimental

results are shown in Table 4.1. We obtain the DQN performance directly from

[Wei et al., 2018].

Table 4.1: Experimental results of ProtoQN and DQN on supervised learning.

Models Success Rate (%) Reward

DQN 65 20.51
ProtoQN 70.42 23.58

Experiments show that the ProtoQN significantly outperforms the DQN baseline,

without adding external knowledge and hand-crafted features [Xu et al., 2019]. The

improvement shows that utilizing dialog history between real doctors and patients

to calculate prototype embeddings is effective and provides a better ability for the

model to learn the dialog policy. While DQN learns Q-values indirectly from simulated

conversations, ProtoQN directly relates Q-values with dialog actions and states in real

conversation.

4.4.3 Few-shot New Disease adaptation

We next investigate model performance in the situation when a new disease appears

after the model was trained, and only a few examples are available for training. To

evaluate this situation, we adopt an experimental setting popular in few-shot learning,

where we first pre-train the models on the training set for a subset of diseases. Then

the models are fine-tuned (i.e., adapted) on a small number, 𝑁 , of examples for a new

disease. To prevent catastrophic forgetting [Riemer et al., 2018], we also randomly

select 𝑁 samples from each pre-trained disease to compose the adaptation set. Since

the Muzhi corpus includes 4 diseases, we conduct 4 iterations of evaluation, with each

corresponding to one of the 4 diseases as the new disease, and the remaining as the

pre-trained ones. After fine-tuning, the models are also evaluated with the public test

66

Table 4.2: Average success rates (%) of the meta-learning tasks with DQN and
ProtoQN under different noise levels.

Noise 0 0.1 0.2 0.3

DQN 59.51 58.89 55.81 56.07
ProtoQN 63.47 63.21 59.85 62.32

set. Also, we consider different noise levels in this task. Our purpose is to evaluate how

well the models learn new diseases with a few examples without forgetting knowledge

for the pre-trained diseases.

The experiment results of the new disease adaptation are shown in Table 4.2. From

the table we see that the ProtoQN significantly outperforms the DQN model and

achieves SOTA performance under a few-shot learning setting. This result shows that

learning shared embeddings from real conversations is more efficient when adapting the

model to new diseases with few examples. Meanwhile, much-shared knowledge from

pre-trained diseases can still be applied to the new ones. The learned knowledge about

symptoms allows the neural network to learn new diseases with a better initialization

of dialog policy and thus adapts faster and better. We also found that although the

increase in noise level degrades the performance of DQNs, ProtoQN yields a steady

success rate when the noise level varies. we believe the robustness results from the

ensemble nature of ProtoNet’s inference mechanisms.

4.5 Chapter Summary

In this chapter, we propose a novel dialog management model, prototypical Q network,

for supervised and few-shot dialog policy learning. We apply this model in the area of

automatic conversational diagnosis. Experiments show that the ProtoQN outperforms

the DQN model in both supervised and few-shot settings. In the supervised setting,

ProtoQNs achieve results comparable to SOTA without using domain-specific features.

As for the few-shot experiment, ProtoQN learns new diseases under the few-shot

training setting without forgetting previously learned diseases, and achieves SOTA.

The model also shows less degradation as we inject noise into a conversation. Our study

67

suggests that modeling real conversations directly reinforces simulator-based dialog

policy learning. Embeddings of dialog actions are shareable among tasks (diseases,

in our case) and benefit the fast adaptation to new ones. Here we show promising

results in the medical domain. Future work could investigate more adaptive models

as well as different domains and corpora toward the goal of modeling new dialog tasks

better and with fewer examples.

68

Chapter 5

Self-trained Prompt Composition for

Domain Adaptation in Question

Answering

Recent studies have found fine-tuning large-scale pretrained language models an

effective method for natural language processing (NLP) tasks [Radford et al., 2019a,

Devlin et al., 2018, Liu et al., 2019, Clark et al., 2020]. However, a key limitation of

the fine-tuning method is its space cost: in practice, a different fine-tuned model needs

to be saved for each task or domain.

An alternative paradigm, prompt-based learning, has been found to effectively

reduce the space cost [Radford et al., 2019b, Brown et al., 2020a, Liu et al., 2021]. In

these methods, an NLP task is first converted to a generation task, and a sequence

of hand-designed prompt tokens are used as a prefix to guide a language model to

complete the task. [Li and Liang, 2021] and [Lester et al., 2021] further discovered

that, instead of using hand-designed prompt tokens, an alternative soft prompt tuning

method, where randomly initialized prompt embeddings for a task are fine-tuned on a

supervised dataset with the model frozen, can achieve comparable performance with

full model fine-tuning. In [Lester et al., 2021]’s approach, the space cost is reduced

from 𝑂(𝑁 ·𝑀) for model fine-tuning to 𝑂(𝑁 ·𝑚 +𝑀), where 𝑁 is the number of

tasks, 𝑀 the size of the entire model and 𝑚 the size of a set of prompt embeddings

69

for one task.

More importantly, [Lester et al., 2021] found that soft prompt tuning enables better

domain adaptation: when the prompt is tuned on a source domain, task performance

on target domains consistently improves compared to model fine-tuning on the same

data. Yet, a key limitation of their method is that no domain information is leveraged

during either training or inference. This neglects the large amount of unsupervised

data that one can often easily access for a target domain.

In this chapter, we address this issue and improve domain adaptation by designing a

framework where we learn target domain representations via a self-supervised objective

during prompt tuning, and leverage the learned domain representations for inference.1

Specifically, we propose a prompt composition method, where we divide a set of

learnable prompt tokens into two groups, task prompts and domain prompts. We tune

the prompts for an NLP task with annotated data on a source domain, together with

an unsupervised span completion objective on unannotated data from both source and

target domains. At test time, we compose the learned NLP task prompt with a target

domain prompt for inference. Our goal is to decouple the learning of task information

and domain information into different groups of prompt tokens. While our method

is task-agnostic, we focus our evaluation on the question answering (QA) task, a

main task that has shown to benefit from prompt tuning. On the MRQA benchmark,

we show that our method leads to notable improvement on all 6 out-of-domain test

sets over the baseline method by [Lester et al., 2021]. With a T5-Base model, our

method shows an average gain of +2.1 F1 on all datasets, with the most gain of

+7.4 F1 observed for TextbookQA. Our findings open new doors to exploring the

compositionality of prompt tokens for NLP tasks.

1Based in part on the paper “Prompt Composition for Improved Domain Adaptation in Question
Answering,” by H Luo, Y Zhang, B Athiwaratkun, X Ma, C Nogueira dos Santos, A Arnold, B Xiang,
ACL Rolling Review submission, 2022.

70

5.1 Method

We first briefly overview the soft prompt tuning method by [Lester et al., 2021], then

extend this method by designing prompt composition for individual tasks and domains,

and introduce a mixed-task, mixed-domain recipe for prompt tuning.

5.1.1 Background: Soft Prompt Tuning

In [Lester et al., 2021], all tasks (such as QA) are cast as a text generation task, and

can be viewed as 𝑦 = 𝑓gen(𝑥), where 𝑓gen represents a “text-to-text” generative model,

𝑥 the input tokens, and 𝑦 the output tokens. While the conventional way of adapting

𝑓gen for different tasks or domains is to fine-tune its entire parameters 𝜃 for a target

task/domain, [Lester et al., 2021] instead proposes to fine-tune the embeddings of a

set of prompt tokens 𝑝 parameterized by 𝜃𝑝 while keeping 𝜃 fixed, and model the task

as:

𝑦 = 𝑓gen([𝑝;𝑥]), (5.1)

where 𝑝 is prepended to the original input sequence 𝑥. They showed that this

“soft” prompt tuning approach outperforms the use of manually designed prompts;

furthermore, it approaches the results of full model tuning for each task when a

sufficiently large 𝑓gen is used, while only needing to learn a fraction of the parameters

for each task (𝜃𝑝 vs. 𝜃).

5.1.2 Prompt Composition

Despite the impressive results, a key limitation of this method in zero-shot domain

adaptation is that only a single set of prompt tokens (𝑝) can be learned for the task

and no domain information can be leveraged for inference in different domains.

To address this issue, we propose a new method where we divide all prompt

tokens into two groups, task prompts and domain prompts, and concatenate them for

prediction:

𝑦 = 𝑓gen([𝑝𝑡; 𝑝𝑑;𝑥]), (5.2)

71

where 𝑝𝑡 represents a task prompt, 𝑝𝑑 a domain prompt. As we will show, this

compositional design has two key advantages: 1) it allows us to design a training

recipe that decouples the learning of task and domain information; 2) for inference, it

allows us to compose a new (task, domain) prompt pair, which improves out-of-domain

performance.

! Task: QA, Domain: SQuAD

[Context]: The Amazon rainforest, also known as
Amazonia or the Amazon Jungle, is a ...

!The mechanisms underlying lithium's [MASK]
efficacy in the chronic treatment of [MASK]
disorder are not clearly understood ...

Task: Span Completion, Domain: BioASQ

! Task: QA
Domain: SQuAD

Task: Span Completion
Domain: BioASQ

Task: Span Completion
Domain: Textbook

Task: Span Completion
Domain: News

Mixed-task Mixed-domain Training

Task Prompts

QA Prompts

Span Completion Prompts

Domain Prompts

SQuAD Domain Prompts

Textbook Domain Prompts

Bio Domain Prompts

News Domain Prompts

Training Samples

Task: Span Completion
Domain: SQuAD !

Source Domain

Target Domains

...

[Question]: Which name describes the Amazon rainforest?

[Answer]: Amazonia or the Amazon Jungle

Figure 5-1: Overview of our mixed-task, mixed-domain prompt tuning pipeline.

5.1.3 Mixed-task & Mixed-domain Training

We are interested in the unsupervised domain adaptation of question answering

systems. In this setup, we assume access to a source domain 𝒟𝑠, where we have human

annotations of QA pairs for both training and testing; and a set of target domains 𝒟𝑡,

where for each domain we only have access to a small test set of human-annotated

QA pairs, as well as unannotated text sampled from this domain. Our goal is to learn

a QA model and evaluate its performance on the unseen test sets from 𝒟𝑡.

The baseline prompt-tuning method in Equation 5.1 trains the prompt embeddings

𝜃𝑝 with QA examples from 𝒟𝑠 and evaluates the model directly on 𝒟𝑡. However,

this method does not leverage any information from the target domain, which is

often easily accessible in practice. In contrast, following Equation 5.2, our goal is to

encode information about a target domain 𝑗 ∈ 𝒟𝑡 into its domain prompt 𝑝𝑗𝑑 in an

unsupervised manner, and effectively leverage this domain information at inference

time via 𝑝𝑗𝑑.

To do this, apart from the original QA task for which we only have annotations

from 𝒟𝑠, we introduce a self-supervised objective to help us learn domain prompts

72

for all domains in 𝒟𝑠 and 𝒟𝑡. For simplicity, we adopt the masked span completion

objective from [Raffel et al., 2019]. Given the input text, we randomly mask a span

from the text, and train the model to generate the masked span as:

𝑠 = 𝑓gen([𝑝
span
𝑡 ; 𝑝𝑑; mask(𝑥, 𝑠)]), (5.3)

where mask(𝑥, 𝑠) is a function that replaces span 𝑠 in context 𝑥 with a [mask] token,

and 𝑝span𝑡 is a set of span completion prompt tokens. Similarly, for the main QA task,

we train it with 𝑦 = 𝑓gen([𝑝
QA
𝑡 ; 𝑝𝑑;𝑥]), where 𝑥 is the concatenation of input context

and question tokens, 𝑦 the answer tokens, and 𝑝QA𝑡 the QA prompt tokens.

A naive approach of learning all prompt tokens is to run the training sequentially

for both the span completion and QA tasks on all domains where examples are

available. However, this naive approach is problematic because it does not encourage

decoupled encoding of task and domain information in different prompts. Instead,

we find a mixed-task, mixed-domain training recipe to be useful (see Figure 7-6):

during training, we mix and shuffle all training examples from the supervised and

self-supervised tasks, and at each step randomly sample a mini-batch of examples

from the mixed pool. Formally, for each training example we have

𝑦 = 𝑓gen([𝑝
𝑖
𝑡, 𝑝

𝑗
𝑑, 𝑥]), (5.4)

where 𝑖 ∈ {span, QA}; for 𝑖 = span, we set 𝑗 ∈ 𝒟𝑠 ∪ 𝒟𝑡; for 𝑖 = QA, we set 𝑗 ∈ 𝒟𝑠.

At test time, for inference on domain 𝑗, we concatenate the learned QA prompt

𝑝QA𝑡 and the domain prompt 𝑝𝑗𝑑, and calculate the output with Eq. 5.2.

We further find two other techniques helpful in our experiments, which we document

below.

Answer Span Completion. For span completion, instead of using a naive span

masking strategy where the span is drawn completely randomly, we found it more

effective to select meaningful spans that may benefit the QA task. Thus, we employ

the answer entity recognition (AER) model to tag spans in the input text that are

73

Model Metric Baseline Our Model w/o Mix w/o AER w/o Combine

BioASQ EM 49.8 51.0 49.2 48.8 50.3
F1 66.8 68.2 66.5 65.9 67.4

TextbookQA EM 16.4 18.6 15.7 15.5 17.6
F1 32.3 39.7 31.4 30.6 38.1

RACE EM 13.0 14.5 14.5 12.1 14.2
F1 46.4 48.8 48.8 45.7 48.1

RelExt. EM 73.3 73.8 73.8 71.6 73.5
F1 84.6 84.8 84.8 82.3 84.7

DuoRC EM 43.6 44.0 43.6 42.0 43.7
F1 60.3 60.7 60.1 59.2 60.7

DROP EM 29.3 30.0 28.2 26.4 27.1
F1 39.2 39.8 37.2 35.4 37.6

Average EM 37.6 38.6 37.0 36.1 37.7
F1 54.9 57.0 54.3 53.2 56.1

Table 5.1: Results of different prompt tuning strategies with the T5-Base model on
the MRQA out-of-domain datasets. The baseline is the soft prompt tuning model
proposed in [Lester et al., 2021]

likely to be answers, and compose the span completion task by randomly drawing

from these spans. The AER model is trained on plain texts without questions to

recognize potential answers.

Domain Prompt Combination. For evaluation on a target domain 𝑗 ∈ 𝒟𝑡, we

found it useful to further combine the learned domain prompt 𝑝𝑗𝑑 with the source

domain prompt via a simple averaging operation as 𝑝𝑗𝑑 = (𝑝𝑗𝑑 + 𝑝𝑠𝑑)/2, where 𝑝𝑠𝑑

represents the domain prompts for the source domain. We then leverage 𝑝𝑗𝑑 for

prediction and see improved results. We conjecture that this is because only the

source domain prompt 𝑝𝑠𝑑 has seen the QA task prompt at training time, and therefore

averaging it with 𝑝𝑗𝑑 improves stability for the QA task.

5.2 Experiments

We focus our evaluation on domain adaptation for the QA task. We compare mainly

to the soft prompt tuning method by [Lester et al., 2021] as our baseline, given that

74

Models (T5-Large) BioASQ TQA RE Avg.

Baseline 71.1 61.9 86.5 65.0
Our model 74.3 66.7 87.4 66.8

– w/o Mix 70.1 60.0 83.8 62.5
– w/o AER 68.3 58.7 82.3 61.4
– w/o Combine 72.7 62.3 87.1 65.6

Table 5.2: Answer F1 results on MRQA with T5-Large model. “TQA” represents
TextbookQA; “Avg.” represents average results from all 6 test datasets.

our method is built on top of theirs.

Following [Lester et al., 2021], we use SQuAD v1.1 [Rajpurkar et al., 2016] as the

source domain dataset, and evaluate on the out-of-domain datasets from the MRQA

benchmark [Fisch et al., 2019]. The SQuAD dataset is annotated with text from

Wikipedia, and the evaluation benchmark of MRQA contains data from 6 different do-

mains, including BioASQ [Tsatsaronis et al., 2012], TextbookQA [Kembhavi et al., 2017],

RACE [Lai et al., 2017], RE [Levy et al., 2017], DuoRC [Saha et al., 2018], and DROP

[Dua et al., 2019], covering the domains of biomedicine, books, exam, relation extrac-

tion, movie and multi-step reasoning.

For main experiments, we select the T5-Base and T5-Large models [Raffel et al., 2019]

as our pretrained generator (𝑓gen). We did not train larger T5 models due to compu-

tational constraints. For soft prompt tuning baseline, we follow [Lester et al., 2021]

and tune 100 prompt tokens. For our model, we use 50 tokens for task prompt and

50 for domain prompt. For the training of the span completion objective, we collect

training passages from the target domain datasets but discard the annotated QA pairs

(thus no annotation is exposed), and train the span completion prompt and domain

prompts with the unannotated passages.

For all experiments, we use the AdaFactor optimizer [Shazeer and Stern, 2018],

and the learning rate is set to 0.3, which achieves the highest performance for the

baseline model. For the initialization of the prompt embeddings, we calculate the

mean and standard deviation of all token embeddings of the pretrained T5 models, and

randomly initialize the prompt embeddings from a Gaussian distribution accordingly.

To construct the training dataset, we collect the training set of each corpus from

75

the MRQA test domains and sample 2,000 passages for each domain for balanced

training. For target domains, we only use the passages for training and discard all the

annotated QA pairs. We also sample 2,000 passages from SQuAD for training the

SQuAD domain prompts with the span completion objective. For each passage, we

sample 10 spans for the span completion task. Together with the SQuAD training

set, our new training set contains 227,599 training examples, including 87,599 QA

examples and 140,000 span completion examples. In our full model where the AER

model is used for span selection, we select the top-10 answer spans predicted by the

AER model. In our ablation study where the AER module is not used, we randomly

sample span lengths and span start index for the training spans. Our training ends

when all examples, including QA and span completion examples, are run for 2 epochs.

The learning rate is fixed (0.3) during the entire training process.

5.3 Results and Analysis

We present our main results on the MRQA datasets with the T5-Base model in

Table 5.1. Results from both the baseline model and our model are averaged across

3 independent training runs. We find that our full model which leverages prompt

composition outperforms the baseline soft prompt tuning approach on test sets from

all 6 domains. The largest gains are observed on the TextbookQA dataset, where using

our prompt composition leads to a remarkable improvement of +7.4 on the answer

F1 score. When we average the results over all 6 out-of-domain test sets, a notable

improvement of +2.1 is observed for the answer F1 score. The lowest improvement is

observed for the RE dataset, with a gain of +0.2 F1 score. We conjecture that the RE

task cannot benefit much more from prompt composition over SQuAD, because 1)

the text is from the same Wiki domain as the SQuAD dataset, and 2) the style of

questions in RE is similar to SQuAD questions.

To make sure that our findings generalize to larger models, we further verify the

results on the T5-Large model, which contains 770M parameters. We present answer

F1 results on selected MRQA datasets in Table 5.2. We observe very similar trends:

76

the largest gain of +4.8 F1 is observed on the TextbookQA dataset, and a notable

+1.8 improvement is observed on average across all 6 datasets. Furthermore, we find

that our T5-Large results with prompt composition on some datasets are comparable

to the T5-11B results from [Lester et al., 2021]: 66.7 F1 on TextbookQA vs. their

66.8 F1 from T5-11B; 87.4 F1 on RE vs. their 88.8 F1 from T5-11B. These results are

achieved with a 14x reduction in model size.

Comparison with Sequential Training. As mentioned in Section 5.1.3, we find

that our proposed mixed-task, mixed-domain training is key for the success of prompt

composition. To demonstrate this, we compare our results to a sequential training

recipe, where we 1) run span completion training with the span prompt on each of

the domains with its corresponding domain prompt; 2) run QA training with the QA

prompt and SQuAD domain prompt on SQuAD, with the domain prompt frozen; and

3) combine the QA prompt with each target domain prompt for prediction. We present

its results in Tables 5.1 and 5.2 (w/o Mix). We find that for both models and all

datasets, the performance decreases substantially without the mixed training. Further,

the average results are even lower than the baseline, highlighting the importance of

the mixed training recipe for prompt composition.

Ablation Studies. We further ablate our full model by removing the answer span

recognition component or the domain prompt combination component and present

the results in the tables. Without answer span recognition (w/o AER), we see a

substantial drop of performance across all the datasets. We conjecture that this is

because the answer span recognition component helps us learn domain prompts in a

way that more closely resembles the QA task. Similarly, we observe a mild drop of

performance for all the datasets when we remove domain prompt combination (w/o

Combine).

Performance on Source Domain. We examine how the QA performance on the

source domain, SQuAD, is impacted by prompt composition, by applying the learned

QA prompt with the SQuAD domain prompt on the SQuAD test set. For T5-Base,

77

we found that the baseline prompt tuning achieved an average F1 of 90.6 on SQuAD,

while our method achieved an average F1 of 90.8, showing no significant change in

performance.

5.4 Chapter Summary

In this chapter, we present prompt composition, which allows us to compose task-

specific and domain-specific prompts for the improved out-of-domain performance of

QA models. Experiments show that the self-supervised pretraining of the domain

and task prompt embedding can improve the domain adaptation ability of language

models. Our method opens new ways to explore the compositionality of prompt tokens

for improved NLP capabilities.

78

Chapter 6

Cooperative Self-training of Machine

Reading Comprehension

6.1 Introduction

Recent studies have shown that language model pretraining provides high-quality text

representations and significantly improves neural networks’ performance on a variety of

natural language processing (NLP) tasks [Peters et al., 2018a]. Based on the popular

Transformer architecture [Vaswani et al., 2017], various language models have been

proposed [Devlin et al., 2018, Liu et al., 2019, Clark et al., 2020]. These models are

pretrained to predict a masked word in a given context from large corpora, and generate

a contextual representation that encodes semantic and syntactic information. After

finetuning, these representations significantly improve performance on downstream

NLP tasks. Although masked language modeling is a powerful self-supervised learning

technique, annotation on large-scaled data is still necessary for finetuning on difficult

downstream tasks, including extractive question answering (QA)1 where a large number

of labeled question-answer pairs are required as a training corpora.

Previous studies showed that the QA models can be improved by training on syn-

thetic question-answer pairs, namely self-training [Sachan and Xing, 2018, Puri et al., 2020,

1Also referred to as machine reading comprehension. The two terms are used interchangeably in
this paper.

79

Knowledge
Base

Tang Dynasty … Chengdu became
nationally known as a supplier of armies and
the home of Du Fu, who is sometimes called
China’s greatest poet.

AER Agent

a supplier of armies and the home of Du Fu

QG Agent

What was Sichuan known for in the
ancient world before 957?

QAE Agent
A supplier of armies

Figure 6-1: The pipeline of semi-supervised question answering (machine reading
comprehension) by RGX. The answer entity Recognition agent recognizes answer
entity from a given passage; the question Generator outputs a question based on
the passage and entity; the question-answering eXtractor predicts answers from the
question and passage.

Shakeri et al., 2020, Bartolo et al., 2021]. The central aspect of these works is pre-

training a question-answer pair synthesis model on a seed corpus, and applying the

generator on target domains to obtain synthetic training data. The QA model learns

domain knowledge after finetuning on the synthetic data, and thus domain adaptation

is improved. However, the gap between the pretraining (i.e., seed) and the target

corpus still exists, in terms of domain knowledge, question difficulty, and language

style. The gap affects the quality of the synthetic training data.

In this chapter, we propose a framework that allows cooperative self-training for

both QA pair synthesis and question answering to better adapt the synthesis models to

the target domain and improve the learning of the QA models, as shown in Figure 6-2.2

2Based in part on the paper “Cooperative Self-training of Machine Reading Comprehension,” by
H Luo, SW Li, M Gao, S Yu, and J Glass, to appear NAACL, 2022.

80

1. Collect Seed Datasets

(Context, answer, question)

2. Pre-train Models

Answer Entity Recognition (AER)

Question Generation (QG)

Question Answer Extraction (QAE)

3. Adapt to New Domains

(Context, answer, question)

Figure 6-2: Overview of the self-training QA framework.

In the framework, we construct a cooperative environment where a question generator

and an answer extractor work together to solve a masked entity prediction problem.

We first leverage an entity recognizer to mask out an entity in a provided passage. The

question generator then outputs a question based on the masked passage. With the

generated question and the original, unmasked passage, we train the answer extractor

to select the correct answer spans, which are the masked entity. The extractor is

also the final model used for extractive QA. To extract the spans accurately, the

generator has to provide a good question, and the extractor should select the most

likely tokens. We design the reward function such that it favors the questions leading

to correct answers. We also gradually increase the difficulty of generated questions

[Karpukhin et al., 2020a] by rewarding the questions that are not answered correctly

but with low extraction losses via a stochastic expectation-maximization technique.

The technique allows us to train the extractor with challenging examples incrementally.

We call our algorithm RGX since it incorporates an answer entity Recognizer, a

question Generator, and an answer eXtractor. The RGX pipeline is illustrated in

Figure 6-6.

With RGX, we can train a QA model for any unlabeled target domain given the

corresponding text corpora and a labeled QA corpus in a seed domain (either the same

or different from the target). We show that RGX outperforms SOTA approaches in

QA benchmark datasets when domain specific human labels are not available during

finetuning. In this work, we make the following contributions:

1. We propose a cooperative self-training framework, RGX, which contains an

81

answer entity recognition, question generation, and answer span extraction to

automatically generate non-trivial QA pairs on unlabeled corpora.

2. We design a expectation-maximization synthetic QA selection that identifies

difficult but answerable questions without supervision to incrementally train

the QA model with challenging examples, and a AER-based maximum mutual

information inference method for question answering.

3. Experiments show that our method significantly outperforms SOTA pretrained

QA models and self-training QA baselines.

… champion of the National
Footbal League (NFL) …

Answer Entity
Recognition … champion of the [MASK] (NFL) … Question

Generation

What does NFL stand for?

What does NFL stand for? </s> … champion
of the National Footbal League (NFL) …

Question
AnsweringNational Footbal LeagueStochastic EM

Extraction training signals

Generation training signalsSimple Questions

Difficult Questions

Wrong Questions

}

START

Figure 6-3: The cooperative learning pipeline for question answering. The pipeline
starts from a passage and follows the steps: (1) recognizing a potential answer entity,
(2) generating a question asking about the answer entity, and (3) answering the
question by extracting the answer span in the passage.

6.2 Related Work

Reinforcement learning and self-training have emerged recently for learning language

generation in addition to maximum likelihood training. To optimize text generation

models directly with non-differentiable objective functions, [Rennie et al., 2017] pro-

posed self-critical sequence training (SCST) using a policy gradient [Kakade, 2001,

Silver et al., 2014]. On the other hand, self-training has been shown to be effec-

tive in many tasks, such as machine translation [He et al., 2019], image classification

[Xie et al., 2020], and structured database-grounded question answering [Xu et al., 2020].

82

In the domain of question answering, a question generator can be used for

joint answer prediction [Tang et al., 2017, Duan et al., 2017], and synthetic QA data

are used for in-domain data augmentation [Sachan and Xing, 2018, Puri et al., 2020,

Liu et al., 2020, Klein and Nabi, 2019] and out-of-domain adaptation. [Lewis et al., 2019b]

and [Lee et al., 2020] introduced models for question answering under unsupervised/zero-

shot settings. [Shakeri et al., 2020] proposed generating synthetic question-answer

pairs with an end-to-end model simultaneously. [Bartolo et al., 2021] improved the

question synthesis by training with difficult QA cases from the AdversarialQA corpus

[Bartolo et al., 2020] and fine-grained answer synthesis by multi-model voting.

In this work, we mainly compare our method with latest baselines, [Shakeri et al., 2020]

and [Bartolo et al., 2021] that reported results on out-of-domain adaptation. Besides

improved QA performance, our framework, RGX, differs from the previous work in the

following aspects: (1) the method features reinforced finetuning of the QA Synthesizer,

(2) the framework supports and improves maximize mutual information inference in

test time, and (3) the method does not require complicated data annotation, e.g.

AdversarialQA.

Representation learning has been an important topic in NLP area since neural

language models were proposed [Bengio et al., 2003]. Based on word co-occurrence,

[Mikolov et al., 2013b] and [Pennington et al., 2014] proposed language embedding

algorithms to model word-level semantics. Recent studies have focused on pretraining

contextualized word representations with large-scaled corpora [Peters et al., 2018a].

State-of-the-art representation models are pretrained with the masked language model-

ing task [Devlin et al., 2018, Liu et al., 2019, Clark et al., 2020] using the Transformer

architecture [Vaswani et al., 2017].

Different variants of masked language models have been investigated to improve

performance in downstream tasks. [Joshi et al., 2020] leveraged a masked span genera-

tion task instead of word prediction. [Fei et al., 2020] and [Shen et al., 2020] proposed

models that learns better syntax knowledge with syntactic distances [Shen et al., 2018]

and heights [Luo et al., 2019a]. [Henderson et al., 2019a] and [Humeau et al., 2019a]

showed that pretraining language models on dialog corpora perform better on dialog-

83

related downstream tasks, as compared to pretraining on Wikipedia. A span se-

lection pretraining objective is proposed in [Glass et al., 2019] to reduce the gap

between the pretraining and downstream finetuning stages and to improve the per-

formance on the QA task. Some applications of generated questions are shown in

[Lewis et al., 2021, Jia et al., 2021].

In contrast to self-training methods that usually adopt a teacher-student learning

strategy, cooperative learning pipelines contain several agents working together to learn

as much knowledge as possible. A typical cooperative learning framework is generative

adversarial networks (GAN) [Goodfellow, 2016, Goodfellow et al., 2014], where a gen-

erator is optimized to confuse a discriminator, and a discriminator is trained to distin-

guish real examples from generated ones. Sequence GAN is further designed for learning

diverse text generation [Yu et al., 2017]. Unlike the adversarial learning method where

two networks work for opposite goals, other studies proposed learning environments in

which different agents learn the same objective functions for language emergence

[Lazaridou et al., 2016, Mordatch and Abbeel, 2018, Havrylov and Titov, 2017], in-

cluding simple natural language, compositional language, and symbolic language.

6.3 RGX Framework

In this section, we first introduce (1) the QA synthesis pipeline, (2) cooperative

self-training for both QA synthesis and question answering, and (3) an improved

maximum mutual information inference strategy. The self-training pipeline of RGX is

shown in Figure 6-3.

6.3.1 Data Synthesis

Given a passage 𝑝, our goal is to generate a set of questions 𝑞 and answers 𝑎 for

the self-training of the QA model. The RGX model first recognizes potential answer

entities (AE) in 𝑝 with an answer entity recognition (AER) model, and then generates

questions based on the recognized AEs with a question generation (QG) model, and

refines the AEs with a pretrained question answer extraction (QAE) model.

84

Passage

Answer

Labeled NaturalQuestions Case

sent_tokenize

Sentence containing the answer

Answer

st_idx ed_idx

Label Answer
location

LM
start_scores

Input Sentence

end_scores

st_idx

ed_idx

Train with Cross entropy losses

LM
start_scores

Input Sentence

end_scores

start_pred

end_pred

Evaluation -
Argmax

Figure 6-4: Pipeline of the answer entity recognition (AER) model.

Answer Entity Recognition (AER)

Recent QA synthesis models, QAGen2S [Shakeri et al., 2020] and SynQA [Bartolo et al., 2021],

directly generate questions from passages by modeling 𝑃𝑞𝑔(𝑞|𝑝). In RGX, we first

recognize all potential answer entities in a passage before generating questions for (1)

increasing question diversity and coverage, and (2) modeling the mutual information

between question generation and answering models in test time. The AER model is

trained on the seed QA corpus.

We found that using an off-the-shelf named entity recognition (NER) model

pretrained on the CONLL 2003 shared task [Bender et al., 2003] performs poorly as

a AER model (shown in our experiments). To learn an effective recognizer, given a

passage 𝑝 and an annotated answer entity 𝑒, we select the sentence 𝑠 containing 𝑒

from 𝑝 and train language models to recognize 𝑒 in 𝑠. We tried two models for this

task: a BIO sequence tagging model (AER-Tag) and an extractive AER model, which

is similar to an extractive question answering model, for easier decoding. The model

predicts the start and end positions of the answer entity 𝑒. With this method, we get

potential answer entities by probabilities of all candidate spans. The pipeline of the

AER model is shown in Figure 6-4.

85

Masked Question Generation

With AER, we replace the answer entity 𝑒 in the passage 𝑝 with a [MASK] token and

obtain the masked passage 𝑝*. We then build a question generator 𝑄 (denoted as QG

interchangeably) that outputs answerable questions 𝑞 in natural language with the

concatenation of 𝑝* and 𝑒 as input, i.e., 𝑞 = 𝑄([𝑝*, 𝑒]). We adopt the BART sequence-

to-sequence model [Lewis et al., 2019a] as the architecture of 𝑄 in our implementation,

and we train 𝑄 on the question-answer pairs in the seed corpus by maximizing the

likelihood of annotated questions.

Answer Extraction as Fine-grained AER

The answer extraction model 𝐴 (denoted as QAE, question answering extractor) takes

generated question 𝑞 and the original passage 𝑝 as inputs. Following the standard

extractive QA method, we predict the answers by

𝐼𝑠𝑡, 𝐼𝑒𝑑 = 𝐴([𝑞, 𝑝]) (6.1)

where 𝐼𝑠𝑡 and 𝐼𝑒𝑑 stand for the start and end positions of 𝑒 in 𝑝, respectively. We train

the QAE model to predict 𝐼𝑠𝑡 and 𝐼𝑒𝑑 separately with cross entropy losses.

Besides being trained with synthetic QA pairs and evaluated for the final QA

performance, the QAE model is also a part of the data synthesis pipeline. After

generating questions with the QG model, we use a pretrained QAE model to answer

the generated questions. The final synthetic dataset is constructed by selecting

generated questions and their corresponding QAE outputs.

6.3.2 Cooperative Self-training

Although the pretrained models can generate synthetic QA pairs from corpora in

unseen domains, there is always a domain shift from the seed QA corpus for pretraining

to the target. To efficiently adapt the pretrained models to the new domains, we

propose a cooperative self-training algorithm that allows finetuning on the target

86

corpora without additional annotations. The finetuning is based on a three-agent

(AER, QG, QAE) cooperative framework, RGX. The pipeline is illustrated in Figure

7-6 and comprises the following steps:

1. Produce a masked passage by replacing an answer entity selected by AER with

the ‘[MASK]’ token.

2. Generate a question asking about the masked entity.

3. Feed the generated question and the original passage into the QAE to predict

an answer span.

4. Optimize the QAE model with selected QA pairs.

5. Optimize the QG model with selected QA pairs.

In the proposed pipeline, all the AER, QG, and QAE models need pretraining to

provide a reasonable start point for the cooperative self-training. However, the domain

gap between the pretraining and the target corpus causes performance degradation.

To mitigate the gap, we propose to measure the quality of generated questions and

incorporate the measurement in loss functions. The quality is defined in two folds,

correctness and difficulty. Firstly, the question should be fluent and answerable, and

secondly, it should not be too trivial. To automatically select high-quality generated

QA pairs, we introduce a expectation-maximization (EM) method based on QAE

losses that learns the question quality without supervision.

Synthetic QA Selection with EM

To select synthetic QA pairs for finetuning, we first divide the generated questions

based on the QAE loss for each question into three groups: low-, medium-, and high-

loss questions. We can interpret questions with low loss as simple ones that the QAE

model can easily answer. Medium-loss questions are challenging for the QAE, while

those with high loss usually contain noise (e.g., containing grammatical errors or

asking about incorrect answers). If we train the answering model with all questions,

the training signal would be very noisy due to the high-loss questions. If we only

87

reward questions that are correctly answered, the generator will converge to a trivial

local optimum. Thus, we train the QG and QAE model with the low- and medium-

loss questions, namely simple and challenging questions. For the entire pipeline to

be fully-automatic, we classify a given QA pair into one of the three types described

above. Note that simply setting the thresholds as hyper-parameters is difficult since

the loss decreases as the QAE model varies with different passages and domains. In

order to find the thresholds adaptively, we apply an expectation-maximization (EM)

algorithm to cluster synthetic QA pairs for each passage.

We fine-tune both QG and QAE models with the selected simple and challenging

QA pairs. After the training, re-running the RGX pipeline with the fine-tuned question

generation model leads to improved data synthesis. Training the QAE model on the

updated synthetic dataset can significant outperform the previous fine-tuned QAE

model.

Maximum Mutual Information QA

[Li and Jurafsky, 2016] proposed a maximum mutual information (MMI) decoding

method for machine translation, and [Tang et al., 2017] proposed a MMI method for

jointly learning question generation and answering models. There is no previous study

to our knowledge that applies MMI inference in test time of question answering that

improves the final performance, because (1) modeling 𝑃 (𝑞|𝑝, 𝑎) for all possible answers

(spans) 𝑎 is too inefficient, and (2) unlike the QAE model that receives loss signals

from all words in a given passage, the QG model does not receive loss signal from the

passage directly, so 𝑃𝑞𝑔(𝑞|𝑝, 𝑎) it is less accurate for ranking answer spans.

However, the AER and self-training strategy enables efficient MMI inference for

QA,

𝑎 = argmax
𝑎

[𝛼 log𝑃𝑞𝑔(𝑞|𝑝, 𝑎) + 𝛽 log𝑃𝑞𝑎(𝑎|𝑝, 𝑞)]

At test time, we run the RGX pipeline for each passage without additional training

to get fine-grained AEs and corresponding questions. We then take the top-𝑘 spans

predicted by the QAE model, and only keep the top prediction and those that also

88

appear in the fine-grained AE set. The filtering strategy dramatically reduces the

number of potential answer spans, and removes unreasonable spans predicted by the

QAE model.

6.4 Experiments

6.4.1 Modules

For our experiments, we train three modules for building the cooperative self-training

environment RGX, i.e., the answer entity recognizer (AER), the question generator

(QG), and the question-answering extractor (QAE). We used a BERT [Devlin et al., 2018]

model for AER, a BART [Lewis et al., 2019a] model for QG, and an ELECTRA

[Clark et al., 2020] model for AER and QAE. To compare with the results reported

in [Shakeri et al., 2020] and [Bartolo et al., 2021], we also evaluate the performance

of training BERT [Devlin et al., 2018] and RoBERTa [Liu et al., 2019] models on the

synthetic QA data generated by RGX.

6.4.2 Data

For our experiments, we leverage Natural Questions [Kwiatkowski et al., 2019] and

SQuAD v1.1 [Rajpurkar et al., 2016] as the seed corpora for pretraining all mod-

ules. To evaluate the performance of the proposed RGX on question answering

tasks with different difficulty levels, we conduct experiments on both SQuAD v1.1

[Rajpurkar et al., 2016] and MRQA [Fisch et al., 2019] out-of-domains (BioASQ, Text-

bookQA, RACE, RelationExtraction, DuoRC, and DROP). In the following sections,

we use the term SQuAD to represent the SQuAD v1.1 corpus. For self-training, we

sample 3,000 passages from the training set of each corpus for data synthesis.

The SQuAD v1.1 is the easiest QA corpus used in this paper. The dataset contains

107, 785 question-answer pairs on 536 articles, which are split into passages. Each

question is labeled with an answer that can be extracted from the given passage.

The Natural Questions dataset is a large-scale corpus designed for open-domain

89

Dataset Num. Synthetic QA

BioASQ 123121
TextbookQA 133773
RACE 115847
RelExt. 52142
DuoRC 250698
DROP 100394

Table 6.1: Number of synthetic QA of each MRQA domain.

question answering. The dataset is more challenging than SQuAD. All questions are

collected from human search queries and are annotated with long and abstractive

answers. Some of the questions are also labeled with a short answer for learning

answer-span extraction or reading comprehension. Focusing on the machine reading

comprehension task, we select 106, 926 questions labeled with both long and short

answers from the dataset for experiments.

For each target domain in MRQA, we collect the corresponding training data and

sample 3,000 passages for QA synthesis. The number of synthetic QAs varies based

on the length of input passages, and is shown in Table 6.1.

6.4.3 Answer Entity Recognition Details

In this section, we describe additional details of the AER methods. All AER models

are pretrained on the Natural Questions corpus. To solve the sparsity problem, in

other words, the passages are long but not all potential question-answer pairs are

annotated, we train all following AER models by using the sentence containing the

annotated answer entities as inputs, instead of the whole passage. If a sentence in the

passage does not contain an annotated answer entity, we do not use it for training.

We introduce two types of AER methods, tagging-based AER (AER-tag) and

extraction-based AER (AER-Search and AER-Coop). We next describe their training

and how we use the trained model to recognize answer entities in our experiments.

90

AER-Tag

Training We apply a BIO tagging model for answer entity recognition in the AER-Tab

method. We train the model to classify all tokens in the input sentence into three

classes,

• B(egin) - the first token of the annotated answer entity

• I(nsize) - other tokens of the annotated answer entity

• O(utside) - tokens that are not a part of the annotated answer entity

Evaluation Given an input passage, we run the trained BIO tagging model on each

of its sentences and greedily predict answer entities. There might be more than one

answer entities predicted in each sentence, and we only use the answer entities start

with a predicted B tag.

AER-LM

Training For the AER-LM method, we need to pretrain an extraction-based AER

model. We also take a sentence of 𝐿 tokens containing an annotated answer entity as

an example. Using an extraction model, which is similar to the question answering

model, we train the model to predict the start and end location of the annotated

answer entity. The model outputs a start score and an end score for each token, and

predicts the start/end locations by selecting the tokens that are assigned with highest

scores. The model is trained with cross-entropy loss, by regarding the extraction task

as two 𝐿-class classification tasks.

Evaluation For evaluation, we first run the model on each sentence of the input

passages and calculate the start and end scores for each token. For each span

(𝑥𝑖, 𝑥𝑖+1, . . . , 𝑥𝑗) that is not longer than 𝐿𝑠𝑝𝑎𝑛 tokens, we calculate the span score with

𝑠𝑖𝑗 = 𝑠𝑖𝑠𝑡 + 𝑠𝑗𝑒𝑑 (6.2)

where 𝑠𝑖𝑠𝑡 is the start score of the first token of span (𝑖, 𝑗), and 𝑠𝑗𝑒𝑑 is the end score of

the last token of the span. In practice, we set 𝐿𝑠𝑝𝑎𝑛 = 10.

91

To re-rank all possible answer entities, we select the top 𝑁0 = 40 spans according

to 𝑠𝑖𝑗 for each passage. For all selected answer entities, we generate questions with a

pretrained question generator and collect the generation perplexity of the questions.

We select 𝑁𝑠𝑒𝑎𝑟𝑐ℎ = 5 question-answer pairs with the lowest perplexities for the final

question-answering fine-tuning.

AER-Coop

In AER-Coop, we use the same extraction training method applied in AER-Search,

and we also use the 𝑠𝑖𝑗 scores to select the top 𝑁0 = 40 preliminary answer entities for

further search. The difference is that we search for final answer entities cooperatively

with the pretrained question generator and question answering extractor.

With the question generator and question answering extractor, we re-rank the

recognized answer entities with the following score

𝑠𝑐𝑖𝑗 = 𝛾 · 𝐼𝑐 − 𝑝 (6.3)

where 𝛾 is a large, positive coefficient, 𝑝 is the perplexity of generated question based

on span (𝑖, 𝑗), and 𝐼𝑐 = 1 if the generated question is correctly answered, and otherwise

𝐼𝑐 = 0.

Answer Entity Overlapping

We found that the extraction-based AER model leads to overlapping problems, since

a large start or end score assigned to a token leads to many candidate answer entities

that start or end at the token. In practice, if an answer entity is selected by the

AER-Search and AER-Coop method, we no longer consider any other answer entities

that overlap with the selected ones.

6.4.4 Implementation Details

Pretraining We pretrain the AER, QG, and QAE models on NaturalQuestions and

SQuAD (i.e., the seed) corpora. For NaturalQuestions, we only use the data points

92

containing a short answer. For Cooperative training, we follow the steps described in

Section 6.3.2 for the cooperative training phase.

Self-training We apply self-training for QG and QAE by finetuning the models on

selected synthetic QA pairs using the same method as pretraining. The AER model is

fixed after pretraining. The QAE model is finetuned using the official Huggingface

[Wolf et al., 2019] training scripts for question answering.

Hyper-parameters There are three phases of model training in this work: pretraining

on the Natural Question corpus, cooperative adaptation with reinforcement learning

on the target corpora, and final fine-tuning on the target corpora. We adopt most

of the hyper-parameters reported in the original BERT [Devlin et al., 2018], BART

[Lewis et al., 2019a], and ELECTRA [Clark et al., 2020] papers. We select the final

fine-tuning learning rates from {3𝑒− 5, 4𝑒− 5, 5𝑒− 5} and report the highest perfor-

mance. All the other hyper-parameters are the same as reported in the corresponding

papers. For all the phases, we fix 𝑒𝑝𝑠 = 1𝑒 − 6 and 𝑠𝑤 = 2000, where 𝑠𝑤 is the

number of warm-up steps, and we apply no weight decays. In the following sections,

we describe the details of each training phase. We use BART-large (406M parameters)

and ELECTRA-large (335M parameters) models for our experiments. We run our

experiments on 2 Tesla V100 GPUs. Training the QAE models on augmented data

takes around 4 hours.

For the maximum mutual information inference process shown in the equation

below,

𝑎 = argmax
𝑎

[𝛼 log𝑃𝑞𝑔(𝑞|𝑝, 𝑎) + 𝛽 log𝑃𝑞𝑎(𝑎|𝑝, 𝑞)]

we fix 𝛽 = 1. We use an adaptive 𝛼 value by comparing the synthetic question

generated by the QG model and the input question. For each answer entity 𝑎, we

calculate

𝛼 = max(1− abs(
𝑞𝑖𝑛𝑝𝑢𝑡
𝑞𝑔𝑒𝑛

− 1), 0.1)

This value normalizes the question probability 𝑝(𝑞|𝑝, 𝑎) estimated by the QG model,

since generated questions from some answer entities is easier than other spans in the

same passage, which makes the QG model assign all natural questions a relatively low

93

perplexity.

6.4.5 Experimental Results

We assess the performance of RGX with both semi-annotated and zero-annotated

evaluation on unseen domains. In our semi-annotated setting, we use the annotated

answer entities in the target corpora but utilize QG to generate questions for obtaining

the training question-answer pairs. The labeled questions are not used. We employ

no annotation from the target corpora for the out-of-domain task but automatically

construct the question-answer training pairs with entities and questions inferred by

AER and QG on the corpora.

Semi-annotated Evaluation

The model performance with the pretrained QA model, RGX, and SOTA trained with

full-supervision is shown in Table 6.2.

Models EM F1

Source domain: NQ, Target domain: SQuAD
ELECTRA-large (NaturalQuestions) 67.8 80.3
RGX 83.1 90.7

–w/o Coop. ST 81.2 89.1
ELECTRA-large (SQuAD) 89.7 94.9

Table 6.2: The performance of the question answering models in the semi-annotated
setting. RGX stands for our cooperative training approach, and Coop. ST stands for
cooperative self-training.

Table 6.2 shows that RGX yields improvement over the pretrained model, ap-

proaching the SOTA performance of the fully trained ELECTRA-large-discriminator

model. The experiment result suggests that the cooperative learning strategy improves

the question generation model.

94

Models ELECTRA QAGen2S SynQA RGX -MMI -EM -CST

EM 41.9 43.2 - 50.3 49.7 48.2 45.4BioASQ F1 59.0 64.1 - 70.1 69.1 67.9 66.4
EM 31.9 39.9 - 49.9 49.4 47.4 41.9TQA F1 41.5 51.7 - 60.9 60.6 59.8 53.8
EM 32.4 33.7 - 40.3 39.7 38.3 35.1RACE F1 43.4 45.5 - 52.4 51.5 50.5 47.2
EM 67.7 71.6 - 76.1 75.4 74.1 72.7RelExt. F1 81.8 84.4 - 87.2 86.7 86.2 85.4
EM 40.0 43.8 - 47.8 46.9 46.6 45.5DuoRC F1 48.5 53.2 - 58.4 57.5 56.9 54.9
EM 39.3 24.2 - 27.6 27.1 26.1 24.6DROP F1 51.1 37.1 - 42.1 41.7 40.9 37.9
EM 42.2 42.7 - 48.7 46.8 45.8 44.2Avg. F1 54.2 56.0 - 61.9 61.2 60.4 57.6

Table 6.3: The QA performance evaluation on the out-of-domains of the MRQA
benchmark by pretaining on NaturalQuestions. RGX stands for our method, MMI
stands for maximum mutual information inference, EM stands for question selection
with EM, and CST stands for the cooperative self training.

Models ELECTRA QAGen2S SynQA RGX -MMI -EM -CST
EM 58.7 56.8 55.1 60.3 59.2 52.1 57.5BioASQ F1 73.1 71.7 68.7 74.8 73.6 64.0 72.1
EM 43.0 48.0 41.4 51.2 50.1 50.6 48.6TQA F1 53.6 56.5 50.2 61.2 60.4 58.9 57.0
EM 38.3 43.4 40.2 44.9 46.3 35.4 43.8RACE F1 52.5 54.9 54.2 58.7 57.6 48.3 55.2
EM 79.0 73.4 78.9 79.2 78.9 75.6 74.3RelExt. F1 88.4 84.8 88.6 88.6 88.5 85.9 85.3
EM 53.1 53.3 51.7 57.4 56.2 55.6 53.9DuoRC F1 64.2 64.6 62.1 66.2 65.7 64.9 65.3
EM 48.3 42.2 64.9 47.6 46.9 40.7 43.0DROP F1 60.8 54.5 73.0 60.9 60.6 53.2 55.1
EM 53.4 52.8 55.3 56.8 56.3 51.7 53.5Avg. F1 65.4 64.5 66.1 68.4 67.7 62.5 65.0

Table 6.4: The QA performance evaluation on out-of-domain subsets of the MRQA
benchmark by pretraining on SQuAD v1.1.

95

QAGen2S SynQA RGX

Pretraining XQ SQ+AQA XQ
Synthesis Target Wikipedia Target
Finetuning XQ+Syn SQ+AQA+Syn XQ+Syn
AER Model None None ELECTRA
Coop. ST No No Yes
QA Num. 1M 1.5M 0.3M

Table 6.5: Comparison of different self-training methods. XQ stands for “NaturalQues-
tions or SQuAD”.

Out-of-domain Evaluation

We also evaluate the models in unseen domains, where we do not use any annotated

QA for finetuning. We train the QAE models based on the synthetic training data and

evaluate the models on the target domains. We compare RGX with latest self-trainig

QA methods, QAGen2S [Shakeri et al., 2020] and SynQA [Bartolo et al., 2021]. Since

QAGen2S did not report full MRQA results, we implemented our own version. We

first present the RGX performance and the results reported by the authors QAGen2S

and SynQA, and then conduct ablation study by training different language models

on RGX synthetic QA data.

The full evaluation results on MRQA out-of-domains are shown in Tables 6.3 and

6.4, and the experiment setting comparison is shown in Table 6.5. The results show

that the models trained with the RGX framework achieve significantly higher EM and

F1 scores on most domains, comparing to both pretrained QA models and self-training

baselines. The results showed that the RGX model achieves 7.7 and 3.0 average

F1 improvement over ELECTRA, the SOTA pretrained language model for QA, by

pretraining on NQ and SQuAD respectively. The improvement over previous SOTA

self-training QA methods, QAGen2S and SynQA, is also significant on both pretraining

corpora, although SynQA applies complicated adversarial QA annotation. The largest

gain we got is adapting NQ model to TextbookQA domain, increasing 18.0 EM and

19.4 F1 scores. Note that our model still outperforms all baselines without MMI.

The performance on the DROP benchmark drops since DROP requires multi-step

reasoning, but the synthetic generation model tends to generate safe question-answer

96

Models EM F1

Source domain: NQ, Target domain: SQuAD
Pretrained NQ 67.8 80.3
RGX + NER 27.4 35.4
RGX + AER-Tag 71.4 82.4
RGX + AER-LM 72.7 85.9
RGX + AER-EM 79.2 89.4
Supervised ELECTRA-large 89.7 94.9

Table 6.6: Comparison of different AER strategies. NER stands for the BERT named
entity recognition model trained on the CONLL 2003 shared task.

ELECTRA Top-k+MMI AER+MMI

EM F1 EM F1 EM F1
BioASQ 58.7 73.1 57.8 72.9 59.9 74.0
TextbookQA 43.0 54.6 44.6 54.9 45.3 55.4
RACE 38.3 52.5 38.1 52.4 39.7 54.1
RelExt 79.0 88.4 78.6 88.3 79.2 88.6
DuoRC 53.1 64.2 52.6 64.3 53.8 65.1
DROP 48.3 60.8 46.7 60.8 49.7 61.5

Table 6.7: Comparison between maximum mutual information inference performance
grounded on AER results and top-k (𝑘 = 20) predictions of the QA model.

pairs. We also found that without selecting harder questions with SEM in RGX, the

performance is significantly lower. These facts indicate that the QA model needs

hard training examples for better performance, and explains the good performance of

SynQA on DROP. For the same reason, the performance drop led by removing EM

from RGX is significantly larger when the QG model is pretrained on SQuAD, since

SQuAD questions are more coherent with the context than NQ, and selecting simple

questions for RGX training will encourage the model to generate trivial questions,

which is harmful for the QA training.

97

Models Mean Len. Std Len. Vocab

Ground-truth 11.29 3.72 988703
Semi-anno. RGX 10.54 1.91 923191

–w/o Coop. ST 10.49 2.48 919105
Zero-anno. RGX 10.53 1.94 873300

–w/o Coop. ST 10.57 2.63 789924
–w/o AER 10.60 1.87 743454
–w/o EM 10.18 1.62 692301

Table 6.8: The vocabulary sizes and lengths of Annotated and generated questions on
SQuAD under both semi- and zero-annotated settings in unseen domains

Domain RGX w/o Coop. ST RGX

Hit BLEU Hit BLEU
BioASQ 68.1 5.9 75.8 12.7
TextbookQA 43.7 7.5 58.2 13.2
RACE 8.3 5.2 12.3 6.8
RelExt. 47.4 2.8 54.2 3.3
DuoRC 53.5 6.7 60.0 7.5
DROP 73.5 12.3 75.3 9.3

Table 6.9: Evaluation of the answer hit rates and question BLEU scores of the synthetic
data.

6.4.6 Analysis

Answer Entity Recognition

We first compare the performance of different AER models and strategies by setting

NQ as the source domain and SQuAD 1.1 as the target domain in Table 6.6. The

results showed that the choice of AER model and strategy significantly influences

the final QA performance. The low performance of the NER model trained on

CONLL shared task suggests the importance of our AER module. We notice that the

improvement from the cooperative learning over the pretrained models is higher in

the zero-annotation setting than the semi-annotated task. The observation indicates

that the model trained with RGX is more robust against the automatically recognized

answer entities.

The AER method also enables and improves the maximum mutual information

98

Context: Despite differences in the spectrum of mutations in CN or CyN,
type or localization of mutation only partially determine the clinical phenotype.

Q1: What determines the clinical phenotype of a person with a mutation?
Q2: What determines the clinical phenotype of a mutation?
Q3: What is the only way to determine the clinical phenotype of a mutation?

Q1_loss = 1.37

Q2_loss = 4.38

Q3_loss = 10.72

Figure 6-5: Generated questions about the same answer entity classified into different
types by EM.

(MMI) inference in test time. Tables 6.3 and 6.4 shows that MMI achieves the best

performance, and we also show that the MMI accuracy is hurt without AER. Table 6.7

shows that MMI grounded on AER constantly outperform the ELECTRA model, but

grounding on top-k seriously hurts the EM scores. Some invalid answer predictions

leads to low question generation perplexities, which makes MMI inference noisy. Table

6.8 shows that the QG model generated more diverse questions based on the AER

outputs.

99

Synthetic QA Selection with EM

Previous experiments showed that selecting non-trivial synthetic QA pairs is essential

for RGX to achieve high performance. Tables 6.3 and 6.4 shows that the performance

of cooperative self-trained RGX is much lower than the pretrained baseline without

EM. If selecting QA pairs with low perplexities instead of EM, the QA diversity is

significantly lower as shown in Table 6.8, thus makes the QAE model overfit to simple

training cases and hurts the QA accuracy. We show questions about the same answer

entity being classified into simple, challenging, and difficult types by EM in Figure

6-5. The data points in the plot represents the losses of synthetic QA pairs and the

predicted QA type. Based on the highlighted answer entity, question 1 and 2 are

predicted as correct questions, while question 3, which has a relatively high QAE loss,

is regarded as a wrong question. Note that we only generate one question for each

span recognized by the AER model, but different questions might be re-directed to

the same AE after QAE fine-graining.

Cooperative Self-training

We found that the cooperative self-training method improves the domain adaptation

ability of self-trained QA models by increasing both accuracy and diversity of QA

synthesis.

Accuracy We also evaluate the quality of the generated QA pairs without a down-

stream task by assessing the answer entity hit rate and the BLEU scores of generated

questions using the evaluation sets of each domain. The results are shown in Table 6.9,

indicating that RGX find mores human-annotated answer entities, and the generated

questions have higher BLEU scores on all domains. The evaluation results show that

the synthetic QA pairs generated by RGX covers more human annotated answer

entities, and the generated questions are more similar to human annotations than the

pretrained question generation model.

Diversity We compare the lengths and vocabulary sizes of the questions and summa-

rize the statistics in Table 6.8, which shows that the ground-truth questions are longer

100

Figure 6-6: An example of a passage in the training set of the SQuAD corpus. We list
the annotated question-answer pairs, and the question-answer pairs generated by the
models pretrained on NQ and finetuned by RGX. The bold texts are annotated or
recognized answer entities. Adapting from NQ is difficult since the questions in NQ
do not strictly coherent with a given context.

and more diverse in vocabulary than the generated ones. However, the cooperative

self-training, together with AER and EM, improves the vocabulary diversity. We

observe a correlation between the vocabulary size and the QA performance reported

in Table 6.2 and 6.6, presumably because the QAE model requires diverse knowledge

for training. Thus, we believe generating more diverse QA pairs with good quality

will be a critical next step to improve RGX.

Case Study An example of a SQuAD [Rajpurkar et al., 2016] passage is shown in

Table ??. We list the annotated and generated question-answer pairs by different

models. The table shows that the models can recognize reasonable answer entities

other than the annotated ones, and RGX generates more natural QAs.

101

6.5 Chapter Summary

In this chapter, we propose a cooperative self-training framework, RGX, consisting

of an answer entity Recognizer, a question Generator, and an answer eXtractor,

for question generation and answering. We also introduce in the framework an

expectation-maximization method that measures the quality of generated questions for

reinforced finetuning of the question generation models. Experiments show that RGX

significantly outperforms pretrained and self-trained model baselines while adapted to

unseen domains, suggesting that RGX is a promising framework for making extractive

question answering methods more scalable and less dependent on human annotation.

102

Chapter 7

Entailment Self-training for Language

Task Adaptation

7.1 Introduction

In previous chapters, we have explored self-training methods for conversational tasks,

including dialog response & action selection, and question answering. In this chapter,

we seek to extend the self-training algorithm for more general natural language under-

standing tasks, including language inference, sentiment analysis, and fact-checking.

To generalize our self-training method to different tasks, we formulate all tasks as

language entailment predictions.

Entailment has been an important topic in logic and linguistics research for

decades [Routley and Meyer, 1973]. Given two propositions 𝑝 and 𝑞, we say 𝑝 entails

𝑞 (𝑝 ⇒ 𝑞) if 𝑝 is true, then 𝑞 must be true. In the context of large-scale self-supervised

language model pretraining [Devlin et al., 2018, Raffel et al., 2019, He et al., 2020],

entailment is currently considered as one of many regular downstream natural language

understanding tasks, namely natural language inference (NLI) [Bowman et al., 2015],

where 𝑝 and 𝑞 are natural sentences and the task is to predict if 𝑝 and 𝑞 has an entail,

neutral, or contradict relation. However many if not all, other NLU tasks can also

be formulated as NLI tasks. For example, verifying the correctness of an answer to

a question can be solved by predicting the entailment between the QA pair and a

103

given passage [Rajpurkar et al., 2016]. To predict if two questions are asking for the

same answer [Wang et al., 2017], we can evaluate the entailment between the following

texts: “The answer to question A” and “The answer to question B”. Even for the tasks

where only one input is required instead of a text pair, for example, sentiment analysis

[Socher et al., 2013], we can construct an entailment prediction task for the following

sentence pair: “The user commented: 𝑥”, and “The user likes the product”. If the result

is entailment, then 𝑥 is a positive review, otherwise, 𝑥 expresses a negative attitude.

The previous studies and chapters in this thesis have explored generalizing models

to different domains but within the same task. In this chapter, we propose an

entailment self-training method that adapts to different NLU tasks with data synthesis

and entailment prediction. We evaluate the method on two different tasks. Firstly, we

re-use the RGX model proposed in the previous chapter for QA generation to solve a

fact checking problem. We then evaluate the performance and robustness of few-shot

task adaptation using our entailment self-training method.

7.2 QA-based Fact Checking

Fact checking is an important technique to identify misinformation by comparing an

input claim with a trusted knowledge base [Nadeem et al., 2019]. Previous end-to-end

fact checking models [Mohtarami et al., 2018] are black boxes that encode input claims

and long grounded documents as a batch and output a single prediction. This line

of research is limited by the difficulty of data annotation. Labeling misinformation

is costly and the size of current publicly available fact checking corpora is limited.

For example, the current largest fact checking corpus, FEVER [Thorne et al., 2018],

only contains 2,582 grounded documents for training. Meanwhile, SQuAD v1.1

[Rajpurkar et al., 2016], a popular QA benchmark, contains over 18k training passages,

and the MNLI benchmark contains 39k premise texts [Bowman et al., 2015]. This

motivates us to adapt question answering models that are trained on a much larger

training set to the fact checking task. Experiments show that with this method,

we can conduct both supervised and unsupervised task adaptations, while both the

104

performance and interpretability of the QA-based fact-checking method are better

than supervised end-to-end fact-checking models.

7.2.1 QA-based Fact-checking Pipeline

Based on the document retrieval results provided by the FAKTA system [Nadeem et al., 2019],

we propose a 3-step pipeline for QA-based fact-checking as follows,

• Generate and cluster question-answer pairs for input claims (𝑄,𝐴𝑐)

• Answer the generated question grounded on retrieved documents (𝑄,𝐴𝑑)

• Predict the fact-checking result by calculating the entailment of two QA pairs

(𝑄,𝐴𝑐) and (𝑄,𝐴𝑑)

where 𝑄 stands for generated questions, 𝐴𝑐 stands for answer entities recognized in

input claims, and 𝐴𝑑 are predicted answers to 𝑄 grounded on retrieved documents.

The entire pipeline is shown in Figure 7-1. Given an input text claim, it is first

processed by an Answer Entity Recognizer component to detect and extract entities

in the claim. The entities and the claim are given as inputs to a Question Gener-

ator component to generate question-answer pairs from the claim. The resulting

questions are then categorized based on their corresponding answers in the claim

using the following text-based similarity metrics: Longest common subsequence (LCS)

[Irving and Fraser, 1992], n-gram [Barrón-Cedeno et al., 2010], Levenshtein distance

[Navarro, 2001] as well as Cosine [Qian et al., 2004] and Jaccard [Jaccard, 1901] simi-

larity metrics. This categorization reduces the impact of poorly generated questions

on the final performance of the system. After categorization, the top K retrieved

documents (obtained via FAKTA) and the generated questions are passed to an Answer

Extractor component to predict the answers for the questions from the documents.

These answers in conjunction with answers from the input claim are processed in an

Answer Matching component to measure the extent of matching for each question

category. Finally, the claim is predicted to be True if at least one matched answer can

be found in each question category, otherwise it is predicted to be False.

105

three men arrested for suspected drug
trafficking, cocaine seized.

RGX

Claim

Q1: What happened to the three men who were suspected of drug
trafficking?
A1: arrested

Q2: What was the suspected crime of the three men arrested?
A2: drug trafficking

Q3: What was the charge of the three men arrested for?
A3: suspected drug trafficking

Q4: How many men were arrested for drug trafficking?
A4: three

Q5: What was seized from the three men arrested for drug
trafficking?
A5: cocaine

{Q1 | A1_c}, {Q2, Q3 | A2_c},
{Q4 | A4_c}, {Q5 | A5_c}

Question
Clustering

FAKTAD_1, D_2, …, D_N

Retrieved Documents

ELECTRA-QA{Q1 | A1_d}, {Q2, Q3 | A2_d},
{Q4 | A4_d}, {Q5 | A5_d}

Answer Matching (Ai_c, Ai_d): factually True / False

Figure 7-1: The architecture of the QA-based fact-checking system.

As in the previous chapter, we employ ELECTRA [Clark et al., 2020] for the answer

entity recognizer and answer extractor components, and BART [Lewis et al., 2019a] for

the question generator component. We leverage the SQuAD v1.1 [Rajpurkar et al., 2016]

dataset as the seed corpus for pretraining these components. The dataset contains

107,785 question-answer pairs on 18,856 passages. Each question is labeled with an

answer that can be extracted from the given passage. Our full fact checking pipeline

is an aggregation of FAKTA and the QA-based systems. It uses an unsupervised

combination of the systems in which the aggregation pipeline would relies on the

FAKTA output if the probability score for its prediction is higher than a threshold

(we use the threshold 0.5), otherwise it relies on the prediction from QA-based system.

We also explore a supervised combination of the FAKTA and QA-based systems

using a SVM classifier with a rich set of features including text-based features (e.g.,

n-grams), FAKTA-based features (e.g., agree, disagree and discuss scores for top

106

K retrieved documents, max, min and mean of the stance scores, and related and

unrelated scores for the documents), and QA-based features (e.g., QA-based output,

fraction of matched answers over all). However, the unsupervised combination performs

better than the supervised combination based on our experiments.

7.2.2 Improved RGX for Fact Checking

We use the RGX framework proposed in the previous chapter for fact checking as

shown in Figure 7-1, but the previous RGX model is not enough for the fact checking

system. For example in the claim “three men arrested for suspected drug trafficking,

cocaine seized”, a fact checker might need to go through all entities in the claim,

including “three”, “men”, “drug trafficking”, and “cocaine”. However, the RGX model

does not guarantee coverage of all potential answer entities. This might lead to

inaccurate fact checking because an entity will not be checked if no grounded QA-pair

is generated.

To improve the coverage of answer entities, we propose a hierachical RGX model

that generates more verified QA pairs. In the standard RGX model, we call a QA

pair certified if the QA model successfully extracts the answer entity that is used to

generate the question. Let 𝑎 be a answer span, 𝐺(·) stand for the question generation

model, 𝐴(·) stand for the question answering model, and 𝑐 stands for a context passage,

we call a QA pair “verified” if

𝑎 = 𝐴(𝑞, 𝑐)

and

𝑞 = 𝐺(𝑎, 𝑐)

Because of the difficulty of the QA task, the answer entity cannot be successfully

extracted even when a correct question is generated. To simplify the answer extraction

task, we can shorten the context 𝑐 to provide more concentrated information for the

answering model to extract. To achieve this goal, we change the AER model with

a constituency parser. We regard all nounes and spans that are recognized by the

constituency parser as answer entities. Furthermore, we also use the same constituency

107

parser to split the context into sentences and spans. For each potential answer entity,

we run the RGX framework on all spans that are on its path to the root node. The

process starts from the root node, which is the context itself, and goes down to the

direct parent node of the target answer entity. The loop stops when the answer entity

is verified, otherwise there is no question assigned to the answer entity if no QA pairs

can be verified on any level. The new method is illustrated in Figure 7-2.

Context AE

Question

BART

ELECTRA
Context AE

AERoot

AE

AE

Constituency Parsing Tree

Question @ Level i ELECTRA

ELECTRA

ELECTRA

Question @ Level i

Question @ Level i

Question @ Level i

AE_level_1

AE_level_2

AE_level_3

AE_level_4

RGX-Fact Checking

RGX-1

AE_Verified

Figure 7-2: The architecture of hierarchical RGX for fact checking.

In the figure, the upper part is “RGX-1”, standing for the original RGX model for

comparison, while the lower part is the hierarchical RGX model. If a span stands for

a reasonable answer entity, it is more possible to be verified with a question in the

hierarchical RGX pipeline, leading to more comprehensive fact checking.

7.2.3 Fact Checking Results

We evaluated the system on a corpus consisting of three different sets of claims

which are relevant to Singapore: WildForums which contains 50 claims collected

108

Pe
rfo

rm
an

ce
 (%

)

60

63.75

67.5

71.25

75

FC QA FC+QA (unsup) FC+QA (sup)

63.09

72.14

70.09

62.11

65.31

72.34

70.21

63.83

Accuracy Macro-F1

Figure 7-3: Results of QA-based fact checking system on the Wild-Forums data.

from Hardwarezone1 and Reddit, Wild-Synthetics which contains 36 claims created

synthetically, and factChecker contains 50 claims collected from Black Dot Research2

and AFP Factcheck3. We use the following evaluation measures

• Accuracy: The fraction of correctly classified examples.

• Macro-𝐹1: The average of 𝐹1 scores computed separately for each class.

Figures 7-3, 7-4 and 7-5 show the performance of our fact checking models on

the Wild-Forums, Wild-Synthetics, and factChecker test datasets respectively. In the

Figures, blue and green colors indicate accuracy and macro-F1, and the performance

is shown for FAKTA (FC in the Figures), the QA-based fact checking model (QA),

and the supervised and unsupervised combination of FAKTA and QA-based models

indicated by FC+QA(sup) and FC+QA(unsup) in the figures. The results show that

the performance for the QA-based model is significantly higher than FAKTA across

datasets. This is because, in contrast to FAKTA, the QA-based model performs fine-

grained fact checking at sub-claim level and remedies minor linguistic manipulations

in the input claim. The highest performance achieved using QA-based model on the
1https://www.hardwarezone.com.sg
2https://blackdotresearch.sg
3https://factcheck.afp.com

109

Pe
rfo

rm
an

ce
 (%

)

0

17.5

35

52.5

70

FC QA FC+QA (unsup) FC+QA (sup)

60.17
62.8662.74

51.05

63.8962.8662.86

54.29

Accuracy Macro-F1

Figure 7-4: Results of QA-based fact checking system on the Wild-Synthetics data.

factChecker dataset, and the model also obtained significantly high performance on

the other two datasets. The unsupervised combination of the two models obtained

the highest performance on the Wild-Forums and Wild-Synthetics datasets. Overall,

the results indicate (a) the QA-based model performs better than FAKTA across

datasets, and (b) on average, the QA-based model and its unsupervised combination

with FAKTA result in higher performance on our three datasets.

7.3 Self-training for Robust Language Understanding

Although achieving state-of-the-art performance in different natural language under-

standing tasks [Devlin et al., 2018, Liu et al., 2019, Yang et al., 2019, Clark et al., 2020,

He et al., 2020, Joshi et al., 2020], large-scaled pretrained language models are still

challenged by difficult evaluation examples crafted by adversarial attacks or model-in-

loop adversarial data annotation [Wang et al., 2021, Jin et al., 2020, Bartolo et al., 2020,

Zang et al., 2019, Garg and Ramakrishnan, 2020, Li et al., 2020]. The performance

of a finetuned language model on an adversarial evaluation benchmark can be much

lower than evaluating on a standard benchmark even in the same domain. However,

experiments also showed that finetuning models on adversarial data annotation can

110

Pe
rfo

rm
an

ce
 (%

)

0

20

40

60

80

FC QA FC+QA (unsup) FC+QA (sup)

30.57

46.9749.72

41.77
38.64

68.29
73.17

58.54

Accuracy Macro-F1

Figure 7-5: Results of QA-based fact checking system on the FactChecker data.

significantly mitigate the performance gap [Bartolo et al., 2020].

One reason that causes this problem is the difference in data distribution be-

tween the training and evaluation splits, even though they are in the same knowl-

edge domain. For example, SQuAD [Rajpurkar et al., 2016] and AdversarialQA

[Bartolo et al., 2020] are both question answering corpora based on annotated Wikipedia

passages, but the performance of fine-tuning on the SQuAD training set and evalu-

ating on the test set of AdversarialQA is significantly lower than fine-tuning on the

AdversarialQA training set. Given this fact, training on normal corpora and evaluating

on adversarial evaluation benchmarks is an out-of-domain adaptation problem where

the model needs to generalize to different data distributions. Since there are no

adversarial training cases available in most cases, and the adversarial evaluation set

lies in the same domain as the training set, it is difficult to solve the problem with

regular few-shot and self-supervised transfer learning techniques to solve the problem

[Tan et al., 2018, Noroozi et al., 2018].

We propose to improve the adversarial robustness of neural language models with

the self-training method [Zoph et al., 2020], which is a special transfer learning method

based on synthetic training data. Recent studies [Zoph et al., 2020, Zou et al., 2019]

have compared self-training with self-supervised pretraining as a strategy of using

111

Generator
Synthetic

data

Random
synthetic

data

Random
Sampling

Selected
synthetic

data
Joint data
Selection

Discriminator

Classifier

Discriminator

Classifier Adversarial
Evaluation

Training

Training

Figure 7-6: The pipeline of the adversarial self-training algorithm includes four steps:
1. synthetic data generation, 2. discriminator training using randomly sampled
synthetic and human-labeled training data, 3. data selection with the discriminator
and weighting with the pretrained classifier, and 4. updating both generator and
classifier with selected and weighted synthetic data.

additional unlabeled human-generated data to create new real-data, pseudo-label

training cases. In contrast to previous research, we propose a method that only uses

a restricted amount of real data as the initial training set and generates synthetic

data-label pairs for self-training. Given a training set of a specific task, we pretrain

a synthetic data generator and a task solver model, for example, a classifier for a

task in GLUE [Wang et al., 2018] and AdversarialGLUE [Wang et al., 2021]. We also

randomly initialize a discriminator as GANs for predicting the source of textual

inputs. The models are trained in a multi-epoch iterative pipeline, each epoch of

which contains four steps: 1) generate synthetic data based on given labels, 2) update

the task model with high-quality synthetic selected by the discriminator and the

pretrained task model, 3) sample synthetic and real data to update the discriminator,

and 4) update the text generator with high-quality synthetic data selected by the

updated discriminator. The proposed self-training pipeline is illustrated in Figure 7-6.

We designed experiments to compare the traditional pretraining-fine-tuning ap-

proach and our self-training pipeline by evaluating the learned models on natural

language understanding benchmarks, GLUE, and AdversarialGLUE. We found the

pretrained data generators cannot improve the training of task models since the

synthetic data they generate is less diverse and natural than human-generated texts.

However, after adversarial training, the generator is encouraged to output training

112

cases on which the pretrained task model fails to make confident predictions. By

running this pipeline iteratively, our system challenges the task model with training

cases of gradually increased difficulty and diversity. Experiments show that the self-

training pipeline significantly boosted the performance of task models in both regular

and adversarial evaluation settings. On the SST-2 task of the AdversarialGLUE

benchmark, the performance improvement is as high as 10%.

7.3.1 Related Work

Pretraining large-scale neural language models in a self-supervised manner on large cor-

pora and fine-tuning on task-specific training data has been a popular method recently

for both language understanding [Devlin et al., 2018, Liu et al., 2019, Yang et al., 2019,

Clark et al., 2020, He et al., 2020, Joshi et al., 2020] and generation [Brown et al., 2020b,

Lewis et al., 2019a, Raffel et al., 2019, Zhang et al., 2019]. Although achieving state-

of-the-art performance in a wide range of tasks, recent studies have found that the

pretraining-fine-tuning strategy relies on task-specfic data annotation and the perfor-

mance is sensitive to adversarial data examples [Blum and Mitchell, 1998, Wang et al., 2021,

Jin et al., 2020, Bartolo et al., 2020, Zang et al., 2019, Garg and Ramakrishnan, 2020,

Li et al., 2020].

Besides self-supervised pretraining, another strategy to improve models with un-

labeled data is self-training [Zoph et al., 2020, Xie et al., 2020, Noroozi et al., 2018,

Zou et al., 2019, He et al., 2019, Sachan and Xing, 2018, Shakeri et al., 2020, Bartolo et al., 2021].

Different from pretraining with data augmentation or constructing task-like pre-

training cases [Glass et al., 2019], self-training models learn from synthetic task-

specific training cases. A typical training case can be modeled as a data-label

pair. [Zoph et al., 2020, Xie et al., 2020, Noroozi et al., 2018, Zou et al., 2019] ex-

plored training with additional real data and pseudo labels, while [He et al., 2019,

Sachan and Xing, 2018, Shakeri et al., 2020, Bartolo et al., 2021] introduced training

cases consist of both synthetic data and pseudo labels. These studies suggest that

self-training benefits both training robustness and generalization across domains.

Generative adversarial networks (GANs) [Goodfellow, 2016] have been widely

113

applied to generate synthetic data with similar distributions to human-produced

data. Because of their discrete nature, a similar idea can only be implemented with

a policy gradient to train language generators [Yu et al., 2017]. A previous study

also showed that language generators can be optimized for non-differentiable objects

with policy gradients [Rennie et al., 2017]. The previous chapter on RGX also found

fine-tuning question generators with selected synthetic with weighted self-training

benefits self-training for question answering.

7.3.2 Method: Adversarial Self-training

In this chapter, we proposed a multi-agent architecture that shares similarities with

GANs despite a different focus and downstream tasks. Our architecture involves three

modules: a generator, a discriminator, and a task handler, usually a classifier for

GLUE-like tasks. We call the method adversarial self-training (AdvST) since the

pipeline shares the generator-discriminator components of the generative adversarial

network (GAN) [Goodfellow et al., 2014] architecture.

Modules

Generator (G) We train sequence-to-sequence text generators [Lewis et al., 2019a,

Raffel et al., 2019] to produce the synthetic data. Given the training set {(𝑥𝑖
0, 𝑥

𝑖
1, 𝑦

𝑖)|𝑖 ∈

[0, 𝑁]} of a target task, we train a generation model

𝑥𝑖
𝑎 = G(𝑥𝑖

𝑏, 𝑙
𝑖; 𝜃G)

where 𝑥𝑎 and 𝑥𝑏 are different textual inputs of the task and 𝑙𝑖 is the given label. The

generator learns to generate a textual input given another input and the label. For

example in the natural language inference task (MNLI), a generation model learns to

generate the hypothesis given the premise and a “entail” label. For the classification

tasks that only take one textual input, for example, sentiment analysis (SST-2), we

train the model to generate texts only based on given labels [Wang et al., 2018].

Discriminator (D) As in [Goodfellow et al., 2014], the discriminator is used to

114

distinguish the synthetic texts from human-generated texts. The model learns to

assign input texts or text pairs probabilities of being generated by humans,

𝑝ℎ = D(𝑥1
0, 𝑥

1
1; 𝜃D)

For the SST-2 task, the model only processes one textual input. During the training,

we randomly sample synthetic training cases and human-annotated training cases, and

train the discriminator model on a mixed training set consisting of sampled training

cases.

Classifier (C) We train the classifier for the target task. In our pipeline, the

classifier is pretrained on human-labeled training data, and fine-tuned on a new

data set constructed by mixing synthetic and the original training samples. In

AdversarialGLUE, the classifier acts as a regular classification model that takes

sentences or text pairs and outputs predicted classes. The classifier is evaluated on

different benchmarks after finetuning.

7.3.3 Synthetic Data Generation Pipeline

We propose a cooperative adversarial self-training framework (CAST) that jointly

fine-tunes synthetic data generators and task-specific classifiers. To enable the pipeline,

we first pretrain the generator and the classifier with maximum likelihood learning

on the training set of a given task as shown in Section 7.3.2. The generator will be

fine-tuned for generating better training cases, while the pretrained classifier is used

for providing classification entropy in later steps. The classification entropy makes a

crucial fine-tuning signal for the generator.

With the pretrained models, we fine-tune the modules for synthetic data generation

in an iterative pipeline with multiple epochs. Each epoch of the pipeline contains

three steps, including synthetic data generation, discriminator training, and generator

finetuning with selective, weighted self-training. The pipeline of our method is

illustrated in Figure 7-6.

Step 1. Synthetic data generation. Consider a training set consisting of 𝑁

115

training samples and 𝑀 labels, we generate 𝑀 synthetic texts for each training case.

In other words, we generate 𝑁 synthetic texts for each label. As a result, we generate

𝑁 ·𝑀 synthetic texts for further selection using the pretrained generation model. For

the tasks that only have one input, we generate texts only based on given labels, while

for tasks that require models to process model pairs {(𝑥𝑖
1, 𝑥

𝑖
2)|𝑁−1

𝑖=0 }, we generate 𝑀

first-sentences for each second-sentences 𝑥𝑖
2 for a fair comparison across different tasks.

Step 2. Discriminator training. We train a discriminator to distinguish between

synthetic and human-generated training cases. To train the model, given a human-

labeled training set containing 𝑁 training cases and a synthetic corpus with 𝑀 data

points (𝑀 > 𝑁), we randomly sample 𝑁 cases from the synthetic set and construct

a new training set by mixing the sampled synthetic training cases with the human-

generated cases. We then fine-tune a pretrained trained language model on the new

training set with a binary classification task.

Step 3. Generator fine-tuning. We classify the synthetic dataset with the

trained discriminator and assign “synthetic” and “human-generated” probabilities

𝑝D𝑠𝑦𝑛 and 𝑝D𝑟𝑒𝑎𝑙 to each synthetic case. Since the discriminator is trained with cases

sampled from the same synthetic set, only a small subset of the synthetic cases will

receive 𝑝D𝑟𝑒𝑎𝑙 > 0.5 > 𝑝D𝑠𝑦𝑛. In addition, we apply the pretrained classifier C to assign

probabilities to each class for synthetic cases. For the 𝑖-th synthetic training case

(𝑥𝑖
1, 𝑥

𝑖
2, 𝑦

𝑖), we denote the probability of the labeled class with 𝑝C𝑖 = 𝑝(𝑦𝑖|𝑥𝑖
1, 𝑥

𝑖
2; 𝜃C).

The generator is fine-tuned with a selective training set consists of synthetic

training cases that satisfy 𝑝𝑖,D𝑟𝑒𝑎𝑙 > 0.5 > 𝑝𝑖,D𝑠𝑦𝑛. We define the loss function of the 𝑖-th

selected training case as

𝑙𝑖 = −𝑝𝑖,D𝑟𝑒𝑎𝑙 · (1− 𝑝C𝑖) · log(𝑥𝑖
1|𝑥𝑖

2, 𝑦
𝑖; 𝜃G) (7.1)

Our self-training design assigns larger loss signals to the training cases that have

higher 𝑝𝑖,D𝑟𝑒𝑎𝑙 and lower 𝑝C𝑖 . In other words, a training case receives a strong training

signal if the discriminator believes it is a human-generated data point and the classifier

is not too confident about the label so that the generator is guided to produce more

116

natural and difficult synthetic training cases.

Iterative fine-tuning. After fine-tuning the generator, we can go back to step 1

and re-do the entire pipeline for more epochs. At epoch 𝑡, we further fine-tune the

discriminator and generator trained in epoch 𝑡 − 1. After the iterative fine-tuning,

both generator and discriminator are fixed for the final synthetic data generation for

fine-tuning the classifier.

Classifier fine-tuning

After the generator and discriminator fine-tuning is finished, we re-do the synthetic

data generation step described above and select human-like synthetic data points

{(𝑥𝑖
1, 𝑥

𝑖
2, 𝑦

𝑖)|𝑝𝑖,D𝑟𝑒𝑎𝑙 > 𝑝𝑖,D𝑠𝑦𝑛} using the trained discriminator D. We construct a new

training set by mixing and randomly shuffling the selected training cases and the given

training set. A pretrained language model is fine-tuned on the newly constructed

training set for further evaluation. In this work, we evaluate the fine-tuning perfor-

mance of different pretrained language models under fully-supervised and few-shot

settings and evaluate the models on both standard and adversarial evaluation sets to

understand the effect of the proposed method.

7.3.4 Experiments

We evaluate our method on GLUE [Wang et al., 2018] and AdversarialGLUE [Wang et al., 2021]

benchmarks. We evaluate the generalization ability of the fine-tuned classifier model

to adversarial evaluation examples and assess the influence of our model on the

standard evaluation set. We compare the performance of our model on SST-2,

QQP, QNLI, and RTE tasks where both standard and adversarial evaluation sets

are provided [Wang et al., 2021]. We fine-tune DeBERTa [He et al., 2020] on GLUE

training sets, which is the state-of-the-art model on AdversarialGLUE according

to [Wang et al., 2021], and evaluate by averaging three separate experiments. The

performance is shown in Tables 7.1 and 7.2. We compare our method with different

baseline data augmentation methods, including SSMBA [Ng et al., 2020] and SeqGAN

117

Dataset Accuracy Baseline SSMBA SeqGAN AdvST

SST-2 Avg. 55.10 59.04 56.08 62.33
Std. 4.51 3.65 4.68 2.55

RTE Avg. 63.51 69.53 71.19 73.66
Std. 10.73 3.58 4.34 2.67

QQP Avg. 55.98 59.86 60.72 64.75
Std. 7.06 6.34 5.23 4.37

QNLI Avg. 51.89 58.11 57.65 62.33
Std. 5.50 4.25 3.81 2.61

Table 7.1: The performance of different training methods on AdversarialGLUE.

Dataset Accuracy Baseline SSMBA SeqGAN AdvST

SST-2 Avg. 95.75 95.43 96.44 96.32
Std. 0.55 1.02 0.52 0.27

RTE Avg. 78.04 80.59 79.06 80.86
Std. 3.84 1.53 0.72 1.26

QQP Avg. 90.56 89.72 90.85 90.35
Std. 0.20 0.72 0.65 0.79

QNLI Avg. 92.98 92.69 92.94 93.26
Std. 0.77 0.94 1.27 0.43

Table 7.2: The performance of different training methods on GLUE.

[Yu et al., 2017].

The experimental results shown in the tables are summarized based on 5 separate

runs. Our method, adversarial self-training (AdvST), achieved the best performance

on adversarial tasks, achieving the highest performance and lowest standard deviation,

indicating that our method is effective in improving the robustness and stability of

language model fine-tuning. Our method also outperforms SSMBA and SeqGAN,

which are strong data augmentation and language generation methods. Our method

outperforms the baseline Deberta model by more than 10% on adversarial RTE, QQP,

and QNLI tasks.

On the evaluation set of the standard GLUE benchmark, we found that SeqGAN

sometimes outperforms the AdvST model. The reason is that our AdvST method

rewards generating training cases with high entropy, which is not necessary for standard

GLUE evaluation. Out of 4 tasks, SeqGAN achieves the highest performance on SST-2

118

and QQP, and AdvST outperforms all baseline models on RTE and QNLI. While both

AdvST and SeqGAN outperform SSMBA, all data augmentation methods outperform

the baseline model on standard GLUE tasks not as significantly as in the adversarial

experiments because the data annotation in standard GLUE is regular. The result

indicates that our method, as well as other data augmentation methods, are more

effective when the evaluation data is more difficult.

7.4 Chapter Summary

In this chapter, we demonstrate generative self-training methods for different natural

language understanding tasks. We applied an improved RGX model with a higher

answer entity hit rate for both supervised and unsupervised fact checking tasks,

achieving as much as 20% improvement on some evaluation tasks. In addition to

question answering, we develop a generative data augmentation method, AdvST, to

improve both the accuracy and robustness of NLU models. Experiments show that

the proposed method can improve the standard model fine-tuning method by higher

than 10% accuracy.

119

120

Chapter 8

Conclusions

In this thesis, we have proposed several different self-training methods for natural

language processing (NLP), showing that the training of neural language models can

be improved by different strategies of synthetic data generation, including soft pseudo

label generation, prototypical label embedding generation, and synthetic training text

generation.

In Chapter 3, we proposed a self-training method based on pseudo-labels for

interpretable dialog response retrieval. We train the dialog encoder to output both

sequence-level coherence scores and token-level evidence scores. Since there are

no annotated keywords as evidence, we proposed a pseudo-labeling method and

encouraged the model to learn from the generated evidence labels. Experiments

show that the joint retrieval-extraction (REX) encoder improves both dialog response

selection performance compared with existing state-of-the-art models, but also improves

the interpretability by providing the evidence keywords that make the retrieved

utterances good responses. REX significantly outperforms the cross-encoder baseline

and achieves the new SOTA performance on the DSTC7 Track 1 challenge, without

increasing the number of trainable parameters. Our analysis suggests that the proposed

unsupervised extraction training leads to more improvement than simple poolings.

The visualizations of the extraction results demonstrate that the model attends to

evidence keywords helping determine whether the candidate is a good response, and

thus enhance interpretability.

121

In Chapter 4, we proposed a novel dialog management model, prototypical Q

network, for supervised and few-shot dialog policy learning using prototypical label

embeddings pretrained in a self-supervised manner. We apply this model in the

area of automatic conversational diagnosis. Experiments showed that the ProtoQNs

outperform the DQN model in both supervised and few-shot settings. In the supervised

setting, ProtoQNs achieve results comparable to SOTA without using domain-specific

features. As for the few-shot experiment, ProtoQN learns new diseases using a

few training samples without forgetting previously learned symptom knowledge and

achieves the SOTA performance. The model also shows less degradation as we inject

noise into a conversation. Our study suggests that modeling real conversations directly

reinforces simulator-based dialog policy learning. Embeddings of dialog actions are

shareable among tasks (diseases, in our case) and benefit the fast adaptation to new

ones. Here we show promising results in the medical domain. In the future, we will

investigate more adaptive models as well as different domains and corpora toward the

goal of modeling new dialog tasks better and with fewer examples.

In Chapter 6, we extended self-training methods from the pseudo label and

label embeddings to training with textual synthetic data points, which requires task-

aware natural language generation models. We proposed a cooperative self-training

framework, RGX, consisting of an answer entity Recognizer, a question Generator,

and an answer eXtractor, for question generation and answering. We also introduced

in the framework an expectation-maximization method that measures the quality

of generated questions for reinforced finetuning of the question generation models.

Experiments show that RGX significantly outperforms pretrained and self-trained

model baselines while adapted to unseen domains, suggesting that RGX is a promising

framework for making extractive question answering methods more scalable and less

dependent on human annotation.

In Chapter 7, we explored synthetic data generation and self-training methods for

different NLU tasks, including fact checking, sentiment analysis, and other language

entailment tasks. Experiments showed that the synthetic QA pairs can be used for

unsupervised fact checking, which outperforms supervised baselines. We also proposed

122

adversarial self-training, which is also a generative data augmentation method that

learns to augment the original training set by learning adversarial and prediction

entropy signals. The proposed method significantly outperforms all baseline models,

including standard model finetuning, masked language model-based data augmentation

method, and existing adversarial text generation methods.

The long-term goal of this research is automatically generating natural training

data for different tasks and modalities. Systems in this direction will benefit tasks

where high-quality, human-annotated training data is difficult to obtain because of

different limitations, including costs, expertise, privacy, and other reasons. With

such systems, users of machine learning models do not have to conduct costly data

annotation or send sensitive data to third parties. It is also interesting to evaluate

if self-training models can mitigate biases in human data annotation. In the future,

we will propose and analyze self-training methods in different domains and tasks, to

build fully automatic, private machine learning pipelines.

123

124

Bibliography

[Bahdanau et al., 2014] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural
machine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473.

[Barrón-Cedeno et al., 2010] Barrón-Cedeno, A., Rosso, P., Agirre, E., and Labaka,
G. (2010). Plagiarism detection across distant language pairs. In Proceedings of the
23rd International Conference on Computational Linguistics (Coling 2010), pages
37–45.

[Bartolo et al., 2020] Bartolo, M., Roberts, A., Welbl, J., Riedel, S., and Stenetorp,
P. (2020). Beat the ai: Investigating adversarial human annotation for reading
comprehension. Transactions of the Association for Computational Linguistics,
8:662–678.

[Bartolo et al., 2021] Bartolo, M., Thrush, T., Jia, R., Riedel, S., Stenetorp, P., and
Kiela, D. (2021). Improving question answering model robustness with synthetic
adversarial data generation. arXiv preprint arXiv:2104.08678.

[Bender et al., 2003] Bender, O., Och, F. J., and Ney, H. (2003). Maximum entropy
models for named entity recognition. In Daelemans, W. and Osborne, M., editors,
Proceedings of CoNLL-2003, pages 148–151. Edmonton, Canada.

[Bengio, 2012] Bengio, Y. (2012). Deep learning of representations for unsupervised
and transfer learning. In Proceedings of ICML workshop on unsupervised and
transfer learning, pages 17–36. JMLR Workshop and Conference Proceedings.

[Bengio et al., 2000] Bengio, Y., Ducharme, R., and Vincent, P. (2000). A neural
probabilistic language model. Advances in Neural Information Processing Systems,
13.

[Bengio et al., 2003] Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003).
A neural probabilistic language model. Journal of machine learning research,
3(Feb):1137–1155.

[Blum and Mitchell, 1998] Blum, A. and Mitchell, T. (1998). Combining labeled and
unlabeled data with co-training. In Proceedings of the eleventh annual conference
on Computational learning theory, pages 92–100.

125

[Bowman et al., 2015] Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D.
(2015). A large annotated corpus for learning natural language inference. arXiv
preprint arXiv:1508.05326.

[Brown et al., 2020a] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S.,
Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M.,
Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B.,
Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D.
(2020a). Language models are few-shot learners.

[Brown et al., 2020b] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020b).
Language models are few-shot learners. arXiv preprint arXiv:2005.14165.

[Chen et al., 2017a] Chen, D., Fisch, A., Weston, J., and Bordes, A. (2017a). Reading
wikipedia to answer open-domain questions. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1870–1879.

[Chen et al., 2017b] Chen, D., Fisch, A., Weston, J., and Bordes, A. (2017b). Reading
Wikipedia to answer open-domain questions. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1870–1879, Vancouver, Canada. Association for Computational Linguistics.

[Chen and Wang, 2019] Chen, Q. and Wang, W. (2019). Sequential attention-based
network for noetic end-to-end response selection. arXiv preprint arXiv:1901.02609.

[Clark et al., 2020] Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D. (2020).
Electra: Pre-training text encoders as discriminators rather than generators. arXiv
preprint arXiv:2003.10555.

[Dai et al., 2019] Dai, Z., Yang, Z., Yang, Y., Carbonell, J. G., Le, Q., and Salakhut-
dinov, R. (2019). Transformer-xl: Attentive language models beyond a fixed-length
context. In Proceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2978–2988.

[De Vries et al., 2017] De Vries, H., Strub, F., Chandar, S., Pietquin, O., Larochelle,
H., and Courville, A. (2017). Guesswhat?! visual object discovery through multi-
modal dialogue. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5503–5512.

[Devlin et al., 2018] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018).
Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

[Dinan et al., 2019] Dinan, E., Logacheva, V., Malykh, V., Miller, A., Shuster, K.,
Urbanek, J., Kiela, D., Szlam, A., Serban, I., Lowe, R., et al. (2019). The second
conversational intelligence challenge (convai2). arXiv preprint arXiv:1902.00098.

126

[Dua et al., 2019] Dua, D., Wang, Y., Dasigi, P., Stanovsky, G., Singh, S., and Gard-
ner, M. (2019). DROP: A reading comprehension benchmark requiring discrete
reasoning over paragraphs. In Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies.

[Duan et al., 2017] Duan, N., Tang, D., Chen, P., and Zhou, M. (2017). Question
generation for question answering. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pages 866–874.

[Fazel-Zarandi et al., 2017] Fazel-Zarandi, M., Li, S.-W., Cao, J., Casale, J., Hender-
son, P., Whitney, D., and Geramifard, A. (2017). Learning robust dialog policies
in noisy environments. In Workshop on Conversational AI: Today’s Practice and
Tomorrow’s Potential, NeurIPS.

[Fei et al., 2020] Fei, H., Ren, Y., and Ji, D. (2020). Retrofitting structure-aware
transformer language model for end tasks. arXiv preprint arXiv:2009.07408.

[Feng et al., 2020] Feng, F., Yang, Y.-F., Cer, D. M., Arivazhagan, N., and Wang, W.
(2020). Language-agnostic bert sentence embedding. ArXiv, abs/2007.01852.

[Finn et al., 2017] Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-
learning for fast adaptation of deep networks. In International conference on
machine learning, pages 1126–1135. PMLR.

[Fisch et al., 2019] Fisch, A., Talmor, A., Jia, R., Seo, M., Choi, E., and Chen, D.
(2019). Mrqa 2019 shared task: Evaluating generalization in reading comprehension.
In Proceedings of the 2nd Workshop on Machine Reading for Question Answering,
pages 1–13.

[Gao et al., 2019] Gao, S., Sethi, A., Agarwal, S., Chung, T., and Hakkani-Tur, D.
(2019). Dialog state tracking: A neural reading comprehension approach. In
Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue, pages
264–273, Stockholm, Sweden. Association for Computational Linguistics.

[Garg and Ramakrishnan, 2020] Garg, S. and Ramakrishnan, G. (2020). Bae: Bert-
based adversarial examples for text classification. arXiv preprint arXiv:2004.01970.

[Glass et al., 2019] Glass, M., Gliozzo, A., Chakravarti, R., Ferritto, A., Pan, L.,
Bhargav, G., Garg, D., and Sil, A. (2019). Span selection pre-training for question
answering. arXiv preprint arXiv:1909.04120.

[Goodfellow, 2016] Goodfellow, I. (2016). Nips 2016 tutorial: Generative adversarial
networks. arXiv preprint arXiv:1701.00160.

[Goodfellow et al., 2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial
nets. Advances in neural information processing systems, 27:2672–2680.

127

[Graves et al., 2014] Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing
machines. arXiv preprint arXiv:1410.5401.

[Gu et al., 2018] Gu, J.-C., Ling, Z.-H., Ruan, Y.-P., and Liu, Q. (2018). Build-
ing sequential inference models for end-to-end response selection. arXiv preprint
arXiv:1812.00686.

[Gunasekara et al., 2019] Gunasekara, C., Kummerfeld, J. K., Polymenakos, L., and
Lasecki, W. (2019). DSTC7 task 1: Noetic end-to-end response selection. In
Proceedings of the First Workshop on NLP for Conversational AI.

[Guu et al., 2020] Guu, K., Lee, K., Tung, Z., Pasupat, P., and Chang, M.-W.
(2020). Realm: Retrieval-augmented language model pre-training. arXiv preprint
arXiv:2002.08909.

[Havrylov and Titov, 2017] Havrylov, S. and Titov, I. (2017). Emergence of language
with multi-agent games: Learning to communicate with sequences of symbols. In
Advances in neural information processing systems, pages 2149–2159.

[He et al., 2019] He, J., Gu, J., Shen, J., and Ranzato, M. (2019). Revisiting self-
training for neural sequence generation. arXiv preprint arXiv:1909.13788.

[He et al., 2020] He, P., Liu, X., Gao, J., and Chen, W. (2020). Deberta: Decoding-
enhanced bert with disentangled attention. arXiv preprint arXiv:2006.03654.

[Henderson et al., 2019a] Henderson, M., Casanueva, I., Mrkšić, N., Su, P.-H., Wen,
T.-H., and Vulić, I. (2019a). Convert: Efficient and accurate conversational repre-
sentations from transformers. arXiv preprint arXiv:1911.03688.

[Henderson et al., 2019b] Henderson, M., Vulić, I., Gerz, D., Casanueva, I.,
Budzianowski, P., Coope, S., Spithourakis, G., Wen, T.-H., Mrkšić, N., and Su,
P.-H. (2019b). Training neural response selection for task-oriented dialogue systems.
In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 5392–5404, Florence, Italy. Association for Computational Lin-
guistics.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long
short-term memory. Neural computation, 9(8):1735–1780.

[Humeau et al., 2019a] Humeau, S., Shuster, K., Lachaux, M.-A., and Weston, J.
(2019a). Poly-encoders: Transformer architectures and pre-training strategies for
fast and accurate multi-sentence scoring. arXiv preprint arXiv:1905.01969.

[Humeau et al., 2019b] Humeau, S., Shuster, K., Lachaux, M.-A., and Weston, J.
(2019b). Poly-encoders: Transformer architectures and pre-training strategies for
fast and accurate multi-sentence scoring. arXiv: Computation and Language.

128

[Irving and Fraser, 1992] Irving, R. W. and Fraser, C. B. (1992). Two algorithms for
the longest common subsequence of three (or more) strings. In Annual Symposium
on Combinatorial Pattern Matching, pages 214–229. Springer.

[Jaccard, 1901] Jaccard, P. (1901). Étude comparative de la distribution florale dans
une portion des alpes et des jura. Bull Soc Vaudoise Sci Nat, 37:547–579.

[Jia et al., 2021] Jia, R., Lewis, M., and Zettlemoyer, L. (2021). Question answer-
ing infused pre-training of general-purpose contextualized representations. arXiv
preprint arXiv:2106.08190.

[Jin et al., 2020] Jin, D., Jin, Z., Zhou, J. T., and Szolovits, P. (2020). Is bert
really robust? a strong baseline for natural language attack on text classification
and entailment. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pages 8018–8025.

[Joshi et al., 2020] Joshi, M., Chen, D., Liu, Y., Weld, D. S., Zettlemoyer, L., and
Levy, O. (2020). Spanbert: Improving pre-training by representing and predicting
spans. Transactions of the Association for Computational Linguistics, 8:64–77.

[Kakade, 2001] Kakade, S. M. (2001). A natural policy gradient. Advances in neural
information processing systems, 14:1531–1538.

[Karpukhin et al., 2020a] Karpukhin, V., Oğuz, B., Min, S., Lewis, P., Wu, L.,
Edunov, S., Chen, D., and Yih, W.-t. (2020a). Dense passage retrieval for open-
domain question answering. arXiv preprint arXiv:2004.04906.

[Karpukhin et al., 2020b] Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L.,
Edunov, S., Chen, D., and Yih, W.-t. (2020b). Dense passage retrieval for open-
domain question answering. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 6769–6781, Online. Asso-
ciation for Computational Linguistics.

[Kembhavi et al., 2017] Kembhavi, A., Seo, M., Schwenk, D., Choi, J., Farhadi, A.,
and Hajishirzi, H. (2017). Are you smarter than a sixth grader? textbook question
answering for multimodal machine comprehension. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[Kingma and Ba, 2015] Kingma, D. P. and Ba, J. (2015). Adam: A method for
stochastic optimization. In Bengio, Y. and LeCun, Y., editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings.

[Klein and Nabi, 2019] Klein, T. and Nabi, M. (2019). Learning to answer by learning
to ask: Getting the best of gpt-2 and bert worlds. arXiv preprint arXiv:1911.02365.

[Koch et al., 2015] Koch, G., Zemel, R., and Salakhutdinov, R. (2015). Siamese neural
networks for one-shot image recognition. In ICML deep learning workshop, volume 2.
Lille.

129

[Kwiatkowski et al., 2019] Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M.,
Parikh, A., Alberti, C., Epstein, D., Polosukhin, I., Devlin, J., Lee, K., et al. (2019).
Natural questions: a benchmark for question answering research. Transactions of
the Association for Computational Linguistics, 7:453–466.

[Lai et al., 2017] Lai, G., Xie, Q., Liu, H., Yang, Y., and Hovy, E. (2017). RACE:
Large-scale reading comprehension dataset from examinations. In Proceedings of
the 2017 Conference on Empirical Methods in Natural Language Processing.

[Lazaridou et al., 2016] Lazaridou, A., Peysakhovich, A., and Baroni, M. (2016).
Multi-agent cooperation and the emergence of (natural) language. arXiv preprint
arXiv:1612.07182.

[Lee et al., 2020] Lee, D. B., Lee, S., Jeong, W. T., Kim, D., and Hwang, S. J.
(2020). Generating diverse and consistent qa pairs from contexts with information-
maximizing hierarchical conditional vaes. arXiv preprint arXiv:2005.13837.

[Lee et al., 2019] Lee, K., Chang, M.-W., and Toutanova, K. (2019). Latent retrieval
for weakly supervised open domain question answering. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 6086–6096.

[Lee et al., 2017] Lee, K., He, L., Lewis, M., and Zettlemoyer, L. (2017). End-to-end
neural coreference resolution. arXiv preprint arXiv:1707.07045.

[Lester et al., 2021] Lester, B., Al-Rfou, R., and Constant, N. (2021). The power of
scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691.

[Levy et al., 2017] Levy, O., Seo, M., Choi, E., and Zettlemoyer, L. (2017). Zero-shot
relation extraction via reading comprehension. In Proceedings of the 21st Conference
on Computational Natural Language Learning (CoNLL 2017).

[Lewis et al., 2019a] Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A.,
Levy, O., Stoyanov, V., and Zettlemoyer, L. (2019a). Bart: Denoising sequence-to-
sequence pre-training for natural language generation, translation, and comprehen-
sion. arXiv preprint arXiv:1910.13461.

[Lewis et al., 2019b] Lewis, P., Denoyer, L., and Riedel, S. (2019b). Unsupervised
question answering by cloze translation. arXiv preprint arXiv:1906.04980.

[Lewis et al., 2021] Lewis, P., Wu, Y., Liu, L., Minervini, P., Küttler, H., Piktus, A.,
Stenetorp, P., and Riedel, S. (2021). Paq: 65 million probably-asked questions and
what you can do with them. arXiv preprint arXiv:2102.07033.

[Li and Jurafsky, 2016] Li, J. and Jurafsky, D. (2016). Mutual information and diverse
decoding improve neural machine translation. arXiv preprint arXiv:1601.00372.

[Li et al., 2020] Li, L., Ma, R., Guo, Q., Xue, X., and Qiu, X. (2020). Bert-attack:
Adversarial attack against bert using bert. arXiv preprint arXiv:2004.09984.

130

[Li and Liang, 2021] Li, X. L. and Liang, P. (2021). Prefix-Tuning: Optimizing
continuous prompts for generation. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (ACL/IJCNLP 2021).

[Lin, 1992] Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement
learning, planning and teaching. Machine learning, 8(3-4):293–321.

[Lipton et al., 2016] Lipton, Z. C., Gao, J., Li, L., Li, X., Ahmed, F., and Deng, L.
(2016). Efficient exploration for dialogue policy learning with bbq networks & replay
buffer spiking. arXiv preprint arXiv:1608.05081, 3.

[Liu et al., 2018] Liu, B., Tur, G., Hakkani-Tur, D., Shah, P., and Heck, L. (2018).
Dialogue learning with human teaching and feedback in end-to-end trainable task-
oriented dialogue systems. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages 2060–2069.

[Liu et al., 2020] Liu, D., Gong, Y., Fu, J., Yan, Y., Chen, J., Lv, J., Duan, N., and
Zhou, M. (2020). Tell me how to ask again: Question data augmentation with
controllable rewriting in continuous space. arXiv preprint arXiv:2010.01475.

[Liu et al., 2021] Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig, G.
(2021). Pre-train, prompt, and predict: A systematic survey of prompting methods
in natural language processing.

[Liu et al., 2019] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O.,
Lewis, M., Zettlemoyer, L., and Stoyanov, V. (2019). Roberta: A robustly optimized
bert pretraining approach. arXiv preprint arXiv:1907.11692.

[Luo et al., 2019a] Luo, H., Jiang, L., Belinkov, Y., and Glass, J. (2019a). Improving
neural language models by segmenting, attending, and predicting the future. arXiv
preprint arXiv:1906.01702.

[Luo et al., 2019b] Luo, H., Mohtarami, M., Glass, J. R., Krishnamurthy, K., and
Richardson, B. (2019b). Integrating video retrieval and moment detection in a
unified corpus for video question answering. In INTERSPEECH, pages 599–603.

[Mazaré et al., 2018] Mazaré, P.-E., Humeau, S., Raison, M., and Bordes, A. (2018).
Training millions of personalized dialogue agents. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages 2775–2779,
Brussels, Belgium. Association for Computational Linguistics.

[Merity et al., 2017] Merity, S., Keskar, N. S., and Socher, R. (2017). Regularizing
and optimizing lstm language models. arXiv preprint arXiv:1708.02182.

[Mikolov et al., 2013a] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a).
Efficient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781.

131

[Mikolov et al., 2013b] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013b). Distributed representations of words and phrases and their
compositionality. Advances in neural information processing systems, 26:3111–3119.

[Mnih et al., 2013] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou,
I., Wierstra, D., and Riedmiller, M. (2013). Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602.

[Mohtarami et al., 2018] Mohtarami, M., Baly, R., Glass, J., Nakov, P., Màrquez, L.,
and Moschitti, A. (2018). Automatic stance detection using end-to-end memory
networks. arXiv preprint arXiv:1804.07581.

[Mordatch and Abbeel, 2018] Mordatch, I. and Abbeel, P. (2018). Emergence of
grounded compositional language in multi-agent populations. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32.

[Nadeem et al., 2019] Nadeem, M., Fang, W., Xu, B., Mohtarami, M., and Glass,
J. (2019). Fakta: An automatic end-to-end fact checking system. arXiv preprint
arXiv:1906.04164.

[Navarro, 2001] Navarro, G. (2001). A guided tour to approximate string matching.
ACM computing surveys (CSUR), 33(1):31–88.

[Ng et al., 2020] Ng, N., Cho, K., and Ghassemi, M. (2020). Ssmba: Self-supervised
manifold based data augmentation for improving out-of-domain robustness. arXiv
preprint arXiv:2009.10195.

[Noroozi et al., 2018] Noroozi, M., Vinjimoor, A., Favaro, P., and Pirsiavash, H. (2018).
Boosting self-supervised learning via knowledge transfer. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 9359–9367.

[Papineni et al., 2001] Papineni, K. A., Roukos, S., and Ward, R. T. (2001). Natural
language task-oriented dialog manager and method. US Patent 6,246,981.

[Peng et al., 2017] Peng, B., Li, X., Li, L., Gao, J., Celikyilmaz, A., Lee, S., and Wong,
K.-F. (2017). Composite task-completion dialogue policy learning via hierarchical
deep reinforcement learning. arXiv preprint arXiv:1704.03084.

[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP), pages 1532–1543.

[Peters et al., 2018a] Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C.,
Lee, K., and Zettlemoyer, L. (2018a). Deep contextualized word representations.
arXiv preprint arXiv:1802.05365.

[Peters et al., 2018b] Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C.,
Lee, K., and Zettlemoyer, L. (2018b). Deep contextualized word representations. In
Proceedings of the 2018 Conference of the North American Chapter of the Association

132

for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), pages 2227–2237, New Orleans, Louisiana. Association for Computational
Linguistics.

[Puri et al., 2020] Puri, R., Spring, R., Patwary, M., Shoeybi, M., and Catanzaro, B.
(2020). Training question answering models from synthetic data. arXiv preprint
arXiv:2002.09599.

[Qian et al., 2004] Qian, G., Sural, S., Gu, Y., and Pramanik, S. (2004). Similarity
between euclidean and cosine angle distance for nearest neighbor queries. In
Proceedings of the 2004 ACM symposium on Applied computing, pages 1232–1237.

[Qian and Yu, 2019] Qian, K. and Yu, Z. (2019). Domain adaptive dialog generation
via meta learning. arXiv preprint arXiv:1906.03520.

[Radford et al., 2019a] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. (2019a). Language models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

[Radford et al., 2019b] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. (2019b). Language models are unsupervised multitask learners.

[Raffel et al., 2019] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena,
M., Zhou, Y., Li, W., and Liu, P. J. (2019). Exploring the limits of transfer learning
with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683.

[Rajpurkar et al., 2016] Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016).
Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

[Ramadan et al., 2018] Ramadan, O., Budzianowski, P., and Gasic, M. (2018). Large-
scale multi-domain belief tracking with knowledge sharing. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), pages 432–437.

[Rennie et al., 2017] Rennie, S. J., Marcheret, E., Mroueh, Y., Ross, J., and Goel, V.
(2017). Self-critical sequence training for image captioning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 7008–7024.

[Riemer et al., 2018] Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., and
Tesauro, G. (2018). Learning to learn without forgetting by maximizing transfer
and minimizing interference. arXiv preprint arXiv:1810.11910.

[Rosenberg et al., 2005] Rosenberg, C., Hebert, M., and Schneiderman, H. (2005).
Semi-supervised self-training of object detection models.

[Routley and Meyer, 1973] Routley, R. and Meyer, R. (1973). The semantics of
entailment. In Studies in Logic and the Foundations of Mathematics, volume 68,
pages 199–243. Elsevier.

133

[Sachan and Xing, 2018] Sachan, M. and Xing, E. (2018). Self-training for jointly
learning to ask and answer questions. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), pages 629–640.

[Saha et al., 2018] Saha, A., Aralikatte, R., Khapra, M. M., and Sankaranarayanan, K.
(2018). DuoRC: Towards complex language understanding with paraphrased reading
comprehension. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics.

[Sanh et al., 2021] Sanh, V., Webson, A., Raffel, C., Bach, S. H., Sutawika, L.,
Alyafeai, Z., Chaffin, A., Stiegler, A., Scao, T. L., Raja, A., et al. (2021). Mul-
titask prompted training enables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

[Scheffler and Young, 2002] Scheffler, K. and Young, S. (2002). Automatic learning
of dialogue strategy using dialogue simulation and reinforcement learning. In
Proceedings of the second international conference on Human Language Technology
Research, pages 12–19. Morgan Kaufmann Publishers Inc.

[Shakeri et al., 2020] Shakeri, S., Santos, C. N. d., Zhu, H., Ng, P., Nan, F., Wang,
Z., Nallapati, R., and Xiang, B. (2020). End-to-end synthetic data generation for
domain adaptation of question answering systems. arXiv preprint arXiv:2010.06028.

[Shazeer and Stern, 2018] Shazeer, N. and Stern, M. (2018). Adafactor: Adaptive
learning rates with sublinear memory cost. In International Conference on Machine
Learning.

[Shen et al., 2017] Shen, Y., Lin, Z., Huang, C.-W., and Courville, A. (2017). Neu-
ral language modeling by jointly learning syntax and lexicon. arXiv preprint
arXiv:1711.02013.

[Shen et al., 2018] Shen, Y., Lin, Z., Jacob, A. P., Sordoni, A., Courville, A., and
Bengio, Y. (2018). Straight to the tree: Constituency parsing with neural syntactic
distance. arXiv preprint arXiv:1806.04168.

[Shen et al., 2020] Shen, Y., Tay, Y., Zheng, C., Bahri, D., Metzler, D., and
Courville, A. (2020). Structformer: Joint unsupervised induction of dependency
and constituency structure from masked language modeling. arXiv preprint
arXiv:2012.00857.

[Shuster et al., 2020a] Shuster, K., Smith, E. M., Ju, D., and Weston, J. (2020a).
Multi-modal open-domain dialogue. arXiv preprint arXiv:2010.01082.

[Shuster et al., 2020b] Shuster, K., Urbanek, J., Dinan, E., Szlam, A., and Weston,
J. (2020b). Deploying lifelong open-domain dialogue learning. arXiv preprint
arXiv:2008.08076.

134

[Silver et al., 2016] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van
Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot,
M., et al. (2016). Mastering the game of go with deep neural networks and tree
search. nature, 529(7587):484.

[Silver et al., 2014] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and
Riedmiller, M. (2014). Deterministic policy gradient algorithms.

[Snell et al., 2017] Snell, J., Swersky, K., and Zemel, R. (2017). Prototypical networks
for few-shot learning. In Advances in neural information processing systems, pages
4077–4087.

[Socher et al., 2013] Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng,
A. Y., and Potts, C. (2013). Recursive deep models for semantic compositionality
over a sentiment treebank. In Proceedings of the 2013 conference on empirical
methods in natural language processing, pages 1631–1642.

[Tan et al., 2018] Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu, C. (2018).
A survey on deep transfer learning. In International conference on artificial neural
networks, pages 270–279. Springer.

[Tang et al., 2017] Tang, D., Duan, N., Qin, T., Yan, Z., and Zhou, M. (2017).
Question answering and question generation as dual tasks. arXiv preprint
arXiv:1706.02027.

[Thorne et al., 2018] Thorne, J., Vlachos, A., Christodoulopoulos, C., and Mittal,
A. (2018). Fever: a large-scale dataset for fact extraction and verification. arXiv
preprint arXiv:1803.05355.

[Tsatsaronis et al., 2012] Tsatsaronis, G., Schroeder, M., Paliouras, G., Almirantis,
Y., Androutsopoulos, I., Gaussier, E., Gallinari, P., Artieres, T., Alvers, M. R.,
Zschunke, M., et al. (2012). BioASQ: A challenge on large-scale biomedical semantic
indexing and question answering. In 2012 AAAI Fall Symposium Series.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. In
Advances in neural information processing systems, pages 5998–6008.

[Vinyals et al., 2016] Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.
(2016). Matching networks for one shot learning. In Advances in neural information
processing systems, pages 3630–3638.

[Wang et al., 2018] Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman,
S. R. (2018). Glue: A multi-task benchmark and analysis platform for natural
language understanding. arXiv preprint arXiv:1804.07461.

[Wang et al., 2021] Wang, B., Xu, C., Wang, S., Gan, Z., Cheng, Y., Gao, J., Awadal-
lah, A. H., and Li, B. (2021). Adversarial glue: A multi-task benchmark for
robustness evaluation of language models. arXiv preprint arXiv:2111.02840.

135

[Wang et al., 2017] Wang, Z., Hamza, W., and Florian, R. (2017). Bilateral
multi-perspective matching for natural language sentences. arXiv preprint
arXiv:1702.03814.

[Wei et al., 2018] Wei, Z., Liu, Q., Peng, B., Tou, H., Chen, T., Huang, X., Wong,
K.-F., and Dai, X. (2018). Task-oriented dialogue system for automatic diagnosis.
In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 201–207.

[Wen et al., 2017a] Wen, T.-H., Miao, Y., Blunsom, P., and Young, S. (2017a). Latent
intention dialogue models. In International Conference on Machine Learning, pages
3732–3741. PMLR.

[Wen et al., 2017b] Wen, T.-H., Vandyke, D., Mrkšić, N., Gasic, M., Barahona, L.
M. R., Su, P.-H., Ultes, S., and Young, S. (2017b). A network-based end-to-end
trainable task-oriented dialogue system. In Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics: Volume 1,
Long Papers, pages 438–449.

[Williams, 2014] Williams, J. D. (2014). Web-style ranking and slu combination for
dialog state tracking. In 15th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, page 282.

[Wolf et al., 2019] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A.,
Cistac, P., Rault, T., Louf, R., Funtowicz, M., et al. (2019). Huggingface’s transform-
ers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771.

[Wu et al., 2020] Wu, C.-S., Hoi, S., Socher, R., and Xiong, C. (2020). Tod-bert:
Pre-trained natural language understanding for task-oriented dialogues. ArXiv,
abs/2004.06871.

[Xie et al., 2020] Xie, Q., Luong, M.-T., Hovy, E., and Le, Q. V. (2020). Self-training
with noisy student improves imagenet classification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10687–10698.

[Xu et al., 2019] Xu, L., Zhou, Q., Gong, K., Liang, X., Tang, J., and Lin, L. (2019).
End-to-end knowledge-routed relational dialogue system for automatic diagnosis.
arXiv preprint arXiv:1901.10623.

[Xu et al., 2020] Xu, S., Semnani, S. J., Campagna, G., and Lam, M. S. (2020).
Autoqa: From databases to qa semantic parsers with only synthetic training data.
arXiv preprint arXiv:2010.04806.

[Yang et al., 2017] Yang, X., Chen, Y.-N., Hakkani-Tür, D., Crook, P., Li, X., Gao, J.,
and Deng, L. (2017). End-to-end joint learning of natural language understanding
and dialogue manager. In 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 5690–5694. IEEE.

136

[Yang et al., 2019] Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.,
and Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language
understanding. arXiv preprint arXiv:1906.08237.

[Young et al., 2010] Young, S., Gašić, M., Keizer, S., Mairesse, F., Schatzmann, J.,
Thomson, B., and Yu, K. (2010). The hidden information state model: A practical
framework for pomdp-based spoken dialogue management. Computer Speech &
Language, 24(2):150–174.

[Young et al., 2013] Young, S., Gašić, M., Thomson, B., and Williams, J. D. (2013).
Pomdp-based statistical spoken dialog systems: A review. Proceedings of the IEEE,
101(5):1160–1179.

[Yu et al., 2017] Yu, L., Zhang, W., Wang, J., and Yu, Y. (2017). Seqgan: Sequence
generative adversarial nets with policy gradient. In Proceedings of the AAAI
conference on artificial intelligence, volume 31.

[Zang et al., 2019] Zang, Y., Qi, F., Yang, C., Liu, Z., Zhang, M., Liu, Q., and Sun,
M. (2019). Word-level textual adversarial attacking as combinatorial optimization.
arXiv preprint arXiv:1910.12196.

[Zhang et al., 2018] Zhang, S., Dinan, E., Urbanek, J., Szlam, A., Kiela, D., and
Weston, J. (2018). Personalizing dialogue agents: I have a dog, do you have
pets too? In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 2204–2213, Melbourne,
Australia. Association for Computational Linguistics.

[Zhang et al., 2019] Zhang, Y., Sun, S., Galley, M., Chen, Y.-C., Brockett, C., Gao, X.,
Gao, J., Liu, J., and Dolan, B. (2019). Dialogpt: Large-scale generative pre-training
for conversational response generation. arXiv preprint arXiv:1911.00536.

[Zhao and Eskenazi, 2016] Zhao, T. and Eskenazi, M. (2016). Towards end-to-end
learning for dialog state tracking and management using deep reinforcement learning.
arXiv preprint arXiv:1606.02560.

[Zhao et al., 2019] Zhao, T., Xie, K., and Eskenazi, M. (2019). Rethinking action
spaces for reinforcement learning in end-to-end dialog agents with latent variable
models. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1208–1218.

[Zoph et al., 2020] Zoph, B., Ghiasi, G., Lin, T.-Y., Cui, Y., Liu, H., Cubuk, E. D.,
and Le, Q. (2020). Rethinking pre-training and self-training. Advances in neural
information processing systems, 33:3833–3845.

[Zou et al., 2019] Zou, Y., Yu, Z., Liu, X., Kumar, B., and Wang, J. (2019). Confidence
regularized self-training. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5982–5991.

137

