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Abstract

Deep neural networks trained with supervised learning algorithms on large amounts
of labeled speech data have achieved remarkable performance on various spoken lan-
guage processing applications, often being the state of the arts on the corresponding
leaderboards. However, the fact that training these systems relies on large amounts
of annotated speech poses a scalability bottleneck for the continued advancement of
state-of-the-art performance, and an even more fundamental barrier for deployment
of deep neural networks in speech domains where labeled data are intrinsically rare,
costly, or time-consuming to collect.

In contrast to annotated speech, untranscribed audio is often much cheaper to
accumulate. In this thesis, we explore the use of self-supervised learning—a learning
paradigm where the learning target is generated from the input itself—for leverag-
ing such easily scalable resources to improve the performance of spoken language
technology. Specifically, we propose two self-supervised algorithms, one based on
the idea of “future prediction” and the other based on the idea of “predicting the
masked from the unmasked,” for learning contextualized speech representations from
unlabeled speech data. We show that our self-supervised algorithms are capable of
learning representations that transform high-level properties of speech signals such
as their phonetic contents and speaker characteristics into a more accessible form
than traditional acoustic features, and demonstrate their effectiveness in improving
the performance of deep neural networks on a wide range of speech processing tasks.
In addition to presenting new learning algorithms, we also provide extensive analysis
aiming to understand the properties of the learned self-supervised representations,
as well as disclosing the design factors that make one self-supervised model different
from the other.

Thesis Supervisor: James R. Glass
Title: Senior Research Scientist, CSAIL
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Chapter 1

Introduction

Nowadays, deep neural networks, or deep learning techniques, empower the state-of-

the-art artificial intelligence systems for a wide range of applications across diverse

data types—image classification (He et al., 2016; Liu et al., 2022), machine transla-

tion (Vaswani et al., 2017), and speech recognition (Gulati et al., 2020) to name a few.

However, the conventional paradigm for training these systems has been supervised

learning, where performance of the systems has been growing roughly logarithmically

with the size of labeled data used for training them (Sun et al., 2017). The cost

of acquiring such annotated data has proven to be a scalability bottleneck for the

continued development of state-of-the-art systems, and an even more fundamental

barrier for deployment of deep neural networks in application areas where data and

annotations are intrinsically rare, costly, or time-consuming to collect.

The aforementioned situation has motivated a wave of research in self-supervised

representation learning, where freely available labels generated from carefully designed

pretext tasks are used as the supervision signals to pre-train deep neural networks.

The parameters from the pre-trained deep neural networks are then entirely or par-

tially used to initialize the parameters of task-specific deep neural networks to solve

downstream tasks of interest using comparatively little annotated data compared to

conventional supervised learning.

Self-supervision refers to learning tasks that ask deep neural networks to predict

one part of the input data (or a label programmatically derivable thereof) given
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another part of the input. This is in contrast to supervised learning, which asks the

deep neural networks to predict a manually provided target output; and generative

modeling, which asks the deep neural networks to estimate the density of the input

data or learn a generator for input data. Self-supervised learning algorithms differ

primarily in their strategies for defining the derived labels to predict. This choice

of pretext task, determines the (in)variances of the resulting learned representations,

and thus how effective they are for different downstream tasks.

Self-supervised learning techniques have been successfully leveraged to improve

sample efficiency of learning across a variety of modalities, ranging from image (Chen

et al., 2020; Grill et al., 2020; Caron et al., 2020), video (Xu et al., 2019; Alwassel et al.,

2020), speech and audio (Baevski et al., 2020b; Gong et al., 2022), text (Mikolov et al.,

2013; Peters et al., 2018b; Devlin et al., 2019; Liu et al., 2019), to graphs (Velickovic

et al., 2019), to name a few. Some results suggest that the quality of self-supervised

representations is also a logrithmic function of the amount of unlabeled pre-training

data (Goyal et al., 2019). If this trend holds, then achievable performance may im-

prove for “free” over time since improvements in data collection and computational

power allow increasingly large pre-training sets to be used without the need for man-

ually annotating new data.

In this thesis, we focus on applying self-supervised learning strategies to the do-

main of speech, with the goal of pushing the state-of-the-art performance of spoken

language technology and improving the data efficiency for training them. We present

our efforts in developing new self-supervised speech representation learning methods,

as well as analyzing the properties of their learned representations.

1.1 Thesis Contributions

The primary contributions made by this thesis are as follows:

1. Introduction of one of the earliest successful self-supervised speech

representation learning frameworks. We exploit the idea of “future pre-

diction” and propose a simple yet effective self-supervised objective called Au-

24



toregressive Predictive Coding (APC) for training deep neural networks. The

designed future frame prediction task is able to leverage unlabeled speech data

to learn representations that make high-level properties of speech utterances

such as their phonetic contents and speaker characteristics more accessible (de-

fined as linear separability) to downstream tasks. APC is one of the earliest

works that showed the superiority of self-supervised representations over tra-

ditional hand-crafted acoustic features such as Mel-frequency cepstral coeffi-

cients (MFCCs) and log Mel spectrograms, indicating the potential of using

self-supervised learning for boosting spoken language technology performance.

2. Introduction of one of the current state-of-the-art self-supervised

speech representation learning frameworks. We exploit the idea of “pre-

dicting the masked from the unmasked” and propose w2v-BERT, which is one

of the current state-of-the-art frameworks for pre-training very deep neural net-

works for speech applications. We train a speech discretizer (through optimizing

a contrastive loss) for representing continuous speech signals as discriminative

tokens, and use them to train a BERT-like model. In contrast to existing frame-

works such as vq-wav2vec and HuBERT that also make use of the “predicting the

masked from the unmasked” methodology, in w2v-BERT the discretizer and the

context network can be optimized in an end-to-end fashion, avoiding the need

of coordination between multiple training stages that could often involve brittle

modeling choices. We demonstrate the effectiveness of w2v-BERT by showing

its superiority over the state of the arts, including HuBERT and wav2vec 2.0,

on both a well-benchmarked speech recognition dataset and a Google-collected

voice search dataset.

3. Introduction of an analysis method capable of bridging connections

between self-supervised objectives and properties of the representa-

tions they learn. We explore the use of vector quantization for controlling the

amount of information flow inside deep neural networks to obtain a spectrum

of models trained with the same self-supervised objective but with decreasing
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model capacity. We apply this analysis method to study APC, and diagnose the

preferences of APC in preserving information while its model capacity becomes

constrained. Our analysis results provide an explanation to why APC can learn

representations that capture high-level phonetic and speaker information. The

analysis method is general and can be applied to analyzing other self-supervised

objectives as well.

4. Demonstration of several shared natures of different self-supervised

models. When analyzing our own and other existing self-supervised models,

we find that there exist several properties that most of those models share in

common regardless of their differences in training objectives and neural network

architectures. One of such properties is the ability of implicit discovery of an

inventory of meaningful acoustic units. We find that there usually exist some

layers in the self-supervised models where representations have considerably

high mutual information with English phones (when the models are trained on

an English corpus), even though the models are not explicitly trained towards

discovering them. Another properties shared by most self-supervised models

is that different levels of speech information are captured in different layers,

although the information distribution could vary model to model. For instance,

in APC, the lower layers tend to be more discriminative for speakers, while

the upper layers provide more phonetic content. Being aware of this insight is

useful for selecting proper layers to extract representations from for the best

performance on the tasks of interest.

5. Identification of the order of importance of modeling factors for train-

ing self-supervised models that impact their representational similar-

ity. We compare a collection of self-supervised models with diverse model-

ing choices during their training, and use measures such as canonical correla-

tion analysis (CCA) to quantify their pairwise similarities. We consider three

modeling factors: training objectives, model directionality (i.e., whether the

model is unidirectional or bidirectional), and neural network building blocks
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(CNN/RNN/Transformer), and show that the three factors have different weights

in making one self-supervised representation different from another. Specifi-

cally, we find that training objective has the highest impact on representational

similarity among all the factors; under the same training objective, a model’s

directionality affects representational similarity more than its neural network

building blocks.

1.2 Chapter Guide

The remaining chapters of this thesis are organized as follows:

• Chapter 2 reviews background materials for topics related to this thesis. The

goal of this chapter is to provide readers with sufficient background to under-

stand this thesis.

• Chapter 3 presents a self-supervised objective for speech representation learning

based on the idea of “future prediction”, and shows its preliminary positive

results on phone and speaker classification tasks.

• Chapter 4 analyzes the objective proposed in the previous chapter to draw a

connection between the objective and the properties of the representations it

learns. The goal of this chapter is to provide an explanation to why the proposed

objective is capable of learning good speech representations.

• Chapter 5 proposes an auxiliary objective that, when optimized together with

the objective proposed in Chapter 3, improves the generalization of the main

objective, which leads to better speech representations. The results of the pro-

posed objective on standard speech applications, including speech recognition

and speech-to-text translation, are also presented in this chapter.

• Chapter 6 presents another self-supervised pre-training framework that makes

use of the idea of “predicting the masked from the unmasked”, and demonstrates
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its superiority over existing pre-training frameworks on two speech recognition

datasets.

• Chapter 7 compares a collection of self-supervised models with diverse modeling

choices during their training, aiming to identify the key factors that impact the

representational similarities between self-supervised models.

• Chapter 8 summarizes this thesis and discusses possible future directions.
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Chapter 2

Background and Related Work

In this chapter, we provide background materials for several topics that are relevant

to this thesis. We start by giving an overview on automatic speech recognition in

Section 2.1, which is one of the core applications of speech processing as well as the

main task for evaluation the systems in this thesis. Next, in Section 2.2 we provide

a review on three types of commonly used neural network architectures for speech

processing: LSTM, Transformer, and Conformer. In Section 2.3 we first briefly review

the history of neural network pre-training, then discuss its recent breakthroughs in

visual, textual, and speech representation learning brought about by self-supervised

techniques. Finally, in Section 2.4 we review related work in neural representation

analysis, as some methods from the literature will be adopted in this thesis for ana-

lyzing self-supervised speech representations.

Note that the review here is by no means a comprehensive one that includes all the

existing studies (in fact, not even all the state-of-the-art papers will be mentioned) or

mathematical details on the discussed topics, but only aims to provide background

knowledge on them to the extent that is sufficient for the readers to understand this

thesis.
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2.1 Automatic Speech Recognition

The goal of automatic speech recognition (ASR) is to enable machines to automati-

cally transcribe human speech into text. ASR is undoubtedly one of the core appli-

cations of speech processing, and often serves as the first step of several other speech

processing applications such as speech translation and spoken language understand-

ing. The following sections provide an overview on ASR, starting with its problem

formulation.

2.1.1 Problem Formulation

Modern ASR systems are built based on the noisy channel model (Jelinek, 1976).

Under such a model, the recognizer perceives a speech utterance 𝑋, and its job is to

recover the underlying text sequence 𝑌 . By applying Bayes’ rule, the inference of the

text sequence 𝑌 given the speech utterance 𝑋 can be written as:

𝑌 * = argmax
𝑌

𝑃 (𝑌 |𝑋) = argmax
𝑌

𝑃 (𝑋|𝑌 )𝑃 (𝑌 )

𝑃 (𝑋)
, (2.1)

where 𝑌 * stands for the best guess of 𝑌 based on the three statistical models 𝑃 (𝑋|𝑌 ),

𝑃 (𝑌 ), and 𝑃 (𝑋). Since the denominator term 𝑃 (𝑋) is actually independent from 𝑌

and hence does not affect the search of 𝑌 , Equation 2.1 can be simplified as:

𝑌 * = argmax
𝑌

𝑃 (𝑋|𝑌 )𝑃 (𝑌 )

𝑃 (𝑋)
= argmax

𝑌
𝑃 (𝑋|𝑌 )𝑃 (𝑌 ). (2.2)

In speech literature, Equation 2.2 is often referred to as the “fundamental equation of

speech recognition,” and the statistical models that are used for estimating 𝑃 (𝑋|𝑌 )

and 𝑃 (𝑌 ) are typically called the acoustic model and language model, respectively.

The ASR problem has thus become finding the optimal parameterizations for the

acoustic model and language model.

Acoustic Model For some text sequence 𝑌 , an acoustic model estimates 𝑃 (𝑋|𝑌 )

that tells us the likelihood of a speech utterance 𝑋 given 𝑌 . To give a concrete
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example, let us consider a speech recording of someone speaking the phrase “how to

recognize speech.” An ideal acoustic model would then assign a higher likelihood score

to 𝑃 (𝑋|“how to recognize speech”) than to another phrase that sounds completely

different from “how to recognize speech” such as the phrase “give me a drink.”

Obtaining such a statistical model typically requires a collection of audio record-

ings along with their parallel text transcripts {(𝑋(𝑖), 𝑌 (𝑖))}𝑁𝑖=1, where 𝑁 is the number

of audio-transcript pairs in the collection. An audio recording (for simplicity, here

we ignore the superscript 𝑖 that indicates the 𝑖-th pair in the collection) is usually

represented as a sequence of spectral feature vectors 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑇 ) such as the

log Mel-filterbank features and Mel-frequency cepstral coefficients (MFCCs) (Mer-

melstein, 1976), where 𝑇 is the sequence length that varies recording to recording.1

The text transcript 𝑌 is a sequence of textual tokens that—depending on the ASR

system’s final usage—can be at different levels when training the acoustic models.

One of the most common ways to represent 𝑌 is to use a handcrafted pronunciation

model to map each word in 𝑌 to its pronunciation along with its associated probabil-

ity, where the pronunciation is a sequence of phones. The use of such a pronunciation

model allows a more efficient modeling of 𝑃 (𝑋|𝑌 ), since instead of having to estimate

a different density for every unique word in the vocabulary set, the acoustic model

now only needs to cover a set of elementary acoustic units such as phones, which

are merely dozens and shared across words in a language. Let 𝑈 denote the phone

sequence converted from 𝑌 using the pronunciation model, the problem of modeling

the conditional distribution of an audio sequence 𝑋 given a text sequence 𝑌 , 𝑃 (𝑋|𝑌 ),

becomes the problem of modeling the conditional distribution of 𝑋 given the phone

sequence 𝑈 , 𝑃 (𝑋|𝑈).

Traditionally, a Hidden Markov Model (HMM) is used to model 𝑃 (𝑋|𝑈) (Baker,

1975). Each phone owns a dedicated HMM for modeling that usually consists of

three hidden states that are meant to capture the transient acoustic dynamics within

a phone (one can think of it as attempting to model the beginning, middle, and end

1The complete derivation of these spectral features is out of scope of this thesis. For details on
the frond-end acoustic feature extraction scheme, please refer to Davis and Mermelstein (1980).
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of the phone). These HMMs are then concatenated to represent the entire phone

sequence 𝑈 . The acoustic feature vectors in 𝑋 are treated as the state emissions,

and their densities are usually modeled by either a set of Gaussian Mixture Mod-

els (GMM) (Bilmes, 1998) or a deep neural network (DNN) (Mohamed et al., 2011),

where the latter usually outperforms the former. For GMM-HMM acoustic mod-

els, their parameters can be estimated by maximum likelihood estimation using the

forward-backward algorithm (more details can be found in Rabiner and Juang (1993)).

To estimate the parameters of a DNN-based acoustic model, it usually still starts with

a trained baseline GMM-HMM speech recognizer, which is used to compute the target

state label for each frame in the audio sequence (the obtained target state sequence

is typically referred to as the forced-alignment). Once the target state sequence is

obtained, the DNN-based acoustic model can then be trained using backpropagation

with common gradient descent techniques. The usage of different types of neural

architectures, such as feed-forward neural networks (Dahl et al., 2011; Seide et al.,

2011), recurrent neural networks (Graves et al., 2013; Sak et al., 2014), and convo-

lutional neural networks (Abdel-Hamid et al., 2012), have been explored. During

inference time, the maximization (Equation 2.2) is typically solved using a decoding

algorithm such as Viterbi search (Viterbi, 1967).

Language Model The statistical model that is used to estimate 𝑃 (𝑌 ) in Equa-

tion 2.2 is typically called the language model in the literature, as it provides an a

priori probability of how likely a text sequence 𝑌 is to appear in human language

(i.e., to be spoken or written by a person) in the first place. To give a concrete

example on how a language model plays its role in speech recognition, let us reuse

the example recording of someone speaking the phrase “how to recognize speech,”

and assume there is another recording of someone speaking the phrase “how to wreck

a nice beach.” Now, even a strong acoustic model would have trouble assigning

the two recordings different likelihood scores 𝑃 (𝑋|𝑌 ) due to the fact that the two

phrases have very similar pronunciations and hence their 𝑈—the phone sequence

converted from their original text sequence 𝑌 using the pronunciation model—would
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also be very similar that give rise to very similar 𝑋 as well. This is where a language

model jumps in and breaks the tie: it would simply assign a higher likelihood score

to 𝑃 (“how to recognize speech”) than to 𝑃 (“how to wreck a nice beach”) because the

former is just more likely to be spoken or written by a person.

Traditionally, language models are parameterized using the count-based 𝑛-gram

models (Manning and Schutze, 1999). Given a text sequence 𝑌 = (𝑦1, 𝑦2, . . . , 𝑦𝑀),

where𝑀 denotes the number of tokens (e.g., words) in the sequence, an 𝑛-gram model

factorizes the probability of generating 𝑌 into the product of the probabilities of each

individual token in the sequence, each conditioned on all the tokens that appeared

before it:

𝑃 (𝑌 ) = 𝑃 (𝑦1, 𝑦2, . . . , 𝑦𝑀)

= 𝑃 (𝑦1)𝑃 (𝑦2|𝑦1)𝑃 (𝑦3|𝑦1, 𝑦2) . . . 𝑃 (𝑦𝑀 |𝑦1, 𝑦2, . . . , 𝑦𝑀−1)

=
𝑀∏︁

𝑚=1

𝑃 (𝑦𝑚|𝑦1, 𝑦2, . . . , 𝑦𝑚−1).

(2.3)

As can be seen in the factorization shown in Equation 2.3, there can be a combinato-

rially large number of possible token histories, which would often cause the language

models to generalize poorly on unseen combinations of tokens. To alleviate such prob-

lem, in practice, we often construct the 𝑛-gram models with a small 𝑛 that is usually

between two to five such that the models would only consider the previous 𝑛 − 1

tokens when predicting the current token. For instance, a bi-gram model (i.e., 𝑛 = 2)

would approximate Equation 2.3 as:

𝑃 (𝑌 ) = 𝑃 (𝑦1, 𝑦2, . . . , 𝑦𝑀)

= 𝑃 (𝑦1)𝑃 (𝑦2|𝑦1)𝑃 (𝑦3|𝑦1, 𝑦2) . . . 𝑃 (𝑦𝑀 |𝑦1, 𝑦2, . . . , 𝑦𝑀−1)

≈ 𝑃 (𝑦1)𝑃 (𝑦2|𝑦1)𝑃 (𝑦3|𝑦2) . . . 𝑃 (𝑦𝑀 |𝑦𝑀−1),

(2.4)

and estimating the bi-gram probabilities of one token 𝑦𝑖 coming before another to-

ken 𝑦𝑗 is accomplished by simply counting the number of times the sub-sequence
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(𝑦𝑖, 𝑦𝑗) appears in the text corpus:

𝑃 (𝑦𝑗|𝑦𝑖) =
Count(𝑦𝑖, 𝑦𝑗)
Count(𝑦𝑖)

. (2.5)

Smoothing techniques (Kneser and Ney, 1995; Katz, 1987) are commonly applied to

handle the case of zero probabilities assigned to unseen 𝑛-grams.

Recently, recurrent neural networks (RNN) have been used to replace 𝑛-gram mod-

els for parameterizing language models (Mikolov et al., 2010). Due to the mechanism

of an RNN, when processing each token 𝑦𝑚 in a text sequence 𝑌 = (𝑦1, 𝑦2, . . . , 𝑦𝑀),

the RNN maintains a hidden state ℎ𝑚 at each time step that is naturally encoded

with the information of all the previous tokens 𝑦1 to 𝑦𝑚−1:

𝑃 (𝑦1, 𝑦2, . . . , 𝑦𝑀) =
𝑀∏︁

𝑚=1

𝑃 (𝑦𝑚|𝑦1, 𝑦2, . . . , 𝑦𝑚−1)

=
𝑀∏︁

𝑚=1

𝑃 (𝑦𝑚|ℎ𝑚),

ℎ𝑚 = RNN(𝑦𝑚, ℎ𝑚−1).

(2.6)

Such property allows RNN-based language models to model the long-term context-

dependencies in text sequences better than 𝑛-gram models such that, when deployed,

they often help the ASR systems produce better results.

Unlike training acoustic models, training a language model requires only text

data {𝑌 (𝑖)}𝑁𝑖=1. Maximum likelihood estimation is commonly used, which trains the

language model to maximize the probabilities of generating the text sequences in the

text corpus:

𝜃* = argmax
𝜃

𝑁∏︁
𝑖=1

𝑃 (𝑌 (𝑖); 𝜃) = argmax
𝜃

𝑁∑︁
𝑖=1

log𝑃 (𝑌 (𝑖); 𝜃), (2.7)

where 𝜃 represents the parameters of the language model.

Evaluation A widely used evaluation metric for evaluating ASR systems is word

error rate (WER). Let 𝑌ref denote the reference transcript and 𝑌pred be the transcript
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predicted by an ASR system, the WER is computed as:

WER(𝑌ref, 𝑌pred) =
Levenshtein-distance(𝑌ref, 𝑌pred)

Length(𝑌ref)
, (2.8)

where the Levenshtein distance (Levenshtein, 1966) is a type of edit distance that

computes the minimum number of single-token edits required to change 𝑌pred to 𝑌ref.

2.1.2 End-to-End ASR

Based on Equation 2.2 (the “fundamental equation of speech recognition”), for decades

ASR systems have been built in a “hybrid” fashion, where their components such

as the acoustic models, pronunciation models, and language models, are developed

separately and combined later to form the complete ASR systems. Recently, however,

there has been a trend of transiting from hybrid modeling to end-to-end modeling,

which attempts to directly transcribe speech utterances into textual tokens using a

single model.

In end-to-end ASR, the conditional distribution 𝑃 (𝑌 |𝑋) is modeled by a single

model, usually a neural network. End-to-end systems have several advantages over

traditional hybrid systems:

• End-to-end models use a single objective function that is consistent with the

ASR objective for optimizing the entire network. On the other hand, hybrid

models develop their individual components separately, where each component’s

errors can compound.

• End-to-end models directly learn to output textual tokens from speech utter-

ances, hence the pipeline for speech recognition is greatly simplified when com-

pared to traditional hybrid systems, whose design is complicated and often

require lots of expert knowledge with years of ASR experience.

• Since only a single neural network is used for modeling, end-to-end systems

have the potential to be much more compact than traditional hybrid systems,
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which makes end-to-end systems more suitable for being deployed to devices

with high accuracy and low latency.

Given these advantages, end-to-end ASR has attracted great attention recently (Graves

and Jaitly, 2014; Hannun et al., 2014; Chorowski et al., 2014; Miao et al., 2015; Bah-

danau et al., 2016; Chan et al., 2016; Collobert et al., 2016; Tang et al., 2017; Sak

et al., 2017), with some end-to-end systems already outperforming hybrid systems

that have been optimized at production level for decades (Watanabe et al., 2017;

Sainath et al., 2020; Li et al., 2020c). Below we will give a brief introduction to three

of the most popular techniques for modeling end-to-end ASR: Connectionist Tempo-

ral Classification, Attention-Based Encoder-Decoder, and Recurrent Neural Network

Transducer.

Connectionist Temporal Classification One of the earliest work on end-to-end

ASR is connectionist temporal classification (CTC) (Graves et al., 2006). Recall

that the goal of end-to-end modeling is to directly map an input speech utterance

𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑇 ) to its textual transcript 𝑌 = (𝑦1, 𝑦2, . . . , 𝑦𝑀) with a single neural

network. The key problem to optimizing such a network is that we do not know the

alignment between 𝑋 and 𝑌 (in other words, we do not know which 𝑥𝑡 corresponds

to which 𝑦𝑚) and 𝑇 is usually much longer than 𝑀 in speech.

The idea of CTC is to ask the model—usually a recurrent neural network—to

make a token prediction 𝑦𝑡 for each speech frame 𝑥𝑡. In addition to predicting tokens

from the original token set, the model can also predict a blank token 𝜖 for 𝑦𝑡. The

predicted sequence 𝑌 has the same length as 𝑋 with allowable repetition of tokens

that construct a valid “path” for 𝑌 . To give the final prediction of the ASR system,

in 𝑌 , all the blank tokens 𝜖 will be removed, and any repeated tokens will be collapsed

into just one unless an 𝜖 is inserted between them. There can be multiple valid

paths for a given 𝑌 . For instance, for a speech utterance 𝑋 with a 𝑇 = 8, and the

corresponding transcript 𝑌 is the word “team” (𝑀 = 4), then (𝜖, 𝜖, t, 𝜖, e, a, m, m),

(t, 𝜖, e, 𝜖, 𝜖, a, 𝜖, m), and (𝜖, t, e, a, a, 𝜖, m, 𝜖) are three valid paths based on CTC’s

rules. Let ℬ−1(𝑌 ) denote the set of all valid paths that can be reduced to 𝑌 , the
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CTC loss is defined as follows:

ℒCTC = − log
∑︁

𝑌 ∈ℬ−1(𝑌 )

𝑃 (𝑌 |𝑋)

= − log
∑︁

𝑌 ∈ℬ−1(𝑌 )

𝑇∏︁
𝑡=1

𝑃 (𝑦𝑡|𝑋),

(2.9)

where 𝑌 = (𝑦1, 𝑦2, . . . , 𝑦𝑇 ) denotes a valid CTC path.

Attention-Based Encoder-Decoder The attention-based encoder-decoder (AED)

model is another popular technique for modeling end-to-end ASR. Largely inspired

by those used for end-to-end neural machine translation (Cho et al., 2014b; Bahdanau

et al., 2015), an AED model for end-to-end ASR is composed of an encoder network,

an attention module, and a decoder network, and models the conditional distribution

of 𝑌 given 𝑋 as:

𝑃 (𝑌 |𝑋) =
𝑀∏︁

𝑚=1

𝑃 (𝑦𝑚|𝑋, 𝑌1:𝑚−1), (2.10)

where 𝑚 indexes the sequence 𝑌 . An AED model is also trained to minimize

− log𝑃 (𝑌 |𝑋). The function of the encoder network is to convert the input speech

sequence 𝑋 into a high-level representation 𝐻. For each decoding time step, the

attention module will first compute attention weights between the previous decoder

output and each feature vector in 𝐻 using attention functions such as additive atten-

tion (Bahdanau et al., 2016) or dot-product attention (Chan et al., 2016), and will

then use those attention weights to compute the weighted sum of the feature vectors

in 𝐻, resulting in a context vector. Finally, the decoder network will take both its

previous output and the context vector to generate its output that will be used for

computing 𝑃 (𝑦𝑚|𝑋, 𝑌1:𝑚−1).

One assumption CTC makes that is problematic for tasks like ASR is the con-

ditional independence assumption, which assumes that every output is conditionally

independent of the other outputs. AED models’ attention mechanism, on the other

hand, naturally allows them to take into account the other outputs when generating

the current output. This advantage makes AED models generally more powerful than
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CTC models. In practice, however, it is common to optimize an AED model along

with a CTC model by sharing their encoder (Watanabe et al., 2017; Kim et al., 2017;

Ueno et al., 2018; Kim et al., 2019). This is because such a multi-task training strat-

egy is found to assist the AED models with learning a better alignment that greatly

improves their convergence.

Recurrent Neural Network Transducer Another popular technique for end-to-

end ASR modeling is recurrent neural network transducer (RNN-T) (Graves, 2012),

which consists of an encoder network, a prediction network, and a joint network.

As in the encoder network for CTC and AED, the encoder in an RNN-T extracts

a high-level feature representation ℎ𝑒𝑛𝑐𝑡 for each 𝑥𝑡 in 𝑋. In parallel, the predic-

tion network extracts a high-level feature representation ℎ𝑝𝑟𝑒𝑢 for RNN-T’s previous

output label 𝑦𝑢−1, where 𝑢 is the label index. The joint network is a feed-forward

network (FFN) that combines ℎ𝑒𝑛𝑐𝑡 and ℎ𝑝𝑟𝑒𝑢 as:

𝑧𝑡,𝑢 = FFN(ℎ𝑒𝑛𝑐𝑡 , ℎ𝑝𝑟𝑒𝑢 ) = 𝜓(Qℎ𝑒𝑛𝑐𝑡 +Vℎ𝑝𝑟𝑒𝑢 + 𝑏𝑧), (2.11)

where Q and V are weight matrices, 𝑏𝑧 is a bias vector, and 𝜓 is a non-linear activation

function such as ReLU or tanh. Then, a linear transformation is applied to 𝑧𝑡,𝑢:

ℎ𝑡,𝑢 = W𝑦𝑧𝑡,𝑢 + 𝑏𝑦, (2.12)

where W𝑦 and 𝑏𝑦 denote a weight matrix and a bias vector, respectively. Finally, the

probability for each output token 𝑘 from the token set is calculated as:

𝑃 (𝑦𝑢 = 𝑘|𝑋1:𝑡, 𝑌1:𝑢−1) = softmax(ℎ𝑘𝑡,𝑢). (2.13)

To train an RNN-T model, we minimize − log𝑃 (𝑌 |𝑋), where

𝑃 (𝑌 |𝑋) =
∑︁

𝐴∈𝐴−1(𝑌 )

𝑃 (𝐴|𝑋) (2.14)
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is the sum of the probabilities of all valid paths, which are denoted as 𝐴−1(𝑌 ), that

can be mapped to the label sequence 𝑌 . Note that the name “RNN-T” itself could be

confusing, as Transformers (Vaswani et al., 2017) or Conformers (Gulati et al., 2020)

can also be used as the encoder networks, which will be discussed in Section 2.2. The

term RNN-T is just commonly used for historical reason.

For all ASR experiments in this thesis, we do not use hybrid models but use end-

to-end models. Specifically, we will be using an AED in Chapter 5 and an RNN-T

in Chapter 6. In both cases, only the encoder networks are pre-trained with the self-

supervised objectives, while the rest of the networks are trained from scratch during

the fine-tuning stage.

2.1.3 Semi-Supervised ASR

So far, we have posed ASR as a purely supervised learning problem: regardless of mod-

eling ASR with hybrid or end-to-end approaches, it always requires audio-transcript

pairs for training the systems to make them learn good speech representations. On

the other hand, how to leverage large-scale and easily collectable unlabeled speech

data to improve supervised ASR performance has been a longstanding research prob-

lem. To date, there have been two major streams for utilizing unlabeled speech data

for tackling such a semi-supervised ASR task.

The first line of work is self-training (Riloff and Wiebe, 2003; Yarowsky, 1995;

Scudder, 1965), also known as pseudo-labeling, where the system starts with training

a teacher model using initially available labeled data. Next, the teacher model is used

to annotate the unlabeled data. The combined labeled and pseudo-labeled data are

then used to train a student model. The pseudo-labeling process can be repeated

multiple times to improve the quality of the teacher model. Self-training has been

a practically useful and extensively studied technique in ASR (Kahn et al., 2020a;

Synnaeve et al., 2020; Li et al., 2019; Parthasarathi and Strom, 2019; Novotney and

Schwartz, 2009; Zavaliagkos and Colthurst, 1998).

The second direction of taking advantage of unlabeled speech data is unsupervised

pre-training, or self-supervised pre-training. In unsupervised pre-training, a model
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is first trained to complete a proxy task that is designed to consume only unlabeled

data (hence unsupervised). Such a proxy task has been empirically verified and hence

is commonly believed to be capable of initializing the parameters of the model at a

good starting point before it is being trained on the supervised data. Significant recent

research effort has been made to develop proxy tasks that allow models to perform

well when the models are fine-tuned on ASR tasks (Oord et al., 2018; Schneider et al.,

2019; Ling et al., 2020; Liu et al., 2020b, 2021; Wang et al., 2020; Ling and Liu, 2020;

Bai et al., 2021). Finally, there have also been studies that show that the gains

brought by self-training and unsupervised pre-training are additive in downstream

ASR (Zhang et al., 2020b; Xu et al., 2021).

In this thesis, we focus on improving the unsupervised pre-training aspect of semi-

supervised ASR by proposing and studying two novel pre-training frameworks.

2.2 Neural Networks for Speech Processing

In this section we review two of the most widely used neural network architectures for

speech processing: recurrent neural networks and self-attention networks. Here we

assume the readers are already familiar with their basic mechanisms and variants (e.g.,

long short-term memory), and focus on reviewing their usage in speech processing,

especially in modeling end-to-end ASR.

2.2.1 Recurrent Neural Networks

In end-to-end models such as CTC, AED, and RNN-T, the most important component

is their encoder network, whose goal is to transform the input audio sequence 𝑋 =

(𝑥1, 𝑥2, . . . , 𝑥𝑇 ) into a high-level feature representation 𝐻 = (ℎ1, ℎ2, . . . , ℎ𝑇 ).

When end-to-end models first came out (Graves et al., 2006; Graves, 2012; Chan

et al., 2016), long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997)—

a variant of recurrent neural network (RNN)—had been largely used to construct the
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encoder networks. The encoder can be either a multi-layer unidirectional LSTM:

ℎℓ𝑡 = LSTM(𝑥ℓ𝑡, ℎ
ℓ
𝑡−1), (2.15)

or a multi-layer bidirectional LSTM:

ℎℓ𝑡 = [LSTM(𝑥ℓ𝑡, ℎ
ℓ
𝑡−1),LSTM(𝑥ℓ𝑡, ℎ

ℓ
𝑡+1)], (2.16)

where LSTM(·) denotes the standard LSTM unit, ℎℓ𝑡 denotes the hidden output of

the ℓ-th layer at time 𝑡, and 𝑥ℓ𝑡 is the input vector for the ℓ-th layer defined as 𝑥ℓ𝑡 = 𝑥𝑡

if ℓ = 1 (i.e., the first layer input) else ℎℓ−1
𝑡 . The last layer output of the LSTM net-

work is taken as the encoder output. Whether to use a unidirectional and bidirectional

LSTM as encoder network depends on the streaming request for the ASR system: the

former allows streaming but sacrifices performance, while the latter performs better

but does not allow streaming.

2.2.2 Self-Attention Networks

Although an LSTM can capture short-term dependencies in sequential data, self-

attention networks (Vaswani et al., 2017), or Transformers in most literature, have

been shown to be better at capturing long-term dependencies in sequences since

their self-attention mechanism allows Transformers to access the entire sequence when

extracting ℎ𝑡 for every 𝑥𝑡 in 𝑋. Due to the modeling power of Transformers, currently

there is a trend of replacing the LSTM encoder network in end-to-end ASR models

with Transformers (Dong et al., 2018; Zeyer et al., 2019; Karita et al., 2019; Li et al.,

2020b; Zhang et al., 2020a).

As illustrated in Figure 2-1a, the encoder network of a Transformer-based end-to-

end model is composed of a stack of Transformer blocks, where each block consists of

a multi-head self-attention layer and a feed-forward network (FFN). Residual connec-

tions (He et al., 2016) and layer normalization (Ba et al., 2016) are used to connect

different layers and blocks. In each Transformer block, every input vector 𝑥𝑡 (here 𝑥𝑡
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(a) Transformer encoder. (b) Conformer encoder.

Figure 2-1: The structures of Transformer and Conformer as encoder networks in
end-to-end ASR models. The green area depicts a Transformer/Conformer block,
which is stacked 𝑁 times to form the encoder network.

represents not only the acoustic feature vector in the original speech sequence 𝑋 at

time step 𝑡 but also the corresponding representation vector output by the previous

Transformer block) is linearly transformed into a query vector 𝑞, a key vector 𝑘, and

a value vector 𝑣 with matrices W𝑞, W𝑘, and W𝑣, respectively. A self-attention mech-

anism is used to compute the attention distribution over the input sequence with the

dot-product similarity function as:

𝛼𝑡,𝜏 =
exp(𝛽(W𝑞𝑥𝑡)

𝑇 (W𝑘𝑥𝜏 ))∑︀
𝜏 ′ exp(𝛽(W𝑞𝑥𝑡)𝑇 (W𝑘𝑥𝜏 ′ ))

, (2.17)

where 𝛽 = 1√
𝑑

is a scaling factor, 𝜏 indexes the input sequence, and 𝛼𝑡,𝜏 represents

the attention weight for 𝑥𝜏 to put on 𝑥𝑡. All the attention weights are then used to
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combine the value vectors to generate the layer output at the current time step as:

𝑧𝑡 =
∑︁
𝜏

𝛼𝑡,𝜏W𝑣𝑥𝜏 =
∑︁
𝜏

𝛼𝑡,𝜏𝑣𝜏 . (2.18)

𝑧𝑡 is then used as the input vector at time step 𝑡 to the next Transformer block.

Multi-head self-attention is used to further improve the model capacity by applying

multiple parallel self-attention modules on the input sequence, and the outputs of

each attention module are concatenated.

2.2.3 Convolution-Augmented Self-Attention Networks

While the Transformer model is good at capturing global context, it is less effective

in extracting local patterns. To further improve modeling capability, a convolutional

neural network (Waibel et al., 1989), which works well at capturing local information,

is combined with Transformer as a Conformer (Gulati et al., 2020). As illustrated

in Figure 2-1b, each Conformer block contains two half-step FFNs sandwiching the

multi-head self-attention module and the convolution module. Such convolution-

augmented Transformer architecture enjoys the best of both worlds, being able to

model both local and global dependencies in audio sequences, and are gaining more

and more popularity in speech processing (Guo et al., 2021).

2.3 Neural Network Pre-Training and Self-Supervised

Learning

As introduced in Section 2.1.3, self-supervised pre-training is one of the two main

streams of semi-supervised techniques (the other one is self-training) that leverage

large quantities of unlabeled speech data for improving ASR performance. Self-

supervised pre-training is also the aspect this thesis focuses on for tackling the semi-

supervised ASR problem. In this section we first provide a brief overview on neural

network pre-training, then review some of the most representative self-supervised
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pre-training frameworks for speech processing.

2.3.1 Background

The wide adoption of the “pre-training followed by fine-tuning” paradigm for semi-

supervised learning stems from computer vision. An instance of the pre-training

paradigm is supervised pre-training—the approach of learning representations with

a supervised task. The representations learned from image classification have been

shown to be useful for object detection and semantic segmentation (Girshick et al.,

2014). This approach has been extended to other supervised tasks without manual

annotations, and is termed self-supervised learning by Doersch et al. (2015).2 Vari-

ous tasks, such as colorization (Larsson et al., 2016), solving jigsaw puzzles (Noroozi

and Favaro, 2016), and inpainting (Pathak et al., 2016) in the vision domain have

been proposed for self-supervised learning of visual representations. Subsequent de-

veloped pre-training techniques in the text domain based on language modeling such

as ELMo (Peters et al., 2018b), BERT (Devlin et al., 2019), and XLNet (Yang et al.,

2019), also belong to self-supervised learning.

The key difference between supervised pre-training and self-supervised pre-training

is the type and the amount of information about the input retained in the learned

representation. The representations learned through a supervised task tend to only

include information useful to perform the task, while information irrelevant to the task

tends to be discarded (Belinkov and Glass, 2017; Chowdhury et al., 2021). As a result,

representations learned by supervised pre-training are only suitable for tasks similar to

the supervised tasks. This explains why, for instance, representations trained on im-

age classification can be useful for object detection and semantic segmentation, given

the similarity among these tasks. The representations learned from self-supervised

tasks, however, tend to include various aspects of the input, not for a specific task,

in particular when the self-supervised task includes reconstructing parts of the in-

2From this point of the thesis, we will not differentiate the two terms “unsupervised” and “self-
supervised”. Both terms are now used to indicate that manually labeled data are used during
training.
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put. This explains the wide applicability of representations learned by self-supervised

learning.

2.3.2 Self-Supervised Tasks for Speech Representation Learn-

ing

Self-supervised methods for learning speech representations can be roughly catego-

rized into two groups: those that are based on contrastive learning and those based

on generative (or sometimes called reconstructive) learning.

Contrastive Learning The key idea behind contrastive learning is “learning by

comparison.” Contrastive Predictive Coding (CPC) (Oord et al., 2018), which we

will introduce in more detail and experiment with extensively in Chapter 3, is ar-

guably the most representative method that falls into this category. CPC defines a

task where a unidirectional, autoregressive model is asked to predict the frames in the

near future. The model learns the representations by distinguishing the target future

frames from frames from other audio sequences, or frames from a more distant time in

the same sequence. After CPC was proposed, several improvements, such as chang-

ing unidirectional to bidirectional Kawakami et al. (2020a) and making architectural

modifications (Riviere et al., 2020), have also been explored.

The wav2vec series also belongs to the family of contrastive learning. Schneider

et al. (2019) proposed the first wav2vec model, which is actually very similar to

CPC. The notable difference is that wav2vec uses a fully-convolutional architecture

while CPC uses an RNN. In vq-wav2vec proposed by Baevski et al. (2020a), the self-

supervised training procedure is divided into two steps: the authors first augmented

the original wav2vec model with a vector-quantization layer (Oord et al., 2017) to

learn a codebook of discretized speech units, then trained a BERT model on top of

the discretized speech units. Although vq-wav2vec is able to represent continuous

speech as distinctive speech tokens and can hence make use of already well-developed

NLP pre-training frameworks such as BERT, the two-stage training scheme still has

some problems such as unrecoverable incorrect speech ID assignments. Observing
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such problem, Baevski et al. (2020b) further proposed wav2vec 2.0, which improves

vq-wav2vec into a single-stage training scheme and achieves remarkable results on

ASR.

Reconstructive Learning In contrast to contrastive learning approaches that of-

ten define objectives that operate in the space of hidden vectors projected from the

input, reconstructive learning approaches define tasks that ask the models to recon-

struct parts of the input explicitly in the output space that is often the same as the

input space. This line of research is primarily inspired by the remarkable progress

made in the text domain such as ELMo, BERT, and XLNet.

One of the earliest approaches that falls into the category of reconstructive learning

is Autoregressive Predictive Coding (APC) (Chung et al., 2019a; Chung and Glass,

2020a), which is a direct adaptation from language modeling pre-training. APC

employs a unidirectional, autoregressive model for summarizing the past acoustic

frames to predict/reconstruct a near future frame, where the difference between the

predicted and target future frames is measured by the ℓ1 loss. APC, including its

variant (Chung et al., 2020) and improved version (Chung and Glass, 2020b), is one

of the two pre-training frameworks proposed in this thesis, and is presented from

Chapter 3 to Chapter 5. Inspired by ELMo, Ling and Liu (2020) have also explored

bidirectional APC.

Another line of research in reconstructive learning is largely inspired by the masked

language modeling task from BERT (Liu et al., 2020b; Wang et al., 2020; Chi et al.,

2021; Jiang et al., 2021; Liu et al., 2021) and the permutation language modeling

task from XLNet (Song et al., 2020), where these NLP pre-training techniques are

adapted to operate on continuous speech.

Finally, there are some recently proposed methods that are difficult to classify as

either contrastive or reconstructive learning, such as HuBERT (Hsu et al., 2021) and

w2v-BERT (Chung et al., 2021b). w2v-BERT is the second pre-training framework

proposed in this thesis to be presented in Chapter 6, where HuBERT will also be

discussed and compared with.
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Although self-supervised learning approaches have been mainly developed for im-

proving different ASR benchmarks, there have been studies that show self-supervised

pre-trained models are also useful for speech tasks other than ASR. In particular,

WavLM (Chen et al., 2021) was developed and has achieved remarkable performance

on full-stack speech processing tasks that require the models to capture a variety of

speech characteristics such as the phonetic, speaker, emotion, and semantic informa-

tion of the spoken utterances.

2.4 Neural Representation Analysis

In this section, we review two lines of techniques for analyzing the representations

learned by deep neural networks: the probing task approach and the similarity

measure approach, which will be used in Chapter 7 for analyzing a variety of self-

supervised speech representations.

2.4.1 Background

Deep neural networks have long been treated as a black-box due to the fact that their

high architectural complexity makes it hard for humans to understand the networks’

inner workings. Recent new developments in deep neural networks, including new

architectures, pre-training objectives, and parameter optimization algorithms, have

led to significant improvements over previous state-of-the-arts on various benchmarks

across different domains such as text, speech, and vision. Such progress has attracted

researchers’ interest to study the models’ internal representations to assess what lin-

guistic/acoustic/visual properties they capture that make them so powerful. Below

we review two lines of techniques for analyzing the representations learned by deep

neural networks: the probing task approach and the similarity measure approach.
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2.4.2 The Probing Task Approach

The idea of the probing task approach is to use so-called probing classifiers to predict

certain properties from representations extracted from the deep neural models under

investigation. This approach contains three steps. A model is first trained on some

tasks (the task can be either a supervised one like neural machine translation or a self-

supervised one such as masked language modeling). Next, the pre-trained model is

used for generating feature representations for another task by running it on a corpus

with linguistic annotations (or acoustic annotations, depending on the properties of

interest). Finally, a probing classifier, which is usually a linear classifier or shallow

multi-layer perceptron, is used for predicting the properties of interest using the

extracted feature representations as input. The performance of the probing classifier

evaluates the quality of the feature representations extracted from the pre-trained

model for capturing the properties of interest.

The probing task approach has been used in a numerous of studies for associ-

ating linguistic properties, such as part-of-speech tags and named entities, with su-

pervised (e.g., neural machine translation) and self-supervised (e.g., BERT) textual

representations (Ettinger et al., 2016; Belinkov et al., 2017; Adi et al., 2017; Conneau

et al., 2018; Hupkes et al., 2018; Belinkov and Glass, 2019). For speech, the probing

task approach has also been applied to investigate the acoustic properties captured

by pre-trained ASR (Belinkov and Glass, 2017; Li et al., 2020a) and speech synthesis

models (Zhu, 2020).

Although the probing task approach can sometimes yield compelling insights

about the models that are helpful for improving them, the approach’s applicabil-

ity is constrained by the availability of annotations for the properties of interest.

Additionally, comparing different model representations is indirect by observing their

probing performance, which makes it hard to draw conclusions on the similarities and

dissimilarities between different model representations.
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2.4.3 The Similarity Measure Approach

In contrast to the probing task approach, the similarity measure approach does not

rely on annotated corpora for analysis, and is able to compare different model repre-

sentations directly without the need of proxy probing classifiers. The idea is to take

advantage of existing similarity measures to output a score that quantifies the simi-

larity between two model representations, where the two representations can be from

the same (e.g., representations from different layers of the same model) or different

pre-trained models, and then use such information to comment on the inter- and/or

intra-similarity of the models.

In the text domain, Bau et al. (2019) used this approach to analyze the role of

individual neurons in neural machine translation models. Studies such as Morcos et al.

(2018); Saphra and Lopez (2019) used the similarity measure approach to investigate

the learning dynamics in language models by comparing a series of checkpoints of

models. In Wu et al. (2020), a variety of similarity measures—each capturing a

different similarity notion—were explored to study the effect of diverse aspects of

modeling choices (such as building blocks, training objectives, directionality, and

model sizes) for building self-supervised models. For speech, the similarity measure

approach was used by Pasad et al. (2021) as one of the tools for analyzing a particular

self-supervised speech model (wav2vec 2.0).

Similarity measures are the key to this analysis method. Given two model rep-

resentations h(𝑎) = (ℎ
(𝑎)
1 , ℎ

(𝑎)
2 , . . . , ℎ

(𝑎)
𝐿 ) and h(𝑏) = (ℎ

(𝑏)
1 , ℎ

(𝑏)
2 , . . . , ℎ

(𝑏)
𝐿 ), where 𝑎 and

𝑏 represent two layers that can be either from the same or different models, and 𝐿

denotes the number of words in the text corpus (or number of frames in the speech

corpus) used for analysis, a similarity measure outputs a score sim(h(𝑎),h(𝑏)) ∈ R

that quantifies the similarity of the two representations. Let 𝑑𝑎 denote the dimen-

sionality of layer 𝑎 (i.e., ℎ(𝑎)𝑖 ∈ R𝑑𝑎), h(𝑎) can be viewed as a 𝐿× 𝑑𝑎 matrix, in which

the 𝑖-th row vector is essentially ℎ(𝑎)𝑖 . The 𝑘-th neuron is denoted as h(𝑎)[:, 𝑘], which

can be viewed as a 𝐿× 1 column vector. The same notations apply to h(𝑏). Below we

introduce three groups of similarity measures that are designed to capture different
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levels of localization/distributivity of information.

Neuron-level similarity Similarity measures that belong to this group aim to

capture localization of information, and their approach is to estimate the similarity

of behaviors between pairs of individual neurons in layers 𝑎 and 𝑏. For example, Bau

et al. (2019) proposed neuronsim, where for every neuron 𝑘 in layer 𝑎, neuronsim

finds the maximum correlation between it and another neuron in layer 𝑏. neuronsim

then outputs the average of maximum correlations of all neurons in layer 𝑎:

neuronsim(h(𝑎),h(𝑏)) =
1

𝑑𝑎

𝑑𝑎∑︁
𝑘=1

neuronsim(h(𝑎)[:, 𝑘],h(𝑏))

=
1

𝑑𝑎

𝑑𝑎∑︁
𝑘=1

max
𝑘′

|𝜌(h(𝑎)[:, 𝑘],h(𝑏)[:, 𝑘′])|,

(2.19)

where 𝜌 is the Pearson correlation.

Mixed neuron-representation similarity Unlike neuron-level similarity mea-

sures, mixed neuron-representation measures aim to capture the similarity between

a neuron in layer 𝑎 with the entire layer 𝑏, since it is possible that some information

is localized in one layer but distributed in another. A mixed neuron-representation

similarity captures such a phenomenon, while a neuron-level similarity measure fails

to. An example measure is mixedsim (Wu et al., 2020), where for every neuron 𝑘 in

layer 𝑎, a regressor is trained to regress to it from all neurons in layer 𝑏. mixedsim

then outputs the average of the goodness of fit of all 𝑘 regressors:

mixedsim(h(𝑎),h(𝑏)) =
1

𝑑𝑎

𝑑𝑎∑︁
𝑘=1

mixedsim(h(𝑎)[:, 𝑘],h(𝑏))

= lstsq(h(𝑎)[:, 𝑘],h(𝑏)).r,

(2.20)

where lstsq stands for least square regression and .r denotes the 𝑅2, the goodness

of fit, associated with each regressor.
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Representation-level similarity Rather than trying to capture the behaviors of

individual neurons to learn the localization of information, representation-level sim-

ilarity measures emphasize the distributivity of information. Measures that fall into

this category are more capable of identifying similar behaviors of two layers over-

all, even if no individual neuron has a a similar matching pair (lack of neuron-level

similarity) or is represented well by neurons in the other layer (lack of mixed neuron-

representation similarity).

Lots of studies have proposed measures and for evaluating such representation-

level similarity (Kriegeskorte et al., 2008; Morcos et al., 2018; Bouchacourt and Ba-

roni, 2018), from which two of them will be used in this thesis (in Chapter 7): singular

vector canonical correlation analysis (SVCCA) (Raghu et al., 2017) and linear cen-

tered kernel alignment (CKA) (Kornblith et al., 2019). Let Z be a column centering

transformation such that given a matrix V, the sum of each column in ZV is zero.

SVCCA first transforms h(𝑎) and h(𝑏) into A and B, where

A,B = Zh(a),Zh(b). (2.21)

Let U𝑎 and U𝑏 be the left singular vectors of A and B, and 𝑙𝑎 and 𝑙𝑏 be the index

required to account for 99% of the variance, respectively. SVCCA then computes the

truncated principle components A′ and B′, where

A′,B′ = U𝑎[:, : 𝑙𝑎],U𝑏[:, : 𝑙𝑏]. (2.22)

The SVCCA correlations 𝜌svcca are defined as:

u, 𝜌svcca,v = SVD(A′𝑇B′), (2.23)

and the SVCCA similarity svsim(h(𝑎),h(𝑏)) is the mean of 𝜌svcca. The CKA similarity

is defined as:

ckasim(h(𝑎),h(𝑏)) =
||𝐴𝑇𝐵||2

||𝐴𝑇𝐴||||𝐵𝑇𝐵||
, (2.24)
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where || · || is the Euclidean norm.

2.5 Chapter Summary

We have provided an overview on several topics that are relevant to this thesis, in-

cluding automatic speech recognition (ASR), neural networks for speech processing,

self-supervised representation learning, and neural representation analysis.

In Section 2.1, we first formulated the ASR problem, then discussed both tradi-

tional hybrid and modern end-to-end techniques for modeling ASR. The introduced

end-to-end models AED and RNN-T will be used in Chapter 5 and Chapter 6 for

ASR experiments, respectively. We also introduced two lines of research directions

for semi-supervised ASR that aims to leverage large quantities of unannotated speech

to improve ASR performance: self-training and self-supervised pre-training, and the

latter direction is the focus of this thesis.

In Section 2.2, we reviewed three neural network architectures widely used for

speech processing: LSTM, Transformer, and Conformer, all of which will be used

extensively in this thesis for building different speech processing systems.

In Section 2.3, we first provided some background of self-supervised pre-training in

different domains including text, speech, and vision, and compared it with supervised

pre-training. Then, we moved our focus to discussing existing works for self-supervised

speech representation learning, positioning the two pre-training frameworks we are

going to propose and study in this thesis: Autoregressive Predictive Coding (Chap-

ter 3 to Chapter 5) and w2v-BERT (Chapter 6).

In Section 2.4, we introduced two lines of techniques for analyzing representations

learned by deep neural networks: the probing task approach and the similarity mea-

sure approach. In particular, for the probing task approach, we will use phone and

speaker classifications for understanding the constituents of a self-supervised speech

representation; for the similarity measure approach, we will use singular vector canon-

ical correlation analysis (SVCCA) and centered kernel alignment (CKA) to quantify

the similarities between pairs of self-supervised speech representations.
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In the next chapter, we will present our first efforts in self-supervised speech

representation learning, proposing the Autoregressive Predictive Coding pre-training

framework.
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Chapter 3

Self-Supervised Objective: Predicting

the Future from the Past

This chapter proposes a novel self-supervised autoregressive neural model, which we

call Autoregressive Predictive Coding (APC), for learning generic speech represen-

tations. In contrast to most existing speech representation learning methods that

aim to remove noise or speaker variabilities, APC is designed to preserve information

for a wide range of downstream tasks. In addition, APC does not require any pho-

netic or word boundary labels, allowing the model to benefit from large quantities of

unlabeled data. Speech representations learned by our model significantly improve

performance on both phone classification and speaker verification over the surface

features and other supervised and self-supervised approaches. Further analysis shows

that different levels of speech information are captured by APC at different layers.

In particular, the lower layers tend to be more discriminative for speakers, while the

upper layers provide more phonetic content.

The content of this chapter was first published in Chung et al. (2019a).

3.1 Introduction

Speech signals encompass a rich set of acoustic and linguistic properties, ranging from

the individual lexical units, such as phonemes and words, to the characteristics of the
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speakers, their intent, or even their mental status. However, these high-level proper-

ties of speech are poorly captured by the surface features, such as the amplitudes of

a wave signal, log Mel spectrograms, or Mel frequency cepstral coefficients. The goal

of speech representation learning is to find a transformation from the surface features

that makes high-level properties of speech more accessible to downstream tasks.

In this chapter, we propose an autoregressive model for learning speech represen-

tations that can be transferred to different tasks across different datasets. Our model

is able to retain much information from the surface features, allowing a wide range of

tasks across different datasets to benefit from the learned representations, while also

being unsupervised and able to leverage large quantities of unlabeled data. As a first

step, we focus on learning general speech representations from log Mel spectrograms,

but it is straightforward to extend our approach to the amplitudes of the wave signals.

We use linear separability (or separability with a shallow network) to define the

accessibility of information for the downstream tasks. Others such as Schatz et al.

(2013) have argued that there are many nuisance factors that might affect the perfor-

mance of linear classifiers, and have proposed to use a contrastive loss for evaluation.

However, there has been evidence (Settle and Livescu, 2016) and theories (Arora

et al., 2019) supporting the idea that low contrastive loss implies the existence of a

linear classifier with low error. In other words, we aim to learn speech representations

that allow linear classifiers to perform well on many downstream tasks.

When the downstream tasks are known, supervised learning, specifically multitask

learning (Caruana, 1997), is the most successful approach for learning specialized rep-

resentations of those particular tasks. In general, however, when a transformation is

trained against a certain set of tasks, information independent of the tasks (such

as noise or speaker variability, depending on the tasks) tends to be discarded after

training (Tishby et al., 1999). We risk discarding useful information for other un-

seen tasks when learning representations in a supervised fashion. Instead of having

targeted tasks in advance, we focus on learning representations for a wide range of,

potentially unknown, tasks. Due to the required generality, it is necessary to retain

in the representations as much information about the original signal as possible. Two
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commonly used loss functions, i.e., the autoencoding and autoregressive loss func-

tions, satisfy this criterion. However, when no additional constraints are imposed,

there is a trivial solution, the identity mapping, for the autoencoding loss function.

This makes the autoregressive loss more appealing, because no additional techniques,

such as denoising (Vincent et al., 2010), are required to avoid the trivial solution as

for the autoencoding loss. The autoregressive approach also does not require other

types of linguistic constraints, such as phonetic or word boundaries (Kamper et al.,

2016).

The autoregressive loss belongs to a large family of self-supervised loss func-

tions (Wang and Gupta, 2015; Doersch et al., 2015; Larsson et al., 2017). There

also exists some work on unsupervised speech representation learning (Chorowski

et al., 2019; Chung and Glass, 2018; Milde and Biemann, 2018; Hsu et al., 2017b,a;

Chung et al., 2016). However, none of the studies are able to show the transferability

of the learned representations across different datasets. Our work is largely motivated

by the recent success in transfer learning from large-scale pre-trained language mod-

els (Peters et al., 2018b; Howard and Ruder, 2018; Radford et al., 2018; Devlin et al.,

2019), and we aim to learn general speech representations that can be transferred to

different tasks across different datasets.

3.2 Models

We propose a novel autoregressive architecture, which we call Autoregressive Pre-

dictive Coding (APC), for self-supervised speech representation learning. Predictive

coding on wave samples (Schroeder and Atal, 1985) has a long and influential history

in speech processing, and its recent neural version (Oord et al., 2016) and variants,

such as Contrastive Predictive Coding (CPC) (Oord et al., 2018), have also been used

to learn speech representation (Chorowski et al., 2019). In contrast to these studies,

our work mainly focuses on predicting the spectrum of a future frame rather than a

wave sample. We will briefly review CPC here and compare extensively with it in

Section 3.3.
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Figure 3-1: Illustration of the Autoregressive Predictive Coding model. The input to
the model is a sequence of acoustic feature vectors (𝑥1, 𝑥2, . . . , 𝑥𝑇 ), and the goal of
the model is to predict a future frame that is 𝑛 steps ahead (in this example, 𝑛 = 2)
from the current time step. The RNN Encoder can be replaced with any other
autoregressive models such as a Transformer with proper masking.

3.2.1 Autoregressive Predictive Coding

The methodology of the proposed APC model is largely inspired by language mod-

els (LMs) for text, which are typically a probability distribution over sequences

of 𝑁 tokens (𝑡1, 𝑡2, ..., 𝑡𝑁). Given such a sequence, an LM assigns a probability

𝑃 (𝑡1, 𝑡2, ..., 𝑡𝑁) to the whole sequence by modeling the probability of token 𝑡𝑘 given

the history (𝑡1, 𝑡2, ..., 𝑡𝑘−1):

𝑃 (𝑡1, 𝑡2, ..., 𝑡𝑁) =
𝑁∏︁
𝑘=1

𝑃 (𝑡𝑘 | 𝑡1, 𝑡2, ..., 𝑡𝑘−1). (3.1)

It is trained by minimizing the negative log-likelihood:

𝑁∑︁
𝑘=1

− log𝑃 (𝑡1, 𝑡2, ..., 𝑡𝑘−1; 𝜃𝑡, 𝜃rnn, 𝜃𝑠), (3.2)

where the parameters to be optimized are 𝜃𝑡, 𝜃rnn, and 𝜃𝑠. 𝜃𝑡 is a look-up table that

maps each token into a vector of fixed dimensionality. 𝜃rnn is a Recurrent Neural

Network (RNN) used to summarize the sequence history up to the current time step.
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𝜃𝑠 is a Softmax layer appended at the output of each RNN time step for estimating

probability distribution over the tokens. Language modeling is a general task that

requires the understanding of many aspects in language in order to perform well.

Following most of the neural LMs in the literature, we use an RNN (Mikolov et al.,

2010) for modeling the temporal information within an acoustic sequence. For speech

data, each token 𝑡𝑘 corresponds to a frame rather than a word or character token,

hence we do not need the look-up table 𝜃𝑡 as we do in LMs and directly feed each

frame into the RNN 𝜃rnn. Since there does not exist a finite set of target tokens (such

as the vocabulary set as in text), we choose to replace the Softmax layer with a

regression layer 𝜃𝑟. In other words, the RNN output at each time step attempts to

directly fit the target frame with a linear mapping. The learnable parameters in APC

are 𝜃rnn and 𝜃𝑟.

Given the history (𝑡1, 𝑡2, ..., 𝑡𝑘−1), an LM aims to maximize the probability of the

next token to be the 𝑡𝑘 in the data. However, for APC, exploiting the local smoothness

of the speech signal might be sufficient to predict the next frame. To encourage APC

to infer more global structures rather than the local information in the signals, we ask

the model to predict a frame 𝑛 steps ahead of the current one. In other words, given

an utterance represented as a sequence of acoustic feature vectors (𝑥1, 𝑥2, ..., 𝑥𝑇 ), the

RNN processes each sequence element 𝑥𝑡 one at a time and outputs a prediction 𝑦𝑡,

where 𝑥𝑡 and 𝑦𝑡 have the same dimensionality. The model, which consists of a RNN

and a linear regression layer, is optimized by minimizing the ℓ1 loss (as is done when

predicting spectral frames in some speech synthesis models such as Wang et al. (2017);

Chung et al. (2019b)) between the input sequence (𝑥1, 𝑥2, ..., 𝑥𝑇 ) and the predicted

sequence (𝑦1, 𝑦2, ..., 𝑦𝑇 ):
𝑇−𝑛∑︁
𝑖=1

|𝑥𝑖+𝑛 − 𝑦𝑖|. (3.3)

Figure 3-1 illustrates the APC model. The target sequence can be easily generated

by right-shifting the input sequence by 𝑛 time steps.
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3.2.2 Contrastive Predictive Coding

Instead of learning to predict future frames like APC, Contrastive Predictive Cod-

ing (CPC) (Oord et al., 2018) aims to learn representations that separates the tar-

get future frame 𝑥𝑖+𝑛 and randomly sampled negative frames {�̃�}, given a con-

text ℎ𝑖 = (𝑥1, 𝑥2, ..., 𝑥𝑖).

Specifically, CPC consists of three modules: a frame encoder 𝐸𝑓𝑟𝑚, a uni-directional

RNN 𝐸𝑐𝑡𝑥, and a scoring function 𝑓 . A sequence of frames is first encoded to a se-

quence of frame representations 𝑧𝑖 = 𝐸𝑓𝑟𝑚(𝑥𝑖) using the frame encoder. The encoded

sequence is then passed to the recurrent context encoder to obtain a sequence of

context representations (𝑐1, 𝑐2, ..., 𝑐𝑇 ), where 𝑐𝑖 is a fixed-dimensional representation

computed from 𝐸𝑐𝑡𝑥(𝑧1, 𝑧2, ..., 𝑧𝑖). The scoring function assigns a positive scalar to a

pair of frame and context, formulated as 𝑓(𝑥, ℎ) = exp
(︀
𝑧𝑇𝑊𝑐

)︀
, where 𝑧 is the frame

representation of 𝑥, and 𝑐 is the context representation of ℎ.

Suppose the target frame is 𝑛 steps away. Given a context ℎ𝑖, the target future

frame 𝑥𝑖+𝑛, and a collection of negative frames �̃�, CPC jointly optimizes the three

modules by minimizing a contrastive loss:

ℒ𝑛(ℎ𝑖, 𝑥𝑖+𝑛, �̃�) = log
𝑓(𝑥𝑖+𝑛, ℎ𝑖)∑︀

𝑥∈�̃�∪{𝑥𝑖+𝑛} 𝑓(𝑥, ℎ𝑖)
. (3.4)

As shown in Oord et al. (2018), minimizing this loss will result in 𝑓(𝑥, ℎ) estimating

the density ratio 𝑝𝑛(𝑥 | ℎ)/𝑞(𝑥), where 𝑝𝑛 denotes the conditional distribution of 𝑥

at 𝑛 steps ahead of the given context ℎ, and 𝑞 is the proposal distribution where

negative samples are drawn from. In other words, the choice of the number of steps

ahead and the proposal distribution would both affect the estimated target density

ratio, and therefore would change what is learned in the representations 𝑧 and 𝑐. For

example, using a proposal distribution that draws samples from the same sequence

as the target frame would encourage the model to learn the phonetic content but not

the speaker information, because the latter do not help distinguishing a target frame

from negative ones. We will study such differences in our experiments.

Both CPC and the proposed APC consider the sequential structures of speech,
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and predict information about future frames. However, the two models differ sig-

nificantly in the type of information the corresponding loss function enforces them

to capture. While CPC representations are encouraged to focus on information that

is most discriminative between the target and negative frames, APC has to encode

information sufficient for predicting the target frame, and are allowed to only discard

information that is common across the train dataset.

3.3 Experiments

In this section, we empirically demonstrate the effectiveness of the learned represen-

tations from the proposed APC model. Since phone and speaker information are two

of the most important characteristics that differentiate one speech utterance from

another, we choose to use phone classification and speaker verification to examine

how much phone and speaker information are captured by the representations.

3.3.1 Experimental Data and Setup

We use the LibriSpeech corpus (Panayotov et al., 2015) for training the feature extrac-

tors (all APC and CPC models). Specifically, the 360-hour subset, which contains 921

speakers in total, is used. We use 80-dimensional log Mel spectrograms (normalized

to zero mean and unit variance per speaker) as input features.

An ideal feature extractor should extract representations that generalize to datasets

of different domains. To examine the robustness to shift in domains, rather than on

the LibriSpeech test set, we conduct phone classification and speaker verification on

the Wall Street Journal (WSJ) (Paul and Baker, 1992) and TIMIT corpora. For

phone classification, we follow the standard split of WSJ, use 90% of si284 for train-

ing, use the rest of the 10% for development, and report numbers on dev93. The

phone alignments are generated with a speaker adapted GMM-HMM model. For

speaker verification, we follow the standard split of TIMIT, use the training set for

training the universal background model, the i-vector extractor (Dehak et al., 2011), a

linear discriminant analysis (LDA) model. We follow the standard practice of speaker
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verification and only consider female-female and male-male pairs in the 50-speaker

development set. We note that speaker verification on TIMIT is not common, and

we mainly use it to check if the representations contain speaker information.

We model our APC with a multi-layer unidirectional LSTM (Hochreiter and

Schmidhuber, 1997) network with residual connections (He et al., 2016) between two

consecutive layers as is done in Wu et al. (2016), and the dimensionality of each

layer is 512. For CPC, we follow the implementation for the context encoder and

the scoring function in Oord et al. (2018), but change the acoustic feature 𝑥 from a

window of 400 samples (25ms) to a 80-dimensional vector of Mel spectra computed

from that segment, and replace the 5-layer strided Convolutional Neural Network

with a 3-layer, 512-dim fully-connected neural network with ReLU activations for the

frame encoder. Such modification aims for a fairer comparison between APC and

CPC models in terms of their training objectives, while eliminating the source of

variation due to the choice of acoustic features. All APC and CPC models (except

cpc-ctx-exhaust, which we will describe more below) are trained for 100 epochs using

the Adam optimizer (Kingma and Ba, 2015) with a batch size of 32 and an initial

learning rate of 10−3.

Note that the proposed approach is unsupervised, and we do not and should not

tune hyperparameters according to the downstream tasks. The goal of hyperparam-

eter tuning is to show how the hyperparameters affect what is learned in the speech

representations. Recall that we define the accessibility of categorical information as

the linear separability among classes. For phone classification, we simply use a linear

classifier to predict the phoneme classes for each frame. The frame error rates indicate

how much phonetic content is contained in the speech representations. Similarly, for

speaker verification, we train an LDA model on top of the speech representations.

3.3.2 Phone Classification

Table 3.1 compares APC with a series of CPC models that use different training

variants. Phone error rates (PER) are reported, and each of the first four rows

corresponds to a CPC variant. We use cpc-n9all to denote a CPC model that draws 9

62



Table 3.1: Comparing APC with a series of CPC models on phone classification.
PERs are reported.

Method #(step)

2 5 10 20

cpc-n9all 51.3 48.8 50.8 54.6
cpc-n9same 47.5 48.2 50.0 53.0
cpc-ctx-n9same 42.1 46.1 48.8 53.8
cpc-ctx-exhaust 42.9 43.1 45.6 49.1
apc (proposed) 36.5 35.6 35.4 37.7

negative samples from utterances within the same minibatch, and cpc-n9same to

denote a CPC model that draws 9 negative samples from the same utterance. For

both cpc-n9all and cpc-n9same, we take the outputs of the frame encoder (i.e., the

outputs of the 3-layer fully-connected neural networks) as the extracted features and

feed them to the linear classifier. The training approach of cpc-ctx-n9same is the

same as cpc-n9same, except that the RNN outputs are taken as the extracted features

instead of the frame encoder outputs. We use ctx, short for context, to indicate such

difference. The final CPC variant we try is cpc-ctx-exhaust, which follows the exact

same training procedure in Oord et al. (2018) that combines contrastive losses for

all steps 𝑘 ≤ 𝑛 with equal weights for training (i.e.,
∑︀𝑛

𝑘=1 ℒ𝑛), uses all non-target

samples in a minibatch as negative samples, and are trained with mini-batches of 8

utterances that are randomly chuncked to 128 frames each. For APC, the outputs

of the last RNN layer are taken as the extracted features. All models in Table 3.1

consist of one RNN layer, and the effect of predicting different time steps ahead is

also investigated.

A comparison of models from the CPC-family. From Table 3.1, we observe that

cpc-n9same outperforms cpc-n9all across all time steps we try. This is an expected

outcome, since for cpc-n9all, the negative samples are drawn from different utterances

within a minibatch that could possibly be uttered by different speakers, and thus cpc-

n9all is not required to really capture phonetic content to differentiate the positive

and negative samples. In contrast, cpc-n9same draws negative samples from the same
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Table 3.2: PERs on phone classification. All features are fed to a linear classifier
unless otherwise stated. The number of steps to the target #(steps) is not relevant
in the first four rows.

Method #(step)

1 2 3 5 10 20

Mel 50.0
Mel + MLP-1 43.4
Mel + MLP-3 41.3
cpc best 42.1
apc 1-layer 39.4 36.5 35.4 35.6 35.4 37.7
apc 2-layer 38.5 34.6 35.9 35.7 34.6 38.8
apc 3-layer 37.2 36.7 33.5 36.1 37.1 38.8
apc 4-layer 36.2 34.4 34.5 35.3 36.9 39.6

utterance, and in such case, speaker information is identical for each sample and cpc-

n9same is forced to learn other non-trivial features such as phone information so as to

differentiate positive and negative samples. In addition, we find that representations

extracted from RNN contain more phonetic content than those extracted from the

frame encoder, as cpc-ctx-n9same often outperforms cpc-n9same especially when the

number of steps to the target is small. By using all non-target samples as negative

samples from the minibatch, cpc-ctx-exhaust further lowers the PER, suggesting that

richer phonetic content is learned in the representations.

Comparing CPC with APC. Our APC, as shown in the last row in Table 3.1,

significantly outperform all CPC models in spite of its much simpler architecture

and training approach. These results demonstrate that more phonetic content is

immediately accessible from a linear classifier in the representations extracted by

APC compared to CPC models.

There are other aspects of APC worth investigating. In Table 3.2, we present

the phone classification results of using deeper RNNs for APC and with more target

time steps. For all APC models, we take the outputs of the last RNN layer as the

extracted features. Three supervised baselines, a linear classifier, a 1-layer multi-

layer perceptron (MLP), and a 3-layer MLP, are implemented, taking the surface

features, i.e., spectrograms, as input features. For MLPs, each layer consist of 512
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units with ReLU activations. These three baselines are meant to help us understand

how accessible the phonetic content is from the surface features, even under some

amount of nonlinear transformations. We also include the best number of CPC models

from Table 3.1 to bridge the two tables.

Surface features with non-linear phone classifier. From Table 3.2, we ob-

serve that incorporating non-linearity in the phone classifier does improve PER1.

When using a 3-layer MLP as the classifier, the surface features are transformed into

higher-level representations that are more linearly separable than the best CPC fea-

tures. However, we can see there is still a significant gap between the transformed

spectrogram representations with features extracted by APC models.

A comparison of APC models. Overall, we find that deeper APC models produce

better representations especially for small #(steps). There also exists a sweet spot

when we vary the amount of time steps to the target for APC models to predict—the

PER continues to drop as we increase #(steps) until a certain point, which is usually

when #(steps) equals 3; after that the PER begins to increase as #(steps) increases.

3.3.3 Speaker Verification

For speaker verification, we compare APC with the i-vector representation. We train

a GMM with 256 components as the universal background model on the TIMIT

training set. We then extract 100-dimensional i-vectors and project them down to 24

dimensions with LDA trained on the training set. The cosine similarity is used for

evaluation. We also include the best results from all CPC models. The equal error

rates (EER) on speaker verification are presented in Table 3.3. Same as what we do in

the phone classification experiments, the outputs of the last RNN layer are taken as

the extracted representations. The representation of the entire utterance is a simple

average of the frame representations. For the last two rows , i.e., apc 3-layer-1 and

apc 3-layer-2, it means that we take the outputs of the first and the second RNN

layer as the extracted representations. We explain our motivation of doing so below.
1The best performing supervised 3-layer LSTM with minimal lookahead on this particular task

can achieve 16.3 (Tang and Glass, 2018).
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Table 3.3: EER on speaker verification. The number of steps to the target #(steps)
is not relevant for the first two rows.

Method #(step)

1 2 3 5 10 20

i-vector 6.64
cpc best 5.00
apc 1-layer 4.71 4.07 4.14 4.14 5.14 5.29
apc 2-layer 4.71 4.64 5.71 4.86 5.57 6.07
apc 3-layer 5.21 4.93 4.43 4.57 5.79 6.21
apc 3-layer-1 3.43 3.86 3.79 3.86 4.07 4.86
apc 3-layer-2 3.79 4.64 4.14 4.29 5.14 5.00

Comparing APC with i-vector and CPC. From Table 3.3, we can see that the

best CPC model outperforms the i-vector baseline, and APC further outperform CPC

when #(steps) is smaller than 10. This demonstrates that representations learned by

APC contain not only phonetic information but also speaker information.

Speaker information across different APC layers. Unlike phone classification,

where we find increasing the depth of APC improve PER, deeper APC somehow

performs worse in speaker verification. Studies have shown that in a deep LM, lower

layers tend to focus more on local syntax, while the upper layers usually induce

more semantic content (Peters et al., 2018a). Motivated by the fact that LMs for text

could exhibit different kinds of information across different layers, we are interested in

investigating whether other layers besides the last one contain more information of our

interest, that is, the speaker information. Specifically, instead of taking the outputs

of the last RNN layer of apc 3-layer, we try using the outputs of the first and second

RNN layers of it to perform speaker verification, denoted by apc 3-layer-1 and apc 3-

layer-2 in Table 3.3, respectively. Surprisingly, for all #(steps), we see that apc 3-

layer-1 consistently outperforms apc 3-layer-2, which further outperforms apc 3-layer.

This indicates that lower layers indeed contain more speaker information than higher

layers, or at least the speaker information is represented in a more accessible form

in lower layers. Additionally, we observe that apc 3-layer-1 outperforms apc 1-layer

and apc 3-layer-2 outperforms apc 2-layer although the representations are extracted
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from the same RNN depth. Combining all of our observations from both tasks, we

conclude that a deep APC is a very powerful speech feature extractor, whose higher

layers capture phonetic information while more speaker information resides in its

lower layers.

3.4 Chapter Summary

In this chapter, we have proposed Autoregressive Predictive Coding (APC) for self-

supervised speech representation learning. The backbone of APC is a deep LSTM

network, and the model is trained in an autoregressive fashion. We introduce a

time shifting factor that asks the model to predict further steps ahead of the current

frame during training in order to encourage it to discover more general structures

rather than the local ones within the speech signal. Our experimental results show

that the number of steps to the target frame controls what is learned in the rep-

resentation. How this hyperparameter is set depends on how the representation is

going to be used and can be thought of as a prior. Despite its simplicity, APC has

demonstrated a strong capability of extracting useful phone and speaker information

through our experiments, outperforming the surface features and other supervised

and self-supervised approaches such as CPC on phone classification and speaker ver-

ification. Transfer learning from large-scale pre-trained language models has shown

great success recently, and we believe it is promising and useful to develop similar

transfer learning techniques for the domain of speech and audio. APC proposed in

this chapter sets our initial step towards this goal.

Although we have shown the effectiveness of APC in learning representations that

are useful in phone and speaker classification tasks through empirical results, the

reason why this seemingly unrelated self-supervised task can learn such representation

remains unclear. In the next Chapter, we will investigate this question, with the goal

of bridging the connection between the self-supervised task and the properties of

representations it learns.
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Chapter 4

Understanding Future Prediction: A

Study on Why It Is Useful for Speech

Representation Learning

In Chapter 3, we proposed Autoregressive Predictive Coding (APC) and showed that

APC, as a self-supervised objective, has enjoyed success in learning representations

from large amounts of unlabeled data, and the learned representations are rich for

many downstream tasks. However, the connection between low self-supervised loss

and strong performance in downstream tasks remains unclear. In this chapter, we pro-

pose Vector-Quantized Autoregressive Predictive Coding (VQ-APC), a novel model

that produces quantized representations, allowing us to explicitly control the amount

of information encoded in the representations. By studying a sequence of increasingly

limited models, we reveal the constituents of the learned representations. In partic-

ular, we confirm the presence of information with probing tasks, while showing the

absence of information with mutual information, uncovering the model’s preference

in preserving speech information as its capacity becomes constrained. We find that

there exists a point where phonetic and speaker information are amplified to maxi-

mize a self-supervised objective. As a byproduct, the learned codes for a particular

model capacity correspond well to English phones.

The content of this chapter was first published in Chung et al. (2020).
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4.1 Introduction

Recall that Autoregressive Predictive Coding (APC) defines a prediction task that

trains an autoregressive neural model (e.g., a unidirectional RNN or a Transformer

decoder) to predict a future frame considering the past context. Although the learned

representations contain highly accessible phonetic and speaker information, the reason

why this seemingly unrelated self-supervised objective produces such a representation

remains unclear. In this chapter, we aim to provide an explanation, investigating the

constituents that lead to low objective values, and connect them with the properties

of the learned representations.

The proposed approach is to study the properties of the learned representation as

we limit the model capacity. The models with limited capacity are forced to retain

information to achieve maximal prediction, thereby allowing us to study the con-

stituents of the task and the learned representations. Several options are available to

obtain a spectrum of models with different capacity, including reducing the number

of layers, reducing the hidden layer size, or enforcing a bottleneck along the feed-

forward process. The impact of different numbers of hidden layers has been studied

in the previous chapter. Regardless, it is difficult to quantify the amount of infor-

mation by changing the number of layers, changing the hidden layer size, or using

low-rank matrices to enforce bottlenecks. In this chapter, we study the use of vector

quantization (VQ), where the amount of information (i.e., bits required to transmit

the codebook and the sequence of codes) can be exactly quantified, to control the

capacity of the models.

Recent studies on VQ for representation learning, mostly motivated by the discrete

nature of phonetic units, attempt to show that enforcing the quantization leads to a

better representation for acoustic unit discovery (Oord et al., 2017; Harwath et al.,

2020) and automatic speech recognition (Baevski et al., 2020a; Liu et al., 2020a). In

contrast, our goal is not to discover the discrete units in speech. We treat VQ as a

general approach to limit the model capacity, and study its impact on the information

encoded in the learned representations.

70



4.2 Vector-Quantized Autoregressive Predictive Cod-

ing

Given a sequence of acoustic feature vectors (𝑥1, 𝑥2, ..., 𝑥𝑡) as context, APC incorpo-

rates an autoregressive neural model 𝑔𝐴𝑅, e.g., a unidirectional RNN or a Transformer

decoder (Liu et al., 2018; Radford et al., 2018), to summarize the sequence for pre-

dicting a future frame 𝑥𝑡+𝑛 that is 𝑛 steps ahead of 𝑥𝑡. Let 𝑦𝑡 denote the prediction

of 𝑔𝐴𝑅 at time 𝑡. In practice, for a speech utterance x = (𝑥1, 𝑥2, ..., 𝑥𝑇 ), where 𝑇 is

the sequence length, 𝑔𝐴𝑅 is trained by minimizing the ℓ1 frame-wise loss between the

predicted sequence (𝑦1, 𝑦2, ..., 𝑦𝑇−𝑛) and the target sequence (𝑥1+𝑛, 𝑥2+𝑛, ..., 𝑥𝑇 ):

𝑇−𝑛∑︁
𝑡=1

|𝑥𝑡+𝑛 − 𝑦𝑡|. (4.1)

Once 𝑔𝐴𝑅 is trained, one can extract features by taking its hidden representations, e.g.,

the last layer output, to replace the surface features as the new input to downstream

models.

Figure 4-1 illustrates the VQ-APC architecture, which is based upon APC with

additional quantization layer(s). Assume 𝑔𝐴𝑅 has 𝐿 layers. Let 𝑔(ℓ)𝐴𝑅 denote the ℓ-

th layer of 𝑔𝐴𝑅. After feeding x = (𝑥1, 𝑥2, ..., 𝑥𝑇 ) to 𝑔𝐴𝑅, each 𝑔
(ℓ)
𝐴𝑅 will produce a

sequence of hidden vectors h(ℓ) = (ℎ
(ℓ)
1 , ℎ

(ℓ)
2 , ..., ℎ

(ℓ)
𝑇 ). Next, we add a vector quanti-

zation (VQ) layer (Oord et al., 2017) that replaces ℎ(ℓ)𝑡 by 𝑧
(ℓ)
𝑡 , where 𝑧(ℓ)𝑡 is one of

the 𝑉 elements in a codebook {𝑐1, . . . , 𝑐𝑉 }. We then pass the resulting hidden vec-

tors z(ℓ) = (𝑧
(ℓ)
1 , 𝑧

(ℓ)
2 , . . . , 𝑧

(ℓ)
𝑇 ) to the next layer 𝑔(ℓ+1)

𝐴𝑅 and continue the feed-forward

process.

We use the Gumbel-Softmax with the straight-through estimator (Jang et al.,

2017) for selecting discrete codebook variables in a fully differentiable way. Specifi-

cally, we apply a linear layer to map ℎ(ℓ)𝑡 to a vector 𝑟 ∈ R𝑉 . At test time, we simply

choose the largest index in 𝑟. At training time, the probability 𝑝𝑖 of selecting the 𝑖-th
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Figure 4-1: A diagram of VQ-APC. 𝑔𝐴𝑅 is an autoregressive model with 𝐿 layers
with 𝑔(ℓ)𝐴𝑅 denoting the ℓ-th layer and ℎ(ℓ)𝑡 denoting the output vector of 𝑔(ℓ)𝐴𝑅 at time 𝑡.
The figure is an example of inserting a VQ layer (area inside the dashed box) be-
tween the first and second layers 𝑔(1)𝐴𝑅 and 𝑔(2)𝐴𝑅. The orange block represents the code
variable lookup process that replaces ℎ(ℓ)𝑡 by 𝑧(ℓ)𝑡 , where 𝑧(ℓ)𝑡 is one of the elements in
a codebook. The quantized hidden vectors are fed to the next layer and the feed-
forward process continues. The training objective is the same as APC: to minimize
the ℓ1 loss between the predicted frame 𝑦𝑡 and the target future frame 𝑥𝑡+𝑛.

code variable 𝑐𝑖 is computed as follows:

𝑝𝑖 =
𝑒(𝑟𝑖+𝑣𝑖)/𝜏∑︀𝑉
𝑗=1 𝑒

(𝑟𝑗+𝑣𝑗)/𝜏
, (4.2)

where 𝑣 = − ln(− ln(𝑢))) ∈ R𝑉 and 𝑢 is uniformly sampled from 𝜇(0, 1). 𝜏 controls

how close the approximation is to argmax. During the forward pass, the argmax

code 𝑐𝑘 where 𝑘 = argmax𝑖𝑝𝑖 is chosen; during the backward pass, the true gradients

of the Gumbel-Softmax outputs are used. The training objective is the same as

APC (Equation 4.1).

The codebook size and the code dimension of a VQ layer control the amount of

information from the previous layer flowing to the next, and changing either of these
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two factors allows us to explicitly control the capacity of the models. As we limit

the model capacity, the model is forced to retain information to achieve maximal

prediction. By studying a sequence of increasingly limited models, we are able to

reveal the constituents of the prediction task and the learned representations.

4.3 Experiments

We conduct experiments to study the properties of the learned representations and

their connection to the self-supervised objective. Since VQ layers are known to sig-

nificantly disrupt model training, we first examine where VQ layer(s) should be in-

serted. Next, by using phonetic and speaker classification as probing tasks, we show

the model’s preference in preserving speech information as its capacity becomes con-

strained. We then visualize the learned VQ codes to show the presence and absence

of phonetic information and the correspondence between codes and phones. Finally,

we compare VQ-APC with other self-supervised speech representation models.

4.3.1 Experimental Data and Setup

Training of self-supervised models. All self-supervised models, including the

VQ-APC variants and other models to be compared, are trained on the clean 360-

hour subset of LibriSpeech (Panayotov et al., 2015). We use 80-dimensional log

Mel spectrograms (normalized to zero mean and unit variance per speaker) as input

features, that is, 𝑥𝑡 ∈ R80, and train all models for 100 epochs using Adam (Kingma

and Ba, 2015) with a batch size of 32 and an initial learning rate of 10−3.

Probing tasks. We consider phonetic and speaker classification for measuring

the accessibility of the phonetic and speaker information contained in the represen-

tations, respectively. Both experiments are carried out on the Wall Street Journal

corpus (WSJ) (Paul and Baker, 1992). For phonetic classification, the goal is to

correctly classify each frame in an utterance into one of the 42 phones. The phone

alignments are generated with a speaker adapted GMM-HMM model. We follow the
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Table 4.1: Phonetic classification results of VQ-APC with different VQ configurations.
The layers where VQ is inserted are denoted as a set, and ∅ is equivalent to the
regular APC. We compare both the hidden vectors h(ℓ) and their corresponding VQ
codes z(ℓ) (when applicable) for ℓ = 1, 2, 3 as extracted features. Training loss on
LibriSpeech is also reported. The lowest phone error rate is highlighted in bold.

VQ
config.

Train
loss

Phone error rate

h(1) h(2 h(3) z(1) z(2) z(3)

∅ 0.68 46.5 38.6 33.3 − − −

{1} 0.70 43.0 37.5 32.3 43.4 − −
{2} 0.72 45.8 35.4 31.5 − 36.0 −
{3} 0.73 46.4 35.7 30.5 − − 30.8
{1, 2} 1.22 75.0 72.3 70.7 74.8 72.6 −
{1, 3} 0.83 59.9 54.1 51.0 61.2 − 51.4
{2, 3} 0.87 63.1 58.7 54.7 − 59.9 55.2
{1, 2, 3} 1.21 75.3 74.1 68.5 75.4 75.2 67.8

standard split of WSJ, using 90% of si284 for training, the rest 10% for validation,

and reporting phone error rate on dev93. For speaker classification, the goal is to

correctly predict the speaker identity of an utterance. We consider a 259-class classi-

fication task where each class corresponds to an unique speaker, using 80% of si284

for training, the other 10% for validation, and reporting classification error rate on

the rest 10%. We note that speaker classification is not a typical task for WSJ, and

only serves as a sanity check for the presence of speaker information (and its po-

tentially correlated channel information) (Oord et al., 2018; Liu et al., 2020b). The

classifier for both tasks is a linear logistic regression that takes the features extracted

from the self-supervised models as input. For speaker classification, the features from

the same utterance are averaged before being fed to the classifier. All self-supervised

models are kept frozen when training the linear classifier. All reported numbers are

an average of 5 runs, of which variances are negligibly small and not included.

4.3.2 Preliminary Experiments with Vector Quantization

We first explore several potential places to insert VQ layers. For all VQ-APC vari-

ants in our experiments, the autoregressive model 𝑔𝐴𝑅 is a 3-layer unidirectional GRU

74



with 512 hidden units, and the target frame in the future, 𝑛, is set to 5 when train-

ing (Equation 4.1) on LibriSpeech. Whenever a VQ layer is added, the embedding

dimension of each code is 512, and 𝜏 for the Gumbel-Softmax straight-through esti-

mator (Equation 4.2) is a fixed value of 0.1 throughout training.

Table 4.1 presents the phonetic classification results of adding VQ layers to dif-

ferent layers in 𝑔𝐴𝑅. In the “VQ config.” column, the numbers inside the parenthesis

denote the layers we insert a VQ layer. For example, {1} means that we only add

VQ layer after 𝑔(1)𝐴𝑅. ∅ denotes the case where no VQ layer is applied, equivalent to

the regular APC. The codebook size here is 128. We try using both the hidden vec-

tors h(ℓ) and their quantized codes z(ℓ) (when applicable) for ℓ = 1, 2, 3 as extracted

features. We also include the final VQ-APC training loss on the LibriSpeech 360-hour

subset after 100 epochs (not the downstream linear classifier’s training loss on WSJ).

Quantizing one layer. As indicated by the training loss, we see that the bottleneck

imposed by the VQ layer indeed handicaps the models’ ability to predict the future,

as {1}, {2}, and {3} all have higher training loss than ∅. In terms of phone error rate,

regardless of where VQ is inserted, we see improvement over the APC representations.

Inserting VQ at the third layer leads to the most improvement, from 33.3 to 30.5.

The quantized codes z(ℓ), when applicable, could also be used as extracted features,

which perform similarly to their corresponding pre-quantized representations. For

example, in {3}, z(3) (30.8) is close to h(3) (30.5).

Quantizing multiple layers. We find that our VQ-APC models with multiple VQ

layers have trouble fitting the training set. Their representations are also much worse

than the regular APC on phonetic classification. One potential remedy is to enable

VQ with a schedule (Harwath et al., 2020), but is beyond the scope of the thesis.

4.3.3 Analysis of the Constituents of Representations

Experiments so far suggest that the phonetic information is still present (if not better)

after using VQ. For the rest of the chapter, we will focus on the case where VQ is

inserted at the third layer, i.e., the case of {3}. To study the constituents of the
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Figure 4-2: Training loss (purple), phonetic classification (red), and speaker classifi-
cation (blue) results of VQ-APC with VQ configuration {3} using varying codebook
sizes. The x-axis is the codebook size, decreasing from 2048 to 64, and the y-axis
on the left is the corresponding phone error rate and on the right the speaker (spk.)
error rate. For clarity, the vertical axis for training loss is not displayed. The three
dash horizontal lines show the corresponding results of a regular APC, i.e., ∅.

learned representations, we train a series of increasingly limited VQ-APC models

by decreasing the codebook size from 2048 to 64 while fixing the code dimension

to 512. As the codebook size becomes smaller, the model is forced to choose what

information to encode and what to discard, thus revealing the constituents of the

learned representations. We show the training losses of these models at convergence

and the respective phone and speaker error rates in Figure 4-2. The dashed lines are

the training loss, phone error rate, and speaker error rate of a regular APC model.

First, the training loss (purple curve) increases as expected, showing worse fit

on the training set as we limit the codebook size. Note that in theory, when the

codebook size goes to infinity, we recover the regular APC. The phone error rate (red

curve) obtains a minimum at codebook size 512, and starts to worsen with smaller

codebook size. The sharp degradation in phone error rate suggests that the model

discards certain phonetic information to achieve maximal self-supervised objective.

The speaker error rate (blue curve), on the contrary, does not change by much as
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we limit the codebook size. This shows that the speaker information (and its poten-

tially correlated channel information) is mostly retained. Given the sharp degradation

in phone error rate, we can conclude that the model prefers to retain speaker informa-

tion over phonetic information to achieve maximal future prediction. The preference

of information can potentially stem from the use of GRUs, the VQ configuration,

and the self-supervised, future prediction objective. More analyses are needed to

disentangle the among these causes.

On the other hand, when the codebook size becomes large, the model falls back to

regular APC and might suffer from overfitting, paying unnecessary attention to the

spectral details that does not generalize for predicting future frames. Finally, even

with a codebook size of 64, we still see gains over regular APC, showing the strong

performance of VQ-APC in representation learning.

4.3.4 Relation of Learned Codebook to English Phones

To better measure the correspondence between the learned VQ codes and English

phones, we compute co-occurrence statistics (at the frame level) across the 360-hour

subset of LibriSpeech, the dataset we use to train the VQ-APC models. We com-

pare three settings, {1}, {2}, and {3} with a codebook size of 128. The conditional

probability 𝑃 (phone|code), as shown in Figure 4-3, are estimated based on the co-

occurrence statistics, i.e., via maximum likelihood. In each sub-figure, the rows and

columns are ordered via spectral co-clustering with 15 clusters to group together

phones that share similar sets of codes, and a diagonal segment would imply a high

correspondence between phones and codes. Note that the phone labels of LibriSpeech

are only used for analysis and never seen during training.

From Figure 4-3, we see that the correspondence between phones and VQ codes is

stronger when quantized at higher layers, and is especially strong for {3}. Recall that

probing tasks are useful for showing the presence of certain information, but have

difficulty showing the absence of it. In contrast, given the co-occurrence statistics,

mutual information can be estimated to support the absence of information. The

normalized mutual information are 0.167, 0.285, and 0.406 for {1}, {2}, and {3},
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(a) VQ-APC with configuration {1}.

(b) VQ-APC with configuration {2}.

(c) VQ-APC with configuration {3}.

Figure 4-3: From top to bottom, visualizations of the conditional probability ma-
trix 𝑃 (phone|code) for configurations {1}, {2}, and {3} with 128 codes, respectively.
Each sub-figure is a 42× 128 conditional probability matrix, where each row and col-
umn correspond to a phone and code index, respectively. Color scaling is saturated
at probability 0.5 for better visualization.

respectively. In other words, not only can we conclude that the learned representations

in {3} contain phonetic information, we can also readily conclude that {1} and {2}

contain much less information for certain phones.

4.3.5 A Comparison with Other Self-Supervised Models

Finally, we compare VQ-APC with other self-supervised speech representation mod-

els, including Contrastive Predictive Coding (CPC) (Oord et al., 2018), Bidirectional

Masked Reconstruction (Wang et al., 2020), and Mockingjay (Liu et al., 2020b). We

briefly review these methods below, and show their results on phonetic and speaker
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Table 4.2: Phonetic and speaker classification results of different self-supervised
speech representation models. All features are fed to a linear logistic repression. For
log Mel, we also include the results of using a 1- and 3-layer multi-layer perceptron,
denoted as MLP-1 and MLP-3, respectively. We also note the neural architectures
used by each model.

Model Network Phone
error rate

Speaker
error rate

log Mel − 50.3 17.6
log Mel + MLP-1 − 43.1 12.3
log Mel + MLP-3 − 41.2 11.9

CPC 3-layer uni-GRU 34.1 9.7
APC 3-layer uni-GRU 33.3 8.5
VQ-APC 3-layer uni-GRU 28.4 5.5

Wang et al. (2020) 3-layer bi-GRU 32.4 6.2
Liu et al. (2020b) 3-layer Transformer 30.8 5.1

classification in Table 4.2. To stay as close to the original implementation as possible,

we do not separate the discussion of models, such as the use RNNs or Transformers,

and the self-supervised objectives.

CPC and APC share a similar methodology as both use an autoregressive model

to learn representations through conditioning on past frames to predict information

about a future frame. Their difference is that while APC tries to directly predict the

future frame via regression, CPC aims to learn representations containing informa-

tion that most discriminates the future frame from a set of negative samples. We

mainly follow the original paper (Oord et al., 2018) for implementing CPC with some

modifications described in Section 3.3 in the previous Chapter. These modifications

are meant to minimize the architectural differences between APC and CPC while

maintaining their training objectives.

Different from CPC and APC that are based on the idea of future prediction, Bidi-

rectional Masked Reconstruction and Mockingjay are under the category of masked

prediction. Inspired by the masked language modeling technique from BERT (De-

vlin et al., 2019), both approaches mask parts of the input signals, and predict them

through conditioning on both past and future contexts with a bidirectional RNN

79



and Transformer encoder (Vaswani et al., 2017), respectively. For experiments, we

mainly follow the implementations in the original papers (Wang et al., 2020; Liu et al.,

2020b), except that the number of layers are reduced to match ours to minimize the

architectural differences.

On phonetic classification, we see that VQ-APC (28.4) improves over APC (33.3),

demonstrating the effectiveness of VQ layers. It also outperforms other self-supervised

models despite using the same (vs. CPC) or smaller (vs. Bidirectional Masked Recon-

struction and Mockingjay) network. On speaker classification, VQ-APC (5.5) again

improves over APC (8.5), and is on par with the best model (Mockingjay, 5.1). On

both tasks, all self-supervised models outperform log Mel regardless of the type of

classifier it uses.

4.4 Chapter Summary

In this chapter, we have demonstrated that incorporating vector quantization (VQ)

layers into an Autoregressive Predictive Coding model imposes a bottleneck, forcing

the model to learn better representations, as measured by their performance on pho-

netic and speaker classification tasks. Extensive experiments have been conducted to

compare different VQ configurations, to study the effect of varying codebook sizes,

and to compare with other self-supervised speech representation models. We show

evidence for the presence and absence of phonetic and speaker information in the

learned representations, and also show the model’s preference in retaining informa-

tion when the model capacity is limited, in the hope to bridge the connection between

the self-supervised objective and the properties of the learned representations. When

the phonetic information is present, the learned VQ codes also correspond well with

English phones.
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Chapter 5

Improving the Generalization of

Future Prediction

In the previous chapter, we proposed VQ-APC to study the connection between

the APC objective and the properties of its learned representations, providing an

explanation to why such self-supervised future prediction task is capable of learning

speech representations that capture rich phonetic and speaker information. In this

chapter, we shift our focus to improving APC so that it can learn even stronger speech

representations.

Recall that the objective of APC is to train an autoregressive RNN/Transformer

model to predict an unseen future frame given a context such as recent past frames.

The basic hypothesis behind this self-supervised task is that the model is required to

produce a good summarization of the past and encode such knowledge in the hidden

states so as to accomplish the objective. In this chapter we extend this hypothesis

and aim to enrich the information encoded in the hidden states by training the model

to make more accurate future predictions. To accomplish the goal, we propose an

auxiliary objective that serves as a regularization to improve generalization of the

future frame prediction task. Experimental results on phonetic classification, speech

recognition, and speech translation not only support the hypothesis, but also demon-

strate the effectiveness of our approach in learning representations that contain richer

phonetic content.
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The content of this chapter was first published in Chung and Glass (2020b).

5.1 Proposed Method

5.1.1 Formulation

Given a context of a speech signal represented as a sequence of acoustic feature vectors

(𝑥1, 𝑥2, . . . , 𝑥𝑡), the objective of Autoregressive Predictive Coding (APC) is to use the

context to infer a future frame 𝑥𝑡+𝑛 that is 𝑛 steps ahead of 𝑥𝑡. Let x = (𝑥1, 𝑥2, . . . , 𝑥𝑇 )

denote a full utterance, where 𝑇 is the sequence length, APC incorporates an RNN

to process each frame 𝑥𝑡 sequentially and update its hidden state ℎ𝑡 accordingly. For

𝑡 = 1, . . . , 𝑇 − 𝑛, the RNN produces an output 𝑦𝑡 = W · ℎ𝑡, where W is an affinity

matrix that maps ℎ𝑡 back to the dimensionality of 𝑥𝑡. The model is trained by

minimizing the frame-wise ℓ1 loss between the predicted sequence (𝑦1, 𝑦2, . . . , 𝑦𝑇−𝑛)

and the target sequence (𝑥1+𝑛, 𝑥2+𝑛, . . . , 𝑥𝑇 ) (which cane be generated by simply

right-shifting x by 𝑛 steps):

𝐿𝑓 (x) =
𝑇−𝑛∑︁
𝑡=1

|𝑥𝑡+𝑛 − 𝑦𝑡|. (5.1)

When 𝑛 = 1, one can view APC as an acoustic version of neural LM (NLM) (Mikolov

et al., 2010) by viewing each acoustic frame as a token embedding, as they both use

a recurrent encoder and aim to predict information about the future. A major differ-

ence between NLM and APC is that NLM infers tokens from a closed set, while APC

predicts frames of real values. Once an APC model is trained, given an utterance

(𝑥1, 𝑥2, . . . , 𝑥𝑇 ), the last RNN layer (ℎ1, ℎ2, . . . , ℎ𝑇 ) is taken as the extracted features.

Our goal is to make APC’s prediction of 𝑥𝑡+𝑛 given ℎ𝑡 more accurate. In Section 5.2

we will show this leads to a representation that contains richer phonetic content.
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Figure 5-1: Overview of our method. 𝐿𝑓 is the original APC objective that aims
to predict 𝑥𝑡+𝑛 given a context (𝑥1, 𝑥2, . . . , 𝑥𝑡) with an autoregressive RNN. Our
method first samples an anchor position, assuming it is time step 𝑡. Next, we build
an auxiliary loss 𝐿𝑟 that computes 𝐿𝑓 of a past sequence (𝑥𝑡−𝑠, 𝑥𝑡−𝑠+1, . . . , 𝑥𝑡−𝑠+ℓ−1)
(see Section 5.1.2 for definitions of 𝑠 and ℓ), using an auxiliary RNN (dotted line
area). In this example, (𝑛, 𝑠, ℓ) = (1, 4, 3). In practice, we can sample multiple
anchor positions, and averaging over all of them gives us the final 𝐿𝑟.

5.1.2 Remembering More from the Past

An overview of our method is depicted in Figure 5-1. We propose an auxiliary loss

𝐿𝑟 to improve the generalization of the main objective 𝐿𝑓 (Equation 5.1).

The idea of 𝐿𝑟 is to refresh the current hidden state ℎ𝑡 with the knowledge learned

in the past. At time step 𝑡, we first sample a past sequence p𝑡 = (𝑥𝑡−𝑠, 𝑥𝑡−𝑠+1, . . . , 𝑥𝑡−𝑠+ℓ−1),

where 𝑠 is how far the start of this sequence is from 𝑡 and ℓ is the length of p𝑡. We

then employ an auxiliary RNN, denoted as RNNaux, to perform predictive coding

defined in Equation 5.1 conditioning on ℎ𝑡. Specifically, we initialize the hidden state

of RNNaux with ℎ𝑡, and optimize it along with the corresponding Waux using 𝐿𝑓 (p𝑡),

which equals to
∑︀𝑡−𝑠+ℓ−1

𝑡′=𝑡−𝑠 |𝑥𝑡′+𝑛 − 𝑦𝑡′ |. Such a process reminds ℎ𝑡 of what has been

learned in ℎ𝑡−𝑠, ℎ𝑡−𝑠+1, . . . , ℎ𝑡−𝑠+ℓ−1.

For a training utterance x = (𝑥1, 𝑥2, . . . , 𝑥𝑇 ), we select each frame with probability

𝑃 as an anchor position. Assume we end up with 𝑀 anchor positions: 𝑎1, 𝑎2, . . . , 𝑎𝑀 .

Each 𝑎𝑚 defines a sequence p𝑎𝑚 = (𝑥𝑎𝑚−𝑠, 𝑥𝑎𝑚−𝑠+1, . . . , 𝑥𝑎𝑚−𝑠+ℓ−1) before 𝑥𝑎𝑚 , which

we use to compute 𝐿𝑓 (p𝑎𝑚). Averaging over all anchor positions gives the final aux-
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iliary loss 𝐿𝑟:

𝐿𝑟(x) =
1

𝑀

𝑀∑︁
𝑚=1

𝐿𝑓 (p𝑎𝑚). (5.2)

The final APC objective is a combination of Equations 5.1 and 5.2 with a balancing

coefficient 𝜆:

𝐿𝑚(x) = 𝐿𝑓 (x) + 𝜆𝐿𝑟(x). (5.3)

We re-sample the anchor positions for each x during each training iteration, while

they all share the same RNNaux and Waux.

5.2 Analysis Experiments

We demonstrate the effectiveness of 𝐿𝑟 in helping optimize 𝐿𝑓 , and investigate how

the improvement is reflected in the learned representations.

5.2.1 Experimental Data and Setup

We follow the same setup as Chapter 3 and use the audio portion of the Lib-

riSpeech (Panayotov et al., 2015) train-clean-360 subset, which contains 360 hours

of read speech produced by 921 speakers, for training APC. The input features are

80-dimensional log Mel spectrograms, i.e., 𝑥𝑡 ∈ R80. Both RNN and RNNaux are a

3-layer, 512-dim unidirectional GRU (Cho et al., 2014a) network with residual con-

nections between two consecutive layers (Wu et al., 2016). Therefore, W,Waux ∈

R512×80. 𝜆 is set to 0.1 and the sampling probability 𝑃 is set to 0.15, that is, each

frame has a 15% of chance to be selected as an anchor position. 𝑃 and 𝜆 are selected

based on the validation loss of 𝐿𝑓 on a small data split. All models are trained for

100 epochs using Adam (Kingma and Ba, 2015) with a batch size of 32 and a learning

rate of 10−3.
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(a) 𝐿𝑟 (auxiliary objective, Equation 5.2) (b) 𝐿𝑓 (main objective, Equation 5.1)

Figure 5-2: Validation loss of 𝐿𝑟 (left) and 𝐿𝑓 (right) on LibriSpeech dev-clean
when training APC using different (𝑛, 𝑠, ℓ) combinations. Each bar of the same color
represents one (𝑠, ℓ) combination. We use (−,−) to denote an APC optimized only
with 𝐿𝑓 . Bars are grouped by their 𝑛’s with different (𝑠, ℓ) combinations within each
group.

5.2.2 Validating the Effectiveness of 𝐿𝑟

We first validate whether augmenting 𝐿𝑟 improves 𝐿𝑓 . As a recap, 𝑛 is the number

of time steps ahead of the current position 𝑡 in 𝐿𝑓 , and 𝑠 and ℓ denote the start and

length, respectively, of a past sequence before 𝑡 to build 𝐿𝑟. We consider (𝑛, 𝑠, ℓ) ∈

{1, 3, 5, 7, 9} × {7, 14, 20} × {3, 7}. Note that each phone has an average duration of

about 7 frames.

Figures 5-2a and 5-2b present 𝐿𝑟 (before multiplying 𝜆) and 𝐿𝑓 of the considered

APC variants on the LibriSpeech dev-clean subset, respectively. Each bar of the same

color represents one (𝑠, ℓ) combination. We use (−,−) to denote an APC optimized

only with 𝐿𝑓 . Bars are grouped by their 𝑛’s with different (𝑠, ℓ) combinations within

each group.

We start with analyzing Figure 5-2a. Note that 𝐿𝑟 does not exist for (−,−) and is

set to 0 in the figure. We see that under the same 𝑛, the performance of 𝐿𝑟 is mainly

decided by how far (𝑠) the past sequence is from the current position rather than the

length (ℓ) to generate: when we keep ℓ fixed and increase 𝑠 from 7 (red), 14 (green),

to 20 (blue), we observe the loss surges as well. Moving our focus to Figure 5-2b, we

have the following findings.
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For a small 𝑛, the improvement in 𝐿𝑓 brought by 𝐿𝑟 is minor. By compar-

ing (−,−) with other bars, we see that when 𝑛 ≤ 3, which is smaller than half of

the average phone duration (7 frames), adding 𝐿𝑟 does not lower 𝐿𝑓 by much. We

speculate that when 𝑛 ≤ 3, 𝑥𝑡+𝑛 to be inferred is usually within the same phone as

𝑥𝑡, making the task not challenging enough to force the model to leverage more past

information.

𝐿𝑟 becomes useful when 𝑛 gets larger. We see that when 𝑛 is close to or exceeds

the average phone duration (𝑛 ≥ 5), an evident reduction in 𝐿𝑓 after adding 𝐿𝑟 is

observed, which validates the effectiveness of 𝐿𝑟 in assisting with the optimization of

𝐿𝑓 . When 𝑛 = 9, the improvement is not as large as when 𝑛 = 5 or 7. One possible

explanation is that 𝑥𝑡+9 has become almost independent from the previous context

ℎ𝑡 and hence is less predictable.

By observing the validation loss, we have shown that 𝐿𝑟 indeed helps generalize

𝐿𝑓 .

5.2.3 Analysis of the Learned Representations

Next, we want to examine whether an improvement in 𝐿𝑓 leads to a representation

that encodes more useful information. Speech signals encompass a rich set of acoustic

and linguistic properties. Here we will only focus on analyzing the phonetic content

contained in a representation, and leave other properties such as speaker for future

work.

We use phonetic classification on TIMIT (Garofolo et al., 1993) as the probing task

to analyze the learned representations. The corpus contains 3696, 400, and 192 utter-

ances in the train, validation, and test sets, respectively. For each 𝑛 ∈ {1, 3, 5, 7, 9},

we pick the (𝑠, ℓ) combination that has the lowest validation loss. As described in

Section 5.1.1, we take the output of the last RNN layer as the extracted features, and

provide them to a linear logistic regression classifier that aims to correctly classify

each frame into one of the 48 phone categories. During evaluation, we follow the

protocol (Lee and Hon, 1989) and collapse the prediction to 39 categories. We report
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Table 5.1: Phonetic classification results using different types of features as input to a
linear logistic regression classifier. The classifier aims to correctly classify each frame
into one of the 48 phone categories. Frame error rates (↓) are reported. Given a time
shift 𝑤 ∈ {0,±5,±10,±15}, the classifier is asked to predict the phone identity of
𝑥𝑡+𝑤 given 𝑥𝑡.

Feature Time shift

-15 -10 -5 0 +5 +10 +15

log Mel 83.3 80.3 67.6 49.9 65.5 77.9 82.7

APC trained with 𝐿𝑓 (Equation 5.1)

𝑛 = 1 56.1 45.8 36.1 33.7 56.5 73.7 81.6
𝑛 = 3 50.8 41.8 34.8 33.4 56.0 73.5 81.1
𝑛 = 5 48.7 38.2 32.5 31.9 54.8 73.0 80.5
𝑛 = 7 44.6 38.6 32.9 32.1 56.3 73.8 80.4
𝑛 = 9 51.0 41.8 35.7 36.9 58.4 74.6 81.0

APC trained with 𝐿𝑚 (Equation 5.3)

𝑛 = 1 50.6 42.2 35.1 33.1 54.4 73.4 81.4
𝑛 = 3 46.4 38.0 34.1 32.4 54.1 71.4 80.5
𝑛 = 5 41.8 35.1 29.8 28.1 49.6 64.6 76.8
𝑛 = 7 39.8 33.8 28.7 27.8 46.8 60.6 74.4
𝑛 = 9 42.3 35.3 30.3 29.7 50.0 63.3 76.6

frame error rate (FER) on the test set, which indicates how much phonetic content

is contained in the representations. We also conduct experiments for the task of pre-

dicting 𝑥𝑡−𝑤 and 𝑥𝑡+𝑤 given 𝑥𝑡 for 𝑤 ∈ {5, 10, 15}. This examines how contextualized

ℎ𝑡 is, that is, how much information about the past and future is encoded in the

current feature ℎ𝑡. We simply shift the labels in the dataset by {±5,±10,±15} and

retrain the classifier. We keep the pre-trained APC RNN fixed for all runs. Results

are shown in Table 5.1.

We emphasize that our hyperparameters are chosen based on 𝐿𝑓 and are never

selected based on their performance on any downstream task, including phonetic

classification, speech recognition, and speech translation to be presented next. Tuning

hyperparameters towards a downstream task defeats the purpose of unsupervised

learning.
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Phonetic classification We first study the standard phonetic classification results,

shown in the column where time shift is 0. We see that APC features, regardless of

the objective (𝐿𝑓 or 𝐿𝑚), achieve lower FER than log Mel features, showing that the

phonetic information contained in the surface features has been transformed into a

more accessible form (defined as how linearly separable they are). Additionally, we

see that APC features learned by 𝐿𝑚 outperform those learned by 𝐿𝑓 across all 𝑛.

For 𝑛 ≥ 5 where there is a noticeable improvement in future prediction after adding

𝐿𝑟 as shown in Figure 5-2b, their improvement in phonetic classification is also larger

than when 𝑛 ≤ 3. Such an outcome suggests that APC models that are better at

predicting the future do learn representations that contain richer phonetic content.

It is also interesting that when using 𝐿𝑓 , the best result occurs at 𝑛 = 5 (31.9); while

with 𝐿𝑚, it is when 𝑛 = 7 that achieves the lowest FER (27.8).

Predicting the past or future We see that it is harder to predict the nearby

phone identities from a log Mel frame, and the FER gets higher further away from

the center frame. An APC feature ℎ𝑡 contains more information about its past than

its future. The result matches our intuition as the RNN generates ℎ𝑡 conditioning

on ℎ𝑖 for 𝑖 < 𝑡 and thus their information are naturally encoded in ℎ𝑡. Furthermore,

we observe a consistent improvement in both directions by changing 𝐿𝑓 to 𝐿𝑚 across

all 𝑛 and time shifts. This confirms the use of 𝐿𝑟, which requires the current hidden

state ℎ𝑡 to recall what has been learned in previous hidden states, so more information

about the past is encoded in ℎ𝑡. The improvement also suggests that an RNN can

forget the past information when training only with 𝐿𝑓 , and adding 𝐿𝑟 alleviates such

problem.

5.3 Speech Recognition and Speech Translation Re-

sults

The series of phonetic classification experiments in the previous section are meant for

analyzing the phonetic properties of a representation. Finally, we apply the represen-
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Table 5.2: Automatic speech recognition (ASR) and speech translation (ST) results
using different types of features as input to a seq2seq with attention model. Word
error rates (WER, ↓) and BLEU scores (↑) are reported for the two tasks, respectively.

Feature ASR (WER ↓) ST (BLEU ↑)

log Mel 18.3 12.9
APC w/ 𝐿𝑓 15.2 13.8
APC w/ 𝐿𝑚 14.2 14.5

tations learned by 𝐿𝑚 to automatic speech recognition (ASR) and speech translation

(ST) and show their superiority over those learned by 𝐿𝑓 .

We follow the exact same setup in (Chung and Glass, 2020a). For ASR, we use

the Wall Street Journal corpus (Paul and Baker, 1992), use si284 for training, and

report the word error rate (WER) on dev93. For ST, we use the LibriSpeech En-

Fr corpus (Kocabiyikoglu et al., 2018), which aims to translate an English speech

to a French text, and report the BLEU score (Papineni et al., 2002). For both

tasks, the downstream model is an end-to-end, sequence-to-sequence RNN with at-

tention (Chorowski et al., 2015). We compare different input features to the same

model. Results, shown in Table 5.2, demonstrate that the improvement in predictive

coding brought by 𝐿𝑟 not only provides representations that contain richer phonetic

content, but are also useful in real-world speech applications.

5.4 Chapter Summary

In this chapter, we have improved the generalization of Autoregressive Predictive

Coding (APC) by multi-target training of future prediction 𝐿𝑓 and past memory

reconstruction 𝐿𝑟, where the latter serves as a regularization. Through phonetic

classification, we find the representations learned with our approach contain richer

phonetic content than the original representations, and achieve better performance

on speech recognition and speech translation.

From Chapter 3 to Chapter 5, we carried out a series of studies on APC trying

to understand how, why, and when it works. We started with proposing the initial
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algorithm in Chapter 3. In Chapter 4 we developed VQ-APC in order to help us

explore the connection between the self-supervised objective and the properties of its

learned representations. Finally, in Chapter 5 we designed an auxiliary objective to

improve APC’s generalization with the goal of making APC a better representation

learning algorithm. APC and CPC are two of the pioneering works in self-supervised

speech representation learning, exploiting the same learning methodology, which is

future prediction. In the next Chapter, we will introduce w2v-BERT, which makes

use of a different learning methodology: predicting the masked from the unmasked.
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Chapter 6

Self-Supervised Objective: Predicting

the Masked from the Unmasked

Motivated by the success of masked language modeling (MLM) in pre-training natural

language processing models, in this chapter we propose w2v-BERT, which explores

MLM for self-supervised speech representation learning. w2v-BERT is a framework

that combines contrastive learning and MLM, where the former trains the model to

discretize input continuous speech signals into a finite set of discriminative speech

tokens, and the latter trains the model to learn contextualized speech representations

via solving a masked prediction task consuming the discretized tokens. In contrast to

existing MLM-based speech pre-training frameworks such as HuBERT, which relies

on an iterative re-clustering and re-training process, or vq-wav2vec, which concate-

nates two separately trained modules, w2v-BERT can be optimized in an end-to-end

fashion by solving the two self-supervised tasks (the contrastive task and the MLM

task) simultaneously. Our experiments show that w2v-BERT achieves competitive

results compared to current state-of-the-art pre-trained models on the LibriSpeech

benchmarks when using the Libri-Light 60k corpus as the unsupervised data. In par-

ticular, when compared to published models such as Conformer-based wav2vec 2.0

and HuBERT, our model shows 5% to 10% relative Word Error Rate reduction on

the test-clean and test-other subsets. When applied to the Google’s Voice Search

traffic dataset, w2v-BERT outperforms the Conformer-based wav2vec 2.0 by more
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than 30% relatively.

This work was done during a summer internship at Google, and was first published

in Chung et al. (2021b).

6.1 Introduction

In this chapter, we propose a pre-training framework called w2v-BERT, which com-

bines the core methodologies from two recent frameworks for self-supervised pre-

training of speech and language respectively: wav2vec 2.0 (Baevski et al., 2020b)

and BERT (Devlin et al., 2019). The idea of w2v-BERT is to use the contrastive

task defined in wav2vec 2.0 to obtain an inventory of a finite set of discriminative,

discretized speech units, and then use them as target in a masked prediction task in

a way that is similar to masked language modeling (MLM) proposed in BERT for

learning contextualized speech representations. Although the masked prediction task

requires to consume tokens that are to be learned by solving the contrastive task

first, we show that in practice the two objectives can be optimized simultaneously.

Figure 6-1 illustrates the w2v-BERT pre-training framework.

In this chapter, we make the following contributions:

• We propose w2v-BERT that directly optimizes a contrastive loss and a masked

prediction loss simultaneously for end-to-end self-supervised speech representa-

tion learning.

• We show that w2v-BERT yields state-of-the-art performance on the well-benchmarked

LibriSpeech task.

• We show that w2v-BERT greatly improves a real-world recognition task (voice

search) over Conformer-based wav2vec 2.0.

• We provide an analysis that empirically confirms the necessity of contrastive

learning for enabling masked prediction in our framework. We also show in our

voice search experiments that mask prediction is very useful for alleviating the

problem of “easy negative samples” in contrastive learning.
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The rest of the chapter is organized as follows. We begin with discussing the

differences between w2v-BERT and some of the most relevant unsupervised speech

pre-training frameworks from the literature in Section 6.2. Then, in Section 6.3 we

present the w2v-BERT pre-training framework, including the model architecture and

training objectives. Section 6.4 describes the experimental setup, followed by our

results and analysis in Section 6.5 where we apply pre-trained w2v-BERT models to

LibriSpeech and voice search ASR.

6.2 Related Work

We consider our work most related to HuBERT (Hsu et al., 2021), vq-wav2vec (Baevski

et al., 2020a), and DiscreteBERT (Baevski et al., 2019): w2v-BERT and these meth-

ods all try to first transform continuous speech signals into discretized units so as

to exploit masked language modeling (MLM) (Devlin et al., 2019) for learning con-

textualized speech representations. Despite sharing this same high-level philosophy

for learning speech representations, there are two key differences between w2v-BERT

and other methods.

The most noticeable difference is that w2v-BERT’s speech discretizing module

and its main contextualized representation learning module can be trained end-to-

end. This is in contrast to vq-wav2vec and DiscreteBERT, which involve a two-stage

process where the speech discretizing module needs to be obtained in advance and is

kept frozen during the training of the representation learning module. In vq-wav2vec

and DiscreteBERT, a problematic token ID assignment would negatively affect the

subsequent learning module and it is hard for the learning module to recover the

errors made by the discretizer. Observing such drawback, HuBERT greatly improves

vq-wav2vec and DiscreteBERT by allowing refinement on the ID assignment via iter-

ating between k-means clustering and re-training its representation learning module.

However, the fact that HuBERT iterates between the two stages also means it in-

volves more heuristic design choices, for example, the gradually increasing number of

clusters in different iterations. End-to-end methods such as w2v-BERT alleviate the
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need of coordinating multiple stages. One potential risk for end-to-end approaches

compared to k-means clustering is codebook collapse. In w2v-BERT, we find the

contrastive learning objective effectively avoids codebook collapse and thus enables

masked prediction training.

In addition, unlike other methods that use transformer layers (Vaswani et al.,

2017) as building blocks, w2v-BERT adopts Conformer layers (Gulati et al., 2020) for

constructing the network. As demonstrated in Gulati et al. (2020), Conformer layers,

which combine convolution neural networks (CNNs) and transformers to model both

local and global dependencies of audio sequences, are likely a better option for mod-

eling speech than transformer layers and CNNs. That being said, using a potentially

more powerful building block is not the only factor that makes w2v-BERT outper-

form other methods, as the effectiveness of the pre-training framework itself is also

validated in our experiments where w2v-BERT outperforms w2v-Conformer (Zhang

et al., 2020b), which is also built with Conformer layers.

w2v-BERT is also related to wav2vec 2.0 (Baevski et al., 2020b). Same as w2v-

BERT, wav2vec 2.0 is end-to-end where the discretizer is jointly trained with its rep-

resentation learning module. However, wav2vec 2.0 only employs contrastive learning,

whose resulting ASR performance lags behind that of combining contrastive learning

and masked prediction.

6.3 Method

In this section we present each component in w2v-BERT, starting with its model

architecture.

6.3.1 Model Architecture

Our model architecture for pre-training is composed of a feature encoder that ex-

tracts latent speech representations from raw acoustic inputs, a module for solving

wav2vec 2.0’s contrastive task (Baevski et al., 2020b) to obtain a set of discretized

speech tokens, and a module for solving a masked prediction task (Devlin et al., 2019)
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Figure 6-1: Illustration of the w2v-BERT pre-training framework. w2v-BERT is
composed of a feature encoder, a contrastive module, and a masked language mod-
eling (MLM) module, where the latter two are both a stack of Conformer blocks. 𝑁
and 𝑀 denote the number of Conformer blocks in the two modules, respectively.

for learning contextualized speech representations.

Feature encoder The feature encoder acts as a convolutional subsampling block

that consists of two 2D-convolution layers, both with strides (2, 2), resulting in a

4x reduction in the acoustic input’s sequence length. Given, for example, a log-mel

spectrogram as input, the feature encoder extracts latent speech representations that

will be taken as input by the subsequent contrastive module.

Contrastive module The module contains a linear projection layer followed by a

stack of Conformer blocks (Gulati et al., 2020), each of which is a series of multi-

headed self attention (Vaswani et al., 2017), depth-wise convolution and feed-forward

layers.

The goal of the contrastive module is to discretize the feature encoder output

into a finite set of representative speech units. For this purpose, the contrastive

module involves a quantization mechanism. The output of the feature encoder, on

one hand, is fed into the linear projection layer followed by the stack of Conformer
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blocks after masking to produce context vectors, and on the other hand, is passed

to the quantizer without masking to yield quantized vectors and their assigned token

IDs. The quantized vectors are used in conjunction with the context vectors that

correspond to the masked positions to solve the contrastive task defined in wav2vec 2.0

to optimize the contrastive module; the assigned token IDs will be later used by the

subsequent masked prediction module as prediction target.

Masked prediction module The masked prediction module is a stack of Conformer

blocks where each block has an identical configuration to those from the contrastive

module. The module directly takes in the context vectors produced by the contrastive

module and extracts high-level contextualized speech representations.

6.3.2 Pre-Training Methods

During pre-training only unlabeled speech data is used.

Contrastive loss The contrastive loss is used to train the contrastive module along

with the quantizer, such that the former yields adequate context vectors that will be

taken as input by the subsequent masked prediction module, and the latter produces

discriminative discretized speech tokens that will be used by the masked prediction

module as prediction target. We adopt the contrastive task defined in wav2vec 2.0

and follow its quantization mechanism.

Once the feature encoder has transformed the raw acoustic input into latent speech

representations, we randomly select some time steps to mask. Unlike wav2vec 2.0

where the masked positions’ latent vectors are replaced with a shared learnable fea-

ture vector, we simply replace them with random vectors. The masked feature en-

coder output is fed into the contrastive module for producing context vectors. In

parallel, the feature encoder output is also passed to the quantizer without masking

to yield its quantized vectors. For a context vector 𝑐𝑡 corresponding to a masked time

step 𝑡, the model is asked to identify its true quantized vector 𝑞𝑡 from a set of 𝐾 dis-

tractors {𝑞1, 𝑞2, ..., 𝑞𝐾} that are also quantized vectors uniformly sampled from other

masked time steps of the same utterance. We denote the loss as ℒ𝑤, and further
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augment it with a codebook diversity loss ℒ𝑑 to encourage a uniform usage of codes.

Therefore, the final contrastive loss is defined as:

ℒ𝑐 = ℒ𝑤 + 𝛼 · ℒ𝑑, (6.1)

where 𝛼 = 0.1 following Baevski et al. (2020b).

Masked prediction loss The context vectors produced by the contrastive module

are directly passed to the masked prediction module for producing the final context

vectors that are to be used to complete a masked prediction task. A softmax layer

is appended on top of the module’s last Conformer block. If a context vector at the

final layer corresponds to a masked position, the softmax layer will take the context

vector as input and attempt to predict its corresponding token ID, which is assigned

earlier in the contrastive module by the quantizer. We denote the cross-entropy loss

for this masked prediction task as ℒ𝑚.

w2v-BERT is trained to solve the two self-supervised tasks at the same time. The

final training loss to be minimized is:

ℒ𝑝 = 𝛽 · ℒ𝑐 + 𝛾 · ℒ𝑚. (6.2)

In our experiments, we simply set both 𝛽 and 𝛾 to 1.

6.3.3 Fine-Tuning Methods

During fine-tuning we have access to labeled data. We apply our pre-trained w2v-

BERT to two tasks: LibriSpeech and voice search.

The ASR network is a sequence transducer (Graves, 2012) that consists of a pre-

trained w2v-BERT model and a LSTM (Hochreiter and Schmidhuber, 1997) decoder.

We insert a linear layer with Swish activation (Ramachandran et al., 2018) and batch

normalization (Ioffe and Szegedy, 2015) between the pre-trained w2v-BERT model

and the LSTM decoder as the projection block.
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Table 6.1: Configurations for w2v-BERT models.

Model # Params (B) # Contrastive
Layers

# Masked
Layers

Model
Dimension

# Attention
Heads

w2v-BERT XL 0.6 12 12 1024 8
w2v-BERT XXL 1.0 12 30 1024 8

Table 6.2: (Continued) Configurations for w2v-BERT models.

Model Conv. Layer
Kernel Size

Relative
Attention

Codebook
Size

Code
Dimension

w2v-BERT XL 5 No 1024 1024
w2v-BERT XXL 5 No 1024 1024

6.4 Experimental Setup

Apart from the pre-training method, the rest of the experimental pipeline follows the

exact same setup as in Zhang et al. (2020b).

6.4.1 Data

We use the Libri-Light unlab-60k subset (Kahn et al., 2020b), which contains about 60,000

hours of unannotated speech audio, for pre-training w2v-BERT models. For our main

results, we use the LibriSpeech 960hr subset (Panayotov et al., 2015) as the super-

vised data, and use the 100hr subset for ablation studies. We report word error

rates (WERs) on the dev-clean, dev-other, test-clean, and test-other evaluation sub-

sets. 80-dimensional log-mel filter bank coefficients are used as acoustic inputs to our

model. For transcript tokenization, we use a 1024-token WordPiece model (Schus-

ter and Nakajima, 2012) that is constructed from the transcripts of the LibriSpeech

training set (or the 100hr subset when the models are fine-tuned on it).

6.4.2 Pre-Training Details

Masking For masking the feature encoder output, we randomly sample the starting

positions to be masked with a probability of 0.065 and mask the subsequent 10 time
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steps (same as Baevski et al. (2020b); Zhang et al. (2020b)). The masked spans may

overlap.

Optimization We pre-train two versions of w2v-BERT models, one has about 0.6

billion parameters and the other has about 1 billion parameters, denoted as w2v-

BERT XL and w2v-BERT XXL, respectively. The two variants share the same model

configuration that is summarized in Table 6.1 and Table 6.2, and their only difference

is the number of Conformer blocks. Specifically, w2v-BERT XL’s contrastive module

consists of 12 Conformer blocks and the masked prediction module is composed of

another 12. w2v-BERT XXL, while having the same amount of Conformer blocks

in its contrastive module, enlarges its masked prediction module to 30 Conformer

blocks. For w2v-BERT XL, we train it with a batch size of 2048 using the Adam

optimizer (Kingma and Ba, 2015) with a transformer learning rate schedule as de-

scribed in section 5.3 of Vaswani et al. (2017). The peak learning rate is 2e-3 and

the warm-up steps are 25k. For w2v-BERT-XXL, we train it with the Adafactor

optimizer (Shazeer and Stern, 2018) with 𝛽1 = 0.9 and 𝛽2 = 0.98, with the learning

rate schedule remaining the same.

6.4.3 Fine-Tuning Details

Optimization For both w2v-BERT XL and w2v-BERT-XXL, we take their pre-

trained checkpoints at 400k steps, and fine-tune them on the supervised data with a

batch size of 256. The decoder for both models are a two-layer LSTM with a hidden

dimension of 640. We employ separate optimizers and learning rate schedules for

optimizing the pre-trained model and the decoder, given the fact that the former

has been pre-trained while the latter needs to be trained from scratch. For w2v-

BERT XL, both the pre-trained model and the decoder are optimized with an Adam

optimizer with a transformer learning schedule. The difference is that for the pre-

trained component we use a peak learning rate of 3e-4 with 5k warm-up steps, while

for the decoder we use a peak learning rate of 1e-3 and 1.5k warm-up steps. For

w2v-BERT-XXL, an Adafactor optimizer that has the same configuration as in pre-
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training is used, and the learning rate schedules for the encoder and decoder are the

same as the XL variant.

Self-training, data augmentation, and LM fusion In addition to self-supervised

pre-training, in the fine-tuning stage we also employ a number of practical tech-

niques that further improve models’ performance on ASR. These techniques include

SpecAugment (Park et al., 2019, 2020a) for data augmentation, Noisy Student Train-

ing (Park et al., 2020b) for self-training, and language model fusion for decoding.

When any of the techniques are used, we follow the exact same setup as in Zhang

et al. (2020b). We refer the readers to the paper for the details on these techniques.

6.5 Results and Discussion

6.5.1 Main Results

In Table 6.3 (which should be read together with its references in Table 6.4), we

present our results on the four LibriSpeech evaluation sets using the 960hr subset

as the supervised data. We compare w2v-BERT to a number of state-of-the-art self-

supervised representation learning methods from the literature such as HuBERT (Hsu

et al., 2021) and wav2vec 2.0 (Baevski et al., 2020b) under different semi-supervised

settings, including whether self-training is employed during the fine-tuning stage and

whether a language model is incorporated during inference time. We also include the

model size of the ASR network used by each method, denoted as acoustic model (AM)

Size and language model (LM) Size. Results missing from the literature (e.g., results

of HuBERT without self-training and LM) are indicated with a “−” in the table.

From Table 6.3 we have the following two key conclusions.

Without self-training and LM, w2v-BERT already either outperforms or

matches other models with LM. We see that with just pre-training when neither

self-training nor LM is used, w2v-BERT XL achieves a WER of 1.5/2.9 (test/test-

other), which already either outperforms or matches other models with LM, and

outperforms their counterparts without LM by a larger margin. w2v-BERT XXL
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Table 6.3: WERs(%) when using the LibriSpeech 960hr subset as supervised data (the
table should be read together with Table 6.4). We compare models trained with-
out any unlabeled data (Trained from Scratch), trained using Noisy Student Train-
ing (NST) without any pre-training (Self-training Only), fine-tuned from a pre-trained
model only using supervised data (Pre-training Only), and the models obtained by
combining pre-training and self-training (Pre-training + Self-training). We also in-
clude the best results of several methods that we can find from the literature. The
lowest WER(s) under different settings are marked in bold.

Method No LM With LM

dev dev-other test test-other dev dev-other test test-other

Trained from Scratch
Conformer L 1.9 4.4 2.1 4.3 − − 1.9 3.9

Self-training Only
Conformer L with NST 1.6 3.3 1.7 3.5 1.6 3.1 1.7 3.3

Pre-training Only
wav2vec 2.0 2.1 4.5 2.2 4.5 1.6 3.0 1.8 3.3
HuBERT Large − − − − 1.5 3.0 1.9 3.3
HuBERT X-Large − − − − 1.5 2.5 1.8 2.9
w2v-Conformer XL 1.7 3.5 1.7 3.5 1.6 3.2 1.5 3.2
w2v-Conformer XXL 1.6 3.2 1.6 3.3 1.5 3.0 1.5 3.1
w2v-BERT XL 1.5 2.9 1.5 2.9 1.4 2.8 1.5 2.8
w2v-BERT XXL 1.5 2.7 1.5 2.8 1.4 2.6 1.5 2.7

Pre-training + Self-training
wav2vec 2.0 1.3 3.1 1.7 3.5 1.1 2.7 1.5 3.1
w2v-Conformer XXL 1.3 2.7 1.5 2.8 1.3 2.6 1.4 2.7
w2v-Conformer XXL+ 1.3 2.7 1.5 2.7 1.3 2.6 1.4 2.6
w2v-BERT XL 1.3 2.6 1.4 2.7 1.3 2.6 1.4 2.6
w2v-BERT XXL 1.4 2.4 1.4 2.5 1.3 2.4 1.4 2.5

further increases the gap on the more challenging dev-other and test-other subsets.

Noticeably, compared to wav2vec 2.0, w2v-BERT-XXL shows a relative WER reduc-

tion of 28%, 42%, 32%, and 38% on the four evaluation subsets respectively without

LM, and 13%/ 13%/ 17%/ 18% when LM is employed.

We want to highlight that although w2v-BERT XL (0.6B) and w2v-BERT XXL (1.0B)

have a larger pre-trained model size than wav2vec 2.0 (0.3B), the latter also incorpo-

rates a much larger LM (> 0.4B) during self-training and decoding according to Xu

et al. (2021); Baevski et al. (2020b). When considering the sum of the two compo-

nents, wav2vec 2.0 (> 0.7B) actually features a similar (if not bigger) model size as

w2v-BERT XL (0.7B).

Contrastive learning combined with masked language modeling is more

effective than contrastive learning alone. w2v-Conformer (Zhang et al., 2020b)
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Table 6.4: References for Table 6.3. For each method, the corresponding reference is
where the numbers are quoted from. AM/LM Size denotes the number of parameters
in the acoustic/language model. *The reason why we do not include Conformer XL
and Conformer XXL is that, according to Zhang et al. (2020b), simply enlarging Con-
former L produces worse results when the model is trained from scratch. †Calculated
based on the LM configuration provided in Xu et al. (2021); Baevski et al. (2020b);
> because some information such as the token embedding size is not given therefore
not included.

Method Unlabeled
Data (hrs)

AM
Size (B)

LM
Size (B)

Trained from Scratch
Conformer L (Zhang et al., 2020b)* N/A 0.1 0.1

Self-training Only
Conformer L with NST (Zhang et al., 2020b) 60k 0.1 0.1

Pre-training Only
wav2vec 2.0 (Xu et al., 2021) 60k 0.3 > 0.4†
HuBERT Large (Hsu et al., 2021) 60k 0.3 −
HuBERT X-Large (Hsu et al., 2021) 60k 1.0 −
w2v-Conformer XL (Zhang et al., 2020b) 60k 0.6 0.1
w2v-Conformer XXL (Zhang et al., 2020b) 60k 1.0 0.1
w2v-BERT XL (Ours) 60k 0.6 0.1
w2v-BERT XXL (Ours) 60k 1.0 0.1

Pre-training + Self-training
wav2vec 2.0 (Xu et al., 2021) 60k 0.3 > 0.4
w2v-Conformer XXL (Zhang et al., 2020b) 60k 1.0 0.1
w2v-Conformer XXL+ (Zhang et al., 2020b) 60k 1.1 0.1
w2v-BERT XL (Ours) 60k 0.6 0.1
w2v-BERT XXL (Ours) 60k 1.0 0.1

and w2v-BERT only differ in their pre-training method and have all other aspects in

common such as their model size and fine-tuning pipeline. This allows a truly apple-

to-apple comparison between the two pre-training methods for their effectiveness in

representation learning. Below we briefly describe their differences in pre-training.

w2v-Conformer adopted wav2vec 2.0’s contrastive task as the sole pre-training ob-

jective, but replaced the quantization module with a linear layer as the authors did not

find quantization helpful for improving downstream ASR performance. w2v-BERT,

on the other hand, adopts wav2vec 2.0’s contrastive task not just for learning contex-

tualized speech representations, but mainly for the purpose of obtaining a codebook

that can represent every segment of continuous speech as an discriminative discrete
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token, such that we can exploit MLM for learning powerful speech representations.

As will be demonstrated in our analysis (Section 2.4), the contrastive loss is essential

for making MLM to work.

By comparing the Pre-training Only results of w2v-Conformer and w2v-BERT, we

see that w2v-BERT XL, despite having fewer model parameters, already outperforms

w2v-Conformer-XXL—the previous state of the art—especially on the dev-other and

test-other subsets. When self-training is applied, w2v-BERT XL still either outper-

forms or matches w2v-Conformer-XXL’s results. w2v-BERT-XXL, which is of the

same model size as w2v-Conformer XXL, outperforms w2v-Conformer XXL on even

more evaluation subsets. These results demonstrate the superiority of the proposed

w2v-BERT over existing pre-training frameworks.

6.5.2 Analysis: On the Necessity of Contrastive Module

The goal of our analysis is to understand the roles of contrastive learning as well as

its learned codebook in the w2v-BERT pre-training framework.

The first natural question is whether the contrastive module is an essential com-

ponent of the framework, or is that a masked prediction module alone can already

derive a suitable codebook for its own MLM purpose.

Without the contrastive module, the feature encoder output is directly fed to the

masked prediction module. Intuitively, the masked prediction module then gets a full

control over the quantizer (which may originally be viewed as part of the contrastive

module) and decide its own prediction target. In order to maximize the prediction

performance, the masked prediction module can “cheat” by coming up with a trivial

solution where it asks the quantizer to cooperate with it by quantizing all feature

encoder’s output frames that correspond to the masked positions to the same code

vector, in other words, always assigning the same target ID for the masked prediction

module to predict. The module thus perfectly solves the masked prediction task

without learning any useful representation.

To verify our intuition, we train a series of w2v-BERT models without the con-

trastive module. These variants all have the same capacity as w2v-BERT XL, that
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(a) MLM training loss

(b) MLM training accuracy

(c) Training diversity loss

Figure 6-2: Training curves of w2v-BERT models with and without contrastive mod-
ule. From top to bottom: MLM training loss, MLM training accuracy, training
diversity loss. The blue curve represents the w2v-BERT model without contrastive
module, and the orange curve represents w2v-BERT XL (with contrastive module).
We show results for the first 300k steps.
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is, they are all constructed with 24 Conformer layers. We try different values of 𝛼 =

0.1, 0.3, 0.5, and 0.7 in Equation 6.1 for increasing encouragement of uniform usage

of codes. Nevertheless, we find all models are untrainable and quickly collapse re-

gardless of the value of 𝛼. In Figure 6-2 we show the training curves of a w2v-BERT

model without contrastive module with 𝛼 set to 0.5. We include the curves of the

successfully trained w2v-BERT XL for comparison. The plots include the models’

masked prediction loss (Figure 6-2a), masked prediction accuracy (Figure 6-2b), and

diversity loss (Figure 6-2c) during pre-training.

We find that the training curves of w2v-BERT without contrastive module (in

blue) strongly align with our intuition: the masked prediction loss quickly decreases

to close to 0 at the early stage of training (Figure 6-2a) where the model reaches 100%

prediction accuracy (Figure 6-2b). Meanwhile, as shown in Figure 6-2c, the diversity

loss quickly increases to close to 1, where in our implementation this indicates an

extremely low entropy of softmax distribution over the codebook entries, suggesting

code collapse. Comparing the curves of w2v-BERT models with and without con-

trastive module, we hypothesize that the contrastive loss guides the entries in the

codebook to be discriminative, thus preventing the masked prediction module from

deriving a trivial solution just to maximize masked prediction performance.

6.5.3 Analysis: On the Impact of Contrastive Module’s Ca-

pacity

After confirming the necessity of contrastive module, next we are interested in inves-

tigating the impact of its capacity on downstream ASR performance.

We train a series w2v-BERT models with different numbers of Conformer layers

in their contrastive module. To rule out the factor of masked prediction module’s

capacity, we keep the total number of Conformer layers in the two modules fixed

at 24. We use 𝐶𝑛 to denote each variant, where 𝑛 is the number of Conformer layers

in the contrastive module. For instance, 𝐶4 has 4 Conformer layers in its contrastive

module and 20 in its masked prediction module. Here we consider 𝑛 = 2, 4, 6, 8, 10, 12,
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Table 6.5: WERs (%) when using the LibriSpeech 100hr subset as supervised data.
For all methods, both self-training and LM fusion are not used. References are where
the numbers are quoted from.

Method dev dev-other test test-other

Baseline
wav2vec 2.0 (Baevski et al., 2020b) 3.3 6.5 3.1 6.3
w2v-Conformer XL (Zhang et al., 2020b) 2.5 4.7 2.6 4.9
w2v-BERT XXL (Ours) 2.3 4.0 2.3 4.3

w2v-BERT w/ 24 layers
𝐶2 2.4 5.1 2.5 5.1
𝐶4 2.5 4.6 2.5 5.1
𝐶6 2.5 4.2 2.4 4.7
𝐶8 2.3 4.3 2.4 4.6
𝐶10 2.4 4.5 2.5 4.8
𝐶12 (w2v-BERT XL) 2.4 4.4 2.5 4.6
𝐶24 2.4 4.9 2.5 5.0

and 24, where 𝐶24 is an extreme case where the two modules are completely overlapped

with each other and hence the contrastive and MLM tasks will be both tackled at the

last (24-th) layer. Note that 𝐶12 is essentially w2v-BERT XL.

We use the LibriSpeech 100hr subset as the supervised data for this experiment,

and both self-training and LM fusion are not used when training the ASR network.

Results are shown in Table 6.5. We include the results of some pre-training methods

from the literature that also do not incorporate self-training and LM.

From Table 6.5 we can roughly observe a performance sweet spot on all four

evaluation subsets when we increase the number of layers in the contrastive mod-

ule. From 𝐶2 to 𝐶8, the WERs are mostly decreasing, meaning that enlarging the

contrastive module is helpful for learning better representations. The fact that the

performance continues to improve while the masked prediction module shrinks (and

hence becomes less expressive) as we deepen the contrastive module further suggests

the importance of making the contrastive module sufficiently large.

Starting from 𝐶8, however, the WERs stop decreasing as we deepen the contrastive

module. We hypothesize that this is because the masked prediction module has now

become too small to learn representations useful for the MLM task. Such reasoning is
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Table 6.6: Results on voice search data. Baseline Conformer model is 100M parame-
ters. All the other models are 600M parameters, marked as XL.

Method Unlabeled Data (Domain) Test (VS)

Conformer N/A 10.7

w2v-Conformer-XL 34.3k (Voice search) 10.8
w2v-Conformer-XL-tuned 34.3k (Voice search) 8.9
w2v-BERT XL (Ours) 34.3k (Voice search) 6.2

supported by the fact that enlarging the masked prediction module while keeping the

contrastive module the same size can still improve the performance (w2v-BERT XL

vs. w2v-BERT XXL).

Last but not least, we see that w2v-BERT always outperforms wav2vec 2.0 regard-

less of its layer configuration. It also either outperforms or matches w2v-Conformer XL’s

performance when its contrastive module has enough capacity (i.e., when 𝑛 > 4).

6.5.4 Results on Voice Search Traffic

So far we have shown w2v-BERT pre-trained on read speech audio can achieve great

performance on the well-benchmarked LibriSpeech task. To validate the effectiveness

of w2v-BERT on real-world audio traffic, we apply it to Google’s Voice Search traffic.

Our train and test sets are derived from Li et al. (2021). We use 34.3k hours of English

audio for pre-training, and randomly pick 1k hours as the fine-tuning data, which is

anonymized and human-transcribed. The test set contains around 12k Voice Search

utterances with duration less than 5.5s long. The testing utterances are anonymized

and human-transcribed, and are representative of Google’s Voice Search traffic.

The traffic data is more challenging to be used for pre-training than read speech

audio in two folds: (1) It is noisier and contains more silences that make negative

sampling for contrastive learning less effective. (2) The average length of the traffic

audio (5 seconds) is much shorter than that of read speech audio. These factors make

the context learned from the audio segments much less effective.

As shown in Table 6.6, if we take the same training script as w2v-Conformer-XL,
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the model tends to cheat on negative samples due to the large portion of non-speech

and shorter context. To make contrastive learning more effective, we have to use a

less aggressive subsampling: instead of using a 4 times convolutional stride, we stack 3

frames as target to encourage the model to learn better context. However, by taking

an identical architecture and using the same training receipt, our w2v-BERT XL

significantly improves the tuned contrastive baseline by relative 30%.

6.6 Chapter Summary

In this chapter, we have proposed w2v-BERT for self-supervised speech represen-

tation learning. w2v-BERT is composed of a contrastive module for discretizing

continuous speech and a masked prediction module that performs masked language

modeling with the discretized speech. The two modules can be jointly optimized. We

pre-trained w2v-BERT on 60k hours of unlabeled speech data from the Libri-Light

corpus, and showed it either outperforms or matches state-of-the-art systems such as

w2v-Conformer, HuBERT, and wav2vec 2.0. The gain also transfers to a more chal-

lenging dataset that reflects real-world audio traffic. We also provided an analysis

on the importance of the contrastive module for enabling effective masked language

modeling.
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Chapter 7

Similarity Analysis of Self-Supervised

Speech Representations

Self-supervised speech representation learning has recently been a prosperous research

topic. Many algorithms have been proposed for learning useful representations from

large-scale unlabeled data, and their applications to a wide range of speech tasks

have also been investigated. However, there has been little research focusing on un-

derstanding the properties of existing approaches. In this work, we aim to provide

a comparative study of some of the most representative self-supervised algorithms.

Specifically, we quantify the similarities between different self-supervised representa-

tions using existing similarity measures. We also design probing tasks to study the

correlation between the models’ pre-training loss and the amount of specific speech

information contained in their learned representations. In addition to showing how

various self-supervised models behave differently given the same input, our study

also finds that the training objective has a higher impact on representation simi-

larity than architectural choices such as building blocks (RNN/Transformer/CNN)

and directionality (uni/bidirectional). Our results also suggest that there exists a

strong correlation between pre-training loss and downstream performance for some

self-supervised algorithms.

The content of this chapter was first published in Chung et al. (2021a).
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7.1 Motivation

Despite the recent progress in self-supervised speech representation learning, most of

the effort is made to develop new algorithms or adapt existing methods to partic-

ular tasks, and only a few studies focus on reviewing existing approaches. In this

work, we aim to provide a comparative study on some of the most representative self-

supervised algorithms: contrastive predictive coding (CPC), autoregressive predictive

coding (APC), and masked predictive coding (MPC). Our analysis focuses on the fol-

lowing two aspects. First, we hope to understand the similarity of representations

learned by different self-supervised algorithms. To carry out this study, we adopt two

similarity measures for quantifying the similarity of two given representations (to be

more specific, two sequences of vectors). Although such a similarity analysis approach

cannot discern absolute facts about the representations, it allows us to compare repre-

sentations without subscribing to any specific type of information, and helps us answer

questions like: Given the same input, how similar are different self-supervised repre-

sentations? Which modeling choices, e.g., building blocks (RNN/Transformer/CNN)

and directionality (uni/bidirectional), have a higher impact on representation simi-

larity? How much does a model change when it is trained on more data?

Our second area of investigation examines, for each self-supervised algorithm, how

well its pre-training loss correlates with downstream performance. Our approach is

to use phonetic and speaker classification as probing tasks to measure the amount

of phonetic and speaker information contained in the representations as a function

of pre-training loss. This study could be useful for model selection if there exists a

strong correlation between the pre-training loss and the probing task performance.

Only a few studies have focused on analyzing self-supervised models. Chung et al.

(2020) propose to incorporate vector quantization layers to restrict model capacity

during pre-training so as to uncover a model’s preference in preserving speech in-

formation for achieving a maximal self-supervised objective. Blandón and Räsänen

(2020) study the correlation between the self-supervised loss of APC and CPC and

their performance on a phoneme discrimination task, which has the same goal as our
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second study. However, neither of these two works investigated the similarity between

different self-supervised representations. For the correlation study, we also consider

more self-supervised models with diverse modeling choices as compared to Blandón

and Räsänen (2020).

Our analysis yields the following insights:

• The objective has a higher impact on representation similarity than model ar-

chitecture.

• Under the same objective, a model’s directionality (uni/bidirectional) affects

representation similarity more than its building blocks (RNN/Transformer/CNN).

• Both APC and MPC both have a stronger correlations between pre-training

loss and phonetic and speaker classification performance than does CPC.

• While all models benefit from increasing the size of unlabeled training data,

CPC is found to make use of these additional data more efficiently than APC

and MPC.

The rest of the chapter is organized as follows. We start with introducing our

methods for studying the two aspects of our investigation in Section 7.2. Then,

in Section 7.3, we describe our experimental setup, including the implementations

of the considered self-supervised models, and datasets for pre-training and probing.

Experimental results and analysis are presented in Section 7.4, followed by chapter

summary in Section 7.5.

7.2 Analysis Methods

We are interested in two aspects of self-supervised speech representation learning:

(1) the similarities between representations learned by various models, and (2) how

well their self-supervised pre-training loss correlates with downstream performance.

We describe our methods for analyzing these two aspects in Sections 7.2.1 and 7.2.2,

respectively.
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7.2.1 Measuring Representation Similarity

Consider a pre-trained self-supervised model 𝑀 . For an acoustic feature sequence (in

our case, a log Mel spectrogram) x = (x1,x2, ...,x𝑇 ), where x𝑡 ∈ R80, from a

dataset 𝐷, the model 𝑀 transforms x into a higher-level representation 𝑀(x) =

(m1,m2, ...,m𝑇 ), where m𝑡 ∈ R512. Given two representations extracted by two self-

supervised models𝑀 (1) and𝑀 (2), a similarity measure outputs sim(𝑀 (1)(x),𝑀 (2)(x)) ∈

R that quantifies their similarity. Note that this approach does not require 𝐷 to be

annotated.

Existing similarity measures are proposed to capture different similarity notions.

Some focus on capturing the localization of information of two representations, which

is usually done by comparing the behaviors of two individual elements m(1)
𝑖 and m

(2)
𝑗

from 𝑀 (1)(x) and 𝑀 (2)(x), respectively (Bau et al., 2019). Other measures em-

phasize distributivity of information and find correlations between two representa-

tions 𝑀 (1)(x) and 𝑀 (2)(x) directly (Kriegeskorte et al., 2008; Kornblith et al., 2019;

Raghu et al., 2017; Andrew et al., 2013): if two representations behave similarly over

all of their elements, their similarity will be high even if no two individual elements

have similar behaviors. In this work we focus on the latter case and adopt linear cen-

tered kernel alignment (lincka; Kornblith et al. 2019) and singular vector canonical

correlation analysis (svcca; Raghu et al. 2017) as our similarity measures. We choose

these two since they are found to be comparable or better than other measures in

prior studies for analyzing contextual word representation models (Wu et al., 2020).

7.2.2 Measuring Phonetic and Speaker Information

We consider phonetic and speaker classification for measuring the amount of ac-

cessible phonetic and speaker content contained in a representation. Given a self-

supervised model 𝑀 pre-trained on an unlabeled dataset 𝐷1, we use 𝑀 to extract

features 𝑀(x) = (m1,m2, ...,m𝑇 ), where m𝑡 ∈ R512 for another dataset 𝐷2, and train

a supervised linear classifier using the extracted features as input.1

1We adopt the setting where 𝐷1 and 𝐷2 have different distributions to simultaneously examine
the richness and robustness against domain shift of a representation. We believe this is a more
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For phonetic classification, the goal is to correctly predict the phone identity of

each frame in an input utterance. For speaker classification, the extracted features of

the utterance are first averaged before being fed to the classifier, and the goal is to

correctly predict the speaker identity of the utterance. The frame-level phone error

rate and utterance-level speaker error rate on the test set of 𝐷2 indicate the amount

of phonetic and speaker content contained in the representation.

7.3 Experimental Setup

7.3.1 Self-Supervised Models

In this work we consider some of the most representative self-supervised models for

comparison, including contrastive predictive coding (CPC) (Oord et al., 2018), au-

toregressive predictive coding (APC) (Chung et al., 2019a), and masked predictive

coding (MPC) (Liu et al., 2020b; Wang et al., 2020).

While there are additional models that have successfully been applied to speech

applications, most of them are more or less an improvement or extension of the above

models. For example, Riviere et al. (2020) improve CPC by modifying its batch

normalization mechanism and replacing the linear prediction head with a 1-layer

Transformer network. Kawakami et al. (2020b) modify CPC to make it bidirectional.

wav2vec (Schneider et al., 2019) is essentially CPC with a fully convolutional architec-

ture and a proposal distribution dedicated for speech recognition. DeCoAR proposed

by Ling et al. (2020) can be viewed as a bidirectional version of APC. Chung and

Glass (2020b) propose an auxiliary loss serving as a regularizer to help APC general-

ize better. Liu et al. (2021) apply SpecAugment (Park et al., 2019) to improve MPC’s

masking techniques. Jiang et al. (2021) combine APC and MPC to form a unified

pre-training objective. We leave the explorations of these extensions for future work.

Below we briefly review the considered models: CPC, APC, and MPC.

realistic setting than assuming 𝐷1 and 𝐷2 have the same distribution. Our setting is also closer to
that in the literature of NLP pre-training models.
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CPC & APC Contrastive predictive coding (CPC) and autoregressive predictive

coding (APC) share a similar methodology as both use an autoregressive model to

learn representations through conditioning on the past context to make predictions of

future information. Their main difference lies in the manner in which they optimize

the autoregressive model: while APC attempts to predict a future frame via L1

regression, CPC incorporates a proposal distribution for drawing negative samples,

and learns representations containing information that most discriminates the future

frame from the negative samples using a loss called InfoNCE, which is based on

noise-contrastive estimation (Gutmann and Hyvärinen, 2010). We mainly follow the

original papers (Oord et al., 2018; Chung et al., 2019a) for implementing the models

with small modifications described in Chung et al. (2019a).

Since the objectives of APC and CPC are based on the notion of future prediction,

bidirectional architectures are not applicable. A simple method for making these

models have access to context from both directions is to separately train a forward

and backward APC/CPC model and concatenate their output representations as the

final representations (similar to how ELMo (Peters et al., 2018b) is trained for learning

contextualized word embeddings). This method has been explored for APC and CPC

in Ling et al. (2020) and Kawakami et al. (2020b), respectively.

MPC Inspired by the masked language modeling technique from BERT (Devlin

et al., 2019), masked predictive coding (MPC) directly trains a bidirectional archi-

tecture by first masking parts of the input signals and then predicting them through

conditioning on context from both directions. Similar to APC, MPC is optimized by

minimizing the frame-wise L1 distance between the predicted output and the origi-

nal input before masking. Transformer encoder (Liu et al., 2020b) and bidirectional

RNN (Wang et al., 2020) have both been used to implement MPC.

To account for multiple factors in model design (objective, RNN/Transformer/CNN,

uni/bidirectional), we consider the implementations of APC, MPC, and CPC as listed

in Table 7.1.
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Table 7.1: Information about various implementations of APC, MPC, and CPC
to be compared in this work. All RNN and Transformer models have a hidden
size of 512 (256 for forward and 256 for backward if bidirectional). For CPC,
cpc-mixed_spk-rnn draws negative samples across speakers, while cpc-within_spk-rnn
and cpc-within_spk-cnn draw negative samples from the same utterance as the target
future frame.

Notation Objective Building block Directionality

apc-fw-rnn APC 3-layer GRU Unidirectional
apc-fw+bw-rnn APC 3-layer GRU Bidirectional
apc-fw-trf APC 3-layer Transformer decoder Unidirectional
apc-fw+bw-trf APC 3-layer Transformer decoder Bidirectional
mpc-birnn MPC 3-layer GRU Bidirectional
mpc-trf MPC 3-layer Transformer encoder Bidirectional
cpc-mixed_spk-rnn CPC 3-layer GRU Unidirectional
cpc-within_spk-rnn CPC 3-layer GRU Unidirectional
cpc-within_spk-cnn CPC Same as Schneider et al. (2019) -

7.3.2 Pre-Training Datasets

We use the LibriSpeech corpus (Panayotov et al., 2015), which contains 960 hours of

read speech produced by 2,338 speakers, for pre-training all considered self-supervised

models. We also use the unlab-6k subset from the Libri-Light corpus (Kahn et al.,

2020b), which contains about 6k hours of speech audio produced by 1,742 speakers, for

additional experiments in Section 7.4.3. We use 80-dimensional log Mel spectrograms

as input acoustic features, i.e., x𝑡 ∈ R80. All models are trained for 10 epochs using

Adam with a batch size of 32 and an initial learning rate of 10−3. During pre-training,

only the speech portion from the dataset is used.

7.3.3 Probing Datasets

Representation similarity measures For calculating representation similarity

with lincka and svcca (described in Section 7.2.1), we use the si284 subset from

the Wall Street Journal corpus (WSJ) (Paul and Baker, 1992) and the train set from

the TIMIT corpus (Garofolo et al., 1993).
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Figure 7-1: Similarity heatmap of various self-supervised representations on WSJ
according to lincka. Values of similarity are also annotated.

Phonetic and speaker classification We carry out both classification tasks on

WSJ. For phonetic classification, there are a total of 42 phone categories, and we

follow the standard split of WSJ, using 90% of si284 for training, 10% for validation,

and reporting frame-level phone error rate on dev93. The phone alignments are

generated with a speaker adapted GMM-HMM model. For speaker classification, we

follow Chung and Glass (2020a) and consider a 259-class classification task where each

class corresponds to an unique speaker, using 80% of si284 for training, the other 10%

for validation, and reporting utterance-level speaker error rate on the rest 10%. We

note that speaker classification is not a typical task for WSJ, and only serves as a

sanity check for the presence of speaker information. For both tasks, the classifier is

a linear logistic regression trained for 10 epochs using SGD with a batch size of 32

and a fixed learning rate of 10−4. All reported error rates are an average of 5 runs,

of which variances are negligibly small and not included.
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7.4 Results and Analysis

7.4.1 Similarities between Different Self-Supervised Represen-

tations

Figures 7-1 and A-1 (in Appendix A) show heatmaps of similarities between repre-

sentations learned by various self-supervised models according to similarity measures

lincka and svcca on two probing datasets WSJ and TIMIT. Brighter colors indicate

higher similarity between two representations. For all heatmaps we also include the

similarity between each self-supervised representation and the surface feature, i.e.,

log Mel spectrogram. We find all heatmaps exhibiting consistent patterns regardless

of the probing dataset and similarity measure, and all self-supervised representations

are very different from the surface feature (in our case, the log Mel spectrogram).

The heatmaps reveal the following insights.

Objective affects similarity more than architecture. The most evident pat-

tern from the heatmaps is that there is always a greater similarity within an ob-

jective than across objectives, indicated by the bright block diagonal. For example,

apc-fw-rnn is always more similar to apc-fw+bw-rnn, apc-fw-trf, and apc-fw+bw-trf

than to any MPC and CPC variants, even when apc-fw-rnn and cpc-mixed_spk-rnn /

cpc-within_spk-rnn share the same building block and directionality. This conclusion

also holds for the MPC- and CPC-family. Representations learned by generative-

based objectives, i.e., variants of APC and MPC, are also more similar to one other

than to the CPC variants.

Directionality affects similarity more than building block. When the objec-

tive is the same, we find that model’s directionality (uni/bidirectional) has a higher

impact on representation similarity than its building block (RNN/Transformer/CNN).2

For instance, the similarity between apc-fw-rnn and apc-fw-trf, which are both uni-

directional while the former uses RNNs and the latter uses Transformers, is higher
2Due to its nature of methodology, MPC is always bidirectional. Hence we refer to the cases

within the APC- and CPC-family for this observation.
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(a) apc-fw-rnn (b) mpc-birnn

(c) cpc-mixed_spk-rnn (d) cpc-within_spk-rnn

Figure 7-2: Scatter plots of various self-supervised representations’ performance on
phonetic and speaker classification as a function of their pre-training loss. For each
figure, the x-axis is the pre-training loss, and the y-axis on the left is the corresponding
phone error rate and on the right the speaker error rate.

than that between apc-fw-rnn and apc-fw+bw-rnn, which both use RNNs while the

former is unidirectional and the latter is bidirectional. Furthermore, as may be ex-

pected, making APC bidirectional reduces its difference with MPC, which is indicated

by the fact that mpc-birnn is more similar to apc-fw+bw-rnn than to apc-fw-rnn, and

mpc-trf is more similar to apc-fw+bw-trf than to apc-fw-trf.

Source of negative samples affects similarity more than architecture. When

focusing on the CPC-family, we find that proposal distribution where the nega-

tive samples are drawn—which could also be regarded as the objective—is more

impactful on representation similarity than building block. This is indicated by
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the fact that cpc-within_spk-rnn is more similar to cpc-within_spk-cnn than to

cpc-mixed_spk-rnn, where the two models in the former case share the same pro-

posal distribution but use different building blocks, and the two models in the latter

case share the same building block but incorporate different proposal distributions.

7.4.2 Correlation between Self-Supervised Loss and Phonetic

& Speaker Classification Performance

Experiments so far have only revealed the similarities between different self-supervised

representations. In this study, we further uncover the correlation between self-supervised

loss during pre-training and the amount of phonetic and speaker information con-

tained in the representations, measured by their performance on phonetic and speaker

classification defined in Section 7.2.2. We only consider apc-fw-rnn, mpc-birnn,

Table 7.2: Pearson correlation coefficients between the self-supervised loss and the
phone and speaker error rates. * denotes statistical significance at 𝜌 < 0.05.

Model Phone Speaker

apc-fw-rnn 0.989* 0.950*
mpc-birnn 0.885* 0.847*
cpc-mixed_spk-rnn 0.643* 0.762*
cpc-within_spk-rnn 0.675* -0.071

cpc-mixed_spk-rnn, and cpc-within_spk-rnn in this experiment for a comparison only

in terms of their objectives (except mpc-birnn, which has to be bidirectional). Fig-

ure 7-2 displays the scatter plots of phone and speaker error rates as a function of

self-supervised loss for the four considered models.

For each model, we only consider loss after 10k steps until the end of training (10

epochs, which is about 88k steps). Within this interval, we take 15 data points—each

corresponding to a model checkpoint—with equally-sized chunk, and sort them with

ascending order according to their loss values. Next, for each of these 15 checkpoints,

we run the probing tasks and report the corresponding phone and speaker error rates.

We also calculate the Pearson correlation coefficients 𝑟 between loss value and both

phone and speaker error rates, as listed in Table 7.2.
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Overall, generative-based objectives (APC and MPC) are found to have a stronger

positive correlation between the self-supervised loss and both their phonetic and

speaker classification performance than contrastive-based objectives. In particu-

lar, apc-fw-rnn features the strongest correlation among the four considered self-

supervised models. Our finding aligns with Blandón and Räsänen (2020), where the

autoregressive loss of APC is found to be more correlated with the ABX-score of a

phone discrimination task than the InfoNCE loss of CPC.

It is noteworthy that the loss of cpc-within_spk-rnn has almost no correlation

with speaker classification performance. This result seems natural since the model

always draws negative samples from the same utterance as the positive sample, so

speaker information is never found to be useful for distinguishing them and thus

not learned by the representation. On the other hand, the proposal distribution of

cpc-mixed_spk-rnn allows the model to learn from negative samples coming from both

the same and different utterances as the positive sample, meaning that both phonetic

and speaker information could be relevant for discriminating them. Therefore, we

find the loss of cpc-mixed_spk-rnn is still correlated with the speaker error rate to

some degree.

We emphasize that our findings here are not meant to claim any self-supervised

approach to be the best, but aim to provide some results for other researchers for

future reference. For example, APC and MPC’s strong correlation between their self-

supervised loss and phonetic and speaker classification performance could be useful

for model selection even during the pre-training stage, since a lower pre-training loss

would indicate a richer phonetic and speaker representation. CPC, though exhibit-

ing a smaller correlation between its self-supervised loss and phonetic and speaker

classification performance, could still be extremely powerful when the downstream

task is known and thus the pre-training proposal distribution can be determined

aforehand, as shown by its recent impressive performance on semi-supervised speech

recognition (Baevski et al., 2020b).
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7.4.3 Effect of Increasing Unlabeled Data for Pre-Training

One of the biggest advantages of self-supervised learning is its capability to leverage

very large-scale unlabeled data for representation learning. Here we train apc-fw-rnn,

mpc-birnn, cpc-mixed_spk-rnn, and cpc-within_spk-rnn on 2k, 4k, and 6k hours of

speech audio, all sampled from the unlab-6k subset of the Libri-Light corpus, and

calculate the similarities between each of these variants and their counterpart trained

on the original 960 hours LibriSpeech audio according to lincka. Results are shown

in Table 7.3.

Table 7.3: Representation similarity between self-supervised models pre-trained on
∼1k hours of audio and their counterparts pre-trained on increasing amounts of audio
according to lincka.

Model Hours of pre-training audio

∼2k ∼4k ∼6k

apc-fw-rnn 0.957 0.935 0.923
mpc-birnn 0.940 0.939 0.925
cpc-mixed_spk-rnn 0.911 0.883 0.837
cpc-within_spk-rnn 0.920 0.896 0.861

Table 7.4: Phonetic and speaker classification results of self-supervised models pre-
trained on different amounts of unlabeled data (in hours). Phone and speaker error
rates are reported.

Model Phone error rate Speaker error rate

∼1k ∼2k ∼4k ∼6k ∼1k ∼2k ∼4k ∼6k

apc-fw-rnn 33.2 32.5 32.3 31.9 8.6 8.4 8.2 8.1
mpc-birnn 33.0 32.2 32.1 31.8 8.9 8.1 8.0 7.8
cpc-mixed_spk-rnn 34.9 33.7 33.2 33.0 8.6 7.9 7.5 6.8
cpc-within_spk-rnn 32.8 29.8 28.5 28.1 40.6 38.7 42.2 40.5

As may be expected, for all self-supervised models, their representations become

more dissimilar when more unlabeled data are used for training. Interestingly, we

find that CPC’s representations change more than those of APC and MPC when

increasing the data size. For instance, the similarity “only” drops from 0.957 to 0.923
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for apc-fw-rnn when increasing the data size from 2k hours to 6k hours, while for

cpc-mixed_spk-rnn, the similarity drops from 0.911 to 0.837.

Changes in representation similarity can be attributed to encoding details of

speech other than phonetic and speaker information that might be unnecessary, such

as background noises. To confirm whether such changes in representation similar-

ity correspond to an actual richer phonetic and speaker representation, we again use

phonetic and speaker classification performance to quantify the amount of phonetic

and speaker information contained in the representation. Results are reported in

Table 7.4.

Encouragingly (and probably unsurprisingly), we observe that most self-supervised

models’ performance on both tasks are improved when being trained on more data.

The only exception is cpc-within_spk-rnn on speaker classification, which is expected

as speaker information is never found relevant for discriminating positive and nega-

tive samples during its training. However, its performance on phonetic classification

obtains the largest gain among all considered self-supervised models, with phone er-

ror rate decreasing from 32.8 to 28.1. Concerning cpc-mixed_spk-rnn, in addition to

showing improvement on both tasks, the drop of its speaker error rate from 8.6 to 6.8

is also the largest among all models. Intuitively, having more data means that CPC

models are provided with more comparisons of negative and positive samples to learn

from, and our results seem to suggest that this is a more effective way for learning

representations when large amounts of unlabeled data are available, as opposed to

attempting to reconstruct details of the speech signals as APC and MPC models do.

That being said, both generative- and contrastive-based objectives also benefit from

having more unlabeled training data.

7.5 Chapter Summary

We have analyzed representations learned by contrastive predictive coding (CPC), au-

toregressive predictive coding (APC), and masked predictive coding (MPC) through

the lens of similarity analysis. Extensive experiments have been conducted to study
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the impact of different modeling choices for training self-supervised models, the effect

of the size of unlabeled training data, and how well the self-supervised loss corre-

lates with phonetic and speaker classification performance. We have found that the

self-supervised objective has a much higher impact on representation similarity than

architectural choices such as building blocks (RNN/Transformer/CNN) and direc-

tionality (uni/bidirectional). We have also observed that APC has the strongest

correlation between its self-supervised loss and phonetic and speaker classification

performance, which is useful for model selection. Finally, while all self-supervised

models benefit from having more training data, CPC is found to learn from the ad-

ditional data more efficiently than APC and MPC.
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Chapter 8

Conclusions

8.1 Thesis Summary

This thesis has chronicled the story of our investigations into the use of self-supervised

learning for improving spoken language technology. In Chapter 3, we drew inspira-

tions from recent language model pre-training algorithms and proposed Autoregres-

sive Predictive Coding (APC), which defines a future frame prediction task that

enables autoregressive neural models to learn representations capturing high-level

phonetic and speaker information from unlabeled speech data. Those positive pre-

liminary results of APC encouraged us to dive deeper into understanding this self-

supervised objective to seek for any possible improvements, and such efforts were

detailed in Chapter 4 and Chapter 5. In Chapter 4, we conducted careful analysis

on a spectrum of APC models with decreasing model capacity. Such analysis allowed

us to scrutinize the information constituents of the representations learned by APC.

Our findings bridged the connection between APC and its capability of learning rich

phonetic and speaker information. After understanding why APC, the future frame

prediction task, can learn high-level speech representations, in Chapter 5 we made the

model to learn even stronger representations by improving its ability to predict the

future. We demonstrated the effectiveness of APC as a self-supervised pre-training

objective by showing its superiority over several other objectives on speech recogni-

tion, speech translation, and speaker classification tasks. In parallel to APC, which
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makes use of the “future prediction” learning methodology, in Chapter 6 we pro-

posed w2v-BERT, which adopted another proved powerful self-supervised learning

methodology: “predicting the masked from the unmasked.” w2v-BERT showed ex-

tremely strong performance on both a well-benchmarked speech recognition dataset

and a more challenging dataset that reflects real-world audio traffic, and is the cur-

rent state-of-the-art pre-training framework for speech processing. After exploiting

two distinct learning methodologies to design self-supervised pre-training algorithms,

we shifted our interest to understanding what modeling choices when training the

networks make one self-supervised representation different from the other, and such

efforts were documented in Chapter 7.

8.2 Thesis Contributions

We reiterate a summary of the contributions made by this thesis here:

1. Introduction of one of the earliest successful self-supervised speech

representation learning frameworks. We exploit the idea of “future pre-

diction” and propose a simple yet effective self-supervised objective called Au-

toregressive Predictive Coding (APC) for training deep neural networks. The

designed future frame prediction task is able to leverage unlabeled speech data

to learn representations that make high-level properties of speech utterances

such as their phonetic contents and speaker characteristics more accessible (de-

fined as linear separability) to downstream tasks. APC is one of the earli-

est works that showed the superiority of self-supervised representations over

traditional hand-crafted acoustic features such as mel-frequency cepstral coef-

ficients (MFCC) and log mel spectrograms, indicating the potential of using

self-supervised learning for boosting spoken language technology performance.

2. Introduction of one of the current state-of-the-art self-supervised

speech representation learning frameworks. We exploit the idea of “pre-

dicting the masked from the unmasked” and propose w2v-BERT, which is one
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of the current state-of-the-art frameworks for pre-training very deep neural net-

works for speech applications. We train a speech discretizer (through optimizing

a contrastive loss) for representing continuous speech signals as discriminative

tokens, and use them to train a BERT-like model. In contrast to existing frame-

works such as vq-wav2vec and HuBERT that also make use of the “predicting the

masked from the unmasked” methodology, in w2v-BERT the discretizer and the

context network can be optimized in an end-to-end fashion, avoiding the need

of coordination between multiple training stages that could often involve brittle

modeling choices. We demonstrate the effectiveness of w2v-BERT by showing

its superiority over the state of the arts, including HuBERT and wav2vec 2.0,

on both a well-benchmarked speech recognition dataset and a Google-collected

voice search dataset.

3. Introduction of an analysis method capable of bridging connections

between self-supervised objectives and properties of the representa-

tions they learn. We explore the use of vector quantization for controlling the

amount of information flow inside deep neural networks to obtain a spectrum

of models trained with the same self-supervised objective but with decreasing

model capacity. We apply this analysis method to study APC, and diagnose the

preferences of APC in preserving information while its model capacity becomes

constrained. Our analysis results provide an explanation to why APC can learn

representations that capture high-level phonetic and speaker information. The

analysis method is general and can be applied to analyzing other self-supervised

objectives as well.

4. Demonstration of several shared natures of different self-supervised

models. When analyzing our own and other existing self-supervised models,

we find that there exist several properties that most of those models share in

common regardless of their differences in training objectives and neural network

architectures. One of such properties is the ability of implicit discovery of an

inventory of meaningful acoustic units. We find that there usually exist some

127



layers in the self-supervised models where representations have considerably

high mutual information with English phones (when the models are trained on

an English corpus), even though the models are not explicitly trained towards

discovering them. Another properties shared by most self-supervised models

is that different levels of speech information are captured in different layers,

although the information distribution could vary model to model. For instance,

in APC, the lower layers tend to be more discriminative for speakers, while

the upper layers provide more phonetic content. Being aware of this insight is

useful for selecting proper layers to extract representations from for the best

performance on the tasks of interest.

5. Identification of the order of importance of modeling factors for train-

ing self-supervised models that impact their representational similar-

ity. We compare a collection of self-supervised models with diverse model-

ing choices during their training, and use measures such as canonical correla-

tion analysis (CCA) to quantify their pairwise similarities. We consider three

modeling factors: training objectives, model directionality (i.e., whether the

model is unidirectional or bidirectional), and neural network building blocks

(CNN/RNN/Transformer), and show that the three factors have different weights

in making one self-supervised representation different from another. Specifi-

cally, we find that training objective has the highest impact on representational

similarity among all the factors; under the same training objective, a model’s

directionality affects representational similarity more than its neural network

building blocks.

8.3 Future Directions

Several future directions arise from the work presented in this thesis. Here we briefly

discuss a few of them.
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8.3.1 Self-Supervised Pre-Training for Speech Generation Mod-

els

As is the case with modern ASR systems, a prevailing trend for tackling speech

generation problems such as text-to-speech synthesis (TTS) and speech-to-speech

translation (S2S) is to model them with a single deep neural network (Wang et al.,

2017; Shen et al., 2018; Jia et al., 2019, 2021). The task of TTS is to synthesize a

speech waveform for a given text, and can be thought of as the inverse problem of ASR.

The task of S2S is an even more challenging one that aims to translate an utterance

from one language to another, where both the input and output are in the form of

speech waveforms. The speech generation models are required to have strong speech

understanding and sometimes even linguistic knowledge about the underlying spoken

utterances in order to produce high-quality natural speech. In this thesis, we have

shown that our self-supervised pre-training frameworks are capable of initializing deep

neural networks with strong acoustic representations that perform well when they are

fine-tuned on ASR and speech-to-text translation. There is no reason why we cannot

apply similar pre-training techniques to improve speech generation models.

There already exist some preliminary works in this direction. A simple method

that has been explored by Chung et al. (2019b) was to pre-train the decoder of an

end-to-end TTS model (Wang et al., 2017) with an APC-like self-supervised objec-

tive. They showed that when the decoder was pre-trained with large quantities of

untranscribed audio, the amount of parallel text-audio pairs needed for training the

TTS models in order to generate intelligible speech was greatly reduced. In Lee et al.

(2021), the discrete speech units learned by a self-supervised model (HuBERT) (Hsu

et al., 2021) have been applied to training end-to-end S2S models. Beyond the ex-

isting works, the research of applying self-supervised techniques to speech generation

problems remains highly exploratory.
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8.3.2 Self-Supervised Multimodal Speech Representation Learn-

ing

Recently there is a convergence of neural network architectures (Vaswani et al., 2017)

and self-supervised pre-training objectives across different modalities: in text (BERT

& RoBERTa) (Devlin et al., 2019; Liu et al., 2019), speech (w2v-BERT) (Chung

et al., 2021b), and vision (BEiT) (Bao et al., 2022), training large Transformer models

with masked language modeling-like objectives has become the dominant pre-training

paradigm. Such convergence makes building a single model that can learn cross-

modal speech representations a natural and promising next step. Previous works on

multimodal pre-training of speech and text (Chung et al., 2021c; Lai et al., 2021;

Chuang et al., 2020) as well as those of speech and vision (Akbari et al., 2021)

still highly relied on the use of parallel data, which are harder to scale up than

unpaired data, for supervised learning of cross-modal alignments. The fact that

different modalities are now sharing similar neural architectures and self-supervised

pre-training objectives could potentially alleviate the models’ reliance on parallel

data. A preliminary work in this direction is Bapna et al. (2021), while there still

exists a large space for improvement.

8.3.3 Self-Supervised Multilingual Speech Representation Learn-

ing

In text, multilingual representation learning models like mBERT (Devlin et al., 2019),

XLM-R (Conneau and Lample, 2019), and mT5 (Xue et al., 2021) have shown the

benefit of cross-lingual transfer for improving the representations of low-resource lan-

guages: on public benchmarks such as XTREME (Hu et al., 2020), multilingual

models often greatly outperform monolingual models. The success of cross-lingual

transfer learning in text has motivated researchers to develop analogous frameworks

for learning multilingual speech representations. Although models like XLS-R (Babu

et al., 2021), which is essentially wav2vec 2.0 (Baevski et al., 2020b) extended to a

multilingual setting, is indeed able to improve speech representations of low-resource
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languages over their monolingual counterparts, it comes at the cost of sacrificing

the performance on high-resource languages. How to improve representations of

low-resource languages while at least maintaining the quality of representations of

high-resource languages remains an ongoing research topic. A straightforward way

worthwhile trying is to replace wav2vec 2.0 with a more advanced pre-training frame-

work such as w2v-BERT.
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Appendix A

Additional Similarity Heatmaps

Figure A-1 displays additional similarity heatmaps for Chapter 7.

(a) svcca on WSJ
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(b) lincka on TIMIT

(c) svcca on TIMIT

Figure A-1: Similarity heatmaps of various self-supervised representations on different
probing datasets with different similarity measures.
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