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ABSTRACT

We have made a theoretical study of the interaction of a two-level
atom with a single mode of an electromagnetic cavity. The cavity is also
coupled to a reservoir of atoms in thermal equilibrium through its
walls. The damping and fluctuations this coupling produces in the atom-
cavity system is examined through the Fokker-Planck and Langevin equa-
tions. Particular attention is paid to the exchange of energy between
the atom and cavity and to the approach of the system to thermal equili-

brium.
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1. INTRODUCTION

It has recently become possible to study the interactions of atoms
with 1isolated modes of the electromagnetic field in a cavity (Kleppner
1981). A Rydberg atom in a high m-state is an example of an atom through
which it might be possible to study this interaction. Consider a sodium
atom in the n = 25, 1 = 24, m = 24 state. In a single photon transition

the selection rules imply that the atom can only decay to the n = 24, 1

23, m = 23, state. If such an atom is placed in a cavity whose funda-
mental frequency is close to the frequency of this transition, the atom
will be coupled strongly to that mode of the cavity. It is the purpose
of this thesis to study the interaction of such an atom with a single
cavity mode. We will examine the exchange of energy between the atom and
the cavity.

For reasons that will be explored further in chapter VIII, the
resistive damping in the walls of the cavity is of crucial importance in
determining the characteristics of the atom-cavity system. In other
words, the cavity-atom system is influenced by its coupling through the
atoms in the wall to a thermal reservoir. Eventually the energy in the

excited atom is lost to the thermal reservoir and the whole system comes
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into thermal equilibrium. This resistive damping is present even at zero
temperature.

At first sight it may appear that we can represent this loss of
energy by the atom-cavity system by introducing a phenomenological damp-
ing constant into the equations as is done in classical mechanics. How-
ever this introduces an inconsistency in the quantum mechanics of the

system. The Heisenberg commutation relations are not maintained. For if,

p(t) = p(o)e™* (I.A.1)
and
a(t) = q(0)e” " (I.4.2)
Then it follows immediately that
[p(t),q(t)] = [p(0),q(0)]e2Yt
(I.A.3)

+*+0Qastre

which is a fundamental inconsistency. The reason for this 1is that we
have ignored the fluctuations that always accompany the damping that is
introduced by the reservoir. If a system is coupled to a thermal reser-
voir there are two major effects - (1) the system loses energy to the
reservoir because the reservoir has a much larger number of degrees of

freedom; and (2) thermal fluctuations that are introduced by the reser-
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voir into the system. These effects are closely related to each other.
Indeed, neither can occur without the other and the quantitative
representation of this relationship is the Fluctuation - Dissipation
Theorem (Callen and Welton 1951) We will attempt to study the quantum
theory of such fluctuations and the effect they have upon the system in
its approach to thermal equilibrium. We shall study the general theory
of a quantum reservoir through the density matrix formalism.

To understand the intimate relation between fluctuation and dissi-
pation, in chapter II we review the theory of Brownian motion. We intro-
duce the two standard methods of treating fluctuation phenomena - the
Langevin and Fokker-Planck equations and demonstrate the intimate rela-
tion between the two approaches. The importance of the correlation func-
tion of the fluctuating force and its relation to the mean thermal
energy is also pointed out.

In chapter III, the density matrix is introduced and its usefulness
in treating two coupled systems, only one of which is direct interest,
is demonstrated. The equation of motion of the density matrix, after the
fluctuations of the thermal reservoir have been averaged over, is
derived. The correlation fuaction of the operators of the reservoir is
seen to determine the mean motion of the density matrix.

Chapter IV is concerned with the application of the techniques
developed 1in chapter III to a system of fundamental importance - the

harmonic oscillator. The density matrix equation is evaluated for the
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case of the harmonic oscillator. For the purpos? of solving this equa-
tion the coherent state representaion of the harmonic oscillator is
introduced. The assosciated anti-normal function of the density operator
is used to derive the Fokker-Planck equation for the harmonic oscilla-
tor, which is then solved.

In chapter V, the ordering and associated complex function tech-
niques, which were used for the harmonic oscillator, are extended to be
applicable to an arbitrary system. These techniques are used to convert
the density matrix equation into the Fokker-Planck equation for the sys-
tem. The Langevin equations are then derived from the Fokker-Planck
equation and the relation between the two approaches is noted.

In chapter VI we make a diversion to study the interaction between
an atom and a cavity in the absence of any damping. Useful operator
techniques are introduced for studying this interaction. The equations
for the interaction between a 2-level system and a cavity mcde are then
solved exactly, inspite of the fact that they are non-linear.

Chapter VII is concerned with a system which 1is related to the
atom-cavity system : we study two coupled harmonic oscillators, with one
of them coupled to a thermal reservoir. The equations of motion for such
a system can be solved exactly. The interaction of the system with the
reservoir is charecterized by the time taken for an energy interchange
between the two oscillators. The behaviour of this time as a function of

the damping constant and the detuning is examined. Chapter VIII returns
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to the system under consideration - the atom-damped cavity system. The
equations of this system cannot be solved exactly, but its features are

examined by analogy to the system of chapter VII.
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II. BROWNIAN MOTION

As an example of a system interacting with a thermal reservoir, we
recapitulate here the theory of Brownian motion. Consider a particle
immersed in a liquid, interacting with the molecules or the liquid. Typ~
ically the particle will undergo about 10'* collisions every second. To
obtain a complete description of the motion of the particle is obviously
a hopeless task. We will attempt to obtain some of the statistical pro-
perties of the motion of the particle in this chapter. The techniques we
will wuse for this purpose will later on be extended to be applicable to
quantum systems. In section II.A we present the most intuitive way of
looking at the motion of the particle - the Langevin equation. The
Langevin force F(t) is introduced and its correlation function 1is
evaluated. The correlation function is shown to be closely related to
the mean kinetic energy of the particle. In section II.B we adopt a dif-
ferent approach. The probability distribution function of the particle
in velocity space is introduced, and a differential equation for this
probability distribution function is dérived. This is the Fokker-Planck

equation, This equation can be solved exactly. In section II.C the rela-



12

tion between the two approaches is stated explicitly.

II.A The Langevin equation

The equation of motion of the particle can be written as

e = F(t) (II.A.1)

where F(t) is a rapidly fluctuating force of the following form:

w”\ N

L NN
‘\\/w\/ VM\/\{ \ \/ t

P4
aT*

F(E)

Figure II.1l

%
T , which is of the order of the time between two successive peaks of
F(t), 1s called the coherence time. In a typical situation o is on the
order of 107'® seconds. Since the time scale of the phenomena we are

=13 seconds, we will obtain all our

interested in is much greater than 10
results in the limit of zero coherence time. We may therefore integrate

equation (II.A.1) and obtain

mv(t + AZ,% - v(t) - -Alt-, I F(t')dt' (II.A.2)

#*
where At > 1,

The ensemble average over this equation is
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t + At

neme> = g6 ! (Rt Yot (I1.A.3)
The ensemble in this case is a collection of a large number of hypothet-
ical systems of a particle immersed in a liquid. The simplest approxima-
tion for <F(t')> from Fig.(I.1) would be <F(t')> = 0. This however does
not lead to any interesting results. We know from phenomenological
observations that the particle feels a net resistive force equal to

-yv(t). v for a hard sphere is given by
Y = 6mna (Stoke's Law) (II.A.4)

where n is the coeffecient of viscosity and a is the radius of the
sphere. This 1indicates that there is a portion of F(t) which depends
upon v(t). The resistive force then arises from the modification of F(t)
due to the reaction of the particle upon the molecules of the liquid.

We now make these considerations more quantitative. Let the proba-
bility that the particle has a velocity v(t) at a time t be W(t). Since
there are a far greater number of degrees of freedom in the liquid than

for the particle, this probability will be proportional to the number of

zccessible states in the liquid.
W(t) = Q(E) (II.A.5)

where E is the energy of the liquid.

Let the instantaneous force on the particle at a specified time ¢t
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be F(t). Assume that the system is in an equilibrium situation at time
t, with <F(t) > = 0. After a time At the velocity will be v(t + At)

the energy of the liquid will be E + AE. (Again At > ™ )

W(t + At) = Q(E + AE)

So
W(t + at) A(E + AE) _ _BAE (II.A.6)
W(t) - Q(E) =
1 alnf
where B = T C IR I3
Wit + at) = W(t)ePE = W(t) (1 + BAE)
Therefore
<F> = L W(t + At)F
(II.A.7)

= £ W(t)(1 + BAE)F = B<FAE>

where the I implies a summation over all the possible states of the

liquid. Also At = t' =t > T
Clearly
1 ]
t 11 Tt 11 t [ ] [ ]
AE = = [ v(t DF(t Hdt | = - v(t) S F(t' )dt (II.4.8)
t t

where v(t) is taken out of the integral sign because it is assumed to be

¥
slowly varying over a time less than T . So from equation (II.A.T) we

and
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obtain

' ' t te e
KF(t')> = - BCF(t )v(t) [ F(t )Hdt >
t

t 'K ' 1y (II.A.9)
= = Bv(t) i dt <F(t YF(t )»>

We define the correlation function of F(t), K(s), by
K(s) = <F(t)F(t + s)» (I1.A.10)

K is assumed to be independent of t because the behaviour of the system

cannot < :pend upon the origin of time. So equation (II.A.9) gives us

] t 1t 1t ]
<F(t )> = = B<y(t)> J dt K(t =~1t) (II.A.11)
t

Before we proceed we need to derive some properties of K(s). Clearly
<F(L)F(t + 8)>

K(s) <F(t + s)F(t)>

<F(L)F(t - s» K(-s8)

(II.A.12)

+ K(s) = K(-3)

Also since F(t + T) bears no particular relation to F(t) if t > o

(the coherence time), we must have
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K(s) =0 for s > 1" (II.A.13)
Also

(F(t) * F(t + s)})*> >0
+ <FH(t)> + <CF(t + 8)> = 2<F(E)F(t + 8)> >0

+ 2K(0) * 2K(s) > 0
(II.A.14)

+ |K(s)| < K(0)

(II.A.12), (II.A.13), (II.A.14) together imply that |K(s)| is of the

form . 14(6)

<5 e

S
Figure II.2
In the limit of zero coherence time, the correlation function is a delta

function.
We now go back to equation (II.A.11). Substituting (II.A.11) into

(II.A.3) we have

P T wememee e R DRSS TR RERCR Ee wen



Av 1 L+ At ' t e 1 '
migg> = - 'E'EB<V(t)> S dt S dt K(t -t)
t t

The region of integration is
~— DE—>

&\S\‘/‘_’

i
]
|
|
i
1
i

lq_.p__>
«<

o
L —
If we change to the variables t” '

- Figure I1.3°
t -t = s , it becomes

Figure II.4

Therefore equation (II.A.15) now becomes

Ay 8 At t + At - 8 -
m<-A-E> = - R’(V(ﬁ)) J ds J dt K(s)
0 t
8 At
= - R(v(t)) I (At - s)K(s)ds
0
At
Av 8
néer> = - =<v(t)> J K(s)ds
(33 2 -At

The last step follows from equation (II.A.12) and the fact

over the range K(s) is appreciable.

17

(II.A.15)

(I1.A.16)

(II.A.17)

that s << At
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Since K(s) = 0 for t > At, (II.A.17) is equivalent to
MR = - <v(t) > ; K(s)ds (II.A.18)
33 kT o B
This gives us
1 @®
Y = kT j;K(S)dS (II.A.19)

This is a special case of the fluctuation-dissipation theorem (Callen

and Welton 1951).

We can rewrite (II.A.18) as
mH = - YV + £(t)

(II1.A.20)
where <F(E)> =0

In the limit of zero coherence time we have from (II.A.19)

K(s) = 2kTv6(s)

+ CR(EYE(E')> = 2KTYS(E - t)

Therefore we have

= T = g g "~ N | ]

w-gEm k3

T e R eRpGT—"y
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mg—‘é:—YV+f(t)
<F(E)> =0
(II.A.27)

SECE)F(E')> = 2KTY8(t - t')

The relations (II.A.21) are called the Langevin equations of motion and

represent all the information about the system that we shall need.

As a check, let us evaluate <%mw“(t)>. We have from (II.A.20)

t
v(t) = v(0)exp(-vt) + % s dt1exp[-7(t - t1)]f(t1) (II.A.22)
0

Therefore

t
<vi(t))> = <[v(0)exp(—yt] + % f dt1exp[-7(t - t1)]f(t1)l'
0

——

, t (II.A.23)
[V(O)exp(—vt) + = é dtaexp[-v(t - tg)]f(ta)}
The expectation value of the cross-term vanishes, and we get
<vi(t)> = <v*(0)>exp(-2vt)
(II.A.24)

t t
1
+ > é dt1 g dt2exp[-v(2t - t1 - t2)]<f(t1)f(t2)>

Using (II.A.21) this reduces to

= a- 3 q

B - crEpORm ¢ 6 OY SENEETENeTN oI emmm ewEm P TR S B3 3



<vi(t)> = <v?(0)>exp(-2vt) «+ %%[1 - exp(-2vt))

Therefore the steady state value of

L
<12my > =

which is what would have been expected from thermodynamical

tions.

20

(II.A.25)

considera-

e

W N g — e -
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II.B The Fokker-Planck Equation

The Fokker-Planck equation offers an alternative, but equivalent,
way of looking at the problem of Brownian motion. We attempt to develop
a differential equation for P(v,t), the probability that the particle
has a velocity v at a time t. We find it useful to define ¥(v, Av), the
transition probability that a particle will undergo a change in velocity
Av from a velocity v. Then it is easy to see that the following relation

must hold between P and ¥

P(v,t + 8t) = J P(v - Av,t)¥(v - Av,Av)d(Av) (II.B.1)

Here At > T'. the coherence time and the change in velocity, Av, occurs
over a time At. Since Av and At are small, we can expend both sides in a

Taylor series.

a
P(v,t) + yEbt =

| 2 12%p
POAE) - g - 5 GBI L
(II.B.2)
[ 2
v, av) - gpan) + 2 200t O(AV)’]d(Av)

which simplifies to



P(V,t) + 3ot = J P(v,t)¥(v,av)d(sv)

-]

- ;%[f P(v,t)¥(v,Av) (Av)d(Av)

|

z @©
+%3— s P(v.t)?(v.AvHAv)’d(Av)l
dvil-=
+ 0(av)?

It is clear from the definition of ¥{v, Av) that

S ¥(v,Av)d(Av) = 1
I ¥(v,Av) (Av)d(Av) = <(Av)>

I ¥(v,Av) (Av) 3d(av) = <(Av)3>

and so on. Therefore the equation (II.B.3) reduces to

ap 3 1 3%
FEAL = - qy(PCav>) + 5;;(P<(Av)’>] -

This is the Fokker-Planck eguation in its most general

from equation (II.A.21)

form.

22

(II.B.3)

(II.B.4)

(II.B.5)

We have



23

miE = - YV + £(t)

Y 1 t + At . ' (II.B-6)
*> Ay = = EVAt + o J f(t )dt
t

because we wish to average out the motion over times 1less than the

coherence time. Equation (II.B.6) gives immediately

(B> = ~(gat) (II.B.7)
and
y 1 t + At , .
<(Av)*> = {j- ZvAt + & I f(t)de |*
t
1 t + At ' ‘
-gvit + o S f(t )dt )
1 t + At t + At . , '
(av)*> = — J  dt Jdt <f(t)f(t )> + o(ar)?
2
m t t
(II.B.8)
= ElMe 4 o(at)?
If we make the additional assumption that
<av)®> = 0(aL)? for k > 2 (II.B.9)

then equation (II.B.5) simplifies to the following differential equation

for P
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2
%% = %‘é%(PV3 + — —(P) (II.B.10)

-

We now attempt to find a solution to this equation, subject to the ini-

tial condition v(t=0) = vo. Then
P(v,0) = &(v - vo)
] (v - vo)2 (II.B.11)
=1lim ——————— exp|- %5 ‘
g+0 (2m0)'/2
We make the ansatz
P(v,t) = exp[- 95%551] (II.B.12)
Then (II.B.10) reduces to
1 3G Y Yv 3G kTy 3%G kTy faG)*
'5W:=E'5”7-aﬁw'+mJW] (II.B.13)
At t = 0 we have from (II.B.11)
(v - vo)
G(v,0) = 1lim + 1ln (2m0) (II.B.14)
a+0
If we assume for G(v,t) the form
G(v,t) = —(v = b(t))?* + 1n o(t) (II.B.15)

a(t)

then we must have



a(0)

b(0)

c(0)
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lim ©
a+Q

(I1.B.16)

lim 270
o+0

Substituting (II.B.15) into (II.B.13) and equating the coefficients of

equal powers of v, we easily get

1 da
a dt

2y . . 2Ty
mz
b = 0
(II.B.17)
l de
c dt

The equations (II.B.17) can be easily solved with the initial conditions

(I1.B.16) to give

a(t)

b(t)

c(t)

9[- on[ 1]

Y
voexp[- Et'}
(II.B.18)

51 w34

Therefore we have
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2
LX_Z_ELEll_ (II.B.19)

——————— exp|-
(c(t))'/2 [ 2a(t)

which is the solution to (II.B.10) with the initial condition (II.B.11)

P(v,t) =

Let us now evaluate <%mvz >

G mvds = S

5 mv2P(v,t)dv (II.B.20)

1
2
The above integral can be easily evaluated to give

1. .2y . 1 a2 2vt kT 2vt
<2 mv®> = 2mv0exp[— m + 3 [1 —exp[— m ” (II.B.21)

which agrees with equation (II.A.25).
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II.C Overview of the Two Approaches

In section B we derived the Fokker-Planck equation wusing the
Langevin equation. It is clear that the reasoning can be reversed i.e.
given a Fokker-Planck equation of the form

ap 3 a?
T O - IV (A(V)P) + ;;; (B(v)P) (II.C.1)

we can deduce that the Langevin equation obeyed by v is

= A(v) + f(t)

ala
<

where

, , (II.C.2)
<E(E)F(t )> = 2<B(v)>8(t - t )

Equations (II.C.1) and (II.C.2) summarize the content of this chapter
and are very similar to the quantum equations that we shall derive

later.

Bibliography for Chapter II

The study of Brownian motion was initiated by Einstien (1905) and
Smolouchowski (1906). Equation (II.A.19) is an alternative formulation
of the well-known Einstien relation. The Langevin equation was first

derived by Langevin (1908). The differential equation was first derived
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by Fokker (1914) and Planck (1914). A complete theory of Brownian
motion, with expressions for the expectation value of arbitrary func-
tions of the velocity and position was first done by Uhlenbeck and Orn-
stein (1930) and Wang and Uhlenbeck (1945). A special case of the
Fluctuation-Dissipation Theorem was derived by Nyquist (1928). The gen-
eral formalism of this theorem was developed by Callen and Welton
(1951), Bernard and Callen (1959), Callen and Greene (1952a,b); The
theory of fluctuations was further developed by Lax (1960). Review

articles may be found in Chandrasekhar (1943) and Rief (1965).
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III. QUANTUM TREATMENT OF A THERMAL RESERVOIR

We will now try to describe the quantum theory of a thermel reser-
voir. We assume that the system under consideration is made up of two
parts. One 1is the part of the system whose properties we are interested
in determining. We will refer to this part as the system S. It has only
a small number of degrees of freedom. The other part, which we will call
the reservoir R, i8 assumed to be in thermal equilibrium at all times,
and possessing a large number of degrees of freedom. It 1is weakly
interacting with the system S. An example of a system and reservoilr
interacting in this manner is an electromagnetic cavity and a two level
atom (the system S) interacting with the atoms in the walls of the cav-
ity (the reservoir R). The behaviour of the reservoir will not be
described in detail because it is assumed to be stochastic in nature. It
shall be characterized chiefly by its correlation functions. In section
III.A we will define the density operator of the system and demonstrate
its usefulness in tresting a reservoir which 1s stochastic. Yo will
derive an equation of motion for the reduced density matrix of the s8y3-
tem S. Sectior III.B will be similar to section III.A except that in 1t

we will derive the equation of motion of any system operator.
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III.A Equation of Motion for the Density Operator

Assume that the system S has a Hamiltonian H0 and the reservoir R

has a Hamiltonian R, and the interaction Hamiltonian i3 V. Then the

total Hamiltonian H i3 given by

H = H0 + R+ V (III.A.1)

We will attempt to eliminate the coordinates of the reservoir. Let the
state of S and R be represented by the ket |¥(t) >. At atime t let the
probability that S and R are in this state be given by py. Then the

density operator of the system, o(t) is defined by
p(t) = I l¥(t) > py < Y(t)] (III.A.2)
Let © be any arbitrary operator. Then

<8(t)>

Ipy <HBIOl¥(E)>

(III.A.3)
Trace(P(t)6)

where the trace is taken over both S and R. Thus from p(t) we can derive
the expectation value of any operator.

We have

Py ®m e

- mg- ¥

o aianas— -ae Sl __ar o g - NS o mianaka 1N e
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p(t) = I [¥(t) > py <¥(t)]

(III.A.U4)
iHt iHt
= I - ¥ > Y
L exp[ -ﬁ—]l (0)> py (O)Iexp[ -?r-l
from which we can easily derive
3p
if IF ° [(H, e] (III.A.5)

which 1s the equation of motion of the density operator. We also find it
convenient to define x(t), the density operator in the interaction

representation by

p(t) = exp [ --igilx(t)exp [ -ji;:&

(II1.A.6)

where H = H0 + R

Using (III.A.5) we can easily derive the equation of motion for x(t)

ih 4% = [V(t), x]

H T (III.A.T)
where V(t) = exp[%;:-E]Vexpl-iqﬂ,lE
Consider an operator A, which 1s only a function of the variables of the

system S. Then
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<A> = Trace over S and R (rA)
= TraceS[[TraceRD] A]
We define a reduced density operator
S(t) = Tracey p(t) (III.A.8)
Then
+ <A> = Traceg(SA) (III.A.9)

Therefore we see that the reduced density operator offers a convenient
formalism for eliminating the coordinates of the reservoir. We can also

define a reduced density operator in the interaction representation by

iHot iHot
S(t) = exp|-—g—|¢(t) exp}|—x— (III.A.10)
It is easily seen that
o(t) = TraceRx(t) (III.A.11)

We shall develop an equation of motion for S(t) and ¢(t), eliminating
the coordinates of the reservoir. As in the case of Brownian motion, we
shall only take into account second order correlations in the reservoir
forces and ignore all higher order effects.

Since the reservoir is in thermal equilibrium, at t=0, the density

2 P

BTSN EDOMET DT e e X e n e
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matrix o(0) can be written as

p(0) = S(0) f(0) (III.A.12)
where
- _ exp(-8R)
£00) = f(t) = Trace{exp(-BR))
1 (III.A.13)
and B = E-,i;

We make the assumption that

Vo= nIQF (III.A.14)
1

where Q4 is an operator on the system S and F1 is an operator on the

reservoir R. We also define

V(t) = 2 Q; (£) Fy(t)
1H t iHOt
where Q;(t) = exp —ﬁ— Q; exp -5
(ITI.A.15)
and Fij(t) = exp [%‘;ﬁ } F; exp [ -

Now Fi(t) being a reservoir operator, is stochastic in nature. It is the
analog of the force on a particle undergoing Brownian motion by the
molecules of the liquid, differing only in that it is an . operator upon

an Hilbert space and not an ordinary function of time. As in the

" !!‘
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previous chapter we define

K 5(7) TraceR[ £(0)F,F (%) ]

(III.A.16)

<F1FJ(r)>

As before the correlation function is assumed to be time translation

invariant:
We have from (III.A.16)

Ki,j(-T) = <F1Fj(-t) >

(III.A.18)

1L N

Kij(r)
which is unlike the classical case. Also

because the operators Fy and FJ need not commute. We shall assume that
Kij(t) is a sharply peaked function of time, with a width of the order

of <t (the coherence time). The qualitative reasons for assuming this

~ =g Gmop -~ “EEeE
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are essentially the same as in the case of Brownian motion.
We recall the equation of motion of the' density operator 1in the

interaction representation.

ax

ithgg = [V(¢), x] (III.A.T)
which gives

) .

T’é = =1 [foi(twi(t)' x(t) ] (III.A.19)

We wish to "smooth out" all effects over times less than t
and also ignore correlations in F;(t) beyond the second order. As a

first approximation we have

Ay i At 1 t '
I ° - IE é dt fQi(t )Fi(t’ ). x(0)

" (III.A.20)

where At > 1
This approximation is too crude however, because it does not take into
account the second order correlation in Fi(t). To the next order we have

therefore
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Ax i At 1 \ 1
T oo Lo | TN, X
0
at t'
2 '
A TR

(III.A.21)

£Q(tHF,(t"), [zo &' HF, ", x0)
L 1 1 Rt 3

If we now trace over both sides of (III.A.21) over the reservoir R, and

recalling equations (III.A.11) and (III.A.16), we have

At
- "A!Ef £ oyt o) ] <Fyce"y sat’
0
At t'
2
. -(-'A!t)— t f dat' £ at"
i,j o 0

[acthagee e - qqee"Hecorg;ceh Jrrgseett - eh)

- [egeheayie’"y - scora e g e’y Jrkg e’ <8

Now <F1(t')> = 0. Therefore the equation above simplifies to
1
2 At t
B 8 S et et
At+0 1, o 0

[acehaye" e - HOBTIACHE LTS

- [ogceheayee’y - oquee" oy e’y Jeig et - e"h
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(III.A.22)
The region of integration is shown in Figure III.1
Figure III.1l
t—>
If we define T = t'-t" » the region of integration is transformed to Fig-

ure III.2

bjt //Z// 7//

Figure III.2

D
e T o,
We have therefore
e
2 At t
3 . 1w &L p g g s oge
At+0 i,j o 0

[Qger « £" g ee""ye - g et yeq (x + &'y ok ()

- [Qi(‘l’ A L A NG A }'Kji‘”
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(III.A.23)

For all the systems that we shall consider, the following property will

hold for Q(t)

iH t :I.Hot
Q(t) = exp T' Q exp | -—p—
(III.A.24)
= exp [iwit]Qi
Using this property, (III.A.23) simplifies to
T ) 1
= 1lim I -
T g0ty
t"
[050 - qgeay | * 7 exp [ 10y iy j-maan
0
ll .
Q; $Q; - 4Q.Q f exp | iw;T [K. (T)dT
- [0y - e ] (1o Jen (III.R.25)
At
s s qt' exp[i(wi-rw ]
0

Here At > 'r' and At > —.
w3

Since Kij(T) is sharply peaked with a width 1:. we make the approximation

; exp [ TR ]Kij(-t)d‘l’ " Z exp [ gt ]Kij(-‘t)dt

t

We define HIJ and wy; by



39

"IJ = g exp[ iuit]KiJ(-T)dt
@ (III.A.26)
w31 = J exp[ lo7 ]Kji(f)dt

0

Since At > jL the integral outside the brackets in (III.A.25) is
i

At
! dt”exp[i(wid-uj)t”l - 01f u1+wJ £0
0 At 1fm1+tnj=0

Therefore (III.A.25) now becomes

'g'% = - ifj Gi,J [[QiQJ¢ - QJ¢Q1 ]WIJ

(III.A.27)
- {ageqy - ayq, ]wgij
We have defined 61.1 by

é
1.J 0 otherwise

(III.A.27) is the required equation of motion for the reduced density
operator with the coordinates of the reservoir eliminated. The equation

for the density operator S(t) can now be easily seen to be

]
7 = THlHy ST -

+
5 S [ (as055 - agsa Jut,

- [oys0y - souq, ]ugi]
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(III.A.28)

This is the Master Equation for the density matrix of a system in con-

tact with a thermal reservoir. Ve shall base our study of such systems
upon this equation. The characteristics of the thermal reservoir shall

be represented simply by the correlation functions HIJ and w31
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III.B Equation of Motion for a System Operator

The analysis in the previous section has been carried out in the
Schroedinger picture, 1i.e. the density operator and the state vectors
are time dependent, while the operators are stationary. The equation for
the density matrix that we derived will be shown later to lead to the
quantum mechanical Fokker-Planck equation. We shall ultimateiy be
interested in deriving the the Langevin equations of motion for the sys-
tem operators. To understand the relationship between the Langevin and
Fokker-Planck approaches it is now necessary to derive the equations of
motion for the system operators in the Helsenberg picture.

Let © be any system operator. Then we know that

de

q®E = I L0 H]

1-15[9,140+R+v1

(III.B.1)

'i% [e, H0 + V]
If we now transform to the Heisenberg-interaction representation through
iHt

e(t) = exp[ iql:—t q(t) exp[-T (III.B.2)

then it follows that the equation of motion for q(t) is
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R o= 1F Lae), V(-]

H T (ITI.B.3)
where V(t) = exp[%]Vexp[--’%‘ﬁ]

Equation (III.B.3) is very similar to equation (III.A.7), the equation
of mction of the density operator. Using similar reasoning, we approxi-

mate (III.B.3) by

(III.B.4)

] ' ! t

The simplification now proceeds in much the same manner as after equa-
tion (III.A.21). We multiply by f(0), the reservoir density matrix, and

take the trace over the reservoir states. Then since

CFy(-t')> = 0 and q(0) = ©
]
it Lt
A > 1 1 '
®) = -x E Joat' Jat
<t R 1,3 0 0

<[ [e. aue-t" Ja -t oy gt -t

- qg-t") [e, qu(-th J kst -t.')>
A
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(III.B.5)

Making the change of variables as in equation (III.A.23) and carrying

out similar simplifications we finally get

“> I <[e Q10 ¥, - Q.8 on-> (III.B.6)
(:% R i, i,J 173" J 14731 Q

Using equation (III.B.2) we get

o) = <T15[e. H0]>£

(III.B.7)

- I ¢ <[e.o]o.w+--o[e. 0-]w'>
1,3 1,] 175575 TN 1791/,

This is the Master Equation of motion for a system operator in the

Heisenberg picture, with the degrees of freedom in the reservoir aver-
aged over, Notice the'“;imilarity of this equation to equation
(III.A.28). Equations (III.A.28) and (III.B.7) will form the basis of

our study of quantum mezhanical systems approaching thermal equilibrium.

Bibliography for Chapter III

Discussions on the utility of the density matrix in treating sta-
tistical systerms may be found in Fano (1957) and ter Haar (1961). The
master equations discussed in this chapter are sometimes presented in an

altered form known as the transport equation. Original derivations of
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the transport equation were made by Landau (1927), Pauli (1928) and
Bloch (1928). These derivations all made use of the random phase
approximation. An improved derivation, in which the importance of many
degrees of freedom in the dissipation mechanism was explicitly recog-
nized, wés made by van Hove (1951). The master equation as presented in
this chapter was first derived by Fain (1962), Lax (1963), Lax (1966),
and Louisell and Walker (1965). Treatments may also be found in the

books by Fain and Khanin (1969) and Louisell (1973).
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IV. THE DAMPED HARMONIC OSCILLATOR

We shall now apply the techniques that have been developed in the
previous chapter to a study of the damped harmonic oscillator. The har-
monic oscillator offers a particularly simple illustration of these
techniques and can also be solved exactly. Also we shall show later on
that that harmonic oscillator can be used to represent the electromag-
netic field in a cavity. Thus the study of the harmonic oscillator is of
direct relevance. 1In section IV.A we will introduce all the operators
needed and state their important properties. In section IV.B we will
derive the equation of motion of the density matrix, (III.A.28) for the
case of the harmonic oscillator. Section IV.C is a diversion from the
other sections. Here we introduce the coherent state representation of
the harmonic oscillator, and derive some of its useful properties. In
section IV.D we shall use the coherent state representation of the har-
monic oscillator to derive the Fokker-Planck equation, which will then

be solved.

IV.A Definition of the Operators

-]

T % R

- R E R =T =

" S O DR T I e ¢
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We define the harmonic oscillator by the Hamiltonian and commuta-

tion relation

H0 = hwa a (IV.A.1)

(a, a'] = 1 (IV.A.2)
In the Heisenberg picture, we then immediately have the solution

a+(t)

a+(0)exp( iwt )

(IV.A.3)
a(t)

a(0)exp (-~ iwt )

It is now necesary to couple the oscillator to a thermal reservoir. We

postulate an interaction of the form

R = § ﬁujR3J (Iv.A.4)
iha t
vV = > § IR+Ja - a R_:j ] (IV.A.5)
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P exp ( - BR)
.~ Tracepexp( -8R}
Since
= I
R JﬁwJR3J
we have
TraceR exp(=-BR) = TraceR exp l - g BﬁwJR3J ]

z ljl Tr'ac:eR exp ( - Bﬁij3J. )

are .,..l and -l

Because the eigenvalues of R3J > >

Trace,exp(=-BR) = lI[exp(-ma /2)
R i J

+ exp ( BthIZ )

exp ( - BﬁmJR:‘;‘j )
exp ( - BﬁwJ/z ) + exp( BﬁmJ/2 )

e =

49

(IV.A.14)

(IV.A.4)

(IV.A.15)

(IV.A.16)

(IV.A.17)

EL T

TR Y OFTTY OUIRT
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IV.B The Density Matrix for the Harmonic Oscillator

We are now ready to use the master equation for the density matrix

that we derived in the last chapter. Recall that

3 = ThlH, S -

Lyt “QiQJS - a0 Juf;

(III.A.28)
- [ Q;505 - 50,9, ]w}i]

From equations (IV.A.3) and (III.A.24), we have that the sum over 1 and

J extends over the values i=1,2; j=1,2; and

u1 = - W
T (IV.B.1)
m2 = w
By equation (III.A.14) we have

ia
Fp o= 2 ; R+J
F ) ia : R (IV.B.2)
2 - T 2 j -J

Using equation (III.A.15) we get therefore

]
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ia .
F.‘(t) = D\gimal’% \\?QRH\PXD\—E_ijwT\
J J
= 12y exp[ iw:R.T|R -expf'-iw-R T
2 37357 TP LT s
(IV.B.3)
F.(t) = --jﬁiexp iw.R_.T IR .exp[-iw.R T
2 2 i J73j] =J J73]
We now use the well known operator identity
51
exp( EA) Bexp(-8A) = B+ E[A, B] +§[A. (a, B1]
(IV.B.l4)
+ —-[A, LA, [A, B]1]]+ ...
3!
and the commutation relations (IV.A.11) and (IV.B.12) to give us
F_ (1) -Ez[ 10Tl R ]
1 R Gt 33* ey
(lw;T)?
R
+ 3T [Ryge DRy Byl s oo,
. o, R 1 + iwt Uet)?
= > J +j + + 2! + aae
(IV.B.5)
ia
= —2' :‘; R"'J exp( imjt)
F(t) = -2 1R . exp(-iu,T) (IV.B.6)
e e D e

Using definition (III.A.26) we get



52

ij = é exp ((iwyT) <F1(T)Fj>dt
-] (IV.B'7)
W:j-i = {) exp ( iuit ) <FJF1(T)>dT

From equations (IV.B.5) and (IV.B.6) we have

a? 1
<F1(T)F2> = T j I.TraceR[ R+JR_Jexp ( - maJR3j ) ] exp( 1wj1: )
(IV.B.8)
where A = exp(-BhuJ/2) + exp ( BﬁwJ/Z)

. is di 1.
33 agona
1 1

We know from (IV.A.8) that the eigenvalues of R3j are +7 and -3 The

It is easiest to evaluate the trace in a basis in which R

expression within the trace is thus
<1/2|R, 4R_jexp ( - Bhw /2 )| 1/2>

(1V.B.9)
¢ <=1/2IR 4R_jexp ( B /2)|-1/2>

Now by (IV.A.8), R+J and R_j are the raising and lowering operators :
R,yl172> =0 § R_jl1/2> = |-1/2>

: (IV.B.10)
Ryyl-172> = |1/2> ; R_4l-1/2> = 0

Therefore (IV.B.9) simplifies to



exp ( - Bwa-/Z )

Therefore

<F1(T)F2> = I

a? exp (lw;T)
JT exp(Bhuy) + 1

In a similar fashion we can derive

a? €xp (- fwsT)

FiF (1> = g-u—exp(ﬁfle)+1
F.(F> = 3ol SXP{-im)
2 1 = j y exp(-BﬁwJ)+1
GF.F()> = 13 sxp { 1oyv)
21 - ] 4 exp(- Bhwj)+1

Therefore from

We now convert

(IV.B.7) we get

@ a2 exp ( inT )

é exp ( -iwt) jTexp(ﬁﬁmJ) +1

1
exp(BﬁwJ) + 1

}]
—
J 0

1 8
exp( maj) +1

a?
L —
j y
1
wy—u

'lté(mj-u) + 1P

the sum over j to an integral

; exp [ :I.(m‘j -0)T ]dt

]
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(IV.B.11)

(IV.B.12)

(IV.B.13)

(IV.B.14)

(IV.B.15)
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_ dm!a‘ p(m') .
- y exp(ﬁﬁwj)+ 1

o -

\ : (IV.B.16)
#7180 -0) + iP——
w w

Since

p(w')
exp ( Bhu' )+ 1

is a slowly varying function of w'. it can be taken out of the integral
by replacing w' by w.

Also defining

1 wp(w)a?
Y o= T
- ', (IV.B.17)
' = PJ dw' p(w ')a
0 U(w -w)
we get
* ! (v + 180’ (IV.B.18)
Y12 F exp(Bhw) + 1 Yo+ o
wt. = ! (v' - 18w') (IV.B.19)
21 ~  exp(- Bhw) + 1 sEe
- L (v - 18') (IV.B.20)
Yig © exp(Bhw) + 1 Y - <=
- 1 [} L
w = (v + idw )

21 exp(- Bhw) + 1
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(IV.B.21)

-

We are now ready to use equation (III.B.7) for the motior of an operator
in the Heisenberg picture. Let us derive the equation of motion for

<a(t) >. Plugging in

e:a.Q1:a.Q2=af,andH0=hwa+a,

and equations (IV.B.18) to (IV.B.21) into equation (III.B.7) and after

algebraic simplification we get,

d<a> _ v exp(Bhw) - 1
=t * <a>[-—iu + 1Aw exp(Bho) + 1

' exp(Bhw) -1 (IV.B.22)
exp(Bhuw) + 1
Therefore
<a(t)> = <a(0)>exp( -7t - i(v-duw)t) (IV.B.23)

where by comparision with (IV.A.3) we have defined a damping constant

' exp(Bhw) -1
exp(Bhw) + 1

mo(w)a? exp(B8hw) - 1 (IV.B.24)

y exp(Bhw) + 1

and damping frequency shift
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'+ exp(Bhw) -1

A
¢ exp(Bhw) + 1

- 0 4(w' - w)exp(Bhw) +1
Similarly we have the conjugate equation
at(t)> = <af(0)>exp (-7t + 1(w-a0)t) (IV.B.26)

We can also derive the time development of the energy H0 by equation
(III.B.7). Carrying out this procedure, we obtain after minor algebraic
simplification

t
d<a a> _ t 1

The solution to this equation is

<afa(t)> = <a+a(0)>exp(~27t)
: (IV.B.28)
which gives us
lim<ata(t)y = —m—oro (IV.B.29)
tom exp(fhw) -1

which is what we would have expected from ordinary statistical con-
siderations at equilibrium. Thus the thermal reservoir, in addition to

introducing a damping in the harmonic¢ oscillator, introduces fluctua-
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tions which ensure that the oscillator has the right thermal equilibrium

energy. We define

- _ 1

exp{Bhw) -1 (IV.B.30)

We can also derive a corresponding equation for the density matrix from

equation (III.A.28). We get after minor algebraic simplification

;% = -1(u-Aw)[a1'a. S]] + v[as, af]

+ - % (IV.B.31)
+Y[a, Sa ]lJ]+2wn[a,[S, all

which is the Master Equation of motion of the reduced density matrix of

the harmonic oscillator.
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IV.C The Coherent State Representation

It is the purpose of this chapter to solve equation (IV.B.31) for
the density orerator. To do this we need to develop the appropriate
operator algebra necessary. We therefore make a short diversion in this

section to introduce some useful techniques in solving such equations.

We note
\ +,1
[a, D1 = 1@H-T o 2l (1V.C.1)
Ja
and
t 1 1-1 a(a)1

fa', (&)7] = -1(a)*"" = —5a (Iv.C.2)
we therefore postulate

[a, £f(a,ah] = 2L (IV.C.3)

da
[af, f(a,aD) 1 = - 55 (1V.C.4)

where f(a, a?) is any arbitrary function of a and a*.

Let us now investigate the eigenstates of the operator a. Firstly a
is not hermitian, we therefore don't expect the eigenstates to form a
complete orthonormal set. Let |a > be an eigenstate of a , with eigen-

value a :
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B
alad = ala> (IV.C.5) .
Then E
aexp(Eaf) la = exp(Eaf) exp(-5a+) aexp(Eaf) Ja>
where £ is any complex number. But using (IV.B.4) we have
. B
t t k
exp(~-%a )aexp(fa ) = a+ § (IV.C.6) .
e
t + R
aexp(Ea' ) o> = exp(ta ) (a+§) ja>
= exp(8a’) (a+ ) | -
(Iv.C.T)
= (a+§&) exp( Eaf) |e> A
So if |Ja> is an eigenstate of a with eigenvalues @, then exp( Eal) Ja> is
an eigensﬁate with eigenvalue a + &, Since § is any complex number, it i
follows that the eigenvalues of a cover the entire complex plane. E
Let us expand |a> in the energy basis. Suppose “
@
a> = I C.(a)|m (Iv.C.8)
n=0

Plugging this into (IV.C.5) and equating coefficients of [n> we obtain

the recursion relation

v
2
3
o

;

g

ma
.
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€, 1(®) /nel = aCp(a) (IV.C.9)
Using (4.57) and the fact that <aslad> = 1, we easily obtain
C.(a) = expl-1/2]al?) o (1V.C. 10)
n Jat o
2 5 af
fa> = exp(=-1/2fal?) I —=|m (IV.C.11)
n:O n'
Using (IV.C.11) we can calculate in a straightforward fashion
[<B[a>|?* = exp [- |e-8|2 ] (IV.C.12)
i.e. the |a> states are not orthogonal. Also
d?a
S lad<al = = 1 (IV.C.13)
Here d?a = d(Re @) d(Ima) (IV.C.14)

i.e. the |a> states are complete, wiht (IV.C.13) the completeness rela-
tion. Such a collection of states which are complete but not orthogonal
is called an overcomplete basis. The |ad> basis is also referred to as

the coherent basis and the |a> state as the coherent state.

Any arbitrary function f(a, af) of the creation and destruction
operators 1is said to be in normal order f"(a.a*) if it is written in a
form in which all the creation operators lie to the left of the destruc-

tion operators. Thus

" e R E AR
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fla,a’) = Ma,a®) = £ £ (ahHPad (IV.C.15)
p,q P94

We define an associated normal function ?n(a.a') for every f(a,af) such
that
(a,a”) = £ 8 (e*)P(a)? (IV.C.16)
Pq
P.q
To find the associated normal function of any operator we then have the
following procedure. Express the function in normal order and then
#*
replace every a+ by @ and a by a. We may also define a normal ordering

operator N by
 E TN R P (IV.C.1T)

It is clear that there is a one-to-one correspondence between a assosci-
ated normal functions and a function of the creation and destruction
operators, i.e. N is a one-to-one operator. - —

In an analogous manner we may define an anti-normal order in which
a 1s placed to the left of every a*. We may also define the associated

anti-normal function and the anti-normal ordering operator A by the

equations
fla,ah) = fa,ah = I A (a"@H® (1V.C.18)
r,s
(a,0") = r A (o) (ah®

1 "SRR

]

T TR ™

E o B

FEaR"

REE oE3n

3
i
e
;
E.
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' (IV.C.19)

A[Fa(a,a')] = f(a,a’) (IV.C.20)

| We will attempt to transform equation (IV.B.31) to a differential
equation for the assosciated anti-normal function Sa(a.a') of the den-
sity operator. The reason for choosing the anti-normal ordering will
become apparent later. For the moment we note the following extremely

useful properties of anti-normal ordering.

0l
f(a,a) = I 3 (a)f(a"H®
r,s
2
= I f?s r @' |a>-q-||i<ﬂ| (a+)s
r,s
2
= I f?s s (a)r |a>2“2<a| (G*)s
r,s
2
= J %EIG)(GI ?a(“.“*)
2
f(a,a’) = s 942 lad<a] F3(a,a")  (IV.C.21)
[2

Trace |a><b] = <alb>
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(IV.C.22)
2
Trace f(a,a’) = J 3:27%(a,a") (IV.C.23)
from (IV.C.21)
31
Trace [ D(a.af)f(a.a+) ]
= Trace{ I oedg () (ah® I rgq(a*>p<a>q}
r,s P.q
= I ¢ pa_f" Trace (a)"(a")3*P(a)?
r.s p.q TSP { ]
= I I p2_f" Trace (a)"*%(a")S*P
r.s p.q TS P4 [ ]
2
= I & o8 fgq I3 ﬁwﬁ (a)t‘+q(u!)s+P
r,s p,q
Trace ( D(a,af)f(a.a+) ]
. (IV.C.24)

= £ 47 5%a,a") (o,

L)
=
—



6U

Trace[ f(a.a*) 5(6‘ -a*) §(a-a) )

2
r 92 738,8%) 8(a" - 8") 6(a-8)

¥ F(a,a"

?a(d.u.) = « Trace [ f(a.a*) 5(0'-a*) §(a-a) } (IV.C.25)
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IV.D Solution of the Density Matrix Equatian

We now attempt to solve the equation of motion for the density

operator

'g% =z -i(m-Au)[afa. S]+ v[as, 81.]-

+ -t (IV.B.31)
+v[a, Sa ]+2mla,[S, al]

We shall attempt to put both sides of this equation into anti-normal

order. Let us consider the first term [ afa. S]

[ata, 53 atas - sa'a

= aa'S -8 -Saal + 5

4 as} 3S +
= alSa - - aS - — 1 a
[ Ta [ 2aT
(IV.D.1)
_ 85 ¢ as
= -—1_a - aﬁ

where we have used equations (IV.C.3) and (IV.C.4). The final expression
in (IV.D.1) is in anti-normal order. In a similar fashion we can convert
all the other terms into anti-normal order by using the relations
(IV.C.3) and (IV.C.4). If we carry thlis out, we obtain after algebraic

simplification
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.} 3 ]
T% = - i(wa A(ll)[ S + a'g-i‘] .
(IV.D.2)
s - 3%s
a + a + 25 + 2Yn

Since both sides of (IV.D.2) are in anti-normal order, we can apply the

anti-normal ordering operator to both sides and obtain

-3% = (Y+i(N-AN))1?u(UP)

ap
aaaa'

o7 - 1(«»-Au>);-°7<a'p) + 2v8
a
(Iv.D.3)

where P = §a(0.0!.t)

This is the Fokker-Planck equation for the associated anti-normal func-
tion of the density matrix. The techniques used to derive this equation
are rather specialized to the hzrmonic oscillator. In the next chapter
we shall develop more general techniques which can be used for any arbi-
trary set of operators.

Equation (IV.D.3) can be solved exactly in much the same manner we
used to solve equaticn (II.B.10). We solve it with the initial condition

P(a,a”,0) = &(a-8)38(a" 8"

i.e. we will find the Green's function for the equation. We can then

find the solution to any arbitrary initial condition by integration.
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P(a,a",0) = &(a-8)8(a”-8")
(IV.D.4)
= lim ; exp[-E(a-B)(G*-B*) ]
e+
As before we make the ansatz
P(a,a",0) = exp(G(t)) (IV.D.5)
where G(t) is of the form
1 ) ®
6(t) = poy (o - Bw) ) o - Bt ]+ o (IY.D.6)
Then
1
A(0) = 1lim -
€
€+®
B(0) = B8
B*0) = 8*
(IV.D.T)
c0) = 1lim +
e+

Substituting (IV.D.5) and (IV.D.6) into (IV.D.3) and equating the coef-

*
ficlents of a , @ |, and o*a we have the equations

% = -2vA+o2vm
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(Iv.D.8)
® = (-v-1a)B (IV.D.9)
1dC 1dA
TdaE ° - 3dt (IV.D.10)
where W oz w- Aw (IV.D.11)
which can easily be solved for the initial conditions to give
A(Y) = n(1 - exp(-27t)) (IV.D.12)
B(t) = Bexp(-vt - izt) (IV.D.13)
1
2
P(a,a”,t) = C(t) expl- L"—‘%‘l‘)'—] (IV.D.15)
As t + = ye have
. R la]?

Therefore the density matrix is independent of the initial conditions
and represents Gaussian noise.

Suppose at t=0, the system is in its ground state.
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S(t=0) = |o><o0] (IV.D.17)

We have to find the anti-normal form of this state. We have from equa--

tion (IV.C.25)

A~ ( lo><o}) u'rrace[ lo>< o} 5(a" = at) 6(a-2) ]

. + (IV.D.18)
= "<0|68(a ~a')s(a-a)|0> :
We note the useful property of the delta function
§(a=b) = exp[-b-g-a;] §(a) (IV.D.19)
Using (IV.D.19) we have for (IV.D.18)
2~V (lo><oly =
+ 9 ] %
= <0 exp|a — exp(a-au] [0> 68(a) 6(a”)
Ja
) 2
= *<0]1 - a*L. - agy + a*a 3 5 + e 10> 8(a) G(GE)
aa dzda

All the terms, but the first, have zero expectation value and we get
A~1(lo><ol) = =é(a)s(a") (IV.D.20)

Therefore the solution to (4.76) with the initial condition



P(a,a",0) = m&(a)8(a™)

is given by

P(G.G..t) f a8 5(3)5(3')C(t)exp[

al?.

1 |
A(t) P l o) ]

Let us now determine the expectation value of a*a

1-

<a a> Trace(Safa)

by IvV.C.24

2
i) Qwﬂ §a(a,a')a‘a

2
1 __ s d‘Glalzexp['-lgL-]

TA(t) A(t)

n(i - exp(=-2vt))

which agrees with equation (IV.B.28)

Bibliography for Chapter IV
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ja - B(t)|?

A(t)

(Iv.D.21)

(IV.D.22)

The 'R’ operators in section IV.A were introduced by Dicke (1954).

The form of the reservoir interaction has been used by Senitzky (1960)
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and (1961). The coherent state representation was introduced by Glauber
(1963) and has since been used extensively in the literature. Louisell
(1973) also has a treatment of this subject. Louisell and Walker (1965)

and Louisell and Marburger (1967) first obtained the solution of the

damped oscillator density matrix equation.
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V. THE QUANTUM FOKKER-PLANCK AND LANGEVIN EQUATIONS

In the previous chapter we derived the Fokker-Planck equation for a
damped harmonic oscillator from the equation for the density operator.
In this chapter we will derive this equation for an arbitrary system. In
section V.A we shall develop thé necessary operator algebra to do this.
In section V.B the Fokker-Planck equation shall be derived for an arbi-
trary system. Section V.C will illustrate the general techniques
developed for the case of the harménic oscillator. In section V.D we
will use the equation of motion for a system operator that was derived
in chapter III and transform it with the help of the operator algebra
developed 1in section V.A. Finally, in section V.E we will derive the
Langevin equations of motion and point out their connection with the

Fokker-Planck equation.

V.A Operator Algebra

Let the system under consideration be described by thé complete set

of non-commuting operators
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31 .32. LI .an

By the descfiption complete we mean that these operators, with their
commutation relations form a Lie algebra. In the case of the harmonic
oscillator we had the operators af and a forming such a set. By analogy

with normal and anti-normal ordering we define an arbitrary chosen order

of the operators. Let this chosen order be
a,8,,.0., 8

To simplify the notation we introduce here a method of representing
a vector of n elements. A bar over any symbol will represent a vector

with n elements. Thus we have the following representations

a1,a2.....an + a

(V.&.1)

n

With each operator a; we associate a real number a; . If the opera-
tor is non-hermitian, the associated number is chosen to be complex, and
with the hermitian conjugate of the operator, we associate the complex

conjugate of the number. Thus if

R IR BT D ClLOtRE R

-

=




T4

@ T oay

then
oL (V.8.2)
i ay

Let Q be any operator which can be expressed as a function of this

complete set of operators. Q is said to be in chosen order if every term

in the power series of Q is in chosen order. Thus
Q@) = (&)

- (V.4.3)
(a)F

The superscript ¢ on Q indicates that it is in chosen order. The chosen
order 1in the case of the harmonic oscillator was the normal or anti-
normal ordering.

We also define the assosciated chosen-order function Q (&) , and

the chosen-ordering operator by the equations

@ = Lo (§)F (V.A.1)
r

where the q; are the coefficients in equation (V.A.3), and

cl(a@) = @

ST them o~ -~z ou

el

T e W



75
(V.A.5)

The action of the chosen ordering operator can be formally represented

by
-C, -

Q3 = ¢ [o (a)]

o _ (V.A.6)
= f...f Q(a)T(a-a)da :

where the delta functions are written in chosen order. Also the expecta-

tion value of the operator Q is given by
<Q(a)> = Trace ( p(t)Q(3) ) (V.A.T7)

where o(t) 1s the density operator for the system. Using (V.A.6) we can

write (V.A.7) as

<Qa)> = Trace[b‘(‘t)f...f5°(3)3(a-a)d3}

o ) (V.A.8)
= J...J Q(v) Trace ( p(t) F(a-a) ) da
If we now define the distribution function by
P(a,t) = Trace (p(t) 3(a-a)) (V.4.9)

equation (V.A.8) becomes

-

FE"E 5 EB- & I v =

x

WUCER * IPRITRRTR TGO, IRCCIICISTY P § A [ P % A
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<Q(a)> = f...r8%@) P@E,t)da (V.A.10)

Thus if we know the distribution function as a function of time we can
find the expectation value of any operator. We already have an equation
of motion for the density operator (III.A.28). Using the relation
-(V.A.9) we will convert this equation into a differential equation for
P(a,t). This will be the quantum analog of the Fokker-Planck equation.
For the case of the harmonic oscillator we have from equation

(IV.C.25) that
Ea(a,a') = = Trace [ D(a,a*) S(Gu—a*) §(a -a) ]
Using equation (V.A.9) this becomes
P(a,a”,t) = 153(a,a”) (V.A.11)

Thus the distribution function for the harmonic oscillator is directly

related to the anti-normal form of the density matrix. This was the rea-
son for chosing the anti-normal ordering in chapter IV. Therefore from
equation (IV.D.3) we can immediately derive the Fokker-Planck equation

for the harmonic oscillator.

Y™ ™o

':"!I E"‘ !I'—I L e l? T r




-g—g = (v + 1(m..Am))-a?u-(ap)

(7 - i(m-Aw))%ca'p) + ova
a

where P = 39(a,a",t)

P

Jdada

T7

~——
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V.B The Fokker-Planck Equation

We recall equation (III.A.28) for the density operator

55 = ThiH, ST -

+
ifJ Gi.J [ [QlQJS - QJSQi ]"'i,]

(III.A.28)

We multiply both sides of this equation by

6(a1-a)...6(an—an) = T(a-a)

1

and trace over the system. Then the first term on the left hand side

becomes

Q
“0

Trace -g—E'S(a-a)] = (V.B.1)

%)
ct

by equation (V.A.9). The first term on the right hand side is
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Trace\{“[ﬂo. S1¥(e-a) \ .

Trace [fﬁcuost(a-a) - SH,T(a-2))

L

Trace [I%(S?(a—a)Ho - SHOT(G-a) )

using the cyclic properties of the traces

(V.B.2)
= Trace[-i%S[T(a-a). HO]]
The second term is
Trace [ [ Q;Q;5 - Q35Q; ] w'{j'S'(a-a) } =
(V.B.3)

= Trace[S['&(a-a). Q ]QJ]HIJ

where we again used the cyclic property of the traces. We similarly
operate on the third term on the right hand side and equation (III.A.28)

finally simplifies to

-g-g = TraceS[I%[T(u-a), HOJ

-, 835 ( U3-a), o 1044,

- Qj[w(a-a). Qi]WEi ]
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(V.B.#)

We have to express the right hand side as an operator on P. Before

proceeding we define for convenience the following shorthand :

— ]
expj{ -a —
Ja

I ex [ a 3
" P 199y

Then using equation (IV.D.19) on (V.B.21) we get

r \
ap | p— 9
= Trace$S [exp}-a —{, H.]
It [Tﬁ p‘ 2 0
I 6 exp 2 | +
- 1.j ij [exp -a ; » Qi]QJHiJ
' (V.B.5)
-Qj[’éi'ﬁl-a _a;]' Qi]"ng(“)]
We now define
S 1 —_— 9
X[a,ﬁ] = m[ex [-a —a:]. H0]
- I 6 [exp| -a 2 Q; 1Q.wt
i, ij 2a |’ i Jij
(V.B.6)

Jda

Qj[eTp[-a — .oilugi]

Then equation (V.B.5) can be written simply as



81

E

ap Trace[S(t)X[’E. %] ]3(0) (V.B.7)

_c
Trace(S(t)f...f X [F. aulz(ﬁ a) d'B"g(G)] (V.B.8)

—C
where we have ‘used equation (V.A.6) and L is the associated chosen

order function.

f...d Trace [ S(t)%(B-a) ]Yc[F. iur1'6'0!‘) dB

(V.B.9)

- 3
S L LI LOF
—c 3
We now make the assumption that X ['B'. ﬁ] can be written in the form

_c 3
[F, ﬁ] = ['B', a'cr]e"p aa (Vv.B.10)

This assumption will be to be valid for all the cases that we shall con-

sider. Then equation (V.B.9) gives us

ap = () — 3

= ... T P(E,¢) =[F. exp| -8 — {8(a)df (V.B.11)
it T | p[ ra
]
'3-2 = f...J P(B, t)-['ﬂ', au"&'(a_ﬂ)d'B'

(V.B.12)

3
T‘E = E[E.%]P('C't)

which is the equation we wished to derive. In all the cases that we

- 9
shall consider, & ['C. -ﬁ] will only have second order derivatives in a in



which case (V.B.12) is the Fokker-Planck equation for the system.

82
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V.C The Harmonic Oscillator Revisited

To illustrate the techniques developed in this chapter we will
derive the function E [‘G, ':Tr] for a harmonic oscillator. We have already
derived the Fokker-Planck equation using other techniques, but this sec-

tion will be a confirmation of equation (V.A.12). Note that

For notational convenience we make the following definitions

+
e? = exp[-af—a—.]
ia
- 3
ed = exp|l-a—
- da

- 2
From equation (V.B.6) we have for x[a. 'ai]
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f
X[E, :;U} = ;-[ E-a e™? a+a]

L[ e emd . aat(Ysilw)

= = exp( Bhw) - 1
- a'[ e-a+ e=d, g1y +ifw)

= = * “Jexp(Bhw) - 1
[ e"a‘r e=?, a]a—¥-1du)
- e e?, —

exp( Bhw) ~ 1 (V.C.1)

- a[ e-af e, g 1Y +idu)

= = ' “Yexp( BAw) - 1

To derive 2 ['E, :T!] we need to find the normal form of the above expres-

sion. For this we need the normal form of the following expressilons

Using equation (IV.B.4) we have

da
1 92 t =8
+23a3[a.[a,a]]...= a

-—1 e a

t
- 3 -
e~? at a
= 2 | =



Similarly
*
atae™ o2
t _t _t
= a'e® fag™ g
t
= ate™® [a.—5|e?
- da
and
+
ae? e-35t

-at 2 + 3| _a
- da da

We ingert (v.C.2), (V.C.3) and (V.C.4) into (V.C.1) and

algebraic simplification.
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(v.c.2)

(v.C.3)

(v.c.u)

obtain after



n
|
[
~~
E
]
>
€
A
lo
]
[
'
o

+
-2
]
0
E
]
0
-t
+
-]
B ———
®
|
[

+
by
]I
o
o

This expression is in normal order. Therefore

~C 3
X ['B, ﬁ]

(- 1(w - Aw) [_"‘.is‘ __3.31
da Jda

P -378',—3—3]
da aa J

- al\
2Yn——.'
dada

+

. exp[-ﬂ.-;:—;]exp[-ﬁ%]

9
which g.ves for E [‘E, ﬁ]

86

(v.C.5)

(v.C.6)
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_ 3
(= 2]
= - i(e-te) |2t o 2
da Ja
9 » 9
+ Y% +—0
da 9a .
(V.C.?)
— 32
+ ZYH'_‘
dada
Therefore from equation (V.B.12) we get
P 9 = 9
= - (=) | —Q - —a|P
T aa® 3a ]
a ® a al (V.C.B)
+ Y|—5% +—alP + 2yi—P
N da da dada

which is identical to equation (V.A.12)

F

==

" e

&
|
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V.D Equation of Motion for a System Operator

It 1s our purpose in this chapter to derive the Langevin equations
and to study their relation to the Fokker-Planck equation. To do this we
begin with the equation for the reservoir expectation value for a system
operator (III.B.7). We will derive the differential equation for the
associated chosen order function of the system operator. We restate

equation (III.B.7)

d - 1
F< 0T 5 = (Lo, HOJ>A

-, I8y <[°- Qi 195wy - Q4t€, °1]"J1>
vJ
R
We have from equation (V.A.6)
¢
8(a) = f.../ 6 (& t)T(a-a)da (v.D.1)
Inserting this into (III.B.T7)
—c
FCO(E D) = .08 (D H{Ee-a), o).
-, ; I8y j < [T(a-a), Qi]QJ.w'i'J.
(V.D.2)

- Qj['g(a-a). Qi]W31> da
Q.

Using equation (IV.D.19) this gives us
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d = ) 3° Vo |
ge< € (a, t) >R' f...1 8 (W, t)TH(exp[—aaa], HO]>‘2

. S 9
PP O <[exp l‘a‘a:l- 9 1Q;43;

1,)
(v.D.3)
— ] -
- Qj[exp [-a;}, Qi]"ji> T(e)da
]
From definition (V.B.6) we have

d .o (3 FB(E 7.2 153

FE<O(T, 8y, = (T, £) <X [3,55 | %3(a)d® (V.D.4)

Thus the similarity between equations (III.A.28) and (III.B.7) for the
density matrix and a system operator has been used here. Now we convert

- 9
X [ a.-ﬁ] into chosen order and use equation (V.A.6) again to get
— 9 =C ]
X[a.ﬁ] = J...JX [F,ﬁ}?(ﬂ—a)dg (V,D.S)

Inserting this into (V.D.4) we have

-C o]
a%e('é.tn = J 6 (8,t) X [F.a—%—}

(V.D.6)
* C(T(B - a) 3F(a - a)dBaw

If we use the ansatz (V.B.10) this gives us
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Feo (R = ST (m Y s[E ] Reoa,

(V.D.T)

—_ 9
# -B— - B
exp [ " l@'(a a)>éi da

If we now use the property (IV.D.19) of the delta functions we have

agﬁ-<e(3.t)>& = J 9 (9, t) -[B‘. a.u}<'£>'(l3-a)>a‘

(v.L.8)
#F(a-B) dBdE
We can easily carry out the B integrals and we get
d - . 3° = 3
Fo (T = 18Ty T, 5| e @ (V.D.9)

This then is the equation of motion for the system operator. In order to
convert it into a more convenient form we need to assume a specific form
for = [H.%] . Recall equation (V.B.12), the Fokker-Planck equation

the density matrix. By analogy with (II.C.1) we assume that

3 32

= -ﬁA(Tx‘) + 81113.%13('&) (v.D.10)

where we made the definitions

3
£ — A (@ = AT
i 8ai
32 32
I —— B, . (%) B(T)
i oW T
1,j %0 0a; 1°%2

for
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(Vv.D.11)

We incert this into (V.D.9) and integrate by parts

d - =C d ke
ag< @ (a, t) %= 8 (1|, -ﬁﬂ(u) +WB(E)
1 2
(V.D.12)
#(T(a=-a) >du
R
3 —C
= J...f A7) <T(a-a) 235 (W, t)du
(Vv.D.13)

I} IL[B('&)(E(a y > ) —— (T 13
ERARE -a &]3!2 (T, t) |d

We used the fact that the delta functions vanish at the 1limits of

integration. We integrate the second part of the right hand side by

parts again and obtain

-C
o TGS W U PYC %[e (ﬁ.t)l

al _c (V.D.1‘4)
+ Nf%ﬁﬁﬁr[e(u.w] <TN-a)%ﬁ
1 2

If we now apply equation (V.A.6) to the left hand side of this equation
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! (;;-’Ee (¥, £)5( a - a)ﬁfﬂl

) -C

+ (tr)a”, e (T, t) ]])T(ﬂ-a)d!!

We can equate the arguments of the integral and obtain

2 (e, t.))‘ : <§ A (@ ;:—[30(3. t) ]
1

(V.D.16)
+ I Byy(m e (w, t)]
ij 3aiaaj

This is the equation of motion for the system operator which we wished

(V.D.15)

to derive. Note its close relation to the Fokker—Planck equation

a ]
P, t) = - I ——[a@em,t)
. = )
(Vv.D.17)
. I ~[By;m pm, v |
ij aaiaaj
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V.E The Langevin Equations

In this section using equation (V.D.16) , we will develop the
Langevin equations for the system operators in a manner similar to that

of chapter II. Let

—c
(WM = e where o € { T} (V.E.1)

Then by equation (V.D.16) we have
d ca > = <A(U> (V.E.2)
dat* "R * u R . .E.

We wish to remove the reservoir averages. We can therefore add a fluc-

tuating random Langevin force on the right hand side of equation (V.E.2)

d

JEe © Au(u) + Gu(t) (V.E.3)
with property —
<Gu(t) >R = 0 (V.E.4)

The equations (V.E.3) and (V.E.4) are then entirely equivalent to equa-
tion (V.E.2). We may apply the chosen ordering operator C to both sides

of (V.E.3) and obtain

%au =A@ + &u(t) (V.E.5)

where AH(E) is in chosen order. As in chapter II, the important property
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of the Langevin force that we need to obtaii is its correlation func-
tion. From equation (V.D.16) we obtain the following equation of motion

for aucv

d
JE < o a >& = < Au(l‘l’) e, >‘,‘+ < s, Av(ﬂ) >&+ < BW(E) 2 (V.E.6)

We have to find the relationship between this equation and equation
(V.E.3). If we "smooth out" fluctuations in (V.E.3) which are smaller
than the coherence time, we get

Aa t + At

U 1

= A + S G (s)ds

T n it t u

Aav 1 t + At . . (V.E.T)
= A\) + IT Jt- Gv(S Yds

where At > T' . But we have
Aauav (au...Aau)(av.g.Aav) - auav
T - At
Aa Aa AauAav (V.E.8)

u v
T4 v YWIEE Y TR

Using equation (V.E.T) and taking the limit as At + 0 we obtain

d
a-E< al-la“ )& = (Au(u’) av >“+ <Gu A\,('&') >R
1 t + At L+ At . , (V.E.9)
+ lim I ds [J ds <Gu(s)Gv(s ) >
At+0 t t

Using equation (V.E.6) this gives us immediately
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1 t+AL t+ At

t '
lim g [/ ds [ ds <G (8)G,(s)> = <B (W > (V.E.10)
ats0 Ut t e A we R

In the limit of zero coherence time this is equivalent to

1 1)
<Gu(s) Gv(s )>R = <BW(U) }6(3-3 ) (V.E.11)
If w < v, we may apply the chosen ordering operator and obtain
~ - [] - ] .
<G ()G ()% = <B, (@ >8(s-5") (V.E.12)

This is the required correlation function. We recapitulate the important
equations derived in this chapter to stress the intimate connection

between the Langevin and Fokker-Planck approaches

Fokker-Planck equation

9 3
P(T,t) = =L —]A. (7)) P(T,t)
3 o (n )
al (V-E.13)
ij auiaaj
The Langevin equations
da = 4(D + G(t) (V.E. 14)
atey 7 %y T B
where <Gu(t) >’\ = 0 (V.E.15)
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<G (8,3 % = <B (@ p(s-s") (V.E.16)

Notice the similarity of these equations to equations (II.C.1) and
(II.C.2). We will derive the Fokker-Planck equation for the system
under consideration and then use the above equations to derive the
Langevin equations.

In the case of the harmonic oscillator we obtain from equations

(v.Cc.8), (V.E.14), (V.E.15) and (V.E.16)

gt = - i(w-b4uw)a-va«+ G,

+ (V.E.17)
da + +
2 - -A -
a5 i(w-4w)a Yya + Gaf
where
<G_+()Gy(s)> = 2rMbls-s) (V.E.18)
Let w —Aw = w , Then
a(t) = a(O)exp{-iEt—Yt)
t —
+ S gymexp[ - (reim(t-1)]ar
0
al(t) = af(O)exp(ia—:t-Yt]

Gaf(T) exp[ - (Y =iw)(t-1) } dt

+
oS



So
aqe< a*a(t) > =
Using equation (V.E.17)

aq€< a'a(t) >
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(V.E.19)
+ da daf
a (t)a'E + gt (V.E.20)
—2v<a'a(t) >

(V.E.21)

+ <a'(6)G,(8) + G_t(t)a(t) >

Using (V.E.19) we have

<at(t)G(t)> =

t
/<G _+(1)G,(t) >exp [~ (Y- 1@)(t-1) ]dr
0 a

t
2y S 6(t-v) exp [~ (Y-10)(t-1) ]dr
0
(V.E.22)

because only "half" of the delta function is considered (the correlation

function is an even function of time).

%( a*a(t) > =

-2y [< ata(t) > - i] (V.E.23)

which agrees with equation (IV.B.27)
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Bibliography for Chapter V

The distribution function was introduced by Lax (1968). The conver-
sion of the distribution function into the Fokker=Planck equation was
acheived by Lax (1968) and Marburger and Louisell (1969). The techniques
of conversion are illustrated in Louisell (1973). Another example may be

found in Lax and Yeun (1968).
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VI. THE ELECTROMAGNETIC INTERACTION

In this chapter we make a diversion and turn our attention to the
quantization of the electromagnetic field. In section VI.A we will
present the standard method of quantizing the free-space electromagnetic
field. In section VI.B the interaction of a two-level atom with the
electromagnetic field wlll be studied. The interaction will be
represented in terms of the creation and destruction operators and the
"R" operators. The Hamiltonian of this interaction shall be solved 1in

section VI.C

VI.A Quantization of the Electromagnetic Field

We study the electromagnetic field in free space in the absence of
any space charges or currents. Maxwell's homogeneous equations can be

satisfied by a vector potential K by

E = -

o] B
A

(VI.A.1)

we
n
<t
L]
=+

The inhomogeneous equations then give
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-+ -+
V.A = 0
$2K _ _l.azz (VI.A.2)
ctat?
We can express E as a sum of standing waves
R o= Jume? T qu(t) 4, (P (VI.A.3)
A
So-
SPUE LU Av = 8 (VI.A.H)

\)
where V is the volume of the electromagnetic cavity under consideration.
Here the ﬁA(F)form a complete orthonormal set, and hence any function
K(F.t) can be expanded in a series of the EX(F) . We 1impose periodic
boundary conditions on GA(F) and require that the tangential component

of GA(F) shall vanish on the wails of the cavity

G, (F) lggn = O (VI.A.5)
from which it follows that

VxU,(F) Inorm = 0 (VI.A.6)
After inserting (VI.A.3) into (VI.A.2) we get

T o >
v .ux(r) = 0
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(VI.A.T)

d?q, (t)
+ w;qk(t) = 0 (VI.A.8)
dt
and
mz
‘63 <> > A+ Y _
ux(r)'+:;ux(r) = 0 (VI.A.9)

where w, is a separation parameter which 1is wusad to separate the
independent functions GX(F) and q,(t) . From equation (VI.A.8) we iden-
- tify w, to be the frequency of the standing wave mode.
The classical Hamiltonian for the electromagnetic field is given by
1 *2 *2
a7 S AdV(E + B)

12 (VI.A.10)

1 1 ] %A r 2 e

Y dVLz[-a-E] + [Vxi) ]
Using the standing wave expansion this becomes

1 . . -+ >+, > »>
= — L
> J de ) ql(t)qu(t)ux(r)uu(r)

RN 4 4 9 W £ D)
S dv Afu ql(t)qu(t)(Vxﬁx(r)) . (Vxﬁu(r))

c?

2

The first term, using (VI.A.Y4) collapses to

1 .2
21 A
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while for the second term we use the relation

[Tty ) [Fxt, )

o oa s (4 N S O, (VI.A.12)
= uu(r) .[Vx[quA(r)]] + V.[uu(r)x[qux(r)]]

The second term on the right hand side of (VI.A.12) can be converted to
a surface integral by Gauss' Theorem and vanishes by (VI.A.5) and

(VI.A.6). The first term gives

+ 21> » *24

uu(r) .[ V[ v. uA(r) } -V uA(r)
(VI.A.13)
where we have used equations (VI.A.9) and (VI.A.7)7— Using the orthonor-
mality relations, (VI.A.11) now simplifies to

_ 1 (e 2,2 |

H o= 3 i [ G, (t) + wiqi(t) ] (VI.A.14)
If we define

p(t) = q,(t)

then
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H(p, (t), q,(t)) = % ;: [p; + “’iqfl (VI.A.15)

and the Hamilton equations

L - A (t) . _aH_ - - B
ip,(t), - I ' aq (), T TR

merely give us (VI.A.8).

To quantize this Hamiltonian we postulate the commutation rela-

tions
[pl(t). qu(t)] = ihﬁ)m (VI.A.16)

If we define

-

1 .
a)‘(t) = /?ml[wqu(t) + 1pA(t) ‘ (VI.A.1T)
al(e) = —1—[w (t) - ip. (t) | (VI.A.18)
A = m—x 29 Py ‘ A
we get immediately
H = I ho [a*(t)a (t) +l]
Y e A P
+ (VI.A.19)
[ al(t). ax(t) ]l = 1

In terms of the creation and destruction operators, the electric and

magnetic field operators are given by
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-+ T 2 |2 -+ -+
ko= [2’:: ] [a)‘(t) . aI(t)luA(r‘)
1

-+ 2 1- -> -+
E = f i [2nhwx ] ( a,(t) - a, (t) ]uk(r)

1 (VI.A.20)
> 2 2 e d -> >
b= {2‘2‘: ] [ax(t) . aI(t)][quA(r)]

The eigenstates of the field are the eigenstates of the Hamiltonian

(6.19) and can therefore be represented by a set of occupation numbers

{n,} .
IYE> = ln0|n1.n2ooon>

(VI.A.21)



105
@

VI.B Interaction of an Atom with the Electromagnetic Field

— - —————————— —— ———

The Rydberg electron in an alkali atom can be described by the Ham-

iltonian
+2

H = ‘2;* V(F) (VI.B.1)

where V(r) is the potential due to the core and the nucleus, and is

approximately coulombic. Any state of the electron can be described by a

sum from the complete set of energy cigenstates IEi >. If the electron is

in the presence of an electromagnetic field in a cavity, the total Ham-

iltonian for the field-electron system is

qbg

H = 515[?)— ]z + V(T)

-—J'dV[ 1 +[3x7x]z (VI.B.2)

Now the eigenstates of the field, given by (VI.A.21), and the energy
eigenstates lEi > of the electron form a complete set of states in terms
of which we can describe any state of the atom-cavity system. Under the
conditions described in chapter I : with the cavity near cut-off and two
energy eigenstates of the electron separated by a freduency close to the
cavity frequency, only the two levels of the atom and the fundamental
mode of the cavity are important. We denote these two levels of the atom

by |+> and {->, referring to the higher and lower states respectively.
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We also drop the subscript from the cavity operators, since we are
referring to only one mode of the cavity. Then the hamiltonian H can be

written as

H = J+><+IM]e><4] + [+><+IM]=-><-]

+ 1(VI.B.3)
+|-><—|M|+><+I+|-><—IMI-)<-|+hu)[aa+-2-]
- L[+ s*]’ *
where M = 5m L P oA + V(r) (VI.B.4)
+> +>
But in the radiation gauge (V.A =0)
E -+ e + =+ ez +2
M = 2m+V(r) -R-p.A+ 2mczA (VI.B.5)

Also because the |+> and |-> states are energy eigenstates of the iso-

lated atom

1]
m

-2
<+|%El-+ V(r) [+>

(VI.B.6)

"
m

+2
b >y 1
<-lop + v |=>
Also
B v, 3
[Zm +V(r), rl] = - ihg (VI.B.7)

So
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I Y P
0 U O PO ;
= - fa| <+l i vir) |r -r| 50 vir) | [+>{.A

- %%-[E+{-+|F [+> - E+<-+]Fl+->] .K

(VI.B.8)
= 0
Similarly  <-|-p5b.Al-> = 0
and
e » =+ e » *
<+|~EP-AI—> = (-I—m—cp.A|+>
- ie 52 + -+ > I -+ -+
R <+l g—m-+\f(r) r -r -éLm-n-V(r) [->f1.A
(VI.B.9)
- -}%[E+-E_]<+]FI->.K
We set
d = <+|FI—>
e? =2
the dipole moment of the atom. The zA term clearly has no off-
2me

diagonal matrix elements., It has small diagonal terms which introduce an

energy shift and can be absorbed into the values of E+ amd E_ . Equation
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(VI.B.3) can now be written

H = |+>E <+| - |->E_<-| +hw[a+a+l]
- 2
. (VI.B.10)
%
e i, e [T R 3Kl
If we define E_-E_ = hw, , (VI.B.10) becomes
E ., +E_ hw
H o= —— > <ol + -><=1) + = le> <+l = [=><-1])
iew (VI.B.11)
- ca(!+><-|-|—><+|)a.z+hw[afa +%]

We have assumed above that d is real. This does not alter any physical

features but simplifies the algebra. We note
[+><+] + |-><=] = 1

and drop all the constant terms in H ( by changing the zero of energy )

to obtain
H = hZ—m(1+><+l— ’-><-')

iew (VI.B.12)

ca( l+><-| - f=> <+l )EK + hwa*a

If we now calculate the matrix representation of the operators (J+><+| -
|-><=]) , (l+><+}) , (|-><=]) in the basis with the elements J+> and |->

we see from definition (IV.A.7) that
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l(|+><+|_;_><-|) = R (VI.B.13)
2 3

[+><-| = R, (VI.B.14)

[-><+] = R_ (VI.B.15)
Therefore

iew
t a +
H = hugR, + hoa'a - —=2 {8, - R ]3 A (VI.B.16)
H = heR, + hua'a
= hegRy
(VI.B.17)

- tew, /ENY. G[R+a +R,a' - aR_ - afn_]

where we have used equation (VI.A.20). Define

2ew
a /2Th +
N R Aarat: B (VI.B.18)
So
t ihA t t
H = hmaR3 + hwa'a + —E-[R+a + Ra - akR_-aR_ ] (VI.B.19)

If there was no interaction between the field and atom, we would have
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R(6) = R(0)exp|iut]
B(t) = R-(O)exp[_iwat] (VI.B.20)
and
a*(t) - a*(O)exp(imt)
(VI.B.21)

a(t) - a(0)exp(-iwt)

Therefore to zeroth order, the (R, a - a?R_) term will oscillates at fre-

quency w ~ w while the (R+a+ + ak_) term will oscillates at a fre-

quency w + w_. Since the detuning is assumed to be small

ao

w w W -
+ wy >> w,

+

Thus we can neglect the (R+a + aR_) term becuse it oscillates rapidly

and cverages to zero. This is the Rotating Wave Approximation.

Finally, we have

ihA
H = hwR_ + hwa'a + l%—[ R,a - a+R_} (VI.B.22)

3

This is the Hamiltonian that we shall use to represent the atom-field
interaction. Notice the similarity of this Hamiltonian to (IV.A.6).
This 13 the justification for (IV.A.6) representing the interaction of

one mode of the radiation field with a large number of two-level atoms.
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VI.C Solution of the Heisenberg Equations

The Hamiltonian (VI.B.22) can be solved exactly. This 1is despite

the fact that the equations of motion are non-linear. We recall

%‘g = I1H[°- H] (VI.C.1)

which gives us

i A
ige = 1?[3+a . a*R_] (VI.C.2)
dR
igp = - WR, -ixa*n3 (VI.C.3)
dR
igp = wR_ - 1AR;a (VI.C.4)
. da i
(dat t_idg (VI.C.6)
1'3-5- = = W3 - 5 R, L.

We define
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_ 1 k’(n+1) TR
<R3(t)> = 5 - v sin 2t (VI.C.10)
)‘z
<ata(t)> = n (n+1) 052 L (VI.C.11)
I!Z 2
where we have defined
r = ',/(ma--w)z + A% (n+1) (VI.C.12)}

Therefore the energy oscillates between the atoms and the field with the
Rabi frequency T.
dR3
The rate of loss of energy from the atom is proportional to 4t .
For small t, we obtain from (VI.C.10)

dR

3 A?
?T = -?(n-ﬂ)t (VI.C.13)

We can separate this into two parts - the part proportional to n, which
is the rate of stimulated emmission, and the the part independent of n,

which is the spontaneous emmission rate.

Bibliography for Chapter VI

The treatment in sections VI.A and VI.B may be found in most quan-
tum mechanies text books, e.g. Heitler (1960). The operator method of
treating the interaction was introduced by Dicke (1954). The interaction
Hamiltonian was first solved by Jaynes and Cummings (1963). The impor-

tance of using the Heisenberg picture in Q.E.D. was pointed out by Dirac
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(1965). The phenomena of spontaneous emmission and Lamb shift can be
treated simply in this picture as has been done by Ackerhalt, Knight and
Eberly (1972), and Ackerhalt and Eberly (1974). A discussion may be

found in Allen and Eberly (1975).
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VII. Two Coupled Damped Harmonic Oscillators

~.. the previous chapters we have recapitulated all the formal
theory required for the purpose of stuaying the physical situation we
are interested in. We want to solve the system described by the Hamil-
tonian (VI.B.22) with a damping mechanism coupled onto the field mode.
However as we have noted, the equations of motion are non-linear. When
damping is added onto the system the equations cannot be solved in a
simple form. To examine the general features of the problem, we examine
in this chapter a simplified problem. Instead of coupling the harmonic
oscillator to a two-level atom and then coupling the harmonic oscillator
to a thermal reservoir, we will consider two coupled harmonic oscilla-
tors and then couple one of them to somé damping. Therefore we replace

the Hamiltonian (VI.B.22), by the Hamiltonian
H = huga'a + hugb™ + he[a®o « b'a) (VII.A.1)

Thus we are considering two harmonic oscillators with frequencies wy and

wy and an interaction hr[ a*b + b*al.

In section VII.A we will solve this Hamiltonian without any damping. The
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Fokker-Planck equation for the system, afer a damping has been added,
Wwill be derived in section VII.B. We will then use the Langevin equa-
tions to derive coupled equations for the energy variables, after
averaging out the Langevin forces in secticon VII.C. Sections VII.D and
VII.E contain solutions of the equations for small and large detuning
respectively. We present some computer generated solutions in section

VII.F

VII.A Solution of the Undamped Hamiltonian

Using the relation

4% = g le H)

we can derive following equations of motion for the operztors of the

system

da* t +

?t— = 1waa + ikb (VII.A.2)
da +

3 = - iwaa - ixb (VII.A.3)
dbt + 4

J& = lupd + ixa (VII.A.H)
d—: = - iwa’ - ixa (VII.A.5)

Unlike equations (VI.C.2-VI.C.6) these equations are linear, and can
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therefore be easily solved. As before we have the constants of motion

N = aa+«bb (VII.A.6)

. and

0
n

maa*a + mbb+b + K [a*b +bla } (VII.A.7)

N is the number of photons in the system. 1Its conservation 1indicates
that one oscillator can be excited to a higher state only if the other
oscillator decays to a lower state. It is necessary for the Hamiltonian
to only have terms containing an equal number of creation and destruc-
tion operators for N to be conserved. R is the total energy of the sys-
tem and must obviously be a constant of the motion. Since we are
interested in the energy transfer between the two systems, we have

1.
dla a t+da daf

agt*dr?

-ik [afb - bfa ]

(VII.A.8)

alb®

Differentiating (VII.A.8) again



a{ata

2 2 +
P +{[ma-mb] + Uk ]aa

= [ma-mb}n- [wb[ma-wb] -2:‘]N

At t=0, let us assume that there are ng, photons in the W

and ny photons in the wy oscillator.

, +
«na.nbla alna.nb> = n

¢ ld a*a
Ngslp [af ]

a

<ngunyl ix[a's = b'a] Ingny >

<afa(0)> = n

< 0> =0

With these initial conditions we can find the solution

(VII.A.9). We note that

<> = now, + nyu,

118

(VII.A.9)

oscillator,

to

(VII.A.10)

(VII.A.11)

equation

(VII.A.12)
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L [ n.-n }
a b r
<a'a(t)> = n, - sin? =t (VII.A.13)
I!Z 2

where we have defined I' by

_ 2 2
r o= ,/{ma_mb] . U (VII.A.14)

Therefore the energy oscillates between the two oscillators with the

Rabi frequency I' . For small t we have

1.
d<aalt) > _ -%’[“a-"b]t (VII.A.15)

i.e. the rate of loss of energy is proportional to the square of the

coupling constant and the difference in the number of photons.
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VII.B The Fokker-Planck Equation

We now couple the w_ oscillator to a large number of atoms in ther-

a
mal equilibrium. This introduces a damping in the oscillator similar to

that studied in chapter IV. The total Hamiltonian is
H = hoa'a + fub'd + A [ a'b + b*a]

+ (VII.B.1)

ifia [
Ll a - = .
+ 5 ; R+Ja a R_J}

Since our purpose is to derive the Fokker-Planck equation of the system,
we need to derive in detail the equation corresponding to the equation
of motion for the density operator for this system. Since the coupling
between the oscillator and the reservoir is the same as in chapter IV,
the constants gzé_and “31 are still given by equations (IV.B.18) to
(IV.B.21). We also need to define a chosen order on the system and chose

the associated complex variables. We choose the order

For notational convenience we make the following definitions
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1-
e™? = exp[-af—a;
da
2 . [ 3
e = expl-a—
- 3a
1-
-b + 9
2 exp}l-b—
e p[ aBI]
(VII.B.2)
E-b S exp[_
We now have from equation (V.B.6)
— 0 —_— — 9 .
x[a.ﬁ] = -i-lﬁ[exp[-aﬁ].‘hwaa*a]
+ I%J:~_3[ ] fw, b b ]
- -i-%[_p[ E%J hK[ab+ba]]
- I [exp| -a=—=1{, Q ]Qw
. 1[ P[ ]
i,] J T 1 ij(VII B.3)

—f _ 3 -
Qj[e"p[‘a'a_u]' Q Jwyy

Using expression (V.C.5) for a damped harmonic oscillator, this expres-

sion becomes
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ot
— 3 - - 3 3 b -
x{a. ﬁ] - -i(wa-Awa)ea eb --——aq'---—alebea
- - 2a da -
t .t
- - ] d -b -
s ye @ e , —a +—alePe?
da 9a -
2 t t
+ 2Yn .e-a _"b £-b_-a

" T]H[W[ "E%: By ) (VII.B.4)
+ 1—%[%[-3%.. fic [ab + bTa ] ]
By analogy with w, oscillator we see that
T -E%], b b ]
. iwbg_afs_bm* i,b*-ib]g' E_a(VII.B.S)
a8 3B

We now need to find the chosen order expression for the interaction
term. We have

*
Efa Efb e_b -a _t

n
lo
|
[
1
o
)
o
e,
w
i
lm
®
V
»
o



where we have used equation (IV.B.M). Similarly

Therefore

(&5 [ ~Fgg ). a0 -

—1—a exp 'EJL
ag* T
—_ — 319
- exp| -agz a—b
a
Similarly
_ -9
[exp[-aﬁ}. b*a] =
—b exp[-a-—
—_ — 9 3
- exp|-azx aBa

Using equations (V.B.10), (VII.B.4), (VII.B.5), (VII.B.8) and
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(VII.B.6)

(VII.B.T)

(VII.B.8)

(VII.B.9)

(VII.B.9)



we have finally

- ]
:['&', YT

from which, using (V.B.12), we have the Fokker-Planck equation

3P

It = -
+
+

|

a
9
- {w —28
bl ag®
3 #
+ ly| —5oa
da
]
- ik "—TB.
da
— 32
+ 2Yn %
dada

i, -bw_)
3
jw 8
blaﬂ*
r ]
#
iyj —%¢
tau'
1
]
ik ——;BG
‘aa
— a2
2Yn ,P
dada

|
-
~
€
o

1
>
€

9
—a
s
- ji-B - jl—u
da aB

a_a’ - ia P
sa da
]
--—B8 1P
9B
+'§EG] P
+ '_a_q,' - iﬂ - ——
a8 da
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(VII.B.10)

(VII.B.11)

Finally, if we use equations (V.E.13) and (V.E.14) we have the Langevin



‘ equations for the system
1.
da [ = ] t U
= iw _ - a ikb f
dat a Y + * a'f
%—:— = [-iaa-vla—irb+fa
1.
D = iwp' 4 ica
%% = - iwbb - ika
where
CE(Nf (s> = 2rs(s-s)
and
wa = ma -Awa
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(VII.B.12)

(VII.B.13)

(VII.B.14)

(VII.B.15)

(VII.B.16)

(VII.B.17)
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VII.C Equations for the Energy Variables

We are intersted in the energy transfer between the w, and Wy

oscillators. Therefore we define the two new variables

<aa(t) > (VII.C.1)

n (t)

np(t) = <b'b(t)> (VII.C.2)

Then using (VII.B.12) to (VII.B.15) we get

dna t +

g = - 2¥n, + KX + <f€(t)a(t)-+a (t)fa(t)> (VII.C.3)
dnb

?-F = - KX (VII.C.”)
where X = <i [ bta—a'd } > (VII.C.5)

We now need to evaluate the expression in the brackets in equation
(VII.C.3). The only part of a(t) that will give us a noi-zero expecta-
tion value is the part that depends upon f;(t)

t
J

<fhtyact) > CEHEI£,(T) dexp ( (Y +1w) (L -T) ) dr

0

L]
<
3
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(VII.C.6)
as in equation (V.E.22).

celinate) + af(re, () > = 2@ (VII.C.7)

To dotermine the time development we need to derive an equation of

motion for X . Using equations (VII.B.12) to {(VII.E.15) we have

+ 4

L & as+pfd2_do b - alql

= —2‘“8 <+ 2Knb - YX
(VII.C.8)
+ [Ea-ub]u;*a +a'b> + icn’r, - fla>

But

ot .t

icptr, - fla> =0 (VII.C.9)

vecause no part of b* or b depends upon the Langevin forces.

We define the detuning

and
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wy oscillator 1is in thermal equilibrium and is brought in contact with
the vy oscillator, which is in a excited state. Assume for definiteness

that there is one photon in the Wy oscillator. The anti-normal form of

the density matrix of the w, oscillator is given by

-a @ | al?
S (a, @) = ;.—ﬁ.exp[--l-ﬂl‘—] (VII.C.14)

from equation (IV.D.16). The antinormal form of the density matrix in

the w, oscillator is given by (using (IV.C.25))

5788

ﬁTrace[ l1><1l 6(B'~b+)5(3-b)]

xc1] 88 -bphHs-b) 11>

1.
= mc1)e® e P 1> 6y

3 3 3
rc1l1-bt b —sbTo——F+... [1>68)6(8N)
3 3B apas (VII.C.15)

= n6(8)8(B") + ns'(B)s' (8"

because the matrix elements of all the other terms vanish. So at t=0,

the density matrix is given by
2 '
S = A[%exp[-h-r-‘l—-][ﬁ(ﬂ)ﬁ(ﬂ.) .6 (3)5'(6')]} (VII.C.16)

Using (IV.C.24) we have
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ng(t=0) = 1 s d*d®8ata
L L .

) ) 2
'l%exp [-J—“i—'-,}[m)s(e") s (ey st (eh ]]

(VII.C.1?)
= n
Similarly
nb(o) = 1 (VII.C.18)
x(0) = O (VII.C.19)
E(0) = O (VII.C.20)

The eigenvalue equation for (VII.C.13) is in general a quartic. The
complete solution to (VII.C.13) with the initial conditions (VII.C.17)
to (VII.C.20) exists and can easily be found. However the form of the
solution is too complicated to be enlightening. We examine the solutions

to (VII.C.13) under two special conditions in the following sections.
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‘ VII.D Solutions for Small Detuning

We first examine the solutions to (VII.C.13) for & = O

dna

at

m[n-na] + KX

dnb
qat

- KX

K = AE - xn, + 0y - VX

(VII.D.1)

- 8x - YE

n.ln.
crim

For convenience we define the variable
T = v i? oy (VII.D.2)

For A = 0, the eigenvalues of the above matrix are
-y and -y % iT

and four possible corresponding eigenvectors are
K
K
Y
0

Y - iT Yy + iT

7;;“ , Y;:T (VII.D.3)
0 0

For the initial conditions (VII.C.17) to (VII.C.20) we have the solution
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— *(1-n T

na(t) = n + exp(-vt) E—-g-l—n—)sinzat (ViI.D.4)
- 4x2(1-n) 1T

nb(t) = N + exp(-rt) " cos 2t

(VII.D.5)

exp(=vt) 5—1-?7“)—7-( Yeos Tt - Tsin Tt )

The above solution is for the case 4 = 0. The time for the’ system to
undergo one complete oscillation of energy is proprtional to -:— From
equation (VII.A.13) we see that with no damping this time was propor-
tional to -} i.e. the presence of damping has increased the time of

oscillation. We also note that as
t + =, ny(e) = n and ny(t) = n

i.e the system reaches thermal equilibrium with a time constant -l.
Y

From (VII.D.2) we obtain that if
Yy €< 2K

T is real. This implies that the system undergoes energy oscillation
before reaching thermal equilibrium. If v is greater than this value,
the system is overdamped and decays monotonically to thermal equili-
brium. |

Let us now calculate the solution to (VII.D.1) for small A i.e.
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A < K, ¥

The eigenvectors which are correct to zeroth order in 4 , correspond to
eigenvalues which are first order in 4, To lowest order in A the eigen-

values of the matrix (VII.D.1) are easily found to be

A A
2,2 252 ) . (VII.D.6)
-Y+:|.['1'-0-2KA l ’ -'Y-i.['l'-e-g'c ]
T3 T3

The corresponding eigenvectors to lowest order in A are

K K
L Y
Y Y
=T T

Y-iT Y+1iT

e 'l Ux
0 0

Then with the initial conditions (VII.C.'7) to (VII.C.20), the solutions

to (VII.D.1) to second order in A are given by

z —-—
ny(t) = n + exp(-vt) 2L(T—li)- [cosh-YTét - cos fit ] (VII.D.8)
z —
ny(t) = n + exp(-rt) 2;(11-_11) [cosh-YTét + cos fit ]

- exp(-mi‘;ﬂzﬂ ( Yeos Bt - Tsin 8t )
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(VI1II.D.9)
where we have defined
lAl '
8 = [T+2‘T' ] (VII.D.10)

For small A, therefore the time for the system to undergo one complete

oscillation of energy is approximately proportional to

2

2,2
[T.’zr A l
T’

2
Q

(VII.D.11)
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VII.E Solutions for Large Detuning

In this section we examine solutions for
A > v,k

We will perturb the original equation in orders of y. The eigenvalues of

the matrix to first order in vy are found to be
A A
Y+ L =YeT . -vadl . =Y =AT (VII.E.1)
where

r = /a2 4 ux? (VII.E.2)

The corresponding eigenvectors to zeroth order in Yy are

| kI(T=A) | [kI(T +4)
KI(T4+8) | [kI(T-4)
0 : 0

~T(r2_a?)| (r(r2-a?%

K | K

<1, -~ (VII.E.3)
iT -ir

-A -A

The solution with iritial eonditions (VII.C.17) to (VII.C.20) is given

by
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)
ny(t) = n+ exp(-n)ﬁﬁ -n) [coshi-ryt - cos Tt
r2 )
- - A )
nb(t) = n+ exp(-'rt)-z—KU -n) [cosh—rxt + cos Tt
r2 )
(VII.E.H)
-n)AfA A A
+ exp(-‘rt)(—’—r:—) [—r-cosh—rYt + sinh—r‘rt ]
The time for an energy exchange is seen to be proportional to
1
(VII.E.5)
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VII.F Computer Generated Solutions

The equations (VII.D.1) have been solved on the computer for vary-
ing values of %-and %w Figures VII.1 to VII.3 represent solutions for
three different pairs of values. We have chosen a value of n of 0.9.
Reasons for this estimate will be given later. Figure VII.1 is the
underdamped case for 4 = 0. We see that there 1is an energy exchange
between the two oscillators, before both of them damp out completely and
acquire n photons each., Figure VII.2 is the overdamped case for zero
detuning. It 1is overdamped because Y > 2x ., In figure VII.3 we have
solutions for non-zero detuning. We see that there is an osclllation of
energy but it is not complete. As before , ultimately both oscillators
acquire n photons each.

Figure VII.4 is a manifold of the coscillation time as a function of
the damping constant and the detuning. The cscillation time is the time
between two successive minima of na(t). and is used as an estimate of
the time required for a complete oscillation of energy. The stars
represent the values of the detuning and the damping constant for which
the system becomes overdamped. For zero detuning this obviously occurs
at v = 2.

In figure VII.5 we have plotted the oscillation time as a function
of the detuning for a given value of the damping constant gamma (0.8).

Note that this function 1is monotonically decreasing and 1is given
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o equations (VII.D.11) and (VII.E.5) for large and small values of 4
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VIII. DAMPED CAVITY AND TWO-LEVEL ATOM

We now return to our study of the two-level atom and cavity
interaction as described by the Hamiltonian (VI.B.22). We are interested
in cogpling a thermal reservoir to the harmonic oscillator by the
interaction described by (IV.A.5). In section VIII.A we derive the
Fokker-Planck equation of the system using which we write down the
Langevin equations. We convert these operator equations to equations for
th energy variables and eliminate the Langevin forces. In section VIII.B
we will amke a numerical estimate of the parameters involved. The equa-

tions will be solved numerically using the computer in section VIII.C

VIIi.A The Fokker-Planck Equation

As in section VII.B we will now derive the Fokker-Planck equation

of the system. The total Hamiltonian is

.t ihA t
H = ﬁnaR3+‘hmaa+—2 [R+a-a R_]
(VIII.A.1)
ifa t
— T -
+ =5 y R+Ja a R-j]

For notational convenience we make the following definitions



We det‘ine the following chosen order of the operators

exp|{ -a—
da
exp a 2
| aa”
] ]
9
exp{ - R, —
| 3oa |
1 )
]
exp{ -R_—
39‘
)
exp| -R, —¢
[ *an']

We have from (V.B.6)

5

(VIII.A.2)
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(VIII.A.3)
L, .
- Qjlexpl —agyl, Q Iwy;

The value of the expression involving only the cavity has already been

evaluated. It is from (V.C.5)

_t -r, -Ry R 3 3
= —iw-dw)e™® e te 3¢ - —;a'r-—a -
- - - 3a da
-R
-a* -R, 3 ~R_{ » + 9 -a
+ Y_ g e _e_ ——,a 4+ —a e -~
da da
(VIII.A.H4)
1' -R —R -R az
+ 2xned e te 3e ~emd 5
- - - - dada

—_— — 3
Let us now evaluate %[ exp[ - aﬁ] v hmall“l3 1. We have
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1]
o
|

w
pome—acy,

-]

w
[-%]
o

~
=l
-

™
j —

+

[ ]

.

.

(VIII.A.5)

]
|
+
(1
w
p—n
oo
w
I
-4
-
=0
e’
o
)
=
1

vhere we have used (IV.B.4). Similarly we can derive

] -R3 -R (VIII.A.6)
+

(VIII.A.T)

Now let us place the interaction term in chosen order. We will need

the following equations
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€% e Te Te Te?R,a
t R
-a + 3
=& & IR+‘39[R » B
(VIII.A.8)
137 (R, [R_, R 1] - -
+2392 -t -t + +eeecee -e“ E a
where we have again used (IV.B.4)
t -r, -R . 2 -R
_  _-a + 3 K 3 - -a
= & e e [R++239R3+—anzﬂ_lg e “a
t -R
-a + 9
= e e [R*_—;[R? R,_]
192 3 “RL _a
+ 28A‘[R3. [R3. R+]]+.....}g e e °“a
~R
-a.'I -R+ 3 o -R— -a
t2e & & 3pRie e a
(VIII.A.9)

from

_at R, R332 R

+€e € e —R_e €e"a
- an?

which we obtain
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(VIII.A.10)

In a similar manner we can convert all the expressions in the interac-
tion term into chosen order. After performing this conversion and using

equations (VIII.A.4), (VIII.A.7), (VIII.A.10), and (V.B.10) we get



an* a0
I' ] #
+ A a ——0C A ¢4 —al
&L an
lr 3 * 9
+ - ® —_—R - —Q
2] aa 3a
+ li aﬂ‘...a'ﬂ]
234
2
+ li— aﬁ*... 050]
uaAZ
2 2
- % 33:1., 3 2n"
&
2 20
— a2
+ 2Yn M
dada

which gives us the Fokker-Planck equation

150

(VIII.A.11)



] - A %
+ —=| (vy=iw)a + =R ]
aa* 2

+ i i(uaﬂ + Aal\}
an

+ __ai_ TN Rl xa’A]
a0 a
A
+ _3__ -aﬂ*-a.nl
ap 2
2
+ —a—-l cm‘+aﬂ]
aAz'-I
32 A 32 A & _
- —;Eﬂ- .zfﬂ + 2Yn
aq Y

Using equations (V.E.13) and (V.E.14),

Langevin equations of motion

A

d -
-£~= -(1+1w)a-2R_+fa

+
da -t A
I8 = - (v+1iwa --é-R+ + fa1-
dR_
a4t = - imaﬁ_ - 1333 + fﬂ_
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(VIII.A.12)

32

dada

we can now write down the

(VIII.A.13)

(VIII.A.14)

(VIII.A.15)
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dR+ +

qo = 19.R, - ra'Ry + £y (VIII.A.16)
+

dR

T2 = %{ R,a + a*R_] “ fp, (VIII.A.17)

where the expectation values of all the Langevin forces vanish and

< faf(t) fa(s)> = 2Yné (t-s) (VIII.A.18)
At
<CHp (0 g ()5 = p<alR - B> 6(es) (VIII.A.19)
Cfp (8) fg (8)> = = 3CR_>8(t-s) (VIII.A.20)
A
<fR (1) fp (8)> = = 3R, >8(tes) (VIII.A.21)

all other correlation functions being zero.

We now wish to convert equations (VIII.A.13) to (VIII.A.17) to real
variables and to average out all the Langevin forces. Since we are
interested in the energy transfer between the two systems, we define the

two new variables

<R, (t) > (VIII.A.22)

E(t) 3

N(t) <ata(t)> (VIII.A.23)

We also define, for later convenience
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d<R.>
_ 1dE _ 1773
M(t) = 33 = x ot
1 + (VIII.A.24)
= 5( R,a + aR_>
and
i t
Q(t) = -§<R+a-a R_> (VIII.A.25)
Then using equations (VIII.A.13) through (VIII.A.17) we have
O I<ra+a’R >+ [ma-E]%<R+a-a*R_>
+ A
- A - -
<a aR3> 2R+R_
(VIII.A.26)

1 1.t
+ §'<R+fa + fafR_) + -2-<a fp_+ fR+a>

From the correlation functions (VIII.A.18) through (VIII.A.21) we see

that

1
Z<Rf, + £ 4RO

]
o

(VIII.A.27)

..t
2<a fR_ + fR+a>

n
o

(VIII.A.28)

Also from (VI.C.8) we have
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and we approximate

<a1'aR > = <a+a><R >

3 3
(VIII.A.29)

= NE

Using (VIII.A.27), (VIII.A.28), (VI.C.8) and (VIII.A.29), (VIII.A.26)

becomes

- A A
g% - _-YM.'.[ma-u]Q_EE.Q.-H-XNE (VIII.A.30)

Similarly we can evaluate the derivative of Q

g-g = -7yQ - [ma-ﬁ}n
: i s (VIII.A.31)
+ 3<RM, - £ tR > - 3<a'fg_- fpa>

As before, the average over the Langevin forces is zero, ad we have

D= -va- [ua-E]M (VIII.A.32)

We also find

Ao s - aMecar . £ ta>
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(VIII.A.33)

From equation (V.E.22) we have

<a'r, + fya> = 2@ (VIII.A.34)
50

E o= - 2v(N-T) - A (VIII.A.35)

The system is therefore described by the following set of equations

a-g:lM

A A
-YM+AQ--§E+H-XNE

o

- YQ - oM

o

(VIII.A.36)

- 2Y(N-1) - AM

o

where A = w -w

Let us examine the steady state values. At steady state we have

E-P-R.d.o (VIII.A.37)

which implies that



1 _ 1exp(Bhw) -1
2+ Un © 2 exp(Bfw) + 1

m
]

which is what we would have expected from thermodynamic

for a two-level system.
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(VIII.A.38)

considerations



157

VIII.B Numerical Estimation of Parameters

As discussed in chapter I, a possible transition for study is the

n=25, 1=24, m=2% to n=24, 1=23, m=23 transition in sodium. For this

transition
1
w Qa —
nl
and
(VIII.B.1)
w = 2.81x10'% Hz

This corresponds to a wavelength of 0.07 cms. Also we have from

(IV.B.30), at a temperature of around 25 K

n = 0.9 (VIII.B.2)
The coupling constant between the atom and the cavity is given by

A= -E¥ Zhy .1 | (VIII.B.3)
using equation (VI.B.18). But

d = <25,24,24|T| 24,23,23>

We can easily evaluate the matrix element. We have
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<25,24,24 | z | 24,23,23> = O (VIII.B.4)

<25,24,24 | x+iy | 24,23,23> = 0 (VIII.B.5)
<25,24,24 | x -1y | 24,23,23> = /5§R“-“ (VIII.B.6)
’ ’ ’ ’ = 49 25,2 « Do

We can easily calculate
28,23 _ .
R“'“ = 587.7 atomic units
o1 /B8 e
<x> = > u9st.z~
_ 1 /U8 av,as
<y> = 27 U9 Tas,2s .
(VIII.B.7)
13] = A /3Bgavias | 5 ugy0m

/27 N9 Tas,2e

The U in (VIII.B.3) is the solution to (VI.A.7) and (VI.A.9) and normal-
ized by (VI.A.4). Let us assume for simplicity that the cavity is cubi-
cal in shape. Then for the lowest mode in the cavity, the solution to

(VI.A.4), (VI.A.T) and (VI.A.9) is
u(x,y,z) = /isinﬂsinﬂﬁ (VIII.B.8)
L? L L

where L 13 the side of the cavity. If we assume that the frequency of

the two-level system 1s the same as the fundamental frequency of the



cavity, we have

L = 2 = 0.048 cms

- /..‘L - -3/2
Upax = ) = 190.2 cm

Also

> @
b ulpay = | d | upax
Inserting into (VIII.B.3) we get

A = -5.15x10" Hz
For a cavity with a Q of 10%, we have

y = = 107 Hz

b
Q
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(VIII.B.9)

(VIII.B.10)

(VIII.B.11)

Thus the coupling constant and the damping constant are of approximately

the same magnitude. We will look at solutions in the next section for

values of Y which are of the same order of megnitude as A.

The detuning

A, can effectively be adjusted to any arbitrary value by properly choos-

ing the frequency of the cavity.
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VIII.C Computer Generated Solutions

As in the last chapter, we will now solve the equations (VIII.A.36)
on the computer. We find that the qualitative behaviour of the system is
similar. We start with the initial conditions that the cavity is 1in

thermal equilibrium and the atom is in an excited state. This gives us

immediately
N(O) = n
and
(VIII.C.1)
E(O) = 0-5

As in equation (VII.C.17), we use equations (VIII.A.24) and (VIII.A.25)
and the facts that the cavity is in thermal equilibrium and the interac-

tion between the atom and the cavity is turned off at t=0, to obtain

M(0)

1]
o

(VIII.C.2)
Q(0)

"
o

We first examine the solutions for zero detuning. For small values
of the damping constant vy, we find that there 1s an oscillation of

energy between the atom and cavity. Eventually the energy i1s dissipated
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in the thermal reservoir, and the system reaches thermal equilibrium.
Figure VIII1.1 represents such an energy oscillation. The final values
of N and E are in agreement with equation (VIII.A.38). As we increase
the damping constant, the period of the energy oscillation increases and
eventually reaches infinity. Thus, if the damping constant is large
enough, there is no oscillation of energy and the system decays monoton-
ically to thermal equilibrium. Figure VIII.2 i1s an example of such a
decay. The critical -value of Y which represents the transition from the

underdamped to the overdamped case is numerically found to be
Yy = 2.382 (VIII.C.3)

Figure VIII.3 is an example of energy oscillation with non-zero
detuning. Again we find the energy oscillation is not complete. Figure
VIII.4 is a manifold of the oscillation time as function of the damping
constant for different values of the detuning. The stars ;;Bresent the
values of the parameters at which the system becomes overdamped. For 4 =
0 this 1is given by (VIII.C.1). The general behaviour of the parameters
at which the transition takes place is similar to the behaviour of the
coupled harmonic oscillators. This may be seen by a comparison of fig-

ures (VII.4) and (VII.S)
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