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Abstract

This dissertation consists of three chapters.
In Chapter 1, I study the optimal algorithmic disclosure in a lending market where

lenders use a predictive algorithm to mitigate adverse selection. The predictive algorithm
is unobservable to borrowers and uses a manipulable borrower feature as input. A regula-
tor maximizes market efficiency by disclosing information about the statistical properties of
variables embedded in the predictive algorithm to borrowers. Under the optimal disclosure
policy, the posterior belief consists of two disjoint regions in which the borrower feature is
more relevant and less relevant in predicting borrower quality, respectively. The optimal
disclosure policy differentiates posterior lending market equilibria by the equilibrium data
manipulation levels. Equilibria with more data manipulation hurt market efficiency, but also
discourage lenders’ use of the borrower feature. Equilibria with less data manipulation ben-
efit from that and generate more efficient market outcomes. Unconditionally, the borrower
feature is used less intensively under optimal disclosure.

In Chapter 2, joint work with Mehmet Ekmekci, Leandro Gorno, Lucas Maestri and
Dong Wei, we study a dynamic stopping game between a principal and an agent. The agent
is privately informed about his type. The principal learns about the agent’s type from a
noisy performance measure, which can be manipulated by the agent via a costly and hidden
action. We fully characterize the unique Markov equilibrium of this game. We find that
terminations/market crashes are often preceded by a spike in (expected) performance. Our
model also predicts that, due to endogenous signal manipulation, too much transparency
can inhibit learning. As the players get arbitrarily patient, the principal elicits no useful
information from the observed signal.

In Chapter 3, joint work with Dan Luo, we study SPACs in a continuous-time delegated
investment model. The sponsor has an increasing incentive to propose unprofitable projects
to the investor over time; in response, the investor exerts more stringent screening based on
her information. The screening helps curb the sponsor’s moral hazard, but also dampens
the disciplining effect of partial alignment in incentives. When the investor’s information
is sufficiently noisy, the second effect dominates, so giving the investor the control over
investment approval reduces everyone’s welfare.

Thesis Supervisor: Hui Chen
Title: Nomura Professor of Finance
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Chapter 1

Algorithmic Transparency

1.1 Introduction

Predictive algorithms have been widely used to mitigate adverse selection in various decision

making processes, including hiring, college admission, and lending1. In these settings, deci-

sion makers use predictive models that establish links between variables that are relevant in

their decision making problems. For example, employers score resumes to predict capability,

schools use results of standardized tests to predict academic potential, and FinTech lenders

use alternative data to predict credit quality. In these examples, the exact relationship

between input and output is opaque to the public, and economic agents (such as job candi-

dates, students, and borrowers) have little information about that. With the development

of big data and data processing technology, predictive algorithms have become more com-

plex and nonintuitive, involving variables that have no obvious relationship with each other,

and thus become even more opaque. A popular argument to justify this opaque nature of

predictive algorithms is the extent to which they can be manipulated by “gaming the sys-

tem”, that is, when economic agents know more about the predictive model, they are more

likely to change their behavior strategically, which hurts the informativeness of the input.

Despite the importance of this question, the effects of algorithmic transparency/opacity on

market outcomes is still underexplored in academic research. Although some of the recent

regulations start to consider this issue2, the motivation usually comes from concerns about

1See Bogen and Rieke (2018) for algorithmic hiring, Kizilcec and Lee (2020) for algorithmic fairness in
education, Bruckner (2018) and Di Maggio et al. (2021) for algorithmic lending.

2“...company using algorithmic decision-making must know what data is used in its model and how that
data is used to arrive at a decision and explain that to the consumer.”—Federal Trade Commission;
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fairness, and largely ignores the effects on market efficiency. Moreover, due to the limited

understanding of the consequences of algorithmic transparency, there is still uncertainty

about future regulation3, which may add another layer of inefficiency.

To better understand this question, this paper studies the optimal disclosure of a predic-

tive algorithm that maximizes market efficiency in a FinTech lending setup. There are three

types of players in this model: borrowers, lenders, and a regulator. Borrowers have private

types, which is either good or bad. There is a borrower feature, such as phone usage behav-

ior or social media activities, that can be observed by lenders but can also be manipulated

by borrowers privately and at cost. Borrower feature is perfectly correlated with borrower

type if not manipulated. Each borrower owns a borrower-specific project that needs to be

financed by lenders. The required initial investment is the same for all borrowers, and the

project payoffs are independent random variables that depend on borrower type. A pre-

dictive algorithm reveals the statistical properties of fundamental random variables in an

economic environment. In this paper, the predictive algorithm is a mapping from borrower

type to payoff distribution4. Specifically, when projects are financed, bad type borrowers

always receive zero payoff and thus always default, and good type borrowers will receive i.i.d.

nonnegative random payoffs with the same cumulative distribution function indexed by a

one-dimensional parameter: relevance, denoted by 𝜌. When the relevance is higher(lower),

the expected value of the random payoff from good type borrowers is higher (lower)5. Bor-

rowers do not observe the true value of the relevance but share a common belief about it.

Lenders observe the exact value of it, which partially determines how to use borrower data

in lending decisions. This two-sided private information, i.e., one side (lenders) privately

observes the statistical properties of fundamental random variables in the economic envi-

ronment, and the other side (borrowers) privately manipulates their data, is novel in the

literature and is the key feature of this model.

“Whenever personal data is subject to automated decision making, people have ....the right to an
explanation”— General Data Protection Regulation

3For example, in June 2021, NCRC, Affirm, Lending Club, Oportun, PayPal Holdings Inc, Square and
Varo Bank asked the Consumer Financial Protection Bureau (CFPB) to provide guidance on how it will
apply disparate impact rules to any systems that use artificial intelligence (AI), machine learning (ML),
algorithms, or alternative data to make lending decisions.

4In practice, a predictive algorithm usually refers to a mapping from the observed data to the output but
not the unobserved type to the output. In Section 1.3.7, I provide a discussion on the equivalence of these
two views when algorithmic disclosure only plays an informational role but not serves as a commitment
device, which is the feature of this model.

5In this paper, I use relevance and relevance of the feature interchangeably, because 𝜌 measures how
useful the feature is in lending decisions if there is no manipulation.
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The lending market equilibrium consists of the manipulation behavior of borrowers and

the use of borrower data by lenders in lending decisions. The regulator can establish a

disclosure rule and ask lenders to disclose any possible information about the true state of

relevance to borrowers. It is clear that the lending market equilibrium is determined by

the updated public belief in the relevance, so the market outcome depends on the choice

of disclosure policy. In this paper, I consider the optimal design of a disclosure policy that

maximizes market efficiency.

In this model, I focus on the informational role of algorithmic disclosure, but not the

role as a commitment device. From the disclosure, borrowers receive new information about

the true value of relevance, which updates their belief about the usefulness of their data.

Lenders, on the other hand, cannot commit to how to use borrower data in their lending

decisions. This lack of commitment problem turns out to be the source of the inefficiency

in this model. Because lenders always make the most efficient use of borrower data, this ex

post efficient use of borrower data gives borrowers excessive ex ante manipulation incentives,

which in turn makes the feature noisier and also makes market outcome less efficient from

the unconditional perspective. The optimal disclosure policy mitigates this problem and

generates lower levels of data manipulation unconditionally.

I model this optimal disclosure problem as a Bayesian persuasion problem (Kamenica

and Gentzkow (2011)), and characterize the optimal public disclosure of the relevance. First,

I show that it is suboptimal to disclose nothing. In this no disclosure equilibrium, borrowers’

manipulation behavior and lenders’ lending decisions are jointly determined by the public

prior belief about the relevance of the feature. Since lenders always make efficient lending

decisions ex post using all information available, there must exist scenarios where the surplus

from using the feature in lending decisions is small but positive, and the lenders choose to

use it ex post because it is efficient to do so. However, this possibility gives borrowers

extra incentives to manipulate their features ex ante, and hurts efficiency in other scenarios.

This cross-state externality through data manipulation makes lenders use the feature too

intensively in their lending decisions. Second, it is also suboptimal to disclose everything,

and I show that this full transparency policy leads to the worst outcome. This result relies on

our assumption that there are sufficiently many bad type borrowers, so the adverse section

problem is severe when there is no borrower data available. The intuition is that when

borrowers know exactly how relevant their feature is, they will choose their manipulation
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behavior such that in equilibrium lenders are indifferent between using the feature or not,

and thus there is zero surplus from lending market, resulting in the worst market outcome.

The optimal disclosure policy features partial disclosure, and differentiates the poste-

rior lending market equilibria by their equilibrium data manipulation levels. The regulator

can implement the optimal disclosure policy by assigning a score to the feature based on

its relevance. Notably, the score function is not monotone in relevance, that is, features

with higher relevance may be assigned with lower scores. Under each score realization, the

posterior belief about the relevance consists of two disjoint intervals, denoted as approval

region and rejection region, respectively. The true relevance is either in the approval region

in which manipulating feature can help to get financing, or in a rejection region in which

lenders do not use the feature at all and therefore manipulation is useless. The relative

fraction of these two regions in the posterior belief determines all the equilibrium outcomes,

including the data manipulation level and loan approval rate. Specifically, for all the poste-

rior equilibria, when the feature is used in lending decisions with higher probability, there

will be more data manipulation, and lenders will use the feature only when the relevance is

high enough.

Several economic implications follow accordingly. First, unconditionally, the use of the

feature in lending decisions is monotone in relevance, i.e., there exists a cutoff such that

lenders will use the feature in their lending decisions if and only if the true relevance is

above the cutoff. This property is obviously true for any posterior equilibrium (no matter

what the posterior belief is), but I show that it also holds unconditionally under the optimal

disclosure policy. Second, under the optimal policy, the unconditional probability that the

lenders use the feature in their lending decisions is strictly lower than that under the no dis-

closure equilibrium. This confirms our intuition that lenders use the feature too intensively

without disclosure. Thirdly, compared to the no disclosure equilibrium, the “worst” posterior

equilibrium under the optimal policy induces more manipulation, while the “best” posterior

equilibrium induces less manipulation. This uncovers the intuition of why the optimal dis-

closure policy improves efficiency: although the worse equilibria induce more manipulation

and hurt market efficiency, they also force lenders to have a higher standard for the use of

the feature in their lending decisions, and in turn deter borrowers’ manipulation incentives.

Better equilibria benefit from this and induce less data manipulation. Unconditionally, there

is less data manipulation, and the negative cross-state externality is mitigated.
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With the general structure of the optimal policy, I also provide a closed-form character-

ization by imposing a mild distributional assumption on the borrowers’ manipulation cost.

In this case, the optimal score function consists of a discrete part, which induces the equilib-

rium with lowest level of data manipulation, and a continuous part with data manipulation

level continuously moving from the lowest level to the highest level. Furthermore, for any

posterior belief, the highest relevance in the rejection region is exactly the level at which

the lenders break even. With this result, I can simplify the optimal disclosure problem to

a one-dimensional optimization problem, and the optimal score function is solved by an

ordinary differential equation (ODE).

I also consider an extension with costly verification. In practice, lenders can verify the

types of borrowers by manually reviewing their profiles, conducting interviews, and using

various fraud detection techniques. In this extension, lenders can reveal the true type of

any borrower with a linear cost function. I explore how costly verification interacts with

algorithmic disclosure under the optimal policy. It turns out that in the optimal joint design,

these two channels work as substitutes: verification is used when the relevance of the feature

is higher than a threshold and disclosure becomes irrelevant in this case; otherwise, disclosure

will be used and there is no verification in equilibrium. The optimal joint design can be

implemented by two steps: The regulator first reveals if the relevance of the feature is above

or below the threshold. If it is above the threshold, all lenders will verify all applicants

with a positive probability; otherwise, the regulator reveals additional information under

the updated belief and no verification will be used.

The rest of this paper is organized as follows. In this section, I continue to discuss related

literature. Section 2 provides a simple model, and Section 3 introduces the general model.

In Section 4, I discuss the source of friction and the intuition of improving market outcome

from the no disclosure equilibrium. In Section 5, I discuss the results of the general model.

Section 6 studies an extension where costly verification is available, and Section 7 concludes.

Related Literature

This paper mainly contributes to three strands of the literature. First, there is a nascent

but growing literature on the impact and regulation of algorithmic decision-making. Most of

the existing research mainly focuses on fairness, bias, or discrimination (e.g. Bartlett et al.

(2021), Milone (2019), Gillis and Spiess (2019),Raghavan et al. (2020),Coston et al. (2021)).
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This paper contributes to the literature by considering the regulation on algorithmic disclo-

sure from the perspective of market efficiency. A closely related paper that asks a similar

question and also considers strategic manipulation of data is Wang et al. (2020). They

consider both the correlational and causal observables in their model and only consider the

full transparency and no disclosure policies. Compared to their work, my model only con-

siders correlational features as input in the predictive algorithm, and thus the fundamental

frictions are different. Besides, I consider flexible disclosure policies, the results on the opti-

mal design of algorithmic disclosure in my paper do not have a counterpart in their paper.

Another theoretical paper that also focuses on algorithmic transparency and governance is

Blattner et al. (2021). They consider the trade-off between model complexity and trans-

parency and the role of algorithmic audit in regulating algorithms, which is different from

my focus. Björkegren et al. (2020) examine the interplay between strategic manipulation of

data and algorithmic transparency. Although the question in their paper is quite different

from mine, the results in their field experiment empirically verify the existence of data ma-

nipulation when people know more about the algorithms. There is also a growing literature

in computer science about algorithmic explainability or explainable AI (Bhatt et al. (2020),

Carvalho et al. (2019), Lundberg and Lee (2017), Murdoch et al. (2019)). But the computer

science literature usually focuses on algorithmic audit and explainability which mainly con-

sider the “black box” nature of machine learning algorithms, while my paper simplifies this

“black box” nature and considers an information design question in a finance setting.

I also add to a growing literature on Bayesian persuasion (Kamenica (2019) and Berge-

mann and Morris (2019) provide excellent surveys) and its applications in finance. The

way I model information structure follows Kamenica and Gentzkow (2011), and I consider

a persuasion problem with continuous state as in Dworczak and Martini (2019). Method-

ologically, Bayesian persuasion problems with continuous states are in general not tractable,

except for some special cases (for example, Gentzkow and Kamenica (2016), Dworczak and

Martini (2019), Goldstein and Leitner (2018)). In my model, the information designer’s

objective function depends on the entire distribution of posterior beliefs, and this question

does not fit into any existing tractable framework. I obtain my theoretical results using

a novel “guess and verify” method. There are many applications of Bayesian persuasion

in finance literature, including shareholder voting (Malenko et al. (2021)), security design

(Szydlowski (2021)), bank stress test (Goldstein and Leitner (2018), Goldstein and Leitner
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(2020) Inostroza (2019), Inostroza and Pavan (2021), Leitner and Williams (2020)) and fi-

nancial network (Huang (2020)). This paper contributes to this literature by considering a

new question (algorithmic disclosure) and provides a novel optimal signal structure.

Lastly, this project is related to the literature on strategic manipulation of data (Frankel

and Kartik (2019a), Frankel and Kartik (2019b), Ball (2019)), or more broadly, the signaling

models. The way I model private information on the borrower side is similar to Frankel

and Kartik (2019b). Ball (2019) considers a problem with multi-dimensional features, and

shows that the optimal scoring rule underweights some features to deter data manipulation.

All of these papers focus mainly on how committing to certain decision rules will improve

efficiency. Relative to these work, I consider an information design question, and focus on

how commitment on information structure (disclosure policy) will improve efficiency.

1.2 A Simple Model

To fix ideas, let’s consider a simple model. There is a competitive lending market with

many identical lenders and a unit mass of borrowers. Each borrower 𝑖 is endowed with

zero initial wealth and a borrower-specific project which requires an initial investment 𝐼

at time 0. The project generates a positive cash flow 𝑉 if it succeeds, and zero if it fails.

The probability of success is a random variable, and its distribution is formally introduced

later. All the borrowers can get private benefit 𝑏 if their own borrower-specific project is

successfully financed regardless of the outcome.

There is a manipulable feature for each borrower, which takes two possible levels: High

or Low. Borrowers who are born with High (Low) feature make up 𝜇 (1 − 𝜇) of the entire

population, and they are called good (bad) type borrowers. Manipulating feature is possible

for bad borrowers6, and they can privately change their feature to High by paying a cost 𝑐.

The manipulation cost 𝑐 follows a uniform distribution on [0, 1] among the bad borrowers.

A key assumption here is that manipulation behavior does not change borrower type. In

this lending market, the only data that lenders can collect and observe is the the borrower

feature after potential manipulation.

Probability of success depends on borrower type (good or bad). Specifically, bad bor-

6Here we only allow bad borrowers to manipulate their features for simplicity of exposition. But this
assumption is not necessary. Even if we assume that good type borrowers can costly manipulate their
features, they will never do this in equilibrium.
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rowers always fail. For good borrowers, the probability of success 𝜌 is drawn from a uniform

distribution on [0, 1]. The true value of 𝜌 is only observable to lenders, and all borrowers

share the common prior about the distribution of 𝜌. In this example, we call 𝜌 the relevance

of the borrower feature, because it represents how relevant the borrower feature is in lending

decisions when there is no manipulation. Besides, from the perspective of borrowers, the

probability of success 𝜌 is the only uncertain element in the mapping from borrower type to

payoff distribution. In this example, let’s impose the following assumption7.

Assumption 1.2.1. (Severe Adverse Selection) 𝑏 ≥ 1 and 𝜇𝑉 ≤ 𝐼.

Note that the manipulation cost follows 𝑐 ∼ 𝑈 [0, 1], so 𝑏 ≥ 1 implies that if lenders lend

to borrowers with feature High with probability 1, the private benefit always dominates the

manipulation cost for all bad borrowers, and thus all of them will choose to manipulate

their features. And the second condition 𝜇𝑉 ≤ 𝐼 implies that lenders will never lend to

any borrower if all bad type borrowers choose to manipulate their features. These two

conditions jointly imply that in any equilibrium, not all bad borrowers choose to manipulate

their features.

No Disclosure On The Relevance 𝜌

First we consider the equilibrium when no additional information about 𝜌 is disclosed to

borrowers. Lenders can make their lending decisions based on the observed feature. The

lending market is competitive, so lenders always make zero profit in equilibrium. In this

case, it can be shown that there is a unique equilibrium which consists of two cutoffs 𝑐𝑁

and 𝜌𝑁 , such that

• all bad type borrowers with manipulation cost lower than 𝑐𝑁 choose to manipulate

their features to High;

• lenders will lend to borrowers with feature High if 𝜌 > 𝜌𝑁 .

For bad type borrowers with manipulation cost 𝑐𝑁 , the indifference condition is

Prob (𝜌 > 𝜌𝑁 ) · 𝑏 = 𝑐𝑁 ,

7We’ll have a similar assumption in the main model
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where Prob (𝜌 > 𝜌𝑁 ) is the probability that the loan application is approved for borrowers

with feature High. For lenders, the total surplus from lending is zero when 𝜌 = 𝜌𝑁 , implying

𝜇𝜌𝑁𝑉 = (𝜇+ (1− 𝜇)Prob (𝑐 ≤ 𝑐𝑁 )) 𝐼.

Based on our distributional assumptions, the unique solution of the equilibrium is

(︂
𝜌𝑁 =

𝐼

𝜇𝑉 + (1− 𝜇)𝐼
, 𝑐𝑁 = 𝑏 · 𝜇(𝑉 − 𝐼)

𝜇𝑉 + (1− 𝜇)𝐼

)︂
.

Let

𝑘𝑁 = (𝜇+ (1− 𝜇)Prob (𝑐 ≤ 𝑐𝑁 )) 𝐼

be the effective financing cost, then the lending market surplus (measured by the net value

of all projects financed) is

𝑊𝑁 =

∫︁ 1

𝜌𝑁

(𝜇𝜌𝑉 − 𝑘𝑁 ) 𝑑𝜌.

For simplicity, let’s take the following parameters:

𝐼 = 3, 𝑉 = 10, 𝑏 = 1, 𝜇 = 3/10,

then the equilibrium variables are

(𝜌𝑁 = 0.59, 𝑐𝑁 = 0.41,𝑊𝑁 = 0.25) . (1.1)

Figure 1-1 summarizes the above equilibrium. The green triangle in Figure 1-1 is the

surplus 𝑊𝑁 . In equilibrium, the expected payoff outweighs the cost only when 𝜌 > 0.59, and

borrowers with High feature are financed only when 𝜌 is in this region. The green line on the

horizontal axis represents the support of posterior belief. In this no disclosure equilibrium,

the posterior belief is the same as the prior belief, and thus the support of the posterior

belief is the interval [0, 1].

Full Transparency

Another natural disclosure policy is full transparency which reveals the true state of 𝜌

perfectly to borrowers. It turns out that the surplus equals to zero in this case, which leads

to the worst market outcome. To see this, suppose the true relevance 𝜌 satisfies 𝜌 < 𝐼
𝑉 ,
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Figure 1-1: Equilibrium–No Disclosure

then even only lending to good type borrowers is inefficient, and thus there will be no

financing and the market outcome must be zero. For any 𝜌 ≥ 𝐼
𝑉 , we know in equilibrium,

the probability that lenders lend to borrowers with feature High must be less than 1, which

means that they must be indifferent between lending and not lending. Then the surplus also

must be zero for any 𝜌 ≥ 𝐼
𝑉 .

A Binary Color Signal

Our question is, can a regulator achieve a strictly higher outcome by designing a signal about

𝜌 and disclosing it to the market? The answer is yes. The definition of disclosure policy

is formally introduced in Section 1.3.4, here let’s take the numbers from the no disclosure

example and consider the following specific score function which consists of two levels 𝑅(𝑒𝑑)

and 𝐵(𝑙𝑢𝑒):

𝑠 =

⎧⎪⎨⎪⎩
𝑅(𝑒𝑑) if 𝜌 ∈ [0, 0.54) ∪ (0.64, 0.91)

𝐵(𝑙𝑢𝑒) if 𝜌 ∈ [0.54, 0.64] ∪ [0.91, 1]

. (1.2)

This score function assigns colors to state of 𝜌, which is represented by Figure 1-2. It only

reveals which region (Red or Blue) that the true state of 𝜌 belongs to, and induces two

possible posterior equilibria.

Specifically, if the signal realization is 𝑅, then the posterior belief about 𝜌 is a uniform

distribution on two disjoint intervals [0, 0.54) ∪ (0.64, 0.91), and it can be shown that the
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Figure 1-2: The Color Signal

equilibrium outcomes are

(𝑐𝑅 = 0.34, 𝜌𝑅 = 0.54,𝑊𝑅 = 0.19) . (1.3)

Similarly, if the signal realization is 𝐵, the posterior belief about 𝜌 is a uniform distribution

on [0.54, 0.64] ∪ [0.91, 1], and the equilibrium outcomes are

(𝑐𝐵 = 0.48, 𝜌𝐵 = 0.64,𝑊𝐵 = 0.09) . (1.4)

Figure 1-3 summarizes the surpluses of these two equilibria. The red trapezoid in the

left graph represents the surplus on observing 𝑅, and the two red intervals on the horizontal

line represent the support of the posterior belief. In this equilibrium, lenders will lend to

borrowers with feature High only when 𝜌 ∈ (0.64, 0.91). Similarly, the right graph in Figure

1-3 shows the surplus on observing 𝐵. The total surplus with this color signal (1.2) is

𝑊𝑠 =𝑊𝑅 +𝑊𝐵 = 0.19 + 0.09 = 0.28 > 0.25 =𝑊𝑁 .

So the surplus improves.

Figure 1-3: Equilibrium–Score 𝑅 and 𝐵

25



Our analysis shows that the binary color signal dominates both the no disclosure policy

and full transparency policy. But what is the intuition behind this result? The result that full

transparency policy is dominated is clear: when the exact information about the relevance

of the feature is disclosed to the market, bad type borrowers will manipulate their features

such that in equilibrium the surplus from using the borrower data in lending decisions is

always zero, and all lenders are indifferent between using and not using the borrower data

in their lending decisions. The inefficiency embedded in the no disclosure equilibrium is the

lenders’ lack of commitment problem, that is, lenders always make the most efficient use of

borrower data ex post in their lending decisions. To see this, suppose in the no disclosure

equilibrium, the regulator is able to “force” the lenders to use the feature in their lending

decisions only when 𝜌 is greater than an exogenous cutoff 𝜌𝑥 = 𝜌𝑁 + 𝑥, where 𝑥≪ 1. Then

the bad type borrowers with manipulation cost

𝑐 ≤ 𝑐𝑥 = 𝑏 · Prob (𝜌 ≥ 𝜌𝑥)

will choose to manipulate their features, and the total surplus is a function of the exogenous

cutoff 𝜌𝑥:

𝑊 (𝑥) =

∫︁ 1

𝜌𝑥

[𝜇𝜌𝑉 − (𝜇+ (1− 𝜇)(1− 𝜌𝑥)) 𝐼] 𝑑𝜌. (1.5)

Note 𝑊 (0) =𝑊𝑁 , then

𝑑𝑊 (𝑥)

𝑑𝑥

⃒⃒⃒⃒
𝑥=0

= − [𝜇𝜌𝑁𝑉 − (𝜇+ (1− 𝜇) (1− 𝜌𝑁 )) 𝐼] +

∫︁ 1

𝜌𝑁

(1− 𝜇)𝐼𝑑𝜌

=

∫︁ 1

𝜌𝑁

(1− 𝜇)𝐼𝑑𝜌 > 0.

(1.6)

This is because the lender’s equilibrium condition in the no disclosure equlibrium is

[𝜇𝜌𝑁𝑉 − (𝜇+ (1− 𝜇) (1− 𝜌𝑁 )) 𝐼] = 0. (1.7)

The result in (1.6) shows that the equilibrium cutoff 𝜌𝑁 is inefficiently low from the ex

ante perspective. So the probability that the borrower data is used in lending decisions,

(1− 𝜌𝑁 ), is inefficiently high. This result is based on condition (1.7),which is the ex post
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efficient use of borrower data in lending decisions. In equilibrium, when lenders use borrower

data more often in some states ex post, more bad borrowers will choose to manipulate their

features ex ante, and the effective financing cost will increase for all other states from the ex

ante perspective. This cross-state externality makes no disclosure equilibrium inefficient. In

the first order derivative (1.6), when lenders increase their lending cutoff by 𝑥, the approval

probability decreases by

Prob (𝜌 > 𝜌𝑁 )− Prob (𝜌 > 𝜌𝑥) = 𝑥

from the perspective of bad type borrowers, then the fraction of bad type borrowers who

would like to manipulate decreases by

Prob (𝑐 ≤ 𝑐𝑁 )− Prob (𝑐 ≤ 𝑐𝑥) = 𝑥,

implying that the effective financing cost decreases by

(1− 𝜇) 𝐼 · 𝑥.

Then the total cost saving from all states 𝜌 > 𝜌𝑁 is

∫︁ 1

𝜌𝑁

(1− 𝜇)𝐼𝑑𝜌 · 𝑥

which corresponds to the last term in (1.6).

To mitigate the excess manipulation, the signal (1.2) defers lenders’ use of borrower data

by differentiating the two lending market equilibria by data manipulation levels. To see this,

upon observing 𝐵, in equilibrium we have

𝑐𝐵 = 0.48 > 𝑐𝑁 = 0.41,

which means there are more bad type borrowers manipulating their features compared to

the no disclosure equilibrium. As a result, lenders have a more stringent lending standard,

and lend to borrowers with feature High when 𝜌 > 𝜌𝐵 = 0.64, which is greater than the

cutoff in the no disclosure equilibrium (𝜌𝑁 = 0.59). Then the lenders will not use borrower

data in their lending decisions when 𝜌 ∈ [0.59, 0.64] under signal 𝐵. But note this is the
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region when lenders lend to borrowers with feature High in the no disclosure equilibrium.

For 𝑠 = 𝑅, there is less manipulation compared to the no disclosure equilibrium because

𝑐𝑅 = 0.34 < 0.41 = 𝑐𝑁 , and borrower data is used by lenders only when 𝜌 ∈ (0.64, 0.91).

Unconditionally, with the binary color signal, the feature is used when 𝜌 > 0.64, while it

is 𝜌 > 𝜌𝑁 = 0.59 in the no disclosure equilibrium. So the feature is used less frequently with

the binary color signal. Intuitively, by differentiating the two equilibria by data manipulation

levels, the “worse” equilibrium (𝑠 = 𝐵) effectively guarantees that the feature will not be used

in cases when it was indeed used in no disclosure equilibrium, and the “better” equilibrium

(𝑠 = 𝑅) has lower level of data manipulation and generates more efficient outcome.

Actually this binary color signal is optimal among all binary signals. In the main model,

I’ll consider a general space of disclosure policies. But this binary color signal has several

notable properties that are still robust in the optimal disclosure policy in the main model.

First, there exists a threshold (𝜌⋆ = 0.64), such that unconditionally, the feature is used in

lending decisions if and only if the true state is above the threshold. It is clear that this

cutoff property always holds for any posterior equilibria, and here I show it also holds un-

conditionally. The intuition is clear: the relevance 𝜌 represents how useful borrower feature

is in lending decisions. When 𝜌 is higher, borrowers with feature High are of better qualities

and will have higher probability of success. Then it is efficient to lend to borrowers with

feature High when the true relevance 𝜌 is higher. Second, for any score realization (𝑅 or

𝐵), the support of posterior belief is always a union of two disjoint intervals. These two

intervals correspond to lenders’ equilibrium lending decisions. The interval below 𝜌⋆ repre-

sents the rejection region, and the lenders will reject all borrowers when the true relevance

is in this region; while the interval above 𝜌⋆ represents the approval region and lenders will

lend to all borrowers with feature High when the true relevance is in this region. Thirdly,

the unconditional probability of using the feature in lending decisions is less than that in

the no disclosure equilibrium, implying that the feature is used less intensively with optimal

disclosure. Lastly, the binary color signal induces two posterior equilibria, with one equilib-

rium (𝐵) having a higher data manipulation level than the no disclosure equilibrium, and

the other one (𝑅) having a lower data manipulation level. All of these properties still hold

in the optimal disclosure policy in the main model.
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1.3 The Main Model

The main model is a generalization of the simple model.

1.3.1 Players

There are three types of players in this model: a unit mass of borrowers, 𝑁(> 1) lenders, and

a regulator. All players are risk neutral. We model borrowers in a similar way as the agents in

Frankel and Kartik (2019b). Borrowers have two-dimensional private information: quality

type 𝜃 ∈ {𝐺(𝑜𝑜𝑑), 𝐵(𝑎𝑑)}, and (manipulation) cost type 𝑐. For the joint distribution of

(𝜃, 𝑐), I assume the unconditional probability of good type borrowers in the population is

Prob (𝜃 = 𝐺) = 𝜇 > 0.

And the conditional probability 𝑐|𝜃 is

𝑐|𝜃

⎧⎪⎨⎪⎩
≡ ∞ if 𝜃 = 𝐺

∼ 𝐹𝑐(·) if 𝜃 = 𝐵

, (1.8)

where 𝐹𝑐 (·) is the cumulative distribution function for a continuous random variable defined

on [0, 𝑐]8. Assume 𝐹 ′
𝑐 (𝑥) > 0 and 𝐹 ′′

𝑐 (𝑥) is bounded for all 𝑥 ∈ [0, 𝑐]

All lenders are identical and operate in a competitive lending market. At time 0, each

borrower 𝑖 receives a borrower-specific project (project 𝑖) and has zero initial wealth. Each

project 𝑖 requires an initial investment 𝐼; otherwise it fails, and is liquidated with zero liqui-

dation value. If project 𝑖 is financed at time 0, it will generate a nonnegative random payoff

𝑉𝑖
9 at 𝑡 = 1, and the realization of the random payoff is publicly observable. Besides, bor-

rower 𝑖 also receives a constant nontransferable private benefit 𝑏 if the project is successfully

financed. Any project can be financed by at most one lender.

If the project 𝑖 is financed by lender 𝑗 with debt face value 𝐷𝑖
𝑗 , then when the payoff 𝑉𝑖

8Here I assume 𝑐|𝜃 = 𝐺 ≡ ∞ for simplicity of exposition. Actually 𝑐|𝜃 = 𝐺 is irrelevant for all of my
results. For example, we can assume 𝑐|𝜃 ∼ 𝐹𝑐 (·) for both 𝜃 ∈ {𝐺,𝐵}, and all the results will be the same.

9For expositional convenience, we sometimes use 𝑉 to represent the random payoff for an arbitrary
borrower.
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is realized, borrower 𝑖 receives

max
{︁
𝑉𝑖 −𝐷𝑖

𝑗 , 0
}︁
+ 𝑏,

lender 𝑗 receives

min
{︁
𝑉𝑖, 𝐷

𝑖
𝑗

}︁
− 𝐼,

and the regulator’s payoff (surplus) is the total outcome of lending market, which is10

𝑉𝑖 − 𝐼.

1.3.2 Predictive Algorithm

For each borrower 𝑖, his quality type 𝜃𝑖 is informative about his random payoff 𝑉𝑖. Specif-

ically, when 𝜃𝑖 = 𝐵, 𝑉𝑖 ≡ 0, i.e., bad type borrowers always fail. When 𝜃𝑖 = 𝐺, 𝑉𝑖 is a

nonnegative, continuous random variable on
[︀
0, 𝑉

]︀
, with cumulative distribution function

𝐹 (·). The key feature of our model is that 𝐹 (·) is drawn from a family of distribution

functions {𝐹𝜌 (·)}𝜌∈𝒫 , where 𝒫 is a subset of 𝑅. Intuitively, since bad type borrowers always

fail, 𝜌 effectively measures how the quality type 𝜃 can be used to predict payoff distribu-

tion. Throughout the paper, I call 𝜌 the relevance. In practice, machine learning algorithms

adopted by FinTech lenders are hard to explain and interpret and can rarely be summa-

rized by a one-dimensional parameter. In this paper, since I focus on disclosure instead of

explainability (which is the primary focus of the computer science literature, see Lundberg

and Lee (2017)), I abstract away the “black box” feature of the predictive algorithms and

assume them to be summarized by a one-dimensional parameter 𝜌.

The relevance 𝜌 is drawn from a continuous distribution with cumulative (probability)

distribution function Π0 (𝜌) (𝜋0 (𝜌)). Without loss of generality, we assume 𝜌 is drawn from

a uniform distribution in [0, 1]11, so 𝒫 = [0, 1]. The key assumption of our model is that 𝜌

is only observable to all lenders but not borrowers, and we assume all borrowers share the

common prior belief about the distribution of 𝜌.

10Note that the private benefit is not included in the regulator’s utility, but this assumption is not crucial.
Actually the key result, that partial disclosure is optimal, is still robust even if we include private benefit in
the regulator’s payoff function.

11Note that for any continuous random variable 𝑥 with cumulative distribution function 𝑇 (·), the new
variable 𝑦 = 𝑇 (𝑥) always follows a uniform distribution on [0, 1].
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Let

𝑚 (𝜌) = 𝐸
(︁
𝑉 |𝐺, 𝜌

)︁
=

∫︁ 𝑉

0
𝑣 · 𝑑𝐹𝜌 (𝑣)

be the expected payoff from any good type borrower if he is successfully financed. Then we

impose the following assumptions on 𝑚 (𝜌):

Assumption 1.3.1. 𝑚 (𝜌) satisfies the following conditions:

1. 𝑚 (𝜌) is continuous and strictly increasing;

2. 𝑚 (0) = 0 and 𝑚 (1) > 𝐼;

3. 𝜇𝑚 (1) ≤ 𝐼.

The first assumption is mainly for expositional convenience; relaxing this assumption

does not affect our main results. In the second assumption, 𝑚 (0) = 0 is also mainly for

expositional convenience so we can relax it without changing the main results. 𝑚 (1) > 𝐼

is to make sure that when 𝜌 = 1, it is efficient to lend to good type borrowers, otherwise

it is always efficient to reject any borrower and the equilibrium becomes trivial. The last

assumption means that the adverse selection in the market is severe and it is inefficient to

lend to all borrowers, this assumption helps to establish a clear benchmark, but my main

results do not rely on this specific assumption.

1.3.3 Feature and Manipulation

Although the quality type is informative about borrowers’ riskness, it is the private infor-

mation of borrowers, and thus can not be directly used by lenders in their lending decisions.

There is a feature 𝜃 ∈
{︁
𝐺̂, 𝐵̂

}︁
for each borrower and can be publicly observed by lenders. If

borrowers do not manipulate their features, 𝜃 = 𝐺̂(𝐵̂) if 𝜃 = 𝐺(𝐵), i.e., borrower feature 𝜃

can perfectly reveal borrower type 𝜃. However, each borrower can change his feature to the

other value by privately paying the non-pecuniary manipulation cost 𝑐. The cost structure

is introduced in (1.8). Intuitively, good type borrowers are not able to manipulate their

features, while bad type borrowers can manipulate their features by paying cost 𝑐, which

follows a continuous distribution on [0, 𝑐] with cumulative distribution function 𝐹𝑐 (·). The

assumption that good type borrowers are not able to manipulate their features is actually

redundant. We can show that good type borrowers will never manipulate in equilibrium

even if they have finite manipulation cost (see Appendix A.1).
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In equilibrium, lenders use the feature 𝜃 to assess borrowers’ riskness, but the infor-

mativeness of the feature 𝜃 is determined by bad type borrowers’ manipulation behavior.

Lenders’ lending decisions and bad type borrowers’ data manipulation levels are jointly

determined in equilibrium.

A key assumption in this model is that manipulation behavior does not change borrower

type, i.e., the distribution of 𝑉 is not influenced by the manipulation behavior, so feature 𝜃

only plays an informational role. This assumption is motivated by the “gaming the system”

concern in the algorithmic transparency debate. For example, lenders find variables that

can predict default risk using historical training data and machine learning algorithms,

which focus more on correlation but not causation between input and output. If borrowers

strategically change their behavior, their true riskness does not change but the predictive

algorithm may become less effective.

I impose the following assumption which also shows up in Assumption 1.2.1 in the simple

model.

Assumption 1.3.2. 𝑏 ≥ 𝑐.

This assumption implies that if lenders lend to 𝐺̂ borrowers for sure, then all of the

bad type borrowers will choose to manipulate and the borrower feature becomes useless.

This assumption, together with the condition 𝜇𝑚 (1) ≤ 𝐼 in Assumption 1.3.1, jointly imply

that in any equilibrium not all bad type borrowers choose to manipulate their features.

This result that helps to characterize the optimal policy, but my main results can easily be

extended to the case when this condition is violated.

1.3.4 Disclosure Policy

This project primarily focuses on the public disclosure of the relevance 𝜌. Although its

realization is unobservable to borrowers, we consider the scenario in which the regulator

can publicly reveal some information about the true state of 𝜌 to all borrowers before they

choose their manipulation behavior. Below is the formal definition of a disclosure policy.

Definition 1.3.1. A disclosure policy (𝒮, 𝜎̃) consists of a signal space 𝒮 and a mapping 𝜎̃

from the realization 𝜌 ∈ 𝒫 = [0, 1] to a distribution over signal space 𝒮:

𝜎̃ (𝑠|𝜌) : [0, 1] → Δ(𝒮) .

32



So 𝜎̃ (𝑠|𝜌) is the (generalized) probability distribution function12 of 𝑠 conditional on state

𝜌. The regulator publicly announces the disclosure rule and then draws a realization of 𝑠

based on it. After observing the realization 𝑠, all borrowers can update their beliefs on the

distribution of 𝜌 by Bayesian updating and then choose their manipulation strategies.

A special case of policies defined in Definition 1.3.1 is the deterministic policy. For these

policies, the signal realization conditional on any state 𝜌 is deterministic, so the conditional

probability can be summarized by a deterministic function. Below is the definition of a

deterministic policy. For notational simplicity, let’s denote 𝛿 (𝑥) as the Dirac function13.

Definition 1.3.2. A disclosure policy (𝒮, 𝜎̃) is deterministic if for any 𝜌 ∈ [0, 1], the signal

realization is deterministic, i.e., there exists a message function

𝜎 : [0, 1] → 𝒮,

such that

𝜎̃ (𝑠|𝜌) = 𝛿 (𝑠− 𝜎 (𝜌)) .

Throughout this paper, when there is no confusion, we use (𝒮, 𝜎) to represent a determin-

istic disclosure policy with signal space 𝒮 and message function 𝜎. To gain more intuitions

on how disclosure policies work, note that the full transparency can be implemented by a

deterministic policy with signal space 𝒮 = [0, 1], and the message function 𝜎 is

𝜎 (𝜌) = 𝜌.

In this case, the regulator assigns a unique signal 𝑠 = 𝜌 to each state 𝜌. When borrowers

observe a realization 𝑠, the public belief will be updated and it is sure that the true state

of relevance 𝜌 is 𝜌 = 𝑠. This disclosure policy effectively reveals all information about the

true state of 𝜌. Another example is the no disclosure policy, i.e., the regulator does not

reveal any information. It can also be implemented by a deterministic policy with only one

element in the signal space. Then borrowers will always observe the same realization no
12See Ziółkowski (2009) for discussion on generalized probability distribution function.
13A Dirac function 𝛿 (𝑥) is defined as

𝛿 (𝑥) =

{︃
∞ if 𝑥 = 0

0 if 𝑥 ̸= 0
,

and
∫︀ +∞
−∞ 𝛿 (𝑥) 𝑑𝑥 = 1.
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matter what the true state of relevance 𝜌 is, and thus they will learn nothing from the signal

and no information is revealed by this disclosure policy.

A more complex but also commonly used signal structure is the cutoff disclosure, i.e, the

regulator only reveals whether the true state of relevance 𝜌 is above a threshold 𝜌 or not. In

this case, the disclosure can be implemented by a deterministic policy with two elements in

the signal space 𝒮 = {𝑠𝐿, 𝑠𝐻}, and the message function 𝜎 (𝜌) is

𝜎 (𝜌) =

⎧⎪⎨⎪⎩
𝑠𝐿 if 𝜌 ∈ [0, 𝜌]

𝑠𝐻 if 𝜌 ∈ (𝜌, 1]

.

So the regulator discloses 𝑠𝐻 if 𝜌 > 𝜌 and 𝑠𝐿 otherwise. Then borrowers can only learn if

the true state of relevance 𝜌 is above the threshold 𝜌 or not.

The main advantage of modeling information disclosure in this way is the flexibility.

Intuitively, the information structure defined in Definition 1.3.1 summarizes all possible ways

of disclosing information, which also sheds light on the boundary of the pure information

channel on mitigating manipulation in this problem.

Once we have a general signal structure (𝒮, 𝜎̃), it will induce a distribution of posterior

beliefs {𝑓 (𝑠) , 𝜋 (𝜌|𝑠)}𝑠∈𝒮 , where𝑓 (𝑠) is the (generalized) density function of the random

variable 𝑠, and 𝜋(𝜌|𝑠) is the public posterior belief (probability distribution function) of 𝜌

conditional on observing the public signal realization 𝑠. To get sharp predictions on the

optimal disclosure policy, we impose the following technical restriction on the posterior

beliefs14:

Refinement 1.3.1. We focus on disclosure policies such that for any 𝑠, and any 𝜌 ∈

(𝜋 (𝜌|𝑠)), there exists a closed set 𝐵𝑠.𝜌 ⊂ (𝜋 (𝜌|𝑠)), such that 𝜌 ∈ 𝐵𝑠,𝜌 and 𝐸
(︀
1𝐵𝑠,𝜌 (𝜌) |𝑠

)︀
> 0,

where 1𝐴 (𝑥) is the indicator function:

1𝐴 (𝑥) =

⎧⎪⎨⎪⎩
1 if 𝑥 ∈ 𝐴,

0 if 𝑥 /∈ 𝐴.

14This technical restriction is not important. In our model, any zero-measure change on the disclosure
policy doesn’t change the expected payoff. This restriction is to rule out some optimal policies that are
almost the same as the optimal policies we characterize later.
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The distribution of posteriors {𝜋 (𝜌|𝑠)}𝑠∈𝒮 must satisfy a necessary condition15:

∫︁
𝑠
𝜋 (𝜌|𝑠) 𝑓 (𝑠) 𝑑𝑠 = 1[0,1] (𝜌) . (1.9)

This is also known as the Bayes-plausible condition (Kamenica and Gentzkow (2011)). The

interpretation is that the average of all posterior beliefs must be consistent with the prior

belief. Then following the literature, instead of working with the signal structures directly,

I work with distributions of posterior beliefs that satisfy condition (1.9) and 16

∫︁
𝑠
𝑓 (𝑠) 𝑑𝑠 = 1.

1.3.5 Lending Market

There are 𝑁 > 1 identical lenders operating in a competitive lending market, then in

equilibrium all lenders make zero profit17. The lending market equilibrium consists of the

bad type borrowers’ manipulation strategies and lenders’ lending decisions. We only focus

on symmetric equilibria in which all lenders choose the same strategy in equilibrium.

When the regulator commits to a disclosure policy (𝒮, 𝜎̃), for each signal realization

𝑠 ∈ 𝒮, we call the lending market induced by this signal realization 𝑠 the subgame 𝑠. Before

exploring how (𝒮, 𝜎̃) will change the market outcome, we solve the model backwards and

first consider the lending market equilibrium under an arbitrary posterior belief.

Suppose updated public belief of 𝜌 is 𝜋 (𝜌|𝑠). For any borrower 𝑖 and lender 𝑗, let(︁
𝐼𝑠,𝜃𝑗 , 𝐷𝑠,𝜃

𝑗

)︁
be the lender’s strategy and 𝛾𝑠𝑖 be the borrower’s manipulation decision where

1. 𝐼𝑠,𝜃𝑗 ∈ [0, 1] represents the probability that lender 𝑗 approves the loan application from

𝜃 borrowers, and 𝐷𝑠,𝜃
𝑗 represents the face value of the debt conditional on approval;

2. 𝛾𝑠𝑖 ∈ {0, 1} represents the probability that borrower 𝑖 manipulates his feature 𝜃𝑖.

It’s clear that 𝛾𝑠𝑖 = 0 for all good type borrowers in any equilibrium because they have

infinite manipulation cost, so the good type borrowers are passive in our model and do not
15The RHS of the condition represents the density of the prior belief of 𝜌, which is 1 under the uniform

distribution on [0, 1].
16These two conditions are necessary conditions, and I’ll verify the existence of the optimal policy later.
17This is not the key assumption of our model. Actually we can consider a model with a monopoly lender,

and the results on the optimal disclosure polices are the same, as long as there is no screening by contracts.
This is because in this model, the regulator wants to maximize the total surplus from financing activities,
while market structure only changes the distribution of surplus but not the total surplus.
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play any strategic role. For all lenders, they’ll never lend to 𝐵̂ borrowers, as those must be

bad type borrowers who will default with probability 1. So we must have 𝐼𝑠,𝐵̂𝑗 = 0, and the

choice of 𝐷𝑠,𝐵̂
𝑗 becomes irrelevant.

Let 𝑘𝑠 be the total (effective) financing cost of lending to 𝐺̂ borrowers, since all projects

require the same initial investment, 𝑘𝑠
𝐼 is the measure of 𝐺̂ borrowers and

(︀
𝑘𝑠
𝐼 − 𝜇

)︀
is the

measure of bad type borrowers who choose to manipulate their features. For a lender 𝑗, she

lends to 𝐺̂ borrowers only if

𝜇𝑚 (𝜌)− 𝑘𝑠 ≥ 0.

Then any lender 𝑗’s lending decision can be summarized by18

𝐼𝑠,𝐺̂𝑗 (𝜌)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
= 1 if 𝜌 > 𝜌𝑠

∈ [0, 1] if 𝜌 = 𝜌𝑠

= 0 if 𝜌 < 𝜌𝑠

,

where

𝜌𝑠 = 𝑚−1

(︂
𝑘𝑠
𝜇

)︂
. (1.10)

Since we only focus on symmetric equilibrium, in equilibrium we must have 𝐸
(︁
𝐼𝑠,𝐺̂𝑗

)︁
=

𝐸
(︁
𝐼𝑠,𝐺̂𝑘

)︁
for any 𝑗, 𝑘. For simplicity, let 𝐼𝑠 represent the equilibrium approval decision under

signal 𝑠.

For a bad type borrower with private manipulation cost 𝑐𝑖, since he always fails, the only

benefit he may get from the deal is the private benefit 𝐵, so he chooses to manipulate only

if

𝐸 (𝐼𝑠) ·𝐵 ≥ 𝑐𝑖.

Then it’s clear that the bad type borrowers’ manipulation strategy can be characterized

by a cutoff 𝑐𝑠, such that all bad type borrowers with manipulation cost 𝑐 ≤ 𝑐𝑠 choose to

manipulate their features, where

𝑐𝑠 = 𝐸 (𝐼𝑠) · 𝑏. (1.11)

18In equilibrium, the debt face value 𝐷𝑠,𝐺̂
𝑗 must satisfy the zero-profit condition:

𝜇𝐸
[︁
min

{︁
𝑉 ,𝐷𝑠,𝐺̂

𝑗

}︁
|𝜃 = 𝐺

]︁
= 𝑘𝑠. However, in our model, the debt face value only affects the distri-

bution of surplus between lenders and borrowers and does not change the regulator’s payoff (the surplus).
So in this paper, we’ll only focus on the approval decision.
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Moreover, in equilibrium, we must have

𝑘𝑠 = [𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑠)] 𝐼. (1.12)

Then the equilibrium of the subgame 𝑠 is characterized by (1.10),(1.11), and (1.12).

Below is the formal definition of an equilibrium for any subgame 𝑠:

Definition 1.3.3. An equilibrium of subgame 𝑠 is a triple (𝑘𝑠, 𝜌𝑠, 𝑐𝑠), and a function 𝐼𝑠,

where 𝑘𝑠 is the total cost of financing 𝐺̂ borrowers, 𝜌𝑠 is the cutoff in lending approval deci-

sions, 𝑐𝑠 is the cutoff in bad type borrowers’ manipulation decisions, and 𝐼𝑠 is the probability

that 𝐺̂ borrowers are financed, such that the following conditions are satisfied:

1. Lender optimization: 𝐼𝑠

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
= 1 if 𝜌 > 𝜌𝑠

∈ [0, 1] if 𝜌 = 𝜌𝑠

= 0 if 𝜌 < 𝜌𝑠

, where 𝜌𝑠 = 𝑚−1
(︁
𝑘𝑠
𝜇

)︁
;

2. Borrower optimization: 𝑐𝑠 = 𝐸 (𝐼𝑠) ·𝐵;

3. Consistency: 𝑘𝑠 = [𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑠)] 𝐼.

The regulator’s utility in this subgame is all the surplus generated from the financing

activities, which is

𝑊𝑠 = 𝐸
[︀
(𝜇𝑚 (𝜌)− 𝑘𝑠)

+]︀ .
Then her unconditional expected utility is

𝑊 =

∫︁
𝑠∈𝒮

𝑊𝑠𝑓 (𝑠) 𝑑𝑠,

which is the expected surplus across all subgames. Then the regulator’s information design

problem is the following
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Figure 1-4: Timeline

maximize
{𝒮,{𝑓(𝑠),𝜋(𝜌|𝑠)}𝑠∈𝒮}

𝑊 =

∫︁
𝑠∈𝒮

𝐸
[︀
(𝜇𝑚 (𝜌)− 𝑘𝑠)

+ |𝑠
]︀
𝑓 (𝑠) 𝑑𝑠 (1.13)

subject to
∫︁
𝑠∈𝒮

𝑓 (𝑠) 𝑑𝑠 = 1, (1.14)∫︁
𝑠∈𝒮

𝜋 (𝜌|𝑠) 𝑓 (𝑠) 𝑑𝑠 = 1𝜌∈[0,1], (1.15)

𝐹𝑐

(︂
𝑏 · Prob

(︂
𝜌 > 𝑚−1

(︂
𝑘𝑠
𝜇

)︂
|𝑠
)︂)︂

≤ 𝜇

1− 𝜇

(︂
𝑘𝑠
𝜇𝐼

− 1

)︂
≤ 𝐹𝑐

(︂
𝑏 · Prob

(︂
𝜌 ≥ 𝑚−1

(︂
𝑘𝑠
𝜇

)︂
|𝑠
)︂)︂

. (1.16)

The solution to the regulator’s problem is not unique, but in Section 1.5, we’ll discuss and

characterize the general properties of the optimal policies. The above regulator’s problem

is known as a Bayesian persuasion problem with continuous states. Bayesian persuasion

models with continuous states are in general not tractable, except for some special cases

(Gentzkow and Kamenica (2016), Dworczak and Martini (2019)). The regulator’s problem

in this paper does not fit into any existing tractable framework and I solve this model using

a ’guess and verify’ method.

1.3.6 Timeline

We summarize all the key ingredients of the model in Figure 1-4. All events occur in the

following order:

1. the regulator chooses a signal structure (𝒮, 𝜎̃); and Nature chooses the realization of
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𝜌;

2. signal realization 𝑠 is revealed, and is publicly observable to all the borrowers;

3. borrowers choose their manipulation strategies;

4. all lenders make their lending decisions simultaneously, and borrowers decide which

contract to accept;

5. all random variables are realized, and all players receive their payoffs.

1.3.7 Discussion of the Assumptions

1. The notion of predictive algorithm. In practice, predictive algorithm usually refers to

the mapping from observed input (which is the borrower feature after potential ma-

nipulation in this model) to the output (which is the future payoff distribution in this

model). In this paper, I consider the disclosure policy from a pure informational per-

spective and it cannot serve as a commitment device. This means that, when lenders

disclose their predictive algorithm, they are able to flexibly change their predictive

algorithms privately as a response to the borrowers’ manipulation behavior. Focusing

on the informational role of a predictive algorithm, disclosing information about the

predictive algorithm is equivalent to disclosing the fundamental statistical properties

of the random variables in the economic environment, which is the mapping from

the borrower type to future payoff distribution in this model. By rational expecta-

tion, the manipulation behavior and lending decision rules are known by all players in

equilibrium.

2. Disclosure vs regulating decision rules. In this paper, the disclosure is about the

statistical properties of variables in the economy, and the regulator is not able to

monitor or regulate lenders’ lending decisions directly (for example, how they use

certain variables in lending decisions). This feature is motivated by the challenge of

regulating algorithmic lending in practice. First, although some regulations aim at

regulating lending decisions directly (for example, prohibit the use of certain variables

in lending decisions), the motivation usually comes from concerns on fairness and

discrimination, and thus the regulation is independent of the statistical nature of the

variables and easy to implement. With the focus on market surplus, in this paper,
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regulating lending decisions will depend on the statistical natural of variables, which

is hard to monitor and implement. Second, regulating lending decisions by monitoring

the use of certain variables may not be effective, because they can easily be deduced

from other variables that correlate highly with them, known as the ’reconstruction

problem’ (Kleinberg et al. (2018)). Thirdly, the algorithms are dynamic and adjust

over time depending on the availability of data and data processing technology, which

makes it harder to monitor and regulate their decision rules directly.

3. Lending market structure. In this model, I assume all lenders are identical and the

lending market is competitive. This assumption is mainly for expositional convenience.

The regulator cares about the total surplus generated from all financing activities,

but not the distribution of the surplus between borrowers and lenders. In this model,

market structure only changes the distribution of surplus among borrowers and lenders

but not the total surplus. In an extreme case with a monopoly lender, if the lender

does not use differentiated contracts to screen borrowers19, then all the results about

optimal disclosure policies remain the same, and the only difference is the distribution

of surplus between borrowers and lenders.

4. Bad type borrowers always fail. In the model, I assume the bad type borrowers always

fail, and thus the only benefit they can receive from financing their projects is the

private benefit. This is to simplify the lending market equilibrium, and make the

analysis more concentrated on the disclosure side. Relaxing this assumption may

make the regulator’s problem messy and intractable, but our key result, that partial

disclosure policy is optimal, is still robust.

5. Only bad type borrowers are able to manipulate. In the model, I assume that only

bad type borrowers are able to manipulate their features. But allowing good type

borrowers to manipulate their features does not change the results. The key reason is

that in equilibrium, 𝐵̂ borrowers are always viewed as a worse group than 𝐺̂ borrowers

because bad type borrowers can always be 𝐵̂ borrowers with no cost. Then good type

borrowers have no incentive to manipulate and mimic the bad type. But this result

relies on the assumption that the space of 𝜃 is binary. In a model with general feature

19In Appendix, I show that in our baseline model, lenders will not screen borrowers using differentiated
contracts.
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space, the good type borrowers may be able to signal their type by paying cost and

differentiating themselves from the bad type borrowers further.

1.4 The Lack of Commitment Problem and the Inefficiency of

No Disclosure

The only friction in our model is the adverse selection due to endogenous data manipulation

behavior. Bad type borrowers change their manipulation behavior as a best response to the

updated public belief on the relevance 𝜌. For the optimal policy, a natural guess would be

that the regulator shouldn’t disclose any information about the relevance 𝜌 to the public and

make it as opaque as possible. In this case, the lending market equilibrium is characterized

by (𝑘𝑁 , 𝜌𝑁 , 𝑐𝑁 ), and the regulator’s payoff is

𝑊𝑁 =

∫︁ 1

𝜌𝑁

(𝜇𝑚 (𝜌)− 𝑘𝑁 ) 𝑑𝜌.

However, in this scenario, the use of the feature 𝜃 is too intensive from the regulator’s

perspective, and thus it creates too much manipulation unconditionally. This result comes

from the lenders’ lack of commitment problem: they always make the most efficient use of

borrower data ex post. To see this, suppose the regulator can ’force’ all lenders to choose

a higher lending cutoff 𝜌𝑁 + 𝑥 (𝑥 ≪ 1), so the lenders only use feature 𝜃 in their lending

decisions when the relevance 𝜌 > 𝜌𝑁 + 𝑥. From the perspective of borrowers, the feature 𝜃

will be used with lower probability, and thus discourage their manipulation incentives. The

marginal change of regulator’s payoff is

𝑑𝑊

𝑑𝑥

⃒⃒⃒⃒
𝑥=0

= − (𝜇𝑚 (𝜌𝑁 )− 𝑘𝑁 ) +

∫︁ 1

𝜌𝑁

(︂
−𝑑𝑘𝑁
𝑑𝑥

⃒⃒⃒⃒
𝑥=0

)︂
𝑑𝜌. (1.17)

In equilibrium we must have −𝑑𝑘𝑁
𝑑𝑥

⃒⃒⃒
𝑥=0

< 0, because the more stringent lending cutoff

discourages borrowers’ manipulation incentives, which in turn decreases the total financing

cost. Besides, the ex post efficiency in the lending market equilibrium implies

𝜇𝑚 (𝜌𝑁 )− 𝑘𝑁 = 0,

this is the lenders’ break-even condition at 𝜌 = 𝜌𝑁 in the no disclosure equilibrium. The
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Figure 1-5: Suboptimality of No Disclosure Policy

above two observations jointly imply that

𝑑𝑊

𝑑𝑥

⃒⃒⃒⃒
𝑥=0

> 0.

This suggests that ’forcing’ lenders to use the feature less frequently improves the outcome of

the lending market. Similar results show up in other economics settings where the informa-

tion receivers commit to underweight some variables in decision rules to deter manipulation

and improve efficiency (for example, Ball (2019)).

Although committing to the lending decisions is impossible in our model, the regula-

tor can mitigate (average) manipulation behavior by disclosing information about the true

state of relevance 𝜌. This leads to our first key result: the suboptimality of no disclosure

equilibrium.

Proposition 1.4.1. There exists a disclosure policy (𝒮, 𝜎̃) with total surplus 𝑊 , such that

𝑊 > 𝑊𝑁 .

Proposition 1.4.1 challenges the conventional wisdom that making algorithms more trans-

parent will always hurt efficiency because of the “gaming the system” concern. This is not

true even if only correlational features are used in the predictive algorithm. The key to

Proposition 1.4.1 is to find a disclosure policy under which the lenders will use feature 𝜃 less

frequently from the ex ante perspective, which will deter manipulation of the feature 𝜃.

42



To gain intuitions on how it works, suppose the regulator designs a deterministic disclo-

sure policy with three elements in the signal space 𝒮 = {𝑠1, 𝑠2, 𝑠3}, and the message function

is

𝜎 (𝜌) = 𝑠11𝐴1 (𝜌) + 𝑠21𝐴2 (𝜌) + 𝑠31𝐴3 (𝜌)

where 𝐴1, 𝐴2, and 𝐴3 are (unions of) intervals shown on Figure 1-5. The above disclosure

policy effectively discloses which set of 𝐴1, 𝐴2, and 𝐴3 that the true state belongs to. When

signal 𝑠𝑖 is disclosed to the borrowers, updated belief 𝜋 (𝜌|𝑠𝑖) is a uniform distribution

conditional on set 𝐴𝑖. The boundaries of the intervals are chosen such that:

1. the equilibrium of subgame 𝑠1 is the same as the no disclosure equilibrium, i.e.,

(𝑘1, 𝜌1, 𝑐1) = (𝑘𝑁 , 𝜌𝑁 , 𝑐𝑁 ) ;

2. 𝐴2 = [𝜌𝑁 , 𝜌𝑁 + 𝑥], where 𝑥≪ 1;

3. 𝐴3 = [0, 1]−𝐴1 ∪𝐴2.

The equilibrium of subgame 𝑠1 is the same as the no disclosure equilibrium, so it has no

effect on the change of regulator’s payoff. The signal 𝑠2 reveals that the true state is in the

interval [𝜌𝑁 , 𝜌𝑁 + 𝑥]. Note that the equilibrium condition

𝜇𝑚 (𝜌𝑁 )− 𝑘𝑁 = 0

implies the surplus when 𝜌 ∈ [𝜌𝑁 , 𝜌𝑁 + 𝑥] is close to zero in the no disclosure equilibrium.

And in the equilibrium of subgame 𝑠2, the surplus must be nonnegative, then the change of

regulator’s payoff is also negligible in this case. When 𝑠3 is disclosed, in the equilibrium of

subgame 𝑠3, the probability of financing 𝐺̂ borrowers is lower than that in the no disclosure

equilibrium (note that 𝐺̂ borrowers will be financed only if the true state is in the right

interval of 𝐴3), which mitigates the manipulation incentives of bad type borrowers and

improves the market surplus. Then the net effect of marginally increasing lending cutoff is

positive.
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1.5 General Properties of Optimal Policies

In this section, I discuss the general properties of the optimal policies.

1.5.1 Structure of The Optimal Policies

We already show that no disclosure is suboptimal in Section 1.4. Another natural guess for

the optimal disclosure policy is full transparency, i.e., disclosing all information about the

relevance 𝜌 to the public. We can show that full transparency leads to the worst outcome,

and thus it must be suboptimal.

Lemma 1.5.1. Suppose 𝑊𝐹 is the regulator’s payoff when she makes the true state of

relevance 𝜌 fully transparent, then 𝑊𝐹 = 0.

Note that the regulator’s payoff must be nonnegative. Lemma 1.5.1 implies that disclos-

ing all information about the true state of relevance 𝜌 leads to the regulator’s worst payoff,

so it must be suboptimal. The intuition behind the result is straightforward: when bad

type borrowers know perfectly about the true state of relevance 𝜌, then in equilibrium, the

data manipulation level satisfies that there is zero surplus from financing 𝐺̂ borrowers, and

lenders are indifferent between using and not using borrower data in lending decisions. This

result is consistent with the popular argument that disclosing too much information about

the predictive model hurts efficiency.

Proposition 1.4.1 and Lemma 1.5.1 jointly imply that the optimal disclosure policy must

feature partial disclosure. Before exploring the properties of the optimal policy, we show all

the subgame equilibria are ranked by equilibrium variables.

Lemma 1.5.2. For any disclosure policy (𝒮, 𝜎̃), and any two signal realizations 𝑠1 and 𝑠2,

we must have

𝑘𝑠1𝑘𝑠2 ⇐⇒ 𝑐𝑠1𝑐𝑠2 ⇐⇒ 𝜌𝑠1𝜌𝑠2 ,

where
(︀
𝑘𝑠1 , 𝜌𝑠1 , 𝑐𝑠1

)︀
and

(︀
𝑘𝑠2 , 𝜌𝑠2 , 𝑐𝑠2

)︀
are defined in Definition 1.3.3.

When more bad type borrowers manipulate their features, adverse selection is more

severe in the pool of 𝐺̂ borrowers, and the quality type 𝜃 needs to be a more relevant

variable (higher 𝜌) in identifying borrowers with better quality in lending decisions. Another

observation related to Lemma 1.5.2 is that if there exist two signal realizations 𝑠1, 𝑠2 such
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that (︀
𝑘𝑠1 , 𝜌𝑠1 , 𝑐𝑠1

)︀
=
(︀
𝑘𝑠2 , 𝜌𝑠2 , 𝑐𝑠2

)︀
,

then “combining” these two signal realizations together does not change the equilibrium

outcome. The following lemma is a formal statement of this result.

Lemma 1.5.3. For an optimal signal structure (𝒮, 𝜎̃) with distribution of posterior beliefs

{𝑓 (𝑠) , 𝜋 (𝜌|𝑠)}𝑠∈𝒮 , if there exist two distinct realizations 𝑠1, 𝑠2 ∈ 𝒮, such that

(︀
𝑘𝑠1 , 𝜌𝑠1 , 𝑐𝑠1

)︀
=
(︀
𝑘𝑠2 , 𝜌𝑠2 , 𝑐𝑠2

)︀
,

then the signal structure (𝒮 ′, 𝜎̃′) is also optimal, where {𝑠′0} /∈ 𝒮 and (𝒮 ′, 𝜎̃′) is defined by

𝒮 ′ =
{︀
𝑠′0
}︀
∪ 𝒮∖ {𝑠1, 𝑠2}

and

𝜎̃′ (𝑠|𝜌) = 𝜎̃ (𝑠|𝜌) 1𝒮∖{𝑠1,𝑠2} (𝑠) + (𝜎̃ (𝑠1|𝜌) + 𝜎̃ (𝑠2|𝜌)) 1{𝑠′0} (𝑠)

for all 𝜌 ∈ [0, 1] and 𝑠 ∈ 𝒮 ′.

Lemma 1.5.3 is very intuitive. When there are two signal realizations 𝑠1 and 𝑠2 that

lead to the equivalent equilibria, then instead of disclosing these two signal realizations sep-

arately, we can simply disclose that “the realization is either 𝑠1 or 𝑠2”, and the equilibrium

outcome will be unchanged. Based on this observation, without loss of generality, we impose

the following restriction on optimal policies: We focus on policies (𝒮, 𝜎̃) such that for any

𝑠1, 𝑠2 ∈ 𝒮 and 𝑠1 ̸= 𝑠2, the lending market equilibria satisfy
(︀
𝑘𝑠1 , 𝜌𝑠1 , 𝑐𝑠1

)︀
̸=
(︀
𝑘𝑠2 , 𝜌𝑠2 , 𝑐𝑠2

)︀
.

Based on the above criterion and the suboptimality of no disclosure equilibrium, the optimal

policy must differentiate the subgame equilibria by the data manipulation levels (and other

equilibrium variables), which is measured by 𝑐𝑠. The next lemma shows that data manip-

ulation exists in all subgame equilibria, so there is no first best outcome for any subgame.

And an implication of the lemma is that it is never optimal to confirm that a feature is not

used in lending decisions for sure.

Lemma 1.5.4. (Manipulation in all states) Suppose (𝒮, 𝜎̃) is an optimal policy. Then for
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almost all 𝑠 ∈ 𝒮, we must have

𝑘𝑠 > 𝐼, 𝜌𝑠 > 𝑚−1 (𝐼) , 𝑐𝑠 > 0.

Lemma 1.5.4 rules out some disclosure policies. For example, suppose the regulator

chooses a disclosure policy that reveals whether the relevance 𝜌 is below 𝑚−1 (𝐼) or not.

Note that for any 𝜌 < 𝑚−1 (𝐼), it is inefficient to finance any borrowers, then there will

be no loan approved and no manipulation. On the other hand, if 𝜌 > 𝑚−1 (𝐼) is revealed,

𝐺̂ borrowers will be financed and the unique lending market equilibrium is determined by

conditions in Definition 1.3.3. This disclosure policy violates the result in Lemma 1.5.4, and

thus it is inefficient. This is because compared to the no disclosure equilibrium, the regulator

does not gain anything from states 𝜌 ≤ 𝑚−1 (𝐼) as she still only receives zero payoff, but

more people will choose to manipulate in states 𝜌 > 𝑚−1 (𝐼), as signal 𝜌 > 𝑚−1 (𝐼) confirms

the high relevance of the feature 𝜃 and incentivizes more manipulation. This cutoff policy

is dominated by the no disclosure policy, which effectively pools these two signals together.

Actually, as we will discuss later, in the optimal policy, we want to mix low states (where

relevance 𝜌 is low) with high states (where relevance 𝜌 is high) and preserve uncertainty of

the true state of relevance 𝜌 in all posterior equilibria.

The second necessary condition of optimal policy features ex ante cutoff of lending de-

cisions. Note that under any subgame 𝑠, the loan applications from 𝐺̂ borrowers will be

approved if the relevance 𝜌 is high enough, i.e., when 𝜌 > 𝜌𝑠. This means that the lending

decision is always a cutoff decision ex post, and this is a natural result in equilibrium: the

feature 𝜃 is more useful when 𝜌 is higher. It turns out that this condition is also satisfied ex

ante under the optimal disclosure policy. The following lemma states this result.

Lemma 1.5.5. (Ex ante lending cutoff) Suppose that (𝒮, 𝜎̃) is an optimal policy, with

induced distribution of posteriors {𝑓 (𝑠) , 𝜋 (𝜌|𝑠)}𝑠∈𝒮 , then there must exist a constant 𝜌⋆ ∈

(0, 1), such that for almost all 𝑠 ∈ 𝒮, 𝐺̂ borrowers are financed if and only if

𝜌 ∈ (𝜌⋆, 1] ∩ (𝜋 (𝜌|𝑠)) .

Figure 1-6 explains Lemma 1.5.5 by showing three specific signal realizations 𝑠1, 𝑠2,
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Figure 1-6: Efficiency

and 𝑠3. The colored regions represent the posterior beliefs under these three signals, and

cutoffs 𝜌𝑠1 , 𝜌𝑠2 and 𝜌𝑠3 represent lenders’ equilibrium lending cutoffs in these three equilibria.

Consider signal 𝑠1 with 𝜌𝑠1 > 𝜌⋆. Since in the subgame 𝑠1, 𝐺̂ borrowers will not be financed

if 𝜌 ≤ 𝜌𝑠1 , Lemma 1.5.5 implies that

(𝜋 (𝜌|𝑠1)) ∩
(︀
𝜌⋆, 𝜌𝑠1

]︀
= ∅.

Similar results can be obtained for all other signal realizations.

Then from the unconditional (ex ante) perspective, 𝐺̂ borrowers will be financed if and

only if

𝜌 > 𝜌⋆.

This condition confirms the efficiency of optimal policies, in which lenders utilize the feature

𝜃 if and only if the relevance 𝜌 is high enough. Besides, note that for almost all subgame 𝑠,

Lemma 1.5.5 implies that, in equilibrium we have

sup {(𝜋 (𝜌|𝑠)) ∩ [0, 𝜌⋆]} ≤ 𝜌𝑠 ≤ inf {(𝜋 (𝜌|𝑠)) ∩ (𝜌⋆, 1]} .

Then the support of the posterior belief is divided into two parts: the rejection region

(𝜋 (𝜌|𝑠)) ∩ [0, 𝜌⋆]
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in which all loan applications are rejected, so the lending decision is independent of borrower

data; and the approval region

(𝜋 (𝜌|𝑠)) ∩ (𝜌⋆, 1]

in which 𝐺̂ borrowers are financed, so the lending decision making is dependent on borrower

data. The following lemma shows that, without loss of generality, we can focus on determin-

istic disclosure policies in which both regions are intervals for all posterior equilibria, and

all subgames are ranked by the equilibrium data manipulation levels.

Lemma 1.5.6. For any optimal disclosure policy (𝒮, 𝜎̃), there must exist a deterministic op-

timal policy (𝒮, 𝜎) with the same signal space 𝒮. Let
{︁
𝑓 (𝑠) , 𝜋̃ (𝜌|𝑠)

}︁
𝑠∈𝒮

and {𝑓 (𝑠) , 𝜋 (𝜌|𝑠)}𝑠∈𝒮
be the distribution of posteriors for the policy (𝒮, 𝜎̃) and (𝒮, 𝜎) respectively, and let

(︁
𝑘𝑠, 𝜌𝑠, ˜̄𝑐𝑠

)︁
and (𝑘𝑠, 𝜌𝑠, 𝑐𝑠) be equilibrium outcomes for the policy (𝒮, 𝜎̃) and (𝒮, 𝜎) respectively. Then

the following properties hold:

1. 𝑓 (𝑠) = 𝑓 (𝑠) and
(︁
𝑘𝑠, 𝜌𝑠, ˜̄𝑐𝑠

)︁
= (𝑘𝑠, 𝜌𝑠, 𝑐𝑠) for almost all 𝑠, and the ex ante lending

cutoffs defined in Lemma 1.5.5 are the same under these two policies, denoted as 𝜌⋆;

2. for almost all 𝑠 ∈ 𝒮, both

(𝜋 (𝜌|𝑠)) ∩ [0, 𝜌⋆]

and

(𝜋 (𝜌|𝑠)) ∩ (𝜌⋆, 1]

are non-empty intervals;

3. for almost all 𝑠1, 𝑠2 ∈ 𝑆 with 𝑐𝑠1 < 𝑐𝑠2,

sup {(𝜋 (𝜌|𝑠1)) ∩ [0, 𝜌⋆]} ≤ inf {(𝜋 (𝜌|𝑠2)) ∩ [0, 𝜌⋆]} (1.18)

and

sup {(𝜋 (𝜌|𝑠1)) ∩ (𝜌⋆, 1]} ≤ inf {(𝜋 (𝜌|𝑠2)) ∩ (𝜌⋆, 1]} . (1.19)

Lemma 1.5.6 simplifies the space of optimal disclosure policies. It shows that, for any op-

timal policy (𝒮, 𝜎̃), we can find a payoff-equivalent deterministic policy (𝒮, 𝜎) which induces

the same posterior lending market equilibria. And for the deterministic optimal disclosure
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policy, the posterior belief always consists of two intervals representing the rejection re-

gion and the approval region. For almost all signal realizations, the posterior equilibria are

ranked by the equilibrium data manipulation levels (measured by 𝑐𝑠). Based on the above

observations, we characterize the structure of an optimal disclosure policy in the following

theorem.

Theorem 1.5.1. There exists a deterministic optimal policy (𝒮, 𝜎) which consists of

1. a signal space 𝒮 ⊂ [𝑐min, 𝑐max];

2. a message function 𝜎 and cutoff 𝜌⋆ ∈ (0, 1) such that both

𝜎|[0,𝜌⋆] : [0, 𝜌
⋆] → 𝒮

and

𝜎|(𝜌⋆,1] : (𝜌
⋆, 1] → 𝒮

are weakly increasing functions with the same range.

Under this optimal policy, for any subgame 𝑠, the equilibrium cutoff of data manipulation

cost is 𝑐𝑠 = 𝑠, and 𝐺̂ borrowers will be financed if and only if 𝜌 > 𝜌⋆ for all 𝑠.

Here we select a specific signal space such that the message sent to borrowers is actually

the recommended data manipulation decision. Upon observing signal realization 𝑠, bad type

borrowers are recommended to manipulate their features if and only if their manipulation

cost satisfies 𝑐 ≤ 𝑠. Note that in Theorem 1.5.1 we only characterize the general structure

of the optimal message function 𝜎 but not provide the exact functional form of it.

Figure 1-7 is a graphical illustration of Theorem 1.5.1. For each signal realization 𝑠 (for

example, the signal 𝑠 = 𝑐min or 𝑐24), the posterior belief is a union of two disjoint intervals20

which can always be separated by the cutoff 𝜌⋆. These two disjoint intervals represent the

rejection region and approval region in lending decisions. For example, the red intervals

represent the posterior belief of signal 𝑠 = 𝑐min, and when the true state of 𝜌 is in the red

region, the recommended cutoff of data manipulation cost 𝑐min is sent to the borrowers.

Upon observing the signal 𝑠 = 𝑐min, bad type borrowers update their belief and choose to

manipulate their features if their manipulation cost satisfies 𝑐 ≤ 𝑐min.
20Note that a single point is also a closed interval.
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Figure 1-7: Graphical Illustration of Theorem 1.5.1

The optimal message function consists of two parts, denoted as

𝜎𝐿 = 𝜎|[0,𝜌⋆]

and

𝜎𝑅 = 𝜎|(𝜌⋆,1] .

Then 𝜎𝐿 (𝜌) and 𝜎𝑅 (𝜌) can be viewed as the message functions for the rejection region and

approval region respectively. For any 𝑠 ∈ Ran (𝜎𝐿) = Ran (𝜎𝑅)
21, 𝜎−1

𝐿 (𝑠) (or 𝜎−1
𝑅 (𝑠)) can

either be an interval with positive length or a single point. In the first case, the signal is

discrete and the equilibrium approval probability for 𝐺̂ borrowers is

Prob
(︀
𝜎−1
𝑅 (𝑠)

)︀
Prob

(︀
𝜎−1
𝐿 (𝑠)

)︀
+ Prob

(︀
𝜎−1
𝑅 (𝑠)

)︀ .
In the second case, the signal is continuous, and the equilibrium approval probability for 𝐺̂

21Ran(𝑓) means the range of a function 𝑓 .

50



borrowers is22
1

𝜎′
𝑅(𝜎

−1
𝑅 (𝑠))

1
𝜎′
𝐿(𝜎

−1
𝐿 (𝑠))

+ 1
𝜎′
𝑅(𝜎

−1
𝑅 (𝑠))

,

where 1
𝜎′
𝑅(𝜎

−1
𝑅 (𝑠))

(︂
1

𝜎′
𝐿(𝜎

−1
𝐿 (𝑠))

)︂
is an analog of Prob

(︀
𝜎−1
𝑅 (𝑠)

)︀ (︀
Prob

(︀
𝜎−1
𝐿 (𝑠)

)︀)︀
in the previous

case.

1.5.2 Properties of Optimal Policies

In this subsection, we discuss some properties of the posterior equilibria. First, the prior

belief of 𝜌 is 𝜌 ∼ 𝑈 [0, 1], then unconditionally, the probability that 𝐺̂ borrowers are financed

is

Prob (𝜌 > 𝜌⋆) = 1− 𝜌⋆.

Similarly, in the no disclosure equilibrium, the probability that 𝐺̂ borrowers are financed is

Prob (𝜌 > 𝜌𝑁 ) = 1− 𝜌𝑁 .

The following Proposition shows that 𝐺̂ borrowers are financed less frequently under the

optimal disclosure policy compared to the no disclosure case.

Proposition 1.5.1. Suppose 𝜌⋆ is the cutoff described in Lemma 1.5.5, then 𝜌⋆ > 𝜌𝑁 .

Proposition 1.5.1 implies that borrower data are used less frequently under the optimal

disclosure policy compared to the no disclosure case, which confirms our intuition why no

disclosure equilibrium is suboptimal, and why it can be improved. In the no disclosure

equilibrium, the feature 𝜃 is used too intensively, resulting in too much manipulation. To

mitigate this problem, the regulator prefers the feature 𝜃 to be used less frequently, and this

is achieved by the optimal policy.

The second property is about the data manipulation levels in posterior equilibria.

Proposition 1.5.2. 𝑐max > 𝑐𝑁 > 𝑐min.
22In this case, the probability of observing a specific signal is always zero. Then the distribution of signal

is represented by a density function 𝑓 (𝑠):

𝑓 (𝑠) =
1

𝜎̃′
𝐿

(︀
𝜎̃−1
𝐿 (𝑠)

)︀ +
1

𝜎̃′
𝑅

(︀
𝜎̃−1
𝑅 (𝑠)

)︀ ,
where 1

𝜎̃′
𝐿(𝜎̃

−1
𝐿

(𝑠))
and 1

𝜎̃′
𝑅(𝜎̃

−1
𝑅

(𝑠))
represent the weights of the rejection region and approval region, respec-

tively.
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𝑐max and 𝑐min represents the highest and lowest equilibrium cutoffs of manipulation

cost among all posterior equilibria. Proposition 1.5.2 explains the idea of differentiation of

posterior equilibria. In the equilibrium with highest data manipulation level (𝑐𝑠 = 𝑐max),

a higher 𝜌 is required for the feature 𝜃 to be used in lending decisions, and this deters the

use of borrower data in this subgame equilibrium. The cost is the higher data manipulation

level, and thus lenders have to finance more bad type borrowers, while the benefit is the less

use of borrower data which discourages data manipulation unconditionally. As we discussed

in Section 1.4, the positive effect dominates and surplus improves.

The last property is about the surplus in the posterior equilibria. Note in Section 1.4,

we show that the inefficiency comes from states when 𝜌 is close to 𝜌𝑁 (see condition (1.17)).

In these states the regulator’s payoff is small, so the benefit of financing 𝐺̂ borrowers cannot

justify the negative externality it imposes on other states. The following Proposition shows

that, to mitigate the negative externality, the surplus from lending activities must be large

enough for any posterior equilibrium that occurs with positive probability.

Proposition 1.5.3. (Positive surplus) Under any optimal policy characterized in Theorem

1.5.1, for any 𝜖 > 0, there exists 𝛿 > 0, such that for any posterior equilibrium with signal

realization 𝑠 satisfying

Prob (𝑠) > 𝜖,

the surplus from lending must be greater than 𝛿 for any 𝜌 > 𝜌⋆.

1.5.3 A Closed-Form Characterization

I characterize the general structure of optimal policies in Theorem 1.5.1, while leaving the

functional form of message function 𝜎 (·) unsolved. In this subsection, I provide a closed-

form characterization of the optimal policy by imposing a distributional assumption on the

manipulation cost.

Assumption 1.5.1. 𝑥𝐹𝑐 (𝑥) has at most one inflection point23 on [0, 𝑐].

Many commonly used distribution functions satisfy Assumption 1.5.1, including trun-

cated normal distribution, uniform distribution, truncated exponential distribution, Beta

distribution, Gamma distribution, Weibull distribution, etc. Since 𝑥𝐹𝑐 (𝑥) is locally convex

23Inflection points are points where the function changes concavity.
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around 𝑥 = 0, Assumption 1.5.1 means that 𝑥𝐹𝑐 (𝑥) is either a weakly convex function on

[0, 𝑐], or there exists 𝑐 ∈ (0, 𝑐) such that 𝑥𝐹𝑐 (𝑥) is weakly convex on [0, 𝑐] and weakly con-

cave on [𝑐, 𝑐]. With this assumption, the optimal policy has a simpler structure. In Theorem

1.5.1, the message is the recommended data manipulation decision, while in the following

theorem, without loss of generality, I choose a different signal space to make the results

simpler.

Theorem 1.5.2. When Assumption 1.5.1 is satisfied, there exists a deterministic optimal

policy (𝒮, 𝜎) characterized by

1. three cutoffs (𝜌𝑎, 𝜌
⋆, 𝜌𝑏) satisfying 0 < 𝜌𝑎 < 𝜌⋆ < 𝜌𝑏 < 1;

2. a signal space 𝒮 = [𝜌𝑎, 𝜌
⋆];

3. a continuous, strictly increasing function 𝛾 : [𝜌𝑏, 1] → [𝜌𝑎, 𝜌
⋆] satisfying 𝛾 (𝜌𝑏) = 𝜌𝑎

and 𝛾 (1) = 𝜌⋆, such that the message functions 𝜎 (𝜌) is

𝜎|[0,𝜌⋆] =

⎧⎪⎨⎪⎩
𝜌𝑎 if 𝜌 ∈ [0, 𝜌𝑎]

𝜌 if 𝜌 ∈ (𝜌𝑎, 𝜌
⋆]

and

𝜎|(𝜌⋆,1] =

⎧⎪⎨⎪⎩
𝜌𝑎 if 𝜌 ∈ (𝜌⋆, 𝜌𝑏]

𝛾 (𝜌) if 𝜌 ∈ (𝜌𝑏, 1]

.

For any 𝑠 ∈ 𝒮, the equilibrium data manipulation decision 𝑐𝑠 satisfies

𝜇𝑚 (𝑠) = (𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑠)) 𝐼.

The optimal policy is a simplified version of our general result in Theorem 1.5.1. Both

𝜎|[0,𝜌⋆] and 𝜎|(𝜌⋆,1] are continuous and consist of a flat region and a strictly increasing region.

In the signal space 𝒮 = [𝜌𝑎, 𝜌
⋆], 𝑠 = 𝜌𝑎 is a discrete signal and the posterior belief is a uniform

distribution conditional on [0, 𝜌𝑎] ∪ (𝜌⋆, 𝜌𝑏]. For any 𝑠 ∈ (𝜌𝑎, 𝜌
⋆], the signal is continuous.

Let 𝑥 = 𝛾−1 (𝑠), then the posterior distribution of relevance 𝜌 is a lottery24 with binary

24A lottery ⟨(𝑥1, 𝑥2, ...𝑥𝑁 ) , (𝑝1, 𝑝2, ...𝑝𝑁 )⟩ is a discrete random variable with probability function
Prob (𝑥 = 𝑥𝑖) = 𝑝𝑖.
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Figure 1-8: A closed-form characterization

outcomes: ⟨
(𝛾 (𝑥) , 𝑥) ,

(𝛾′ (𝑥) , 1)

𝛾′ (𝑥) + 1

⟩
. (1.20)

For any subgame 𝑠, the equilibrium lending cutoff 𝜌𝑠 satisfies the following condition:

Lemma 1.5.7. Under the deterministic optimal disclosure policy (𝒮, 𝜎) characterized in

Theorem 1.5.2, for any 𝑠 ∈ 𝒮, we must have 𝜌𝑠 = sup {(𝜋 (𝜌|𝑠)) ∩ [0, 𝜌⋆]}.

This means that the lending cutoff 𝜌𝑠 is chosen such that it equals the highest value in

the rejection region. Lemma 1.5.7 and all equilibrium conditions jointly imply that for all

𝜌 ∈ (𝜌𝑏, 1], the function 𝛾 (𝜌) satisfies the following ODE:

𝑚 (𝛾 (𝜌)) = 1 +
1− 𝜇

𝜇
𝐹𝑐

(︂
𝑏 · 1

1 + 𝛾′ (𝜌)

)︂
, (1.21)

with boundary conditions

𝛾 (𝜌𝑏) = 𝜌𝑎 and 𝛾 (1) = 𝜌⋆.

The equilibrium condition under the discrete signal 𝑠 = 𝜌𝑎 implies

𝛾′ (𝜌𝑏) =
𝜌𝑎

𝜌𝑏 − 𝜌⋆
.

With the above characterization, all of 𝛾 (𝜌), 𝜌𝑎 and 𝜌𝑏 can be solved as a function of

the ex ante lending cutoff 𝜌⋆, so the equilibrium is uniquely determined by a single variable
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𝜌⋆. Then we can reduce the original infinite-dimensional optimization problem to a one-

dimensional problem. The regulator’s problem becomes

maximize
𝜌⋆

∫︁ 1

𝜌⋆
𝑚 (𝑥) 𝑑𝑥−

∫︁ 1

𝜌𝑏

𝑚 (𝛾 (𝑥)) 𝑑𝑥− (𝜌𝑏 − 𝜌⋆)𝑚 (𝜌𝑎)

subject to 𝑚 (𝛾 (𝑥)) = 1 +
1− 𝜇

𝜇
𝐹𝑐

(︂
𝑏 · 1

1 + 𝛾′ (𝑥)

)︂
,

𝛾 (𝜌𝑏) = 𝜌𝑎, 𝛾 (1) = 𝜌⋆,

𝛾′ (𝜌𝑏) =
𝜌𝑎

𝜌𝑏 − 𝜌⋆
.

(1.22)

Lemma 1.5.7 also implies that approval probability in posterior equilibrium is an increas-

ing function of 𝑠. Note that for any 𝑠 ∈ (𝜌𝑎, 𝜌
⋆), the posterior belief is a lottery represented

by (1.20), then the approval probability is

1

1 + 𝛾′ (𝛾−1 (𝑠))
.

These observations jointly implies that 𝛾′ (𝜌) is a strictly decreasing function of 𝜌. The

following lemma states the formal result.

Lemma 1.5.8. In the optimal disclosure policy characterized in Theorem 1.5.2, 𝛾 (𝜌) is a

strictly concave function on 𝜌 ∈ (𝜌𝑏, 1).

1.6 Extension: Costly Fraud Detection

In the main model, all bad type borrowers’ manipulation decisions are unobservable to

lenders. In practice, lenders can also costly identify fraudulent activities using various

methods, which is another way of mitigating adverse selection. In this extension, I consider

how the disclosure policy interacts with fraud detection in the regulator’s problem.

Assume all lenders have the identical linear cost function of fraud detection, i.e., each

lender can verify and reveal any borrower’s true type by paying cost 𝑡 > 0. Once the type

of a borrower is verified, it becomes public information. To consider the optimal disclosure

policy with this fraud detection technology, note that for any equilibrium with posterior

belief 𝜋 (𝜌|𝑠) and total financing cost 𝑘𝑠, the net value of verifying a 𝐺̂ borrower’s true type

is

𝑊𝑉 = max

{︂
𝜇𝐼

𝑘𝑠
(𝑚 (𝜌)− 𝐼) , 0

}︂
− 𝑡.
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Figure 1-9: 𝑊𝑁 vs 𝑊𝑁𝑉

And the net value of not verifying the borrower’s true type is

𝑊𝑁𝑉 = max

{︂
𝜇𝐼

𝑘𝑠
𝑚 (𝜌)− 𝐼, 0

}︂
.

Figure 1-9 compares 𝑊𝑉 and 𝑊𝑁𝑉 . When 𝑡 > 𝐼
(︁
1− 𝜇𝐼

𝑘𝑠

)︁
,

𝑊𝑁𝑉 > 𝑊𝑉

for all 𝜌, then in this case, lenders will never verify any borrower’s true type.

When 𝑡 < 𝐼
(︁
1− 𝜇𝐼

𝑘𝑠

)︁
,

𝑊𝑁𝑉 < 𝑊𝑉 ⇐⇒ 𝜌 > 𝜌𝑒,

where 𝜌𝑒 solves
𝜇𝐼

𝑘𝑠
(𝑚 (𝜌𝑒)− 𝐼)− 𝑡 = 0.

Then lenders will verify 𝐺̂ borrowers with probability 1 when 𝜌 > 𝜌𝑒, and lend to 𝐺̂ borrowers

only when they pass the verification. However, this cannot be an equilibrium because in this

case no bad type borrower has the incentive to manipulate (since approval is possible only

when they pass the verification). As a best response, lenders have no incentive to verify,

which is a contradiction.
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When 𝑡 = 𝐼
(︁
1− 𝜇𝐼

𝑘𝑠

)︁
, 𝜌𝑒 solves

𝜇𝑚 (𝜌𝑒)− 𝑘𝑠 = 0,

so 𝜌𝑒 = 𝜌𝑠. Moreover,

𝑊𝑁𝑉 = (>)𝑊𝑉 ⇐⇒ 𝜌 ≥ (<)𝜌𝑒.

In this case, lenders are indifferent between verifying or not when 𝜌 ≥ 𝜌𝑠, and will lend to

𝐺̂ borrowers only when 𝜌 ≥ 𝜌𝑠.

In summary, if in subgame 𝑠, lenders verify any borrower’s true type with positive

probability, we must have

𝑡 = 𝐼

(︂
1− 𝜇𝐼

𝑘𝑠

)︂
⇐⇒ 𝑘𝑠 = 𝑘𝑣 =

𝜇𝐼2

𝐼 − 𝑡
.

And the data manipulation level 𝑐𝑣 is

𝑘𝑣 = (𝜇+ (1− 𝜇)𝐹𝑐 (𝑐
𝑣)) 𝐼 ⇐⇒ 𝑐𝑣 = 𝐹−1

𝑐

(︂
𝜇𝑡

(1− 𝜇) (𝐼 − 𝑡)

)︂
.

In this subgame, when 𝜌 ≥ 𝑚−1
(︁
𝑘𝑣

𝜇

)︁
, lenders verify 𝐺̂ borrowers’ true types with positive

probability and lend to those who are not verified or verified to be good type borrowers.

The verification probability 𝑝𝑣25 satisfies the condition that bad type borrowers with cost

𝑐𝑣 break even.

The following theorem presents the optimal disclosure policy with verification and con-

firms the robustness of our baseline result.

Theorem 1.6.1. With costly verification, there exists 𝑡𝑣 such that

1. when 𝑡 ≥ 𝑡𝑣, lenders will never use verification, and the optimal disclosure policy will

not change;

2. when 𝑡 < 𝑡𝑣, there exists 𝜌𝑣 ∈ (0, 1), such that the optimal disclosure is characterized

as two steps:

(a) The regulator first reveals if the true state 𝜌 is above 𝜌𝑣 or not.

25Here I assume 𝑝𝑣 to be constant for simplicity. The choice of verification probability 𝑝𝑣 can depend on
the true state 𝜌, and thus is not unique.
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(b) If the true state 𝜌 > 𝜌𝑣, then the lenders will verify all 𝐺̂ borrowers with probability

𝑝𝑣 = 1 − 𝑐𝑣

𝐵 , and lend to 𝐺̂ borrowers who are not verified or verified to be good

type borrowers.

(c) If the true state 𝜌 ∈ [0, 𝜌𝑣], then information about 𝜌 is disclosed according to

a policy (𝒮𝑣, 𝜎𝑣), where (𝒮𝑣, 𝜎𝑣) is an optimal disclosure policy characterized in

Theorem 1.5.1 with prior belief 𝜌 ∼ 𝑈 [0, 𝜌𝑣].

Theorem 1.6.1 shows that the disclosure policy and verification technology interact in

a simple way: when the relevance 𝜌 is sufficiently high (𝜌 > 𝜌𝑣), only verification is used

to disincentivize manipulation behavior, and disclosure becomes irrelevant; while when the

relevance 𝜌 is not high enough (𝜌 ≤ 𝜌𝑣), only disclosure policy is used to disincentivize the

manipulation behavior and verification technology is never used.

1.7 Conclusion

I study the optimal algorithmic disclosure in a lending market. FinTech lenders use privately

observed predictive algorithms to help make lending decisions. The input of the predictive

algorithm is the data collected from borrowers, which is subject to a strategic manipulation

problem. In the optimal public disclosure, the information about the predictive algorithm

should be partially disclosed to the borrowers, which differentiates the posterior lending

market equilibira by data manipulation levels. Under the optimal disclosure policy, lenders

use borrower data less intensively in their lending decisions which decreases the average data

manipulation level and improves efficiency.

There are some potential directions for future research. First, in my model, I abstract

away the screening channel using contracts in the lending market. The joint design of

information and contract will be a natural question for future research. Second, the feature

in my model is a binary variable, and it will be interesting to consider a model with a

general space for input. In a general model, all types of borrowers may signal their types

by costly manipulation, and the interaction between the signaling and information design is

also interesting. Thirdly, this paper mainly focuses on efficiency but not the distribution of

surplus. Since fairness is also a crucial part of the regulator’s objective, it will be interesting

to consider the optimal algorithmic disclosure that achieves a particular surplus distribution.

Finally, all lenders use the same predictive algorithm in my model, but it is natural to
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consider the setting where lenders use different but correlated algorithms, and in this case,

algorithmic disclosure may change the lending market structure.
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Chapter 2

Learning from Manipulable Signals

2.1 Introduction

Asymmetric information is pervasive in long-term relationships; meanwhile, learning often

takes place during the interactions between different parties. For instance, venture capital

(VC) firms face asymmetric information in their investments: startups often have better

information about the odds of success of their projects than the investors (Leland and Pyle,

1977; Chan, 1983; Gompers and Lerner, 2004). Moreover, due to the private benefits from

receiving continuous funding,1 startups are willing to pursue projects that are less viable

than what VCs are willing to invest in. VCs, upon agreeing to finance a startup, receive

periodical performance reports (subscription growth, number of patents, media and user

reviews, etc.) from the startup. These reports may provide information about the viability

of the startup. However, the startup may undertake hidden actions to inflate the perfor-

mance report, tampering with its informativeness. Examples include rideshare platforms

who periodically announce their numbers of users and could inflate such statistics by spe-

cialized promotions, and Luckin Coffee and Theranos who have been under investigation for

fabricating key performance data.

We analyze learning problems with asymmetric information and hidden actions, and

investigate the equilibrium learning dynamics. In our model, a principal (VC) and an agent

(startup) are engaged in a relationship that takes place in continuous time. Performance

reports are modeled as public signals evolving according to a Brownian motion whose drift

1An extreme example is the former CEO of WeWork, Adam Neumann, who allegedly purchased a cor-
porate jet with the company’s money for personal use.
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depends on the agent’s privately-known type and action. If the agent is an investible type,

then the drift is 𝜇 > 0; if the agent is a noninvestible type, then the drift is 0 by default,

but the agent can take a costly action to boost the drift up to 𝜇. The signals serve only

an informational role, and do not affect the principal’s payoffs. The principal receives

opportunities to terminate the relationship according to a Poisson process, and chooses

whether to terminate the relationship whenever such an opportunity arises;2 she prefers to

continue the relationship with the investible type and to terminate the relationship against

the noninvestible type.

We study Markov equilibria of this game where the state variable is the public belief

that the agent is a noninvestible type. We call the complementary probability, i.e., the

probability that the agent is an investible type, the agent’s reputation. Our first result

establishes the existence and uniqueness of Markov equilibrium.

In the unique equilibrium, the principal’s termination strategy has a cutoff structure —

the principal terminates the relationship if and only if the agent’s reputation is sufficiently

bad. The agent’s equilibrium strategy depends on the magnitude of his discount rate. If his

discount rate is greater than a cutoff (i.e., if he does not care much about the future), then

he never engages in costly performance boosting. If his discount rate is less than the cutoff

(i.e., if he is patient enough), then the agent does not engage in performance boosting when

his reputation is very good or very bad, but will do so with intermediate reputation. In

particular, the intensity of performance boosting is hump-shaped in the agent’s reputation

and peaks at the principal’s termination cutoff.

Our first qualitative finding concerns the relationship between the agent’s reputation and

the expected performance, measured by the expected drift of the signal from an outsider’s

perspective. If the agent is so impatient that he never engages in performance boosting, then

the expected performance is increasing in the agent’s reputation (decreasing in the state vari-

able). However, when the agent is more patient and engages in some performance boosting,

the expected performance is non-monotone in the agent’s reputation. Starting from an ini-

tial good reputation, as the agent’s reputation deteriorates, the expected performance first

declines, reaching a local minimum, and then it rises, reaching a local maximum precisely

at the principal’s termination cutoff, and decreases again thereafter (see Figure 2-3). This

2The Poisson arrival of stopping opportunities captures the frictions in the principal’s decision making
and implementation, and will technically help us avoid off-path histories in our equilibrium analysis.
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finding may help explain why some startups deliver impressive performance reports, such as

large sales growth (e.g., Luckin Coffee), extraordinary revenue flow (e.g., Theranos) or rapid

expansion (e.g., WeWork), not long before investors pull their funds. It is also consistent

with the observation that growing market suspicion and strong (expected) performance can

coexist for a period of time.

Our second qualitative result concerns the relationship between the amount of infor-

mation transmission and the transparency of the performance measure. Due to random

events such as demand shocks and measurement errors, performance reports are imperfect

signals of the agent’s type and action, and we use the signal-to-noise ratio of the process

to capture its transparency. In reality, transparency may be determined by the volatility of

the product market and may also be affected by how much detail a startup is required to

disclose. We show that, due to the agent’s endogenous signal manipulation, the principal

may be worse off as transparency improves. This result suggests that VCs can sometimes

fare better when the startup initially operates in a more volatile market, and that policies

that require disclosing too precise information may end up hurting the investors. We also

find that exogenous delays in the principal’s decision making can sometimes help her, as

they facilitate information transmission by reducing the agent’s incentive to manipulate the

signal.

Specifically, if the opportunity to terminate the relationship arrives at a rate less than

a cutoff (the high-friction case), then in equilibrium, the agent never engages in perfor-

mance boosting too aggressively because termination is always unlikely. In this case, as the

signal-to-noise ratio grows, the information flow in the principal’s optimal stopping problem

approaches immediate revelation of the agent’s type, which benefits the principal.

On the other hand, if the termination opportunity arrives at a rate greater than the

aforementioned cutoff (the low-friction case), then the agent has stronger incentives to en-

gage in performance boosting. We find, perhaps surprisingly, that the principal’s payoff is

nonmonotone in the signal-to-noise ratio of the performance report, implying that the prin-

cipal can be worse off when the performance measure becomes more transparent (less noisy).

We obtain this result by looking at two extreme cases. At one extreme, if the performance

report is independent of the agent’s type and action (i.e., uninformative signals), then the

principal can never learn about the agent’s type and will receive her “no-information" value.

At the other extreme, as the signal-to-noise ratio grows without bound, we show that the
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principal cannot utilize any information about the agent’s type either. Intuitively, in this

case the agent will engage in performance boosting aggressively, for otherwise his type would

be revealed rapidly. Such aggressive performance boosting is anticipated by the principal,

and thus largely reduces the informativeness of the signal. As a result, the principal’s equi-

librium payoff converges to her “no-information" value. In contrast to the extreme cases,

for intermediate values of the signal-to-noise ratio, the principal will learn some information

about the agent’s type and get a payoff strictly above her “no-information" value.

Finally, we investigate the equilibrium outcomes as players get arbitrarily patient. We

find a strong manifestation of the ratchet effect in the patient limit of our model. Since

the principal cannot commit to refraining from using future information against the agent,

a patient agent will engage in performance boosting with almost full intensity in order to

maintain his reputation. In the limit, no useful information is revealed, and the principal’s

lack of commitment hurts her in the most extreme way.3

While the leading application of our model is the VC-startup relationships, we believe

that the economic forces identified by our analysis are relevant in other scenarios, such as

voter-politician, manager-worker and purchaser-supplier relationships, where learning with

asymmetric information is a critical aspect. On the technical side, our choice of modeling

this game in continuous time enables us to obtain semi-closed-form expressions that describe

the key equilibrium properties.4 However, our most substantive technical contributions lie

in the asymptotic analysis, namely Theorems 2.6.1 and 2.7.1, where the lack of a fully

closed-form solution presents additional challenges. To deal with them, we establish a new

Learning Lemma (see Claim 17 and Lemma OA.5) that allows us to measure how frequently

those beliefs under which the agent’s mimicking intensity is low are visited. This result,

while interesting on its own and useful in other settings, enables us to tackle discontinuities

which arise in the limit of equilibria of our model. At the end of Section 2.6, we explain in

more detail how our proofs combine the Learning Lemma with the semi-closed-form solution

to obtain these limit results.

Related Literature. Our paper is most closely related to the reputation literature and

the literature on dynamic games with stopping decisions.
3This result holds if both players get arbitrarily patient at the same rate, or if the agent gets patient at

a faster rate than does the principal.
4Besides papers reviewed below, recent works that exploit the tractability of continuous-time methods

include DeMarzo et al. (2012), Bonatti et al. (2017), Ortner (2017), Cisternas (2018) and Varas et al. (2020),
among others.
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Most of the reputation literature — starting with Kreps and Wilson (1982) and Milgrom

and Roberts (1982), and later generalized by Fudenberg and Levine (1989, 1992) and most

recently by Pei (2020) — investigates whether and how much a long-lived informed player

can benefit from its private information in repeated games played against myopic opponents.

The focus is typically on the case where the informed party is arbitrarily patient, and

on bounding the informed player’s equilibrium payoffs.5 In contrast, our analysis fully

characterizes (Markov) equilibrium behavior for all discount rates, and we uncover new

qualitative features that the equilibrium dynamics exhibit.6

Faingold and Sannikov (2011) study reputation effects in games played in continuous time

with one long-lived informed player against myopic opponents, and they characterize the set

of sequential equilibria. Unlike Faingold and Sannikov (2011), the uninformed player in our

game is forward-looking and can terminate the game. More importantly, the termination

payoffs depend on the informed player’s type, creating interdependence of payoffs between

the players (similar to Pei (2020)) and thus making their characterization not applicable to

our model.

There is a growing interest in dynamic games with stopping decisions. Daley and Green

(2012), Kolb (2015, 2019), Dilmé (2019), Ekmekci and Maestri (2019) and Sun (2018) all

study stopping games with two long-lived players, where the uninformed party receives

information over time and obtains type-dependent payoffs. In Daley and Green (2012),

Kolb (2015) and Dilmé (2019), the informed player makes the stopping decision while in

our paper such decision is made by the uninformed player. This makes the incentives and

equilibrium structure in our model quite different from theirs. In Kolb (2019), the agent

can only influence the information process by irreversibly changing his type, while in our

model the agent can directly manipulate the signal, with his type being persistent. Besides,

the qualitative results on the equilibrium dynamics in our paper do not have a counterpart

in these papers. Ekmekci and Maestri (2019) study a similar setting in discrete time, and

focus solely on the limiting case with arbitrarily patient players. Our Theorem 2.7.1 is

the continuous-time version of their main finding, while we obtain much richer equilibrium

5There are also papers that bound equilibrium payoff of the informed player with long-lived uninformed
players, e.g., Schmidt (1993); Cripps and Thomas (1997); Celetani et al. (1996); Atakan and Ekmekci (2012,
2015)

6Studies on reputation dynamics include Mailath and Samuelson (2001); Phelan (2006); Liu (2011);
Ekmekci (2011); Lee and Liu (2013); Liu and Skrzypacz (2014). However, these papers do not share similar
equilibrium dynamics or qualitative results that we obtain partly because they look at repeated moral hazard
games and/or the uninformed parties are myopic.
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dynamics for any fixed discount rate. Finally, Sun (2018) studies dynamic censorship with

Poisson news, wherein the agent can decide whether to show or hide the bad news after

privately observing its realization.7

Aghion and Jackson (2016) and Kuvalekar and Lipnowski (2020b) also study dynamic

games (in discrete and continuous time, respectively) between two long-run players with

stopping decisions. However, the nature of uncertainty and agent’s actions in their models

are quite different from ours. Specifically, both papers look at a career-concern type of model

with symmetric information between the two players, while the agent’s actions affecting the

signal process are costless to the agent and observable to the principal. By contrast, in

our model the agent has private information about his type, and his action is costly and

hidden. This necessarily makes the principal’s inference problem more delicate, as she has

to form a conjecture about the agent’s action which need coincide with the agent’s actual

strategy in equilibrium. Moreover, in our model the agent’s trade-off is between improving

his reputation and saving the mimicking cost, while in their models the agent is optimizing

over the speed of learning (i.e., variance, rather than drift, of the belief process). Orlov et al.

(2020) also consider a dynamic setting with stopping decisions and symmetrically informed

players, and they study the agent’s optimal information disclosure policy in a persuasion

game.

2.2 Model

2.2.1 Players, types, actions, and information flow

A principal (she) and an agent (he), both risk-neutral, interact in continuous time 𝑡 ∈ [0,∞).

At any time 𝑡, an exogenous stopping opportunity arrives according to a Poisson process

{𝐽𝑡}𝑡≥0 with rate 𝜆 > 0. When the said opportunity arrives, the principal chooses whether

to continue or irreversibly stop the game. The Poisson arrival of stopping opportunities

captures the frictions in the principal’s decision making and implementation.8

The agent can be one of two types, denoted by 𝜃: an investible type (𝜃 = 𝐼), or a non-
7In Sun (2018), the equilibrium censoring intensity is monotone in the agent’s reputation while in our

model, the intensity of performance boosting is non-monotone. Besides, his analysis focuses on the welfare
implications of the censoring activity, while we examine the welfare effects of better transparency and the
ratchet effect at the patient limit.

8Technically, this assumption ensures that there is no off-equilibrium history/belief. In Remark 1 we
discuss what happens as the frictions vanish, i.e. as 𝜆→ ∞. None of our main results requires the frictions
to be significant: they hold either for all 𝜆, or when 𝜆 is sufficiently large.
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investible type (𝜃 = 𝑁𝐼). The agent’s type is his private information. From the principal’s

viewpoint, the initial probability that the agent is a noninvestible type is 𝑝0 ∈ (0, 1).

There is a public signal {𝑋𝑡}𝑡≥0 that evolves over time. If the agent is an investible type,

then the public signal evolves according to the process:

𝑑𝑋𝑡 = 𝜇𝑑𝑡+ 𝜎𝑑𝐵𝑡,

where {𝐵𝑡}𝑡≥0 is a standard Brownian motion. Without loss, we assume that 𝜇 > 0 and

𝜎 > 0, and we define the signal-to-noise ratio 𝜓 of the process as 𝜓 ≡ 𝜇/𝜎. If the agent is a

noninvestible type, he chooses an 𝛼𝑡 ∈ [0, 1] at any time 𝑡 when the game has not stopped

yet. In this case, his choice controls the drift of the public signal process:

𝑑𝑋𝑡 = 𝜇𝛼𝑡𝑑𝑡+ 𝜎𝑑𝐵𝑡.

The model assumes that the investible type does not have any action choice, and the

evolution of the public signal is exogenous conditional on this type (always having a drift

of 𝜇). Meanwhile, the noninvestible type chooses a mimicking intensity, which can be inter-

preted as the probability with which the noninvestible type acts the same as the investible

type. In our leading application of VC investments, we can interpret the public signal as

performance reports from the startup and the mimicking action taken by the noninvestible

type as performance boosting.

2.2.2 Strategies

The investible type of the agent does not have an action choice. A strategy for the nonin-

vestible type is a stochastic process {𝛼𝑡}𝑡≥0, which takes values in [0, 1] and is progressively

measurable with respect to the filtration generated by {𝐵𝑡}𝑡≥0. Let 𝒜 be the set of strategies

for the agent.

A strategy for the principal is a stochastic process 𝛽 ≡ {𝛽𝑡}𝑡≥0, progressively measurable

with respect to the filtration generated by {𝑋𝑡, 𝐽𝑡}𝑡≥0, which represents the probability

with which the principal takes the stopping action conditional on the arrival of a stopping

opportunity. Let ℬ be the set of strategies for the principal.9

9We note that the principal only observes the public signal, while the agent knows his own past actions,
and thus can recover {𝐵𝑡}𝑡≥0 by removing the drift term.
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Given a strategy profile (𝛼, 𝛽) and a prior 𝑝0, the principal updates her belief about the

agent’s type using Bayes’ rule, and we let {𝑝𝑡}𝑡≥0 denote the belief process defined by

𝑝𝑡 := 𝑃 {𝜃 = 𝑁𝐼 | {𝑋𝑠}𝑠≤𝑡} . (2.1)

Note that the belief process 𝑝𝑡, conditional on a continuing relationship, is determined by

the strategy of the agent and not affected by the strategy of the principal or the arrival of

stopping opportunities.

2.2.3 Payoffs

If the game is stopped, the agent receives his outside option which we normalize to 0. If

the game is not yet stopped, the noninvestible agent receives a flow payoff that depends on

his action, 𝑢 + (1 − 𝛼𝑡)𝑐, where 𝑢 > 0 and 𝑐 > 0.10,11 That is, if the noninvestible agent

does (not) mimic the investible type then his flow payoff in the relationship is 𝑢 (resp.,

𝑢+𝑐); thus, 𝑐 is the flow cost of mimicking. For a given strategy profile, (𝛼, 𝛽), the expected

discounted payoff of the noninvestible agent at time 𝑡 is given by

𝑈1(𝑡, 𝛼, 𝛽) := 𝐸

{︂∫︁ 𝑇

𝑡
𝑒−𝑟1(𝜏−𝑡)𝑟1 [𝑢+ (1− 𝛼𝜏 )𝑐] 𝑑𝜏

⃒⃒⃒⃒
𝜃 = 𝑁𝐼, {𝐵𝑠}𝑠≤𝑡

}︂
,

where 𝑇 is the random time at which the game stops and the expectation is taken over 𝑇 .

This expression can be simplified to

𝑈1(𝑡, 𝛼, 𝛽) := 𝐸

{︂∫︁ ∞

𝑡
𝑒−Λ1(𝑡,𝜏,𝛽)𝑟1 [𝑢+ (1− 𝛼𝜏 )𝑐] 𝑑𝜏

⃒⃒⃒⃒
𝜃 = 𝑁𝐼, {𝐵𝑠}𝑠≤𝑡

}︂
,

where we define the discounting exponent (taking into account the agent’s discount rate 𝑟1

and the termination probability)

Λ1(𝑡, 𝜏, 𝛽) :=

∫︁ 𝜏

𝑡
(𝑟1 + 𝜆𝛽𝑠)𝑑𝑠.

The principal’s flow payoff does not depend on the agent’s action or the public signal,12

10Interpreting the noninvestible type as choosing between mimicking (𝐴𝑡 = 1) or not (𝐴𝑡 = 0) and 𝛼𝑡

as the probability of taking the mimicking action, we can think of the noninvestible type’s flow payoff as
defined by 𝑢+ 1{𝐴𝑡=0}𝑐.

11The flow payoff of the investible type in the relationship is always some positive constant, say, 𝑢+ 𝑐.
12This assumption seems reasonable in our leading example of venture capital investments, wherein an

investor’s payoff is mainly driven by the viability (type) of the startup rather than its performance in the

68



and we normalize her flow payoff to zero. However, the principal receives a lump-sum payoff

of 𝑤𝑁𝐼 > 0 if the game stops against a noninvestible type, and 𝑤𝐼 < 0 if the game stops

against an investible type. That is, relative to continuing the relationship, the principal

prefers stopping against a noninvestible type but dislikes terminating an investible type.

Thus, given a strategy profile (𝛼, 𝛽), the expected discounted payoff of the principal at time

𝑡 is given by

𝑈2(𝑡, 𝛼, 𝛽) := 𝐸

{︂∫︁ ∞

𝑡
𝑒−Λ2(𝑡,𝜏,𝛽)𝜆𝛽𝜏

(︀
1{𝜃=𝑁𝐼}𝑤𝑁𝐼 + 1{𝜃=𝐼}𝑤𝐼

)︀
𝑑𝜏

⃒⃒⃒⃒
{𝑋𝑠}𝑠≤𝑡

}︂
,

where we define the discounting exponent (taking into account the principal’s discount rate

𝑟2 and the termination probability)

Λ2(𝑡, 𝜏, 𝛽) :=

∫︁ 𝜏

𝑡
(𝑟2 + 𝜆𝛽𝑠)𝑑𝑠.

Note that 𝑈2(𝑡, 𝛼, 𝛽) is calculated conditional on the stopping opportunity not arriving (or

having been forgone) at time 𝑡.

2.3 Discussion of Model Assumptions

The essential ingredients of our model are the following:

1. The agent has private information about his type, and wants to stay in the relationship

for as long as possible.

2. The principal faces a learning problem about the agent’s type; she prefers to terminate

against the nonivestible type and to continue with the investible type.

3. The noninvestible type can manipulate the drift of a noisy signal at a cost to mimic

the investible type’s performance.13

4. The signal only serves an informational role and is payoff-irrelevant to the principal.

In addition to these assumptions, we adopt a normalization of flow payoffs and outside

options to simplify the exposition. Below, we present an alternative but equivalent formu-

initial financing period, while the initial performance is still informative to the investor about the startup’s
type.

13Our equilibrium characterization in Theorem 2.4.1 is robust to introducing some strategic behavior to
the investible type. See Remark 2 for a discussion.

69



lation, which fits better with our VC examples and provides a foundation to the principal’s

simplified payoff structure.

Suppose that the principal’s outside option is independent of the agent’s type and is

equal to 0. By continuing the relationship the principal incurs a flow cost equal to 𝑏 > 0.

There is a revealing event that arrives according to a Poisson process with rate 𝛿, indepen-

dent of the agent’s type and the signal process. When the event arrives, the game ends

delivering a lump-sum payoff to the principal. This payoff is equal to 𝜋𝐼 > 0 if the agent is

investible and 𝜋𝑁𝐼 = 0 otherwise. The flow cost represents the continuous financial inputs

that the VC contributes to the startup. The revealing event corresponds to the VC’s realiza-

tion of the startup’s profitability (type), and the ensuing type-dependent lump-sum payoffs

correspond to the value of the startup to the VC upon learning its type. As in the original

formulation, the principal can terminate the relationship whenever a stopping opportunity

arrives. The arrival follows a Poisson process at rate 𝜆̂, and is independent of the revealing

event. These intermittent stopping opportunities capture the frictions that are inevitable in

a VC’s decision making and implementation. For example, the withdrawal of funding may

be decided only through board meetings which are called upon once in a while; moreover, a

VC that wants to liquidate its shares in a startup may have to wait some time until a buyer

shows up.

The (noninvestible) agent’s flow payoff is 𝑢̂ if he engages in performance boosting and

𝑢̂+ 𝑐 otherwise. The agent receives a payoff of 0 when the relationship ends, either because

the principal terminates it or the revealing event occurs.14 The discount rates of the agent

and the principal are 𝑟1 and 𝑟2, respectively.

This formulation is strategically equivalent to the benchmark model with a type-dependent

outside option for the principal. The equivalence is achieved through the following trans-

formation of parameters, which can be verified by standard calculations. The agent’s flow

payoffs are identical across the two formulations, i.e., 𝑢 = 𝑢̂, 𝑐 = 𝑐, and so is the arrival rate

of the principal’s stopping opportunity, 𝜆 = 𝜆̂. The implied discount rates are augmented

by the arrival rate of the revealing event, i.e., 𝑟1 = 𝑟1 + 𝛿, 𝑟2 = 𝑟2 + 𝛿. And finally, the

14We could also assume that the investible type gets a positive lump-sum reward when the revealing event
occurs, but this will not change the game in any way because the revealing event is out of everyone’s control.
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principal’s type-dependent outside options are given by

𝑤𝐼 =
𝑟2𝑏− 𝛿𝜋𝐼
𝑟2 + 𝛿

, 𝑤𝑁𝐼 =
𝑟2𝑏

𝑟2 + 𝛿
.

As long as 𝜋𝐼 > 𝑟2
𝛿 𝑏 (i.e., if the reward to the principal upon learning that the agent is

investible is large enough), we have 𝑤𝐼 < 0 < 𝑤𝑁𝐼 , as in our baseline model.

Finally, our model focuses solely on the adverse-selection aspect of the problem, by

assuming that performance reports do not directly affect the principal’s payoff. This seems

reasonable in contexts such as VC-startup relationships, wherein an investor’s payoff is

mostly driven by the viability (type) of the startup rather than its performance in the initial

financing period, though the initial performance is informative about the startup’s type.15

2.4 Equilibrium Characterization

2.4.1 Equilibrium Concept

An equilibrium is a strategy profile (𝛼, 𝛽) such that

𝑈1(𝑡, 𝛼, 𝛽) ≥ 𝑈1(𝑡, 𝛼̃, 𝛽),

𝑈2(𝑡, 𝛼, 𝛽) ≥ 𝑈2(𝑡, 𝛼, 𝛽),

for all alternative strategies 𝛼̃ ∈ 𝒜 and 𝛽 ∈ ℬ, almost surely for all 𝑡 ≥ 0.

Let16

𝒫 := {𝑓 : (0, 1) → [0, 1], 𝑓 is right-continuous and piecewise Lipschitz}.

Recall that the belief process defined in (2.1) is determined by the agent’s strategy. We say

that a strategy 𝛼 of the agent is Markovian if there exists policy function 𝑎 ∈ 𝒫 such that

𝛼𝑡 = 𝑎(𝑝𝑡) for all 𝑡 ≥ 0. An equilibrium (𝛼, 𝛽) is Markovian if there exist policy functions

𝑎, 𝑏 ∈ 𝒫 such that 𝛼𝑡 = 𝑎(𝑝𝑡) and 𝛽𝑡 = 𝑏(𝑝𝑡) for all 𝑡 ≥ 0. In this case, we say that the

15Moreover, we have verified that our equilibrium characterization still holds even after allowing for some
dependence of the principal’s flow payoff on the agent’s action. This analysis is not included in the manuscript
and is readily available upon request.

16A function 𝑓 : (0, 1) → [0, 1] is piecewise Lipschitz if there exist 𝑛 ∈ 𝑁 and 0 = 𝑥1 < 𝑥2 < ... < 𝑥𝑛 = 1,
such that for each 𝑖 ∈ {1, ..., 𝑛− 1}, there exists a Lipschitz function 𝑓𝑖 on [𝑥𝑖, 𝑥𝑖+1] such that 𝑓𝑖(𝑝) = 𝑓(𝑝)
for all 𝑝 ∈ (𝑥𝑖, 𝑥𝑖+1).
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policy profile (𝑎, 𝑏) ∈ 𝒫2 is induced by (𝛼, 𝛽).

Given a Markovian equilibrium (𝛼, 𝛽), let SP(𝛼) be the set of posteriors reached on the

equilibrium path.17

Lemma 2.4.1. Any Markovian equilibrium (𝛼, 𝛽) with an induced policy profile (𝑎, 𝑏) sat-

isfies 𝑖) sup𝑝∈(0,1) 𝑎(𝑝) < 1, and 𝑖𝑖) SP(𝛼) = (0, 1).

Lemma 2.4.1 says that in any Markovian equilibrium the agent’s action is always bounded

away from full mimicking and that every posterior belief is reached with positive probability.

Intuitively, if the noninvestible type is expected to choose 𝑎 = 1 at some belief 𝑝, then the

signal from that time on becomes uninformative, making 𝑝 an absorbing state. But if the

belief is not moving, the noninvestible type’s best reply at state 𝑝 is to choose 𝑎 = 0, which

violates the (implicit) requirement that the agent’s equilibrium action must coincide with

the principal’s conjecture about his action. In fact, one can show that an equilibrium policy

function 𝑎(·) must be bounded away from 1, and thus the variance of the belief process is

always bounded away from 0.18 Together with the Poisson arrival of stopping opportunities,

this makes all interior beliefs reachable on the equilibrium path.

Given a Markovian equilibrium (𝛼, 𝛽), the continuation payoff at time 𝑡 depends only

on the public belief 𝑝𝑡. Hence, we define the value function of the (noninvestible) agent as

𝑉 (𝑝) := 𝐸 {𝑈1(𝑡, 𝛼, 𝛽) | 𝑝𝑡 = 𝑝, 𝜃 = 𝑁𝐼}

and the value function of the principal as

𝑊 (𝑝) := 𝐸 {𝑈2(𝑡, 𝛼, 𝛽) | 𝑝𝑡 = 𝑝}

for every 𝑝 ∈ (0, 1).

We say that a value function is regular if it is continuously differentiable everywhere,
17Consider a Markovian equilibrium, (𝛼, 𝛽), and the underlying probability space (Ω, 𝐹,𝑃 ). For each

𝑝 ∈ (0, 1) , we define Φ(𝑝) := {𝜔 ∈ Ω : ∃𝑡 ≤ 𝑇 such that 𝑝𝑡(𝜔) = 𝑝}, where 𝑇 is the equilibrium stopping
time. The belief span, SP(𝛼), is the set of all 𝑝 such that 𝑃 (Φ (𝑝)) > 0. Because 𝑝𝑡 in a continuing
relationship depends only on the agent’s strategy 𝛼 and the principal’s stopping opportunity may not arrive
at any 𝑡, the belief span is also solely determined by 𝛼. Consequently, this notion of belief span can be
defined for any (Markovian) strategy of the agent.

18This result holds for any fixed value of the parameters. The lower bound on the volatility of the belief
process, 1− sup𝑝∈(0,1) 𝑎(𝑝), depends on players’ discount rates, the arrival rate of the Poisson process, and
the signal to noise ratio. Therefore, the informativeness of the public signal can get arbitrarily close to zero
in some cases (e.g., when the signal to noise ratio is very high or the agent is very patient, as we will see in
Sections 2.6 and 2.7).
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and twice continuously differentiable everywhere except perhaps at a finite number of points.

We say that a Markovian equilibrium (𝛼, 𝛽) is smooth if the associated value functions

are regular and the agent’s policy function 𝑎(·) is Lipschitz. We refer to smooth Markovian

equilibria simply as Markov equilibria.19 Moreover, when there is no confusion, we denote

a Markov equilibrium by the policy profile (𝑎, 𝑏) that it induces.

2.4.2 Characterization

We first introduce some terminology to define properties of policy functions for the principal

and the agent. Recall that the state variable 𝑝 is the principal’s belief that the agent is

noninvestible.

Definition 2.4.1. The policy function 𝑏 ∈ 𝒫 for the principal has a cutoff structure if

there exists 𝑝 ∈ [0, 1] such that 𝑏(𝑝) = 0 for 𝑝 < 𝑝, and 𝑏(𝑝) = 1 for 𝑝 > 𝑝. We refer to 𝑝 as

the cutoff belief of 𝑏.

Definition 2.4.2. The policy function 𝑎 ∈ 𝒫 for the (noninvestible) agent is fully sepa-

rating if 𝑎(𝑝) = 0 for all 𝑝 ∈ (0, 1).

Definition 2.4.3. The policy function 𝑎 ∈ 𝒫 for the (noninvestible) agent is hump-shaped

if 𝑎 is continuous and there are cutoffs 0 < 𝑝𝐿 < 𝑝* < 𝑝𝑅 < 1 such that 𝑎(𝑝) = 0 for 𝑝 ≤ 𝑝𝐿,

strictly increasing on (𝑝𝐿, 𝑝
*), strictly decreasing on (𝑝*, 𝑝𝑅), and 𝑎(𝑝) = 0 for 𝑝 ≥ 𝑝𝑅.

Theorem 2.4.1. There always exists a unique Markov equilibrium (𝑎, 𝑏). In this equilibrium,

𝑏 has a cutoff structure with some cutoff belief 𝑝* ∈ (0, 1). Moreover, there exists 𝑟* > 0

such that

1. If 𝑟1 ≥ 𝑟*, then 𝑎 is fully separating.

2. If 𝑟1 < 𝑟*, then 𝑎 is hump-shaped and is maximized at 𝑝*.

Theorem 2.4.1 characterizes the structure of the unique Markov equilibrium. First, the

principal uses a cutoff strategy. This follows from the type-dependent stopping payoff of the

principal, and the absence of flow payoffs.

19We emphasize that “smoothness" is built into our definition of the term “Markov equilibrium." We do
not look for non-smooth Markovian equilibria in this paper, and any claim about equilibrium uniqueness
does not rule out the possibility of non-smooth Markovian equilibria.
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Second, the noninvestible agent’s behavior depends on his discount rate. If he is im-

patient (i.e., with a high discount rate), then he never mimics the investible type, because

he always finds the saving of the mimicking cost to outweigh the benefit of having a better

reputation. A richer dynamics opens up if the agent is patient (i.e., with a low discount

rate). In this case, his behavior can be described by three reputation phases: good, medium

and bad, as depicted in Figure 2-1. Both in the good and the bad reputation phases, the

noninvestible type does not mimic the investible type at all, but for different reasons: when

his reputation is good (𝑝 < 𝑝𝐿), the relationship is highly stable, so the noninvestible agent

gains little from further improving his reputation by mimicking; when his reputation is bad

(𝑝 > 𝑝𝑅), termination is so imminent that the noninvestible agent gives up building rep-

utation. In the intermediate phase, however, the noninvestible type first starts to mimic

more often as his reputation worsens in order to slow down the principal’s learning. We

interpret this as a “scramble-to-rescue" effect : the agent increases his mimicking intensity

(before 𝑝*) as the relationship gets less stable. After certain point, he gradually gives up as

the relationship becomes doomed. His mimicking intensity is highest at belief 𝑝* when the

principal’s action switches from continuing the relationship to termination.20

That the agent’s mimicking intensity reaches its peak around 𝑝* can be understood from

an equilibrium perspective. In general, the agent’s incentive to manipulate depends on: i)

how responsive the belief is to signal realizations; ii) how sensitive the principal’s decision is

to belief changes. If the agent manipulates more in equilibrium, then the principal believes

that the signal is less informative and her belief is less responsive to the signal realizations,

which reduces the agent’s incentive to manipulate through (i). When the principal’s decision

is very sensitive to the agent’s reputation (namely, at reputations around the cutoff 𝑝*),

the agent’s manipulation has to be high in order to partially neutralize the effect of such

sensitivity, and ensure that the marginal cost of manipulation equals the marginal benefit.

Finally, the cutoff discount rate, 𝑟*, can be characterized in closed form. Specifically, 𝑟*

is the unique solution to the following equation:

𝑟*(
√︀

1 + 8𝑟*/𝜓2 +
√︀

1 + 8(𝑟* + 𝜆)/𝜓2) + 𝜆(
√︀
1 + 8𝑟*/𝜓2 + 1) = 4𝜆

(︁𝑢
𝑐
+ 1
)︁
. (2.2)

20Even though the principal’s optimal action switches at 𝑝*, the agent’s mimicking intensity does not
immediately drop to 0 right after the belief passes 𝑝*. This is because the relationship can only be terminated
when a stopping opportunity arrives, leaving some hope for the agent to rebuild his reputation and avoid
termination.
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Figure 2-1: Agent’s Equilibrium Policy Function When 𝑟1 < 𝑟*. This figure is plotted under
the following parameter values: 𝑟1 = 0.5, 𝑟2 = 0.5, 𝜆 = 2, 𝜓 = 1.5, 𝑢 = 1, 𝑐 = 1, 𝑤𝑁𝐼 = 1,
𝑤𝐼 = −1. In equilibrium, 𝑝𝐿 ≈ 0.195, 𝑝* ≈ 0.565, 𝑝𝑅 ≈ 0.633.

Some comparative statics results are readily obtained from (2.2). In particular, 𝑟* increases

with 𝜆, 𝜓 and 𝑢
𝑐 . This is intuitive, because the noninvestible type will have a higher incentive

to mimic if: i) the stopping opportunity arrives more frequently and thus the relationship

is less stable; ii) the signal-to-noise ratio is higher and thus a manipulation of signal is more

profitable; iii) mimicking is relatively less costly. We also note that 𝑟* does not depend on

the principal’s payoff parameters (𝑟2, 𝑤𝑁𝐼 and 𝑤𝐼).

Remark 1. As the stopping frictions vanish (i.e., as 𝜆 → ∞), the cutoff discount rate 𝑟*

converges from below to a finite number 𝑟. For any fixed 𝑟 < 𝑟, the agent’s equilibrium

policy function converges to one that resembles Figure 2-1 for 𝑝 < 𝑝* and is equal to 0 for all

𝑝 > 𝑝*, that is, 𝑝*𝑅 converges to 𝑝*, creating a discontinuity at 𝑝*. This is intuitive because in

the limit the agent’s incentive when 𝑝 < 𝑝* is similar to what we explained before, but once

the belief is above 𝑝* the agent expects the relationship to be terminated in the next instant

regardless of what he does, and thus he should choose 𝑎 = 0 to save the mimicking cost.21

Remark 2. The assumption that the investible type does not have an action choice makes

him a “commitment/behavioral" type in the sense of the reputation literature. However, many

21Technically, if 𝜆 is set to ∞, i.e., if we literally allow the principal to terminate the relationship whenever
she wants, for that game additional refinement is needed to preserve equilibrium uniqueness, because once
𝑝 > 𝑝* the agent expects the relationship to be terminated right away in which case his action choice in that
instant has no payoff consequence. See Kuvalekar and Lipnowski (2020a) for a detailed discussion and a
refinement that will select the limiting policy function we described in the limiting game. In our model, the
Poisson arrival of stopping opportunities helps us avoid such complications and obtain equilibrium uniqueness
for every finite 𝜆 without additional refinements.
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of the insights of this paper are robust to certain forms of strategic behavior. For instance,

if we allow the investible type to costlessly choose a drift, then the unique equilibrium we

characterize in Theorem 2.4.1 remains an equilibrium in this modified game.22

Below we describe our approach to proving Theorem 2.4.1. Finding a Markov equilibrium

amounts to finding a policy profile (𝑎, 𝑏), and a conjecture that the principal holds about

the agent’s strategy such that: i) the principal’s conjecture determines her interpretation of

public signal histories into her beliefs about the agent’s type; ii) the principal’s policy 𝑏 is

optimal given her conjecture about the agent’s strategy; iii) the agent’s policy 𝑎 is optimal

given 𝑏 and the principal’s conjecture; iv) the principal’s conjecture coincides with 𝑎.

Specifically, any Markov equilibrium (𝑎, 𝑏) satisfies the optimality conditions stated be-

low.23

Principal’s Optimality:

𝑏 ∈𝑏̃∈𝒫 𝑊̂ (𝑝, 𝑎, 𝑏̃), (2.3)

where

𝑊̂ (𝑝, 𝑎, 𝑏̃) := 𝐸{𝑒−𝑟2𝜈
(︀
1{𝜃=𝑁𝐼}𝑤𝑁𝐼 + 1{𝜃=𝐼}𝑤𝐼

)︀
},

where 𝑝0 = 𝑝, 𝜈 is the time when the game stops, controlled by both 𝑏̃ and {𝐽𝑡}𝑡≥0, and the

evolution of {𝑝𝑡}𝑡≥0 is given by the SDE

𝑑𝑝𝑡 = −𝜓(1− 𝑎𝑡)𝛾(𝑝𝑡)𝑑𝐵̃𝑡, (2.4)

In (2.4), 𝜓 is the signal-to-noise ratio parameter, 𝑎𝑡 is a function of 𝑝𝑡, 𝛾 : [0, 1] → 𝑅+

is defined by 𝛾(𝑝) := 𝑝(1 − 𝑝), and (𝐵̃𝑡)𝑡≥0 is the innovation process associated with the

filtering of the principal, i.e.,

𝑑𝐵̃𝑡 :=
𝑑𝑋𝑡 − 𝜇(𝑝𝑡𝑎𝑡 + 1− 𝑝𝑡)

𝜎
=
𝑑𝑋𝑡

𝜎
− 𝜓(𝑝𝑡𝑎𝑡 + 1− 𝑝𝑡)𝑑𝑡. (2.5)

The optimality condition (2.3) requires that 𝑏 maximizes the principal’s payoff when the

22The equilibrium is no longer unique though. For example, both types choosing zero drift and the
principal ignoring the signal is always an equilibrium in that case.

23The optimality conditions (2.3) and (2.6) restrict the players to maximize their payoffs over Markov
controls in 𝒫. This is for expository purposes and is without loss. In the proof of Theorem 2.4.1 we verify
that the equilibrium strategies are mutual best replies among all strategies in ℬ and 𝒜.
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agent is using policy 𝑎.

Agent’s Optimality:

𝑎 ∈𝑎̃∈𝒫 𝑉 (𝑝, 𝑎̃, 𝑏; 𝑎), (2.6)

and

𝑉 (𝑝, 𝑎̃, 𝑏; 𝑎) := 𝐸

{︂∫︁ 𝜈

0
𝑒−𝑟1𝜏 {𝑟1 [(1− 𝑎̃(𝑝𝜏 ))𝑐+ 𝑢]} 𝑑𝜏

}︂
where 𝑝0 = 𝑝, 𝜈 is the time when the game stops, and the evolution of {𝑝𝑡}𝑡≥0 is given

by substituting 𝑑𝑋𝑡 = 𝜇𝑎̃𝑡𝑑𝑡 + 𝜎𝑑𝐵𝑡 into equations (2.4) and (2.5). Specifically, from the

noninvestible type’s perspective, the belief process satisfies:

𝑑𝑝𝑡 = 𝜓2(1− 𝑎𝑡)[1− 𝑎̃𝑡 − 𝑝𝑡(1− 𝑎𝑡)]𝛾(𝑝𝑡)𝑑𝑡− 𝜓(1− 𝑎𝑡)𝛾(𝑝𝑡)𝑑𝐵𝑡. (2.7)

In a Markov equilibrium (𝑎, 𝑏), the principal has a conjecture about the agent’s behavior,

which determines how she interprets any history of signal realizations into her belief about

the agent’s type. This conjecture has to coincide with the agent’s policy 𝑎 in equilibrium. If

the agent contemplates a deviation from the equilibrium, this would not affect the processes

in equations (2.4) and (2.5) (which jointly describe the dependence of beliefs on the public

history), but would affect the process that governs the evolution of 𝑋𝑡 (public histories).

The necessary condition (2.6) requires that the agent does not have a profitable deviation

from his equilibrium policy function 𝑎, when the principal conjectures that the agent is using

this policy function.

We now build on the implications of the necessary conditions outlined above. We first

show that in any Markov equilibrium, the principal’s policy function has a cutoff structure:

she terminates the relationship if and only if the agent’s reputation is bad enough. We then

show that the agent’s equilibrium policy function must be either fully separating (i.e., never

mimicking) or hump-shaped. Finally, the existence and uniqueness of Markov equilibrium

follow from a fixed-point argument.

Let 𝑅(𝑝) := 𝑝𝑤𝑁𝐼 + (1 − 𝑝)𝑤𝐼 be the principal’s expected payoff if the relationship is

terminated at belief 𝑝. Define 𝑝** := 𝑅−1(0) > 0 and 𝑝𝐻 := 𝑅−1
(︁

𝜆
𝑟2+𝜆

𝑤𝑁𝐼

)︁
< 1.

Lemma 2.4.2. If (𝑎, 𝑏) is a Markov equilibrium, then 𝑏 has a cutoff structure with a cutoff

belief 𝑝* ∈ [𝑝**, 𝑝𝐻 ].
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To prove this result, we utilize the optimality condition in (2.3). Observe that the

equilibrium value function, 𝑊 (𝑝), is such that 𝑊 (𝑝) := 𝑊̂ (𝑝, 𝑎, 𝑏). Then, the principal’s

value and policy functions must satisfy the following HJB equation:

𝑟2𝑊 (𝑝) = max
𝑏̃∈[0,1]

{︂
1

2
𝜓2[1− 𝑎(𝑝)]2𝛾(𝑝)2𝑊 ′′(𝑝) + 𝜆𝑏̃ [𝑅(𝑝)−𝑊 (𝑝)]

}︂
. (2.8)

It is clear that 𝑏(𝑝) = 0 whenever 𝑅(𝑝) < 𝑊 (𝑝), and 𝑏(𝑝) = 1 whenever 𝑅(𝑝) > 𝑊 (𝑝). In

the proof, we show that these functions have a unique intersection point. Moreover, because

terminating the relationship when 𝑝 < 𝑝** gives the principal a negative payoff, and because

the stopping opportunity arrives only once in a while which bounds her payoff from waiting

by 𝜆
𝑟2+𝜆

𝑤𝑁𝐼 , the principal’s optimal stopping threshold must be between 𝑝** and 𝑝𝐻 . See

Figure 2-2 for an illustration.

Figure 2-2: Principal’s Equilibrium Cutoff. This figure is plotted under the following pa-
rameter values: 𝑟1 = 0.5, 𝑟2 = 0.5, 𝜆 = 2, 𝜓 = 1.5, 𝑢 = 1, 𝑐 = 1, 𝑤𝑁𝐼 = 1, 𝑤𝐼 = −1. In
equilibrium, 𝑝** = 0.5, 𝑝* ≈ 0.565, 𝑝𝐻 = 0.9.

We now turn to the agent’s behavior.

Lemma 2.4.3. Suppose 𝑏 ∈ 𝒫 is a cutoff policy function for the principal with cutoff belief

𝑝*. Then, there is a unique policy function 𝑎 ∈ 𝒫 for the agent such that i) 𝑉 (𝑝, 𝑎(𝑝), 𝑏(𝑝); 𝑎(𝑝))

is a regular function of 𝑝, ii) 𝑎 is Lipschitz and sup𝑝∈(0,1) 𝑎(𝑝) < 1, and iii) 𝑎 satisfies (2.6).
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Moreover, this unique policy function is fully separating if 𝑟1 ≥ 𝑟*, and is hump-shaped if

𝑟1 < 𝑟*.

The proof of Lemma 2.4.3 is more involved. This is because finding a solution to program

(2.6) is akin to finding a fixed point: the policy 𝑎 for the agent is optimal when the principal

holds the conjecture 𝑎. Nonetheless, we are able to characterize its unique solution in closed

form.

Intuitively, if the agent is impatient, the short-run incentives determine his behavior,

and the noninvestible type will never pay the cost to mimic the investible type, leading to

a fully separating policy function. If the agent is patient, full separation can no longer be

part of an equilibrium. This is because the fully separating policy function, if conjectured

by the principal, generates opportunities to build a reputation rather fast; and when the

agent cares enough about the future, it will give strict incentives to the noninvestible type

to mimic.

What is the dynamics of the agent’s mimicking intensity when he is patient? When the

public belief 𝑝 is very small, it takes a long time for the belief to increase all the way up to

the termination cutoff. Hence, the limited benefit of further improving reputation cannot

justify the mimicking cost. As a result, 𝑎(𝑝) = 0 for low 𝑝. When 𝑝 is very large, it takes so

long for the agent to regain his reputation that he simply gives up. Consequently, 𝑎(𝑝) = 0

for high 𝑝. For intermediate 𝑝, the agent’s short-run temptation and long-run benefits are

more balanced, so that 𝑎(𝑝) ∈ (0, 1). Specifically, after the good reputation phase, for

𝑝 ∈ (𝑝𝐿, 𝑝
*), the noninvestible type starts to mimic more often as his reputation worsens

(i.e., the scramble-to-rescue effect). Such an incentive peaks at 𝑝* where the principal’s

action is most sensitive to a change in belief. After that, for 𝑝 ∈ (𝑝*, 𝑝𝑅), the noninvestible

type gradually gives up restoring his reputation as termination becomes more imminent.

2.5 Non-Monotonicity of Expected Performance

We saw in Theorem 2.4.1 that the noninvestible type will engage in performance boosting

whenever he is sufficiently patient, in which case 𝑎(·) peaks at the termination cutoff 𝑝*. This

has been referred to as the “scramble-to-rescue" effect: the agent increases his mimicking

intensity (before 𝑝*) as the relationship gets less stable.

What are the implications of this effect on the observables? An outsider (the principal
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or a modeler) does not see the agent’s type or action, but can observe his performance, such

as subscription growth or progress reports. In our model, the expected performance at time

𝑡 is given by

𝐸𝑃𝑡 :=
𝐸[𝑑𝑋𝑡]

𝑑𝑡
= 𝜇

⎛⎝ 1− 𝑝𝑡⏟  ⏞  
investible

+ 𝑝𝑡𝑎(𝑝𝑡)⏟  ⏞  
noninvestible

⎞⎠ .

Holding constant 𝑎 < 1, the expected performance decreases with 𝑝. We call this the

belief effect : if the agent is more likely to be noninvestible, then the expected performance

is lower. This is the entire story if the equilibrium is fully separating, in which case 𝑎(𝑝) = 0

everywhere and 𝐸𝑃 (𝑝) = 𝜇(1− 𝑝).

However, if the equilibrium is not fully separating, the noninvestible type’s mimicking

intensity 𝑎 is no longer constant: it is increasing below 𝑝* due to the scramble-to-rescue

effect. Hence, whether the expected performance increases or decreases with the public

belief depends on which of the two effects is stronger. The following theorem characterizes

the evolution of the expected performance when the stopping opportunity arrives sufficiently

fast.

Theorem 2.5.1. Fixing all parameters of the model other than 𝑟1 and 𝜆, there exists 𝜆̄ such

that for all 𝜆 > 𝜆̄, 𝐸𝑃 (𝑝) is non-monotone whenever the equilibrium is not fully separating

(i.e., whenever 𝑟1 < 𝑟*). In particular, 𝐸𝑃 (𝑝) is

• strictly decreasing for 𝑝 ∈ [0, 𝑝), where 𝑝 is in [𝑝𝐿, 𝑝
*);

• strictly increasing for 𝑝 ∈ (𝑝, 𝑝*);

• strictly decreasing for 𝑝 ∈ (𝑝*, 1].

Theorem 2.5.1 shows that if the arrival rate of the stopping opportunity is large enough,

the scramble-to-rescue effect will dominate the belief effect when the public belief is less

than but close to the termination cutoff 𝑝*. As a result, the expected performance reaches a

local maximum at 𝑝* whenever the agent’s equilibrium policy function is hump-shaped (see

Figure 2-3).24,25

24The lower bound on 𝜆 is not crucial for this qualitative predication. In fact, even if 𝜆 is small, we can
show that the expected performance is either decreasing or has the shape described in Theorem 2.5.1 (see
Lemma B.1.1). Moreover, for any 𝜆, we can find a 𝑟 (less than 𝑟*) such that the expected performance is
non-monotone whenever 𝑟1 < 𝑟. The only difference for small 𝜆 is that we cannot say definitively what will
happen when 𝑟1 ∈ (𝑟, 𝑟*).

25The sudden drop of expected performance after 𝑝* carries over to the time domain. Specifically, because
𝐸𝑃 (𝑝) is locally maximized (thus concave) at 𝑝*, one can show that the stochastic process 𝐸𝑃𝑡 is a local
supermartingale when 𝑝𝑡 = 𝑝*.
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Figure 2-3: Agent’s Expected Performance When 𝜆 > 𝜆̄ and 𝑟1 < 𝑟*. This figure is plotted
under the following parameter values: 𝑟1 = 0.5, 𝑟2 = 0.5, 𝜆 = 2, 𝜓 = 1.5, 𝑢 = 1, 𝑐 = 1,
𝑤𝑁𝐼 = 1, 𝑤𝐼 = −1.

In the context of our applications, Theorem 2.5.1 offers an empirical prediction of our

model: when performance boosting is expected to happen, terminations are preceded by

a spike in expected performance. This seems consistent with a number of famous cases of

corporate failure, such as Theranos, Luckin Coffee and WeWork: there were periods of time

during which market suspicions about their business models grew, meanwhile the companies

kept performing strongly and/or expanding aggressively prior to the crashes of their market

values.26

2.6 Environments with Low Volatility / High Transparency

The noise in the performance measure may come from various random events such as tem-

porary demand shocks, measurement errors, etc., making 𝑋𝑡 only an imperfect signal of the

agent’s type. We say that a performance measure is more transparent if it is less affected by

the noise component, and we can use the signal-to-noise ratio of the process to capture its

transparency. In reality, transparency may be determined by the intrinsic volatility of the

product market; it may also be affected by how much detail about the market or the project

26For example, in the third quarter of 2019, Luckin Coffee reported a 470.1% increase in the total items
sold from 7.8 million in the same quarter of 2018. Its stock price was slashed by 75% in April 2020, following
suspicion and then admission of fabricating sales data. Likewise, before scandals started to unravel, Theranos
falsely claimed in 2014 that the company had annual revenues of $100 million, a thousand times more than
the actual figure of $100,000. In the case of WeWork, the company once had expanded to over 86 cities in
32 countries, despite growing suspicion about its profitability. However, in September 2019, the companied
delayed its IPO, followed by a 90% slash in valuation and enormous layoffs.
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that a startup is required to disclose in a performance report. Indeed, one may expect that,

other things equal, disclosing more details about the objective market conditions can help

an investor better understand the numbers in the report.

In this section, we investigate the question: Do improvements in transparency always

benefit the principal? We show that, under some parameters, improving transparency can

inhibit learning and hurt the principal, due to the agent’s endogenous response through signal

manipulation. We also find that frictions in the principal’s decision making (which cause

decision delays) can sometimes help her, as they serve as a commitment of not terminating

the relationship too quickly and thus reduce the agent’s incentive to manipulate the signal.

Recall that the signal-to-noise ratio parameter is defined by 𝜓 = 𝜇/𝜎. In what follows,

we will fix all parameters other than 𝜓, and analyze the principal’s payoff as 𝜓 increases.

Hence, we make explicit the dependence of any variable or function on 𝜓.27

As a benchmark, suppose that the principal never receives any information about the

agent’s type. Recall that 𝑅(𝑝) = 𝑝𝑤𝑁𝐼 + (1 − 𝑝)𝑤𝐼 and 𝑝** = 𝑅−1(0). In this case, the

principal would continue the relationship if 𝑝 < 𝑝**, and she would terminate the relationship

at the first stopping opportunity if 𝑝 > 𝑝**. This leads to the following “no-information

value function" for the principal:

𝑊 (𝑝) :=
𝜆

𝑟2 + 𝜆
max{0, 𝑝𝑤𝑁𝐼 + (1− 𝑝)𝑤𝐼} =

𝜆

𝑟2 + 𝜆
max{0, 𝑅(𝑝)}.

Note that when 𝜓 is near 0, the signal process is close to pure noise regardless of the agent’s

action. So we have the following observation.

Observation 2.6.1. lim𝜓→0𝑊 (𝑝0;𝜓) =𝑊 (𝑝0) and lim𝜓→0 𝑝
*(𝜓) = 𝑝**.

Now suppose that the agent’s type is exogenously and immediately revealed to the prin-

cipal. In this case, the principal will obtain her highest possible payoff for each belief,

summarized by her “full-information value function":

𝑊 (𝑝) :=
𝜆

𝑟2 + 𝜆
[𝑝 max {0, 𝑤𝑁𝐼}+ (1− 𝑝)max {0, 𝑤𝐼}] =

𝜆

𝑟2 + 𝜆
𝑝𝑤𝑁𝐼 .

Note that the principal’s equilibrium payoff is always strictly between 𝑊 (𝑝0) and 𝑊 (𝑝0).

27As is clear from the belief processes (2.4) and (2.7) and HJBs (2.8) and (B.2), in equilibrium 𝜇 and 𝜎
always affect the players’ incentives and payoffs through 𝜓. So writing equilibrium objects as functions of 𝜓
(while dropping 𝜇 and 𝜎) is without loss.
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This is because some learning will take place in equilibrium (as the noninvestible type never

fully mimics), but the agent’s type is not immediately revealed (as 𝜓 <∞).

Observation 2.6.2. For all 𝜓 ∈ (0,∞) and 𝑝0 ∈ (0, 1), 𝑊 (𝑝0;𝜓) ∈ (𝑊 (𝑝0),𝑊 (𝑝0)).

The next theorem characterizes the limiting behavior of the principal’s payoff as 𝜓 goes

to infinity.

Theorem 2.6.1. Letting 𝜆̃ := 𝑟1
(︀
𝑐
𝑢

)︀
,

1. If 𝜆 < 𝜆̃, then lim𝜓→∞ ||𝑊 (·;𝜓)−𝑊 (·)||∞ = 0 and lim𝜓→∞ 𝑝*(𝜓) = 1.

2. If 𝜆 > 𝜆̃, then lim𝜓→∞ ||𝑊 (·;𝜓)−𝑊 (·)||∞ = 0 and lim𝜓→∞ 𝑝*(𝜓) = 𝑝**.

This result is heavily driven by the agent’s equilibrium behavior. When the stopping

opportunity arrives slowly (𝜆 < 𝜆̃), the noninvestible type’s incentives to mimic are not

strong. Intuitively, the relationship is relatively stable from the agent’s viewpoint because,

due to the lack of stopping opportunity, it will take a long time for the relationship to end

even if the principal has decided to terminate it. As a result, the agent’s equilibrium action

is bounded away from “full mimicking" for all 𝜓.28 As 𝜓 grows without bound, the public

signal becomes increasingly informative about the agent’s type, and in the end, the agent’s

type is almost immediately revealed. Thus, the principal can afford to wait until being very

certain that the agent is noninvestible, and her equilibrium value function converges to 𝑊

(see Figure 2-4, left panel).

On the other hand, when the stopping opportunity arrives fast (𝜆 > 𝜆̃), the noninvestible

type has stronger incentives to mimic the investible type. In particular, as 𝜓 increases

without bound, the equilibrium mimicking intensity at the termination cutoff converges to 1.

The speed of this convergence is so fast that the variance of the belief process vanishes there

(i.e., 𝑝* becomes an almost absorbing state). Meanwhile, the equilibrium policy function 𝑎(·)

converges to 1 also for 𝑝 < 𝑝*, and it converges to a function that is strictly less than 1 for

𝑝 > 𝑝*. In both of these regions, the principal will learn some information about the agent’s

type from the public signal. However, this information is not useful (payoff-relevant) for the

principal since it does not lead to an action change. Hence, the principal’s termination cutoff
28For sufficiently small 𝜆, the noninvestible type does not mimic at all (i.e., 𝑎(𝑝) = 0 for all 𝑝), and the

principal’s problem becomes identical to a standard two-armed bandit problem. For relatively large 𝜆 (still
less than 𝜆̃), some mimicking appears in equilibrium, but 𝑎(·) is still uniformly bounded away from 1 for all
𝜓.
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converges to 𝑝** and her equilibrium value function converges to 𝑊—as if no information

would ever arrive (see Figure 2-4, right panel).
W

(p
;

)

(a) 𝜆 < 𝜆̃

W
(p

;
)

(b) 𝜆 > 𝜆̃

Figure 2-4: Convergence of the Principal’s Equilibrium Value Function. This figure is plotted
under the following parameter values: 𝑟1 = 0.5, 𝑟2 = 0.5, 𝑢 = 1, 𝑐 = 1, 𝑤𝑁𝐼 = 1, 𝑤𝐼 = −1
(so that 𝑝** = 0.5, 𝜆̃ = 0.25); 𝜆 = 0.1 for (a), 𝜆 = 2 for (b).

To better understand the limiting equilibrium dynamics when 𝜆 > 𝜆̃, note from equation

(2.4) that the diffusion coefficient of the principal’s belief process at time 𝑡 is proportional

to 𝜓(1− 𝑎𝑡). For any fixed 𝑝, we can write it as

𝜓⏟ ⏞ 
direct effect

[1− 𝑎(𝑝;𝜓)⏟  ⏞  
equilibrium effect

].

As 𝜓 increases, the direct effect through the multiplier accelerates information revelation

while the equilibrium effect through the agent’s strategy slows down learning. Its limit

depends on the value of 𝑝; in particular, one can show that

lim
𝜓→∞

𝜓[1− 𝑎(𝑝;𝜓)] ∈ (0,∞), for all 𝑝 ∈ (0, 𝑝**),

lim
𝜓→∞

𝜓[1− 𝑎(𝑝;𝜓)] = ∞, for all 𝑝 ∈ (𝑝**, 1),

lim
𝜓→∞

𝜓[1− 𝑎(𝑝*(𝜓);𝜓)] = 0.

This suggests the following limiting equilibrium dynamics. If the prior belief is above 𝑝**,

there is an immediate split of belief to either 1 or very close to 𝑝** and then it (almost) stops

moving. If the prior belief is below 𝑝**, then learning takes place gradually but becomes
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slower and slower as the posterior approaches 𝑝**. In both cases the principal’s learning

does not stop despite the agent’s extreme manipulation, but because her posterior never

moves across 𝑝**, the principal’s action never changes with the information she learns, and

so payoff-wise it is as if no information ever arrives.

The next two corollaries follow immediately from Theorem 2.6.1.

Corollary 2.6.1. For any 𝜆 > 𝜆̃ and 𝑝0 ∈ (0, 1), there exist 𝜓1, 𝜓2 such that 𝜓1 > 𝜓2 and

𝑊 (𝑝0;𝜓1) < 𝑊 (𝑝0;𝜓2).

Corollary 2.6.1 illustrates that a more transparent performance measure (higher 𝜓) can

sometimes reduce the principal’s payoff. This result indicates that VCs can sometimes fare

better when the startup operates in a more volatile environment. Moreover, policies that

require the startup to disclose too precise information may end up hurting the investors.

Intuitively, when the signal-to-noise ratio is very high, the mimicking incentives of the non-

investible type can be so strong that the public signal provides little useful information to

the principal about the agent’s type. In that case, introducing more noise to the public

signal can lessen such perverse incentives of the noninvestible type, which leads to a more

informative equilibrium signal process, benefiting the principal.29 This result also suggests

that there is usually a strictly positive but finite level of transparency that maximizes the

principal’s value.

Corollary 2.6.2. For some large 𝜓 and any 𝑝0 ∈ (0, 1), there exists 𝜆1, 𝜆2 such that 𝜆1 > 𝜆2

and 𝑊 (𝑝0;𝜓, 𝜆1) < 𝑊 (𝑝0;𝜓, 𝜆2).

Corollary 2.6.2 demonstrates that more frictions in the principal’s decision making (i.e.,

less frequent arrivals of the stopping opportunity) may sometimes improve the principal’s

equilibrium payoff. Intuitively, such frictions instill some commitment to not terminating

the relationship too soon in the principal’s behavior, which, similar to before, weakens

the noninvestible type’s incentive to manipulate the signals. In turn, this indirect effect

through the agent allows the signal process to provide more information to the principal

and possibly increases her equilibrium payoff. Because of this, the principal does not always

have an incentive to reduce the frictions that prevent prompt decisions.
29The possibility that better monitoring/more transparency may hurt a principal or relationship has

appeared in other settings, such as career-concern models (??), contracting in insurance markets (??),
contracting with moral hazard (?), and dynamic team production (??). In our model, this effect shows up
for a different reason: better monitoring may give stronger incentives to the agent to engage in performance
boosting, which depresses the informativeness of the public signals.
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2.7 Information at the Patient Limit

We now investigate the equilibrium outcomes as players get arbitrarily patient. The purpose

is to see more clearly the role of patience in the principal’s incentives to wait for more

information and in the agent’s incentives to engage in performance boosting.

First, consider an extreme case where 𝑟1 is constant and 𝑟2 goes to 0 (i.e., the principal

gets arbitrarily more patient than the agent). In this case, the agent’s mimicking intensity

(which is independent of 𝑟2) stays bounded away from 1 everywhere, implying that the public

signal always reveals some information about the agent’s type. As the principal gets more

patient, her marginal cost of waiting for new information becomes lower. Consequently,

a patient principal will terminate the relationship only when 𝑝 is very high. Indeed, the

termination cutoff converges to 1 and the principal’s payoff converges to 𝑊 .

Next, consider the other extreme case where 𝑟2 is constant and 𝑟1 goes to 0 (i.e., the

agent gets arbitrarily more patient than the principal). As the agent gets more patient,

he cares more about staying in the relationship for long and less about the instantaneous

mimicking cost. Thus, the noninvestible type has stronger incentives to mimic the investible

type, and the equilibirum mimicking intensity approaches one at and below the termination

cutoff. In the limit, the outcome is similar to the case for large 𝜓 and 𝜆 characterized in the

previous section. That is, it is as if no information ever arrives, with the termination cutoff

converging to 𝑝** and the principal’s value function converging to 𝑊 .

What happens in between the two extreme cases? Take a sequence {𝑟1,𝑛, 𝑟2,𝑛}𝑛 of

discount rates such that 𝑟𝑖,𝑛 → 0 for both 𝑖 = 1, 2 and lim𝑛
𝑟2,𝑛
𝑟1,𝑛

= 𝜒 ∈ (0,∞). Consider

a sequence of games along which all other parameters are fixed, and let {𝑊𝑛, 𝑉𝑛}𝑛 be the

corresponding sequence of value functions for the principal and the agent, respectively. The

following theorem displays their limits.

Theorem 2.7.1. 𝑊𝑛(·) converges uniformly to max{0, 𝑅(·)}, and 𝑉𝑛(·) converges pointwise

to 𝑉 *(·) which satisfies

𝑉 *(𝑝) :=

⎧⎪⎨⎪⎩
𝑢, if 𝑝 < 𝑝**

0, if 𝑝 > 𝑝**
.

Theorem 2.7.1 shows that if both players get arbitrarily patient at comparable rates,

then it is as if the principal does not receive any information.30 Along the sequence, both
30Recall that the “no-information” value function𝑊 (·) = 𝜆

𝑟2+𝜆
max{0, 𝑅(·)}, so max{0, 𝑅(·)} is the limiting
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the agent’s incentives to mimic and the principal’s resolve to wait for more information get

stronger, but it turns out that the former effect dominates the latter.

We view this result as a strong manifestation of the ratchet effect in the patient limit of

our model. Since the principal cannot commit to not using future information against the

agent, the noninvestible type will engage in performance boosting with almost full intensity

in order to maintain his reputation. In the end, no useful information is ever revealed, and the

principal’s lack of commitment hurts her in the most extreme way. In our applications, this

result suggests that the use of other instruments, such as some form of commitment (e.g.,

setting a deadline and/or grace period), additional screening devices (e.g., performance-

based investment levels and/or salaries), or huge fines that increase the expected cost of

performance boosting, may be necessary to help the principal get more information.

2.8 Concluding Remarks

In this paper, we study a stopping game with asymmetric information where the performance

measures that reflect the fundamental can be manipulated by an agent at a cost. Despite

the model being stylized, we obtain rich equilibrium dynamics. Our model illustrates that

inflated performance can coexist with growing suspicion about a project’s viability. Our

analysis also implies that too much transparency may hinder the principal’s ability to learn,

by encouraging excessive performance boosting. This result suggests that some noise in the

monitoring technology may be beneficial for the principal. Furthermore, we find an extreme

form of ratchet effect in the patient limit, precluding any useful learning. This happens

because the principal lacks the commitment to refrain from using the information obtained

during the relationship against the agent, giving a highly patient noninvestible type strong

incentives to boost performance and maintain his reputation.

Several ways to extend our analysis are worth mentioning. While our main focus is the

adverse selection problem, in some settings moral hazard is a prominent issue. Thus, it

would be interesting to allow the agent’s action to directly influence the principal’s payoff.

Relatedly, in that setting the principal might want to use history-dependent flow payoffs to

reward/punish the agent. Another possibility is to expand the choice set of the principal

by allowing her to elevate the “status" of the relationship, such as promoting the agent or

“no-information” value function as 𝑟2 tends to 0.
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upgrading the terms of financing. Finally, optimal contracting in this setting remains an

open problem. We leave all these aspects as interesting directions for future research.
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Chapter 3

A Dynamic Delegated Investment

Model of SPACs

3.1 Introduction

The past year (2020) has witnessed a remarkable rise of the special purpose acquisition

company (SPAC). A SPAC is a company with no operations that offers securities for cash

and places substantially all the offering proceeds into a trust or escrow account for future use

in the acquisition of one or more private operating companies1. According to the calculation

of Gahng et al. (2021), in 2020, “a total of 248 SPAC IPOs raised $75.3 billion” while

165 operating company IPOs raised $61.9 billion. As SPAC appears to be a major way

that private companies raise money and go public, there emerges a heated debate among

practitioners and the academia over the consequences and the future of SPAC. Proponents

praise SPACs for their agility and flexibility to accommodate financing needs better than

traditional ways. Opponents, citing the poor returns in the long history of blank-check

companies, denounce SPACs as “bubbles” and “scams”2. Meanwhile, it is worth noting that

SPAC is still a rapidly evolving industry. Practitioners are consistently experimenting with

different practice, while the regulator is also pondering over how to ensure healthy growth

of the industry. Therefore, understanding the economic mechanism of the current SPAC

practice not only facilitates proper use of SPAC but also guides potential improvement of

1SEC website.
2“I have never found any blank-check investment vehicle attractive. No matter what the reputation or

what the sponsor might be. . . . They are the ultimate in terms of lack of transparency.”—Arthur Levitt,
former SEC Chairman.
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it.

Although there has been considerable empirical literature evaluating the performance

of SPAC, we see little theoretical analysis on its underlying economic mechanisms. This

paper intends to narrow the gap. We regard SPAC as a kind of delegated investment

vehicles and focus on the strategic interaction between the SPAC sponsor and the SPAC

investor. In theory, SPACs merit a special analysis because it differs from other common

delegated investment vehicles such as private equity, hedge funds, and mutual funds in

several aspects. First, the sponsor’s payoff is not strongly linked to the actual performance

of the investment, so the sponsor may prefer to do a deal unfavorable to the investor.

Such systematic misalignment between the sponsor and the investor is minor in other cases.

Second, SPACs feature a relatively short horizon. Typically, a SPAC will be liquidated

absent a successful merger within 24 months while it is 10 years for private equity funds.

Third, a SPAC leaves the final decision over investment to the investor, so the investor is

heavily involved in the SPAC’s operation.

Based on these unique features, we build a finite-horizon continuous-time model of the

dynamic SPAC game with one sponsor and one representative investor. In the SPAC game,

the sponsor receives projects stochastically over time and decides whether to propose one to

the investor in the form of tender offer. When a project is proposed, the investor can choose

to either invest in it or withdraw her money from the SPAC. In either case, the game ends,

so the opportunity to propose is unique. If no project is proposed by a deadline, the game

also ends, and the investor gets her money back. The tension between the two players rests

on two points. First, the sponsor has informational advantage over the investor. He always

observes the type of a project, which is either good or bad, but the investor only with a

probability. Second, their interests are only partially aligned. The investor, who bears the

cost of investment, prefers a good project to no project and further to a bad project. The

sponsor, who only enjoys the payoff of investment, prefers a good project to a bad project

and further to no project.

We derive a unique sequential equilibrium of the SPAC game. Generically, the equilib-

rium consists of two stages: in the first stage, the sponsor proposes only good projects, and

the investor always invests in the proposed project; in the second stage, the sponsor proposes

all the good projects and a fraction of the bad ones he receives, and the investor invests con-

tingent on the information she observes. Since the sponsor has only one chance to propose
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projects, the opportunity cost of proposing a project is his continuation value, which is the

expected payoff of proposing the projects he receives in the future. Note that the sponsor

can obtain a higher expected payoff from proposing a good project than proposing a bad one

because the investment in a good project brings more to the sponsor and is also more likely

to be approved by the investor. As a result, the sponsor with a good project must propose

because at best he can receive another good project in the future. As for the sponsor with

a bad project, waiting is double-edged: he may be better off if a good project arrives and

may be worse off if no project arrives. As the SPAC approaches its deadline, the downside

becomes more and more dominant, and thus the sponsor’s continuation value decreases. At

a point, the sponsor starts to find proposing a bad project desirable. Concerned about the

poor quality of the proposed project on average, the investor spontaneously chooses to in-

vest more conservatively based on her information over time. Such conservatism effectively

reduces the sponsor’s expected payoff of proposing a bad project and in turn helps disci-

pline the sponsor. By and large, the equilibrium is consistent with the conventional wisdom

that the incentive misalignment gives rise to a moral hazard problem of the sponsor and it

intensifies as the SPAC gets closer to the deadline.

Based on the equilibrium, we then analyze the nature of the sponsor’s moral hazard

problem—the central friction in the game. The sponsor’s moral hazard is curbed by two

forces. The first is the investor’s screening based on her noisy information, and the second

is the sponsor’s continuation value. More importantly, the two forces intertwined with each

other. On one hand, due to their substitution relationship in equilibrium, the investor’s

screening is decreasing in the sponsor’s continuation value. On the other hand, the investor’

screening reduces the possibility of investment and thus stifles the accumulation of the

sponsor’s continuation value. As a result, the sponsor’s continuation value follows a kind

of self-reinforcing dynamics: its accumulation rate is positively correlated with its current

level. An important lesson is that both sides of the partial alignment in players’ incentive

are crucial to the equilibrium dynamics: while the misalignment side induces moral hazard,

the alignment side helps mitigate it.

Next, we explore the welfare implications of current SPAC practice. A popular opinion is

that the investor benefits from her control right over investment because it not only allows her

to avoid investment in some bad projects but also discourages the sponsor from proposing

bad projects in the first place. However, we find that when the investor’s information is
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sufficiently noisy, this control arrangement actually exacerbates the sponsor’s moral hazard

problem and reduces the investor’s welfare. What the popular opinion misses is that the

investor’s screening makes waiting less attractive for the sponsor, which incentivizes him to

propose more bad projects. When the sponsor has the control right, he proposes any project

he receives near the deadline. Though hurting the investor, such undisciplined behavior

results in rapid accumulation of the sponsor’s continuation value. Hence, in a long period

following the beginning of the game, the continuation value is high enough to prevent the

sponsor from proposing any bad project, and the investor can fully enjoy the payoff of the

good project that arrives. When the investor has the control right, the sponsor’s continuation

value accumulates more slowly in a self-reinforcing manner as pointed out above. In the case

that the investor’s information is very noisy, a low level of the sponsor’s continuation value

translates into a low accumulation rate in the absolute sense. Since the continuation value

accumulates from 0, it will be trapped by the self-reinforcing dynamics at a low level for

a long period. In one extreme, during the whole game, the investor will exert stringent

screening, miss most good projects that arrive, and earn little profit in expectation. This

analysis uncovers that the investor’s equilibrium screening, which is optimal ex post after the

sponsor proposes a project, is too stringent ex ante because it has a negative externality on

the sponsor’s continuation value. Hence, regarding the design of SPAC, a natural question is

whether there is a way to rein in the screening to strike a balance between the two disciplining

forces. We find that it is sometimes helpful to make the control right contingent on certain

public assessment, e.g. credit rating or auditing trusted by both players. Specifically, the

investor should own the control right only if the result of public assessment is below a

threshold.

Another issue regarding current SPAC practice we explore is one proposal vs. multiple

proposals. Motivated by the recent trend of SPAC, we model the investor’s decision-making

process as a tender offer, which restricts the sponsor to proposing at most one project in

the game. An alternative is to allow the sponsor to continue searching and proposing after

a proposal is rejected by the investor until the deadline. Notably, multiple proposals can

be naturally implemented if the investor’s decision making is structured as voting. On

one hand, the coercive termination feature of one proposal eliminates potential investment

opportunities and hurts both parties. On the other hand, it enables the investor’s screening

to curb the sponsor’s moral hazard and result in less stringent screening in equilibrium, so
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both parties benefit from it. We find that the sponsor’s welfare is always higher under one

proposal but the investor’s is ambiguous. This intuition justifies the recent transition from

voting to tender offers from an equilibrium perspective.

Finally, we discuss several extensions of the model. First, we explicitly incorporate en-

trepreneurs into the model and consider their strategic behavior. Entrepreneurs can raise

funds through either the SPAC or a standard IPO. The opportunity cost of tapping the

SPAC is that the deal may not be approved by the investor and the IPO process is also de-

layed. Hence, the investor’s screening effectively discourages entrepreneurs from tapping the

SPAC and diminishes the flow of projects received by the sponsor. Second, we consider the

sponsor’s endogenous effort to search for projects. We find that as the SPAC approaches its

deadline, the sponsor’s equilibrium effort first increases due to declining continuation value

and then decreases due to intensifying screening of the investor. The two extensions further

stoke our concern that the investor’s control right exacerbates the moral hazard problem

and may backfire. Third, we consider the case of long-lived projects where the sponsor can

possibly keep a project for future proposals. It turns out that such possibility does not alter

the equilibrium dynamics in the baseline setup. Fourth, we extend the model to multiple

investors. Now, the investment in a project requires the approval of sufficient investors. An

investor can infer other investors’ information through the threshold in equilibrium. The

equilibrium is similar to that with only one investor but has richer dynamics.

The paper proceeds as follows. The remainder of this section reviews the related litera-

ture. Section 2 describes the baseline setup. Section 3 characterizes the equilibrium. Section

4 analyzes current SPAC practice and discuss the design of SPAC. Section 5 extends the

baseline setup along several dimensions. Section 6 concludes the paper. All proofs are given

in Appendix.

Related Literature. This paper mainly contributes to two strands of the literature.

First, there is a growing empirical literature examining the development, trend and perfor-

mance of SPACs. Gahng et al. (2021) examine SPAC performance and show that SPAC IPO

investors earn positive 9.3% per year, while post-merger returns are significantly negative.

They also document that there is no cost advantage of SPACs compared with traditional

IPO. Dimitrova (2017) shows that SPAC performance is worse for deals announced near

the two-year deadline, which is consistent with our theoretical prediction. Examining the

factors that influence approval probability, Cumming et al. (2014) find that the presence
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of active investors in a SPAC is negatively correlated with approval probability . Klausner

et al. (2020) show that the post-merger performance is negatively correlated with dilution

and cash shortfall. Blomkvist and Vulanovic (2020) show that the SPAC volume and SPAC

share of total IPOs are negatively correlated with VIX and time-varying risk aversion, im-

plying market condition is a key factor in SPAC development.

There is little work on the theoretical side despite SPAC has become more and more

important in recent years. Bai et al. (2021) provide a model with endogenous segmented

markets, and argues that SPAC is welfare improving as it works as certification interme-

diaries for risky firms who were unserved by the traditional IPO. Chatterjee et al. (2016)

consider a security design problem and argue warrants in SPACs can help to mitigate the

moral hazard problem in project selection. Our focus is how the partial alignment in in-

centive between SPAC sponsors and investors shapes their interaction in a dynamic setup

and its welfare implications in SPAC lifecycle. To the best of our knowledge, this is the

first theoretical paper examining the SPAC lifecycle in a dynamic environment. We also

contribute to the literature by providing discussions on counterfactuals. SPACs is relatively

new and has received less attention compared to traditional IPO. With SPAC developing in

a fast-changing environment, it’s crucial to understand the current practice of SPACs as well

as counterfactuals. Our discussion on control rights and one proposal vs multiple proposals

sheds light on the design of SPACs.

Second, our paper contributes to the literature on delegation and authority in organi-

zations (Crawford and Sobeli 1982; Agh 1997; Dessein 2002; Grenadier et al. 2016; Guo

2016). In this literature, the principal (the SPAC investor in our model) cannot commit to

a decision rule and the allocation of control matters. There are several trade-offs identified

in this literature, including the trade-off between informativeness vs bias (Dessein 2002) and

information acquisition of different players (Agh 1997). In our discussion on control rights,

we extend the model to the case when the sponsor has the control right and compare it

with our baseline case when the investor makes the final decision. The allocation of control

endogenously changes the shape of sponsor’s bias in the SPAC lifecycle. When delegating

the investment decision to the sponsor, the investment decision is efficient for a longer period

but it deteriorates when the SPAC approaches the deadline. This new trade-off is a direct

result of the dynamic nature and the hard deadline of decision making in our model, which

is novel in the literature. As for dynamic setups, Grenadier et al. (2016) considers a model
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Figure 3-1: Time Flow

in which the principal exercises an option and relies on an informed but biased agent. Guo

(2016) considers a dynamic delegation model with experimentation in which the principal

and agent have different preferences on project riskiness. Guo (2016) is not a stopping-time

game and thus fundamentally different from ours.

3.2 A Dynamic Model of SPAC

3.2.1 Model Setup

Consider a SPAC with one penniless sponsor (he) and one investor (she). They are both

risk neutral and have common discount rate 𝑟 = 03. Motivated by the practice in reality, we

model the SPAC as a finite-horizon continuous-time dynamic game unfolding over the period

[−𝑇, 0]. Figure 3-1 is a representation of the time flow. Both 𝑡 and 𝑇 are non-negative, and

physical time moves forward as 𝑡 decreases from 𝑇 to 0. As we will show later, it’s easier to

consider our model backward, which corresponds to 𝑡 increasing from 0 to 𝑇 .

Projects Since the paper is primarily focused on the strategic interaction between the

sponsor and the investor, we abstract away entrepreneurs’ strategic behavior and assume an

exogenous process of projects4. Per unit of time, the sponsor receives projects at the rate

𝜆. The type of a project 𝜔 can be either good (𝐺) or bad (𝐵), and the probability (odds)

of receiving a good project is Prob (𝐺) = 𝑝0 (𝜃0 = 𝑝0/(1− 𝑝0)). The arrivals and the types

of projects are independent over time. Both the good and bad projects require the same

investment 𝐼 = 1 and generate gross return 𝑅𝐺 and 𝑅𝐵 respectively. We made the following

assumptions on 𝑅𝐺 and 𝑅𝐵:

Assumption 3.2.1. (1) (positive gross returns) 𝑅𝐺 > 1 > 𝑅𝐵 > 0; (2) (negative NPV)

𝑝0𝑅𝐺 + (1− 𝑝0)𝑅𝐵 < 1.

3We assume no discounting merely to simplify the exposition. The main results hold for a positive
discount rate.

4In Section 3.5.1, we explicitly model entrepreneurs’ strategic behavior and examine its impact on the
equilibrium dynamics.
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The first assumption states that the investment in a good project generates a higher

return than that in a bad project and both returns are positive. The second one resonates

with the concern that potential SPAC targets are of poor quality on average.

When a project arrives, the sponsor decides whether to propose it to the investor. For

the baseline setup, we assume that projects are short-lived. That is, if the sponsor does

not propose the project he receives, the project will disappear or become unavailable im-

mediately. With this assumption, the state of the sponsor with respect to whether he has a

project and what type of project he has is completely independent over time5.

The investor’s decision making A salient feature of SPACs is that it is the investors

who finally decide whether to make an investment. Traditionally, after the sponsor proposes

a project, the investors vote on acquisition approval. The acquisition is approved if and

only if a sufficient fraction of investors vote for it. However, in the recent wave of SPACs,

tender offer becomes the most popular way to structure the investors’ decision making.

Shachmurove and Vulanovic (2017) claims that “these post financial crisis SPACs are almost

exclusively structured as tender offers”. Motivated by the trend, we model the sponsor’s

proposal as a tender offer. The investor can choose to either invest 𝐼 = 1 and receive a pre-

specified fraction of shares of the project, or withdraw from the SPAC. Because of the nature

of a tender offer, the game ends immediately after a proposal. Essentially, the sponsor has

only one opportunity to propose a project to the investor in the lifecycle of a SPAC.

Information Both the arrivals and the types of projects are observable to the sponsor6

but not to the investor. When the sponsor proposes a project, the investor observes the true

type of the project with the probability 𝑞 and nothing otherwise. We denote the investor’s

observations as {𝐻,𝑀,𝐿}, whose probabilistic structure follows Table 3.1. Hence, 𝑞 stands

for the quality of the investor’s information, and 𝑞 < 1 captures information asymmetry

between the sponsor and the investor. Notice that with Assumption 3.2.1, if the sponsor

proposes any project he receives, the investor will have negative expected profit of investing

upon observing 𝑀 .

5In Section 3.5.3, we study the case that projects are long-lived and thus the state of the sponsor is
positively correlated over time.

6The assumption that arrivals are privately observed by the sponsor is not important. The equilibrium
will be the same even if the arrivals are publicly observable.
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𝐻 𝑀 𝐿

Prob (·;𝐺) 𝑞 1− 𝑞 0

Prob (·;𝐵) 0 1− 𝑞 𝑞

Table 3.1: The investor’s observations

Investment 𝐺 𝐵 withdrawal
The sponsor’s payoff 𝑣𝐺 𝑣𝐵 0

The investor’s payoff 𝑢𝐺 𝑢𝐵 1

Table 3.2: The payoff structure

The payoff structure Depending on the investment result, the sponsor’s and the in-

vestor’s payoffs follow Table 3.2. If the investor chooses to invest and the type of the project

is 𝜔, she receives 𝑢𝜔 and the sponsor receives 𝑣𝜔 = 𝑅𝜔−𝑢𝜔 from the project. If the investor

chooses to withdraw from the SPAC, she keeps her money 𝐼 = 1 and the sponsor receives 0.

If the sponsor does not make a proposal by the time 0, the investor automatically withdraws.

We make the following assumptions regarding the payoff structure:

Assumption 3.2.2. (partial alignment) 𝑣𝐺 > 𝑣𝐵 > 0, 𝑢𝐺 > 1 > 𝑢𝐵.

This assumption stems from the famous contractual arrangement of SPAC: the shares

granted to the sponsor is not contingent on the value of the project. Typically, the sponsor

can obtain 20% of the shares of the target firm owned by the SPAC, and the investors

the rest 80%. As a result, when comparing investing in a bad project with investing in

no project, the sponsor prefers the former to the latter, while the investor opposite. As

recognized by both the academia and practitioners, this preference misalignment underlies

the fundamental moral hazard problem in SPACs7. On the other hand, it should not be

ignored that the contractual arrangement also has an alignment side: both the sponsor and

the investor prefer investing in a good project to investing in a bad project or no project.

As shown later, both sides of the partial alignment play important roles in equilibrium

dynamics.

Timeline Although the game is in continuous time, heuristically, conditional on the game

continues at time −𝑡, each instantaneous “period” [−𝑡,− (𝑡− 𝑑𝑡)) consists of events occurring
7Aware that potential agency problems may discourage investors, some SPAC sponsors try to tie the

shares they get more closely to the ex post value of the firm through deferred grant or clawback. Also, it
becomes more popular to let the sponsor have some skin-in-the game. However, these remedies are still far
from eliminating the misalignment.
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in the following order:

1. With the probability 𝜆𝑑𝑡, the sponsor receives a project and observes its type;

2. Receiving a project, the sponsor can propose it or not;

3. If the sponsor proposes a project, the investor receives a signal and chooses to invest

in the project or withdraw; then the game ends, and both players receive their payoffs;

4. If the sponsor does not propose a project, the game continues to − (𝑡− 𝑑𝑡).

3.2.2 Equilibrium Concept

We focus on the sequential equilibria of the game. First, we characterize the players’ strate-

gies and beliefs. Since the game has a finite horizon, time is naturally a state variable that

their strategies are based on. The sponsor has only one action in the game: whether to pro-

pose the project he receives. Hence, his strategy can be characterized by (𝛼𝜔 (−𝑡))𝜔∈{𝐺,𝐵},

where 𝛼𝜔 (−𝑡) represents the probability that the sponsor proposes the project of the type

𝜔 at the time −𝑡. The investor also has only one action in the game: whether to invest

in the project proposed by the sponsor based on her signal. Therefore, her strategy can

be characterized by (𝜂𝑠 (−𝑡))𝑠∈{𝐻,𝐿,𝑀}, where 𝜂𝑠 (−𝑡) represents the probability that the

investor invests at the time −𝑡 when observing the signal 𝑠.

The players’ beliefs can characterized accordingly. Let (𝜂𝑠 (−𝑡))𝑠∈{𝐻,𝐿,𝑀} be the spon-

sor’s belief about the investor’s strategy. Then by proposing a project of the type 𝜔 to the

investor at −𝑡, the sponsor’s expected payoff is

𝐹𝜔(−𝑡) ≡

⎧⎨⎩ [𝑞𝜂𝐻 (−𝑡) + (1− 𝑞) 𝜂𝑀 (−𝑡)] 𝑣𝐺, if 𝜔 = 𝐺

[(1− 𝑞) 𝜂𝑀 (−𝑡) + 𝑞𝜂𝐿 (−𝑡)] 𝑣𝐵, if 𝜔 = 𝐵
.

Let 𝜃(−𝑡) be the investors’ prior belief of the odds of a good project before observing

the signal. As required by sequential equilibria, these beliefs should be consistent with

the strategies on the equilibrium path according to Bayes’ rule. However, in this model,

sequential equilibria have no effective restriction on the beliefs off the equilibrium paths.

Specifically, if 𝛼𝐺 (−𝑡) = 𝛼𝐵 (−𝑡) = 0 at a time −𝑡, 𝜃(−𝑡) can take any nonnegative value.

This gives rise to multiplicity of equilibria8. To obtain sharper prediction of the equilibrium,

we impose D1 refinement: the investor believes that the project must be good if it is proposed

8Besides the equilibrium we derive later, another obvious equilibrium is that 𝛼𝐺 (−𝑡) = 𝛼𝐵 (−𝑡) = 0 and
𝜃(−𝑡) = 0 for all time points.
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by the sponsor at a time when no project should be proposed in equilibrium.

Below is the equilibrium concept used throughout the paper.

Definition 3.2.1. An (sequential) equilibrium consists of the sponsor’s proposal strategy

(𝛼𝜔 (−𝑡))𝜔∈{𝐺,𝐵}, the investor’s investment strategy (𝜂𝑠 (−𝑡))𝑠∈{𝐻,𝐿,𝑀}, the sponsor’s be-

lief (𝜂𝑠 (−𝑡))𝑠∈{𝐻,𝐿,𝑀}, and investor’s belief 𝜃 (−𝑡) such that at any time −𝑡 ∈ [−𝑇, 0] and

conditional on no proposal before −𝑡, the following conditions hold:

1. (𝛼𝜔 (−𝜏))𝜔∈{𝐺,𝐵} after −𝑡 maximizes the sponsor’s continuation value at −𝑡:

𝑉 (−𝑡) = max
(𝛼𝜔(−𝜏))𝜔

∫︁ 𝑡

0

𝑃 (−𝜏 ;−𝑡) · 𝜆 [𝑝0𝛼𝐺 (−𝜏) · 𝐹𝐺(−𝜏) + (1− 𝑝0)𝛼𝐵 (−𝜏) · 𝐹𝐵(−𝜏)] 𝑑𝜏,

(3.1)

where 𝑃 (−𝜏 ;−𝑡) ≡ 𝑒−
∫︀ 𝑡
𝜏 𝜆[𝑝0𝛼𝐺(−𝜉)+(1−𝑝0)𝛼𝐵(−𝜉)]𝑑𝜉 is the probability that the game still

continues at time −𝜏 > −𝑡 conditional on that the game continues at time −𝑡.

2. For any 𝑠 ∈ {𝐻,𝑀,𝐿}, the investor’s investment strategy 𝜂𝑠 (−𝑡) maximizes her ex-

pected profit based on the prior belief 𝜃 (−𝑡) and the signal 𝑠:

𝜂𝑠 (−𝑡)

⎧⎨⎩ 𝜃 (−𝑡) Prob(𝑠;𝐺)
Prob(𝑠;𝐵)

1 + 𝜃 (−𝑡) Prob(𝑠;𝐺)
Prob(𝑠;𝐵)

(𝑢𝐺 − 𝑢𝐵) + 𝑢𝐵 − 1

⎫⎬⎭ .

3. Rational beliefs and D1 refinement:

(a) 𝜂𝑠 (−𝑡) = 𝜂𝑠 (−𝑡) for all −𝑡 and 𝑠 ∈ {𝐻,𝐿,𝑀};

(b) 𝜃 (−𝑡) = 𝑝0
1−𝑝0

𝛼𝐺(−𝑡)
𝛼𝐵(−𝑡) for all −𝑡 satisfying 𝛼𝐺 (−𝑡) + 𝛼𝐵 (−𝑡) > 0;

(c) 𝜃 (−𝑡) = +∞ if 𝛼𝐺 (−𝑡) = 𝛼𝐵 (−𝑡) = 0.

3.3 Model Solution

3.3.1 Equilibrium Characterization

We first analyze the investor’s problem. When the investor observes the signal 𝐻 (𝐿), her

posterior probability of the project proposed being good becomes 1 (0), and her net payoff

from investing in the project is 𝑢𝐺 − 1 > 0 (𝑢𝐵 − 1 < 0). Thus her equilibrium strategy

must be 𝜂𝐻 (−𝑡) = 1 and 𝜂𝐿 (−𝑡) = 0 for all −𝑡. To characterize the investor’s equilibrium

strategy, we can focus on that when she observes the signal 𝑀 , i.e., 𝜂𝑀 (−𝑡). For simplicity,
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we get rid of the subscript of 𝜂𝑀 , and let 𝜂 (−𝑡) ≡ 𝜂𝑀 (−𝑡). It is easy to see that the

investor’s problem can be reduced to

max
𝜂(−𝑡)

𝜂(−𝑡)
{︂
𝜃(−𝑡)− 1− 𝑢𝐵

𝑢𝐺 − 1

}︂
,

where 𝜃(−𝑡) is the investor’s posterior belief of the odds of a good project. Then we obtain

the following lemma.

Lemma 3.3.1. In equilibrium, at any time −𝑡,

1. 𝜂𝐻 (−𝑡) = 1, and 𝜂𝐿 (−𝑡) = 0 ;

2. When 𝜃(−𝑡) > (<)1−𝑢𝐵𝑢𝐺−1 , 𝜂(−𝑡) = 1 (0); when 𝜃(−𝑡) = 1−𝑢𝐵
𝑢𝐺−1 , 𝜂(−𝑡) ∈ [0, 1].

Next, we turn to the sponsor’s problem. According to Lemma 3.3.1 and rational beliefs

in equilibrium, if the sponsor proposes a project of type 𝜔 at time −𝑡, his expected payoff is

𝐹𝜔(−𝑡) =

⎧⎨⎩ [𝑞 + (1− 𝑞) 𝜂 (−𝑡)] 𝑣𝐺, if 𝜔 = 𝐺

(1− 𝑞) 𝜂 (−𝑡) 𝑣𝐵, if 𝜔 = 𝐵
.

At any time −𝑡, the sponsor’s continuation value 𝑉 (−𝑡) satisfies the HJB equation

𝑑𝑉 (−𝑡)
𝑑𝑡

= max
𝛼𝐺(−𝑡),𝛼𝐵(−𝑡)

𝜆𝑝0·𝛼𝐺(−𝑡)·[𝐹𝐺 (−𝑡)− 𝑉 (−𝑡)]+𝜆(1−𝑝0)·𝛼𝐵(−𝑡)·[𝐹𝐵 (−𝑡)− 𝑉 (−𝑡)] . (3.2)

In addition, at the last instant of the game, it is almost sure that the sponsor will not receive

a project, so the continuation value at −𝑡 = 0 must be 0, i.e., 𝑉 (0) = 0. eq. (3.2) reflects an

important feature of the game: the sponsor has only one opportunity to propose a project.

When proposing a project of the type 𝜔 at −𝑡, the sponsor can get expected payoff 𝐹𝜔(−𝑡).

However, he also loses the opportunity to receive and propose new projects in the future,

whose value amounts to 𝑉 (−𝑡) in expectation. Therefore, the sponsor’s equilibrium strategy

𝛼𝜔(−𝑡) must satisfy

𝛼𝜔(−𝑡)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
= 1 if 𝐹𝜔 (−𝑡)− 𝑉 (−𝑡) > 0

∈ [0, 1] if 𝐹𝜔 (−𝑡)− 𝑉 (−𝑡) = 0

= 0 if 𝐹𝜔 (−𝑡)− 𝑉 (−𝑡) < 0

for 𝜔 ∈ {𝐺,𝐵}.

A critical observation of the game is that the sponsor always has more incentive to

propose a good project than a bad one. On one hand, 𝐹𝐺 (−𝑡) > 𝐹𝐵 (−𝑡) always holds
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because a good project not only gives the sponsor a higher payoff than a bad one but also

is more likely to be approved by the investor. On the other hand, the opportunity cost of

proposing a project at time −𝑡 is 𝑉 (−𝑡), which is independent of the type of the project

that the sponsor receives. An implication of the observation is that in equilibrium, it is

always strictly better for the sponsor to propose a good project than not. The sponsor’s

continuation value is decreasing over time because as the time passes, he is less likely to

receive and propose a good project.

Lemma 3.3.2. In equilibrium, for any −𝑡, 𝐹𝐺 (−𝑡) > 𝑉 (−𝑡). Further, 𝛼𝐺(−𝑡) = 1, and

𝑉 (−𝑡) strictly decreases to 0 as −𝑡 increases to 0.

Since the sponsor always propose the good project he receives, the perceived quality

of the proposed project depends on his incentive of proposing bad projects. Lemma 3.3.3

implies that whenever the sponsor receives a bad project, he must choose not to propose it

with positive probability. This relies on the key assumption that the potential projects of

SPACs have negative NPV on average, i.e., 𝑝0𝑅𝐺 + (1 − 𝑝0)𝑅𝐵 < 1. If the sponsor surely

proposes the bad project he receives at a time point, the investor must withdraw surely

when observing 𝑀 because she has negative expected profit of investing. Then the sponsor

should have no incentive to propose a bad project. Hence, this situation cannot take place

in equilibrium.

Lemma 3.3.3. When 𝑉 (−𝑡) < (1− 𝑞) 𝑣𝐵 and −𝑡 < 0, 𝛼𝐵(−𝑡) ∈ (0, 1). When 𝑉 (−𝑡) >

(1− 𝑞) 𝑣𝐵, 𝛼𝐵(−𝑡) = 0.

Combining Lemma 3.3.1, Lemma 3.3.2, and Lemma 3.3.3, we obtain a unique equilibrium

of the game.

Proposition 3.3.1. The unique equilibrium of the SPAC game has potentially two stages,

the transition time between which is −𝑡*.

• The second stage spans the period (−𝑡*, 0], in which

– the investor’s equilibrium strategy 𝜂(−𝑡) makes the sponsor indifferent to whether

to propose a bad project or not, i.e.,

𝑉 (−𝑡) = 𝐹𝐵 (−𝑡) = (1− 𝑞)𝜂(−𝑡)𝑣𝐵;

– the sponsor’s equilibrium strategy (𝛼𝜔 (−𝑡))𝜔∈{𝐺,𝐵} satisfies 𝛼𝐺(−𝑡) = 1 and
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makes the investor indifferent to whether to invest or withdraw when observing

𝑀 , i.e.,
𝑝0

1− 𝑝0

𝛼𝐺(−𝑡)
𝛼𝐵(−𝑡)

=
1− 𝑢𝐵
𝑢𝐺 − 1

;

– the sponsor’s continuation value satisfies

𝑑𝑉 (−𝑡)
𝑑𝑡

= 𝜆𝑝0 · [𝐹𝐺 (−𝑡)− 𝑉 (−𝑡)]

with the boundary condition 𝑉 (0) = 0.

• The first stage spans the period [−𝑇,−𝑡*), in which

– the investor always invest when observing 𝑀 , i.e. 𝜂(−𝑡) = 1;

– the sponsor proposes only good projects, i.e., 𝛼𝐺(−𝑡) = 1 and 𝛼𝐵(−𝑡) = 0;

– the sponsor’s continuation value satisfies

𝑑𝑉 (−𝑡)
𝑑𝑡

= 𝜆𝑝0 · [𝑣𝐺 − 𝑉 (−𝑡)] .

• The transition time −𝑡* satisfies 𝑉 (−𝑡*) = (1−𝑞)𝑣𝐵, and 𝑉 (−𝑡) is continuous at −𝑡*.

If −𝑇 ≥ −𝑡*, the first stage will be degenerate, and the equilibrium has only the second

stage.

The misalignment of the two players’ payoffs is key to the equilibrium dynamics. Due

to the finite horizon of SPAC, as time passes, the sponsor has less chance to receive to

a project, and thus his continuation value decreases. Note that the continuation value is

also the opportunity cost of proposing a project, which dampens the sponsor’s desire to

propose a bad project. In the early stage of the game, the continuation value is high enough

to prevent the sponsor from proposing any bad project, even though the investor imposes

the least stringent screening, 𝜂(−𝑡) = 1. Later on, the sponsor starts to find proposing

a bad project desirable. Because of the poor quality of potential projects on average, the

investor is concerned about an undisciplined sponsor and spontaneously chooses to invest

more conservatively. Such conservatism imposes more stringent screening, 𝜂(−𝑡) < 1, which

in turn helps discipline the sponsor.

However, the alignment of their payoffs also plays an important role here. Although the

investor imposes more stringent screening in the future, the sponsor’s continuation value,

which accumulates from potential investment in the future, can always be no less than his
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expected payoff of proposing a bad project currently. That is because the sponsor may

receive good projects in the future. According to the payoff structure of SPACs, a good

project gives the sponsor a higher payoff than a bad one. Moreover, since the investor

also prefers a good project to a bad one, her screening automatically makes investment in

the former more likely than that in the latter. This further enhances the attractiveness of

waiting for a good project relative to proposing a bad project currently.

3.3.2 The Welfare

Proposition 3.3.2 provides a characterization of the sponsor’s welfare and the investor’s

welfare based on the properties of the equilibrium. Denote the investor’s continuation value

at −𝑡 by 𝑈(−𝑡). Then the sponsor’s welfare and the investor’s welfare are 𝑉 (−𝑇 ) and

𝑈(−𝑇 ) respectively.

Proposition 3.3.2.

• Given the investor’s equilibrium strategy 𝜂(−𝑡), 𝑉 (−𝑇 ) is equal to the sponsor’s ex-

pected payoff if he proposes only good projects to the investor, i.e.,

𝑉 (−𝑇 ) = 𝑣𝐺

∫︁ 𝑇

𝑡=0
𝜆𝑝0𝑒

−𝜆𝑝0(𝑇−𝑡) [𝑞 + (1− 𝑞)𝜂(−𝑡)] 𝑑𝑡. (3.3)

• Given the sponsor’s equilibrium strategy 𝛼𝐺(−𝑡) = 1 and 𝛼𝐵(−𝑡), 𝑈(−𝑇 ) is linear

in the unconditional probabilities that the sponsor proposes good projects in the two

stages, i.e.,

𝑈(−𝑇 ) = (𝑢𝐺 − 1) · (𝑃 *
1 + 𝑞 · 𝑃 *

2 ) + 1, (3.4)

where

𝑃 *
1 =

∫︁ 𝑇

min{𝑇,𝑡*}
𝜆𝑝0𝑒

−𝜆𝑝0(𝑇−𝑡)𝑑𝑡,

𝑃 *
2 =

∫︁ min{𝑇,𝑡*}

𝑡=0
𝜆𝑝0𝑒

−𝜆𝑝0(𝑇−𝑡) · 𝑒−𝜆(1−𝑝0)
∫︀min{𝑇,𝑡}
𝑡 𝛼𝐵(−𝜏)𝑑𝜏𝑑𝑡.

Since the sponsor is always indifferent to whether to propose a bad project or not in

the second stage, we can use the equilibrium path in which the sponsor never proposes a

bad project to calculate his welfare. A useful property of the sponsor manifested by the

representation (3.3) is that his welfare depends on only how likely a proposed good project

is invested by the investor. The probability is 𝑞+ (1− 𝑞)𝜂(−𝑡) at −𝑡, which depends on the
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quality of the investor’s information as well as her screening in equilibrium.

The statement about the investor’s welfare stems from the observation that the investor

always breaks even in expectation except that she knows the proposed project is surely good.

In the first stage, only good projects are proposed, and the probability that it happens is

𝑃 *
1 . In the second stage, the investor’s expected profit is equal to her outside option 1

when observing 𝑀 or 𝐿, and she knows the project is surely good when observing 𝐻. With

probability 𝑃 *
2 , the sponsor proposes a good project in the second stage, and conditional on

that, the investor observes 𝐻 with the probability 𝑞. Note that we always have 𝑉 (−𝑡*) =

(1− 𝑞) 𝑣𝐵 at the start of second stage. The representation (3.4) implies that the key elements

in investor’s welfare are: the length of the second stage 𝑡*, the probability that the sponsor

proposes a bad project in the second stage 𝛼𝐵 (·), and the quality of her information 𝑞.

3.3.3 Moral Hazard in Equilibrium

In this subsection, we take a closer look at the sponsor’s moral hazard problem. Notice that

the sponsor acts in the investor’s best interest in the first stage and his moral hazard problem

is present in only the second stage. Hence, there are two dimensions regarding the degree

of his moral hazard in equilibrium: the duration of moral hazard, which is represented by

the length of the second stage 𝑡*, and the intensity of moral hazard, which is represented by

the probability of proposing a bad project in the second stage 𝛼𝐵(−𝑡).

Proposition 3.3.3.

• 𝑡* satisfies [︂
𝑒
𝜆𝑝0
(︁

𝑣𝐺
𝑣𝐵

−1
)︁
𝑡* − 1

]︂
1

𝑣𝐺
𝑣𝐵

− 1
· 𝑞 · 𝑣𝐺 = (1− 𝑞) · 𝑣𝐵. (3.5)

𝑡* is decreasing in 𝑣𝐺/𝑣𝐵 and 𝑞.

• For 𝑡 < 𝑡*,

𝛼𝐵(−𝑡) =
𝑝0

1− 𝑝0

𝑢𝐺 − 1

1− 𝑢𝐵
. (3.6)

The length of the second stage depends on two factors. The first is the sponsor’s contin-

uation value, and the second is the maximum expected payoff the sponsor can receive from

proposing a bad project. He can receive at most (1 − 𝑞)𝑣𝐵 from proposing a bad project,

since the investor must withdraw when observing the signal 𝐿. In the first stage, the former

is greater than the latter but keeps decreasing. When the former meets the latter, the second

stage starts, and lasts until time −𝑡 = 0. When we look at the model backward from time

104



−𝑡 = 0, the sponsor’s continuation value is simply all the value 𝑑𝑉 (−𝑡) /𝑑𝑡 accumulated

from time 0 to time −𝑡. As implied by Proposition 3.3.2, the sponsor’s continuation value

essentially relies on only the proposal of good projects and consists of two parts. First, upon

observing 𝑀 , the investor invests in the project with the probability 𝜂(−𝑡) at −𝑡, which

results in investment in good projects occurring at the rate of 𝜆𝑝0(1 − 𝑞)𝜂(−𝑡). This part

corresponds to [︂
𝑒
𝜆𝑝0
(︁

𝑣𝐺
𝑣𝐵

−1
)︁
𝑡* − 1

]︂
1

𝑣𝐺
𝑣𝐵

− 1

in eq. (3.5). Second, upon observing 𝐻, the investor invests in the project with the prob-

ability 1, which results in investment in good projects occurring at the rate of 𝜆𝑝0𝑞. This

part corresponds to the 𝑞 in the left-hand side of eq. (3.5).

Rather than an additive relationship implied by their origination, the parts are con-

voluted in an multiplicative manner. Note that in equilibrium, 𝜂(−𝑡) makes the sponsor

indifferent to whether to propose a bad project or not, so it satisfies

(1− 𝑞)𝜂(−𝑡) · 𝑣𝐵 = 𝑉 (−𝑡).

That means, the first part accumulates by an amount proportional to the level of the spon-

sor’s continuation value. Due to such self-reinforcing dynamics, the sponsor’s continuation

value becomes very sensitive to 𝑞.

The probability of proposing a bad project 𝛼𝐵 (−𝑡) is actually a constant in the second

stage. The investor is indifferent between withdrawing and investing upon observing signal

𝑀 , so her posterior belief upon observing signal 𝑀 must be a constant. As a result, 𝛼𝐵 (−𝑡)

depends on the quality of the project pool and the investor’s payoff structure.

3.4 Welfare Implications and the Design of SPAC

3.4.1 The control arrangement

As shown above, a typical SPAC suffers from moral hazard problems since the sponsor and

the investor are not fully aligned about what projects should be invested in. Such systematic

misalignment is actually rare in other delegated investment vehicles usually considered to be

comparable to SPAC. Regarding private equity, hedge fund, and mutual fund, the sponsor’s

objective is primarily to maximize the value of the whole fund and thus consistent with
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the investor’s. This is also an important reason why we observe that only SPAC investors

can directly decide whether to invest in a project. Such arrangement of investment control

rights is meant to mitigate moral hazard problems and facilitate investors’ participation in

the game in the first place.

In this subsection, we present a welfare analysis of SPAC with respect to investment

control rights. We characterize the equilibrium when the sponsor can directly decide whether

to invest. Surprisingly, our analysis implies that in some cases, the SPAC investor can be

better off if the sponsor has the control right.

Suppose that the sponsor can directly decides whether to invest. Since the sponsor’s

proposal guarantees investment, his payoff is 𝑣𝜔 if he proposes a project of the type 𝜔. Let

𝑉𝑠(−𝑡) represent his continuation value at time −𝑡. It is easy to see that as the time passes,

the continuation value must be weakly decreasing and always smaller than 𝑣𝐺. At the last

instant of the SPAC life cycle, the continuation value must be 0. Similar to the case that the

investor has the control right, the game is divided into two stages in equilibrium. Denote

the transition time as −𝑡*𝑠. In the first stage where −𝑡 < −𝑡*𝑠, 𝑣𝐵 < 𝑉𝑠(−𝑡) < 𝑣𝐺, so the

sponsor proposes only the good project he receives. In the second stage where −𝑡 > −𝑡*𝑠,

𝑉𝑠(−𝑡) < 𝑣𝐵 < 𝑣𝐺, and the sponsor proposes any project he receives. Let 𝑈𝑠(−𝑡) represent

the investor’s continuation value at the time −𝑡. We readily obtain the following properties

about the equilibrium.

Lemma 3.4.1.

• 𝑡*𝑠 is finite and satisfies

(︁
1− 𝑒−𝜆𝑡

*
𝑠

)︁
[𝑝0𝑣𝐺 + (1− 𝑝0)𝑣𝐵] = 𝑣𝐵

• There exists 𝑇 *
𝑠 > 0 such that 𝑈𝑠(−𝑇 ) > 1 if and only if 𝑇 > 𝑇 *

𝑠 .

The first point of Lemma 3.4.1 states that although the sponsor has full discretion over

investment, he only acts at odds with the investor’s interest in a later period of the game.

Similar to that in the baseline setup, the equilibrium has two stages. In the second stage,

the sponsor’s continuation value accumulates at the rate of 𝜆 [𝑝0𝑣𝐺 + (1− 𝑝0)𝑣𝐵] while his

expected payoff from proposing a bad project is always 𝑣𝐵. The second stage starts when

the former meets the latter, and lasts until −𝑡 = 0. The key force behind the equilibrium is

that the sponsor also prefers a good project to a bad one as the investor does. With only

106



one opportunity to invest, if he expects that the remaining time allows him to receive a good

project with a sufficiently high probability, he would prefer to forgo the bad project at hand

despite the risk that he may end up with no project.

The second point stems from the following fact: in the second stage, the sponsor invests

in all the projects he receives, so the investor loses money from investment in expectation

because of the poor quality of potential SPAC projects on average, i.e.,

𝑝0𝑢𝐺 + (1− 𝑝0)𝑢𝐵 < 1.

In the first stage, the sponsor invests in only the good projects he receives, so the investor

gets positive profit from investment in this stage. As a result, when 𝑇 is large enough, going

backward from the last instant −𝑡 = 0 to −𝑡 = −𝑇 , the investor’s continuation value 𝑈𝑠(−𝑡)

first decreases and then increases.

Next, we focus on how the ownership of the control right affects the two players’ welfare.

Proposition 3.4.1.

• 𝑉𝑠(−𝑇 ) > 𝑉 (−𝑇 ) for any 𝑇 .

• Suppose 𝑇 > 𝑇 *
𝑠 . There exists 𝑞*𝑠 such that 𝑈𝑠(−𝑇 ) > 𝑈(−𝑇 ) if and only if 𝑞 < 𝑞*𝑠 .

The first point is straightforward. When the sponsor have full control over investment,

his expected payoff must dominates his payoff in the baseline setup. The second point

implies that if the investor’s information is very noisy, the investor can be better off if the

sponsor has the control right and 𝑇 is large enough. The key to the result is that when 𝑞

is small, the investor’s control right exacerbates the sponsor’s moral hazard problem and

prolongs the second stage.

Next, we explain how the investor’s control right affects the length of the second stage.

When the investor has control right, at any time −𝑡, a proposed project will be rejected with

probability 1 if the signal 𝐿 is observed and will be rejected with the probability 1− 𝜂(−𝑡)

if the signal 𝑀 is observed. Compared to the case when the sponsor has the control right,

such potential rejection directly reduces the sponsor’s expected payoff from proposing a bad

project to (1− 𝑞)𝜂(−𝑡) · 𝑣𝐵 and thus reduces its maximum to (1− 𝑞) · 𝑣𝐵. Apparently, this

direct effect shortens the second stage. It is consistent with the conventional wisdom that

with the control right, the investor’s profit-maximizing decision can naturally discipline the

sponsor’s behavior. However, the rejection also impedes the accumulation of the sponsor’s
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continuation value. Recall that according to Proposition 3.3.2, the accumulation essentially

comes from only the proposals of good projects. Hence, at any time −𝑡 in the second stage,

the sponsor’s continuation value accumulates at the rate of 𝜆𝑝0 [𝑞 + (1− 𝑞)𝜂(−𝑡)] · 𝑣𝐺 in the

case when the investor has the control right, as opposed to 𝜆 [𝑝0𝑣𝐺 + (1− 𝑝0)𝑣𝐵] in the case

when sponsor has the control right. So when the investor has control right, the sponsor’s

continuation value accumulates more slowly, which can potentially make the second stage

longer.

Then what is the net effect of the investor’s control right when 𝑞 is small? The reduction

in the maximum expected payoff from proposing a bad project is proportional to 𝑞 and thus

small, but that in the accumulation of the sponsor’s continuation value could be very large.

As pointed out in Section 3.3.3, the sponsor’s continuation value follows a self-reinforcing

dynamics. With a small 𝑞, a low level of the sponsor’s continuation value directly translates

into a low accumulation rate. Since the accumulation starts at 0, the self-reinforcing dy-

namics essentially trap it at a low level for a long period. As a result, it takes long for the

sponsor to accumulate sufficient continuation value to leave the second stage.

In this SPAC setup, there are potentially two forces that determine the degree of the

sponsor’s moral hazard problem in equilibrium. As argued previously, the investor and

the sponsor are partially aligned: they both prefer good projects to bad projects. Such

partial alignment, which works through the accumulation of the sponsor’s continuation value,

naturally motivates the sponsor to act in the investor’s interest to some extent. When the

investor has the control right, she exerts screening based on her information. The screening

directly disciplines the sponsor’s behavior, yet it also dampens the effect of partial alignment.

Our analysis suggests that the investor’s equilibrium screening, which is optimal ex post after

the sponsor proposes a project, is too stringent ex ante because the investor does not consider

the negative externality on the sponsor’s continuation value. The precision of the investor’s

information determines which side of the excessive screening dominates.

3.4.2 Public assessment and contingent control right

Public assessment of assets or projects plays an important role in various financing activi-

ties. For example, credit rating in bond issuance and auditing in syndicated loans. Apart

from providing trustworthy information for investors9, another potential function of public

9This welfare impliaction of this function will be examined in the next subsection.
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assessment is to provide public signals used for contracting. As implied by our previous

analysis, giving the control right to either party may both incur severe welfare loss. In this

subsection, we show that making the control right contingent on public signals can be more

favorable in some situations.

Suppose there is a public assessment agency that always publicly, truthfully discloses

what it observes about the project proposed by the sponsor. Its information structure is

similar to the investor’s: if the project is good (bad), it observes 𝐻 (𝐿) with the probability

𝑞 and 𝑀 otherwise. We focus on monotone contingent allocation of the control right10: the

sponsor can decide whether to invest if and only if the public signal is more favorable than a

threshold. Notice that the two players always prefer the same decision upon observing 𝐻. If

the sponsor (investor) has the control right upon observing 𝑀 and 𝐿, the case is equivalent

to that he (she) has the full control right. Therefore, we only need to deal with the case

that the sponsor has the control right when the public signal is 𝑀 and the investor has the

control right when it is 𝐿.

It is straightforward to see that the sponsor’s proposal is certainly rejected when the

public signal is 𝐿. Hence, his expected payoff is 𝑣𝐺 if he proposes a good project and

(1− 𝑞)𝑣𝐵 if he proposes a bad one. Let 𝑉𝑐(−𝑡) represent his continuation value at −𝑡. The

game is divided into two stages in equilibrium. Denote the transition time as −𝑡*𝑐 . In the

first stage where −𝑡 < −𝑡*𝑐 , (1− 𝑞)𝑣𝐵 < 𝑉𝑐(−𝑡) < 𝑣𝐺, so the sponsor proposes only the good

projects he receives. In the second stage where −𝑡 > −𝑡*𝑐 , 𝑉𝑐(−𝑡) < (1− 𝑞)𝑣𝐵 < 𝑣𝐺, so the

sponsor proposes any project he receives. Let 𝑈𝑐(−𝑡) represent the investor’s continuation

value at the time −𝑡. We obtain the following results.

Proposition 3.4.2.

• The sponsor’s welfare is increasing in the control right he has, i.e., 𝑉𝑠(−𝑇 ) > 𝑉𝑐(−𝑇 ) >

𝑉 (−𝑇 ).

• The investor’s welfare is higher when the control right is contingent than when the

sponsor has the control right, i.e., 𝑈𝑐(−𝑇 ) > 𝑈𝑠(−𝑇 ).

• The total welfare of the two players is higher when the control right is contingent than

when the sponsor has the control right, i.e., 𝑉𝑐(−𝑇 ) + 𝑈𝑐(−𝑇 ) > 𝑉𝑠(−𝑇 ) + 𝑈𝑠(−𝑇 ).

The first point is straightforward: more control right is always beneficial to the sponsor.

The second point says the investor is always better off with the contingent control right
10It can be shown that other allocation is weakly dominated by this family of allocations .
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than none. Compared to no control right, the contingent control right effectively reject the

investment in bad projects with the probability 𝑞 (when the public signal is 𝐿). First, it

increases the investor’s expected payoff at each instant in the second stage. Second, it also

shortens the length of the second stage. The sponsor’s expected payoff from proposing a bad

project is reduced by a factor of 𝑞 to (1− 𝑞)𝑣𝐵, and his accumulation of continuation value

is also reduced to 𝜆 [𝑝0 · 𝑣𝐺 + (1− 𝑝0) · (1− 𝑞)𝑣𝐵]. The reduction in the latter is dispropor-

tionately low relative to the former because the former depends on only the investment in

bad projects while the latter depends on that in both types of projects. This property also

holds for more general signal structures: the beneficial disciplining effect of allowing the

investor to reject the investment when observing sufficiently unfavorable signals probably

outweighs its adverse effect on the accumulation of the sponsor’s continuation value. For

the same reason, the total welfare of the two players is higher with the contingent control

right because it reduces investment in bad projects without affecting that in good projects.

The comparison between the contingent control right and the investor having the control

right is ambiguous. Besides the forces related to control rights discussed in Section 3.4.1, it

also depends on the quality of the public information compared to the investor’s (𝑞 vs. 𝑞).

3.4.3 One proposal vs. multiple proposals

Motivated by the recent trend of SPAC, we model the investor’s decision-making process

as tender offers for the baseline setup. Once the sponsor proposes a project, the game

enters into the investor’s decision making stage and ends immediately after that. Hence, the

sponsor has only one opportunity to propose projects before the deadline. Another possible,

also natural way to structure a SPAC is to let the sponsor continue to search for projects

until the deadline if the investor is not willing to invest in the current one. Then the sponsor

will essentially have multiple opportunities to propose. For convenience, we regard the two

regimes as one proposal and multiple proposals respectively. In this subsection, we examine

the impact of allowing multiple proposals on the equilibrium and the players’ welfare.

Notably, multiple proposals can be naturally implemented if the investor’s decision mak-

ing is structured as voting, which was a very popular practice until recently. Voting in SPACs

proceeds as follows. After the sponsor proposes a project, the investors vote on acquisition

approval. If a sufficient fraction of investors vote for it, the deal is approved. Then the
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investors who vote against the deal are offered the right to redeem their shares11. Investors

who are not offered or do not exercise the right will invest. If the deal is not approved, the

SPAC will continue, and the sponsor searches for new projects. In our single-investor setup,

the investor will either approve the deal and invest, or disapprove it and let the SPAC con-

tinue, consistent with the regime of multiple proposals. Therefore, the comparison between

the two regimes also shed light on that between tender offers and voting.

We consider a derivation of our baseline setup and assume that the sponsor can continue

to search if the proposed project is rejected. All other assumptions are unchanged. Let

𝑉𝑣(−𝑡) represent the sponsor’s continuation value at −𝑡 in this new game. Likewise, 𝑉𝑣(−𝑡)

is weakly decreasing, always smaller than 𝑣𝐺, and equal 0 at the deadline of the SPAC.

By proposing a project of the type 𝜔 at −𝑡, the sponsor enjoys 𝑣𝜔 if the investor approves

the deal and 𝑉𝑣(−𝑡) otherwise. Hence, given the investor’s strategy, his marginal benefit of

proposing a project of the type 𝜔 is proportional to 𝑣𝜔−𝑉𝑣(−𝑡). To obtain sharp equilibrium

prediction, we assume that the sponsor does not use weakly dominated strategies. That is,

he proposes a project of the type 𝜔 at −𝑡 with the probability 1 if 𝑣𝜔 − 𝑉𝑣(−𝑡) > 0 and 0

if 𝑣𝜔 − 𝑉𝑣(−𝑡) < 0. It is easy to see the game is still divided into two stages in equilibrium.

Denote the transition time as −𝑡*𝑣. In the first stage where −𝑡 < −𝑡*𝑣, 𝑣𝐵 < 𝑉𝑣(−𝑡) < 𝑣𝐺, so

the sponsor proposes only the good project he receives. In the second stage where −𝑡 > −𝑡*𝑣,

𝑉𝑣(−𝑡) < 𝑣𝐵 < 𝑣𝐺, so the sponsor proposes any project he receives. Let 𝑈𝑣(−𝑡) be the

investor’s continuation value at −𝑡. We obtain the following results.

Proposition 3.4.3. The sponsor always has a lower welfare under multiple proposals than

under one proposal, i.e., 𝑉𝑣(−𝑇 ) < 𝑉 (−𝑇 ). But the comparison about the investor’s welfare

between the two regimes is ambiguous.

Surprisingly, the sponsor is worse off under multiple proposals. Since the first stage

proceeds in the same way under both regimes, to understand the intuition, we can focus on

the second. On one hand, under multiple proposals, his continuation value accumulates at

a lower rate in the second stage, which is

𝑑𝑉𝑣(−𝑡)
𝑑𝑡

= 𝜆𝑝0 · 𝑞 [𝑣𝐺 − 𝑉𝑣(−𝑡)]

= 𝜆𝑝0 · [𝑞𝑣𝐺 + (1− 𝑞)𝑉𝑣(−𝑡)− 𝑉𝑣(−𝑡)] ,

11This is required by stock exchange listing rules. In many cases, SPACs offer all investors the redemption
rights.
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as opposed to

𝑑𝑉 (−𝑡)
𝑑𝑡

= 𝜆𝑝0 · [𝑞𝑣𝐺 + (1− 𝑞) 𝜂 (−𝑡) 𝑣𝐺 − 𝑉 (−𝑡)]

under one proposal. The difference between the two accumulation rates is that when 𝑀

is observed, the sponsor receives 𝑉 (−𝑡) in expectation under multiple proposals while he

receives 𝑣𝐺 with the probability 𝜂(−𝑡) under one proposal. Recall that (1− 𝑞)𝜂(−𝑡) · 𝑣𝐵 =

𝑉 (−𝑡), so

𝜂 (−𝑡) 𝑣𝐺 =
𝑣𝐺

(1− 𝑞) · 𝑣𝐵
𝑉 (−𝑡) > 𝑉 (−𝑡).

This simple observation relies on two points. First, since the signal 𝐿 has helped screen out

the fraction 𝑞 of bad projects, the investor can exert lesser screening when observing 𝑀 .

Second, the sponsor strictly prefers a good project to a bad one. On the other hand, the

sponsor needs a higher continuation value to leave the second stage under multiple proposals,

𝑉𝑣(−𝑡) = 𝑣𝐵, as opposed to 𝑉 (−𝑡) = (1−𝑞)𝑣𝐵 under one proposal. Hence, allowing multiple

proposals also prolongs the second stage.

The underlying economic intuition is that the coercive termination feature of one pro-

posal enables the investor’s screening to have ex ante disciplining effect on the sponsor.

Under multiple proposals, the investor’s disapproval when observing 𝑀 or 𝐿 cannot sup-

press the sponsor’s incentive to propose bad projects at all because disapproval is not worse

than not proposing. To protect herself from the sponsor’s undisciplined behavior, the in-

vestor has to reject any investment unless she observes the clear-cut good signal 𝐻. As

pointed out in Section 3.4.1, this rational response further restricts the accumulation of the

sponsor’s continuation value and prolongs the second stage. This intuition also helps justify

the recent transition from voting to tender offers from an equilibrium perspective.

However, the comparison about the investor’s welfare is ambiguous. Allowing multiple

proposals affects the welfare in two opposite ways. On one hand, it prolongs the less efficient

second stage. On the other hand, it increases the rate at which the investor’s continuation

value accumulates in the second stage. In both regimes, the investor can earn the positive

profit 𝑢𝐺 − 1 in the second stage only when she observes 𝐻. Under multiple proposals, the

game ends only in this event by the deadline, while under one proposal, the game may end

when she observes 𝑀 or 𝐿. Hence, this event occurs more likely under multiple proposals.
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3.5 Extensions

3.5.1 Strategic entrepreneurs

In the baseline setup, we deliberately abstract away from entrepreneurs’ strategic behavior

to better focus on the strategic interaction between the sponsor and the investor. Usually,

the entrepreneurs can choose to bring the project public through either SPAC or standard

IPO, and in more general settings, entrepreneurs can choose other financing strategies. In

our baseline setup, the equilibrium features a (weakly) decreasing probability of approval for

both good and bad projects. Then in a more general setting when entrepreneurs are strategic,

the choice between SPAC and standard IPO will be endogenous, and thus the supply of

projects from entrepreneurs may not be constant in SPAC lifecycle. In this subsection, we

introduce strategic entrepreneurs into the model and examine its impact on the equilibrium

dynamics.

There are many entrepreneurs, each of whom is endowed with one project. Projects can

be either good (𝐺) or bad (𝐵), and the fraction of good projects is 𝑝0. Each entrepreneur

observes the type of her own project. There is only one SPAC in the market operating in

the way modeled in the baseline setup. At each instantaneous “period” [−𝑡,− (𝑡− 𝑑𝑡)), a

liquidity shock arrives with probability 𝜆𝑑𝑡, and a randomly chosen entrepreneur needs to

raise 𝐼 = 1 to continue her project. If the project is not funded instantly, it may fail or

shrink over time. The entrepreneur hit by a liquidity shock can choose to bring her project

public through either SPAC or standard IPO. There are three possible scenarios:

1. she chooses IPO directly;

2. she taps SPAC, and the project is funded by the SPAC investor;

3. she taps SPAC, but the project is not funded by the SPAC investor and she turns to

IPO.

Denote an entrepreneur’s payoff as 𝜋𝐼𝑃𝑂 if the project is funded through IPO directly and

as 𝜋𝑆𝑃𝐴𝐶 if it is funded through SPAC. In the case that she chooses IPO after unsuccessful

SPAC financing, her payoff is 𝜌 ·𝜋𝐼𝑃𝑂. We assume 𝜌 < 1 because preparing for SPAC delays

the project’s IPO process and the project may fail or shrink due to lack of funding during

that period. We do not impose a particular probabilistic structure on 𝜌, 𝜋𝑆𝑃𝐴𝐶 , and 𝜋𝐼𝑃0:

they can vary with projects in any reasonable way. The relationship between 𝜋𝐼𝑃𝑂 and

𝜋𝑆𝑃𝐴𝐶 is ambiguous and depends heavily on project specifics. 𝜋𝑆𝑃𝐴𝐶 could be greater than
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𝜋𝐼𝑃𝑂 for several reasons. For example, projects can be funded through SPAC more quickly;

projects that cannot access standard IPO may go public through SPAC.

Due to the stringent screening process and regulatory requirement of IPO, bad projects

can hardly be funded through it, so we assume 𝜋𝐼𝑃𝑂 = 0 for bad projects. Then it is easy

to see that entrepreneurs with bad projects will always tap SPAC. Now consider those with

good projects. Suppose an entrepreneur expects that if she taps SPAC, her project can be

funded through SPAC with the probability 𝑥. Then she will tap SPAC if and only if

𝑥 · 𝜋𝑆𝑃𝐴𝐶 + (1− 𝑥) · 𝜌𝜋𝐼𝑃𝑂 > 𝜋𝐼𝑃𝑂

⇔ (1− 𝜌)𝜋𝐼𝑃𝑂
𝜋𝑆𝑃𝐴𝐶 − 𝜌𝜋𝐼𝑃𝑂

< 𝑥. (3.7)

Certainly, since unsuccessful SPAC financing causes costly delay to IPO, if a project is more

likely to be funded through SPAC, the entrepreneur is more willing to choose SPAC over

IPO. Let Φ (·) represent the CDF of the random variable (1−𝜌)𝜋𝐼𝑃𝑂

𝜋𝑆𝑃𝐴𝐶−𝜌𝜋𝐼𝑃𝑂
, and assume that

Φ(·) is strictly increasing. Then at each instant, the sponsor receives good projects at the

rate 𝜆𝑝0Φ(𝑥).

Now we characterize the equilibrium of the SPAC game with strategic entrepreneurs. At

the time −𝑡, the sponsor receives bad projects at the rate 𝜆(1 − 𝑝0) and good projects at

the rate 𝜆𝑝0Φ(𝑥(−𝑡)), where

𝑥(−𝑡) ≡ 𝛼𝐺(−𝑡) · [𝑞 + (1− 𝑞) 𝜂 (−𝑡)]

is the probability that the project can be approved if the entrepreneur chooses SPAC.

Lemma 3.3.2 and Lemma 3.3.3 still hold because the projects the sponsor receives at each

instant have negative NPV on average, i.e.,

𝑝0Φ(𝑥(−𝑡))𝑅𝐺 + (1− 𝑝0)𝑅𝐵
𝑝0Φ(𝑥(−𝑡)) + 1− 𝑝0

≤ 𝑝0𝑅𝐺 + (1− 𝑝0)𝑅𝐵 < 1.

The equilibrium is very similar to that in Proposition 3.3.1 except that the sponsor receives

good projects at the rate 𝜆𝑝0Φ(𝑞 + (1− 𝑞) 𝜂 (−𝑡)).

Proposition 3.5.1. As the SPAC approaches its deadline, a decreasing fraction of the en-

trepreneurs with good projects choose to tap the SPAC.
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As the SPAC approaches its deadline, the investor becomes more concerned about the

sponsor’s moral hazard problem and exert more stringent screening. The screening effec-

tively discourages the entrepreneurs with good projects, who can also access standard IPO,

from tapping the SPAC. That means, the investor’s screening abates not only the spon-

sor’s expected payoff from proposing good projects but also the probability that he receives

good projects. As analyzed in Section 3.4.1, this additional effect further dampens the ac-

cumulation of the sponsor’s continuation value and exacerbates the sponsor’s moral hazard

problem. Entrepreneurs’ potential strategic behavior actually stokes our concern that giving

less informed investors the control right to reassure them may backfire.

3.5.2 Endogenous Effort to Search for Projects

In reality, the search for projects also depends on the sponsor’s effort. To prepare investment

proposals to the investor, the sponsor needs to spend time, energy, and money in finding

projects and negotiating deals. Such effort can hardly be observed or enforced, so it is mainly

determined by the sponsor’s utility maximization. Since the marginal benefit of proposing

a project is not constant over the lifecycle of the SPAC, he may optimally exert different

amount of effort. In this subsection, we incorporate the sponsor’s endogenous effort into the

model.

At each instant −𝑡, the sponsor can choose to exert a flow effort 𝜅(−𝑡) to search for

projects. It increases the arrival rate of projects from 𝜆 to 𝜆+ 𝜅(−𝑡) without changing the

probability of a good one. Meanwhile, it incurs a private flow cost 𝐶(𝜅(−𝑡)) to the sponsor.

𝐶(·) is an increasing, convex function, and 𝐶(0) = 0. The equilibrium is very similar to

that in Proposition 3.3.1 except that the sponsor receives projects at the rate 𝜆 + 𝜅*(−𝑡).

𝜅*(−𝑡) is chosen by the sponsor to maximize his continuation value, i.e.,

𝜅*(−𝑡) = arg max
𝜅

(𝜆+ 𝜅) 𝑝0 · [𝐹𝐺 (−𝑡)− 𝑉 (−𝑡)]− 𝐶(𝜅),

so in equilibrium it satisfies

𝐶 ′(𝜅*(−𝑡)) = 𝑝0 [𝐹𝐺 (−𝑡)− 𝑉 (−𝑡)] .

Plugging 𝐹𝐺(−𝑡) ≡ [𝑞 + (1− 𝑞) 𝜂 (−𝑡)] 𝑣𝐺 into the equation, we obtain that in the second
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stage,

𝐶 ′(𝜅*(−𝑡)) = 𝑝0

[︂
𝑣𝐺𝑞 +

(︂
𝑣𝐺
𝑣𝐵

− 1

)︂
𝑉 (−𝑡)

]︂
and in the first stage,

𝐶 ′(𝜅*(−𝑡)) = 𝑝0 [𝑣𝐺 − 𝑉 (−𝑡)] .

Proposition 3.5.2. As the SPAC approaches its deadline, the sponsor exerts more effort

in the first stage but less in the second stage.

At every instant, the sponsor’s endogenous effort is motivated by the difference between

the expected payoff of proposing a good project and his continuation value. In the first

stage, the benefit is always 𝑣𝐺, but his continuation value keeps decreasing. It implies that

failing to find a good project, his situation deteriorates. Hence, he has more incentive to

exert effort to search for projects. In the second stage, his situation still deteriorates, but

the benefit also shrinks over time because of the investor’s intensifying screening. Because

a good project is more valuable than a bad one to the sponsor, 𝑣𝐺 > 𝑣𝐵, the decrease in

the sponsor’s expected payoff of proposing a good project is more dramatic than that in his

continuation value in an absolute basis. As a result, his incentive to exert effort is greater

over time in the second stage. Similar to that on strategic entrepreneurs, this analysis also

uncovers a channel through which the investor’s control right may further exacerbate the

sponsor’s moral hazard problem.

3.5.3 Long-lived projects

For the baseline setup, we assume that projects are short-lived: if the sponsor doesn’t propose

the project he receives, the project will disappear or become unavailable immediately. With

this assumption, the state of the sponsor with respect to whether he has a project and what

type he has is completely independent over time. In this subsection, we explore the case of

long-lived projects where the sponsor can possibly keep a project for future proposals. It

turns out that such possibility does not alter the equilibrium dynamics in our setup.

The new setup is the same as the baseline one except that the projects the sponsor has

received but not yet proposed still exists. Such projects are called old project. At each

instant, the sponsor can choose to revisit one of the old projects. The revisit makes the

project ready for proposal again at a rate of 𝛾. It is easy to see that the sponsor must

choose to revisit the best project he has received so far, so his continuation value depends
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on its type. Denote the sponsor’s continuation value at −𝑡 as 𝑉 𝜎(−𝑡) if the best project he

has received is of the type 𝜎 ∈ {𝐺,𝐵}. Then in equilibrium, 𝑉 𝐺(−𝑡) > 𝑉 𝐵(−𝑡). Heuris-

tically, conditional on the game continues at time − (𝑡+ 𝑑𝑡), each instantaneous “period”

(− (𝑡+ 𝑑𝑡) ,−𝑡] consists of events occurring in the following order:

1. The initial state is 𝜎 (−𝑡− 𝑑𝑡) ∈ {𝐺,𝐵};

2. With probability 𝜆𝑑𝑡, the sponsor receives a new project and observes its type 𝜔′, and

the new project is ready for proposal;

3. With probability 𝛾𝑑𝑡, the best old project becomes ready;

4. If there is at least one project ready, denote the type of the best of them as 𝜔 (−𝑡) ∈

{𝐺,𝐵}, the sponsor proposes the best one with probability 𝛼𝜔 (−𝑡);

5. If the sponsor proposes a project, the game enters into the decision making stage and

ends after that; if no project is proposed, the state is updated to 𝜎 (−𝑡), and the game

moves on to the next period.

Since the opportunity to propose is unique, a sponsor with a project of the type 𝜔 ready for

proposal faces a trade-off between 𝑉 𝜎(−𝑡) and 𝐹𝜔(−𝑡), the expected payoff of proposing it

right away.

Recall that in the baseline setup, a critical observation is that the sponsor always has

more incentive to propose a good project than a bad one. It follows that his expected payoff

of proposing a good project is higher than that of proposing a bad one but his opportunity

cost is the same for both. Although the second half does not hold in the new setup (since

the sponsor’s continuation value depends on the type of the projects he has received so far),

we can show that this critical observation still holds.

Lemma 3.5.1. In equilibrium, for any −𝑡, 𝐹𝐺 (−𝑡) > 𝑉 𝐺(−𝑡), so 𝛼𝐺(−𝑡) = 1.

Notice that if the sponsor has a good project ready for proposal, his continuation value

must be 𝑉 𝐺(−𝑡). 𝐹𝐺 (−𝑡) ≤ 𝑉 𝐺(−𝑡) implies that the investor must have less stringent

screening at some points in the future, which can compensate for the possibility that the

sponsor may not have a good project ready for proposal again. However, less stringent

screening increases the probability of investment in a bad project disproportionately more

than that in a good one. Hence, 𝐹𝐵 (−𝑡) < 𝑉 𝐵(−𝑡) < 𝑉 𝐺(−𝑡) must holds. Then the rest

follows the proof of Lemma 3.3.2.
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Proposition 3.5.3. The new setup has a unique equilibrium, and it is the same as the one

characterized by Proposition 3.3.1.

In the baseline setup, the sponsor receives too high a fraction of bad projects so that if he

proposes any bad project he receives, the investor has a negative expected profit of investing

when observing 𝑀 ; hence, in equilibrium, the investor exerts screening that induces the

sponsor to propose bad projects at only the rate

𝜆(1− 𝑝0)𝛼𝐵(−𝑡) = 𝜆𝑝0
𝑢𝐺 − 1

1− 𝑢𝐵
.

In the new setup, as implied by Lemma 3.5.1, the sponsor still proposes any good project he

receives right away, so revisit does not change the rate that good projects are proposed. But

revisit increases the amount of bad projects ready for proposal, which makes the investor

even more concerned about the average quality of proposed projects. So, the investor will

exert the same screening, and the sponsor will propose bad projects at the same rate.

Notably, the sponsor does not benefit from revisit. As pointed out by Proposition 3.3.2, his

expected payoff depends on only the proposals of good projects in equilibrium.

3.5.4 Multiple agents

In the baseline setup, we assume only one investor to simplify the characterization of the

equilibrium dynamics. Here we extend the model to multiple investors. If one investor’s

decision does not affect other investors’ payoff, then the game is essentially the same as

the one-investor baseline game. However, there may be externalities between investors in

practice. For a deal to be approved, it requires a sufficient fraction of investors willing to

invest. In some cases, the SPAC prospectus specifies a threshold beforehand while in others,

the threshold is set later to meet the minimum investment required by the project. Such a

threshold allows an investor to infer information from approved investment and thus add a

layer of strategic interaction between investors to the game. In this subsection, we examine

the impact of this strategic interaction on the equilibrium dynamics. As shown later, the

new equilibrium consists of three stages, and the new stage (the third stage) is a direct result

of information aggregation through the threshold.

There are 𝑁 investors in this new game. After the sponsor proposes a project, each in-

vestor observes a signal, which has the same ternary signal structure modeled in Table 3.1.
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Conditional on the type of project, the signal realizations are independent across all in-

vestors. After observing their own signals, each investor chooses to withdraw or not. There

is an exogenous threshold 𝐾 such that the proposal is approved if at least 𝐾 investors choose

not to withdraw. If the project is approved, only the investors who choose not to withdraw

invest. If the project is not approved, all investors withdraw. The investors all have the

same payoff structure as in the baseline setup; namely, an investor will get 𝑢𝜔 if she invests

in a project of the type 𝜔 and get 1 if she withdraws. The sponsor’s payoff is proportional

to the size of the investment: if 𝑥 investors invest, the sponsor receives 𝑥 · 𝑣𝜔12.

As in the baseline setup, an investor still chooses to withdraw if he observes the signal

𝐿 and not if 𝐻, so an investor’s strategy is captured by the probability not to withdraw

when observing 𝑀 at −𝑡, 𝜂 (−𝑡). We focus on symmetric mixed-strategy equilibria where

all investors have the same 𝜂 (−𝑡) at each instant. Let 𝜃 (−𝑡) be the investors’ prior belief of

the odds of a good project before observing any signal,. Consider an investor who observes

𝑀 . If he chooses not to withdraw, then he invests if and only if at least 𝐾 − 1 of the other

𝑁−1 investors make the same decision. Conditional on this information, the odds of a good

project is
Γ (𝑞 + (1− 𝑞)𝜂 (−𝑡))
Γ ((1− 𝑞)𝜂 (−𝑡))

𝜃 (−𝑡) , (3.8)

where

Γ(𝑦) ≡
𝑁−1∑︁

𝑥=𝐾−1

⎛⎝ 𝑁 − 1

𝑥

⎞⎠ 𝑦𝑥 (1− 𝑦)𝑁−1−𝑥 .

Comparing this odds to that in the baseline setup, we can see it has an additional term

due to the information inferred from the threshold in equilibrium. Similar to Lemma 3.3.1,

when this odds is greater (smaller) than 1−𝑢𝐵
𝑢𝐺−1 , 𝜂 (−𝑡) is equal to 1 (0); when it is equal to

1−𝑢𝐵
𝑢𝐺−1 , 𝜂 (−𝑡) is between 0 and 1.

Let 𝜂 (−𝑡) be the sponsor’s belief about the investors’ strategy. By proposing a project

of the type 𝜔 to the investors at −𝑡, the sponsor’s expected payoff is

𝐹𝜔(−𝑡) ≡

⎧⎨⎩ 𝑣𝐺 · Λ (𝑞 + (1− 𝑞)𝜂 (−𝑡)) , if 𝜔 = 𝐺

𝑣𝐵 · Λ ((1− 𝑞)𝜂 (−𝑡)) , if 𝜔 = 𝐵
,

12The equilibrium structure stay unchanged as long as the sponsor’s payoff is weakly increasing in 𝑥.
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where

Λ(𝑦) ≡
𝑁∑︁

𝑥=𝐾

⎛⎝ 𝑁

𝑥

⎞⎠ 𝑦𝑥 (1− 𝑦)𝑁−1−𝑥 𝑥.

Last, we close the model by imposing rational beliefs and D1 refinement as in Defini-

tion 3.2.1. The following proposition characterizes the unique symmetric equilibrium of the

game.

Proposition 3.5.4. The unique equilibrium of the SPAC game has three stages, and the

transition time points between two consecutive stages are −𝑡*1 < −𝑡*2 respectively.

• The third stage spans the period (−𝑡*2, 0], in which

– 𝜂(−𝑡) solves
Γ (𝑞 + (1− 𝑞)𝜂 (−𝑡))
Γ ((1− 𝑞)𝜂 (−𝑡))

𝑝0
1− 𝑝0

=
1− 𝑢𝐵
𝑢𝐺 − 1

;

– 𝛼𝐺 (−𝑡) = 𝛼𝐵 (−𝑡) = 1;

– the sponsor’s continuation value satisfies

𝑑𝑉 (−𝑡)
𝑑𝑡

= 𝜆𝑝0 · [𝐹𝐺 (−𝑡)− 𝑉 (−𝑡)] + 𝜆 (1− 𝑝0) · [𝐹𝐵 (−𝑡)− 𝑉 (−𝑡)]

and the boundary condition 𝑉 (0) = 0.

• The second stage spans the period (−𝑡*1,−𝑡*2], in which

– 𝜂(−𝑡) satisfies

𝑉 (−𝑡) = 𝐹𝐵 (−𝑡) ;

– 𝛼𝐺(−𝑡) = 1 and

Γ (𝑞 + (1− 𝑞)𝜂 (−𝑡))
Γ ((1− 𝑞)𝜂 (−𝑡))

𝑝0
1− 𝑝0

𝛼𝐺(−𝑡)
𝛼𝐵(−𝑡)

=
1− 𝑢𝐵
𝑢𝐺 − 1

;

– the sponsor’s continuation value satisfies

𝑑𝑉 (−𝑡)
𝑑𝑡

= 𝜆𝑝0 · [𝐹𝐺 (−𝑡)− 𝑉 (−𝑡)] .

• The first stage spans the period [−𝑇,−𝑡*1), in which

– 𝜂(−𝑡) = 1;

– 𝛼𝐺(−𝑡) = 1 and 𝛼𝐵(−𝑡) = 0;
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– the sponsor’s continuation value satisfies

𝑑𝑉 (−𝑡)
𝑑𝑡

= 𝜆𝑝0 · [𝑣𝐺 − 𝑉 (−𝑡)] .

• The transition time 𝑡*2 satisfies 𝑉 (−𝑡*2) = 𝐹𝐵(−𝑡*2), the transition time 𝑡*1 satisfies

𝑉 (−𝑡*1) = 𝑣𝐵 · Λ ((1− 𝑞)), and 𝑉 (−𝑡) is continuous at −𝑡*1 and −𝑡*2.

Proposition 3.5.4 has the underlying forces similar to Proposition 3.3.1: the partial

alignment of the two players’ payoffs. A salient difference is the existence of the third stage

in which the sponsor proposes any project he receives instantly. This cannot occur in the

baseline setup because the investor will respond with the most stringent screening, 𝜂(−𝑡) = 0,

which will in turn eliminate the sponsor’s desire to propose any bad project. However, with

multiple investors present, an investor’s confidence in the project can be bolstered by others’

screening through the threshold. Note that the additional term in eq. (3.8), Γ(𝑞+(1−𝑞)𝜂(−𝑡))
Γ((1−𝑞)𝜂(−𝑡)) ,

goes to infinity as 𝜂(−𝑡) goes to 0. Even if the sponsor proposes any project he receives,

the investors will choose a positive 𝜂(−𝑡) and thus approve a bad project with a positive

probability. Although this probability could be very low, it can still induce the sponsor to

propose bad projects near the deadline.

3.6 Concluding Remark

Studying SPAC from a perspective of delegated investment, this paper focuses on the the

strategic interaction between the sponsor and the investor. Consistent with the conventional

wisdom, the incentive misalignment of the two parties gives rise to a moral hazard problem

of the sponsor. However, this is not the whole story. The alignment side of the two parties’

incentives helps mitigate the problem. A key takeaway is that giving less informed investors

much control right may exacerbate the moral hazard problem and make everyone worse off.

SPAC in reality is a complicated business that involves many parties and interactions.

To better illustrate our main idea, we abstract away from several elements of SPAC. Here

are some that we think are important and merit more research.

1. The secondary market of SPAC shares. SPAC shares are publicly traded, which ag-

gregates investors’ information and affect their decisions.

2. Private Investment in Public Equity (PIPE). An SPAC sponsor frequently invites a

121



PIPE investment as a part of the business combination, which further complicates

their incentives.

3. Investors’ demand for liquidity. Besides profitability, liquidity is another critical reason

why some investors favor SPACs. Potentially, concern or demand for liquidity may

affect investors’ decisions as well.
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Appendix A

Appendix: Algorithmic Transparency

A.1 When All Borrowers Can Manipulate

In this section, we consider the case that all borrowers can manipulate their features 𝜃,

while keeping the space of feature to be binary. In this section, we show that in any lending

market equilibrium, the good type borrowers never manipulate their features.

Suppose any borrower can manipulate his characteristic by paying cost 𝑐𝑖, i.e., a good

(bad) type borrower can change his characteristic to 𝜃 = 𝐵̂ (𝜃 = 𝐺̂) by paying cost 𝑐𝑖, which

follows a continuous distribution 𝐷𝜃 (𝑐), for 𝜃 ∈ {𝐺,𝐵}. So the distribution of manipulation

cost is type-dependent. Similar to our baseline model, 𝑐𝑖 is observable to borrowers but not

to lenders. Under posterior belief 𝜋 (𝜌|𝑠), for borrowers with type 𝜃 ∈ {𝐺,𝐵}, denote lender

𝑗’s lending decision as
{︁
𝐼𝑠,𝜃𝑗 (𝜌) , 𝐷𝑠,𝜃

𝑗 (𝜌)
}︁

, where 𝐼𝑠,𝜃𝑗 (𝜌) ∈ [0, 1] represents the probability

that lender 𝑗 approves the loan applications from borrowers with feature 𝜃 conditional on

the true state being 𝜌 and the signal disclosed to borrowers being 𝑠; and 𝐷𝑠,𝜃
𝑗 (𝜌) represents

the face value of debt that lender 𝑗 offers to borrowers with feature 𝜃, conditional on the true

state being 𝜌 and the signal disclosed to borrowers being 𝑠. We only focus on symmetric

equilibria.

Similar to the baseline model, in this extension, the borrowers’ manipulation strategy

is summarized by a cutoff 𝑐𝜃, such that borrowers with type 𝜃 will choose to manipulate

if and only if their manipulation cost type 𝑐𝑖 is no greater than 𝑐𝜃. The following lemma

shows that the good type borrowers will never manipulate in any subgame equilibrium, so

our assumption in the baseline model that good type borrowers are not able to manipulate

is without loss of generality.
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Lemma A.1.1. Given 𝜋 (𝜌|𝑠), in any equilibrium, 𝐼𝑠,𝐵̂𝑗 (𝜌) = 0 for all 𝑗 and 𝜌 ∈ supp (𝜋 (𝜌|𝑠)),

and no good type borrower chooses to manipulate, i.e., 𝑐𝐺 = 0.

Proof. Suppose the posterior belief is 𝜋 (𝜌|𝑠), and in equilibrium, all lenders choose contract{︁
𝐼𝑠,𝜃𝑗 (𝜌) , 𝐷𝑠,𝜃

𝑗 (𝜌)
}︁

. Then the fraction of borrowers with different types and features are

summarized in the following table:

𝜃 = 𝐺̂ 𝜃 = 𝐵̂

𝜃 = 𝐺 𝜇
(︀
1− 𝐹𝑐

(︀
𝑐𝐺
)︀)︀

𝜇𝐹𝑐
(︀
𝑐𝐺
)︀

𝜃 = 𝐵 (1− 𝜇)𝐹𝑐
(︀
𝑐𝐵
)︀

(1− 𝜇)
(︀
1− 𝐹𝑐

(︀
𝑐𝐵
)︀)︀ .

Table A.1: Fraction of borrowers.

In equilibrium, lenders will lend to borrowers with feature 𝜃 = 𝐺̂ if and only if 𝜌 ≥ 𝜌𝐺,

where 𝜌𝐺 is solved by

𝜇
(︀
1− 𝐹𝑐

(︀
𝑐𝐺
)︀)︀
𝑚
(︀
𝜌𝐺
)︀
−
[︀
𝜇
(︀
1− 𝐹𝑐

(︀
𝑐𝐺
)︀)︀

+ (1− 𝜇)𝐹𝑐
(︀
𝑐𝐵
)︀]︀
𝐼 = 0. (A.1)

And for all 𝜌 ≥ 𝜌𝐺, the equilibrium debt contract 𝐷𝑠,𝐺̂ (𝜌) is solved by

𝐸
(︁
min

{︁
𝑉 ,𝐷𝑠,𝐺̂ (𝜌)

}︁
|𝑠, 𝜌, 𝜃 = 𝐺

)︁
−
𝜇
(︀
1− 𝐹𝑐

(︀
𝑐𝐺
)︀)︀

+ (1− 𝜇)𝐹𝑐
(︀
𝑐𝐵
)︀

𝜇 (1− 𝐹𝑐 (𝑐𝐺))
𝐼 = 0. (A.2)

Similarly, lenders will lend to borrowers with feature 𝜃 = 𝐵̂ if and only if 𝜌 ≥ 𝜌𝐵, where 𝜌𝐵

is solved by

𝑚
(︀
𝜌𝐵
)︀
−
𝜇𝐹𝑐

(︀
𝑐𝐺
)︀
+ (1− 𝜇)

(︀
1− 𝐹𝑐

(︀
𝑐𝐵
)︀)︀

𝜇𝐹𝑐 (𝑐𝐺)
𝐼 = 0. (A.3)

And for all 𝜌 ≥ 𝜌𝐵, the equilibrium debt contract 𝐷𝑠,𝐵̂ (𝜌) is solved by

𝐸
(︁
min

{︁
𝑉 ,𝐷𝑠,𝐵̂ (𝜌)

}︁
|𝑠, 𝜌, 𝜃 = 𝐺

)︁
−
𝐹𝑐
(︀
𝑐𝐺
)︀
+ (1− 𝜇)

(︀
1− 𝐹𝑐

(︀
𝑐𝐵
)︀)︀

𝜇𝐹𝑐 (𝑐𝐺)
𝐼 = 0. (A.4)

If 𝜌𝐺 ≥ 𝜌𝐵, from (A.1) and (A.3), we have

𝜇
(︀
1− 𝐹𝑐

(︀
𝑐𝐺
)︀)︀

+ (1− 𝜇)𝐹𝑐
(︀
𝑐𝐵
)︀

𝜇 (1− 𝐹𝑐 (𝑐𝐺))
≥
𝜇𝐹𝑐

(︀
𝑐𝐺
)︀
+ (1− 𝜇)

(︀
1− 𝐹𝑐

(︀
𝑐𝐺
)︀)︀

𝜇𝐹𝑐 (𝑐𝐺)
.

However, in this case, for all the bad type borrowers, it’s strictly profitable not to manipulate,
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which means in equilibrium we must have 𝑐𝐵 = 0, and thus

𝜇
(︀
1− 𝐹𝑐

(︀
𝑐𝐺
)︀)︀

+ (1− 𝜇)𝐹𝑐
(︀
𝑐𝐵
)︀

𝜇 (1− 𝐹𝑐 (𝑐𝐺))
= 1 <

𝜇𝐹𝑐
(︀
𝑐𝐵
)︀
+ (1− 𝜇)

𝜇𝐹𝑐 (𝑐𝐵)
,

a contradiction!

If 𝜌𝐺 < 𝜌𝐵, by (A.1) and (A.3), we must have

𝜇
(︀
1− 𝐹𝑐

(︀
𝑐𝐺
)︀)︀

+ (1− 𝜇)𝐹𝑐
(︀
𝑐𝐵
)︀

𝜇 (1− 𝐹𝑐 (𝑐𝐺))
<
𝜇𝐹𝑐

(︀
𝑐𝐺
)︀
+ (1− 𝜇)

(︀
1− 𝐹𝑐

(︀
𝑐𝐺
)︀)︀

𝜇𝐹𝑐 (𝑐𝐺)
,

substitute this condition into (A.2) and (A.4), we can show that, for any 𝜌 ≥ 𝜌𝐵 we must

have

𝐷𝑠,𝐵̂ (𝜌) > 𝐷𝑠,𝐺̂ (𝜌) .

Then for all good type borrowers, manipulating is strictly dominated by not manipulating,

and thus in equilibrium we must have 𝑐𝐺 = 0.

So in this equilibrium we must have 𝑐𝐺 = 0, which is the same as our baseline model.

Then allowing all borrowers to manipulate their features doesn’t change the equilibrium for

any posterior belief 𝜋 (𝜌, 𝑠), and thus it doesn’t change our results.
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A.2 Proofs

A.2.1 Proofs in Section 1.2

No Disclosure On The Relevance 𝜌

Based on the distributional assumptions on the manipulation cost 𝑐 and the relevance, the

two equilibrium conditions are

𝐵 (1− 𝜌𝑁 ) = 𝑐𝑁

and

𝜇𝜌𝑁𝑉 = (𝜇+ (1− 𝜇)𝑐𝑁 ) 𝐼.

The unique solution is

(︂
𝜌𝑁 =

𝐼

𝜇𝑉 + (1− 𝜇)𝐼
, 𝑐𝑁 = 𝐵 · 𝜇(𝑉 − 𝐼)

𝜇𝑉 + (1− 𝜇)𝐼

)︂
.

Full Transparency

In this case, when 𝜌 ≥ 𝐼
𝑉 , the surplus from lending to 𝐺̂ borrowers must be zero. To see

this, if lenders lend to 𝐺̂ borrowers for sure, since 𝐵 ≥ 1, all of the bad type borrowers must

choose to manipulate their features. In this case, it’s not profitable to lend to 𝐺̂ borrowers

for any 𝜌 < 1 because 𝜇𝑉 ≤ 𝐼, a contradiction!

A.2.2 Proof of Proposition 1.4.1

The no disclosure policy is implemented by a signal (𝒮, 𝜎̃) with only one element in the

signal space 𝒮 = {𝑠𝑁}, and the mapping 𝜎̃ (𝑠|𝜌) is trivial. The lending market equilibrium

is characterized by (𝑘𝑁 , 𝜌𝑁 , 𝑐𝑁 ) which satisfy conditions in Definition 1.3.3 under the prior

belief of 𝜌. Let the regulator’s payoff be 𝑊𝑁 in the no disclosure case. Now let’s consider

the following deterministic disclosure policy (𝒮 ′, 𝜎′), where 𝒮 ′ = {𝑠′1, 𝑠′2}, and

𝜎′ (𝜌) =

⎧⎪⎨⎪⎩
𝑠′1 𝜌 ∈ [0, 𝜌′1] ∪ [𝜌𝑁 , 𝜌𝑁 + 𝜖1] ∪ [1− 𝜖2, 1]

𝑠′2 𝜌 ∈ (𝜌′1, 𝜌𝑁 ) ∪ (𝜌𝑁 + 𝜖1, 1− 𝜖2)
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where 𝜌′1 < 𝜌𝑁 satisfies

Prob (𝜌 ∈ [𝜌𝑁 , 𝜌𝑁 + 𝜖1] ∪ [1− 𝜖2, 1])

Prob (𝜌 ∈ [0, 𝜌′1] ∪ [𝜌𝑁 , 𝜌𝑁 + 𝜖1] ∪ [1− 𝜖2, 1])
= 𝑐𝑁 .

Denote the equilibria under signals 𝑠′1 and 𝑠′2 as
(︁
𝑘𝑠′1 , 𝜌𝑠′1 , 𝑐𝑠

′
1

)︁
and

(︁
𝑘𝑠′2 , 𝜌𝑠′2 , 𝑐𝑠

′
2

)︁
, re-

spectively, it’s easy to verify

(︁
𝑘𝑠′1 , 𝜌𝑠′1 , 𝑐𝑠

′
1

)︁
=
(︁
𝑘𝑠′2 , 𝜌𝑠′2 , 𝑐𝑠

′
2

)︁
= (𝑘𝑁 , 𝜌𝑁 , 𝑐𝑁 ) .

Then introducing the policy (𝒮 ′, 𝜎′) doesn’t change the regulator’s payoff, i.e., 𝑊𝑁 = 𝑊 ′,
where the regulator’s payoff under disclosure policy (𝒮 ′, 𝜎′) can be written as

𝑊 ′ =Prob
(︀
𝜌 ∈

[︀
0, 𝜌′1

]︀
∪ [𝜌𝑁 , 𝜌𝑁 + 𝜖1] ∪ [1− 𝜖2, 1]

)︀
· 𝐸𝑠′1

[︃(︁
𝜇𝑉 −

(︁
𝜇+ (1− 𝜇)𝐹𝑐

(︁
𝑐𝑠′1

)︁)︁
𝐼
)︁
· 1{︂

𝜌≥𝜌𝑠′1

}︂
]︃

(A.5)

+ Prob
(︀
𝜌 ∈

(︀
𝜌′1, 𝜌𝑁

)︀
∪ (𝜌𝑁 + 𝜖1, 1− 𝜖2)

)︀
· 𝐸𝑠′2

[︃(︁
𝜇𝑉 −

(︁
𝜇+ (1− 𝜇)𝐹𝑐

(︁
𝑐𝑠′2

)︁)︁
𝐼
)︁
· 1{︂

𝜌≥𝜌𝑠′2

}︂
]︃

Then, let’s construct a new disclosure policy based on (𝒮 ′, 𝜎′), and show that the new

disclosure policy increases regulator’s payoff. Let’s consider the deterministic disclosure

policy (𝒮 ′′, 𝜎′′), with 𝑆′′ = {𝑠′′1, 𝑠′′2, 𝑠′′3}, and

𝜎′′ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑠′′1 𝜌 ∈ [𝜌𝑁 , 𝜌𝑁 + 𝜖1]

𝑠′′2 𝜌 ∈ [0, 𝜌′1] ∪ [1− 𝜖2, 1]

𝑠′′3 𝜌 ∈ (𝜌′1, 𝜌𝑁 ) ∪ (𝜌𝑁 + 𝜖1, 1− 𝜖2)

.

The signal realization 𝑠′′3 is “equivalent” to the signal realization 𝑠′2 in disclosure policy
(𝒮 ′, 𝜎′), both induce the same posterior belief in (𝜌′1, 𝜌𝑁 )∪ (𝜌𝑁 + 𝜖1, 1− 𝜖2). The difference
is that policy (𝒮 ′′, 𝜎′′) further reveals if the true state is in [𝜌𝑁 , 𝜌𝑁 + 𝜖1] or not. Note that
the regulator’s payoff in state [𝜌𝑁 , 𝜌𝑁 + 𝜖1] is close to zero in the no disclosure case, as 𝜌𝑁
is the equilibrium cutoff in lending decisions. So revealing this information only changes the
regulator’s payoff marginally in states 𝜌 ∈ [𝜌𝑁 , 𝜌𝑁 + 𝜖1]. However, the increase in regulator’s
payoff is non-trivial. Note that the approval probability is lower under 𝑠′′2 compared to the
no disclosure case, so the equilibrium data manipulation level is lower under 𝑠′′2. As what
we will show later, this is the dominating effect thus the regulator’s payoff increases under
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the disclosure policy (𝒮 ′′, 𝜎′′). To see this, note that the regulator’s payoff under (𝒮 ′′, 𝜎′′) is

𝑊 ′′ =Prob (𝜌 ∈ [𝜌𝑁 , 𝜌𝑁 + 𝜖1]) · 𝐸𝑠′′1

[︃(︁
𝜇𝑉 −

(︁
𝜇+ (1− 𝜇)𝐹𝑐

(︁
𝑐𝑠′′1

)︁)︁
𝐼
)︁
· 1{︂

𝜌≥𝜌𝑠′′1

}︂
]︃

+ Prob
(︀
𝜌 ∈

[︀
0, 𝜌′1

]︀
∪ [1− 𝜖2, 1]

)︀
· 𝐸𝑠′′2

[︃(︁
𝜇𝑉 −

(︁
𝜇+ (1− 𝜇)𝐹𝑐

(︁
𝑐𝑠′′2

)︁)︁
𝐼
)︁
· 1{︂

𝜌≥𝜌𝑠′′2

}︂
]︃

(A.6)

+ Prob
(︀
𝜌 ∈

(︀
𝜌′1, 𝜌𝑁

)︀
∪ (𝜌𝑁 + 𝜖1, 1− 𝜖2)

)︀
· 𝐸𝑠′′3

[︃(︁
𝜇𝑉 −

(︁
𝜇+ (1− 𝜇)𝐹𝑐

(︁
𝑐𝑠′′3

)︁)︁
𝐼
)︁
· 1{︂

𝜌≥𝜌𝑠′′3

}︂
]︃
.

It’s obvious that the last term in (A.6) is equal to the last term in (A.5), because equilibria
under signal realizations 𝑠′′3 and 𝑠′2 are the same. Then

𝑊 ′′ −𝑊 ′

=Prob (𝜌 ∈ [𝜌𝑁 , 𝜌𝑁 + 𝜖1]) · 𝐸𝑠′′1

[︃(︁
𝜇𝑉 −

(︁
𝜇+ (1− 𝜇)𝐹𝑐

(︁
𝑐𝑠′′1

)︁)︁
𝐼
)︁
· 1{︂

𝜌≥𝜌𝑠′′1

}︂
]︃

+ Prob
(︀
𝜌 ∈

[︀
0, 𝜌′1

]︀
∪ [1− 𝜖2, 1]

)︀
· 𝐸𝑠′′2

[︃(︁
𝜇𝑉 −

(︁
𝜇+ (1− 𝜇)𝐹𝑐

(︁
𝑐𝑠′′2

)︁)︁
𝐼
)︁
· 1{︂

𝜌≥𝜌𝑠′′2

}︂
]︃

− Prob
(︀
𝜌 ∈

[︀
0, 𝜌′1

]︀
∪ [𝜌𝑁 , 𝜌𝑁 + 𝜖1] ∪ [1− 𝜖2, 1]

)︀
· 𝐸𝑠′1

[︃(︁
𝜇𝑉 −

(︁
𝜇+ (1− 𝜇)𝐹𝑐

(︁
𝑐𝑠′1

)︁)︁
𝐼
)︁
· 1{︂

𝜌≥𝜌𝑠′1

}︂
]︃

≥Prob
(︀
𝜌 ∈

[︀
0, 𝜌′1

]︀
∪ [1− 𝜖2, 1]

)︀
· 𝐸𝑠′′2

[︃(︁
𝜇𝑉 −

(︁
𝜇+ (1− 𝜇)𝐹𝑐

(︁
𝑐𝑠′′2

)︁)︁
𝐼
)︁
· 1{︂

𝜌≥𝜌𝑠′′2

}︂
]︃

− Prob
(︀
𝜌 ∈

[︀
0, 𝜌′1

]︀
∪ [𝜌𝑁 , 𝜌𝑁 + 𝜖1] ∪ [1− 𝜖2, 1]

)︀
· 𝐸𝑠′1

[︃(︁
𝜇𝑉 −

(︁
𝜇+ (1− 𝜇)𝐹𝑐

(︁
𝑐𝑠′1

)︁)︁
𝐼
)︁
· 1{︂

𝜌≥𝜌𝑠′1

}︂
]︃
.

Note that 𝜌𝑠′1 = 𝜌𝑁 , we know

Prob
(︀
𝜌 ∈

[︀
0, 𝜌′1

]︀
∪ [𝜌𝑁 , 𝜌𝑁 + 𝜖1] ∪ [1− 𝜖2, 1]

)︀
· 𝐸𝑠′1

[︃(︁
𝜇𝑉 −

(︁
𝜇+ (1− 𝜇)𝐹𝑐

(︁
𝑐𝑠′1

)︁)︁
𝐼
)︁
· 1{︂

𝜌≥𝜌𝑠′1

}︂
]︃

=
Prob (𝜌 ∈ [𝜌𝑁 , 𝜌𝑁 + 𝜖1]) · 𝐸

[︁(︁
𝜇𝑉 − (𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑁 )) 𝐼

)︁
|𝜌 ∈ [𝜌𝑁 , 𝜌𝑁 + 𝜖1]

]︁
+Prob (𝜌 ∈ [1− 𝜖2, 1]) · 𝐸

[︁(︁
𝜇𝑉 − (𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑁 )) 𝐼

)︁
|𝜌 ∈ [1− 𝜖2, 1]

]︁
.

Then

𝑊 ′′ −𝑊 ′ =Prob (𝜌 ∈ [1− 𝜖2, 1]) ·
[︀
(1− 𝜇) 𝐼

(︀
𝐹𝑐 (𝑐𝑁 )− 𝐹𝑐

(︀
𝑐𝑠′′2
)︀)︀]︀

− Prob (𝜌 ∈ [𝜌𝑁 , 𝜌𝑁 + 𝜖1]) · 𝐸
[︁(︁
𝜇𝑉 − (𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑁 )) 𝐼

)︁
|𝜌 ∈ [𝜌𝑁 , 𝜌𝑁 + 𝜖1]

]︁
.

In the equilibrium of subgame 𝑠′′1,

𝑐𝑠′′2 =
Prob (𝜌 ∈ [1− 𝜖2, 1])

Prob (𝜌 ∈ [0, 𝜌′1] ∪ [1− 𝜖2, 1])

=
𝑐𝑁 − 𝑥

1− 𝑥
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where

𝑥 =
Prob (𝜌 ∈ [𝜌𝑁 , 𝜌𝑁 + 𝜖1]) · (1− 𝑐𝑁 )

Prob (𝜌 ∈ [0, 𝜌′1])
.

Consider the case when fixing 𝜖2, and let 𝜖1 → 0, then 𝑥→ 0 and 𝑐𝑠′′2 = 𝑐𝑁−𝑥 (1− 𝑐𝑁 )+𝑜(𝑥).

𝑊 ′′ −𝑊 ′

=Prob (𝜌 ∈ [𝜌𝑁 , 𝜌𝑁 + 𝜖1]) ·

⎡⎢⎣ Prob (𝜌 ∈ [1− 𝜖2, 1]) ·
(1−𝜇)𝐼

(︁
𝐹𝑐(𝑐𝑁 )−𝐹𝑐

(︁
𝑐𝑠′′2

)︁)︁
Prob(𝜌∈[𝜌𝑁 ,𝜌𝑁+𝜖1])

−

𝐸
[︁(︁
𝜇𝑉 − (𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑁 )) 𝐼

)︁
|𝜌 ∈ [𝜌𝑁 , 𝜌𝑁 + 𝜖1]

]︁
⎤⎥⎦

≈Prob (𝜌 ∈ [𝜌𝑁 , 𝜌𝑁 + 𝜖1]) ·

⎡⎢⎣ Prob(𝜌∈[1−𝜖2,1])(1−𝑐𝑁 )

Prob(𝜌∈[0,𝜌′1])
· (1−𝜇)𝐼(𝐹𝑐(𝑐𝑁 )−𝐹𝑐(𝑐𝑁−𝑥(1−𝑐𝑁 )))

𝑥 −

𝐸
[︁(︁
𝜇𝑉 − (𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑁 )) 𝐼

)︁
|𝜌 ∈ [𝜌𝑁 , 𝜌𝑁 + 𝜖1]

]︁
⎤⎥⎦

≈Prob (𝜌 ∈ [𝜌𝑁 , 𝜌𝑁 + 𝜖1]) ·

⎡⎢⎣ Prob(𝜌∈[1−𝜖2,1])(1−𝑐𝑁 )2(1−𝜇)𝐼
Prob(𝜌∈[0,𝜌′1])

· 𝐹 ′
𝑐 (𝑐𝑁 )−

𝐸
[︁(︁
𝜇𝑉 − (𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑁 )) 𝐼

)︁
|𝜌 ∈ [𝜌𝑁 , 𝜌𝑁 + 𝜖1]

]︁
⎤⎥⎦ .

Since 𝜖1 → 0, we must have

𝐸
[︁(︁
𝜇𝑉 − (𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑁 )) 𝐼

)︁
|𝜌 ∈ [𝜌𝑁 , 𝜌𝑁 + 𝜖1]

]︁
→ 0,

because the equilibrium condition in the no disclosure case is

𝐸
[︁(︁
𝜇𝑉 − (𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑁 )) 𝐼

)︁
|𝜌 = 𝜌𝑁

]︁
= 0.

With 𝐹 ′
𝑐 (𝑐𝑁 ) > 0 , then we must have

𝑊 ′′ −𝑊 ′ > 0

which means that the no disclosure policy is dominated by our new disclosure policy (𝒮 ′′, 𝜎′′).

A.2.3 Proof of Lemma 1.5.1

The full disclosure policy (𝒮, 𝜎) can be implemented by space 𝒮 = [0, 1] and a deterministic

message function 𝜎 (𝜌) = 𝜌. In this case, the true state 𝜌 is perfectly revealed to the public.

Denote 𝜌 as the solution of

𝑚 (𝜌) = 𝐼,
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For any 𝑠 = 𝜌 > 𝑚−1 (𝐼), the lending market equilibrium of subgame 𝑠, (𝑘𝑠, 𝜌𝑠, 𝑐𝑠), must

satisfy 𝜌𝑠 = 𝜌, and thus

𝜇𝑚 (𝜌)− 𝑘𝑠 = 0. (A.7)

To see this, suppose 𝜇 (𝜌) > 𝑘𝑠, in equilibrium all 𝐺̂ borrowers must be approved, and

all bad type borrowers must choose to manipulate because of Assumption 1.3.2. Then the

regulator’s payoff of financing all 𝐺̂ borrowers is

𝜇𝑚 (𝜌)− 𝐼 ≤ 𝜇𝑚 (1)− 𝐼 ≤ 0,

and the equality holds only when 𝜌 = 1. As as result, lenders will not lend to 𝐺̂ borrowers for

all 𝜌 < 1, a contradiction. So in equilibrium condition (A.7) must hold. And this condition

implies that the regulator’s payoff is zero.

Next, it’s obvious that when 𝜌 ≤ 𝜌, lender will never lend to any borrowers. In summary,

regulator’s payoff is zero for any 𝑠 ∈ 𝒮 thus the regulator’s total payoff is 𝑊𝐹 = 0 under full

disclosure policy.

A.2.4 Proof of Lemma 1.5.2

The results are directly derived from the definition of lending market equilibrium. For any

two equlibria
(︀
𝑘𝑠1 , 𝜌𝑠1 , 𝑐𝑠1

)︀
and

(︀
𝑘𝑠2 , 𝜌𝑠2 , 𝑐𝑠2

)︀
, the first condition in Definition 1.3.3

𝜇𝑚 (𝜌𝑠) = 𝑘𝑠

implies

𝑘𝑠1 ≥ 𝑘𝑠2 ⇐⇒ 𝜌𝑠1 ≥ 𝜌𝑠2 , (A.8)

because 𝑚 (·) is an increasing function. The third condition

𝑘𝑠 = [𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑠)] 𝐼

implies that

𝑘𝑠1 ≥ 𝑘𝑠2 ⇐⇒ 𝑐𝑠1 ≥ 𝑐𝑠2 . (A.9)

Then (A.8) and (A.9) complete the proof.
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A.2.5 Proof of Lemma 1.5.3

We just need to verify that the regulator’s payoff is unchanged under the new disclosure

policy (𝒮 ′, 𝜎̃′). Notice that

𝜎̃′ (𝑠|𝜌) = 𝜎̃ (𝑠|𝜌)

for any 𝜌 ∈ [0, 1] and 𝑠 ∈ 𝒮∖ {𝑠1, 𝑠2} = 𝒮 ′∖ {𝑠′0}. Then for any 𝑠 ∈ 𝒮∖ {𝑠1, 𝑠2} = 𝒮 ′∖ {𝑠′0}, the

posterior beliefs are the same under the two policies, i.e., for any 𝑠 ∈ 𝒮∖ {𝑠1, 𝑠2} = 𝒮 ′∖ {𝑠′0},

we have

𝜋 (𝜌|𝑠) = 𝜋′ (𝜌|𝑠) .

So the lending market equilibira are the same for any 𝑠 ∈ 𝒮∖ {𝑠1, 𝑠2} = 𝒮 ′∖ {𝑠′0} in these

two policies. Besides, the regulator’s payoff from signal realization 𝑠′0 in the new disclosure

policy is the sum of that under signal realizations 𝑠1 and 𝑠2 in policy (𝒮, 𝜎), this is because

the lending market equilibrium under 𝑠0, 𝑠1 and 𝑠2 are all the same, and the probability

of observing 𝑠′0 in the new policy is the sum of the probabilities of observing 𝑠1 and 𝑠2 in

policy (𝒮, 𝜎̃). Since policy (𝒮, 𝜎̃) is optimal, the new policy (𝑆′, 𝜎̃′) must also be optimal.

A.2.6 Proof of Lemma 1.5.4

Given any policy (𝒮, 𝜎̃) with distribution of posteriors {𝑓 (𝑠) , 𝜋 (𝜌|𝑠)}𝑠∈𝒮 , for any subgame

𝑠,

𝑐𝑠 = 0 ⇐⇒ 𝜌𝑠 = 𝑚−1 (𝐼) ⇐⇒ 𝑘𝑠 = 𝐼.

In this equilibrium, there is no manipulation, and lenders always reject all loan applications.

The posterior belief must satisfy

sup {(𝜋 (𝜌|𝑠))} ≤ 𝑚−1 (𝐼) .

Since 𝑚 (1) > 𝐼, there must exist at least one signal realization 𝑠1, such that

𝑐𝑠1 > 0.

Suppose there also exists another signal realization 𝑠2, such that

𝑐𝑠2 = 0.
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Here assume both the probabilities of 𝑠1 and 𝑠2 are positive1, then let’s consider a new

policy (𝒮 ′, 𝜎′) with distribution of posteriors {𝑓 ′ (𝑠) , 𝜋′ (𝜌|𝑠)}𝑠∈𝒮′ , signal space 𝒮 ′ = {𝑠′0} ∪

𝒮∖ {𝑠1, 𝑠2} , and

𝜎̃′ (𝑠|𝜌) = 𝜎̃ (𝑠|𝜌) 1𝒮∖{𝑠1,𝑠2} (𝑠) + (𝜎̃ (𝑠1|𝜌) + 𝜎̃ (𝑠2|𝜌)) 1{𝑠′0} (𝑠) .

Obviously, any signal realization 𝑠 ∈ 𝒮∖ {𝑠1, 𝑠2} must exist in the signal spaces of both

disclosure polices, and induce the same lending market equilibrium. Besides, for signal

realization 𝑠′0 in (𝒮 ′, 𝜎′) and {𝑠1.𝑠2} in (𝒮, 𝜎), we have

𝑓 ′ (𝑠0) = 𝑓 (𝑠1) + 𝑓 (𝑠2) ,

and

𝜋′
(︀
𝜌|𝑠′0

)︀
=

1

𝑓 (𝑠1) + 𝑓 (𝑠2)
(𝑓 (𝑠1)𝜋 (𝜌|𝑠1) + 𝑓 (𝑠2)𝜋 (𝜌|𝑠2)) .

The equilibrium conditions in Definition 1.3.3 implies that 𝑐𝑠 satisfies

Prob
(︂
𝜌 ≥ 𝑚−1

(︂
[𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑠)] 𝐼

𝜇

)︂
|𝑠
)︂

≥ 𝑐𝑠
𝐵

≥ Prob
(︂
𝜌 > 𝑚−1

(︂
[𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑠)] 𝐼

𝜇

)︂
|𝑠
)︂
.

Note that

Π
(︀
𝜌|𝑠′0

)︀
> Π(𝜌|𝑠1)

for any 𝜌 > 𝑚−1 (𝐼), and both 𝑚−1 (·) and 𝐹𝑐 (·) are increasing functions, we conclude that

𝑐𝑠′0 < 𝑐𝑠1 .

Since the regulator’s payoff is always zero for any 𝜌 ≤ 𝑚−1 (𝐼), the difference of regula-

1The proof for the case when the signal is continuous is similar, in that case, we just need to deal with
density functions.
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tor’s payoffs under (𝒮 ′, 𝜎′) and (𝒮, 𝜎) is

𝑊 ′ −𝑊 =
𝑓 (𝑠′0)𝐸

𝑠′0

[︂(︁
𝜇𝑉 −

(︁
𝜇+ (1− 𝜇)𝐹𝑐

(︁
𝑐𝑠′0

)︁)︁
𝐼
)︁
1(︁
𝜌𝑠′0

,1
]︁
∩(𝜋(𝜌|𝑠′0))

(𝑠)

]︂
−

𝑓 (𝑠1)𝐸
𝑠1

[︂(︁
𝜇𝑉 − (𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑠1)) 𝐼

)︁
1(︁
𝜌𝑠1

,1
]︁
∩(𝜋(𝜌|𝑠1))

(𝑠)

]︂

=
𝑓 (𝑠1)𝐸

𝑠1

[︂(︁
𝜇𝑉 −

(︁
𝜇+ (1− 𝜇)𝐹𝑐

(︁
𝑐𝑠′0

)︁)︁
𝐼
)︁
1(︁
𝜌𝑠′0

,1
]︁
∩(𝜋(𝜌|𝑠′0))

(𝑠)

]︂
−

𝑓 (𝑠1)𝐸
𝑠1

[︂(︁
𝜇𝑉 − (𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑠1)) 𝐼

)︁
1(︁
𝜌𝑠1

,1
]︁
∩(𝜋(𝜌|𝑠1))

(𝑠)

]︂ .

Since 𝑐𝑠0 < 𝑐𝑠1 and 𝑚−1 (𝐼) < 𝜌𝑠′0 < 𝜌𝑠1 , we have

(︁
𝜌𝑠′0 , 1

]︁
∩
(︀
𝜋
(︀
𝜌|𝑠′0

)︀)︀
=
(︀
𝜌𝑠1 , 1

]︀
∩ (𝜋 (𝜌|𝑠1)) ,

and thus

𝑊 ′ −𝑊 > 0.

A.2.7 Proof of Lemma 1.5.5

Suppose there exists an optimal disclosure policy (𝒮, 𝜎̃) and it induces the distribution of

posteriors {𝑓 (𝑠) , 𝜋 (𝜌|𝑠)}𝑠∈𝒮 . If 𝒮 is a singleton, then the policy is simply the no information

policy. In this case, let 𝜌⋆ = 𝜌𝑁 and this lemma is obviously true. Otherwise, if the statement

is not true, there must exist 𝑠1, 𝑠2 ∈ 𝒮, with lending market equilibria
(︀
𝑘𝑠1 , 𝜌𝑠1 , 𝑐𝑠1

)︀
and(︀

𝑘𝑠2 , 𝜌𝑠2 , 𝑐𝑠2
)︀
, such that

𝜌1 > 𝜌2,

𝜌1 ∈
[︀
0, 𝜌𝑠1

]︀
∩ (𝜋 (𝜌|𝑠1))

and

𝜌2 ∈
(︀
𝜌𝑠2 , 1

]︀
∩ (𝜋 (𝜌|𝑠2)) .

Then there must exist intervals 𝐵1, 𝐵2
2, such that

𝜌1 ∈ 𝐵1 ⊂
[︀
0, 𝜌𝑠1

]︀
∩ (𝜋 (𝜌|𝑠1)) ,

𝜌2 ∈ 𝐵2 ⊂
(︀
𝜌𝑠2 , 1

]︀
∩ (𝜋 (𝜌|𝑠2)) ,

2Note that a single point is also a closed interval.
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inf 𝐵1 > sup𝐵2,

Prob (𝐵1|𝑠1) = 𝐾1 > 0,

and

Prob (𝐵2|𝑠2) = 𝐾2 > 0.

For this proof, let’s assume both 𝑠1 and 𝑠2 occur with positive probability, then 𝑓 (𝑠1)

and 𝑓 (𝑠𝑠) represent the associated probabilities. The other case is when either 𝑠1 or 𝑠2

occur with zero probability and 𝑓 (𝑠1) or 𝑓 (𝑠2) represent the density functions. The proof

strategy is basically the same.

In this case, if 𝑓 (𝑠1)𝐾1 ≥ 𝑓 (𝑠2)𝐾2, then let’s consider the following distribution of

posteriors:
{︁
𝑓 (𝑠) , 𝜋̂ (𝜌|𝑠)

}︁
𝑠∈𝒮

, where 𝒮 = 𝒮, 𝑓 (𝑠) = 𝑓 (𝑠), and

𝜋̂ (𝜌|𝑠) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜋 {𝜌|𝑠1}+ 𝑓(𝑠2)

𝑓(𝑠1)
𝜋 {𝜌|𝑠2} 1𝐵2 (𝜌)−

𝑓(𝑠2)𝐾2

𝑓(𝑠1)𝐾1
𝜋 {𝜌|𝑠1} 1𝐵1 if 𝑠 = 𝑠1

𝜋 {𝜌|𝑠2} − 𝜋 {𝜌|𝑠2} 1𝐵2 +
𝐾2
𝐾1
𝜋 {𝜌|𝑠1} 1𝐵1 if 𝑠 = 𝑠2

𝜋 (𝜌|𝑠) 𝑜.𝑤.

We can check that
{︁
𝑓 (𝑠) , 𝜋̂ (𝜌|𝑠)

}︁
𝑠∈𝒮

is Bayes-plausible, and there exists a disclosure policy(︁
𝑆, 𝜎̂

)︁
that induces this distribution of posteriors. But now in the new policy

(︁
𝑆, 𝜎̂

)︁
,

𝜌2 /∈ (𝜋 (𝜌|𝑠2)). And the regulator’s payoff is weakly increasing under the new policy
(︁
𝒮, 𝜎̂

)︁
because

1. 𝑓 (𝑠) = 𝑓 (𝑠)for all 𝑠 ∈ 𝒮 = 𝒮;

2. the lending market equilibria (𝑘𝑠, 𝜌𝑠, 𝑐𝑠) are the same under the two policies for any

𝑠 ∈ 𝒮 = 𝒮;

3. the regulator’s payoff under any signal realizations except for 𝑠2 is unchanged;

4. the regulator’s payoff under signal realization 𝑠2 increases.

The last point holds because with the new disclosure policy
(︁
𝑆, 𝜎̂

)︁
, under the signal real-

ization 𝑠2, the equilibrium variables
(︀
𝑘𝑠2 , 𝜌𝑠2 , 𝑐𝑠2

)︀
is the same compared to that with policy
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(𝒮, 𝜎), so the total financing cost is unchanged, which is 𝑘𝑠. But the total payoff generated

from projects increases by

𝑓 (𝑠2) ·𝐾2 · [𝐸 [𝜇𝑚 (𝜌) |𝑠1, 𝐵1]− 𝐸 [𝜇𝑚 (𝜌) |𝑠2, 𝐵2]]

which is positive because inf 𝐵1 > sup𝐵2.

A.2.8 Proof of Lemma 1.5.6

For the optimal disclosure policy (𝒮, 𝜎̃), if 𝒮 is a singleton, this lemma is obviously true.

Otherwise, there exist two different signals 𝑠1 and 𝑠2 with probabilities(densities) 𝑓 (𝑠1) and

𝑓 (𝑠2), respectively. For simplicity, let’s assume that both 𝑓 (𝑠1) and 𝑓 (𝑠2) are positive, the

proof for other cases are basically the same. Denote the lending market equilibrium variables

as
(︁
𝑘𝑠1 , 𝜌𝑠1 , ˜̄𝑐𝑠1

)︁
and

(︁
𝑘𝑠2 , 𝜌𝑠2 , ˜̄𝑐𝑠2

)︁
under these two signals. Without loss of generality, let’s

assume 𝜌𝑠1 < 𝜌𝑠2 . Denote the ex ante lending cutoff as 𝜌⋆ in this case. Suppose for 𝑠1, 𝑠2,

the condition

sup {(𝜋̃ (𝜌|𝑠1)) ∩ (𝜌⋆, 1]} ≤ inf {(𝜋̃ (𝜌|𝑠2)) ∩ (𝜌⋆, 1]} (A.10)

is not satisfied, let

𝐵 = [inf {(𝜋̃ (𝜌|𝑠2)) ∩ (𝜌⋆, 1]} , sup {(𝜋̃ (𝜌|𝑠1)) ∩ (𝜌⋆, 1]}] .

Then there must exist two non-negative functions 𝑣1, 𝑣2, such that

𝑓 (𝑠1) 𝑣1 (𝜌) + 𝑓 (𝑠2) 𝑣2 (𝜌) = 𝑓 (𝑠1) 𝜋̃ {𝜌|𝑠1} · 1𝐵 (𝜌) + 𝑓 (𝑠2) 𝜋̃ {𝜌|𝑠2} · 1𝐵 (𝜌) , (A.11)

sup {(𝑣1 (𝜌)) ∩ (𝜌⋆, 1]} ≤ inf {(𝑣2 (𝜌)) ∩ (𝜌⋆, 1]}

and ∫︁
𝑣1 (𝜌) 𝑑𝜌 =

∫︁
𝜋 {𝜌|𝑠1} · 1𝐵 (𝜌) 𝑑𝜌. (A.12)

Now let’s consider the following distribution of posterior beliefs with signal space 𝒮:
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{︁
𝑓 (𝑠) , 𝜋̂ (𝜌|𝑠)

}︁
𝑠∈𝒮

, where 𝑓 (𝑠) = 𝑓 (𝑠) and

𝜋̂ (𝜌|𝑠) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜋̃ {𝜌|𝑠1} − 𝜋̃ {𝜌|𝑠1} · 1𝐵 (𝜌) + 𝑣1 (𝜌) if 𝑠 = 𝑠1

𝜋̃ {𝜌|𝑠2} − 𝜋̃ {𝜌|𝑠2} 1𝐵 (𝜌) + 𝑣2 (𝜌) if 𝑠 = 𝑠2

𝜋̃ (𝜌|𝑠) 𝑜.𝑤.

.

We can check that the new distribution of posteriors
{︁
𝑓 (𝑠) , 𝜋̂ (𝜌|𝑠)

}︁
𝑠∈𝒮

is still Bayes-

plausible, because ∫︁
𝑣1 (𝜌) 𝑑𝜌 =

∫︁
𝜋̃ {𝜌|𝑠1} · 1𝐵 (𝜌) 𝑑𝜌

and ∫︁
𝑣2 (𝜌) 𝑑𝜌 =

∫︁
𝜋̃ {𝜌|𝑠2} · 1𝐵 (𝜌) 𝑑𝜌.

The second condition is a direct result of (A.11) and (A.12). And we can check that{︁
𝑓 (𝑠) , 𝜋̂ (𝜌|𝑠)

}︁
𝑠∈𝒮

can be induced by a disclosure policy (𝒮, 𝜎̂). Now the condition (A.10)

is not violated anymore in the new policy. Then we just need to show that the regulator’s

payoff is unchanged under the new policy, and thus it is still optimal. To see this, with

policy (𝒮, 𝜎̃), we know under posterior belief 𝜋̃ (𝜌|𝑠1)

Prob(𝒮,𝜎̃) (︀𝜌 > 𝜌𝑠1 |𝑠1
)︀
=
𝑐𝑠1
𝐵
.

Note that since 𝜌𝑠1 < 𝜌𝑠2 , we know

inf {(𝜋 (𝜌|𝑠2)) ∩ (𝜌⋆, 1]} ≥ 𝜌𝑠2 > 𝜌𝑠1 .

Then for any 𝜌 ∈ 𝐵, we must have 𝜌 > 𝜌𝑠1 . Then under posterior belief 𝜋̂ (𝜌|𝑠1), we know

Prob(𝒮,𝜎̂) (︀𝜌 > 𝜌𝑠1 |𝑠1
)︀
= Prob(𝒮,𝜎̃) (︀𝜌 > 𝜌𝑠1 |𝑠1

)︀
−
∫︁
𝜋̃ {𝜌|𝑠1} · 1𝐵 (𝜌) 𝑑𝜌+

∫︁
𝑣1 (𝜌) 𝑑𝜌

= Prob(𝒮,𝜎̃) (︀𝜌 > 𝜌𝑠1 |𝑠1
)︀

=
𝑐𝑠1
𝐵
.

The second equality comes from condition (A.12). Based on this, we can check all other

equilibrium conditions are also satisfied, and this implies
(︁
𝜑𝑠1 , 𝜌𝑠1 , Δ̂𝑠1

)︁
= (𝜑𝑠1 , 𝜌𝑠1 ,Δ𝑠1).
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Similarly, we can check
(︁
𝑘𝑠, 𝜌𝑠, ˜̄𝑐𝑠

)︁
= (𝑘𝑠, 𝜌𝑠, 𝑐𝑠). For all other 𝑠 ∈ 𝒮∖ {𝑠1, 𝑠2}, it’s obvious

that the lending market equilibria are all the same under these two disclosure policies. Then

we can easily show that the regulator’s payoff is the same under those two policies.

The proof strategy still works if condition (A.12) is not satisfied in the optimal policy

(𝒮, 𝜎). Besides, note that the third property in Lemma 1.5.6 implies the second property in

Lemma 1.5.6, and these two jointly imply that the disclosure policy must be deterministic.

Since all the posterior lending market equilibira are the same, the ex ante lending cutoff 𝜌⋆

must be unchanged.

A.2.9 Proof of Theorem 1.5.1

Lemma 1.5.6 shows that for any optimal policy, there exists a deterministic optimal policy

(𝒮, 𝜎) that induces almost equivalent lending market equilibria. Our Criterion 1.5.1 implies

that for any two distinct signal realizations 𝑠1, 𝑠2 ∈ 𝒮, we must have

𝑐𝑠1 ̸= 𝑐𝑠2 .

Then we consider a new signal space 𝒮 ′ = [𝑐min, 𝑐max], where

𝑐min= inf
𝑠∈𝒮

{𝑐𝑠}

and

𝑐max = sup
𝑠∈𝒮

{𝑐𝑠} ,

and a message function

𝜎′ (𝜌) = 𝑐𝜎(𝜌).

Then obviously (𝒮 ′, 𝜎′) is also a deterministic optimal policy, with the same lending market

equilibira as (𝒮, 𝜎). And the cutoff 𝜌⋆ will be the same under these two optimal policies. For

any two signals 𝑠′1, 𝑠′2 ∈ 𝒮 ′, and 𝑠′1 < 𝑠′2 where both 𝜎′−1 (𝑠′1) and 𝜎′−1 (𝑠′2) are nonempty.

Based on the construction of the new policy, we must have

sup
{︀
𝜎−1

(︀
𝑠′1
)︀
∩ [0, 𝜌⋆]

}︀
≤ inf

{︀
𝜎−1

(︀
𝑠′2
)︀
∩ [0, 𝜌⋆]

}︀
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and

sup
{︀
𝜎̃−1

(︀
𝑠′1
)︀
∩ (𝜌⋆, 1]

}︀
≤ inf

{︀
𝜎̃−1

(︀
𝑠′2
)︀
∩ (𝜌⋆, 1]

}︀
.

This means that for any 𝜌 ∈ [0, 𝜌⋆] or 𝜌 ∈ (𝜌⋆, 1], 𝜎′ (𝜌) is a weakly increasing function, with

inf 𝜎′ (𝜌) = 𝑐min and sup𝜎′ (𝜌) = 𝑐max.

A.2.10 Proof of Proposition 1.5.1

For any optimal policy, Lemma 1.5.6 shows that there exists another optimal policy that

has the same ex ante lending cutoff 𝜌⋆, the same lending market equilibria, and satisfies

conditions (1.18) and (1.19). So without loss of generality, we just need to focus on optimal

policies that satisfy conditions (1.18) and (1.19). Let’s introduce the following lemmas to

establish our results.

Lemma A.2.1. For any two posterior beliefs 𝜋 (𝜌|𝑠1) and 𝜋 (𝜌|𝑠2), with positive probabilities

(densities) 𝑓 (𝑠1) and 𝑓 (𝑠2), and lending market equilibira
(︀
𝑘𝑠1 , 𝜌𝑠1 , 𝑐𝑠1

)︀
and

(︀
𝑘𝑠2 , 𝜌𝑠2 , 𝑐𝑠2

)︀
satisfying 𝜌𝑠1 < 𝜌𝑠2. Let 𝑠 be the “combined”signal with posterior belief

𝜋 (𝜌|𝑠) = 𝑓 (𝑠1)𝜋 (𝜌|𝑠1) + 𝑓 (𝑠2)𝜋 (𝜌|𝑠2)
𝑓 (𝑠1) + 𝑓 (𝑠2)

,

Then the lending market equilibrium (𝑘𝑠, 𝜌𝑠, 𝑐𝑠) satisfies

𝑘𝑠1 < 𝑘𝑠 < 𝑘𝑠2 ,

𝜌𝑠1 < 𝜌𝑠 < 𝜌𝑠2

and

𝑐𝑠1 < 𝑐𝑠 < 𝑐𝑠2 .

Proof. First, it’s impossible to have 𝜌𝑠 ≤ 𝜌𝑠1 . Note that for the equilibria under 𝑠1 and 𝑠2,

the equilibrium conditions are3

𝜇𝑚
(︀
𝜌𝑠1
)︀
= [𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑠1)] 𝐼

3This is solved by the equilibrium conditions in Definition 1.3.3.
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and

𝜇𝑚
(︀
𝜌𝑠2
)︀
= [𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑠2)] 𝐼.

For 𝑠, we have

𝜇𝑚 (𝜌𝑠) = [𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑠)] 𝐼.

If 𝜌𝑠 ≤ 𝜌𝑠1 , Lemma 1.5.2 implies

𝑐𝑠 ≤ 𝑐𝑠1 < 𝑐𝑠2 .

Following the equilibrium conditions in Definition 1.3.3, we have

𝑐𝑠
𝐵

= 𝐸
(︁
𝐼𝑠|𝑠

)︁
=

𝑓 (𝑠1)

𝑓 (𝑠1) + 𝑓 (𝑠2)
𝐸
(︁
𝐼𝑠|𝑠1

)︁
+

𝑓 (𝑠2)

𝑓 (𝑠1) + 𝑓 (𝑠2)
𝐸
(︁
𝐼𝑠|𝑠2

)︁
. (A.13)

Since

𝜌𝑠 ≤ 𝜌𝑠1 < 𝜌𝑠2 ,

we must have

𝐼𝑠 (𝜌) ≥ 𝐼𝑠1 (𝜌) ≥ 𝐼𝑠2 (𝜌)

for all 𝜌 ∈ [0, 1]. Then

𝐸
(︁
𝐼𝑠|𝑠1

)︁
≥ 𝐸 (𝐼𝑠1 |𝑠1) =

𝑐𝑠1
𝐵

and

𝐸
(︁
𝐼𝑠|𝑠1

)︁
≥ 𝐸 (𝐼𝑠2 |𝑠1) =

𝑐𝑠2
𝐵
.

Then condition (A.13) implies

𝑐𝑠
𝐵

≥ 𝑓 (𝑠1)

𝑓 (𝑠1) + 𝑓 (𝑠2)

𝑐𝑠1
𝐵

+
𝑓 (𝑠2)

𝑓 (𝑠1) + 𝑓 (𝑠2)

𝑐𝑠2
𝐵

>
𝑐𝑠1
𝐵

⇒ 𝑐𝑠 > 𝑐𝑠1 ,

contradiction!

The same proof strategy works for the case 𝜌𝑠 ≥ 𝜌𝑠2 . So the equilibrium must satisfy

𝜌𝑠1 < 𝜌𝑠 < 𝜌𝑠2 .
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The following lemma provides an intermediate results about the structure of the deter-

ministic optimal policy characterized in Lemma 1.5.6.

Lemma A.2.2. Suppose (𝒮, 𝜎) is a deterministic optimal policy, then for almost any 𝑠 ∈ 𝒮

, if there exists a constant 𝜖𝑠 > 0, such that

(𝜋 (𝜌|𝑠)) ∩ (𝜌𝑠 − 𝜖𝑠, 𝜌𝑠) = ∅ (A.14)

and

Prob (𝜌 ≤ 𝜌𝑠 − 𝜖𝑠|𝑠) > 0, (A.15)

then there must exist a constant 𝛿𝑠 > 0, such that

(𝜋 (𝜌|𝑠)) ∩ [𝜌𝑠, 𝜌𝑠 + 𝛿𝑠] = ∅.

Proof. Suppose for the sake of contradiction that there exists 𝑠0 ∈ 𝒮 satisfying conditions

(A.14) and (A.15), and at least one of the following two scenarios is true:

1. There exists a constant 𝛿, such that for any 0 < 𝑥 < 𝛿,

(︀
𝜌𝑠0 , 𝜌𝑠0 + 𝑥

)︀
⊂ (𝜋 (𝜌|𝑠0)) ∩ (𝜌⋆, 1]

and

Prob
(︀
𝜌 ∈

(︀
𝜌𝑠0 , 𝜌𝑠0 + 𝑥

)︀
|𝑠0
)︀
> 0.

2. The first condition doesn’t hold and Prob
(︀
𝜌 = 𝜌𝑠0 |𝑠0

)︀
> 0.

If the first scenario is true, then let’s consider another deterministic disclosure policy (𝒮 ′, 𝜎′)

with signal space 𝒮 ′ = 𝒮∖{𝑠0} ∪ {𝑠′0, 𝑠′}, and

𝜎′ (𝜌) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜎 (𝜌) if 𝜌 /∈ [0, 1] ∖ (𝜋 (𝜌|𝑠0))

𝑠′0 if 𝜌 ∈ (𝜋 (𝜌|𝑠0)) ∖
(︀
𝜌𝑠0 , 𝜌𝑠0 + 𝑥

)︀
𝑠′ if 𝜌 ∈

(︀
𝜌𝑠0 , 𝜌𝑠0 + 𝑥

)︀ ,

where 𝑥 < 𝛿.
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The increase in regulator’s payoff under this new policy is

Δ𝑊

=Prob
(︀
𝜌 ∈

(︀
𝜌𝑠0 , 𝜌𝑠0 + 𝑥

)︀)︀
· 𝐸𝑠′1,𝐺

[︂(︁
𝜇𝑉 −

(︀
𝜇+ (1− 𝜇)𝐹𝑐

(︀
𝑐𝑠′1
)︀)︀)︁

· 1{︁
𝜌≥𝜌𝑠′1

}︁]︂
+ Prob

(︀
𝜌 ∈ (𝜋 (𝜌|𝑠0)) ∖

(︀
𝜌𝑠0 , 𝜌𝑠0 + 𝑥

)︀)︀
· 𝐸𝑠′0,𝐺

[︂(︁
𝜇𝑉 −

(︀
𝜇+ (1− 𝜇)𝐹𝑐

(︀
𝑐𝑠′0
)︀)︀)︁

· 1{︁
𝜌≥𝜌𝑠′0

}︁]︂
− Prob (𝜌 ∈ (𝜋 (𝜌|𝑠0))) · 𝐸𝑠0,𝐺

[︁(︁
𝜇𝑉 − (𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑠0))

)︁
· 1{𝜌≥𝜌𝑠0

}
]︁

≥Prob
(︀
𝜌 ∈ (𝜋 (𝜌|𝑠0)) ∖

(︀
𝜌𝑠0 , 𝜌𝑠0 + 𝑥

)︀)︀
· 𝐸𝑠′0,𝐺

[︂(︁
𝜇𝑉 −

(︀
𝜇+ (1− 𝜇)𝐹𝑐

(︀
𝑐𝑠′0
)︀)︀)︁

· 1{︁
𝜌≥𝜌𝑠′0

}︁]︂
− Prob (𝜌 ∈ (𝜋 (𝜌|𝑠0))) · 𝐸𝑠0,𝐺

[︁(︁
𝜇𝑉 − (𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑠0))

)︁
· 1{𝜌≥𝜌𝑠0

}
]︁

=Prob
(︀
𝜌 ∈ (𝜌⋆, 1] ∩ (𝜋 (𝜌|𝑠0)) ∖

(︀
𝜌𝑠0 , 𝜌𝑠0 + 𝑥

)︀)︀
· (1− 𝜇)

[︀
𝐹𝑐 (𝑐𝑠0)− 𝐹𝑐

(︀
𝑐𝑠′0
)︀]︀

− Prob
(︀
𝜌 ∈

(︀
𝜌𝑠0 , 𝜌𝑠0 + 𝑥

)︀)︀
· 𝐸𝐺

[︁(︁
𝜇𝑉 − (𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑠0))

)︁
|𝜌 ∈

(︀
𝜌𝑠0 , 𝜌𝑠0 + 𝑥

)︀]︁
.

Similar to the proof of Proposition 1.4.1, we know

Prob
(︀
𝜌 ∈ (𝜌⋆, 1] ∩ (𝜋 (𝜌|𝑠0)) ∖

(︀
𝜌𝑠0 , 𝜌𝑠0 + 𝑥

)︀)︀
· (1− 𝜇)

[︁
𝐹𝑐 (𝑐𝑠0)− 𝐹𝑐

(︁
𝑐𝑠′0

)︁]︁
= 𝑂(𝑥)

and

Prob
(︀
𝜌 ∈

(︀
𝜌𝑠0 , 𝜌𝑠0 + 𝑥

)︀)︀
· 𝐸𝐺

[︁(︁
𝜇𝑉 − (𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑠0))

)︁
|𝜌 ∈

(︀
𝜌𝑠0 , 𝜌𝑠0 + 𝑥

)︀]︁
= 𝑂(𝑥2).

So we must have

Δ𝑊 > 0

when 𝑥 is sufficiently small, and this means the new disclosure policy generates higher

regulator’s payoff, a contradiction!

If the second scenario is true, the same proof strategy applies and we can also find a

disclosure policy (not deterministic) that generates higher regulator’s payoff, a contradiction.

The next lemma in this proof presents a property about the “worse” subgame (the sub-

game with highest data manipulation level in equilibrium).

Lemma A.2.3. For any deterministic optimal policy (𝒮, 𝜎) that satisfies properties in
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Lemma 1.5.6, we must have

sup
𝑠∈𝒮

𝜌𝑠 = 𝜌⋆. (A.16)

Proof. First, we must have sup𝑠∈𝒮 𝜌𝑠 ≥ 𝜌⋆, otherwise, there exists 𝛿 > 0, such that for any

𝑠, 𝜌𝑠 < 𝜌⋆ − 𝛿. If this is true, consider any state 𝜌 ∈ (𝜌⋆ − 𝛿, 𝜌⋆). Since 𝜌𝑠 < 𝜌⋆ − 𝛿 for any

𝑠, lenders will finance 𝐺̂ borrowers when the true state 𝜌 ∈ (𝜌⋆ − 𝛿, 𝜌⋆). However, by our

definition of 𝜌⋆, lenders will reject all loan applications if the state 𝜌 < 𝜌⋆, a contradiction.

So we must have sup𝑠∈𝒮 𝜌𝑠 ≥ 𝜌⋆.

Now we want to show it’s impossible to have sup𝑠∈𝒮 𝜌𝑠 > 𝜌⋆. Suppose for the sake of

contradiction that there exists 𝛿 > 0, such that

sup
𝑠∈𝒮

𝜌𝑠 > 𝜌⋆ + 𝛿.

Then there must exist a signal realization, denoted as 𝑠𝑚, such that 𝜌𝑠𝑚 > 𝜌⋆ + 𝛿. From

Lemma A.2.2, we know that there exists an interval
(︀
𝜌𝑠𝑚 , 𝜌𝑠𝑚 + 𝜖𝑚

)︀
such that

(︀
𝜌𝑠𝑚 , 𝜌𝑠𝑚 + 𝜖𝑚

)︀
∩ (𝜋 (𝜌|𝑠𝑚)) = ∅,

and

Prob
(︀
𝜌 ∈

(︀
𝜌𝑠𝑚 , 𝜌𝑠𝑚 + 𝜖𝑚

)︀)︀
< Prob

(︀[︀
𝜌𝑠𝑚 + 𝜖𝑚, 1

]︀
∩ (𝜋 (𝜌|𝑠𝑚))

)︀
.

Then we can find an interval 𝐵, and a one to one mapping

𝑧 :
(︀
𝜌𝑠𝑚 , 𝜌𝑠𝑚 + 𝜖𝑚

)︀
→ 𝐵,

with 𝑧′ (𝑥) ≡ 1, such that

𝐵 ⊆
[︀
𝜌𝑠𝑚 + 𝜖𝑚, 1

]︀
∩ (𝜋 (𝜌|𝑠𝑚)) .

Now let’s consider the following deterministic disclosure policy (𝒮 ′, 𝜎′) with 𝒮 ′ = 𝒮, and

𝜎′ (𝜌) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜎 (𝜌) if 𝜌 /∈ 𝐵 ∪

(︀
𝜌𝑠𝑚 , 𝜌𝑠𝑚 + 𝜖𝑚

)︀
𝜎 (𝑧 (𝜌)) if 𝜌 ∈

(︀
𝜌𝑠𝑚 , 𝜌𝑠𝑚 + 𝜖𝑚

)︀
𝜎
(︀
𝑧−1 (𝜌)

)︀
if 𝜌 ∈ 𝐵

.
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It’s easy to check that all lending market equilibria are unchanged. Then the regulator’s

payoff is unchanged. However, under the new disclosure policy, for the signal realization 𝑠𝑚,

we have

𝜌𝑠𝑚 = inf {(𝜋 (𝜌|𝑠𝑚)) ∩ (𝜌⋆, 1]} .

But this violates Lemma A.2.2, a contradiction. So it’s impossible to have

sup
𝑠∈𝒮

𝜌𝑠 > 𝜌⋆,

and thus we must have

sup
𝑠∈𝒮

𝜌𝑠 = 𝜌⋆.

Then Lemma 1.5.1 is a direct result of Lemma A.2.1 and A.2.3. Suppose for the sake of

contradiction that 𝜌⋆ ≤ 𝜌𝑁 , then Lemma A.2.3 implies that

𝜌𝑠 ≤ 𝜌𝑁

for all 𝑠 ∈ 𝒮. Note that the signal in no information case is a “combined” signal of all signals

in the optimal policy (𝒮, 𝜎), Lemma A.2.1 implies that

𝜌𝑁 < sup
𝑠∈𝒮

𝜌𝑠,

a contradiction! So we must have

𝜌⋆ > 𝜌𝑁 .

A.2.11 Proof of Proposition 1.5.2

Suppose the deterministic optimal policy is (𝒮, 𝜎). Since there are at least two signals in

the optimal policy, we must have

𝑐max>𝑐min.

Note that the no disclosure is the “combined” signal of optimal policy (𝒮, 𝜎). Then Lemma

A.2.1 implies that

𝑐max>𝑐𝑁 >𝑐min.
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A.2.12 Proof of Proposition 1.5.3

Consider an optimal disclosure policy (𝒮, 𝜎̃) with distribution of posteriors

{𝑓 (𝑠) , 𝜋 (𝜌|𝑠)}𝑠∈𝒮 .

Since the prior belief of 𝜌 is a continuous distribution, for any 𝑠0 satisfying

Prob (𝑠0) > 𝜖,

the equilibrium conditions imply that there must exist 𝜖𝑠0 > 0 and 𝛿𝑠0 > 0, such that

Prob (𝜌 ≤ 𝜌⋆ − 𝜖𝑠0 |𝑠0) = 𝛿𝑠0 > 0.

Let 𝑀 =
𝑐𝑠0
𝐵 . Denote 𝑇 as the solution of

𝑇 · Prob (𝜌 ≥ 𝜌⋆|𝑠0)
𝛿𝑠0

=
𝑀

1−𝑀
.

Then let’s consider a new signal space

𝒮𝑎 = 𝒮∖ {𝑠0} ∪ {𝑠𝑎1, 𝑠𝑎2}

and a distribution of posteriors {𝑓𝑎 (𝑠) , 𝜋𝑎 (𝜌|𝑠)}𝑠∈𝒮𝑎
where

𝑓𝑎 (𝑠) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑓 (𝑠) if 𝑠 ∈ 𝒮∖ {𝑠0}
𝛿𝑠0
1−𝑀 𝑓 (𝑠0) if 𝑠 = 𝑠𝑎1(︁
1− 𝛿𝑠0

1−𝑀

)︁
𝑓 (𝑠0) if 𝑠 = 𝑠𝑎2

,

and

𝜋𝑎 (𝜌|𝑠) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜋 (𝜌|𝑠) if 𝑠 ∈ 𝒮∖ {𝑠0}

1−𝑀
𝛿𝑠0

[︁
𝜋 (𝜌|𝑠0) 1[0,𝜌⋆−𝜖𝑠0 ] (𝜌) + 𝑇 · 𝜋 (𝜌|𝑠0) 1[𝜌⋆,1] (𝜌)

]︁
if 𝑠 = 𝑠𝑎1

1

1− 𝛿𝑠0
1−𝑀

[︁
𝜋 (𝜌|𝑠0) 1(𝜌⋆−𝜖𝑠0 ,𝜌⋆) (𝜌) + (1− 𝑇 ) · 𝜋 (𝜌|𝑠0) 1[𝜌⋆,1] (𝜌)

]︁
if 𝑠 = 𝑠𝑎2

.

We can check the distribution of posteriors {𝑓𝑎 (𝑠) , 𝜋𝑎 (𝜌|𝑠)}𝑠∈𝒮𝑎
is still Bayes-plausible,
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and there exists a disclosure policy that can induce this distribution of posteriors. Besides,

we can check that the equilibrium variables {𝑘𝑠, 𝜌𝑠, 𝑐𝑠} are all the same for equilibria under

signal 𝑠0, 𝑠𝑎1 and 𝑠𝑎2. Then by Lemma A.2.24, there must exists 𝑡𝑠 > 0, such that

(𝜋 (𝜌|𝑠𝑎2)) ∩
[︀
𝜌𝑠0 , 𝜌𝑠0 + 𝑡𝑠

]︀
= ∅,

which implies

(𝜋 (𝜌|𝑠0)) ∩
[︀
𝜌𝑠0 , 𝜌𝑠0 + 𝑡𝑠

]︀
= ∅

because of our construction of 𝜋𝑎. Then the surplus from lending must be greater than

𝜇

(︂
𝑚

(︂
𝜌𝑠0 +

𝑡𝑠
2

)︂
−𝑚

(︀
𝜌𝑠0
)︀)︂

> 0

for any 𝜌 > 𝜌⋆ in this posterior equilibrium 𝑠0.

A.2.13 Proof of Theorem 1.5.2

The proof of Theorem 1.5.2 is established by three lemmas.

Lemma A.2.4. (Pooling at the bottom) When Assumption 1.5.1 is satisfied, in any deter-

ministic optimal policy (𝒮, 𝜎) characterized in Theorem 1.5.1, there must exist 𝜖 > 0, such

that for any 𝜌1, 𝜌2 ∈ (0, 𝜖) ∪ (𝜌⋆, 𝜌⋆ + 𝜖), we have 𝜎 (𝜌1) = 𝜎 (𝜌2).

Proof. Suppose (𝒮, 𝜎) is a deterministic optimal policy characterized in Theorem 1.5.1. Note

Lemma A.2.3 implies 𝜌𝑠 ≤ 𝜌⋆ for all 𝑠, then let

𝒮1 =

{︂
𝑠| sup {(𝜋 (𝜌|𝑠)) ∩ (0, 𝜌⋆)} < 𝑚−1 (𝐼)&𝜌𝑠 <

1

2

(︀
𝑚−1 (𝐼) + 𝜌⋆

)︀}︂
,

𝐵1 = ∪𝑠∈𝒮1 (𝜋 (𝜌|𝑠)) ,

and

𝑐1 = sup {𝑐𝑠|𝑠 ∈ 𝒮1} .

Suppose for the sake of contradiction that it doesn’t satisfy the Pooling at the bottom prop-

erty. Then there are infinite elements in 𝒮1. Regulator’s ex ante surplus from all 𝑠 ∈ 𝒮1

4Although Lemma A.2.2 only considers deterministic optimal policies, it can be shown that it also holds
for general optimal policies.
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is

𝑊̃1 =

∫︁
𝑠∈𝒮1

𝑓 (𝑠) · 𝐸𝑠
[︁
(𝜇𝑚 (𝜌)− (𝜇+ (1− 𝜇)𝐹𝑐 (𝑐𝑠)) 𝐼)

+
]︁
𝑑𝑠

=

∫︀
𝑠∈𝒮1

𝑓 (𝑠) · Prob (𝜌 > 𝜌⋆|𝑠) · 𝜇𝐸𝑠 (𝑚 (𝜌)− 𝐼|𝜌 > 𝜌⋆) 𝑑𝑠−∫︀
𝑠∈𝒮1

𝑓 (𝑠) · Prob (𝜌 > 𝜌⋆|𝑠) · (1− 𝜇)𝐹𝑐 (𝑐𝑠) 𝐼𝑑𝑠

=

∫︁
𝑠∈𝒮1

𝑓 (𝑠) · 𝑐𝑠
𝐵

· 𝜇𝐸𝑠 (𝑚 (𝜌)− 𝐼|𝜌 > 𝜌⋆) 𝑑𝑠−
∫︁
𝑠∈𝒮1

𝑓 (𝑠) · 𝑐𝑠
𝐵

· (1− 𝜇)𝐹𝑐 (𝑐𝑠) 𝐼𝑑𝑠,

=
Prob (𝜌 ∈ (𝜌⋆, 1] ∩𝐵1)𝜇𝐸 (𝑚 (𝜌)− 𝐼|𝜌 ∈ (𝜌⋆, 1] ∩𝐵1)

−
∫︀
𝑠∈𝒮1

𝑓 (𝑠) · 𝑐𝑠
𝐵 · (1− 𝜇)𝐹𝑐 (𝑐𝑠) 𝐼𝑑𝑠

Here we use the equilibrium condition Prob (𝜌 > 𝜌⋆|𝑠) = 𝑐𝑠
𝐵 in the last equality. Then we

show that the regulator’s payoff increases under another disclosure policy that satisfies the

Pooling at the bottom property. To see this, in the above equilibrium,

∫︁
𝑠∈𝒮1

𝑓 (𝑠) · 𝑐𝑠
𝐵

· 𝑑𝑠 =
∫︁
𝑠∈𝒮1

𝑓 (𝑠) · Prob (𝜌 > 𝜌⋆|𝑠) · 𝑑𝑠

= Prob (𝜌 ∈ (𝜌⋆, 1] ∩𝐵1) .

Let 𝑐0 be the solution of

(︂∫︁
𝑠∈𝒮1

𝑓 (𝑠) · 𝑑𝑠
)︂
𝑐0
𝐵

= Prob (𝜌 ∈ (𝜌⋆, 1] ∩𝐵1) =

∫︁
𝑠∈𝒮1

𝑓 (𝑠) · 𝑐𝑠
𝐵

· 𝑑𝑠,

obviously 𝑐0 < sup𝑠∈𝒮1
𝑐𝑠. Based on Assumption 1.5.1, and using the concavification method

(Kamenica and Gentzkow (2011)), we know there exist 𝑐1 ≤ 𝑐2 ≤ sup𝑠∈𝒮1
𝑐𝑠, and two positive

numbers 𝑝1, 𝑝2 satisfying 𝑝1 + 𝑝2 = 1, such that

𝑝1 + 𝑝2 = 1,

𝑝1
𝑐1
𝐵

+ 𝑝2
𝑐2
𝐵

=
𝑐0
𝐵
,

and

(︂∫︁
𝑠∈𝒮1

𝑓 (𝑠) · 𝑑𝑠
)︂
(1− 𝜇)

[︁
𝑝1
𝑐1
𝐵
𝐹𝑐 (𝑐1) + 𝑝2

𝑐2
𝐵
𝐹𝑐 (𝑐2)

]︁
<

∫︁
𝑠∈𝒮1

𝑓 (𝑠) · 𝑐𝑠
𝐵

· (1− 𝜇)𝐹𝑐 (𝑐𝑠) 𝑑𝑠.

(A.17)

Here 𝑐1 and 𝑐2 represent the equilibrium data manipulation cutoffs for two signals 𝑠1 and

𝑠2. From the ex ante perspective. The regulator’s payoff from financing good projects are
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unchanged for all states 𝜌 ∈ 𝐵1, while the ex ante surplus loss from financing bad projects

decreases with the binary signals 𝑠1 and 𝑠2 because of condition (A.17). Then the new

disclosure policy with signals 𝑠1 and 𝑠2 improves regulator’s payoff, and this policy satisfies

the Pooling at the bottom property.

Then we want to show that there exists at most one discrete signal 𝑠 satisfying Prob (𝑠) >

0. To get this result, let first provide an intermediate result:

Lemma A.2.5. Suppose (𝒮, 𝜎) is a deterministic optimal policy, then for any 𝑠 ∈ 𝒮 such

that Prob (𝑠) > 0, function 𝑥𝐹𝑐 (𝑥) can not be strictly concave at 𝑥 = 𝑐𝑠.

Proof. Suppose (𝒮, 𝜎) is a deterministic optimal policy, and there exists 𝑠0 ∈ 𝒮 such that

Prob (𝑠0) > 0. Suppose for the sake of contradiction that 𝑥𝐹𝑐 (𝑥) is strictly concave at

𝑥 = 𝑐𝑠0 . In this equilibrium, since Prob (𝑠0) > 0, there must exists 𝜖0 > 0 and 𝛿0 > 0 such

that

Prob
(︀
𝜌 ∈

(︀
0, 𝜌𝑠0 − 𝜖0

)︀
∩ (𝜋 (𝜌|𝑠0))

)︀
> 𝛿0

and

Prob
(︀
𝜌 ∈

(︀
𝜌𝑠0 + 𝜖0, 1

)︀
∩ (𝜋 (𝜌|𝑠0))

)︀
> 𝛿0.

Then there exists two sets 𝐿1 and 𝑅1, such that

𝐿1 ⊂
(︀
0, 𝜌𝑠0 − 𝜖0

)︀
∩ (𝜋 (𝜌|𝑠0)) ,

𝑅1 ⊂
(︀
𝜌𝑠0 + 𝜖0, 1

)︀
∩ (𝜋 (𝜌|𝑠0)) ,

Prob (𝐿1) > 0,

Prob (𝑅1) > 0,

and
Prob (𝐿1)

Prob (𝑅1)
=

Prob
(︀(︀
0, 𝜌𝑠0

)︀
∩ (𝜋 (𝜌|𝑠0))

)︀
Prob

(︀(︀
𝜌⋆𝑠0 , 1

)︀
∩ (𝜋 (𝜌|𝑠0))

)︀ .
Then consider the following deterministic policy with signal space 𝒮 ′ = 𝒮∖ {𝑠0} ∪ {𝑠′1, 𝑠′2}
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and message function

𝜎′ (𝜌) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜎 (𝜌) if 𝜌 /∈ (𝜋 (𝜌|𝑠0))

𝑠′1 if 𝜌 ∈ 𝐿1 ∪𝑅1

𝑠′2 if 𝜌 ∈ (𝜋 (𝜌|𝑠0)) ∖ (𝐿1 ∪𝑅1)

.

The lending market equilibria under 𝑠′1 and 𝑠′2 are the same as the equilibrium under 𝑠0

with equilibrium variables
(︀
𝑘𝑠0 , 𝜌

⋆
𝑠0 , 𝑐𝑠0

)︀
. However we can improve the regulator’s payoff

from states 𝜌 ∈ 𝐿1 ∪ 𝑅1 by disclosing additional information based on 𝑠′1. Since 𝑥𝐹𝑐 (𝑥)

is strictly concave at 𝑥 = 𝑐𝑠0 , there exists 𝜖2 > 0, such that for all 𝜖 < 𝜖2, there exist

two numbers 𝑐1 and 𝑐2 satisfying 𝑐1, 𝑐2 ∈ (𝑐𝑠0 − 𝜖, 𝑐𝑠0 + 𝜖) and two positive numbers 𝑝1, 𝑝2

satisfying 𝑝1 + 𝑝2 = 1 such that

𝑝1𝑐1 + 𝑝2𝑐2 = 𝑐𝑠0 ,

and

𝑝1𝑐1𝐹𝑐 (𝑐1) + 𝑝2𝑐2𝐹𝑐 (𝑐2) < 𝑐𝑠0𝐹𝑐 (𝑐𝑠0) . (A.18)

Let 𝜌1 and 𝜌2 be

𝜌1 = 𝑚−1

(︂
𝜇+ (1− 𝜇)𝐹𝑐 (𝑐1)

𝜇
𝐼

)︂
and

𝜌2 = 𝑚−1

(︂
𝜇+ (1− 𝜇)𝐹𝑐 (𝑐2)

𝜇
𝐼

)︂
,

then we can choose 𝜖 small enough, such that

𝜌1, 𝜌2 ∈
(︀
𝜌𝑠0 − 𝜖0, 𝜌𝑠0 + 𝜖0

)︀
.

Then there must exist 𝐿11, 𝐿12, 𝑅11, 𝑅12 such that

𝐿11 ∪ 𝐿12 = 𝐿1

𝑅11 ∪𝑅12 = 𝑅1,

Prob (𝜌 ∈ 𝑅11)

Prob (𝜌 ∈ 𝑅11) + Prob (𝜌 ∈ 𝐿11)
=
𝑐1
𝐵
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and
Prob (𝜌 ∈ 𝑅12)

Prob (𝜌 ∈ 𝑅12) + Prob (𝜌 ∈ 𝐿12)
=
𝑐2
𝐵
.

Then let’s consider the following deterministic policy with signal space 𝒮 ′
1 = 𝒮∖ {𝑠0}∪{𝑠′2}∪

{𝑠′11, 𝑠′12} and message function

𝜎′1 (𝜌) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜎 (𝜌) if 𝜌 /∈ (𝜋 (𝜌|𝑠0))

𝑠′11 if 𝜌 ∈ 𝐿11 ∪𝑅11

𝑠′12 if 𝜌 ∈ 𝐿12 ∪𝑅12

𝑠′2 if 𝜌 ∈ (𝜋 (𝜌|𝑠0)) ∖ (𝐿1 ∪𝑅1)

.

It can be verified that, compared to the disclosure policy (𝒮, 𝜎), the regulator’s payoff is

unchanged under the new policy (𝒮 ′
1, 𝜎

′
1) for all states 𝜌 ∈ [0, 1] ∖ (𝐿1 ∪𝑅1). And for states

𝜌 ∈ 𝐿1 ∪𝑅1, the regulator’s payoff under (𝒮, 𝜎) is

𝑊0 = Prob (𝜌 ∈ 𝑅1)𝜇𝐸 (𝑚 (𝜌)− 𝐼|𝜌 ∈ 𝑅1)− Prob (𝜌 ∈ 𝑅1) (1− 𝜇)𝐹𝑐 (𝑐𝑠0) 𝐼

= Prob (𝜌 ∈ 𝑅1)𝜇𝐸 (𝑚 (𝜌)− 𝐼|𝜌 ∈ 𝑅1)− Prob (𝜌 ∈ 𝐿1 ∪𝑅1)
𝑐𝑠0
𝐵

(1− 𝜇)𝐹𝑐 (𝑐𝑠0) 𝐼

while the regulator’s payoff under (𝒮 ′
1, 𝜎

′
1) is

𝑊12 =
Prob (𝜌 ∈ 𝑅1)𝜇𝐸 (𝑚 (𝜌)− 𝐼|𝜌 ∈ 𝑅1)− Prob (𝜌 ∈ 𝐿11 ∪𝑅11)

𝑐1
𝐵 (1− 𝜇)𝐹𝑐 (𝑐1) 𝐼

−Prob (𝜌 ∈ 𝐿12 ∪𝑅12)
𝑐2
𝐵 (1− 𝜇)𝐹𝑐 (𝑐2) 𝐼

.

Since

Prob (𝜌 ∈ 𝐿11 ∪𝑅11) + Prob (𝜌 ∈ 𝐿12 ∪𝑅12) = Prob (𝜌 ∈ 𝐿1 ∪𝑅1) ,

condition (A.18) implies that

𝑊12 > 𝑊0,

which implies that the regulator’s payoff under (𝒮 ′
1, 𝜎

′
1) is greater than her payoff under

(𝒮, 𝜎), a contradiction!

Lemma A.2.6. For any deterministic optimal policy characterized in Theorem 1.5.1, there

exists a payoff-equivalent deterministic optimal policy (𝒮, 𝜎), such that there exists only one

149



𝑠 ∈ 𝒮 that satisfies Prob (𝑠) > 0.

Proof. Suppose (𝒮, 𝜎)is a deterministic optimal policy, and suppose for the sake of contra-

diction that there exists two signals 𝑠1, 𝑠2 ∈ 𝒮, such that

Prob (𝑠1) > 0,

and

Prob (𝑠2) > 0.

Denote the equilibrium variables under these two signals are
(︀
𝑘𝑠1 , 𝜌𝑠1 , 𝑐𝑠1

)︀
and

(︀
𝑘𝑠2 , 𝜌𝑠2 , 𝑐𝑠2

)︀
,

respectively. Without loss of generality assume 𝑐𝑠1 < 𝑐𝑠2 . Using the proof techniques in

Lemma A.2.5, we can create two signals 𝑠′1 and 𝑠′2 based on 𝑠1 and 𝑠2, such that equilibrium

under 𝑠′1 (𝑠′2) is the same as the equilibrium under 𝑠1 (𝑠2), and there exists two constant

𝜖 > 0, such that (︀
𝜋
(︀
𝜌|𝑠′1

)︀)︀
∩
(︀
𝜌𝑠1 − 𝜖, 𝜌𝑠1 + 𝜖

)︀
= ∅

and (︀
𝜋
(︀
𝜌|𝑠′2

)︀)︀
∩
(︀
𝜌𝑠2 − 𝜖, 𝜌𝑠2 + 𝜖

)︀
= ∅.

Lemma A.2.5 implies that function 𝑥𝐹𝑐 (𝑥) is weakly convex at both 𝑐𝑠1 and 𝑐𝑠2 .

If the function 𝑥𝐹𝑐 (𝑥) is convex on [𝑐𝑠1 , 𝑐𝑠2 ]. Then for any 𝛿 > 0 that is small enough,

there exists positive numbers 𝑝1, 𝑝2, 𝑐1 ∈ (𝑐𝑠1 , 𝑐𝑠1 + 𝛿), 𝑐2 ∈ (𝑐𝑠2 − 𝛿, 𝑐𝑠2), such that

𝑝1 + 𝑝2 = Prob
(︀
𝑠′1
)︀
+ Prob

(︀
𝑠′2
)︀

and

𝑝1𝑐1 + 𝑝2𝑐2 = Prob
(︀
𝑠′1
)︀
𝑐𝑠1 + Prob

(︀
𝑠′2
)︀
𝑐𝑠2 .

Let 𝜌1 and 𝜌2 be

𝜌1 = 𝑚−1

(︂
𝜇+ (1− 𝜇)𝐹𝑐 (𝑐1)

𝜇
𝐼

)︂
and

𝜌2 = 𝑚−1

(︂
𝜇+ (1− 𝜇)𝐹𝑐 (𝑐2)

𝜇
𝐼

)︂
.
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Then we can choose 𝛿 small enough, such that

𝜌1 ∈
(︀
𝜌𝑠1 − 𝜖, 𝜌𝑠1 + 𝜖

)︀
and

𝜌2 ∈
(︀
𝜌𝑠2 − 𝜖, 𝜌𝑠2 + 𝜖

)︀
.

Then following the proof strategy in Lemma A.2.5we can create another deterministic disclo-

sure policy that generates higher regulator’s payoff by creating two signals with equilibrium

cutoffs 𝜌1 and 𝜌2.

If the function 𝑥𝐹𝑐 (𝑥) is not always convex on [𝑐𝑠1 , 𝑐𝑠2 ], based on Assumption (1.5.1),

we must have (𝑥𝐹𝑐 (𝑥))
′′⃒⃒
𝑥=𝑐𝑠2

= 0. Let

𝐿1 = (𝜋 (𝜌|𝑠2)) ∩ (𝜌⋆, 1] ,

and

𝐶1 =

[︂
𝐹−1
𝑐

(︂
𝜇

1− 𝜇

(︂
𝑚 (inf 𝐿1)

𝐼
− 1

)︂)︂
, 𝐹−1

𝑐

(︂
𝜇

1− 𝜇

(︂
𝑚 (sup𝐿1)

𝐼
− 1

)︂)︂]︂
.

if 𝑥𝐹𝑐 (𝑥) is linear on 𝐶1, then we can show that there exists a disclosure policy such that the

message function is strictly increasing on 𝐿1. If 𝑥𝐹𝑐 (𝑥) is not linear on 𝐶1, then there must

exist 𝑐2 ∈ 𝐶1, such that 𝑥𝐹𝑐 (𝑥) is strictly concave at 𝑐2. The using the proof strategy in

Lemma (A.2.5), we can show this disclosure policy must be suboptimal, a contradiction.

Besides,the based on the general characterization in Theorem 1.5.1, there must exists

cutoff 𝜌𝑎, 𝜌𝑏 and 𝜌⋆ and a signal space [𝑐min, 𝑐max] such that the message function is weakly

increasing on [0, 𝜌⋆] and (𝜌⋆, 1]. Since message function is 𝜎 (𝜌) = 𝑐𝜎(𝜌), we can consider a

different signal space 𝒮 ′ = [𝜌𝑎, 𝜌
⋆], such that new message function is

𝜎′
⃒⃒
[0,𝜌⋆]

=

⎧⎪⎨⎪⎩
𝜌𝑎 if 𝜌 ∈ [0, 𝜌𝑎]

𝜌 if 𝜌 ∈ (𝜌𝑎, 𝜌
⋆]

,
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and

𝜎′
⃒⃒
(𝜌⋆,1]

=

⎧⎪⎨⎪⎩
𝜌𝑎 if 𝜌 ∈ (𝜌⋆, 𝜌𝑏]

𝛾 (𝜌) if 𝜌 ∈ (𝜌𝑏, 1]

,

where 𝛾 (𝑥) = (𝜋 (𝜌|𝑠 = 𝜎 (𝑥))) ∩ [0, 𝜌⋆]. Then there must exist a deterministic policy that

has the structure characterized in Theorem 1.5.2.

A.2.14 Proof of Lemma 1.5.7

Suppose (𝒮, 𝜎) is the deterministic optimal signal characterized in Theorem 1.5.2. For any

𝜌 ∈ (𝜌𝑎, 𝜌
⋆), the signal is 𝑠 = 𝜌, and

(𝜋 (𝜌|𝑠)) ∩ [0, 𝜌⋆] = 𝑠.

If

𝜌𝑠 = sup {(𝜋 (𝜌|𝑠)) ∩ [0, 𝜌⋆]}

doesn’t hold for 𝜌0 ∈ (𝜌𝑎, 𝜌
⋆), there must exist an interval 𝐵0 ∈ (𝜌𝑎, 𝜌

⋆) and a constant

𝜖0 > 0, such that

𝜌𝑥 > sup {(𝜋 (𝜌|𝑥)) ∩ [0, 𝜌⋆]}+ 2𝜖0

for all 𝑥 ∈ 𝐵. Besides, Lemma A.2.3 implies that there exists 𝐵 ∈ 𝐵0 and a constant 𝜖 < 𝜖0,

such that

𝜌𝑥 < inf {(𝜋 (𝜌|𝑥)) ∩ (𝜌⋆, 1]} − 2𝜖.

Then for all 𝑥 ∈ 𝐵, we have

𝜌𝑥 ∈ (sup {(𝜋 (𝜌|𝑥)) ∩ [0, 𝜌⋆]}+ 2𝜖, inf {(𝜋 (𝜌|𝑥)) ∩ (𝜌⋆, 1]} − 2𝜖) .

Theorem 1.5.2 implies that there exists 𝑠0 with

Prob (𝑠0) > 0,

and 𝜌𝑠0 < 𝜌𝑥 for any 𝑥 ∈ 𝐵. Without loss of generality, based on Assumption 1.5.1, we

can focus on the cases when 𝑥𝐹𝑐 (𝑥) is concave on 𝑥 ∈ 𝐵 or it’s convex on 𝑥 ∈ 𝐵. This is

because there is only one inflection point for function 𝑥𝐹𝑐 (𝑥), so if this condition doesn’t
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hold, we can always “truncate” it such that the concavity of function 𝑥𝐹𝑐 (𝑥) is unchanged

on 𝑥 ∈ 𝐵.

If 𝑥𝐹𝑐 (𝑥) is convex on 𝑥 ∈ 𝐵, since 𝐵 ∩ (𝜋 (𝜌|𝑠0) ∩ [0, 𝜌⋆]) = ∅, we can find 𝑐1 > 𝑐𝑠0 , and

two functions 𝑓𝑛 (𝜌) and 𝑐𝑛 (𝜌) on 𝜌 ∈ 𝐵, such that

∫︁
𝜌∈𝐵

𝑓𝑛 (𝜌) 𝑑𝜌 =

∫︁
𝜌∈𝐵

𝑓 (𝜌) 𝑑𝜌

Prob(𝑠0)·𝑐1 +
∫︁
𝑥∈𝐵

𝑓𝑛 (𝑥) 𝑐𝑛 (𝑥) 𝑑𝜌 = Prob(𝑠0)·𝑐𝑠0 +
∫︁
𝑥∈𝐵

𝑓 (𝑥) 𝑐𝑥𝑑𝑥

and

Prob(𝑠0)·𝑐1𝐹𝑐 (𝑐1) +
∫︁
𝑥∈𝐵

𝑓𝑛 (𝑥) 𝑐𝑛 (𝑥)𝐹𝑐 (𝑐𝑛 (𝑥)) 𝑑𝜌

<Prob(𝑠0)·𝑐𝑠0𝐹𝑐 (𝑐𝑠0) +
∫︁
𝑥∈𝐵

𝑓 (𝑥) 𝑐𝑥𝐹𝑐 (𝑐𝑥) 𝑑𝑥, (A.19)

where the last condition is from the convexity of function 𝑥𝐹𝑐 (𝑥). We can always find

(𝑐1, 𝑓𝑛 (𝜌) , 𝑐𝑛 (𝜌)) such that

𝑐1 < inf
𝑥∈𝐵

𝑐𝑛 (𝑥) ,

and

inf
𝑥∈𝐵

𝑚−1

(︂(︂
1 +

1− 𝜇

𝜇
𝐹𝑐 (𝑐𝑛 (𝑥))

)︂
𝐼

)︂
> sup

𝑥∈𝐵
{(𝜋 (𝜌|𝑥)) ∩ [0, 𝜌⋆]} .

This proof strategy replicates the idea in the proof of Lemma A.2.6, basically we want to

design a new disclosure policy that generates higher regulator’s payoff. And the conditions

we impose here guarantee that under the new disclosure policy, the regulator’s payoff from

financing good projects is unchanged, while the cost from financing bad projects decreases

because of the condition (A.19). The complete proof is omitted here because the rest is the

same as the proof of Lemma A.2.6.

If 𝑥𝐹𝑐 (𝑥) is concave on 𝑥 ∈ 𝐵, then we can follow the idea in proof of Lemma A.2.5 and

show this is suboptimal. To see this, note we can find two functions 𝑓𝑚 (𝜌) and 𝑐𝑚 (𝜌) on

𝜌 ∈ 𝐵, such that ∫︁
𝜌∈𝐵

𝑓𝑚 (𝜌) 𝑑𝜌 =

∫︁
𝜌∈𝐵

𝑓 (𝜌) 𝑑𝜌

∫︁
𝑥∈𝐵

𝑓𝑚 (𝑥) 𝑐𝑚 (𝑥) 𝑑𝜌 =

∫︁
𝑥∈𝐵

𝑓 (𝑥) 𝑐𝑥𝑑𝑥
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and

∫︁
𝑥∈𝐵

𝑓𝑚 (𝑥) 𝑐𝑚 (𝑥)𝐹𝑐 (𝑐𝑚 (𝑥)) 𝑑𝜌 <

∫︁
𝑥∈𝐵

𝑓 (𝑥) 𝑐𝑥𝐹𝑐 (𝑐𝑥) 𝑑𝑥 (A.20)

where the last condition is from the concavity of function 𝑥𝐹𝑐 (𝑥). We can always find

(𝑓𝑚 (𝜌) , 𝑐𝑚 (𝜌)) such that

inf
𝑥∈𝐵

𝑚−1

(︂(︂
1 +

1− 𝜇

𝜇
𝐹𝑐 (𝑐𝑚 (𝑥))

)︂
𝐼

)︂
> sup

𝑥∈𝐵
{(𝜋 (𝜌|𝑥)) ∩ [0, 𝜌⋆]} .

This proof strategy replicates the idea in the proof of Lemma A.2.5, basically we want to

design a new disclosure policy that generates higher regulator’s payoff. And the conditions

we impose here guarantee that under the new disclosure policy, the regulator’s payoff from

financing good projects is unchanged, while the cost from financing bad projects decreases

because of the condition (A.20). The complete proof is omitted here because the rest is the

same as the proof of Lemma A.2.5.

A.2.15 Proof of Theorem 1.6.1

First, it’s obvious that when verification cost 𝑡 is sufficiently high, the verification technology

will never be used. In our analysis, we already show that in any equilibrium 𝑠 that the

verification is used, we must have

𝑘𝑠 = 𝑘𝑣 =
𝜇𝐼2

𝐼 − 𝑡
,

and the data manipulation level is

𝑐𝑣 = 𝐹−1
𝑐

(︂
𝜇𝑡

(1− 𝜇) (𝐼 − 𝑡)

)︂
.

Then the lending market equilibrium variables (𝑘𝑠, 𝜌𝑠, 𝑐𝑠) are uniquely determined whenever

there is verification used in equilibrium. Suppose the disclosure policy is (𝒮, 𝜎̃), then there

is at most one signal 𝑠 under which verification is used. Suppose under 𝑠0 ∈ 𝒮 there is

verification used in equilibrium, and Prob (𝑠0) > 0, then we must have

(𝜋 (𝜌|𝑠0)) ∩
(︂
0,𝑚−1

(︂
𝑘𝑣

𝜇

)︂)︂
= ∅.
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To see this, suppose for the sake of contradiction that

(𝜋 (𝜌|𝑠0)) ∩
(︂
0,𝑚−1

(︂
𝑘𝑣

𝜇

)︂)︂
= 𝐵,

and Prob (𝐵|𝑠0) > 0. It’s clear that lenders will never lend to any borrowers if 𝜌 ∈ 𝐵 in

equilibrium 𝑠0. Then let’s consider a new disclosure policy which keeps everything unchanged

except disclosing whether the true state 𝜌 ∈ 𝐵 or not if the signal realization is 𝑠0 in the

previous policy. It’s clear that if the true state 𝜌 ∈ 𝐵, the regulator’s payoff from these

states is zero under the old policy, and is non-negative under the new policy, so it weakly

improves. The regulator’s payoff from other states are unchanged, because lenders are always

indifferent between verifying types or not under this equilibrium, and thus the regulator’s

payoff will be unchanged from these states. Then the regulator’s payoff weakly increases

under the new policy. Besides, we know that for all 𝑠 ∈ 𝒮∖ {𝑠0}, we have 𝜌𝑠 < 𝑚−1
(︁
𝑘𝑣

𝜇

)︁
.

Then without loss of generality, we can consider the policy such that the signal 𝑠0 reveals if

the true state is above a threshold or not. Formally speaking,

Lemma A.2.7. There exists an optimal disclosure policy (𝒮, 𝜎̃) and a cutoff 𝜌𝑣 such that

(𝜋 (𝜌|𝑠0)) = (𝜌𝑣, 1] ,

and

(𝜋 (𝜌|𝑠)) ⊂ [0, 𝜌𝑣]

for any 𝑠 ∈ 𝒮∖ {𝑠0}, where 𝑠0 is the signal under which verification is used with positive

probability.

Then all signals 𝑠 ∈ 𝒮∖ {𝑠0} can only reveal information about states below 𝜌𝑣. The

following lemma shows that the disclosure policy conditional on 𝒮∖ {𝑠0} is the optimal

disclosure policy when the prior belief is 𝜌 ∼ 𝑈 [0, 𝜌𝑣].

Lemma A.2.8. Suppose (𝒮, 𝜎̃) is an optimal disclosure policy characterized in Lemma

A.2.7, then the disclosure policy (𝒮1, 𝜎̃1) where

𝒮1 = 𝒮∖ {𝑠0}
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and

𝜎̃1 (𝑠|𝜌) = 𝜎̃ (𝑠|𝜌)|𝜌∈[0,𝜌𝑣 ]

is an optimal disclosure policy when the prior 𝜌 ∼ 𝑈 [0, 𝜌𝑣].

The proof of Lemma A.2.8 is intuitive. Suppose (𝒮2, 𝜎̃2) is an optimal disclosure policy

under prior belief 𝜌 ∼ 𝑈 [0, 𝜌𝑣]. If

sup
𝑠∈𝒮

𝜌𝑠 ≤ 𝜌𝑣,

then this optimal disclosure policy is consistent with the constraint of no verification: 𝜌 ≤ 𝜌𝑣,

and thus this is optimal. If

sup
𝑠∈𝒮

𝜌𝑠 > 𝜌𝑣,

then including verification can actually increase the regulator’s payoff from states 𝜌 ∈ [0, 𝜌𝑣],

which means that (𝒮, 𝜎̃) is not optimal, a contradiction!

The last part of the proof is to show that for any cost 𝑡𝑥, if when 𝑡 = 𝑡𝑥, verification

is used with positive probability under the optimal disclosure policy, then verification will

always be used under optimal disclosure policy for any 𝑡 < 𝑡𝑥. This result is straightforward.

Suppose 𝑊𝑁𝑉 is the regulator’s payoff when there is no verification technology available,

and 𝑊𝑉 (𝑡) is regulator’s payoff when verification cost is available and the cost parameter is

𝑡. It’s easy to show that 𝑊𝑉 (𝑡) is decreasing in 𝑡, so if

𝑊𝑉 (𝑡𝑥) > 𝑊𝑁𝑉 ,

we must have

𝑊𝑉 (𝑡) > 𝑊𝑁𝑉

for any 𝑡 < 𝑡𝑥. This means that when 𝑡 is below a threshold (denoted as 𝑡𝑣), verification

will always be used under optimal disclosure. The above observation, together with Lemma

A.2.7 and Lemma A.2.8, complete the proof.
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Appendix B

Appendix: Learning From

Manipulable Signals

B.1 Appendix: Proofs

Remark. Because only the noninvestible type of the agent has an active choice to make,

whenever there is no confusion we simply refer to the “noninvestible-type agent" as the

agent.

B.1.1 Equilibrium Characterization: Toward a Proof of Theorem 2.4.1

To establish Theorem 2.4.1, we use the results that the equilibrium belief process must have

full support (Lemma 2.4.1), and that the principal’s equilibrium strategy must have a cutoff

structure (Lemma 2.4.2). These two lemmas are proved in the Online Appendix. The main

proof characterizes the agent’s (pseudo-)best reply to any cutoff termination rule (Lemma

2.4.3). Finally, we prove equilibrium existence and uniqueness using a fixed point argument.

Proof of Lemma 2.4.3

In light of Lemma 2.4.2, let us fix a cutoff termination rule of the principal. We define a

new state variable 𝑍𝑡 := log 𝑝𝑡
1−𝑝𝑡 , which is a strictly increasing transformation of 𝑝𝑡. Note

that 𝑍𝑡 is defined on (−∞,∞).

Given the principal’s conjecture 𝑎(·) about the agent’s policy function and the agent’s

actual policy function 𝑎̃(·), the law of motion of 𝑝𝑡 is given by (2.7). By Itô’s lemma, the
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law of motion of 𝑍𝑡 is

𝑑𝑍𝑡 =
2 (1− 𝑎𝑡)

[︀
1− 𝑎̃𝑡 − 1

2(1− 𝑎𝑡)
]︀
𝑑𝑡− (1− 𝑎𝑡)𝑑𝐵𝑡. (B.1)

Now, suppose that the principal uses a particular cutoff policy function 𝑏 with cutoff

belief 𝑝* ∈ (0, 1). Suppose also that the noninvestible type’s policy function 𝑎 satisfies the

conditions in Lemma 2.4.3: 𝑎(·) is Lipschitz, sup𝑝∈(0,1) 𝑎(𝑝) < 1, and it satisfies (2.6), i.e.,

𝑎 ∈𝑎̃∈𝒫 𝑉 (𝑝, 𝑎̃, 𝑏; 𝑎); moreover, the resulting 𝑉 (𝑝) = 𝑉 (𝑝, 𝑎(𝑝), 𝑏(𝑝); 𝑎(𝑝)) is regular. For

brevity, we call any 𝑎(·) that satisfies these conditions a pseudo-best reply to

𝑏(·).1 Lipschitz continuity of 𝑎(·) implies that, for any control in 𝒫 or 𝒜, the controlled

process 𝑝𝑡 or 𝑍𝑡 in the agent’s problem always admits a unique strong solution.

Let 𝑍𝑡 be the new state variable and define 𝑣(𝑧) := 𝑉
(︁

𝑒𝑧

1+𝑒𝑧

)︁
and 𝑧* := log 𝑝*

1−𝑝* . Because

we work with 𝑍𝑡 most of the time in this appendix, we will write 𝑎(𝑧) to mean 𝑎
(︁

𝑒𝑧

1+𝑒𝑧

)︁
whenever there is no confusion. The HJB for the agent is2

[𝑟1 + 𝑏(𝑧)𝜆] 𝑣(𝑧) = max
𝑎̃∈[0,1]

𝑟1[𝑢+(1− 𝑎̃)𝑐]+2 [1−𝑎(𝑧)]
[︀
1− 𝑎̃− 1

2
(1− 𝑎(𝑧))

]︀
𝑣′(𝑧)+ 1

2

2
[1−𝑎(𝑧)]2𝑣′′(𝑧). (B.2)

The following sequence of claims establishes some necessary properties of any pseudo-best

reply 𝑎(·).

Claim 1. 𝑎(𝑧) = 1− 𝑟1𝑐
max{𝑟1𝑐,−2𝑣′(𝑧)} , for all 𝑧 ∈ (−∞,∞).

Proof. Since the RHS of (B.2) is affine in the choice variable, optimality requires that, for

almost every 𝑧 ∈ 𝑅,3

𝑎(𝑧)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
= 0, if 𝑟1𝑐+2 [1− 𝑎(𝑧)]𝑣′ > 0

∈ [0, 1] if 𝑟1𝑐+2 [1− 𝑎(𝑧)]𝑣′ = 0

= 1, if 𝑟1𝑐+2 [1− 𝑎(𝑧)]𝑣′ < 0

.

1We call such 𝑎(·) pseudo-best reply because 𝑏(·) by itself does not lead to a well-defined strategy of
the principal; the principal’s interpretation of the observed signal into her posterior belief depends on (her
conjecture of) the agent’s strategy. The equilibrium condition that the principal’s conjecture coincides with
the agent’s actual strategy is imposed as part of the definition of a pseudo-best reply.

2Since 𝑣 is regular, 𝑣 is 𝐶2 except at possibly finite points. This HJB holds on any interval over which 𝑣
is 𝐶2.

3Since sup𝑧∈𝑅 𝑎(𝑧) < 1 by definition of a pseudo-best reply (and by Lemma 2.4.1), the law of motion
(B.1) implies that the distribution of 𝑍𝑡 has full support for any 𝑡 > 0, i.e., supp(𝑍𝑡) = 𝑅, ∀𝑡 > 0.
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This implies that, for almost every 𝑧 ∈ 𝑅, we have

𝑎(𝑧) = 1− 𝑟1𝑐

max {𝑟1𝑐,−2𝑣′(𝑧)}
. (B.3)

Since both sides of (B.3) are continuous in 𝑧 (recall that 𝑎(·) is Lipschitz by assumption,

and 𝑣(·) is 𝐶1 by assumption), we conclude that (B.3) must hold for every 𝑧 ∈ 𝑅.4

Claim 2. Fix any 𝑧1 < 𝑧2 ≤ 𝑧* and suppose that 𝑎(𝑧) = 0 for all 𝑧 ∈ (𝑧1, 𝑧2). Then,

𝑣(𝑧) = 𝑢+ 𝑐+𝐴1𝑒
𝜉𝐿𝑧 +𝐴2𝑒

𝜉′𝐿𝑧,∀𝑧 ∈ (𝑧1, 𝑧2) (B.4)

for some 𝐴1, 𝐴2 ∈ 𝑅, where 𝜉𝐿 > 0 > 𝜉′𝐿 are the two roots of the characteristic equation

𝜉2 + 𝜉 = 2𝑟1/
2.

Proof. Since 𝑏(𝑧) = 0 and 𝑎(𝑧) = 0 for all 𝑧 ∈ (𝑧1, 𝑧2), equation (B.2) becomes

𝑟1𝑣(𝑧) = 𝑟1(𝑢+ 𝑐) +
1

2

2

[𝑣′(𝑧) + 𝑣′′(𝑧)].

It is easy to verify that its general solution is given by (B.4).

Claim 3. Fix any 𝑧* ≤ 𝑧1 < 𝑧2 and suppose that 𝑎(𝑧) = 0 for all 𝑧 ∈ (𝑧1, 𝑧2). Then,

𝑣(𝑧) =
𝑟1

𝑟1 + 𝜆
(𝑢+ 𝑐) +𝐵1𝑒

𝜉𝑅𝑧 +𝐵2𝑒
𝜉′𝑅𝑧, ∀𝑧 ∈ (𝑧1, 𝑧2) (B.5)

for some 𝐵1, 𝐵2 ∈ 𝑅, where 𝜉𝑅 < 0 < 𝜉′𝑅 are the two roots of the characteristic equation

𝜉2 + 𝜉 = 2(𝑟1 + 𝜆)/2.

Proof. Since 𝑏(𝑧) = 1 and 𝑎(𝑧) = 0 for all 𝑧 ∈ (𝑧1, 𝑧2), equation (B.2) becomes

(𝑟1 + 𝜆)𝑣(𝑧) = 𝑟1(𝑢+ 𝑐) +
1

2

2

[𝑣′(𝑧) + 𝑣′′(𝑧)].

It is easy to verify that its general solution is given by (B.5).

Now, let us denote by Φ and 𝜑 the CDF and PDF of the standard normal distribution,

respectively.

4This is because any continuous function that is 0 almost everywhere is equal to 0 everywhere.
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Claim 4. Fix any 𝑧1 < 𝑧2 ≤ 𝑧* and suppose that 𝑎(𝑧) ∈ (0, 1) for all 𝑧 ∈ (𝑧1, 𝑧2). Then,

𝑣(𝑧) = 𝑢+
√
𝜅𝐿Φ

−1(𝐶1𝑒
𝑧 + 𝐶2),∀𝑧 ∈ (𝑧1, 𝑧2) (B.6)

and

𝑎(𝑧) = 1 +

√
2𝑟1 𝜑

(︀
Φ−1(𝐶1𝑒

𝑧 + 𝐶2)
)︀

𝐶1𝑒𝑧
(B.7)

for some 𝐶1 < 0 and 𝐶2 ∈ 𝑅, where 𝜅𝐿 := 𝑟1𝑐2

22
.

Moreover, 𝑎(𝑧) is strictly increasing, or strictly decreasing, or first strictly decreasing

and then strictly increasing on (𝑧1, 𝑧2).

Proof. Fix any 𝑧1 < 𝑧2 ≤ 𝑧* such that 𝑎(𝑧) ∈ (0, 1) for all 𝑧 ∈ (𝑧1, 𝑧2). Claim 1 implies that

𝑎(𝑧) = 1 +
𝑟1𝑐

2𝑣′(𝑧)
, ∀𝑧 ∈ (𝑧1, 𝑧2). (B.8)

Substituting (B.8) into (B.2) and setting 𝑏(𝑧) = 0, we have

𝑣(𝑧) = 𝑢+ 𝜅𝐿
𝑣′′(𝑧)− 𝑣′(𝑧)

𝑣′(𝑧)2
. (B.9)

It is easy to verify that its general solution is given by (B.6), and that the resulting 𝑎(·)

implied by (B.8) is given by (B.7). Moreover, since 𝑎(𝑧) ∈ (0, 1), we must have 𝑣′(𝑧) < 0,

i.e., 𝐶1 < 0.

To analyze the monotonicity of 𝑎(·) on (𝑧1, 𝑧2), we first establish the following equality

which links 𝑎′(𝑧) to 𝑎(𝑧):

1− 𝑎(𝑧)− 𝑎′(𝑧) = 2

(︂
𝑣(𝑧)− 𝑢

𝑐

)︂
. (B.10)

By (B.8),

1− 𝑎(𝑧) = − 𝑟1𝑐
2𝑣′(𝑧)

.

Differentiating this expression, we obtain

−𝑎′(𝑧) = 𝑟1𝑐
2

𝑣′′(𝑧)

𝑣′(𝑧)2
= −𝑣

′′(𝑧)

𝑣′(𝑧)
[1− 𝑎(𝑧)].
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Recall, from the agent’s HJB (B.9) in this case, that

𝑣′′(𝑧)

𝑣′(𝑧)
= 1 +

[𝑣(𝑧)− 𝑢] 𝑣′(𝑧)

𝜅𝐿
= 1− 2

(︂
𝑣(𝑧)− 𝑢

𝑐

)︂
1

1− 𝑎(𝑧)
,

where the second equality follows from (B.8) and 𝜅𝐿 = 𝑟1𝑐2

22
. Equation (B.10) then follows

immediately.

Equation (B.10) implies that

(i) If 𝑎′(𝑧) < 0 for some 𝑧 ∈ (𝑧1, 𝑧2), then 𝑎′(𝑧) < 0 for all 𝑧 ∈ (𝑧1, 𝑧).

(ii) There does not exist an interval 𝐼 ⊆ (𝑧1, 𝑧2) s.t. 𝑎′(𝑧) = 0 for all 𝑧 ∈ 𝐼.

(iii) If 𝑎(𝑧) ≥ 0 for some 𝑧 ∈ (𝑧1, 𝑧2), then 𝑎(·) is strictly increasing on (𝑧, 𝑧2).

To see (i), suppose that 𝑎′(𝑧) < 0 for some 𝑧 ∈ (𝑧1, 𝑧2). Since 𝑎(·) given by (B.7) is a

smooth function on (𝑧1, 𝑧2), we can define 𝑧 = inf
{︀
𝑧 ∈ [𝑧1, 𝑧) : 𝑎

′(·)|(𝑧,𝑧] < 0
}︀
. Result (i) is

proved if 𝑧 = 𝑧1. Suppose (for a contradiction) that 𝑧 > 𝑧1. Continuity of 𝑎′ implies that

𝑎′(𝑧) = 0. Moreover, since 𝑎′(𝑧) < 0 for all 𝑧 ∈ (𝑧, 𝑧], we have 𝑎(𝑧) > 𝑎(𝑧). Then,

2

(︂
𝑣(𝑧)− 𝑢

𝑐

)︂
= 1− 𝑎(𝑧)− 𝑎′(𝑧) < 1− 𝑎(𝑧)− 𝑎′(𝑧) = 2

(︂
𝑣(𝑧)− 𝑢

𝑐

)︂

where the equalities follow from (B.10) and the strict inequality follows from 𝑎(𝑧) > 𝑎(𝑧)

and 𝑎′(𝑧) = 0 > 𝑎′(𝑧). But this is a contradiction to 𝑣(𝑧) > 𝑣(𝑧) because 𝐶1 < 0 and 𝑣 is

strictly decreasing on (𝑧1, 𝑧2).

To see (ii), suppose (for a contradiction) that there exists an interval 𝐼 ⊆ (𝑧1, 𝑧2) s.t.

𝑎′(𝑧) = 0 for all 𝑧 ∈ 𝐼. Then, the LHS of (B.10) is constant on 𝐼 while the RHS is strictly

decreasing, a contradiction.

To see (iii), suppose that 𝑎′(𝑧) ≥ 0 for some 𝑧 ∈ (𝑧1, 𝑧2). Then, we must have 𝑎′(𝑧) ≥ 0

for all 𝑧 ∈ (𝑧, 𝑧2), for otherwise we would reach a contradiction to (i). Further, take any

𝑧3, 𝑧4 s.t. 𝑧 ≤ 𝑧3 < 𝑧4 ≤ 𝑧2. Since 𝑎′(𝑧) ≥ 0, we know that 𝑎(𝑧3) ≤ 𝑎(𝑧4). But this inequality

must be strict, for otherwise 𝑎(𝑧3) = 𝑎(𝑧) = 𝑎(𝑧4) for all 𝑧 ∈ (𝑧3, 𝑧4) contradicting Result

(ii). So, 𝑎(·) is strictly increasing on (𝑧, 𝑧2).

Finally, to establish the monotonicity of 𝑎(·), suppose first that 𝑎′(𝑧) ≥ 0 for all 𝑧 ∈

(𝑧1, 𝑧2). The same argument for (iii) above proves that 𝑎 must be strictly increasing on

(𝑧1, 𝑧2). Suppose now that 𝑎′(𝑧) < 0 for some 𝑧 ∈ (𝑧1, 𝑧2). Let 𝑍 ⊆ (𝑧1, 𝑧2) be the largest
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interval containing 𝑧 s.t. 𝑎′(𝑧) < 0 for all 𝑧 ∈ 𝑍. Result (i) immediately implies that

inf 𝑍 = 𝑧1. If sup𝑍 = 𝑧2, then 𝑎(·) is strictly decreasing on (𝑧1, 𝑧2). If sup𝑍 < 𝑧2,

continuity of 𝑎′ implies that 𝑎′(sup𝑍) = 0. Then, Result (iii) implies that 𝑎(·) is strictly

increasing on (sup𝑍, 𝑧2). In summary, 𝑎(·) is either strictly increasing, or strictly decreasing,

or first strictly decreasing and then strictly increasing on (𝑧1, 𝑧2).

Claim 5. Fix any 𝑧* ≤ 𝑧1 < 𝑧2 and suppose that 𝑎(𝑧) ∈ (0, 1) for all 𝑧 ∈ (𝑧1, 𝑧2). Then,

𝑣(𝑧) =
𝑟1

𝑟1 + 𝜆
𝑢+

√
𝜅𝑅Φ

−1(𝐷1𝑒
𝑧 +𝐷2),∀𝑧 ∈ (𝑧1, 𝑧2) (B.11)

and

𝑎(𝑧) = 1 +

√︀
2(𝑟1 + 𝜆) 𝜑

(︀
Φ−1(𝐷1𝑒

𝑧 +𝐷2)
)︀

𝐷1𝑒𝑧
(B.12)

for some 𝐷1 < 0 and 𝐷2 ∈ 𝑅, where 𝜅𝑅 :=
𝑟21𝑐

2

2(𝑟1+𝜆)2
.

Moreover, 𝑎(𝑧) is strictly increasing, or strictly decreasing, or first strictly decreasing

and then strictly increasing on (𝑧1, 𝑧2).

Proof. The idea of this proof is completely analogous to that of Claim 4. Fix any 𝑧* ≤

𝑧1 < 𝑧2 such that 𝑎(𝑧) ∈ (0, 1) for all 𝑧 ∈ (𝑧1, 𝑧2). In this case, equation (B.8) still holds.

Substituting it into (B.2) and setting 𝑏(𝑧) = 1, we have

𝑣(𝑧) =
𝑟1

𝑟1 + 𝜆
𝑢+ 𝜅𝑅

𝑣′′(𝑧)− 𝑣′(𝑧)

𝑣′(𝑧)2
.

It is easy to verify that its general solution is given by (B.11), and that the resulting 𝑎

implied by (B.8) is given by (B.12). Moreover, since 𝑎(𝑧) ∈ (0, 1), we must have 𝑣′(𝑧) < 0,

i.e., 𝐷1 < 0.

Analogous to (B.10), the following equation links 𝑎(𝑧) to 𝑎′(𝑧) in this case:

1− 𝑎(𝑧)− 𝑎′(𝑧) = 2

(︃
𝑣(𝑧)− 𝑟1

𝑟1+𝜆
𝑢

𝑐

)︃(︂
𝑟1 + 𝜆

𝑟1

)︂
. (B.13)

The proof of equation (B.13) and the monotonicity of 𝑎(·) is along the same lines as in the

proof of Claim 4, and is thus omitted.

Claim 6. If 𝑎(𝑧) > 0, then there are 𝑧𝐿, 𝑧𝑅 such that 𝑧𝐿 < 𝑧 < 𝑧𝑅 and 𝑎(𝑧𝐿) = 𝑎(𝑧𝑅) = 0.
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Proof. Let 𝑎(𝑧) > 0 and suppose, seeking a contradiction, that 𝑎(𝑧) > 0 for all 𝑧 > 𝑧. Then,

for all such 𝑧, we would have (by Claim 1) 𝑣′ (𝑧) = − 𝑟1𝑐
2[1−𝑎(𝑧)] ≤ − 𝑟1𝑐

2 . Taking the limit for

arbitrary large 𝑧, we obtain lim𝑧→+∞ 𝑣 (𝑧) = −∞, a contradiction as 𝑣 is always nonnegative.

Similarly, if 𝑎(𝑧) > 0 for all 𝑧 < 𝑧, then lim𝑧→−∞ 𝑣 (𝑧) = +∞, which contradicts that 𝑣 is

bounded above by 𝑢+ 𝑐.

Claim 7. For any 𝑧1, 𝑧2 such that either 𝑧1 < 𝑧2 ≤ 𝑧* or 𝑧* ≤ 𝑧1 < 𝑧2, 𝑎(𝑧1) = 𝑎(𝑧2) = 0

implies 𝑎(𝑧) = 0 for all 𝑧 ∈ [𝑧1, 𝑧2].

Proof. Fix any 𝑧1 < 𝑧2 ≤ 𝑧* such that 𝑎(𝑧1) = 𝑎(𝑧2) = 0. Suppose (for a contradiction) that

there exists 𝑧 ∈ (𝑧1, 𝑧2) s.t. 𝑎(𝑧) ∈ (0, 1). Let 𝑍 be the largest interval containing 𝑧 such that

𝑎(𝑧) ∈ (0, 1) for all 𝑧 ∈ 𝑍. Obviously, 𝑧1 ≤ inf 𝑍 < sup𝑍 ≤ 𝑧2, and 𝑎(inf 𝑍) = 𝑎(sup𝑍) = 0

because 𝑎(·) is continuous. By Claim 4, 𝑎(·) is strictly increasing, or strictly decreasing,

or first strictly decreasing and then strictly increasing on 𝑍. Since 𝑎(inf 𝑍) = 0, 𝑎(·) can

only be strictly increasing on 𝑍, but this contradicts the continuity of 𝑎(·) at sup𝑍. An

analogous argument which invokes Claim 5 establishes same result for any 𝑧* ≤ 𝑧1 < 𝑧2

such that 𝑎(𝑧1) = 𝑎(𝑧2) = 0.

Corollary B.1.1. One of the following must hold for any pseudo-best reply 𝑎(·):

• 𝑎(𝑧) = 0 for all 𝑧 ∈ 𝑅;

• 𝑎(𝑧) is hump-shaped (and maximized at 𝑧*).

Proof. Suppose that 𝑎(·) is not always equal to 0. Then there exists 𝑧 s.t. 𝑎(𝑧) > 0. Let 𝑍

be the largest interval containing 𝑧 such that 𝑎(𝑧) > 0 for all 𝑧 ∈ 𝑍. Let 𝑧𝐿 = inf 𝑍 and

𝑧𝑅 = sup𝑍. By Claim 6, −∞ < 𝑧𝐿 < 𝑧𝑅 < ∞. By continuity of 𝑎, 𝑎(𝑧𝐿) = 𝑎(𝑧𝑅) = 0.

Then we must have 𝑧* ∈ (𝑧𝐿, 𝑧𝑅), for otherwise we would reach a contradiction to Claim

7. Moreover, for any 𝑧 ∈ (𝑧𝐿, 𝑧𝑅)
𝑐, we must have 𝑎(𝑧) = 0, for otherwise we can construct

another 𝑍 ′ which also contains 𝑧* such that 𝑍 ′ −𝑍 ̸= ∅, contradicting the maximality of 𝑍.

Since 𝑎(𝑧𝐿) = 0, Claim 4 implies that 𝑎(·) must be strictly increasing on (𝑧𝐿, 𝑧
*). Similarly,

since 𝑎(𝑧𝑅) = 0, Claim 5 implies that 𝑎 must be strictly decreasing on (𝑧*, 𝑧𝑅).

In summary, if 𝑎(·) is not always equal to 0, then there exist 𝑧𝐿 < 𝑧𝑅 s.t. 𝑎(·) = 0 on

(−∞, 𝑧𝐿)∪ (𝑧𝑅,∞), 𝑎(·) is strictly increasing on (𝑧𝐿, 𝑧
*), and strictly decreasing on (𝑧*, 𝑧𝑅);

that is, 𝑎(·) is hump-shaped and maximized at 𝑧*.
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Claim 8. 𝑎(·) is hump-shaped if and only if 𝑟1 < 𝑟*, where 𝑟* is the unique solution to

(2.2).

Proof. (“Only if" part) Suppose first that 𝑎(·) is hump-shaped. We will show that this

implies 𝑟1 < 𝑟*. By Definition 2.4.3, there exist 𝑧𝐿, 𝑧𝑅 s.t. −∞ < 𝑧𝐿 < 𝑧* < 𝑧𝑅 < ∞ such

that 𝑎(𝑧) = 0 on (−∞, 𝑧𝐿] ∪ [𝑧𝑅,∞) and 𝑎(𝑧) ∈ (0, 1) on (𝑧𝐿, 𝑧𝑅). Let

𝑣* := 𝑣(𝑧*), 𝑣𝐿 := 𝑣(𝑧𝐿), 𝑣𝑅 := 𝑣(𝑧𝑅).

We now calculate the undetermined coefficients in Claims 2 to 5 in various parts of the

agent’s policy and value, as functions of 𝑣* and model parameters. First, consider 𝑧 < 𝑧*. As

𝑧 → −∞, the agent’s value function is given in Claim 2 by (B.4). Because 𝑣(·) is bounded,

we must have

𝐴2 = 0. (B.14)

Note that Claim 1 implies that 𝑟1𝑐 = −2𝑣′(𝑧𝐿), that is, 𝑣′(𝑧𝐿) = − 𝑟1𝑐
2 . By Claims 2 and

4, the value function 𝑣(·) must satisfy the following value-matching and smooth-pasting

conditions at 𝑧𝐿 and 𝑧*:

𝑢+ 𝑐+𝐴1𝑒
𝜉𝐿𝑧𝐿 = 𝑣𝐿, (value-matching at 𝑧𝐿)

𝑢+
√
𝜅𝐿Φ

−1 (𝐶1𝑒
𝑧𝐿 + 𝐶2) = 𝑣𝐿, (value-matching at 𝑧𝐿)

𝑢+
√
𝜅𝐿Φ

−1
(︁
𝐶1𝑒

𝑧* + 𝐶2

)︁
= 𝑣*, (value-matching at 𝑧*)

𝐴1𝜉𝐿𝑒
𝜉𝐿𝑧𝐿 = − 𝑟1𝑐

2 , (smooth-pasting at 𝑧𝐿)
√
𝜅𝐿𝐶1𝑒

𝑧𝐿

𝜑
(︁

𝑣𝐿−𝑢
√
𝜅𝐿

)︁ = − 𝑟1𝑐
2 . (smooth-pasting at 𝑧𝐿)

These five conditions can uniquely pin down the undetermined vector (𝑣𝐿, 𝑧𝐿, 𝐴1, 𝐶1, 𝐶2)
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as:

𝑣𝐿 = 𝑢+ 𝑐− 𝑟1𝑐

𝜉2𝐿
, (B.15)

𝑒𝑧𝐿 = 𝑒𝑧
*

⎡⎣ √
2𝑟1𝜑

(︁
𝑣𝐿−𝑢√
𝜅𝐿

)︁
√
2𝑟1𝜑

(︁
𝑣𝐿−𝑢√
𝜅𝐿

)︁
+Φ

(︁
𝑣𝐿−𝑢√
𝜅𝐿

)︁
− Φ

(︁
𝑣*−𝑢√
𝜅𝐿

)︁
⎤⎦ , (B.16)

𝐴1 = −𝑟1𝑐
𝜉2𝐿
𝑒−𝜉𝐿𝑧𝐿 (B.17)

𝐶1 = 𝑒−𝑧
*
[︂
Φ

(︂
𝑣* − 𝑢
√
𝜅𝐿

)︂
− Φ

(︂
𝑣𝐿 − 𝑢
√
𝜅𝐿

)︂
−

√
2𝑟1

𝜑

(︂
𝑣𝐿 − 𝑢
√
𝜅𝐿

)︂]︂
, (B.18)

𝐶2 = Φ

(︂
𝑣𝐿 − 𝑢
√
𝜅𝐿

)︂
+

√
2𝑟1

𝜑

(︂
𝑣𝐿 − 𝑢
√
𝜅𝐿

)︂
. (B.19)

Now, consider 𝑧 > 𝑧*. As 𝑧 → ∞, the agent’s value function is given in Claim 3 by

(B.5). Because 𝑣(·) is bounded, we must have

𝐵2 = 0. (B.20)

Note that Claim 1 implies that 𝑟1𝑐 = −2𝑣′(𝑧𝑅), that is, 𝑣′(𝑧𝑅) = − 𝑟1𝑐
2 . By Claims 3 and

5, the value function 𝑣(·) must satisfy the following value-matching and smooth-pasting

conditions at 𝑧𝑅 and 𝑧*:

(𝑢+ 𝑐)
𝑟1

𝑟1 + 𝜆
+𝐵1𝑒

𝜉𝑅𝑧𝑅 = 𝑣𝑅, (value-matching at 𝑧𝑅)

𝑟1
𝑟1+𝜆

𝑢+
√
𝜅𝑅Φ

−1 (𝐷1𝑒
𝑧𝑅 +𝐷2) = 𝑣𝑅, (value-matching at 𝑧𝑅)

𝑟1
𝑟1+𝜆

𝑢+
√
𝜅𝑅Φ

−1
(︁
𝐷1𝑒

𝑧* +𝐷2

)︁
= 𝑣*, (value-matching at 𝑧*)

𝐵1𝜉𝑅𝑒
𝜉𝑅𝑧𝑅 = − 𝑟1𝑐

2 , (smooth-pasting at 𝑧𝑅)
√
𝜅𝑅𝐷1𝑒

𝑧𝑅

𝜑

(︃
𝑣(𝑧𝑅)−

𝑟1
𝑟1+𝜆

𝑢
√
𝜅𝑅

)︃ = − 𝑟1𝑐
2 . (smooth-pasting at 𝑧𝑅)

These five conditions can uniquely pin down the undetermined vector (𝑣𝑅, 𝑧𝑅, 𝐵1, 𝐷1, 𝐷2)
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as:

𝑣𝑅 =
𝑟1

𝑟1 + 𝜆
(𝑢+ 𝑐)− 𝑟1𝑐

𝜉2𝑅
, (B.21)

𝑒𝑧𝑅 = 𝑒𝑧
*

⎡⎢⎢⎣
√

2(𝑟1+𝜆)𝜑

(︂
𝑣𝑅− 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

)︂
√

2(𝑟1+𝜆)𝜑

(︂
𝑣𝑅− 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

)︂
+Φ

(︂
𝑣𝑅− 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

)︂
− Φ

(︂
𝑣*− 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

)︂
⎤⎥⎥⎦ , (B.22)

𝐵1 = −𝑟1𝑐
𝜉2𝑅

𝑒−𝜉𝑅𝑧𝑅 , (B.23)

𝐷1 = 𝑒−𝑧
*

[︃
Φ

(︂
𝑣* − 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

)︂
− Φ

(︂
𝑣𝑅 − 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

)︂
−
√︀

2 (𝑟1 + 𝜆)
𝜑

(︂
𝑣𝑅 − 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

)︂]︃
,

(B.24)

𝐷2 = Φ

(︂
𝑣𝑅 − 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

)︂
+

√︀
2 (𝑟1 + 𝜆)

𝜑

(︂
𝑣𝑅 − 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

)︂
. (B.25)

Given 𝑣* and model parameters, equations (B.4) through (B.7), (B.11) and (B.12) with

coefficients given by (B.14) through (B.25) fully determine the agent’s policy function 𝑎(·)

and his value function 𝑣(·) on 𝑅. Since 𝑎(𝑧) ∈ (0, 1) on (𝑧𝐿, 𝑧𝑅), Claim 1 implies that

𝑣′(𝑧) < 0 on (𝑧𝐿, 𝑧𝑅), which in turn implies that 𝑣𝐿 > 𝑣𝑅. Note that 𝑣𝐿 and 𝑣𝑅 are given by

(B.15) and (B.21), both of which are independent of 𝑣*. In particular, 𝑣𝐿 > 𝑣𝑅 amounts to

𝑢+ 𝑐− 𝑟1𝑐
𝜉2𝐿

> 𝑟1
𝑟1+𝜆

(𝑢+ 𝑐)− 𝑟1𝑐
𝜉2𝑅

. Straightforward calculation shows that this is equivalent to

𝑟1(
√︀
1 + 8𝑟1/2 +

√︀
1 + 8(𝑟1 + 𝜆)/2) + 𝜆(

√︀
1 + 8𝑟1/2 + 1) < 4𝜆

(︀
𝑢
𝑐 + 1

)︀
,

that is, 𝑟1 < 𝑟* (see condition (2.2)). Therefore, we have shown that “𝑎(·) is hump-shaped ⇒

𝑟1 < 𝑟*", so the “only if" part of the claim is proved.

(“If" part) Suppose now that 𝑎(·) is not hump-shaped. We will show that this implies

𝑟1 ≥ 𝑟*. By Corollary B.1.1, we know that 𝑎(𝑧) = 0 for all 𝑧 ∈ 𝑅. Then, by Claims 2

and 3, 𝑣(·) is given by (B.4) for 𝑧 < 𝑧* and by (B.5) for 𝑧 > 𝑧*. We now pin down the

undetermined coefficients (𝐴1, 𝐴2, 𝐵1, 𝐵2) as functions of model parameters. Since 𝑣(·) is

bounded as 𝑧 → −∞ or 𝑧 → +∞, we must have

𝐴2 = 0, (B.26)

𝐵2 = 0. (B.27)
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Also, the value function 𝑣(·) must satisfy the following value-matching and smooth-pasting

condition at 𝑧*:

𝑢+ 𝑐+𝐴1𝑒
𝜉𝐿𝑧

*
= 𝑟1

𝑟1+𝜆
(𝑢+ 𝑐) +𝐵1𝑒

𝜉𝑅𝑧
*
, (value-matching at 𝑧*)

𝐴1𝜉𝐿𝑒
𝜉𝐿𝑧

*
= 𝐵1𝜉𝑅𝑒

𝜉𝑅𝑧
*
. (smooth-pasting at 𝑧*)

These two conditions uniquely pin down (𝐴1, 𝐵1) as:

𝐴1 =
𝜉𝑅

𝜉𝐿−𝜉𝑅
𝜆

𝑟1+𝜆
(𝑢+ 𝑐)𝑒−𝜉𝐿𝑧

*
, (B.28)

𝐵1 =
𝜉𝐿

𝜉𝐿−𝜉𝑅
𝜆

𝑟1+𝜆
(𝑢+ 𝑐)𝑒−𝜉𝑅𝑧

*
. (B.29)

Since 𝑎(𝑧) = 0 for all 𝑧 ∈ 𝑅, by Claim 1 we must have 𝑟1𝑐 ≥ −2𝑣′(𝑧) for all 𝑧 ∈ 𝑅. In

particular, this should hold at 𝑧*: 𝑟1𝑐 ≥ − 𝜉𝑅𝜉𝐿
𝜉𝐿−𝜉𝑅

𝜆
𝑟1+𝜆

(𝑢 + 𝑐)2. Straightforward calculation

shows that this is equivalent to

𝑟1(
√︀
1 + 8𝑟1/2 +

√︀
1 + 8(𝑟1 + 𝜆)/2) + 𝜆(

√︀
1 + 8𝑟1/2 + 1) ≥ 4𝜆

(︀
𝑢
𝑐 + 1

)︀
,

that is, 𝑟1 ≥ 𝑟* (see condition (2.2)). Therefore, we have shown that

“𝑎(·) is not hump-shaped ⇒ 𝑟1 ≥ 𝑟*",

so the “if" part of the claim is also proved.

In Claim 8, we find that if 𝑟1 < 𝑟*, then 𝑎(·) is hump-shaped, in which case we can

express all coefficients and cutoffs in the agent’s policy and value functions in closed form

with respect to 𝑣* := 𝑣(𝑧*) and model parameters. However, 𝑣* itself is an endogenous

object that needs to be determined. Our next claim, proved in the Online Appendix, paves

the final way for establishing Lemma 2.4.3.

Claim 9. Suppose that 𝑟1 < 𝑟*, and let 𝑣𝐿 and 𝑣𝑅 be given by (B.15) and (B.21), respec-
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tively. Define 𝑎*−, 𝑎*+ : [𝑣𝑅, 𝑣𝐿] → 𝑅 by

𝑎*−(𝑥) := 1−

√
2𝑟1𝜑

(︁
𝑥−𝑢√
𝜅𝐿

)︁
√
2𝑟1𝜑

(︁
𝑣𝐿−𝑢√
𝜅𝐿

)︁
+Φ

(︁
𝑣𝐿−𝑢√
𝜅𝐿

)︁
− Φ

(︁
𝑥−𝑢√
𝜅𝐿

)︁ , (B.30)

𝑎*+(𝑥) := 1−

√
2(𝑟1+𝜆)𝜑

(︂
𝑥− 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

)︂
√

2(𝑟1+𝜆)𝜑

(︂
𝑣𝑅− 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

)︂
+Φ

(︂
𝑣𝑅− 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

)︂
− Φ

(︂
𝑥− 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

)︂ . (B.31)

Then, 𝑎*−(·) is strictly decreasing on [𝑣𝑅, 𝑣𝐿] with 𝑎*−(𝑣𝑅) ∈ (0, 1) and 𝑎*−(𝑣𝐿) = 0; 𝑎*+(·) is

strictly increasing on [𝑣𝑅, 𝑣𝐿] with 𝑎*+(𝑣𝑅) = 0 and 𝑎*+(𝑣𝐿) ∈ (0, 1).

Proof. See Online Appendix.

Proof of Lemma 2.4.3. Suppose first that 𝑟1 ≥ 𝑟*. By Corollary B.1.1 and Claim 8, any

pseudo-best reply 𝑎(·) must be such that 𝑎(𝑧) = 0 for all 𝑧 ∈ 𝑅. Obviously, such function is

unique. To verify that 𝑎(𝑧) = 0 for all 𝑧 ∈ 𝑅 is indeed a solution to (2.6), note that we have

shown in the proof of Claim 8 that, together with the 𝑣(·) given by (B.4) and (B.5) and

the coefficients given by (B.26) through (B.29), it satisfies the agent’s HJB equation (B.2).5

Since 𝑣(·) is bounded, we have lim𝑡→∞ 𝑒−𝑟1𝑡𝐸
[︀
𝑣 (𝑧𝑡) 1{𝜏≥𝑡}

]︀
= 0, where 𝜏 is the stopping

time when the relationship is terminated. Then by Ross (2008, Theorem 3.3.5), 𝑎(𝑧) = 1

for all 𝑧 ∈ 𝑅 is indeed a solution to (2.6). In addition, 𝑣(·) is regular because the functions

given by (B.4) and (B.5) are smooth, and value-matching and smooth-pasting conditions

are imposed at 𝑧*.

Suppose now that 𝑟1 < 𝑟*. By Claim 8, any psuedo-best reply 𝑎(·) is hump-shaped. We

first show that such function, if it exists, must be unique. By Claims 2 to 5 and the proof of

the “only if" part of Claim 8, such a policy function and the associated value function must

satisfy (B.4) through (B.7), (B.11) and (B.12) with coefficients given by (B.14) through

(B.25), given the value 𝑣* := 𝑣(𝑧*).

Recall that the functions 𝑎*− and 𝑎*+ are defined in (B.30) and (B.31), respectively.

By Claim 4 and equations (B.18) and (B.19), it is easy to verify that lim𝑧↑𝑧* 𝑎(𝑧; 𝑣
*) =

𝑎*−(𝑣
*). Similarly, by Claim 5 and equations (B.24) and (B.25), it is easy to verify that

5Everywhere except at 𝑧* where 𝑣′′ does not exist.
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lim𝑧↓𝑧* 𝑎(𝑧; 𝑣
*) = 𝑎*+(𝑣

*). Since 𝑎(·) is continuous at 𝑧*, 𝑣* must satisfy

𝑎*−(𝑣
*) = 𝑎*+(𝑣

*). (B.32)

By Claim 9, there is a unique 𝑣* ∈ (𝑣𝑅, 𝑣𝐿) satisfying (B.32), rendering the unique (candi-

date) policy function. Finally, take such unique 𝑣*, and let 𝑎(·) and 𝑣(·) be defined by (B.4)

through (B.7), (B.11) and (B.12) with coefficients given by (B.14) through (B.25). Exactly

the same verification argument as in the case of 𝑟1 ≥ 𝑟* confirms that 𝑎(·) indeed solves

(2.6). In addition, 𝑣(·) is regular because the functions given by (B.4), (B.5), (B.6) and

(B.11) are smooth, and value-matching and smooth-pasting conditions are imposed at 𝑧𝐿,

𝑧* and 𝑧𝑅.

Proof of Theorem 2.4.1

Lemmas 2.4.2 and 2.4.3 establish the unique structure of Markov equilibria. To prove The-

orem 2.4.1, we still need an argument for equilibrium existence and uniqueness.

Proof of Theorem 2.4.1. Suppose first that 𝑟1 ≥ 𝑟*. By Lemma 2.4.3, the agent’s pseudo-

best reply to any cutoff termination rule satisfies that 𝑎(𝑝) = 0 for all 𝑝 ∈ (0, 1). In fact,

the verification theorem we invoke in proving Lemma 2.4.3 tells us that such 𝑎(·) satisfies

the agent’s optimality condition (2.6) in a stronger sense, even if we allow him to maximize

over all strategies in 𝒜 instead of over Markov controls in 𝒫. On the other hand, given this

Markovian strategy of the agent under which the belief span is (0, 1), the proof of Lemma

2.4.2 (in the Online Appendix) can be used verbatim to show that the principal has a unique

best reply whose policy function 𝑏 admits a cutoff 𝑝* ∈ (0, 1). Hence, such (𝑎, 𝑏) is the unique

Markov equilibrium in this case.

Suppose now that 𝑟1 < 𝑟*. Lemmas 2.4.2 and 2.4.3 imply that any Markov equilibrium

(𝑎, 𝑏) must be such that 𝑎 is hump-shaped and 𝑏 has a cutoff structure. We now show that

there exists a unique Markov equilibrium.

To show that a Markov equilibrium exists, note that the pseudo-best reply of the nonin-

vestible agent can be described by a function 𝜙1 that maps a conjecture 𝑝* about the cutoff

𝑝* used by the principal into a policy function 𝑎(·) defined on (0,1), the probability-domain

version of the policy function in 𝑧−space constructed in Claim 8’s proof. The function 𝜙1
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is continuous.6 Moreover, the best reply of the principal can be described by a function 𝜙2

that maps any Markov strategy 𝛼 of the noninvestible agent into a unique cutoff 𝑝*, and

Lemma 2.4.2 also tells us that 𝑝* ∈ [𝑝**, 𝑝𝐻 ] ⊂ (0, 1).7

Define the composition 𝜙 := 𝜙2 · 𝜙1 that maps each conjecture 𝑝* into the associated

optimal cutoff 𝑝*.8 The mapping 𝜙 satisfies

𝜙(𝑝*) =𝑝′∈[𝑝**,𝑝𝐻 ] 𝑀̂(𝑝, 𝑝′, 𝑝*),

where

𝑀̂(𝑝, 𝑝′, 𝑝*) := 𝑟2

∫︁ +∞

0

∫︁ 1

𝑝′
𝑒−𝑟2𝑡𝑅(𝑞)𝑑Γ (𝑡, 𝑞|𝑝*, 𝑝)

and Γ is the joint probability measure of getting the first Poisson shock in the stopping

region [𝑝′, 1) at time 𝑡 and state 𝑝, when the prior belief at time zero is 𝑝. Notice that 𝜙(𝑝*)

is the unique solution to this maximization problem and is independent of the prior due

to its Markovian nature. Moreover, 𝑀̂(𝑝, 𝑝′, 𝑝*) is jointly continuous in (𝑝′, 𝑝*). Since the

choice space is compact and the objective is continuous in both the choice variable 𝑝′ and

the “parameter” 𝑝*, the Maximum Theorem implies that 𝜙 is continuous.

Since 𝜙 is a continuous function mapping from (0, 1) to [𝑝**, 𝑝𝐻 ] such that

lim inf
𝑝→0

[𝜙(𝑝)− 𝑝] ≥ 𝑝** > 0

and

lim sup
𝑝→1

[𝜙(𝑝)− 𝑝] ≤ 𝑝𝐻 − 1 < 0,

the intermediate value theorem implies that there must be 𝑝* ∈ (0, 1) such that 𝜙(𝑝*) =

𝑝*. Taking any such 𝑝*, it is easy to verify that
(︀
𝑎* := 𝜙1(𝑝

*), 𝑏* := 1{𝑝𝑡≥𝑝*}
)︀

represents a

Markov equilibrium. This proves equilibrium existence.

To show that the Markov equilibrium is unique, let (𝑎, 𝑏) be a Markov equilibrium in

which the principal uses a threshold 𝑝*, associated with a likelihood 𝑧*. Consider the payoff

6This follows from Lemma OA.1 in the Online Appendix, i.e., the translation invariance of the agent’s
problem.

7Lemma 2.4.2 is stated for an equilibrium. However, its proof is applicable to the principal’s best reply
to any Markovian strategy of the agent.

8Note that 𝑆𝑃 [𝜙1(𝑝
*)] = (0, 1) for all 𝑝* ∈ (0, 1), because the pseudo-best reply delivered by Lemma

2.4.3 (derived in Claim 8’s proof) is always bounded away from 1 by a positive number and thus the diffusion
coefficient of the belief process is bounded away from 0.
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of the principal when deviating to a different threshold 𝑧′ when the state is 𝑧.

𝑀(𝑧, 𝑧′, 𝑧*) := 𝑝(𝑧)𝐸
{︁
𝑒−𝑟2𝑇𝑁𝐼(𝑧,𝑧

′,𝑧*)
}︁
𝑤𝑁𝐼 + (1− 𝑝(𝑧))𝐸

{︁
𝑒−𝑟2𝑇𝐼(𝑧,𝑧

′,𝑧*)
}︁
𝑤𝐼 ,

where 𝑇𝜃(𝑧, 𝑧′, 𝑧*) is the random time of occurrence of the first Poisson shock that arrives

while the state lies in the stopping interval [𝑧′,+∞), provided the initial state is 𝑧 and the

dynamics is conditioned on type 𝜃 ∈ {𝐼,𝑁𝐼}. By the conditional translation invariance

property proved in Lemma OA.2 of the Online Appendix,

𝐸
{︁
𝑒−𝑟2𝑇𝜃(𝑧,𝑧

′,𝑧*)
}︁
= 𝐸

{︁
𝑒−𝑟2𝑇𝜃(0,𝑧

′−𝑧,𝑧*−𝑧)
}︁

for all 𝑧, 𝑧′, 𝑧* ∈ 𝑅. The FOC of the principal is

𝜕𝑀(𝑧, 𝑧′, 𝑧*)

𝜕𝑧′
= 𝑝(𝑧)𝐷𝑁𝐼(𝑧, 𝑧

′, 𝑧*)𝑤𝑁𝐼 + (1− 𝑝(𝑧))𝐷𝐼(𝑧, 𝑧
′, 𝑧*)𝑤𝐼 = 0,

where we define 𝐷𝜃(𝑧, 𝑧
′, 𝑧*) :=

𝜕𝐸
{︁
𝑒−𝑟2𝑇𝜃(𝑧,𝑧

′,𝑧*)
}︁

𝜕𝑧′ for each 𝜃 ∈ {𝐼,𝑁𝐼}, 𝑧, 𝑧′, 𝑧* ∈ 𝑅.

Note that this condition should hold for every 𝑧 ∈ 𝑅. In equilibrium, the principal’s

choice of 𝑧′ must coincide with 𝑧*, so the FOC becomes: 𝑝(𝑧)𝐷𝑁𝐼(𝑧, 𝑧
*, 𝑧*)𝑤𝑁𝐼 + (1 −

𝑝(𝑧))𝐷𝐼(𝑧, 𝑧
*, 𝑧*)𝑤𝐼 = 0, which can be rewritten as:

𝑝(𝑧) =
𝐷𝐶(𝑧, 𝑧

*, 𝑧*)𝑤𝐶
𝐷𝐶(𝑧, 𝑧*, 𝑧*)𝑤𝐶 −𝐷𝑆(𝑧, 𝑧*, 𝑧*)𝑤𝑆

.

Evaluating the limit from below as 𝑧 ↑ 𝑧*, we have

𝑝* = 𝑝(𝑧*) =
𝐷𝐶(𝑧

*, 𝑧*, 𝑧*)𝑤𝐶
𝐷𝐶(𝑧*, 𝑧*, 𝑧*)𝑤𝐶 −𝐷𝑆(𝑧*, 𝑧*, 𝑧*)𝑤𝑆

=
𝐷𝐶(0, 0, 0)𝑤𝐶

𝐷𝐶(0, 0, 0)𝑤𝐶 −𝐷𝑆(0, 0, 0)𝑤𝑆
,

where the last equality follows from Lemma OA.2 in the Online Appeneix, i.e., the condi-

tional translation invariance of the principal’s payoff function. Since the RHS is independent

of 𝑝*, we conclude that there can be at most one value 𝑝* consistent with a Markov equilib-

rium, establishing the uniqueness claim.

Corollary B.1.2. The following hold:
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1. 𝑊 (·) is (weakly) increasing, nonnegative and convex on (0, 1), and it satisfies

lim
𝑝→0

𝑊 (𝑝) = 0

and

lim
𝑝→1

𝑊 (𝑝) =
𝜆

𝑟2 + 𝜆
𝑤𝑁𝐼 .

2. 𝑣(·) is strictly decreasing on 𝑅, and it satisfies

lim
𝑧→−∞

𝑣(𝑧) = 𝑢+ 𝑐

and

lim
𝑧→∞

𝑣(𝑧) =
𝑟1

𝑟1 + 𝜆
(𝑢+ 𝑐).

Moreover, 𝑣(·) is concave on (−∞, 𝑧*) and convex on (𝑧*,∞).

Proof. See Online Appendix.

B.1.2 Expected Performance: Toward a Proof of Theorem 2.5.1

In this section, we prove Theorem 2.5.1 which is about the non-monotonicity of the expected

performance.

Given a Markov equilibrium (𝑎, 𝑏) (where the equilibrium policy functions are defined on

the 𝑧−space), let 𝑣 be the agent’s value function, 𝑧* be the principal’s termination cutoff,

and recall that the agent’s expected performance is given by

𝐸𝑃 (𝑧) = [1− (1− 𝑎(𝑧))𝑝(𝑧)] , (B.33)

where 𝑝(𝑧) = 𝑒𝑧

1+𝑒𝑧 . Our analysis in this section fixes all model parameters, except 𝑟1 and/or

𝜆.9

Lemma B.1.1. If 𝑟1 ≥ 𝑟*, then 𝐸𝑃 (·) is strictly decreasing on 𝑅. If 𝑟1 < 𝑟*, then either

𝐸𝑃 (·) is strictly decreasing on 𝑅, or 𝐸𝑃 (·) is

• strictly decreasing for 𝑧 < 𝑧, where 𝑧 is some number in [𝑧𝐿, 𝑧
*);

9In Section 2.5, we defined 𝐸𝑃𝑡 = 𝜇 [1− (1− 𝑎𝑡)𝑝𝑡]. To ease notation, here we divide the original
expression by 𝜎, which is completely equivalent because for this exercise 𝜇 and 𝜎 are fixed numbers.
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• strictly increasing for 𝑧 ∈ (𝑧, 𝑧*);

• strictly decreasing for 𝑧 > 𝑧*.

Proof. If 𝑟1 ≥ 𝑟*, Theorem 2.4.1 tells us that 𝑎(𝑧) = 0 for all 𝑧 ∈ 𝑅. Thus, 𝐸𝑃 (𝑧) =

[1− 𝑝(𝑧)], which is strictly decreasing on 𝑅.

If 𝑟1 < 𝑟*, by Theorem 2.4.1 the agent’s equilibrium policy function 𝑎 is hump-shaped,

with cutoffs denoted by 𝑧𝐿 and 𝑧𝑅 such that 𝑎(𝑧) > 0 if and only if 𝑧 ∈ (𝑧𝐿, 𝑧𝑅). Obvi-

ously, 𝐸𝑃 (·) is strictly decreasing on (−∞, 𝑧𝐿) and on (𝑧*,∞), because on each of these

intervals 𝑎(·) is weakly decreasing and 𝑝(·) is strictly increasing in 𝑧. We now focus on the

monotonicity of 𝐸𝑃 (·) on (𝑧𝐿, 𝑧
*).

First, analogous to (B.10), we establish the following equality which links 𝐸𝑃 (𝑧) to

𝐸𝑃 ′(𝑧):

− 𝐸𝑃 (𝑧)− 𝐸𝑃 ′(𝑧)

𝑝(𝑧)
= 2

(︂
𝑣(𝑧)− 𝑢

𝑐

)︂
. (B.34)

To see this, note first that since 𝑎(𝑧) > 0 on (𝑧𝐿, 𝑧
*), by equation (B.33) and Claim 1 we

have

− 𝐸𝑃 (𝑧) = [1− 𝑎(𝑧)]𝑝(𝑧) = −𝑟1𝑐 𝑝(𝑧)
𝑣′(𝑧)

. (B.35)

Differentiating this expression, we obtain

−𝐸𝑃 ′(𝑧) = −𝑟1𝑐
(︂
−𝑣

′′(𝑧)𝑝(𝑧)

𝑣′(𝑧)2
+
𝑝(𝑧)[1− 𝑝(𝑧)]

𝑣′(𝑧)

)︂
= [1− 𝑎(𝑧)]𝑝(𝑧)

(︂
−𝑣

′′(𝑧)

𝑣′(𝑧)
+ 1− 𝑝(𝑧)

)︂
.

where the first equality follows from 𝑝′(𝑧) = 𝑝(𝑧)[1 − 𝑝(𝑧)] and the second equality follows

from (B.35). Recall, from the agent’s HJB (B.9) in this case, that

𝑣′′(𝑧)

𝑣′(𝑧)
= 1 +

[𝑣(𝑧)− 𝑢] 𝑣′(𝑧)

𝜅𝐿
= 1− 2

(︂
𝑣(𝑧)− 𝑢

𝑐

)︂
1

1− 𝑎(𝑧)
,

where the second equality follows from Claim 1 and 𝜅𝐿 = 𝑟1𝑐2

22
. Thus,

−𝐸𝑃
′(𝑧)

𝑝(𝑧)
= [1− 𝑎(𝑧)]

[︂
2

(︂
𝑣(𝑧)− 𝑢

𝑐

)︂
1

1− 𝑎(𝑧)
− 𝑝(𝑧)

]︂
= 2

(︂
𝑣(𝑧)− 𝑢

𝑐

)︂
− [1− 𝑎(𝑧)]𝑝(𝑧)

= 2

(︂
𝑣(𝑧)− 𝑢

𝑐

)︂
− [−𝐸𝑃 (𝑧)] ,
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where the last equality follows from (B.35). Equation (B.34) then follows immediately.

From equation (B.34), we can apply the same argument as that after equation (B.10)

to show that 𝐸𝑃 (·) must be either strictly increasing, or strictly decreasing, or first strictly

decreasing and then strictly increasing on (𝑧𝐿, 𝑧
*), a property that echoes what we have

shown for the policy function 𝑎(·) in Claim 4. Since we know that 𝐸𝑃 (·) is strictly decreasing

on (−∞, 𝑧𝐿) and on (𝑧*,∞), the result in the lemma follows.

Corollary B.1.3. 𝐸𝑃 (·) is non-monotone if and only if 𝑟1 < 𝑟* and 𝐸𝑃 ′
−(𝑧

*) > 0.

Lemma B.1.2. 𝐸𝑃 (·) is non-monotone if and only if 𝑟1 < 𝑟* and [1 − 𝑎(𝑧*)]𝑝(𝑧*) >

2
(︀
𝑣*−𝑢
𝑐

)︀
, where 𝑣* := 𝑣(𝑧*).

Proof. Since 𝑎(𝑧) > 0 on (𝑧𝐿, 𝑧
*], by Claim 1 and equation (B.6) we have

1− 𝑎(𝑧) = − 𝑟1𝑐
2𝑣′(𝑧)

∝
𝜑
(︁
𝑣(𝑧)−𝑢√

𝜅𝐿

)︁
𝑒𝑧

, ∀𝑧 ∈ (𝑧𝐿, 𝑧
*]. (B.36)

Then,

𝐸𝑃 ′
−(𝑧

*) > 0

⇐⇒ 𝑑
𝑑𝑧 [(1− 𝑎(𝑧))𝑝(𝑧)]

⃒⃒
𝑧=𝑧*−

< 0 (by (B.33))

⇐⇒ −𝑎′(𝑧)𝑝(𝑧) + [1− 𝑎(𝑧)]𝑝(𝑧)[1− 𝑝(𝑧)]
⃒⃒
𝑧=𝑧*−

< 0 (because 𝑝′(𝑧) = 𝑝(𝑧)[1− 𝑝(𝑧)])

⇐⇒ [1− 𝑎(𝑧)]𝑝(𝑧)
[︁
− 𝑎′(𝑧)

1−𝑎(𝑧) + 1− 𝑝(𝑧)
]︁⃒⃒⃒
𝑧=𝑧*−

< 0

⇐⇒ [1− 𝑎(𝑧)]𝑝(𝑧)
[︁
𝑑 ln[1−𝑎(𝑧)]

𝑑𝑧 + 1− 𝑝(𝑧)
]︁⃒⃒⃒
𝑧=𝑧*−

< 0

⇐⇒ 𝑑 ln[1−𝑎(𝑧)]
𝑑𝑧 + 1− 𝑝(𝑧)

⃒⃒⃒
𝑧=𝑧*−

< 0 (because 𝑎(𝑧) < 1 for all 𝑧)

⇐⇒ 𝑑
𝑑𝑧

[︁
ln𝜑

(︁
𝑣(𝑧)−𝑢√

𝜅𝐿

)︁
− 𝑧
]︁
+ 1− 𝑝(𝑧)

⃒⃒⃒
𝑧=𝑧*−

< 0 (by (B.36))

⇐⇒
(︁
−𝑣*−𝑢√

𝜅𝐿

)︁(︁
𝑣′(𝑧*)√
𝜅𝐿

)︁
− 𝑝(𝑧*) < 0 (because 𝑑 ln𝜑(𝑥)/𝑑𝑥 = −𝑥)

⇐⇒ 𝑣*−𝑢
𝜅𝐿

< − 𝑝(𝑧*)
𝑣′(𝑧*) (because −𝑣′(𝑧*) > 0)

⇐⇒ 2
(︀
𝑣*−𝑢
𝑐

)︀
< [1− 𝑎(𝑧*)]𝑝(𝑧*) (by 𝜅𝐿 = 𝑟1𝑐2

22
and (B.36))

By Corollary B.1.3, the result follows.

Corollary B.1.4. 𝐸𝑃 (·) is non-monotone if 𝑟1 < 𝑟* and 𝑣* < 𝑢.
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For a given 𝜆, recall that 𝑟*(𝜆) is the unique solution to (2.2). It is easy to see that there

exists a unique 𝜆1 > 0 such that

𝑟*(𝜆1) =
2 . (B.37)

Consequently, 𝑟*(𝜆) >2 if and only if 𝜆 > 𝜆1.

The following lemma deals with the agent’s discount rates that are close to 𝑟*(𝜆).

Lemma B.1.3. If 𝜆 > 𝜆1 and 2 < 𝑟1 < 𝑟*(𝜆), then 𝐸𝑃 (·) is non-monotone.

Proof. Recall that, in the proof of Claim 8, we have shown that if 𝑎(·) is hump-shape, then

𝑣𝐿 := 𝑣(𝑧𝐿) and 𝑣𝑅 := 𝑣(𝑧𝑅) are calculated in (B.15) and (B.21), respectively. Moreover,

𝑣𝐿 > 𝑣𝑅 if (and only if) 𝑟1 < 𝑟*(𝜆), and since 𝑣′(·) < 0, we have 𝑣* ∈ (𝑣𝑅, 𝑣𝐿).

From (B.15), it is easy to verify that 𝑣𝐿 < 𝑢 if and only if 𝑟1 >2. Therefore, if 𝜆 > 𝜆1 and
2 < 𝑟1 < 𝑟*(𝜆), we have 𝑣𝑅 < 𝑣* < 𝑣𝐿 < 𝑢. By Corollary B.1.4, 𝐸𝑃 (·) is non-monotone.

What about 𝑟1 ∈ (0, 2]? For 𝜆 > 𝜆1 and 𝑟1 ≤2, recall that the functions 𝑎*−(·; 𝑟1), 𝑎*+(·; 𝑟1, 𝜆) :

[𝑣𝑅, 𝑣𝐿] → 𝑅 are defined by (B.30) and (B.31), respectively. Recall also, from the proof of

Lemma 2.4.3, that 𝑣* ∈ (𝑣𝑅, 𝑣𝐿) is the unique solution to 𝑎*−(𝑥; 𝑟1) = 𝑎*+(𝑥; 𝑟1, 𝜆).

Claim 10. If 𝜆 > 𝜆1 and 𝑟1 ≤2, then 𝑢 ∈ [𝑣𝑅, 𝑣𝐿]. Moreover, 𝑣* < 𝑢 if and only if

𝑎*−(𝑢; 𝑟1) < 𝑎*+(𝑢; 𝑟1, 𝜆).

Proof. Suppose that 𝜆 > 𝜆1 and 𝑟1 ≤2. First, by definition of 𝜆1 in (B.37), we have

𝑟*(𝜆) >2≥ 𝑟1, so the equilibrium 𝑎(·) is hump-shaped and 𝑣𝐿 > 𝑣𝑅. Substituting the

expressions of 𝜉𝐿 and 𝜉𝑅 into (B.15) and (B.21), we can rewrite 𝑣𝐿 and 𝑣𝑅 as

𝑣𝐿(𝑟1) = 𝑢+ 𝑐

(︃
1−

√︀
1 + 8𝑟1/2 + 1

4

)︃
,

𝑣𝑅(𝑟1, 𝜆) =
𝑟1

𝑟1 + 𝜆

[︃
𝑢+ 𝑐

(︃
1 +

√︀
1 + 8(𝑟1 + 𝜆)/2 − 1

4

)︃]︃
.

It is easy to verify that 𝑣𝐿 is strictly decreasing in 𝑟1 and 𝑣𝑅 is strictly increasing in 𝑟1.

Thus, for 𝜆 > 𝜆1 and 𝑟1 ≤2,

𝑣𝑅(𝑟1, 𝜆) < 𝑣𝑅(𝑟
*(𝜆), 𝜆) = 𝑣𝐿(𝑟

*(𝜆)) < 𝑣𝐿(
2) ≤ 𝑣𝐿(𝑟1)

where the inequalities follow from the monotonicity of 𝑣𝐿 and 𝑣𝑅 in 𝑟1, and the equality

follows from the definition of 𝑟*. Note that 𝑣𝐿(2) = 𝑢, so we have 𝑢 ∈ [𝑣𝑅, 𝑣𝐿].
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The fact that 𝑢 ∈ [𝑣𝑅, 𝑣𝐿] implies that 𝑎*−(𝑢; 𝑟1) and 𝑎*+(𝑢; 𝑟1, 𝜆) are well-defined. By

Claim 9, the function 𝑔 : [𝑣𝑅, 𝑣𝐿] → 𝑅 defined by 𝑔(𝑥; 𝑟1, 𝜆) := 𝑎*−(𝑥; 𝑟1) − 𝑎*+(𝑥; 𝑟1, 𝜆) is

strictly decreasing in 𝑥, and 𝑣* is the unique zero point of 𝑔(·; 𝑟1, 𝜆) on [𝑣𝑅, 𝑣𝐿]. Therefore,

𝑣* < 𝑢 ⇐⇒ 𝑔(𝑢; 𝑟1, 𝜆) < 0 ⇐⇒ 𝑎*−(𝑢; 𝑟1) < 𝑎*+(𝑢; 𝑟1, 𝜆),

as desired.

The next lemma deals with the case where the agent’s discount rate 𝑟1 is small. There

exist 𝜆2 ≥ 𝜆1 and 𝑟 > 0, such that if 𝜆 > 𝜆2 and 0 < 𝑟1 < 𝑟, then 𝐸𝑃 (·) is non-monotone.

Proof. See Online Appendix.

We note that the bound 𝑟 obtained in Lemma B.1.2 is a fixed number independent of 𝜆.

We now turn to the last case where 𝑟1 ∈ [𝑟,2 ].

Claim 11. There exist 𝜆′3 ≥ 𝜆1 and 𝐴 > 1 such that if 𝜆 > 𝜆′3, then

𝑎*+(𝑢; 𝑟1, 𝜆) > 1−𝐴 exp

(︂
−

2

𝑐2𝑟21

𝜆2

𝑟1 + 𝜆
𝑢2
)︂
,∀𝑟1 ∈ [𝑟,2 ]. (B.38)

Proof. See Online Appendix.

Lemma B.1.4. There exists 𝜆3 ≥ 𝜆1 such that if 𝜆 > 𝜆3 and 𝑟 ≤ 𝑟1 ≤2, then 𝐸𝑃 (·) is

non-monotone.

Proof. Let 𝜆′3 ≥ 𝜆1 and 𝐴 > 1 be delivered by Claim 11. For each 𝑟1 ∈ [𝑟,2 ], let 𝜆(𝑟1)

be the unique solution on 𝑅+ to 𝐴 exp
(︁
− 2

𝑐2𝑟21

𝜆2

𝑟1+𝜆
𝑢2
)︁
= 1 − 𝑎*−(𝑢; 𝑟1). Note that 𝜆(𝑟1) is

well-defined for all 𝑟1 ∈ [𝑟,2 ] because the LHS is strictly decreasing in 𝜆 while the RHS is

independent of 𝜆.10 Hence, we have

𝐴 exp

(︂
−

2

𝑐2𝑟21

𝜆2

𝑟1 + 𝜆
𝑢2
)︂
< 1− 𝑎*−(𝑢; 𝑟1), ∀𝜆 > 𝜆(𝑟1). (B.39)

Also, 𝜆(𝑟1) is continuous in 𝑟1 by the implicit function theorem. Let 𝜆′′3 := max𝑟∈[𝑟,2] 𝜆(𝑟)

10Moreover, when 𝜆 = 0, the LHS is equal to 𝐴 > 1 − 𝑎*−(𝑢; 𝑟1); when 𝜆 → ∞, the LHS converges to
0 < 1− 𝑎*−(𝑢; 𝑟1).
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and 𝜆3 := max {𝜆′3, 𝜆′′3}. Combining (B.38) and (B.39), we have

𝑎*+(𝑢; 𝑟1, 𝜆) > 1−𝐴 exp

(︂
−

2

𝑐2𝑟21

𝜆2

𝑟1 + 𝜆
𝑢2
)︂
> 𝑎−(𝑢; 𝑟1), for all 𝜆 > 𝜆3 and 𝑟1 ∈ [𝑟,2 ].

Then, by Claim 10 and Corollary B.1.4, we conclude that 𝐸𝑃 (·) is non-monotone if 𝜆 > 𝜆3

and 𝑟1 ∈ [𝑟,2 ].

Proof of Theorem 2.5.1. Let 𝜆1 be defined in (B.37), and let 𝜆2 and 𝜆3 be delivered by

Lemmas B.1.2 and B.1.4, respectively. Define 𝜆̄ := max{𝜆1, 𝜆2, 𝜆3}. Lemmas B.1.3 through

B.1.4 imply that if 𝜆 > 𝜆̄ and 𝑟1 < 𝑟*(𝜆), then 𝐸𝑃 (·) is non-monotone. Lemma B.1.1 then

leads to the conclusion of the theorem.

B.1.3 Effects of Better Transparency: Toward a Proof of Theorem 2.6.1

In this section, we prove Theorem 2.6.1 which is about the convergence of the principal’s

equilibrium value function when the signal-to-noise ratio grows without bound.

Take any sequence {𝑛}𝑛 such that lim𝑛 𝑛 = +∞. For each 𝑛 ∈ 𝑁 , take the unique

Markov equilibrium (𝑎𝑛, 𝑏𝑛) associated with the signal-to-noise ratio 𝑛. Let 𝑉𝑛 (·) be the

agent’s value function in the equilibrium (𝑎𝑛, 𝑏𝑛) and𝑊𝑛 (·) be the principal’s value function.

We will often use 𝑧 ≡ log(𝑝/1 − 𝑝) as state variable when analyzing the agent’s behavior.

When doing so, we denote by 𝑣𝑛(𝑧) := 𝑉𝑛(𝑝(𝑧)) the agent’s value function in the 𝑧−space.

Write 𝑧*𝑛 for the principal’s equilibrium cutoff. Write 𝑧𝐿,𝑛 for the infimum belief 𝑧 at which

the agent plays 𝑎𝑛 (𝑧) > 0 and write 𝑧𝑅,𝑛 for the supremum. Write 𝑇 for the equilibrium

stopping time that stops the play of the game. Without labeling explicitly, we note that the

distribution of 𝑇 depends on 𝑛 and the current state 𝑧. For 𝑖 = 1, 2, let 𝐸𝜃𝑛
{︀
𝑒−𝑟𝑖𝑇

}︀
be

the expected discount factor when the stopping action is taken in the equilibrium (𝑎𝑛, 𝑏𝑛)

discounted at rate 𝑟𝑖 and given the equilibrium strategy of type 𝜃 ∈ {𝑁𝐼, 𝐼}. When the

game starts at state 𝑧, let

𝐸𝑛
{︀
𝑒−𝑟𝑖𝑇

}︀
:= 𝑝(𝑧)𝐸𝑁𝐼𝑛

{︀
𝑒−𝑟𝑖𝑇

}︀
+ (1− 𝑝(𝑧))𝐸𝐼𝑛

{︀
𝑒−𝑟𝑖𝑇

}︀
.

Case 1: 𝜆 < 𝑟1
(︀
𝑐
𝑢

)︀
, i.e., 𝑢 < 𝑟1

𝑟1+𝜆
(𝑢+ 𝑐)

Proof of Part 1 of Theorem 2.6.1. We first show that there is 𝜀 > 0 such that 𝑎𝑛(𝑧*𝑛) < 1−𝜀

for all 𝑛. Without loss, assume that 𝑎𝑛(𝑧*𝑛) > 0 for all 𝑛. Then condition (B.10) implies
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that

𝑎𝑛(𝑧
*
𝑛) = 1− 2

(︂
𝑣𝑛(𝑧

*
𝑛)− 𝑢

𝑐

)︂
− 𝑎′𝑛

(︀
𝑧*𝑛−

)︀
< 1− 2

(︃
𝑟1

𝑟1+𝜆
(𝑢+ 𝑐)− 𝑢

𝑐

)︃
,

where the inequality follows from 𝑣𝑛(·) ≥ 𝑟1
𝑟1+𝜆

(𝑢+ 𝑐) and 𝑎′𝑛(𝑧*𝑛−) > 0. By the assumption

of Case 1, we can set 𝜀 = 2

(︂ 𝑟1
𝑟1+𝜆

(𝑢+𝑐)−𝑢
𝑐

)︂
> 0.

Since 𝑎𝑛(·) is maximized at 𝑧*𝑛, the above implies that 𝑎𝑛(·) is uniformly bounded away

from 1. Consequently, as 𝑛 → ∞, the principal learns the agent’s type almost immediately,

and thus the principal’s equilibrium value function 𝑊𝑛(·) converges uniformly to her full-

information value function 𝑊 (·).

Case 2: 𝜆 > 𝑟1
(︀
𝑐
𝑢

)︀
, i.e., 𝑢 > 𝑟1

𝑟1+𝜆
(𝑢+ 𝑐)

Claim 12. There exists 𝑁 ∈ 𝑁 such that whenever 𝑛 ≥ 𝑁 , 𝑎𝑛(·) is hump-shaped.

Proof. From condition (2.2), it is easily verified that lim𝑛 𝑟
*
𝑛 = 𝜆

(︀
2𝑢
𝑐 + 1

)︀
. The assumption

of Case 2 implies that 𝑟1 < 𝜆
(︀
𝑢
𝑐

)︀
< 𝜆

(︀
2𝑢
𝑐 + 1

)︀
. By Theorem 2.4.1, the result follows.

We assume 𝑛 ≥ 𝑁 for the rest of the proofs in Case 2.

Claim 13. Take any compact set [𝑝1, 𝑝2] ⊂ (0, 1). We have

lim sup
𝑛→∞

[︂
max

𝑧∈[𝑧(𝑝1),𝑧(𝑝2)]
𝑣𝑛 (𝑧)

]︂
≤ 𝑢.

Proof. Because 𝑝* ∈ [𝑝**, 𝑝𝐻 ] (by Lemma 2.4.2), we can without loss assume that 𝑝*𝑛 ∈

[𝑝1, 𝑝2] . Since 𝑣𝑛 (·) is decreasing, it suffices to show that lim sup 𝑣𝑛
(︀
𝑧
(︀𝑝1

2

)︀)︀
≤ 𝑢.

By Claim 12, 𝑎𝑛(·) is hump-shaped for all 𝑛. First assume that 𝑎𝑛 (𝑧*𝑛) → 1. Take any

𝜀 > 0, and let 𝑧𝜀𝑛 be the smallest 𝑧 such that 𝑎𝑛 (𝑧) = 1− 𝜀, which is well-defined for every

large 𝑛 such that 𝑎𝑛 (𝑧*𝑛) > 1 − 𝜀. Consider the stochastic process 𝑍𝑡 in the equilibrium

(𝑎𝑛, 𝑏𝑛) under the noninvestible-type strategy and the initial condition 𝑍0 = 𝑧
(︀𝑝1

2

)︀
. Let

𝑇 †
𝑛 be the stopping time that stops the game at the first time that 𝑍𝑡 ≥ 𝑧𝜀𝑛. From the law

of motion (B.1), as 𝑛 → ∞, we have 𝐸𝑁𝐼𝑛
[︁
𝑒−𝑟1𝑇

†
𝑛

]︁
→ 1 and hence 𝑣𝑛

(︀
𝑧
(︀𝑝1

2

)︀)︀
→ 𝑣𝑛 (𝑧

𝜀
𝑛) .

Moreover, since 𝑣𝑛(·) is decreasing and concave to the left of 𝑧𝑛𝜀 (by Corollary B.1.2), we

have

𝑟1𝑣𝑛 (𝑧
𝑛
𝜀 ) = 𝑟1 [𝑢+ (1− 𝑎𝑛 (𝑧

𝑛
𝜀 )) 𝑐] +

1

2

2

[1− 𝑎𝑛 (𝑧
𝑛
𝜀 )]

2 [︀𝑣′ (︀𝑎𝑛 (︀𝑧𝑛𝜀−)︀)︀+ 𝑣′′
(︀
𝑎𝑛
(︀
𝑧𝑛𝜀−
)︀)︀]︀

≤ 𝑟1 [𝑢+ (1− 𝑎𝑛 (𝑧
𝑛
𝜀 )) 𝑐] ,
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which implies 𝑣𝑛 (𝑧𝑛𝜀 ) ≤ 𝑢+ 𝜀𝑐, delivering the result as 𝜀 is arbitrary.

Next assume that lim inf 𝑎𝑛 (𝑧
*
𝑛) < 1. Take an 𝜖 > 0 such that 𝑢 > 𝑟1

𝑟1+𝜆
(𝑢+ 𝑐) + 𝜖; such

an 𝜖 exists because of the assumption of Case 2. Notice that we can find a 𝑧† sufficiently

large such that 𝑣𝑛
(︀
𝑧†
)︀
< 𝑟1

𝑟1+𝜆
(𝑢 + 𝑐) + 𝜖, ∀𝑛. 11 Let 𝑇 †

𝑛 be the stopping time that stops

the game at the first time that 𝑍𝑡 = 𝑧†. As 𝑛 → ∞, we have 𝑣𝑛
(︀
𝑧
(︀𝑝1

2

)︀)︀
→ 𝑣𝑛

(︀
𝑧†
)︀
<

𝑟1
𝑟1+𝜆

(𝑢+ 𝑐) + 𝜖 < 𝑢.

Claim 14. lim𝑛→∞ 𝑧𝐿,𝑛 = −∞.

Proof. Recall that 𝑣𝑛(𝑧𝐿,𝑛) = 𝑣𝐿,𝑛 whose expression is given by (B.15), i.e., 𝑣𝐿,𝑛 = 𝑢 +

𝑐

(︂
1−

√
1+8𝑟1/2𝑛+1

4

)︂
. It is easy to see that lim𝑛 𝑣𝑛(𝑧𝐿,𝑛) = 𝑢+ 𝑐

2 . Assume toward a contra-

diction, taking a subsequence if necessary, that lim𝑛 𝑧𝐿,𝑛 = 𝑧 > −∞. Then for any 𝜀 > 0,

we have 𝑧𝐿,𝑛 ∈ [𝑧 − 𝜀, 𝑧 + 𝜀] and 𝑣𝑛(𝑧𝐿,𝑛) ≥ 𝑢 + 𝑐
4 when 𝑛 is sufficiently large. Take any

𝜀 < (0, 𝑐/4). By Claim 13 and the monotonicity of 𝑣𝑛(·), there exists 𝑛* such that for every

𝑛 > 𝑛* and for every 𝑧 ∈ [𝑧 − 𝜀, 𝑧 + 𝜀], we have 𝑣𝑛(𝑧) < 𝑢 + 𝜀 < 𝑢 + 𝑐
4 , a contradiction to

𝑣𝐿,𝑛 → 𝑢+ 𝑐
2 and 𝑧𝐿,𝑛 → 𝑧.

Claim 15. For any 𝜅 > 0, we have lim𝑛→∞ 𝑎𝑛(𝑧
*
𝑛 − 𝜅) = 1.

Proof. Assume toward a contradiction that, taking a subsequence if necessary, lim 𝑎𝑛(𝑧
*
𝑛 −

𝜅) = 1 − 2𝜀 for some 𝜀 > 0. Take any large 𝑀 > 0 and notice that Claim 14 tells us

that 𝑧𝐿,𝑛 < 𝑧*𝑛 − 𝜅 − 𝑀 for large 𝑛. Since 𝑎𝑛(·) is increasing on [𝑧*𝑛 − 𝜅−𝑀, 𝑧*𝑛 − 𝜅]

and lim 𝑎𝑛(𝑧
*
𝑛 − 𝜅) = 1 − 2𝜀, we know that 𝑎𝑛(𝑧) < 1 − 𝜀 (infinitely often) for all 𝑧 ∈

[𝑧*𝑛 − 𝜅−𝑀, 𝑧*𝑛 − 𝜅]. Recall from condition (B.10) that for 𝑧 ∈ [𝑧*𝑛 − 𝜅−𝑀, 𝑧*𝑛 − 𝜅],

𝑎′𝑛 (𝑧) = 1− 𝑎𝑛(𝑧)− 2

(︂
𝑣𝑛(𝑧)− 𝑢

𝑐

)︂
,

implying, in light of Claim 13, that for 𝑛 sufficiently large, we have 𝑎′𝑛(𝑧) >
𝜀
2 for all 𝑧 ∈

[𝑧*𝑛 − 𝜅−𝑀, 𝑧*𝑛 − 𝜅]. But then, we can take 𝑀 large enough such that 𝑎𝑛 (𝑧*𝑛 − 𝜅−𝑀) < 0,

a contradiction.

Claim 16. For any 𝜅 > 0, we have lim𝑛→∞ 𝑣𝑛(𝑧
*
𝑛 − 𝜅) = 𝑢.

11To see this, note first that 𝑝*𝑛 is bounded above by 𝑝𝐻 < 1 (Lemma 2.4.2). Next observe that the
posterior is a submartingale according to the strategy of the noninvestible type. This implies that for every
𝜂 > 0 we can find 𝑝𝜂 < 1 such that, conditional on the noninvestible-type strategy, 𝑝 ∈ (𝑝𝜂, 1) implies that
the posterior goes below 𝑝𝐻 with probability less than 𝜂. This immediately easily implies the existence of
said 𝑧†.
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Proof. From Claim 13 and Lemma 2.4.2 , we know lim sup 𝑣𝑛(𝑧
*
𝑛 − 𝜅) ≤ 𝑢. Assume toward

a contradiction, taking a subsequence if necessary, that lim𝑛→∞ 𝑣𝑛(𝑧
*
𝑛 − 𝜅) = 𝑢 − 2𝜀 for

some 𝜀 > 0. This implies that 𝑣𝑛(𝑧*𝑛 − 𝜅) < 𝑢 − 𝜀 for 𝑛 sufficiently large. Note also that

Claim 14 tells us that 𝑧*𝑛−𝜅 > 𝑧𝐿,𝑛 for 𝑛 sufficiently large. From condition (B.10), 𝑎′𝑛 (𝑧) =

1− 𝑎𝑛(𝑧)− 2
(︁
𝑣𝑛(𝑧)−𝑢

𝑐

)︁
for all 𝑧 ∈ [𝑧*𝑛− 𝜅, 𝑧*𝑛− 𝜅

2 ]. Then by Claim 15 and the monotonicity

of 𝑎𝑛(·), we know that for 𝑛 sufficiently large, 𝑎′𝑛(𝑧) >
𝜀
𝑐 for all 𝑧 ∈ [𝑧*𝑛 − 𝜅, 𝑧*𝑛 − 𝜅

2 ]. But

then, we have 𝑎𝑛(𝑧*𝑛 − 𝜅) < 1−
(︀
𝜅
2

)︀ (︀
𝜀
𝑐

)︀
, a contradiction to Claim 15.

Claim 17. Fix a prior 𝑝0 ∈ (0, 1) and some 𝑝 ∈ (𝑝0, 1). For each > 0, consider an adapted

Markov function 𝛼 (·) and a belief process defined by substituting 𝛼(·) into (2.7). Take 𝜀 > 0

and let 𝑇 be the random time that stops the play in the first time that 𝑝 ≥ 𝑝. Then we have:

lim sup
↑∞

𝐸𝑁𝐼

{︃
𝑟1

∫︁ 𝑇

0
𝑒−𝑟1𝑡𝐼{𝛼(𝑝𝑡)≤1−𝜀}𝑑𝑡

}︃
= 0.

Proof. See Online Appendix (Section B.2.3, and Lemma OA.5 in Section B.2.4). In words,

this lemma says that if the noninvestible type does not mimic too often, then as the noise

in the signal vanishes, the principal can learn the agent’s type almost immediately.

Lemma B.1.5. Fix any 𝜅 > 0 and, for each 𝑛 ∈ 𝑁 , assume that the game starts at the

prior 𝑧*𝑛−𝜅. Let 𝑇 *
𝑛 be the stopping time that stops the play in the first time that a posterior

reaches [𝑧*𝑛,∞). We have:

lim sup
𝑛→∞

𝐸𝑁𝐼𝑛

[︁
𝑒−𝑟1𝑇

*
𝑛

]︁
= 0.

Proof. Let 𝑧𝑛 := 𝑧*𝑛 − 𝜅 and 𝑧𝑛 := 𝑧*𝑛 − 2𝜅. Let 𝑇𝑛 (𝑧𝑛) be the stopping time that stops

the play in the first time that the posterior reaches 𝑧𝑛 and 𝑇𝑛 (𝑧
*
𝑛) be the stopping time

that stops the play in the first time that the posterior reaches 𝑧*𝑛. Observe that for any 𝑛,

𝑃𝑁𝐼𝑛 [𝑇𝑛 (𝑧𝑛) <∞] + 𝑃𝑁𝐼𝑛 [𝑇𝑛 (𝑧
*
𝑛) <∞] = 1.

By Claim 15, we know that for any 𝜀 > 0, there exists 𝑛1 ∈ 𝑁 such that 𝑛 > 𝑛1 implies

that 𝑣𝑛(𝑧*𝑛) is bounded above by:

𝑃𝑁𝐼𝑛 [𝑇𝑛 (𝑧𝑛) <∞]𝐸𝑁𝐼𝑛

[︃∫︁ 𝑇𝑛(𝑧𝑛)

0
𝑢𝑒−𝑟1𝑡𝑑𝑡+ 𝑒−𝑟1𝑇𝑛(𝑧𝑛)𝑣𝑛 (𝑧𝑛) | 𝑇𝑛 (𝑧𝑛) <∞

]︃

+ 𝑃𝑁𝐼𝑛 [𝑇𝑛 (𝑧
*
𝑛) <∞]𝐸𝑁𝐼𝑛

[︃∫︁ 𝑇𝑛(𝑧*𝑛)

0
𝑢𝑒−𝑟1𝑡𝑑𝑡+ 𝑒−𝑟1𝑇𝑛(𝑧

*
𝑛)𝑣𝑛 (𝑧

*
𝑛) | 𝑇𝑛 (𝑧*𝑛) <∞

]︃
+ 𝜀.

(B.40)
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Next we obtain an upper bound for 𝑣𝑛(𝑧*𝑛). For that, we let 𝑇𝜆 be the random time of

the next Poisson shock. Note that

𝑣𝑛(𝑧
*
𝑛) = 𝑃𝑁𝐼

𝑛 [𝑧𝑇𝜆
> 𝑧*𝑛]𝐸

𝜃𝑆
𝑛

[︃∫︁ 𝑇𝜆

0

𝑒−𝑟1𝑡 [𝑢+ (1− 𝑎𝑛(𝑧𝑡)) 𝑐] 𝑑𝑡 | 𝑧𝑇𝜆
> 𝑧*𝑛

]︃

+ 𝑃𝑁𝐼
𝑛 [𝑧𝑇𝜆

≤ 𝑧*𝑛]𝐸
𝜃𝑆
𝑛

[︃∫︁ 𝑇𝜆

0

𝑒−𝑟1𝑡 [𝑢+ (1− 𝑎𝑛(𝑧𝑡)) 𝑐] 𝑑𝑡+ 𝑒−𝑟1𝑇𝜆𝑣𝑛 (𝑧𝑇𝜆
) | 𝑧𝑇𝜆

≤ 𝑧*𝑛

]︃
.

Now we use the following facts to bound the expected value above:

i) Because 𝑎𝑛(𝑧𝑡) ≥ 0,

𝐸𝑁𝐼𝑛

[︂∫︁ 𝑇𝜆

0
𝑒−𝑟1𝑡 [𝑢+ (1− 𝑎𝑛(𝑧𝑡)) 𝑐] 𝑑𝑡 | 𝑧𝑇𝜆 > 𝑧*𝑛

]︂
≤ 𝐸𝑁𝐼𝑛

[︂∫︁ 𝑇𝜆

0
𝑒−𝑟1𝑡(𝑢+ 𝑐)𝑑𝑡 | 𝑧𝑇𝜆 > 𝑧*𝑛

]︂
.

ii) From Claim 13,

lim sup𝐸𝑁𝐼𝑛

[︁
𝐼{𝑧𝑇𝜆≤𝑧*𝑛}𝑣𝑛 (𝑧𝑇𝜆)

]︁
≤ lim sup𝐸𝑁𝐼𝑛

[︁
𝐼{𝑧𝑇𝜆≤𝑧*𝑛}𝑢

]︁
.

iii) For every 𝜀 > 0, from Claim 17,

lim sup𝑃𝑁𝐼𝑛

[︂
{𝑧𝑇𝜆 ≤ 𝑧*𝑛} ∩

{︂∫︁ 𝑇𝜆

0
𝑒−𝑟1𝑡(1− 𝑎(𝑧𝑡))𝑑𝑡 > 𝜀

}︂]︂
= 0.

Conditions (i), (ii) and (iii) above imply that for every 𝜖 > 0, we can find 𝑛2 ∈ 𝑁 with

𝑛2 > 𝑛1 such that 𝑛 > 𝑛2 implies

𝑣𝑛(𝑧
*
𝑛) ≤ 𝑃𝑁𝐼𝑛 [𝑧𝑇𝜆 > 𝑧*𝑛]𝐸

𝑁𝐼
𝑛

[︂∫︁ 𝑇𝜆

0
𝑒−𝑟1𝑡(𝑢+ 𝑐)𝑑𝑡 | 𝑧𝑇𝜆 > 𝑧*𝑛

]︂
+ 𝑃 𝜃𝑆𝑛 [𝑧𝑇𝜆 ≤ 𝑧*𝑛]𝑢+ 𝜖.

Since Poisson shocks are independent of the Brownian motion,

𝐸𝑁𝐼𝑛

[︂∫︁ 𝑇𝜆

0
𝑒−𝑟1𝑡(𝑢+ 𝑐)𝑑𝑡 | 𝑧𝑇𝜆 > 𝑧*𝑛

]︂
=

(︂
𝑟

𝑟 + 𝜆

)︂
(𝑢+ 𝑐) < 𝑢.

Moreover, notice that the 𝑧𝑡 (and 𝑝𝑡) are submartingales conditional on 𝜃 = 𝑁𝐼, so

𝑃𝑁𝐼𝑛 [𝑧𝑇𝜆 > 𝑧*𝑛] ≥
1

2
.
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Therefore, the last two observations imply

𝑣𝑛(𝑧
*
𝑛) ≤

1

2

(︂
𝑟1

𝑟1 + 𝜆

)︂
(𝑢+ 𝑐) +

1

2
𝑢+ 𝜖.

Since
(︁

𝑟1
𝑟1+𝜆

)︁
(𝑢+ 𝑐) < 𝑢 and 𝜖 is arbitrary, we conclude that lim sup 𝑣𝑛(𝑧

*
𝑛) < 𝑢.

Going back to the upper bound (B.40) for 𝑣𝑛(𝑧*𝑛), we have shown that lim sup 𝑣𝑛(𝑧
*
𝑛) < 𝑢,

and from Claim 16, we know that lim 𝑣𝑛(𝑧
*
𝑛) = lim 𝑣𝑛(𝑧

*
𝑛) = 𝑢. So for (B.40) to be an valid

upper bound of 𝑣𝑛(𝑧*𝑛) for arbitrary 𝜀, we must have lim sup𝑛→∞𝐸𝑁𝐼𝑛
[︀
𝑒−𝑟1𝑇𝑛(𝑧

*
𝑛)
]︀
= 0, i.e.,

lim sup𝑛→∞𝐸𝑁𝐼𝑛
[︀
𝑒−𝑟1𝑇

*
𝑛
]︀
= 0, as desired.

Lemma B.1.6. lim𝑛→∞ 𝑧*𝑛 = 𝑧**, where 𝑧** is the myopic cutoff satisfying 𝑅(𝑝(𝑧**)) = 0

Proof. Recall that we always have 𝑧*𝑛 ≥ 𝑧**. Hence assume (toward a contradiction) that we

can find some 𝜀 > 0 such that, taking a subsequence if necessary, 𝑧*𝑛 > 𝑧** + 𝜀 for every 𝑛.

For every 𝑛, consider the game starts at 𝑧*𝑛− 𝜀
2 > 𝑧**+ 𝜀

2 . Let 𝑇 *
𝑛 be the stopping time that

stops the play in the first time that a posterior reaches [𝑧*𝑛,∞). By Lemma B.1.5, we have

𝐸𝑁𝐼𝑛
[︀
𝑒−𝑟1𝑇

*
𝑛
]︀
→ 0, implying that lim sup𝑊𝑛

(︀
𝑝
(︀
𝑧*𝑛 − 𝜀

2

)︀)︀
≤ 0. But since 𝑧*𝑛 − 𝜀

2 > 𝑧** + 𝜀
2 ,

the principal can get a strictly positive payoff by terminating the relationship when the next

stopping opportunity arrives. So the principal has a profitable deviation at 𝑧*𝑛 − 𝜀
2 when 𝑛

is sufficiently large, a contradiction.

Proof of Part 2 of Theorem 2.6.1. In light of Corollary B.1.2, we extend each 𝑊𝑛 continu-

ously from (0, 1) to [0, 1] by setting 𝑊𝑛(0) = 0 and 𝑊𝑛(1) =
𝜆

𝑟2+𝜆
𝑤𝑁𝐼 .

We first show that 𝑊𝑛(·) converges to 𝑊 (𝑝**) = 0. By Lemmas B.1.5 and B.1.6, it

is easy to see that lim𝑛→∞𝑊𝑛(𝑝) = 0 for all 𝑝 < 𝑝**.12 Suppose toward a contradiction,

taking a subsequence if necessary, that lim𝑛→∞𝑊𝑛(𝑝
**) = 𝛿 > 0. Let 𝜖 = 𝛿(1−𝑝**)

2𝑤𝑁𝐼
. For 𝑛

large enough, we have 𝑊𝑛(𝑝
**− 𝜖) < 𝛿

2 . Since 𝑊𝑛(·) is convex (by Corollary B.1.2), we have
𝑊𝑛(1)−𝑊𝑛(𝑝**)

1−𝑝** ≥ 𝑊𝑛(𝑝**)−𝑊𝑛(𝑝**−𝜖)
𝜖 ≥ 𝑤𝑁𝐼

1−𝑝** , which implies 𝑊𝑛(1) > 𝑤𝑁𝐼 , a contradiction.

Next, for each 𝑛, because 𝑊𝑛(0) = 𝑊 (0), 𝑊𝑛(1) = 𝑊 (1), and 𝑊𝑛(·) is increasing and

convex, we have 0 ≤ 𝑊 ′
𝑛(·) ≤ 𝜆

𝑟1+𝜆
. But then, we always have 𝑝** =𝑝∈[0,1] |𝑊𝑛(𝑝)−𝑊 (𝑝)|.

Hence, uniform convergence of 𝑊𝑛 follows immediately from its pointwise convergence at

𝑝**.
12Note that Lemma B.1.5 enables us to conclude that lim sup𝑛𝐸𝑛

[︀
𝑒−𝑟2𝑇

]︀
= 0. This is because the

principal only derives positive payoff from terminating against the noninvestible type. As a result, if
lim sup𝑛𝐸

𝑁𝐼
𝑛

[︀
𝑒−𝑟2𝑇

]︀
= 0, then we must have lim sup𝑛𝐸

𝐼
𝑛

[︀
𝑒−𝑟2𝑇

]︀
= 0, for otherwise the principal’s equilib-

rium payoff would be negative.
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B.2 Online Appendix

B.2.1 Omitted Proofs for Theorem 2.4.1

Proofs of Lemmas 2.4.1 and 2.4.2

Consider a Markovian equilibrium, (𝛼, 𝛽), and the underlying probability space (Ω, 𝐹,𝑃 ).

For each 𝑝 ∈ (0, 1) , we define Φ (𝑝) := {𝜔 ∈ Ω : ∃𝑡 ≤ 𝑇 such that 𝑝𝑡(𝜔) = 𝑝}, where 𝑇 is the

random stopping time of the relationship induced by (𝛼, 𝛽). The belief span, SP(𝛼), is the

set of all 𝑝 such that 𝑃 (Φ (𝑝)) > 0. Clearly, SP(𝛼) is a connected set because the sample

path of 𝑋𝑡 is almost surely continuous. Let 𝑝 := inf SP(𝛼), and 𝑝 := sup SP(𝛼). Define the

principal’s value function 𝑊 as in the main text on the domain of SP(𝛼). The function 𝑊

is continuous because the agent’s equilibrium policy function 𝑎 ∈ 𝒫.

Claim OA.1. 𝑆𝑃 (𝛼) is an open interval. That is, 𝑆𝑃 (𝛼) = (𝑝, 𝑝).

Proof. Since 𝑆𝑃 (𝛼) is a connected set, we only need to show that 𝑝, 𝑝 /∈ 𝑆𝑃 (𝛼). Suppose,

toward a contradiction, that 𝑝 ∈ 𝑆𝑃 (𝛼). Then, consider a history that leads to the belief 𝑝

and the continuation play starting from this history. Since the belief process is a martingale,

we must have 𝑝𝑡 = 𝑝 for all 𝑡 ≤ 𝑇 and almost all sample paths. Agent’s optimality then

implies 𝑎(𝑝) = 0,and thus the diffusion coefficient of the belief process at 𝑝 is strictly positive.

This contradicts 𝑝𝑡 = 𝑝 for all 𝑡 ≤ 𝑇 and almost all sample paths. The same argument proves

that 𝑝 /∈ 𝑆𝑃 (𝛼).

Claim OA.2. The principal’s equilibrium policy function 𝑏 has a cutoff structure on 𝑆𝑃 (𝛼).

That is, there exists a unique 𝑝* ∈ [𝑝, 𝑝] such that 𝑝 ∈ (𝑝, 𝑝*) implies 𝑏(𝑝) = 0 and 𝑝 ∈ (𝑝*, 𝑝)

implies 𝑏(𝑝) = 1.

Proof. Recall that 𝑅(𝑝) := 𝑝𝑤𝑁𝐼+(1−𝑝)𝑤𝐼 is the principal’s expected payoff if the relation-

ship is terminated when her belief is 𝑝. For any 𝑝 ∈ 𝑆𝑃 (𝛼), define 𝐹 (𝑝) :=𝑊 (𝑝)−𝑅(𝑝). At

any time 𝑡 such that the stopping opportunity arrives, given her belief 𝑝𝑡 = 𝑝 ∈ 𝑆𝑃 (𝛼), if the

principal terminates the relationship, her expected payoff is 𝑅(𝑝); if the principal continues

the relationship, her continuation value is 𝑊 (𝑝). Thus, principal’s optimality requires that

𝑏(𝑝) = 1 if 𝐹 (𝑝) < 0 and that 𝑏(𝑝) = 0 if 𝐹 (𝑝) > 0.

We first establish two useful properties of 𝐹 .

Property 1: If 𝐹 (𝑝) > 0 at some 𝑝 ∈ 𝑆𝑃 (𝛼), then 𝐹 (𝑝) > 0 for all 𝑝 < 𝑝.
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To see this, suppose that 𝐹 (𝑝) > 0 at some 𝑝 ∈ 𝑆𝑃 (𝛼). Let (𝑝𝑎, 𝑝𝑏) be the largest interval

containing 𝑝 such that 𝐹 (𝑝) > 0 for all 𝑝 ∈ (𝑝𝑎, 𝑝𝑏). We want to show that 𝑝𝑎 = 𝑝. Suppose,

toward a contradiction, that 𝑝𝑎 > 𝑝. Since 𝑊 is continuous, we have 𝐹 (𝑝𝑎) = 0, i.e.,

𝑊 (𝑝𝑎) = 𝑅(𝑝𝑎). Moreover, principal’s optimality requires that 𝑏(𝑝) = 0 for all 𝑝 ∈ (𝑝𝑎, 𝑝𝑏).

We consider two cases, and will reach a contradiction in each of these cases.

Case 1: 𝑝𝑏 < 𝑝.

In this case, continuity of 𝑊 also implies that 𝐹 (𝑝𝑏) = 0, i.e., 𝑊 (𝑝𝑏) = 𝑅(𝑝𝑏). Consider

now a history that leads to the belief 𝑝 and the continuation play starting from this history.

Let 𝑇 † be the first time that the posterior belief reaches (𝑝𝑎, 𝑝𝑏)
𝑐 (setting 𝑇 † = ∞ if this

event is not reached in finite time). Let 𝜙 represent the probability measure (from the

principal’s perspective) induced by the distribution of 𝑝𝑇 † . Then,

𝑅(𝑝) < 𝑊 (𝑝) =

∫︁ 𝑝𝑏

𝑝𝑎

𝑊 (𝑝)𝐸
[︁
𝑒−𝑟2𝑇

† | 𝑝𝑇 † = 𝑝
]︁
𝜙 (𝑑𝑝)

=

∫︁ 𝑝𝑏

𝑝𝑎

𝑅(𝑝)𝐸
[︁
𝑒−𝑟2𝑇

† | 𝑝𝑇 † = 𝑝
]︁
𝜙 (𝑑𝑝) <

∫︁ 𝑝𝑏

𝑝𝑎

𝑅(𝑝)𝜙 (𝑑𝑝) = 𝑅(𝑝).

The second equality trivially holds if 𝐸
[︁
𝑒−𝑟2𝑇

† | 𝑝𝑇 † = 𝑝
]︁
= 0, and otherwise if 𝑇 † < ∞,

then it holds because 𝑊 (𝑝𝑇 †) = 𝑅(𝑝𝑇 †). The last inequality uses the facts that 0 ≤𝑊 (𝑝𝑎) =

𝑅(𝑝𝑎) implies 𝑅(𝑝) > 0 for all 𝑝 > 𝑝𝑎, and that 𝑇 † > 0 almost surely. The final equality

holds because 𝑝𝑡 is a bounded martingale and 𝑅(·) is an affine function. But then, we have

an obvious contradiction.

Case 2: 𝑝𝑏 = 𝑝.

In this case, we have 𝑏(𝑝) = 0 for all 𝑝 ∈ (𝑝𝑎, 𝑝). Consider again a history that leads to

the belief 𝑝 and the continuation play starting from this history. Let 𝑇 † be the first time

that the posterior reaches 𝑝𝑎 (setting 𝑇 † = ∞ if this event is not reached in finite time).

Let 𝜙 represent the probability measure (from the principal’s perspective) induced by the

distribution of 𝑝𝑇 † . Then,

𝑅(𝑝) < 𝑊 (𝑝) =𝑊 (𝑝𝑎)𝐸
(︁
𝑒−𝑟𝑇

†
)︁
< 𝑅(𝑝𝑎),

which contradicts 𝑅 being increasing.

Property 2: Let 𝑝* := sup{𝑝 ∈ 𝑆𝑃 (𝛼) : 𝐹 (𝑝) > 0}.13 Then, 𝐹 (𝑝) < 0 for all 𝑝 > 𝑝*.

13By convention, if {𝑝 ∈ 𝑆𝑃 (𝛼) : 𝐹 (𝑝) > 0} = ∅, we set sup{𝑝 ∈ 𝑆𝑃 (𝛼) : 𝐹 (𝑝) > 0} = 𝑝.
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By definition of 𝑝*, we know that 𝐹 (𝑝) ≤ 0 for all 𝑝 ≥ 𝑝*, i.e., 𝑊 (𝑝) ≤ 𝑅(𝑝) for all

𝑝 ≥ 𝑝*, so it is weakly optimal for the principal to terminate the relationship whenever

𝑝 ∈ (𝑝*, 𝑝). Suppose, toward a contradiction, that 𝐹 (𝑝) = 0 for some 𝑝 > 𝑝*. Consider a

history that leads to the belief 𝑝 and the continuation play starting from this history. Let 𝑇 †

be the first time that the stopping opportunity arrives or the posterior reaches 𝑝* (setting

𝑇 † = ∞ if this event is not reached in finite time). Let 𝜙 represent the probability measure

(from the principal’s perspective) induced by the distribution of 𝑝𝑇 † . Then,

𝑅(𝑝) =𝑊 (𝑝) =

∫︁ 𝑝

𝑝*
𝑊 (𝑝)𝐸

[︁
𝑒−𝑟2𝑇

† | 𝑝𝑇 † = 𝑝
]︁
𝜙 (𝑑𝑝)

≤
∫︁ 𝑝

𝑝*
𝑅(𝑝)𝐸

[︁
𝑒−𝑟2𝑇

† | 𝑝𝑇 † = 𝑝
]︁
𝜙 (𝑑𝑝) <

∫︁ 𝑝

𝑝*
𝑅(𝑝)𝜙 (𝑑𝑝) = 𝑅(𝑝).

The first equality follows from the contradiction assumption that 𝐹 (𝑝) = 0, the first inequal-

ity follows from the definition of 𝑝* such that 𝐹 (𝑝) ≤ 0 for all 𝑝 ≥ 𝑝*, the last inequality

holds because 0 ≤𝑊 (𝑝*) ≤ 𝑅(𝑝*) implies that 𝑅(𝑝) > 0 for all 𝑝 > 𝑝*, and the final equality

holds because 𝑝𝑡 is a bounded martingale and 𝑅(·) is an affine function. But then, we have

an obvious contradiction, establishing Property 2.

These two properties of 𝐹 immediately deliver our result. Specifically, let 𝑝* := sup{𝑝 ∈

𝑆𝑃 (𝛼) : 𝐹 (𝑝) > 0}. Then, Property 1 implies that 𝐹 (𝑝) > 0 (and thus 𝑏(𝑝) = 0) for all

𝑝 ∈ (𝑝, 𝑝*), and Property 2 implies that 𝐹 (𝑝) < 0 (and thus 𝑏(𝑝) = 1) for all 𝑝 ∈ (𝑝*, 𝑝).

We continue with a technical result that will be later used.

Claim OA.3. Fix a positive integer 𝑇. For any 𝜀 > 0 there exists 𝜂 > 0 satisfying the

following property: Take any pair of adapted processes 𝑑𝑌 1
𝑡 = 𝜇1,𝑡𝑑𝑡 + 𝜎𝑑𝐵𝑡 and 𝑑𝑌 2

𝑡 =

𝜇2,𝑡𝑑𝑡+𝜎𝑑𝐵𝑡 such that 𝜇𝑗,𝑡 ∈ [0, 1] for 𝑗 = 1, 2 and for every 𝑡. Let 𝑃1 and 𝑃2 be the probability

distributions over (𝐶([0, 𝑇 ]), 𝐵 (𝐶([0, 𝑇 ])))14 generated by such stochastic processes. If 𝐴 ∈

𝐵 (𝐶([0, 𝑇 ])) is such that 𝐸𝑃1 [𝐼𝐴] < 𝜂 then 𝐸𝑃2 [𝐼𝐴] < 𝜀.

Proof. Dividing both processes by 𝜎 and subtracting the same drift from both processes if

necessary we may assume that 𝑑𝑌 1
𝑡 = 𝑑𝐵𝑡 and 𝑑𝑌 2

𝑡 = 𝜇2,𝑡𝑑𝑡+𝑑𝐵𝑡 with 𝜇2,𝑡 ∈
[︀
−𝜎−1, 𝜎−1

]︀
.

Since the drift is bounded we can invoke Girsanov’s theorem to obtain

𝐸𝑃2 [𝐼𝐴] = 𝐸𝑃1 [𝐼𝐴𝑀𝑇 ],

14𝐵 stands for the Borel sigma-field, and 𝐶([0, 𝑇 ]) is the set of continuous functions over [0, 𝑇 ].
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where 𝑀𝑇 = exp
(︁∫︀ 𝑇

0 𝜇2,𝑡𝑑𝐵𝑡 − 1
2

∫︀ 𝑇
0 𝜇22,𝑡𝑑𝑡

)︁
. Notice that 𝑀𝑇 ≤ 𝐹𝜇2 := exp

(︁∫︀ 𝑇
0 𝜇2,𝑡𝑑𝐵𝑡

)︁
.

Since this class of processes is uniformly integrable we can take 𝑛* ∈ 𝑁 such that

𝐸𝑃1

[︀
𝐹𝜇2𝐼{𝐹𝜇2>𝑛*}

]︀
<
𝜀

2

holding for every process in this class and consequently

𝐸𝑃1

[︀
𝑀𝑇 𝐼{𝑀𝑇>𝑛*}

]︀
≤ 𝐸𝑃1

[︁
𝐹𝜇2𝐼{𝐹𝜇2>𝑛

*}
]︁
<
𝜀

2
.

Therefore, taking 𝜂 = 𝜀
2𝑛* , we obtain that

𝐸𝑃2 [𝐼𝐴] = 𝐸𝑃1

[︀
𝐼𝐴𝑀𝑇 𝐼{𝑀𝑇≤𝑛*}

]︀
+ 𝐸𝑃1

[︀
𝐼𝐴𝑀𝑇 𝐼{𝑀𝑇>𝑛*}

]︀
≤ 𝐸𝑃1

[︀
𝐼𝐴𝑀𝑇 𝐼{𝑀𝑇≤𝑛*}

]︀
+
𝜀

2

< 𝑛*𝐸𝑃1 [𝐼𝐴] +
𝜀

2
< 𝜀.

Claim OA.4. 𝑝 = 1

Proof. Assume towards a contradiction that 𝑝 < 1.

Case 1: 𝑝 > 𝑝*.

The belief process 𝑝𝑡 is a martingale, so for every 𝜀 > 0 there exists an 𝜖 > 0 such that

if 𝑝𝑡 > 𝑝− 𝜖, then 𝑃 (inf𝑠>𝑡 𝑝𝑠 > 𝑝* + 𝜀 | 𝜃 = 𝑁𝐼) > 1− 𝜀. This implies that

𝑃 (𝑇 = 𝑇 𝜆 | 𝜃 = 𝑁𝐼) > 1− 𝜀

where 𝑇𝜆 is the arrival of the next Poisson-shock. Notice that for every 𝜂 > 0 we can

take 𝜀𝜂 > 0 such that the agent’s payoff at 𝑝𝑡 is no more than (𝑢 + 𝑐)
(︁

𝑟1
𝑟1+𝜆

)︁
+ 𝜂. This

implies that for every 𝜈 > 0 we can take 𝜂 small enough (taking 𝜀𝜂 to satisfy the condition

above) so that 𝐸
(︁∫︀ min{𝑡+1,𝑇}

𝑡 (𝑎(𝑝𝑡))𝑑𝑡 | 𝜃 = 𝑁𝐼
)︁
< 𝜈. Hence, there exists 𝜛 > 0 such that

𝐸
(︁∫︀ min{𝑡+1,𝑇}

𝑡 (1− 𝑎(𝑡))𝑑𝑡 | 𝜃 = 𝑁𝐼
)︁
> 𝜛.

Consider the law of motion (2.7) when 𝑝𝑡 ∈ [𝑝*, 𝑝]. Observe that the instantaneous vari-

ance of the belief process when the (noninvestible type) agent plays 𝑎(·) is bounded below

by a positive constant times (1−𝑎𝑡)2min {𝑝*(1− 𝑝*), 𝑝(1− 𝑝)}2 > 0. Because 𝑝 < 1 and be-

cause 𝑝𝑡− 𝑝0 =
∫︀ 𝑡
0 𝑑𝑝𝑡, we obtain that 𝐸

[︁⃒⃒
𝑝min{𝑡+1,𝑇} − 𝑝𝑡

⃒⃒2]︁ ≥ 𝛿 for some positive constant

𝛿, hence 𝐸
[︀⃒⃒
𝑝min{𝑡+1,𝑇} − 𝑝𝑡

⃒⃒]︀
≥ 𝛿. Because

(︀
𝑝min{𝑡+1,𝑇} − 𝑝𝑡

)︀
has mean zero, we obtain that

𝐸
[︁(︀
𝑝min{𝑡+1,𝑇} − 𝑝𝑡

)︀+]︁ ≥ 𝛿
2 . Taking 𝜀 < 𝛿

4 we conclude that 𝑃
(︀
𝑝min{𝑡+1,𝑇} > 𝑝+ 𝜀

2

)︀
> 0,
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which is a contradiction.

Case 2: 𝑝 ≤ 𝑝*.

Assume 𝑝 ≤ 𝑝*. Then, 𝑏(𝑝) = 0 for all 𝑝 ∈ 𝑆𝑃 (𝛼, 𝛽). Claim OA.3 implies that, for

every 𝑇 > 0, if the noninvestible agent plays 𝑎𝑡 = 0 for every 𝑡 ∈ [0, 𝑇 ], then the relationship

terminates before 𝑇 with probability zero, which implies that the agent’s best response must

satisfy 𝑎𝑡 = 0 for every 𝑡 > 0. This contradicts the assumption that 𝑝 is never reached.

Claim OA.5. 𝑝 = 0.

Proof. Assume towards a contradiction that 𝑝 > 0.

Case 1: 𝑝 < 𝑝*.

Step 1: For every 𝜂 ∈
(︁
0,

𝑝*−𝑝
2

)︁
there exists 𝜖 > 0 such that if 𝑝𝑡 < 𝑝+ 𝜖, then

𝑃

(︂
sup
𝑠>𝑡

𝑝𝑠 ≥ 𝑝* | 𝜃 = 𝑁𝐼

)︂
< 𝜂,

and consequently 𝑃 (sup𝑠>𝑡 𝑝𝑠 ≥ 𝑝*) < 𝜂.

This follows from the martingale property of the belief process.

Step 2: For every 𝜀 > 0 and 𝑇 ∈ 𝑁 there exists 𝜖 > 0 such that if 𝑝𝑡 < 𝑝 + 𝜖 and if the

agent plays a strategy 𝜎̃ that plays 𝑎𝑡 = 0 for all 𝑡 > 0, then 𝑃 𝜎̃ ({𝑇 < 𝑇}) < 𝜀.

This follows from Step 1 and Claim OA.3.

Step 3: There exists 𝑇 * ∈ 𝑁 and 𝜀 > 0 such that if 𝑃 𝜎̃ ({𝑇 < 𝑇 *}) < 𝜀, then

𝐸

(︃∫︁ min{𝑡+𝑇 *,𝑇}

𝑡
(1− 𝑎𝑡)𝑑𝑡 | 𝜃 = 𝑁𝐼

)︃
≥ 1.

To see this, take an arbitrary 𝑇 ∈ 𝑁. If 𝐸
(︁∫︀ min{𝑡+𝑇,𝑇}

𝑡 (1− 𝑎𝑡) 𝑑𝑡 | 𝜃 = 𝑁𝐼
)︁
< 1, then

agent gets no more than

(𝑢+ 𝑐)

(︂∫︁ 1

0

𝑟1𝑒
−𝑟1𝑡𝑑𝑠

)︂
+ 𝑢

(︃∫︁ 𝑇

1

𝑟1𝑒
−𝑟1𝑡𝑑𝑠

)︃
+ (𝑢+ 𝑐)

(︂∫︁ ∞

𝑇

𝑟1𝑒
−𝑟1𝑡𝑑𝑠

)︂
< (𝑢+ 𝑐)

(︃∫︁ 𝑇

0

𝑟𝑒−𝑟1𝑡𝑑𝑠

)︃

for 𝑇 large enough. We can thus let 𝑇 * be the smallest positive integer satisfying the
inequality above and then pick 𝜀 so that

(𝑢+ 𝑐)

(︂∫︁ 1

0
𝑟1𝑒

−𝑟1𝑡𝑑𝑠

)︂
+ 𝑢

(︃∫︁ 𝑇*

1
𝑟1𝑒

−𝑟1𝑡𝑑𝑠

)︃
+ (𝑢+ 𝑐)

(︂∫︁ ∞

𝑇*
𝑟1𝑒

−𝑟1𝑡𝑑𝑠

)︂
< (1− 𝜀) (𝑢+ 𝑐)

(︃∫︁ 𝑇*

0
𝑟1𝑒

−𝑟1𝑡𝑑𝑠

)︃
,

in which case 𝐸
(︁∫︀ min{𝑡+𝑇 *,𝑇}

𝑡 (1− 𝑎𝑡) 𝑑𝑡 | 𝜃 = 𝑁𝐼
)︁
< 1 and 𝑃 𝜎̃ ({𝑇 < 𝑇 *}) < 𝜀 would
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imply that 𝜎̃ is a profitable deviation.

Step 4: There exists 𝜖* > 0 and 𝜀* > 0 such that if:

1. 𝑝𝑡 < 𝑝+ 𝜖*,

2. 𝑃 (sup𝑠>𝑡 𝑝𝑠 ≥ 𝑝*) < 𝜀*,

3. 𝐸
(︁∫︀ min{𝑡+𝑇 *,𝑇}

𝑡 (1− 𝑎(𝑡))𝑑𝑡 | 𝜃 = 𝑁𝐼
)︁
≥ 1,

then 𝑃
(︀
inf𝑠>𝑡 𝑝𝑠 < 𝑝

)︀
> 0.

The argument is analogous to that used in the Case 1 of Claim OA.4’s proof, and is thus

omitted.

Step 5: Step 3 guarantees that we can find 𝜀* > 0 and 𝑇 * such that if 𝑃 𝜎̃ ({𝑇 < 𝑇 *}) < 𝜀*

then 𝐸
(︁∫︀ min{𝑡+𝑇 *,𝑇}

𝑡 (1− 𝑎𝑡) 𝑑𝑡 | 𝜃 = 𝑁𝐼
)︁
≥ 1. Steps 1 and 2 guarantee that we can find

𝜖* > 0 such that if 𝑝𝑡 < 𝑝+𝜖* then 𝑃 𝜎̃ ({𝑇 < 𝑇 *}) < 𝜀*. Therefore, using Step 4, we conclude

that 𝑃
(︀
inf𝑠>𝑡 𝑝𝑠 < 𝑝

)︀
> 0, which contradicts the definition of 𝑝.

Case 2: 𝑝* ≤ 𝑝. This case is analogous to the Case 2 of Claim OA.4’s proof, and is thus

omitted.

Claim OA.6. In any Markovian equilibrium policy profile (𝑎, 𝑏), lim𝑝→1 𝑎(𝑝) < 1.

Proof. Assume towards a contradiction that lim𝑝→1 𝑎(𝑝) = 1. Fix an 𝜀 > 0. Take 𝑇𝜀 ∈ 𝑁

such that 𝑒−𝑟1𝑇𝜀 < 𝜀 and 𝑃 (𝑇𝜆 > 𝑇𝜀) < 𝜀 where 𝑇𝜆 is the random time that the next stopping

opportunity arrives. Let 𝑍(𝑝) := ln(𝑝/(1 − 𝑝)), for 𝑝 ∈ (0, 1). Under the contradiction

assumption, take 𝑍 > 𝑍(𝑝*) such that 𝑧 > 𝑍 implies 𝑎(𝑧) > 1
2 .

15 Recall from the law of

motion (B.1) that 𝑍𝑡 has bounded drift. So there exists 𝑍𝜀 > 𝑍 such that 𝑍0 ≥ 𝑍𝜀 implies

𝑃
(︁
inf𝑡<𝑇𝜀 𝑍𝑡 < 𝑍 | 𝜃 = 𝑁𝐼

)︁
< 𝜀.

Under the contradiction assumption, if 𝑍0 ≥ 𝑍𝜀, the payoff of the agent is no greater

15Here, 𝑝* is the principal’s equilibrium termination threshold delivered by Claim OA.2. It satisfies 𝑝* < 1,
for otherwise the principal would never stop the game and the agent would choose 𝑎𝑡 = 0, to which the
principal’s best reply would be to stop when 𝑝 is close to 1.

188



than

𝑃 (𝑇𝜆 ≤ 𝑇𝜀)

⎡⎣ 𝑃
(︁
inf𝑡<𝑇𝜀

𝑍𝑡 < 𝑍 | 𝜃 = 𝑁𝐼
)︁
(𝑢+ 𝑐)

+𝑃
(︁
inf𝑡<𝑇𝜀 𝑍𝑡 > 𝑍 | 𝜃 = 𝑁𝐼

)︁ ∫︀ 𝑇𝜀

0
𝜆𝑒−𝜆𝑡 (1− 𝑒−𝑟1𝑡)

[︀
1
2𝑢+ 1

2 (𝑢+ 𝑐)
]︀
𝑑𝑡

⎤⎦
+𝑃 (𝑇𝜆 > 𝑇𝜀) (𝑢+ 𝑐)

< (1− 𝜀)
2

(︂
𝑟1

𝑟1 + 𝜆

)︂(︂
1

2
𝑢+

1

2
(𝑢+ 𝑐)

)︂
+
[︁
1− (1− 𝜀)

2
]︁
(𝑢+ 𝑐)

<

(︂
𝑟1

𝑟1 + 𝜆

)︂
(𝑢+ 𝑐)

for 𝜀 small, where the expression in the first line uses the fact that 𝑎(𝑧) > 1
2 for 𝑧 > 𝑍.

This leads to a contradiction as the agent can guarantee him a payoff of
(︁

𝑟1
𝑟1+𝜆

)︁
(𝑢+ 𝑐) by

never mimicking.

Claim OA.7. In any Markovian equilibrium policy profile (𝑎, 𝑏), lim𝑝→0 𝑎(𝑝) < 1.

Proof. Assume towards a contradiction that lim𝑝→0 𝑎(𝑝) = 1. Fix an 𝜀 > 0. Under the

contradiction assumption, take 𝑍 < 𝑍(𝑝*) such that 𝑍 < 𝑍 implies 𝑎(𝑍) > 1
2 .

16 By Claim

OA.3 and because 𝑍𝑡 has bounded drift, there exists 𝑍𝜀 < 𝑍 such that 𝑍0 < 𝑍𝜀 implies

𝑃
(︁
sup𝑡<𝑇𝜀 𝑍𝑡 ≥ 𝑍 | 𝜃 = 𝑁𝐼

)︁
< 𝜀 and 𝑃 𝜎̃

(︁
sup𝑡<𝑇𝜀 𝑍𝑡 ≥ 𝑍 | 𝜃 = 𝑁𝐼

)︁
< 𝜀 where 𝜎̃ is the

strategy that prescribes 𝑎𝑡 = 0 for every 𝑡 > 0.

Under the contradiction assumption, if 𝑍0 < 𝑍𝜀, the payoff of the agent is no greater

than

𝑃

(︂
sup
𝑡<𝑇𝜀

𝑍𝑡 < 𝑍 | 𝜃 = 𝑁𝐼

)︂(︂
𝜀

[︂(︂
1

2

)︂
(𝑢+ 𝑐) +

(︂
1

2

)︂
𝑢

]︂
+ (1− 𝜀) (𝑢+ 𝑐)

)︂
+𝑃

(︂
sup
𝑡<𝑇𝜀

𝑍𝑡 ≥ 𝑍 | 𝜃 = 𝑁𝐼

)︂
(𝑢+ 𝑐)

< (1− 𝜀)

(︂
𝜀

[︂(︂
1

2

)︂
(𝑢+ 𝑐) +

(︂
1

2

)︂
𝑢

]︂
+ (1− 𝜀) (𝑢+ 𝑐)

)︂
+ 𝜀(𝑢+ 𝑐).

On the other hand, the strategy 𝜎̃ yields a payoff at least as large as (1− 𝜀)2 (𝑢 + 𝑐). So

taking 𝜀 such that

(1− 𝜀)

(︂
𝜀

[︂(︂
1

2

)︂
(𝑢+ 𝑐) +

(︂
1

2

)︂
𝑢

]︂
+ (1− 𝜀) (𝑢+ 𝑐)

)︂
+ 𝜀(𝑢+ 𝑐) < (1− 𝜀)2 (𝑢+ 𝑐),

we conclude that the agent can profitably deviate by playing 𝜎̃.

16Note that 𝑝* ≥ 𝑝** > 0.
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Proof of Lemma 2.4.1. That 𝑆𝑃 (𝛼) = (0, 1) follows directly from Claims OA.4 and OA.5.

Consequently, 𝑎(𝑝) < 1 for all 𝑝 ∈ (0, 1), for otherwise there would be an absorbing state,

contradicting 𝑆𝑃 (𝛼) = (0, 1). By definition of an Markovian equilibrium, 𝑎(·) is piecewise

Lipschitz, so 𝑎(·) only has finite discontinuities and its one-sided limit always exists. Hence,

sup𝑝∈(0,1) 𝑎(𝑝) < 1 if and only if lim𝑝→1 𝑎(𝑝) < 1 and lim𝑝→0 𝑎(𝑝) < 1, so by Claims OA.6

and OA.7 we are done.

Proof of Lemma 2.4.2. Take any Markov equilibrium (𝑎, 𝑏). By Claim OA.2 and Lemma

2.4.1, 𝑏 has a cutoff structure on (0, 1). So we only need to argue that the cutoff belief 𝑝*

satisfies 0 < 𝑝* < 1. First, since 𝑅(𝑝) < 0 for all 𝑝 ∈ (0, 𝑝**), principal’s optimality requires

that 𝑏(𝑝) = 0 for all such 𝑝, and so 𝑝* ≥ 𝑝** > 0. Moreover, since 𝑊 is bounded above by
𝜆

𝑟2+𝜆
𝑤𝑁𝐼 ,17 𝑅(𝑝) > 𝑊 (𝑝) for all 𝑝 ∈ (𝑝𝐻 , 1), so principal’s optimality requires that 𝑏(𝑝) = 1

for all 𝑝 ∈ (𝑝𝐻 , 1), and thus 𝑝* ≤ 𝑝𝐻 < 1.

Properties of 𝑎*+(𝑥) and 𝑎*−(𝑥)

Proof of Claim 9. Recall the definition of 𝑎*−(·) and 𝑎*+(·) in (B.30) and (B.31). In this

proof, we focus on the properties of 𝑎*+(·), which is the more difficult case. The properties

of 𝑎*−(·) can be established analogously.

For ease of notation, define 𝑞 :=
𝑥− 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

and 𝑞𝑅 :=
𝑣𝑅− 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

. Consequently, we can

rewrite 𝑎*+(·) as

𝑎*+(𝑥(𝑞)) = 1−

√
2(𝑟1+𝜆)𝜑(𝑞)

√
2(𝑟1+𝜆)𝜑(𝑞𝑅) + Φ(𝑞𝑅)− Φ(𝑞)

.

First, notice that

𝑞𝑅 =

√︂
2

𝑟1 + 𝜆

(︂
1− 𝑟1 + 𝜆

𝜉2𝑅

)︂
=

√︂
2

𝑟1 + 𝜆

(︂
1− 1 + 𝜉𝑅

2

)︂
> √︀

2(𝑟1 + 𝜆)
, (B.41)

where the first equality uses the definition of 𝑣𝑅 in (B.21) and the fact that 𝜅𝑅 =
𝑟21𝑐

2

2(𝑟1+𝜆)2
,

and the rest follows from the fact that 𝜉𝑅 is the positve root of 𝜉2 + 𝜉 = 2(𝑟1+𝜆)
2 so that

𝑟1+𝜆
𝜉2𝑅

= 1+𝜉𝑅
2 < 1

2 .

17Recall that 𝑊 (𝑝) is the principal’s value at 𝑝 conditional on the stopping opportunity not arriving.
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Next, notice that given (B.41), we have

[︃√︀
2 (𝑟1 + 𝜆)

𝜑 (𝑞) + Φ (𝑞)

]︃′
= 𝜑 (𝑞)

[︃
1−

√︀
2 (𝑟1 + 𝜆)

𝑞

]︃
< 0, ∀𝑞 ∈ [𝑞𝑅,∞). (B.42)

Now, let us take derivative of 1 − 𝑎*+(𝑥(𝑞)) with respect to 𝑞. Using the fact that
𝜑′(𝑞) = −𝑞𝜑(𝑞), we have

⎡⎣
√

2(𝑟1+𝜆)
𝜑 (𝑞)

√
2(𝑟1+𝜆)

𝜑 (𝑞𝑅) + Φ (𝑞𝑅)− Φ(𝑞)

⎤⎦′

=

−
√

2(𝑟1+𝜆)
𝑞𝜑 (𝑞)

[︂√
2(𝑟1+𝜆)

𝜑 (𝑞𝑅) + Φ (𝑞𝑅)− Φ(𝑞)

]︂
+

√
2(𝑟1+𝜆)

𝜑2 (𝑞)[︂√
2(𝑟1+𝜆)

𝜑 (𝑞𝑅) + Φ (𝑞𝑅)− Φ(𝑞)

]︂2

=

√︀
2 (𝑟1 + 𝜆)

𝜑 (𝑞)

−𝑞
[︂√

2(𝑟1+𝜆)
𝜑 (𝑞𝑅) + Φ (𝑞𝑅)− Φ(𝑞)

]︂
+ 𝜑 (𝑞)[︂√

2(𝑟1+𝜆)
𝜑 (𝑞𝑅) + Φ (𝑞𝑅)− Φ(𝑞)

]︂2 .

So the sign of 𝑎*′+(𝑥(𝑞)) is the same as that of

𝑆(𝑞) := 𝑞

[︃√︀
2 (𝑟1 + 𝜆)

𝜑 (𝑞𝑅) + Φ (𝑞𝑅)− Φ (𝑞)

]︃
− 𝜑 (𝑞) .

Note that, given condition (B.41), we have 𝑆 (𝑞𝑅) =

[︂√
2(𝑟1+𝜆)𝑞𝑅 − 1

]︂
Φ (𝑞𝑅) > 0.Moreover,

given condition (B.42), we have 𝑆′(𝑞) =

[︂√
2(𝑟1+𝜆)𝜑 (𝑞𝑅) + Φ (𝑞𝑅)− Φ (𝑞)

]︂
> 0. Therefore,

𝑆(𝑞) > 0 for all 𝑞 ≥ 𝑞𝑅, implying 𝑎*+(·) is strictly increasing on [𝑣𝑅, 𝑣𝐿].

Finally, inspecting (B.31) we have 𝑎*+(𝑣𝑅) = 0; applying condition (B.42) we have 0 <

𝑎*+(𝑣𝑅) < 1.

Translation Invariance

The analysis in Claim 8 implies that value function and pseudo-best reply of the agent is

translation-invariant : Should the principal displace her threshold from 𝑧* to say 𝑧*+𝜖, then

the agent’s previous value and mixing behavior at 𝑧 would coincide with the new value and

mixing behavior at 𝑧+𝜖. More formally, this an implication of the (more general) translation

invariance of agent’s payoff function in the 𝑧-space.

Lemma B.2.1 (Translation Invariance). Fix an arbitrary strategy profile (𝛼, 𝛽) and some

𝜖 ∈ 𝑅. Consider a new profile (𝛼′, 𝛽′), defined by 𝛼′
𝑡 := 𝛼𝑡

⃒⃒⃒
{𝑍𝑠 − 𝜖}𝑠≤𝑡 and 𝛽′𝑡 := 𝛽𝑡

⃒⃒⃒
{𝑍𝑠 − 𝜖}𝑠≤𝑡 .
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Then, the payoff of the noninvestible agent satisfies

𝐸 {𝑈1(𝑡, 𝛼, 𝛽)|𝑍0 = 𝑧} = 𝐸
{︀
𝑈1(𝑡, 𝛼

′, 𝛽′)
⃒⃒
𝑍0 = 𝑧 + 𝜖

}︀
,

almost surely, for all 𝑡 ≥ 0 and 𝑧 ∈ 𝑅.

Proof. The law of motion of the process {𝑍𝑡}𝑡≥0 from the perspective of the noninvestible

agent is:

𝑑𝑍𝑡 =
1
2

2
(1− 𝛼𝑡)

2𝑑𝑡+ (1− 𝛼𝑡)𝑑𝐵𝑡.

This means that, if the principal perturbs her strategy using a constant displacement, the

agent can maintain his distribution of payoffs intact by imitating the perturbation.

The payoff of the principal is not translation-invariant in the 𝑧-space. Note, however,

that we can write her payoff conditioning on the type of the agent:

𝑈2(𝑡, 𝛼, 𝛽) = 𝑝𝑡𝐸 {𝑈2(𝑡, 𝛼, 𝛽)|𝜃 = 𝑁𝐼}+ (1− 𝑝𝑡)𝐸 {𝑈2(𝑡, 𝛼, 𝛽)|𝜃 = 𝐼} .

The conditional payoff inside the outer expectation satisfy a conditional translation invari-

ance property.

Lemma B.2.2 (Conditional Translation Invariance). Fix an arbitrary strategy profile (𝛼, 𝛽)

and some 𝜖 ∈ 𝑅. Consider a new profile (𝛼′, 𝛽′), defined by 𝛼′
𝑡 := 𝛼𝑡

⃒⃒⃒
{𝑍𝑠 − 𝜖}𝑠≤𝑡 and

𝛽′𝑡 := 𝛽𝑡

⃒⃒⃒
{𝑍𝑠 − 𝜖}𝑠≤𝑡 for all 𝑡 ≥ 0. Then, the conditional payoffs of the principal satisfy

𝐸 {𝑈2(𝑡, 𝛼, 𝛽)|𝜃 = 𝑁𝐼,𝑍𝑡 = 𝑧} = 𝐸
{︀
𝑈2(𝑡, 𝛼

′, 𝛽′)
⃒⃒
𝜃 = 𝑁𝐼,𝑍𝑡 = 𝑧 + 𝜖

}︀
,

𝐸 {𝑈2(𝑡, 𝛼, 𝛽)|𝜃 = 𝐼, 𝑍𝑡 = 𝑧} = 𝐸
{︀
𝑈2(𝑡, 𝛼

′, 𝛽′)
⃒⃒
𝜃 = 𝐼, 𝑍𝑡 = 𝑧 + 𝜖

}︀
,

almost surely, for all 𝑡 ≥ 0 and 𝑧 ∈ 𝑅.

Proof. In the case of conditioning on 𝜃 = 𝑁𝐼, the law of motion of {𝑍𝑡}𝑡≥0 is as in the proof

of Lemma B.2.1. In the case of conditioning on 𝜃 = 𝐼, the dynamics of {𝑍𝑡}𝑡≥0 satisfies

𝑑𝑍𝑡 = −1
2

2
(1− 𝛼𝑡)

2𝑑𝑡+ (1− 𝛼𝑡)𝑑𝐵𝑡.

In both cases the dynamics are linear given 𝛼, so if the agent perturbs his strategy using a
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constant displacement in 𝑧−space, the principal can maintain her payoff distribution intact

by imitating the perturbation.

Monotonicity and Curvature of Value Functions

Proof of Corollary B.1.2. We first establish the claimed properties of 𝑊 (·). From the law

of motion of 𝑝𝑡 given by (2.4), we know that the diffusion coefficient converges to 0 as 𝑝→ 0

or 𝑝 → 1. So it is easy to verify that lim𝑝→0𝑊 (𝑝) = 0 and lim𝑝→1𝑊 (𝑝) = 𝜆
𝑟2+𝜆

𝑤𝑁𝐼 .

Also, since the principal can always ignore any information, 𝑊 (𝑝) is bouneded below by

𝑊 (𝑝) ≡ 𝜆
𝑟2+𝜆

max{0, 𝑅(𝑝)}. Then, from the principal’s HJB given by (2.8), we always have

𝑊 ′′(𝑝) ≥ 0 no matter whether 𝑊 (𝑝) > 𝑅(𝑝) or 𝑊 (𝑝) < 𝑅(𝑝); that is, 𝑊 (·) is convex on

(0, 1). Since lim𝑝→0𝑊 (𝑝) = 0 and 𝑊 (·) ≥ 0, 𝑊 (·) must be (weakly) increasing at 0, and

because it is convex, 𝑊 (·) is increasing on (0, 1).

Now we turn to 𝑣(·). Suppose first that 𝑟1 ≥ 𝑟*, so that in equilibrium 𝑎(·) ≡ 0.

From Claim 2 and conditions (B.26) and (B.28), 𝑣(·) is strictly decreasing and concave on

(−∞, 𝑧*), with lim𝑧→−∞ 𝑣(𝑧) = 𝑢 + 𝑐. From Claim 3 and conditions (B.27) and (B.29),

𝑣(·) is strictly decreasing and convex on (𝑧*,∞), with lim𝑧→∞ 𝑣(𝑧) = 𝑟1
𝑟1+𝜆

(𝑢+ 𝑐). Suppose

now that 𝑟1 < 𝑟*, so that in equilibrium 𝑎(·) is hump-shaped. In light of Claims 2 and

3 and conditions (B.14), (B.17), (B.20) and (B.23), it suffices to show that 𝑣(·) is strictly

decreasing and concave on (𝑧𝐿, 𝑧
*), and strictly decreasing and convex on (𝑧*, 𝑧𝑅). But

these properties follow immediately from Claim 1 and the fact that 𝑎(·) is hump-shaped

with 0 < 𝑎(𝑧) < 1 for 𝑧 ∈ (𝑧𝐿, 𝑧𝑅).

B.2.2 Omitted Proofs for Theorem 2.5.1

Proof of Lemma B.1.2. Recall from the proof of Claim 8 that 𝑟1 < 𝑟* implies 𝑣𝑅 < 𝑣𝐿.

Then by Claim 10 and Corollary B.1.4, we are done if we can find an 𝜆2 ≥ 𝜆1 and an 𝑟 such

that 𝜆 > 𝜆2 and 𝑟1 < 𝑟 imply that 𝑎*−(𝑢; 𝑟1) < 𝑎*+(𝑢; 𝑟1, 𝜆).
Using (B.30) and (B.31), we have

𝑎*− (𝑢; 𝑟1) < 𝑎*+ (𝑢; 𝑟1, 𝜆)

⇐⇒

√
2𝜑 (0)

√
2𝑟1 𝜑

(︁
𝑣𝐿−𝑢√

𝜅𝐿

)︁
+Φ

(︁
𝑣𝐿−𝑢√

𝜅𝐿

)︁
− Φ(0)

>

1√
𝑟1
𝜑
(︁√︁

2
𝑟1+𝜆

𝜆
𝑟1𝑐

𝑢
)︁

𝜑

(︂
𝑣𝑅− 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

)︂
+ √

2(𝑟1+𝜆)

[︂
Φ

(︂
𝑣𝑅− 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

)︂
− Φ

(︁√︁
2

𝑟1+𝜆
𝜆

𝑟1𝑐
𝑢
)︁]︂

(B.43)
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Since 𝜑
(︁
𝑣𝐿−𝑢√
𝜅𝐿

)︁
≤ 𝜑 (0) and Φ

(︁
𝑣𝐿−𝑢√
𝜅𝐿

)︁
≤ 1, we can find a lower bound for the LHS of (B.43)

whenever 𝑟1 < 1:

√
2𝜑 (0)

√
2𝑟1𝜑

(︁
𝑣𝐿−𝑢√
𝜅𝐿

)︁
+Φ

(︁
𝑣𝐿−𝑢√
𝜅𝐿

)︁
− Φ (0)

≥

√
2𝜑 (0)

√
2𝜑 (0) + 1− Φ (0)

.

Now let us find an upper bound for the RHS of (B.43). First, when 𝜆 ≥ 1, we know

1
√
𝑟1
𝜑

(︂√︂
2

𝑟1 + 𝜆

𝜆

𝑟1𝑐
𝑢

)︂
≤ 1

√
𝑟1
𝜑

(︂√︂
2

𝑟1 + 1 𝑟1𝑐
𝑢

)︂
. (B.44)

Second, by direct calculation we have

𝑣𝑅 − 𝑟1
𝑟1+𝜆

𝑢
√
𝜅𝑅

=

√
2

4

(︂
3√

𝜆+ 𝑟1
+

√︂
1

𝑟1 + 𝜆
+

8
2

)︂
,

and when 𝜆 ≥ 1, we have

𝑣𝑅 − 𝑟1
𝑟1+𝜆

𝑢
√
𝜅𝑅

≤
√
2

4

(︃
3√
1 + 0

+

√︂
1

1 + 0
+

8
2

)︃
=

√
2

4

(︁
3 +

√︀
2 + 8

)︁
.

Then

𝜑

(︂
𝑣𝑅 − 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

)︂
≥ 𝜑

(︃√
2

4

(︁
3 +

√︀
2 + 8

)︁)︃
. (B.45)

Third,

√︀
2 (𝑟1 + 𝜆)

[︂
Φ

(︂
𝑣𝑅 − 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

)︂
− Φ

(︂√︂
2

𝑟1 + 𝜆

𝜆

𝑟1𝑐
𝑢

)︂]︂
≥ −√

2𝜆
(1− Φ (0)) .

Apparently, there exists 𝜆 ≥ 𝜆1, such that for all 𝜆 > 𝜆, we have

𝜑

(︃√
2

4

(︁
3 +

√︀
2 + 8

)︁)︃
− √

2𝜆
(1− Φ (0)) ≥ 1

2
𝜑

(︃√
2

4

(︁
3 +

√︀
2 + 8

)︁)︃
. (B.46)

Defining 𝜆2 = max {1, 𝜆} and applying conditions (B.44), (B.45) and (B.46), we know

that whenever 𝜆 > 𝜆2, we have the following upper bound for the RHS of (B.43):

1√
𝑟1
𝜑
(︁√︁

2
𝑟1+𝜆

𝜆
𝑟1𝑐
𝑢
)︁

𝜑

(︂
𝑣𝑅− 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

)︂
+ √

2(𝑟1+𝜆)

[︂
Φ

(︂
𝑣𝑅− 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

)︂
− Φ

(︁√︁
2

𝑟1+𝜆
𝜆
𝑟1𝑐
𝑢
)︁]︂ ≤

1√
𝑟1
𝜑
(︁√︁

2
𝑟1+1 𝑟1𝑐

𝑢
)︁

1
2𝜑
(︁√

2
4

(︁
3 +

√
2 + 8

)︁)︁ .
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Now we compare the lower bound for the LHS of (B.43) with the upper bound for the

RHS of (B.43). Taking limit 𝑟1 → 0, we have

lim
𝑟1→0

1√
𝑟1
𝜑
(︁√︁

2
𝑟1+1 𝑟1𝑐

𝑢
)︁

1
2𝜑
(︁√

2
4

(︁
3 +

√
2 + 8

)︁)︁ = 0 <

√
2𝜑 (0)

√
2𝜑 (0) + 1− Φ (0)

,

recalling that 𝜑 is the pdf of the standand normal distribution. So there exists 𝑟′ > 0 such

that for all 𝑟 < 𝑟′,

1√
𝑟1
𝜑
(︁√︁

2
𝑟1+1 𝑟1𝑐

𝑢
)︁

1
2𝜑
(︁√

2
4

(︁
3 +

√
2 + 8

)︁)︁ < √
2𝜑 (0)

√
2𝜑 (0) + 1− Φ (0)

.

Letting 𝑟 = min {1, 𝑟′, 𝑟*}, we have 𝑎⋆− (𝑢; 𝑟1) < 𝑎⋆+ (𝑢; 𝑟1, 𝜆) whenever 𝜆 > 𝜆2 and 𝑟1 < 𝑟,

as desired.

Proof of Claim 11. Note that

𝑎*+ (𝑢; 𝑟1, 𝜆) = 1− 1

𝜑

(︂
𝑣𝑅− 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

)︂
+ √

2(𝑟1+𝜆)

[︂
Φ

(︂
𝑣𝑅− 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

)︂
− Φ

(︁√︁
2

𝑟1+𝜆
𝜆

𝑟1𝑐
𝑢
)︁]︂ 1√

2𝜋
𝑒
− 𝜆2

𝜆+𝑟1

2

𝑟21𝑐2
𝑢2

.

(B.47)

Note also that, for all 𝜆 > 𝜆1,

𝑣𝑅 − 𝑟1
𝑟1+𝜆

𝑢
√
𝜅𝑅

=

√
2

4

(︂
3√

𝜆+ 𝑟1
+

√︂
1

𝜆+ 𝑟1
+

8
2

)︂
≤

√
2

4

(︂
3√
𝜆1

+

√︂
1

𝜆1
+

8
2

)︂

Thus for all 𝜆 > 𝜆1,

𝜑

(︂
𝑣𝑅 − 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

)︂
+ √︀

2 (𝑟1 + 𝜆)

[︂
Φ

(︂
𝑣𝑅 − 𝑟1

𝑟1+𝜆
𝑢

√
𝜅𝑅

)︂
− Φ

(︂√︂
2

𝑟1 + 𝜆

𝜆

𝑟1𝑐
𝑢

)︂]︂
≥ 𝜑

(︃√
2

4

(︂
3√
𝜆1

+

√︂
1

𝜆1
+

8
2

)︂)︃
− √

2𝜆
. (B.48)

Let 𝐴′ to be such that

1√
2𝜋𝐴′

=
1

2
𝜑

(︃√
2

4

(︂
3√
𝜆1

+

√︂
1

𝜆1
+

8
2

)︂)︃
.
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Since lim𝜆→∞ √
2𝜆

= 0, there must exist 𝜆′3 ≥ 𝜆1, such that for all 𝜆 > 𝜆′3,

𝜑

(︃√
2

4

(︂
3√
𝜆1

+

√︂
1

𝜆1
+

8
2

)︂)︃
− √

2𝜆
>

1√
2𝜋𝐴′

. (B.49)

Finally, let 𝐴 = max{𝐴′, 2}. Conditions (B.47), (B.48) and (B.49) then tell us that whenever

𝜆 > 𝜆′3, we have

𝑎*+ (𝑢; 𝑟1, 𝜆) > 1−𝐴′𝑒
− 𝜆2

𝜆+𝑟1

2

𝑟21𝑐
2 𝑢

2

≥ 1−𝐴𝑒
− 𝜆2

𝜆+𝑟1

2

𝑟21𝑐
2 𝑢

2

,

as desired.

B.2.3 Omitted Proofs for Theorem 2.6.1

Proof of Claim 17. The proof is almost identical to Lemma B.2.4’s proof in the next section,

and is thus omitted.

B.2.4 Patient Limit: Toward a Proof of Theorem 2.7.1

In this section, we prove Theorem 2.7.1 which is about the convergence of equilibrium value

functions when players get arbitrarily patient at comparable rates.

For each 𝑛 ∈ 𝑁 , take the unique Markov equilibrium (𝑎𝑛, 𝑏𝑛) associated with the discount

factor 𝑟𝑖,𝑛 for 𝑖 = 1, 2. Assume that lim𝑛→∞ 𝑟𝑖,𝑛 = 0 and lim𝑛→∞ (𝑟2,𝑛/𝑟1,𝑛) := 𝜒 ∈

(0,∞). Let 𝑉𝑛 (·) be the agent’s value function in the equilibrium (𝑎𝑛, 𝑏𝑛) and 𝑊𝑛 (·) be

the principal’s value function. We will often use 𝑧 ≡ log(𝑝/1 − 𝑝) as state variable when

analyzing the agent’s behavior. When doing so, we denote by 𝑣𝑛(𝑧) := 𝑉𝑛(𝑝(𝑧)) the agent’s

value function in the 𝑧−space. Write 𝑧*𝑛 for the principal’s equilibrium cutoff. Write 𝑧𝐿,𝑛 for

the infimum belief 𝑧 at which the agent plays 𝑎𝑛 (𝑧) > 0 and write 𝑧𝑅,𝑛 for the supremum.

Write 𝑇 for the equilibrium stopping time that stops the play of the game. Without labeling

explicitly, we note that the distribution of 𝑇 depends on 𝑛 and the current state 𝑧. For

𝑖 = 1, 2, let 𝐸𝜃𝑛
{︀
𝑒−𝑟𝑖,𝑛𝑇

}︀
be the expected discount factor when the stopping action is taken

in the equilibrium (𝑎𝑛, 𝑏𝑛) discounted at rate 𝑟𝑖,𝑛 and given the equilibrium strategy of type
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𝜃 ∈ {𝑁𝐼, 𝐼}.18 When the game starts at state 𝑧, let

𝐸𝑛
{︀
𝑒−𝑟𝑖,𝑛𝑇

}︀
:= 𝑝(𝑧)𝐸𝑁𝐼𝑛

{︀
𝑒−𝑟𝑖,𝑛𝑇

}︀
+ (1− 𝑝(𝑧))𝐸𝐼𝑛

{︀
𝑒−𝑟𝑖,𝑛𝑇

}︀
.

Claim OA.8. Take (𝑟1, 𝑟2) ∈ 𝑅2
++ and let 𝜏 be any stopping time. Assume that 𝐸 {𝑒−𝑟1𝜏} =

𝜉 ∈ (0, 1).

i) If 𝑟2 ≤ 𝑟1 then

𝜉 ≤ 𝐸
{︀
𝑒−𝑟2𝜏

}︀
≤ 𝜉(𝑟2/𝑟1).

ii) If 𝑟2 > 𝑟1 then

𝜉(𝑟2/𝑟1) ≤ 𝐸
{︀
𝑒−𝑟2𝜏

}︀
≤ 𝜉.

Moreover, for each 𝜉 ∈ (0, 1) and any inequality above, there exists a distribution over

stopping times for which this inequality is tight.

Proof. Assume that 𝐸 {𝑒−𝑟1𝜏} = 𝜉 ∈ (0, 1). Let 𝐹 be the CDF of 𝜏 . Let 𝑦 = 𝑒−𝑟1𝜏 and 𝐻

be its CDF. We have 𝜏 = −(log 𝑦)/𝑟1 and hence
∫︀∞
0 𝑒−𝑟2𝑡𝑑𝐹 (𝑡) =

∫︀ 1
0 𝑦

(𝑟2/𝑟1)𝑑𝐻(𝑦).

i) Suppose that 𝑟2 ≤ 𝑟1. On the one hand, since 𝑦(𝑟2/𝑟1) is concave, we have

∫︁ 1

0
𝑦(𝑟2/𝑟1)𝑑𝐻(𝑦) ≤

(︂∫︁ 1

0
𝑦𝑑𝐻(𝑦)

)︂(𝑟2/𝑟1)

= 𝜉(𝑟2/𝑟1),

with equality if 𝐻 has an atom of mass one.

On the other hand, 𝑦(𝑟2/𝑟1) ≥ 𝑦 for every 𝑦 ∈ [0, 1] and hence
∫︀ 1
0 𝑦

(𝑟2/𝑟1)𝑑𝐻(𝑦) ≥∫︀ 1
0 𝑦𝑑𝐻(𝑦), with equality if the support of 𝐻 is {0, 1}.

ii) Suppose that 𝑟2 ≥ 𝑟1. On the one hand, since 𝑦(𝑟2/𝑟1) is convex, we have

∫︁ 1

0
𝑦(𝑟2/𝑟1)𝑑𝐻(𝑦) ≥

(︂∫︁ 1

0
𝑦𝑑𝐻(𝑦)

)︂(𝑟2/𝑟1)

= 𝜉(𝑟2/𝑟1),

with equality if 𝐻 has an atom of mass one.

On the other hand, 𝑦(𝑟2/𝑟1) ≤ 𝑦 for every 𝑦 ∈ [0, 1] and hence
∫︀ 1
0 𝑦

(𝑟2/𝑟1)𝑑𝐻(𝑦) ≤∫︀ 1
0 𝑦𝑑𝐻(𝑦), with equality if the support of 𝐻 is {0, 1}.

Claim OA.9. For every 𝜀 > 0 there exists 𝑧† ∈ 𝑅 and 𝑛̃1 ∈ 𝑁 such that, if 𝑧 ≥ 𝑧† and

𝑛 ≥ 𝑛̃1, then the continuation payoff of the agent at 𝑧 is less than 𝜀 in the equilibrium

18Here, we interpret the strategy of the investible type as always setting 𝑎 = 1.
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(𝑎𝑛, 𝑏𝑛).

Proof. Otherwise we can find a sequence of equilibria (𝑎𝑛, 𝑏𝑛) starting at (𝑧𝑛) → +∞ in

which the agent obtains a payoff weakly greater than 𝜀. Since the agent’s equilibrium payoff

is bounded above by (𝑢+ 𝑐)
[︀
1− 𝐸𝑁𝐼𝑛

(︀
𝑒−𝑟1,𝑛𝑇

)︀]︀
, we have

(𝑢+ 𝑐)
[︀
1− 𝐸𝑁𝐼𝑛

(︀
𝑒−𝑟1,𝑛𝑇

)︀]︀
≥ 𝜀 ⇒ 𝐸𝑁𝐼𝑛

(︀
𝑒−𝑟1,𝑛𝑇

)︀
≤
(︁
1− 𝜀

𝑢+𝑐

)︁
,

and hence the principal’s payoff in equilibrium (𝑎𝑛, 𝑏𝑛) at 𝑧𝑛 is at most

max

{︂(︁
1− 𝜀

𝑢+𝑐

)︁
,
(︁
1− 𝜀

𝑢+𝑐

)︁(𝑟2,𝑛/𝑟1,𝑛)}︂
𝑝 (𝑧𝑛)𝑤𝑁𝐼 ,

which is always strictly less than 𝑤𝑁𝐼 . Meanwhile, since 𝑟2,𝑛 → 0 and 𝑧𝑛 → ∞ as 𝑛 → ∞,

the principal’s payoff at 𝑧𝑛 by terminating the relationship in the first opportunity satisfies

lim
𝑛→∞

(︁
𝜆

𝑟2,𝑛+𝜆

)︁
[(1− 𝑝(𝑧𝑛))𝑤𝐼 + 𝑝(𝑧𝑛)𝑤𝑁𝐼 ] = 𝑤𝑁𝐼 .

So the principal has a profitable deviation when 𝑛 is sufficiently large.

We assume that 𝑛 ≥ 𝑛̃1 for the remainder of this proof.

Claim OA.10. For every fixed 𝑧0, we have lim sup𝑛→∞ 𝑣𝑛 (𝑧0) ≤ 𝑢.

Proof. Take any small 𝜀 ∈ (0, 𝑢/2). For each 𝑛 ∈ 𝑁 , let 𝑧𝑛𝜀 := inf {𝑧|𝑎𝑛 (𝑧) = 1− 𝜀} . There

are two cases to consider. Let 𝑧† be defined and delivered by Claim OA.9. Every sequence

can be split into (at most) two subsequence, each one of them satisfying one of the cases

below.

Case 1 𝑧𝑛𝜀 ≤ 𝑧† for every 𝑛 ∈ 𝑁 .

In this case, take 𝑚 ∈ 𝑁 such that 𝑧† −𝑚 < 𝑧0 and let 𝑧𝑛0 := 𝑧𝑛𝜀 −𝑚. Since 𝑣𝑛(·) is

decreasing, it suffices to show that lim sup𝑛→∞ 𝑣𝑛 (𝑧
𝑛
0 ) ≤ 𝑢.

Take any 𝜁 > 0. Suppose that the game starts at 𝑧𝑛0 and consider the stopping time 𝑇𝑛

that stops the play of the game at the first time 𝑍𝑛(𝑡) = 𝑧𝑛𝜀 (setting 𝑇𝑛 = +∞ if this event

does not happen in finite time). Note that 𝑍𝑛 (𝑡) is a submartingale under the strategy of

the noninvestible type and that 𝑎𝑛 (𝑧) ≤ 1 − 𝜀 with probability one before 𝑇𝑛. Using this

observation and 𝑍𝑛(𝑡)’s law of motion (B.1), it is straightforward to show that 𝑇𝑛 < +∞ with

probability one under the strategy of the noninvestible type and that 𝐸𝑁𝐼𝑛
[︁
𝑒−𝑟1,𝑛𝑇𝑛

]︁
→ 1.

198



Take 𝑛** ∈ 𝑁 for which 𝑛 > 𝑛** implies 𝐸𝑁𝐼𝑛

[︁
𝑒−𝑟1,𝑛𝑇𝑛

]︁
> 1 − 𝜀. Next notice that, at the

state 𝑧𝑛𝜀 , 𝑣𝑛 is decreasing and concave (by Corollary B.1.2), and hence

𝑟1,𝑛𝑣𝑛 (𝑧
𝑛
𝜀 ) = 𝑟1,𝑛 [𝑢+ (1− 𝑎𝑛 (𝑧

𝑛
𝜀 )) 𝑐] +

1

2

2

[1− 𝑎𝑛 (𝑧
𝑛
𝜀 )]

2 [︀𝑣′ (𝑎𝑛 (𝑧𝑛𝜀 )) + 𝑣′′ (𝑎𝑛 (𝑧
𝑛
𝜀 ))
]︀

≤ 𝑟1,𝑛 [𝑢+ (1− 𝑎𝑛 (𝑧
𝑛
𝜀 )) 𝑐] ,

which implies 𝑣𝑛 (𝑧𝜀𝑛) ≤ 𝑢 + 𝜀𝑐, because 𝑎𝑛(𝑧𝜀𝑛) = 1 − 𝜀. It follows that the payoff of the

noninvestible type converges to a number not greater than (1− 𝜀) (𝑢+ 𝜀𝑐)+ 𝜀(𝑢+ 𝑐), which

proves the result as 𝜀 is arbitrary.

Case 2 𝑧𝑛𝜀 > 𝑧† for every 𝑛 ∈ 𝑁 .

We may assume that 𝑧0 < 𝑧† for every 𝑛 as otherwise the claim follows from Claim OA.9.

Suppose that the game starts at 𝑧0 and consider the stopping time 𝑇𝑛 that stops the play of

the game at 𝑧†. As in Case 1, we have 𝑇𝑛 < +∞ with probability one under the noninvestible-

type’s strategy and 𝐸𝑁𝐼𝑛

{︁
𝑒−𝑟1,𝑛𝑇𝑛

}︁
→ 1. Since lim sup𝑛→∞ 𝑣𝑛

(︀
𝑧†
)︀
≤ 𝜀 < 𝑢/2, the rest of

the proof follows the same argument as in Case 1.

Claim OA.11. lim𝑛→∞ 𝑧𝐿,𝑛 = −∞.

Proof. The proof follows verbatim from Claim 14’s proof.

For every 𝑧0 < lim inf 𝑧*𝑛, we have lim𝑛→∞ 𝑎𝑛 (𝑧0) = 1.

Proof. By Claim OA.11, 𝑧0 ∈ (𝑧𝐿,𝑛, 𝑧
*
𝑛) for 𝑛 sufficiently large. Then from condition (B.10),

we know that 𝑎𝑛(·) eventually satisfies the following differential equation

𝑎′𝑛 (𝑧) = 1− 𝑎𝑛(𝑧)− 2
(︁
𝑣𝑛(𝑧)−𝑢

𝑐

)︁
. (B.50)

Assume toward a contradiction that we can find a subsequence such that

lim
𝑛→∞

𝑎𝑛 (𝑧0) = 𝑎̄ < 1.

Take 𝑚 ∈ 𝑁 such that 1−𝑎̄
4 𝑚 > 2. Claim OA.11 implies that [𝑧0 −𝑚, 𝑧0] ⊂ (𝑧𝐿,𝑛, 𝑧

*
𝑛) for

𝑛 sufficiently large. Claim OA.10 and the monotonicity of 𝑣𝑛(·) imply that we can find

𝑛† ∈ 𝑁 such that for every 𝑛 ≥ 𝑛†, for every 𝑧 ∈ [𝑧0 −𝑚, 𝑧0], we have 2
(︁
𝑣𝑛(𝑧)−𝑢

𝑐

)︁
< 1−𝑎̄

4 .

Given the contradiction assumption, we can find 𝑛† ∈ 𝑁 such that for every 𝑛 ≥ 𝑛† we have
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𝑎𝑛(𝑧0) <
1+𝑎̄
2 . Since 𝑎𝑛 (·) is strictly increasing on [𝑧0 −𝑚, 𝑧0], this implies 𝑎𝑛 (𝑧) < 1+𝑎̄

2 for

all 𝑧 ∈ [𝑧0 −𝑚, 𝑧0]. So (B.50) implies 𝑎′𝑛 (𝑧) >
1−𝑎̄
4 for all 𝑧 ∈ [𝑧0 −𝑚, 𝑧0] and hence

𝑎𝑛 (𝑧0 −𝑚) < 𝑎𝑛 (𝑧0)− 1−𝑎̄
4 𝑚 < 𝑎𝑛 (𝑧0)− 2 < 0,

which leads to a contradiction as 𝑎𝑛 is bounded below by 0.

Lemma B.2.3. For every 𝑧0 < lim inf𝑛→∞ 𝑧*𝑛, we have lim𝑛→∞ 𝑣𝑛 (𝑧0) = 𝑢.

Proof. By Claim OA.11, 𝑧0 ∈ (𝑧𝐿,𝑛, 𝑧
*
𝑛) for 𝑛 sufficiently large. Take 𝜗 > 0 such that

𝑧0+2𝜗 < lim inf 𝑧*𝑛 and, taking a subsequence if necessary, assume that 𝑧0+𝜗 < 𝑧*𝑛 for each

one of its elements.

Assume toward a contradiction, taking a subsequence if necessary, that

lim
𝑛→∞

𝑣𝑛 (𝑧0) < 𝑢− 𝜀,

for some 𝜀 > 0. Because 𝑣𝑛(·) is strictly decreasing, we may take 𝑛* such that 𝑛 ≥ 𝑛* implies

𝑣𝑛 (𝑧) < 𝑢− 𝜀
2 for all 𝑧 ∈

[︀
𝑧0, 𝑧0 +

𝜗
2

]︀
. In this case, we have 𝑎′𝑛 (𝑧) = 1−𝑎𝑛(𝑧)−2

(︁
𝑣𝑛(𝑧)−𝑢

𝑐

)︁
≥

𝜀
𝑐 for every 𝑧 ∈

[︀
𝑧0, 𝑧0 +

𝜗
2

]︀
. This implies that lim sup𝑛 𝑎𝑛 (𝑧0) ≤ 1 −

(︀
𝜗
2

)︀
𝜀
𝑐 , contradicting

Lemma B.2.4.

Lemma B.2.4. Fix a prior 𝑝0 ∈ (0, 1) and some 𝑝 ∈ (𝑝0, 1). For each 𝑟 > 0, consider an

adapted Markov function 𝛼𝑟 (·) and a belief process defined by substituting 𝛼𝑟(·) into (2.7).

Take 𝜀 > 0 and let 𝑇 be the random time that stops the play in the first time that 𝑝 ≥ 𝑝.

Then we have:

lim sup
𝑟↓0

𝐸𝑁𝐼

{︃
𝑟

∫︁ 𝑇

0
𝑒−𝑟𝑡𝐼{𝛼𝑟(𝑝𝑡)≤1−𝜀}𝑑𝑡

}︃
= 0.

Proof. Take a small 𝜖 > 0. Next, take 𝜁 > 0 and let 𝑇 𝜁 be the stopping time that stops the

play in the first time that the posterior reaches (𝜁, 𝑝)𝑐. Using the martingale property of

beliefs whose law of motion is given by (2.7), it is straightforward to show that we can take

𝜁 small enough so that

𝑃𝑁𝐼
{︁
𝑇 𝜁 <∞, 𝑝(𝑇 𝜁) = 𝜁

}︁
<
𝜖

2
.
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Therefore, we have:

𝐸𝑁𝐼

{︃
𝑟

∫︁ 𝑇

0
𝑒−𝑟𝑡𝐼{𝛼𝑟(𝑝𝑡)≤1−𝜀}𝑑𝑡

}︃
= 𝐸𝑁𝐼

{︃
𝑟

∫︁ 𝑇

0
𝑒−𝑟𝑡𝐼{inf𝑡≤𝑇 𝑝𝑡≤𝜁}𝐼{𝛼𝑟(𝑝𝑡)≤1−𝜀}𝑑𝑡

}︃

+ 𝐸𝑁𝐼

{︃
𝑟

∫︁ 𝑇

0
𝑒−𝑟𝑡𝐼{inf𝑡≤𝑇 𝑝𝑡>𝜁}𝐼{𝛼𝑟(𝑝𝑡)≤1−𝜀}𝑑𝑡

}︃

≤ 𝜖

2
+ 𝐸𝑁𝐼

{︃
𝑟

∫︁ 𝑇

0
𝑒−𝑟𝑡𝐼{inf𝑡≤𝑇 𝑝𝑡>𝜁}𝐼{𝛼𝑟(𝑝𝑡)≤1−𝜀}𝑑𝑡

}︃

≤ 𝜖

2
+ 𝐸𝑁𝐼

{︃
𝑟

∫︁ 𝑇 𝜁

0
𝑒−𝑟𝑡𝐼{𝛼𝑟(𝑝𝑡)≤1−𝜀}𝑑𝑡

}︃

≤ 𝜖

2
+ 𝐸𝑁𝐼

{︃
𝑟

∫︁ 𝑇 𝜁

0
𝐼{𝛼𝑟(𝑝𝑡)≤1−𝜀}𝑑𝑡

}︃
.

We must then show that lim sup𝑟↓0𝐸
𝑁𝐼
{︁
𝑟
∫︀ 𝑇 𝜁

0 𝐼{𝛼𝑟(𝑝𝑡)≤1−𝜀}𝑑𝑡
}︁
< 𝜖

2 . Let 𝜉𝑟(𝑡) be a function

that is 1 whenever 𝑎𝑟 (𝑝𝑡) ≤ 1− 𝜀 and 0 otherwise. It suffices to show that

lim sup
𝑟↓0

𝑟𝐸𝑁𝐼

{︃∫︁ 𝑇 𝜁

0
𝜉𝑟(𝑡)𝑑𝑡

}︃
<
𝜖

2
.

For that we will consider a different stopping time 𝑇 * and a new process 𝜉*𝑟 (𝑡) which

are built from 𝑇 𝜁 and 𝜉𝑟(𝑡) in the following way. Whenever 𝑇 𝜁 < ∞ and
∫︀ 𝑇 𝜁

0 𝜉𝑟(𝑡)𝑑𝑡 ∈

(𝑚− 1,𝑚) for some 𝑚 ∈ 𝑁 , we will set

𝜉*𝑟 (𝑡) :=

⎧⎪⎨⎪⎩
𝜉𝑟(𝑡) 𝑡 ≤ 𝑇 𝜁 ,

1 𝑡 > 𝑇 𝜁 .

We will also set 𝑇 * := 𝑇 𝜁+𝑡, where 𝑡 is defined by
∫︀ 𝑇 𝜁

0 𝜉𝑟(𝑡)𝑑𝑡+𝑡 = 𝑚. Whenever 𝑇 𝜁 < +∞

and
∫︀ 𝑇 𝜁

0 𝜉𝑟(𝑡)𝑑𝑡 = 𝑚 − 1 for some 𝑚 ∈ 𝑁 , we set 𝜉*𝑟 (𝑡) := 𝜉𝑟(𝑡) and 𝑇 * := 𝑇 𝜁 . Clearly it

suffices to show that

lim sup
𝑟↓0

𝐸𝑁𝐼

{︃
𝑟

∫︁ 𝑇 *

0
𝜉*𝑟 (𝑡)𝑑𝑡

}︃
<
𝜖

2
.

Next, we build a family of stochastic processes
{︀
𝜉*𝑟,𝑚(𝑡)

}︀
𝑚∈𝑁 from 𝜉*𝑟 (𝑡) by setting

𝜉*𝑟,𝑚(𝑡) :=

⎧⎪⎨⎪⎩
𝜉*𝑟 (𝑡)

∫︀ 𝑡
0 𝜉

*(𝑡)𝑑𝑡 ∈ (𝑚− 1,𝑚],

0 otherwise.
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This immediately implies that 𝑟𝐸𝑁𝐼
{︁∫︀ 𝑇 *

0 𝜉*𝑟 (𝑡)𝑑𝑡
}︁
= 𝑟

∑︀∞
𝑚=1𝐸

𝑁𝐼
{︁∫︀ 𝑇 *

0 𝜉*𝑟,𝑚(𝑡)𝑑𝑡
}︁
.

Next, observe that, conditional on 𝜃 = 𝑁𝐼, 𝑝𝑡 is a bounded submartingale. Thus, for

any adapted function 𝜉 (𝑡) ∈ {0, 1} and any stopping time 𝑇 , we have

1 ≥ 𝑝𝑇 − 𝑝0 = 𝐸𝑁𝐼
[︂∫︁ 𝑇

0
𝑑𝑝𝑡

]︂
= 𝐸𝑁𝐼

[︂∫︁ 𝑇

0
𝜉 (𝑡) 𝑑𝑝𝑡

]︂
+ 𝐸𝑁𝐼

[︂∫︁ 𝑇

0

(︁
1− 𝜉 (𝑡)

)︁
𝑑𝑝𝑡

]︂
≥ 𝐸𝑁𝐼

[︂∫︁ 𝑇

0
𝜉 (𝑡) 𝑑𝑝𝑡

]︂

because
(︁
1− 𝜉 (𝑡)

)︁
being an adapted process and 𝑝𝑡 being a submartingale jointly imply

that 𝐸𝑁𝐼
[︁∫︀ 𝑇

0

(︁
1− 𝜉 (𝑡)

)︁
𝑑𝑝𝑡

]︁
≥ 0. As a result, we have

1 ≥ 𝐸𝑁𝐼
[︂∫︁ 𝑇

0
𝜉*𝑟 (𝑡) 𝑑𝑝𝑡

]︂
=

∞∑︁
𝑚=1

𝐸𝑁𝐼
[︂∫︁ 𝑇

0
𝜉*𝑟,𝑚 (𝑡) 𝑑𝑝𝑡

]︂
. (B.51)

Next, since 0 < 𝜁 < 𝑝 < 1, from condition (2.7) it is straightforward to show that there

exists a positive constant 𝜗 > 0 such that, for any 𝑚 ∈ 𝑁 , we have

𝐸𝑁𝐼

{︃∫︁ 𝑇 *

0
𝜉*𝑟,𝑚(𝑡)𝑑𝑝𝑡

}︃
≥ 𝜗𝐸𝑁𝐼

{︃∫︁ 𝑇 *

0
𝜉*𝑟,𝑚(𝑡)𝑑𝑡

}︃
. (B.52)

Therefore, combining (B.51) and (B.52) we have

∞∑︁
𝑚=1

𝐸𝑁𝐼

{︃∫︁ 𝑇 *

0
𝜉*𝑟,𝑚(𝑡)𝑑𝑡

}︃
≤ 1

𝜗

∞∑︁
𝑚=1

𝐸𝑁𝐼

{︃∫︁ 𝑇 *

0
𝜉*𝑟,𝑚(𝑡)𝑑𝑝𝑡

}︃
≤ 1

𝜗
,

implying that
∑︀∞

𝑚=1 𝑟𝐸
𝑁𝐼
{︁∫︀ 𝑇 *

0 𝜉*𝑟,𝑚(𝑡)𝑑𝑡
}︁

≤ 𝑟
𝜗 , which is smaller than 𝜖

2 when 𝑟 is suffi-

ciently small.

Lemma B.2.5. lim𝑛→∞ 𝑧*𝑛 = 𝑧**.

Proof. Suppose toward a contradiction that we can find a subsequence for which lim𝑛→∞ 𝑧*𝑛 :=

𝑧 > 𝑧**. Let 𝑧𝑚 be the midpoint between 𝑧 and 𝑧**. Take 𝜀 > 0. Consider the game start-

ing at 𝑧𝑚. Notice that Lemma B.2.3 implies that lim𝑛→∞ 𝑣𝑛 (𝑧
𝑚) = 𝑢, while Lemma B.2.4

implies that, for each 𝜈 > 0, we have

lim
𝑛→∞

𝐸𝑁𝐼𝑛

{︂
𝑟1,𝑛

∫︁ 𝑇

0
𝑒−𝑟1,𝑛𝑡𝐼{𝑎𝑛(𝑧𝑡)≤1−𝜈}𝑑𝑡

}︂
= 0.
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These two observations imply that lim𝑛→∞𝐸𝑁𝐼𝑛
(︀
𝑒−𝑟1,𝑛𝑇

)︀
= 0, which, by the same argument

as Claim OA.8’s proof, implies that lim𝑛→∞𝐸𝑁𝐼𝑛
(︀
𝑒−𝑟2,𝑛𝑇

)︀
= 0; that is, conditional on

𝜃 = 𝑁𝐼, the principal derives zero discounted payoff from the game. It follows that the

principal obtains a limit payoff bounded above by zero at 𝑧𝑚. But then, for 𝑛 sufficiently

large, if the stopping opportunity arrives at 𝑧 = 𝑧𝑚, the principal can profitably deviate by

stopping the game to obtain 𝑝 (𝑧𝑚)𝑤𝑁𝐼 + (1− 𝑝 (𝑧𝑚))𝑤𝐼 > 0, a contradiction.

Lemma B.2.6. For every 𝑧0 > 𝑧** and 𝑖 = 1, 2, we have lim𝑛→∞𝐸𝑛
{︀
𝑒−𝑟𝑖,𝑛𝑇

}︀
= 1.

Proof. Fix 𝑧0 > 𝑧**. By Claim OA.8, it suffices to show that lim𝑛→∞𝐸𝑛
{︀
𝑒−𝑟2,𝑛𝑇

}︀
= 1.

Taking a subsequence if necessary, assume toward a contradiction that

lim
𝑛→∞

𝐸𝑛
{︀
𝑒−𝑟2,𝑛𝑇

}︀
< 1.

Let 𝜏 be the stopping time that stops the play in the first time that either the state

reaches [0, 𝑝 (𝑧*𝑛)] or when 𝑇 happens. Let 𝑥 = 𝑒−𝑟2,𝑛𝑡. Let 𝑄𝑛 be the distribution of 𝑝𝜏 and

𝐻𝑛 (· | 𝑝𝜏 ) be the conditional distribution of 𝑥 given 𝑝𝜏 .

Step 1. We show that the contradiction assumption implies that, the discounted amount of

time that the relationship continues with beliefs close to 𝑝(𝑧*𝑛) is nonnegligible (i.e., condition

(B.55) holds).

Note that

𝑊𝑛 (𝑝 (𝑧0)) =

∫︁ 1

𝑝(𝑧*
𝑛)

∫︁ 1

0

𝑥
[︀
𝐼{𝑝𝜏>𝑝(𝑧*

𝑛)}𝑅 (𝑝𝜏 ) + 𝐼{𝑝𝜏≤𝑝(𝑧*
𝑛)}𝑊𝑛 (𝑝 (𝑧

*
𝑛))
]︀
𝐻𝑛 (𝑑𝑥 | 𝑝𝜏 ) 𝑑𝑄𝑛(𝑑𝑝𝜏 ).

Because lim𝑛→∞𝑊𝑛 (𝑝 (𝑧
*
𝑛)) = lim𝑛→∞𝑅 (𝑝 (𝑧*𝑛)) = 0, we have

lim sup
𝑛→∞

𝑊𝑛(𝑝(𝑧0)) = lim sup
𝑛→∞

∫︁ 1

𝑝(𝑧*𝑛)

∫︁ 1

0
𝑥𝑅 (𝑝𝜏 )𝐻𝑛 (𝑑𝑥 | 𝑝𝜏 )𝑄𝑛(𝑑𝑝𝜏 ). (B.53)

Moreover, since 𝑅(𝑝**) = 0 and 𝑝(𝑧*𝑛) → 𝑝** (by Lemma B.2.5), for every 𝜀 > 0 there exists

𝜁 > 0 such that when 𝑛 is sufficiently large, 𝑅 (𝑝) > 𝜁 for every 𝑝 > 𝑝 (𝑧*𝑛) + 𝜀. Combining

this observation with condition (B.53), it is easy to show that, for every 𝜀 > 0, if

lim sup
𝑛→∞

∫︁ 1

𝑝(𝑧*𝑛)+𝜀

∫︁ 1

0
(1− 𝑥)𝐻𝑛 (𝑑𝑥 | 𝑝𝜏 )𝑄𝑛(𝑑𝑝𝜏 ) > 0,

then we would have lim sup𝑛→∞𝑊𝑛 (𝑝 (𝑧0)) < 𝑅 (𝑝 (𝑧0)), which contradicts 𝑏𝑛(𝑧0) = 1
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(principal’s optimality) when 𝑛 is sufficiently large. Hence, for every 𝜀 > 0, we have

lim sup
𝑛→∞

∫︁ 1

𝑝(𝑧*𝑛)+𝜀

∫︁ 1

0
(1− 𝑥)𝐻𝑛 (𝑑𝑥 | 𝑝𝜏 )𝑄𝑛(𝑑𝑝𝜏 ) = 0. (B.54)

Therefore, the assumption that lim𝑛→∞𝐸𝑛
(︀
𝑒−𝑟2,𝑛𝑇

)︀
< 1 implies that, for every 𝜀 > 0, we

have

lim sup
𝑛→∞

∫︁ 𝑝(𝑧*𝑛)+𝜀

𝑝(𝑧*𝑛)

∫︁ 1

0
(1− 𝑥)𝐻𝑛 (𝑑𝑥 | 𝑝𝜏 )𝑄𝑛(𝑑𝑝𝜏 ) > 0. (B.55)

For the remainder of this proof, we take 𝜀 > 0 such that 𝑝 (𝑧*𝑛) + 𝜀 <
(︁
𝑧0+𝑧**

2

)︁
.

Step 2. We show that condition (B.55) implies that, the noninvestible type has a profitable

deviation by fully mimicking the investible type.

Lemma B.2.4 implies that if we let 𝑇𝑚 be the random time that stops the play in the

first time that the posterior leaves
(︀
𝑚−1, 1−𝑚−1

)︀
or that 𝑇 happens, then for each 𝜐 > 0,

we have

lim
𝑛→∞

𝐸𝑁𝐼𝑛

{︃
𝑟1,𝑛

∫︁ 𝑇𝑚

0
𝑒−𝑟1,𝑛𝑡𝐼{𝑎𝑛(𝑝𝑡)≤1−𝜐}𝑑𝑡

}︃
= 0.

By the martingale property of beliefs we can take 𝑚 ∈ 𝑁 large enough to make

lim sup
𝑛→∞

𝑃𝑁𝐼
{︂
inf
𝑡≤𝑇

𝑝𝑡 ≤ 𝑚−1

}︂

as small as we want. Analogously, we can take 𝑚 large enough to guarantee that whenever

the posterior starts at
(︀
1−𝑚−1, 1

)︀
then lim sup𝑛→∞ 𝑃𝑁𝐼 {inf𝑡≤𝑇 𝑝𝑡 ≤ 𝑝 (𝑧*𝑛) + 𝜀} is as small

as we want. These two observations then imply that

lim sup
𝑛→∞

𝐸𝑁𝐼𝑛

{︂
𝑟1,𝑛

∫︁ 𝑇

0
𝑒−𝑟1,𝑛𝑡(1− 𝑎𝑛 (𝑝𝑡))𝑑𝑡

}︂
= 0. (B.56)

Next, let 𝑦 = 𝑒−𝑟1,𝑛𝑡. For 𝜃 ∈ {𝑁𝐼, 𝐼}, let 𝑄𝜃𝑛 stand for the distribution of 𝑝𝑇 (not 𝑝𝜏 as

above) given the strategy of type 𝜃 and let 𝐻𝜃
𝑛 (· | 𝑝𝑇 ) stand for the conditional distribution

of 𝑦 given 𝑝𝑇 and the strategy of type 𝜃. On the one hand, using (B.54) and (B.56), it

is straightforward to see that, taking a subsequence if necessary, the limit payoff of the

noninvestible type from following his equilibrium strategy is given by:

lim
𝑛→∞

𝑢

∫︁ 𝑝(𝑧*𝑛)+𝜀

0

∫︁ 1

0
(1− 𝑦)𝐻𝑁𝐼

𝑛 (𝑑𝑦 | 𝑝𝑇 )𝑄𝑁𝐼𝑛 (𝑑𝑝𝑇 ) > 0, (B.57)
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where the positive sign follows from (B.55). On the other hand, the limit payoff of the

noninvestible type from following the strategy of the investible type (i.e., always boosting

performance with probability 1) is given by:

lim
𝑛→∞

𝑢

∫︁ 𝑝(𝑧*𝑛)+𝜀

0

∫︁ 1

0
(1− 𝑦)𝐻𝐼

𝑛 (𝑑𝑦 | 𝑝𝑇 )𝑄𝐼𝑛(𝑑𝑝𝑇 ) > 0. (B.58)

Next, a straightforward application of Bayes rule implies that 𝐻𝑁𝐼
𝑛 (· | 𝑝𝑇 ) = 𝐻𝐼

𝑛 (· | 𝑝𝑇 )

for every 𝑝𝑇 ∈ (0, 1). Moreover, using 𝑝 (𝑧*𝑛) + 𝜀 <
(︁
𝑧0+𝑧**

2

)︁
and Bayes rule, one can find

𝜉 > 1 such that 𝑄𝐼𝑛(𝐴) ≥ 𝜉𝑄𝑁𝐼𝑛 (𝐴) for every (Borel-measurable) 𝐴 ⊂ [0, 𝑝 (𝑧*𝑛) + 𝜀]. Hence,

subtracting (B.57) from (B.58) we obtain an expression at least as large as

lim
𝑛→∞

(𝜉 − 1)𝑢

∫︁ 𝑝(𝑧*𝑛)+𝜀

0

∫︁ 1

0
(1− 𝑦)𝐻𝑁𝐼

𝑛 (𝑑𝑦 | 𝑝𝑇 )𝑄𝑁𝐼𝑛 (𝑑𝑝𝑇 ) > 0.

This implies that the noninvestible type can profitably deviate by fully mimicking, which

leads to a contradiction and concludes the proof.

Proof of Theorem 2.7.1. First, for the agent, Lemmas B.2.3 and B.2.5 tell us that

lim
𝑛→∞

𝑣𝑛(𝑧) = 𝑢

for all 𝑧 < 𝑧**, and Lemma B.2.6 implies that lim𝑛→∞ 𝑣𝑛(𝑧) = 0 for all 𝑧 > 𝑧**.

Next, for the principal, we first argue that 𝑊𝑛(·) converges pointwise to max{0, 𝑅(·)}.

In light of Corollary B.1.2, we continuously extend 𝑊𝑛(·) from (0, 1) to [0, 1] by setting

𝑊𝑛(0) = 0 and 𝑊𝑛(1) =
𝜆

𝑟2,𝑛+𝜆
𝑤𝑁𝐼 . Lemma B.2.6 implies that lim𝑛→∞𝑊𝑛(𝑝(𝑧)) = 𝑅(𝑝(𝑧))

for all 𝑧 > 𝑧**. We now show that lim𝑛→∞𝑊𝑛(𝑝(𝑧)) = 0 for all 𝑧 ≤ 𝑧**. To see this, fix

any 𝑧 ≤ 𝑧** and take any 𝜀 > 0. Since 𝑅(𝑝(𝑧**)) = 0, there exists 𝛿 > 0 such that

𝑅(𝑝(𝑧**)+ 𝛿) < 𝜀
2 . But then, we can find 𝑛* such that for every 𝑛 > 𝑛*, 𝑊𝑛(𝑝(𝑧

**)+ 𝛿) < 𝜀.

Since 𝑊𝑛(·) is increasing, it follows that 𝑊𝑛(𝑝(𝑧)) < 𝜀 for every 𝑛 > 𝑛*. So we must have

lim𝑛→∞𝑊𝑛(𝑝(𝑧)) = 0, because 𝜀 is arbitrary and 𝑊𝑛(·) is bounded below by 0.

To show uniform convergence, note that for any fixed 𝑛, 𝑊𝑛(·) is bounded below by
𝜆

𝑟2,𝑛+𝜆
max{0, 𝑅(·)} such that 𝑊𝑛(1) =

𝜆
𝑟2,𝑛+𝜆

𝑅(1). Because 𝑊𝑛(·) is convex and increasing,

|𝑊 ′
𝑛(·)| is bounded above by (𝑤𝑁𝐼 − 𝑤𝐼), and hence {𝑊𝑛}𝑛 is uniformly equicontinuous.

Since 𝑊𝑛 converges pointwise to max{0, 𝑅}, invoking Arzelà–Ascoli theorem we conclude
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that the convergence is uniform.
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Appendix C

Appendix: A Dynamic Delegated

Investment Model of SPAC

C.1 Proofs

C.1.1 Proof of Lemma 3.3.2

Suppose 𝐹𝐺 (−𝑡) ≤ 𝑉 (−𝑡) at a time −𝑡. Then 𝐹𝐵 (−𝑡) < 𝑉 (−𝑡), so 𝛼𝐵(𝑡) = 0. If 𝛼𝐺(𝑡) > 0,

by the investor’s rational belief in equilibrium, 𝜃 (−𝑡) = +∞. According to Lemma 3.3.1,

𝜂(−𝑡) = 1, so 𝐹𝐺 (−𝑡) = 𝑣𝐺. Since looking forward in the future, the sponsor always expects

a positive probability of no investment, 𝑉 (−𝑡) < 𝑣𝐺 = 𝐹𝐺 (−𝑡). Contradiction! If 𝛼𝐺(𝑡) = 0,

by D1 refinement, 𝜃 (−𝑡) = +∞. Following the same argument, we encounter contradiction.

Finally, 𝐹𝐺 (−𝑡) > 𝑉 (−𝑡) directly implies 𝛼𝐺(−𝑡) = 1 and strictly decreasing continuation

value over time.

C.1.2 Proof of Lemma 3.3.3

Suppose 𝑉 (−𝑡) < 𝑣𝐵(1− 𝑞) and 𝑡 > 0. If 𝛼𝐵(−𝑡) = 0, following the proof of Lemma 3.3.2,

we have 𝜂(−𝑡) = 1, so 𝐹𝐵 (−𝑡) = (1− 𝑞) 𝑣𝐵 > 𝑉 (−𝑡). Contradiction! If 𝛼𝐵(−𝑡) = 1,

𝜃(−𝑡) ≤ 𝑝0
1− 𝑝0

<
1−𝑅𝐵
𝑅𝐺 − 1

<
1− 𝑢𝐵
𝑢𝐺 − 1

,

which implies 𝜂(−𝑡) = 0 according to Lemma 3.3.1. Then 𝐹𝐵 (−𝑡) = 0 < 𝑉 (−𝑡). Con-

tradiction! Therefore, 𝛼𝐵(−𝑡) ∈ (0, 1). 𝑉 (−𝑡) > (1− 𝑞) 𝑣𝐵 implies 𝑉 (−𝑡) > 𝐹𝐵 (−𝑡), so
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𝛼𝐵(−𝑡) = 0.

C.1.3 Proof of Proposition 3.3.3

For 𝑡 < 𝑡*,
𝑑𝑉 (−𝑡)
𝑑𝑡

= 𝜆𝑝0 · [𝐹𝐺 (−𝑡)− 𝑉 (−𝑡)] .

Plugging 𝐹𝐺(−𝑡) ≡ 𝑞+(1− 𝑞) 𝜂 (−𝑡) and the equilibrium condition 𝑉 (−𝑡) = (1−𝑞)𝜂(−𝑡)𝑣𝐵

into the equation, we obtain

𝑑𝑉 (−𝑡)
𝑑𝑡

= 𝜆𝑝0 ·
[︂(︂

𝑣𝐺
𝑣𝐵

− 1

)︂
𝑉 (−𝑡) + 𝑞𝑣𝐺

]︂
.

Combining with the boundary condition 𝑉 (0) = 0, we obtain

𝑉 (−𝑡) =
[︂
𝑒
𝜆𝑝0
(︁

𝑣𝐺
𝑣𝐵

−1
)︁
𝑡 − 1

]︂
1

𝑣𝐺
𝑣𝐵

− 1
· 𝑞 · 𝑣𝐺.

So, 𝑡* satisfies eq. (3.5).

C.1.4 Proof of Lemma 3.4.1

In the second stage where −𝑡 > −𝑡*𝑠,

• the sponsor’s continuation value 𝑉𝑠(−𝑡) satisfies

𝑑𝑉𝑠(−𝑡)
𝑑𝑡

= 𝜆 [𝑝0𝑣𝐺 + (1− 𝑝0)𝑣𝐵 − 𝑉𝑠(−𝑡)]

and two boundary conditions 𝑉𝑠(0) = 0 and 𝑉𝑠(−𝑡*𝑠) = 𝑣𝐵;

• the investor’s continuation value 𝑈𝑠(−𝑡) satisfies

𝑑𝑈𝑠(−𝑡)
𝑑𝑡

= 𝜆 · [𝑝0𝑢𝐺 + (1− 𝑝0)𝑢𝐵 − 𝑈𝑠(−𝑡)]

and one boundary condition 𝑈𝑠(0) = 1.

In the first stage where −𝑡 < −𝑡*𝑠,

• 𝑉𝑠(−𝑡) satisfies
𝑑𝑉𝑠(−𝑡)
𝑑𝑡

= 𝜆𝑝0 · [𝑣𝐺 − 𝑉𝑠(−𝑡)]

and one boundary condition 𝑉𝑠(−𝑡*𝑠) = 𝑣𝐵;
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• 𝑈𝑠(𝑡) satisfies
𝑑𝑈𝑠(−𝑡)

𝑑𝑡
= 𝜆𝑝0 · [𝑢𝐺 − 𝑈𝑠(−𝑡)]

and one boundary condition that requires 𝑈𝑠(−𝑡) is continuous at −𝑡*𝑠.

According to the evolution of the sponsor’s continuation value, we obtain that for −𝑡 ≥ −𝑡*𝑠,

𝑉𝑠(−𝑡) =
(︁
1− 𝑒−𝜆𝑡

)︁
[𝑝0𝑣𝐺 + (1− 𝑝0)𝑣𝐵] .

The first point is directly implied by the boundary condition 𝑉𝑠(−𝑡*𝑠) = 𝑣𝐵.

According to the evolution of the investor’s continuation value, we obtain that for −𝑡 ≥

−𝑡*𝑠,

𝑈𝑠(𝑡) =
(︁
1− 𝑒−𝜆𝑡

)︁
[𝑝0𝑢𝐺 + (1− 𝑝0)𝑢𝐵] + 𝑒−𝜆𝑡

and for −𝑡 < −𝑡*𝑠,

𝑈𝑠(−𝑡) =
(︁
1− 𝑒−𝜆𝑝0(𝑡−𝑡

*
𝑠)
)︁
𝑢𝐺 + 𝑒−𝜆𝑝0(𝑡−𝑡

*
𝑠)𝑈𝑠(−𝑡*𝑠).

Notice that 𝑈𝑠(−𝑡) < 1 for 𝑡 ≥ −𝑡*𝑠 and 𝑈𝑠(−𝑡) increases to 𝑢𝐺 as 𝑡 increases from 𝑡*𝑠 to

+∞. 𝑇 *
𝑠 exists, and 𝑇 *

𝑠 > 𝑡*𝑠.

C.1.5 Proof of Proposition 3.4.1

Here we prove the second point. Since 𝑇 > 𝑇 *
𝑠 , 𝑇 > 𝑡*𝑠.

First, since 𝑈𝑠(−𝑡*𝑠) < 1,

𝑈𝑠(−𝑇 ) =
(︁
1− 𝑒−𝜆𝑝0(𝑇−𝑡

*
𝑠)
)︁
𝑢𝐺 + 𝑒−𝜆𝑝0(𝑇−𝑡

*
𝑠)𝑈𝑠(−𝑡*𝑠)

<
(︁
1− 𝑒−𝜆𝑝0(𝑇−𝑡

*
𝑠)
)︁
𝑢𝐺 + 𝑒−𝜆𝑝0(𝑇−𝑡

*
𝑠)

<
(︁
1− 𝑒−𝜆𝑝0𝑇

)︁
𝑢𝐺 + 𝑒−𝜆𝑝0𝑇 .

Second, 𝑈(−𝑇 ) is strictly increasing in 𝑞. According to Proposition 3.3.3, 𝑡* is strictly

decreasing in 𝑞. If 𝑡* ≥ 𝑇 ,

𝑈(−𝑇 ) =
(︂
1− 𝑒

−𝜆𝑝0
𝑢𝐺−𝑢𝐵
1−𝑢𝐵

𝑇
)︂

1− 𝑢𝐵
𝑢𝐺 − 𝑢𝐵

𝑞 · (𝑢𝐺 − 1) + 1,

which is strictly increasing in 𝑞.
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Suppose 𝑡* < 𝑇 . Consider 𝑞 marginally smaller than 𝑞 such that its corresponding 𝑡* is

smaller than 𝑇 as well. To reflect different 𝑞, we write the investor’s continuation value as

𝑈(−𝑡; 𝑞). Since 0 < 𝑡* < 𝑡*,

𝑈(−𝑇 ; 𝑞) =
(︁
1− 𝑒−𝜆𝑝0(𝑇−𝑡

*)
)︁
𝑢𝐺 + 𝑒−𝜆𝑝0(𝑇−𝑡

*)𝑈(−𝑡*; 𝑞)

=
(︁
1− 𝑒−𝜆𝑝0(𝑇−𝑡

*)
)︁
𝑢𝐺 + 𝑒−𝜆𝑝0(𝑇−𝑡

*)𝑈(−𝑡*; 𝑞)

We just need to show 𝑈(−𝑡*; 𝑞) > 𝑈(−𝑡*; 𝑞). Denote 𝑒𝜆𝑝0(𝑡*−𝑡*) as 𝑎 and 𝑢𝐺−𝑢𝐵
1−𝑢𝐵 as 𝑥.

𝑈(−𝑡*; 𝑞)− 1 =

(︂
1− 𝑒

−𝜆𝑝0
𝑢𝐺−𝑢𝐵
1−𝑢𝐵

𝑡*
)︂

1
𝑢𝐺−𝑢𝐵
1−𝑢𝐵

𝑞 · (𝑢𝐺 − 1)

=

(︂
1− 𝑒

−𝜆𝑝0
𝑢𝐺−𝑢𝐵
1−𝑢𝐵

(𝑡*−𝑡*)
)︂

1
𝑢𝐺−𝑢𝐵
1−𝑢𝐵

𝑞 · (𝑢𝐺 − 1) + 𝑒
−𝜆𝑝0

𝑢𝐺−𝑢𝐵
1−𝑢𝐵

(𝑡*−𝑡*)
(𝑈(−𝑡*; 𝑞)− 1)

=
(︀
1− 𝑎−𝑥)︀ 𝑞 · (𝑢𝐺 − 1)

𝑥
+ 𝑎−𝑥 (𝑈(−𝑡*; 𝑞)− 1) .

Since 𝑎 > 1 and 𝑥 > 1, 𝑎−𝑥 < 𝑎−1 and

1− 𝑎−𝑥

𝑥
< 1− 𝑎−1.

So,

𝑈(−𝑡*; 𝑞)− 1 <
(︀
1− 𝑎−1

)︀
𝑞 · (𝑢𝐺 − 1) + 𝑎−1 (𝑈(−𝑡*; 𝑞)− 1)

<
(︀
1− 𝑎−1

)︀
(𝑢𝐺 − 1) + 𝑎−1 (𝑈(−𝑡*; 𝑞)− 1)

= 𝑈(−𝑡*; 𝑞)− 1.

As 𝑞 → 0, 𝑡* → +∞, so

𝑈(−𝑇 ) → lim
𝑞→0

[︂(︂
1− 𝑒

−𝜆𝑝0
𝑢𝐺−𝑢𝐵
1−𝑢𝐵

𝑇
)︂

1− 𝑢𝐵
𝑢𝐺 − 𝑢𝐵

𝑞 · (𝑢𝐺 − 1) + 1

]︂
= 1.

As 𝑞 → 1, 𝑡* → 0, so

𝑈(−𝑇 ; 𝑞) → lim
𝑞→1

[︁(︁
1− 𝑒𝜆𝑝0(𝑡

*−𝑇 )
)︁
𝑢𝐺 + 𝑒𝜆𝑝0(𝑡

*−𝑇 )𝑈(−𝑡*; 𝑞)
]︁
=
(︁
1− 𝑒−𝜆𝑝0𝑇

)︁
𝑢𝐺 + 𝑒−𝜆𝑝0𝑇 .

We obtain the second point.
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C.1.6 Proof of Proposition 3.4.2

In the second stage where −𝑡 > −𝑡*𝑐 ,

• 𝑉𝑐(−𝑡) in this stage satisfies

𝑑𝑉𝑐(−𝑡)
𝑑𝑡

= 𝜆 [𝑝0 · 𝑣𝐺 + (1− 𝑝0) · (1− 𝑞)𝑣𝐵 − 𝑉𝑐(−𝑡)]

and two boundary conditions 𝑉𝑐(0) = 0 and 𝑉𝑐(−𝑡*𝑐) = (1− 𝑞)𝑣𝐵;

• 𝑈𝑐(−𝑡) satisfies

𝑑𝑈𝑐(−𝑡)
𝑑𝑡

= 𝜆 · [𝑝0𝑢𝐺 + (1− 𝑝0)(1− 𝑞)𝑢𝐵 + (1− 𝑝0)𝑞 − 𝑈𝑐(−𝑡)]

and one boundary condition 𝑈𝑐(0) = 1.

In the first stage where −𝑡 < −𝑡*𝑐 ,

• 𝑉𝑐(−𝑡) in this stage satisfies

𝑑𝑉𝑐(−𝑡)
𝑑𝑡

= 𝜆𝑝0 · [𝑣𝐺 − 𝑉𝑐(−𝑡)]

and one boundary condition 𝑉𝑐(−𝑡*𝑐) = (1− 𝑞)𝑣𝐵.

• 𝑈𝑐(−𝑡) satisfies
𝑑𝑈𝑐(−𝑡)

𝑑𝑡
= 𝜆𝑝0 · [𝑢𝐺 − 𝑈𝑐(−𝑡)]

and one boundary condition that requires 𝑈𝑐(−𝑡) is continuous at −𝑡 = −𝑡*𝑐 .

First, 𝑡*𝑐 < 𝑡*𝑠. They satisfy respectively

(︁
1− 𝑒−𝜆𝑡

*
𝑠

)︁
[𝑝0𝑣𝐺 + (1− 𝑝0)𝑣𝐵] = 𝑣𝐵(︁

1− 𝑒−𝜆𝑡
*
𝑐

)︁
[𝑝0𝑣𝐺 + (1− 𝑝0)(1− 𝑞)𝑣𝐵] = (1− 𝑞)𝑣𝐵.

So,

1− 𝑒−𝜆𝑡
*
𝑠 > 1− 𝑒−𝜆𝑡

*
𝑐 ⇔ 𝑡*𝑠 > 𝑡*𝑐 .
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For 𝑡 ∈ (0, 𝑡*𝑐 ],

𝑈𝑐(−𝑡) =
(︁
1− 𝑒−𝜆𝑡

)︁
[𝑝0𝑢𝐺 + (1− 𝑝0)(1− 𝑞)𝑢𝐵 + (1− 𝑝0)𝑞] + 𝑒−𝜆𝑡

>
(︁
1− 𝑒−𝜆𝑡

)︁
[𝑝0𝑢𝐺 + (1− 𝑝0)𝑢𝐵] + 𝑒−𝜆𝑡

= 𝑈𝑠(−𝑡).

For 𝑡 ∈ (𝑡*𝑐 , 𝑡
*
𝑠],

𝑈𝑐(−𝑡) =
(︁
1− 𝑒−𝜆𝑝0(𝑡−𝑡

*
𝑐)
)︁
𝑢𝐺 + 𝑒−𝜆𝑝0(𝑡−𝑡

*
𝑐)𝑈𝑐(−𝑡*𝑐)

>
(︁
1− 𝑒−𝜆𝑝0(𝑡−𝑡

*
𝑐)
)︁
[𝑝0𝑢𝐺 + (1− 𝑝0)𝑢𝐵] + 𝑒−𝜆𝑝0(𝑡−𝑡

*
𝑐)𝑈𝑠(−𝑡*𝑐)

= 𝑈𝑠(−𝑡).

For 𝑡 ∈ (𝑡*𝑠,+∞),

𝑈𝑐(−𝑡) =
(︁
1− 𝑒−𝜆𝑝0(𝑡−𝑡

*
𝑠)
)︁
𝑢𝐺 + 𝑒−𝜆𝑝0(𝑡−𝑡

*
𝑠)𝑈𝑐(−𝑡*𝑠)

>
(︁
1− 𝑒−𝜆𝑝0(𝑡−𝑡

*
𝑠)
)︁
𝑢𝐺 + 𝑒−𝜆𝑝0(𝑡−𝑡

*
𝑠)𝑈𝑠(−𝑡*𝑠)

= 𝑈𝑠(−𝑡).

Therefore, 𝑈𝑐(−𝑇 ) > 𝑈𝑠(−𝑇 ).

C.1.7 Proof of Proposition 3.4.3

In the second stage where −𝑡 > −𝑡*𝑣,

• 𝑉𝑣(−𝑡) satisfies
𝑑𝑉𝑣(−𝑡)
𝑑𝑡

= 𝜆𝑝0 · 𝑞 [𝑣𝐺 − 𝑉𝑣(−𝑡)]

and two boundary conditions 𝑉𝑣(0) = 0 and 𝑉𝑣(−𝑡*𝑣) = 𝑣𝐵.;

• 𝑈𝑣(−𝑡) satisfies
𝑑𝑈𝑣(−𝑡)

𝑑𝑡
= 𝜆𝑝0 · 𝑞 [𝑢𝐺 − 𝑈𝑣(−𝑡)]

and one boundary condition 𝑈𝑣(0) = 1.

In the first stage where −𝑡 < −𝑡*𝑣,
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• 𝑉𝑣(−𝑡) satisfies
𝑑𝑉𝑣(−𝑡)
𝑑𝑡

= 𝜆𝑝0 · [𝑣𝐺 − 𝑉𝑣(−𝑡)]

and one boundary condition 𝑉𝑣(−𝑡*𝑣) = 𝑣𝐵;

• 𝑈𝑣(𝑡) satisfies
𝑑𝑈𝑣(−𝑡)

𝑑𝑡
= 𝜆𝑝0 [𝑢𝐺 − 𝑈𝑣(−𝑡)]

and one boundary condition that requires 𝑈𝑣(−𝑡) is continuous at −𝑡*𝑣.

First, for −𝑡 > max{−𝑡*,−𝑡*𝑣}, 𝑉𝑣(−𝑡) < 𝑉 (−𝑡).

𝑉 (−𝑡) =
[︂
𝑒
𝜆𝑝0
(︁

𝑣𝐺
𝑣𝐵

−1
)︁
𝑡 − 1

]︂
1

𝑣𝐺
𝑣𝐵

− 1
· 𝑞 · 𝑣𝐺

𝑉𝑣(−𝑡) =
(︁
1− 𝑒−𝜆𝑝0𝑞𝑡

)︁
𝑣𝐺.

Note that for 𝑎 > 1, 𝑎
𝑥−1
𝑥 is increasing in 𝑥 and 1−𝑎−𝑥

𝑥 is decreasing in 𝑥. Since 𝑣𝐺
𝑣𝐵

− 1 > 0,

𝑉 (−𝑡) > lim
𝑥↓0

[︁
𝑒𝜆𝑝0𝑡·𝑥 − 1

]︁ 1
𝑥
· 𝑞 · 𝑣𝐺

= 𝜆𝑝0𝑡 · 𝑞 · 𝑣𝐺.

On the other hand,

𝑉𝑣(−𝑡) =
1− 𝑒−𝜆𝑝0𝑞𝑡

𝜆𝑝0𝑞𝑡
𝜆𝑝0𝑞𝑡𝑣𝐺

< lim
𝑥↓0

1− 𝑒−𝑥

𝑥
𝜆𝑝0𝑞𝑡𝑣𝐺

= 𝜆𝑝0𝑞𝑡𝑣𝐺.

So, 𝑉𝑣(−𝑡) < 𝑉 (−𝑡).

Second, 𝑡* < 𝑡*𝑣. They satisfy respectively

𝑉 (−𝑡*) = (1− 𝑞)𝑣𝐵

𝑉𝑣(−𝑡*𝑣) = 𝑣𝐵.

𝑉 (−𝑡*) < 𝑉𝑣(−𝑡*𝑣) implies 𝑡* < 𝑡*𝑣.

For 𝑡 ∈ (0, 𝑡*], obviously 𝑉 (−𝑡) > 𝑉𝑣(−𝑡).
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For 𝑡 ∈ (𝑡*, 𝑡*𝑣], since 𝑣𝐺 > 𝑉 (−𝑡*) > 𝑉𝑣(−𝑡*),

𝑉 (−𝑡) =
(︁
1− 𝑒−𝜆𝑝0(𝑡−𝑡

*)
)︁
𝑣𝐺 + 𝑒−𝜆𝑝0(𝑡−𝑡

*)𝑉 (−𝑡*)

>
(︁
1− 𝑒−𝜆𝑝0𝑞(𝑡−𝑡

*)
)︁
𝑣𝐺 + 𝑒−𝜆𝑝0𝑞(𝑡−𝑡

*)𝑉 (−𝑡*)

>
(︁
1− 𝑒−𝜆𝑝0𝑞(𝑡−𝑡

*)
)︁
𝑣𝐺 + 𝑒−𝜆𝑝0𝑞(𝑡−𝑡

*)𝑉𝑣(−𝑡*𝑐)

= 𝑉𝑣(−𝑡).

For 𝑡 ∈ (𝑡*𝑣,+∞),

𝑉 (−𝑡) =
(︁
1− 𝑒−𝜆𝑝0(𝑡−𝑡

*
𝑣)
)︁
𝑣𝐺 + 𝑒−𝜆𝑝0(𝑡−𝑡

*
𝑣)𝑉 (−𝑡*𝑣)

>
(︁
1− 𝑒−𝜆𝑝0(𝑡−𝑡

*
𝑣)
)︁
𝑣𝐺 + 𝑒−𝜆𝑝0(𝑡−𝑡

*
𝑣)𝑉𝑣(−𝑡*𝑣)

= 𝑉𝑣(−𝑡).

Therefore, 𝑉 (−𝑇 ) > 𝑉𝑣(−𝑇 ).

C.1.8 Proof of Lemma 3.5.1

Consider any −𝑡 and suppose the type of the best project the sponsor has received un-

til that is 𝜎. The sponsor’s proposal strategy (𝛼𝜔 (·))𝜔∈{𝐺,𝐵}
1 implies a pair of functions

(𝑓𝜔 (·))𝜔∈{𝐺,𝐵}: 𝑓𝜔 (−𝜏) represents the unconditional probability density that the sponsor

proposes a project of the type 𝜔 at −𝜏 . Accordingly, the sponsor’s expected payoff by

adopting this strategy is

𝑉 (−𝑡, 𝑓𝐺, 𝑓𝐵) ≡
∫︁ 𝑡

0
𝐹𝐺 (−𝜏) 𝑓𝐺(−𝜏)𝑑𝜏 · 𝑣𝐺 +

∫︁ 𝑡

0
𝐹𝐵 (−𝜏) 𝑓𝐵(−𝜏)𝑑𝜏 · 𝑣𝐵.

Specifically, denote the densities resulting from the sponsor’s optimal proposal strategy as

𝑓𝜎𝐺 and 𝑓𝜎𝐵 respectively. Then

𝑉 𝜎(−𝑡) = 𝑉 (−𝑡, 𝑓𝜎𝐺, 𝑓𝜎𝐵) .

1Note that in the new setup, the sponsor’s strategy is also based on the type of the best project he has
received until then besides the time −𝑡.
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Next, suppose 𝐹𝐺 (−𝑡) ≤ 𝑉 𝐺(−𝑡). Then

[𝑞 + (1− 𝑞)𝜂(−𝑡)]·𝑣𝐺 ≤
∫︁ 𝑡

0

[𝑞 + (1− 𝑞)𝜂 (−𝜏)] 𝑓𝐺𝐺 (−𝜏)𝑑𝜏 ·𝑣𝐺+
∫︁ 𝑡

0

(1−𝑞)𝜂 (−𝜏) 𝑓𝐺𝐵 (−𝜏)𝑑𝜏 ·𝑣𝐵 . (C.1)

Since 𝑣𝐺 > 𝑣𝐵 and

𝑞 + (1− 𝑞)𝜂 (−𝜏) ≥ 𝜂 (−𝜏) ≥ (1− 𝑞)𝜂 (−𝜏) ,

it further implies

𝑞 + (1− 𝑞)𝜂(−𝑡) ≤
∫︁ 𝑡

0
[𝑞 + (1− 𝑞)𝜂 (−𝜏)]

[︀
𝑓𝐺𝐺 (−𝜏) + 𝑓𝐺𝐵 (−𝜏)

]︀
𝑑𝜏.

Since it is always possible that the sponsor may not have any project ready for proposal in

the future, ∫︁ 𝑡

0

[︀
𝑓𝐺𝐺 (−𝜏) + 𝑓𝐺𝐵 (−𝜏)

]︀
𝑑𝜏 < 1.

Hence,

𝜂(−𝑡) <
∫︁ 𝑡

0
𝜂 (−𝜏)

[︀
𝑓𝐺𝐺 (−𝜏) + 𝑓𝐺𝐵 (−𝜏)

]︀
𝑑𝜏.

We claim that 𝐹𝐵 (−𝑡) < 𝑉 𝐵(−𝑡) must hold. Consider the sponsor with 𝜎 = 𝐵 at

−𝑡. Imagine that he mistakenly regards one of his old projects as good, always revisits it,

and plays the optimal proposal strategy of the sponsor with 𝜎 = 𝐺 at −𝑡. Let 𝑓𝐺 and

𝑓𝐵 represent the the true unconditional probability densities implied by this strategy. The

sponsor thinks he will end up with the unconditional probability densities 𝑓𝜎𝐺 and 𝑓𝜎𝐵, but

some “good” projects he proposes are actually bad. Therefore, for any −𝜏 ∈ (−𝑡, 0],

𝑓𝐺(−𝜏) + 𝑓𝐵(−𝜏) = 𝑓𝐺𝐺 (−𝜏) + 𝑓𝐺𝐵 (−𝜏),

𝑓𝐺(−𝜏) ≤ 𝑓𝐺𝐺 (−𝜏).

Note that the sponsor’s optimal strategy should be no worse than this mimicking strategy.
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So,

𝑉 𝐵(−𝑡) ≥
∫︁ 𝑡

0
[𝑞 + (1− 𝑞)𝜂 (−𝜏)] 𝑓𝐺(−𝜏)𝑑𝜏 · 𝑣𝐺 +

∫︁ 𝑡

0
(1− 𝑞)𝜂 (−𝜏) 𝑓𝐵(−𝜏)𝑑𝜏 · 𝑣𝐵

≥
∫︁ 𝑡

0
(1− 𝑞)𝜂 (−𝜏) 𝑓𝐺(−𝜏)𝑑𝜏 · 𝑣𝐵 +

∫︁ 𝑡

0
(1− 𝑞)𝜂 (−𝜏) 𝑓𝐵(−𝜏)𝑑𝜏 · 𝑣𝐵

= (1− 𝑞) · 𝑣𝐵 ·
∫︁ 𝑡

0
𝜂 (−𝜏)

[︀
𝑓𝐺𝐺 (−𝜏) + 𝑓𝐺𝐵 (−𝜏)

]︀
𝑑𝜏

> (1− 𝑞)𝜂(−𝑡) · 𝑣𝐵 = 𝐹𝐵 (−𝑡) .

Following the proof of Lemma 3.3.2, we will encounter contradiction. So, 𝐹𝐺 (−𝑡) >

𝑉 𝐺(−𝑡). and 𝛼𝐺(−𝑡) = 1.

C.1.9 Proof of Proposition 3.5.3

First, 𝑉 𝐵(−𝑡) strictly decreases to 0 as −𝑡 increases to 0 because

𝑑𝑉 𝐵(−𝑡)
𝑑𝑡

≥ 𝜆𝑝0 ·
[︀
𝐹𝐺 (−𝑡)− 𝑉 𝐵(−𝑡)

]︀
> 0.

Second, following the logic similar to Lemma 3.3.3, we obtain that when 𝑉 𝐵(−𝑡) < (1− 𝑞) 𝑣𝐵

and 𝑡 > 0, 𝛼𝐵(−𝑡) ∈ (0, 1); when 𝑉 𝐵(−𝑡) > (1− 𝑞) 𝑣𝐵, 𝛼𝐵(−𝑡) = 0. Combining the two,

we obtain a unique equilibrium of the game.
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