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Abstract

Although recent advances in robotics enable the automation of manual tasks in man-
ufacturing, integrating robots into a factory remains time and resource intensive, as it
requires conventional robot programming and robot experts. In order to increase the
feasibility of robot integration into industrial processes, the programming of robots
must be easily accessible to domain experts with little to no experience in robotics.
In this thesis, we present Active Keyframe Learning (AKL) for learning the task
specification as an ordered sequence of keyframes to capture the physical interactions
and geometric constraints from a single demonstration of a task given by a non-
expert. We learn the least restrictive task specification that maximizes the flexibility
given to a motion planner by learning the human intent for demonstrated constrained
motion online and performing interaction-based and constraint-based segmentation
offline. We conduct a user study to evaluate the keyframe, pose, constraint accuracies,
workload, and teaching efficiency of AKL against two state-of-the-art techniques in
keyframe and constraint learning and demonstrate the significant benefits of utilizing
AKL to teach tasks to robots.

Thesis Supervisor: Julie A. Shah
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Recent advances in robotics enable the automation of traditionally manual tasks in

manufacturing. However, integrating robots into a factory using conventional robot

programming methods remains time and resource intensive. Even small changes to

the task will require reprogramming and can result in high reintegration costs [59].

Learning from demonstration (LfD) has been explored as a potential solution, as it

can facilitate domain experts with minimal robot programming experience to teach

robots manual tasks efficiently [56]. We are interested in leveraging LfD techniques

to increase robots’ ease of use, allowing non-experts to teach multistep tasks.

Research on LfD has primarily focused on learning a cost or reward function that

can be optimized to produce the intended behavior [2, 19, 23, 26]. Although this

enables generalizability to dynamic environments, these methods tend to be data-

intensive. Furthermore, they can only model soft constraints, whereas tasks like

carrying a mug upright require learning hard geometric constraints for successful

execution. Another branch of LfD learns a policy that can generate the desired

behavior [62]. These methods learn compact representations of skills but may fail

at learning complex tasks composed of a sequence of subtasks and hard constraints.

LfD work has also explored learning a plan at a high level of task abstraction as a

primitive sequence [3, 42, 53] or a primitive hierarchy [44, 45, 60]. These methods

perform well in multistep tasks and long-horizon planning. However, they cannot

handle continuous action spaces. Our research will focus on learning a high-level plan
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as an ordered sequence of steps or keyframes, a concept introduced by Akgun et al.

[3], that captures the physical interactions and local geometric constraints of a task.

Learning keyframes will allow us to learn a compact agent-independent representation

of a multistep task that can be provided to an existing motion planner equipped with

collision avoidance for task execution.

Learning a sequenced task plan from a continuous demonstration requires trajec-

tory segmentation. Perez-D’Arpino and Shah [53] use end-effector poses explicitly

defined by the user to learn a plan and a set of geometric constraints. However, in

this approach, the quality of the sequence learned hinges on the operator’s knowledge

of what constitutes an optimal set of keyframes. For instance, if the teacher defines

too few or too many keyframes, the system may learn incorrect or over-constrained

task specifications. On the other hand, automated segmentation techniques can be

relatively robust to user expertise and allow users to provide more intuitive trajectory

demonstrations. General approaches for automated segmentation include the use of

probabilistic models [19, 27, 33, 35, 49], clustering algorithms [36, 46, 48], inverse

reinforcement learning [43, 50], and task characteristics or events [30, 32, 38]. These

methods largely focus on demonstration segmentation given multiple demonstrations

and can be sensitive to model parameters. Learning from a single demonstration

has been explored in segmentation literature [41, 42, 44, 53] as means of mitigat-

ing the time and resource intensive nature of providing multiple demonstrations as

input. However, learning constraints from a single demonstration often results in

under-, or over-constrained task specifications due to inadequate data and uninten-

tional human errors [42, 53]. In our work, we explore trajectory segmentation of

a single demonstration based on physical interactions with objects and move-in-line

constraints, introduced in [53], to learn interaction and constraint keyframes defined

at the boundaries of these segments. To reduce over-constraining task specifications

when learning from a single demonstration, we take an active learning approach to

leverage the teacher’s intent for demonstrated constraint motion.

Active learning in LfD allows learners to elicit the teacher’s feedback, preference,

or intent to improve task representations learned, such as refining the learned reward
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or cost function [8, 9, 17, 58, 65], updating the belief over learned task specifications

[61], and to more efficiently learn task constraints [31], semantic constraints [63], and

behavioral constraints [47]. However, to teach a robot naturally and effectively, a

human needs to have an accurate mental model of the robot [54, 55]. Mueller et

al. explore the use of Robot Behaviour Counterfactuals (RBCs) and Behavioral Ver-

ification Indicators (BVIs) in their active learning framework, which improves the

teacher’s understanding of each constraint’s impact on task execution [47]. Following

guidelines laid by Cakmak et al., in [10, 11, 12], for human-robot interactive commu-

nication, we design an online active learning technique that leverages human feedback

to improve the accuracy of the constraints learned offline. Additionally, we enable

learner feedback to the teacher as a suggestion to improve their teaching of uncon-

strained motion, taking a step towards improving the teacher’s mental model of the

learner.

This thesis proposes Active Keyframe Learning (AKL), a proof-of-concept sys-

tem for learning physical interactions and move-in-line constraints of a task, from

a single demonstration, as an ordered sequence of keyframes. Our contribution to

this thesis is threefold. First, as multiple keyframe-encoded specifications can exist

for a given task, we prove that the specification with the least number of keyframes,

which we call the least restrictive task specification, maximizes the flexibility given

to a motion planner during task execution. Second, we design an interactive demon-

stration framework that allows human-robot communication, based on online con-

straint inference, to learn human intent for the demonstrated constrained motion

and guide the teacher to provide better demonstrations. Third, we develop an of-

fline keyframe learning algorithm that performs interaction-based segmentation and

constraint-based segmentation augmented with human feedback to learn the least

restrictive task specification. We evaluate AKL’s performance and usability against

two baseline methods for three multistep manipulation tasks using a within-subjects

study and show significant keyframe accuracy and teaching efficiency improvements.
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1.1 Task Specification Learning in LfD

Learning high-level task plans as a sequence or hierarchy, or primitives requires tra-

jectory segmentation of a continuous trajectory of the task. Some segmentation ap-

proaches perform interaction-based segmentation by learning action segments through

task events or task space characteristics [30, 32, 38]. However, their learned task spec-

ifications disallow the representation of motion-level geometric constraints by limiting

the specification to interaction-based primitives. Another class of segmentation re-

search is segmentation based on Gaussian mixture models primarily employed to

capture the variability of motion trajectory features and estimate a set of segmenta-

tion points in a demonstration [13, 39, 40, 52]. Although these methods efficiently

encode motion primitives, it is unclear how the geometric transformations required for

the learned motion primitives to adapt to task variations, such as changes in object

positions, guarantee the satisfaction of the motion primitive constraints.

Hidden Markov Models (HMMs) and statistical model-based change point detec-

tion algorithms, inspired by the changepoint detection introduced by Fearnhead and

Liu [20, 21, 22], are utilized to segment demonstrations based on changes in specified

models or latent variables [27, 33, 35, 49]. However, such segmentation techniques

are limited to inference over parametrized models and cannot recognize trajectory

segments that cannot be modeled, such as arbitrary unconstrained motion. Research

in Inverse Reinforcement Learning (IRL) such as Bayesian Nonparametric IRL (BN-

IRL) [43], and Constraint-based BN-IRL (CBN-IRL) [50] can learn local properties

and constraints of a task by partitioning demonstrations into subtasks. Nevertheless,

due to the unconstrained nature of the latent assignment variable and information

losses that arise in these techniques, they cannot guarantee the precise delineation of

tasks into constrained and unconstrained subtasks.

Modeling global and local task constraints are often essential to successfully ex-

ecute a task. To this end, LfD research has explored global task space constraints

[5, 18], safety constraints [67], position and force constraints [64], conceptual con-

straints [46, 48], shared constraints across tasks [14], high dimensional parametric
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constraints [1, 15, 16] and geometric constraints [24, 37, 53, 66]. Among these tech-

niques, Task space regions (TSR) [7] have been widely adopted to represent geometric

constraints [41, 42, 44, 53, 66] learned through trajectory segmentation of demonstra-

tions based on constraints. Liu et al. perform Total Variation Denoising (TVD) [57]

on constraint model fitting error ratios to learn constraint segments represented as

TSRs. However, the accuracy of the learned constraints is sensitive to predefined pa-

rameters and is dependent on the assumption that the teacher will only demonstrate

constrained motion when crucial to the task’s success. Keyframe demonstrations, a

concept introduced by Akgun et al. [3], are ordered sparse sets of sequential poses

that can function as a compact task representation independent of an agent’s kine-

matics [53]. These demonstrations have been extensively utilized in LfD literature to

eliminate noisy undesirable motion [4, 24, 28, 37, 53, 66] and have been extended to

include geometric task constraints [24, 37, 53, 66]. Keyframe demonstrations allow

user-defined task segmentation; however, continuous trajectory demonstrations retain

critical speed and timing information and appear more intuitive to novice teachers.

Furthermore, the demonstrator’s ability to provide an accurate set of keyframes im-

pacts the quality of the task representation learned.

Active learning, a framework that allows robots to elicit human feedback for im-

proved learning, has been utilized in robotics to create more intuitive teaching inter-

faces [10] and reduce the time and effort spent teaching new skills [12]. This learning

approach has been explored in the context of updating its belief over reward functions

[17], inferring human preferences for a dynamical system’s behavior [9, 8, 58], learning

user preferences for complex task specifications [65], updating belief over LTL task

specifications [61]. Research in constraint learning has likewise leveraged active learn-

ing to learn task constraints [31], semantic constraints [63], and behavioral constraints

[47] more efficiently. Although the aforementioned active learning frameworks in LfD

allow novice users to teach robots in an increasingly natural and time-efficient man-

ner, the impact of the given human feedback on the robot’s mental model and the

learned model remains unknown to the teacher. To improve the naturalistic nature

and effectiveness of robot teaching interfaces, the human teacher requires an accurate
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mental model of the robot [54, 55]. Mueller et al. explore using Robot Behaviour

Counterfactuals (RBCs) and Behavioral Verification Indicators (BVIs) to visualize

the robot’s expected behavior and the task execution success for the new model with

changes in task constraints [47]. Although this can improve the human mental model

of the robot, these visualizations are provided after the demonstrations and do not

explicitly show the user how their teaching techniques can be improved.

In this thesis, we present Active Keyframe Learning (AKL), a proof-of-concept

system for learning the least restrictive task specification encoded by an ordered se-

quence of TSR keyframes. Similar to [32, 38], we learn object interactions utilizing

the demonstrated object and grasp poses; however, we also learn move-in-line con-

straints, introduced in [53], to capture both physical interactions and constraints in

the task. To ensure our learned task plan can adapt to positional variances of objects,

we leverage the object interactions inferred from demonstrated grasp poses to ground

learned position and geometric constraints to relevant objects in the environment.

We design a novel online constraint detection technique that can distinguish between

constrained motion segments following an underlying straight-line motion model and

arbitrary unmodeled unconstrained motion segments. To ensure precise delineation

of tasks into constrained and unconstrained subtasks, we augment this online model

with an offline counterpart consisting of a fitting model to force segmentation at un-

constrained and constrained motion boundaries. Additionally, this offline technique

performs interaction segmentation and a combination process to learn the least num-

ber of keyframes required to capture all the physical interactions and move-in-line

constraints of the task.

We utilize a single continuous trajectory demonstration of a task as input to make

the teaching interface more intuitive and independent of the teacher’s ability to pro-

vide the correct set of keyframes. However, learning from a single demonstration

often requires the assumption that the teacher has a clear understanding that con-

strained motion should be displayed only when essential to the task. In our work, we

leverage human feedback to clarify the validity of demonstrated straight-line motion

to eliminate this assumption effectively. Human feedback is obtained through inter-
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active communication, designed based on the guidelines presented by Cakmak et al.

[10, 11, 12], between the teacher and robot during the demonstration. Additionally,

we allow the robot to provide suggestions to the teacher on improving their teach-

ing efficiency, further increasing the teacher’s understanding of the learner’s mental

model. To the best of our knowledge, we believe this is the first work that combines

online constraint detection, online human feedback for active learning, and online

suggestions for teaching improvement in the context of human-robot interaction.

1.2 Active Keyframe Learning

Active Keyframe Learning learns a task represented as the least restrictive ordered

sequence of keyframes through a single interactive demonstration. Here, the least

restrictive ordered sequence of keyframes refers to the task specification that results in

a successful execution trace while allowing the most flexibility to the motion planner.

During a demonstration, the learner maintains a continuous record of the end-effector

poses, the gripper state, and the objects’ positions in the scene. Furthermore, the

learner records the teacher’s feedback on the validity of the detected constrained

motions given during teaching. This demonstration data is processed to learn the

task specification as a sequence of ordered keyframes encoded as Task Space Regions

(TSR) [7] augmented with gripper and constraint state variables.

In our work, we learn three types of keyframes: (1) interaction keyframes that

capture the physical interactions between the end-effector and objects during task

execution, (2) constraint keyframes that encode the move-in-line constraints of the

task, and (3) combined keyframes that simultaneously represent an interaction and a

constraint boundary that coincides in Cartesian space. There can be multiple ordered

sequences of such keyframes for a given task that will generate correct execution traces

when provided to a motion planner. We theorize that the specification with the least

number of keyframes, which we call the least restrictive task specification, maximizes

the flexibility given to the motion planner and design AKL to learn this specification.

AKL learns keyframes in two stages: (1) the interactive demonstration and (2) of-
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fline keyframe learning. The interactive demonstration stage leverages active learning

to understand human intent behind demonstrated straight-line motion and provides

suggestions to the teacher to improve their mental model of the learner. It consists

of an online constraint detector and interactive communication between the robot

and the teacher. During the demonstration, the online constraint detector observes

the end-effector poses and infers the latent binary state variable that denotes the

constrained nature of the current trajectory. When the detector infers the presence

of a constrained region, interactive communication begins with the learner’s query

about the correctness of the detected latent state, followed by the teacher’s answer,

and ends with a suggestion to the teacher on improving their teaching technique.

After the demonstration is complete, the offline keyframe learning algorithm receives

the demonstration data and human feedback recorded during the demonstration and

performs interaction-based and constraint-based segmentation. Next, the offline algo-

rithm utilizes the human intent captured as feedback to remove incorrect constraints

learned from the demonstration data reducing the over-constrained nature of the

learned task specification. Finally, keyframes are extracted from the interaction and

constraint segments to create the least restrictive task specification for the demon-

strated task.

1.3 Performance Evaluation

We evaluated the performance, in terms of success rates, keyframe accuracy, pose

accuracy, constraint accuracy, teaching workload, usability, and teaching efficiency,

of our proposed framework, Active Keyframe Learning (AKL), against two baseline

methods, keyframe demonstration (KD) [3, 53] and articulate constraints learning

approach, from [42], augmented with interaction learning (mACL). To gather data,

we conducted a 12 participant within-subject study with three multistep tasks: (1)

a pick and place task with no move-in-line constraints, (2) an inspection task with

a single move-in-line constraint given in the task instructions, and (3) an assembly

task with a single move-in-line constraint that is not given in the task instructions
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given to participants. Each participant performed three tasks for each teaching mode,

answered the NASA TLX questionnaire after each task, and rated the ten statements

of the System Usability Scale (SUS) [5] on a 7-point Likert scale for each teaching

interface. The collected data were analyzed using linear mixed-effects model tests

and the Wilcoxon Rank-Sum test.

We found that AKL displayed the highest success rates in learning the least re-

strictive task specification and significantly improved the keyframe and pose accuracy.

Although the linear mixed-effects model analysis results for constraint accuracy were

insignificant, fifty percent of task specifications learned using AKL had less than

2.18 cm of constraint length errors, whereas that for mACL spanned 23.65 cm. Ad-

ditionally, the total number of constraint errors for AKL (19 errors) was much lower

than for mACL (46 errors), suggesting an increase in constraint accuracy. We learned

that 73.7% of the constraint errors for AKL were due to incorrect human feedback

emphasizing the ability to further improve constraint accuracy by increasing the feed-

back correctness. Furthermore, we found that AKL could prevent 51.2% of constraint

errors through human feedback highlighting the positive impact of our proposed in-

teractive demonstration framework on constraint accuracy. Our findings on workload

and usability suggested that AKL was more userfriendly and resulted in a significantly

lower workload than KD. However, AKL showed increased workload and decreased

usability scores compared to mACL. Although the interactive communication aspect

of AKL was found to increase workload and reduce usability, the overall teaching

efficiency of AKL was significantly higher than KD and mACL, demonstrating the

significant benefit of using AKL to teach tasks to robots.

1.4 Contributions and Future Directions

In this thesis, we present Active Keyframe Learning (AKL), a proof-of-concept system

for learning the least restrictive task specification, encoded by an ordered sequence of

keyframes, that captures the physical interactions and move-in-line constraints of a

task from a single demonstration. Our contribution to this thesis is threefold. First,
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we prove that the specification with the least number of keyframes, which we call the

least restrictive task specification, maximizes the flexibility given to a motion plan-

ner during task execution. Second, we design an interactive demonstration framework

that performs online constraint inference to initiate human-robot communication that

learns human intent for the demonstrated constrained motion and provides sugges-

tions to improve teaching. Third, we develop an offline keyframe learning algorithm

that performs interaction-based segmentation and constraint-based segmentation aug-

mented with human feedback to learn the least restrictive task specification. We eval-

uate AKL against two state-of-the-art techniques in keyframe and constraint learning

and demonstrate the significant benefit of utilizing AKL to teach tasks to robots.

Currently, this thesis is limited to learning physical interactions between task

objects and the robot, essential for the task’s success. Thus an extension to AKL

would be learning non-physical interactions or complex physical interactions that

cannot be inferred through gripper state observations. For example, interactions such

as holding a mug under a coffee machine until full or screwing in a nail are complex

interactions requiring richer keyframe definitions and robust visual inference.

Another future work direction would be extending the online constraint detector

to infer additional hard geometric constraints such as orientation constraints or rev-

olute constraints. As constraint inference utilizes fitting errors of a constraint model,

theoretically, it can be extended to other parametrized constraints by having several

online constraint detectors in parallel, one for each constraint. However, it will be es-

sential to examine the impact of the parallelization of multiple inference problems on

the real-time nature of queries. Furthermore, the interactive communication dialogue

must be redesigned to accommodate the additional queries, with particular attention

given to the frequency of querying.

Although our work employs learner feedback as suggestions to the teacher to

improve their demonstration technique during unconstrained motion, we assume that

the learner is unaware of its impact on the teacher’s mental model of the learner.

However, it would be interesting to learn about this impact and understand how

it would affect the demonstrations provided by the teacher to improve interactive
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communication. Therefore, an interesting future direction for our work is leveraging

the teacher’s mental model of the learner to inform human-robot communication.
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Chapter 2

Related Work

2.1 Trajectory Segmentation and Constraint Learn-

ing

Techniques for learning high-level task plans as a sequence or hierarchy of primitives

often involve trajectory segmentation to delineate task primitives from a continuous

trajectory of the task. Some segmentation approaches learn action segments through

task events or task space characteristics. Kyrarini et al. and Huang et al. utilize

object and grasp poses to infer actions such as “grasp action”, “release action” and

“move action” [32, 38]. Such inferred actions split the task into subtasks creating

a task representation as a sequence of executable subtasks or primitives. Hasan

et al. employ predefined task space partitions to segment human demonstrations

[30]. It adopts a task space representation modeled by rows of objects and gaps

between these rows of objects to discretize the action space into two primitive actions,

“moving an object” and “going through a gap”. These actions segment the trajectory

and serve as hierarchical high-level plan nodes, where leaf nodes describe low-level

executable plans. Although [30, 32, 38] learn interactions with objects and the task

space, their task specifications are limited to interaction-based primitives disallowing

the representation of motion level geometric constraints such as “move in a straight

line”. Our work proposes a task specification that describes object interactions, such
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as grasp and place, and geometric constraints on the motion, such as move-in-line.

Similar to [38, 32], we learn object interactions utilizing the demonstrated object and

grasp poses.

Gaussian mixture models (GMMs) are helpful statistical tools to capture the vari-

ability of motion trajectory features and to estimate a set of segmentation points in

a demonstration [13, 39, 40, 52]. Lee et al. explore automatic segmentation of a

multidimensional motion trajectory, acquired from a single demonstration, by learn-

ing a GMM that encodes local directions and relations of trajectory variables. First,

a GMM is fitted to the motion trajectory reduced to a lower-dimensional space by

Principle Component Analysis (PCA), and then consecutive Gaussians in the learned

GMM with different directions are used to segment the trajectory. Although GMMs

are efficient at encoding motion primitives, it is unclear how these models generalize

to task variations, such as changes in positions of objects or goals. For instance,

applying the learned motion primitive to a task with different initial or final object

positions requires some geometric transformation, and it is ambiguous if these trans-

formations will still guarantee the satisfaction of the motion primitive constraints.

Our work leverages object interactions inferred from demonstrated grasp poses to

ground learned position and geometric constraints to relevant objects in the environ-

ment, allowing the learned task plan to adapt to positional variances of objects with

some limitations. We will discuss its implementation details, benefits, and limitations

in section 3.2.

Hidden Markov Models (HMMs) and statistical model-based change point detec-

tion algorithms are commonly used to segment demonstrations based on changes in

specified models or latent variables [27, 33, 35, 49]. Iqbal et al. perform online activity

segmentation employing an HMM to model activity transitions, with activity labels as

hidden states and trajectory frames as observed variables [33]. Gutierrez et al. utilize

corrective demonstrations to modify learned task models, represented as finite-state

automata (FSA), by training a state transition auto-regressive hidden Markov model

(STARHMM), where hidden states index primitives and termination states govern

primitive transitions [27]. Fearnhead and Liu developed an online change point de-
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tection method that detects points of change of underlying models given a set of

candidate models that generate an observation sequence [20, 21, 22]. Research in

robotics has leveraged this online Bayesian approach to segment trajectories based

on skill or motion models [35, 49]. Konidaris et al. segments trajectories into skill

chains by specifying the candidate models of the change point detection method to

be the set of basis functions defining the skill abstractions [35]. Similarly, Niekum et

al. define the underlying models as a set of articulation models, performing articulate

motion segmentation utilizing Changepoint detection using Approximate Model Pa-

rameters (CHAMP) [49]. Although these techniques can efficiently infer change points

between predefined models online, they are limited to inference over parameterized

models and cannot recognize trajectory segments that an underlying model cannot

describe. For instance, the articulate motion segmentation work, unable to distin-

guish between articulated motion and arbitrary unconstrained motion, will fit uncon-

strained motion trajectories into an articulated motion model. Our work proposes an

online constraint detection technique to distinguish between constrained motion seg-

ments following an underlying straight-line motion model and arbitrary unmodeled

unconstrained motion. We augment this online model with an offline counterpart to

improve the changepoint detection accuracy and evaluate performance using a human

subject experiment.

Although Inverse Reinforcement Learning (IRL) or Inverse Optimal Control (IOC)

has been extensively explored in LfD literature as means of learning tasks from expert

demonstrations as reward or cost functions to be optimized [2, 19, 23, 26], majority

of these methods have difficulty explicitly modeling hard constraints and local char-

acteristics of a task. Bayesian Nonparametric IRL (BN-IRL), however, learns local

properties of a task as simple reward functions by partitioning demonstrations into

subtasks [43]. As in conventional IRL, BN-IRL models a demonstration as a Markov

Decision Process (MDP), where a demonstration is defined as a time-ordered set of

state-action pairs. However, it posits partitioning of the MDP into groups, each with

its subgoal and reward function, and introduces a latent assignment variable associat-

ing each observed state-action pair to a group. Park et al. presented Constraint-based
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BN-IRL (CBN-IRL) as a constraint learning extension to BN-IRL, where, in addi-

tion to learning partitions, CBN-IRL can model hard locally-active constraints as

constraint-based transition functions [50]. Although efficient at segmenting MDPs

into subtasks with local constraints, CBN-IRL cannot guarantee the precise delin-

eation of tasks into constrained and unconstrained subtasks due to the unconstrained

nature of the latent assignment variable and the information loss arising from the

sampling-based discretization of the continuous state space. Our work utilizes a line

fitting model to force segmentation to occur at unconstrained and constrained motion

boundaries. Furthermore, we use an offline segmentation phase to mitigate the inac-

curacies arising from the filtering-based discretization step in our online segmentation

algorithm, details of which will be presented in chapter 3.

Robot manipulation tasks often require modeling of global and local task con-

straints. Throughout LfD research, numerous types of constraints such as global task

space constraints [5, 18], safety constraints [67], position and force constraints [64],

conceptual constraints [46, 48], shared constraints across tasks [14], high dimensional

parametric constraints [1, 15, 16] and geometric constraints [24, 37, 53, 66] have been

examined. Our work focuses on learning locally active trajectory constraints that

segment demonstrations into unconstrained and constrained segments. Task space re-

gions (TSR) [7], a widely used geometric constraint representation [53, 41, 66, 44, 42],

utilizes a reference transform, an offset transforms, and a bounding matrix to define a

volume in rigid-body pose space, SE(3), that represents a constraint. Mohseni-Kabir

et al. use TSRs to encode guiding constraints in narrow passages learned by segment-

ing feasibility sample ratios [41, 44]. To calculate feasibility ratios, the authors found

feasible connected samples by sampling the task space surrounding a trajectory and

rejecting samples that are in collision with the environment or disconnected from their

corresponding demonstration pose. Similarly, Liu et al. learn articulated constraints

as TSRs from a continuous visual demonstration [42]. In their work, constrained

segments in a motion trajectory are extracted by denoising least-square fitting errors

using Total Variation Denoising (TVD) [57] and then segmenting the smooth time-

varying signal by fitting a series of step functions. They compare their technique to
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the well-established work on learning articulated motions from visual demonstrations

[51] and report improved average error measurements suggesting accurate articulated

constraints learning from a single continuous demonstration. However, the learning

accuracy hinges on the values of the predefined parameters, such as the errors thresh-

olding parameter, which requires cross-validation of demonstration samples collected

in advance. The accuracy is also dependent on the assumption that the teacher will

only demonstrate articulated motion (including straight-line motion) when essential

to the task. Furthermore, the complexity of their algorithm is 𝑛2, which implies a

quadratic increase in runtimes with an increase in demonstrated trajectory length.

Our work utilizes a simple calibration per user to reduce the number of predefined

hyperparameters. Additionally, we propose an active learning framework with online

constraint detection that leverages human feedback to clarify the validity of demon-

strated straight-line motion, effectively eliminating the assumption mentioned above,

coupled with an offline keyframe learning algorithm of 𝑛 complexity to improve the

accuracy of constraints learned online.

Akgun et al. introduced the concept of keyframes, an ordered sparse set of se-

quential poses, to function as a compact task representation that is independent of

an agent’s kinematics [3]. Additionally, their work explored trajectory to keyframe

conversions by defining keyframes as points required to recover the original trajectory

from a trajectory generated by a spline technique. Since then, keyframe demonstra-

tions have been extensively utilized, in LfD literature, as means of eliminating noisy

undesirable motion [24, 37, 4, 53, 28, 66]. However, task representations composed

of sequential end-effector poses cannot capture more complex properties such as task

constraints. Consequently, Kurenkov et al. introduced constrained keyframes (c-

keyframes), an extension to keyframes, to characterize a space of possible poses for

an end-effector [37]. C-Keyframes, defined with orientation and box-shaped positional

constraints, were learned from the spatial covariance of keyframe clusters. Similarly,

LfD researchers have explored the coupling of keyframes and geometric constraints

to create compact, agent-independent task representations [24, 53, 66]. For example,

TSRs have been utilized to represent keyframes with geometric constraints [53, 66].
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Perez-D’Arpino and Shah learn a multistep manipulation task using a single keyframe

demonstration augmented by a library of primitive actions with volumetric, orienta-

tion, and move-in-line constraints. Each primitive is encoded using a sequence of

TSR keyframes learned by clustering multiple keyframe demonstrations. Although

keyframe demonstrations facilitate temporal alignment while allowing generalization,

trajectory demonstrations are more intuitive to novice teachers and retain critical

speed and timing information. Furthermore, the quality of the task representation

learned from keyframe demonstrations hinges on the demonstrator’s ability to pro-

vide an acceptable set of keyframes. Our work leverages an ordered sequence of TSR-

defined keyframes to create agent-independent task specifications. However, instead

of user-defined keyframes, we propose a framework that learns keyframes from a single

continuous demonstration of a task and empirically compare the performance, sub-

jective usability, and teaching workload of continuous demonstrations and keyframe

demonstrations through a human subject experiment.

2.2 Active Learning in LfD

Active learning, a framework that allows robots to elicit human feedback for improved

learning, has been utilized in robotics to reduce the time and effort spent teaching

new skills [12]. Moreover, this paradigm enables humans to teach robots more natu-

rally, increasing the accessibility of LfD systems to users inexperienced in robotics and

machine learning [10]. Cakmak et al. examined the design implications of different

interaction modes, and types of queries for active learning settings in human-robot

interaction [10, 11, 12]. In [10], Cakmak et al. explore three query modes: (1) queries

made every turn, (2) queries made only under certain conditions, and (3) queries

made only upon the teacher’s request and their benefits compared to passive learn-

ing. They found all three active learning modes to have improved performance and

human preference than passive learning. However, the optimal strategy between the

three active learning modes remained inconclusive and most likely user-dependent.

Cakmak and Thomaz then studied the implications of query types (label, demon-
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stration, and feature), their form (closed-form and open-ended), and their physical

grounding in active learning systems [12]. They discovered that human teachers pre-

ferred physically grounded, closed-form feature queries and presented guidelines on

designing questions asked by robot learners. Following their guidelines, we adopt

closed-form feature queries based on constraints with three predefined answers “yes”,

“no”, and “I don’t know”. To physically ground these queries, we pose them at the time

of occurrence during the demonstration and present images illustrating each answer’s

meaning. As the robot poses feature queries, we opted for the second interaction

mode by querying the teacher only when a constraint is detected.

Active learning has been increasingly explored in robotics and learning from

demonstration fields. Cui and Niekum [17] utilize active Bayesian inverse reinforce-

ment learning, where the learning agent leverages human feedback to update its belief

over reward functions. First, the learning agent proposes a trajectory that a human

teacher then segments into good and bad sections. These labeled trajectory segments,

called critiques, inform the learning agent’s belief over reward functions for the task

at hand. Sadigh et al. used active learning to infer human preferences for a dynamical

system’s behavior in the form of reward functions [58]. They generated two candidate

trajectories based on a finite sequence of actions provided by the human and queried

the human teacher for their pairwise preference. These modify the hypothesis space

of reward functions for human preference according to a maximum volume removal

heuristic. Biyik et al. [8] extended this by exploring the use of the maximum infor-

mation gain criterion to generate more efficient queries, while Biyik and Sadik, [9],

implemented a batch active framework to generate multiple pairwise queries simul-

taneously. Wilde et al. learn user preferences for complex task specifications using

an active learning framework [65]. Here, users rank alternate paths that the agent

generates, refining the cost function that captures user preferences. The agent con-

tinues to iteratively generate alternate paths based on the refined cost function and

request feedback, eventually approaching the unique solution to the shortest path

problem. While the work mentioned above learns only from human feedback, Shah

et al. propose a Bayesian interactive robot training framework that learns from both
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demonstrations provided and human feedback [61]. The learner first builds a belief

over task specifications defined using LTL formulas and then updates its belief based

on the teacher’s assessment of the label queries. These label queries are the specifi-

cations with high uncertainty presented to the teacher as task executions. Like Shah

et al. [61], we design our active learning framework for learning from demonstrations

and human feedback. However, we propose an online active learning framework where

the learner elicits feedback during the demonstration to clarify the teacher’s intent

on constrained regions, limiting the interaction to a single demonstration.

Constraint learning frameworks have leveraged active learning to learn task con-

straints [31], semantic constraints [63], and behavioral constraints [47] more efficiently.

Hayes and Scassellati explore the use of feature queries to learn a constraint network

composed of acceptable skill sequences [31]. The system observes the first demon-

stration and poses open-ended feature queries, informed by an action-space graph,

during the subsequent demonstration to maximize learning gains. Tabrez et al. per-

form skill repair through an interactive framework that utilizes a semantic hierarchy

to select skill repairing semantic constraints [63]. The robot elicits feedback on an

executed skill in two stages; first, open-ended feedback on how the skill is failing, and

second, feedback on constraint parameter nodes of a tree whose leaf nodes represent

a fully parametrized constraint. Confirmation of a leaf node indicates the selection

of a constraint. Although [31] and [63] allow novice users a more natural interaction

with a robot learning constraints, the impact of the given constraints on the robot’s

mental model and the learned model remains unknown to the user.

To teach a robot naturally and effectively, a human needs to have an accurate

mental model of the robot [54, 55]. Mueller et al. explore the use of Robot Behaviour

Counterfactuals (RBCs) and Behavioral Verification Indicators (BVIs) in their active

learning framework to learn task-specific behavior restrictions through human feed-

back [47]. RBCs visualize the robot’s expected behavior when task constraints change,

whereas BVIs illustrate the new model’s success or failure in achieving the task goal.

In this framework, skills learned during demonstration can be edited by adding new

or editing existing behavioral constraints using visualizations in augmented reality.
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The RBCs and BVIs presented during the editing phase allow users to build better

mental models of the robot by understanding how each constraint changes the execu-

tion of the task. Similarly, our work attempts to improve the teacher’s mental model

of the learner by presenting images with the queries illustrating the resultant robot

motion associated with each answer. Additionally, if the robot detects an unintended

incorrect constraint, it gives the user suggestions on demonstrating unconstrained

regions without triggering a constraint query. In other words, based on the teacher’s

feedback, the learner will provide feedback to the teacher on improving the teach-

ing efficiency, further increasing the teacher’s understanding of the learner’s mental

model. To the best of our knowledge, we believe this is the first work that combines

online constraint detection, online human feedback for active learning, and online sug-

gestions for teaching improvement in the context of human-robot interaction. Here,

online refers to the occurrence during the demonstration.
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Chapter 3

Method

3.1 Problem Formulation

Figure 3-1: Our proposed active keyframe learning framework that learns the task
specification as an ordered sequence of interaction and constraint keyframes from a
single demonstration of the task.

Our work focuses on learning a task represented as the least restrictive ordered

sequence of keyframes through a single interactive demonstration. Here, the least

restrictive ordered sequence of keyframes refers to the task specification that results in

a successful execution trace while allowing the most flexibility to the motion planner.

To teach a task, the teacher provides a kinesthetic demonstration of the task which

the learner observes as {𝑋𝑒𝑒, 𝑋𝑔, {𝑋𝑤}}, the trajectories of the end effector’s pose,

the gripper’s state, and the positions of the objects in the scene. Here, 𝑋𝑒𝑒 and 𝑋𝑔 are
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the trajectories of the end-effector’s pose and the gripper’s state, while {𝑋𝑤}𝑤=0:𝑁𝑜𝑏𝑗

denotes the set of trajectories of the objects where 𝑁𝑜𝑏𝑗 is the total number of objects

present. We define trajectories as 𝑋 ∈ 𝑅𝑁×𝑀 , where 𝑀 is the number of frames

recorded during the demonstration. For a trajectory of poses, 𝑁 = 6 denotes the 𝑥,

𝑦, and 𝑧 Cartesian axes and the rotations about those axes, while for a trajectory

of gripper states, 𝑁 = 1 represents the state of the gripper 𝐺, a boolean variable

indicating if the gripper is open (𝐺 = 0) or close (𝐺 = 1). In addition to observing

the end-effector and object poses, the learner can interrupt the teacher during their

demonstration of the task to pose closed-form queries or provide suggestions, as shown

in figure 3-1. After each query, the teacher must first pause the demonstration, provide

an answer, and then continue with the task. Answers are recorded as 𝐹𝑏 ∈ 𝑅𝐵×𝑁𝐹𝑏 ,

where 𝐵 = 2 denotes the answer-time step pairs and 𝑁𝐹𝑏 is the total number of

answers given by the teacher. In this setting, we assume that the teacher answers all

queries and that all answers provided are correct. On the other hand, teachers have

the liberty to accept or decline suggestions given, and we assume that the learner

does not know if the suggestion has been accepted or declined.

Given the inputs {𝑋𝑒𝑒, 𝑋𝑔, {𝑋𝑤}} and 𝐹𝑏, the system learns a task specification

for the demonstrated task encoded as a a set of keyframes that can be executed

sequentially to accomplish the task. In our work, keyframes are expressed using

Task Space Regions (TSRs) [7]. A TSR consists of three components 1) 𝑇 𝑜
𝑤: the

transform from the origin to the frame 𝑤, 2) 𝑇𝑤
𝑒 : end-effector, 𝑒, offset in frame of

w and, 3) 𝐵𝑤: 6 × 2 matrix of bounds . Here, 𝑤 is the frame of an object in the

scene. For convenience, let a TSR be denoted by 𝑌𝑡 = {𝑇 𝑜
𝑤, 𝑇

𝑤
𝑒 , 𝐵

𝑤}. A keyframe

KF 𝑖 = {𝑌 𝑖
𝑡 , 𝐺

𝑖, {𝐶𝑖
𝑗}} is a TSR 𝑌𝑡 coupled with the state of the gripper 𝐺 and an

associated set of constraints {𝐶𝑗}𝑗=1:𝑁𝑐 , where 𝑁𝑐 is the total number of constraints

present in the trajectory segment [KF 𝑖−1, KF 𝑖] and can differ between segments. This

allows one to specify a task using a set of sequential keyframes as {KFi , }𝑖=1:𝑧, where

𝑧 is the total number of keyframes and is inferred from the demonstration provided.

These keyframes are learned by inferring the physical interactions between the end-

effector and objects in the task (to learn 𝐺), and the geometric constraints (to learn
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{𝐶𝑗}). We limit the scope of this work to the move-in-line constraint introduced in

[53] implying 𝑁𝑐 = 1 and the indirect and direct physical interactions as defined in

section 3.2.

In summary, given the inputs {𝑋𝑒𝑒, 𝑋𝑔, {𝑋𝑤}} and 𝐹𝑏 we learn the least restric-

tive task specification {KFi , }𝑖=1:𝑧 by inferring physcial interactions and move-in-line

constraints from a single interactive demonstration of the task.

3.2 Task Specification

A set of sequential keyframes can encode a multistep task to create a task specification

that is agent independent [53]. However, multiple such specifications may exist for a

given task, each providing varying levels of flexibility during motion planning. Our

work aims to learn the least restrictive task specification, described as the specification

resulting in a successful execution trace while allowing the most flexibility to the

motion planner. In this section, we will first describe the different types of keyframes,

interaction keyframes, constraint keyframes, and combined keyframes, the selection

of reference object 𝑤, and then discuss what it means to learn the least restrictive

task specification.

3.2.1 Interaction Keyframes

Capturing the physical interactions between the robot and objects in the environment

is essential to learning an accurate task specification. We categorize physical interac-

tions into two types: (1) Direct interactions and (2) Indirect interactions, as shown in

figure 3-2. Direct interactions are instances where the end-effector comes into contact

with an object, 𝑤𝑑. For example, the robot grasping an object can be classified as a

direct interaction. Indirect interactions occur when an object, 𝑤𝑑, grasped by the end-

effector directly interacts with another object, 𝑤𝑖𝑛, in the environment. An example

of an indirect interaction would be the action of placing an object on a surface. Both

direct and indirect interactions are represented by a single keyframe KFi denoting

the position, the object, and the gripper state of the interaction. Although complex
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Figure 3-2: Interaction and constraint keyframes learned. Here, keyframe poses are
displayed as red circles. Encoding interactions require a single keyframe, whereas,
encoding a move-in-line constraint requires two.

tasks may consist of non-physical interactions, the scope of this work is limited to

direct and indirect physical interactions.

3.2.2 Constraint Keyframes

Locally-active geometric constraints, such as a straight line, can be encoded using

two consecutive keyframes [KFi−1 ,KFi ] as shown in figure 3-2. Here, KFi−1 and KFi

denote the start and end of the constraint and {𝐶𝑖
𝑗} indicates the type of constraint.

In this work, we solely focus on move-in-line constraints where the end-effector will

move in a straight line in Cartesian space, from KFi−1 to KFi implying KFi−1 =

{𝑌 𝑖−1
𝑡 , 𝐺𝑖−1, 𝐶𝑖−1 = 0} and KFi = {𝑌 𝑖

𝑡 , 𝐺
𝑖, 𝐶𝑖 = 1}.

3.2.3 Combined Keyframes

As interactions and constraint boundaries are captured by different variables in a

keyframe 𝐺 and 𝐶𝑗 when an interaction and a constraint boundary coincide in 3D

space, we represent both using a single keyframe. These keyframes that simulta-

neously describe a constraint and interaction are called combined keyframes. For

instance, sliding an object on the table requires the robot to grasp the object,
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slide the object on the table and release the object. In this task, the grasp and

release interactions coincide with the start and end move-in-line constraint bound-

aries, respectively. Therefore, in lieu of using two interaction keyframes and two con-

straint keyframes, the task specification can be reduced to two combined keyframes,

KF1 = {𝑌 1
𝑡 , 𝐺

1 = 1, 𝐶1 = 0} and KF2 = {𝑌 2
𝑡 , 𝐺

2 = 0, 𝐶𝑦 = 1}, each simultaneously

describing an interaction and a constraint boundary.

3.2.4 Selecting the Reference Object 𝑤

Figure 3-3: Limitations in current work for reference object 𝑤 selection strategies.
The task on the left is to move 10cm in a straight line when reaching object B, the
task on the right is to place object C on D. The keyframes are shown in red with
a red line indicating the reference object 𝑤. Green dashed lines indicate correct
trajectories, while blue indicate incorrect trajectories. Due to the limitations in the
existing strategy for selecting 𝑤, the learned keyframes do not adapt to object position
variations in a task.

A keyframe records the end-effector pose with respect to an object 𝑤 to ensure

robustness against variations in object positions. In [53], the object 𝑤 is defined as
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Figure 3-4: Reference object 𝑤 selection for a task where first, the orange block 𝑊𝑑1

is placed on the large gray block 𝑊𝑖𝑛1 and then the blue block 𝑊𝑑2 is placed on the
small gray block 𝑊𝑖𝑛2. The green dashed line indicates a move-in-line constraint.
Reference object 𝑤 for the keyframes are selected to be the key object in the next
interaction.

the object nearest to the end-effector. However, this will result in the inability to

adapt to position changes in certain tasks involving direct and indirect interactions.

To illustrate, consider a direct interaction task requiring a 10 cm straight-line motion

to object 𝐵, as shown in figure 3-3. As the nearest object definition will select 𝑤 of

the first constraint keyframe as object 𝐴, when object 𝐴 is only 5cm away from 𝐵, the

move-in-line constraint will be incorrectly executed as a 5cm straight-line. Another

example is the indirect interaction task of placing object 𝐶 on object 𝐷, as shown in

figure 3-3. Here, object 𝐶 is the nearest object to the end-effector, which will result

in an interaction keyframe that cannot adapt to changes in the position of object

𝐷. Another disadvantage of the nearest object definition for 𝑤 is the generation of

keyframes dependent on nonessential objects near the end-effector. For example, in

figure 3-3, although object 𝐴 is unnecessary for the task, the keyframe generated

depends on this nonessential object’s position. For these reasons, we define object 𝑤

as the key object in the next interaction, as shown in figure 3-4. Here, the key object

of an interaction refers to 𝑤𝑑 in direct interactions and 𝑤𝑖𝑛 in indirect interactions.
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This definition enables task specifications to adapt to variations in object positions

and prevents the keyframe dependence on nonessential objects, as shown in figure 3-4

3.2.5 Least Restrictive Task Specification

Task specifications learned as an ordered sequence of keyframes can be used as input

to motion planners to generate execution traces for a given robot to perform the

tasks [53]. Learning these task specifications independent of the low-level motion

primitives allows systems to leverage motion planners that optimize execution traces

for their unique objectives, such as power efficiency or time efficiency. This benefit

of learning agent independent task specifications relies on the flexibility given to the

motion planner. In other words, the more flexibility given by a specification allows the

motion planner to generate a more efficient execution trace. We define flexibility given

by a specification as the number of execution traces that satisfies the specification.

Our work aims to learn the task specification, encoded by interaction, constraint,

and combined keyframes, that maximizes the flexibility given to a motion planner.

We refer to this specification as the least restrictive task specification for convenience.

As multiple specifications with varying levels of flexibility can exist for a single task,

we theorize that the least restrictive task specification is the specification with the

least number of keyframes.

Definition 3.2.1. For a motion planner, 𝑀𝑃 , and robot,𝑅, with a constant initial-

izing pose, given a specification as a set of ordered keyframes, 𝑆 with |𝑆| = 𝑛, where

{𝑛|𝑛 ∈ 𝑍, 𝑛 ≥ 1} is the number of keyframes in 𝑆, the flexibility given by 𝑆 is defined

as the number of acceptable execution traces |𝑇𝑆|, where 𝑇𝑆 is the set of execution

traces that satisfy 𝑆.

Lemma 3.2.1. If a keyframe is added to specification 𝑆 to create a new specification

𝑆 ′ such that 𝑆 ⊂ 𝑆 ′ and |𝑆 ′| = 𝑛+ 1, where |𝑆| = 𝑛, then, the flexibility given by 𝑆 ′,

|𝑇𝑆′| ≤ the flexibility given by 𝑆, |𝑇𝑆|.

Proof. Let 𝑆 = {KFi , }𝑖=1:𝑛, |𝑆| = 𝑛 and 𝑆 ′ = 𝑆 ∪ {KFnew}, |𝑆 ′| = 𝑛 + 1. Here,

KFnew is the new keyframe added to specification 𝑆 to create the new specification

41



𝑆 ′ and can be an interaction, constraint or combined keyframe. As specifications are

ordered sets, KFnew can be inserted in any position giving 𝑆 ′ = {KFj , }𝑗=1:𝑛+1. Now,

𝑇𝑆 = {execution traces that satisfy {KF}𝑖=1:𝑛}, and

𝑇𝑆′ = {execution traces that satisfy {KF}𝑖=1:𝑛 and {KFnew}}.

As 𝑇𝑆′ ⊆ 𝑇𝑆, |𝑇𝑆′ | ≤ |𝑇𝑆| which implies the flexibility given by 𝑆 ′, |𝑇𝑆′| ≤ the

flexibility given by 𝑆, |𝑇𝑆|.

Lemma 3.2.2. If 𝑥 ∈ 𝑍 number of keyframes are added to specification 𝑆 to create

a new specification 𝑆 ′′ such that 𝑆 ⊂ 𝑆 ′′ and |𝑆 ′′| = 𝑛 + 𝑥, where |𝑆| = 𝑛, then, the

flexibility given by 𝑆 ′′, |𝑇𝑆′′| ≤ the flexibility given by 𝑆, |𝑇𝑆|.

Proof. We proceed using induction.

Base Case: Consider the case of 𝑥 = 1. As 𝑆 ⊂ 𝑆 ′′, |𝑆| = 𝑛 and |𝑆 ′′| = 𝑛 + 1, from

lemma 3.2.1 we get |𝑇𝑆′′ | ≤ |𝑇𝑆|, so the result holds.

Inductive Hypothesis: Suppose, for some 𝑥 ∈ 𝑍, if we add 𝑥 keyframes to 𝑆 to create

𝑆 ′ where 𝑆 ⊂ 𝑆 ′, |𝑆| = 𝑛, and |𝑆 ′| = 𝑛+ 𝑥 then |𝑇𝑆′ | ≤ |𝑇𝑆|.

Inductive Step: Consider the case of 𝑥+1, where we add a single new keyframe to 𝑆 ′

to get 𝑆 ′′ where 𝑆 ′ ⊂ 𝑆 ′′ and |𝑆 ′′| = 𝑛+𝑥+1. From lemma 3.2.1 we have |𝑇𝑆′′ | ≤ |𝑇𝑆′|.

From the inductive hypothesis we have |𝑇𝑆′ | ≤ |𝑇𝑆|, implying |𝑇𝑆′′ | ≤ |𝑇𝑆|. Therefore,

we prove that if the statement holds for 𝑥, it also holds for 𝑥+ 1.

Hence by induction, the flexibility given by 𝑆 ′′, |𝑇𝑆′′| ≤ the flexibility given by 𝑆, |𝑇𝑆|

Definition 3.2.2. For a motion planner, 𝑀𝑃 , and robot, 𝑅, with a constant initial-

izing pose, given a set of task specifications 𝑇𝑆𝑉 = {𝑆𝑖}𝑖=1:𝑁𝑡𝑠 that can be used by

𝑀𝑃 to generate successful execution traces for a single task 𝑉 , where 𝑁𝑡𝑠 is the total

number of specifications that represent 𝑉 , the least restrictive task specification 𝑆𝐿𝑅

is defined as the specification 𝑆𝑖 ∈ 𝑇𝑆𝑉 that maximizes flexibility given to 𝑀𝑃 , |𝑇𝑆𝑖
|.

That is,

𝑆𝐿𝑅 = argmax
𝑆𝑖∈𝑇𝑆𝑉

|𝑇𝑆𝑖
|, (3.1)

where |𝑇𝑆𝑖
| is the flexibility give by 𝑆𝑖, as defined in definition 3.2.1

42



Theorem 3.2.3. Given a set of task specifications 𝑇𝑆𝑉 = {𝑆𝑖}𝑖=1:𝑁𝑡𝑠 for a task

𝑉 , the least restrictive task specification 𝑆𝐿𝑅, as defined in 3.2.2, is the specification

𝑆𝑐 ∈ 𝑇𝑆𝑉 with the least number of keyframes. That is, ∀𝑆𝑖 ∈ 𝑇𝑆𝑉 ∖{𝑆𝑐}, if |𝑆𝑐| ≤ |𝑆𝑖|,

where 𝑆𝑐 ∈ 𝑇𝑆𝑉 , then 𝑆𝐿𝑅 = 𝑆𝑐.

Proof. For a motion planner to generate successful execution traces, the set of keyframes

given must capture all the interactions and constraints essential for the successful ex-

ecution of a task. Let the specification that consists of only the interaction, constraint

and combined keyframes crucial for the success of a task be 𝑆𝑐 = {𝐾𝐹𝑗}𝑗=1:𝑁𝑐 , where

𝑁𝑐 is the total number of crucial keyframes. As 𝑆𝑐 generates acceptable execution

traces, 𝑆𝑐 ∈ 𝑇𝑆𝑉 . ∀𝑆𝑖 ∈ 𝑇𝑆𝑉 , 𝑆𝑖 generates acceptable execution traces implying

that 𝑆𝑐 = {𝐾𝐹𝑗}𝑗=1:𝑁𝑐 ⊂ 𝑆𝑖. Therefore, ∀𝑆𝑖 ∈ 𝑇𝑆𝑉 , 𝑆𝑐 ⊂ 𝑆𝑖 and |𝑆𝑐| ≤ |𝑆𝑖| which

can be written as |𝑆𝑖| = |𝑆𝑐| + 𝑥𝑖, for some 𝑥𝑖 ∈ 𝑍. Applying lemma 3.2.2 we get

∀𝑆𝑖 ∈ 𝑇𝑆𝑉 , |𝑇𝑆𝑖
| ≤ |𝑇𝑆𝑐 |. Therefore, 𝑆𝐿𝑅 = argmax𝑆𝑖∈𝑇𝑆𝑉

|𝑇𝑆𝑖
| = 𝑆𝑐, where 𝑆𝑐 ∈ 𝑇𝑆𝑉

and ∀𝑆𝑖 ∈ 𝑇𝑆𝑉 ∖ {𝑆𝑐}, |𝑆𝑐| ≤ |𝑆𝑖|.

Theorem 3.2.3 proves that the least restrictive task specification is the specifica-

tion with the least number of keyframes that results in successful execution traces

for the task. Our work aims to learn the least restrictive task specification from a

single demonstration of the task by learning the interaction, constraint, and combined

keyframes essential for the success of a task, 𝑆𝑐. Here, a set of keyframes can be triv-

ially verified to be essential for the task’s success by ascertaining that removing any

keyframe in the set will result in an erroneous task specification. In our experiments,

we evaluate all learned tasks compared to the least restrictive task specifications for

the given tasks and report our findings in chapter 4.

3.3 The Active Keyframe Learning Framework

We propose an active keyframe learning framework that learns, from a single demon-

stration, the physical interactions and move-in-line constraints of a task as the least

restrictive task specification encoded by sequentially ordered keyframes. However,
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learning move-in-line constraints from a single demonstration of a task can result in

over-constrained task specifications [53]. For instance, a teacher with inexperience in

robotics may move the robot in straight lines in unconstrained regions of the task,

unintentionally teaching an over-constrained task. To this end, we learn the move-

in-line constraints in two stages: (1) the interactive demonstration and (2) offline

keyframe learning, as shown in figure 3-1. The interactive demonstration stage lever-

ages active learning to understand human intent behind demonstrated straight-line

motion and provides suggestions to the teacher to improve their mental model of the

learner. Next, the human intent captured as feedback from the teacher is utilized in

the offline keyframe learning stage to remove incorrect constraints learned from the

demonstration data reducing the over-constrained nature of the learned task speci-

fication. Physical interactions between the robot and the objects are learned solely

in the offline keyframe learning stage using the recorded demonstration data. This

section describes implementation details of the interactive demonstration and offline

keyframe learning stages in our active keyframe learning framework that learns the

least restrictive task specification for a demonstrated task.

3.3.1 Interactive Demonstration

The interactive demonstration framework consists of an online constraint detector

and interactive communication, as shown in figure 3-1. During teaching, the online

constraint detector observes the end-effector poses as a sequence of frames 𝑋𝑒𝑒 =

{𝑥𝑖
𝑒𝑒}𝑖=1:𝑀𝑡 , where 𝑀𝑡 is the number of frames recorded until time 𝑡, and infers the

latent binary state variable, 𝑌𝑐[𝑡], denoting the constrained nature of demonstrated

motion at time step 𝑡. Here, 𝑌𝑐[𝑡] = 0 indicated unconstrained motion and 𝑌𝑐[𝑡] = 1

indicates constrained motion, at time step 𝑡. Informed by 𝑌𝑐[𝑡], interactive commu-

nication begins with the learner’s query, followed by the teacher’s answer, and ends

with a suggestion from the learner. This dialog occurs each time 𝑌𝑐[𝑡] toggles from 0

to 1. Once the interactive demonstration ends, the teacher’s answers 𝐹𝑏, the inferred

state variable {𝑌𝑐}, and the demonstration data recorded {𝑋𝑒𝑒, 𝑋𝑔, {𝑋𝑤}} serve as

input to the offline learning phase.
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3.3.1.1 Online Constraint Detector

Figure 3-5: Architecture of the online constraint detector

The online constraint detector infers the latent state variable 𝑌𝑐[𝑡], that denotes

the constrained nature of the demonstrated motion at time 𝑡, from the end-effector

poses 𝑋𝑒𝑒 = {𝑥𝑖
𝑒𝑒}𝑖=1:𝑀𝑡 observed until time 𝑡, as shown in figure 3-5. First, the

end effector poses are transformed to {𝑑𝑖}𝑖=1:𝑀 ′′
𝑡

that represents the distance error of

𝑥𝑒𝑒 to constrained line motion, followed by model fitting of 𝑑𝑖 to get the switching

probability Pr(𝐶|𝑑𝑖) and finally, the inference of of the latent state 𝑌𝑐[𝑡]. This process

happens online, updating 𝑌𝑐[𝑡] with each new end-effector pose observation 𝑥𝑒𝑒.

Transformation. During the demonstration, the position of the end-effector is

recorded as a sequence of frames 𝑋𝑒𝑒 = {𝑥𝑖
𝑒𝑒}𝑖=1:𝑀𝑡 , where 𝑀𝑡 is the number of

frames recorded until time 𝑡. First, these frames are filtered online using the position

vector of the frame 𝑥𝑖
𝑒𝑒, 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖), such that, ‖𝑝𝑗+1 − 𝑝𝑗‖ = 𝐷𝐹 . Here, 𝐷𝐹

is a predefined distance value and 𝑝𝑗 is the position vector of the frame 𝑥𝑗
𝐹 in the

new filtered sequence of frames 𝑋𝐹 = {𝑥𝑗
𝐹}𝑗=1:𝑀 ′

𝑡
. Next, the filtered trajectory 𝑋𝐹 is

converted to the distance errors {𝑑𝑖}𝑖=1:𝑀 ′′
𝑡

by computing the perpendicular distance

from 𝑝𝑗+2 to the the straight line fitted to 𝑝𝑗+1 and 𝑝𝑗, using the equation,

𝑑𝑖 =

⎯⎸⎸⎷‖𝑝𝑗+2 − 𝑝𝑗+1‖2 −

[︃
(𝑝𝑗+2 − 𝑝𝑗+1) · (𝑝𝑗+1 − 𝑝𝑗)

‖𝑝𝑗+1 − 𝑝𝑗‖

]︃2

. (3.2)

Switching Probability. As the scope of this work is limited to the straight line

constraint, there are only two states the end-effector can be in at instance 𝑖: (1) con-
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strained (𝑌 𝑖
𝑐 = 1) and (2) unconstrained (𝑌 𝑖

𝑐 = 0). We employ a Logistic Regression

model, with distance error {𝑑𝑖} as the independent variable, to model constrained

and unconstrained state of motion, 𝑌 𝑖
𝑐 . The parameters of this model, unique to a

user, are learned by fitting a logistic regression model to labeled distance errors com-

puted using labeled demonstration data of a straight line and a circle. This labeled

demonstration data is recorded during a simple calibration step, required once per

user, where the user moves the end-effector first in a straight line and next in a circle.

During the demonstration of a task, given the logistic regression model for con-

strained and unconstrained motion, the probability of the constraint state switching

given 𝑑𝑖 and 𝑌 𝑖−1
𝑐 = 𝐶, Pr(𝑌 𝑖

𝑐 = 𝐶|𝑑𝑖, 𝑌 𝑖−1
𝑐 = 𝐶), is the classification probability of

𝑌 𝑖
𝑐 = 𝐶 given 𝑑𝑖, Pr(𝐶|𝑑𝑖), calculated as,

Pr(𝐶|𝑑𝑖) =

⎧⎪⎨⎪⎩
1

1+exp(−𝛽0−𝛽𝑖𝑑𝑖)
𝐶 = 1

1− 1
1+exp(−𝛽0−𝛽𝑖𝑑𝑖)

𝐶 = 0

, (3.3)

where 𝛽0 and 𝛽1 are the parameters of the logistic regression model. Pr(𝐶|𝑑𝑖) informs

𝑌𝑐[𝑡] as explained below.

State Inference. Due to instrument and human motion noise, simply thresholding

the switching probability values can lead to incorrect high frequency switching of

state values. Therefore, we drew inspiration from Khoramshahi et Billard [34] and

introduced an energy tank that governs state switching. The energy of the tank, 𝑇𝑖,

is defined as 𝑇𝑖 = 𝑇𝑖−1 + Pr(𝐶|𝑑𝑖)2 − 𝑇𝑑, where 𝑇𝑑 is the constant dissipated energy.

When 𝑇𝑖 ≥ 𝑇𝑠, where 𝑇𝑠 is the threshold that triggers a state switch, the state of the

system is switched (𝑌 𝑖
𝑐 = 1−𝑌 𝑖−1

𝑐 ), and the energy of the tank is reinitialized to zero,

i.e. 𝑇0 = 0. When 𝑇𝑖 < 𝑇𝑠, 𝑌 𝑖
𝑐 = 𝑌 𝑖−1

𝑐 . This behavior can be summarized by the

following equations; For tank energy 𝑇𝑖,

𝑇𝑖 =

⎧⎪⎨⎪⎩𝑇𝑖−1 + Pr(𝐶|𝑑𝑖)2 − 𝑇𝑑 𝑇𝑖 < 𝑇𝑠

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (3.4)
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Figure 3-6: Question posed to the user when in constrained region (left) and the
suggestion made to the user when their answers are “No” or “I don’t know” (right).

and for the constraint state 𝑌 𝑖
𝑐 ,

𝑌 𝑖
𝑐 =

⎧⎪⎨⎪⎩𝑌 𝑖
𝑐 = 𝑌 𝑖−1

𝑐 𝑇𝑖 < 𝑇𝑠

𝑌 𝑖
𝑐 = 1− 𝑌 𝑖−1

𝑐 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (3.5)

where 𝑇𝑑 is the constant dissipated energy and 𝑇𝑠 is the threshold energy that triggers

a state switch. This infers the latent constraint state variable, 𝑌𝑐, the output of the

online constraint detector used to guide the interactive communication between the

human and robot.

Although this online technique allows us to identify the presence of constrained

motion, the boundaries of the true constrained segment do not coincide with the

boundaries of the predicted constrained segment. This is due to the delay introduced

by frame filtering, signal transforming, and state switching steps. To extract accurate

constraint keyframes, additional processing must be conducted offline, as explained

in section 3.3.2.

3.3.1.2 Interactive Communication

Interactive communication takes the form of a dialogue between the teacher and

learner designed to capture the human intent for the demonstrated straight-line mo-

tion and improve the teacher’s mental model of the learner. The dialogue follows the

format [(learner - query), (teacher - answer), (learner - suggestion)], where a pair in

parenthesis represent (communicator, type of communication). According to Cakmak
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et al., the type, form, mode, and physical grounding of queries are essential aspects to

consider when designing interactive systems for human-robot interaction [10, 11, 12].

Following their guidelines, we adopt closed-form physically grounded feature queries

under the queries made only under certain conditions mode. The suggestion is pro-

vided based on the teacher’s answer and aims to improve the teacher’s understanding

of the learner.

Query type. As we are interested in leveraging communication to learn the human

intent for a straight-line motion, only a single query inquiring about the validity of

the demonstrated straight-line motion is required. We design this query as a feature-

based query, where the feature is the inferred constraint state of motion 𝑌𝑐[𝑡] at time

𝑡, to be “Do I have to move in a straight line there?”.

Query form. Following guidelines presented in [12], we design a closed-form query

by predefining the answers available to the teacher as “Yes”, “No”, and “I don’t know”.

These answers are presented to the teacher each time the query is posed.

Query mode. We adopt the queries made only under certain conditions mode

by defining the condition to be when 𝑌𝑐[𝑡 − 1] = 0 and 𝑌𝑐[𝑡] = 1. In other words,

the learner will pose the question when the inferred constraint state swiches from not

constrained to constrained.

Physical grounding. To physically ground these queries, we pose them at the time

of occurrence and present images on a screen, illustrating each answer’s meaning to

the teacher, as shown in figure 3-6.

Suggestion. The suggestion on demonstrating unconstrained motion to the learner

is only given if the teacher’s answer is “No” or “I don’t know”. Furthermore, the

suggestion, given as “Please do not move in a line unless the robot must move in a

line.”, is displayed on the screen with example images of good unconstrained motion,
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as shown in figure 3-6. The teacher can choose to accept or decline the suggestion

given, and we assume that the learner does not have access to the teacher’s decision.

Impact of communication on learner’s state. When the teacher provides the

answer “No” indicating that the constrained motion demonstrated is not a constraint

of the task, the learner updates the state 𝑌𝑐[𝑡] = 1 to 𝑌𝑐[𝑡] = 0. The answers “Yes”,

and “I don’t know” have no impact on the learner. As the learner does not have access

to the teacher’s decision on accepting or declining the suggestion, the suggestion does

not affect the learner’s state.

3.3.2 Offline Keyframe Learning

Figure 3-7: Overview of Offline Keyframe Learning

This section describes the method proposed to learn a sequence of keyframes from

demonstration data, Offline Keyframe Learning (OKL), as shown in Algorithm 1 and
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Algorithm 1: Offline Keyframe Learning (OKL)
Input: 𝑋𝑒𝑒 - A list of demonstration frames

𝑋𝑔 - A list of gripper states
{𝑋𝑤} - A list of object poses
𝐹𝑏 - Human feedback given
{𝑌𝑐} - Inferred constraint states

Output: 𝑆𝐿𝑅 - Sequence of keyframes that specify the task
1 𝑆𝐿𝑅 ←0
2 𝑆 ←SegmentTrajectory(𝑋𝑒𝑒, 𝑋𝑔)
3 𝐶𝑜 ← ModifyDetectedConstraints({𝑌𝑐}, 𝐹 𝑏)
4 for i = 0 to S.size do
5 𝐶𝑟 ← getConstrainedRegions(𝑆(𝑖), 𝐶𝑜)
6 for j = 0 to Cr.size do
7 𝑙 ← getTrueLine(𝑆(𝑖), 𝐶𝑟𝑗)
8 𝐿 ← FitLineModel(𝑙)
9 𝑒 ← FittingError(𝑆(𝑖), 𝐿)

10 𝑒𝑠 ← TVD(𝑒)
11 𝜎 ← getThreshold(𝑒𝑠, 𝑙)
12 𝑆𝐿𝑅 ← 𝑆𝐿𝑅 + ConstraintKF(𝑆(𝑖), 𝜎)
13 end
14 end
15 𝑆𝐿𝑅 ← AddInteractionKFs(𝑋𝑒𝑒, 𝑋𝑔)
16 𝑆𝐿𝑅 ← CombineKF(𝑆𝐿𝑅,𝑆)
17 return S𝐿𝑅

figure 3-7. OKL requires the demonstration frames of the end-effector, gripper state,

and the objects in the scene {𝑋𝑒𝑒, 𝑋𝑔{𝑋𝑤}}, the answers to the queries posed by the

robot 𝐹𝑏, and the constraint state inferred online {𝑌𝑐}. Keyframes are learned in

three steps: first, line 2 segments the trajectory according to interactions; second,

lines 3 - 11 segment the trajectory segments from line 2 based on constraints; and

third, lines 12 - 16 learns keyframes from the trajectory segments. The output of

OKL is the task specification as an ordered sequence of keyframes that can be given

as input to a motion planner to execute the task.

Interaction based segmentation. First, the continuous trajectory recorded, 𝑋𝑒𝑒,

is segmented based on the physical interactions in the task. In this work, interactions

are limited to those that involve a change in the gripper state. For instance, picking an

object will cause the gripper state 𝐺 to switch from 0 to 1, whereas placing an object
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will change 𝐺 from 1 to 0. Therefore, to perform segmentation based on interactions,

SegmentTrajectory in line 2 segments the trajectory by the frames corresponding to

a gripper state change.

Constraint based segmentation. To learn constraint keyframes, the constraints

detected online are modified to reflect the feedback received. This is achieved by

ModifyDetectedConstraints by removing the constraint segments corresponding to

the feedback “No”, in line 3. Next, the constrained regions 𝐶𝑟 = {𝐶𝑟𝑗} in each

interaction-based segment is listed in line 5. As explained in section 3.3.1.1, these

constrained regions do not perfectly align with the true constraints 𝐶𝑡 = {𝐶𝑡𝑖}.

Therefore, before fitting the line model 𝐿, the overlapping segment 𝑙 between the true

constraint 𝐶𝑡𝑖 and detected constraint 𝐶𝑟𝑗 must be found. 𝐶𝑡𝑖, 𝐶𝑟𝑖, and 𝑙 constitute

of a set of sequential poses {𝑝𝑡
𝑘}𝑘=0:𝑁𝑡 , {𝑝𝑟

𝑘}𝑘=0:𝑁𝑟 , and {𝑝𝑙
𝑘}𝑘=0:𝑁𝑙

respectively. Here,

𝑁𝑡, 𝑁𝑟, and 𝑁𝑙 are the number of frames in 𝐶𝑡𝑖, 𝐶𝑟𝑖, and 𝑙. As 𝐶𝑟𝑗 begins after 𝐶𝑡𝑖,

the starting pose of 𝑙 can be defined as 𝑝𝑙
0 = 𝑝𝑟

0. Furthermore, as the misalignment

between 𝐶𝑡𝑖 and 𝐶𝑟𝑗 is caused due to delay introduced primarily by the distance

filter, 𝑝𝑙
𝑁𝑙

= 𝑝𝑟
𝑚, such that, ‖𝑝𝑟

𝑁𝑟
− 𝑝𝑟

𝑚‖ ≥ 𝐷𝐹 and ‖𝑝𝑟
𝑁𝑟
− 𝑝𝑟

𝑚+1‖ < 𝐷𝐹 . Therefore,

the function getTrueLine, in line 7, returns 𝑙 = {𝑝𝑟
𝑖}𝑖=0:𝑚. Next, a straight line is

fitted to 𝑙 by FitLineModel, in line 8, using two least square fittings, to obtain the

equation of the straight line constraint 𝐿. Then, the fitting errors 𝑒 of all the poses

in 𝑆(𝑖) to the line model 𝐿 is calculated by FittingError in line 9.

Total Variation Denoising (TVD) [57] is a filtering method that minimizes the

total variation of a signal as means of smoothing the signal while preserving its sharp

edges. The calculated fitting errors are denoised using TVD, in line 10, to generate

a smoother time-varying signal, 𝑒𝑠. This signal can be thresholded to extract the

true constraints. Here, the threshold value 𝜎 is set by getThreshold, line 11, to be

𝜎 = max(𝑒𝑙) + 𝜖, where 𝑒𝑙 are the smooth fitting errors that correspond to 𝑙, and 𝜖 is

a small positive number.
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Keyframe Learning. Following the thresholding of 𝑒𝑠, the constraint keyframes,

the boundary frames of the true constraint segment, are added to the list of keyframes

𝑆𝐿𝑅 by ConstraintKF in line 12. Next, AddInteractionKFs in line 15 updates the

list of keyframes 𝐾𝐹 with the interaction keyframes learned using 𝑋𝑒𝑒 and 𝑋𝑔 as

the frames corresponding to the issued gripper commands. CombineKF, in line 16,

ensures that interaction and constraint keyframes that coincide are combined into a

single keyframe and assigns the reference objects 𝑤 of keyframes using the interaction

segments 𝑆. The finalized list of keyframes 𝑆𝐿𝑅 can be executed sequentially to

perform the multistep manipulation task captured by the demonstration data.

3.4 Summary

Active Keyframe Learning (AKL) learns the least restrictive task specification from

the observed demonstration end-effector poses, gripper states, and object positions

augmented by human feedback elicited on the validity of online detected constrained

regions of the demonstrated trajectory. It utilizes an interactive demonstration that

consists of an online constraint detector and interactive communication between the

robot and teacher to learn the human intent behind demonstrated constraint motion.

The learned human intent is utilized in the offline keyframe learning algorithm to

refine the keyframes learned from the interaction-based and constraint-based segmen-

tation steps, thereby reducing the overconstrained natured of the learned keyframes.

In this manner, AKL allows us to learn the least restrictive task specification as an

ordered sequence of keyframes that capture the physical interactions and move-in-line

constraints from a single demonstration. In the next chapter, we evaluate the per-

formance of AKL against two state-of-the-art techniques in keyframe and constraint

learning. We design a within-subjects study to obtain demonstrations for three tasks

under each teaching method and analyze the keyframe accuracy, pose accuracy, con-

straint accuracy, teaching workload, system usability, and teaching efficiency to assess

the benefits of AKL as a framework to teach robots tasks.
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Chapter 4

Experimental Setup and Evaluation

This chapter presents the experimental setup and evaluation. It first describes the

within-subjects study designed to evaluate our technique’s performance, efficiency,

workload, usability, and runtimes against two baseline methods on three tasks. We

then discuss our findings under the results section. The source code for the experi-

ments is available at: https://github.com/thavishi/keyframe_detection.

4.1 Baseline Methods

Our technique is evaluated against two baseline methods: Keyframe demonstrations

(KD) [3] utilized in [53] and articulated constraints learning approach from [42]. The

first baseline method, KD, explicitly allows users to define the keyframes during

a demonstration. It is essential to observe that the loss of information due to a

user-defined keyframe representation of a continuous trajectory makes learning the

task’s constraints challenging. Despite this inherent constraint learning limitation, we

selected KD as a baseline due to its extensive use in keyframe learning and trajectory

segmentation research. In our experiments, participants were instructed to define

the least number of keyframes they think are required for successful robot learning.

These keyframes are augmented with the participant’s gripper commands to create

the set of sequential keyframes used for comparison.

The articulated constraints learning approach, briefly introduced in chapter 2, was
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selected as our second baseline method based on its capability to learn articulated

constraints from a single demonstration. In our experiments, we utilize this method

to perform trajectory segmentation based on line constraints and list the boundary

frames of the segments as constraint keyframes. In order to make the specification

comparable, we augment the learned keyframes with interaction keyframes inferred

by a participant’s gripper commands. However, as constraints and interactions are

learned in two independent processes, keyframes that simultaneously represent a con-

straint and an interaction will be inferred as two different keyframes. In our exper-

iment, the sliding window size for this method was 5 cm, equal to our predefined

distance value 𝐷𝐹 . The TVD regular parameter was 0.6 as in [42]. Additionally, we

used labeled demonstration samples to infer the error threshold value 𝜎 to be 2.01.

We will refer to this modified articulated constraints learning baseline as mACL for

convenience.

4.2 Measures

The following measures are utilized to quantify participant performance. For con-

venience, we will refer to the sequence of keyframes learned by our technique or a

baseline method as learned keyframes, and the actual least restrictive task specifica-

tion for each task, defined as in section 3.2, as the ground truth.:

Keyframe Accuracy: The accuracy of the keyframes, learned quantified by the

Intersection-over-Union (IoU) measure computed between the learned keyframes and

the ground truth.

Pose Accuracy: The correctness of the poses of the keyframes learned, measured

as the IoU measure computed between learned poses and the ground truth.

Constraint Accuracy: The accuracy of the constraints, calculated as the IoU mea-

sure computed between the length of the learned constraints and the length of the

true constraints.

Teaching Workload: The subjective workload on a participant using the system,

measured by the NASA-TLX workload scale [29].
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Teaching Efficiency: The efficiency of teaching a task, measured by dividing

keyframe accuracy by teaching workload.

Method Success Rate: The rate of success of a method when used to teach tasks,

computed as the number of successful trials divided by the total number of trials. In

our work, a trial refers to a single demonstration of a task and is considered successful

if the learned task specification is equal to the ground truth.

4.3 Hypotheses

AKL is designed to learn the least restrictive task specification by assigning keyframes

to the boundaries of interaction and constraint segments, combining any interaction

and constraint keyframes that coincide in Cartesian space, and utilizing human feed-

back to reduce constraint errors. In contrast, KD utilizes user-defined keyframes that

are highly dependent on the user’s knowledge of what constitutes the least restrictive

task specification. On the other hand, mACL cannot combine coinciding interaction

and constraint keyframes and does not account for the possibility of unintentionally

over-constrained demonstrations. Thus, we hypothesize:

Hypothesis 1: Keyframe accuracy will be higher in our technique than in both the

baselines.

The poses of the learned keyframes allow us to examine the accuracy of the task

specification learned unaffected by the learned interaction and constraint labels. As

AKL learns the least restrictive task specification, we hypothesize:

Hypothesis 2: Pose accuracy will be higher in our technique than in both the base-

lines.

KD learns only user-defined keyframes and cannot learn move-in-line constraints,

and therefore, is not included in our constraint accuracy comparisons. Although AKL

and mACL use least square model fitting and TVD to learn constraints offline, AKL
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utilizes the latent constraint states inferred online augmented with human feedback to

reduce constraint errors during offline learning. Furthermore, as constraint segmenta-

tion is performed on interaction segments, the boundaries of the learned constraints

are more accurate. Thus we hypothesize:

Hypothesis 3: Constraint accuracy will be higher in our technique than in the

mACL baseline.

Teaching workload allows us to examine the subjective workload when using the

system to teach a robot. As AKL employs a natural and intuitive teaching interface,

the interactive demonstration framework, where users provide a continuous demon-

stration while conversing with the robot, we hypothesize:

Hypothesis 4: Teaching workload will be lower in our technique than in both the

baselines.

As AKL learns the least restrictive task specification and has an intuitive teaching

interface, we hypothesize:

Hypothesis 5: Teaching efficiency will be more significant in our technique than in

both the baselines.

4.4 Experimental Design

The experiment was designed to collect kinesthetic demonstrations of three manipu-

lation tasks: (1) a pick and place task having no constraints, (2) an inspection task

having an explicit constraint, and (3) an assembly task having an implicit constraint,

as shown in Fig. 4-1. Here, explicit constraints refer to the constraints that are

explicitly written in the descriptions of a task provided to a participant, whereas

implicit constraints are not explicitly written in the task description despite being

required for the correct execution of the task. The pick and place task requires the

participant to move two objects from one shelf to another. Its least restrictive task

specification consists of four interaction keyframes, one for every direct (grasp ob-
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Figure 4-1: Task setup for the three tasks, pick and place task (top), inspection task
(middle), and assembly task (bottom).

ject) and indirect (place object) interaction. The inspection task involves moving an

object over a row of scanners and then placing the object on the second shelf. Its

least restrictive task specification consists of two interaction keyframes for the grasp

and placing of the object and two constraint keyframes representing the straight-line

motion over the row of scanners. This move-in-line constraint is explicitly mentioned

in the task description as “move in a line over the row of scanners”. The assembly

task requires participants to move an object from one shelf to the other and then slide

the pipe through the clamp. The pipe sliding step generates a straight-line motion

which must be encoded in the task specification as a move-in-line constraint. How-

ever, the instruction provided to participants, “slide the pipe through the clam” does

not explicitly mention that it requires straight-line motion. The assembly task has
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four keyframes in its least restrictive task specification, two interaction keyframes for

the pick and place of the object and two combined keyframes that simultaneously

represent the boundaries of the straight-line motion and the grasp and release of the

pipe.

We utilized a Franka Emika Panda robot arm coupled with an Ubuntu 16.04 com-

puter running Robot Operating System (ROS) Indigo to collect kinesthetic demon-

strations. Task descriptions and robot queries were displayed on a graphical user in-

terface (GUI) while answers were given using speech (“yes”, “no”, and “I don’t know”).

Voice commands were also used to to convey the start (“start”) and end (“stop”) of

demonstrations, gripper commands (“open” and “close”), and user-defined keyframe

poses (“record”). In our experiment, the distance value 𝐷𝐹 parameter and the TVD

regular parameter were defined as 5cm and 0.6. The algorithm inferred all other

parameters of our technique from the participants’ calibration and demonstration

data.

The experiment began with a demographic questionnaire followed by a training

session designed to allow participants to familiarize themselves with the kinesthetic

teaching setup. The participants then entered the calibration phase, where they

were asked to move the robot along a predefined line and predefined circle. Upon

completing the calibration phase, participants began the primary phase, performing

nine tasks (three modes, AKL, KD, and ACL, with three tasks per mode). The

order of teaching modes was balanced between subjects using a Latin square design.

We utilized a single Latin square with three rows to balance the 12 participants to

analyze ordering effects. After performing each task, participants responded to the

NASA-TLX questionnaire [29], and after each teaching mode, they rated the ten

statements of the System Usability Scale (SUS) [6] on a 7-point Likert scale as in

[25]. Participants concluded the experiment by responding to an exit questionnaire

allowing open-ended comments on the experiment and their user experience for the

three different teaching modes.
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4.5 Analysis

4.5.1 Linear mixed-effects model analysis

The task specifications learned and the subjective workload reported were analyzed

using MATLAB’s native linear mixed-effects modeling function (fitlme). The linear

mixed-effects models designed to investigate the hypotheses were formulated as fol-

lows:

DV ∼ Age + Sex + RobotEx + JoystickCEx + Mode + Task + (1|Participant) +

(1|Participant:Order)

DV represents the dependent variable being analyzed under each hypothesis and is

keyframe accuracy, pose accuracy, constraint accuracy, teaching workload, and teach-

ing efficiency for hypotheses 1 - 5, respectively. The independent variables included

in the model are as follows:

• Age: The age of a participant in years.

• Sex : A participant’s sex as reported in the demographic questionnaire. Female

was considered the reference category in the models, while Male was an indicator

variable. Our experiment consisted of six female and six male participants.

• RobotEx : A participant’s experience interacting with robots, represented as

a binary variable, where no experience was zero and any experience handling

robots was one. Five participants had experience working with robots.

• JoystickCEx : A participant’s experience using a joystick controller as reported

on a seven-point Likert scale.

• Mode: The method used to collect demonstrations. KD and mACL were indi-

cator variables, while AKL was the reference category.

• Task : The task being demonstrated. The pick and place task was the model’s
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reference variable, while the inspection and assembly tasks were indicator vari-

ables.

• Participant : The ID number assigned to each participant.

• Order : The chronological order of the teaching modes.

The random effects were modeled using Participant as a grouping variable and

Order as a nested grouping variable within Participant. The remaining independent

variables were fixed effects in our linear mixed-effects models.

4.5.2 System Usability Scale analysis

The System Usability Scale is designed to obtain a participant’s subjective rating of

the overall system usability. It consists of ten statements targeting various aspects

of system usability, such as system consistency, complexity, and ease of use. Each

statement is rated with a 7-point Likert-type scale, and an overall usability score

ranging from 0 (low usability) to 100 (high usability) is computed as in [25]. These

Likert items and the overall usability scores were analyzed using MATLAB’s Wilcoxon

Rank-Sum test (ranksum), and the results will be discussed in the following section.

4.6 Results

In this section, we will first compare the method success rates for each task and then

examine the results of the linear mixed-effects model analyses. For convenience, the

abbreviations AKL, KD, and mACL refer to our proposed method, and the baseline

methods, keyframe demonstration, and modified articulated constraint learning, re-

spectively. Additionally, the pick and place, inspection, and assembly tasks will be

abbreviated as Task1, Task2, and Task3. The significance of our findings is based

on the 𝑝-values of the estimated mixed-effects model coefficients for the fixed effects,

and a significant coefficient implies that a change in the value of that effect signifi-

cantly impacts the model’s dependent variable. In our discussion, ‘significant’ refers

to 𝑝 < 0.05 while ‘highly significant’ refers to 𝑝 < 0.001.
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Table 4.1: Task specification learning success rates as percentages. Case(a) presents
success rates as defined in section 4.2 and Case(b) reports success rates adjusted
for algorithmic limitations. AKL achieved higher success rates for all three tasks
compared to the baselines under both cases.

KD mACL
AKL

Case(a) Case(b) Case(a) Case(b)

Task1 50.0 50.0 33.3 33.3 66.7

Task2 0.0 33.3 41.7 41.7 75.0

Task3 0.0 41.7 0 16.7 58.3

Overall 13.9 41.7 25.0 33.3 66.7

4.6.1 Task specification learning success rates

Table 4.1 presents the method success rates, as percentages, for each task under two

cases: (a) where the success of a trial is defined as in section 4.2, and (b) where the

limitations of the algorithms are considered when determining the success of a trial.

Under case (a), AKL produced higher success rates than both KD and mACL for

all three tasks, suggesting that more participants could teach the robot the correct

task specification using AKL than the baseline methods. KD reports zero successful

trials for Task2 and Task3 as this baseline method cannot infer the constraints. Simi-

larly, as mACL treats interaction keyframe learning and constraint keyframe learning

as two separate processes in Task3, it generates four separate keyframes instead of

the two keyframes representing both an interaction and a constraint boundary. This

results in zero successful trials for Task3 under mACL.

Under case (b), we compare the AKL success rates to the baseline success rates

computed for the best case of mitigating the inherent limitations of the techniques.

For KD, the inability to learn constraints can be mitigated by augmenting the al-

gorithm with a technique that adds constraint labels to the learned keyframes. To

obtain the best case results, we assume that all added constraint labels are correct,

resulting in 33.3 and 41.7 percent success rates for Task2 and Task3. mACL is aug-

mented with a process that combines interaction and constraint keyframes to mitigate
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(a) (b)

Figure 4-2: Results for keyframe accuracy analysis. Figure 4-2a presents the esti-
mated coefficients of the linear mixed-effect model for keyframe accuracy, with 95%
confidence intervals. Blue and red bars represent improved and reduced performance.
Dark colored bars indicate highly significant effects (𝑝 < 0.05), light colored bars in-
dicate non-significant effects. Figure 4-2b illustrates the distributions of the number
of missed and incorrect keyframes per trial for each mode.

its limitation in Task3. By assuming that all combinations performed by this process

are correct, we obtain the best case success rate of 16.7 percent. Nevertheless, the

success rates reported by AKL are higher than both baselines in all three tasks for

case (b).

4.6.2 Hypothesis 1: Keyframe Accuracy

The linear mixed-effects model analysis for keyframe accuracy, shown in figure 4-2a

results in highly significant negative coefficients for KD (Mode1) and mACL (Mode2)

factors. As negative coefficients correspond to poorer keyframe accuracy, these results

suggest that, compared to the reference category AKL, KD and mACL display lower

keyframe accuracy, supporting Hypothesis 1.

Figure 4-2b illustrates the distribution of the total missed and incorrect keyframes

per trial for each mode of teaching, KD, mACL, and AKL (Mode 1, 2, and 3, respec-

tively). Similar to the linear mixed-effects model results, KD and mACL have a

higher median than AKL, corresponding to a lower average keyframe accuracy. It is
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(a) (b)

Figure 4-3: Results for keyframe accuracy analysis on Task1 data. Figure 4-3a
presents the estimated coefficients of the linear mixed-effect model for keyframe accu-
racy for Task1, with 95% confidence intervals. Blue bars represent improved accuracy
and red bars represent reduced accuracy. Dark colored bars indicate highly signifi-
cant effects (𝑝 < 0.01), light colored bars indicate non-significant effects. Figure 4-3b
illustrates the distributions of the number of missed and incorrect keyframes per trial
for Task1 data for each mode.

interesting to note that the limitations of KD and mACL discussed in section 4.6.1

are evident by the absence of Task2 and Task3 data points at the zero level for KD

and the absence of Task3 data points at the zero level for mACL. Therefore the

highly significant decrease in keyframe accuracy for KD and mACL can be partially

explained by the inherent limitations of the two techniques.

In order to examine the keyframe accuracy unaffected by the limitations of KD

and mACL, we conducted a linear mixed-effect model analysis on Task1 data, shown

in figure 4-3a. Although the results are not significant, the KD and mACL factors

have negative coefficients indicating a decrease in keyframe accuracy compared to

AKL. Furthermore, figure 4-3b suggests similar findings by having higher missed and

incorrect keyframe per trial medians for KD and mACL than AKL.

4.6.3 Hypothesis 2: Pose Accuracy

The results of the linear mixed-effects model analysis on the effects of the teaching

mode on the pose accuracy, as shown in figure 4-4a, indicate a significant negative
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(a) (b)

Figure 4-4: Results for pose accuracy analysis. Figure 4-4a presents the estimated
coefficients of the linear mixed-effect model for pose accuracy, with 95% confidence
intervals. Blue bars represent improved accuracy and red bars represent reduced
accuracy. Dark colored bars indicate highly significant effects (𝑝 < 0.01), medium
colored bars indicate significant effects (𝑝 < 0.05), and light colored bars indicate
non-significant effects. Figure 4-2b illustrates the distributions of the number of
missed and incorrect poses per trial for each mode.

effect from KD (Mode1) factor and a highly significant adverse effect from mACL

(Mode2) factor, when compared to the reference category AKL. As negative coef-

ficients in this model correspond to a decrease in pose accuracy, hypothesis 2 is

supported.

The distributions of the missed and incorrect keyframe poses per trial for each

teaching mode, KD, mACL, and AKL, indicate a similar correlation between the

teaching mode and pose accuracy. Here, as keyframe poses are unaffected by con-

straint labels, the constraint learning limitation of KD does not affect its distribu-

tion. Furthermore, the specification learned by mACL for Task3 was permitted six

keyframes to allow for meaningful comparisons. In other words, the interaction and

constraint keyframe combination limitation of mACL does not affect the number of

missed and incorrect keyframe poses recorded. As illustrated in figure 4-4b, KD and

mACL have higher missed and incorrect keyframe poses per trial medians and larger

interquartile ranges than AKL. This suggests that AKL learned task specifications

with a higher pose accuracy than that learned using KD and mACL.
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Figure 4-5: The estimated coefficients of the linear mixed-effect model for constraint
accuracy, with 95% confidence intervals. Blue bars represent improved accuracy and
red bars represent reduced accuracy. Dark colored bars indicate highly significant
effects (𝑝 < 0.01) and light colored bars indicate non-significant effects.

4.6.4 Hypothesis 3: Constraint Accuracy

Table 4.2: Number of constraint errors for AKL and the impact of participant’s
feedback on these constraint errors. 14/19 of the constraint errors are due to incorrect
feedback. 20 incorrectly detected constraints were corrected by participant’s feedback.

Total number of constraint errors 19

Constraint errors due to incorrect feedback 14

Constraint errors avoided due to correct feedback 20

As Task1 is an unconstrained task, the intersection over union measure related

to the length of the learned constraints is always zero. Therefore, we considered

only Task2 and Task3 data in our linear mixed-effects model analysis for constraint

accuracy. For hypothesis 3 to be supported, the coefficient of the mACL (Mode1)

factor in our linear mixed-effects model, illustrated in figure 4-5, must indicate an

adverse effect on constraint accuracy. However, although the mACL coefficient is

negative, indicating lower constraint accuracy than AKL, the result was insignificant
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(a) (b)

Figure 4-6: Distributions of constraint errors. Figure 4-6a illustrates the distributions
of the missed and incorrect constraint lengths per trial for each mode. Figure 4-6b
shows the distributions of the number of missed and incorrect constraints per trial
for each mode.

(p-value = 0.10).

Figure 4-6 illustrates the distributions of the total missed and incorrect constraint

length per trial and the number of missed and incorrect constraints detected per trial

(left and right, respectively). The results for KD show zero incorrect constraints

for Task1 and one missed constraint per trial for Task2 and Task3, reflecting the

constraint learning limitation of the baseline. This implies that the data points for

KD’s missed constraint lengths give the length of the actual constraints of Task2 and

Task3. In the constraint length error graph, although AKL appears to have a wider

interquartile range for the total missed and incorrect constraint lengths per trial, the

median (2.18 cm) is much lower than the mACL median (23.65 cm). In other words,

the best fifty percent of task specifications learned using AKL had less than 2.18 cm

of constraint length errors, whereas that for mACL were spread over 23.65cm. The

incorrect constraint lengths include the misalignments between the actual constraint

and learned constraint due to variance in the demonstrations provided. For instance,

under AKL in Task2, the start of the constrained region had a standard deviation

of 1.60cm. Therefore, examining the number of missed and incorrect constraints per

trial will further insight into our constraint accuracy comparison. AKL reports a

lower interquartile range and median for the number of constraint errors per trial,
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suggesting higher constraint accuracy than mACL. Although AKL and mACL display

equal ranges in this graph, the total number of constraint errors for mACL (46 errors)

is much higher than for AKL (19 errors). It is interesting to note that 73.7% (14 errors)

of the constraint errors for AKL were due to incorrect feedback given to the queries

posed by the robot, as given in Table 4.2. Furthermore, human feedback provided

during demonstrations rectified 20 erroneously detected constraint regions suggesting

that AKL could prevent 51.2% of constraint errors by leveraging human feedback.

These findings suggest that human feedback aids in reducing constraint errors, and

improving human feedback can further improve the constraint accuracy of AKL.

4.6.5 Hypothesis 4: Teaching Workload

Figure 4-7: The estimated coefficients of the linear mixed-effect model for teaching
workload, with 95% confidence intervals. Blue bars represent reduced workload and
red bars represent increased workload. Dark colored bars indicate highly significant
effects (𝑝 < 0.01), medium colored bars indicate significant effects (𝑝 < 0.05), and
light colored bars indicate non-significant effects.

In order for hypothesis 4 to be supported, the coefficients of KD (Mode1) and

mACL (Mode2) in our linear mixed-effects model for teaching workload, illustrated

in figure 4-7, should be positive as positive coefficients correspond to an increase in
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Figure 4-8: The estimated coefficients of the linear mixed-effect model for teaching
efficiency, with 95% confidence intervals. Blue bars represent improved efficiency and
red bars represent reduced efficiency. Dark colored bars indicate highly significant
effects (𝑝 < 0.01), medium colored bars indicate significant effects (𝑝 < 0.05), and
light colored bars indicate non-significant effects.

teaching workload. As hypothesized, the KD factor resulted in a highly significant

increase in teaching workload. However, the coefficient of the mACL factor was found

to be negative, indicating a decrease in workload, leaving our hypothesis unsupported.

These results suggest that although switching from user-defined keyframes to a con-

tinuous demonstration framework reduces the workload, users find the clarification

questions asked during a demonstration to increase the workload of the teaching task.

4.6.6 System Usability Scale

Participants reported a lower overall usability score for KD (M = 67.5, p-value =

0.21) and a significantly higher score for mACL (M = 87.1, p-value = 0.03, p < 0.05)

as compared to AKL (M = 77.1). Similar to our findings for hypothesis 4, these scores

suggest that participants find an uninterrupted continuous teaching framework more

user-friendly than one augmented with clarification questions posed by the student

robot.
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4.6.7 Hypothesis 5: Teaching Efficiency

For KD (Mode1), the effect on the teaching efficiency measure is highly significant in

the direction of poorer efficiency, as indicated by the negative coefficient (𝑝 < 0.01)

of the KD factor shown in figure 4-8. This outcome is not surprising given the highly

significant reduction in performance for keyframe accuracy and teaching workload

displayed in the analyses for hypotheses 1 and 4. On the other hand, mACL (Mode2)

presented a reduced teaching workload compared to the reference category AKL.

However, due to the highly significant adverse effect on keyframe accuracy, mACL

reported a significant reduction in teaching efficiency. These results suggest that AKL

displayed a higher teaching efficiency than KD (𝑝 < 0.05) and mACL (𝑝 < 0.01),

supporting hypothesis 5.

4.6.8 Runtimes

Figure 4-9: Distributions of runtimes per trial for three modes.

The number of least square fittings run for mACL increases linearly with the length

of the demonstrated trajectory. Furthermore, for each least square fitting, the fitting

errors of all trajectory frames are computed to obtain the inners ratio implying a

complexity of 𝑛2. On the other hand, the number of least square fittings run for AKL

is equal to the number of constraint regions 𝐶𝑟 detected, independent of the trajectory
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length, and the fitting errors are calculated only for the respective trajectory segments.

This implies that AKL has a linear complexity of 𝑛, suggesting lower runtimes than

mACL. As expected, the runtimes for mACL (Mode2) are much higher than for

AKL (Mode3), as illustrated in figure 4-9. In fact, there is no overlap between the

distribution for the mACL runtimes and the AKL runtime distribution. Furthermore,

the average runtime per trial for mACL (2.64 s) is approximately 200 times the

average runtime per trial for AKL (0.011 s). AKL appears to have a similar runtime

distribution as KD (Mode1) due to the scale used in figure 4-9. However, the runtimes

for KD are negligible as users directly provide the keyframes as demonstration data

suggesting higher runtimes for AKL than for KD. The average runtime per trial for

AKL (0.011 s) and KD (0.001s) support this.

4.7 Discussion

We designed a within-subject study with three tasks and two baselines, KD and

mACL, to evaluate five hypotheses on the keyframe accuracy, pose accuracy, con-

straint accuracy, teaching workload, and teaching efficiency of AKL and to compare

the success rates, runtimes, and usability of AKL to KD and mACL.

The success rates for learning the least restrictive task specification for AKL

(overall: 66.7%) were higher than that for KD (overall for case (a): 13.9%, overall for

case (b): 41.7%) and mACL (overall for case (a): 25.0%, overall for case (b): 33.3%)

under both cases as depicted in Table 4.1. Here, case (a) refers to the success rates for

the baselines as defined in section 4.2, and case (b), the rates after accounting for the

limitations of the baselines. The high success rates for AKL suggest that participants

were more successful at teaching the least restrictive task specification using AKL

than KD or mACL.

The linear mixed-effects model analysis supported Hypothesis 1 for keyframe

accuracy suggesting a highly significant increase in AKL’s keyframe accuracy than

KD (𝑝 < 0.01) and mACL (𝑝 < 0.01), as shown in figure 4-2a. A comparison of

the distributions of the total missed and incorrect keyframes per trial for the three
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methods further support this claim (medians for AKL, KD, and mACL are 0, 1.5,

and 3 keyframes, respectively), as shown in figure 4-2b. Additionally, we compared

the keyframe accuracy of the three modes for Task1 data to examine the effect of

the inherent limitations of the baselines on our results. Although not significant, the

results from the linear mixed-effect model results indicated a keyframe accuracy gain

under AKL than KD and mACL, agreeing with the comparison of the distributions of

the total missed and incorrect keyframes per trial for Task1 data (medians for AKL,

KD, and mACL are 0, 0.5, and 2 keyframes, respectively), as illustrated in figure 4-3.

Hypothesis 2 for pose accuracy was supported by the linear mixed-effects

model analysis, suggesting that the pose accuracy for AKL was significantly higher

than for KD (𝑝 < 0.05) and mACL (𝑝 < 0.01), as shown in figure 4-4a. A comparison

of the distributions of the total missed and incorrect poses per trial for the three

modes further reinforce this claim (medians for AKL, KD, and mACL are 0, 1, and

2 poses, respectively), as shown in figure 4-4b.

Although the linear mixed-effects model analysis for Hypothesis 3 for con-

straint accuracy indicated an increase in constraint accuracy for AKL compared

to mACL, the results were insignificant, as depicted in figure 4-5. However, the

comparisons of distributions of the missed and incorrect constraint length per trial

and the distributions of the total missed and incorrect constraints per trial for the

three modes, illustrated in figure 4-6, suggest improved constraint accuracy for AKL

compared to mACL. For instance, fifty percent of task specifications learned using

AKL had less than 2.18 cm of constraint length errors, whereas that for mACL were

spread over 23.65cm, and the total number of constraint errors for AKL (19 errors)

was much lower than for mACL (46 errors). Furthermore, we discovered that 73.7%

of the constraint errors for AKL were due to incorrect human feedback and that

AKL was able to prevent 51.2% of constraint errors through human feedback. These

findings suggested the importance of leveraging human feedback to reduce constraint

errors and that increasing the accuracy of the given feedback will directly improve

the constraint accuracy for AKL.

The linear mixed-effects model analysis on the NASA-TLX workload scores par-
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tially supported Hypothesis 4 for teaching workload by indicating a highly signif-

icant increase in workload for KD (𝑝 < 0.01) and an insignificant decrease in workload

for mACL (𝑝 > 0.05), compared to AKL, as shown in figure 4-7. These results suggest

that switching from user-defined keyframes to a continuous demonstration framework

significantly reduced the workload, whereas interactive communication introduced to

continuous demonstrations increased the teaching workload.

Similar to teaching workload observations, the System Usability Scale scores

reported were lower for KD (M = 67.5, p-value =0.21) and a significantly higher for

mACL (M = 87.1, p-value = 0.03, p < 0.05) compared to AKL (M = 77.1). These

scores suggest that participants found AKL usability to be lower than mACL and

higher than KD.

The linear mixed-effects model analysis supported Hypothesis 5 for teaching

efficiency suggesting a significant increase in AKL’s teaching efficiency than KD

(𝑝 < 0.01) and mACL (𝑝 < 0.05), as shown in figure 4-8. These results suggest that

although AKL displayed increased teaching workload and lower usability scores, AKL

improves the efficiency of teaching tasks to a robot compared to KD and mACL.

We compared the runtime of AKL to the baselines, as shown in figure 4-9 and,

as expected, found that although AKL is slower than KD, as KD does not require

keyframe learning, AKL (average runtime of 0.011s per trial) is 200 times faster than

mACL (average runtime of 2.64s per trial).
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Chapter 5

Conclusion and Future Work

Although recent advances in robotics enable the automation of manual tasks in man-

ufacturing, integrating robots into a factory remains time and resource intensive, as

it requires conventional robot programming and robot experts. Even small changes

to the task will require reprogramming and can result in high reintegration costs.

In order to increase the feasibility of robot integration into industrial processes, the

programming of robots must be easily accessible to domain experts with little to no

experience in robotics. This requires the design of an intuitive approach to teaching

robots that allow non-experts to teach tasks in a time-efficient manner without robot

programming.

This thesis presents Active Keyframe Learning (AKL), a proof-of-concept system

for learning physical interactions and move-in-line constraints of a task from a single

demonstration. We learn the task as an agent-independent ordered sequence of inter-

action and constraint keyframes that can be given as input to a collision avoidance

enabled motion planner for task execution. As multiple such specifications can exist

for a task, we learn the least restrictive task specification to maximize the flexibility

given to the motion planner during task execution. We prove that the least restrictive

task specification, in the set of keyframe-encoded specifications correctly describing

the task, is the specification with the least number of keyframes.

As learning from a single demonstration can often lead to over-constrained task

specifications, we design an interactive demonstration framework that performs online
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move-in-line constraint inference and allows human-robot communication to learn

human intent for the demonstrated constrained motion. We perform online constraint

inference by first transforming demonstration data to straight-line fitting errors, then

computing a switching probability utilizing a logistic regression model trained on

constrained and unconstrained motion classification, and finally, inferring the latent

constraint state by passing the switching probability through an energy tank. The

inferred latent state informs the interactive communication dialogue where the robot

verifies the validity of the inferred latent state and provides suggestions to the teacher

to improve their demonstration technique.

To learn the interaction and constraint keyframes from a single demonstration, we

develop an offline keyframe learning algorithm that performs interaction-based and

constraint-based segmentation. We utilize the latent constraint states and human

feedback from the interactive demonstration to remove the unnecessary constraint

segments and learn the least restrictive task specification defined by the keyframes at

the boundaries of the interaction and constraint segments.

We evaluated the performance of our proposed framework, Active Keyframe Learn-

ing (AKL), against two baseline methods, keyframe demonstration (KD) [3, 53] and

articulate constraints learning approach, from [42], augmented with interaction learn-

ing (mACL). We designed a within-subject study with three multistep tasks to evalu-

ate the success rates, keyframe accuracy, pose accuracy, constraint accuracy, teaching

workload, usability, and teaching efficiency of AKL compared to the two baselines.

We discovered that AKL displayed the highest success rates in learning the least re-

strictive task specification and significantly improved the keyframe and pose accuracy.

Although the results for the hypothesis for constraint accuracy were insignificant, fifty

percent of task specifications learned using AKL had less than 2.18 cm of constraint

length errors, whereas that for mACL spanned 23.65cm. Additionally, the total num-

ber of constraint errors for AKL (19 errors) was much lower than for mACL (46

errors), suggesting an increase in constraint accuracy. We learned that 73.7 % of

the constraint errors for AKL were due to incorrect human feedback emphasizing the

ability to further improve constraint accuracy by increasing the feedback correctness.
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Furthermore, we found that AKL could prevent 51.2% of constraint errors through

human feedback highlighting the positive impact of our proposed interactive demon-

stration framework on constraint accuracy. Our findings on workload and usability

suggested that AKL was more userfriendly and resulted in a significantly lower work-

load than KD. However, AKL showed increased workload and decreased usability

scores compared to mACL. Although the interactive communication aspect of AKL

was found to increase workload and reduce usability, the overall teaching efficiency

of AKL was significantly higher than KD and mACL, demonstrating the significant

benefit of using AKL to teach tasks to robots.

Currently, this thesis is limited to learning physical interactions between task

objects and the robot, essential for the task’s success. Thus an extension to AKL

would be learning non-physical interactions or complex physical interactions that

cannot be inferred through gripper state observations. For example, interactions such

as holding a mug under a coffee machine until full or screwing in a nail are complex

interactions requiring richer keyframe definitions and robust visual inference.

Another future work direction would be extending the online constraint detector

to infer additional hard geometric constraints such as orientation constraints or rev-

olute constraints. As constraint inference utilizes fitting errors of a constraint model,

theoretically, it can be extended to other parametrized constraints by having several

online constraint detectors in parallel, one for each constraint. The detectors will

have unique transformations to fitting errors based on the parameterized constraint

model and an individual calibration step for the logistic regression model. However,

it will be essential to examine the impact of the parallelization of multiple inference

problems on the real-time nature of queries. Furthermore, the interactive commu-

nication dialogue must be redesigned to accommodate the additional queries, with

particular attention given to the frequency of querying.

Although our work employs learner feedback as suggestions to the teacher to

improve their demonstration technique during unconstrained motion, we assume that

the learner is unaware of its impact on the teacher’s mental model of the learner.

However, it would be interesting to learn about this impact and understand how
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it would affect the demonstrations provided by the teacher to improve interactive

communication. For instance, if the teacher understands and accepts the suggestion,

they will only move in a straight line when it is essential for the task’s success.

Learning this improvement in the teacher’s mental model of the learner can be utilized

to reduce the frequency of querying for the teacher’s intent. Therefore, an interesting

future direction for our work is leveraging the teacher’s mental model of the learner

to inform human-robot communication.
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