
Nexion: Enabling Concurrency on
Architectures for Ordered Parallelism

by

Robert Benjamin Durfee

S.B. Computer Science and Engineering
Massachusetts Institute of Technology, 2021

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 13, 2022

Certified by. .
Daniel Sanchez

Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Nexion: Enabling Concurrency on

Architectures for Ordered Parallelism

by

Robert Benjamin Durfee

Submitted to the Department of
Electrical Engineering and Computer Science
on May 13, 2022, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Achieving high performance on modern systems with many cores requires highly par-
allel applications. Conventional parallel systems require structuring applications into
activities that are concurrent, i.e., that may interleave arbitrarily. Concurrency makes
it easy for hardware to run these tasks in parallel. However, for most applications,
concurrency is challenging to reason about and incurs costly synchronization over-
heads. To address this problem, recent work has proposed architectures that exploit
ordered parallelism. These systems enforce a fixed, programmer-specified order among
tasks, and execute tasks speculatively to extract parallelism. Ordered semantics en-
able parallelism without concurrency, avoiding its complexity, and it is a natural fit
for many applications. However, concurrency is also a good fit for many applications,
and establishing an order is unnatural and unnecessarily limits parallelism.

We present Nexion, an execution model that supports concurrency alongside or-
dered parallelism. Programmers split applications into short tasks that can be given
timestamps to specify order constraints. Groups of tasks can be marked as concurrent
and will execute independently if no data is shared among them. If data is shared,
Nexion ensures that tasks remain atomic and respect applicable timestamp orders.
We extend Swarm, an architecture for ordered parallelism, with minimal additional
state to implement Nexion. The implementation is distributed and only involves
communication between tasks that share data. On evaluated benchmarks, Nexion
improves overall scalability by up to 32× over software-only solutions and up to 2.4×
over the Swarm baseline architecture.

Thesis Supervisor: Daniel Sanchez
Title: Associate Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

This thesis would not be possible without the support of several individuals, to whom

I offer my deepest thanks.

First and foremost, I would like to thank my advisor, Daniel Sanchez. If not for his

encouragement from the beginning, I would not have pursued this project. Whenever

I was skeptical of the significance of my ideas, he provided the reassurance necessary

to keep me engaged. At numerous points along this journey, I was convinced I had

hit an insurmountable roadblock. But after each of our meetings, not only did he

unblock my progress, he provided multiple promising avenues to explore. His depth

and breadth of knowledge, not only in computer architecture, but across many related

(and unrelated) fields continues to astound. Though perhaps more impressive is his

ability to effortlessly explain the most complex technical topics in the simplest, most

understandable language. I am very lucky to have had him as an advisor.

I also had the great pleasure of working frequently under the direct mentorship of

Victor Ying. It was Victor’s work that originally drew my attention to the Sanchez

group. While I was an undergraduate student, he introduced me to research, guiding

me on my first project. He continuously encouraged me to pursue my own interests,

and was always excited to discuss new and interesting ideas. When I became a

graduate student, he graciously continued to lend his time to brainstorm ideas and

pair-debug complex deadlock and livelock scenarios. In fact, many of the core ideas

of this thesis originate from our brainstorm sessions. In his absence during the last

month of my project, I was reminded just how crucial his support was to this work

whenever I found myself heading to his office to discuss an issue.

I am also thankful to all the members of the Sanchez group: Joel Emer, Nithya

Attaluri, Fares Elsabbagh, Axel Feldmann, Kendall Garner, Aleksandar Krastev,

Ryan Lee, Quan Nguyen, Nikola Samardzic, Shabnam Sheikhh, and Yifan Yang. In

addition to providing valuable feedback on my presentations, they have all become my

close friends. I have thoroughly enjoyed all of our lively technical and non-technical

discussions prompted by the now-immortal, “Any news?”. Thanks specifically to Fares

5

for being the first reviewer of this thesis. His comments were invaluable as they helped

focus my efforts on the most important aspects in preparation for future revisions.

I also thank Quan for his consistent words of encouragement throughout my time

in the group, and particularly in the last month of my project. Whenever I had a

question, he never turned me away, even when he was in the final hours before his

Ph.D. thesis deadline.

Last but not least, I would like to thank my family. My sister, Amanda, has always

been my most influential role model. If not for her, I would not have made it to MIT.

She consistently challenges me to better myself, for which I am immeasurably grateful.

And finally, my parents, Ben and Amy, who raised me in a stimulating home which

shaped me into the person I am today. Throughout my time at MIT, they have shown

truly unconditional love and support. Without their love, guidance, and insight, this

thesis would not exist.

6

Contents

1 Introduction 9

2 Background and Motivation 13

2.1 Conventional Multithreading . 13

2.2 Hardware Transactional Memory . 14

2.3 Architectures for Ordered Parallelism 15

2.3.1 Swarm . 15

2.3.2 Fractal . 17

2.4 Takeaways . 18

3 Nexion Execution Model 19

3.1 Semantics Within a Realm . 19

3.2 Semantics Across Realms . 21

3.3 Programming Interface . 21

4 Nexion Implementation 23

4.1 Baseline Swarm . 23

4.1.1 Conflict Detection . 24

4.1.2 Selective Aborts . 26

4.1.3 Scalable Ordered Commits . 26

4.2 Conflicts in Nexion . 27

4.3 Nexion with Infinite Resources . 29

4.3.1 Conflict Detection . 30

7

4.3.2 Selective Aborts . 31

4.3.3 Scalable Ordered Commits . 32

4.4 Reducing Tracked Dependencies . 34

4.5 Handling Limited Queue Sizes . 36

4.6 Filtering Realm Conflict Checks . 37

4.7 Distributed Realm Conflict Detection 39

4.8 Analysis of Hardware Costs . 41

5 Evaluation 43

5.1 Experimental Methodology . 43

5.1.1 Modeled System . 43

5.1.2 Benchmarks . 43

5.1.3 Database Workloads . 47

5.2 Nexion Improves Scalability . 48

5.3 Nexion Reduces Pressure on Resources 51

5.4 Sensitivity Studies . 53

5.4.1 Unlimited Dependency Tracking 53

5.4.2 Instantaneous Realm Conflict Detection 54

5.4.3 Effects of Filtering Realm Conflict Checks 56

6 Conclusion 57

6.1 Future Work . 57

6.1.1 Diverse Benchmarks . 57

6.1.2 Advanced Swarm Features . 58

6.1.3 Coarsening Tracked Dependencies 58

6.1.4 Multiprocessing . 58

6.1.5 Dynamic Reconfiguration . 59

8

Chapter 1

Introduction

To use modern systems well, applications must be highly parallel, i.e., be structured

into many tasks that can run at the same time. Parallelism is crucial because current

fabrication technology has enabled chips with many thousands of functional units.

Over time, computer systems have moved from exploiting implicit parallelism in se-

quential programs to requiring programs to be explicitly parallelized.

Until 2005, out-of-order cores uncovered enough instruction-level parallelism to

improve performance without programmer involvement. However, this approach has

reached its limits [2, 9, 16]. To continue providing performance improvements, archi-

tectures switched from single-core to multicore designs. In these systems, sequences

of instructions are divided into individual threads. These threads are mapped to

cores to be executed in parallel. Threads execute independently and thus they are

concurrent, i.e., they may interleave arbitrarily.

When applications have abundant concurrency, it is easy to exploit parallelism.

Unfortunately, reasoning about concurrency is challenging and comes with costly

overheads. Since programs operate on shared data, some order constraints between

threads must be enforced. To enforce order, programmers must use explicit synchro-

nization primitives such as locks and barriers. This explicit synchronization is very

error-prone and adds overheads, limiting application scalability.

To avoid the pitfalls of concurrency, the recent Swarm architecture [18,29] explores

a complementary approach that seeks to provide high scalability while maintaining

9

order. Swarm enables high performance by leveraging ordered parallelism [15, 23],

where an application is split into ordered tasks that appear to execute in a program-

defined order. To uncover parallelism, Swarm executes these tasks speculatively and

out of order. By exposing timestamps to programs, Swarm is able to parallelize more

algorithms than other ordered speculation techniques like thread-level speculation

(TLS) [10,12,13,27,28]. However, for some applications, it is more natural to uncover

parallelism using available concurrency. Requiring an order for all tasks limits this

parallelism and makes programming unnecessarily cumbersome.

In summary, uncovering parallelism is crucial to enable high performance. Avail-

able concurrency makes this easy to exploit, but it is challenging to reason about

in many cases. Relying on order semantics lessens this burden. Nevertheless, some

applications naturally have concurrency, so it is better to exploit it if it exists. As a

result, systems should support both ordered parallelism and concurrency. Unfortu-

nately, prior systems have failed to emphasize the benefits of supporting both, instead

focusing on one at the expense of the other.

The goal of this work is to easily support the expression and exploitation of con-

currency of independent activities without sacrificing support for ordered parallelism.

Our first contribution is Nexion, an execution model that supports concurrency and

ordered parallelism (Section 3). In this execution model, a program consists of tasks

belonging to disjoint realms. Realms have ordered semantics similar to Swarm, and

concurrency is supported across realms. In particular, tasks within a realm appear to

execute atomically in timestamp order, although they may be executed speculatively

out of order. If no data is shared, tasks across realms will execute and commit com-

pletely independently from each other. When data is shared among realms, Nexion

ensures that tasks still execute atomically. Furthermore, tasks sharing data follow a

serializable order that respects the timestamp order of each realm.

Our second contribution is an implementation of Nexion that builds on Swarm

(Section 4). This implementation supports concurrency alongside ordered parallelism

with less than 16KB of additional state in a 256-core system. Like in Swarm, Nexion

executes tasks speculatively out of order and forwards speculative data, even among

10

realms. A distributed mechanism maintains a serializable order of tasks across realms,

selectively aborting only the tasks involved in an order violation. This mechanism

involves communication only among realms in which data is shared and builds on the

observation that speculative data is rarely forwarded across realms.

We evaluate Nexion on a state-of-the-art, in-memory transactional database (Sec-

tion 5). Nexion demonstrates increased scalability over prior systems. In particular,

Nexion demonstrates up to 32× the scalability of software-only benchmarks and up

to 2.4× the scalability of the Swarm baseline on 256 cores.

11

12

Chapter 2

Background and Motivation

We motivate Nexion using the case study of a transactional database. Consider

a database that consists a handful of transactions interacting with multiple tables.

Each transaction involves several queries. Parallelism exists both within and among

transactions. The total work per transaction is variable, not known a priori, and

often highly skewed (i.e., many transactions access the same subset of tuples, leading

to many conflicts).

This case study explores parallelizing a transactional database using three differ-

ent classes of systems: (1) a software-only approach using a commodity multicore;

(2) using atomic transactions offered by HTM systems; and (3) leveraging recent

architectural support for ordered parallelism using Swarm.

2.1 Conventional Multithreading

In commodity multicore systems in widespread use today, the classic programming

model presents very little abstraction over the hardware. To utilize multiple cores in

an application, a programmer can create multiple threads, which are mapped onto

cores by the operating system. To parallelize a transactional database, each thread

is typically given a set of transactions to execute, and runs them one by one. In this

implementation, independent transactions can remain unordered among threads and

execute concurrently.

13

However, since these transactions may operate on shared data, but must appear

to execute atomically, some form of synchronization is required. This problem has

a rich history of prior work that has establishe a whole taxonomy of solutions. At

the broadest level, these solutions are split into two primary categories: pessimistic

and optimistic [4]. Two-phase locking (2PL) is the main implementation strategy for

pessimistic concurrency control. With 2PL, transactions have to acquire locks for

a particular element in the database before they are allowed to execute a read or

write operation on that element [5,11]. Optimistic concurrency control, on the other

hand, speculates conflicts will not occur, and must recover upon miss-speculation.

To achieve this, implementations often assign each transaction with a unique, mono-

tonically increasing timestamp prior to execution, resolving conflicts by comparing

timestamps [4,20]. Prior work has shown that there are bottlenecks in both categories,

preventing implementations from scaling to high core counts [33]. Furthermore, these

techniques only exploit parallelism across transactions, not within each transaction.

2.2 Hardware Transactional Memory

To alleviate some of the challenges of software-based concurrency control mechanisms

discussed in Section 2.1, hardware transactional memory (HTM) systems can be used

to provide hardware support for atomicity. With HTM, sequences of instructions

can be wrapped together into transactions. The HTM system guarantees that each

transaction will execute atomically with respect to other concurrent transactions.

A transactional database can easily utilize this hardware support by mapping each

database transaction to an HTM transaction. This abstracts away the challenges of

implementing parallel databases in software while providing the same guarantees.

The semantics of prior HTM systems focus on providing atomicity and isolation

guarantees. The differences in implementations vary primarily in the way they pro-

vide these guarantees through version management and conflict detection. To manage

versions of speculative data, the HTM system can either employ eager or lazy strate-

gies. Eager version management implementations put the new value in place [3,21,32]

14

and lazy implementations temporarily leave the old value in place [3, 14, 24]. When

the data written by a transaction intersects the data read or written by another con-

current transaction, this signals a conflict. HTM systems can detect conflicts eagerly

or lazily. Implementations detect conflicts eagerly if offending loads or stores are

identified immediately [3, 21, 24, 32] and lazily if this detection is deferred to a later

time [14].

These implementations enable transactions that do not share data to execute

concurrently, only serializing when data is shared. However, most HTM systems do

not provide ordering guarantees [17,21] and those that do [14] provide simple barrier

semantics which are unfit for exploiting ordered parallelism within transactions.

2.3 Architectures for Ordered Parallelism

Up to this point, the parallel implementations of a transactional database have only

succeeded in exploiting the available concurrency across transactions. If this applica-

tion is to scale beyond a few dozen cores, all available parallelism must be extracted.

To extract the parallelism within a transaction, we consider the recent Swarm archi-

tecture and its extensions.

2.3.1 Swarm

Swarm provides a rich execution model that can scalably exploit ordered paral-

lelism [18]. A Swarm program consists of tasks with programmer-specified times-

tamps. A task can create children tasks with a timestamp equal or greater than its

own. Swarm enforces that all tasks appear to execute atomically and in timestamp

order. If two tasks have the same timestamp, the order of execution is arbitrary.

To implement a transactional database with Swarm, each transaction is broken

down into several small tasks as shown abstractly in Figure 2-1. If these tasks in each

transaction have necessary order constraints, these are reflected in the timestamp

order. However, Swarm does not provide atomicity guarantees across groups of tasks.

As a result, as shown in Figure 2-1, all tasks within each transaction must have

15

1

3

2

2

4

4

0 10

11

13

12

20

21

22

23

23 24

Transaction 0 Transaction 1 Transaction 2

...

Figure 2-1: Database transactions parallelized with Swarm.

disjoint timestamps from other transactions, otherwise the atomicity requirements of

the transactional database will not be satisfied.

This removes support for concurrency as all transactions are given a sequential

order, even if they do not operate on shared data. This especially causes issues

when tasks have large differences in work. Suppose that in Figure 2-1 task 3 takes

thousands of cycles, while later tasks take only tens of cycles. The only task that

directly depends on this task is its child, task 4. However, because of the established

order, every later-timestamped will not be allowed to commit until task 3 commits,

even if they have no data dependencies.

Furthermore, this is highly cumbersome for programmers, as each each transaction

has a variable amount of work, so it is challenging to ensure transaction timestamps

do not overlap. For example, in Figure 2-1, if transaction 1 at some point spawns a

child tasks with timestamp 20 or higher, this could make both transactions 1 and 2

no longer atomic. As a result, Swarm effectively harnesses all parallelism available

within transactions, but fails to exploit any concurrency across unrelated transactions

and has a restrictive programming model.

16

1

3

2

2

4

4

1

3

2

1

2

3

3 4

Transaction 0 Transaction 1 Transaction 2

...

Figure 2-2: Database transactions parallelized with Fractal.

2.3.2 Fractal

The Fractal extension to Swarm provides the same semantics as Swarm with the

ability to group tasks into domains [29]. Furthermore, these domains can be either

ordered or unordered. Now, the implementation from Figure 2-1 can be simplified as

shown in Figure 2-2. Each transaction consists of a single domain of ordered tasks

and each domain is unordered with respect to other domains. Fractal appears to

solve all issues by exploiting all ordered parallelism within transactions and available

concurrency across transactions.

However, behind the scenes, upon dequeue of the first task in each domain, Fractal

assigns an order to each unordered domain. As a result, even though the domains are

unordered from the viewpoint of the programmer, they are ordered in the implemen-

tation. Thus Fractal improves only slightly over Swarm as independent transactions

with no shared data are still ordered, but now this isn’t specified by the programmer,

happening instead on the first task’s dequeue.

17

2.4 Takeaways

In summary, conventional multithreading techniques to scale a database can exploit

concurrency across transactions, but not ordered parallelism within transactions. Fur-

thermore, this is only possible using sophisticated techniques, which are still limited

by various bottlenecks. HTM support can alleviate some of the implementation com-

plexities and scalability issues, but the semantics are insufficient to harness inter-

transaction parallelism. Architectures for ordered parallelism can exploit this paral-

lelism within transactions, but not without losing support for concurrency. Nexion

addresses these issues by providing hardware support to effectively exploit concur-

rency across transactions and parallelism within transactions.

18

Chapter 3

Nexion Execution Model

Figure 3-1 depicts the key elements of the Nexion execution model. Nexion programs

consist of tasks located in realms. Realms are configured prior to program execution.

Each task belongs to a single realm and can enqueue additional children into its same

realm. For example, in Figure 3-1, realm 0 has two tasks, U and V, with timestamps

0 and 4, respectively.

3.1 Semantics Within a Realm

Within a realm, semantics are similar to those of Swarm. Each task has a program-

specified timestamp. A task can enqueue child tasks into the same realm with any

timestamp equal to or greater than its own. Nexion guarantees that tasks appear to

run in increasing timestamp order. If multiple tasks have the same timestamp, Nexion

arbitrarily chooses an order among them. This order always respects parent-child

dependencies. Timestamps let programs convey their specific order requirements.

For example, in Figure 3-1, realm 2’s tasks Y and Z have timestamps 3 and 32,

respectively, to reflect the requirement that task Y must write to C before task Z

reads from C.

19

Realm 0

V

U

W

TS 0

TS 4

Realm 1

Ti
m

es
ta

m
p

O
rd

er

〈0, 4〉 ≺ 〈1, 2〉

Y

Z

❷

TS 3

Realm 2

WR C

X

TS 2

TS 15

TS 32

RAW

WR A

RD A

RD B

RD A

RD C
3

2

1 4

5

6

Figure 3-1: Elements of the Nexion execution model.

U

XV

Y Z
W

0 1 1 10 0

Realm 0 Realm 1 Realm 2

Ti
m

e

3

2

1

4

5

6

Figure 3-2: The tasks in Figure 3-1 are executing speculatively in parallel.

20

3.2 Semantics Across Realms

Unlike tasks within a realm, tasks across realms do not have a predefined program

order. If two realms never access the same data, they can execute concurrently. For

example, in Figure 3-1, realm 1 and realm 2 never access the same data. Realm 1

only accesses A and B, while realm 2 only accesses C. As a result, realms 1 and 2 can

execute concurrently.

If two realms access the same data, Nexion guarantees that tasks execute atom-

ically and in a serializable order that respects the timestamp order in both realms.

For example, in Figure 3-1, realms 0 and 1 are initially independent up to when task

W reads A. Previously, task V from realm 0 wrote to A. This read-after-write (RAW)

data dependency establishes an ordering between realms 0 and 1. Nexion will guar-

antee that task V (and all tasks with timestamps earlier than 4 in realm 0) appears

to happen atomically before task W (and all tasks with timestamps later than 2 in

realm 1).

3.3 Programming Interface

Nexion’s low-level programming interface is very similar to the interface of Swarm.

In Nexion, tasks are simply functions with signature:

void taskFn(timestamp, args...)

Prior to the execution of a Nexion program, the programmer must enqueue at least

one initial task into each realm by calling:

enqueueInit(realm, taskFn, timestamp, args...)

This establishes the realms that will be present for the entire duration of the program.

After a Nexion program begins execution, code can enqueue other tasks into the same

realm by calling:

enqueueTask(taskFn, timestamp, args...)

Enqueuing tasks into different realms during program execution is not supported.

21

22

Chapter 4

Nexion Implementation

We present an implementation of Nexion targeting three primary design goals. First,

if tasks across realms are completely independent, they should proceed concurrently

and not incur any serialization overheads. Second, existing Swarm semantics should

be preserved across realms whenever possible. Finally, tasks should be able to access

arbitrary data, including data across realms, but access to local data should remain

cheap as it is the common case.

We present Nexion in a layered fashion. First, we describe the important aspects of

the Swarm baseline microarchitecture. Then, we present the modifications necessary

for Nexion, starting with an idealized implementation and working toward a final,

realistic hardware implementation.

4.1 Baseline Swarm

Nexion builds on Swarm, which introduces modest changes to a tiled, cache-coherent

multicore. Figure 4-1 shows the baseline Swarm design. Each tile has a group of

simple cores, each with its own private L1 cache. All cores in a tile share an L2 cache,

and each tile has a slice of a fully-shared L3 cache. Every tile is augmented with a

task unit and a global virtual time (GVT) arbiter. The task unit queues, dispatches,

and commits tasks. The GVT arbiter communicates with other GVT arbiters to

enable scalable commits.

23

Mem/IO

Mem/IO

M
em

/IO

M
em

/IO

Tile

(a) Swarm chip.

Task Unit

L3 Slice Router

L2 Cache

L1 I/D L1 I/D L1 I/D L1 I/D

Core Core Core Core

GVT
Arbiter

(b) Swarm tile.

Figure 4-1: 256-core Swarm chip and tile configuration.

Swarm uncovers parallelism by executing tasks speculatively and out of order. To

uncover enough parallelism, Swarm can speculate thousands of tasks ahead of the

earliest unfinished task by utilizing large task queues. Swarm uses eager versioning to

store speculative data in place and logs old values to make commits fast and enable

simple forwarding of speculative values. Swarm hardware efficiently and scalably

maintains program order with three main mechanisms: virtual time-based conflict

detection, selective aborts of dependent tasks, and distributed ordered commits.

4.1.1 Conflict Detection

In Swarm, conflict detection is based on the program-specified, priority order. Con-

flicts occur when a task accesses an address that was previously accessed by a later-

timestamped task. For example, in Figure 4-2a, tasks Y and Z both access address A.

Task Y should appear to execute before task Z because it has an earlier timestamp.

However, to uncover maximum parallelism, tasks Y and Z are executing speculatively

in parallel. In this case, task Z happens to read A before task Y writes A. This

conflicts with the priority order and triggers an abort. On the other hand, in Figure

24

Z

Y

RD A

TS 10

TS 15

WR A
Ti

m
es

ta
m

p
O

rd
er

Conflict!
2

1

(a) Task Z accesses A
before Task Y, resulting

in a conflict.

Z

Y

RD A

TS 10

TS 15

WR A

2

1

(b) Task Y accesses A
before Task Z, following

timestamp order.

Conflict!

Z

Y

RD A

TS 10

TS 15

WR A

WR AUndo 3

2

1

(c) Upon abort, Task Y
accesses A after Task Z,
resulting in a conflict.

Figure 4-2: Two tasks access the same address in different orders in Swarm.

4-2b, task Y writes A before task Z reads A. This respects the priority order and,

thanks to eager versioning, task Z will read the most up-to-date version of A, even

while it is speculative.

To avoid conflict-checking with all running and finished (but waiting to commit)

tasks in the system, Swarm leverages the cache hierarchy to filter checks. If the

access hits in the L1 cache, it is guaranteed to be conflict-free. This is accomplished

by flushing the L1 when dequeuing a task with an earlier timestamp than the one

it just finished. If the access misses in the L1, the access is conflict-checked locally

against tasks in the same tile, but may need to check tasks in other tiles as well. If

the access hits in the L2, the associated cache line maintains a canary timestamp,

which is the lowest timestamp for which a global conflict check is unnecessary. If

the access has a lower timestamp than the canary, or the access misses in the L2

cache, it is conflict-checked against tasks in any tile which might share the conflicting

cache line (as determined using sticky bits [21]). To efficiently maintain and check for

read/write set intersection between tasks, Swarm uses hardware Bloom filters [32].

25

4.1.2 Selective Aborts

Once a conflict has been established, Swarm aborts the later-timestamped task and

all of its dependents. The task’s dependents consist of its children and all tasks

that accessed its speculatively written data. The abort process consists of three

steps. First, the task’s children are notified of abort. Second, the task’s undo log

is walked in last-in, first-out order, restoring previous values. If these undo writes

trigger conflicts, the task waits for the aborts to complete before continuing. Third,

the task’s read/write sets are cleared and it is removed from the task queues. This

strategy is applied recursively, aborting all dependent tasks.

The key enabling element of this abort strategy is the reuse of the conflict detection

mechanism. The writes during the undo phase trigger conflicts just as normal writes.

Consider Figure 4-2c where task Y been notified to abort. Just as before, task Z has

read speculative data written by task Y and should also abort. When walking its undo

log, task Y will write again to address A. This write will conflict with task Z’s read to

A and correctly trigger an abort of task Z. With large speculation windows, explicit

tracking of dependencies would be prohibitively expensive. This strategy avoids this

problem by using the conflict detection mechanism to recover dependencies as needed.

4.1.3 Scalable Ordered Commits

To enable high-throughput, scalable commits that respect the program-specified or-

der, Swarm modifies the virtual time algorithm. In the original Swarm paper, each tile

will periodically (e.g., every 200 cycles) send the minimum timestamp of unfinished

tasks in that tile to an arbiter. The arbiter will compute the minimum timestamp of

all unfinished tasks, called the global virtual time (GVT). The GVT is then broadcast

to all tiles which commit all tasks up to that timestamp. This strategy avoids seri-

alizing commits and amortizes the cost of commits across many cycles. As a further

optimization, instead of only having one GVT arbiter, current implementations of

Swarm achieve this all-to-one reduction and one-to-all broadcast using a tree of GVT

arbiters, with one arbiter per tile.

26

RD A

WR B

WR A

WR B

Realm 0

X

W Y

Z

RAW

❶

❷

TS 10

TS 15

TS 2

TS 5

Realm 1

Ti
m

es
ta

m
p

O
rd

er

〈0, 15〉 ≺ 〈1, 2〉

❸

❹
Conflict!

3

2

1

4

Figure 4-3: Two realms share speculative data, imposing a partial order of timestamps
and triggering a conflict.

4.2 Conflicts in Nexion

The definition of a conflict in Swarm from Section 4.1.1 states that a conflict occurs

when a task accesses an address that was previously accessed by a later-timestamped

task. This definition establishes two necessary conditions for a conflict: tasks must

access the same data and the accesses must violate the established order. In Nexion,

tasks may belong to disjoint realms. If data is never shared among realms, the first

condition is never satisfied and conflicts across realms are impossible. In this case,

the implementation of Nexion is simple. Each realm is an independent instance of

Swarm that operates in complete isolation from other realms. The conflict definition

remains unchanged from Swarm.

However, if data is shared across realms, the first condition may be satisfied.

To extend this definition of a conflict while maintaining existing Swarm semantics,

Nexion must determine when the second condition is met and a conflict occurs due

to an order violation. This requires a partial order of tasks. Tasks within a realm

have a partial order specified by the program, but tasks across realms do not have

27

an established order. Nexion imposes a partial order on the timestamps of different

realms, encompassing the program-specified order within each. Given this imposed

partial order on all tasks, the Swarm definition of a conflict remains consistent for

tasks both within and across realms. That is, a conflict occurs if data is shared across

realms, and accesses violate the imposed partial order.

Timestamps of different realms are initially incomparable. Nexion imposes a par-

tial order on timestamps only when two tasks in different realms access the same

speculative data and at least one of the accesses is a write. This creates a speculative

data dependency in one of three classic forms: read-after-write (RAW), write-after-

read (WAR), or write-after-write (WAW). Each speculative data dependency induces

a happens-before order on timestamps of different realms. For example, consider Fig-

ure 4-3 with two realms. Each realm consists of a two tasks, all four of which are

executing speculatively in parallel. First, task X writes to address A. Then, before

task X commits, task Y reads A. This establishes a RAW speculative data depen-

dency. Given this dependency, Nexion imposes a happens-before order such that

realm 0’s timestamp 15 happens before realm 1’s timestamp 2 (i.e., ⟨0, 15⟩ ≺ ⟨1, 2⟩).

Now, this happens-before order must be respected on subsequent accesses.

Later, as shown in Figure 4-3, task Z writes to address B. Then, task W also writes

to address B. Even though tasks Z and W are from different realms, this introduces a

conflict as Nexion’s happens-before order dictates that task Z has a later timestamp

than task W. As a result, this will trigger an abort.

Happens-before orders established by Nexion are also transitive. Consider the

case in Figure 4-4 with three realms. All tasks are executing speculatively in parallel

and have not committed. Tasks W and X establish a RAW dependency on address A

imposing ⟨0, 31⟩ ≺ ⟨1, 15⟩. Tasks X and Y establish a WAR dependency on address

B imposing ⟨1, 15⟩ ≺ ⟨2, 1⟩. When task V attempts to write address C after task Z

has written to C, this will trigger a conflict because of the transitive partial order

⟨0, 31⟩ ≺ ⟨1, 15⟩ ≺ ⟨2, 1⟩.

28

❺

❻

Realm 0

W

V

X

❶

TS 25

TS 31

TS 15

Realm 1

Ti
m

es
ta

m
p

O
rd

er

〈0, 31〉 ≺ 〈1, 15〉

Y

Z

❷

TS 1

TS 2

Realm 2

〈1, 15〉 ≺ 〈2, 1〉

❸

❹

WR A

RD A

RD B

WR B

RAW

WAR

WR C

WR C
Conflict!

3

2

1

4

5

6

Figure 4-4: Three realms share speculative data, imposing a transitive partial order
of timestamps and triggering a conflict.

4.3 Nexion with Infinite Resources

With the extended definition of a conflict in place, we present an implementation

of Nexion. The main components of Nexion are pictured in Figure 4-5. In Nexion,

realms are established as static partitions of tiles, predetermined in hardware. By

partitioning the system by tiles, Nexion is able to leverage the hierarchical memory

system to dramatically reduce the cost and complexity of implementation. Each

partition is similar to an instance of Swarm. The differences lie in the realm virtual

time (RVT) arbiters, which house the state and logic necessary to implement Nexion.

Each partition has it’s own tree of RVT arbiters mapped to tiles, with the root RVT

arbiter in each realm maintaining additional state shown in Figure 4-5b. Before

describing a realistic hardware implementation, this section describes the high-level

changes necessary to Swarm, assuming unbounded resources.

29

Mem/IO

Mem/IO

M
em

/IO

M
em

/IO

Realm

Root

(a) Nexion chip.

Realm 0 → 1
 Dependency

Queue

Realm 0 → 2
 Dependency

Queue

Realm 0 → 3
 Dependency

Queue

(b) Nexion root RVT arbiter.

Figure 4-5: 256-core, 4-realm Nexion chip and tile configuration.

4.3.1 Conflict Detection

In Swarm, ignoring optimizations, conflict detection is triggered on memory accesses

and involves two steps:

1. Identify unfinished tasks that have accessed the current address.

2. Check if any of the accessor tasks’ timestamps are later than the current task’s

timestamp.

In Nexion, if all accessor tasks belong to the current task’s realm, then this process

remains unchanged. However, if any accessor task belongs to a different realm, this

process becomes more complicated as what constitutes a “later” timestamp depends

on the imposed happens-before order.

To provide this context, whenever a speculative data dependency between different

realms arises without conflict, Nexion records the resulting timestamp happens-before

order in a queue. These queues are maintained in the root RVT arbiter in each

realm. For example, in Figure 4-4, Nexion would record the happens-before orders

⟨0, 31⟩ ≺ ⟨1, 15⟩ and ⟨1, 15⟩ ≺ ⟨2, 1⟩.

30

Conflict!
〈0, 25〉

〈0, 31〉

〈1, 15〉

〈2, 2〉

〈2, 1〉

Figure 4-6: Cycle forms in the happens-before graph associated with Figure 4-4. In
each node, the first number refers to a task’s realm and the second to the task’s
timestamp.

These happens-before orders, in combination with the implicit timestamp orders

within realms, form a directed acyclic graph (DAG) of all timestamps within Nexion.

The order DAG for the example in Figure 4-4 is shown in Figure 4-6. To detect

conflicts, Nexion uses the happens-before orders in the queues to construct this DAG.

Before allowing a new speculative data dependence, the associated happens-before

order is presented to the root RVT arbiter and tentatively introduced to the DAG.

The graph is traversed using a depth-first search (DFS) to determine if the new order

introduces a cycle. If a cycle is introduced, this is a conflict and triggers an abort

and the tentative happens-before relation is not recorded.

Prior work prevents cyclic data dependencies using techniques that do not involve

explicitly traversing a DAG [17,21,25]. However, these mechanisms often cause false

cycles and provide weaker semantics than Nexion. The specifics of this DFS traversal

and prior work are discussed in Section 4.7.

4.3.2 Selective Aborts

Once a conflict is established, Nexion aborts the later-timestamped task involved

in the conflict and all of its dependents, given the imposed happens-before order

of timestamps across realms. The same three-step process for aborts from Swarm

described in Section 4.1.2 is followed in Nexion. As in Swarm, the key insight for

selective aborts in Nexion is the reuse of the conflict detection mechanism: the writes

during the undo phase trigger conflicts just as normal writes. Consider Figure 4-7a,

31

Realm 0

Y

Z

❶ WR A

❷ RD A

TS 3

TS 2

Realm 1

Ti
m

es
ta

m
p

O
rd

er

〈0, 3〉 ≺ 〈1, 2〉

❸ WR A
Conflict!

RAW

Undo 3

2

1

(a) Upon abort, task Y accesses A again after task Z,
triggering a selective abort across realms.

Conflict!

〈0, 3〉 〈1, 2〉

(b) Cycle forms in the
happens-before graph associated

with Figure 4-7a.

Figure 4-7: Selective aborts in Nexion.

where task Y has been notified to abort. Task Z has read speculative data written

to address A by task Y and should also abort. In the undo phase, task Y will write

again to A. This would introduce a WAR speculative data dependency between the

realms. However, since this introduces a cycle in the happens-before graph shown in

Figure 4-7b, a conflict occurs. This correctly triggers an abort of task Z because the

recorded happens-before order dictates that task Z has a later timestamp than task

Y. Applied recursively, this abort strategy ensures that all dependent tasks will be

aborted, even across realms.

4.3.3 Scalable Ordered Commits

Similar to Swarm, Nexion uses a modified virtual time algorithm for scalable, high-

throughput commits in program order. However, instead of having a single global

virtual time (GVT), Nexion maintains multiple realm virtual times (RVTs) to en-

able concurrent commits across realms. Each RVT is calculated independently using

32

Realm 0

V

U

W

❶

TS 0

TS 4

Realm 1

Ti
m

es
ta

m
p

O
rd

er

〈0, 4〉 ≺ 〈1, 2〉

Y

Z

❷

TS 3

Realm 2

❸

❹ WR C

X

❺

❻

TS 2

TS 15

TS 32

RAW

WR A

RD A

RD B

RD A

RD C

Max RVT

Max RVT Max RVT

3

2

1 4

5

6

Figure 4-8: Scalable ordered commits in Nexion.

the same all-to-one reduction and one-to-all broadcast over trees of RVT arbiters as

described in Section 4.1.3. Instead of broadcasting the minimum timestamp of all

unfinished tasks in the realm, the root RVT arbiter must also examine the imposed

happens-before orders on timestamps of different realms. In particular, the RVT can-

not pass a timestamp that might depend on speculative data from another realm as

the task that produced the speculative data may still abort.

For example, consider Figure 4-8. Since task W read speculative data from un-

finished task V in a different realm, the maximum RVT for realm 1 cannot pass

timestamp 2. Only once the RVT in realm 0 passes timestamp 4, causing task V to

commit, can task W commit. Since realm 0 is only the source of a speculative data

dependency and does not itself depend on other realms, the RVT is free to advance

without limit. Furthermore, realm 2 is not involved in any speculative data depen-

dencies so it also has no limitation on its RVT and can commit tasks independently

from realm 0 and 1. This maintains that realms which do not share speculative data

can execute completely concurrently, without synchronization.

The root RVT arbiters in Nexion determine the maximum RVT by scanning the

33

Realm 0

Y

Z

❶ WR A

❷ RD A

TS 3

TS 2

Realm 1

Ti
m

es
ta

m
p

O
rd

er

〈0, 3〉 ≺ 〈1, 2〉
〈0, 3〉 ≺ 〈1, 2〉

❸ WR B

❹ RD BRAW

RAW

3

2

1

4

(a) Duplicate dependencies.

Realm 0

X

W

Y

Z

❶

❷

TS 10

TS 15

TS 2

TS 5

Realm 1

〈0, 15〉 ≺ 〈1, 2〉
〈0, 10〉 ≺ 〈1, 5〉

❸

❹

WR A

WR A

WR B

RD B

W
AW

WAR

3

2

1

4

(b) Redundant dependencies.

Figure 4-9: Reducing tracked dependencies.

queues of incoming happens-before dependencies, looking for the one with the mini-

mum destination timestamp. In Figure 4-8, this is ⟨0, 4⟩ ≺ ⟨1, 2⟩. The destination of

this dependency, ⟨1, 2⟩, represents the earliest timestamp in realm 1 that depends on

speculative data from another realm. Note that the maximum RVT calculation only

depends on incoming happens-before dependencies for the realm.

Upon an RVT advancement, the root arbiter must clear outgoing happens-before

dependencies for the realm. This process notifies other realms that the sources of

speculative data have committed and their maximum RVT limit can increase, allowing

for RVT advancement. In Figure 4-8, realm 0’s RVT will eventually advance past

timestamp 4. Once this happens, realm 0 will remove the outgoing happens-before

dependency ⟨0, 4⟩ ≺ ⟨1, 2⟩ and realm 1 is free to advance its RVT past timestamp 2.

4.4 Reducing Tracked Dependencies

As the first step towards a realistic hardware implementation, Nexion exploits the ob-

servation that many speculative data dependencies yield redundant happens-before

order constraints. Given this observation, the number of explicitly tracked dependen-

34

cies can be reduced, freeing space in the queues.

The first kind of redundant dependency is simple duplicates. For example, con-

sider Figure 4-9a. Tasks Y and Z first form a speculative data dependence on address

A, establishing the happens-before order ⟨0, 3⟩ ≺ ⟨1, 2⟩. Both tasks then form the

same speculative data dependence on address B. Even though this is a data de-

pendence on a different address, it establishes the same happens-before order on

timestamps. As a result, it is unnecessary to track both.

The second kind of redundant dependency arises when one happens-before relation

logically implies the other. In this case, one dependency is essentially stronger than

the other and it is sufficient to only track one to retain the same information. A

happens-before dependency ⟨𝑟𝑠𝑟𝑐, 𝑡𝑠𝑟𝑐,𝑠𝑡𝑟𝑜𝑛𝑔⟩ ≺ ⟨𝑟𝑑𝑠𝑡, 𝑡𝑑𝑠𝑡,𝑠𝑡𝑟𝑜𝑛𝑔⟩ is at least as strong

as ⟨𝑟𝑠𝑟𝑐, 𝑡𝑠𝑟𝑐,𝑤𝑒𝑎𝑘⟩ ≺ ⟨𝑟𝑑𝑠𝑡, 𝑡𝑑𝑠𝑡,𝑤𝑒𝑎𝑘⟩ if 𝑡𝑠𝑟𝑐,𝑠𝑡𝑟𝑜𝑛𝑔 ≥ 𝑡𝑠𝑟𝑐,𝑤𝑒𝑎𝑘 and 𝑡𝑑𝑠𝑡,𝑠𝑡𝑟𝑜𝑛𝑔 ≤ 𝑡𝑑𝑠𝑡,𝑤𝑒𝑎𝑘.

In other words, a stronger dependency has a later source timestamp and an earlier

destination timestamp than a weaker dependency.

For example, consider Figure 4-9b. Tasks X and Y form a speculative data depen-

dence on address A and tasks W and Z form a dependence on B. The first dependence

establishes the happens-before order ⟨0, 15⟩ ≺ ⟨1, 2⟩. However, the second happens-

before order, ⟨0, 10⟩ ≺ ⟨1, 2⟩, is implied by the first. Since timestamps within each

realm are always comparable, there exist implicit happens-before orders. In partic-

ular, ⟨0, 15⟩ ≺ ⟨1, 2⟩ does not only state that task X happens-before task Y, it also

states that any task before task X happens-before any task after task Y. Therefore,

the entire transitive happens-before order established from task X and Y’s speculative

data dependence is ⟨0, 10⟩ ≺ ⟨0, 15⟩ ≺ ⟨1, 2⟩ ≺ ⟨1, 5⟩. This implicit transitive depen-

dence encompasses the explicit dependence ⟨0, 10⟩ ≺ ⟨1, 5⟩ and is thus redundant.

Not all happens-before dependencies are redundant. Consider the example in Fig-

ure 4-10. Here, both ⟨0, 15⟩ ≺ ⟨1, 5⟩ and ⟨0, 10⟩ ≺ ⟨1, 2⟩ are unique as neither implies

the other. Seen differently, it is possible to introduce an additional happens-before re-

lation between these two, such as ⟨1, 4⟩ ≺ ⟨0, 11⟩, without conflict. Even though these

dependencies are not redundant, it is possible to replace both of these happens-before

orders with a single, stronger order. Given two dependencies ⟨𝑟𝑠𝑟𝑐, 𝑡𝑠𝑟𝑐,𝑎⟩ ≺ ⟨𝑟𝑑𝑠𝑡, 𝑡𝑑𝑠𝑡,𝑎⟩

35

Realm 0

X

W

Y

Z

❶

TS 10

TS 15

TS 2

TS 5

Realm 1

Ti
m

es
ta

m
p

O
rd

er

〈0, 15〉 ≺ 〈1, 5〉
〈0, 10〉 ≺ 〈1, 2〉

❸

WR A

WR B

WR ARD B ❷

❹

WAW

WAR

3 2

1

4

Figure 4-10: Necessary dependencies.

and ⟨𝑟𝑠𝑟𝑐, 𝑡𝑠𝑟𝑐,𝑏⟩ ≺ ⟨𝑟𝑑𝑠𝑡, 𝑡𝑑𝑠𝑡,𝑏⟩, they can be replaced with a single, stronger dependency

⟨𝑟𝑠𝑟𝑐,max(𝑡𝑠𝑟𝑐,𝑎, 𝑡𝑠𝑟𝑐,𝑏)⟩ ≺ ⟨𝑟𝑑𝑠𝑡,min(𝑡𝑑𝑠𝑡,𝑎, 𝑡𝑑𝑠𝑡,𝑏)⟩. In this example, the replacement de-

pendency would be ⟨0, 15⟩ ≺ ⟨1, 2⟩.

Unfortunately, this introduces false dependencies between timestamps. For ex-

ample, the proposed additional happens-before relation above, ⟨1, 4⟩ ≺ ⟨0, 11⟩, can

no longer be introduced without conflict. This loss of information triggers spurious

aborts and can yield certain undesirable pathologies such as self-aborts. As a result,

the current implementation of Nexion does not replace nonredundant dependencies

and, for simplicity, only drops redundant dependencies if they share the same desti-

nation timestamp.

4.5 Handling Limited Queue Sizes

Happens-before dependencies in Nexion are stored in the root RVT arbiter in each

realm. Each realm has a queue for outgoing dependencies to every other realm.

Given the large number of dependency queues, their capacities must be kept small to

36

scale. By only replacing a subset of redundant happens-before dependencies and not

replacing nonredundant dependencies, the dependency queues may reach capacity.

As a result, a policy must be in place to handle that occurrence without sacrificing

correctness. In this implementation of Nexion, memory accesses that induce happens-

before dependencies when the respective queue is full simply stall until there is room.

This policy is sufficient as accesses to data speculatively shared across realms are rare,

and thus stalls occur infrequently. However, stalls present potential forward progress

issues that must be handled with care.

In Swarm, forward progress is guaranteed by a total ordering of all tasks. There

is always a task with the smallest timestamp. This task, called the GVT task, cannot

be aborted and thus is considered irrevocable. Because this task cannot be aborted,

it will eventually commit, leaving the task with the next smallest timestamp to run

irrevocably, and so on. To apply the same forward progress argument for Nexion, it

must be shown that there is at least one task with effectively the smallest timestamp

in the system that cannot be aborted nor stalled. Once it commits, it must leave at

least one task with the smallest timestamp to run irrevocably, and so on.

Since Nexion does not maintain a total order among all tasks, it cannot guarantee

forward progress by prioritizing the earliest task as done before. Instead, Nexion only

has a total order within each realm, and within each realm, there is an earliest task

that we call the RVT task. The problem is that multiple realms can acquire order

relations dynamically so there isn’t a clear GVT task among these RVT tasks. A

simple solution to ensure forward progress is to ensure that RVT tasks in all realms

are prioritized and cannot be stalled by non-RVT tasks. Spatial partitioning makes

this simple.

4.6 Filtering Realm Conflict Checks

Nexion recognizes that checking all tasks for conflicting accesses on every memory

access is impractical. Like in Swarm, Nexion provides several mechanisms that lever-

age the cache hierarchy to filter conflict checks and dramatically reduce overheads. In

37

particular, realms in Nexion are established as partitions of tiles. As a result, a con-

flict across realms is only possible upon an cache coherence invalidation request across

tiles, implying a miss in the L2 cache. Thus, all mechanisms presented by Swarm in

Section 4.1.1 regarding L1 and L2 conflict check filtering remain fully utilized in Nex-

ion. Notably, hits in the L1 cache and hits in the L2 cache with a timestamp higher

than the canary do not require conflict detection across realms. This ensures that

Nexion has no overhead for the common case when tasks access local data.

In the case where an access misses in the L2 or has a timestamp lower than the

canary, conflict detection across realms is necessary. As described in Section 4.3.1,

this involves communication with the root RVT arbiter, which maintains the happens-

before dependencies for the realm. The RVT arbiter will scan the dependency queues,

communicating with other root RVT arbiters, to determine if the access introduces a

conflict by checking for cycles in the happens-before graph. This process is described

in detail in Section 4.7.

To reduce the occurrence of cycle detection across root RVT arbiters, realm conflict

checks can be further filtered. Suppose a new speculative data dependence across

realms forms an associated happens-before relation ⟨𝑟𝑠𝑟𝑐, 𝑡𝑠𝑟𝑐⟩ ≺ ⟨𝑟𝑑𝑠𝑡, 𝑡𝑑𝑠𝑡⟩. A conflict

is only possible if a cycle forms in the happens-before dependency graph. Given the

graph is guaranteed to be a DAG before this edge is added, if there is a cycle, it must

contain the newly-added edge. Therefore, a cycle is only possible if there exists some

happens-before relation ⟨𝑟𝑑𝑠𝑡, 𝑡⟩ ≺ ⟨·, ·⟩ such that 𝑡𝑑𝑠𝑡 ≤ 𝑡. To avoid cycle detection,

each tile maintains an outgoing upper bound timestamp 𝑡𝑢𝑏. This timestamp is the

maximum source timestamp for all outgoing happens-before within the realm. Now,

for the new happens-before dependency, if 𝑡𝑑𝑠𝑡 > 𝑡𝑢𝑏 (which implies ∀𝑡.𝑡𝑑𝑠𝑡 > 𝑡), then

a conflict is impossible and thus cycle detection can be safely skipped.

To maintain this upper bound, if a tile introduces a new outgoing happens-before

dependency with a source timestamp higher, the new upper bound must be dis-

tributed to all tiles in the realm. The one-to-all broadcast can efficiently reuse the

existing RVT arbiter tree. When this upper bound is necessary, the overhead saved

by avoiding a cycle detection outweighs the cost of maintenance.

38

Algorithm 1 Cycle detection.
1: procedure DetectCycle(𝐷, ⟨𝑟𝑠𝑟𝑐, 𝑡𝑠𝑟𝑐⟩ ≺ ⟨𝑟𝑑𝑠𝑡, 𝑡𝑑𝑠𝑡⟩)
2: 𝑀 ← {𝑟 ↦→ ∞ | ∀𝑟 ∈ 𝑅}
3: return DetectCycleRec(𝐷, ⟨𝑟𝑠𝑟𝑐, 𝑡𝑠𝑟𝑐⟩, ⟨𝑟𝑑𝑠𝑡, 𝑡𝑑𝑠𝑡⟩,𝑀)
4: end procedure
5:
6: procedure DetectCycleRec(𝐷, ⟨𝑟𝑡𝑎𝑟𝑔𝑒𝑡, 𝑡𝑡𝑎𝑟𝑔𝑒𝑡⟩, ⟨𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡⟩,𝑀)
7: if 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 < 𝑀 [𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡] then
8: 𝑀 [𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡]← 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡
9: for ∀𝑟𝑛𝑒𝑥𝑡 ∈ 𝑅 do

10: 𝑡𝑛𝑒𝑥𝑡 ←MinDstAfter(𝐷, ⟨𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡⟩, 𝑟𝑛𝑒𝑥𝑡)
11: if 𝑟𝑛𝑒𝑥𝑡 = 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 ∧ 𝑡𝑛𝑒𝑥𝑡 ≤ 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 then
12: return True
13: else if DetectCycleRec(𝐷, ⟨𝑟𝑡𝑎𝑟𝑔𝑒𝑡, 𝑡𝑡𝑎𝑟𝑔𝑒𝑡⟩, ⟨𝑟𝑛𝑒𝑥𝑡, 𝑡𝑛𝑒𝑥𝑡⟩,𝑀) then
14: return True
15: end if
16: end for
17: end if
18: return False
19: end procedure

4.7 Distributed Realm Conflict Detection

A modified depth-first search (DFS) cycle detection algorithm is used by Nexion to

find conflicts in the happens-before graph. Prior work detects cycles in data de-

pendencies without explicitly performing a graph traversal, though these methods

introduce unnecessary serialization [17,21,25]. For example, in DATM [25], whenever

a transaction forwards data to another transaction, an entry containing the source

and destination of the dependency is appended to an order vector. To check for cy-

cles, the order vector can be scanned to see if the current transaction ID is present

earlier in the order vector. However, this technique imposes a serial order for all

transactions with any data dependencies. This causes false cycles and unnecessar-

ily serializes independent transactions with disjoint data dependencies. Furthermore,

this only provides a conflict-serializable order of transactions, while Nexion must

provide a serializable order of tasks that also respects program-specified timestamp

order. Thus it is insufficient to simply check if a transaction ID exists in the order

vector. An alternative implementation of DATM relies instead on ascribing times-

39

tamps to transactions, which is similar to LogTM [21]. DATM prevents cycles by

only allowing earlier timestamped transactions to forward data to later transactions.

In Nexion, this requires predetermining a total order on timestamps of all realms,

which is undesirable as it limits concurrency. The cycle detection process used by

Nexion is outlined in Algorithm 1.

Nexion establishes a partial order of all timestamps in the system. As described in

subsection 4.3.1, this partial order can be viewed as a graph. To find cycles in a graph,

a common strategy is to employ DFS. The standard DFS cycle detection algorithm

recursively traverses a graph, maintaining a stack of nodes along the current path. If

a node is reached that is already present in this stack of nodes, a cycle has been found.

To avoid traversing the same parts of the graph again, a set of all visited nodes is also

maintained. This algorithm can be applied without modification to the partial order

graph in Nexion. However, there are several properties of Nexion’s happens-before

graph that can be exploited to reduce overhead.

Conflict detection is initiated upon the formation of a new speculative data depen-

dency across realms and the associated happens-before relation ⟨𝑟𝑠𝑟𝑐, 𝑡𝑠𝑟𝑐⟩ ≺ ⟨𝑟𝑑𝑠𝑡, 𝑡𝑑𝑠𝑡⟩.

Nexion guarantees that the set of all happens-before dependencies, 𝐷, up to this

point form a DAG and must be cycle-free. Therefore, if this new dependency intro-

duces a cycle, that cycle must go through the new dependency. Similar to Section

4.6, this means a cycle is only possible if there exists some happens-before relation

⟨·, ·⟩ ≺ ⟨𝑟𝑠𝑟𝑐, 𝑡⟩ such that 𝑡 ≤ 𝑡𝑠𝑟𝑐. Therefore, maintaining a stack of nodes along the

current path is unnecessary as a cycle is only possible if a path reaches this point,

denoted as ⟨𝑟𝑡𝑎𝑟𝑔𝑒𝑡, 𝑡𝑡𝑎𝑟𝑔𝑒𝑡⟩ in Algorithm 1.

Furthermore, timestamps within the same realm follow a total order. This im-

plies that a node in a realm has an edge to every node in the same realm with a

higher timestamp. Therefore, when visiting a timestamp node in a realm, rather than

traversing edges, it is sufficient to examine all outgoing edges with source timestamp

greater than or equal to the current timestamp and find the minimum-destination

timestamp edge to each other realm. This is accomplished using the MinDstAfter

procedure in Algorithm 1. Then, all timestamps in the current realm greater than the

40

current timestamp can be marked visited. In Algorithm 1, this is maintained using

the maximum-visited timestamp map 𝑀 .

To implement this in hardware, each root RVT first initializes their maximum-

visited timestamp map 𝑀 to infinity. Then realm 𝑟𝑑𝑠𝑡 initiates the detection process

by examining all outgoing dependencies to find the minimum-destination timestamp

edge to every other realm with source timestamp greater than or equal to 𝑡𝑑𝑠𝑡. For

each call to DetectCycleRec, a message is sent to the respective realm with the

calculated minimum-destination timestamp. Upon receiving this message, the next

realm continues recursively until a path reaches ⟨𝑟𝑡𝑎𝑟𝑔𝑒𝑡, 𝑡𝑡𝑎𝑟𝑔𝑒𝑡⟩ or a previously visited

timestamp. For each return from a recursive call, a message is sent back to the

requesting realm indicating if a cycle has been detected. To reduce complexity, and

because cycle detection is rare, Nexion sends all messages across realms in series,

waiting for a response before continuing. The primary benefit of this cycle detection

method is it only involves communication between realms that are currently sharing

speculative data.

4.8 Analysis of Hardware Costs

To implement Nexion, only minor changes are made to the Swarm baseline hardware.

Namely, messages in the cache coherence protocol must include additional metadata

and root RVT arbiters must maintain additional state.

To enable hierarchical conflict detection, Swarm modifies directory-based cache

coherence protocol messages to include timestamp information. Nexion needs to add

realm identifiers to timestamps the make them comparable. With this requires log(𝑛)

bits with 𝑛 realms. For example, with a system of 16 realms, only fours bits need to

be added to coherence messages.

Each root RVT arbiter maintains a set of queues for happens-before dependencies

among realms. There is exactly one queue for every pairwise permutation of realms.

In other words, if there are 𝑛 realms, each root RVT arbiter will have 𝑛− 1 queues,

one for outgoing happens-before dependencies to every other realm, excluding itself.

41

This makes a total of 𝑛(𝑛− 1) queues in the system.

Each queue entry contains a single happens-before dependency, consisting of two

64-bit timestamps. If there are 𝑚 entries per queue, each queue consists of 128𝑚 bits

or 16𝑚 bytes. In total, that leaves 𝑛(𝑛−1) ·16𝑚 bytes of additional state in a system

with 𝑛 realms.

The queues must support sorted-list operations such as finding the minimum-

destination dependency or finding all dependencies with a source greater than a spec-

ified timestamp. Given these queues are quite small, specialized hardware such as

TCAMs is unnecessary. Instead, the queues are implemented using registers and

parallel comparators.

For a system with 256 cores, 16 realms, and four dependencies per queue, like the

one evaluated in Section 5, Nexion requires less than 16 KB of state. This is less area

than a single L1 cache. In summary, the hardware overheads to Nexion are moderate,

and, in return, confer significant speedups.

42

Chapter 5

Evaluation

5.1 Experimental Methodology

5.1.1 Modeled System

We use a cycle-accurate, event-driven simulator based on Pin to model Nexion sys-

tems of up to 256 cores, as shown in Figure 4-5, with parameters in Table 5.1. Swarm

parameters (task and commit queue sizes, etc.) match those from prior work [18].

The simulator uses detailed core, cache, network, and main memory models (derived

from zsim [26]), and faithfully simulates all speculation overheads (e.g., running mis-

speculating tasks until they abort, simulating conflict check and rollback delays and

traffic, etc.). The 256-core configuration is similar to the Kalray MPPA [8]. Smaller

systems are also simulated with square meshes (𝐾 ×𝐾 tiles for 𝐾 ≤ 8). The L2/L3

sizes and queue capacities per core are kept constant across system sizes. This cap-

tures performance per unit area. As a result, larger systems have higher queue and

cache capacities.

5.1.2 Benchmarks

The primary benchmark used to evaluate Nexion is Silo, a recent, highly-scalable in-

memory OLTP database [30]. This application was selected as transactional databases

have both concurrency across transactions and ordered parallelism within transac-

43

Cores
256 cores in 64 tiles (4 cores/tile) partitioned into 16
realms (4 tiles/realm), 2 GHz, x86-64 ISA; Haswell-like
4-wide OoO superscalar

L1 caches 16 KB, per-core, split D/I, 8-way, 2-cycle latency
L2 caches 256 KB, per-tile, 8-way, inclusive, 7-cycle latency

L3 caches 64 MB, shared, static NUCA [19] (1 MB bank/tile),
16-way, inclusive, 9-cycle bank latency

Coherence MESI, 64 B lines, in-cache directories

NoC 8x8 mesh, 128-bit links, X-Y routing, 1 cycle/hop when
going straight, 2 cycles on turns (like Tile64 [31])

Main mem 4 controllers at chip edges, 120-cycle latency

Queues
64 task queue entries/core (16284 total),
16 commit queue entries/core (4096 total),
4 dependency queue entries/realm-pair (960 total)

Swarm instrs 5 cycles per enqueue/dequeue/finish_task

Conflicts

2 Kbit 8-way Bloom filters, 𝐻3 hash functions [6],
Tile checks take 5 cycles (Bloom filters) + 1 cycle per
timestamp compared,
Realm checks add cycles for messages between arbiters

Commits Tiles send updates to RVT arbiters every 200 cycles

Spills Coalescers fire when a task queue is 85% full
Coalescers spill up to 15 tasks each

Table 5.1: Configuration of the 256-core system.

44

tions; Nexion exploits both. This particular parallelism signature is far from specific

to transactional database applications. Porting additional applications is left to future

work.

Baseline Silo: Silo can be used to implement any generic, relational database and

its associated transactions. Each table and index is implemented using a B+ tree

with variable-length keys inspired by Masstree. The unique fields of a table are

concatenated in big-endian order and used as keys in the B+ tree with the remaining

fields as values. To provide concurrent access, the B+ tree uses a complex, fine-grain

synchronization strategy.

Transactions in Silo are implemented using two phases, leveraging optimistic con-

currency control (OCC) to provide high throughput. In the first phase, B+ tree

operations are performed to read and compute updated values, which are locally

buffered. Also at the time of access, B+ tree node and value version numbers are

logged. In the second phase, locks of updated nodes and values are acquired and

version numbers are compared. If version numbers remained the same, writes are

applied, locks are released, and the transaction commits. Otherwise, the transaction

aborts and is re-executed.

The transactional workload is evenly distributed to 𝑛 worker threads, each mapped

to a single core. When possible, to improve scalability, tables, and the transactions

operating on those tables, are sharded across workers. Each worker serially processes

a single transaction at a time.

Nexion Silo: To evaluate on Nexion, we port Silo to effectively exploit available

concurrency across transactions and ordered parallelism within transactions. Tables

and indexes are still implemented using B+ trees with variable-length keys. However,

given Nexion’s support for atomicity, the complex locking scheme is no longer neces-

sary and thus is completely removed. Each B+ tree operation now occurs within a

single atomic task. This provides stronger consistency guarantees than the baseline

Silo implementation for B+ tree scans, which were previously not atomic.

45

Transactions in Nexion exploit ordered parallelism by separating B+ operations

into individual tasks. If the order of B+ operations is important, this is reflected

using timestamps. And if data must be passed across operations, this is done via

continuation-passing style. The commit phase of a transaction can be implemented

without locks in two different ways: using a single task or multiple tasks. The former

implementation is called Nexion Single and the latter Nexion Multi. In both cases,

version numbers are logged upon access and writes are locally buffered. In the single

task case, version numbers are compared and all writes are applied in a single task

relying on Nexion’s atomicity guarantees across realms. However, this unnecessarily

serializes the writes of a transaction, limiting scalability, and makes task aborts more

costly (more work needs to be redone). To address this, writes can be split into

individual tasks. However, since Nexion does not yet provide atomicity for groups

of tasks across realms, because porting Fractal to Nexion is left for future work,

this implementation requires transactions only access data sharded to their particular

realm. This distinction does not reflect a limitation on the ideas presented by Nexion,

rather on the current implementation. As a result, results using both methods will

be presented.

Like the baseline, the workload is evenly distributed to 𝑛 workers, each mapped to

a single realm with tables and transactions sharded across workers. Each transaction

uses a disjoint sequence of timestamps with respect to other transactions in the same

realm to ensure atomicity when speculatively executing tasks of later transactions.

Microbenchmark: In addition to Silo, we perform sensitivity studies using a mi-

crobenchmark designed to stress the novel components of Nexion and demonstrate

design trade-offs. The microbenchmark uses a shared counter. Each realm has a

large amount of work to complete. This work consists of multiple stages, each with a

random amount of work ranging from about 100 to 1000 cycles, that are completed

sequentially. At the end of each stage, before moving onto the next, a counter shared

by all realms is incremented. This increment occurs in a single task to guarantee

atomicity.

46

Workload Distribution

TPC-C 45% New Order, 43% Payment, 4% Delivery, 4% Order Status,
4% Stock Level

TATP
35% Get Subscriber Data, 35% Get Access Data, 14% Update
Location, 10% Get New Destination, 2% Update Subscriber,
2% Insert Call Forwarding, 2% Delete Call Forwarding

Table 5.2: Transactional database workloads.

5.1.3 Database Workloads

Two different transactional database workloads are evaluated on Silo. Table 5.2 pro-

vides a summary of the workloads and their associated transaction distributions.

The Transaction Processing Performance Council Benchmark C (TPC-C) bench-

mark is modeled after a database that might be used by a wholesale supplier [1].

Tables in TPC-C maintain sets of warehouses, districts, items, customers, orders,

etc. The scale factor varies the number of warehouses. Rows in each table belong

to specific warehouses and thus can be sharded based on warehouse ID. Transactions

are complex, consisting of queries to many different tables and have vastly different

amounts of work. The Order Status and Stock Level transactions are read-only. The

New Order and Payment transactions may involve two warehouses, with 1% and 15%

probability, respectively (less than 7% of all transactions). Of all the workloads, this

workload provides the most opportunity for exploiting intra-transaction parallelism.

The Telecommunication Application Transaction Processing (TATP) benchmark

is modeled after typical telecommunication application [22]. Tables in TATP maintain

sets of subscribers, facilities, call forwarding entries, etc. The scale factor varies the

number of subscribers. Rows in each table belong to specific subscribers and thus can

be sharded based on subscriber ID. Transactions can involve multiple queries, but

are generally less complex than TPC-C transactions. To support queries based on

subscriber number (as opposed to subscriber ID), a read-only index is created. The

Get Subscriber Data, Get New Destination, and Get Access Data transactions are

read-only. No transactions will involve more than one subscriber.

47

1 128 256
1

128

256
S

pe
ed

up
1 Warehouses

1 128 256
1

128

256
2 Warehouses

1 128 256
1

128

256
4 Warehouses

1 128 256
Cores

1

128

256

S
pe

ed
up

8 Warehouses

1 128 256
Cores

1

128

256
12 Warehouses

1 128 256
Cores

1

128

256
16 Warehouses

Nexion Multi
Nexion Single

Software-Only
Swarm

Figure 5-1: Speedup of Nexion on TPC-C across different warehouses.

5.2 Nexion Improves Scalability

Figure 5-1 compares the performance of Nexion, Swarm, and software-only implemen-

tations of Silo on the TPC-C workload with different number of warehouses. Each

graph shows the speedup of the different implementations over the serial, software-

only implementation of Silo running on a system of the same size, from 1 to 256

cores. Per-core L2/L3 capacities are kept constant as the system grows, capturing

performance per unit area. For the Nexion benchmarks, realms are set equal to the

number of warehouses.

Nexion Multi demonstrates the best scalability across all warehouses. In par-

ticular, Nexion Multi outperforms the software-only implementation 5.1-32×, and

Swarm at most 2.4×. This section analyzes the performance of Nexion Multi against

the software-only, Swarm, and Nexion Single implementations.

48

1 128 256
1

128

256
S

pe
ed

up
1 Shards

1 128 256
1

128

256
2 Shards

1 128 256
1

128

256
4 Shards

1 128 256
Cores

1

128

256

S
pe

ed
up

8 Shards

1 128 256
Cores

1

128

256
12 Shards

1 128 256
Cores

1

128

256
16 Shards

Nexion Multi
Nexion Single

Software-Only
Swarm

Figure 5-2: Speedup of Nexion on TATP across different shards.

In the case of 1 warehouse, Nexion Multi outperforms the software-only implemen-

tation by 32× but has identical performance to Swarm. This is due to the available

ordered parallelism within transactions which is well-exploited by Swarm, but not as

well-exploited by the software-only implementation. The software-only implementa-

tion is carefully tuned to achieve high transaction rates [30]. However, it is limited

by the available concurrency among transactions. In TPC-C, this concurrency is

determined by the number of warehouses. As a result, the software-only implemen-

tation scales linearly only when the number of cores is greater than the number of

warehouses. With only 1 warehouse, transactions are aborted frequently, limiting

scalability.

Swarm, on the other hand, takes advantage of the ordered parallelism found within

transactions. Each task reads or writes at most a single tuple. This exposes paral-

lelism within transactions, and reduces the penalty of conflicts, as only small, depen-

49

dent tasks are aborted instead of complete transactions.

Nexion Multi is able to match the Swarm implementation because it uses the same

mechanism to exploit ordered parallelism within transactions. Just like Swarm, tasks

read or write at most a single tuple. The only difference is that writes are locally

buffered until commit. However, they are applied in separate tasks which exploits

the same benefits as Swarm as conflicts only trigger small, dependent tasks to abort,

not entire transactions.

Nexion Single loses most of the benefits of Swarm in the case of one warehouse. By

applying all writes in a single task, there is a higher likelihood that tasks will conflict.

Furthermore, upon a conflict, all writes will need to be reapplied. This emphasizes

just how crucial it is to separate writes into individual tasks to enable scalability with

few warehouses.

As the number of warehouses increases, so does the available concurrency. This en-

ables the software-only and Nexion Single implementations to achieve slightly higher

speedups. Swarm, on the other hand, loses ground as it does not exploit this ad-

ditional concurrency. Instead, execution becomes dominated by larger tasks which

effectively serializes execution through needless aborts, even under-performing the

software-only implementation for small number of cores. Nexion Multi is able to ef-

fectively exploit both the available ordered parallelism with few warehouses and the

additional concurrency with more warehouses.

Figure 5-2 shows the same information for the TATP workload. For Nexion

benchmarks, realms are set equal to the number of shards. The TATP workload

demonstrates similar characteristics as the TPC-C workload. However, there is much

more concurrency among transactions, as they rarely accesses the same data, and

less parallelism within transactions, as they consist of fewer queries. As a result, the

software-only and Nexion Single benchmarks scale better than in TPC-C. However,

the overall trend is the same as TPC-C: Nexion Multi is able to outperform all im-

plementations by effectively exploiting available concurrency across transactions and

ordered parallelism within transactions.

50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
gg

re
ga

te
 C

or
e

C
yc

le
s

1 2 4 8 16 32 1 2 4 8 16 32
TATP TPC-C

Commit Abort Full No Task

Figure 5-3: Breakdown of total core cycles for Nexion on TATP and TPC-C with
different realms.

5.3 Nexion Reduces Pressure on Resources

Figure 5-3 shows the breakdown of aggregate cores cycles. Each set of bars shows

results for a single workload as the system scales from 1 to 32 realms, holding the

total number of cores constant at 256 cores. The height of each bar is the sum of

cycles spent by all cores, normalized by the cycles of the single-realm system (lower is

better). Lower bars indicate a reduction in the overall aggregate work performed by

the system. Each bar shows the breakdown of cycles spent executing tasks that are

ultimately committed, cycles spent executing tasks that are later aborted, and cycles

51

stalled either because the commit queue was full or no tasks were available. This

analysis focuses on the TPC-C workload as it has more inter-transaction parallelism

and thus higher speculation overheads than the TATP workload.

Regardless of the number of realms, the total amount of cycles spent executing

tasks that are ultimately committed remains constant. However, with one realm,

committed cycles make up only 21% of all executed cycles in the TPC-C workload.

With 32 realms, committed cycles make up more than 52%. This improvement can

be attributed to two sources. The first source of performance improvement stems

from a reduction in the number of unnecessary aborts. With one realm, 25% of

cycles are lost to aborted tasks. With 32 realms, this is reduced to less than 9%.

These aborts stem from unnecessary order constraints. With one realm, database

transactions have a total order. To maximize available parallelism, these transactions

are executed speculatively out of order. However, if the transactions access the same

data in an order different from their established order, one must abort. This happens

even if the interleaving respects the atomicity requirements of database transactions,

due to order constraints. With 32 realms, fewer transactions are ascribed an order

and are thus permitted to interleave in more ways, reducing unnecessary aborts.

The second source of performance benefits comes from using fewer commit queue

entries. With one realm, 35% of cycles are lost due to stalling on full commit queues

in the TPC-C workload. With 32 realms, this is reduced to only 15%. Tasks in

TPC-C have very skewed amounts of work. The most common transaction, New

Order, is short and has a read and write set of at most 15. However, the Stock Level

transaction is long and can have a read set greater than 200. With one realm, all

transactions are ordered. Transactions can be executed out-of-order, but only while

there is space in the commit queue. The large transaction bottlenecks the system by

preventing later tasks from committing, filling the commit queue. With 32 realms,

the order constraints are relaxed allowing transactions in other realms to proceed,

even when a larger task might be consuming resources.

These two trends are further validated with the TATP workload, though it is

less affected by these speculation overheads. In summary, Nexion reduces aborts and

52

2 4 8 12 16
Realms

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
er

fo
rm

an
ce

1 2 4 8 16 32 INF

Figure 5-4: Sensitivity to dependency queue sizes with cores/realm constant.

frees up commit queue slots by removing unnecessary order constraints. This enables

better scalability and more efficient use of resources.

5.4 Sensitivity Studies

Both the TPC-C and TATP workloads rarely access speculative shared data. The

average dependency queue occupancy over all executed cycles exceeds 5%. As a result,

this section explores Nexion’s sensitivity to several design parameters using a shared

counter microbenchmark to artificially introduce higher contention. In all cases, the

number of cores per realm is held constant at four cores/realm.

5.4.1 Unlimited Dependency Tracking

Figure 5-4 shows the speedups of the shared counter microbenchmark as the size of the

dependency queues varies from one to unbounded; the default is four entries. When

the number of realms increases, the size of the dependency queues becomes more

important. Using four entries is sufficient to stay within 10% of the performance with

unbounded queues.

To get a sense of where the performance difference is coming from, Figure 5-5

53

2 4 8 12 16
Realms

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 A
cc

es
se

s
to

 S
ha

re
d

D
at

a

1 2 4 8 16 32 INF1 2 4 8 16 32 INF

Stalled
Not Stalled

Figure 5-5: Effect of dependency queue sizes on stalls.

shows the fraction of accesses to shared data that result in a stall due to a full

dependency queue. With more than two realms, having less than four entries in a

dependency queue results in substantial number of stalls, reaching 89%. By increasing

dependency queues to just four entries, the number of stalls reduces to less than 35%.

Furthermore, in attempt to estimate the optimal size of the dependency queues,

consider a system with unbounded queues. Figure 5-6 shows the average number of

dependency entries occupied over the duration of execution. With eight realms and

fewer, the average number of occupied entries is less than four. With more than eight

realms, the average number of occupied entries is slightly higher, but still less than

six. This suggests more than four entries can moderately improve performance in the

case of 12 and 16 realms, but four entries strikes a good balance between performance

and implementation cost.

5.4.2 Instantaneous Realm Conflict Detection

Nexion introduces performance overheads of two main varieties: stalls and conflict

detections. To get a sense of which contributes more significantly, cycle detection

is replaced with an idealized verion which resolves realm conflicts instantly, within

the same cycle as the triggering access. Figure 5-7 shows the speedups of the shared

54

2 4 8 12 16
Realms

0

2

4

6

8

10

12

14

16

18
E

nt
rie

s
U

se
d

Figure 5-6: Average dependency queue occupancy.

2 4 8 12 16
Realms

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
er

fo
rm

an
ce

Real Ideal

Figure 5-7: Realistic vs idealized cycle detection.

55

2 4 8 12 16
Realms

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

F
ra

ct
io

n
U

nf
ilt

er
ed

 C
he

ck
s

(%
)

Figure 5-8: Fraction of cross-realm cycle checks that the upper-bound filter does not
eliminate.

counter microbenchmark compared against an idealized conflict detection mechanism.

The bars are normalized to the realistic conflict detection method. The flat bars

suggest the conflict detection method is not a major source of overhead in Nexion.

5.4.3 Effects of Filtering Realm Conflict Checks

Nexion introduces an additional filtering technique to limit costly cross-realm cycle

detection, as explained in Section 4.6. Figure 5-8 shows the fraction of realm conflict

checks that necessitate cross-realm cycle detection in the presence of this filter. The

filter dramatically reduces the number of cross-realm cycle detections such that, even

with 16 realms, more than 96% realm conflict checks can prevented by maintaining an

outgoing upper bound. This provides further evidence to suggest conflict detection

is not a major source of overhead in Nexion.

56

Chapter 6

Conclusion

We have presented Nexion, a new execution model for harnessing concurrency along-

side ordered parallelism. Nexion allows programmers to split applications into tasks

and easily express available concurrency across tasks, while maintaining the original

Swarm programming model crucial for scalably exploiting ordered parallelism. The

presented implementation of Nexion avoids unnecessary serialization among tasks

and only establishes order constraints between concurrent tasks when data is actu-

ally shared. This is accomplished with less area than a single L1 cache in a 256-core

system and is fully decentralized, involving communication only between structures

involved in data sharing. Nexion improves scalability up to 32× over software-only

solutions and up to 2.4× over the original Swarm baseline.

6.1 Future Work

6.1.1 Diverse Benchmarks

Nexion has shown that providing architectural support for both concurrency and

ordered parallelism in transactional databases can substantially improve scalability

and efficiency across workloads. However, transactional databases are far from the

only applications that have an abundance of concurrency and ordered parallelism.

Additional benchmarks could be identified and ported to strengthen the argument

for Nexion from a performance perspective.

57

6.1.2 Advanced Swarm Features

The Swarm baseline microarchitecture used in Nexion is from the original Swarm

paper and is missing several key features that have been added by followup work in

recent years. Most importantly, Nexion does not support features added by Fractal

[29]. As mentioned in Section 5, this could immediately improve the performance and

programmability of applications in Nexion. In addition, adding non-speculative tasks

increases the practicality of the system and spatial hints improves performance within

individual realms. Future work could investigate how to best extend the semantics

of these features in the presence of realms.

6.1.3 Coarsening Tracked Dependencies

Tracking individual dependencies, even after applying reduction techniques discussed

in Section 4.4, may become too costly for some workloads. Furthermore, Nexion

currently requires serialization of updates to the queues in the root RVT arbiter. To

reduce overheads and relax synchronization constraints in the implementation, Nexion

can take inspiration from BulkSC [7] and investigate ways to coarsen dependencies. In

particular, instead of establishing a happens-before relation on individual timestamps

across realms, these relations could be established for ranges of timestamps. This

could help amortize the cost of dependency tracking and allow for more localized

conflict detection.

6.1.4 Multiprocessing

Instead of pursuing performance benefits for a single parallel application, as is the pri-

mary focus of our work, Nexion also has merits as a resource-sharing system. Without

Nexion, Swarm can only execute a single application at a time. Supporting multiple

processes is possible by utilizing time-division multiplexing, just as in a single-core

system. However, Nexion provides additional flexibility by allowing multiple pro-

cesses to share the system simultaneously. This makes Nexion more attractive as a

general-purpose accelerator and opens up the possibility of utilizing novel hardware

58

features within a specialized operating system.

6.1.5 Dynamic Reconfiguration

Realms in Nexion are currently implemented as fixed partitions of cores. However, the

execution model does not require this distinction. To improve flexibility, the presented

implementation of Nexion could be extended to allow for dynamic repartitioning.

Taking this idea further, it is also unnecessary for realms to be established even as

disjoint partitions, they could instead overlap and share hardware resources without

reconfiguration. This adds an additional design dimension for applications written

using Nexion. In the case of multiprocessing, it also poses interesting opportunities

for operating systems. Based on the current process utilization, the operating system

can dynamically reallocate resources among processes. This also poses new challenges

with identifying efficient scheduling of processes over time.

59

60

Bibliography

[1] TPC Benchmark C, 2010. https://www.tpc.org/.

[2] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, and Doug Burger. Clock
rate versus IPC: The end of the road for conventional microarchitectures. In Pro-
ceedings of the 27th Annual International Symposium on Computer Architecture
(ISCA-27), 2000.

[3] C. Scott Ananian, Krste Asanovic, Bradley Kuszmaul, Charles Leiserson, and
Sean Lie. Unbounded transactional memory. volume 26, pages 316–327, January
2005.

[4] Philip A. Bernstein and Nathan Goodman. Concurrency control in distributed
database systems. ACM Computing Survey, 13(2):185–221, June 1981.

[5] Philip A. Bernstein, David W. Shipman, and Wing S. Wong. Formal aspects of
serializability in database concurrency control. IEEE Transactions on Software
Engineering, (3):203–216, 1979.

[6] Larry Carter and Mark N. Wegman. Universal classes of hash functions (extended
abstract). In Proceedings of the Ninth Annual ACM Symposium on Theory of
Computing (STOC), 1977.

[7] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. BulkSC: Bulk
enforcement of sequential consistency. In Proceedings of the 34th annual Inter-
national Symposium on Computer Architecture (ISCA-34), 2007.

[8] Benoît Dupont de Dinechin, Renaud Ayrignac, Pierre-Edouard Beaucamps,
Patrice Couvert, Benoit Ganne, Pierre Guironnet de Massas, François Jacquet,
Samuel Jones, Nicolas Morey Chaisemartin, Frédéric Riss, and Thierry Strudel.
A clustered manycore processor architecture for embedded and accelerated appli-
cations. 2013 IEEE High Performance Extreme Computing Conference (HPEC),
2013.

[9] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. Dark silicon and the end of multicore scaling. In Proceedings of
the 38th annual International Symposium on Computer Architecture (ISCA-38),
2011.

61

https://www.tpc.org/

[10] Alvaro Estebanez, Diego R. Llanos, and Arturo Gonzalez-Escribano. A survey
on thread-level speculation techniques. ACM Computing Survey, 49(2), June
2016.

[11] Kapali P. Eswaran, Jim N Gray, Raymond A. Lorie, and Irving L. Traiger. The
notions of consistency and predicate locks in a database system. Communications
of the ACM, 19(11):624–633, November 1976.

[12] Maria J. Garzaran, Milos Prvulovic, and Jose M. Llaberia. Tradeoffs in buffering
speculative memory state for thread-level speculation in multiprocessors. ACM
Transactions on Architecture and Code Optimization, 2:2005, 2005.

[13] Lance Hammond, Mark Willey, and Kunle Olukotun. Data speculation support
for a chip multiprocessor. In Proceedings of the Eighth International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-VIII), 1998.

[14] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis,
Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and
Kunle Olukotun. Transactional memory coherence and consistency. In Pro-
ceedings of the 31st Annual International Symposium on Computer Architecture
(ISCA-31), 2004.

[15] Muhammad Amber Hassaan, Martin Burtscher, and Keshav Pingali. Ordered
vs. unordered: A comparison of parallelism and work-efficiency in irregular al-
gorithms. In Proceedings of the ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), 2011.

[16] Mark Hill and Michael Marty. Amdahl’s law in the multicore era. Computer,
41:33 – 38, 08 2008.

[17] Syed Ali Raza Jafri, Gwendolyn Voskuilen, and T. N. Vijaykumar. Wait-n-
GoTM: Improving HTM performance by serializing cyclic dependencies. In Pro-
ceedings of the 18th international conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS-XVIII), 2013.

[18] Mark C. Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel
Sanchez. A scalable architecture for ordered parallelism. In Proceedings of the
48th Annual International Symposium on Microarchitecture (MICRO-48), 2015.

[19] Changkyu Kim, Doug Burger, and Stephen W. Keckler. An adaptive, non-
uniform cache structure for wire-delay dominated on-chip caches. In Proceedings
of the 10th international conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-X), 2002.

[20] H. T. Kung and John T. Robinson. On optimistic methods for concurrency
control. ACM Transactions on Database Systems, 6:213–226, 1981.

62

[21] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and
David A. Wood. LogTM: log-based transactional memory. In Proceedings of
the 12th IEEE international symposium on High Performance Computer Archi-
tecture (HPCA-12), 2006.

[22] Simo Neuvonen, Antoni Wolski, Markku Manner, and Vilho Raatikka. Telecom-
munication application transaction processing (TATP) benchmark description.
http://tatpbenchmark.sourceforge.net, 2009 (accessed May 2022).

[23] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M. Amber
Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth, Roman Manevich,
Mario Méndez-Lojo, Dimitrios Prountzos, and Xin Sui. The Tao of parallelism in
algorithms. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2011.

[24] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing transactional mem-
ory. In Proceedings of the 32nd Annual International Symposium on Computer
Architecture (ISCA-32), 2005.

[25] Hany E. Ramadan, Christopher J. Rossbach, and Emmett Witchel. Dependence-
aware transactional memory for increased concurrency. In Proceedings of the 41st
annual IEEE/ACM international symposium on Microarchitecture (MICRO-41),
2008.

[26] Daniel Sanchez and Christos Kozyrakis. ZSim: Fast and accurate microarchi-
tectural simulation of thousand-core systems. In Proceedings of the 40th annual
International Symposium in Computer Architecture (ISCA-40), June 2013.

[27] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar proces-
sors. In Proceedings of the 22nd Annual International Symposium on Computer
Architecture (ISCA-22), 1995.

[28] J Greggory Steffan, Christopher B Colohan, Antonia Zhai, and Todd C Mowry.
A scalable approach to thread-level speculation. In ACM SIGARCH Computer
Architecture News, volume 28, pages 1–12. ACM New York, NY, USA, 2000.

[29] Suvinay Subramanian, Mark C. Jeffrey, Maleen Abeydeera, Hyun Ryong Lee,
Victor A. Ying, Joel Emer, and Daniel Sanchez. Fractal: An execution model
for fine-grain nested speculative parallelism. In Proceedings of the 44th Annual
International Symposium in Computer Architecture (ISCA-44), June 2017.

[30] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
Speedy transactions in multicore in-memory databases. In Proceedings of the 24th
Symposium on Operating System Principles (SOSP-24), 2013.

[31] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards,
Carl Ramey, Matthew Mattina, Chyi-Chang Miao, J.F. Brown, and Anant Agar-
wal. On-chip interconnection architecture of the tile processor. IEEE MICRO,
27:15 – 31, 10 2007.

63

http://tatpbenchmark.sourceforge.net

[32] Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E. Moore, Haris Volos,
Mark D. Hill, Michael M. Swift, and David A. Wood. LogTM-SE: Decoupling
hardware transactional memory from caches. In Proceedings of the 13th IEEE
international symposium on High Performance Computer Architecture (HPCA-
13), 2007.

[33] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael
Stonebraker. Staring into the abyss: An evaluation of concurrency control with
one thousand cores. Proceedings of the VLDB Endowment, 8(3):209–220, Novem-
ber 2014.

64

	Introduction
	Background and Motivation
	Conventional Multithreading
	Hardware Transactional Memory
	Architectures for Ordered Parallelism
	Swarm
	Fractal

	Takeaways

	Nexion Execution Model
	Semantics Within a Realm
	Semantics Across Realms
	Programming Interface

	Nexion Implementation
	Baseline Swarm
	Conflict Detection
	Selective Aborts
	Scalable Ordered Commits

	Conflicts in Nexion
	Nexion with Infinite Resources
	Conflict Detection
	Selective Aborts
	Scalable Ordered Commits

	Reducing Tracked Dependencies
	Handling Limited Queue Sizes
	Filtering Realm Conflict Checks
	Distributed Realm Conflict Detection
	Analysis of Hardware Costs

	Evaluation
	Experimental Methodology
	Modeled System
	Benchmarks
	Database Workloads

	Nexion Improves Scalability
	Nexion Reduces Pressure on Resources
	Sensitivity Studies
	Unlimited Dependency Tracking
	Instantaneous Realm Conflict Detection
	Effects of Filtering Realm Conflict Checks

	Conclusion
	Future Work
	Diverse Benchmarks
	Advanced Swarm Features
	Coarsening Tracked Dependencies
	Multiprocessing
	Dynamic Reconfiguration

