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Abstract

This thesis presents procedures for performing inferences of causal parameters across an
array of contexts including observational studies, completely randomized designs, paired
experiments, and covariate-adaptive designs. First, we discuss an application of convex opti-
mization to conduct directional inference and sensitivity analyses in matched observational
studies. We design an algorithm which maximizes the signal-to-noise ratio while account-
ing for unobserved confounding. We analyze the asymptotic distributional behavior of the
algorithm’s output to develop asymptotically valid hypothesis tests for causal effects. The
resulting procedure achieves the maximal design sensitivity over a broad class of procedures.
Second, we examine the role of feature information in drawing high-precision inferences of
effects in completely randomized experiments. We construct a calibration technique based
around linear regression which constructs imputation estimators with upper bounds on the
asymptotic variance of the estimator. We show that this calibration procedure is applicable
to any imputation estimator which may be semiparametric efficient and automatically cer-
tifies that the resulting nonlinear regression-adjusted estimator is at least as asymptotically
precise as the difference in means; a feature that was previously not guaranteed for nonlinear
regression-adjusted estimators under model misspecification. Third, we introduce Gaussian
prepivoting: an algorithmic technique to construct test statistics for which randomization
inference remains asymptotically valid even when symmetries underlying the randomization
hypothesis are violated in the null. We demonstrate that randomization tests based upon
prepivoted statistics are finite-sample exact under sharp nulls while they asymptotically
control the probability of false rejection under weak nulls. This allows for the formation of
confidence regions for treatment effects with simultaneous interpretations as exact confidence
regions for homogeneous additive treatment effects and asymptotic confidence regions for het-
erogeneous additive effects; thereby unifying Fisherian and Neymanian inference for many
experimental designs including rerandomized experiments. Fourth, we construct a nested
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hierarchy of resampling algorithms which exploit probabilistic structure in superpopulation,
fixed covariate, and finite population models to facilitate nonparametric inference for a wide
variety of statistics in completely randomized designs. The resampling algorithms extend
the classical bootstrap paradigm by leveraging modern results on regression-adjustment and
optimal transport to achieve significant gains under fixed covariate and finite population
models.

Thesis Supervisor: Colin B. Fogarty
Title: Assistant Professor
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Introduction
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0.1 Overview

In brief, this thesis concerns statistically rigorous procedures for drawing causal conclusions

from observed data. The standard caveat that correlation does not imply causation generally

makes causal inference a challenging statistical question, however the practical relevance of

determining cause-and-effect relationships cannot be understated. This thesis approaches

causal inference across a range of contexts, but a consistent set of underlying principles runs

throughout the chapters:

• Randomization as a basis for inference: Random assignment to treatment can be

algorithmically leveraged to draw causal conclusions.

• Algorithms based upon practitioner choice: Practitioners bring crucial subject-matter

knowledge to the table; the algorithms presented in this thesis rest on top of underlying

choices made by users but retain statistical guarantees despite user choices in analyzing

their data.

• Practical interpretability matters : Statistical conclusions are only as valuable as the

actions they inform; practitioners must be able to understand the key elements of the

inference procedures in order to effectively apply inferences towards real-world decision-

making. Furthermore, causal claims ought to be “robust to misinterpretation”.

• Minimal assumptions are a necessity : In some fields, assumptions of i.i.d. data, ex-

changeable observations, parametric generative models, etc. are commonplace and easy

to justify. However, for many modern contexts – especially for practitioners in the so-

cial sciences and economics – such assumptions are burdensome if not prohibitive.

Undergirding this work is a mathematical framework that avoids such assumptions

while still showing that strong statistical results can be garnered nonetheless.
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0.2 Thesis Organization

The thesis is organized into four main chapters:

1. Multivariate One-sided Testing in Matched Observational Studies as an Adversarial

Game: In this chapter we study causal inference in observational studies; studies

wherein the allocation of treatment is not under the control of the experimenter. We

develop a sensitivity analysis procedure for detecting prespecified directions of treat-

ment effect. The procedure is tightly related to a game-theoretic problem, and the

Nash equilibrium of the game can be efficiently computed via convex optimization.

2. No-harm Calibration for Generalized Oaxaca-Blinder Estimators : In this chapter we

study how a practitioner can leverage side-information to improve the precision of

inferences for completely randomized experiments. In practice experimenters often

record feature information for the participants in a study in addition to their primary

outcome of interest; this chapter details how one can use this information to fruitfully

sharpen one’s inferential statements within a model-agnostic regression framework.

3. Gaussian Prepivoting for Finite Population Causal Inference: Dating back to the

Fisher-Neyman controversy of the twentieth century, causal inference has typically

split between two different frameworks. The distinction between the two camps is

subtle, and is possibly confusing to practitioners. In this chapter we develop a single

unified method for causal inference under both frameworks. Inferences drawn from

this method are robust to practitioner misinterpretation: at worst a practitioner may

make a statement which they believe to be finite-sample exact which turns out to only

be asymptotically true.

4. Hierarchical Resampling Procedures for Causal Inference Resampling methods have

played a crucial role in statistical inference since the pioneering bootstrap work of Efron
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in the 1980s. In this chapter, we construct three resampling algorithms which provide

bootstrap hypothesis tests and confidence intervals for causal parameters across three

different probabilistic models commonly used in the causal inference community. The

three resampling algorithms form a natural hierarchy wherein each algorithm is tailored

to the probabilistic structure available in the model which motivated the algorithm but

still provides valid inference in conditional submodels. Each resampling algorithm is

easy to implement and confers the automaticity of the bootstrap to inference problems

of practical relevance.

0.3 Chapter Details

Multivariate One-sided Testing in Matched Observational Studies as

an Adversarial Game

Random allocation of treatment effect through a controlled process provides strong guaran-

tees for subsequent statistical inferences. Consequently, it is in the interest of an experimenter

to use an experimental design tailored to their applications (e.g., complete randomization,

pair-matching, etc.). However, numerous situations necessitate that causal inferences be

drawn from data for which the experimenter had no oversight of the treatment allocation

process. For instance, in testing the harms of an addictive drug, it would be obviously uneth-

ical to randomly assign some individuals in a study to begin using the drug. Nonetheless it

is crucial for public health practitioners to understand the impacts of such “treatments”; for

such instances observational studies serve as a fruitful avenue for understanding treatment

effects.

Causal claims in observational studies are inherently vulnerable to concerns of unmea-

sured confounding. For instance, imagine that there was a gene that simultaneously pre-

disposes individuals to smoking tobacco and to developing lung cancer; such a factor may
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impact the “assignment to treatment” (choice to smoke tobacco) and the outcome (devel-

opment of lung cancer). Without controlling for this factor, analyses of smoking and lung

cancer are merely associational and not causal. To control for any such factor the exper-

imenters must assign the treatments themselves or know the probability of treatment for

each individual. Since this is typically infeasible, [Ros02, Chapter 4] presents a sensitivity

analysis for matched observational studies. Informally, sensitivity analyses ask: how strong

of an unmeasured confounding feature would need to exist to invalidate the causal claims

made with the observed data?

We present a multivariate one-sided sensitivity analysis for matched observational stud-

ies, appropriate when the researcher has specified that a given causal mechanism should

manifest itself in effects on multiple outcome variables in a known direction. The test statis-

tic can be thought of as the solution to an adversarial game, where the researcher determines

the best linear combination of test statistics to combat nature’s presentation of the worst-

case pattern of hidden bias. The corresponding optimization problem is convex, and can

be solved efficiently even for reasonably sized observational studies. Asymptotically the test

statistic converges to a 𝜒2 (chi-bar-squared) distribution under the null, a common distri-

bution in order restricted statistical inference. The test attains the largest possible design

sensitivity over a class of so-called “coherent" test statistics, and facilitates one-sided sensi-

tivity analyses for individual outcome variables while maintaining familywise error control

through incorporation into closed testing procedures.

No-harm Calibration for Generalized Oaxaca-Blinder Estimators

It is standard practice to accumulate background information about subjects in a study in

addition to recording the outcomes of interest. For instance, in healthcare experiments it

is common to compile a large list of features for each individual at the onset of a study.

Sometimes these features are directly used to inform the experimental design itself, e.g.,
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matched designs. However, it is common to collect feature data and still perform a completely

randomized experiment; in fact sometimes this is a necessity, e.g., if the collected data

includes protected features which would be ethically prohibitive to base treatment decisions

upon. Of course, in a completely randomized experiment there may be chance imbalances

between the features of treated and control units; adjusting for these imbalances stands

to potentially provide significant benefit in downstream analyses. How does one go about

adjusting for feature information?

On a whole, the question above puts this work squarely in the field of regression ad-

justed estimators, a crowded field of research with a long history dating back to at least

the 1970s with the work of [Oax73] and [Bli73]. In [Lin13] it was shown that linear re-

gression of the outcomes upon the covariates, an indicator variable of treatment, and an

interaction term facilitates a new linear regression adjusted estimator of treatment effect,

𝜏𝑙𝑖𝑛, which is guaranteed to have asymptotic efficiency no worse than the unadjusted differ-

ence in means between the treated and control groups, 𝜏𝑢𝑛𝑎𝑑𝑗. Lin’s result does not assume

that the relationship between covariates and outcomes obeys a linear model. His result is

model agnostic in the sense that his estimator 𝜏𝑙𝑖𝑛 is non-inferior to 𝜏𝑢𝑛𝑎𝑑𝑗 uniformly with re-

spect to the underlying relationship between covariates and outcomes. This surprising result

cleverly leverages the orthogonalities of linear regression. Consequently, nonlinear regression

adjustment procedures generally lack the non-inferiority of 𝜏𝑙𝑖𝑛. In many cases, the data

suggests that a practitioner ought to adjust using some nonlinear model; e.g., {0, 1}-valued

outcomes suggest logistic regression or N-valued outcomes suggest Poisson regression. We

present a novel technique which facilitates simple interpretable nonlinear regression adjusted

estimators for treatment effect that are guaranteed to have asymptotic efficiency no worse

than that of 𝜏𝑢𝑛𝑎𝑑𝑗. In other words, we show that the results of [Lin13] are a special case

of a general class of nonlinear adjustment algorithms; our work builds off of recent work on

imputation-based estimators of [GB21].

30



Gaussian Prepivoting for Finite Population Causal Inference

When practitioners test for the presence of treatment effect, they must specify the null model

they wish to test against. This amounts to defining what “no treatment effect” means; two

different definitions exist in the literature: Neyman’s weak null (equality in mean outcome

between treatment and control) and Fisher’s sharp null (potential outcomes are equal under

treatment and control).

In finite population causal inference exact randomization tests can be constructed for such

sharp null hypotheses, i.e., hypotheses which fully impute the missing potential outcomes.

The mathematical convenience of randomization tests and their associated finite-sample

guarantees are highly desirable, but oftentimes inference is instead desired for the weak

null that the average of the treatment effects takes on a particular value while leaving the

subject-specific treatment effects unspecified. Without proper care, tests valid for sharp null

hypotheses may be anti-conservative should only the weak null hold, creating the risk of

misinterpretation when randomization tests are deployed in practice.

We develop a general framework for unifying modes of inference for sharp and weak

nulls, wherein a single procedure simultaneously delivers exact inference for sharp nulls and

asymptotically valid inference for weak nulls. To do this, we employ randomization tests

based upon prepivoted test statistics. Prepivoting, an idea introduced by Rudy Beran in the

late 1980s, facilitates asymptotically pivotal statistics under the assumption that the sharp

null holds [Ber87, Ber88]. For a large class of test statistics, we show that prepivoting rests

on transforming a test statistic of interest by the push-forward of a sample-based Gaussian

measure with a suitably estimated covariance parameter. The main result of this work is

a proof that randomization tests using these prepivoted statistics provide asymptotically

valid inference even under just Neyman’s weak null. This means that a practitioner can

use the randomization test of such a prepivoted statistic to test both Fisher’s sharp null

and Neyman’s weak null: the only difference being that inferences under Fisher’s sharp null
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are finite-sample exact and those under Neyman’s weak null are asymptotic. Consequently,

statistical conclusions are robust to practitioner misinterpretation; at worst a result is stated

to be finite-sample exact under Neyman’s weak null when it is in-fact only asymptotic.

We demonstrate our method in a host of examples, including rerandomized designs and

regression-adjusted estimators in completely randomized designs.

Hierarchical Resampling Procedures for Causal Inference

Numerous probabilistic models have been used for statistical inference within the potential

outcomes framework of causal inference. In particular, the three most common models are

the superpopulation model wherein units are i.i.d. draws from a fixed distribution, the

fixed covariate model wherein the potential outcomes of a unit are drawn from a conditional

distribution which depends upon the unit’s features, and the finite population model wherein

potential outcomes and features are deterministic and randomness is inherited exclusively

from the treatment allocation process. Bootstrap procedures for the classical nonparametric

Behrens–Fisher problem suggest that resampling may provide fruitful inferential algorithms

in the superpopulation model; but research in resampling for inferences in the fixed covariate

and finite population models remains at an early stage.

In this chapter we provide a novel reformulation of the classical i.i.d. bootstrap of Efron

which recognizes that the bootstrap can itself be viewed in the light of a two-phase experi-

mental design framework: first a full population of units is constructed via some resampling

procedure and next an experiment is simulated upon this “bootstrapped" population. This

reformulation suggests a potential direction forward for resampling algorithms at the fixed

covariate and finite population levels: construct a full population by leveraging the prob-

abilistic structure of the model and then simulate a completely randomized experiment as

before. In the fixed covariate and finite population models the construction of the bootstrap

population is tightly related to construction of imputation estimators and leverages results of
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[Lin13] and [CF21]. The finite population resampling algorithm that we develop utilizes both

imputation estimation, copula results of [Tch80], and optimal transport theory to construct

a resampling procedure which achieves an asymptotically sharp bootstrap variance.
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Abstract

We present a multivariate one-sided sensitivity analysis for matched observational studies,
appropriate when the researcher has specified that a given causal mechanism should manifest
itself in effects on multiple outcome variables in a known direction. The test statistic can
be thought of as the solution to an adversarial game, where the researcher determines the
best linear combination of test statistics to combat nature’s presentation of the worst-case
pattern of hidden bias. The corresponding optimization problem is convex, and can be solved
efficiently even for reasonably sized observational studies. Asymptotically the test statistic
converges to a chi-bar-squared distribution under the null, a common distribution in order
restricted statistical inference. The test attains the largest possible design sensitivity over a
class of coherent test statistics, and facilitates one-sided sensitivity analyses for individual
outcome variables while maintaining familywise error control through its incorporation into
closed testing procedures.

1.1 On Multiplicity And Causality

Controlled randomization protects empirical evidence against a host of counterclaims. A

significant finding may well be due to random chance alone, but cannot be dismissed on the

grounds of biases unaccounted for by the study’s design. Observational evidence provides

no such assurance, and causal inference in observational studies involves ambiguity which

randomization eschews: Is the association an effect, or is it bias from self-selection? Antici-

pating skepticism, a practitioner may take measures when planning an observational study to

properly frame the debate, rendering certain criticism unwarranted should the practitioner’s

hypothesis be true. While ambiguity cannot be eliminated, quasi-experimental devices may

be employed to help clarify the step from association to causation in observational studies;

see [SCC02] and [Ros15] for an overview. One such device, known alternatively as pattern

specificity, multiple operationalism, or coherence, advocates that observational studies be

designed with the objective of confirming a complex pattern of predictions made by the

causal theory in question. This is in keeping with Fisher’s notion of elaborate theories,

which advocates that the practitioner “envisage as many different consequences of [a causal
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hypothesis’s] truth as possible, and plan observational studies to discover whether each of

these consequences is found to hold" [Coc65, Section 5, p. 252]. Complex predictions imperil

the practitioner’s hypothesis, as doubt is cast should any prediction fail in the observational

study at hand. Should the evidence prove coherent with the theory’s predictions, fortifica-

tion is provided as attributing a complex pattern to hidden bias requires that hidden bias

could reproduce the particular pattern of association.

One way in which a theory can be made elaborate is through predicting that an interven-

tion will affect multiple outcome variables in a prespecified direction. While the practitioner

hopes that each prediction holds, should certain predictions fail she would regardless like

to quantify which components came to fruition as a means of refining understanding of

the mechanism in question. With this comes the attending issues of multiple comparisons.

Concerns over a loss in power from multiplicity control may lead practitioners to instead

investigate the outcome they believe a priori will be most affected, reducing the extent to

which Fisher’s advice is followed.

The qualitative benefits of multiple outcomes in observational studies are thus at odds

with the statistical corrections they require. This tension exists not only when assuming no

hidden bias, but also in the sensitivity analysis where the researcher quantifies the magnitude

of hidden bias required to overturn the study’s conclusions. In what follows, we present a

new method for sensitivity analysis in multivariate one-sided testing, appropriate when the

researcher anticipates a particular direction of effects for multiple outcome variables. The

test adaptively combines outcome-specific test statistics, has the optimal design sensitivity

over a class of multivariate tests respecting coherence, and leads to substantial improvements

in power when the researcher’s prediction proves correct. The method greatly attenuates

the impact of multiplicity control on power for testing individual outcome variables through

its use in closed testing procedures [MEG76], facilitating the analysis of multiple outcomes

for demonstrating coherence.
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1.2 Hidden Bias In Matched Observational Studies

1.2.1 A Finely Stratified Experiment with Multiple Outcomes

There are 𝐼 independent strata, the 𝑖th of which contains 𝑛𝑖 ≥ 2 individuals. Individual 𝑗 in

stratum 𝑖 has a 𝑃 -dimensional vector of observed covariates 𝑥𝑖𝑗, along with an unobserved

covariate 𝑢𝑖𝑗, 0 ≤ 𝑢𝑖𝑗 ≤ 1. The strata are formed such that 𝑥𝑖𝑗 ≈ 𝑥𝑖𝑗′ for any two individuals

𝑗 ̸= 𝑗′ in stratum 𝑖. We take 𝑍𝑖𝑗 as the indicator of treatment for the 𝑗th individual

in stratum 𝑖, such that 𝑍𝑖𝑗 = 1 if assigned to treatment and 𝑍𝑖𝑗 = 0 otherwise. Each

strata contains one treated individual and 𝑛𝑖 − 1 controls such that
∑︀𝑛𝑖

𝑗=1 𝑍𝑖𝑗 = 1 (𝑖 =

1, ..., 𝐼). See [Fog18] for more on this particular class of stratified experiments, referred to

as finely stratified experiments. Forthcoming developments readily extend to full-matched

observational studies; see [Ros02, Ex. 4.12] for details.

Each individual has two vectors of potential outcomes of length 𝐾: the responses for each

outcome variable under control 𝑟𝐶𝑖𝑗 = (𝑟𝐶𝑖𝑗1, ..., 𝑟𝐶𝑖𝑗𝐾)
𝑇 , and the responses under treatment

𝑟𝑇 𝑖𝑗 = (𝑟𝑇 𝑖𝑗1, ..., 𝑟𝑇 𝑖𝑗𝐾)
𝑇 . The𝐾-dimensional vector of treatment effects 𝜏𝑖𝑗 = 𝑟𝑇 𝑖𝑗−𝑟𝐶𝑖𝑗 is not

observed; instead, we observe the vector 𝑅𝑖𝑗 = 𝑍𝑖𝑗𝑟𝑇 𝑖𝑗+(1−𝑍𝑖𝑗)𝑟𝐶𝑖𝑗. Let 𝑍 = (𝑍11, ..., 𝑍𝐼𝑛𝐼
)𝑇

be the lexicographically ordered vector of treatment assignments of length 𝑁 , and let the

analogous hold for 𝑢 along with 𝑟𝐶𝑘, 𝑟𝑇𝑘 and 𝑅𝑘 for 𝑘 = 1, ..., 𝐾. The 𝑁 ×𝐾 matrix with

lexicographically ordered rows containing 𝑅𝑇
𝑖𝑗 is 𝑅. We assume that the response of individual

𝑗 varies only with the treatment allocation to unit 𝑗 and that the potential outcomes are

well-defined; this is commonly referred to as the “stable unit treatment value assumption"

[Rub86, Ros02].

Let ℱ = {𝑟𝐶𝑖𝑗, 𝑟𝑇 𝑖𝑗, 𝑥𝑖𝑗, 𝑢𝑖𝑗 : 𝑖 = 1, ..., 𝐼; 𝑗 = 1, ..., 𝑛𝑖} be a set containing the potential

outcomes along with the measured and unmeasured covariates for each individual in the

observational study. In what follows we consider inference conditional upon ℱ , such that

a generative model for the potential outcomes is neither assumed nor required. Let Ω =
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{𝑧 :
∑︀𝑛𝑖

𝑗=1 𝑧𝑖𝑗 = 1; 𝑖 = 1, ..., 𝐼} be the set of
∏︀𝐼

𝑖=1 𝑛𝑖 treatment assignments adhering to

the stratified design, and let 𝒵 = {𝑍 ∈ Ω} be the event that the observed treatment

assignment satisfies this design. In a finely stratified experiment pr(𝑍𝑖𝑗 = 1 | ℱ ,𝒵) = 1/𝑛𝑖

and pr(𝑍 = 𝑧 | ℱ ,𝒵) = 1/|Ω| where |𝐴| is the cardinality of the set 𝐴.

1.2.2 A Model for Biased Treatment Assignment

Matched observational studies aim to mimic the finely stratified experiment described in

Section 1.2.1. Matching algorithms assign individuals to matched sets on the basis of ob-

served covariates such that 𝑥𝑖𝑗 ≈ 𝑥𝑖𝑗′ for individuals 𝑗 and 𝑗′ in the same matched set 𝑖; see

[Han04] and [Zub12] among many for more on matching algorithms and the optimization

problems underpinning them. A simple model for treatment assignment in an observational

study states that before matching, individuals are assigned to treatment independently with

unknown probabilities 𝜋𝑖𝑗 = pr(𝑍𝑖𝑗 = 1 | ℱ). While one may hope that 𝜋𝑖𝑗 ≈ 𝜋𝑖𝑗′ after

matching, proceeding as such would be specious due to both the potential presence of un-

measured confounding and residual imbalances on the observed covariates in each matched

set. The model of [Ros02, Chapter 4] stipulates that individuals in the same matched set

may differ in their odds of assignment to treatment by at most a factor of Γ,

1

Γ
≤ 𝜋𝑖𝑗(1− 𝜋𝑖𝑗′)

𝜋𝑖𝑗′(1− 𝜋𝑖𝑗)
≤ Γ. (1)

The parameter Γ controls the degree to which matching solely on observed covariates may

have failed to align the assignment probabilities in each matched set. The value Γ = 1 returns

a randomized finely stratified experiment, while Γ > 1 allows for a tilt in the randomization

distribution to a degree controlled by Γ. For instance, Γ = 2 stipulates that individuals in

the same matched set might truly differ in their odds of receiving the treatment by a factor

of at most two. Returning attention to the matched structure by conditioning on 𝒵, this
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model is equivalent to assuming

P (𝑍 = 𝑧 | ℱ , 𝒵) =
exp

(︀
𝛾𝑧𝑇𝑢

)︀∑︀
𝑏∈Ω exp (𝛾𝑏𝑇𝑢)

, (2)

where 𝛾 = log(Γ) and 𝑢 lies in the 𝑁 -dimensional unit cube, call it 𝒰 , embodying both

differences in unobserved covariates and latent discrepancies in observed covariates after

matching; see [Ros95] or [Ros02, Chapter 4] for a proof of this equivalence.

1.2.3 Sensitivity Analysis for a Particular Outcome

Assume without loss of generality that the outcomes have been recorded such that positive

values for the treatment effects 𝜏𝑖𝑗𝑘 are predicted by the causal theory under study. For each

outcome variable, we consider tests of the null hypothesis of non-positive treatment effects,

𝐻𝑘 : 𝑟𝑇 𝑖𝑗𝑘 ≤ 𝑟𝐶𝑖𝑗𝑘 (𝑖 = 1, ..., 𝐼; 𝑗 = 1, ..., 𝑛𝑖).

𝐻𝑘 is a composite null hypothesis. Elements of 𝐻𝑘 include the null of a non-positive constant

effect for all individuals, 𝑟𝑇 𝑖𝑗𝑘 = 𝑟𝐶𝑖𝑗𝑘 + 𝛿𝑘 for any scalar 𝛿𝑘 ≤ 0; and certain models of

tobit effects, such as 𝑟𝐶𝑖𝑗𝑘 = max{𝑟𝑇 𝑖𝑗𝑘, 0}. Fisher’s sharp null of no effect is 𝛿𝑘 = 0,

thus representing the boundary of 𝐻𝑘. The composite null 𝐻𝑘 is distinct from Neyman’s

weak null of no average treatment effect for the 𝑘th outcome variable. That said, both

nulls allow for inference without prespecifying the particular pattern of effect heterogeneity.

Neyman’s null has been seen as a flexible way to test for existence of treatment effect while

accommodating arbitrary effect heterogeneity. Unfortunately, testing Neyman’s null on the

𝑘th outcome greatly constrains the test statistics available to the practitioner, requiring the

use of a studentized difference-in-means or a regression-adjusted estimator [WD18]. These

test statistics have poor theoretical properties when used in a sensitivity analysis. The null

𝐻𝑘 is also more general than a sharp null, but can still be tested through randomization
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inference using statistics such as 𝑚-tests with better theoretical properties in the potential

presence of hidden bias [Ros07]. The null 𝐻𝑘 is not limited to continuous outcome variables,

and can also be employed with ordinal outcomes. In fact, our method may be used with

potential outcomes of any partially ordered set. See Section 1.7 for further details.

We consider test statistics for each outcome variable which are effect increasing sum

statistics. Sum statistics are statistics of the form 𝑇𝑘(𝑍,𝑅𝑘) = 𝑍𝑇 𝑞𝑘 where 𝑞𝑘 = 𝑞𝑘(𝑅𝑘) is

a pre-specified function of the observed responses 𝑅𝑘. A test statistic is effect increasing if

𝑇𝑘(𝑧, 𝑟
*
𝑘) ≥ 𝑇𝑘(𝑧, 𝑟𝑘) whenever (2𝑧𝑖𝑗 − 1)(𝑟*𝑖𝑗𝑘 − 𝑟𝑖𝑗𝑘) ≥ 0 for all 𝑖 and 𝑗, where 𝑟*𝑖𝑗𝑘 denotes a

different value of the potential outcome. In words, this means that if every treated unit did

better with 𝑟*𝑘 than with 𝑟𝑘, and if every control did worse with 𝑟*𝑘 than with 𝑟𝑘, then the test

statistic corresponding to the observed outcomes 𝑟*𝑘 would be larger than it would have been

under 𝑟𝑘. Most familiar test statistics, including differences-in-means, rank tests, and 𝑚-

tests are endowed with these properties; see [Ros02, Chapter 2.4.4] and [Ros16, Section 3.1]

for additional examples.

If Fisher’s sharp null is true then 𝑅𝑘 = 𝑟𝐶𝑘, and hence 𝑇𝑘(𝑍,𝑅𝑘) = 𝑇𝑘(𝑍, 𝑟𝐶𝑘). For a

particular Γ > 1, the test statistic’s null distribution under Fisher’s sharp null is

pr{𝑇𝑘(𝑍, 𝑟𝐶𝑘) ≥ 𝑣 | ℱ ,𝒵} =
∑︁
𝑧∈Ω

1{𝑇𝑘(𝑍, 𝑟𝐶𝑘) ≥ 𝑣}
exp

(︀
𝛾𝑧𝑇𝑢

)︀∑︀
𝑏∈Ω exp (𝛾𝑏𝑇𝑢)

, (3)

where 1(𝐴) is an indicator that the condition 𝐴 was met. At Γ = 1 (3) is simply the

proportion of treatment assignments where the test statistic is greater than or equal to 𝑣,

returning the usual randomization inference in a finely stratified experiment. For Γ > 1 (3)

is unknown due to its dependence on the nuisance vector 𝑢. A sensitivity analysis proceeds

for a particular Γ by maximizing (3) with 𝑣 = 𝑡𝑘, the observed value of the test statistic for

a particular Γ, resulting in the largest possible 𝑝-value for the desired inference subject to

(1) holding at Γ. The practitioner then increases Γ until the test no longer rejects the null

hypothesis. This changepoint value of Γ serves as a measure of how robust the study’s finding
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was to unmeasured confounding. See [GKR00] and [Ros18] for large-sample approaches for

conducting a sensitivity analysis for Fisher’s sharp null with a single outcome variable under

(1). Since 𝑇𝑘 is assumed effect increasing, the worst-case 𝑝-value for a sensitivity analysis

for Fisher’s sharp null attains the largest 𝑝-value over the composite null 𝐻𝑘. That is, a

sensitivity analysis for Fisher’s sharp null also provides a valid sensitivity analysis for 𝐻𝑘

[CDM17, Prop. 1].

1.3 Sensitivity Analysis With Multiple Outcomes

1.3.1 A Directional Global Null Hypothesis

There are 𝐾 hypotheses 𝐻1, ..., 𝐻𝐾 , one each for the null of non-positive treatment effects

for the 𝑘th outcome variable. We concern ourselves with a level-𝛼 sensitivity analysis for

the global null hypothesis that all 𝐾 of these hypotheses are true,

𝐻0 :
𝐾⋀︁
𝑘=1

𝐻𝑘. (4)

Through closed testing [MEG76], a valid sensitivity analysis for (4) also facilitates tests

of the outcome-specific hypotheses 𝐻𝑘 while controlling the familywise error rate. See [FS16,

Section 5] for more on closed testing procedures applied to sensitivity analyses.

1.3.2 Linear Combinations of Test Statistics and Their Distribution

In what follows it is useful to define 𝜚𝑖𝑗 = P (𝑍𝑖𝑗 = 1 | ℱ ,𝒵). Under the global null (4) and

recalling that our test statistics are of the form 𝑇𝑘 = 𝑍𝑇 𝑞𝑘 with 𝑞𝑘 fixed under the global null,

the expectation 𝜇(𝜚) and covariance Σ(𝜚) for the vector of test statistics 𝑇 = (𝑇1, . . . , 𝑇𝐾)
𝑇
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are

𝜇(𝜚)𝑘 =
𝐼∑︁

𝑖=1

𝑛𝑖∑︁
𝑗=1

𝑞𝑖𝑗𝑘𝜚𝑖𝑗, Σ(𝜚)𝑘,ℓ

=
𝐼∑︁

𝑖=1

{︃
𝑛𝑖∑︁
𝑗=1

𝑞𝑖𝑗𝑘𝑞𝑖𝑗ℓ𝜚𝑖𝑗 −

(︃
𝑛𝑖∑︁
𝑗=1

𝑞𝑖𝑗𝑘𝜚𝑖𝑗

)︃(︃
𝑛𝑖∑︁
𝑗=1

𝑞𝑖𝑗ℓ𝜚𝑖𝑗

)︃}︃
.

For a given vector of probabilities 𝜚, under suitable conditions on the constants 𝑞𝑖𝑗𝑘 the

distribution of 𝑇 is asymptotically multivariate normal through an application of the Cramér-

Wold device. That is, for any fixed nonzero vector 𝜆 = (𝜆1, ..., 𝜆𝐾)
𝑇 the standardized deviate

𝜆𝑇{𝑇 − 𝜇(𝜚)}/
{︀
𝜆𝑇Σ(𝜚)𝜆

}︀1/2 is asymptotically standard normal.

The actual values of 𝜚 are unknown to the practitioner due to their dependence on hidden

bias. Instead, the constraints imposed by the sensitivity model (1) on 𝜚 can be represented by

a polyhedral set. For a particular Γ this set, call it 𝒫Γ, contains vectors 𝜚 such that (i) 𝜚𝑖𝑗 ≥ 0

(𝑖 = 1, ..., 𝐼; 𝑗 = 1, ..., 𝑛𝑖); (ii)
∑︀𝑛𝑖

𝑖=1 𝜚𝑖𝑗 = 1 (𝑖 = 1, ..., 𝐼); and (iii) 𝑠𝑖 ≤ 𝜚𝑖𝑗 ≤ Γ𝑠𝑖 for some

𝑠𝑖 (𝑖 = 1, ..., 𝐼; 𝑗 = 1, ..., 𝑛𝑖). Conditions (i) and (ii) simply reflect that 𝜚𝑖𝑗 are probabilities,

while the 𝑠𝑖 terms in (iii) arise from applying a Charnes-Cooper transformation [CC62] to

(2).

1.3.3 Multivariate Sensitivity Analysis via a Two-Person Game

Let 𝑡 = (𝑡1, ..., 𝑡𝐾)
𝑇 be the observed vector of test statistics. In this subsection only, suppose

interest lies not in a test of (4), but rather in the narrower intersection null that Fisher’s

sharp null holds for all 𝐾 outcome variables. For fixed 𝜆, a large-sample sensitivity analysis

for Fisher’s sharp null could be achieved by minimizing the standardized deviate 𝜆𝑇{𝑡 −

𝜇(𝜚)}/{𝜆𝑇Σ(𝜚)𝜆}1/2 over all 𝜚 such that 𝜚 ∈ 𝒫Γ, and assessing whether the minimal objective

value exceeds the appropriate critical value from a standard normal.

With 𝜆 pre-specified, the sensitivity analysis imagines what would happen if the worst-
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case, adversarial bias at a given level of Γ were present. If the practitioner fixes the linear

combination 𝜆 ahead of time, she has no further recourse against such adversarial attacks.

The practitioner may instead consider a two-person game of the form

𝑎*Γ,Λ = min
𝜚∈𝒫Γ

sup
𝜆∈Λ

𝜆𝑇{𝑡− 𝜇(𝜚)}
{𝜆𝑇Σ(𝜚)𝜆}1/2

, (5)

where Λ is some subset of R𝐾 without the zero vector. The adversary may be thought

of as embodying future counterclaims regarding the study’s conclusions. In keeping with

the scientific method the investigator recognizes that her conclusions will be subjected to

challenges by her peers, and through the sensitivity analysis assesses whether a particular

counterclaim could possibly overturn the study’s findings. The critic aligns the unobserved

confounders to inflate the 𝑝-value for the performed inference, while the investigator may

choose weights for each outcome within the constraints imposed by Λ in response to the

configuration of unmeasured confounders selected by the critic. With regards to (5), as Γ

grows during the process of a sensitivity analysis the outer minimization takes place over a

sequence of growing feasible regions. In the sense of the two-player game, this corresponds to

the adversary having more and more flexibility in assigning unfavorable treatment allocation

distributions.

Most familiar large-sample sensitivity analyses for Fisher’s sharp null hypothesis are

instances of this game for particular choices of Λ. Setting Λ = {𝑒𝑘} where 𝑒𝑘 is a vector

with a 1 in the 𝑘th coordinate and zeroes elsewhere returns a univariate sensitivity analysis

for the 𝑘th outcome with a greater-than alternative, while −𝑒𝑘 would return the less-than

alternative. When the test statistics 𝑇𝐾 are rank tests, setting Λ = {1𝐾} where 1𝐾 is a

vector containing 𝐾 ones returns the coherent rank test of [Ros97]. When Λ = {𝑒1, ..., 𝑒𝐾},

the collection of standard basis vectors, (5) returns the method of [FS16] with greater-than

alternatives, and Λ = {±𝑒1, ...,±𝑒𝐾} gives the same method with two-sided alternatives.

The method of [Ros16] amounts to a choice of Λ = R𝐾 ∖ {0𝐾}, i.e. all possible linear
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combinations except the vector 0𝐾 containing 𝐾 zeroes.

While appealing as a unifying framework for multivariate sensitivity analyses, the form

(5) would be of little practical use if the corresponding optimization problem could not be

readily solved. The problem (5) is not itself convex; however, consider replacing it with

𝑏*Γ,Λ = min
𝜚∈𝒫Γ

sup
𝜆∈Λ

max

[︂
0,
𝜆𝑇{𝑡− 𝜇(𝜚)}
{𝜆𝑇Σ(𝜚)𝜆}1/2

]︂2
, (6)

and let 𝑓(𝜆, 𝜚) = max[0, 𝜆𝑇{𝑡− 𝜇(𝜚)}/{𝜆𝑇Σ(𝜚)𝜆}1/2]2. This replaces negative values for the

standardized deviate with zero, and then takes the square of the result. It is a monotone non-

decreasing transformation of the standardized deviate in general, and is strictly increasing

whenever the standardized deviate is larger than zero. The following proposition, proved in

the supplementary material, establishes convexity of (6).

Proposition 1.1. The function 𝑔(𝜚) = sup𝜆∈Λ 𝑓(𝜆, 𝜚) is convex in 𝜚 for any set Λ without

the zero vector.

The proof requires showing that for any 𝜆 ∈ Λ, the function 𝑓(𝜆, 𝜚) is convex in 𝜚. As the

pointwise supremum over a potentially infinite set of convex functions is itself convex [BV04,

Section 3.2.3], the result then follows. The convexity of 𝑔(𝜚) allows for its minimization over

the polyhedral set 𝒫Γ such that the value 𝑏*Γ,Λ in (6) can be computed in practice. For any

Γ and Λ, a sensitivity analysis through (5) would proceed by comparing the value 𝑎*Γ,Λ to a

suitable critical value 𝑐𝛼,Λ. Observe that 𝑎*Γ,Λ = (𝑏*Γ,Λ)
1/2 for 𝑎*Γ,Λ ≥ 0. If 𝛼 ≤ 0.5 then 𝑐𝛼,Λ

is non-negative for any choice of Λ. Consequently 𝑎*Γ,Λ ≥ 𝑐𝛼,Λ, leading to a rejection of the

null, if and only if 𝑏*Γ,Λ ≥ 𝑐2𝛼,Λ so long as 𝛼 ≤ 0.5. Through this equivalence, a large-sample

sensitivity analysis using (5) can proceed through the solution of the convex program (6).
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1.3.4 The Practitioner’s Price

The critical value 𝑐𝛼,Λ depends on the structure of Λ, through which it is seen that additional

flexibility in the set Λ does not come without a cost. Intuition for the price to be paid may

be formed at Γ = 1 in (5). When Λ is a singleton the asymptotic reference distribution

is the standard normal. If Λ is instead a finite set with |Λ| = 𝐿 > 1 simply comparing

the optimal value of (4) to the 1 − 𝛼 quantile of a standard normal would not provide a

level−𝛼 test due to multiplicity issues. One could proceed using a Bonferroni correction

based on the 𝐿 comparisons, which would inflate the critical value. When Λ = R𝐾 ∖ {0𝐾},

[Ros16] applies a result on quadratic forms of multivariate normals [e.g. Rao73, page 60,

1f.1(i)] to show that one must instead use the square root of a critical value from a 𝜒2
𝐾

distribution when conducting inference through (5). This result underpins Scheffé’s method

for multiplicity control while comparing all linear contrasts of a multivariate normal (Sch53).

In the potential presence of hidden bias, the additional flexibility afforded by a richer set

Λ often offsets the loss in power from controlling for multiple comparisons, particularly in

large samples. We discuss this further in Section 1.5.1, but see also (FS16, Section 6) and

(Ros16, Section 4).

1.4 The Null Distribution Over Coherent Combinations

1.4.1 Adaptive Linear Combinations over the Non-negative Orthant

By allowing the set Λ to be arbitrary, the developments Section 1.3.3 were presented with

Fisher’s sharp null in mind. A moment’s reflection reveals that should inference instead

concern the composite null (4) of non-positive effects for all outcome variables, the set Λ

must be constrained to maintain the desired size of the procedure. If Λ allows for arbitrary

linear combinations, evidence consistent with non-positive treatment effects for each outcome

variable may nonetheless result in a rejection of the null hypothesis based on (5) beyond the
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nominal rate by setting 𝜆𝑘 negative for each 𝑘. Directional control is lost without constraining

the signs of the elements of Λ.

Following (Ros02, Section 9.4), we define a family of coherent test statistics by restricting

the vector 𝜆 to lie in the non-negative orthant, Λ+ = {𝜆 : 𝜆𝑘 ≥ 0 (𝑘 = 1..., 𝐾);
∑︀
𝜆𝑘 > 0}.

The coherent test of (Ros97) with 𝜆 = 1𝐾 is a particular element of Λ+. We instead consider

a large-sample sensitivity analysis for (5) with Λ = Λ+, hence optimizing over the entire

space of coherent linear combinations. We describe a projected subgradient descent method

for solving (6) with Λ = Λ+ in the supplementary material. By a duality argument of

(Sha03), an application of Weierstrass’ Extreme Value Theorem implies that the value of the

inner supremum in (5) and (6) is guaranteed to be defined for any 𝜚; however, there may

not be a feasible 𝜆 ∈ Λ+ which achieves this supremum as Λ+ is a blunt cone since it does

not contain the origin. This result holds true if Λ+ is replaced with any non-empty cone Λ.

Subgradients are straightforward to compute, and projections onto 𝒫Γ are facilitated by the

constraints being separable across matched sets.

Let 𝜚 be the true, though typically unknown, vector of assignment probabilities and

consider the random variable

𝐴Λ+(𝑍,𝑅) = sup
𝜆∈Λ+

𝜆𝑇{𝑇 − 𝜇(𝜚)}
{𝜆𝑇Σ(𝜚)𝜆}1/2

. (7)

Let 𝑅𝑍 denote the observed responses when the treatment assignment is 𝑍. Let 𝐺(𝑣,𝑅𝑍) be

the reference distribution based on the observed outcome 𝑅𝑍 assuming Fisher’s sharp null,

𝐺(𝑣,𝑅𝑍) =
∑︁
𝑏∈Ω

1{𝐴Λ+(𝑏, 𝑅𝑍) ≤ 𝑣}pr(𝑍 = 𝑏 | ℱ ,𝒵), (8)

and let 𝐺−1(1−𝛼,𝑅𝑍) be its 1−𝛼 quantile. Observe that the reference distribution 𝐺(𝑣,𝑅𝑍)

itself varies over elements of Ω through its dependence on 𝑅𝑍 if Fisher’s sharp null is false.

Proposition 1.2, proved in the supplementary material, states that a valid test of the
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composite null of non-positive effects 𝐻0 can be achieved through the randomization distri-

bution of 𝐴Λ+ under the assumption of Fisher’s sharp null. Through an analogous proof,

the randomization distribution also provides an unbiased test against positive alternatives

of the form 𝜏𝑖𝑗𝑘 ≥ 0 (𝑖 = 1, .., 𝐼; 𝑗 = 1, ..., 𝑛𝑖; 𝑘 = 1, ..., 𝐾) with at least one strict inequality.

Proposition 1.2. Suppose that the global null (4) of non-positive treatment effects is true

and assume that the test statistics 𝑇𝑘 (𝑘 = 1, ..., 𝐾) are effect increasing. Then

pr{𝐴Λ+(𝑍,𝑅𝑍) ≥ 𝐺−1(1− 𝛼,𝑅𝑍)} ≤ 𝛼,

such that the reference distribution under Fisher’s sharp null controls the Type I error rate

for any element of the composite null 𝐻0.

Both the observed value 𝐴Λ+ = 𝑎Λ+ and the probabilities pr(𝑍 = 𝑧 | ℱ ,𝒵) are unknown

in the observational study at hand due to their dependence on the true conditional assignment

probabilities 𝜚. Through the solution to (5) we instead observe the value 𝑎*Γ,Λ+
, which bounds

𝑎Λ+ from below so long as 𝜚 ∈ 𝒫Γ. That said, the true randomization distribution (8)

typically remains unknown outside of a randomized experiment as it depends on 𝜚. For

many test statistics, such as those formed when Λ is a singleton, the asymptotic reference

distribution does not depend on 𝜚 after suitable standardization. In what follows, we consider

the large-sample distribution of 𝐴Λ+ under Fisher’s sharp null.

1.4.2 The Chi-Bar-Squared Distribution

Comparing the optimal value of (5) with Λ = Λ+ to the 1 − 𝛼 quantile of a standard

normal would not provide a valid level−𝛼 sensitivity analysis, as it would not account for

the optimization over coherent combinations. While one could proceed with the square

root of the 1 − 𝛼 quantile of a 𝜒2
𝐾 distribution, doing so would be unduly conservative.

The 𝜒2
𝐾 critical value allows for optimization over all linear combinations, while here we
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have constrained ourselves to combinations lying in the non-negative orthant. Theorem 1

provides the appropriate reference distribution given this restriction.

Theorem 1. Suppose that 𝐼−1Σ(𝜚) has an positive definite limit 𝑀 as 𝐼 → ∞ and the

random vector Σ(𝜚)−1/2 {𝑇 − 𝜇(𝜚)} converges in distribution to a 𝐾-dimensional vector of

independent standard normals. Then, as 𝐼 → ∞ the random variable 𝐴2
Λ+

converges in

distribution to a �̄�2(𝑀−1,Λ+) random variable under Fisher’s sharp null.

The proof is deferred to the supplementary material. The supplementary material also

contains a discussion of sufficient conditions such that Σ(𝜚)−1/2{𝑇 − 𝜇(𝜚)} converges in

distribution to a multivariate normal, which amount to assumptions about the vectors of

constants 𝑞𝑘 (𝑘 = 1, ..., 𝐾). For instance, one sufficient condition would be to stipulate that

𝐼−1
∑︀𝐼

𝑖=1

∑︀𝑛𝑖

𝑗=1 𝑞
4
𝑖𝑗𝑘 is uniformly bounded for all 𝐼 ∈ N and all 𝑘 = 1, . . . , 𝐾.

The �̄�2 (“chi-bar-squared") is a common family of distributions arising in order restricted

statistical inference (SS02). To illustrate, let 𝑋 be a mean zero 𝐾-variate normal random

vector with positive definite covariance matrix 𝑉 , and define the random variable

�̄�2(𝑉,Λ+) = 𝑋𝑇𝑉 −1𝑋 − inf
𝜃∈Λ+

(𝑋 − 𝜃)𝑇𝑉 −1(𝑋 − 𝜃). (9)

Letting 𝜃 denote the mean vector of a multivariate normal, (9) is equivalent to the likelihood

ratio statistic for testing the null 𝐻0 : 𝜃𝑘 = 0 (𝑘 = 1, ..., 𝐾) versus the alternative 𝐻𝑎 : 𝜃𝑘 ≥ 0

(𝑘 = 1, ..., 𝐾) with strict inequality in at least one component (Kud63). Observe that

replacing Λ+ with R𝐾 in (9) would return 𝑋𝑇𝑉 −1𝑋, and with it the usual 𝜒2
𝐾 distribution.

Computation of (9) requires solving a quadratic program, an easy task with modern solvers

but one which historically limited the adoption of methods requiring the �̄�2 distribution.

The cumulative distribution function of the �̄�2(𝑉,Λ+) is

pr{�̄�2(𝑉,Λ+) ≤ 𝑐} =
𝐾∑︁
𝑖=0

𝑤𝑖(𝑉,Λ+)P
(︀
𝜒2
𝑖 ≤ 𝑐

)︀
,

49



a mixture of 𝜒2
𝑖 distributions (𝑖 = 0, ..., 𝐾) with 𝜒2

0 representing a pointmass at zero. The

𝑖th weight 𝑤𝑖(𝑉,Λ+) is equal to the probability that the vector 𝑉 −1/2𝑋 has exactly 𝑖 positive

components. The weights depend upon the covariance 𝑉 through the corresponding corre-

lation matrix 𝐶: any two covariance matrices 𝑉 ′ and 𝑉 with the same correlation structure

𝐶 yield the same weights for �̄�2 [SS05, Proposition 3.6.1 (11)]. See (Kud63, RWD88);

and (SS05) for more on the role of the �̄�2 distribution in multivariate one-sided testing.

(Sha03) presents an extension of Scheffé’s method for multiple comparisons to linear com-

binations subject to cone constraints such as lying in the non-negative orthant. Arguments

therein show that strong duality holds in (7), such that the optimal value for (7), 𝐴Λ+ , equals

the optimal value of the dual. The optimal solution to the dual is

𝐴Λ+ =

{︂
ℎ𝑇Σ(𝜚)ℎ− inf

𝜆∈Λ+

(ℎ− 𝜆)𝑇Σ(𝜚)(ℎ− 𝜆)

}︂1/2

, (10)

where ℎ = Σ−1(𝜚){𝑇−𝜇(𝜚)}. Under mild conditions ℎ is asymptotically multivariate normal

with covariance equal to the limit of 𝐼Σ−1(𝜚). Comparing (10) to (9) provides intuition

for the �̄�2 limiting distribution. Moving forwards, we refer to the procedure using 𝐴Λ+

to facilitate inference as the �̄�2-test. In the supplementary material, we present Type I

error control simulations indicating that the �̄�2 reference distribution provides a reasonable

approximation to the true randomization distribution of 𝐴Λ+ with moderate sample sizes.

1.4.3 The Critical Value and Its Dependence on the Unknown As-

signment Probabilities

A large-sample sensitivity analysis can be conducted by comparing the optimal value of

(5) over coherent linear combinations, 𝑎Γ,Λ+ to the square root of the 1 − 𝛼 quantile of a

�̄�2{Σ−1(𝜚),Λ+} distribution. Recalling that 𝜚 is the true vector of assignment probabilities,

we are faced with a difficulty encountered by neither a univariate sensitivity analysis for
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a particular outcome nor the method of (Ros16): The asymptotic reference distribution

depends on the assignment probabilities 𝜚 through the covariance Σ(𝜚) even after proper

normalization. While 𝜚 is known in a randomized experiment, the purpose of a sensitivity

analysis is to assess robustness of a study’s findings as 𝜚 is allow to vary within bounds

imposed by Γ.

The dependence of the covariance on nuisance parameters is commonly encountered in

applications of the �̄�2 distribution (SS02, Section 2.2). One solution is to compute 𝑝-values

through the bound pr{�̄�2(𝑉,Λ+) ≥ 𝑐} ≤ 0.5{P
(︀
𝜒2
𝐾−1 ≥ 𝑐

)︀
+ P (𝜒2

𝐾 ≥ 𝑐)}; see (Per69, The-

orem 6.2) for a proof. This upper bound is attained in the limit as the correlation between

all outcomes converges to one, and can itself be quite conservative in the presence of more

moderate degrees of correlation typically observed in practical applications.

Motivated by the particular structure imposed by a sensitivity analysis, we instead use

a two-stage procedure to better upper bound the worst-case critical value for each Γ. In a

sensitivity analysis the range of the nuisance parameters 𝜚 is controlled by Γ. At Γ = 1 𝜚 is

entirely specified, such that in finely stratified experiments the appropriate �̄�2 distribution

is known. As Γ increases the bounds imposed by membership in 𝒫Γ widen. For each pair of

outcomes 𝑘 and ℓ, we first find upper and lower bounds on the correlation between 𝑘 and

𝑘′ given 𝜚 ∈ 𝒫Γ, call them 𝐶
(ℓ)
𝑘,𝑘′,Γ and 𝐶

(𝑢)
𝑘,𝑘′,Γ. We then maximize the 1 − 𝛼 quantile of a

�̄�2(𝐶−1,Λ+) distribution over the correlation matrix 𝐶 subject to 𝐶(ℓ)
𝑘,𝑘′,Γ ≤ 𝐶𝑘,𝑘′ ≤ 𝐶

(𝑢)
𝑘,𝑘′,Γ for

all 𝑘, 𝑘′ and 𝐶 being a correlation matrix. See the supplementary material for implementation

details along with a discussion of the case 𝐾 = 2, where it is seen that the worst-case critical

value is attained at the lower bound on the correlation. In practice, we find that this can

provide meaningful improvements in the power of the procedure; see the supplementary

material for an illustration.
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1.5 Design Sensitivity And Power For The Chi-Bar Squared

Test

1.5.1 Design Sensitivity

Suppose that the treatment in question actually has an effect in the direction of the alter-

native, and further that there is truly no hidden bias such that inference at Γ = 1 would be

justified. As would be the case in practice, the researcher analyzing the observational study

is unaware of these favorable conditions. Thus, she would like to reject the null hypothesis

not only under the assumption of no unmeasured confounding, but also for values Γ > 1 to

assess whether the rejection of the null is robust to certain degrees of hidden bias. The power

of a level-𝛼 sensitivity analysis is the probability that the procedure correctly rejects the null

hypothesis at some pre-specified value of Γ ≥ 1. In what follows we will assume a stochastic

generative model for the outcome variables, an assumption which greatly simplifies power

calculations.

Under mild conditions, there is a value Γ̃ such that the power of a sensitivity analysis

converges to one for all Γ < Γ̃, and converges to zero for all for all Γ > Γ̃; this value is called

the design sensitivity of the test (Ros04). It quantifies the asymptotic ability of the test to

discriminate treatment effect under the concern of bias in the treatment allocation process,

and can vary substantially across choices of test statistics. For a fixed data generating model,

a test with high design sensitivity is preferable to a test with low design sensitivity.

For fixed choices of the univariate test statistics 𝑇𝑘 = 𝑍𝑇 𝑞𝑘 (𝑘 = 1, ..., 𝐾), we consider

the design sensitivity of multivariate tests based upon (5) and their dependence on the set

Λ. Theorem 2 shows that design sensitivity is a monotonic non-decreasing function with

respect to the partial ordering over sets Λ given by inclusion.

Theorem 2. Suppose Λ1 ⊆ Λ2. Under mild conditions, the design sensitivity of (5) using

Λ = Λ1 is less than or equal to the design sensitivity of (5) using Λ = Λ2.
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The proof of Theorem 2 is deferred to the supplementary material. In light of Theorem 2,

it may be tempting to take Λ = R𝐾 ∖{0𝐾} in order to achieve the greatest design sensitivity.

While this would result in a valid test of Fisher’s sharp null, it does not provide a valid

test of the null hypothesis of non-positive treatment effects: should the signs of 𝜆𝑘 be left

unconstrained, evidence of a negative treatment effect may result in a large optimal value for

(5). Restricting attention to the set of coherent linear combinations Λ+, Theorem 2 gives rise

to the following optimality property for the �̄�2-test due to its optimizing over the entirety of

Λ+.

Corollary 1. The �̄�2-test achieves greatest design sensitivity among coherent tests based

upon (5) with Λ ⊆ Λ+

The balance between using Λ+ and using further constrained conic subsets of Λ+ is

informed by the practitioner’s subject knowledge: constraints added to the 𝜆s do reduce

design sensitivity relative to using Λ+, but these constraints may be advisable when they

reflect important subject-specific scientific knowledge. Changing the structure of the feasible

region may necessitate changing the critical value of the test.

1.5.2 Finite-sample Power for Rejecting the Global Null

Corollary 1 illustrates that despite the larger critical value necessitated by the �̄�2-test by

optimizing over Λ+, the �̄�2-tests achieves the largest possible design sensitivity over the set

of coherent multivariate tests. This reflects that in large samples bias trumps variance in

the analysis of observational studies, such that the differences in critical values are rendered

irrelevant in the limit. In moderate samples, the variance of the null distribution plays a

larger role in the power of a sensitivity analysis, such that differences in critical values can

make a more substantial difference for procedures with similar design sensitivities.

We present a simulation study comparing the power of a sensitivity analysis based upon

the �̄�2-test to two competitors: the method of (FS16); and the test using (5) with Λ = {1𝐾},
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which we refer to as the equal-weight test. Combining test statistics with equal weights is

only sensible when the constituent test statistics 𝑇𝑘 (𝑘 = 1, .., 𝐾) reflect evidence against

the null hypothesis on the same scale. This would be true of rank statistics as described

in (Ros97), and would also be true of suitably scaled 𝑚-statistics of the type described in

(Ros07); however, if one outcome is tested using a rank-sum statistic and another with an

𝑚-statistic for instance, the “equal-weight" test would give unreasonable weight to the rank-

sum recorded outcome. The �̄�2-test and the test of (FS16) do not require comparable scales

for the test statistics as they are scale invariant.

The simulations are performed on 𝐼 = 300 matched pairs with 𝐾 = 3 outcomes. In

each simulation, we generate 𝐼 mean-zero unit-variance trivariate normal vectors of noise

(𝜀𝑖1, 𝜀𝑖2, 𝜀𝑖3)
𝑇 equicorrelated with correlation 𝜌. We then create the vector of treated-minus-

control paired differences in outcomes as (𝑌𝑖1, 𝑌𝑖2, 𝑌𝑖3)
𝑇 = (𝜏1, 𝜏2, 𝜏3)

𝑇 + (𝜀𝑖1, 𝜀𝑖2, 𝜀𝑖3)
𝑇 for

different values of the treatment effects (𝜏1, 𝜏2, 𝜏3)𝑇 . For each outcome variable, the employed

test statistic is 𝑇𝑘 =
∑︀𝐼

𝑖=1 sign(𝑌𝑖𝑘)min(|𝑌𝑖𝑘|/𝑠𝑘, 2.5), where 𝑠𝑘 is the median of |𝑌𝑖𝑘| (𝑖 =

1, .., 𝐼). This amounts to a choice of a 𝑚-statistic with Huber’s 𝜓-function, as described in

(Ros07).

Table 1.1 presents the values of the treatment effects and the correlation employed in

the simulation study. For each combination of parameters, it further provides the design

sensitivity for the �̄�2-test and the equal-weight test. While there is no known formula for

the design sensitivity of the procedure of (FS16), it is lower-bounded by the the maximal

design sensitivities of the three univariate tests; this value is also presented in the table. The

table reflects Corollary 1: for each combination of parameters, the design sensitivity for the

�̄�2-test is greater than or equal to that of the equal-weight test and the maximal univariate

test. Further, there is no consistent ordering between the equal-weight test and the max of

the univariate tests, as the corresponding sets Λ for neither test is a subset of the other.

Figure 1-1 presents the estimated power curves of the three tests as a function of Γ > 1 in

these simulation settings at 𝐼 = 300, with 2000 simulations for each combination of param-
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�̄�2-Test Equal-Weight Test Max Univariate
𝜌 = 0 𝜌 = 0.2 𝜌 = 0 𝜌 = 0.2 𝜌 = 0 𝜌 = 0.2

𝜏 = (0.25, 0.25, 0.25)𝑇 2.9 2.4 2.9 2.4 1.9 1.9
𝜏 = (0.10, 0.10, 0.50)𝑇 3.6 3.4 2.6 2.2 3.4 3.4
𝜏 = (0.02, 0.20, 0.50)𝑇 3.8 3.5 2.8 2.4 3.4 3.4

Table 1.1: Design sensitivities for �̄�2-test, the equal-weight test, and the largest of the
three univariate tests under both independence and moderate positive correlation between
outcomes.

eters. The correlation between paired differences varies across the columns from 𝜌 = 0 (left)

to 𝜌 = 0.2 (right), while the treatment effects vary down the rows. The first row corresponds

to 𝜏1 = 𝜏2 = 𝜏3 and 𝐼, and here it is seen that the equal-weight test outperforms both the

�̄�2-test and (FS16). When the treatment effects are equal the linear combination 𝜆 = 1𝐾

attains the largest design sensitivity, and by restricting Λ to only this linear combination

the lower critical value employed by the equal-weighted test improves power over that at-

tained by the �̄�2-test. When one of the three outcomes is strongly affected by the treatment

while the other two are minimally impacted, as in the second row of the figure, the method

of (FS16) and the �̄�2-test perform similarly, while the equal-weight test lags behind. The

test statistics returned by the �̄�2-test are larger, but this is offset relative to the method of

(FS16) by the larger critical value necessitated. When the treatment effects are staggered

between the three outcomes as in the third row, the �̄�2-test outperforms both (FS16) and the

equal-weight test, particularly in the case of independence between the outcome variables.

Optimizing over Λ+ increases the value of the test statistic over both competitors, such that

the flexibility is well worth the price of a larger critical value.

The simulations indicate that while the �̄�2-test must have optimal power in the limit as

asserted by Corollary 1, it need not have the best finite-sample performance. In some cases

the equal-weight test can outperform it, while in others it is outperformed by the method of

(FS16). Importantly the �̄�2-test was never the worst of the three methods considered, and

the simulations show that a priori restricting the set of combinations Λ under consideration
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Figure 1-1: Power comparisons between the method of (FS16) (dashed), the �̄�2-test of this
paper (solid), and the equal-weight test (dotted) as Γ increases with 𝐼 = 300. The first row
has 𝜏1 = 𝜏2 = 𝜏3 = 0.25; the second row has 𝜏1 = 𝜏2 = 0.1 and 𝜏3 = 0.5; and the third row
has 𝜏1 = 0.05, 𝜏2 = 0.2, and 𝜏3 = 0.5. The left column has 𝜌 = −0.2, the center has 𝜌 = 0,
and the right has 𝜌 = 0.2.
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can substantially reduce power should the choice of Λ be poor. For instance, the equally-

weighted test performs poorly in the second and third rows of Figure 1-1, while the method

of (FS16) is markedly worse than the other methods in the first row. The �̄�2-test does

pay a price in terms of an increased critical value, but this price acts as insurance against

an unwise choice of Λ. Theorem 2 offers asymptotic assurance that the �̄�2-test performs

optimally in terms of design sensitivity; furthermore, the results of Table 1.1 and Figure 1-1

demonstrate that the �̄�2-test performs well across a broad range of treatment effect regimes

without sacrificing asymptotic optimality.

In the supplementary material, we present additional simulations with 𝐼 = 1000 matched

pairs which begin to show convergence of behavior of the tests under comparison to their

design sensitivities. We further illustrate the potential for improvements in power for test-

ing outcome-specific null hypotheses through incorporating the �̄�2-test into a closed testing

framework, as described in (FS16, Section 6).

1.6 Illustrations Of Multivariate One-Sided Sensitivity

Analysis

1.6.1 The Role of Coherence in Two Observational Studies

We now consider the role of multiple outcomes in two observational studies. Both examples

are drawn from The National Health and Nutrition Examination Survey (NHANES) and

study physiological impacts of cigarette smoking. One study investigates the impact of

smoking on two measures of periodontal disease, while the other looks at whether smoking

increases urinary metabolite levels of four carcinogens. In both examples, the alternative

hypothesis is that smoking should have a positive treatment effect on each of the outcome

variables measured. Rosenbaum remarks that “If incoherence presents a substantial obstacle

to a claim that the treatment caused its ostensible effects, then the absence of incoherence -
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that is, coherence - should entail some strengthening of that claim" (Ros10, p. 119). Should

the evidence suggest ostensible effects of smoking incompatible with positive effects for each

outcome variable, smoking’s place in the causal pathway would be cast into doubt. Should

the outcomes all be affected in the predicted direction, this would provide further evidence

for smoking’s role in the causal mechanism.

In both observational studies and for each outcome variable, we use an 𝑚-test based

upon Huber’s 𝜓-function to conduct inference with the default choices for parameters in the

senmv function in the sensitivitymv package in R.

1.6.2 Smoking and Periodontal Disease

It has been suggested that up to 42% of cases of periodontal disease can be attributed to

smoking (TA00); however, as the evidence is observational in nature this association may well

be explained away by other intrinsic differences between smokers and non-smokers. Using

the 2011-2012 NHANES survey, (Ros16) paired 𝐼 = 441 smoking individuals to non-smokers

who were similar on the basis of education, income, race, age and gender. Two outcome

variables pertaining to dental health were recorded, one each for upper and lower teeth. In

this context, coherence would amount to demonstrating that smoking negatively impacted

dental health in both the upper and lower teeth. Such a coherent hypothesis strengthens the

causal claim that cigarette smoking is detrimental to periodontal health. Should smoking

only appear to impact upper teeth but not lower teeth, for instance, such incoherence would

cast into doubt whether smoking is truly to blame.

At 𝛼 = 0.05, the overall null hypothesis of non-positive treatment effects was rejected

up until Γ = 2.36 when using the �̄�2-test, while the equal-weight test was able to reject

until Γ = 2.54. By selecting Λ = Λ+ Theorem 1 gives that the appropriate asymptotic

null distribution is the �̄�2 distribution, while for the equal-weight test the asymptotic null

distribution is the standard normal. The 1 − 𝛼 quantile of the standard normal lies below
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the square root of the 1− 𝛼 quantile of any �̄�2 distribution, such that the equal-weight test

is able to employ a smaller critical value. With this restriction comes the risk that equally

weighting the outcome variables may be suboptimal. In this particular observational study,

it comes as little surprise that with periodontal disease in upper and lower teeth the risk was

worth the while: there is little reason to suspect that magnitude of effects on upper and lower

teeth should differ. Sensitivity analysis using the method of (FS16) achieves significance up

to Γ = 2.32, a slightly lower value than the �̄�2-test. The method of (FS16) takes Λ as the

set of standard unit basis vectors for R2 in this case, and does not combine the two related

measures of periodontal disease. Despite the method of (FS16) also having a smaller critical

value than the �̄�2-test, in this example this was offset by the additional flexibility afforded by

the �̄�2-test in optimizing over Λ+. The sensitivity analysis using the �̄�2-test took 13 seconds

to complete on a personal laptop with a 2.60GHz processor with 16GB of RAM for this data

set.

1.6.3 Smoking and Polycyclic Aromatic Hydrocarbons

Polycyclic Aromatic Hydrocarbons (PAHs) are a class of organic compounds formed dur-

ing incomplete combustion which have been labeled potentially carcinogenic to humans

(BGH+02). We examine urinary concentrations of four different PAH metabolites in 432

smokers and 1206 non-smokers recorded in NHANES 2007-2008. The four metabolites are 1-

hydroxyphenanthrene (1-Phen), 3-hydroxyphenanthrene (3-Phen), 1-hydroxypyrene (1-Pyr),

and 9-hydroxyfluorene (9-Fluo). Full matching (Han04) was employed to adjust for a host of

measured covariates thought to impact one’s decision to smoke and one’s exposure to PAHs;

see the supplementary material for additional details. We then proceed with inference assess-

ing whether cigarette use increases urinary concentrations of these four PAH metabolites.

As tobacco smoke contains all of these PAHs, an incoherent result that none or only some

urinary concentrations of PAH metabolites are higher in smokers than in non-smokers be
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discovered would cast into question whether the association between smoking cigarettes and

urinary PAH concentrations was actually causal. At 𝛼 = 0.05, a sensitivity analysis using the

�̄�2-test yielded significance up to Γ = 6.28, whereas for the equal-weight test with Λ = {1𝐾}

the sensitivity analysis was only able to reject up to Γ = 5.38. Despite the smaller critical

value, in this case restricting oneself to equal weighting led to a markedly lower changepoint

value of Γ than did the �̄�2-test. The method of (FS16) rejected until Γ = 6.18.

At Γ = 6.28, our procedure for upper bounding the worst-case critical value for the �̄�2-

test as described in Section 1.4.3 returns a bound of 2.20 for the test based upon 𝑎*6.18,Λ+
in

(5). To illustrate the improvements from this approach, the square root of the 0.95 quantile

of a 𝜒2
4 is 3.08, while employing the conservative bound from (Per69, Theorem 6.2) yields

a critical value of 2.96. The �̄�2 sensitivity analysis ran in about 20 minutes on a personal

laptop with a 2.60GHz processor with 16GB of RAM. The length of runtime is dependent

upon several factors including the number of strata, the size of the strata, the number of

outcome variables, and the number of values of Γ tested in the sensitivity analysis.

1.6.4 Improvements in Tests of Individual Null Hypotheses

Rejecting the global null hypothesis confirms to the experimenter that at least one of the

outcome variables is impacted by treatment in the direction of the alternative. However

in order to appraise a coherent pattern of treatment impact an experimenter will need to

examine the local null hypotheses of treatment impact upon each of the outcomes individu-

ally. Correcting for multiple comparisons can be facilitated through many techniques; here

we juxtapose embedding the �̄�2-test into a closed testing framework against performing 𝐾

individual sensitivity analyses, one for each outcome variable, while employing a Bonferroni

correction.

Table 1.2 details the changepoint Γ values for each individual outcome of the periodontal

data and the PAH data while controlling the familywise error rate at 𝛼 = 0.05. The �̄�2-test
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Periodontal Disease Polycyclic Aromatic Hydrocarbons
Lower Teeth Upper Teeth 1-Phen 3-Phen 1-Pyr 9-Fluo

Closed Testing 2.26 1.82 2.13 5.28 5.25 5.78
Bonferroni 2.17 1.76 1.99 4.88 4.84 5.31

Uncorrected 2.26 1.82 2.13 5.28 5.25 5.78

Table 1.2: Comparison of the closed test changepoint Γ versus Bonferroni corrected sensitiv-
ity analysis changepoint Γ for the data examples at 𝛼 = 0.05. The last row is the benchmark
given by conducting individual tests at 𝛼 without correction for multiplicity.

embedded into a closed testing framework outperformed the Bonferroni corrected tests for

each outcome. Table 1.2 also includes the changepoint Γ values returned by the univariate

sensitivity analyses without a Bonferroni correction, i.e. with each outcome tested at 𝛼 =

0.05. The table reveals that through embedding the �̄�2-test in a closed testing procedure,

in both studies we are able to report the same robustness to unmeasured confounding that

would have been attained had we not controlled for multiple comparisons in the first place.

Due to the improvements in power along the closed testing path furnished by the �̄�2-test,

there is no cost for evaluating coherence of all outcome variables relative to the best univariate

outcome analysis.

1.7 Discussion

While we have tailored our presentation to continuous outcome variables, our test is equally

applicable with binary outcomes and ordinal outcomes. In fact, potential outcomes of any

partially ordered set are amenable to this composite null, and the remaining proofs of this

paper hold true so long as the test statistics considered are effect increasing. See (Ros02,

Section 2.8.5) for more on effect increasing statistics for partially ordered outcomes. The

composite null 𝐻𝑘 for the 𝑘th outcome variable requires an ordered structure to the potential

outcomes, and since Proposition 1.2 relies only upon effect-increasingness of the test statistic

𝑇𝑘(·, ·), the result remains valid as long as one has a suitable partial ordering for the values
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of the potential outcomes.

The �̄�2-test we develop is not immediately applicable to testing Neyman’s weak null.

Interestingly, even assuming strong ignorability as would be the case in a randomized exper-

iment, it is possible for the Type I error rate to exceed 𝛼 under the weak null. The procedure

we present uses a critical value from the asymptotic form of a randomization distribution

assuming the sharp null as the sharp null attains the supremum 𝑝-value over 𝐻0 in (4). If

instead only Neyman’s weak null is true for all 𝐾 outcomes but 𝐻0 is not it is possible that

unspecified effect heterogeneity would cause the reference distribution used by our proce-

dure to not stochastically dominate the randomization distribution, leading to an invalid

procedure. Unlike the univariate case and the multivariate case with two-sided alternatives,

a simple studentization does not fix the problem even asymptotically, as the studentized

reference distribution depends upon the correlation between the outcome variables. This

parallels known results for multivariate permutation tests conducted in the absence of a

group invariance assumption (CR16). An ongoing area of the authors’ research is examining

the extent to which bootstrap prepivoting may be applicable to create a test that is both

exact under 𝐻0 and asymptotically valid for Neyman’s weak null at Γ = 1, but as of yet no

extension to cases of potential unmeasured confounding has been developed. The extension

of sensitivity analyses to such contexts remains an interesting and important open question.

Our use of the �̄�2-test in conjunction with closed testing provides a sensitivity analysis

for testing patterns of directed effect among a moderate number of outcomes, as is common

in many public health, econometric, and policy applications. Unfortunately, the combinato-

rial blow-up inherent to closed testing prohibits large-scale multiplicity control of the sort

required for applications to data sets of the scale encountered in genome-wide association

studies. Even in regimes for which closed testing is computationally infeasible, the inter-

pretation of sensitivity analyses as two-player games lends meaningful intuition and will

hopefully stimulate further algorithmic development.

Another quasiexperimental device related to the pattern-specificity approach taken in
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this paper is the multiple evidence factor approach of (Ros17), though some important

mathematical differences exist between the two approaches: most notably, the approach

taken in this paper does not rely upon the group-theoretic structure of the symmetry group

of the possible treatment allocations.
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Supplementary Material

Below we include additional information which contains theoretical results, proofs, simu-

lation studies, further algorithmic details, additional insight into the �̄�2 distribution, further

information on the observational study on smoking and polycyclic aromatic hydrocarbons,

and an R script for implementing the method proposed in this work.

1.8 Proof Of Main Results

1.8.1 Proposition 1.1

Proposition 1.1. The function 𝑔(𝜚) = sup𝜆∈Λ 𝑓(𝜆, 𝜚) is convex in 𝜚 for any set Λ without

the zero vector.

In order to show that (6) is convex in 𝜚 we first prove a lemma.

Lemma 1.1. For a fixed 𝜆 ∈ R𝐾 the function 𝑑(𝜚) = 𝜆𝑇Σ(𝜚)𝜆 is a concave function of 𝜚.

Proof of Lemma 1.1. Define 𝑄𝑖 to be the 𝐾-by-𝑛𝑖 matrix where the (𝑘, 𝑗)th entry is 𝑞𝑖𝑗𝑘.

Then the Hessian matrix of 𝑑(𝜚) with respect to the variables in the 𝑖th strata is

∇2
𝜚𝑖𝑗 ; (𝑗=1,...,𝑛𝑖)

𝑑(𝜚) =
−1

2
𝑄𝑇

𝑖 𝜆𝜆
𝑇𝑄𝑖.

This is negative semi-definite. By independence between strata, the full Hessian ∇2
𝜚𝑓(𝜚) is

the direct sum of the Hessians associated to each stratum. Thus, the full Hessian matrix is

a block diagonal matrix wherein each block is negative semi-definite. Since the eigenvalues

of a block diagonal matrix are the collection of eigenvalues of its constituent blocks, we have

that the full Hessian must be negative semi-definite as well. As a consequence, 𝑑(𝜚) is a

concave function of 𝜚.
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Proof of Proposition 1.1. The identity function 𝑥 ↦→ 𝑥 is convex as a function of 𝑥. Since

the point-wise maximum of convex functions is convex max{0, 𝑥} is convex as a function of

𝑥. The quadratic function 𝑎 ↦→ 𝑎2 is convex and increasing on the non-negative real line so

by (BV04, 3.10) the function 𝜓(𝑥) = [max{0, 𝑥}]2 is a convex function of 𝑥.

The perspective of a function 𝜓(𝑥) is defined to be 𝜑(𝑥, 𝑣) = 𝑣𝜓(𝑥/𝑣) for 𝑣 > 0; by (BV04,

3.2.6) the perspective of a convex function is convex as well. Computing the perspective of

𝜓 follows as

𝜑(𝑥, 𝑣) = 𝑣𝜓(𝑥/𝑣)

= 𝑣 {max(0, 𝑥/𝑣)}2

= 𝑣

{︂
max(0, 𝑥)

𝑣

}︂2

=
max(0, 𝑥)2

𝑣
.

Thus, 𝜑(𝑥, 𝑣) = max(0, 𝑥)2/𝑣 is convex. Now, consider any fixed 𝜆 ≥ 0 and 𝑡 of dimension

𝐾. 𝜇(𝜚) is a linear function of 𝜚. Since affine transformations of linear functions are convex,

𝜆𝑇{𝑡 − 𝜇(𝜚)} is convex. Furthermore, 𝜆𝑇Σ(𝜚)𝜆 is concave in 𝜚 by Lemma 1.1. By (BV04,

3.15), since 𝜑(𝑥, 𝑣) is non-decreasing in 𝑥 and non-increasing in 𝑣 the function

𝑓(𝜆, 𝜚) = 𝜑
(︀
𝜆𝑇{𝑡− 𝜇(𝜚)}, 𝜆𝑇Σ(𝜚)𝜆

)︀
=

max
[︀
0, 𝜆𝑇 {𝑡− 𝜇(𝜚)}

]︀2
𝜆𝑇Σ(𝜚)𝜆

is convex in 𝜚. As 𝑔(𝜚) is the point-wise supremum over all 𝜆 ∈ Λ of 𝑓(𝜆, 𝜚), by (BV04, 3.7)

𝑔(𝜚) is convex in 𝜚 as desired. The requirement that Λ excludes the zero vector ensures that

for any positive definite Σ(𝜚) the denominator is always defined and thus 𝑔(𝜚) is defined.
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1.8.2 Proposition 1.2

Here and elsewhere in the supplement, Λ+ is once again defined to be the non-negative

orthant in R𝐾 excluding the zero vector, that is Λ+ = {𝜆 : 𝜆𝑘 ≥ 0 (𝑘 = 1..., 𝐾);
∑︀
𝜆𝑘 > 0}.

Proposition 1.2. Suppose that the global null (4) of non-positive treatment effects is true

and assume that the test statistics 𝑇𝑘 (𝑘 = 1, ..., 𝐾) are effect increasing. Then

pr{𝐴Λ+(𝑍,𝑅𝑍) ≥ 𝐺−1(1− 𝛼,𝑅𝑍)} ≤ 𝛼,

such that the reference distribution under Fisher’s sharp null controls the Type I error rate

for any element of the composite null 𝐻0.

Proof.

pr{𝐴Λ+(𝑍,𝑅𝑍) > 𝐺−1(1− 𝛼,𝑅𝑍)}

=
∑︁
𝑧∈Ω

1{𝐴Λ+(𝑧,𝑅𝑧) > 𝐺−1(1− 𝛼,𝑅𝑧)}pr(𝑍 = 𝑧 | ℱ ,𝒵)

=
∑︁
𝑏∈Ω

[︃∑︁
𝑧∈Ω

1{𝐴Λ+(𝑧,𝑅𝑧) > 𝐺−1(1− 𝛼,𝑅𝑧)}pr(𝑍 = 𝑧 | ℱ ,𝒵)

]︃
pr(𝑍 = 𝑏 | ℱ ,𝒵)

≤
∑︁
𝑏∈Ω

[︃∑︁
𝑧∈Ω

1{𝐴Λ+(𝑏, 𝑅𝑧) > 𝐺−1(1− 𝛼,𝑅𝑧)}pr(𝑍 = 𝑧 | ℱ ,𝒵)

]︃
pr(𝑍 = 𝑏 | ℱ ,𝒵)

=
∑︁
𝑧∈Ω

[︃∑︁
𝑏∈Ω

1{𝐴Λ+(𝑏, 𝑅𝑧) > 𝐺−1(1− 𝛼,𝑅𝑧)}pr(𝑍 = 𝑏 | ℱ ,𝒵)

]︃
pr(𝑍 = 𝑧 | ℱ ,𝒵)

≤ 𝛼
∑︁
𝑧∈Ω

pr(𝑍 = 𝑧 | ℱ ,𝒵) = 𝛼.

The third line simply multiplies by one in the form of
∑︀

𝑏∈Ω pr(𝑍 = 𝑏 | ℱ ,𝒵). The fourth

line uses that the test statistics are effect increasing. After rearranging the order of summa-

tion in the fifth line, the sixth follows by definition as it simply uses that for any particular

𝑧, 𝐺−1(1 − 𝛼,𝑅𝑧) is the 1 − 𝛼 quantile corresponding to 𝐺(𝑣,𝑅𝑧) =
∑︀

𝑏∈Ω 1{𝐴Λ+(𝑏, 𝑅𝑧) ≤
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𝑣}pr(𝑍 = 𝑏 | ℱ ,𝒵).

1.8.3 Theorem 1

For ease of notation we suppress conditioning on ℱ and 𝒵 when writing expectations and

covariances in this section. We again define 𝑇𝑘 =
∑︀𝐼

𝑖=1

∑︀𝑛𝑖

𝑗=1 𝑍𝑖𝑗𝑞𝑖𝑗𝑘, and let 𝜚 represent

the true vector of conditional assignment probabilities. For precision quantities such as 𝜚

should be subscripted by 𝐼 to denote their dependence on the sample size; this is omitted

for improved readibility.

Theorem A.3. Suppose that 𝐼−1Σ(𝜚) has a positive definite limit 𝑀 as 𝐼 → ∞ and the

random vector Σ(𝜚)−1/2 {𝑇 − 𝜇(𝜚)} converges in distribution to a 𝐾-dimensional vector of

independent standard normals. Then, as 𝐼 → ∞ the random variable 𝐴2
Λ+

converges in

distribution to a �̄�2(𝑀−1,Λ+) random variable under Fisher’s sharp null.

Before proving Theorem 1, we establish conditions under which the random vector

Σ(𝜚)−1/2 {𝑇 − 𝜇(𝜚)} has a multivariate normal limiting distribution.

Lemma 1.2. Suppose that there exists a 𝛿 > 0 for which

𝐼∑︁
𝑖=1

E

[︃
|

𝑛𝑖∑︁
𝑗=1

𝑞𝑖𝑗𝑘𝑍𝑖𝑗 −
𝑛𝑖∑︁
𝑗=1

𝑞𝑖𝑗𝑘𝜚
*
𝑖𝑗 |2+𝛿

]︃
= 𝑂(𝐼) (11)

for all 𝑘 and all 𝐼, and that 𝐼−1Σ(𝜚) has an positive definite limit 𝑀 as 𝐼 → ∞. Then

as 𝐼 → ∞ the random vector Σ(𝜚)−1/2 {𝑇 − 𝜇(𝜚)} converges in distribution to a 𝐾-variate

vector of independent standard normals.

Proof of Lemma 1.2. Define𝑋𝑖 = (𝑋𝑖1, . . . , 𝑋𝑖𝐾)
𝑇 where𝑋𝑖𝑘 =

∑︀𝑛𝑖

𝑗=1 𝑞𝑖𝑗𝑘𝑍𝑖𝑗. Denote 𝜇𝑖(𝜚) =

E [𝑋𝑖] and Σ𝑖(𝜚) = 𝐸(𝑋𝑖𝑋
𝑇
𝑖 ) − 𝐸(𝑋𝑖)𝐸(𝑋𝑖)

𝑇 , such that
∑︀𝐼

𝑖=1 𝜇𝑖(𝜚) = 𝜇(𝜚) = 𝐸(𝑇 ) and∑︀𝐼
𝑖=1Σ𝑖(𝜚) = Σ(𝜚) = cov(𝑇 ).
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By the Cramér-Wold device it suffices to consider the distribution of the univariate ran-

dom variable 𝐼−1/2
∑︀𝐼

𝑖=1 𝜆
𝑇{𝑋𝑖 − 𝜇𝑖(𝜚)} for a fixed, non-zero, 𝜆 ∈ R𝐾 . By independence

between strata, the random variables 𝜆𝑇{𝑋𝑖 − 𝜇𝑖(𝜚)} are independent but not necessarily

identically distributed. The variance of 𝐼−1/2
∑︀𝐼

𝑖=1 𝜆
𝑇{𝑋𝑖−𝜇𝑖(𝜚)} is 𝐼−1

∑︀𝐼
𝑖=1 𝜆

𝑇Σ𝑖(𝜚)𝜆. By

hypothesis 𝐼−1Σ(𝜚) has an positive definite limit 𝑀 as 𝐼 → ∞ so

lim
𝐼→∞

1(︁
𝐼−1

∑︀𝐼
𝑖=1 𝜆

𝑇Σ𝑖(𝜚)𝜆
)︁ 2+𝛿

2

=
1

(𝜆𝑇𝑀𝜆)
2+𝛿
2

> 0. (12)

Furthermore, (11) and the 𝑐𝑟-inequality imply that

lim
𝐼→∞

𝐼−
2+𝛿
2

𝐼∑︁
𝑖=1

E

[︃
|

𝑖∑︁
𝑗=1

𝑞𝑖𝑗𝑘𝑍𝑖𝑗 −
𝑖∑︁

𝑗=1

𝑞𝑖𝑗𝑘𝜚𝑖𝑗 |2+𝛿

]︃
= 0. (13)

Combining (12) and (13) gives that

lim
𝐼→∞

1(︁∑︀𝐼
𝑖=1 𝜆

𝑇Σ𝑖(𝜚)𝜆
)︁ 2+𝛿

2

𝐼∑︁
𝑖=1

E

[︃
|

𝑖∑︁
𝑗=1

𝑞𝑖𝑗𝑘𝑍𝑖𝑗 −
𝑖∑︁

𝑗=1

𝑞𝑖𝑗𝑘𝜚𝑖𝑗 |2+𝛿

]︃
= 0.

The Lyapunov central limit theorem then implies that

∑︀𝐼
𝑖=1 𝜆

𝑇{𝑋𝑖 − 𝜇𝑖(𝜚)}{︁∑︀𝐼
𝑖=1 𝜆

𝑇Σ𝑖(𝜚)𝜆
}︁1/2

converges in distribution to the standard univariate normal. Hence, the Cramér-Wold de-

vice establishes that Σ(𝜚)−1/2 {𝑇 − 𝜇(𝜚)} converges in distribution to a 𝐾-variate vector of

independent standard normals.

The sufficient criterion given above, that 𝐼−1
∑︀𝐼

𝑖=1

∑︀𝑛𝑖

𝑗=1 𝑞
4
𝑖𝑗𝑘 is uniformly bounded for all

𝐼 and all 𝑘 = 1, . . . , 𝐾, satisfies the conditions of Lemma 1.2 with 𝛿 = 2 since 𝑍𝑖𝑗 is binary
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and 0 ≤ 𝜚𝑖𝑗 ≤ 1 for all 𝑖 and 𝑗.

For many statistics, such as an 𝑚-statistic using Huber’s 𝜓 function, 𝑞𝑖𝑗𝑘 are bounded for

all 𝑖, 𝑗 and 𝑘. In these cases, asymptotic normality would hold if the stratum sizes 𝑛𝑖 were

bounded, for instance. When the underlying 𝑞𝑖𝑗𝑘 varies as a function of 𝐼 as with various

rank tests, the proof given above is insufficient. In such cases, a triangular array version of

the central limit theorem must be applied and the sufficient conditions adapted accordingly

to guarantee asymptotic normality as 𝐼 → ∞.

Proof of Theorem 1. Consider the random variable

𝐷2
Λ+

= ℎ𝑇Σ(𝜚)ℎ− inf
𝜆∈Λ+

(ℎ− 𝜆)𝑇Σ(𝜚)(ℎ− 𝜆), (14)

where ℎ = Σ(𝜚)−1{𝑇 − 𝜇(𝜚)}. Assume no degeneracy between the test statistics, such that

the covariance matrix Σ(𝜚) is positive definite for all 𝐼. For Σ(𝜚) positive definite, the

program

inf
𝜆∈Λ+

(ℎ− 𝜆)𝑇Σ(𝜚)(ℎ− 𝜆) (15)

is convex. Since the feasible region of (15) is Λ+, the relative interior of the feasible region is

non-empty (BV04, Section 2.1.3) and Slater’s condition holds (BV04, Section 5.2.3). Conse-

quently, there is no duality gap and the Karush-Kuhn-Tucker conditions are both necessary

and sufficient for optimality (BV04, Section 5.5.3). As the objective function of (15) is a

quadratic form, it is a smooth function of the arguments ℎ, 𝜆, and Σ(𝜚). Thus, the Karush-

Kuhn-Tucker conditions stipulate that an optimal 𝜆 is the root of continuous functions of ℎ

and Σ(𝜚). Since the solutions to the Karush-Kuhn-Tucker conditions are continuous func-

tions of ℎ and Σ(𝜚), the optima of (15) are continuous functions of ℎ and Σ(𝜚).
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(Sha03) uses that strong duality holds for (14) to give rise to the identity

𝐷2
Λ+

= sup
𝜆∈Λ+

[︀
𝜆𝑇{𝑇 − 𝜇(𝜚)}

]︀2
𝜆𝑇Σ(𝜚)𝜆

. (16)

From this, it is seen by the definition of 𝐴2
Λ+

in (7) that 𝐷2
Λ+

= 𝐴2
Λ+

.

(Sha03) shows that if 𝑌 has a multivariate normal distribution with mean vector 𝜃 and

known non-singular covariance matrix 𝑉 then

sup
𝜆∈Λ+

{︀
𝜆𝑇 (𝑌 − 𝜃)

}︀2
𝜆𝑇𝑉 𝜆

∼ �̄�2(𝑉 −1,Λ+). (17)

Since 𝐼−1Σ(𝜚) → 𝑀 as 𝐼 → ∞, it follows that 𝐼1/2Σ(𝜚)−1/2 → 𝑀−1/2. By Lemma 1.2

the random vector Σ(𝜚)−1/2 {𝑇 − 𝜇(𝜚)} converges in distribution to a 𝐾-variate vector of

independent standard normals. By Slutsky’s Lemma 𝐼1/2ℎ converges in distribution to the

mean-zero multivariate normal distribution with covariance 𝑀−1. By continuity of the func-

tion taking ℎ to the optima of (15) along with (16), the mapping

Σ(𝜚)−1/2 {𝑇 − 𝜇(𝜚)} ↦→ sup
𝜆∈Λ+

{︀
𝜆𝑇 (𝑇 − 𝜇(𝜚))

}︀2
𝜆𝑇Σ(𝜚)𝜆

is continuous. Exploiting Slutsky’s Lemma, the Continuous Mapping Theorem, and (17)

yields that 𝐴2
Λ+

converges in distribution to a �̄�2(𝑀−1,Λ+) random variable as desired.

1.8.4 Theorem 2

Theorem A.4. Suppose Λ1 ⊆ Λ2. Under mild conditions, the design sensitivity of (5) using

Λ = Λ1 is less than or equal to the design sensitivity of (5) using Λ = Λ2.

Proof. Define Γ̃Λ as the design sensitivity of the test using 𝑎*Γ,Λ as a test statistic. To avoid

triviality, suppose that the design sensitivities Γ̃Λ1 and Γ̃Λ2 both exist; see (Ros04) and
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(Ros13) for mild conditions for existence of the design sensitivity. Let 𝐴Γ,Λ𝑖
be the random

variable giving rise to the observation 𝑎*Γ,Λ𝑖
in (6) for 𝑖 = 1, 2, that is

𝐴*
Γ,Λ𝑖

= min
𝜚∈𝒫Γ

sup
𝜆∈Λ𝑖

𝜆𝑇{𝑇 − 𝜇(𝜚)}
{𝜆𝑇Σ(𝜚)𝜆}1/2

.

Since Λ1 ⊆ Λ2, for any 𝜚 we have

sup
𝜆∈Λ1

𝜆𝑇{𝑇 − 𝜇(𝜚)}
{𝜆𝑇Σ(𝜚)𝜆}1/2

≤ sup
𝜆∈Λ2

𝜆𝑇{𝑇 − 𝜇(𝜚)}
{𝜆𝑇Σ(𝜚)𝜆}1/2

,

such that 𝐴*
Γ,Λ1

≤ 𝐴*
Γ,Λ2

. Consider any Γ < Γ̃Λ1 . By the definition of design sensitivity, for

a sensitivity analysis conducted at Γ we have that pr(𝐴Γ,Λ1 ≥ 𝑘 | 𝒵) tends to one as 𝐼 → ∞

for any scalar 𝑘. Since 𝐴*
Γ,Λ1

≤ 𝐴*
Γ,Λ2

, for any Γ < Γ̃Λ1 the power of the test based upon

𝐴*
Γ,Λ2

, pr(𝐴Γ,Λ2 ≥ 𝑘 | 𝒵), also tends to one as 𝐼 → ∞ for any 𝑘. Thus, Γ̃Λ2 ≥ Γ̃Λ1 as desired.

1.9 Additional Simulations

1.9.1 The General Setup of the Simulation Studies

In this section we present additional simulation studies to further illustrate the results pre-

sented above. All of the simulation studies are conducted with some number 𝐼 pairs, and

some number 𝐾 outcome variables, equicorrelated with correlation controlled by a parameter

𝜌. For each outcome variable, the employed test statistic is 𝑇𝑘 =
∑︀𝐼

𝑖=1 sign(𝑌𝑖𝑘)min(|𝑌𝑖𝑘|/𝑠𝑘, 2.5),

where 𝑠𝑘 is the median of |𝑌𝑖𝑘| (𝑖 = 1, .., 𝐼). This amounts to a choice of a 𝑚-statistic with

Huber’s 𝜓-function, as described in (Ros07).
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1.9.2 Rejecting the Global Null with 𝐼 = 1000 Pairs

In Section 1.5.2 the �̄�2-test was compared to the equal-weight test and the test of (FS16)

with 𝐼 = 300 matched pairs. To highlight the large-sample properties of the test, we include

Figure 1-2. As 𝐼 increases, the power curves converge pointwise to step functions, evaluating

to 1 if Γ is below the design sensitivity and zero otherwise (Ros13). This indicates that the

gap between the equal-weight test and the �̄�2-test observed in the first row of Figure 1-1

and Figure 1-2 will shrink as 𝐼 increases, and will disappear in the limit. This trend can

be appraised visually by comparing the disparity observed in the first row of Figure 1-1 in

Section 1.6 where 𝐼 = 300 to the first row of Figure 1-2 where 𝐼 = 1000. As a consequence

Theorem 2 and of the pointwise convergence of the power curve to the indicator function of

the event Γ less than the design sensitivity, the power curve of the �̄�2-test will converge to

that of the most powerful test at any fixed Γ among all coherent tests.

1.9.3 Rejecting Individual Nulls Through Closed Testing

An experimenter may want to test not only the global null hypothesis 𝐻0 of (4) but also

the 𝐾 individual null hypotheses 𝐻1, . . . , 𝐻𝐾 . To achieve this at level 𝛼, she may use a

closed-testing framework (MEG76). Then, in order to test 𝐻𝑖 at level 𝛼, she performs 𝛼-

level tests all hypotheses of the form 𝐻𝑖 ∧
(︀⋀︀

𝑘∈𝑆𝑖

)︀
with 𝑆𝑖 the set of all possible subsets of

the numbers 1, . . . , 𝐾 excluding 𝑖; she then rejects 𝐻𝑖 if all of these tests rejected. Another

standard method to test both the global null and each individual null would be to conduct a

Bonferroni-corrected test of the global null and then use the results of the corrected individual

tests to reject each 𝐻𝑘. Figure 1-3 examines the performance of these two methods against

the test of only 𝐻1 when 𝜏1 = 0.5, 𝜏2 = 0.2, 𝜏3 = 0.05 and equicorrelation between the paired

differences at at 𝜌 = 0.2. The comparison to the test of only 𝐻1 is an unfair comparison

in that testing only 𝐻1 at level-𝛼 does not control the family-wise error rate at 𝛼 when

examining all 𝑘 = 1, . . . , 𝐾. However, the test of 𝐻1 alone at level-𝛼 achieves the highest
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Figure 1-2: Power comparisons between the method of (FS16) (dashed), the method of this
paper (solid), and the equal-weight test (dotted) as Γ increases with 𝐼 = 1000. The first
row has 𝜏1 = 𝜏2 = 𝜏3 = 0.25. The second row has 𝜏1 = 𝜏2 = 0.1 and 𝜏3 = 0.5. The third
row has 𝜏1 = 0.05, 𝜏2 = 0.2, and 𝜏3 = 0.5. Figures on the left have 𝜌 = 0 while on the
right 𝜌 = 0.2. For each fixed set of parameters, power simulations were performed on 1000
simulated data sets. The design sensitivity of the equal-weight test is the dotted vertical line
and the design sensitivity of the �̄�2-test is the solid vertical line. In the first row, these two
design sensitivities are the same and are shown by the single solid vertical line.
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𝜏2 𝜌 (FS16) Λ = Λ+ Λ = R𝐾 ∖ {0𝐾}
-0.5 0 0 0 0.694
-0.25 0 0 0 0.454
0 0 0.026 0.018 0.46
-0.5 0.5 0 0 0.546
-0.25 0.5 0 0 0.424
0 0.5 0.018 0.016 0.496

Table 1.3: Type I error rates for the method of (FS16), the �̄�2-test of this paper, and the
test taking Λ = R𝐾 ∖ {0𝐾} using 𝛼 = 0.05. All tests performed with 𝐼 = 20 matched pairs,
𝜏1 = −0.5, and Γ = 1. For each set of parameters the power was estimated based upon 500
simulations.

power possible for any testing procedure that tests 𝐻𝑘 as it does not employ any corrections

to control the family-wise error rate. Thus, comparison to the test of 𝐻1 alone at level-𝛼

serves as a comparison to an idealized benchmark, the absolute limit of statistical power

that one may achieve when testing 𝐻1 using a particular test statistic.

At all values of 𝐼 examined, the closed test outperforms the Bonferroni-corrected test.

Furthermore, as 𝐼 increases, the closed test approaches the same power as the individual test

without correction. Thus, for sufficiently large studies, empirical results suggest that a closed

testing framework allows the experimenter to test both the global null and the individual

null at level-𝛼 with minimal loss of power from multiple comparisons relative to testing only

the individual null.

1.9.4 Type I Error Control in Small Samples Using the Asymptotic

Reference Distribution

In this simulation, we assess the Type I error rate with 𝐼 = 20 matched pairs at Γ = 1. In

each simulation, the global null of non-positive treatment effects is true. Table 1.3 details

simulated Type I error rates for the method of (FS16), the �̄�2-test of this paper, and the

unconstrained test taking Λ = R𝐾 ∖ {0𝐾} for 𝐾 = 2 outcome variables with a range of
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Figure 1-3: Power comparisons between embedding the �̄�2-test into a closed testing frame-
work (solid), performing a Bonferroni-corrected test (dotted), and performing an uncorrected
test (dashed) as 𝐼 increases. All simulations performed with 𝜏1 = 0.5, 𝜏2 = 0.2, 𝜏3 = 0.05
with equicorrelation at 𝜌 = 0.2 testing 𝐻1. All data is with normal noise and tested with
Huber’s 𝜓-function as the underlying statistic. Additional parameters listed clockwise from
the top-left: 𝐼 = 50, 𝐼 = 150, 𝐼 = 250, and 𝐼 = 350. For each sample size, power simulations
were performed on 2000 simulated data sets.
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different parameter values.

Both the method of (FS16) and the �̄�2-test control the Type I error rate at 𝛼 even

when in the finite sample regime while using the asymptotic reference distribution. As

alluded to in Section 1.4.1 the test taking Λ = R𝐾 ∖ {0𝐾} fails to control the Type I

error rate at 𝛼 since allowing 𝜆 to have an unconstrained sign in each coordinate removes

the ability to discriminate positive treatment effects from negative treatment effects. This

further motivates the restriction to the set of coherent combinations Λ+.

1.9.5 Non-Normal and Larger 𝐾 Simulations

We include several additional simulations, using a larger number of outcomes and experi-

menting with heavy-tailed noise in the data generating distribution. In order to demonstrate

the method’s properties on studies with more outcomes, we conducted tests with 𝐾 = 4.

Choosing 𝐾 = 4 still allows for interpretable regimes of treatment effect relative magni-

tudes while expanding from the trivariate case. We conducted tests under normality as in

Section 1.5 as well as under non-normal conditions.

To generate the normal 4-variate data we followed the same procedure as outlined in

Section 1.5, but using four 𝜏 ’s and four 𝜀’s. To conduct the non-normal tests, we elected to

experiment with heavy-tailed noise. This was implemented via substituting 𝑡5-distributed

noise (𝜀1, . . . , 𝜀4) in place of normal noise in the procedure of Section 5.2. This process

mirrored the 𝑡-distributed simulation construction of (Ros16). We conducted tests for 𝜏 =

(.1, .1, .1, .5), (.1, .1, .5, .5), and (.1, .25, .25, .5). These treatment effect relative magnitudes

were selected to highlight the strength of the �̄�2-test when:

• One treatment effect is much larger than the others but none are of negligible magnitude

(this is the case of 𝜏 = (.1, .1, .1, .5)).

• There are several highly impacted outcomes, but there remain several outcomes for

which treatment effect is small (this is the case of 𝜏 = (.1, .1, .5, .5)). This regime does

76



not exist in the trivariate case.

• The treatment effects are spread across multiple magnitude scales; selecting all to be

equally weighted is apt to perform poorly, but selecting only the largest is unlikely to

perform as well as optimizing for weighting in accordance with their magnitudes (this

is the case of 𝜏 = (.1, .25, .25, .5)).

For all of the test considered, 𝐼 = 300, 𝑛𝑖 = 2 for all 𝑖, and 𝜌 = 0.2. Figure 1-4 presents the

results of these simulations.
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Figure 1-4: Power comparisons between the method of (FS16) (dashed), the �̄�2-test of this
paper (solid), and the equal-weight test (dotted) as Γ increases with 𝐼 = 300. The first
column has 𝜏 = (.1, .1, .1, .5); the second column has 𝜏 = (.1, .1, .5, .5); and the third column
has 𝜏 = (.1, .25, .25, .5). The top row is generated under the Gaussian data-generating
process and the bottom row is generated under the 𝑡5 data-generating process.
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Despite the heavy-tails, the relative performance of the �̄�2-method stays the same as un-

der the Gaussian data-generating process. Moreover, the performance of the �̄�2-test relative

to the equal-weight test and the basis-vector test accords well with the intuition developed

in Section 1.5.

• In the first column, the equal-weight test is apt to under-perform due to the strong

disparity in treatment effects across the four outcomes. Since there is one “stand-out"

effect the lower critical value of the basis-vector test accounts for the slight increase

performance edge over the �̄�2-test.

• In the second column, the equal-weight test fares poorly for the same reasons as before.

Since there are several outcomes that are strongly impacted, the �̄�2-test outperforms

the basis-vector test which weights only one outcome.

• In the third column, the spread of treatment effect magnitudes across different regimes

again accounts for the strong performance of the �̄�2-statistic over the other two, as it

flexibly weights each outcome in accordance with the degree of treatment effect.

1.10 Algorithmic Details For Conducting The Sensitivity

Analysis

The optimization problem in (6) is solved via a projected subgradient descent algorithm.

(Sho85) contains a detailed introduction to subgradient methods. The algorithm begins

with some initial feasible 𝜚(0), solves for an optimal 𝜆 under the fixed 𝜚(0), computes a

subgradient of the objective at the optimal 𝜆, and uses the subgradient to project onto the

feasible region thereby locating a 𝜚(1). The procedure iterates until convergence criteria are

satisfied.
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Formally, given a feasible 𝜚(𝑛) we compute

𝜆*𝜚(𝑛)
= sup

𝜆∈Λ+

[︀
max{0, 𝜆𝑇 (𝑇 − 𝜇(𝜚(𝑛)))}

]︀2
𝜆𝑇Σ(𝜚(𝑛))𝜆

. (18)

To compute (18), results from (Sha03) are leveraged to allow efficient computation of

sup
𝜆∈Λ+

𝜆𝑇{𝑇 − 𝜇(𝜚(𝑛))}
{𝜆𝑇Σ(𝜚(𝑛)𝜆}1/2

,

by solving a single quadratic program. In the event that

sup
𝜆∈Λ+

𝜆𝑇{𝑇 − 𝜇(𝜚(𝑛))}
{𝜆𝑇Σ(𝜚(𝑛))𝜆}1/2

> 0

𝜆*𝜚(𝑛)
is set to the optimizing choice of 𝜆. However, when

sup
𝜆∈Λ+

𝜆𝑇{𝑇 − 𝜇(𝜚(𝑛))}
{𝜆𝑇Σ(𝜚(𝑛))𝜆}1/2

≤ 0

there exists a feasible 𝜚 such that the test fails to reject the sharp null, and thus no further

iterations of the subgradient method are needed.

By (HUL13), if 𝑓(𝑥) = sup𝑗∈𝐽 𝑓𝑗(𝑥) where each 𝑓𝑗(𝑥) is a convex function, 𝑓(𝑥) = 𝑓𝑗*(𝑥),

and 𝑔 ∈ 𝜕𝑓𝑗*(𝑥), then 𝑔 ∈ 𝜕𝑓(𝑥). In less technical terms, to compute a subgradient of

a function which is the point-wise supremum of a many convex functions, one first finds

a function 𝑓𝑗*(·) which achieves the maximum value at the desired point 𝑥 and then one

computes a subgradient of this function. As such, at the optimal value 𝜆* one computes that

the subgradient of the objective function with respect to the variables 𝜚𝑖 = (𝜚𝑖1, . . . , 𝜚𝑖𝑛𝑖
) is

𝑔 =
ℎ1(𝜚)𝜕𝜚𝑖ℎ2(𝜚)− ℎ2(𝜚)𝜕𝜚𝑖ℎ1(𝜚)

ℎ2(𝜚)2
,
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where

ℎ1(𝜚) =
(︀
𝜆*𝑇 (𝑇 − 𝜇(𝜚))

)︀2
,

ℎ2(𝜚) = 𝜆*𝑇Σ(𝜚)𝜆*,

𝜕𝜚𝑖ℎ1(𝜚) = −2(𝑄𝑇
𝑖 𝜆

*)𝜆*𝑇 (𝑇 − 𝜇(𝜚)),

𝜕𝜚𝑖ℎ2(𝜚) = (𝑄𝑇
𝑖 𝜆

*) ∘ (𝑄𝑇
𝑖 𝜆

*)− 2(𝑄𝑇
𝑖 𝜆

*)(𝑄𝑇
𝑖 𝜆

*)𝑇𝜚𝑖,

where 𝑄𝑖 is the 𝐾-by-𝑛𝑖 matrix where the (𝑘, 𝑗)th entry is 𝑞𝑖𝑗𝑘 and ∘ denotes the coordinate-

wise product operation.

Armed with the solution to the inner maximization and the form of the subgradient 𝑔,

we can now detail the projected subgradient descent method.

1. Initialize a feasible 𝜌(0), pick 𝑡0 > 0 and 𝑛 = 1

2. Repeat until convergence:

(a) Find 𝜆𝜌(𝑛−1)
by solving (18),

(b) Compute the subgradient 𝑔 from (1.10) using 𝜆𝜌(𝑛−1)
,

(c) Define 𝜚(𝑛) to be the projection of 𝜌(𝑛−1) − 𝑡𝑛−1𝑔 onto the feasible region,

(d) Update the parameters: 𝑡𝑛 = 𝑡0/
√
𝑛 and 𝑛 = 𝑛+ 1.

Since the objective function is convex and the feasible set is also convex, any local op-

timum is a global optimum as well. In practical execution on both synthetic and real data

sets convergence has been observed after few iterations.
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1.11 The Chi-Bar-Squared Distribution

1.11.1 Finding a Better Critical Value

While the subgradient method solves (6) and Theorem 1 gives that the asymptotic distribu-

tion of 𝐴2
Λ+

is �̄�2, the weights of the limiting distribution are still unknown. Comparing the

value of (6) against the 1− 𝛼 quantile arising from the bound

pr{�̄�2(𝑉,Λ+) ≥ 𝑐} ≤ 0.5{P
(︀
𝜒2
𝐾−1 ≥ 𝑐

)︀
+ P

(︀
𝜒2
𝐾 ≥ 𝑐

)︀
} (19)

would control the Type I error. While improving over a critical value based on a 𝜒2
𝐾 distribu-

tion, the bounds through (19) are still unduly conservative. We now describe an algorithm

which exploits the particular structure of the sensitivity analysis problem to dramatically

improve the critical value.

By directly computing upper and lower bounds on the correlation between 𝑇𝑘 and 𝑇ℓ

for each 𝑘, ℓ = 1, . . . , 𝐾 one can compute coordinate-wise upper and lower bounds on on

the overall correlation matrix diag{Σ(𝜚)}−1/2Σ(𝜚)diag{Σ(𝜚)}−1/2, where diag{Σ(𝜚)} contains

the diagonal elements of Σ(𝜚) on its diagonals but has zeroes on its off-diagonals. Since the

weights of the �̄�2 distribution depend on Σ(𝜚) only through its correlation matrix (SS05), one

can directly optimize over bounds on the marginal correlations to find the most conservative

1− 𝛼 critical value associated to a correlation matrix within the bounds. This optimization

can be performed via either numerical approximation of gradients or by directly computing

gradients of the 𝑝-value function with respect to the correlations. Such gradients are acces-

sible due to Plackett’s identity (Pla54) and can be calculated with assistance of functions

in the mvtnorm package within R for evaluating orthant probabilities and the density of the

multivariate normal. Optimizing over the space of correlation matrices yields significant

improvement over the critical value drawn from previous bound. Figure 1-5 highlights the

differences between using the 1− 𝛼 quantile from a 𝜒2 distribution, the 1− 𝛼 quantile from

81



the naive bound based upon (19), and using the optimal 1−𝛼 quantile with 𝐾 = 3 outcome

variables. By using the most conservative 1−𝛼 quantile within the upper and lower bounds

on the correlation matrix the Type I error rate is asymptotically controlled at 𝛼.

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8

3

4

5

6

7

8

ρ

C
rit

ic
al

 V
al

ue

2 4 6 8 10

4

5

6

7

8

Γ

C
rit

ic
al

 V
al

ue

Figure 1-5: 1 − 𝛼 quantiles for 𝛼 = 0.05 generated for the trivariate scenario 𝐼 = 300,
𝜏1 = 𝜏2 = 𝜏3 = 0. On the left, Γ is fixed at 1 while 𝜌 varies over [−0.5, 0.9]. On the right, 𝜌 is
fixed at 0.5 while Γ ranges from 1 to 10. In both figures the 𝜒2

3 1− 𝛼 quantile is the dotted
line, that of the naive bound derived from (19) is the dashed line, and the 1 − 𝛼 quantile
coming from optimizing over feasible correlation matrices is the solid line.

There is a true, but generally unknown, underlying correlation structure between the

test statistics that depends upon the true vector of conditional probabilities 𝜚. Thus, the

true 1 − 𝛼 quantile from the �̄�2 distribution with weights based on the true correlation

would not change with the value of Γ employed in the sensitivity analysis. As the true

unmeasured confounders are unknown, we instead find a conservative critical value based

upon the feasible values for 𝜚 at a given Γ. As Γ grows so too does the feasible region for the

probabilities 𝒫Γ; consequently the conservative critical value increases with Γ as well. This

explains the trend in the right-hand panel of Figure 1-5.
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1.11.2 The Worst-case Correlation with Bivariate Outcomes

In the case for 𝐾 = 2, an elementary proof establishes a closed form of the optimizing

correlation matrix subject to box constraints.

Theorem A.5. Suppose that 𝐾 = 2 and [ℓ, 𝑢] ⊆ (−1, 1). Over all matrices 𝑀 in the set

𝑆 =

⎧⎨⎩
⎡⎣1 𝜌

𝜌 1

⎤⎦ : 𝜌 ∈ [ℓ, 𝑢]

⎫⎬⎭
the matrix

⎡⎣1 ℓ

ℓ 1

⎤⎦ achieves the most conservative (largest possible) 1−𝛼 quantile of �̄�2(𝑀−1,Λ+).

Proof. Say that 𝑋 ∼ �̄�2(𝑀−1,Λ+) for 𝑀−1 ∈ 𝑆. From (SS02) the probability

P (𝑋 ≤ 𝑐) = 𝑤0(2,𝑀
−1)P

(︀
𝜒2
0 ≤ 𝑐

)︀
+

1

2
P
(︀
𝜒2
1 ≤ 𝑐

)︀
+ 𝑤2(2,𝑀

−1)P
(︀
𝜒2
2 ≤ 𝑐

)︀
= 𝑤2(2,𝑀)P

(︀
𝜒2
0 ≤ 𝑐

)︀
+

1

2
P
(︀
𝜒2
1 ≤ 𝑐

)︀
+ 𝑤0(2,𝑀)P

(︀
𝜒2
2 ≤ 𝑐

)︀
where each 𝜒2

𝑖 is an independent random variable with 𝜒2
𝑖 distribution. The value 𝑤2−𝑖(2,𝑀)

is the probability that the projection, under the norm induced by the quadratic form 𝑥𝑇𝑀𝑥,

of a standard bivariate normal random vector onto the non-negative orthant has exactly 2−𝑖

positive components. By an argument presented in (SS02), this interpretation of 𝑤2−𝑖(2,𝑀)

is equivalent to defining 𝑤2−𝑖(2,𝑀) as the probability that a standard bivariate normal

random variable 𝑍 falls into 𝑅𝑖 =
{︀
𝑥 ∈ R2 |

∑︀2
𝑘=1 1(𝑏𝑘 > 0) = 𝑖

}︀
where 𝑏 = 𝑀1/2𝑧. Since

𝑤2(2,𝑀)+𝑤0(2,𝑀) = 1 and P (𝜒2
0 ≤ 𝑐) ≥ P (𝜒2

2 ≤ 𝑐) for all scalars 𝑐 it suffices to maximize

𝑤2(2,𝑀).

Taking

𝑀 =

⎡⎣1 𝜌

𝜌 1

⎤⎦
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gives that maximizing 𝑤2(2,𝑀) is equivalent to maximizing the area 𝑅2 in Figure 1-6 The

𝑥1

𝑥2

𝑅2

𝐴

Figure 1-6: Pictorial representation of the region 𝑅2. The upper right boundary of 𝑅2 is the
line given by 𝐴.

slope of the line 𝐴 is 𝜌 − 𝜌−1 when 𝜌 ̸= 0 and 𝐴 is vertical when 𝜌 = 0. Maximizing 𝑅2

corresponds to taking 𝜌 as small as possible within [ℓ, 𝑢]. Thus the matrix 𝜌 = ℓ achieves

the most conservative 1− 𝛼 critical value of �̄�2(𝑀−1,Λ+).

1.11.3 A Bivariate Illustration of the Chi-bar-squared Distribution

Consider a mean-zero bivariate normal with covariance 𝑉 and consider the distribution of

�̄�2(𝑉,Λ+). By the law of total probability,

P
(︀
�̄�2(𝑉,Λ+) ≤ 𝑐

)︀
=

2∑︁
𝑖=0

pr{�̄�2(𝑉,Λ+) ≤ 𝑐 | 𝑋 ∈ 𝑅𝑖}pr(𝑋 ∈ 𝑅𝑖),

where 𝑅0, 𝑅1, and 𝑅2 are disjoint coverings of R2. Let 𝑏 = 𝑉 −1/2𝑥, and set

𝑅𝑖 =

{︃
𝑥 ∈ R2 |

2∑︁
𝑘=1

1(𝑏𝑘 > 0) = 𝑖

}︃
;

this is shown in Figure 1-7.
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Figure 1-7: The regions corresponding to different distributional forms of the likelihood ratio
statistic. In the left image 𝑉 = 𝐼2×2; the right image illustrates the general case, in this case
the correlation is −0.8.

Within each 𝑅𝑖, �̄�2(𝑉,Λ+) ∼ 𝜒2
𝑖 , where 𝜒2

0 is a point mass at zero. The weights of the

�̄�2
𝐾(𝑉,Λ+) are determined by the probability of falling into each partition, and are seen to

depend on the covariance 𝑉 .

Expansive literature exists on the �̄�2 distribution. The paper (Kud63) introduces the

topic in the context of order constrained one-sided tests; Chapter 3 of (SS05) contains detailed

examples and derivations as well as a collection of many contemporary results; and (Sha85)

discusses the weights 𝑤𝑖(𝑘, 𝑉, 𝐶) extensively.

1.12 Matching Details For Smoking And Polycyclic Aro-

matic Hydrocarbons

Individuals were classified as cigarette smokers or as non-cigarette-smokers in accordance

with the criteria used in (FS16). This divided the population of 1638 total individuals into

432 cigarette smokers and 1206 non-cigarette-smokers. The population of non-smokers did

include those who may have smoked in the past but had stopped smoking by the time of the

survey, as well as individuals who had never smoked cigarettes. The individuals were placed

into matched groups using a full matching procedure (Ros10, Section 8.5); thus each group
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contained a single treated unit and multiple control units or a single control unit and multiple

treated units. Pre-treatment covariates were selected based upon recent medical research. To

form the fully-matched sets, propensity score caliper with a rank-based Mahalanobis distance

for within-caliper distance was used. The caliper was set at 0.08 and logistic regression was

performed to estimate propensity scores (Ros10, Section 8). See (FS16, Appendix A) for

further implementation details.
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Chapter 2

No-harm Calibration for Generalized

Oaxaca-Blinder Estimators
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Abstract

In randomized experiments, adjusting for observed features when estimating treatment ef-
fects has been proposed as a way to improve asymptotic efficiency. However, only linear
regression has been proven to form an estimate of the average treatment effect that is asymp-
totically no less efficient than the treated-minus-control difference in means regardless of the
true data generating process. Randomized treatment assignment provides this “do-no-harm"
property, with neither truth of a linear model nor a generative model for the outcomes being
required. We present a general calibration method which confers the same no-harm prop-
erty onto estimators leveraging a broad class of nonlinear models. This recovers the usual
regression-adjusted estimator when ordinary least squares is used, and further provides non-
inferior treatment effect estimators using methods such as logistic and Poisson regression.
The resulting estimators are non-inferior to both the difference in means estimator and to
treatment effect estimators that have not undergone calibration. We show that our estima-
tor is asymptotically equivalent to an inverse probability weighted estimator using a logit
link with predicted potential outcomes as covariates. In a simulation study, we demonstrate
that common nonlinear estimators without our calibration procedure may perform markedly
worse than both the calibrated estimator and the unadjusted difference in means.

2.1 Introduction

In completely randomized experiments, (Lin13) demonstrated that linear regression employ-

ing treatment-by-covariate interactions can be used to estimate the sample average treatment

effect while adjusting for baseline features. The orthogonalities arising in the geometry of

linear regression in concert with the act of randomization yield a “do-no-harm" property

for the resulting estimator: assuming neither the existence of a true linear model nor a

generative model for the outcome variables, the regression-adjusted estimator’s asymptotic

variance is never larger than that of the usual difference in means estimator. While the

resulting estimator is asymptotically no less efficient than the difference in means regardless

of the data generating process, linear regression seems ill-suited for modeling phenomena

such as binary or count data. In such contexts, leveraging a nonlinear model such as logistic

or Poisson regression may seem more natural.

Lin’s (2013) regression-adjusted estimator can be viewed as an imputation estimator:
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the practitioner uses linear regressions of outcomes on covariates to impute counterfactual

outcomes, and then takes the difference in means between the imputed populations as their

estimate of the treatment effect. Building upon the work of (Oax73) and (Bli73) among

others, (GB21) present a general theory for leveraging “simple” nonlinear models to impute

missing potential outcomes, providing conditions for consistency and asymptotic normality

for the resulting treatment effect estimators, coined generalized Oaxaca-Blinder estimators.

That said, (GB21) were not able to establish a non-inferiority property for these nonlinear

estimators relative to the difference in means estimator, raising the concern that imputation

with more general prediction functions could degrade inference relative to no adjustment

whatsoever.

A related class of treatment effect estimators are model standardization estimators, which

take the difference in the averages of the predicted values for the potential outcomes under

treatment and control as an effect estimate. These are equivalent to Oaxaca-Blinder estima-

tors when the average of the fitted values for those receiving treatment and control equal the

average of the observed outcomes for those individuals; this holds automatically for gener-

alized linear models. When using nonlinear adjustment, standardized estimators have been

shown to have non-inferior asymptotic efficiency relative to the difference in means estimator

under a superpopulation model when assuming correct specification of the conditional mean

function; see for instance (RvdL10) or (NW21, Theorem 7.1). Unfortunately, this class of

estimators does not generally provide non-inferior treatment effect estimates under misspec-

ification. Negi and Wooldridge remark that “we do not have theoretical results to show when

the nonlinear [regression adjustment] methods unambiguously improve asymptotic efficiency

in case of misspecification” (NW21, p. 526). (LD20) generalized linear model standardiza-

tion results to high-dimensional data; they retain the asymptotic non-inferiority of (Lin13)

but their proofs rest upon the linearity of the prediction functions. This leaves a major gap

between linear and nonlinear regression adjustment in randomized experiments.

We provide a calibration procedure that confers non-inferiority after nonlinear regression
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adjustment under both the finite-population and superpopulation framework for causal in-

ference. To the best of our knowledge this is the first procedure for conferring non-inferiority

to generalized Oaxaca-Blinder estimators and model standardization estimators while re-

maining agnostic to the truth of an underlying nonlinear model. Our procedure simply feeds

the predicted values for the potential outcomes under both treatment and control from a

nonlinear model as covariates from which to form the linear regression-adjusted estimator

of (Lin13), and provides the same non-inferiority guarantees under conditions on the pre-

diction functions outlined in this work. We show through simulation that without this cali-

bration step generalized Oaxaca-Blinder estimators can perform markedly worse than both

the calibrated estimator and the unadjusted difference in means. This leads us to strongly

recommend the use of our procedure in providing the natural extension of adjustment in

randomized experiments from linear to nonlinear models. Not only are calibrated estimators

non-inferior to both the difference in means estimator and the uncalibrated estimator, but

also without calibration generalized Oaxaca-Blinder estimators can perform worse than the

difference in means even when using simple, commonly deployed nonlinear models. We fur-

ther discuss how calibration may be used in concert with adjustment strategies leveraging

flexible nonlinear methods without corrupting desirable properties such as semiparametric

efficiency.

2.2 Notation And Review

2.2.1 Notation for Completely Randomized Designs

We begin under the finite-population approach to causal inference where randomized treat-

ment allocation alone justifies our results without assuming a generative model for outcomes

or features; as will be discussed, our findings also hold under common superpopulation for-

mulations for inference on both the population average treatment effect and the conditional
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average treatment effect. An experimental population is comprised of 𝑁 units. For the 𝑖th

unit there are two scalar potential outcomes: what would have been observed under control,

𝑦𝑖(0); and what would have been observed under treatment, 𝑦𝑖(1). Randomness only enters

the experiment through the allocation of treatment over the population of 𝑁 individuals,

𝑛0 of whom receive the control and 𝑛1 of whom receive the treatment. Let 𝑍𝑖 denote the

treatment indicator of the 𝑖th unit: 𝑍𝑖 = 1 if the 𝑖th unit receives treatment otherwise

𝑍𝑖 = 0. In a completely randomized experiment, the vector 𝑍 = (𝑍1, . . . , 𝑍𝑁)
T is distributed

uniformly over Ω𝐶𝑅𝐸 =
{︁
𝑧 ∈ {0, 1}𝑁 :

∑︀𝑁
𝑖=1 𝑧𝑖 = 𝑛1

}︁
. Asymptotics are taken with respect

to a sequence of finite experimental populations. For each 𝑁 the characteristics of the fi-

nite population may change, as may the ratio of treated to control units; this dependence

is generally suppressed in the notation that follows. We assume that 𝑛1/𝑁 → 𝑝 satisfying

0 < 𝑝 < 1 as 𝑁 → ∞.

An experimenter draws a treatment allocation 𝑍 uniformly from Ω𝐶𝑅𝐸. Under the stable-

unit treatment value assumption (Rub80), she then observes 𝑦1(𝑍1), . . . , 𝑦𝑁(𝑍𝑁), the poten-

tial outcomes corresponding to the observed treatment assignment. The sample average

treatment effect for the 𝑁 units is 𝜏 sate = 𝑁−1
∑︀𝑁

𝑖=1 {𝑦𝑖(1)− 𝑦𝑖(0)}, and is unknown be-

cause 𝑦𝑖(0) and 𝑦𝑖(1) cannot be jointly observed for any unit 𝑖. The conventional estimator

for 𝜏 sate is 𝜏𝑢𝑛𝑎𝑑𝑗 = 𝑛−1
1

∑︀𝑁
𝑖=1 𝑍𝑖𝑦𝑖(𝑍𝑖) − 𝑛−1

0

∑︀𝑁
𝑖=1(1 − 𝑍𝑖)𝑦𝑖(𝑍𝑖), the treated-minus-control

difference in means (Ney23). Under mild regularity conditions on the sequence of finite

populations, 𝑁1/2 (𝜏𝑢𝑛𝑎𝑑𝑗 − 𝜏 sate) obeys a central limit theorem (LD17).

2.2.2 The Generalized Oaxaca-Blinder Estimator

Oftentimes baseline covariates 𝑥𝑖 ∈ R𝑘 are collected for each unit in the study. While

𝜏𝑢𝑛𝑎𝑑𝑗 is unbiased without adjustment its variance may be inflated due to post-randomization

imbalances on covariates predictive of the outcome. Imputation estimators use covariate

information to impute the counterfactual 𝑦𝑖(1−𝑍𝑖) with the objective of reducing estimator
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variance. Suppose one trains predictors for the outcomes under control and treatment, �̂�0(𝑥𝑖)

and �̂�1(𝑥𝑖) respectively. Following (GB21), define imputed outcomes 𝑦𝑖(𝑧) for 𝑧 = 0, 1 and

the resulting generalized Oaxaca-Blinder estimator as

𝜏𝑔𝑂𝐵 = 𝑁−1

𝑁∑︁
𝑖=1

{𝑦𝑖(1)− 𝑦𝑖(0)} ; 𝑦𝑖(𝑧) =

⎧⎪⎨⎪⎩𝑦𝑖(𝑍𝑖) if 𝑍𝑖 = 𝑧

�̂�𝑧 (𝑥𝑖) if 𝑍𝑖 ̸= 𝑧

. (1)

Both the difference-in-means estimator and Lin’s (2013) regression-adjusted estimator

arise from particular choices for �̂�1 and �̂�0. (GB21) present a set of sufficient conditions

which facilitate analysis of the limiting distribution for 𝑁1/2(𝜏𝑔𝑂𝐵 − 𝜏). We generalize their

conditions slightly. Two important assumptions, “stability” and “vanishing error processes”,

allow for asymptotic reformulations of the estimators in terms of certain residuals. A third,

“prediction unbiasedness,” ensures robustness of Oaxaca-Blinder estimators to model mis-

specification.

Assumption 1 (Stability). For 𝑧 = 0, 1, there exists a deterministic sequence of functions

{�̇�(𝑁)
𝑧 }𝑁∈N such that

⃒⃒⃒⃒⃒⃒
�̂�𝑧 − �̇�

(𝑁)
𝑧

⃒⃒⃒⃒⃒⃒
𝑁

:=
{︁
𝑁−1

∑︀𝑁
𝑖=1 ||�̇�

(𝑁)
𝑧 (𝑥𝑖)− �̂�𝑧(𝑥𝑖)||2

}︁1/2

= 𝑜𝑝(1). For

notational simplicity, we generally drop the superscripted index and write �̇�𝑧.

Assumption 2 (Vanishing Error Process). For a function 𝑓 : R𝑘 → R define1

𝒢𝑁,𝑧(𝑓) = 𝑁−1/2

𝑁∑︁
𝑖=1

(︂
1{𝑍𝑖=𝑧}𝑓(𝑥𝑖)

𝑛𝑧/𝑁
− 𝑓(𝑥𝑖)

)︂
.

Assume that, for 𝑧 ∈ {0, 1}, the error stochastic process |𝒢𝑁,𝑧(�̇�𝑧)− 𝒢𝑁,𝑧(�̂�𝑧)| vanishes in

probability; formally

|𝒢𝑁,𝑧(�̇�𝑧)− 𝒢𝑁,𝑧(�̂�𝑧)| = 𝑜𝑃 (1) .

Assumption 3 (Prediction Unbiasedness).
∑︀

𝑖:𝑍𝑖=𝑧 �̂�𝑧(𝑥𝑖) =
∑︀

𝑖:𝑍𝑖=𝑧 𝑦𝑖(𝑍𝑖) for 𝑧 = 0, 1.
1We use the notation 𝒢𝑁,𝑧 to follow that of (GB21), but the stochastic process {𝒢𝑁,𝑧(·)} indexed by

functions 𝑓 has been implicitly examined elsewhere in the literature, e.g., (Rot20).
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If �̂�𝑧 is the solution to some empirical risk minimization procedure, then a natural candi-

date for �̇�𝑧 is the population-level risk minimizer and Assumption 1 reflects the standard goal

that the empirical risk minimizers approximate the population risk minimizers as the sample

size grows. The functions �̇�0 and �̇�1 need not reflect any true relationship between outcomes

and covariates. Assumption 2 is quite general; in the supplementary material we provide

concrete sufficient conditions based upon an entropy bound of (vdVW11) or cross-fitting.

Assumption 3 holds for many choices of nonlinear models, including generalized linear mod-

els. Under Assumption 3 the estimator may be written as a model standardization estimator,

with 𝜏𝑔𝑂𝐵 = 𝑁−1
∑︀𝑁

𝑖=1{�̂�1(𝑥𝑖)− �̂�0(𝑥𝑖)}.

Assumptions 1, 2, and 3 are sufficient to establish consistency and asymptotically linear

representations for generalized Oaxaca-Blinder estimators (GB21, Theorems 2-3). Further

regularity conditions are required to imply asymptotic normality (GB21, Corollary 1). Based

upon the assumptions of (Lin13) and (Fre08b) we assume the following about the potential

outcomes and the functions �̇�𝑧:

Assumption 4 (Limiting Means and Variances). The mean vector and covariance matrix

of (𝑦𝑖(0), 𝑦𝑖(1), �̇�0(𝑥𝑖), �̇�0(𝑥𝑖))
T have limiting values. For instance, for 𝑧 = 0, 1 there exists a

limiting value 𝑦(𝑧)∞ such that lim𝑁→∞𝑁−1
∑︀𝑁

𝑖=1 𝑦𝑖(𝑧) = 𝑦(𝑧)∞.

Assumption 5 (Bounded Fourth Moments). There exists some 𝐶 < ∞ for which, for all

𝑧 = 0, 1 and all 𝑁 , 𝑁−1
∑︀𝑁

𝑖=1{𝑦𝑖(𝑧)}4 < 𝐶 and 𝑁−1
∑︀𝑁

𝑖=1 {�̇�𝑧(𝑥𝑖)}4 < 𝐶.

2.3 Linear Calibration

Assumptions 1 - 5 are not sufficient for 𝜏𝑔𝑂𝐵 to be non-inferior to the unadjusted difference

in means estimator; see Section 2.6 for an illustration with Poisson regression. We now de-

scribe a simple transformation of �̂�𝑧 that provides a “do-no-harm" property after nonlinear

adjustment. For each unit 𝑖, create the pseudo-feature vector �̃�𝑖 = (�̂�0(𝑥𝑖), �̂�1(𝑥𝑖))
T contain-
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ing the predicted potential outcomes under control and treatment. Then, for 𝑧 = 0, 1, define

�̂�𝑂𝐿𝑆,𝑧(𝑥𝑖) as the prediction equation from a least squares regression of 𝑦𝑖(𝑍𝑖) on �̃�𝑖 along

with an intercept for those units 𝑖 such that 𝑍𝑖 = 𝑧, yielding for 𝑧 = 0, 1

�̂�𝑂𝐿𝑆,𝑧(𝑥𝑖) = �̂�𝑧 + 𝛽𝑧,0�̂�0(𝑥𝑖) + 𝛽𝑧,1�̂�1(𝑥𝑖); (2)

(�̂�𝑧, 𝛽𝑧,0, 𝛽𝑧,1)
T ∈ argmin

(𝛼𝑧 ,𝛽𝑧,0,𝛽𝑧,1)T

∑︁
𝑖:𝑍𝑖=𝑧

{𝑦𝑖(𝑧)− 𝛼𝑧 − 𝛽𝑧,0�̂�0(𝑥𝑖)− 𝛽𝑧,1�̂�1(𝑥𝑖)}2.

Finally, form the treatment effect estimator (1) using �̂�𝑂𝐿𝑆,0 and �̂�𝑂𝐿𝑆,1. Equivalently, simply

calculate Lin’s (2013) regression-adjusted estimator with the features �̃�𝑖 = (�̂�0(𝑥𝑖), �̂�1(𝑥𝑖))
T.

We call the resulting estimator the linearly-calibrated Oaxaca-Blinder estimator, denoted

by 𝜏𝑐𝑎𝑙; see the supplementary material for pseudocode. The approach is similar to that of

(GB21, Equation 8), but importantly differs in that under their approach �̂�1−𝑧(𝑥𝑖) is not

included as a predictor variable in the regressions for individuals with 𝑍𝑖 = 𝑧. By including

both prediction functions in �̃�𝑖, 𝜏𝑐𝑎𝑙 attains non-inferiority.

Theorem 1. Suppose that Assumptions 1, 2, 4, and 5 hold. Then, 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate) con-

verges in distribution to a mean-zero Gaussian random variable. Furthermore the asymptotic

variance of 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate) is no larger than that of 𝑁1/2 (𝜏𝑢𝑛𝑎𝑑𝑗 − 𝜏 sate).

Theorem 1 does not require knowledge of the true relationship between outcomes and

covariates, and the models �̂�0 and �̂�1 can be arbitrarily misspecified. Assumption 3 is

not required for �̂�0 and �̂�1 because prediction unbiasedness always holds after applying

our procedure due to the inclusion of the intercept terms. The non-inferiority statement

in Theorem 1 is proven in a manner similar to Corollary 1.1 of (Lin13); however, care

must be taken to account for randomness in the incorporation of the derived covariates

�̃�𝑖 = (�̂�0 (𝑥𝑖) , �̂�1 (𝑥𝑖))
T. The proof further demonstrates that the sufficient conditions for

asymptotic Gaussianity of𝑁1/2(𝜏𝑔𝑂𝐵−𝜏 sate) provided by Assumptions 1 - 5 are also sufficient

for the asymptotic Gaussianity of 𝑁1/2(𝜏𝑐𝑎𝑙 − 𝜏 sate). That is, under these assumptions non-
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inferiority can be achieved “for free" through our calibration step. A similar argument yields

the following comparisons between 𝜏𝑐𝑎𝑙 and both the non-calibrated estimator 𝜏𝑔𝑂𝐵 under

Assumption 3 and the singly-calibrated estimator suggested in (GB21, Equation 8), denoted

𝜏𝐺𝐵𝑐𝑎𝑙.

Theorem 2. Under the assumptions of Theorem 1 and for given estimators �̂�0 and �̂�1, the

linearly-calibrated estimator 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate) has an asymptotic variance that is no larger

than that of 𝑁1/2 (𝜏𝐺𝐵𝑐𝑎𝑙 − 𝜏 sate). Further enforcing Assumption 3, 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate) has

an asymptotic variance that is no larger than that of 𝑁1/2 (𝜏𝑔𝑂𝐵 − 𝜏 sate).

2.4 Further Insight Into Linear Calibration

As the calibration step may appear unusual, it is first worthwhile to consider what occurs

when �̂�1 and �̂�0 are fit by separate ordinary least squares regressions with intercepts in

the treated and control groups. In this case, 𝜏𝑐𝑎𝑙, 𝜏𝑔𝑂𝐵, and 𝜏𝐺𝐵𝑐𝑎𝑙 are identical to Lin’s

(2013) estimator as the resulting prediction equations remain linear in the covariates them-

selves; see the supplementary materials for a formal proof. Including �̂�0(𝑥𝑖) and �̂�1(𝑥𝑖)

as predictors when calculating 𝜏𝑐𝑎𝑙 also yields an insightful asymptotic equivalence with an

inverse probability weighted (IPW) estimator. Suppose that despite having run a random-

ized experiment with known assignment probabilities, one fits a logistic regression model

for the probability that 𝑍𝑖 = 1 with �̃�𝑖 = (�̂�0 (𝑥𝑖) , �̂�1 (𝑥𝑖))
T as covariates along with an

intercept. Call the resulting predicted probabilities �̂�(�̃�𝑖). Consider the IPW estimator

𝜏𝑖𝑝𝑤 = 𝑁−1
∑︀𝑁

𝑖=1 𝑍𝑖𝑦𝑖(𝑍𝑖)/�̂�(�̃�𝑖)−𝑁−1
∑︀𝑁

𝑖=1(1− 𝑍𝑖)𝑦𝑖(𝑍𝑖)/{1− �̂�(�̃�𝑖)}.

Theorem 3. Under the assumptions of Theorem 1 𝑁1/2(𝜏𝑐𝑎𝑙 − 𝜏𝑖𝑝𝑤) = 𝑜𝑝(1). That is, the

two estimators are asymptotically equivalent.

In light of the proof of Theorem 1, the result follows immediately from Corollary 1 of

(SLL14) and is omitted; see also (HIR03) for related results on IPW estimators. In random-
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ized experiments, inverse probability weighted estimators adjust for chance imbalances on

variables contained within the propensity score model by reweighting individuals using their

predicted probabilities of treatment. Imbalances on covariates are problematic only in so far

as the covariates are predictive of the potential outcomes. By including both �̂�0 and �̂�1 within

the propensity score model, 𝜏𝑖𝑝𝑤 adjusts for chance imbalances on the predicted values for the

potential outcomes under treatment and control. Both (RLSR12) and (CR15) use predicted

potential outcomes into propensity score models to establish non-inferior treatment effect

estimators under a superpopulation. By the asymptotic equivalence provided by Theorem

3, 𝜏𝑐𝑎𝑙 can also be viewed in this light. Importantly, this equivalence does not generally hold

for the entire class of Oaxaca-Blinder estimators 𝜏𝑔𝑂𝐵. The estimator 𝜏𝐺𝐵𝑐𝑎𝑙 suggested in

(GB21, Equation 8) is equivalent to a peculiar IPW estimator where the treated and control

outcomes are weighted with estimated probabilities stemming from different logit models,

with the treated (resp. control) outcomes weighted by estimated probabilities where only

fitted values under treatment (resp. control) are used as covariates.

2.5 Calibration And Non-Inferiority Under Superpopu-

lation Models

Our results have viewed the potential outcomes and covariates as fixed, with the only random-

ness coming from random assignment. As the recruitment process for inclusion in randomized

experiments often amounts to a convenience sample, we view this as a natural framework

for inference. Alternative frameworks view (𝑦𝑖(1), 𝑦𝑖(0), 𝑥𝑖) as independent and identically

distributed draws from some distribution 𝑃 . Still others view 𝑥𝑖 as fixed but (𝑦𝑖(1), 𝑦𝑖(0)) as

independently distributed from some conditional distribution 𝑃𝑦(1),𝑦(0)|𝑥. The corresponding

estimands are the population average treatment effect (PATE) and the conditional average

treatment effect (CATE), respectively (Imb04). Theorems 1 - 3 apply with 𝜏 replaced by

100



𝜏pate or 𝜏cate and with our regularity conditions reformulated depending upon the super-

population framework. See the supplementary materials for details.

When the triples (𝑦𝑖(1), 𝑦𝑖(0), 𝑥𝑖) are viewed as independent and identically distributed

draws from a distribution 𝑃 , alternative estimators leveraging nonlinear adjustment exist

which either guarantee non-inferiority under model misspecification, or leverage cross-fitting

to attain semiparametric efficiency bounds. Methods guarding against model misspecifica-

tion in parametric models include (Tan10), (RLSR12) and (CR15). These are not imputation

estimators, require explicitly fitting a separate propensity score model, and in the case of

(RLSR12) require solving a non-convex optimization problem. Our calibration step returns

an imputation estimator, and it can be implemented using off-the-shelf statistical software,

simply requiring an initial (potentially nonlinear) regression adjustment within each treat-

ment group followed by a linear regression using the fitted values as covariates. Calibration

may be deployed in concert with augmented inverse probability weighted (AIPW) and tar-

geted maximum likelihood estimators (TMLE) within randomized experiments. For instance,

one may replace �̂�𝑧 by �̂�𝑂𝐿𝑆,𝑧 of (2) to produce an AIPW estimator which is guaranteed to

be non-inferior to both the uncalibrated AIPW estimator and the unadjusted difference in

means. Should the original AIPW estimator achieve the semiparametric efficiency bound, so

too will the estimator after calibration. Should the uncalibrated AIPW estimator be based

upon a misspecified model, calibration can provide an improvement over both the uncali-

brated AIPW estimator and the unadjusted estimator. The relationship between calibration

and semiparametric efficiency is explored in detail in the supplementary materials. Fur-

thermore, in the supplementary materials we discuss the use of sample splitting to acheive

finite sample unbiasedness of calibrated estimators under superpopulation models, thereby

extending the results of (WGB18) and (Rot20). We also include simulations to emphasize

these points.
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2.6 Illustrating The Improvements From Linear Calibra-

tion

To illustrate both the benefits of linear calibration with the prediction equations for both

potential outcomes and the potential peril of proceeding without our calibration step, we

present a simulation study using Poisson regression. The 𝑠th of 𝑆 data sets contains 𝑁

individuals upon whom an experimenter performs a completely randomized experiment with

𝑛1 = ⌈𝑝𝑁⌉ treated units. In our simulations 𝑝 = 0.8. Each unit has a scalar covariate

𝑥𝑖, generated as independent and identically distributed draws from a Uniform random

variable on [−5, 5]. We then generate the potential outcomes under treatment and control

for each individual independently as 𝑦𝑖(1) ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛{exp(𝑥𝑖)} and 𝑦𝑖(0) ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛{72 −

0.45 exp(𝑥𝑖)}, where 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) is a Poisson distribution with rate 𝜆. The Poisson regression

model is thus correctly specified for the potential outcomes under treatment, but incorrectly

specified for those under control.

For each data set, we draw𝐵 treatment assignment allocations. An experimenter observes

𝑦𝑖(𝑍𝑖) and continuous covariates 𝑥𝑖 for each unit. Using the observed responses after each

randomized treatment allocation, we estimate the prediction functions �̂�0(𝑥𝑖) and �̂�1(𝑥𝑖) via

separate Poisson regressions of 𝑦𝑖(𝑍𝑖) on 𝑥𝑖 in the subgroups where 𝑍𝑖 = 0 and 𝑍𝑖 = 1

respectively. With the outcomes and response functions in tow, we form the difference-

in-means estimator 𝜏𝑢𝑛𝑎𝑑𝑗, generalized Oaxaca-Blinder estimator 𝜏𝑔𝑂𝐵, the singly-calibrated

estimator of (GB21, Equation 8) 𝜏𝐺𝐵𝑐𝑎𝑙, and our linearly-calibrated estimator 𝜏𝑐𝑎𝑙.

Table 2.1 compares the averages (over 𝑠 = 1, . . . , 𝑆) of the ratios of the variances for

the adjusted estimators to the unadjusted estimator when setting 𝑆 = 1000, 𝐵 = 1000, and

varying 𝑁 . Even at 𝑁 = 10, 000, both 𝜏𝑔𝑂𝐵 and 𝜏𝐺𝐵𝑐𝑎𝑙 have markedly larger variances than

the unadjusted difference in means estimator. Contrast this with our proposed estimator

𝜏𝑐𝑎𝑙, which in this simulation study provides a substantial reduction in variance relative to
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v̂ar(𝜏𝑔𝑂𝐵)/v̂ar(𝜏𝑢𝑛𝑎𝑑𝑗) v̂ar(𝜏𝐺𝐵𝑐𝑎𝑙)/v̂ar(𝜏𝑢𝑛𝑎𝑑𝑗) v̂ar(𝜏𝑐𝑎𝑙)/v̂ar(𝜏𝑢𝑛𝑎𝑑𝑗)
𝑁 = 200 1.732 1.717 0.703
𝑁 = 500 1.692 1.685 0.665
𝑁 = 1000 1.675 1.670 0.659
𝑁 = 10000 1.660 1.657 0.654

Table 2.1: Ratios of Monte Carlo variances for 𝜏𝑐𝑎𝑙, 𝜏𝐺𝐵𝑐𝑎𝑙, and 𝜏𝑔𝑂𝐵 to the difference in
means estimator 𝜏𝑢𝑛𝑎𝑑𝑗 for various experiment sizes 𝑁 . Each variance is based upon 𝐵 = 1000
simulated treatment allocations for a given set of potential outcomes and covariates. Results
are averaged over 𝑆 = 1000 simulated data sets.

the difference in means, 𝜏𝑔𝑂𝐵 and 𝜏𝐺𝐵𝑐𝑎𝑙. This highlights the importance of including the

prediction functions for both potential outcomes in the calibration step (2) after nonlinear

adjustment. In the supplementary material we include a simulation using logistic regression

which shows the same qualitative phenomena. We also include analysis of real-world data

using Poisson regression adjustment investigating the effectiveness of a chemotherapeutic

agent.

2.7 Discussion

Linear calibration maps 𝜏𝑔𝑂𝐵 to 𝜏𝑐𝑎𝑙 in such a way that asymptotic non-inferiority is guaran-

teed. The linearly-calibrated estimator can provide hypothesis tests and construct confidence

intervals using the standard errors proposed in (GB21, Section 3.3) and a Gaussian approx-

imation; detailed discussion of variance estimators for 𝜏𝑐𝑎𝑙 is provided in the supplementary

materials. Extending (ZD21), one can further provide inference that is exact under the

sharp null of no effect for any individual while remaining asymptotically valid for the sample

average treatment effect. Calibration using only �̂�0 and �̂�1 fits into a more general class of al-

gorithms wherein calibration is performed on the vectors �̈�𝑖 = (𝑓(𝑥𝑖), �̂�0(𝑥𝑖), �̂�1(𝑥𝑖))
T instead

of just �̃�𝑖. Taking 𝑓 : R𝑘 → Rℓ adds an additional ℓ features to �̃�𝑖. Setting 𝑓(𝑥𝑖) = 𝑥𝑖 yields

an estimator which is asymptotically no less efficient than 𝜏𝑢𝑛𝑎𝑑𝑗, 𝜏𝑔𝑂𝐵, 𝜏𝑐𝑎𝑙, and Lin’s (2013)
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estimator simultaneously and is akin to the estimator of (CR15); see the supplementary

materials for details.
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Supplementary Material

Below we include additional information which contains proofs, a discussion of variance

estimation, pseudocode, superpopulation results, and a data example. Code written in R is

available at:

https://github.com/PeterLCohen/OaxacaBlinderCalibration to implement the method

and to reproduce the simulations.

2.8 Extensions And Further Results

2.8.1 Feature Engineering

While 𝜏𝑐𝑎𝑙 is no less asymptotically efficient than 𝜏𝑔𝑂𝐵 and 𝜏𝑢𝑛𝑎𝑑𝑗, there are no guarantees

that 𝜏𝑐𝑎𝑙 offers an improvement over Lin’s (2013) regression-adjusted estimator, 𝜏𝑙𝑖𝑛, in terms

of asymptotic variance. Intuitively, if the prediction functions �̂�0 and �̂�1 are extremely

poor predictors of the potential outcomes, then linear regression on the raw features may

substantially outperform even what calibration is able to correct. Must an experimenter

decide a priori whether to use 𝜏𝑐𝑎𝑙 or 𝜏𝑙𝑖𝑛 when she seeks an estimator of 𝜏 sate that is certain

to be no less efficient than 𝜏𝑢𝑛𝑎𝑑𝑗? In fact, there is an estimator which is non-inferior to both

𝜏𝑐𝑎𝑙 and 𝜏𝑙𝑖𝑛.

In the calibration algorithm pseudo-feature vectors were defined as

�̃�𝑖 = (�̂�0(𝑥𝑖), �̂�1(𝑥𝑖))
T .

Instead, take �̈�𝑖 = (𝑓(𝑥𝑖), �̂�0(𝑥𝑖), �̂�1(𝑥𝑖))
T where 𝑓 : R𝑘 → Rℓ for some fixed ℓ. The function

𝑓 adds an additional ℓ features to �̃�𝑖; perhaps incorporating tailored feature engineering

guided by domain knowledge. Define 𝜏𝑐𝑎𝑙2 to be the calibrated Oaxaca-Blinder estimator
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based upon �̈�𝑖 instead of �̃�𝑖; i.e., incorporate the additional features 𝑓(𝑥𝑖) in the second-

stage linear regression of calibration.

Theorem A.4. Assume the regularity conditions of Theorem 1. So long as the random

vectors (𝑓(𝑥𝑖), �̂�0(𝑥𝑖), �̂�1(𝑥𝑖))
T are sufficiently regular a central limit theorem applies to

𝑁1/2 (𝜏𝑐𝑎𝑙2 − 𝜏 sate)

and it is non-inferior to both 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate) and 𝑁1/2 (𝜏𝑙𝑖𝑛 − 𝜏 sate) using the engineered

features 𝑓(𝑥𝑖).

Corollary A.1. Take 𝑓(𝑥𝑖) = 𝑥𝑖; the resulting estimator 𝜏𝑐𝑎𝑙2 is asymptotically no less

efficient than 𝜏𝑐𝑎𝑙 and the standard regression adjusted estimator of treatment effect, 𝜏𝑙𝑖𝑛.

We include proof of Theorem A.4 in Section 2.12 below, along with a more precise

statement of regularity conditions.

2.8.2 Idempotence

Let 𝒪 denote the set of Oaxaca-Blinder estimators for �̂�0 and �̂�1 satisfying Assumptions 1

and 7. Calibration can be thought of as a mapping 𝜙 : 𝒪 → 𝒪 wherein 𝜏𝑔𝑂𝐵
𝜙↦−→ 𝜏𝑐𝑎𝑙; repeated

iterations of 𝜙 induce dynamics on 𝒪. A natural question is: do repeated applications of 𝜙

provide additional improvements in terms of asymptotic efficiency?

Theorem A.5. 𝜙 is an idempotent map on 𝒪, i.e., 𝜙 ∘ 𝜙 = 𝜙.

Theorem A.5 demonstrates a desirable feature: since 𝜙 is idempotent, all of the improve-

ment possible through calibration is achieved in one application of 𝜙.

Proof. This proof uses the same line of reasoning as that of Proposition A.2, which we include

below in Section 2.12. See Remark 2 for the details of this argument.
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2.9 Regularity Conditions

In this section we lay out regularity conditions on the potential outcomes and covariates

that are sufficient for analyzing the asymptotic distributions of the estimators encountered

in the preceding sections. Finite population inference asymptotics are taken with respect to a

sequence of probability spaces which vary with the size of the finite population, 𝑁 . For each

𝑁 , there are deterministic potential outcomes and covariates for each of the 𝑁 individuals;

randomness enters the model only through the treatment allocation, 𝑍. Our results center

around completely randomized experiments; i.e., 𝑍 ∼ Unif(Ω𝐶𝑅𝐸). A basic requirement is

that the completely randomized experiments are not asymptotically degenerate.

Assumption A.6 (Non-degeneracy). The proportion of treated units, 𝑛1/𝑁 , limits to 𝑝 ∈

(0, 1) as 𝑁 → ∞.

Our main set of assumptions concern the prediction functions �̂�0 and �̂�1. These as-

sumptions play into the asymptotic analysis of generalized Oaxaca-Blinder estimators. The

following two regularity conditions match those of (GB21).

Assumption 1 (Stability). There exists a deterministic sequence of functions

{�̇�(𝑁)
1 }𝑁∈N such that

(︃
1

𝑁

𝑁∑︁
𝑖=1

||�̇�(𝑁)
1 (𝑥𝑖)− �̂�1(𝑥𝑖)||2

)︃1/2

= 𝑜𝑃 (1).

The left-hand-side of the formula above satisfies the properties of a norm on functions; this

norm is denoted || · ||𝑁 and so an equivalent statement is that
⃒⃒⃒⃒⃒⃒
�̂�1 − �̇�

(𝑁)
1

⃒⃒⃒⃒⃒⃒
𝑁
= 𝑜𝑃 (1).

We assume that an analogous sequence, {�̇�(𝑁)
0 }𝑁∈N, exists for �̂�0. For notational simplic-

ity we drop the superscripted index and write �̇�0 and �̇�1, but the dependence upon 𝑁 remains

an important background detail.
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An instructive example of this assumption in practice is when �̂�0 and �̂�1 are derived via

linear regression as in (Lin13). The deterministic sequence {�̇�(𝑁)
1 }𝑁∈N can be taken as the

population-level ordinary least squares linear predictor of treated outcome given covariates.

Assumption 2 (Vanishing Error Process). For a function 𝑓 : R𝑘 → R define2

𝒢𝑁,𝑧(𝑓) = 𝑁−1/2

𝑁∑︁
𝑖=1

(︂
1{𝑍𝑖=𝑧}𝑓(𝑥𝑖)

𝑛𝑧/𝑁
− 𝑓(𝑥𝑖)

)︂
.

Assume that, for 𝑧 ∈ {0, 1}, the error stochastic process |𝒢𝑁,𝑧(�̇�𝑧)− 𝒢𝑁,𝑧(�̂�𝑧)| vanishes in

probability; formally |𝒢𝑁,𝑧(�̇�𝑧)− 𝒢𝑁,𝑧(�̂�𝑧)| = 𝑜𝑃 (1).

We include the prediction unbiasedness assumption of (GB21) in order to rigorously

discuss asymptotic results for 𝜏𝑔𝑂𝐵.

Assumption 3 (Prediction Unbiasedness). For 𝑧 = 0, 1,

∑︁
𝑖:𝑍𝑖=𝑧

�̂�𝑧(𝑥𝑖) =
∑︁
𝑖:𝑍𝑖=𝑧

𝑦𝑖(𝑍𝑖).

The next assumptions constrain the sets of potential outcomes and imputed responses so

that central limit behaviour holds for the estimators considered above. Asymptotic theory

for finite population inference builds upon combinatorial analogues for classical probabil-

ity theory results; see (Mad48), (ER59), (H6́0), and (Hoe51) among many others. (LD17)

developed results for finite population central limit theorems in causal inference; the regu-

larity conditions of their work have become standard in the literature and form the basis for

our regularity conditions. The conditions below naturally generalize those of (Lin13) and

(Fre08a, Fre08b) to the nonlinear imputation context of (GB21).

2We use the notation 𝒢𝑁,𝑧 to follow that of (GB21), but the stochastic process {𝒢𝑁,𝑧(·)} indexed by
functions 𝑓 has been implicitly examined elsewhere in the literature, e.g., (Rot20).
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Assumption 4 (Limiting Means and Variances). The mean vector and covariance matrix

of (𝑦𝑖(0), 𝑦𝑖(1), �̇�0(𝑥𝑖), �̇�0(𝑥𝑖))
T have limiting values. For instance, for 𝑧 = 0, 1 there exists a

limiting value 𝑦(𝑧)∞ such that lim𝑁→∞𝑁−1
∑︀𝑁

𝑖=1 𝑦𝑖(𝑧) = 𝑦(𝑧)∞.

Assumption 5 (Bounded Fourth Moments). There exists some 𝐶 < ∞ for which, for all

𝑧 = 0, 1 and all 𝑁 , 𝑁−1
∑︀𝑁

𝑖=1{𝑦𝑖(𝑧)}4 < 𝐶 and 𝑁−1
∑︀𝑁

𝑖=1 {�̇�𝑧(𝑥𝑖)}4 < 𝐶.

For comparing 𝜏𝑐𝑎𝑙 to 𝜏𝑙𝑖𝑛 we will, at times, need to constrain the covariates 𝑥𝑖 directly

so that Lin’s regressions have appropriate asymptotic properties. For such applications we

make the assumption:

Assumption 6. The mean vector and covariance matrix of (𝑦𝑖(0), 𝑦𝑖(1), 𝑥T
𝑖 )

T have limiting

values. Furthermore, the bounded fourth moment assumption applies componentwise to the

raw covariates, i.e., 𝑁−1
∑︀𝑁

𝑖=1 {𝑥𝑖𝑗}
4 < 𝐶. where 𝑥𝑖𝑗 denotes the 𝑗th coordinate of 𝑥𝑖.

We use the “bar" notation to denote the mean, i.e., 𝑦(𝑧) = 𝑁−1
∑︀𝑁

𝑖=1 𝑦𝑖(𝑧). Let Σ𝑦(0)

denote the finite population covariance of the control outcomes, Σ𝑦(1) denote its treated ana-

logue, and Σ𝑦(𝑧)𝑥 the finite population covariance matrix of the joint vectors (𝑦𝑖(𝑧), 𝑥T
𝑖 )

T. In

light of this notation, Assumptions 4 and 6 imply that lim𝑁→∞ 𝑦(𝑧) = 𝑦∞(𝑧), lim𝑁→∞Σ𝑦(𝑧) =

Σ𝑦(𝑧),∞, lim𝑁→∞Σ𝑦(𝑧)𝑥 = Σ𝑦(𝑧)𝑥,∞ for 𝑧 ∈ {0, 1}, etc. The limiting covariance matrices are

assumed to be positive definite.

In the proofs we maintain the implicit assumption that the prediction functions �̂�0 and

�̂�1 are non-collinear and asymptotically almost surely non-constant when evaluated over the

set {𝑥𝑖}𝑁𝑖=1. We make the same assumption for �̇�0 and �̇�1. Extensions to the rank deficient

case are straightforward and are discussed in Section 2.14. Rank deficiency can occur in

practice: for instance, if both �̂�0 and �̂�1 are linear regressions and 𝑥𝑖 is scalar, then �̇�0 and

�̇�1 are perfectly collinear. Importantly, handling the rank-deficient case does not require

additional assumptions, but would complicate the notation used in the proofs.

For comparison with the assumptions of (GB21) and (Rot20) we include the following

entropy-based assumption.
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Assumption 7 (Typically Simple Realizations). There exists a sequence of sets of functions

A𝑁,0, which may vary with 𝑁 , such that the random function �̂�0 falls into this class asymp-

totically almost surely. Formally, P (�̂�0 ∈ A𝑁,0) → 1. Furthermore, the sets of functions are

“small" in the sense that

∫︁ 1

0

sup
𝑁

√︁
logN (A𝑁,0, || · ||𝑁 , 𝑠) 𝑑𝑠 <∞

where N (A𝑁,0, || · ||𝑁 , 𝑠) is the 𝑠-covering number of A𝑁,0 under the metric induced by || · ||𝑁 .

An analogous statement holds for �̂�1 with a sequence of sets A𝑁,1.

The inequality in Assumption 7 is common in central limit theorems for stochastic pro-

cesses: it integrates the square root of the maximal entropy without bracketing of A𝑁,𝑧; see

(LT91, Chapter 11), (vdVW96, Chapter 2), and (vdVW11) for background on the theory

and uses of covering numbers and entropy bounds. The particular upper bound on the region

of integration in Assumption 7 is unimportant, as shown in Lemma A.10. As a result, we

say Assumption 7 holds so long as there is any 𝐷 > 0 for which

∫︁ 𝐷

0

sup
𝑁

√︁
logN (A𝑁,𝑧, || · ||𝑁 , 𝑠) 𝑑𝑠 <∞

for both 𝑧 ∈ {0, 1}.

2.10 Helpful Technical Results

Lemma A.1. Let {𝑎𝑖}𝑁𝑖=1 and {𝑏𝑖}𝑁𝑖=1 be two sets of fixed scalars. Let 𝑍 ∼ Unif(Ω𝐶𝑅𝐸). The

variance of
1

𝑛1

𝑁∑︁
𝑖=1

𝑍𝑖𝑎𝑖 −
1

𝑛0

𝑁∑︁
𝑖=1

(1− 𝑍𝑖)𝑏𝑖 (3)
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is
𝑛0𝑛1

𝑁
· 1

𝑁 − 1

𝑁∑︁
𝑖=1

(︂
𝑎𝑖
𝑛1

+
𝑏𝑖
𝑛0

− 𝑎

𝑛1

+
𝑏

𝑛0

)︂2

where 𝑣 = 𝑁−1
∑︀𝑁

𝑗=1 𝑣𝑖 for 𝑣 ∈ R𝑁 .

Proof. We start with a simple algebraic manipulation:

1

𝑛1

𝑁∑︁
𝑖=1

𝑍𝑖𝑎𝑖 −
1

𝑛0

𝑁∑︁
𝑖=1

(1− 𝑍𝑖)𝑏𝑖 =
𝑁∑︁
𝑖=1

𝑍𝑖

(︂
𝑎𝑖
𝑛1

+
𝑏𝑖
𝑛0

)︂
−

𝑁∑︁
𝑖=1

𝑏𝑖
𝑛0

.

Since the second term on the right is constant with respect to 𝑍 it plays no part in the

variance of (3) so

V

(︃
1

𝑛1

𝑁∑︁
𝑖=1

𝑍𝑖𝑎𝑖 −
1

𝑛0

𝑁∑︁
𝑖=1

(1− 𝑍𝑖)𝑏𝑖

)︃
= V

(︃
𝑁∑︁
𝑖=1

𝑍𝑖

(︂
𝑎𝑖
𝑛1

+
𝑏𝑖
𝑛0

)︂)︃
.

The term on the right is the variance of the population total for drawing a sample of size 𝑛1

without replacement from the set

{︂(︂
𝑎1
𝑛1

+
𝑏1
𝑛0

)︂
, . . . ,

(︂
𝑎𝑁
𝑛1

+
𝑏𝑁
𝑛0

)︂}︂
.

This variance is well understood in the survey-sampling community; see, for instance, (MHL16).

Specifically,

V

(︃
𝑁∑︁
𝑖=1

𝑍𝑖

(︂
𝑎𝑖
𝑛1

+
𝑏𝑖
𝑛0

)︂)︃
=
𝑛0𝑛1

𝑁
· 1

𝑁 − 1

𝑁∑︁
𝑖=1

(︂
𝑎𝑖
𝑛1

+
𝑏𝑖
𝑛0

− 𝑎

𝑛1

+
𝑏

𝑛0

)︂2

Lemma A.2. Consider any two scalars, 𝑤0, 𝑣0 ∈ R and any two vectors 𝑊,𝑉 ∈ Rℓ. For a
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set of features {𝜒𝑖}𝑁𝑖=1 ⊂ Rℓ define the “residuals”

𝑟𝑖(0) = 𝑦𝑖(0)−
(︀
𝑤0 +𝑊 𝑇𝜒𝑖

)︀
𝑟𝑖(1) = 𝑦𝑖(1)−

(︀
𝑣0 + 𝑉 𝑇𝜒𝑖

)︀
.

i) The variance of
1

𝑛1

𝑁∑︁
𝑖=1

𝑍𝑖𝑟𝑖(1)−
1

𝑛0

𝑁∑︁
𝑖=1

(1− 𝑍𝑖)𝑟𝑖(0) (4)

is minimized at

(𝑤*
0,𝑊

*) ∈ argmin
𝑤0,𝑊

[︃
𝑁∑︁
𝑖=1

{︀
𝑦𝑖(0)−

(︀
𝑤0 +𝑊 𝑇𝜒𝑖

)︀}︀2]︃
, (5)

(𝑣*0, 𝑉
*) ∈ argmin

𝑣0,𝑉

[︃
𝑁∑︁
𝑖=1

{︀
𝑦𝑖(1)−

(︀
𝑣0 + 𝑉 𝑇𝜒𝑖

)︀}︀2]︃
. (6)

ii) Let 𝒳 = [𝜒1, . . . , 𝜒𝑁 ]
𝑇 . The variance of (4) achieves a strict global minimum at 𝑤*

0, 𝑣*0,

𝑊 *, and 𝑉 * when the matrix 𝒳 𝑇𝒳 is nonsingular.

Proof. By Lemma A.1, the variance of (4) is proportional to

𝑁∑︁
𝑖=1

(︃
𝑦𝑖(1)−

(︀
𝑣0 + 𝑉 𝑇𝜒𝑖

)︀
𝑛1

+
𝑦𝑖(0)−

(︀
𝑤0 +𝑊 𝑇𝜒𝑖

)︀
𝑛0

−

𝑦(1)− (𝑣0 + 𝑉 𝑇𝜒)

𝑛1

+
𝑦(0)− (𝑤0 +𝑊 𝑇𝜒)

𝑛0

)︃2

.
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Rearranging terms gives that the variance of (4) is proportional to

𝑁∑︁
𝑖=1

(︃(︂
𝑦𝑖(1)

𝑛1

+
𝑦𝑖(0)

𝑛0

)︂
−

(︃(︂
𝑣0
𝑛1

+
𝑤0

𝑛0

)︂
+

(︂
𝑉

𝑛1

+
𝑊

𝑛0

)︂𝑇

𝜒𝑖

)︃
−

(︂
𝑦(1)

𝑛1

+
𝑦(0)

𝑛0

)︂
−

(︃(︂
𝑣0
𝑛1

+
𝑤0

𝑛0

)︂
+

(︂
𝑉

𝑛1

+
𝑊

𝑛0

)︂𝑇

𝜒

)︃)︃2

. (7)

Since 𝑤*
0 and 𝑊 * are the intercept and slope, respectively, of the ordinary least squares

regression of 𝑦𝑖(0) on 𝜒𝑖 it follows that 𝑛−1
0 𝑤*

0 and 𝑛−1
0 𝑊 * are the intercept and slope,

respectively, of the ordinary least squares regression of 𝑛−1
0 𝑦𝑖(0) on 𝜒𝑖. Likewise, 𝑛−1

1 𝑣*0 and

𝑛−1
1 𝑉 * are the intercept and slope, respectively, of the ordinary least squares regression of

𝑛−1
1 𝑦𝑖(1) on 𝜒𝑖.

Consider now the regression of 𝑛−1
1 𝑦𝑖(1) + 𝑛−1

0 𝑦𝑖(0) on 𝜒𝑖. Writing the design matrix of

this regression as 𝒳 , the ordinary least squares slope is

(𝒳 𝑇𝒳 )−1𝒳 𝑇

(︂
𝑦(1)

𝑛1

+
𝑦(0)

𝑛0

)︂
= (𝒳 𝑇𝒳 )−1𝒳 𝑇 𝑦(1)

𝑛1

+ (𝒳 𝑇𝒳 )−1𝒳 𝑇 𝑦(0)

𝑛0

=
𝑉 *

𝑛1

+
𝑊 *

𝑛0

.

The second equality holds for the following reason: the first term on the right is the slope

coefficient in the regression of 𝑛−1
1 𝑦𝑖(1) on 𝜒𝑖 and so it must match 𝑛−1

1 𝑉 *, similar reasoning

applies to the second term.3 Likewise, it follows that the intercept of the regression of

𝑛−1
1 𝑦𝑖(1) + 𝑛−1

0 𝑦𝑖(0) on 𝜒𝑖 is given by 𝑛−1
1 𝑣*0 + 𝑛−1

0 𝑤*
0. In total, the argument above implies

that the ordinary least squares regression predictor of 𝑛−1
1 𝑦𝑖(1) + 𝑛−1

0 𝑦𝑖(0) based upon 𝜒𝑖 is

(︃(︂
𝑣*0
𝑛1

+
𝑤*

0

𝑛0

)︂
+

(︂
𝑉 *

𝑛1

+
𝑊 *

𝑛0

)︂𝑇

𝜒𝑖

)︃
.

3In the rank-deficient case that 𝒳 𝑇𝒳 is not invertible, these slope terms are not uniquely defined; however,
picking a canonical pseudoinverse, e.g., the Moore-Penrose pseudoinverse, obviates this concern.
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Equation (7) is simply the variance of the residuals from attempting to predict

𝑛−1
1 𝑦𝑖(1) + 𝑛−1

0 𝑦𝑖(0) via (︃(︂
𝑣0
𝑛1

+
𝑤0

𝑛0

)︂
+

(︂
𝑉

𝑛1

+
𝑊

𝑛0

)︂𝑇

𝜒𝑖

)︃
.

Since ordinary least squares linear regression minimizes the variance of the residuals, it

follows that (7) is minimized at 𝑤*
0, 𝑣*0, 𝑊 *, and 𝑉 *. Consequently, the variance of (4) is

minimized at 𝑤*
0, 𝑣*0, 𝑊 *, and 𝑉 *, as required to show Part i.

The result of Part ii follows from the uniqueness of the global minima in the full-rank

regression problems (5) and (6).

Lemma A.3. Consider the quantities

𝛽 = (𝛽0, 𝛽1) = argmin
𝛽0,𝛽1

⎡⎣ ∑︁
𝑖 : 𝑍𝑖=1

⎧⎨⎩𝑦𝑖(𝑍𝑖)−

⎛⎝𝛽0 + 𝛽𝑇
1

⎡⎣�̂�0(𝑥𝑖)

�̂�1(𝑥𝑖)

⎤⎦⎞⎠⎫⎬⎭
2⎤⎦ ,

�̇� = (�̇�0, �̇�1) = argmin
𝛽0,𝛽1

⎡⎣ 𝑁∑︁
𝑖=1

⎧⎨⎩𝑦𝑖(1)−
⎛⎝𝛽0 + 𝛽𝑇

1

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⎞⎠⎫⎬⎭
2⎤⎦ .

Then ||𝛽 − �̇�||2 = 𝑜𝑃 (1) under Assumptions 1 - 5.4

Proof. Define the design matrices

�̂�1 =

⎡⎢⎢⎢⎣
1 �̂�0(𝑥𝑖1) �̂�1(𝑥𝑖1)
...

...
...

1 �̂�0(𝑥𝑖𝑛1
) �̂�1(𝑥𝑖𝑛1

)

⎤⎥⎥⎥⎦ and �̇�1 =

⎡⎢⎢⎢⎣
1 �̇�0(𝑥1) �̇�1(𝑥1)
...

...
...

1 �̇�0(𝑥𝑁) �̇�1(𝑥𝑁)

⎤⎥⎥⎥⎦
4This lemma generalizes Lemma 7 of (GB21) and also incorporates both the imputed outcomes.
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where 𝑖1, . . . , 𝑖𝑛1 are the indices of the treated units. Standard ordinary least squares re-

gression theory gives closed-form solutions for 𝛽 and �̇� in terms of �̂�1 and �̇�1, respectively,

via

𝛽 =
(︁
�̂�T

1 �̂�1

)︁−1

�̂�T

1

⎡⎢⎢⎢⎣
𝑦𝑖1(1)

...

𝑦𝑖𝑛1
(1)

⎤⎥⎥⎥⎦ and �̇� =
(︁
�̇�T

1 �̇�1

)︁−1

�̇�T

1

⎡⎢⎢⎢⎣
𝑦1(1)

...

𝑦𝑁(1)

⎤⎥⎥⎥⎦ .
Conveniently rewriting these regression coefficients by multiplying by one gives

𝛽 =

(︂
1

𝑛1

�̂�T

1 �̂�1

)︂−1
1

𝑛1

�̂�T

1

⎡⎢⎢⎢⎣
𝑦𝑖1(1)

...

𝑦𝑖𝑛1
(1)

⎤⎥⎥⎥⎦ and �̇� =

(︂
1

𝑁
�̇�T

1 �̇�1

)︂−1
1

𝑁
�̇�T

1

⎡⎢⎢⎢⎣
𝑦1(1)

...

𝑦𝑁(1)

⎤⎥⎥⎥⎦ .

We first show that ⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
1

𝑛1

�̂�T

1

⎡⎢⎢⎢⎣
𝑦𝑖1(1)

...

𝑦𝑖𝑛1
(1)

⎤⎥⎥⎥⎦− 1

𝑁
�̇�T

1

⎡⎢⎢⎢⎣
𝑦1(1)

...

𝑦𝑁(1)

⎤⎥⎥⎥⎦
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
2

= 𝑜𝑃 (1). (8)

These are vectors in R3. To show (8) we show that the difference in each coordinate is

vanishing. The first coordinate is⃒⃒⃒⃒
⃒ 1𝑛1

∑︁
𝑍𝑖=1

𝑦𝑖(1)−
1

𝑁

𝑁∑︁
𝑖=1

𝑦𝑖(1)

⃒⃒⃒⃒
⃒

which converges in probability to zero by the weak law of large numbers for finite populations;

see for instance (Lin13, Lemma A.1). The second term is

⃒⃒⃒⃒
⃒ 1𝑛1

∑︁
𝑍𝑖=1

�̂�0(𝑥𝑖)𝑦𝑖(1)−
1

𝑁

𝑁∑︁
𝑖=1

�̇�0(𝑥𝑖)𝑦𝑖(1)

⃒⃒⃒⃒
⃒ . (9)
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This term vanishes in probability by an application of the triangle inequality, the Cauchy-

Schwarz inequality, and a finite population law of large numbers. The details proceed analo-

gously to those in the proof of Lemma 7 (on page 35) of the arXiv version of (GB21)5 except

we use �̂�0(·) in place of exp(𝜃T
0 ·); this presents no problem because we have assumed the

stability of �̂�0. The third term is⃒⃒⃒⃒
⃒ 1𝑛1

∑︁
𝑍𝑖=1

�̂�1(𝑥𝑖)𝑦𝑖(1)−
1

𝑁

𝑁∑︁
𝑖=1

�̇�1(𝑥𝑖)𝑦𝑖(1)

⃒⃒⃒⃒
⃒

which vanishes for exactly the same reason as the second term. In total, we have shown that

(8) holds.

Next, we turn attention to showing that⃒⃒⃒⃒⃒⃒⃒⃒
1

𝑛1

�̂�T

1 �̂�1 −
1

𝑁
�̇�T

1 �̇�1

⃒⃒⃒⃒⃒⃒⃒⃒
𝐹

= 𝑜𝑃 (1). (10)

The matrix in (10) is a 3-by-3 symmetric matrix; the term 1
𝑛1
�̂�T
1 �̂�1 takes the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
𝑛1

∑︀
𝑍𝑖=1 1

1
𝑛1

∑︀
𝑍𝑖=1 �̂�0(𝑥𝑖)

1
𝑛1

∑︀
𝑍𝑖=1 �̂�1(𝑥𝑖)

* 1
𝑛1

∑︀
𝑍𝑖=1 �̂�0(𝑥𝑖)

2 1
𝑛1

∑︀
𝑍𝑖=1 �̂�0(𝑥𝑖)�̂�1(𝑥𝑖)

* * 1
𝑛1

∑︀
𝑍𝑖=1 �̂�1(𝑥𝑖)

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where stars indicate symmetry. The matrix 1

𝑁
�̇�T
1 �̇�1 has an analogous construction where �̇�

replaces �̂�, sums
∑︀𝑁

𝑖=1 replace
∑︀

𝑍𝑖=1, and 𝑁 replaces 𝑛1.

In the matrix of (10), the top-left corner element is
⃒⃒⃒
1
𝑛1

∑︀
𝑍𝑖=1 1−

1
𝑁

∑︀𝑁
𝑖=1 1

⃒⃒⃒
which is

5The arXiv version of (GB21) can be found at https://arxiv.org/pdf/2004.11615.pdf.
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deterministically zero. The remaining two diagonal elements are⃒⃒⃒⃒
⃒ 1𝑛1

∑︁
𝑍𝑖=1

�̂�0(𝑥𝑖)
2 − 1

𝑁

𝑁∑︁
𝑖=1

�̇�0(𝑥𝑖)
2

⃒⃒⃒⃒
⃒ ,⃒⃒⃒⃒

⃒ 1𝑛1

∑︁
𝑍𝑖=1

�̂�1(𝑥𝑖)
2 − 1

𝑁

𝑁∑︁
𝑖=1

�̇�1(𝑥𝑖)
2

⃒⃒⃒⃒
⃒ .

As before, the convergence of each of these terms in probability to zero is guaranteed by

following the argument used to prove that the denominator terms of Lemma 7 from (GB21)

vanish. The only difference is that �̂�𝑧(·) stands in place of exp(𝜃T
𝑧 ·), but this presents no

obstacle as we have assumed that the prediction functions �̂�0(·) and �̂�1(·) are stable.

By the symmetry of the matrix in (10), it suffices to show that

⃒⃒⃒⃒
⃒ 1𝑛1

∑︁
𝑍𝑖=1

�̂�𝑧(𝑥𝑖)−
1

𝑁

𝑁∑︁
𝑖=1

�̇�𝑧(𝑥𝑖)

⃒⃒⃒⃒
⃒ = 𝑜𝑃 (1) for 𝑧 ∈ {0, 1}, (11)⃒⃒⃒⃒

⃒ 1𝑛1

∑︁
𝑍𝑖=1

�̂�1(𝑥𝑖)�̂�0(𝑥𝑖)−
1

𝑁

𝑁∑︁
𝑖=1

�̇�1(𝑥𝑖)�̇�0(𝑥𝑖)

⃒⃒⃒⃒
⃒ = 𝑜𝑃 (1). (12)

The same argument used to show that (9) vanishes in probability applies to (11); replacing

each 𝑦𝑖(1) in that argument gives the desired result. To show, (12) first add zero to the

left-hand-side⃒⃒⃒⃒
⃒ 1𝑛1

∑︁
𝑍𝑖=1

�̂�1(𝑥𝑖)�̂�0(𝑥𝑖)−
1

𝑁

𝑁∑︁
𝑖=1

�̇�1(𝑥𝑖)�̇�0(𝑥𝑖)

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒ 1𝑛1

∑︁
𝑍𝑖=1

�̂�1(𝑥𝑖)�̂�0(𝑥𝑖)−

1

𝑛1

∑︁
𝑍𝑖=1

�̇�1(𝑥𝑖)�̇�0(𝑥𝑖) +
1

𝑛1

∑︁
𝑍𝑖=1

�̇�1(𝑥𝑖)�̇�0(𝑥𝑖)−
1

𝑁

𝑁∑︁
𝑖=1

�̇�1(𝑥𝑖)�̇�0(𝑥𝑖)

⃒⃒⃒⃒
⃒.
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Applying the triangle inequality for the right-hand-side then bounds above by⃒⃒⃒⃒
⃒ 1𝑛1

∑︁
𝑍𝑖=1

(�̂�1(𝑥𝑖)�̂�0(𝑥𝑖)− �̇�1(𝑥𝑖)�̇�0(𝑥𝑖))

⃒⃒⃒⃒
⃒⏟  ⏞  

Term 1

+

⃒⃒⃒⃒
⃒ 1𝑛1

∑︁
𝑍𝑖=1

�̇�1(𝑥𝑖)�̇�0(𝑥𝑖)−
1

𝑁

𝑁∑︁
𝑖=1

�̇�1(𝑥𝑖)�̇�0(𝑥𝑖)

⃒⃒⃒⃒
⃒⏟  ⏞  

Term 2

.

Just as in (GB21, Lemma 7) the Cauchy-Schwarz inequality and the stability of �̂�0(·) and

�̂�1(·) imply that Term 1 vanishes in probability, and the finite population law of large numbers

implies that Term 2 vanishes. In total, we have shown (10).

The matrix inverse map 𝑀 ↦→𝑀−1 is continuous over the set of positive definite matrices

with the metric defined by the Frobenious norm. Assuming that the continuous mapping

theorem applies (vdV98, Chapter 18) (i.e., assume that the matrices 1
𝑛1
�̂�T
1 �̂�1 and 1

𝑁
�̇�T
1 �̇�1

have their minimum eigenvalue bounded away from zero) then (10) implies that⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
(︂

1

𝑛1

�̂�T

1 �̂�1

)︂−1

−
(︂

1

𝑁
�̇�T

1 �̇�1

)︂−1
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
𝐹

= 𝑜𝑃 (1). (13)

Finally, combining (8) with (13) yields that ||𝛽 − �̇�||2 = 𝑜𝑃 (1) as desired.

Lemma A.3 applies to the ordinary least squares linear regression coefficients computed

within the treated group. The same logic applies to the ordinary least squares linear regres-

sion coefficients computed within the control group.

Remark 1. Suppose that the design matrices used in the proof of Lemma A.3 were replaced

with

�̂�1 =

⎡⎢⎢⎢⎣
1 �̂�0(𝑥𝑖1) �̂�1(𝑥𝑖1) 𝑓(𝑥𝑖1)

T

...
...

...
...

1 �̂�0(𝑥𝑖𝑛1
) �̂�1(𝑥𝑖𝑛1

) 𝑓(𝑥𝑖𝑛1
)T

⎤⎥⎥⎥⎦ and �̇�1 =

⎡⎢⎢⎢⎣
1 �̇�0(𝑥1) �̇�1(𝑥1) 𝑓(𝑥1)

T

...
...

...
...

1 �̇�0(𝑥𝑁) �̇�1(𝑥𝑁) 𝑓(𝑥𝑁)
T

⎤⎥⎥⎥⎦ .

As long as the vectors (�̇�0(𝑥1), �̇�1(𝑥1), 𝑓(𝑥1)
T)T satisfy the regularity conditions applied origi-
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nally (Assumption 4 and Assumption 5) they are amenable to the law of large numbers proofs

used in the componentwise analyses for the proof of Lemma A.3. In particular, when 𝑓(·) is

the identity function, this requirement reduces to Assumption 6 jointly with Assumptions 4

and 5.

Consequently, the proof of Lemma A.3 is equally useful for showing the consistency of

the ordinary least squares linear regression coefficients used in 𝜏𝑐𝑎𝑙2.

Lemma A.4. Assumptions 4 and 5 imply that the quantity⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣�̇�0

�̇�1

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

is bounded uniformly in 𝑁 .

Proof. By Assumption 5 there exists some finite constant which upper bounds

∑︀𝑁
𝑖=1

(︁
�̇�𝑧(𝑥𝑖)−𝑁−1

∑︀𝑁
𝑖=1 �̇�𝑧(𝑥𝑖)

)︁4
𝑁

for both 𝑧 ∈ {0, 1} and all 𝑁 . Bounded fourth central moments imply bounded second

central moments, so there exists some constant which upper bounds

∑︀𝑁
𝑖=1

(︁
�̇�𝑧(𝑥𝑖)−𝑁−1

∑︀𝑁
𝑖=1 �̇�𝑧(𝑥𝑖)

)︁2
𝑁

for both 𝑧 ∈ {0, 1} and all 𝑁 . Decomposing the variance into the difference between the
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second moment and the squared first moment yields that the quantities

1

𝑁

𝑁∑︁
𝑖=1

�̇�𝑧(𝑥𝑖)
2 −

{︃
1

𝑁

𝑁∑︁
𝑖=1

�̇�𝑧(𝑥𝑖)

}︃2

(14)

are uniformly bounded above by a constant.

Assumption 4 implies that the quantities 𝑁−1
∑︀𝑁

𝑖=1 �̇�𝑧(𝑥𝑖) limit to fixed values for both

𝑧 ∈ {0, 1}; combining this with (14) yields that 1
𝑁

∑︀𝑁
𝑖=1 �̇�𝑧(𝑥𝑖)

2 is uniformly bounded

above by some constant. This implies that 1
𝑁

∑︀𝑁
𝑖=1 (�̇�0(𝑥𝑖)

2 + �̇�1(𝑥𝑖)
2) is uniformly bounded.

Lastly,

1

𝑁

𝑁∑︁
𝑖=1

(︀
�̇�0(𝑥𝑖)

2 + �̇�1(𝑥𝑖)
2
)︀
=

1

𝑁

𝑁∑︁
𝑖=1

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
2

2

=

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣�̇�0

�̇�1

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
2

𝑁

which concludes the proof.

Lemma A.5. Let {�̂�(𝑁)
𝑧 }𝑁∈N be a sequence of prediction unbiased functions and assume that

there exists some sequence {�̇�(𝑁)
𝑧 }𝑁∈N for which ||�̂�(𝑁)

𝑧 − �̇�
(𝑁)
𝑧 ||𝑁 converges in probability to 0

with respect to randomness in the superpopulation model (i.e., randomness in 𝑍, the poten-

tial outcomes and the covariates). Further assume that 𝑁−1
∑︀𝑁

𝑖=1

(︁
�̇�
(𝑁)
𝑧 (𝑥𝑖)− 𝑦𝑖(𝑧)

)︁2
=

𝑜𝑃 (𝑁). Under the preceding conditions, without loss of generality we may assume that

E
[︁
�̇�
(𝑁)
𝑧 (𝑥𝑖)− 𝑦𝑖(𝑧)

]︁
= 0.

Proof. Let {�̇�(𝑁)
𝑧 }𝑁∈N for which ||�̂�(𝑁)

𝑧 − �̇�
(𝑁)
𝑧 ||𝑁 converges in probability to 0 and

𝑁−1

𝑁∑︁
𝑖=1

(︀
�̇�(𝑁)
𝑧 (𝑥𝑖)− 𝑦𝑖(𝑧)

)︀2
= 𝑜𝑃 (𝑛).
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By the strong law of large numbers,⃒⃒⃒⃒
⃒𝑁−1

𝑁∑︁
𝑖=1

(︀
�̇�(𝑁)
𝑧 (𝑥𝑖))− 𝑦𝑖(𝑧)

)︀
− E

[︀
�̇�(𝑁)
𝑧 (𝑥𝑖)− 𝑦𝑖(𝑧)

]︀⃒⃒⃒⃒⃒
converges almost surely to zero. By the argument of Lemma 3 in the appendix of (GB21),⃒⃒⃒
𝑁−1

∑︀𝑁
𝑖=1

(︁
�̇�
(𝑁)
𝑧 (𝑥𝑖))− 𝑦𝑖(𝑧)

)︁⃒⃒⃒
= 𝑜𝑃 (1). Furthermore, E

[︁
�̇�
(𝑁)
𝑧 (𝑥𝑖)− 𝑦𝑖(𝑧)

]︁
is deterministic;

so we must have that
⃒⃒⃒
E
[︁
�̇�
(𝑁)
𝑧 (𝑥𝑖)− 𝑦𝑖(𝑧)

]︁⃒⃒⃒
= 𝑜(1). Consequently, we may center �̇�(𝑁)

𝑧 by

subtracting off E
[︁
�̇�
(𝑁)
𝑧 (𝑥𝑖)− 𝑦𝑖(𝑧)

]︁
; defining

�̇�(𝑁)
𝑧 = �̇�(𝑁)

𝑧 − E
[︀
�̇�(𝑁)
𝑧 (𝑥𝑖)− 𝑦𝑖(𝑧)

]︀
we retain that ||�̂�(𝑁)

𝑧 − �̇�
(𝑁)
𝑧 ||𝑁 converges in probability to 0 and

𝑁−1

𝑁∑︁
𝑖=1

(︀
�̇�(𝑁)
𝑧 (𝑥𝑖)− 𝑦𝑖(𝑧)

)︀2
= 𝑜𝑃 (𝑛).

Lemma A.6. Consider a sequence of random elements {(𝒜𝑁 ,ℬ𝑁)}𝑁∈N and a function 𝑓

for which 𝑓(𝒜𝑁 ,ℬ𝑁) ∈ R for all 𝑁 ∈ N. If 𝑓(𝑎𝑁 ,ℬ𝑁) converges in distribution to the

random variable 𝜒 for all sequences {𝑎𝑁}𝑁∈N with 𝑎𝑁 in some measurable set 𝐴𝑁 such that

P (𝒜𝑁 ∈ 𝐴𝑁) = 1, then 𝑓(𝒜𝑁 ,ℬ𝑁) converges in distribution to 𝜒.

Proof. For notation, let ℒ(𝑋) denote the law of a random variable 𝑋 and let ℒ(𝑋 | 𝑌 )

denote the conditional law of 𝑋 given 𝑌 . The bounded Lipschitz metric is a metric on the

space of probability measures;

𝑑(𝐹,𝐺) := sup
𝑓∈ℱ𝐵𝐿

⃒⃒⃒⃒∫︁
𝑓 𝑑𝐹 −

∫︁
𝑓 𝑑𝐺

⃒⃒⃒⃒
,

where ℱ𝐵𝐿 is the class of 1-Lipschitz functions mapping into [−1, 1].
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The bounded Lipschitz metric metrizes weak convergence of probability measures

(vdVW96, Theorem 1.12.4). Consequently, the fact that 𝑓(𝑎𝑁 ,ℬ𝑁) converges in distribution

to the random variable 𝜒 for 𝒜𝑁 -almost all {𝑎𝑁}𝑁∈N

𝑑 (ℒ (𝑓(𝑎𝑁 ,ℬ𝑁)) ,ℒ(𝜒)) → 0

for 𝒜𝑁 -almost all {𝑎𝑁}𝑁∈N. Equivalently, the random variable 𝑑 (ℒ (𝑓(𝒜𝑁 ,ℬ𝑁) | 𝒜𝑁) ,ℒ(𝜒))

converges almost surely to 0 with respect to randomness in 𝒜𝑁 . As almost sure convergence

implies convergence in probability, 𝑑 (ℒ (𝑓(𝒜𝑁 ,ℬ𝑁) | 𝒜𝑁) ,ℒ(𝜒)) converges in probability

to 0 with respect to randomness in 𝒜𝑁 . Theorem 4.1 of (DDCZ13) then implies that

𝑑 (ℒ (𝑓(𝒜𝑁 ,ℬ𝑁)) ,ℒ(𝜒)) converges to 0. Finally, again using that the bounded Lipschitz

metric metrizes weak convergence we conclude that unconditionally 𝑓(𝒜𝑁 ,ℬ𝑁) converges in

distribution to 𝜒.

2.11 Error Processes, Asymptotic Linearity, And Cali-

bration

For a function 𝑓 : R𝑘 → R (GB21) define

𝒢𝑁,𝑧(𝑓) = 𝑁−1/2

𝑁∑︁
𝑖=1

(︂
1{𝑍𝑖=𝑧}𝑓(𝑥𝑖)

𝑛𝑧/𝑁
− 𝑓(𝑥𝑖)

)︂
.

The collection {𝒢𝑁,𝑧}𝑓∈𝐹 forms a stochastic process indexed by functions 𝑓 ranging over

some family of functions 𝐹 . Showing that |𝒢𝑁,𝑧(�̇�𝑧)− 𝒢𝑁,𝑧(�̂�𝑧)| decays quickly in probability

is crucial for the central limit theorems undergirding asymptotic inference for imputation-

based estimators. This general principle is true across finite population, fixed covariate, and

superpopulation models. The first consequence of Assumption 2 is that, under mild regularity

conditions, the error process for the calibrated estimator �̂�𝑂𝐿𝑆,𝑧 vanishes at the same rate.
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Without loss of generality – for the sake of readability – we focus only on the prediction

equations in the treated group (𝑧 = 1) and so we follow the notation of Lemma A.3.

Define

�̇�𝑂𝐿𝑆,1(·) = �̇�0 + �̇�T

1

⎡⎣�̇�0(·)

�̇�1(·)

⎤⎦ .
Proposition A.1. For 𝑧 ∈ {0, 1} suppose that the random variables 𝛽0 and 𝛽1 converge in

probability to fixed values �̇�0 and �̇�1, respectively. Under Assumption 2 it immediately holds

that

|𝒢𝑁,1(�̇�𝑂𝐿𝑆,1)− 𝒢𝑁,1(�̂�𝑂𝐿𝑆,1)| = 𝑜𝑃 (1) .

Of course, an analogous result holds for the control quantities as well.

Proof. Recall the definition

�̂�𝑂𝐿𝑆,1(·) = 𝛽0 + 𝛽T

1

⎡⎣�̂�0(·)

�̂�1(·)

⎤⎦ .
Notice that 𝒢𝑁,1(·) is linear in its argument in the sense that

𝒢𝑁,1(𝑓 + 𝑔) = 𝒢𝑁,1(𝑓) + 𝒢𝑁,1(𝑔),

𝒢𝑁,1(𝑐𝑓) = 𝑐𝒢𝑁,1(𝑓) for 𝑐 ∈ R,

so the quantity |𝒢𝑁,1(�̇�𝑂𝐿𝑆,1)− 𝒢𝑁,1(�̂�𝑂𝐿𝑆,1)| decomposes naturally across the linear combi-

nation of terms in �̇�𝑂𝐿𝑆,1 and �̂�𝑂𝐿𝑆,1. The assumption of convergence in probability of 𝛽0 and

𝛽1 to �̇�0 and �̇�1, respectively, combined with Slutsky’s theorem and Assumption 2 concludes

the proof.

In its most abstract sense, the typical analysis of an imputation-based estimator proceeds

by writing the estimator in terms of the difference in means of “residuals”
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{�̇�𝑖(1) = 𝑦𝑖(1)− �̇�1(𝑥𝑖)}𝑁𝑖=1 and {�̇�𝑖(0) = 𝑦𝑖(0)− �̇�0(𝑥𝑖)}𝑁𝑖=1, possibly some correction factor,

and an error term related to 𝒢𝑁,𝑧(�̇�𝑧) − 𝒢𝑁,𝑧(�̂�𝑧). For example, in the finite population

context of (GB21)

𝜏𝑔𝑂𝐵 − 𝜏 sate =
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

�̇�𝑖(1)−
1

𝑛0

∑︁
𝑖 : 𝑍𝑖=1

�̇�𝑖(0)⏟  ⏞  
Difference in Residual Means

+

𝑁−1/2 (𝒢𝑁,1(�̇�1)− 𝒢𝑁,1(�̂�1))−𝑁−1/2 (𝒢𝑁,0(�̇�0)− 𝒢𝑁,0(�̂�0))⏟  ⏞  
Error Term

.

Likewise, in the context of (Rot20)

𝜏𝑟𝑜𝑡ℎ𝑒 − 𝜏pate =
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

�̇�𝑖(1)−
1

𝑛0

∑︁
𝑖 : 𝑍𝑖=1

�̇�𝑖(0)⏟  ⏞  
Difference in Residual Means

+

1

𝑁

𝑁∑︁
𝑖=1

(�̇�1(𝑥𝑖)− �̇�0(𝑥𝑖))⏟  ⏞  
Prediction Unbiasedness Correction Term

−𝜏pate+

𝑁−1/2 (𝒢𝑁,1(�̇�1)− 𝒢𝑁,1(�̂�1))−𝑁−1/2 (𝒢𝑁,0(�̇�0)− 𝒢𝑁,0(�̂�0))⏟  ⏞  
Error Term

.

We provide a formal definition of 𝜏𝑟𝑜𝑡ℎ𝑒 and a detailed analysis of calibrating 𝜏𝑟𝑜𝑡ℎ𝑒 in Sec-

tion 2.19.

Under Assumption 2 these error terms are 𝑜𝑃 (𝑁−1/2) and so asymptotic analyses of such

estimators can safely ignore the error terms even after scaling by 𝑁1/2; consequently central

limit theorems hold for estimators such as 𝑁1/2(𝜏𝑔𝑂𝐵 − 𝜏 sate) and 𝑁1/2(𝜏𝑟𝑜𝑡ℎ𝑒 − 𝜏pate) under

mild conditions.
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2.12 Main Proofs

Above we remarked upon the special case of 𝜏𝑐𝑎𝑙 when the prediction functions �̂�0 and �̂�1 are

the linear regression prediction functions of outcome based upon covariates, fitted separately

in the treated and control groups. We now formalize this and provide proof. The identity

𝜏𝑔𝑂𝐵 = 𝜏𝑙𝑖𝑛 in this case is well known; see for instance (DL18) or (GB21) and the identity

𝜏𝐺𝐵𝑐𝑎𝑙 = 𝜏𝑙𝑖𝑛 follows from similar logic to that presented below.

Proposition A.2. Take the original prediction functions to be the linear predictors �̂�1 and �̂�0

derived from separate regressions in the treated and control groups, respectively; the calibrated

estimator 𝜏𝑐𝑎𝑙 yields exactly 𝜏𝑙𝑖𝑛.

Proof. For 𝑧 ∈ {0, 1} the original linear prediction function �̂�𝑧 is defined as

�̂�𝑧(𝑥) = 𝛽T

𝑧 𝑥+ 𝛾𝑧

where 𝛽𝑧 and 𝛾𝑧 are the solutions to the 𝐿2-norm empirical risk minimization problem

(𝛽𝑧, 𝛾𝑧) = argmin
𝛽𝑧∈R𝑘

𝛾𝑧∈R

[︃ ∑︁
𝑖 : 𝑍𝑖=𝑧

(𝑦𝑖(𝑧)− 𝛽T

𝑧 𝑥𝑖 − 𝛾𝑧)
2

]︃
. (15)

Let �̃�𝑖 = (�̂�0(𝑥𝑖), �̂�1(𝑥𝑖))
T . The calibrated predictor �̂�𝑂𝐿𝑆,𝑧 is defined similarly as �̂�𝑂𝐿𝑆,𝑧(�̃�) =

𝛽T
𝑂𝐿𝑆,𝑧�̃�+ 𝛾𝑂𝐿𝑆,𝑧 for

(𝛽𝑂𝐿𝑆,𝑧, 𝛾𝑂𝐿𝑆,𝑧) = argmin
𝐵𝑧∈R2

𝜂𝑧∈R

[︃ ∑︁
𝑖 : 𝑍𝑖=𝑧

(𝑦𝑖(𝑧)−𝐵T

𝑧 �̃�𝑖 − 𝜂𝑧)
2

]︃
. (16)
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Writing 𝐵𝑧 ∈ R2 as the vector (𝑎𝑧, 𝑏𝑧)
T we expand the objective function of (16) via

∑︁
𝑖 : 𝑍𝑖=𝑧

(𝑦𝑖(𝑧)−𝐵T

𝑧 �̃�𝑖 − 𝜂𝑧)
2 =

∑︁
𝑖 : 𝑍𝑖=𝑧

{︁
𝑦𝑖(𝑧)− (𝑎𝑧�̂�0(𝑥𝑖) + 𝑏𝑧�̂�1(𝑥𝑖) + 𝜂𝑧)

}︁2

=
∑︁

𝑖 : 𝑍𝑖=𝑧

{︃
𝑦𝑖(𝑧)− (𝑎𝑧𝛽0 + 𝑏𝑧𝛽1)

T 𝑥𝑖 − (𝑎𝑧𝛾0 + 𝑏𝑧𝛾1 + 𝜂𝑧)

}︃2

.

Since 𝑎𝑧𝛾0+𝑏𝑧𝛾1+𝜂𝑧 ranges over all of R just as 𝜂𝑧 does, by a change of variables we can write

�̂�𝑂𝐿𝑆,𝑧(�̃�) directly as a function of the original covariates. This reduces to ßT

𝑂𝐿𝑆,𝑧𝑥 + 𝛾𝑂𝐿𝑆,𝑧

derived from the solution of

(ß𝑂𝐿𝑆,𝑧, 𝛾𝑂𝐿𝑆,𝑧) = argmin
ß𝑧∈Span(𝛽0,𝛽1)

𝜂𝑧∈R

[︃ ∑︁
𝑖 : 𝑍𝑖=𝑧

{𝑦𝑖(𝑧)− ßT

𝑧𝑥𝑖 − 𝜂𝑧}2
]︃
. (17)

where Span(𝛽0, 𝛽1) denotes the linear subspace of R𝑘 generated by 𝛽0 and 𝛽1.

Trivially 𝛽0, 𝛽1 ∈ Span(𝛽0, 𝛽1) and, by construction, these offer the solutions to the

unconstrained optimization problems of (15) for 𝑧 = 0 and 𝑧 = 1, respectively; thus 𝛽0

and 𝛽1 offer feasible optimal solutions to the constrained problem (17) as well for 𝑧 = 0

and 𝑧 = 1, respectively. Consequently, ß𝑂𝐿𝑆,𝑧 = 𝛽𝑧 and 𝛾𝑂𝐿𝑆,𝑧 = 𝛾𝑧 for 𝑧 ∈ {0, 1}. Thus,

�̂�𝑂𝐿𝑆,0(�̃�𝑖) = �̂�0(𝑥𝑖) and likewise �̂�𝑂𝐿𝑆,1(�̃�𝑖) = �̂�1(𝑥𝑖). From this it follows that 𝜏𝑐𝑎𝑙 = 𝜏𝑙𝑖𝑛.

Remark 2. The proof of Proposition A.2 amounts to demonstrating that when the original

prediction algorithms �̂�0 and �̂�1 are affine functions of the features 𝑥𝑖 the optimality of the

ordinary least squares regression coefficients implies that 𝜏𝑐𝑎𝑙 must match 𝜏𝑙𝑖𝑛.

Suppose that one calibrates �̂�0 and �̂�1 to form the estimator 𝜏𝑐𝑎𝑙 and the predictors �̂�𝑂𝐿𝑆,0

and �̂�𝑂𝐿𝑆,1. In light of Theorem A.5, imagine that one calibrates again: in other words, one

forms new predictors �̂�𝑂𝐿𝑆2,0 and �̂�𝑂𝐿𝑆2,1 by regressing upon (�̂�𝑂𝐿𝑆,0(𝑥𝑖), �̂�𝑂𝐿𝑆,1(𝑥𝑖))
T in

the treated and control groups separately. Mirroring the logic of the proof above, we can

write �̂�𝑂𝐿𝑆2,0 and �̂�𝑂𝐿𝑆2,1 directly as affine functions of the original prediction functions
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(�̂�0(𝑥𝑖), �̂�1(𝑥𝑖))
T and the optimality of the original linear regressions used to form �̂�𝑂𝐿𝑆,0 and

�̂�𝑂𝐿𝑆,1 implies that

�̂�𝑂𝐿𝑆,0(𝑥𝑖) = �̂�𝑂𝐿𝑆2,0(𝑥𝑖); �̂�𝑂𝐿𝑆,1(𝑥𝑖) = �̂�𝑂𝐿𝑆2,1(𝑥𝑖).

This implies the idempotence of calibration.

For the purpose of easy computation, we present the following proposition. Section 2.13

below provides further implementation details.

Proposition A.3. The calibrated estimator can be written exclusively in terms of the pre-

dicted values: 𝜏𝑐𝑎𝑙 = 𝑁−1
∑︀𝑁

𝑖=1 {�̂�𝑂𝐿𝑆,1(𝑥𝑖)− �̂�𝑂𝐿𝑆,0(𝑥𝑖)}.

Proof. This follows from Proposition A.4; which we present below.

Proposition A.4. With probability one, the prediction functions �̂�𝑂𝐿𝑆,0 and �̂�𝑂𝐿𝑆,1 satisfy

𝑁∑︁
𝑖=1

1{𝑍𝑖=𝑧}�̂�𝑂𝐿𝑆,𝑧(𝑥𝑖) =
𝑁∑︁
𝑖=1

1{𝑍𝑖=𝑧}𝑦𝑖(𝑧). (18)

In the terminology of (GB21, Definition 1) �̂�𝑂𝐿𝑆,0 and �̂�𝑂𝐿𝑆,1 are prediction unbiased.

Proof. This is a direct consequence of the first order optimality conditions for the intercept

term in the regressions defining �̂�𝑂𝐿𝑆,0 and �̂�𝑂𝐿𝑆,1.

Remark 3. Since the proof of Proposition A.4 relied on the first-order optimality condi-

tion for the intercept term in the regressions defining �̂�𝑂𝐿𝑆,0 and �̂�𝑂𝐿𝑆,1 the logic of the

proof applies equally well when �̃�𝑖 is replaced with �̈�𝑖, thereby easily incorporating feature

engineering.
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In what follows we focus attention on the resulting prediction equations in the treated

group (𝑧 = 1) after linear calibration, and will at times introduce quantities with the de-

pendence on 𝑧 suppressed for readability. The proofs for the control group are analogous.

Recall from before the quantities

𝛽 = (𝛽0, 𝛽1) = argmin
𝛽0,𝛽1

⎡⎣ ∑︁
𝑖 : 𝑍𝑖=1

⎧⎨⎩𝑦𝑖(𝑍𝑖)−

⎛⎝𝛽0 + 𝛽𝑇
1

⎡⎣�̂�0(𝑥𝑖)

�̂�1(𝑥𝑖)

⎤⎦⎞⎠⎫⎬⎭
2⎤⎦ , (19)

�̇� = (�̇�0, �̇�1) = argmin
𝛽0,𝛽1

⎡⎣ 𝑁∑︁
𝑖=1

⎧⎨⎩𝑦𝑖(1)−
⎛⎝𝛽0 + 𝛽𝑇

1

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⎞⎠⎫⎬⎭
2⎤⎦ . (20)

The quantities 𝛽0 and 𝛽1 are the ordinary least squares linear regression intercept and slope

coefficients, respectively, for the sample regression of treated outcomes on the imputed values

�̂�0(𝑥𝑖) and �̂�1(𝑥𝑖). Consequently 𝛽 can be computed based upon the observed data. In

contrast, �̇�0 and �̇�1 are the population-level ordinary least squares regression intercept and

slope coefficients, respectively, for the regression of all treated potential outcomes upon the

“imputed" values �̇�0(𝑥𝑖) and �̇�1(𝑥𝑖). Importantly, �̇� is not generally computable from the

observed data for two reasons:

1. The minimization problem defining �̇� requires knowledge of the treated potential out-

comes for each individual, not just those who received treatment.

2. In practice, the functions �̇�0(𝑥𝑖) and �̇�1(𝑥𝑖) are frequently unknown. For instance, they

can often be taken to be solutions to population-level risk minimization procedures;

see (GB21) for some examples of this.

Define �̇�𝑂𝐿𝑆,1(·) to be �̇�0 + �̇�T
1

⎡⎣�̇�0(·)

�̇�1(·)

⎤⎦.
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Proposition A.5. If the original prediction functions �̂�0 and �̂�1 are stable in the sense of

Assumption 1, then under Assumptions 4 and 5 the calibrated prediction functions �̂�𝑂𝐿𝑆,0

and �̂�𝑂𝐿𝑆,1 are also stable.

Proof. Our proof focuses on �̂�𝑂𝐿𝑆,1 and uses the notation of (19) and (20); the proof for �̂�𝑂𝐿𝑆,0

follows the same logic, but requires exchanging control quantities with treated quantities in

the obvious places.

To show stability of �̂�𝑂𝐿𝑆,1 we will show that

1

𝑁

𝑁∑︁
𝑖=1

⃒⃒⃒
�̂�𝑂𝐿𝑆,1(𝑥𝑖)− �̇�𝑂𝐿𝑆,1(𝑥𝑖)

⃒⃒⃒2
= 𝑜𝑃 (1).

This amounts to examining

1

𝑁

𝑁∑︁
𝑖=1

⃒⃒⃒⃒
⃒⃒
⎛⎝𝛽0 + 𝛽T

1

⎡⎣�̂�0(𝑥𝑖)

�̂�1(𝑥𝑖)

⎤⎦⎞⎠−

⎛⎝�̇�0 + �̇�T

1

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⎞⎠⃒⃒⃒⃒⃒⃒
2

. (21)

Clearly this quantity is non-negative, so our objective is to provide an 𝑜𝑃 (1) upper bound.

By the triangle inequality (21) is upper bounded by

1

𝑁

𝑁∑︁
𝑖=1

⎧⎨⎩⃒⃒⃒𝛽0 − �̇�0

⃒⃒⃒
+

⃒⃒⃒⃒
⃒⃒𝛽T

1

⎡⎣�̂�0(𝑥𝑖)

�̂�1(𝑥𝑖)

⎤⎦− �̇�T

1

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⃒⃒⃒⃒⃒⃒
⎫⎬⎭

2

.

By Lemma A.3 the term
⃒⃒⃒
𝛽0 − �̇�0

⃒⃒⃒
= 𝑜𝑃 (1) and so (21) is upper bounded by

1

𝑁

𝑁∑︁
𝑖=1

⎧⎨⎩𝑜𝑃 (1) +
⃒⃒⃒⃒
⃒⃒𝛽T

1

⎡⎣�̂�0(𝑥𝑖)

�̂�1(𝑥𝑖)

⎤⎦− �̇�T

1

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⃒⃒⃒⃒⃒⃒
⎫⎬⎭

2

. (22)
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In light of (22) we turn our focus to the term⃒⃒⃒⃒
⃒⃒𝛽T

1

⎡⎣�̂�0(𝑥𝑖)

�̂�1(𝑥𝑖)

⎤⎦− �̇�T

1

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⃒⃒⃒⃒⃒⃒ =
⃒⃒⃒⃒
⃒𝛽T

1

⎡⎣�̂�0(𝑥𝑖)

�̂�1(𝑥𝑖)

⎤⎦− 𝛽T

1

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦+

𝛽T

1

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦− �̇�T

1

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦ ⃒⃒⃒⃒⃒
≤

⃒⃒⃒⃒
⃒⃒𝛽T

1

⎡⎣�̂�0(𝑥𝑖)

�̂�1(𝑥𝑖)

⎤⎦− 𝛽T

1

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⃒⃒⃒⃒⃒⃒+⃒⃒⃒⃒
⃒𝛽T

1

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦− �̇�T

1

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦ ⃒⃒⃒⃒⃒
≤
⃒⃒⃒⃒⃒⃒
𝛽1

⃒⃒⃒⃒⃒⃒
2

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣�̂�0(𝑥𝑖)

�̂�1(𝑥𝑖)

⎤⎦−

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
2

+

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
2

⃒⃒⃒⃒⃒⃒
𝛽T

1 − �̇�T

1

⃒⃒⃒⃒⃒⃒
2

≤
⃒⃒⃒⃒⃒⃒
𝛽1

⃒⃒⃒⃒⃒⃒
2

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣�̂�0(𝑥𝑖)

�̂�1(𝑥𝑖)

⎤⎦−

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
2

+

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
2

𝑜𝑃 (1)

≤ 𝑂𝑃 (1)

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣�̂�0(𝑥𝑖)

�̂�1(𝑥𝑖)

⎤⎦−

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
2

+

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
2

𝑜𝑃 (1). (23)

The second line follows from the triangle inequality, the third line from the Cauchy-Schwarz

inequality, and the fourth line from Lemma A.3. The last line follows from
⃒⃒⃒⃒⃒⃒
𝛽1

⃒⃒⃒⃒⃒⃒
2
= 𝑂𝑃 (1).

To see why this is the case, notice that by standard theory for ordinary least squares linear

regression, under Assumptions 4 and 5, �̇�1 converges to a fixed vector in R2; so the consistency

of 𝛽1 implies that
⃒⃒⃒⃒⃒⃒
𝛽1

⃒⃒⃒⃒⃒⃒
2
= 𝑂𝑃 (1).

Combining (22) with (23) gives that (21) is upper bounded by

1

𝑁

𝑁∑︁
𝑖=1

⎧⎨⎩𝑜𝑃 (1) +𝑂𝑃 (1)

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣�̂�0(𝑥𝑖)

�̂�1(𝑥𝑖)

⎤⎦−

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
2

+

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
2

𝑜𝑃 (1)

⎫⎬⎭
2

. (24)
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Applying the inequality 2𝑎2 + 2𝑏2 ≥ (𝑎+ 𝑏)2 twice yields that (24) is bounded above by

4

𝑁

𝑁∑︁
𝑖=1

[︃⎧⎨⎩𝑂𝑃 (1)

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣�̂�0(𝑥𝑖)

�̂�1(𝑥𝑖)

⎤⎦−

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
2

⎫⎬⎭
2

+

⎧⎨⎩
⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
2

𝑜𝑃 (1)

⎫⎬⎭
2

+ 𝑜𝑃 (1)

]︃
=

𝑂𝑃 (1)

𝑁

𝑁∑︁
𝑖=1

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣�̂�0(𝑥𝑖)

�̂�1(𝑥𝑖)

⎤⎦−

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
2

2⏟  ⏞  
Term 1

+
𝑜𝑃 (1)

𝑁

𝑁∑︁
𝑖=1

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
2

2⏟  ⏞  
Term 2

+𝑜𝑃 (1).

Term 1 is vanishing in probability by the stability of �̂�0 and �̂�1. By Assumptions 4 and

5,

1

𝑁

𝑁∑︁
𝑖=1

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
2

2

is limits to a constant, so Term 2 vanishes in probability as well. In total, we have established

that 21 is 𝑜𝑃 (1) which concludes the proof.

Remark 4. If Assumptions 4 and 5 apply to the feature engineered pseudo-covariates

(𝑓(𝑥𝑖)
T, �̇�0(𝑥𝑖), �̇�1(𝑥𝑖))

T then the same logic applies to the calibration regressions performed

in the formation of 𝜏𝑐𝑎𝑙2. Consequently, the calibrated prediction functions used for the

feature-engineered estimator 𝜏𝑐𝑎𝑙2 are prediction unbiased (in the sense of (GB21, Definition

1)) and stable.

We restate the theorems from above with the precise regularity conditions required.
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Theorem 1. Suppose that the completely randomized sampling is non-degenerate (Assump-

tion A.6). If the original prediction functions �̂�0 and �̂�1 are stable with vanishing error

processes (Assumptions 1 and 2) and satisfy Assumptions 4 and 5, then 𝜏𝑐𝑎𝑙 is consistent,

obeys a central limit theorem, and is asymptotically no less efficient than 𝜏𝑢𝑛𝑎𝑑𝑗.

Proof. Proposition A.4 establishes that �̂�𝑂𝐿𝑆,0 and �̂�𝑂𝐿𝑆,1 are prediction unbiased (in the

sense of (GB21, Definition 1)). Proposition A.5 implies the stability of the prediction func-

tions �̂�𝑂𝐿𝑆,0 and �̂�𝑂𝐿𝑆,1. Proposition A.1 implies that �̂�𝑂𝐿𝑆,0 and �̂�𝑂𝐿𝑆,1 satisfy the vanishing

error process assumption. Thus, the argument of Theorem 2 of (GB21) guarantees the

consistency of 𝜏𝑐𝑎𝑙 as long as

𝑀𝑆𝐸𝑁(𝑧) =
1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖(𝑧)− �̇�𝑂𝐿𝑆,𝑧(𝑥𝑖))
2 = 𝑜(𝑁) for 𝑧 ∈ {0, 1} (25)

a requirement which is met by Assumptions 4 and 5.

The consistency of 𝜏𝑐𝑎𝑙 does not rely upon whether or not any of the regression models �̂�0,

�̂�1, �̂�𝑂𝐿𝑆,0, and �̂�𝑂𝐿𝑆,1 are “well-specified" with respect to the data-generating process that

gave rise to the potential outcomes and covariates. In other words, consistency is derived

without any special regard for knowing how the data came to be.

Furthermore, since Proposition A.1 implies that �̂�𝑂𝐿𝑆,0 and �̂�𝑂𝐿𝑆,1 have vanishing error

processes the argument of (GB21, Theorem 3) implies that 𝜏𝑐𝑎𝑙 has an asymptotically linear

reformulation:

1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖(1)− 𝑦𝑖(1)) =
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

(𝑦𝑖(1)− �̇�𝑂𝐿𝑆,1(𝑥𝑖))⏟  ⏞  
�̇�𝑖(1)

+𝑜𝑃 (𝑁
−1/2), (26)

1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖(0)− 𝑦𝑖(0)) =
1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

(𝑦𝑖(0)− �̇�𝑂𝐿𝑆,0(𝑥𝑖))⏟  ⏞  
�̇�𝑖(0)

+𝑜𝑃 (𝑁
−1/2). (27)

Equations (26) and (27) show that the calibrated estimator 𝜏𝑐𝑎𝑙 − 𝜏 sate is equivalent, up
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to an error of 𝑜𝑃 (𝑁−1/2), to the difference in means estimator for a population where the

potential outcomes are given by the residuals �̇�𝑖(1) and �̇�𝑖(0) instead of the original potential

outcomes. By standard central limit theorems for the difference in means, e.g., (LD17), it

follows that under the conditions of Corollary 1 in (GB21)

𝑁1/2

(︂
𝜏𝑐𝑎𝑙 − 𝜏 sate

𝜎𝑁

)︂
𝑑−→ 𝒩 (0, 1) ,

where

𝜎2
𝑁 =

(︂
1

𝑛1

)︂
𝑀𝑆𝐸𝑁(1) +

(︂
1

𝑛0

)︂
𝑀𝑆𝐸𝑁(0)−

1

𝑁(𝑁 − 1)

𝑁∑︁
𝑖=1

(�̇�𝑖(1)− �̇�𝑖(0))
2 . (28)

Assumptions 4 and 5 are sufficient conditions for Corollary 1 of (GB21).

What remains to be shown is that 𝜏𝑐𝑎𝑙 is asymptotically no less efficient than 𝜏𝑢𝑛𝑎𝑑𝑗. In

other words, we must show that

lim
𝑁→∞

𝑁𝜎2
𝑁 ≤

Σ𝑦(1),∞

𝑝
+

Σ𝑦(0),∞

1− 𝑝
− Σ𝜏,∞ (29)

where Σ𝜏,∞ is the limiting variance of {𝜏𝑖 = 𝑦𝑖(1)−𝑦𝑖(0)}𝑁𝑖=1. The limit of 𝑁𝜎2
𝑁 is guaranteed

to exist due to Assumption 4.

Consider forming Lin’s regression adjusted estimator by regressing the observed outcomes

𝑦𝑖(𝑍𝑖) on the deterministic features (�̇�0(𝑥𝑖), �̇�1(𝑥𝑖))
T separately in the treated and control

groups, imputing counterfactuals based upon the corresponding regressions, and then taking

the difference in means across the imputed populations. Call this estimator 𝑇𝑙𝑖𝑛. 𝑇𝑙𝑖𝑛 differs

from 𝜏𝑐𝑎𝑙 in that the features used for regression are not those estimated from the sample, i.e.,

(�̂�0(𝑥𝑖), �̂�1(𝑥𝑖))
T. Nonetheless, Theorem 1 of (Lin13) gives that the asymptotic variance of

𝑁1/2
(︁
𝑇𝑙𝑖𝑛 − 𝜏 sate

)︁
is lim𝑁→∞𝑁𝜎2

𝑁 . Corollary 1 of (Lin13) then implies the non-inferiority

of 𝑇𝑙𝑖𝑛 relative to the unadjusted difference in means, which is equivalent to the inequality
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of 29. This indirectly shows the non-inferiority of 𝜏𝑐𝑎𝑙 relative to the unadjusted difference

in means 𝜏𝑢𝑛𝑎𝑑𝑗.

Theorem 2. Under the regularity conditions of Theorem 1 and for a given set of prediction

functions �̂�0 and �̂�1, the calibrated estimator 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate) has an asymptotic variance

that is no larger than that of both 𝑁1/2 (𝜏𝑔𝑂𝐵 − 𝜏 sate) and 𝑁1/2 (𝜏𝐺𝐵𝑐𝑎𝑙 − 𝜏 sate).

Proof. By Theorem 3 of (GB21), 𝑁1/2 (𝜏𝑔𝑂𝐵 − 𝜏 sate) differs by 𝑜𝑃 (1) from the difference in

means statistic
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

�̇�𝑖(1)−
1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

�̇�𝑖(0) (30)

where �̇�𝑖(𝑧) = 𝑦𝑖(𝑧)− �̇�𝑧(𝑥𝑖) for 𝑧 ∈ {0, 1}.

In contrast, by (26) and (27), 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate) differs by 𝑜𝑃 (1) from the difference in

means statistic
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

�̇�𝑖(1)−
1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

�̇�𝑖(0). (31)

Unpacking the notation of (30)

𝑁1/2 (𝜏𝑔𝑂𝐵 − 𝜏 sate) =
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

(𝑦𝑖(1)− �̇�1(𝑥𝑖))−
1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

(𝑦𝑖(0)− �̇�0(𝑥𝑖)) + 𝑜𝑃 (1)

=
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

⎛⎝𝑦𝑖(1)− eT

2

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⎞⎠−

1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

⎛⎝𝑦𝑖(0)− eT

1

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⎞⎠+ 𝑜𝑃 (1)

(32)
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where e𝑖 is the 𝑖th standard basis vector. The same logic applied to (31) yields that

𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate) =
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

(𝑦𝑖(1)− �̇�𝑂𝐿𝑆,1(𝑥𝑖))−

1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

(𝑦𝑖(0)− �̇�𝑂𝐿𝑆,0(𝑥𝑖)) + 𝑜𝑃 (1)

=
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

⎧⎨⎩𝑦𝑖(1)−
⎛⎝�̇�0 + �̇�T

1

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⎞⎠⎫⎬⎭−

1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

⎧⎨⎩𝑦𝑖(0)−
⎛⎝�̇�0 + �̇�T

1

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⎞⎠⎫⎬⎭+ 𝑜𝑃 (1)

(33)

where �̇�0 is the intercept of �̇�𝑂𝐿𝑆,1(·), �̇�1 is the slope of �̇�𝑂𝐿𝑆,1(·), and (�̇�0, �̇�1) are defined

similarly for �̇�𝑂𝐿𝑆,0(·).

Notice that both (32) and (33) are, up to an 𝑜𝑃 (1) difference, of the form

1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

⎧⎨⎩𝑦𝑖(1)−
⎛⎝𝛽0 + 𝛽T

1

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⎞⎠⎫⎬⎭−

1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

⎧⎨⎩𝑦𝑖(0)−
⎛⎝𝐵0 +𝐵T

1

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⎞⎠⎫⎬⎭ , (34)

with the only difference being that in (32) we take (𝛽1, 𝐵1) = (e2, e1) and (𝛽0, 𝐵0) = (0, 0)

whereas in (33) we take (𝛽1, 𝐵1) =
(︁
�̇�1, �̇�1

)︁
and (𝛽0, 𝐵0) = (�̇�0, �̇�0). Since, the 𝑜𝑃 (1) term

contributes nothing to the asymptotic variance of either quantity of interest, we neglect it

in the remainder of our analysis.

By the argument presented in Section 4.1 of (Lin13) and Lemma A.2 the variance of

(34) is minimized when (𝛽0, 𝛽1, 𝐵0, 𝐵1) is taken to be the population ordinary least squares

linear regression intercepts and slopes. This is exactly the case for (33), whereas (32)

presents a feasible, but not necessarily optimal, solution to the ordinary least squares prob-
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lem. Consequently, the asymptotic variance of 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate) does not exceed that of

𝑁1/2 (𝜏𝑔𝑂𝐵 − 𝜏 sate) and the inequality is strict when the population least squares problem

has a unique optimal solution which does not degenerate to |𝜏𝑐𝑎𝑙 − 𝜏𝑔𝑂𝐵| = 𝑜𝑝(𝑁
−1/2).

The same style of proof also shows that the asymptotic variance of 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate)

does not exceed that of 𝑁1/2 (𝜏𝐺𝐵𝑐𝑎𝑙 − 𝜏 sate).

Here we restate Theorem A.4 with precise regularity conditions and provide its proof.

Theorem A.1. Assume the regularity conditions of Theorem 1. So long as the random

vectors (𝑓(𝑥𝑖)
T, �̂�0(𝑥𝑖), �̂�1(𝑥𝑖))

T satisfy Assumptions 4 and 5, a central limit theorem applies

to 𝑁1/2 (𝜏𝑐𝑎𝑙2 − 𝜏 sate) and it is non-inferior to both 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate) and 𝑁1/2 (𝜏𝑙𝑖𝑛 − 𝜏 sate)

using the engineered features 𝑓(𝑥𝑖).

Proof. The mechanics of proving consistency and central limit behavior for 𝜏𝑐𝑎𝑙2 mirror those

of the proof for Theorem 1. Stability follows from Proposition A.5 using the adaptation in

Remarks 4 and 1. Vanishing of the error processes for the prediction functions of 𝜏𝑐𝑎𝑙2 follows

from modifying Proposition A.1 in the natural way to account for the additional features

𝑓(𝑥𝑖).

The asymptotic variance of 𝜏𝑐𝑎𝑙2 is the same as the asymptotic variance of Lin’s regres-

sion adjusted estimator which regresses upon (𝑓(𝑥𝑖)
T, �̇�0(𝑥𝑖), �̇�1(𝑥𝑖)); call this estimator 𝑇𝑓,�̇�.

Likewise, the asymptotic variance of 𝜏𝑐𝑎𝑙 is the same as the same as the asymptotic vari-

ance of the regression adjusted estimator which regresses upon (�̇�0(𝑥𝑖), �̇�1(𝑥𝑖)); in the proof

of Theorem 1 we called this estimator 𝑇𝑙𝑖𝑛. By Lemma A.2 the inclusion of the additional

features 𝑓(𝑥𝑖) guarantees that 𝑇𝑓,�̇� is non-inferior to 𝑇𝑙𝑖𝑛. Similarly, the inclusion of the addi-

tional features (�̇�0(𝑥𝑖), �̇�1(𝑥𝑖)) guarantees that 𝑇𝑓,�̇� is non-inferior to 𝜏𝑙𝑖𝑛 using the engineered
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features 𝑓(𝑥𝑖). Both of these statements rest upon the observation that the asymptotic vari-

ance of the regression adjusted estimator is never increased by including additional features;

this follows easily from Lemma A.2 by observing that regressions without the added features

are equivalent to regressions with the extra features but with coefficients restricted to zero

for such features.

2.13 Implementation

In Algorithm 1 we include pseudocode for the construction of 𝜏𝑐𝑎𝑙 in order to facilitate easy

implementation.
Algorithm 1: Computation of the calibrated Oaxaca-Blinder estimator.
Input: An observed treatment allocation 𝑍, with observed responses

𝑦1(𝑍1), . . . , 𝑦𝑁(𝑍𝑁) and covariates 𝑥1, . . . , 𝑥𝑁 .

Result: The calibrated estimator 𝜏𝑐𝑎𝑙.

Step 1: Initial predictions

Train the initial prediction algorithms �̂�0 and �̂�1;

for 𝑖 = 1, . . . , 𝑁 do
Impute the outcomes �̂�0(𝑥𝑖) and �̂�1(𝑥𝑖).

end

Step 2: Calibrate prediction functions

for 𝑧 ∈ {0, 1} do
Let �̂�𝑂𝐿𝑆,𝑧 be the linear regression of 𝑦𝑖(𝑍𝑖) on (�̂�0(𝑥𝑖), �̂�1(𝑥𝑖))

T in the group

{𝑖 : 𝑍𝑖 = 𝑧}.
end

return 𝜏𝑐𝑎𝑙 = 𝑁−1
∑︀𝑁

𝑖=1 {�̂�𝑂𝐿𝑆,1(𝑥𝑖)− �̂�𝑂𝐿𝑆,0(𝑥𝑖)}
Additionally, code written in R is available at:

https://github.com/PeterLCohen/OaxacaBlinderCalibration to demonstrate computa-

tion of 𝜏𝑐𝑎𝑙 and 𝜏𝑐𝑎𝑙2 and to provide examples of their use on real data sets.
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2.14 Rank-Deficiency

Throughout the proofs above we worked under the assumption that regressions, both those

defining 𝛽 and �̇�, are not rank-deficient. From the perspective of (19) and (20) this assump-

tion guaranteed unique solutions to the empirical risk minimization problems undergirding

ordinary least squares regression. If instead these regressions had linear dependencies be-

tween their features, these minimization problems would have uncountably many solutions.

This would present a mathematical impediment to the style of proofs used in the preceding

sections, but would not invalidate the general results.

In the case that the regression problems (19) and (20) have uncountably many solutions,

there is no uniquely identified choice of 𝛽(𝑁) or �̇�(𝑁) to make the consistency statement

||𝛽(𝑁) − �̇�(𝑁)||2 = 𝑜𝑃 (1) make sense. However, the predictions �̂�𝑂𝐿𝑆,𝑧(𝑥𝑖) and �̇�𝑂𝐿𝑆,𝑧(𝑥𝑖) are

still well-defined for all 𝑥𝑖. Because of this, the residuals �̇�𝑖(𝑧) remain well defined; and so

intuition derived from the asymptotically linear expansions (26) and (27) leads one to expect

no change to our main results.

In order to rectify the proofs for stability, vanishing error processes, and non-inferiority to

accord with the uncountable solution-space to the ordinary least squares regression problems

(19) and (20) one can pick a canonical representative from the class of optimal solutions.

For this, the linear regression coefficients given by the Moore-Penrose pseudoinverse (Pen55)

suffice; see (GVL13, Chapter 5.5) for the general relationship between rank-deficient least

squares and matrix pseudoinverses. Specifically, let the Moore-Penrose pseudoinverse of a

matrix 𝑀 be 𝑀+. Then take the canonical regression coefficients to be

𝛽+ =
(︁
�̂�T

1 �̂�1

)︁+
�̂�T

1

⎡⎢⎢⎢⎣
𝑦𝑖1(1)

...

𝑦𝑖𝑛1
(1)

⎤⎥⎥⎥⎦ and �̇�+ =
(︁
�̇�T

1 �̇�1

)︁+
�̇�T

1

⎡⎢⎢⎢⎣
𝑦1(1)

...

𝑦𝑁(1)

⎤⎥⎥⎥⎦ .

The proofs for stability, vanishing error processes, and non-inferiority follow through as
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before but with 𝛽+ and �̇�+ replacing 𝛽 and �̇�, respectively. A minor technical consideration

is required: the continuous mapping theorem must be applicable as it was in Lemma A.3.

Unlike the matrix inverse map 𝑀 ↦→𝑀−1, the Moore-Penrose pseudoinverse map 𝑀 ↦→𝑀+

is not a continuous map over the positive semidefinite cone under the metric induced by the

Frobenius norm (Ste69). The discontinuity of 𝑀 ↦→𝑀+ can be resolved by stipulating that

the there exists some ℵ ∈ N such that (almost surely) rank
(︁
�̂�T
1 �̂�1

)︁
and rank

(︁
�̇�T
1 �̇�1

)︁
are

equal to a common constant for all populations of size 𝑁 ≥ ℵ (Rak97); then the continuous

mapping theorem for general metric spaces of (vdV98, Theorem 18.11) applies as needed to

carry through the rest of the proofs in the same style as before.

2.15 Variance Estimation And Inference Under The Fi-

nite Population Model

The asymptotic Gaussianity of 𝑁1/2(𝜏𝑐𝑎𝑙 − 𝜏 sate) facilitates inference for the sample average

treatment effect using 𝜏𝑐𝑎𝑙. To proceed, we provide an asymptotically conservative variance

estimator for 𝜏𝑐𝑎𝑙. Define

Σ̂𝑧 :=
1

𝑛𝑧 − 1

∑︁
𝑖 : 𝑍𝑖=𝑧

(𝑦𝑖(𝑧)− �̂�𝑧(𝑥𝑖))
2 ,

𝑉 =
Σ̂1

𝑛1

+
Σ̂0

𝑛0

.

By Theorem 4 of (GB21), 𝑉 provides an asymptotically conservative estimate of the variance

of the generalized Oaxaca-Blinder estimator using imputation functions �̂�0 and �̂�1; their

result holds for the finite population model and accounts only for variability arising from the

stochasticity of the treatment allocation process. Consequently, the variance of the calibrated

estimator, which is a particular form of generalized Oaxaca-Blinder estimator, is estimated
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by

Σ̂𝑧,𝑐𝑎𝑙 :=
1

𝑛𝑧 − 1

∑︁
𝑖 : 𝑍𝑖=𝑧

(𝑦𝑖(𝑧)− �̂�𝑂𝐿𝑆,𝑧(𝑥𝑖))
2 ,

𝑉𝑐𝑎𝑙 =
Σ̂1,𝑐𝑎𝑙

𝑛1

+
Σ̂0,𝑐𝑎𝑙

𝑛0

. (35)

In a finite population 𝑉𝑐𝑎𝑙 is potentially asymptotically conservative relative to the true

variance of 𝜏𝑐𝑎𝑙, and so asymptotically valid – though potentially conservative – confidence

intervals may be formed based upon the usual normal approximation. In Section 2.16 we

discuss variance estimators which account for stochasticity in the potential outcomes them-

selves.

2.16 Linear Calibration In Alternative Models

2.16.1 Superpopulation and Fixed-Covariate Models

The asymptotic non-inferiority of linearly calibrated generalized Oaxaca-Blinder estimators

is not tied to the finite population model. Here we detail two alternative common models for

which linear calibration guarantees asymptotic non-inferiority of generalized Oaxaca-Blinder

estimators: the superpopulation model and the fixed-covariate model. In the superpopula-

tion model the vector of potential outcomes and covariates (𝑦𝑖(0), 𝑦𝑖(1), 𝑥𝑖) is an independent

and identically distributed draw from some fixed distribution for each 𝑖 ∈ {1, . . . , 𝑁}. In the

fixed-covariate model the 𝑖th unit’s covariates 𝑥𝑖 are deterministic while the potential out-

comes (𝑦𝑖(0), 𝑦𝑖(1)) are independent draws from some conditional distribution given 𝑥𝑖. In the

superpopulation framework, the targeted estimand is the population average treatment effect

(PATE), 𝜏pate = 𝐸[𝑦𝑖(1)− 𝑦𝑖(0)]. Under the fixed covariate model, the estimand of interest

is the conditional average treatment effect (CATE), 𝜏cate = 𝑁−1
∑︀𝑁

𝑖=1𝐸[𝑦𝑖(1)− 𝑦𝑖(0) | 𝑥𝑖].

In both of these models linear calibration functions exactly the same as in the finite popu-
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lation model: estimate the nonlinear prediction functions �̂�0 and �̂�1 on the observed data

and subsequently form Lin’s linearly-adjusted estimator using the imputed values �̂�0(𝑥𝑖) and

�̂�1(𝑥𝑖) in lieu of the covariates 𝑥𝑖. The natural analogs of Theorem 1 hold so long as the

required assumptions are modified to reflect the chosen probabilistic framework.

2.16.2 Linear Calibration for the Population Average Treatment

Effect

Under the superpopulation model, Assumption 1 (Stability) remains unchanged. Likewise

Assumption 2 stays the same, though the stochastic process now inherits randomness from

the potential outcomes and covariates in addition to the randomness in treatment allocation.

Assumptions 4 and 5 require simple modifications to adapt to randomness in the potential

outcomes and covariates.

Assumption 8 (Superpopulation Limiting Means and Variances). The mean vector and

covariance matrix of (𝑦𝑖(0), 𝑦𝑖(1), �̇�0(𝑥𝑖), �̇�0(𝑥𝑖))
T have limiting values. For instance, for

𝑧 = 0, 1 there exists a limiting value 𝑦(𝑧)∞ such that lim𝑁→∞ E [𝑦𝑖(𝑧)] = 𝑦(𝑧)∞.

Assumption 9 (Superpopulation Bounded Fourth Moments). There exists some 𝐶 < ∞

for which, for all 𝑧 = 0, 1 and all 𝑁 , E [𝑦𝑖(𝑧)
4] < 𝐶 and E [�̇�𝑧(𝑥𝑖)

4] < 𝐶.

In the superpopulation case, the definition of �̇� given in Lemma A.3 requires a minor

change to

�̇� = (�̇�0, �̇�1) = argmin
𝛽0,𝛽1

E

⎡⎣⎧⎨⎩𝑦𝑖(1)−
⎛⎝𝛽0 + 𝛽𝑇

1

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⎞⎠⎫⎬⎭
2⎤⎦ .

Then ||𝛽− �̇�||2 = 𝑜𝑃 (1) by the standard consistency of sample ordinary least squares regres-

sion coefficients under Assumptions 8 and 9; this consistency holds even without assuming

the truth of a linear model (BBB+19, Proposition 7).
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Lemma A.7 (Asymptotically Linear Expansions around the SATE). Under Assumptions A.6,

1, and 2 the random variable 𝑁−1
∑︀𝑁

𝑖=1 (�̂�𝑧(𝑥𝑖)− 𝑦𝑖(𝑧)) is asymptotically linear in the sense

that
1

𝑁

𝑁∑︁
𝑖=1

(�̂�𝑧(𝑥𝑖)− 𝑦𝑖(𝑧)) =
1

𝑛𝑧

∑︁
𝑖 : 𝑍𝑖=𝑧

�̇�𝑖(𝑧) + 𝑜𝑝(𝑁
−1/2)

where �̇�𝑖(𝑧) = 𝑦𝑖(𝑧)− �̇�𝑧(𝑥𝑖).

Proof. By the exact same reasoning as in (GB21, Proof of Theorem 3), rewrite

𝑁−1
∑︀𝑁

𝑖=1 (�̂�𝑧(𝑥𝑖)− 𝑦𝑖(𝑧)) as

1

𝑛𝑧

∑︁
𝑖 : 𝑍𝑖=𝑧

�̇�𝑖(𝑧) +
1

𝑁

(︃
𝑁∑︁
𝑖=1

(︂
𝑍𝑖�̇�𝑧(𝑥𝑖)

(𝑛𝑧/𝑁)
− �̇�𝑧(𝑥𝑖)

)︂
⏟  ⏞  

𝑁1/2𝒢𝑁,𝑧(�̇�𝑧)

−
𝑁∑︁
𝑖=1

(︂
𝑍𝑖�̂�𝑧(𝑥𝑖)

(𝑛𝑧/𝑁)
− �̂�𝑧(𝑥𝑖)

)︂
⏟  ⏞  

𝑁1/2𝒢𝑁,𝑧(�̂�𝑧)

)︃
.

Consequently, the desired result holds so long as |𝒢𝑁,𝑧(�̇�𝑧)− 𝒢𝑁,𝑧(�̂�𝑧)| = 𝑜𝑃 (1); this holds

by Assumption 2.

Theorem A.2. Under the superpopulation model, subject to Assumptions A.6, 1, 2, 8 and

9, 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏pate) obeys a central limit theorem.
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Proof. We start with an algebraic decomposition:

𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏pate) = 𝑁1/2

(︃
1

𝑁

𝑁∑︁
𝑖=1

(�̂�𝑂𝐿𝑆,1(𝑥𝑖)− �̂�𝑂𝐿𝑆,0(𝑥𝑖))− 𝜏pate

)︃

= 𝑁1/2

(︃
1

𝑁

𝑁∑︁
𝑖=1

(�̂�𝑂𝐿𝑆,1(𝑥𝑖)− �̂�𝑂𝐿𝑆,0(𝑥𝑖))−
1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖(1)− 𝑦𝑖(0))+

1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖(1)− 𝑦𝑖(0))− 𝜏pate

)︃

= 𝑁1/2

(︃
1

𝑁

𝑁∑︁
𝑖=1

(�̂�𝑂𝐿𝑆,1(𝑥𝑖)− 𝑦𝑖(1))−
1

𝑁

𝑁∑︁
𝑖=1

(�̂�𝑂𝐿𝑆,0(𝑥𝑖)− 𝑦𝑖(0))+

1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖(1)− 𝑦𝑖(0))− 𝜏pate

)︃

By Lemma A.7 this final term equals

𝑁1/2

(︃
1

𝑁

𝑁∑︁
𝑖=1

𝑍𝑖𝑁𝑛
−1
1 �̇�𝑖(1)−

1

𝑁

𝑁∑︁
𝑖=1

(1− 𝑍𝑖)𝑁𝑛
−1
0 �̇�𝑖(0)+

1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖(1)− 𝑦𝑖(0))− 𝜏pate

)︃
+ 𝑜𝑃 (1)

where �̇�𝑖(𝑧) = 𝑦𝑖(𝑧)−�̇�𝑂𝐿𝑆,𝑧(𝑥𝑖). By the reasoning of Lemma A.5 we stipulate that E [�̇�𝑖(𝑧)] =

0 for 𝑧 ∈ {0, 1}. Rearranging the formula above yields

𝑁1/2

(︃
1

𝑁

𝑁∑︁
𝑖=1

𝑍𝑖𝑁
(︀
𝑛−1
1 �̇�𝑖(1) + 𝑛−1

0 �̇�𝑖(0)
)︀
− 1

𝑁

𝑁∑︁
𝑖=1

𝑁𝑛−1
0 �̇�𝑖(0)+

1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖(1)− 𝑦𝑖(0))− 𝜏pate

)︃
+ 𝑜𝑃 (1)
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Consider the random variable

𝜙(𝑍𝑖) := 𝑍𝑖𝑁
(︀
𝑛−1
1 �̇�𝑖(1) + 𝑛−1

0 �̇�𝑖(0)
)︀
−𝑁𝑛−1

0 �̇�𝑖(0) + (𝑦𝑖(1)− 𝑦𝑖(0)) ;

to prove the desired result it suffices to show a central limit theorem for 𝜙(𝑍𝑖). To do this

we will start by conditioning upon the event 𝑍 = 𝑧 for some 𝑧 ∈ Ω𝐶𝑅𝐸; we will show that a

central limit theorem applies to 𝜙(𝑧𝑖) almost surely with respect to the conditioning event

𝑍 = 𝑧 ∈ Ω𝐶𝑅𝐸; then we will leverage this conditional central limit theorem to deduce that

an unconditional central limit theorem applies to 𝜙(𝑍𝑖).

Condition on the event 𝑍 = 𝑧 for some 𝑧 ∈ Ω𝐶𝑅𝐸 and recall that 𝑍𝑖 is independent

of (𝑦𝑖(0), 𝑦𝑖(1), 𝑥𝑖) so this conditioning changes nothing of the distribution of the �̇�𝑖(𝑧) and

the 𝑦𝑖(𝑧) for all 𝑖 ∈ {1, . . . , 𝑁} and 𝑧 ∈ {0, 1}. We examine the conditional expectation

E [𝜙(𝑍𝑖) | 𝑍 = 𝑧].

E [𝜙(𝑍𝑖) | 𝑍 = 𝑧] = E
[︀
𝑍𝑖𝑁

(︀
𝑛−1
1 �̇�𝑖(1) + 𝑛−1

0 �̇�𝑖(0)
)︀
| 𝑍 = 𝑧

]︀
−

E
[︀
𝑁𝑛−1

0 �̇�𝑖(0) | 𝑍 = 𝑧
]︀
+ E [(𝑦𝑖(1)− 𝑦𝑖(0)) | 𝑍 = 𝑧]

= 𝑧𝑖 E
[︀
𝑁
(︀
𝑛−1
1 �̇�𝑖(1) + 𝑛−1

0 �̇�𝑖(0)
)︀]︀⏟  ⏞  

0

−E
[︀
𝑁𝑛−1

0 �̇�𝑖(0)
]︀⏟  ⏞  

0

+

E [(𝑦𝑖(1)− 𝑦𝑖(0))]⏟  ⏞  
𝜏pate

= 𝜏pate.

The random variables 𝜙(𝑍1), . . . , 𝜙(𝑍𝑛) are a conditionally independent family of random

variables given the event 𝑍 = 𝑧; however, they are not identically distributed. For all

𝑖 such that 𝑧𝑖 = 0 the random variable 𝜙(𝑧𝑖) is equal in distribution to −𝑁𝑛−1
0 �̇�𝑖(0) +

(𝑦𝑖(1)− 𝑦𝑖(0)). For the 𝑖 such that 𝑧𝑖 = 1 the random variable 𝜙(𝑧𝑖) is equal in distribution
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to 𝑁
(︀
𝑛−1
1 �̇�𝑖(1) + 𝑛−1

0 �̇�𝑖(0)
)︀
−𝑁𝑛−1

0 �̇�𝑖(0) + (𝑦𝑖(1)− 𝑦𝑖(0)). Motivated by this, we study

𝑁−1/2

(︃
𝑁∑︁
𝑖=1

𝜙(𝑧𝑖)− 𝜏pate

)︃
= 𝑁−1/2

(︃
𝑁∑︁
𝑖=1

𝜙(𝑧𝑖)− E [𝜙(𝑍𝑖) | 𝑍 = 𝑧]

)︃

=
(︁
𝑁−1/2𝑛

1/2
0

)︁
𝑛
−1/2
0

(︃ ∑︁
𝑖 : 𝑧𝑖=0

𝜙(𝑧𝑖)− E [𝜙(𝑍𝑖) | 𝑍 = 𝑧]

)︃
+

(︁
𝑁−1/2𝑛

1/2
1

)︁
𝑛
−1/2
1

(︃ ∑︁
𝑖 : 𝑧𝑖=1

𝜙(𝑧𝑖)− E [𝜙(𝑍𝑖) | 𝑍 = 𝑧]

)︃
.

The first term on the right-hand-side is independent from the second term on the right-hand-

side; furthermore:

• The first term is a 𝑛−1/2
0 -scaled sum of 𝑛0 independent terms each equal in distribution

to −𝑁𝑛−1
0 �̇�𝑖(0) + (𝑦𝑖(1)− 𝑦𝑖(0));

• The second term is a 𝑛−1/2
1 -scaled sum of 𝑛1 independent terms each equal in distribu-

tion to 𝑁
(︀
𝑛−1
1 �̇�𝑖(1) + 𝑛−1

0 �̇�𝑖(0)
)︀
−𝑁𝑛−1

0 �̇�𝑖(0) + (𝑦𝑖(1)− 𝑦𝑖(0)).

Recall that 𝑛1/𝑁 → 𝑝 and 𝑛0/𝑁 → (1− 𝑝); then apply the Lindeberg–Lévy central limit

theorem (Dur19, Theorem 3.4.1) to the two terms

𝑛
−1/2
0

(︃ ∑︁
𝑖 : 𝑧𝑖=0

𝜙(𝑧𝑖)− E [𝜙(𝑍𝑖) | 𝑍 = 𝑧]

)︃
,

𝑛
−1/2
1

(︃ ∑︁
𝑖 : 𝑧𝑖=1

𝜙(𝑧𝑖)− E [𝜙(𝑍𝑖) | 𝑍 = 𝑧]

)︃

separately. Denote the limiting variance of the first term by 𝑠0 and the limiting variance of the

second term by 𝑠1 and notice that these quantities do not depend on the particular choice of 𝑧.

Then, regardless of 𝑧’s value we have that 𝑁−1/2
(︁∑︀𝑁

𝑖=1 𝜙(𝑧𝑖)− E [𝜙(𝑍𝑖) | 𝑍 = 𝑧]
)︁

converges

weakly to the random variable (1 − 𝑝)−1/2𝐴 + 𝑝−1/2𝐵 where 𝐴 ∼ 𝒩 (0, 𝑠0) independent of
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𝐵 ∼ 𝒩 (0, 𝑠1). By the independence of 𝐴 and 𝐵 we have that, for all 𝑧 ∈ Ω𝐶𝑅𝐸,

𝑁−1/2

(︃
𝑁∑︁
𝑖=1

𝜙(𝑧𝑖)− E [𝜙(𝑍𝑖) | 𝑍 = 𝑧]

)︃
𝑑−→ 𝒩

(︂
0,

𝑠0
1− 𝑝

+
𝑠1
𝑝

)︂
.

In other words, 𝑁−1/2
(︁∑︀𝑁

𝑖=1 𝜙(𝑍𝑖)− 𝜏pate

)︁
conditional upon 𝑍 converges weakly to

𝒩 (0, (1− 𝑝)−1𝑠0 + 𝑝−1𝑠1) almost surely with respect to randomness in 𝑍. Consequently,

by Lemma A.6, 𝑁−1/2
(︁∑︀𝑁

𝑖=1 𝜙(𝑍𝑖)− 𝜏pate

)︁
converges weakly to 𝒩 (0, (1− 𝑝)−1𝑠0 + 𝑝−1𝑠1)

unconditionally on 𝑍. Unwinding the definition of 𝜙(𝑍𝑖) establishes that 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏pate)

obeys a central limit theorem.

Theorem A.3. Assume the conditions of Theorem A.2 hold. Further suppose that the

original prediction functions �̂�0 and �̂�1 are prediction unbiased. Then 𝑁1/2(𝜏𝑐𝑎𝑙 − 𝜏pate),

𝑁1/2(𝜏𝐺𝐵𝑐𝑎𝑙−𝜏pate), 𝑁1/2(𝜏𝑔𝑂𝐵−𝜏pate), and 𝑁1/2(𝜏𝑢𝑛𝑎𝑑𝑗−𝜏pate) all obey central limit theorems

and 𝑁1/2(𝜏𝑐𝑎𝑙 − 𝜏pate) has asymptotic variance no greater than any of the other three.

Proof. The central limit theorem for 𝑁1/2(𝜏𝑐𝑎𝑙 − 𝜏pate) is proved in Theorem A.2. The

proof for the central limit theorems of 𝑁1/2(𝜏𝐺𝐵𝑐𝑎𝑙 − 𝜏pate) follows a similar arc to that

of Theorem A.2; the proof of the central limit theorem for 𝑁1/2(𝜏𝑔𝑂𝐵 − 𝜏pate) also follows

similar reasoning, but relies upon the assumption that the original prediction functions �̂�0

and �̂�1 are prediction unbiased. The assumption that the original prediction functions �̂�0

and �̂�1 are prediction unbiased is not needed for 𝑁1/2(𝜏𝑐𝑎𝑙 − 𝜏pate) and 𝑁1/2(𝜏𝐺𝐵𝑐𝑎𝑙 − 𝜏pate)

since these two calibration procedures automatically confer prediction unbiasedness due to

the first-order optimality conditions of linear regression. Finally, the central limit theorem

for 𝑁1/2(𝜏𝑢𝑛𝑎𝑑𝑗 − 𝜏pate) is a classical consequence of the Lyapunov central limit theorem.

By the law of total variance, for any measurable event ℱ , the variance of 𝑁1/2(𝜏𝑐𝑎𝑙−𝜏pate)
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decomposes as

V
(︀
𝑁1/2(𝜏𝑐𝑎𝑙 − 𝜏pate)

)︀
= E

[︀
V
(︀
𝑁1/2(𝜏𝑐𝑎𝑙 − 𝜏pate) | ℱ

)︀]︀
+

V
(︀
E
[︀
𝑁1/2(𝜏𝑐𝑎𝑙 − 𝜏pate) | ℱ

]︀)︀
.

Taking ℱ to be the event {(𝑦𝑖(0), 𝑦𝑖(1), 𝑥𝑖) = (y𝑖(0),y𝑖(1),x𝑖) 𝑖 = 1, . . . , 𝑁} yields the decom-

position of the variance of 𝑁1/2(𝜏𝑐𝑎𝑙 − 𝜏pate) into the expected variance of 𝑁1/2(𝜏𝑐𝑎𝑙 − 𝜏pate)

given a fixed finite population and the variance of the expectation of 𝑁1/2(𝜏𝑐𝑎𝑙− 𝜏pate) given

that fixed finite population. Since 𝜏𝑐𝑎𝑙 − 𝜏 sate conditioned on ℱ has mean on the order of

𝑜𝑃 (𝑁
−1/2) it follows that lim𝑁→∞V

(︀
𝑁1/2(𝜏𝑐𝑎𝑙 − 𝜏pate)

)︀
equals

lim
𝑁→∞

E
[︀
V
(︀
𝑁1/2(𝜏𝑐𝑎𝑙 − 𝜏pate) | ℱ

)︀]︀
⏟  ⏞  

Term 1

+ lim
𝑁→∞

V
(︀
𝑁1/2(𝜏 sate − 𝜏pate)

)︀
⏟  ⏞  

Term 2

. (36)

Term 1 is the limiting expected finite population variance of 𝑁1/2(𝜏𝑐𝑎𝑙 − 𝜏pate) while Term

2 is the limiting variance of 𝑁1/2(𝜏 sate − 𝜏pate). In other words, Term 2 is the asymptotic

𝑁 -scaled variance of the SATE around the PATE. The same variance decomposition idea

applies to 𝑁1/2(𝜏𝐺𝐵𝑐𝑎𝑙−𝜏pate), 𝑁1/2(𝜏𝑔𝑂𝐵−𝜏pate), and 𝑁1/2(𝜏𝑢𝑛𝑎𝑑𝑗−𝜏pate); for each different

estimator the form of Term 1 adapts to the particular estimator at hand but Term 2 is exactly

the same. Thus, the differences in asymptotic variance under the superpopulation model

are controlled only by the differences in finite population variance. Consequently, the finite

population analysis already performed implies that 𝑁1/2(𝜏𝑐𝑎𝑙−𝜏pate) has asymptotic variance

no greater than that of 𝑁1/2(𝜏𝐺𝐵𝑐𝑎𝑙−𝜏pate), 𝑁1/2(𝜏𝑔𝑂𝐵− 𝜏pate), and 𝑁1/2(𝜏𝑢𝑛𝑎𝑑𝑗− 𝜏pate).

The decomposition of variance in (36) points to an important deficiency of 𝑉𝑐𝑎𝑙 of (35):

while the variance estimator 𝑉𝑐𝑎𝑙 of (35) is guaranteed to be asymptotically conservative in

the finite population model, it need not be valid if additional randomness is incorporated

into the data generating process. Indeed, if there is randomness in the potential outcomes
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themselves, 𝑁𝑉𝑐𝑎𝑙 may converge in probability to a constant which is strictly smaller than the

limiting variance of 𝑁1/2(𝜏𝑐𝑎𝑙 − 𝑁−1
∑︀𝑁

𝑖=1 E [𝑦𝑖(1)− 𝑦𝑖(0)]). Fortunately, (36) also suggests

a simple rectification of this anti-conservativeness. By asymptotic linearity and the usual

finite population decomposition of variance (DFM19), we have that

lim
𝑁→∞

E
[︀
V
(︀
𝑁1/2(𝜏𝑐𝑎𝑙 − 𝜏pate) | ℱ

)︀]︀
=

Σ�̇�(1),∞

𝑝
+

Σ�̇�(0),∞

1− 𝑝
− Σ𝛿,∞,

Σ�̇�(𝑧),∞ = lim
𝑁→∞

1

𝑁 − 1

𝑁∑︁
𝑖=1

E

⎡⎣(︃�̇�𝑖(𝑧)− 1

𝑁

𝑁∑︁
𝑗=1

E [�̇�𝑗(𝑧)]

)︃2
⎤⎦ for 𝑧 ∈ {0, 1},

Σ𝛿,∞ = lim
𝑁→∞

1

𝑁 − 1

𝑁∑︁
𝑖=1

E

⎡⎣(︃(�̇�𝑖(1)− �̇�𝑖(0))−
1

𝑁

𝑁∑︁
𝑗=1

E [�̇�𝑗(1)− �̇�𝑗(0)]

)︃2
⎤⎦ .

Furthermore,

lim
𝑁→∞

V
(︀
𝑁1/2(𝜏 sate − 𝜏pate)

)︀
= Σ𝜏,∞,

Σ𝜏,∞ = lim
𝑁→∞

1

𝑁 − 1

𝑁∑︁
𝑖=1

E

⎡⎣(︃(𝑦𝑖(1)− 𝑦𝑖(0))−
1

𝑁

𝑁∑︁
𝑗=1

E [𝑦𝑗(1)− 𝑦𝑗(0)]

)︃2
⎤⎦ .

Combining the two previous observations with (36) yields that

lim
𝑁→∞

V
(︀
𝑁1/2(𝜏𝑐𝑎𝑙 − 𝜏pate)

)︀
=

Σ�̇�(1),∞

𝑝
+

Σ�̇�(0),∞

1− 𝑝
− Σ𝛿,∞ + Σ𝜏,∞.

By the classical partitioning of variance in linear regression the total sum of squares is

the sum of the residual sum of squares and the explained sum of squares; in our context this
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means that

Σ𝜏,∞ = Σ𝛿,∞ + Σ𝑓𝑖𝑡𝑡𝑒𝑑,∞,

Σ𝑓𝑖𝑡𝑡𝑒𝑑,∞ = lim
𝑁→∞

1

𝑁 − 1

𝑁∑︁
𝑖=1

E

[︃(︃
(�̇�𝑂𝐿𝑆,1(𝑥𝑖)− �̇�𝑂𝐿𝑆,0(𝑥𝑖))−

1

𝑁

𝑁∑︁
𝑗=1

E [�̇�𝑂𝐿𝑆,1(𝑥𝑗)− �̇�𝑂𝐿𝑆,0(𝑥𝑗)]

)︃2]︃
.

In total, we have that

lim
𝑁→∞

V
(︀
𝑁1/2(𝜏𝑐𝑎𝑙 − 𝜏pate)

)︀
=

Σ�̇�(1),∞

𝑝
+

Σ�̇�(0),∞

1− 𝑝
+ Σ𝑓𝑖𝑡𝑡𝑒𝑑,∞.

Consequently, to adapt the variance estimator of (35) to superpopulation inference, one

must incorporate the variance of the predicted treatment effects; this forms the superpopu-

lation variance estimator

𝑉𝑐𝑎𝑙,𝑠𝑢𝑝 =
Σ̂1,𝑐𝑎𝑙

𝑛1

+
Σ̂0,𝑐𝑎𝑙

𝑛0

+

1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
(�̂�𝑂𝐿𝑆,1(𝑥𝑖)− �̂�𝑂𝐿𝑆,0(𝑥𝑖))−

1

𝑁

𝑁∑︁
𝑗=1

(�̂�𝑂𝐿𝑆,1(𝑥𝑗)− �̂�𝑂𝐿𝑆,0(𝑥𝑗))

)︃2

. (37)

Notice that the decomposition of variance into 𝑝−1Σ�̇�(1),∞ + (1 − 𝑝)−1Σ�̇�(0),∞ + Σ𝑓𝑖𝑡𝑡𝑒𝑑,∞

relies upon the orthogonality of residuals 𝑦𝑖(𝑧) − �̇�𝑧(𝑥𝑖) and predicted values �̇�𝑧(𝑥𝑖) due to

the first order optimality condition of ordinary least squares linear regression, so such a

decomposition is not generally applicable to uncalibrated estimators; this provides another

attractive property for calibrated estimators.6

6For a generic superpopulation variance estimator in the context of uncalibrated imputation estimators
see (Rot20, Section 3.3).
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2.16.3 Linear Calibration for the Conditional Average Treatment

Effect

We start by presenting several highly general regularity conditions; further on we present

an example of a generative model which satisfies the required regularity conditions. Our

regularity conditions in the fixed-covariate model are presented with respect to conditioning

upon the potential outcomes in addition to the already implicitly determined covariates. For

each population of size 𝑁 with deterministic covariates {𝑥𝑖}𝑁𝑖=1, consider conditioning upon

some realization of the potential outcomes

{(𝑦𝑖(0), 𝑦𝑖(1)) = (y𝑖(0),y𝑖(1)) 𝑖 = 1, . . . , 𝑁} . (38)

Assumption 10 (Fixed-Covariate Limiting Means and Variances). For all conditioning

events of the form (38) except for a set of measure zero under the fixed covariate model we re-

quire that for 𝑧 = 0, 1 there exists a limiting value 𝑦(𝑧)∞ such that lim𝑁→∞𝑁−1
∑︀𝑁

𝑖=1 𝑦𝑖(𝑧) =

𝑦(𝑧)∞. Likewise, for almost all conditioning events of the form (38) there exists a common

limiting positive semidefinite matrix Σ such that

lim
𝑁→∞

1

𝑁 − 1

𝑁∑︁
𝑖=1

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
𝑦𝑖(0)

𝑦𝑖(1)

�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎥⎥⎥⎥⎥⎥⎦−𝑁−1

𝑁∑︁
𝑗=1

⎡⎢⎢⎢⎢⎢⎢⎣
𝑦𝑗(0)

𝑦𝑗(1)

�̇�0(𝑥𝑗)

�̇�1(𝑥𝑗)

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠⊗

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
𝑦𝑖(0)

𝑦𝑖(1)

�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎥⎥⎥⎥⎥⎥⎦−𝑁−1

𝑁∑︁
𝑗=1

⎡⎢⎢⎢⎢⎢⎢⎣
𝑦𝑗(0)

𝑦𝑗(1)

�̇�0(𝑥𝑗)

�̇�1(𝑥𝑗)

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ = Σ. (39)

Assumption 11 (Fixed-Covariate Bounded Fourth Moments). For all conditioning events
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of the form (38) except for a set of measure zero under the fixed covariate model we require

that for 𝑧 = 0, 1 there exists some 𝐶 < ∞ such that for all 𝑁 ∈ N, 𝑁−1
∑︀𝑁

𝑖=1 𝑦𝑖(𝑧)
4 < 𝐶

and 𝑁−1
∑︀𝑁

𝑖=1 �̇�𝑧(𝑥𝑖)
4 < 𝐶.

In the fixed-covariate case, the definition of �̇� given in Lemma A.3 requires a minor

change to

�̇� = (�̇�0, �̇�1) = argmin
𝛽0,𝛽1

𝑁∑︁
𝑖=1

E

⎡⎣⎧⎨⎩𝑦𝑖(1)−
⎛⎝𝛽0 + 𝛽𝑇

1

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦⎞⎠⎫⎬⎭
2 ⃒⃒⃒⃒

𝑥𝑖

⎤⎦ .
Assumptions 10 and 11 facilitate consistency of ordinary least squares coefficients in the

fixed covariate model.

Lemma A.8 (Lindeberg Condition). Under Assumptions 10 and 11, the potential outcomes

(𝑦𝑖(0), 𝑦𝑖(1)) given 𝑥𝑖 jointly satisfy the conditions of Lindeberg’s central limit theorem.

Proof. Define 𝑠2𝑁(𝑧) =
∑︀𝑁

𝑖=1 V (𝑦𝑖(𝑧) | 𝑥𝑖) where V (𝑦𝑖(𝑧) | 𝑥𝑖) denotes the variance of 𝑦𝑖(𝑧)

given the covariates 𝑥𝑖. We will show that Lyapounov’s condition (LR05, Equation 11.12)

holds at 𝛿 = 2 for the potential outcomes; formally, for 𝑧 ∈ {0, 1} and 𝛿 = 2

lim
𝑁→∞

1

𝑠2+𝛿
𝑁 (𝑧)

𝑁∑︁
𝑖=1

E
[︁
|𝑦𝑖(𝑧)|2+𝛿 | 𝑥𝑖

]︁
= 0. (40)

Rewrite (40) as

lim
𝑁→∞

𝑁

𝑠2+𝛿
𝑁 (𝑧)⏟  ⏞  
Term 1

· 1
𝑁

𝑁∑︁
𝑖=1

E
[︁
|𝑦𝑖(𝑧)|2+𝛿 | 𝑥𝑖

]︁
⏟  ⏞  

Term 2

.

Term 2 is bounded above by 𝐶 for all 𝑁 by Assumption 11 and Kolmogorov’s strong law of

large numbers for non-identically distributed sequences (Fel68, Section 10.7), so it suffices

to show that Term 1 vanishes as 𝑁 → ∞. By Assumption 10 and Kolmogorov’s strong

151



law, 𝑁−1
∑︀𝑁

𝑖=1V (𝑦𝑖 | 𝑥𝑖) limits to a positive constant which we denote Σ𝑦(𝑧).7 Consequently,

𝑁𝑠−2
𝑁 → Σ−1

𝑦(𝑧) > 0 and 𝑠2𝑁 = Θ(𝑁). From this, it is immediate that 𝑁𝑠−(2+𝛿)
𝑁 → 0 as 𝑁 → ∞

for 𝛿 = 2. In total, this establishes (40). Since (40) is sufficient for the Lindeberg condition

(LR05, Page 427), the result follows.

Remark 5. Since the residuals (�̇�𝑖(0), �̇�𝑖(1)) defined by �̇�𝑖(𝑧) = 𝑦𝑖(𝑧) − �̇�𝑧(𝑥𝑖) are deter-

ministic translations of the potential outcomes (𝑦𝑖(0), 𝑦𝑖(1)) in the fixed-covariate model,

Lemma A.8 immediately implies that the residuals (�̇�𝑖(0), �̇�𝑖(1)) jointly satisfy the conditions

of Lindeberg’s central limit theorem.

The stability assumption is also taken in accordance with the conditioning events of (38).

Assumption 12 (Stability). For all conditioning events of the form (38) except for a set

of measure zero under the fixed covariate model there exists a deterministic sequence of

functions {�̇�(𝑁)
1 }𝑁∈N such that

(︃
1

𝑁

𝑁∑︁
𝑖=1

||�̇�(𝑁)
1 (𝑥𝑖)− �̂�1(𝑥𝑖)||2

)︃1/2

= 𝑜𝑃 (1). (41)

We assume that an analogous sequence, {�̇�(𝑁)
0 }𝑁∈N, exists for �̂�0.

In Assumption 12 the randomness on both sides of (41) is only with respect to 𝑍.

Remark 6. The regularity conditions Assumptions 10 and 11 do not prescribe a particular

generative model; they are working-level mathematical ingredients in our subsequent proofs.

In order to complete the picture, we detail a conventional generative model which satisfies

Assumptions 10 and 11.

For each finite population the 𝑁 units have covariates {𝑥𝑖}𝑁𝑖=1 and the potential outcomes

of unit 𝑖 are independent of all units 𝑗 for 𝑗 ̸= 𝑖. The pair of potential outcomes (𝑦𝑖(0), 𝑦𝑖(1))
7The use of Kolmogorov’s strong law can be replaced by the bounded convergence theorem for both the

arguments pertaining to Term 1 and Term 2; Assumption 11 establishes the required bounds.
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are distributed according the the conditional distribution 𝑃𝑥𝑖
. Consequently, for any two

individuals who exactly match on their covariates, their potential outcome pairs are inde-

pendent and identically distributed. Formally, 𝑥𝑖 = 𝑥𝑗 implies that (𝑦𝑖(0), 𝑦𝑖(1)) is equal in

distribution to (𝑦𝑗(0), 𝑦𝑗(1)). Let expectations under the distribution 𝑃𝑥𝑖
be denoted as E𝑥𝑖

;

similarly, denote variances by var𝑥𝑖
.

Assumption 10 codifies the need for a strong law of large numbers for the means and vari-

ances of the realized populations under the fixed covariate model. Assumption 10 is highly

general, but can be implied by moment conditions on the potential outcomes themselves.

In particular suppose that lim𝑁→∞𝑁−1
∑︀𝑁

𝑖=1 E𝑥𝑖
[𝑦𝑖(𝑧)] and lim𝑁→∞𝑁−1

∑︀𝑁
𝑖=1 var𝑥𝑖

(𝑦𝑖(𝑧))

exist and are finite. This is sufficient to guarantee the first condition of Assumption 10; the

proof proceeds by application of Kolmogorov’s strong law of large numbers for non-identically

distributed sequences. Similar reasoning establishes that if there exists a limiting positive

semidefinite matrix Σ such that

lim
𝑁→∞

1

𝑁 − 1

𝑁∑︁
𝑖=1

E𝑥𝑖

[︃
⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
𝑦𝑖(0)

𝑦𝑖(1)

�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎥⎥⎥⎥⎥⎥⎦−𝑁−1

𝑁∑︁
𝑗=1

E𝑥𝑗

⎡⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎣
𝑦𝑗(0)

𝑦𝑗(1)

�̇�0(𝑥𝑗)

�̇�1(𝑥𝑗)

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠

⊗

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
𝑦𝑖(0)

𝑦𝑖(1)

�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎥⎥⎥⎥⎥⎥⎦−𝑁−1

𝑁∑︁
𝑗=1

E𝑥𝑗

⎡⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎣
𝑦𝑗(0)

𝑦𝑗(1)

�̇�0(𝑥𝑗)

�̇�1(𝑥𝑗)

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
]︃
= Σ

and sufficient control of higher order moments (e.g., coordinate-wise fourth moments) is

assumed then the second condition of Assumption 10 again follows by Kolmogorov’s law of
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large numbers applied now to the entries of the matrix in (39). The moment condition

𝑁−1

𝑁∑︁
𝑖=1

E𝑥𝑖

[︀
𝑦𝑖(𝑧)

4
]︀
→ 𝑐𝑧 for 𝑧 ∈ {0, 1}

for a constant 𝑐𝑧 and the requirement that Kolmogorov’s condition (Fel68, Eqn. 7.2) holds for

the random variables 𝑦𝑖(𝑧) establishes Assumption 11 by Kolmogorov’s law of large numbers

and simultaneously serves in establishing the second condition of Assumption 10. Since the

covariates are non-stochastic we make the usual assumption that 𝑁−1
∑︀𝑁

𝑖=1 �̇�𝑧(𝑥𝑖)
4 < 𝐶 for

𝑧 ∈ {0, 1}; this exactly mirrors our earlier finite population analysis.

Lemma A.9 (Asymptotically Linear Expansions around the SATE). Under Assumptions A.6,

2, and 12 the random variable 𝑁−1
∑︀𝑁

𝑖=1 (�̂�𝑧(𝑥𝑖)− 𝑦𝑖(𝑧)) is asymptotically linear in the sense

that, for �̇�𝑖(𝑧) = 𝑦𝑖(𝑧)− �̇�𝑧(𝑥𝑖)

1

𝑁

𝑁∑︁
𝑖=1

(�̂�𝑧(𝑥𝑖)− 𝑦𝑖(𝑧)) =
1

𝑛𝑧

∑︁
𝑖 : 𝑍𝑖=𝑧

�̇�𝑖(𝑧) + 𝑜𝑝(𝑁
−1/2).

The proof of Lemma A.9 mostly mirrors that of Lemma A.7; the main working ingredient

is the vanishing error process argument facilitated by Assumption 2.8

For the analysis of central limit theorems under the fixed-covariate model it is mathe-

matically convenient to adopt the probabilistic joint-model-design framework of (RBK05).

Consider a probability space (Φ,F , 𝑃 ) from which we form a population of 𝑁 individuals

with potential outcome 𝑦𝑖(𝑧) = 𝒴𝑧(𝜔𝑖) for 𝑧 ∈ {0, 1} and covariates 𝑥𝑖 = 𝒳 (𝜔𝑖) for 𝒴𝑧 and

𝒳 measurable functions of 𝜔𝑖 ∈ Φ. Let ℱ𝑐𝑜𝑣 = {𝜔 ∈ Φ : 𝒳 (𝜔𝑖) = x𝑖 for 𝑖 = 1, . . . , 𝑁}; ℱ𝑐𝑜𝑣

is the event that the covariates of the 𝑁 individuals are given by the deterministic values

{x𝑖}𝑁𝑖=1. Let 𝑃ℱ𝑐𝑜𝑣 be the conditional probability measure derived from 𝑃 conditioned on

8In the fixed covariate model, the error process 𝒢𝑁,𝑧(�̇�𝑧) − 𝒢𝑁,𝑧(�̂�𝑧) inherits randomness only from
stochasticity in the outcomes and treatment allocation while the covariates 𝑥𝑖 are viewed as deterministic
vectors.
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the event ℱ𝑐𝑜𝑣. In the case that ℱ𝑐𝑜𝑣 is an event of 𝑃 -measure zero, we tacitly assume that

there exists a well-defined regular conditional probability measure and take 𝑃ℱ𝑐𝑜𝑣 to be this

conditional; see (CT97, Section 7.2) for more details on this technical issue. Inferences un-

der the fixed-covariate model take (Ω,F , 𝑃ℱ𝑐𝑜𝑣) to generate the outcomes 𝑦𝑖(𝑧) = 𝒴𝑧(𝜔𝑖) for

𝑧 ∈ {0, 1} and implicitly constrain the covariates 𝑥𝑖 = 𝒳 (𝜔𝑖) = x𝑖 for 𝑖 = 1, . . . , 𝑁 .

Theorem A.4. Under the fixed-covariate model, subject to Assumptions A.6, 2, 10, 11, and

12, 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏cate) obeys a central limit theorem.

Proof. We start out with the simple observation that

𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏cate) = 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate) +𝑁1/2 (𝜏 sate − 𝜏cate) .

Leveraging the asymptotic linearity of Lemma A.9 the first term on the right-hand-side

can be replaced with the difference in means of the residuals �̇�𝑖(1) and �̇�𝑖(0) plus an 𝑜𝑃 (1)

error term:

𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏cate) = 𝑁1/2

(︃
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

�̇�𝑖(1)−
1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

�̇�𝑖(0)

)︃
+ 𝑜𝑃 (1)+

𝑁1/2 (𝜏 sate − 𝜏cate) .

The 𝑜𝑃 (1) error term has no impact on the asymptotic distributional behaviour of

𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏cate). Thus, to show a central limit theorem for 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏cate) it suffices to

show that

1. Conditionally upon the potential outcomes, the term

𝑁1/2

(︃
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

�̇�𝑖(1)−
1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

�̇�𝑖(0)

)︃
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converges weakly in probability to a fixed Gaussian distribution and term

𝑁1/2 (𝜏 sate − 𝜏cate)

obeys a central limit theorem.

2. The terms

𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate) + 𝑜𝑃 (1) = 𝑁1/2

(︃
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

�̇�𝑖(1)−
1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

�̇�𝑖(0)

)︃

and 𝑁1/2 (𝜏 sate − 𝜏cate) are asymptotically independent in the sense that their limiting

joint distribution is the product of the two limiting marginal distributions.

We tackle 1 first. By Lemma A.8 and the Lindeberg central limit theorem (LR05, The-

orem 11.2.5) it follows that 𝑁1/2 (𝜏 sate − 𝜏cate) converges in distribution to a Gaussian dis-

tribution; denote this limiting distribution as 𝒩 (0, 𝑠𝑚).

Next, we show that 𝑁1/2
(︁

1
𝑛1

∑︀
𝑖 : 𝑍𝑖=1 �̇�𝑖(1)−

1
𝑛0

∑︀
𝑖 : 𝑍𝑖=0 �̇�𝑖(0)

)︁
converges weakly in prob-

ability to a fixed Gaussian distribution.

Under Assumption 12 and the assumption that 𝑁−1
∑︀𝑁

𝑖=1 (�̇�𝑧(𝑥𝑖)− 𝑦𝑖(𝑧))
2 = 𝑜(𝑁) as a

numeric sequence for almost all conditioning events of the potential outcomes, by Lemma 3 in

the appendix of (GB21) we can, without loss of generality, stipulate that 𝑁−1
∑︀𝑁

𝑖=1 �̇�𝑖(𝑧) = 0

for 𝑧 ∈ {0, 1} almost surely with respect to the conditioning (38). Under Assumptions 10

and 11 the finite population analysis provided in Theorem 1 shows that

𝑁1/2

(︃
1

𝑁

𝑁∑︁
𝑖=1

𝑍𝑖𝑁𝑛
−1
1 �̇�𝑖(1)−

1

𝑁

𝑁∑︁
𝑖=1

(1− 𝑍𝑖)𝑁𝑛
−1
0 �̇�𝑖(0)

)︃

converges weakly to a centered Gaussian distribution with variance given by the limit of

𝜎2
𝑁 defined in (28). This limit exists by Assumption 10 and is common to all condition-
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ing events of the form (38) up to a set of measure zero; we denote it by 𝑠𝑑. Consequently,

𝑁1/2
(︁

1
𝑛1

∑︀
𝑖 : 𝑍𝑖=1 �̇�𝑖(1)−

1
𝑛0

∑︀
𝑖 : 𝑍𝑖=0 �̇�𝑖(0)

)︁
converges weakly in probability to a random vari-

able with distribution 𝒩 (0, 𝑠𝑑).

Finally, we turn to 2. By Theorem 5.1 (iii) of (RBK05) it follows that the random vector(︀
𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate) , 𝑁

1/2 (𝜏 sate − 𝜏cate)
)︀

converges in distribution to (𝒞,𝒟) ∼ 𝒩 (0, 𝑠𝑑) ⊗

𝒩 (0, 𝑠𝑚).9

By the continuous mapping theorem (vdV98, Theorem 18.11),

𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate) +𝑁1/2 (𝜏 sate − 𝜏cate)

converges in distribution to 𝒞+𝒟. Since the sum of independent Gaussian random variables is

itself Gaussian we have that𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate)+𝑁
1/2 (𝜏 sate − 𝜏cate) converges in distribution

to 𝒩 (0, 𝑠𝑑 + 𝑠𝑚). In turn, this implies that 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏cate) converges in distribution to

𝒩 (0, 𝑠𝑑 + 𝑠𝑚).

Theorem A.5. Assume the conditions of Theorem A.4 hold. Further suppose that the

original prediction functions �̂�0 and �̂�1 are prediction unbiased. Then 𝑁1/2(𝜏𝑐𝑎𝑙 − 𝜏cate),

𝑁1/2(𝜏𝐺𝐵𝑐𝑎𝑙 − 𝜏cate), 𝑁1/2(𝜏𝑔𝑂𝐵 − 𝜏cate), and 𝑁1/2(𝜏𝑢𝑛𝑎𝑑𝑗 − 𝜏cate) all obey central limit the-

orems and 𝑁1/2(𝜏𝑐𝑎𝑙 − 𝜏cate) has asymptotic variance no greater than any of the other three.

Proof. The proof thematically mirrors that of Theorem A.3. The first three central limit

theorems are justified by Theorem A.4 and analogous variants for 𝑁1/2(𝜏𝐺𝐵𝑐𝑎𝑙 − 𝜏cate) and

𝑁1/2(𝜏𝑔𝑂𝐵 − 𝜏cate). The fourth central limit theorem is justified by Lemma A.8 and the

Lindeberg central limit theorem (LR05, Theorem 11.2.5).

Variance estimation and the construction of confidence intervals proceeds via the variance

estimator of (35) under analogous reasoning.
9The original work of (RBK05) focuses on survey-sampling; however, nothing of their result Theorem 5.1

(iii) relies upon the survey-sampling framework of having only a single potential outcome, so we apply their
result to the causal inference context of multiple potential outcomes.
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2.17 Further Simulations

2.17.1 An Example with Logistic Regression

In Section 2.6, we provided a simulation study to demonstrate the practical benefits of our

calibration procedure while simultaneously showing the risks of uncalibrated estimators. We

used an example based upon Poisson regression; to further highlight the concerns of using

uncalibrated estimates we now provide a simulation using logistic regression.

The 𝑠th of 𝑆 data sets contains 𝑁 individuals upon whom an experimenter performs a

completely randomized experiment with 𝑛1 = ⌈𝑝𝑁⌉ treated units. In our simulations 𝑝 = 0.8.

Each unit has a scalar covariate 𝑥𝑖, generated as independent and identically distributed

draws from a Uniform random variable on [−8, 8]. We then generate the potential outcomes

under treatment and control for each individual independently as 𝑦𝑖(1) ∼ 𝐵𝑒𝑟𝑛{𝑓(𝑥𝑖)} and

𝑦𝑖(0) ∼ 𝐵𝑒𝑟𝑛{−0.4 * (𝑓(𝑥𝑖)− 1)}, where 𝐵𝑒𝑟𝑛(𝑐) is a Bernoulli distribution with probability

of success 𝑐. We take

𝑓(𝑥) =
exp(−3 + 2𝑥)

1 + exp(−3 + 2𝑥)
.

Consequently, the logistic regression model is correctly specified for the potential outcomes

under treatment, but incorrectly specified for those under control.

For each data set, these values are left fixed while the remaining randomness in the

simulation arises only from treatment allocation. An experimenter observes only the count

data 𝑦𝑖(𝑍𝑖) and continuous covariates 𝑥𝑖 for each unit. Using the observed responses after

each randomization of treatment allocation, we estimate the prediction functions �̂�0(𝑥𝑖) and

�̂�1(𝑥𝑖) via separate logistic regressions of 𝑦𝑖(𝑍𝑖) on 𝑥𝑖 in the subgroups where 𝑍𝑖 = 0 and

𝑍𝑖 = 1, respectively. We form the difference-in-means estimator 𝜏𝑢𝑛𝑎𝑑𝑗, generalized Oaxaca-

Blinder estimator 𝜏𝑔𝑂𝐵, the singly-calibrated estimator of (GB21, Equation 8) 𝜏𝐺𝐵𝑐𝑎𝑙, and

our linearly-calibrated estimator 𝜏𝑐𝑎𝑙.

Table 2.2 compares the averages (over 𝑠 = 1, ..., 𝑆) of the ratios of the variances for
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v̂ar(𝜏𝑔𝑂𝐵)/v̂ar(𝜏𝑢𝑛𝑎𝑑𝑗) v̂ar(𝜏𝐺𝐵𝑐𝑎𝑙)/v̂ar(𝜏𝑢𝑛𝑎𝑑𝑗) v̂ar(𝜏𝑐𝑎𝑙)/v̂ar(𝜏𝑢𝑛𝑎𝑑𝑗)
𝑁 = 200 1.077 1.076 1.031
𝑁 = 500 1.056 1.054 0.993
𝑁 = 1000 1.050 1.047 0.981
𝑁 = 10000 1.043 1.041 0.970

Table 2.2: Ratios of Monte Carlo variances for 𝜏𝑐𝑎𝑙, 𝜏𝐺𝐵𝑐𝑎𝑙, and 𝜏𝑔𝑂𝐵 to the difference in
means estimator 𝜏𝑢𝑛𝑎𝑑𝑗 for various experiment sizes 𝑁 . Each variance is based upon 𝐵 = 1000
simulated treatment allocations for a given set of potential outcomes and covariates. Results
are averaged over 𝑆 = 1000 simulated data sets.

the adjusted estimators to the unadjusted estimator when setting 𝑆 = 1000, 𝐵 = 1000,

and varying 𝑁 . Qualitatively, the results of Table 2.2 mirror those of the Poisson regression

simulation in Section 2.6: uncalibrated generalized Oaxaca-Blinder estimators can fare worse

than the simple difference in means and the singly-calibrated estimator 𝜏𝐺𝐵𝑐𝑎𝑙 fails to correct

this issue; however, our calibration procedure asymptotically improves upon 𝜏𝑢𝑛𝑎𝑑𝑗 while

leveraging the desired nonlinear model.

2.17.2 Poisson Regression Calibration in Alternative Models

To highlight the application of calibration in superpopulation and fixed-covariate models, we

recreate the Poisson regression example from Section 2.6 at all three levels of inference. For

simulations in the superpopulation, new covariates and potential outcomes are redrawn in

each of the 𝑆𝐵 simulated data sets. For simulation in the fixed-covariate model new covari-

ates are constructed in the 𝑠th simulation, but are held fixed – while potential outcomes are

redrawn conditional upon these covariates – for each randomization of treatment allocation

1, . . . , 𝐵 in the 𝑠th simulation. Each simulation is conducted with 𝑁 = 10000. Variances are

reported for appropriately centered versions 𝜏𝑐𝑎𝑙, 𝜏𝐺𝐵𝑐𝑎𝑙, and 𝜏𝑔𝑂𝐵. As an example, for the 𝑠th

simulation in the fixed-covariate case we compute the ratio of the variance of 𝜏𝑐𝑎𝑙− 𝜏 (𝑠)cate and

the variance of 𝜏𝑢𝑛𝑎𝑑𝑗 − 𝜏
(𝑠)
cate where 𝜏 (𝑠)cate denotes the conditional average treatment effect in

the 𝑠th simulated population. Table 2.3 summarizes our results. Even in the fixed-covariate
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v̂ar(𝜏𝑔𝑂𝐵)/v̂ar(𝜏𝑢𝑛𝑎𝑑𝑗) v̂ar(𝜏𝐺𝐵𝑐𝑎𝑙)/v̂ar(𝜏𝑢𝑛𝑎𝑑𝑗) v̂ar(𝜏𝑐𝑎𝑙)/v̂ar(𝜏𝑢𝑛𝑎𝑑𝑗)
SATE 1.660 1.657 0.654
CATE 1.549 1.547 0.711
PATE 1.114 1.114 0.941

Table 2.3: Ratios of Monte Carlo variances for 𝜏𝑐𝑎𝑙, 𝜏𝐺𝐵𝑐𝑎𝑙, and 𝜏𝑔𝑂𝐵 to the difference in means
estimator 𝜏𝑢𝑛𝑎𝑑𝑗 under different generative models. Each variance is based upon 𝐵 = 1000
simulated treatment allocations; results are averaged over 𝑆 = 1000 simulated data sets.

and superpopulation models, uncalibrated Oaxaca-Blinder estimators may suffer from in-

flated asymptotic variances relative to the unadjusted difference in means and the single

calibration of 𝜏𝐺𝐵𝑐𝑎𝑙 fails to correct the issue. Fortunately, our linear calibration procedure

succeeds in all three models, as evidenced by the third column of Table 2.3. The impact of

calibration is most noticeable in the finite population framework but is nonetheless profound

in all three models.

In the third column of Table 2.3 v̂ar(𝜏𝑐𝑎𝑙)/v̂ar(𝜏𝑢𝑛𝑎𝑑𝑗) increases as one goes from inference

for the SATE to the CATE and finally to the PATE. This trend is a fundamental reflection

of asymptotic variances in the three models under consideration. By the law of total variance,

for any measurable event ℱ , the variance of 𝜏𝑢𝑛𝑎𝑑𝑗 decomposes as

V
(︀
𝑁1/2𝜏𝑢𝑛𝑎𝑑𝑗

)︀
= E

[︀
V
(︀
𝑁1/2𝜏𝑢𝑛𝑎𝑑𝑗 | ℱ

)︀]︀
+𝑁V (E [𝜏𝑢𝑛𝑎𝑑𝑗 | ℱ ]) .

Taking ℱ to be the event {(𝑦𝑖(0), 𝑦𝑖(1), 𝑥𝑖) = (y𝑖(0),y𝑖(1),x𝑖) 𝑖 = 1, . . . , 𝑁} yields the de-

composition of the variance of 𝜏𝑢𝑛𝑎𝑑𝑗 into the expected variance of 𝜏𝑢𝑛𝑎𝑑𝑗 given a fixed finite

population and the variance of the expectation of 𝜏𝑢𝑛𝑎𝑑𝑗 given that fixed finite population.

Since the difference in means is unbiased for the sample average treatment effect given ℱ

it follows that the second term is just the variance of the sample average treatment effect,

V (𝜏 sate). This decomposition is valid regardless of the underlying model of the data: su-

perpopulation, fixed-covariate, or finite population. For the sake of explanation, we discuss

the difference between the SATE row and the PATE row, but the same reasoning applies
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to the differences between the SATE and CATE rows and the CATE and PATE rows of

Table 2.3.

In the finite population model there is no variance of the sample average treatment

effect whatsoever since it depends only on fixed values; in other words, for the top row of

𝑁V (E [𝜏𝑢𝑛𝑎𝑑𝑗 | ℱ ]) = 0. In contrast with the finite population case, under a superpopulation

model the sample average treatment effect may vary; in all but the most degenerate cases

𝑁V (𝜏 sate) > 0. Furthermore, under the finite population conditions of (Lin13) and standard

fourth-moment regularity conditions in the superpopulation model E
[︀
V
(︀
𝑁1/2𝜏𝑢𝑛𝑎𝑑𝑗 | ℱ

)︀]︀
has the same limit in the finite population model and the superpopulation model.

The same variance decomposition can be applied to the estimators 𝜏𝑔𝑂𝐵, 𝜏𝐺𝐵𝑐𝑎𝑙, and

𝜏𝑐𝑎𝑙. Without loss of generality, we discuss the case of 𝜏𝑐𝑎𝑙. Since 𝜏𝑐𝑎𝑙 is asymptotically

unbiased in all three models, the term 𝑁V (E [𝜏𝑐𝑎𝑙 | ℱ ]) limits to the 𝑁 -scaled variance of

the sample average treatment effect in all three models. As before, under mild regularity

conditions E
[︀
V
(︀
𝑁1/2𝜏𝑐𝑎𝑙 | ℱ

)︀]︀
has the same limit in the finite population model and the

superpopulation model. Thus, the difference in asymptotic variances between 𝜏𝑐𝑎𝑙 and 𝜏𝑢𝑛𝑎𝑑𝑗

is driven by the limiting difference between E
[︀
V
(︀
𝑁1/2𝜏𝑐𝑎𝑙 | ℱ

)︀]︀
and E

[︀
V
(︀
𝑁1/2𝜏𝑢𝑛𝑎𝑑𝑗 | ℱ

)︀]︀
.

By the reasoning above, this limiting difference is the same in both the finite population

model and in a superpopulation model. Taking the results for large 𝑁 as reflective of

their asymptotic behavior the difference between the top-right and bottom-right elements

of Table 2.3 can be explained as: the difference between the numerator and denominator

remains the same while the magnitude of both the numerator and the denominator are larger

in the PATE row than in the SATE row. Analogous reasoning applies to the SATE versus

CATE rows and the CATE versus PATE rows and across the other columns as well.
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2.18 A Case Study On Tumor Recurrence Of Bladder

Cancers

The Veterans Administration Cooperative Urological Research Group (VACURG) conducted

a completely randomized clinical trial to examine the effectiveness of treatment against recur-

rence of bladder cancers. Each patient enrolled in the study had superficial bladder tumors

are the start of the study; the tumors were removed transurethrally before the patients

were assigned to one of three treatment conditions: placebo pills, pyridoxine (vitamin 𝐵6)

pills, or periodic treatment with thiotepa (a chemotherapeutic agent). The patients returned

for follow-up visits and the existence of recurrent tumors observed in these follow-ups was

tabulated; although – at times – more than one tumor was observed during a follow-up ap-

pointment the number of such tumors is not the primary object of study, only their presence

or not is recorded as a binary outcome in each follow-up. After a recurrent tumor was ob-

served, it was removed and the treatment regimen assigned to that individual was continued.

For further details see (AH85, Chapter 45). Our analysis focuses upon the placebo group,

with 47 individuals, and the thiotepa treatment group, with 38 individuals.

The primary outcome of the study is the count of the number of recurrences, so Poisson

regression is a natural adjustment model. Covariate information collected at the start of the

experiment includes the initial number of tumors and the diameter of the largest of these.

The number of months over which the patient attended follow-up appointments was recorded

as well as the survival status of the patient at the conclusion of the study. We control for

the log-number of follow-up months, the number of initial tumors, and the diameter of the

largest initial tumor. We compare the unadjusted difference in means, the uncalibrated

generalized Oaxaca-Blinder estimator of (GB21), the singly-calibrated estimator of (GB21),

and our calibrated estimator. Table 2.4 displays the point estimate of treatment effect and

the corresponding estimated variance. The variances displayed along the right-hand column
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Point Estimate Variance
𝜏𝑢𝑛𝑎𝑑𝑗 -0.667 0.190
𝜏𝑔𝑂𝐵 -0.775 0.123
𝜏𝐺𝐵𝑐𝑎𝑙 -0.784 0.122
𝜏𝑐𝑎𝑙 -0.778 0.120

Table 2.4: Point estimates and estimated variances of 𝜏𝑢𝑛𝑎𝑑𝑗, 𝜏𝑔𝑂𝐵, and 𝜏𝐺𝐵𝑐𝑎𝑙, and 𝜏𝑐𝑎𝑙 on
the VACURG bladder tumor recurrence data set.

of Table 2.4 demonstrate the substantial benefit of controlling for features. Only 𝜏𝑐𝑎𝑙 is

guaranteed to be non-inferior to 𝜏𝑢𝑛𝑎𝑑𝑗; the performance of 𝜏𝑔𝑂𝐵 and 𝜏𝐺𝐵𝑐𝑎𝑙 is not generally

guaranteed. Moreover, 𝜏𝑐𝑎𝑙 never has asymptotic variance which exceeds that of 𝜏𝑔𝑂𝐵 and

𝜏𝐺𝐵𝑐𝑎𝑙; this is observed even in this sample.

2.19 Calibration And Semiparametric Efficiency

In superpopulation models, a great deal of regression adjustment literature has focused

upon semiparametric efficiency of estimators. Below we include a brief survey of some of

this literature and demonstrate the relationship between semiparametric efficient estimators

and the calibration procedure.

(Hah98) takes a superpopulation approach to inference; his formulation aligns with the

superpoplation framework of (RBK05). Units of the population are 𝑁 independent and

identically distributed tuples (𝑦𝑖(0), 𝑦𝑖(1), 𝑥𝑖) and the object of inference is the population

average treatment effect E [𝑦1(1)− 𝑦1(0)]. We present his main semiparametric efficiency

bound adapted to the context of completely randomized experiments below; it can be en-

visioned in the same light as the Cramér-Rao bound as it provides a lower bound on the

asymptotic variance of any regular estimator of E [𝑦1(1)− 𝑦1(0)].

Theorem A.6 ((Hah98), Theorem 1). In a completely randomized experiment, the asymp-
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totic variance of any regular estimator sequence for E [𝑦1(1)− 𝑦1(0)] is bounded below by

E
[︂
V (𝑦𝑖(1) | 𝑥𝑖)

𝑝
+

V (𝑦𝑖(0) | 𝑥𝑖)
1− 𝑝

+ (E [𝑦1(1)− 𝑦1(0) | 𝑥𝑖]− E [𝑦1(1)− 𝑦1(0)])
2

]︂
. (42)

Any sequence of regular estimators for E [𝑦1(1)− 𝑦1(0)] which achieves an asymptotic

variance of (42) in the limit is said to be (asymptotically) semiparametric efficient. Write

the conditional expectation of the outcomes given the covariates as

𝜇𝑡𝑟𝑢𝑒
𝑧 (𝑥) = E [𝑦𝑖(𝑧) | 𝑥𝑖 = 𝑥] for 𝑧 ∈ {0, 1}.

Citing a result by (Hah98), (Rot20) remarks that any semiparametric efficient regular es-

timator of E [𝑦1(1)− 𝑦1(0)] is necessarily of the form 𝑁−1
∑︀𝑁

𝑖=1 𝜓𝑖(𝜇
𝑡𝑟𝑢𝑒
0 , 𝜇𝑡𝑟𝑢𝑒

1 ) + 𝑜𝑝(𝑁
−1/2)

where

𝜓𝑖(𝜇
𝑡𝑟𝑢𝑒
0 , 𝜇𝑡𝑟𝑢𝑒

1 ) :=
(︀
𝜇𝑡𝑟𝑢𝑒
1 (𝑥𝑖)− 𝜇𝑡𝑟𝑢𝑒

0 (𝑥𝑖)
)︀
+

𝑍𝑖 (𝑦𝑖(𝑍𝑖)− 𝜇𝑡𝑟𝑢𝑒
1 (𝑥𝑖))

(𝑛1/𝑁)
− (1− 𝑍𝑖) (𝑦𝑖(𝑍𝑖)− 𝜇𝑡𝑟𝑢𝑒

0 (𝑥𝑖))

(𝑛0/𝑁)
. (43)

We show that any estimator of the form 𝑁−1
∑︀𝑁

𝑖=1 𝜓𝑖(�̂�0, �̂�1) + 𝑜𝑝(𝑁
−1/2) obtains non-

inferiority after calibration; even though 𝑁−1
∑︀𝑁

𝑖=1 𝜓𝑖(�̂�0, �̂�1) + 𝑜𝑝(𝑁
−1/2) originally could

have been asymptotically inferior to the unadjusted difference in means. Consequently,

any estimator which has hope of semiparametric efficiency can be made non-inferior to

the difference in means via our calibration procedure. If it was the case that the original

estimator sequence happened to be semiparametric efficient, then the asymptotic variance

of the calibrated estimator will coincide with the semiparametric efficiency bound; however

for regular estimators which do not achieve the semiparametric efficiency bound calibration

automatically yields asymptotic non-inferiority to the difference in means. We formalize this

statement below.
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(Rot20) considers estimators of the form 𝜏𝑟𝑜𝑡ℎ𝑒 = 𝑁−1
∑︀𝑁

𝑖=1 𝜓𝑖(�̂�0, �̂�1) where �̂�0 and �̂�1

attempt to estimate the true conditional expectation functions 𝜇𝑡𝑟𝑢𝑒
0 and 𝜇𝑡𝑟𝑢𝑒

1 , respectively.

Consider calibrating 𝜏𝑟𝑜𝑡ℎ𝑒 by defining �̂�𝑂𝐿𝑆,0 and �̂�𝑂𝐿𝑆,1 according to the usual linear cali-

bration formula and forming

𝜏𝑟𝑜𝑡ℎ𝑒,𝑐𝑎𝑙 = 𝑁−1

𝑁∑︁
𝑖=1

𝜓𝑖(�̂�𝑂𝐿𝑆,0, �̂�𝑂𝐿𝑆,1).

Theorem A.7. Subject to Assumptions 1, 2, 8, and 9:

• 𝜏𝑟𝑜𝑡ℎ𝑒,𝑐𝑎𝑙 is asymptotically linear in the sense that

𝑁1/2 (𝜏𝑟𝑜𝑡ℎ𝑒,𝑐𝑎𝑙 − 𝜏pate) = 𝑁−1/2

𝑁∑︁
𝑖=1

(𝜓𝑖(�̇�𝑂𝐿𝑆,0, �̇�𝑂𝐿𝑆,1)− 𝜏pate) + 𝑜𝑃 (1). (44)

• The asymptotic variance of 𝑁1/2 (𝜏𝑟𝑜𝑡ℎ𝑒,𝑐𝑎𝑙 − 𝜏pate) lies in the closed interval [Σ𝑙,Σ𝑢]

where Σ𝑙 is the semiparametric efficiency bound of (42) and Σ𝑢 is the asymptotic

variance of the 𝑁1/2 (𝜏𝑢𝑛𝑎𝑑𝑗 − 𝜏pate). Furthermore, the asymptotic variance of

𝑁1/2 (𝜏𝑟𝑜𝑡ℎ𝑒,𝑐𝑎𝑙 − 𝜏pate)

is no greater than the asymptotic variance of 𝑁1/2 (𝜏𝑟𝑜𝑡ℎ𝑒 − 𝜏pate), so in the case that

𝜏𝑟𝑜𝑡ℎ𝑒 is more asymptotically precise than 𝜏𝑢𝑛𝑎𝑑𝑗 we can replace Σ𝑢 with the limiting

variance of 𝑁1/2 (𝜏𝑟𝑜𝑡ℎ𝑒 − 𝜏pate) and thereby shrink the interval even further.

Proof. The stability assumption (Assumption 1) coupled with the moment assumptions As-

sumptions 8, and 9 establish that the calibrated imputation functions �̂�𝑂𝐿𝑆,0 and �̂�𝑂𝐿𝑆,1 are

stable themselves; the argument mirrors the finite population case as before. Consequently,

�̂�𝑂𝐿𝑆,0 and �̂�𝑂𝐿𝑆,1 satisfy Assumption 1 of (Rot20) (which is basically a variant of our sta-

bility assumption). Furthermore, the vanishing error process assumption (Assumption 2)

165



coupled with Assumptions 1, 8, and 9 establishes

𝑁1/2 (𝜏𝑟𝑜𝑡ℎ𝑒,𝑐𝑎𝑙 − 𝜏pate) = 𝑁−1/2

𝑁∑︁
𝑖=1

(𝜓𝑖(�̇�𝑂𝐿𝑆,0, �̇�𝑂𝐿𝑆,1)− 𝜏pate) + 𝑜𝑃 (1).

Now we turn attention to the second claim of the theorem. The lower bound is an

automatic consequence of (Rot20, Corollary 1) and (Hah98, Theorem 1); thus we turn

to the upper bound. By the earlier asymptotic linearity result (see (44) for the cali-

brated case and (Rot20, Theorem 1) for the uncalibrated case), the asymptotic variance

of 𝑁1/2 (𝜏𝑟𝑜𝑡ℎ𝑒 − 𝜏pate) equals that of 𝑁−1/2
∑︀𝑁

𝑖=1 (𝜓𝑖(�̇�0, �̇�1)− 𝜏pate); consequently, it suf-

fices to examine the asymptotic variance of 𝑁−1/2
∑︀𝑁

𝑖=1 (𝜓𝑖(�̇�0, �̇�1)− 𝜏pate). We leverage the

law of total variance via a conditioning argument; as in Section 2.17 let ℱ to be the event

{(𝑦𝑖(0), 𝑦𝑖(1), 𝑥𝑖) = (y𝑖(0),y𝑖(1),x𝑖) 𝑖 = 1, . . . , 𝑁}.

V

(︃
𝑁−1/2

𝑁∑︁
𝑖=1

(𝜓𝑖(�̇�0, �̇�1)− 𝜏pate)

)︃
=

E

[︃
V

(︃
𝑁−1/2

𝑁∑︁
𝑖=1

(𝜓𝑖(�̇�0, �̇�1)− 𝜏pate)
⃒⃒⃒
ℱ

)︃]︃
+

V

(︃
E

[︃
𝑁−1/2

𝑁∑︁
𝑖=1

(𝜓𝑖(�̇�0, �̇�1)− 𝜏pate)
⃒⃒⃒
ℱ

]︃)︃

Given ℱ the only randomness in 𝑁−1/2
∑︀𝑁

𝑖=1 (𝜓𝑖(�̇�0, �̇�1)− 𝜏pate) comes from the random

allocation of treatment assignment, 𝑍, and since

𝜓𝑖(�̇�0, �̇�1) = �̇�1(𝑥𝑖)− �̇�0(𝑥𝑖) +
𝑍𝑖 (𝑦𝑖(𝑍𝑖)− �̇�1(𝑥𝑖))

(𝑛1/𝑁)
− (1− 𝑍𝑖) (𝑦𝑖(𝑍𝑖)− �̇�0(𝑥𝑖))

(𝑛0/𝑁)
, (45)

it follows that

E

[︃
𝑁−1/2

𝑁∑︁
𝑖=1

(𝜓𝑖(�̇�0, �̇�1)− 𝜏pate)
⃒⃒⃒
ℱ

]︃
= 𝑁1/2

(︃
1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖(1)− 𝑦𝑖(0))− 𝜏pate

)︃
.
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Consequently, the term V
(︁
E
[︁
𝑁−1/2

∑︀𝑁
𝑖=1 (𝜓𝑖(�̇�0, �̇�1)− 𝜏pate)

⃒⃒⃒
ℱ
]︁)︁

has no dependence upon

�̇�0 and �̇�1; it is just determined by the variance of the sample average treatment effect. For-

mally,

V

(︃
E

[︃
𝑁−1/2

𝑁∑︁
𝑖=1

(𝜓𝑖(�̇�0, �̇�1)− 𝜏pate)
⃒⃒⃒
ℱ

]︃)︃
= V

(︀
𝑁1/2 (𝜏 sate − 𝜏pate)

)︀
.

Furthermore, by inspection of (45), the conditional variance of 𝜓𝑖(�̇�0, �̇�1) given ℱ is only

dependent upon variability in 𝑍𝑖(𝑦𝑖(𝑍𝑖)−�̇�1(𝑥𝑖))
(𝑛1/𝑁)

− (1−𝑍𝑖)(𝑦𝑖(𝑍𝑖)−�̇�0(𝑥𝑖))
(𝑛0/𝑁)

inherited from randomness

in the 𝑍𝑖, so

V

(︃
𝑁−1/2

𝑁∑︁
𝑖=1

(𝜓𝑖(�̇�0, �̇�1)− 𝜏pate)
⃒⃒⃒
ℱ

)︃
=

V

(︃
𝑁−1/2

𝑁∑︁
𝑖=1

(︂
𝑍𝑖 (𝑦𝑖(𝑍𝑖)− �̇�1(𝑥𝑖))

(𝑛1/𝑁)
− (1− 𝑍𝑖) (𝑦𝑖(𝑍𝑖)− �̇�0(𝑥𝑖))

(𝑛0/𝑁)
− 𝜏pate

)︂ ⃒⃒⃒
ℱ

)︃
.

In total, we have shown that

V

(︃
𝑁−1/2

𝑁∑︁
𝑖=1

(𝜓𝑖(�̇�0, �̇�1)− 𝜏pate)

)︃
=

E

[︃
V

(︃
𝑁−1/2

𝑁∑︁
𝑖=1

(︂
𝑍𝑖 (𝑦𝑖(𝑍𝑖)− �̇�1(𝑥𝑖))

(𝑛1/𝑁)
− (1− 𝑍𝑖) (𝑦𝑖(𝑍𝑖)− �̇�0(𝑥𝑖))

(𝑛0/𝑁)
− 𝜏pate

)︂ ⃒⃒⃒
ℱ

)︃]︃
+

V
(︀
𝑁1/2 (𝜏 sate − 𝜏pate)

)︀
. (46)

Comparing (46) to the variance decomposition of Theorem A.3 and taking the limit as

𝑁 → ∞ yields that the asymptotic variance of 𝑁1/2 (𝜏𝑟𝑜𝑡ℎ𝑒 − 𝜏pate) matches that of the

𝑁1/2 (𝜏𝑔𝑂𝐵 − 𝜏pate) where the generalized Oaxaca-Blinder estimator is computed using the

same imputation functions �̂�0 and �̂�1 that 𝜏𝑟𝑜𝑡ℎ𝑒 uses. Consequently, the non-inferiority

results for 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏pate) proven in Theorem A.3 translate to 𝑁1/2 (𝜏𝑟𝑜𝑡ℎ𝑒,𝑐𝑎𝑙 − 𝜏pate) as
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well. This establishes the upper bound on the asymptotic variance of 𝜏𝑟𝑜𝑡ℎ𝑒,𝑐𝑎𝑙 and thereby

completes the proof.

Remark 7. The second claim of Theorem A.7 substantially improves upon the result of

(Rot20, Corollary 1, Part ii) which provides only the lower bound. The upper bound of

Theorem A.7 guarantees two things:

1. A practitioner is certain that their calibrated estimator is asymptotically no less effi-

cient than the difference in means (or the uncalibrated estimator) regardless of model

misspecification.

2. If the original estimator of 𝜏𝑟𝑜𝑡ℎ𝑒 was indeed a semiparamteric efficient estimator then

so too is the new calibrated estimator 𝜏𝑟𝑜𝑡ℎ𝑒,𝑐𝑎𝑙.

Informally stated, the result of (Hah98) establishes that any estimator which has hope

of semiparamteric efficiency must be of the form 𝜏𝑟𝑜𝑡ℎ𝑒 for some choice of �̂�0 and �̂�1 and

Theorem A.7 goes on to establish that any such estimator can be imbued with non-inferiority

via the calibration procedure.

2.20 Cross-Fitting And Calibration

Cross-fitting is an algorithmic procedure based upon randomly splitting the sample into

multiple portions, often called “folds", computing prediction functions on some portion of

these folds, and then applying the prediction functions to data from the other folds. Since

the prediction function is trained on different data than it is applied to, it is independent

of the data it is applied to under standard superpopulation models. This independence

provides numerous benefits from a theoretical angle and has established cross-fitting as a

common and powerful tool in statistical literature. In particular, (CCD+18) demonstrated

that an appropriate use of cross-fitting could achieve strong statistical inference guarantees

168



while eschewing classical Donsker-style entropy conditions. Here we demonstrate that cross-

fitting is compatible with calibration to yield non-inferiority results for a wide array of

prediction functions �̂�0 and �̂�1 which need not satisfy the “typically simple realizations"

entropy condition. Our discussion centers around superpopulation inference in the style of

Section 2.16.2.

We begin with some new notation. Superscripts of (−𝑖) indicate that the associated

random function is independent of the 𝑖th data point; for example �̂�(−𝑖)
1 (·) is a prediction

function of treated outcomes which is independent of the 𝑖th observation (𝑦𝑖(𝑍𝑖), 𝑥𝑖). In

practice, �̂�(−𝑖)
1 (·) is usually computed by fitting the random prediction function �̂�1 on the

data set of 𝑁 − 1 individuals which excludes the 𝑖th individual. In line with the estimator

𝜏𝑟𝑜𝑡ℎ𝑒 and the work of (WDTT16), define the “leave-one-out" estimator

𝜏𝑙𝑜𝑜 =
1

𝑁

𝑁∑︁
𝑖=1

(︁
�̂�
(−𝑖)
1 (𝑥𝑖)− �̂�

(−𝑖)
0 (𝑥𝑖)

)︁
+

1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

(︁
𝑦𝑖(𝑍𝑖)− �̂�

(−𝑖)
1 (𝑥𝑖)

)︁
− 1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

(︁
𝑦𝑖(𝑍𝑖)− �̂�

(−𝑖)
0 (𝑥𝑖)

)︁
.

To define the calibrated version of 𝜏𝑙𝑜𝑜, some care is needed to account for the sample splitting

in both the original prediction functions (�̂�0, �̂�1) and in the calibrated prediction functions.

The leave-one-out calibrated prediction function is defined as

�̂�
(−𝑖)
𝑂𝐿𝑆,𝑧(𝑥𝑖) = �̂�(−𝑖)

𝑧 + 𝛽
(−𝑖)
𝑧,0 �̂�

(−𝑖)
0 (𝑥𝑖) + 𝛽

(−𝑖)
𝑧,1 �̂�

(−𝑖)
1 (𝑥𝑖); (47)

(�̂�(−𝑖)
𝑧 , 𝛽

(−𝑖)
𝑧,0 , 𝛽

(−𝑖)
𝑧,1 )T ∈ argmin

(𝛼𝑧 ,𝛽𝑧,0,𝛽𝑧,1)T

∑︁
𝑗:𝑍𝑗=𝑧
𝑗 ̸=𝑖

{𝑦𝑗(𝑧)− 𝛼𝑧 − 𝛽𝑧,0�̂�
(−𝑖)
0 (𝑥𝑗)− 𝛽𝑧,1�̂�

(−𝑖)
1 (𝑥𝑗)}2.
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The calibrated prediction function is then

𝜏𝑙𝑜𝑜,𝑐𝑎𝑙 =
1

𝑁

𝑁∑︁
𝑖=1

(︁
�̂�
(−𝑖)
𝑂𝐿𝑆,1(𝑥𝑖)− �̂�

(−𝑖)
𝑂𝐿𝑆,0(𝑥𝑖)

)︁
+

1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

(︁
𝑦𝑖(𝑍𝑖)− �̂�

(−𝑖)
𝑂𝐿𝑆,1(𝑥𝑖)

)︁
− 1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

(︁
𝑦𝑖(𝑍𝑖)− �̂�

(−𝑖)
𝑂𝐿𝑆,0(𝑥𝑖)

)︁
.

In the context of leave-one-out estimation, we slightly modify the notation of the error

process in Assumption 2. Specifically, write

𝒢𝑁,𝑧(�̂�𝑧) = 𝑁−1/2

𝑁∑︁
𝑖=1

(︃
1{𝑍𝑖=𝑧}�̂�

(−𝑖)
𝑧 (𝑥𝑖)

𝑛𝑧/𝑁
− �̂�(−𝑖)

𝑧 (𝑥𝑖)

)︃
.

This modification of 𝒢𝑁,𝑧(�̂�𝑧) is done to take into account the fact that different prediction

functions may be used for different individuals in the population. In the case of leave-one-out

estimation, there are 2𝑁 different prediction functions
(︁
�̂�
(−1)
0 , . . . , �̂�

(−𝑁)
0 , �̂�

(−1)
1 , . . . , �̂�

(−𝑁)
1

)︁
.

This change does not modify any of the structure of our previous proofs. In fact, we could

have originally defined the process 𝒢𝑁,𝑧 to account for different prediction functions at each

𝑖, but this would have introduced needless notational burden for the previous proofs wherein

the functions �̂�0 and �̂�1 do not depend upon 𝑖.

Theorem A.8. Consider the superpopulation model model of Section 2.16.2. Suppose that

Assumptions A.6, 2, 8, and 9 hold; then 𝜏𝑙𝑜𝑜,𝑐𝑎𝑙 obeys a central limit theorem and the

asymptotic variance of 𝑁1/2 (𝜏𝑙𝑜𝑜,𝑐𝑎𝑙 − 𝜏pate) lies in the closed interval [Σ𝑙,Σ𝑢] where Σ𝑙

is the semiparametric efficiency bound of (42) and Σ𝑢 is the asymptotic variance of the

𝑁1/2 (𝜏𝑢𝑛𝑎𝑑𝑗 − 𝜏pate). Furthermore, the asymptotic variance of 𝑁1/2 (𝜏𝑙𝑜𝑜,𝑐𝑎𝑙 − 𝜏pate) is no

greater than that of 𝑁1/2 (𝜏𝑙𝑜𝑜 − 𝜏pate); so in the case that 𝜏𝑙𝑜𝑜 is more asymptotically precise

than 𝜏𝑢𝑛𝑎𝑑𝑗 we can replace Σ𝑢 with the limiting variance of 𝑁1/2 (𝜏𝑙𝑜𝑜 − 𝜏pate) and thereby

shrink the interval even further.
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Proof. As in our previous proofs, we begin by showing that the estimators 𝜏𝑙𝑜𝑜 and 𝜏𝑙𝑜𝑜,𝑐𝑎𝑙 are

asymptotically linear under the assumed regularity conditions. Quite similarly to (WDTT16)

𝜏𝑙𝑜𝑜 =
1

𝑁
(�̇�1(𝑥𝑖)− �̇�0(𝑥𝑖)) +

1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

(𝑦𝑖(𝑍𝑖)− �̇�1(𝑥𝑖))−

1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

(𝑦𝑖(𝑍𝑖)− �̇�0(𝑥𝑖)) +𝑅

where 𝑅 is defined as

𝑅 =
𝑁∑︁
𝑖=1

(−1)𝑍𝑖

𝑛𝑍𝑖

(︁𝑛0

𝑁

(︁
�̂�
(−𝑖)
1 (𝑥𝑖)− �̇�1(𝑥𝑖)

)︁
+
𝑛1

𝑁

(︁
�̂�
(−𝑖)
0 (𝑥𝑖)− �̇�0(𝑥𝑖)

)︁)︁
.

The quantity 𝜏𝑙𝑜𝑜 −𝑅 exactly agrees with 𝑁−1
∑︀𝑁

𝑖=1 𝜓𝑖(�̇�0, �̇�1), and so analysis of 𝜏𝑙𝑜𝑜 re-

duces to analysis of 𝑁−1
∑︀𝑁

𝑖=1 𝜓𝑖(�̇�0, �̇�1) so long as 𝑅 vanishes asymptotically at a sufficiently

fast rate. Algebraic manipulation shows that

𝑅 =
1

𝑁1/2
(𝒢𝑁,1(�̇�1)− 𝒢𝑁,1(�̂�1))−

1

𝑁1/2
(𝒢𝑁,0(�̇�0)− 𝒢𝑁,0(�̂�0)) .

Consequently, by the vanishing error process assumption, |𝑅| = 𝑜𝑃 (𝑁
−1/2). Similarly, by

Lemma A.1 since |𝑅| = 𝑜𝑃 (𝑁
−1/2) it follows that |𝑅𝑐𝑎𝑙| = 𝑜𝑃 (𝑁

−1/2) as well where

𝑅𝑐𝑎𝑙 =
𝑁∑︁
𝑖=1

(−1)𝑍𝑖

𝑛𝑍𝑖

(︁𝑛0

𝑁

(︁
�̂�
(−𝑖)
𝑂𝐿𝑆,1(𝑥𝑖)− �̇�𝑂𝐿𝑆,1(𝑥𝑖)

)︁
+
𝑛1

𝑁

(︁
�̂�
(−𝑖)
𝑂𝐿𝑆,0(𝑥𝑖)− �̇�𝑂𝐿𝑆,0(𝑥𝑖)

)︁)︁
.

Consequently,

𝜏𝑙𝑜𝑜 = 𝑁−1

𝑁∑︁
𝑖=1

𝜓𝑖(�̇�0, �̇�1) + 𝑜𝑃 (𝑁
−1/2),

𝜏𝑙𝑜𝑜,𝑐𝑎𝑙 = 𝑁−1

𝑁∑︁
𝑖=1

𝜓𝑖(�̇�𝑂𝐿𝑆,0, �̇�𝑂𝐿𝑆,1) + 𝑜𝑃 (𝑁
−1/2),
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and so the conclusions of Theorem A.7 hold automatically for 𝜏𝑙𝑜𝑜 and 𝜏𝑙𝑜𝑜,𝑐𝑎𝑙 as well.

Below we present sufficient conditions for the theorem. We begin with two definitions

related to those of (WDTT16).

Definition 1. An estimator �̂�𝑧 is “jackknife compatible" if

E

[︃ ∑︁
𝑖 : 𝑍𝑖=𝑧

(︀
�̂�(−𝑖)
𝑧 (𝑥𝑛𝑒𝑤)− �̂�𝑧(𝑥𝑛𝑒𝑤)

)︀2]︃
= 𝑜(𝑛𝑧)

for a new data point 𝑥𝑛𝑒𝑤 drawn independently of the observed data.

Definition 2. An estimator �̂�𝑧 is “risk consistent" if

1

𝑁

𝑁∑︁
𝑖=1

(︀
�̂�(−𝑖)
𝑧 (𝑥𝑖)− �̇�𝑧(𝑥𝑖)

)︀2
= 𝑜𝑃 (1).

Proposition A.6. Assume that �̂�0 and �̂�1 are jackknife compatible and risk consistent, then

Assumption 2 holds.

Proof. As before, define

𝑅 =
𝑁∑︁
𝑖=1

(−1)𝑍𝑖

𝑛𝑍𝑖

(︁𝑛0

𝑁

(︁
�̂�
(−𝑖)
1 (𝑥𝑖)− �̇�1(𝑥𝑖)

)︁
+
𝑛1

𝑁

(︁
�̂�
(−𝑖)
0 (𝑥𝑖)− �̇�0(𝑥𝑖)

)︁)︁
.

The argument of (WDTT16, Proof of Theorem 5) shows that E [𝑅2] = 𝑜(𝑁−1).10 In fact, a

more detailed examination of their argument shows that both E [𝑅2
0] = 𝑜(𝑁−1) and E [𝑅2

1] =

10In fact, a small modification is needed to adapt the argument of (WDTT16) to our context; simply
replace their 𝜇(𝑧) with �̇�𝑧 for 𝑧 ∈ {0, 1}.
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𝑜(𝑁−1) for

𝑅0 =
𝑁∑︁
𝑖=1

(−1)𝑍𝑖

𝑛𝑍𝑖

(︁𝑛0

𝑁

(︁
�̂�
(−𝑖)
1 (𝑥𝑖)− �̇�1(𝑥𝑖)

)︁)︁
.

𝑅1 =
𝑁∑︁
𝑖=1

(−1)𝑍𝑖

𝑛𝑍𝑖

(︁𝑛1

𝑁

(︁
�̂�
(−𝑖)
0 (𝑥𝑖)− �̇�0(𝑥𝑖)

)︁)︁
.

Take 𝑧 ∈ {0, 1}. For any 𝜀 > 0 Chebyshev’s inequality implies that

P
(︀
𝑁1/2|𝑅𝑧| > 𝜀

)︀
≤ E

[︀
𝑅2

𝑧

]︀
𝑁𝜀−2.

Since E [𝑅2
𝑧] = 𝑜(𝑁−1) the right-hand-side vanishes so 𝑅𝑧 = 𝑜𝑃 (𝑁

−1/2). Algebraic rear-

rangement yields that 𝑅𝑧 =
1

𝑁1/2 (𝒢𝑁,𝑧(�̇�𝑧)− 𝒢𝑁,𝑧(�̂�𝑧)); so 𝒢𝑁,𝑧(�̇�𝑧)−𝒢𝑁,𝑧(�̂�𝑧) = 𝑜𝑃 (1) which

concludes the proof.

Remark 8. Our definition of risk consistency differs sharply from that of (WDTT16) in

that we are concerned only with the squared distance between the leave-one-out prediction

�̂�
(−𝑖)
𝑧 (𝑥𝑖) and some fixed function �̇�𝑧(𝑥𝑖) where �̇�𝑧 need not be the true conditional mean of

𝑦𝑖(𝑧) given the covariates. Consequently, even under arbitrary model misspecification 𝜏𝑙𝑜𝑜,𝑐𝑎𝑙

achieves asymptotic non-inferiority to both 𝜏𝑙𝑜𝑜 and 𝜏𝑢𝑛𝑎𝑑𝑗. Moreover, the leave-one-out cross-

fitting procedure allows one to avoid entropy conditions (cf. (GB21, Rot20)). This allows

practitioners to use complex machine learning algorithms – subject to Definitions 1 and 2 –

to form the initial estimators �̂�0 and �̂�1. See (WDTT16) for examples of such estimators;

one such example is the subsampled random forest estimator of (Hil11).

Remark 9. A further advantage of leave-one-out estimation is in its control of finite sample

bias; we discuss this issue in a superpopulation setting and focus on estimators of the form

𝜏𝑟𝑜𝑡ℎ𝑒 = 𝑁−1
∑︀𝑁

𝑖=1 𝜓𝑖(�̂�0, �̂�1). In general, imputation-based estimators can introduce biases

in the sense that E [𝜏𝑟𝑜𝑡ℎ𝑒 − 𝜏pate] ̸= 0. The central limit theorem for estimators of the form
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𝑁−1
∑︀𝑁

𝑖=1 𝜓𝑖(�̂�0, �̂�1) implies that this bias is asymptotically vanishing. However, (WGB18)

highlights that practical cases exist for which finite sample biases are unacceptable. Under

mild conditions, leave-one-out estimation of the form 𝜏𝑙𝑜𝑜 – which is equivalent to the LOOP

estimator of (WGB18) – achieves finite sample exact unbiasedness; see (WGB18) or (Rot20,

Corollary 3) for proof. Furthermore, our analyses of 𝜏𝑙𝑜𝑜,𝑐𝑎𝑙 and 𝜏𝑟𝑜𝑡ℎ𝑒,𝑐𝑎𝑙 demonstrate that

calibration can be applied to simultaneously obtain non-inferiority guarantees for such es-

timators without any assumption of correct model specification. Together this implies that

under the conditions of (Rot20, Corollary 3) or those of (WGB18) the leave-one-out cali-

brated estimator 𝜏𝑙𝑜𝑜,𝑐𝑎𝑙 has no finite sample bias and is asymptotically non-inferior to the

difference in means.

We include simulations which mirror the superpopulation Poisson regression simulations

of Table 2.3; we evaluate the performance of two sample-splitting estimators 𝜏𝑙𝑜𝑜 and 𝜏𝑙𝑜𝑜,𝑐𝑎𝑙.

The results are summarized in Table 2.5. The first columns highlight that – in this partic-

ular simulation setting – 𝜏𝑔𝑂𝐵 and 𝜏𝑙𝑜𝑜 are less efficient than the unadjusted difference in

means 𝜏𝑢𝑛𝑎𝑑𝑗. However, calibration of the leave-one-out estimator results in a new estima-

tor 𝜏𝑙𝑜𝑜,𝑐𝑎𝑙 which is asymptotically no less efficient than the difference in means. The final

column highlights that 𝜏𝑙𝑜𝑜,𝑐𝑎𝑙 and 𝜏𝑐𝑎𝑙 are asymptotically equivalent under the conditions of

Theorem A.8. Both 𝜏𝑙𝑜𝑜 and 𝜏𝑙𝑜𝑜,𝑐𝑎𝑙 are guaranteed to have zero bias (WGB18, Rot20), so the

third column of Table 2.5 demonstrates that via calibration we can construct an estimator

with both desirable robustness properties: unbiasedness and asymptotic non-inferiority.

^MSE(𝜏𝑔𝑂𝐵)
^MSE(𝜏𝑢𝑛𝑎𝑑𝑗)

^MSE(𝜏𝑙𝑜𝑜)
^MSE(𝜏𝑢𝑛𝑎𝑑𝑗)

^MSE(𝜏𝑙𝑜𝑜,𝑐𝑎𝑙)
^MSE(𝜏𝑢𝑛𝑎𝑑𝑗)

^MSE(𝜏𝑐𝑎𝑙)
^MSE(𝜏𝑢𝑛𝑎𝑑𝑗)

𝑁 = 200 1.131 1.139 0.950 0.949
𝑁 = 500 1.119 1.121 0.948 0.948

Table 2.5: Ratios of Monte Carlo mean-square-errors for 𝜏𝑐𝑎𝑙, 𝜏𝑔𝑂𝐵, 𝜏𝑙𝑜𝑜, and 𝜏𝑙𝑜𝑜,𝑐𝑎𝑙 to the
difference in means estimator 𝜏𝑢𝑛𝑎𝑑𝑗 for various experiment sizes 𝑁 . Each mean-square-
error is based upon 𝐵 = 100 simulated experiments. Results are averaged over 𝑆 = 100
simulations.
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To illustrate the benefits of calibration even when flexible machine learning methods are

used for imputation, below we present a simulation using random forests as the original

imputation functions �̂�0 and �̂�1. In this simulation, we used the Boston data set from

(VR02). In each simulation of we uniformly sampled 𝑁 observations with replacement from

the Boston data set; crime was used as the outcome of interest and the remaining information

was taken as features. Independently, we drew a treatment allocation 𝑍 ∼ Unif(Ω) with

𝑛1 = ⌊𝑝𝑁⌋ for 𝑝 = 0.6. By construction, Fisher’s sharp null holds. We use a sample splitting

estimation procedure wherein prediction functions �̂�0 and �̂�1 are trained on half of the data

and then applied to the other half to form the treatment effect estimator; the roles of the

training and testing sets are interchanged and the results are averaged together to form the

final estimator. This follows the 2-fold procedure of (WDTT16). The original prediction

functions �̂�0 and �̂�1 are random forests. We compare the results against the analogous

calibrated estimator which linearly calibrates the prediction functions �̂�0 and �̂�1 within the

training sets; Table 2.6 summarizes the results. In particular, although both estimators

achieve the semiparametric efficiency bound in the limit the calibrated estimator displays

smaller variances across the simulations of Table 2.6. Table 2.7 repeats the simulations of

Table 2.6 but incorporates treatment effect heterogeneity by adding independent exponential

noise with rate 1 to the treated outcomes and subtracting independent exponential noise

with rate 1 from the control outcomes. The ties between the variances of the calibrated and

uncalibrated estimators presented in Table 2.7 demonstrates the benign effect of calibration

when the original uncalibrated estimator was performing well to begin with.

v̂ar(
√
𝑁𝜏𝑆𝑆𝑅𝐹 ) v̂ar(

√
𝑁𝜏𝑆𝑆𝑅𝐹,𝑐𝑎𝑙)

𝑁 = 500 137.27 134.98
𝑁 = 1000 118.19 116.13
𝑁 = 2000 83.02 80.50

Table 2.6: (Sharp Null Simulations) Monte Carlo variances for the sample-split random
forest imputation estimator, v̂ar(

√
𝑁𝜏𝑆𝑆𝑅𝐹 ), and its calibrated analogue, v̂ar(

√
𝑁𝜏𝑆𝑆𝑅𝐹,𝑐𝑎𝑙),

for various experiment sizes 𝑁 . Each variance is based upon 1000 simulated experiments.
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v̂ar(
√
𝑁𝜏𝑆𝑆𝑅𝐹 ) v̂ar(

√
𝑁𝜏𝑆𝑆𝑅𝐹,𝑐𝑎𝑙)

𝑁 = 500 139.73 139.08
𝑁 = 1000 119.91 119.47
𝑁 = 2000 90.11 90.16

Table 2.7: (Weak Null Simulations) Monte Carlo variances for the sample-split random
forest imputation estimator, v̂ar(

√
𝑁𝜏𝑆𝑆𝑅𝐹 ), and its calibrated analogue, v̂ar(

√
𝑁𝜏𝑆𝑆𝑅𝐹,𝑐𝑎𝑙),

for various experiment sizes 𝑁 . Each variance is based upon 1000 simulated experiments.

2.21 An Alternative Framework Via Entropy Conditions

Assumption 2 is sufficient for our results, but may be challengingly abstract. For the sake

of clarity in our explication, we include some auxiliary results based upon Assumption 7

which demonstrate how to work directly with entropy conditions in the proofs of this paper.

In the process, we establish several results which demonstrate that entropy conditions and

Vapnik–Chervonenkis dimension conditions are sufficient for Assumption 2. We start with

a few technical lemmas.

2.21.1 Some Technical Lemmas on Entropy Conditions

Lemma A.10. For a sequence of function classes {F𝑁}𝑁∈N suppose that

∫︁ 1

0

sup
𝑁

√︀
logN (F𝑁 , || · ||𝑁 , 𝑠) 𝑑𝑠 <∞.

Then it follows that for any 𝐷 > 0

∫︁ 1

0

sup
𝑁

√︂
logN

(︁
F𝑁 , || · ||𝑁 ,

𝑠

𝐷

)︁
𝑑𝑠 <∞.
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Proof. By the change of variables 𝑠 = 𝐷−1𝑡

∫︁ 1

0

sup
𝑁

√︂
logN

(︁
F𝑁 , || · ||𝑁 ,

𝑠

𝐷

)︁
𝑑𝑠 =

1

𝐷

∫︁ 𝐷

0

sup
𝑁

√︀
logN (F𝑁 , || · ||𝑁 , 𝑡) 𝑑𝑡.

We break the proof into two pieces: 𝐷 ≥ 1 versus 𝐷 ∈ (0, 1). For now we focus on the first

case, so assume that 𝐷 ≥ 1. The result is trivial when 𝐷 = 1, so take 𝐷 > 1 and let ⌊𝐷⌋

denote the greatest integer below 𝐷. It follows that

∫︁ 𝐷

0

sup
𝑁

√︀
logN (F𝑁 , || · ||𝑁 , 𝑡) 𝑑𝑡 =

∫︁ 1

0

sup
𝑁

√︀
logN (F𝑁 , || · ||𝑁 , 𝑡) 𝑑𝑡+∫︁ ⌊𝐷⌋

1

sup
𝑁

√︀
logN (F𝑁 , || · ||𝑁 , 𝑡) 𝑑𝑡+∫︁ 𝐷

⌊𝐷⌋
sup
𝑁

√︀
logN (F𝑁 , || · ||𝑁 , 𝑡) 𝑑𝑡.

The first term is guaranteed to be finite by assumption. To bound the second term, notice

that N (F𝑁 , || · ||𝑁 , 𝑡) is a non-increasing function of 𝑡 and so

∫︁ 1

0

sup
𝑁

√︀
logN (F𝑁 , || · ||𝑁 , 𝑡) 𝑑𝑡 ≥

∫︁ ℓ+1

ℓ

sup
𝑁

√︀
logN (F𝑁 , || · ||𝑁 , 𝑡) 𝑑𝑡. (48)

for any ℓ ∈ N. Thus, the second term is no greater than

(⌊𝐷⌋ − 1)

∫︁ 1

0

sup
𝑁

√︀
logN (F𝑁 , || · ||𝑁 , 𝑡) 𝑑𝑡

which is certain to be finite. Lastly, because N (F𝑁 , || · ||𝑁 , 𝑡) ≥ 1 it follows that the

integrand of the third term is non-negative and so

∫︁ 𝐷

⌊𝐷⌋
sup
𝑁

√︀
logN (F𝑁 , || · ||𝑁 , 𝑡) 𝑑𝑡 ≤

∫︁ ⌊𝐷⌋+1

⌊𝐷⌋
sup
𝑁

√︀
logN (F𝑁 , || · ||𝑁 , 𝑡) 𝑑𝑡;

the right-hand-side of this inequality is finite by (48). Consequently, when 𝐷 ≥ 1 the desired
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result holds.

Now suppose that 𝐷 ∈ (0, 1). As noted before, the integrand

sup
𝑁

√︀
logN (F𝑁 , || · ||𝑁 , 𝑡)

is non-negative and so

∫︁ 𝐷

0

sup
𝑁

√︀
logN (F𝑁 , || · ||𝑁 , 𝑡) 𝑑𝑡 ≤

∫︁ 1

0

sup
𝑁

√︀
logN (F𝑁 , || · ||𝑁 , 𝑡) 𝑑𝑡;

the right-hand-side of this inequality is finite by assumption. Thus, when 𝐷 ∈ (0, 1) the

desired result holds, thereby concluding the proof.

Lemma A.11. Suppose that the prediction functions �̂�0(·) and �̂�1(·) have typically simple

realizations (Assumption 7). Then, so too does the joint prediction function

𝑥 ↦→

⎡⎣�̂�0(𝑥)

�̂�1(𝑥)

⎤⎦ .
Proof. Say that �̂�0 satisfies Assumption 7 for the sequence of function classes {A𝑁,0}𝑁∈N

and �̂�1 satisfies Assumption 7 for the sequence of function classes {A𝑁,1}𝑁∈N.

Consider the class of functions {C𝑁}𝑁∈N for C𝑁 = A𝑁,0 × A𝑁,1.

By assumption

P (�̂�0 ∈ A𝑁,0) → 1 and P (�̂�1 ∈ A𝑁,1) → 1.

Because P

⎛⎝⎡⎣�̂�0(·)

�̂�1(·)

⎤⎦ ∈ C𝑁

⎞⎠ ≥ 1− P (�̂�0 ̸∈ A𝑁,0)− P (�̂�1 ̸∈ A𝑁,1) it follows that

P

⎛⎝⎡⎣�̂�0(·)

�̂�1(·)

⎤⎦ ∈ C𝑁

⎞⎠→ 1.
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Now, we show that

∫︁ 1

0

sup
𝑁

√︀
logN (C𝑁 , || · ||𝑁 , 𝑠) 𝑑𝑠 <∞.

Consider

⎡⎣𝜇0(·)

𝜇1(·)

⎤⎦ ,
⎡⎣𝜈0(·)
𝜈1(·)

⎤⎦ ∈ C𝑛; by definition

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣𝜇0(·)

𝜇1(·)

⎤⎦−

⎡⎣𝜈0(·)
𝜈1(·)

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

=

⎛⎝ 1

𝑁

𝑁∑︁
𝑖=1

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣𝜇0(𝑥𝑖)

𝜇1(𝑥𝑖)

⎤⎦−

⎡⎣𝜈0(𝑥𝑖)
𝜈1(𝑥𝑖)

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
2

2

⎞⎠1/2

=

[︃
1

𝑁

𝑁∑︁
𝑖=1

{︀
(𝜇0(𝑥𝑖)− 𝜈0(𝑥𝑖))

2 + (𝜇1(𝑥𝑖)− 𝜈1(𝑥𝑖))
2}︀]︃1/2

=

[︃
1

𝑁

𝑁∑︁
𝑖=1

{𝜇0(𝑥𝑖)− 𝜈0(𝑥𝑖)}2 +
1

𝑁

𝑁∑︁
𝑖=1

{𝜇1(𝑥𝑖)− 𝜈1(𝑥𝑖)}2
]︃1/2

≤

[︃
1

𝑁

𝑁∑︁
𝑖=1

{𝜇0(𝑥𝑖)− 𝜈0(𝑥𝑖)}2
]︃1/2

+

[︃
1

𝑁

𝑁∑︁
𝑖=1

{𝜇1(𝑥𝑖)− 𝜈1(𝑥𝑖)}2
]︃1/2

(49)

= ||𝜇0(·)− 𝜈0(·)||𝑁 + ||𝜇1(·)− 𝜈1(·)||𝑁

where (49) follows by the subadditivity of the square root.

Consequently, N (C𝑁 , || · ||𝑁 , 𝑠) ≤ N (A𝑁,0, || · ||𝑁 , 𝑠/2)N (A𝑁,1, || · ||𝑁 , 𝑠/2) and so the
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monotonicity of the logarithm gives that

∫︁ 1

0

sup
𝑁

√︀
logN (C𝑁 , || · ||𝑁 , 𝑠) 𝑑𝑠

≤
∫︁ 1

0

sup
𝑁

√︁
log (N (A𝑁,0, || · ||𝑁 , 𝑠/2)N (A𝑁,1, || · ||𝑁 , 𝑠/2)) 𝑑𝑠

=

∫︁ 1

0

sup
𝑁

√︁
logN (A𝑁,0, || · ||𝑁 , 𝑠/2) + logN (A𝑁,1, || · ||𝑁 , 𝑠/2) 𝑑𝑠

≤
∫︁ 1

0

sup
𝑁

(︁√︁
logN (A𝑁,0, || · ||𝑁 , 𝑠/2)+√︁

logN (A𝑁,1, || · ||𝑁 , 𝑠/2)
)︁
𝑑𝑠

≤
∫︁ 1

0

sup
𝑁

√︁
logN (A𝑁,0, || · ||𝑁 , 𝑠/2)+∫︁ 1

0

sup
𝑁

√︁
logN (A𝑁,1, || · ||𝑁 , 𝑠/2) 𝑑𝑠.

The last line is guaranteed to be finite exactly because �̂�0 satisfies Assumption 7 for the

sequence of function classes {A𝑁,0}𝑁∈N and �̂�1 satisfies Assumption 7 for the sequence of

function classes {A𝑁,1}𝑁∈N.

Remark 10 (Multiplicative Bounds for Covering Numbers). In the proof of Lemma A.11

we remarked that⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣𝜇0(·)

𝜇1(·)

⎤⎦−

⎡⎣𝜈0(·)
𝜈1(·)

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

≤ ||𝜇0(·)− 𝜈0(·)||𝑁 + ||𝜇1(·)− 𝜈1(·)||𝑁 (50)

implies that

N (C𝑁 , || · ||𝑁 , 𝑠) ≤ N (A𝑁,0, || · ||𝑁 , 𝑠/2)N (A𝑁,1, || · ||𝑁 , 𝑠/2). (51)

This reasoning plays an important role in our proofs and is of independent interest since

covering numbers play an significant role in numerous areas of probability.
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To avoid triviality, assume that both A𝑁,0 and A𝑁,1 are non-empty. Suppose that the

points 𝑎1, . . . , 𝑎ℓ provide a minimal cardinality (𝑠/2)-cover of A𝑁,0 and the points 𝑏1, . . . , 𝑏ℓ′

provide a minimal cardinality (𝑠/2)-cover of A𝑁,1. Consider the set of points

𝐶 = {𝑎1, . . . , 𝑎ℓ} × {𝑏1, . . . , 𝑏ℓ′};

this set has cardinality ℓℓ′. Fix a point 𝑐 = (𝑎, 𝑏) ∈ C𝑁 . Since 𝑎1, . . . , 𝑎ℓ and 𝑏1, . . . , 𝑏ℓ′ are

(𝑠/2)-covers there exists at least one point (𝑎𝑖, 𝑏𝑗) for which

||𝑎− 𝑎𝑖||𝑁 ≤ 𝑠

2

||𝑏− 𝑏𝑗||𝑁 ≤ 𝑠

2
.

By (50) ||𝑐− (𝑎𝑖, 𝑏𝑗)
T||𝑁 is bounded above by

||𝑎− 𝑎𝑖||𝑁 + ||𝑏− 𝑏𝑗||𝑁

which is bounded above by 𝑠 due to our choice of 𝑎𝑖 and 𝑏𝑗. This implies that 𝐶 is a valid

𝑠-cover of C𝑁 which has cardinality ℓℓ′. Since 𝐶 is a feasible 𝑠-cover it follows that the

minimal cardinality 𝑠-cover of C𝑁 must have cardinality no greater than ℓℓ′. However, since

{𝑎1, . . . , 𝑎ℓ} is a minimal cardinality (𝑠/2)-cover of A𝑁,0 it follows that ℓ = N (A𝑁,0, || ·

||𝑁 , 𝑠/2); likewise ℓ′ = N (A𝑁,1, || · ||𝑁 , 𝑠/2). Consequently (51) holds.

Iterating the logic above implies the following theorem.

Theorem A.9. Suppose that the set 𝑇 ⊆ 𝑇1 × · · · × 𝑇ℓ; let 𝜋𝑖 : 𝑇 → 𝑇𝑖 be the 𝑖th coordinate

projection. Suppose that (𝑇, 𝑑) is a metric space such that

𝑑(𝑎, 𝑏) ≤
ℓ∑︁

𝑖=1

𝑑𝑖 (𝜋𝑖(𝑎), 𝜋𝑖(𝑏))
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where 𝑑𝑖(·, ·) denotes some metric on 𝑇𝑖. Then

N (𝑇, 𝑑, 𝑠) ≤
ℓ∏︁

𝑖=1

N
(︁
𝑇𝑖, 𝑑𝑖,

𝑠

ℓ

)︁
. (52)

Proposition A.7. If the prediction functions �̂�0 and �̂�1 are stable, have typically simple

realizations, and satisfy Assumptions 4 and 5, then the prediction functions �̂�𝑂𝐿𝑆,0 and �̂�𝑂𝐿𝑆,1

also have typically simple realizations.

Proof. Say that �̂�0 satisfies Assumption 7 for the sequence of function classes {A𝑁,0}𝑁∈N

and �̂�1 satisfies Assumption 7 for the sequence of function classes {A𝑁,1}𝑁∈N.

Let C𝑁 = A𝑁,0 × A𝑁,1. Define the sequence of function classes {F𝑁}𝑁∈N via

F𝑁 =

{︃
𝜇𝛽0,𝛽1(𝑥) = 𝛽0 + 𝛽T

1

⎡⎣𝜇0(𝑥)

𝜇1(𝑥)

⎤⎦ ⃒⃒⃒⃒⃒ |𝛽0 − �̇�
(𝑁)
0 | ≤ 1; ||𝛽1 − �̇�

(𝑁)
1 ||2 ≤ 1;

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣𝜇0

𝜇1

⎤⎦−

⎡⎣�̇�0

�̇�1

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

≤ 1;

⎡⎣𝜇0

𝜇1

⎤⎦ ∈ C𝑁

}︃
(53)

First, we show that �̂�𝑂𝐿𝑆,0 and �̂�𝑂𝐿𝑆,1 are asymptotically almost surely elements of F𝑁 .

Since the proofs are basically the same for both �̂�𝑂𝐿𝑆,0 and �̂�𝑂𝐿𝑆,1, we present the proof only

for �̂�𝑂𝐿𝑆,1 and use the notation of (19) and (20). By the consistency of the ordinary least

squares linear regression coefficients, Lemma A.3, it follows that

lim
𝑁→∞

P
(︁
|𝛽0 − �̇�

(𝑁)
0 | > 1 & ||𝛽1 − �̇�

(𝑁)
1 ||2 > 1

)︁
= 0. (54)

By the joint stability of �̂�0 and �̂�1

lim
𝑁→∞

P

⎛⎝⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣�̂�0

�̂�1

⎤⎦−

⎡⎣�̇�0

�̇�1

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

> 1

⎞⎠ = 0. (55)
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Since �̂�0 and �̂�1 have are typically simple with respect to {A𝑁,0}𝑁∈N and {A𝑁,1}𝑁∈N,

respectively, it follows from Lemma A.11 that

lim
𝑁→∞

P

⎛⎝⎡⎣�̂�0(·)

�̂�1(·)

⎤⎦ ∈ C𝑁

⎞⎠ = 1. (56)

By Boole’s inequality

P (�̂�𝑂𝐿𝑆,1 ∈ F𝑁) ≥ 1− P
(︁
|𝛽0 − �̇�

(𝑁)
0 | > 1 & ||𝛽1 − �̇�

(𝑁)
1 || > 1

)︁
−

P

⎛⎝⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣�̂�0

�̂�1

⎤⎦−

⎡⎣�̇�0

�̇�1

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

> 1

⎞⎠− P

⎛⎝⎡⎣�̂�0(·)

�̂�1(·)

⎤⎦ ̸∈ C𝑁

⎞⎠
for each 𝑁 ∈ N, so it follows from (54), (55), and (56) that lim𝑁→∞ P (�̂�𝑂𝐿𝑆,1 ∈ F𝑁) = 1. A

mirrored proof yields that lim𝑁→∞ P (�̂�𝑂𝐿𝑆,0 ∈ F𝑁) = 1.

All that remains to be shown is that

∫︁ 1

0

sup
𝑁

√︀
logN (F𝑁 , || · ||𝑁 , 𝑠) 𝑑𝑠 <∞.

To start, we examine two functions 𝑓, 𝑔 ∈ F𝑁 defined by

𝑓(𝑥) = 𝛽0𝑓 + 𝛽T

1𝑓

⎡⎣𝜇0𝑓 (𝑥)

𝜇1𝑓 (𝑥)

⎤⎦
𝑔(𝑥) = 𝛽0𝑔 + 𝛽T

1𝑔

⎡⎣𝜇0𝑔(𝑥)

𝜇1𝑔(𝑥)

⎤⎦ .
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The norm of their difference is

||𝑓 − 𝑔||𝑁 =

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒(𝛽0𝑓 − 𝛽0𝑔) +

⎛⎝𝛽T

1𝑓

⎡⎣𝜇0𝑓

𝜇1𝑓

⎤⎦− 𝛽T

1𝑔

⎡⎣𝜇0𝑔

𝜇1𝑔

⎤⎦⎞⎠⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

≤ ||𝛽0𝑓 − 𝛽0𝑔||𝑁 +

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒𝛽T

1𝑓

⎡⎣𝜇0𝑓

𝜇1𝑓

⎤⎦− 𝛽T

1𝑔

⎡⎣𝜇0𝑔

𝜇1𝑔

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

(57)

= |𝛽0𝑓 − 𝛽0𝑔|+

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒𝛽T

1𝑓

⎡⎣𝜇0𝑓

𝜇1𝑓

⎤⎦− 𝛽T

1𝑔

⎡⎣𝜇0𝑔

𝜇1𝑔

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

(58)

where (57) is due to the triangle inequality and (58) follows from the definition of || · ||𝑁 for

constant functions. Furthermore⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒𝛽T

1𝑓

⎡⎣𝜇0𝑓

𝜇1𝑓

⎤⎦− 𝛽T

1𝑔

⎡⎣𝜇0𝑔

𝜇1𝑔

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

=

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒𝛽T

1𝑓

⎡⎣𝜇0𝑓

𝜇1𝑓

⎤⎦− 𝛽T

1𝑓

⎡⎣𝜇0𝑔

𝜇1𝑔

⎤⎦+ 𝛽T

1𝑓

⎡⎣𝜇0𝑔

𝜇1𝑔

⎤⎦− 𝛽T

1𝑔

⎡⎣𝜇0𝑔

𝜇1𝑔

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

≤

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒𝛽T

1𝑓

⎡⎣𝜇0𝑓

𝜇1𝑓

⎤⎦− 𝛽T

1𝑓

⎡⎣𝜇0𝑔

𝜇1𝑔

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

+

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒𝛽T

1𝑓

⎡⎣𝜇0𝑔

𝜇1𝑔

⎤⎦− 𝛽T

1𝑔

⎡⎣𝜇0𝑔

𝜇1𝑔

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

(59)

≤ ||𝛽1𝑓 ||𝑁

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣𝜇0𝑓

𝜇1𝑓

⎤⎦−

⎡⎣𝜇0𝑔

𝜇1𝑔

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

+

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣𝜇0𝑔

𝜇1𝑔

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

||𝛽1𝑓 − 𝛽1𝑔||𝑁 (60)

= ||𝛽1𝑓 ||2

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣𝜇0𝑓

𝜇1𝑓

⎤⎦−

⎡⎣𝜇0𝑔

𝜇1𝑔

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

+

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣𝜇0𝑔

𝜇1𝑔

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

||𝛽1𝑓 − 𝛽1𝑔||2 (61)

where (59) is due to the triangle inequality, (60) is due to the Cauchy-Schwarz inequality,
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and (61) is due to the definition of || · ||𝑁 for constant functions. Because 𝑓, 𝑔 ∈ F𝑁

⃒⃒⃒
𝛽1𝑓 − �̇�

(𝑁)
1

⃒⃒⃒
≤ 1 and

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣𝜇0𝑔

𝜇1𝑔

⎤⎦−

⎡⎣�̇�0

�̇�1

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

≤ 1

so

||𝛽1𝑓 ||2 ≤ 1 +
⃒⃒⃒⃒⃒⃒
�̇�
(𝑁)
1

⃒⃒⃒⃒⃒⃒
2

and

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣𝜇0𝑔

𝜇1𝑔

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

≤ 1 +

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣�̇�0

�̇�1

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

.

Thus (61) can be bounded above by

(︁
1 +

⃒⃒⃒⃒⃒⃒
�̇�
(𝑁)
1

⃒⃒⃒⃒⃒⃒
2

)︁ ⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣𝜇0𝑓

𝜇1𝑓

⎤⎦−

⎡⎣𝜇0𝑔

𝜇1𝑔

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

+

⎛⎝1 +

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣�̇�0

�̇�1

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

⎞⎠ ||𝛽1𝑓 − 𝛽1𝑔||2 .

By Assumptions 4 and 5 and standard ordinary least squares regression results
⃒⃒⃒⃒⃒⃒
�̇�
(𝑁)
1

⃒⃒⃒⃒⃒⃒
2

is

bounded uniformly in 𝑁 . By Assumptions 4 and 5 and Lemma A.4 the quantity

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣�̇�0

�̇�1

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

is also bounded uniformly in 𝑁 , it follows that (61) is bounded above by

𝜅

⎛⎝⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣𝜇0𝑓

𝜇1𝑓

⎤⎦−

⎡⎣𝜇0𝑔

𝜇1𝑔

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

+ ||𝛽1𝑓 − 𝛽1𝑔||2

⎞⎠ (62)

for some 𝜅 which does not depend upon 𝑁 . Combining (58) with (62) yields that

||𝑓 − 𝑔||𝑁 ≤ 𝐷 |𝛽0𝑓 − 𝛽0𝑔|+𝐷
⃒⃒⃒⃒
𝛽T

1𝑓 − 𝛽T

1𝑔

⃒⃒⃒⃒
2
+𝐷

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣𝜇0𝑓

𝜇1𝑓

⎤⎦−

⎡⎣𝜇0𝑔

𝜇1𝑔

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

(63)

for 𝐷 = max{1, 𝜅} which does not depend upon 𝑁 .
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Using (63) and Theorem A.9 we can bound the 𝑠-covering number of F𝑁 as

N (F𝑁 , || · ||𝑁 , 𝑠) ≤ N
(︁
ℬ(�̇�(𝑁)

0 ), | · |, 𝑠

3𝐷

)︁
×

N
(︁
ℬ(�̇�(𝑁)

1 ), || · ||2,
𝑠

3𝐷

)︁
× N

(︁
C𝑁 , || · ||𝑁 ,

𝑠

3𝐷

)︁
(64)

where ℬ(�̇�(𝑁)
0 ) is the unit ball around �̇�

(𝑁)
0 and ℬ(�̇�(𝑁)

1 ) is the unit ball around �̇�
(𝑁)
1 . Since

the 𝑠/(3𝐷)-covering number of the unit ball in R𝑚 under the ℓ2-norm is bounded above by

(1 + 6𝐷/𝑠)𝑚 (GB21, Example 2) it follows from (64) that for all 𝑠 ∈ (0, 1)

N (F𝑁 , || · ||𝑁 , 𝑠) ≤ (1 + 6𝐷/𝑠)× (1 + 6𝐷/𝑠)2 × N (C𝑁 , || · ||𝑁 , 𝑠/(3𝐷)) . (65)

By the monotonicity of the logarithm (65) implies that

∫︁ 1

0

sup
𝑁

√︀
logN (F𝑁 , || · ||𝑁 , 𝑠) 𝑑𝑠 (66)

≤
∫︁ 1

0

sup
𝑁

√︁
log
(︀
(1 + 6𝐷/𝑠)3 N (C𝑁 , || · ||𝑁 , 𝑠/(3𝐷))

)︀
𝑑𝑠

=

∫︁ 1

0

sup
𝑁

√︀
3 log (1 + 6𝐷/𝑠) + log (N (C𝑁 , || · ||𝑁 , 𝑠/(3𝐷))) 𝑑𝑠

By the subadditivity of the square-root, the last line can be bounded above by

∫︁ 1

0

sup
𝑁

(︁√︀
3 log (1 + 6𝐷/𝑠) +

√︀
log (N (C𝑁 , || · ||𝑁 , 𝑠/(3𝐷)))

)︁
𝑑𝑠

=

∫︁ 1

0

√︀
3 log (1 + 6𝐷/𝑠) 𝑑𝑠⏟  ⏞  

𝑎

+

∫︁ 1

0

sup
𝑁

√︀
log (N (C𝑁 , || · ||𝑁 , 𝑠/(3𝐷))) 𝑑𝑠⏟  ⏞  

𝑏

. (67)

The term 𝑎 is finite for all 𝐷 > 0. The term 𝑏 is finite by Lemmas A.10 and A.11. Thus,∫︀ 1

0
sup𝑁

√︀
logN (F𝑁 , || · ||𝑁 , 𝑠) 𝑑𝑠 <∞ and so �̂�𝑂𝐿𝑆,0 and �̂�𝑂𝐿𝑆,1 have typically simple real-

izations.
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Remark 11. For a deterministic sequence of functions
{︀
𝑓 (𝑁)

}︀
𝑁∈N which map from R𝑘 to

Rℓ define the function class

F𝑁 =

{︃
𝜇𝛽0,𝛽1(𝑥) = 𝛽0 + 𝛽T

1

⎡⎣𝜇0(𝑥)

𝜇1(𝑥)

⎤⎦+ 𝛽T

2 𝑓
(𝑁)(𝑥)

⃒⃒⃒⃒
⃒ |𝛽0 − �̇�

(𝑁)
0 | ≤ 1;

||𝛽1 − �̇�
(𝑁)
1 ||2 ≤ 1; ||𝛽2 − �̇�

(𝑁)
2 ||2 ≤ 1;

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎡⎣𝜇0

𝜇1

⎤⎦−

⎡⎣�̇�0

�̇�1

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑁

≤ 1;

⎡⎣𝜇0

𝜇1

⎤⎦ ∈ C𝑁

}︃
(68)

where �̇�(𝑁) is derived from the population-level ordinary least squares linear regression includ-

ing the engineered features 𝑓 (𝑁)(𝑥𝑖); i.e., for the case of calibration in the treated population

replace (20) with

�̇�(𝑁) = (�̇�
(𝑁)
0 , �̇�

(𝑁)
1 , �̇�

(𝑁)
2 )

= argmin
𝛽0,𝛽1,𝛽2

⎡⎣ 𝑁∑︁
𝑖=1

⎧⎨⎩𝑦𝑖(1)−
⎛⎝𝛽0 + 𝛽𝑇

1

⎡⎣�̇�0(𝑥𝑖)

�̇�1(𝑥𝑖)

⎤⎦+ 𝛽T

2 𝑓
(𝑁)(𝑥𝑖)

⎞⎠⎫⎬⎭
2⎤⎦ .

Suppose that the engineered feature vectors 𝑓(𝑥𝑖) satisfy Assumptions 4 and 5, and the

required linear regressions are not ill-defined. Under Assumptions 4 and 5 following the

same line of reasoning used in the proof of Proposition A.7 yields that

∫︁ 1

0

sup
𝑁

√︀
logN (F𝑁 , || · ||𝑁 , 𝑠) 𝑑𝑠 ≤

∫︁ 1

0

√︀
(3 + ℓ) log (1 + 8𝐷/𝑠) 𝑑𝑠+∫︁ 1

0

sup
𝑁

√︀
log (N (C𝑁 , || · ||𝑁 , 𝑠/(4𝐷))) 𝑑𝑠 <∞.

Consequently, the prediction functions undergirding 𝜏𝑐𝑎𝑙2 have typically simple realizations.
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2.21.2 Entropy Analysis in Finite Population Models

The work of (GB21) proceeds under a finite population model and the entropy condition

Assumption 7, so we direct the interested reader to their explication. We highlight a two

points that are relevant in the context of calibration; namely

• Lemma A.11 establishes that the mapping from covariates to “pseudo-covariates”

(�̂�0(𝑥𝑖), �̂�1(𝑥𝑖))

automatically inherits typically simple realizations from the two original prediction

functions �̂�0 and �̂�1;

• Proposition A.7 leverages Lemma A.11 to conclude that the prediction functions �̂�𝑂𝐿𝑆,0

and �̂�𝑂𝐿𝑆,1 inherit typically simple realizations from the two original prediction func-

tions �̂�0 and �̂�1.

2.21.3 Entropy Analysis in Superpopulation Models

In the superpopulation model of Section 2.16.2, the entropy condition Assumption 7 requires

mild modification to account for randomness in potential outcomes and covariates.

Assumption 13 (Superpopulation Typically Simple Realizations). There exists a sequence

of sets of functions A𝑁,0, which may vary with 𝑁 , such that the random function �̂�0 falls

into this class asymptotically almost surely. Formally, P (�̂�0 ∈ A𝑁,0) → 1. Furthermore, the

sets of functions are “small" in the sense that

∫︁ 1

0

E
[︂
sup
𝑁

√︁
logN (A𝑁,0, || · ||𝑁 , 𝑠)

]︂
𝑑𝑠 <∞

where N (A𝑁,0, || · ||𝑁 , 𝑠) is the 𝑠-covering number of A𝑁,0 under the random metric induced
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by || · ||𝑁 , and the expectation is taken with respect to randomness in {𝑥𝑖}𝑁𝑖=1. An analogous

statement holds for �̂�1 with a sequence of sets A𝑁,1.

The following lemma reproduces Lemma A.7 but directly uses the entropy condition

Assumption 13 instead of assuming a priori that the error process vanishes as Assumption 2

does. A byproduct of this this result is that Assumption 13 is a sufficient condition for

Assumption 2 in a superpopulation model.

Lemma A.12 (Superpopulation Linear Expansions Via Entropy Bounds). Under Assump-

tions A.6, 1, and 13 the random variable 𝑁−1
∑︀𝑁

𝑖=1 (�̂�𝑧(𝑥𝑖)− 𝑦𝑖(𝑧)) is asymptotically linear

in the sense that

1

𝑁

𝑁∑︁
𝑖=1

(�̂�𝑧(𝑥𝑖)− 𝑦𝑖(𝑧)) =
1

𝑛𝑧

∑︁
𝑖 : 𝑍𝑖=𝑧

�̇�𝑖(𝑧) + 𝑜𝑝(𝑁
−1/2)

where �̇�𝑖(𝑧) = 𝑦𝑖(𝑧)− �̇�𝑧(𝑥𝑖).

Proof. By the exact same reasoning as in (GB21, Proof of Theorem 3), rewrite

𝑁−1

𝑁∑︁
𝑖=1

(�̂�𝑧(𝑥𝑖)− 𝑦𝑖(𝑧))

as
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=𝑧

�̇�𝑖(𝑧) +
1

𝑁

(︃
𝑁∑︁
𝑖=1

(︂
𝑍𝑖�̇�𝑧(𝑥𝑖)

(𝑛𝑧/𝑁)
− �̇�𝑧(𝑥𝑖)

)︂
⏟  ⏞  

𝑁1/2G(�̇�𝑧)

−
𝑁∑︁
𝑖=1

(︂
𝑍𝑖�̂�𝑧(𝑥𝑖)

(𝑛𝑧/𝑁)
− �̂�𝑧(𝑥𝑖)

)︂
⏟  ⏞  

𝑁1/2G(�̂�𝑧)

)︃
.

Consequently, the desired result holds so long as we can show that |G(�̇�𝑧)−G(�̂�𝑧)| = 𝑜𝑝(1).

Unlike the proof in (GB21), the processes G(�̇�𝑧) and G(�̂�𝑧) inherit randomness from more

than just 𝑍; randomness enters through 𝑍, {𝑦𝑖(𝑧)}𝑁𝑖=1, and {𝑥𝑖}𝑁𝑖=1. For this, we use a

Massart-like inequality (FHMM86, pg. 73-109) similar to that of Lemma S1 in (BLZ+16).

In the original formulation of (BLZ+16) randomness is only due to 𝑍. Consequently, for
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some fixed universal constant 𝜅 > 0, by the logic of (GB21, Proof of Theorem 3)

P

⎛⎜⎝ sup
𝜇∈A𝑁,𝑧

||𝜇−�̇�𝑧 ||𝑁≤𝑟

|G(�̇�𝑧)−G(�̂�𝑧)| > 𝜀

⃒⃒⃒⃒
⃒ {𝑥𝑖, 𝑦𝑖(0), 𝑦𝑖(1)}𝑁𝑖=1

⎞⎟⎠ ≤

𝜅
𝑟

𝜀
+ 𝜅

∫︁ 𝑟

0

sup
𝑁

(logN (A𝑁,𝑧, || · ||𝑁 , 𝑠))1/2 𝑑𝑠. (69)

The norm ||·||𝑁 on the right-hand-side of (69) is random since it depends upon the realization

of {𝑥𝑖}𝑁𝑖=1. By the law of iterated expectation,

P

⎛⎜⎝ sup
𝜇∈A𝑁,𝑧

||𝜇−�̇�𝑧 ||𝑁≤𝑟

|G(�̇�𝑧)−G(�̂�𝑧)| > 𝜀

⎞⎟⎠ ≤

𝜅
𝑟

𝜀
+ 𝜅E

[︂∫︁ 𝑟

0

sup
𝑁

(logN (A𝑁,𝑧, || · ||𝑁 , 𝑠))1/2 𝑑𝑠
]︂
, (70)

where the expectation on the right is with respect to randomness in {𝑥𝑖}𝑁𝑖=1.11 The Fubini-

Tonelli theorem (Dur19, Theorem 1.7.2) justifies exchanging the expectation with the inte-

gral, yielding the upper bound of

𝜅
𝑟

𝜀
+ 𝜅

∫︁ 𝑟

0

E
[︂
sup
𝑁

(logN (A𝑁,𝑧, || · ||𝑁 , 𝑠))1/2 𝑑𝑠
]︂
.

The remaining logic of (GB21, Proof of Theorem 3) combined with the superpopulation

entropy condition of Assumption 13 yields that |G(�̇�𝑧)−G(�̂�𝑧)| = 𝑜𝑝(1); asymptotic linearity

follows immediately.

Remark 12. The condition of Assumption 13 is implied by the uniform entropy bound of

11By the law of iterated expectation, the expectation on the right-hand-side of (70) is with respect to
randomness in {𝑥𝑖, 𝑦𝑖(0), 𝑦𝑖(1)}𝑁𝑖=1; however, the right-hand-side of the inequality has no dependence upon
{𝑦𝑖(0), 𝑦𝑖(1)}𝑁𝑖=1 and so the expectation can be taken to be only over {𝑥𝑖}𝑁𝑖=1 without loss of generality.
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Equation (2.5.1) in (vdVW96):

∫︁ ∞

0

sup
𝑁

sup
𝑄

(︁
logN (A𝑁,𝑧, 𝐿2(𝑄), 𝑠 ||A𝑁,𝑧||𝑄,2)

)︁1/2
𝑑𝑠 <∞

where the supremum over 𝑄 ranges over all finitely discrete probability measures on R𝑘.

The log-covering number logN (A𝑁,𝑧, 𝐿2(𝑄), 𝑠 ||A𝑁,𝑧||𝑄,2) vanishes when 𝑠 exceeds one, since

A𝑁,𝑧, which must be of finite diameter, can be covered by a single ball with diameter greater

than ||A𝑁,𝑧||𝑄,2. Thus, the integral in question can be rewritten as

∫︁ 1

0

sup
𝑁

sup
𝑄

(︁
logN (A𝑁,𝑧, 𝐿2(𝑄), 𝑠 ||A𝑁,𝑧||𝑄,2)

)︁1/2
𝑑𝑠. (71)

Uniform entropy conditions are tightly related to Vapnik-Chervonenkis dimension (vdVW96,

Theorem 2.6.7) for 𝑠 ∈ (0, 1)

N (A𝑁,𝑧, 𝐿2(𝑄), 𝑠 ||A𝑁,𝑧||𝑄,2) ≤ 𝐶𝒱𝒞(A𝑁,𝑧)(16𝑒)
𝒱𝒞(A𝑁,𝑧)

(︂
1

𝑠

)︂2(𝒱𝒞(A𝑁,𝑧)−1)

,

where 𝐶 is a constant and 𝒱𝒞(A𝑁,𝑧) denotes the Vapnik-Chervonenkis dimension of the

subgraphs of functions in the function class A𝑁,𝑧. Consequently

logN (A𝑁,𝑧, 𝐿2(𝑄), 𝑠 ||A𝑁,𝑧||𝑄,2) ≤ log𝐶 + log𝒱𝒞(A𝑁,𝑧)+

𝒱𝒞(A𝑁,𝑧) log(16𝑒) + log

(︃(︂
1

𝑠

)︂2(𝒱𝒞(A𝑁,𝑧)−1)
)︃
.
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The finiteness of (71) is guaranteed as long as

∫︁ 1

0

sup
𝑁

(︃
log𝐶 + log𝒱𝒞(A𝑁,𝑧)+

𝒱𝒞(A𝑁,𝑧) log(16𝑒) + log

(︃(︂
1

𝑠

)︂2(𝒱𝒞(A𝑁,𝑧)−1)
)︃)︃1/2

𝑑𝑠 <∞.

Assume that 𝒱𝒞(A𝑁,𝑧) is bounded above by some constant independent of 𝑁 . By subad-

ditivity of the square root, a sufficient condition for the required finiteness of the integral

above is to require that

∫︁ 1

0

sup
𝑁

(−2(𝒱𝒞(A𝑁,𝑧)− 1) log 𝑠)1/2 𝑑𝑠 = sup
𝑁

(𝒱𝒞(A𝑁,𝑧)− 1)1/2
(︁𝜋
2

)︁
𝑑𝑠 <∞.

This holds so long as sup𝑁 𝒱𝒞(A𝑁,𝑧) ≥ 1, which is true by definition.

Assumption 14. For 𝑧 ∈ {0, 1}, the Vapnik-Chervonenkis dimension of the sub-graphs of

the function class A𝑁,𝑧 is bounded above by some finite constant which does not depend upon

𝑁 .

By the discussion above, Assumption 14 is a sufficient condition for Assumption 13 and

consequently Vapnik-Chervonenkis conditions are sufficient to force the vanishing of the error

process from Assumption 2.

2.21.4 Entropy Analysis in Fixed Covariate Models

Lemma A.13 (Fixed Covariate Linear Expansions via Entropy Bounds). Under Assump-

tions A.6, 7, and 12 the random variable 𝑁−1
∑︀𝑁

𝑖=1 (�̂�𝑧(𝑥𝑖)− 𝑦𝑖(𝑧)) is conditionally almost

surely asymptotically linear in the sense that, for �̇�𝑖(𝑧) = 𝑦𝑖(𝑧)− �̇�𝑧(𝑥𝑖)

1

𝑁

𝑁∑︁
𝑖=1

(�̂�𝑧(𝑥𝑖)− 𝑦𝑖(𝑧)) =
1

𝑛𝑧

∑︁
𝑖 : 𝑍𝑖=𝑧

�̇�𝑖(𝑧) + 𝑜𝑝(𝑁
−1/2)
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holds for almost all conditioning events of the form (38).

To prove Lemma A.13 condition on (38) and then apply the proof of Theorem 3 from

(GB21) to the conditional random functions �̂�𝑧 given {(𝑦𝑖(0), 𝑦𝑖(1)) = (y𝑖(0),y𝑖(1)) 𝑖 =

1, . . . , 𝑁}.

Theorem A.10. Under the fixed-covariate model, subject to Assumptions A.6, 7, 10, 11,

and 12, 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏cate) obeys a central limit theorem.

Proof. We start out with the simple observation that

𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏cate) = 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate) +𝑁1/2 (𝜏 sate − 𝜏cate) .

Thus, to show a central limit theorem for 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏cate) it suffices to show that

1. Conditionally upon the potential outcomes, the term𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate) converges weakly

in probability to a fixed Gaussian distribution and term

𝑁1/2 (𝜏 sate − 𝜏cate) obeys a central limit theorem.

2. The terms 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate) and 𝑁1/2 (𝜏 sate − 𝜏cate) are asymptotically independent

in the sense that their limiting joint distribution is the product of the two limiting

marginal distributions.

We tackle 1 first. By Lemma A.8 and the Lindeberg central limit theorem (LR05, The-

orem 11.2.5) it follows that 𝑁1/2 (𝜏 sate − 𝜏cate) converges in distribution to a Gaussian dis-

tribution; denote this limiting distribution as 𝒩 (0, 𝑠𝑚).

Next, we show that 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate) converges weakly in probability to a fixed Gaussian
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distribution. We start with an algebraic rearrangement of 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate):

𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate) = 𝑁1/2

(︃
1

𝑁

𝑁∑︁
𝑖=1

(�̂�𝑂𝐿𝑆,1(𝑥𝑖)− �̂�𝑂𝐿𝑆,0(𝑥𝑖))−
1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖(1)− 𝑦𝑖(0))

)︃

= 𝑁1/2

(︃
1

𝑁

𝑁∑︁
𝑖=1

(�̂�𝑂𝐿𝑆,1(𝑥𝑖)− 𝑦𝑖(1))−
1

𝑁

𝑁∑︁
𝑖=1

(�̂�𝑂𝐿𝑆,0(𝑥𝑖)− 𝑦𝑖(0))

)︃
.

For each population of size 𝑁 , condition upon some realization of the potential outcomes

{(𝑦𝑖(0), 𝑦𝑖(1)) = (y𝑖(0),y𝑖(1)) 𝑖 = 1, . . . , 𝑁}. By Lemma A.9 for almost all such conditioning

events, we have that

𝑁1/2

(︃
1

𝑁

𝑁∑︁
𝑖=1

𝑍𝑖𝑁𝑛
−1
1 �̇�𝑖(1)−

1

𝑁

𝑁∑︁
𝑖=1

(1− 𝑍𝑖)𝑁𝑛
−1
0 �̇�𝑖(0)

)︃
+ 𝑜𝑃 (1) (72)

where �̇�𝑖(𝑧) = 𝑦𝑖(𝑧)− �̇�𝑂𝐿𝑆,𝑧(𝑥𝑖) and the randomness in the 𝑜𝑃 (1) term is only with respect

to randomness in 𝑍 since we condition upon the covariates implicitly in the fixed-covariate

model.

Under Assumption 12 and the assumption that 𝑁−1
∑︀𝑁

𝑖=1 (�̇�𝑧(𝑥𝑖)− 𝑦𝑖(𝑧))
2 = 𝑜(𝑁) as a

numeric sequence for almost all conditioning events of the potential outcomes, by Lemma 3 in

the appendix of (GB21) we can, without loss of generality, stipulate that 𝑁−1
∑︀𝑁

𝑖=1 �̇�𝑖(𝑧) = 0

for 𝑧 ∈ {0, 1} almost surely with respect to the conditioning (38).

Under Assumptions 10 and 11 the finite population analysis provided in Theorem 1

shows that 𝑁1/2
(︁

1
𝑁

∑︀𝑁
𝑖=1 𝑍𝑖𝑁𝑛

−1
1 �̇�𝑖(1)− 1

𝑁

∑︀𝑁
𝑖=1(1− 𝑍𝑖)𝑁𝑛

−1
0 �̇�𝑖(0)

)︁
converges weakly to a

centered Gaussian distribution with variance given by the limit of 𝜎2
𝑁 defined in (28). This

limit exists by Assumption 10 and is common to all conditioning events of the form (38)

up to a set of measure zero; we denote it by 𝑠𝑑. Consequently, 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate) converges

weakly in probability to a 𝒩 (0, 𝑠𝑑).

Finally, we turn to 2. By Theorem 5.1 (iii) of (RBK05) it follows that the random vector(︀
𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate) , 𝑁

1/2 (𝜏 sate − 𝜏cate)
)︀

converges in distribution to (𝒞,𝒟) ∼ 𝒩 (0, 𝑠𝑑) ⊗
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𝒩 (0, 𝑠𝑚).12

By the continuous mapping theorem (vdV98, Theorem 18.11),

𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate) +𝑁1/2 (𝜏 sate − 𝜏cate)

converges in distribution to 𝒞+𝒟. Since the sum of independent Gaussian random variables is

itself Gaussian we have that𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏 sate)+𝑁
1/2 (𝜏 sate − 𝜏cate) converges in distribution

to 𝒩 (0, 𝑠𝑑 + 𝑠𝑚). In turn, this implies that 𝑁1/2 (𝜏𝑐𝑎𝑙 − 𝜏cate) converges in distribution to

𝒩 (0, 𝑠𝑑 + 𝑠𝑚).

Bibliography
[AH85] D. F. Andrews and A. M. Herzberg. Data. Springer New York, 1985.

[BBB+19] Andreas Buja, Richard Berk, Lawrence Brown, Edward George, Emil Pitkin,
Mikhail Traskin, Linda Zhao, and Kai Zhang. Models as approximations i:
Consequences illustrated with linear regression, 2019.

[Bli73] Alan S. Blinder. Wage discrimination: Reduced form and structural estimates.
The Journal of Human Resources, 8(4):436–455, 1973.

[BLZ+16] Adam Bloniarz, Hanzhong Liu, Cun-Hui Zhang, Jasjeet S. Sekhon, and Bin
Yu. Lasso adjustments of treatment effect estimates in randomized experiments.
Proceedings of the National Academy of Sciences, 113(27):7383–7390, 2016.

[CCD+18] Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian
Hansen, Whitney Newey, and James Robins. Double/debiased machine learning
for treatment and structural parameters. The Econometrics Journal, 21(1):C1–
C68, 01 2018.

[CR15] Elizabeth Colantuoni and Michael Rosenblum. Leveraging prognostic base-
line variables to gain precision in randomized trials. Statistics in Medicine,
34(18):2602–2617, 2015.

12The original work of (RBK05) focuses on survey-sampling; however, nothing of their result Theorem 5.1
(iii) relies upon the survey-sampling framework of having only a single potential outcome, so we apply their
result to the causal inference context of multiple potential outcomes.

195



[CT97] Yuan Shih Chow and Henry Teicher. Probability theory. Springer Texts in
Statistics. Springer-Verlag, New York, third edition, 1997. Independence, inter-
changeability, martingales.

[DDCZ13] Lutz Dümbgen and Perla Del Conte-Zerial. On low-dimensional projections of
high-dimensional distributions. In From probability to statistics and back: high-
dimensional models and processes, volume 9 of Inst. Math. Stat. (IMS) Collect.,
pages 91–104. Inst. Math. Statist., Beachwood, OH, 2013.

[DFM19] Peng Ding, Avi Feller, and Luke Miratrix. Decomposing treatment effect varia-
tion. Journal of the American Statistical Association, 114(525):304–317, 2019.

[DL18] Peng Ding and Fan Li. Causal inference: A missing data perspective. Statist.
Sci., 33(2):214–237, 05 2018.

[Dur19] Rick Durrett. Probability—theory and examples, volume 49 of Cambridge Se-
ries in Statistical and Probabilistic Mathematics. Cambridge University Press,
Cambridge, 2019. Fifth edition of [ MR1068527].

[ER59] Paul Erdos and Alfréd Rényi. On the central limit theorem for samples from a
finite population. Magyar Tud. Akad. Mat. Kutató Int. Közl., 4:49–61, 1959.

[Fel68] William Feller. An introduction to probability theory and its applications. Vol.
I. John Wiley & Sons, Inc., New York-London-Sydney, third edition, 1968.

[FHMM86] X. Fernique, B. Heinkel, M. B. Marcus, and P.-A. Meyer, editors. Geometrical
and statistical aspects of probability in Banach spaces, volume 1193 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin, 1986.

[Fre08a] David A. Freedman. On regression adjustments in experiments with several
treatments. Ann. Appl. Stat., 2(1):176–196, 2008.

[Fre08b] David A. Freedman. On regression adjustments to experimental data. Adv. in
Appl. Math., 40(2):180–193, 2008.

[GB21] Kevin Guo and Guillaume Basse. The generalized Oaxaca-Blinder es-
timator. Journal of the American Statistical Association, page DOI:
10.1080/01621459.2021.1941053, 2021.

[GVL13] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press, Balti-
more, MD, fourth edition, 2013.

196



[H6́0] Jaroslav Hájek. Limiting distributions in simple random sampling from a finite
population. Magyar Tud. Akad. Mat. Kutató Int. Közl., 5:361–374, 1960.

[Hah98] Jinyong Hahn. On the role of the propensity score in efficient semiparametric
estimation of average treatment effects. Econometrica, 66(2):315–331, 1998.

[Hil11] Jennifer L. Hill. Bayesian nonparametric modeling for causal inference. Journal
of Computational and Graphical Statistics, 20(1):217–240, 2011.

[HIR03] Keisuke Hirano, Guido W. Imbens, and Geert Ridder. Efficient estimation of
average treatment effects using the estimated propensity score. Econometrica,
71(4):1161–1189, 2003.

[Hoe51] Wassily Hoeffding. A combinatorial central limit theorem. Ann. Math. Statist.,
22(4):558–566, 12 1951.

[Imb04] Guido W Imbens. Nonparametric estimation of average treatment effects under
exogeneity: A review. Review of Economics and Statistics, 86(1):4–29, 2004.

[LD17] Xinran Li and Peng Ding. General forms of finite population central limit
theorems with applications to causal inference. J. Amer. Statist. Assoc.,
112(520):1759–1769, 2017.

[LD20] Lihua Lei and Peng Ding. Regression adjustment in completely randomized
experiments with a diverging number of covariates. Biometrika, 108(4):815–828,
12 2020.

[Lin13] Winston Lin. Agnostic notes on regression adjustments to experimental data:
Reexamining Freedman’s critique. The Annals of Applied Statistics, 7(1):295–
318, 2013.

[LR05] E. L. Lehmann and Joseph P. Romano. Testing Statistical Hypotheses. Springer
Texts in Statistics. Springer, New York, third edition, 2005.

[LT91] Michel Ledoux and Michel Talagrand. Probability in Banach spaces, volume 23 of
Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer-Verlag, Berlin,
1991.

[Mad48] William G. Madow. On the limiting distributions of estimates based on samples
from finite universes. Ann. Math. Statist., 19(4):535–545, 12 1948.

[MHL16] Zeinab Mashreghi, David Haziza, and Christian Léger. A survey of bootstrap
methods in finite population sampling. Statistics Surveys, 10(none):1 – 52, 2016.

197



[Ney23] Jerzy Neyman. On the application of probability theory to agricultural exper-
iments. Essay on principles. Section 9 (in Polish). Roczniki Nauk Roiniczych,
X:1–51, 1923. Reprinted in Statistical Science, 1990, 5:463-480.

[NW21] Akanksha Negi and Jeffrey M. Wooldridge. Revisiting regression adjustment
in experiments with heterogeneous treatment effects. Econometric Reviews,
40(5):504–534, 2021.

[Oax73] Ronald Oaxaca. Male-female wage differentials in urban labor markets. Inter-
national Economic Review, 14(3):693–709, 1973.

[Pen55] R. Penrose. A generalized inverse for matrices. Mathematical Proceedings of the
Cambridge Philosophical Society, 51(3):406–413, 1955.

[Rak97] Vladimir Rakocevic. On continuity of the Moore-Penrose and Drazin inverses.
volume 49, pages 163–172. 1997. 4th Symposium on Mathematical Analysis and
Its Applications (Arandelovac, 1997).

[RBK05] Susana Rubin-Bleuer and Ioana Schiopu Kratina. On the two-phase framework
for joint model and design-based inference. The Annals of Statistics, 33(6):2789
– 2810, 2005.

[RLSR12] Andrea Rotnitzky, Quanhong Lei, Mariela Sued, and James M. Robins. Im-
proved double-robust estimation in missing data and causal inference models.
Biometrika, 99(2):439–456, 2012.

[Rot20] Christoph Rothe. Flexible covariate adjustments in randomized experiments,
2020. Available at http://www.christophrothe.net/papers/fca_apr2020.
pdf.

[Rub80] Donald B Rubin. Comment on “Randomization analysis of experimental data:
The Fisher randomization test”. Journal of the American Statistical Association,
75(371):591–593, 1980.

[RvdL10] Michael Rosenblum and Mark J. van der Laan. Simple, efficient estimators of
treatment effects in randomized trials using generalized linear models to leverage
baseline variables. The International Journal of Biostatistics, 6(1), jan 2010.

[SLL14] Changyu Shen, Xiaochun Li, and Lingling Li. Inverse probability weighting for
covariate adjustment in randomized studies. Statistics in medicine, 33(4):555–
568, 2014.

[Ste69] G. W. Stewart. On the continuity of the generalized inverse. SIAM J. Appl.
Math., 17:33–45, 1969.

198

http://www.christophrothe.net/papers/fca_apr2020.pdf
http://www.christophrothe.net/papers/fca_apr2020.pdf


[Tan10] Zhiqiang Tan. Bounded, efficient and doubly robust estimation with inverse
weighting. Biometrika, 97(3):661–682, 2010.

[vdV98] A. W. van der Vaart. Asymptotic statistics, volume 3 of Cambridge Series in Sta-
tistical and Probabilistic Mathematics. Cambridge University Press, Cambridge,
1998.

[vdVW96] Aad W. van der Vaart and Jon A. Wellner. Weak convergence and empirical
processes. Springer Series in Statistics. Springer-Verlag, New York, 1996.

[vdVW11] Aad van der Vaart and Jon A. Wellner. A local maximal inequality under
uniform entropy. Electron. J. Stat., 5:192–203, 2011.

[VR02] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer,
New York, fourth edition, 2002. ISBN 0-387-95457-0.

[WDTT16] Stefan Wager, Wenfei Du, Jonathan Taylor, and Robert J. Tibshirani. High-
dimensional regression adjustments in randomized experiments. Proceedings of
the National Academy of Sciences, 113(45):12673–12678, 2016.

[WGB18] Edward Wu and Johann A. Gagnon-Bartsch. The LOOP estimator: Adjusting
for covariates in randomized experiments. Evaluation Review, 42:458 – 488, 2018.

[ZD21] Anqi Zhao and Peng Ding. Covariate-adjusted Fisher randomization tests for
the average treatment effect. Journal of Econometrics, 225(2):278–294, 2021.

199



200



Chapter 3

Gaussian Prepivoting for Finite

Population Causal Inference

201



Abstract

In finite population causal inference exact randomization tests can be constructed for sharp
null hypotheses, hypotheses which impute the missing potential outcomes. Oftentimes in-
ference is instead desired for the weak null that the sample average of the treatment effects
takes on a particular value while leaving the subject-specific treatment effects unspecified.
Tests valid for sharp null hypotheses can be anti-conservative should only the weak null
hold. We develop a general framework for unifying modes of inference for sharp and weak
nulls, wherein a single procedure simultaneously delivers exact inference for sharp nulls and
asymptotically valid inference for weak nulls. We employ randomization tests based upon
prepivoted test statistics, wherein a test statistic is first transformed by a suitably con-
structed cumulative distribution function and its randomization distribution assuming the
sharp null is then enumerated. For a large class of test statistics, we show that prepivoting
may be accomplished by employing the push-forward of a sample-based Gaussian measure
based upon a suitable covariance estimator. The approach enumerates the randomization
distribution (assuming the sharp null) of a P-value for a large-sample test known to be valid
under the weak null, and uses the resulting randomization distribution for inference. The
versatility of the method is demonstrated through many examples, including rerandomized
designs and regression-adjusted estimators in completely randomized designs.

3.1 Introduction

In finite population causal inference two distinct hypotheses of “no treatment effect” are

commonly tested: Fisher’s sharp null and Neyman’s weak null. Fisher’s sharp null of no effect

refers to the null that the responses under treatment and under control are the same for all

individuals in the study (Ros02). The sharp null imputes the missing values of the potential

outcomes for all individuals, in so doing facilitating the use of randomization tests to provide

exact inference with randomization alone acting as the basis for inference (Fis35). Neyman’s

weak null instead specifies only that the average of the treatment effects for the individuals

in the experiment equals zero, while allowing for heterogeneity in the unit-specific effects.

The missing potential outcomes are no longer imputed under the weak null, such that the

randomization distribution under the weak null remains unknown. Consequently, inference

for the weak null has historically proceeded using asymptotically conservative analytical
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approximations to the limiting distribution of the treated-minus-control difference in means.

While the exactness attained under the sharp null is appealing, randomization tests have

been criticized for the seemingly restricted nature of the conclusions to which the researcher

is entitled should the null be rejected (CDM17). While the researcher may suggest that the

treatment effect is not zero for all individuals, generally one is not entitled to a statement

of whether the treatment effect is positive or negative on average for the individuals in the

study. To address this, a recent literature has emerged on how randomization tests may

be modified to maintain asymptotic validity under the weak null hypothesis. The resulting

methods provide a single testing procedure that is asymptotically valid for the weak null

hypothesis, while maintaining exactness should the sharp null also be true (Din17, LRR17,

DD18, WD18, Fog20).

The existing literature attains this unified mode of inference largely on a case-by-case

basis: for a given experimental design, a specially catered test statistic is constructed so

that the corresponding randomization test under the sharp null maintains asymptotic va-

lidity under the weak null. In this work, we provide both general conditions under which

the unification may be achieved and a general methodology for attaining it. The central

idea is to leverage prepivoting, an idea introduced in (Ber87, Ber88). For most commonly

employed experimental designs and test statistics, the reference distribution generated by

the prepivoted statistic under the assumption of the sharp null asymptotically stochasti-

cally dominates the true, but unknowable, randomization distribution under the weak null,

yielding asymptotically conservative inference for the weak null while maintaining exactness

under the sharp null hypothesis. As we demonstrate, prepivoting succeeds in many scenarios

where other common resolutions such as studentization prove inadequate.

At a high level, prepivoting takes a test statistic 𝑇0 and composes it with a cumulative

distribution function 𝐹 constructed from the observed data, forming the new test statistic

𝑇1 = 𝐹 (𝑇0). If 𝐹 were a consistent estimate of 𝑇0’s limit distribution, 𝐹 (𝑇0) would, through

an asymptotic application of the probability integral transform, tend to a standard uniform.
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Under the weak null hypothesis, the true distribution function for common test statistics

𝑇0 cannot generally be consistently estimated. Fortunately, as developed in Section 3.5 a

distribution function for a random variable that asymptotically stochastically dominates 𝑇0

may be constructed. For most common test statistics for the weak null hypothesis, under

conditions outlined in Section 3.5 this dominating distribution function amounts to a suitable

pushforward of a multivariate Gaussian measure constructed using a conservative covariance

estimator. Using this estimated distribution function, 𝑇1 = 𝐹 (𝑇0) is instead stochastically

dominated by a standard uniform in the limit. Observe that through this construction,

the prepivoted test 𝑇1 = 𝐹 (𝑇0) is precisely one minus the large sample 𝑝-value for the test

statistic 𝑇0 leveraging the central limit theorem. Rather than using this 𝑝-value to reach a

conclusion by comparing its value to the desired 𝛼, we instead use the reference distribu-

tion of this large-sample 𝑝-value enumerated over all possible randomizations assuming the

sharp null holds. This reference distribution generally converges pointwise to the standard

uniform distribution function for commonly used covariance estimators. As a result, infer-

ence is guaranteed to be asymptotically conservative under the weak null while maintaining

exactness under the sharp null. The general takeaway is that rather than looking at the

randomization distribution of a test statistic itself under the sharp null, one should instead

enumerate the randomization distribution of one minus an asymptotically valid 𝑝-value to

restore validity of Fisher randomization tests when only the weak null holds.

In Section 3.2 we introduce notation for finite population causal inference and detail some

standard assumptions. Section 3.3 defines the reference distribution assuming the truth of

Fisher’s sharp null and juxtaposes it with its true though unknowable randomization dis-

tribution under Neyman’s weak null of no effect on average. After an overview of useful

asymptotic results on completely randomized designs in Section 3.4, Section 3.5 introduces

Gaussian prepivoting in the context of suitably constructed functions of treated-minus con-

trol difference in means. Section 3.6 provides examples of and insight into prepivoting using

Gaussian measure. Section 3.7 extends these results to other asymptotically linear estima-
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tors including regression-adjusted estimators, while Section 3.8 provides simulation studies

highlighting the benefits of Gaussian prepivoting.

3.2 Notation And Review

3.2.1 Notation for Finite Population Causal Inference

While the developments in this work apply quite generally across common experimental de-

signs and with two or more levels of the treatment, in this work we focus on completely

randomized experiments and rerandomized experiments with two treatments; see the sup-

plementary materials for extensions to paired designs and to completely randomized designs

with multi-valued treatments. Consider a collection of 𝑁 individuals, where 𝑛1 receive treat-

ment and 𝑛0 = 𝑁 − 𝑛1 receive the control. For the 𝑖th individual, the random variable 𝑍𝑖

is the treatment indicator, taking the value 1 if the 𝑖th individual receives treatment and

0 otherwise. We assume that the stable unit treatment value assumption holds, such that

there is no interference and that there are no hidden levels of the treatment (Rub80). The

𝑖th individual has two deterministic potential outcomes: y𝑖(1), the 𝑑-dimensional outcome

under treatment, and y𝑖(0) the 𝑑-dimensional outcome under control. Furthermore, the 𝑖th

unit has deterministic covariates x𝑖 ∈ R𝑘. The 𝑗th coordinate of y𝑖(𝑧) is 𝑦𝑖𝑗(𝑧), and the

analogous statement holds for 𝑥𝑖𝑗. The random vector Z represents (𝑍1, . . . , 𝑍𝑁)
T; likewise

y(1) = (y1(1), . . . ,y𝑁(1))
T and y(0) = (y1(0), . . . ,y𝑁(0))

T. Under the finite population

model the potential outcomes are viewed as fixed across randomizations, and the only ran-

domness enters through Z, the treatment allocation. For a discussion of the finite population

inference framework, we suggest (DLM17). The observed outcome-vector for individual 𝑖 is

y𝑖(𝑍𝑖) and the collection of these is denoted y(Z). Causal inference with multiple outcomes

is becoming increasingly common in modern applications ranging from drug repurposing

studies to A/B tests assessing the impact of competing web page designs on various user
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engagement metrics. See (TPSGN09) and (TPM11) for concrete examples of causal infer-

ence with multiple endpoints in biomedical sciences, and see (DFM19) for a reference on the

underlying mathematics of multivariate potential outcome models.

The vector of treatment effects for the 𝑖th individual is 𝜏𝑖 = y𝑖(1)− y𝑖(0). The average

treatment effect for the individuals in the experiment is 𝜏 = 𝑁−1
∑︀𝑁

𝑖=1 𝜏𝑖. As the two

potential outcomes are not jointly observable, 𝜏𝑖 is unknown for all individuals. Neyman’s

weak null of no treatment effect on average is 𝐻𝑁 : 𝜏 = 0, while Fisher’s sharp null further

stipulates 𝐻𝐹 : 𝜏𝑖 = 0 (𝑖 = 1, . . . , 𝑁) such that the treatment made no difference among any

of the 𝑑 outcomes measured. We implicitly define the alternative hypothesis as that which

complements the null, so for 𝐻𝑁 the alternative is 𝐻𝐴 : 𝜏 ̸= 0 and for 𝐻𝐹 the alternative

is 𝐻𝐴 : ∃ 𝑖 s.t. 𝜏𝑖 ̸= 0. Consequently, our tests are non-directional; this differs from the

one-sided bounded alternatives tested by (CDM17). Furthermore, the one-sided bounded

alternatives of (CDM17) bound each individual’s treatment effect, whereas we are interested

in unifying inference for both individual effects and aggregate effects.

For any matrix r ∈ R𝑁×𝑑 and any binary vector W with
∑︀𝑁

𝑖=1𝑊𝑖 = 𝑛1, we define the

function

𝜏(r,W) =
1

𝑛1

𝑁∑︁
𝑖=1

𝑊𝑖r𝑖 −
1

𝑛0

𝑁∑︁
𝑖=1

(1−𝑊𝑖)r𝑖.

Using this notation, the observed treated-minus-control difference in means for the outcome

variables is 𝜏(y(Z),Z) and is often denoted by 𝜏 as shorthand. In general, “hats” are used to

denote functions of observed quantities whose limiting properties will eventually be studied

herein. Define ȳ(0) = 𝑁−1
∑︀𝑁

𝑖=1 y𝑖(0) and ȳ(1) = 𝑁−1
∑︀𝑁

𝑖=1 y𝑖(1) to be the average potential

outcomes for the 𝑁 individuals in the study population. Likewise, we define the covariance
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matrices

Σ𝑦(𝑧) = (𝑁 − 1)−1

𝑁∑︁
𝑖=1

(y𝑖(𝑧)− ȳ(𝑧))(y𝑖(𝑧)− ȳ(𝑧))T, 𝑧 ∈ {0, 1};

Σ𝜏 = (𝑁 − 1)−1

𝑁∑︁
𝑖=1

(𝜏𝑖 − 𝜏 )(𝜏𝑖 − 𝜏 )T.

To emphasize the distinction between functions of observed outcomes and functions of

covariates, we define the function 𝛿(x,W) with binary W such that
∑︀𝑁

𝑖=1𝑊𝑖 = 𝑛1 as

𝛿(x,W) =
1

𝑛1

𝑁∑︁
𝑖=1

𝑊𝑖x𝑖 −
1

𝑛0

𝑁∑︁
𝑖=1

(1−𝑊𝑖)x𝑖.

The function 𝛿(x,W) is a special case of 𝜏(r,W). The observed difference in means

for covariates is 𝛿(x,Z), abbreviated as 𝛿. The finite population mean of the covariates is

x̄ = 𝑁−1
∑︀𝑁

𝑖=1 x𝑖. The finite population covariance matrix for the covariates is Σ𝑥, defined

by simply replacing y𝑖(𝑧) with x𝑖 and ȳ(𝑧) with x̄ in the definition of Σ𝑦(𝑧). The finite

population covariance between potential outcomes and covariates is Σ𝑦(𝑧)𝑥 for 𝑧 = 0, 1, and

the covariance between treatment effects and covariates is Σ𝜏𝑥. Asymptotic arguments that

follow will imagine a single sequence of finite populations of increasing size, with 𝑁 → ∞.

As a result, quantities such as Σ𝜏 themselves vary as 𝑁 → ∞ and should be denoted by

Σ𝜏,𝑁 to reflect this. Generally the dependence is suppressed to reduce notational clutter;

however, we do employ the notation Σ𝜏,∞ to denote the limiting value of Σ𝜏,𝑁 as 𝑁 → ∞,

and likewise for other finite population quantities. For more on the finite population model

for causal inference, see (IR15) and (DLM17) among many.
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3.2.2 Rerandomized Designs and Balance Criterion

The set of all possible treatment assignments Z is denoted by Ω, and is determined by

the experimental design. In completely randomized experiments, covariates are not used to

inform the chosen treatment assignment and Ω𝐶𝑅𝐸 = {z :
∑︀𝑁

𝑖=1 𝑧𝑖 = 𝑛1}. To mitigate the

risk of significant covariate imbalance, (MR12) suggest instead building covariate balance

into the treatment allocation process through rerandomization. The study is conducted by

collecting covariate data for the study participants, determining a measure of imbalance and a

threshold for deciding what imbalances are acceptable, and selecting a treatment allocation

uniformly over the set of allocations satisfying the balance criterion (LDR18). Stringent

balance criterion reduce the cardinality of Ω by eliminating undesirable assignments, with the

hopes of improving precision as a consequence. Naturally, randomization inference must take

into account that the allowable realizations of Z depend upon the condition that covariate

balance is met.

A balance criterion is a Boolean-valued function 𝜑(·), where 𝜑(
√
𝑁𝛿) = 1 is taken to

mean that the treatment allocation Z which results in the particular realization of 𝛿 under

consideration satisfies appropriate covariate balance. We impose the following restriction on

𝜑:

Condition 1. 𝜑 : R𝑘 ↦→ {0, 1} is an indicator function such that the set 𝑀 = {b : 𝜑(b) = 1}

is closed, convex, mirror-symmetric about the origin (i.e. b ∈ 𝑀 ⇔ −b ∈ 𝑀) with non-

empty interior.

3.2.3 Regularity Conditions

We make the following assumptions about the structure of the finite populations and exper-

imental designs as 𝑁 goes to infinity. These assumptions are for the most part standard in

the literature; see, for instance, (WD18).
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Assumption 1. The proportion 𝑛1/𝑁 limits to 𝑝 ∈ (0, 1) as 𝑁 → ∞.

Assumption 2. All finite population means and covariances having limiting values for both

the potential outcomes and the covariates. For instance, lim𝑁→∞ ȳ(𝑧) = ȳ∞(𝑧) for 𝑧 ∈ {0, 1}

and lim𝑁→∞Σ𝑦(1) = Σ𝑦(1),∞.

Assumption 3. There exists some 𝐶 < ∞ for which, for all 𝑧 ∈ {0, 1}, all 𝑗 = 1, .., 𝑑 and

all 𝑁 , ∑︀𝑁
𝑖=1

(︀
𝑦𝑖𝑗(𝑧)− 𝑦𝑗(𝑧)

)︀4
𝑁

< 𝐶,

where 𝑦𝑗(𝑧) denotes the 𝑗th coordinate of y(𝑧). Further, the above holds for the covariates

with 𝑥𝑖𝑗 replacing 𝑦𝑖𝑗(𝑧) above for 𝑗 = 1, .., 𝑘.

Assumption 3 is used to obtain finite population-inference strong laws of large numbers

for mean and variance estimators. Such an assumption is made at times for mathematical

convenience to simplify the analysis of certain random distributions and may hold under

weaker assumptions. Assumption 3 is commonplace in the literature on finite population

causal inference; see, for instance, (WD18, Lin13, Fre08a, Fre08b).

3.2.4 A Technical Note on the Convergence of Random Measures

A random sequence of probability measures �̂�𝑁 on 𝑆 converges weakly in probability to a de-

terministic probability measure 𝜇 if
∫︀
𝑆
𝑓 𝑑�̂�𝑛

𝑝−→
∫︀
𝑆
𝑓 𝑑𝜇 for all continuous bounded functions

𝑓 : 𝑆 → R (DDCZ13, Section 2). Aspects of the Portmanteau Theorem (vdVW96, Theorem

1.3.4) extend to weak convergence in probability of random measures (DDCZ13, Cra02).

Most importantly for our purposes is that if {𝐹𝑁} are random cumulative distribution func-

tions and 𝐹 is a fixed cumulative distribution function, then their associated measures con-

verge weakly in probability if and only if 𝐹𝑁(𝑡)
𝑝−→ 𝐹 (𝑡) for all 𝑡 which are continuity points

of 𝐹 ; we take this as the definition of weak convergence in probability for random cumulative

distribution functions.
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3.3 Randomization Distributions And Tests

3.3.1 Randomization Distributions

Consider a scalar test statistic 𝑇 (y(Z),Z), a function of the observed responses and the

treatment assignment received. The randomization distribution for the test statistic 𝑇 is

R𝑇 (𝑡) =
1

|Ω|
∑︁
w∈Ω

1{𝑇 (y(w),w)≤𝑡}. (1)

R𝑇 is the true cumulative distribution function of 𝑇 (y(Z),Z) with respect to the randomness

in the treatment allocation Z, distributed uniformly over Ω. If we had access to R𝑇 under

the null hypothesis in question, we could make direct use of it to provide inference that

is exact in finite samples, proceeding without dependence on asymptotics. Under Fisher’s

sharp null hypothesis, R𝑇 is specified by the observed outcomes as y(Z) = y(w) for any

w ∈ Ω. Unfortunately, the distribution is generally unknown under the weak null, as the

weak null merely constrains the missing potential outcomes without determining them.

3.3.2 Randomization Tests Assuming the Sharp Null

In practice an experimenter draws a single realization of Z, in so doing only revealing the

values of the potential outcomes corresponding to the observed assignment. Suppose that

regardless of whether or not Fisher’s sharp null hypothesis actually holds, the researcher

considers use of the randomization distribution to which she or he would be entitled if the

sharp null were true. This reference distribution takes the form

P̂𝑇 (𝑡) =
1

|Ω|
∑︁
w∈Ω

1{𝑇 (y(Z),w)≤𝑡}. (2)
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While R𝑇 = P̂𝑇 under the sharp null, under the weak null P̂𝑇 is a random distribution

function as it varies with Z. Inference using P̂𝑇 proceeds as though y(Z) would have been

the observed response for any w ∈ Ω. As the true response y(w) under assignment w need

not align with y(Z), P̂𝑇 does not actually reflect the true randomization distribution under

the weak null. This gives rise to potentially anti-conservative inference should P̂𝑇 be used

to test the weak null hypothesis.

For 𝛼 ∈ (0, 1) define the Fisher randomization test of nominal level 𝛼 by

𝜙𝑇 (𝛼) = 1{𝑇 (y(Z),Z)≥P̂−1
𝑇 (1−𝛼)}. (3)

Under the sharp null, E{𝜙𝑇 (𝛼)} ≤ 𝛼 for any sample size as P̂𝑇 = R𝑇 . Throughout

this paper, we examine the extent to which certain choices of test statistics entitle us to

asymptotic Type I error control at 𝛼 when 𝜙𝑇 (𝛼) is used to conduct inference but only the

weak null holds. For a given test statistic 𝑇 , we will often proceed by juxtaposing its true

limiting behavior under the randomization distribution R𝑇 with the limiting behavior of

P̂𝑇 , the randomization distribution if we (incorrectly) assumed that the sharp null held.

3.3.3 Towards a Unified Mode of Inference

Suppose that for a test statistic 𝑇 (y(Z),Z) based upon the observed outcomes y(Z) and the

treatment allocation Z,

(a) P̂𝑇 converges weakly in probability to a fixed distribution P𝑇,∞ as 𝑁 → ∞; and

(b) R𝑇 converges pointwise to a fixed distribution R𝑇,∞ at all continuity points of R𝑇,∞.

Formally, R𝑇 (𝑡) → R𝑇,∞(𝑡) ∀ 𝑡 ∈ cont(R𝑇,∞), where cont(R𝑇,∞) is the set of conti-

nuity points of R𝑇,∞.

The test statistic 𝑇 (y(Z),Z) is called asymptotically sharp-dominant if, under𝐻𝑁 , P𝑇,∞(𝑡) ≤

R𝑇,∞(𝑡) for any scalar 𝑡. This implies that the (1− 𝛼) quantile of P𝑇,∞ is at or above the
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(1 − 𝛼) quantile of R𝑇,∞. If 𝑇 (y(Z),Z) is asymptotically sharp-dominant, then inference

based upon the reference distribution P̂𝑇 will be asymptotically conservative even if only𝐻𝑁

holds (WD18, Proposition 4), satisfying lim supE{𝜙𝑇 (𝛼)} ≤ 𝛼 as 𝑁 → ∞ while maintaining

exactness should the sharp null be true.

Many common test statistics are not asymptotically sharp-dominant over all elements

of the weak null. For instance, with univariate potential outcomes and under a completely

randomized design with imbalanced treated and control groups, the absolute difference in

means 𝑇 (y(Z),Z) =
√
𝑁 |𝜏 | is not generally asymptotically sharp-dominant as there exist

sequences of potential outcomes satisfying the weak null such that lim inf E{𝜙𝑇 (𝛼)} > 𝛼; see

(Din17), (WD18, Cor. 3), or (LRR17) for details. For this test statistic, simply studentizing

by the usual standard error estimator ensures sharp dominance. However, studentization

fails to generalize to other more complicated test statistics and complex experimental de-

signs. Significant efforts have recovered appropriate studentization techniques for some test

statistics, but each test statistic requires its own separate analysis (WD18). For some experi-

mental designs, studentizing the difference in means is not sufficient to regain asymptotically

valid inference even in the univariate case; we explore this topic in Section 3.5.2 and Sec-

tion 3.8.1 in the context of rerandomization. In Section 3.5, we present a general method

called Gaussian prepivoting which both recovers studentization when it alone would be suf-

ficient, but also yields asymptotic sharp-dominance in circumstances where studentization

would be insufficient. Before describing the method, we recall a few important results on

the difference in means in completely randomized designs which underpin the success of

Gaussian prepivoting.
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3.4 Useful Results For The Difference-In-Means In Com-

pletely Randomized Designs

3.4.1 Asymptotic Normality and Conservative Covariance Estima-

tion for the Randomization Distribution

Consider the distribution of
√
𝑁(𝜏 − 𝜏 , 𝛿)T in a completely randomized design. Under

Assumptions 1, 2, and 3, a finite population central limit theorem applies (LD17), and
√
𝑁(𝜏 − 𝜏 , 𝛿)T converges in distribution to a mean-zero multivariate Gaussian with covari-

ance matrix 𝑉 of the form

𝑉 =

⎛⎝𝑉𝜏𝜏 𝑉𝜏𝛿

𝑉𝛿𝜏 𝑉𝛿𝛿

⎞⎠ ;

𝑉𝜏𝜏 = 𝑝−1Σ𝑦(1),∞ + (1− 𝑝)−1Σ𝑦(0),∞ − Σ𝜏,∞;

𝑉𝛿𝛿 = {𝑝(1− 𝑝)}−1Σ𝑥,∞;

𝑉𝜏𝛿 = 𝑝−1Σ𝑦(1)𝑥,∞ + (1− 𝑝)−1Σ𝑦(0)𝑥,∞ = 𝑉 T

𝛿𝜏 .

While 𝑉𝛿𝛿 and 𝑉𝜏𝛿 can be consistently estimated, 𝑉𝜏𝜏 cannot be in the presence of effect

heterogeneity due to its dependence on Σ𝜏 , the covariance of the unobserved treatment

effects. Consequently, one cannot consistently estimate the probability that
√
𝑁(𝜏 −𝜏 ) falls

within a given region ℬ. While consistent variance estimates are not available, there are

several covariance estimators 𝑉𝜏𝜏 (y(Z),Z) for 𝑉𝜏𝜏 satisfying 𝑉𝜏𝜏 − 𝑉𝜏𝜏
𝑝→ Δ for some Δ ⪰ 0

under Assumptions 1 - 3 in completely randomized designs. These estimators typically have

the property that Σ𝜏𝜏 = 0 implies consistency, rather than asymptotic conservativeness; see

(DFM19) for more details. So while the matrix 𝑉 cannot generally be consistently estimated,

one can construct an estimate converging in probability to a matrix ¯̄𝑉 of the form

213



¯̄𝑉 =

⎛⎝𝑉𝜏𝜏 +Δ 𝑉𝜏𝛿

𝑉𝛿𝜏 𝑉𝛿𝛿

⎞⎠
with Δ ⪰ 0.

As an illustration, consider the conventional covariance estimator for the difference in

means in a two-sample problem, 𝑉𝜏𝜏 = 𝑁
(︁
Σ̂𝑦(1)/𝑛1 + Σ̂𝑦(0)/𝑛0

)︁
with

Σ̂𝑦(1) =
1

𝑛1 − 1

𝑁∑︁
𝑖=1

𝑍𝑖

(︃
𝑦𝑖(1)− 𝑛−1

1

𝑁∑︁
𝑖=1

𝑍𝑖𝑦𝑖(1)

)︃(︃
𝑦𝑖(1)− 𝑛−1

1

𝑁∑︁
𝑖=1

𝑍𝑖𝑦𝑖(1)

)︃T

and the analogous for Σ̂𝑦(0). Under both completely randomized experiments and reran-

domized experiments with balance criterion satisfying Condition 1, this estimator satisfies

𝑉𝜏𝜏 − 𝑉𝜏𝜏
𝑝→ Σ𝜏,∞ ⪰ 0 under Assumptions 1 - 3.

3.4.2 Limiting Behavior of the Reference Distribution

Suppose we have a completely randomized design, and consider the random variable

{
√
𝑁𝜏(ỹ(Z),W),

√
𝑁𝛿(x,W)}T

=
√
𝑁

{︃
1

𝑛1

𝑁∑︁
𝑖=1

𝑊𝑖ỹ𝑖(𝑍𝑖)−
1

𝑛0

𝑁∑︁
𝑖=1

(1−𝑊𝑖)ỹ𝑖(𝑍𝑖),

1

𝑛1

𝑁∑︁
𝑖=1

𝑊𝑖x𝑖 −
1

𝑛0

𝑁∑︁
𝑖=1

(1−𝑊𝑖)x𝑖

}︃T

where Z and W are independent, identically distributed, and drawn uniformly from Ω and

ỹ𝑖(𝑍𝑖) = y𝑖(𝑍𝑖)− 𝑍𝑖𝜏 , such that ỹ(Z) = y(Z)− Z𝜏 T.

Proposition 1. Subject to Assumptions 1, 2, and 3, under a completely randomized design
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the distribution of {
√
𝑁𝜏(ỹ(Z),W),

√
𝑁𝛿(x,W)}T | Z converges weakly in probability to a

multivariate Gaussian measure, with mean zero and covariance 𝑉 of the form

𝑉 =

⎛⎝𝑉𝜏𝜏 𝑉𝜏𝛿

𝑉𝛿𝜏 𝑉𝛿𝛿

⎞⎠ ;

𝑉𝜏𝜏 = (1− 𝑝)−1Σ𝑦(1),∞ + 𝑝−1Σ𝑦(0),∞;

𝑉𝛿𝛿 = {𝑝(1− 𝑝)}−1Σ𝑥,∞;

𝑉𝜏𝛿 = (1− 𝑝)−1Σ𝑦(1)𝑥,∞ + 𝑝−1Σ𝑦(0)𝑥,∞ = 𝑉 T

𝛿𝜏 .

The proof of this statement is contained within the proof of Theorem 1 in (WD18) and

is omitted. Under the sharp null, 𝑉 = 𝑉 as y𝑖(1) = y𝑖(0) for all 𝑖. Under the weak null

however, while 𝑉𝛿𝛿 = 𝑉𝛿𝛿 generally 𝑉𝜏𝜏 ̸= 𝑉𝜏𝜏 and 𝑉𝛿𝜏 ̸= 𝑉𝛿𝜏 . The divergence between 𝑉 and

𝑉 can render randomization tests for the weak null hypothesis anti-conservative; examples

are given in Section 3.5.2. We now describe how prepivoting may be used to guarantee

asymptotic correctness when inference for the weak null hypothesis is conducted using a

reference distribution generated under the sharp null.

3.5 Gaussian Prepivoting

3.5.1 Prepivoting with an Estimated Pushforward Measure

Consider functions 𝑓𝜂 : R𝑑 → R subject to the following requirement:

Condition 2. For any 𝜂 ∈ Ξ, 𝑓𝜂(·) : R𝑑 ↦→ R+ is continuous, quasi-convex, and nonnegative

with 𝑓𝜂(t) = 𝑓𝜂(−t) for all t ∈ R𝑑. Furthermore, 𝑓𝜂(t) is jointly continuous in 𝜂 and t.

We begin with statistics for 𝐻𝑁 of the form

𝑇 (y(Z),Z) = 𝑓𝜉(
√
𝑁𝜏 ), (4)
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where 𝜉 = 𝜉(ỹ(Z),Z) satisfies the following condition for some set Ξ:

Condition 3. With W,Z independent and each uniformly distributed over Ω,

𝜉(ỹ(Z),Z)
𝑝→ 𝜉; 𝜉(ỹ(Z),W)

𝑝→ 𝜉,

for some 𝜉, 𝜉 ∈ Ξ.

As will be shown in Section 3.5.2, several commonly encountered statistics for Neyman’s

null are of this form. A detailed discussion of Condition 2 is included in the supplementary

materials. Suppose further that one employs a covariance estimator 𝑉 (ỹ(Z),Z) with the

following property:

Condition 4. With W,Z independent, both uniformly distributed over Ω, and for some

Δ ⪰ 0, Δ ∈ R𝑑×𝑑,

𝑉 (ỹ(Z),Z)− 𝑉
𝑝→

⎛⎝ Δ 0𝑑,𝑘

0𝑘,𝑑 0𝑘,𝑘

⎞⎠ ; 𝑉 (ỹ(Z),W)− 𝑉
𝑝→ 0(𝑑+𝑘),(𝑑+𝑘).

As a concrete example satisfying Conditions 2-4, suppose that 𝑓𝜂(t) = tT𝜂−1tT and

𝜉(y(z),w) = 𝑉𝑁𝑒𝑦𝑚𝑎𝑛(y(z),w) with 𝑉𝑁𝑒𝑦𝑚𝑎𝑛 denoting the usual Neyman variance estimator

of (Ney90); numerous other examples are included in Section 3.5.2. Observe that when

assuming the weak null for the purpose of testing, ỹ(Z) = y(Z) and 𝜏 − 𝜏 = 𝜏 . Gaussian

prepivoting transforms the test statistic 𝑇 (y(z),w) = 𝑓𝜉(
√
𝑁𝜏 (y(z),w)) into a new statistic

of the form

𝐺(y(z),w) =
𝛾
(𝑑+𝑘)

0,𝑉 (y(z),w)

{︁
(a,b)T : 𝑓𝜉(a) ≤ 𝑇 (y(z),w) ∧ 𝜑(b) = 1

}︁
𝛾
(𝑘)

0,𝑉𝛿𝛿
{b : 𝜑(b) = 1}

(5)

where 𝛾(𝑝)𝜇,Σ(ℬ) is the 𝑝-dimensional Gaussian measure of a set ℬ with mean parameter 𝜇 and
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covariance Σ, i.e.

𝛾
(𝑝)
𝜇,Σ(ℬ) =

1√︀
(2𝜋)𝑝|Σ|

∫︁
x∈ℬ

exp

{︂
−1

2
(x− 𝜇)TΣ−1(𝑥− 𝜇)

}︂
𝑑𝑥.

For (A,B)T jointly multivariate normal with mean zero and covariance 𝑉 , A ∈ R𝑑, B ∈ R𝑘,

𝐺(y(Z),Z) represents the 𝑓𝜉-pushforward measure of A | 𝜑(B) = 1 evaluated on the set

(−∞, 𝑇 (y(Z),Z)]. That is, 𝐺(y(Z),Z) treats 𝑓𝜉 and 𝑉 as fixed and computes the conditional

probability that 𝑓𝜉(A) falls at or below the observed value for 𝑇 (y(Z),Z) = 𝑓𝜉(
√
𝑁𝜏 ) given

that 𝜙(B) = 1. From the perspective of hypothesis testing, 𝐺(y(Z),Z) is 1 minus the large-

sample 𝑝-value for 𝑇 (y(Z),Z) leveraging the finite population central limit theorem and the

estimated covariance 𝑉 .

We now describe how to use the prepivoted statistic 𝐺(y(Z),Z) to provide a single

procedure that is both exact for 𝐻𝐹 and asymptotically conservative for 𝐻𝑁 . In order

to provide a precise implementation of this, we give detailed pseudocode in Algorithm 1

and provide example code through the supplementary materials. First, we compute the

prepivoted test statistic 𝐺(y(Z),Z) given the observed data; this proceeds according to

Equation 5 and is Step 1 of Algorithm 1. Next, we construct the reference distribution

P̂𝐺(·), the construction of which requires imputing counterfactual outcomes as if Fisher’s

sharp null held; this is Step 2 of Algorithm 1. Finally, the 𝑝-value for testing 𝐻𝑁 is computed

and we reject the null when this lies below or at the nominal level 𝛼.
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Algorithm 1: Inference for the weak null through Gaussian prepivoting
Input: An observed treatment allocation z, with observed responses y(z), test

statistic 𝑇 (y(z), z) = 𝑓𝜉(
√
𝑁𝜏𝑜𝑏𝑠) and covariance estimator 𝑉 (y(z), z)

Result: The 𝑝-value for the Gaussian prepivoted test statistic

Step 1: The observed prepivoted statistic

Compute 𝑓𝜉(y(z),z)(·); 𝑉 (y(z), z). Compute

𝑔z =
𝛾
(𝑑+𝑘)

0,𝑉 (y(z),z)

{︁
(a,b)T : 𝑓𝜉(y(z),z)(a) ≤ 𝑇 (y(z), z) ∧ 𝜑(b) = 1

}︁
𝛾
(𝑘)

0,𝑉𝛿𝛿(y(z),z)
{b : 𝜑(b) = 1}

Step 2: The reference distribution P̂𝐺

for w ∈ Ω do
Compute 𝑓𝜉(y(z),w)(·); 𝑉 (y(z),w).

Compute

𝑔w =
𝛾
(𝑑+𝑘)

0,𝑉 (y(z),w)

{︁
(a,b)T : 𝑓𝜉(y(z),w)(a) ≤ 𝑇 (y(z),w) ∧ 𝜑(b) = 1

}︁
𝛾
(𝑘)

0,𝑉𝛿𝛿(y(z),w)
{b : 𝜑(b) = 1}

end

return

𝑝𝑣𝑎𝑙 =
1

|Ω|
∑︁
w∈Ω

1{𝑔w≥𝑔z};

𝜙𝐺(𝛼) = 1{𝑝𝑣𝑎𝑙≤𝛼}.

Observe that 1 − 𝑔z defined within Algorithm 1 is the usual large-sample 𝑝-value based

upon a Gaussian approximation and using the covariance estimator 𝑉 . The large-sample

test compares 1 − 𝑔z to 𝛼, the desired Type I error rate, and rejects if 1 − 𝑔z ≤ 𝛼 ⇔ 𝑔z ≥
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1−𝛼. The Gaussian prepivoted randomization test instead rejects if 𝑔z ≥ P̂−1
𝐺 (1−𝛼). The

following Theorem, in concert with Lemma 11.2.1 of (LR05), show under our assumptions

P̂−1
𝐺 (1−𝛼) 𝑝→ 1−𝛼, such that the prepivoted randomization test is asymptotically equivalent

to large sample test under the weak null. By using P̂−1
𝐺 (1− 𝛼) instead of 1− 𝛼, exactness

under the sharp null is preserved.

Theorem 1. Suppose we have either a completely randomized design or a rerandomized

design with balance criterion 𝜑 satisfying Condition 1. Suppose 𝑇 (y(Z),Z) is of the form

(4) for some 𝑓𝜂 and 𝜉 satisfying Conditions 2 and 3. Suppose further that we employ a

covariance estimator 𝑉 satisfying Condition 4 when forming the prepivoted test statistic

𝐺(y(Z),Z). Then, under 𝐻𝑁 : 𝜏 = 0 and under Assumptions 1-3, 𝐺(y(Z),Z) converges in

distribution to a random variable �̃� taking values in [0, 1] satisfying

P(�̃� ≤ 𝑡) ≥ 𝑡,

for all 𝑡 ∈ [0, 1]. Furthermore, the distribution P̂𝐺(𝑡) satisfies P̂𝐺(𝑡)
𝑝→ 𝑡 for all 𝑡 ∈ [0, 1].

Corollary 1. Under the conditions of Theorem 1; the prepivoted statistic 𝐺(y(Z),Z) is

asymptotically sharp dominant regardless of whether the base statistic 𝑇 (y(Z),Z) was. Con-

sequently, 𝑝-values derived under P̂𝐺 via Algorithm 1 are guaranteed to be exact under 𝐻𝐹

and asymptotically conservative under just 𝐻𝑁 .

Theorem 1 states that under the weak null, 𝐺(y(Z),Z) converges in distribution to a

random variable which is stochastically dominated by the standard uniform. Meanwhile, the

reference distribution for 𝐺(y(Z),Z) constructed assuming (incorrectly) that the sharp null

holds converges pointwise to the distribution function of a standard uniform. As a result,

the randomization distribution for 𝐺(y(Z),Z) is asymptotically sharp-dominant: the refer-

ence distribution generated in this manner yields asymptotically conservative inference for

the weak null hypothesis, while maintaining exactness should the sharp null also hold. By
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exploiting the duality between hypothesis testing and confidence sets Theorem 1 provides

the basis for generating exact and asymptotically conservative confidence sets for treatment

effect; this is explored in the supplementary materials.

Remark 1. Consider the function

𝐹 (𝑡) =
𝛾
(𝑑+𝑘)

0,𝑉

{︁
(a,b)T : 𝑓𝜉(a) ≤ 𝑡 ∧ 𝜑(b) = 1

}︁
𝛾
(𝑘)

0,𝑉𝛿𝛿
{b : 𝜑(b) = 1}

the estimated distribution function for 𝑓𝜉(
√
𝑁𝜏 ) | 𝜑(

√
𝑁𝛿) = 1 based upon a finite popu-

lation central limit theorem. In special cases, the function 𝐹 (𝑡) may have a known closed

form. This is true of the test statistics which are sharp-dominated by a 𝜒2
𝑑 distribution

considered in (WD18), for example. Should this not be the case, one can approximate 𝐹 (·)

by way of Monte-Carlo approximation, replacing the measures 𝛾0,𝑉 and 𝛾0,𝑉𝛿𝛿
with estimates

based upon a 𝐵 draws from a multivariate normal with mean 0 and covariance 𝑉 when

enumerating the reference distribution. Importantly, such Monte-Carlo approximation does

not corrupt finite-sample exactness under Fisher’s sharp null.

3.5.2 Examples of Gaussian prepivoting

Through a series of examples, we now provide illustrations of the transformations achieved

by (5). As will be demonstrated, the form recovers several randomization tests previously

known to be valid for weak null hypotheses in the literature while providing a basis for new

randomization tests for weak nulls using other test statistics. These examples serve four

objectives: (i) unify previous ad hoc solutions under the framework of Gaussian prepivoting;

(ii) provide an alternative approach to already valid procedures; (iii) highlight that prepiv-

oting can succeed even where studentization fails; and (iv) extend randomization inference

for 𝐻𝐹 and 𝐻𝑁 to new experimental designs.
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Example 1 (Absolute difference in means). Let
√
𝑁𝜏 be univariate, consider a completely

randomized design with no rerandomization, and let 𝑇𝐷𝑖𝑀(y(Z),Z) =
√
𝑁 |𝜏 |, with 𝑓𝜂(𝑡) =

|𝑡| and 𝜉 = 1. The randomization distribution for 𝑇𝐷𝑖𝑀(y(Z),Z) is not asymptotically

sharp-dominant, such that employing the reference distribution assuming that the sharp null

holds may lead to anti-conservative inference. The conventional fix is to studentize
√
𝑁 |𝜏 |

using a variance estimator estimator satisfying Condition 4, forming instead 𝑇𝑆𝑡𝑢(y(Z),Z) =
√
𝑁 |𝜏 |/

√︀
𝑉𝜏𝜏 (LRR17).

As 𝜑(·) = 1 deterministically in a completely randomized design, Gaussian prepivoting

via (5) yields the test statistic

𝐺𝐷𝑖𝑀(y(Z),Z) = 𝛾
(1)

0,𝑉𝜏𝜏
{𝑎 : |𝑎| ≤

√
𝑁 |𝜏 |} = 1− 2Φ

(︃
−
√
𝑁 |𝜏 |√︀
𝑉𝜏𝜏

)︃
,

where Φ(·) is the standard normal distribution function. For any Z, the pairs

{𝐺𝐷𝑖𝑀(y(Z),w), 𝑇𝐷𝑖𝑀(y(Z),w)} have rank correlation equal to 1 when computed for all

w ∈ Ω. As a result, the reference distribution using the studentized difference in means

assuming the sharp null will furnish identical 𝑝-values to those attained using Gaussian

prepivoting. That is, in the univariate case Gaussian prepivoting is equivalent to studenti-

zation for completely randomized designs. This highlights objectives (i) and (ii).

Example 2 (Multivariate studentization). Let
√
𝑁𝜏 now be multivariate and suppose we

have a completely randomized design. (WD18) suggest the test statistic

𝑇𝜒2(y(Z),Z) =
(︁√

𝑁𝜏
)︁T

𝑉 −1
𝜏𝜏

(︁√
𝑁𝜏
)︁
, (6)

with 𝑉𝜏𝜏 = 𝑁
𝑛1
Σ̂𝑦(1) +

𝑁
𝑛0
Σ̂𝑦(0). For this test statistic, 𝑓𝜂(t) = tT𝜂−1t and 𝜉 = 𝑉𝜏𝜏 . (WD18)

show that under our assumptions, under the weak null this test statistic converges in dis-

tribution to
∑︀𝑑

𝑖=1𝑤𝑖𝜁
2
𝑖 where 𝑤𝑖 ∈ [0, 1] are weights and 𝜁1, . . . , 𝜁𝑑

𝑖𝑖𝑑∼ 𝒩 (0, 1) while the

reference distribution of 𝑇𝜒2(y(Z),Z) attained assuming that the sharp null holds converges

221



weakly in probability to the 𝜒2
𝑑-distribution. As a result, 𝑇𝜒2(y(Z),Z) is asymptotically

sharp-dominant, and its reference distribution assuming the sharp null may be used for

inference for the weak null hypothesis. Here, Gaussian prepivoting produces

𝐺𝜒2(y(Z),Z) = 𝛾
(𝑑)

0,𝑉𝜏𝜏
{a : aT𝑉 −1

𝜏𝜏 a ≤ 𝑇𝜒2(y(Z),Z)} = 𝐹𝑑{𝑇𝜒2(y(Z),Z)},

where 𝐹𝑑(·) is the distribution function of a 𝜒2
𝑑 random variable. For any Z, the pairs

{𝐺𝜒2(y(Z),w), 𝑇𝜒2(y(Z),w)} have rank correlation equal to 1 when computed for all w ∈

Ω, such that Gaussian prepivoting yields equivalent inference to that attained using the

distribution of 𝑇𝜒2(y(Z),Z) under the sharp null. This demonstrates objective (ii).

Suppose instead that, erroneously, a practitioner proceeded with the more typical form

of Hotelling’s 𝑇 -squared statistic employing a pooled covariance estimator,

𝑇𝑃𝑜𝑜𝑙(y(Z),Z) =
(︁√

𝑁𝜏
)︁T (︁

𝑉𝑃𝑜𝑜𝑙

)︁−1 (︁√
𝑁𝜏
)︁
;

𝑉𝑃𝑜𝑜𝑙 =

(︂
𝑁

𝑛0

+
𝑁

𝑛1

)︂(︃
(𝑛1 − 1)Σ̂𝑦(1) + (𝑛0 − 1)Σ̂𝑦(0)

𝑛1 + 𝑛0 − 2

)︃
.

For this test statistic, 𝑓𝜂(t) = tT𝜂−1t as before, but 𝜉 = 𝑉𝑃𝑜𝑜𝑙. In this case, 𝑇𝑃𝑜𝑜𝑙(y(Z),Z) is

not asymptotically sharp-dominant, such that the reference distribution using this statistic

and assuming the sharp null may yield invalid inference. Gaussian prepivoting returns the

test statistic

𝐺𝑃𝑜𝑜𝑙(y(Z),Z) = 𝛾
(𝑑)

0,𝑉𝜏𝜏
{a : aT𝑉 −1

𝑃𝑜𝑜𝑙a ≤ 𝑇𝑃𝑜𝑜𝑙(y(Z),Z)}.

Importantly, 𝐺𝑃𝑜𝑜𝑙(y(Z),Z) continues to use the Gaussian measure computed with the co-

variance matrix 𝑉𝜏𝜏 in forming the suitable transformation, despite the fact that the pooled

covariance matrix is used in forming 𝑇𝑃𝑜𝑜𝑙(y(Z),Z). For fixed Z, 𝐺𝑃𝑜𝑜𝑙(y(Z),w) generally

will not have perfect rank correlation with 𝑇𝑃𝑜𝑜𝑙(y(Z),w) when computed over w ∈ Ω,
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such that the two randomization tests assuming the sharp null no longer furnish identical

𝑝-values. This divergence is necessary: while 𝑇𝑃𝑜𝑜𝑙(y(Z),Z) is not asymptotically sharp-

dominant, Theorem 1 asserts that

𝐺𝑃𝑜𝑜𝑙(y(Z),Z) is, such that the reference distribution for 𝐺𝑃𝑜𝑜𝑙(y(Z),Z) assuming the sharp

null yields asymptotically conservative inference for the weak null. Gaussian prepivoting

can thus restore asymptotic validity to a test statistic employing improper studentization,

illustrating objective (iii).

Example 3 (Max absolute 𝑡-statistic). Consider again multivariate
√
𝑁𝜏 and a completely

randomized design, and consider the test statistic

𝑇|𝑚𝑎𝑥|(y(Z),Z) = max
1≤𝑗≤𝑑

√
𝑁 |𝜏𝑗|√︁
𝑉𝜏𝜏,𝑗𝑗

,

where 𝑉𝜏𝜏,𝑗𝑗 is the 𝑗𝑗 element of 𝑉𝜏𝜏 . For this statistic, 𝑓𝜂(t) = max1≤𝑗≤𝑑 |𝑡𝑗|/𝜂𝑗, and 𝜉 =

(𝑉
1/2
𝜏𝜏,11, ..., 𝑉

1/2
𝜏𝜏,𝑑𝑑)

T. For 𝑑 ≥ 2, 𝑇|𝑚𝑎𝑥|(y(Z),Z) is not asymptotically sharp-dominant under

the weak null: the reference distribution generated under the sharp null depends upon the

correlation matrix corresponding to 𝑉 , while the true randomization distribution is governed

by the correlations encoded within 𝑉 . The Gaussian prepivoted correction takes the form

𝐺|𝑚𝑎𝑥|(y(Z),Z) = 𝛾
(𝑑)

0,𝑉𝜏𝜏

⎧⎨⎩a : max
1≤𝑗≤𝑑

|𝑎𝑗|√︁
𝑉𝜏𝜏,𝑗𝑗

≤ max
1≤𝑗≤𝑑

√
𝑁 |𝜏𝑗|√︁
𝑉𝜏𝜏,𝑗𝑗

⎫⎬⎭ ,

which composes 𝑇|𝑚𝑎𝑥|(y(Z),Z) with the distribution function for max |𝐴𝑗|/
√︁
𝑉𝜏𝜏,𝑗𝑗, 𝑗 =

1, .., 𝑑, when 𝐴 is multivariate Gaussian with mean zero and covariance 𝑉𝜏𝜏 . Gaussian

prepivoting rectifies the insufficiency of the studentization in 𝑇|𝑚𝑎𝑥|, thereby providing an

example of objective (iii).

Example 4 (Rerandomization). Let
√
𝑁𝜏 be univariate and suppose we now consider a
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rerandomized design with balance criterion 𝜑 satisfying Condition 1. Consider the absolute

difference in means, 𝑓𝜉(
√
𝑁𝜏) =

√
𝑁 |𝜏 |, such that 𝜉 = 1. Gaussian prepivoting yields the

test statistic

𝐺𝑅𝑒(y(Z),Z) =
𝛾
(1+𝑘)

0,𝑉

{︁
(a,b)T : |𝑎| ≤

√
𝑁 |𝜏 | ∧ 𝜑(b) = 1

}︁
𝛾
(𝑘)

0,𝑉𝛿𝛿
{b : 𝜑(b) = 1}

For completely randomized designs with 𝜑(·) = 1 deterministically, Gaussian prepivoting

is equivalent to studentizing as described in Example 1. In general rerandomized designs

however, observe that the transformation depends upon the particular form of the balance

criterion 𝜑, and that the reference distribution will depend upon the relationship between

the potential outcomes and the covariates used in the balance criterion. As a result, it

will generally not be the case that the reference distribution of 𝐺𝑅𝑒(y(Z),Z) under the

sharp null yields equivalent inference to that attained using
√
𝑁 |𝜏 |/

√︀
𝑉𝜏𝜏 . This suggests

that in rerandomized designs, studentization alone is insufficient for attaining an asymp-

totically sharp-dominant test statistic. In Section 3.8.1, we show this through an example

in the case of Mahalanobis rerandomization. Lemmas A15 and A16 of (LDR18) show that

under our conditions, probability limits for estimators 𝑉 derived under complete random-

ization are generally preserved under rerandomized designs. Once again, Theorem 1 ensures

that 𝐺𝑅𝑒(y(Z),Z) will be asymptotically sharp-dominant, such that the randomization dis-

tribution assuming the sharp null may be employed for inference for the weak null. The

development of a finite sample exact method for testing 𝐻𝐹 which is asymptotically valid for

testing 𝐻𝑁 in rerandomized designs is novel, but its construction is extremely simple within

the framework of Gaussian prepivoting; this highlights Gaussian prepivoting’s portability to

designs outside of just completely randomized experiments. In the supplementary materials

we provide two more examples of this portability: one for matched-pair designs and one for

experiments with any finite number of treatment arms. This highlights objective (iv).
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For the interested reader, in the supplementary materials we include this same collection

of examples written directly in the form of Gaussian integrals, and we include verification of

Conditions 2-4.

3.6 Gaussian Comparison, Stochastic Dominance, And

The Probability Integral Transform

3.6.1 Gaussian Comparison and Anderson’s Theorem

We now highlight the essential technical ingredients underpinning the success of Gaussian

prepivoting. Consider two mean-zero multivariate Gaussian vectors (A1,B1)
T and (A2,B2)

T,

with covariances

𝑀1 =

⎛⎝Λ
(1)
𝑎𝑎 Λ𝑎𝑏

Λ𝑏𝑎 Λ𝑏𝑏

⎞⎠ ; 𝑀2 =

⎛⎝Λ
(2)
𝑎𝑎 Λ𝑎𝑏

Λ𝑏𝑎 Λ𝑏𝑏,

⎞⎠ ,

satisfying Λ
(2)
𝑎𝑎 −Λ

(1)
𝑎𝑎 ⪰ 0 and Λ𝑏𝑏 ≻ 0; the inequalities are stated with respect to the Loewner

partial order on positive semidefinite matrices. Let the dimensions of A𝑗 and B𝑗 be 𝑑 and 𝑘

respectively for 𝑗 = 1, 2. Compare the tail probabilities for

𝑓(A1) | 𝜑 (B1) = 1 and 𝑓(A2) | 𝜑 (B2) = 1,

where 𝜑 and 𝑓 satisfy Conditions 1 and Condition 2 respectively. The following result is a

straightforward corollary of Anderson’s (1955) theorem for multivariate Gaussians (And55);

see also Theorem 4.2.5 of (Ton90).
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Lemma 1. Under the stated conditions, for any scalar 𝑣,

P {𝑓(A1) ≥ 𝑣 | 𝜑(B1) = 1} ≤ P {𝑓(A2) ≥ 𝑣 | 𝜑(B2) = 1} .

The result follows immediately from Anderson’s theorem after noting that the set ℬ𝑣 =

{(a,b)T : 𝑓(a) ≤ 𝑣 ∧ 𝜑(b) = 1} is convex and mirror-symmetric for any 𝑣. This can

be seen through our assumption that 𝑓(·) is quasi-convex and mirror-symmetric, such that

its sublevel sets are convex and mirror symmetric. We further have that P(𝜑(B1) = 1) =

P(𝜑(B2) = 1) > 0 given the structure of the covariance matrices 𝑀1 and 𝑀2 and Condition

1, completing the proof.

3.6.2 Stochastic Dominance and the Probability Integral Transform

For two real valued random variables 𝑆 and 𝑇 , 𝑆 (first order) stochastically dominates 𝑇 if

𝐹𝑆(𝑎) ≤ 𝐹𝑇 (𝑎) for all 𝑎 ∈ R, where 𝐹𝑆 and 𝐹𝑇 are the distribution functions of 𝑆 and 𝑇

respectively.

Suppose now that 𝑆 and 𝑇 are continuous and that 𝑆 stochastically dominates 𝑇 . By the

probability integral transform, the distribution of 𝐹𝑇 (𝑇 ) would be standard uniform. The

following proposition considers transforming the random variable 𝑇 not by its own distri-

bution function, but rather by the distribution function of 𝑆, its stochastically dominating

random variable.

Lemma 2. Suppose that 𝑆, 𝑇 are continuous random variables and that 𝑆 stochastically

dominates 𝑇 . Then, 𝐹𝑆(𝑇 ) is stochastically dominated by a standard uniform random vari-

able.

Proof. For any 𝑡 ∈ [0, 1], P{𝐹𝑆(𝑇 ) ≤ 𝑡} = P{𝑇 ≤ 𝐹−1
𝑆 (𝑡)} ≥ P{𝑆 ≤ 𝐹−1

𝑆 (𝑡)} = 𝑡.

In the setup of Section 3.6.1, under Conditions 1 and 2 we have by Proposition 1 that

𝑓(A2) | 𝜑(B2) = 1 stochastically dominates 𝑓(A1) | 𝜑(B1) = 1. Consequently, composing

226



𝑓(A1) | 𝜑(B1) = 1 with the distribution function of 𝑓(A2) | 𝜑(B2) = 1 would yield a random

variable that is stochastically dominated by a standard uniform.

3.6.3 A Proof Sketch for Theorem 1

While a formal proof of Theorem 1 is deferred to the supplementary materials, here we

provide an informal sketch in light of Lemmas 1 and 2. Under Assumptions 1 - 3 and

Condition 1,
√
𝑁(𝜏 − 𝜏 ) converges in distribution to A1 | 𝜑(B1) = 1, where (A1,B1)

T are

jointly multivariate normal with covariance 𝑉 . Recall that 𝑇 (y(Z),Z) = 𝑓𝜉(
√
𝑁𝜏 ) for some

𝑓𝜂 satisfying Condition 2 for all 𝜂 ∈ Ξ, some 𝜉 satisfying Condition 3, and with a balance

criterion 𝜑 satisfying Condition 1. By Condition 3 and the assumption of the weak null,

we have that 𝜉(y(Z),Z) converges in probability to 𝜉. Therefore, under the weak null, by

Lemma 1 the limiting distribution of 𝑇 (y(Z),Z) would be stochastically dominated by that

of 𝑓𝜉(A2) | 𝜑(B2) = 1 for any (A2,B2)
T multivariate Gaussian with covariance matrix

¯̄𝑉 = 𝑉 +

⎛⎝ Δ 0𝑑,𝑘

0𝑘,𝑑 0𝑘,𝑘

⎞⎠
with Δ ⪰ 0. The transformation

¯̄𝐺(y(Z),Z) =
𝛾
(𝑑+𝑘)

0, ¯̄𝑉

{︁
(a,b)T : 𝑓𝜉(𝑎) ≤ 𝑓𝜉(

√
𝑁𝜏 ) ∧ 𝜑(b) = 1

}︁
𝛾
(𝑘)

0, ¯̄𝑉𝛿𝛿
{b : 𝜑(b) = 1}

transforms 𝑇 (y(Z),Z) by the distribution function of a random variable which stochastically

dominates its limiting distribution. By Lemma 2 and the continuous mapping theorem,

asymptotically ¯̄𝐺(y(Z),Z) is stochastically dominated by a standard uniform. By Condi-

tion 4, the covariance estimator 𝑉 used in forming 𝐺(y(Z),Z) has a probability limit of

the required form for stochastic dominance. Therefore, another application of the continu-

ous mapping theorem yields that 𝐺(y(Z),Z) − ¯̄𝐺(y(Z),Z) = 𝑜𝑝(1), such that by Slutsky’s
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Theorem 𝐺(y(Z),Z) is itself stochastically dominated by a standard uniform.

Meanwhile, Proposition 1 and Condition 1 yield that under the weak null the distribution

of
√
𝑁𝜏(y(Z),W) | Z converges weakly in probability to the distribution of Ã | 𝜑(B̃) = 1,

where (Ã, B̃)T are jointly multivariate Gaussian with mean zero and covariance 𝑉 . The

distribution of 𝑓𝜉(y(Z),W){
√
𝑁𝜏(y(Z),W)} | Z is precisely P̂𝑇 , the reference distribution

assuming the sharp null holds for the test statistic 𝑇 (y(Z),Z) = 𝑓𝜉(
√
𝑁𝜏 ). By Condition

4, 𝑉 (y(Z),W) converges in probability to 𝑉 itself. Further, by Condition 3 𝜉(y(Z),W)

converges in probability to 𝜉. Applying the continuous mapping theorem and Slutsky’s

Theorem for randomization distributions (CR16, Lemmas A5-A6), one sees that Gaussian

prepivoting furnishes a transformation that amounts to, asymptotically, an application of

the probability integral transform. As a result, P̂𝐺(𝑡) converges in probability to 𝑡, the

distribution function of the standard uniform, for all 𝑡 ∈ [0, 1].

3.7 Extensions To Asymptotically Linear Estimators

Theorem 1 may be extended to estimators other than the difference in means. Consider an

estimator 𝜏(y(Z),Z) such that

√
𝑁{𝜏(y(Z),Z)− 𝜏} =

√
𝑁

(︃
1

𝑛1

𝑁∑︁
𝑖=1

𝑍𝑖r𝑖(𝑍𝑖)−
1

𝑛0

𝑁∑︁
𝑖=1

(1− 𝑍𝑖)r𝑖(𝑍𝑖)

)︃
+ 𝑜𝑝(1)

for some constants {r𝑖(0), r𝑖(1)}𝑁𝑖=1 which may change with 𝑁 and that satisfy

(1/𝑁)
𝑁∑︁
𝑖=1

(r𝑖(1)− r𝑖(0)) = 0
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along with Assumptions 2 and 3. Suppose further that 𝜏(ỹ(Z),W), W independent from Z

and drawn uniformly from Ω, satisfies

√
𝑁𝜏(ỹ(Z),W) =

√
𝑁

(︃
1

𝑛1

𝑁∑︁
𝑖=1

𝑊𝑖r̃𝑖(𝑍𝑖)−
1

𝑛0

𝑁∑︁
𝑖=1

(1−𝑊𝑖)r̃𝑖(𝑍𝑖)

)︃
+ 𝑜𝑝(1)

for potentially distinct constants {r̃𝑖(0), r̃𝑖(1)}𝑁𝑖=1 which may change with 𝑁 that satisfy

(1/𝑁)
∑︀𝑁

𝑖=1(r̃𝑖(1)− r̃𝑖(0)) = 0 along with Assumptions 2 and 3. Observe that the difference

in means estimator satisfies these conditions with r𝑖(𝑧) = r̃𝑖(𝑧) = y𝑖(𝑧)− 𝑧𝜏 for 𝑧 ∈ {0, 1}.

Let 𝜏𝑟𝑖 = r𝑖(1) − r𝑖(0). Let Σ𝑟(𝑧),Σ𝜏𝑟 ,Σ𝑟(𝑧)𝑥,Σ𝜏𝑟𝑥 be the analogues of Σ𝑦(𝑧), Σ𝜏 , Σ𝑦(𝑧)𝑥 and

Σ𝜏𝑥 for 𝑧 ∈ {0, 1}, and let the same hold with 𝑟 replaced by 𝑟. Define 𝑉 (𝑟) and 𝑉 (𝑟) as the

analogues of 𝑉 and 𝑉 , computed now based upon r(𝑧) and r̃(𝑧) instead of y(𝑧) and ỹ(𝑧) for

𝑧 ∈ {0, 1}.

Consider a test statistic for the weak null of the form 𝑇 (y(Z),Z) = 𝑓𝜉(
√
𝑁𝜏) for some

𝑓𝜂 satisfying Condition 2 and 𝜉 satisfying Condition 3, and suppose that there exists a

covariance estimator 𝑉 satisfying Condition 4 with 𝑉 and 𝑉 replaced by 𝑉 (𝑟) and 𝑉 (𝑟). The

Gaussian prepivoted test statistic is

�̆�(y(Z),Z) =
𝛾
(𝑑+𝑘)

0,𝑉

{︁
(a,b)T : 𝑓𝜉(a) ≤ 𝑇 (y(Z),Z) ∧ 𝜑(b) = 1

}︁
𝛾
(𝑘)

0,𝑉𝛿𝛿
{b : 𝜑(b) = 1}

Theorem 2. Suppose that Neyman’s null, 𝐻𝑁 : 𝜏 = 0, holds. Then, under the described

restrictions on 𝑇 (y(Z),Z) and 𝑉 and under Assumption 1 and with Assumptions 2 and 3

applied to r𝑖(𝑧), 𝑧 = {0, 1}, �̆�(y(Z),Z) converges in distribution to a random variable �̆�

taking values in [0, 1] satisfying

P(�̆� ≤ 𝑡) ≥ 𝑡,

for all 𝑡 ∈ [0, 1]. Furthermore, the distribution P̂�̆�(𝑡) satisfies P̂�̆�(𝑡)
𝑝→ 𝑡 for all 𝑡 ∈ [0, 1].
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In the supplementary materials, we illustrate that the regression-adjusted average treat-

ment effect estimator and its corresponding estimated variance presented in (Lin13) can

be viewed in this form. As a result, Theorem 2 provides justification for the use of the

prepivoted randomization distribution of a regression-adjusted estimator.

3.8 Simulation Studies

3.8.1 Studentization and Prepivoting in Rerandomized Designs

In the 𝑏th of 𝐵 iterations, we draw, for 𝑖 = 1, ..., 𝑁 , covariates 𝑖𝑖𝑑 as

x𝑖
𝑖𝑖𝑑∼ 𝒩

⎛⎜⎜⎜⎝0,

⎛⎜⎜⎜⎝
1.0 0.8 0.2

0.8 1 0.3

0.2 0.3 1

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

Given these covariates, we draw 𝑟𝑖(0) and 𝑟𝑖(1) as

𝑟𝑖(0) = xT

𝑖 𝛽0 + 𝜖𝑖(0); 𝑟𝑖(1) = xT

𝑖 𝛽1 + 𝜖𝑖(1),

where 𝛽0 = −(6.4,−4.0,−2.4), 𝛽1 = 𝑐(0.2, 0.4, 0.6)T, 𝜖𝑖(0)
𝑖𝑖𝑑∼ −ℰ(1) + 1, 𝜖𝑖(1)

𝑖𝑖𝑑∼ −ℰ(1/10) +

10, 𝜖𝑖(0) independent of 𝜖𝑖(1), and ℰ(𝜆) representing an exponential distribution with rate

𝜆.

We form the potential outcomes under treatment and control in two distinct ways, one

in which the sharp null holds and one in which only the weak null holds:

Sharp Null : 𝑦𝑖(1) = 𝑦𝑖(0) = 𝑟𝑖(1)

Weak Null : 𝑦𝑖(1) = 𝑟𝑖(1); 𝑦𝑖(0) = 𝑟𝑖(0) + 𝑟(1)− 𝑟(0)

Of the𝑁 individuals, 𝑛1 = 0.2𝑁 receive the treatment and 𝑛0 = 0.8𝑁 receive the control. We
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use a Mahalanobis-based rerandomized design, with criterion 𝜑(
√
𝑁𝛿) = 1{(√𝑁𝛿)T𝑉 −1

𝛿𝛿 (
√
𝑁𝛿)≤1}.

This balance criterion reduces the cardinality of Ω by roughly 80% relative to a completely

randomized design. For each 𝑏, we draw a single Z ∈ Ω, and proceed with inference using

the reference distribution of the following test statistics under the incorrect assumption that

the sharp null holds:

1. Absolute difference in means, unstudentized

2. Absolute difference in means, studentized

3. Gaussian prepivoting the absolute difference in means, studentized

The true reference distributions assuming the sharp null are replaced by Monte-Carlo esti-

mates with 1000 draws from Ω for each 𝑏, and the desired Type I error rate is 𝛼 = 0.05.

We also perform inference using the large-sample reference distribution for the absolute

studentized difference in means in a rerandomized design; see (LDR18) for more details.

As a covariance estimator 𝑉 , we use the conventional unpooled covariance estimator for

(
√
𝑁𝜏,

√
𝑁𝛿)T in a two-sample design. For the generative models reflecting the sharp and

weak nulls, we proceed with both 𝑁 = 50 and 𝑁 = 1000 to compare performance in small

and large sample regimes. For each 𝑁 , we conduct 𝐵 = 5000 simulations.

Table 3.1 contains the results of the simulation study. Under the sharp null with 𝑁 = 50,

we see the benefits of using a randomization test: the randomization tests based upon the

unstudentized, studentized, and prepivoted absolute difference in means all resulted in a Type

I error rate of 0.05 (up to noise from the Monte-Carlo simulation) as desired. Contrast this

with the large-sample test, which had an estimated Type I error rate of 0.110 under the sharp

null hypothesis. Figure 3-1 explains the deficiency of the large-sample test by comparing the

true distribution for the large-sample 𝑝-values to the standard uniform distribution. As is

seen, at𝑁 = 50 small 𝑝-values are more likely to occur than what the standard uniform would

predict at any point 𝑡 ∈ [0, 1], resulting in inflated Type I error rates. By 𝑁 = 1000, the
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Table 3.1: Inference after rerandomization. The rows describe the simulation settings, which
vary between the sharp and weak nulls holding and between small and large sample sizes. The
first three columns represent the performance of randomization tests assuming the sharp null
hypothesis and using the unstudentized absolute difference in means, absolute studentized
difference in means, and Gaussian prepivoted absolute difference in means respectively to
perform inference. The last column is a large-sample test which is asymptotically valid for
the weak null, based upon (LDR18). The desired Type I error rate in all settings is 𝛼 = 0.05.

Randomization Test Large-Sample
No Stu. Stu. Pre.

Sharp, 𝑁 = 50 0.053 0.050 0.051 0.110
Sharp, 𝑁 = 1000 0.052 0.048 0.048 0.054
Weak, 𝑁 = 50 0.073 0.114 0.037 0.058
Weak, 𝑁 = 1000 0.070 0.083 0.018 0.019

asymptotic approximation performs much better, as the true distribution of 𝑝-values lies on

top of the standard uniform. Gaussian prepivoting uses 1 minus these large-sample 𝑝-values

as the test statistic whose randomization distribution is enumerated, such that the solid line

in Figure 3-1 reflects 1 minus the randomization distribution of the Gaussian prepivoted test

statistic. As Gaussian prepivoting uses a randomization test under the sharp null, the solid

line also reflects the reference distribution employed for performing inference. That these

coincide is a consequence of the sharp null holding, such that the randomization tests are

exact tests for any sample size.

Under the weak null, we see in Table 3.1 that even at 𝑁 = 1000, the unstudentized and

studentized randomization tests erroneously assuming the sharp null have inflated Type I

error rates. This pattern will persist even asymptotically, as in this simulation setup these

test statistics are not asymptotically sharp-dominant. This may come as a surprise, as in

completely randomized designs studentizing does furnish asymptotic sharp dominance. As

evidenced here, the impact of covariates on the limiting distribution in rerandomized experi-

ments invalidates studentization as a mechanism for attaining asymptotic sharp dominance.

Figure 3-2 illustrates this in the case of the studentized test statistic. We see in the top panel
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Figure 3-1: Randomization distribution of the large-sample 𝑝-values under the sharp null
(solid) compared to a standard uniform distribution (dashed) at 𝑁 = 50 (top) and 𝑁 = 1000
(bottom). At 𝑁 = 50, it is more likely to observe a small 𝑃 -value than what the uniform
distribution would suggest, yielding the inflated Type I error rate.

that the true distribution function for the studentized test statistic lies below that of the

reference distribution assuming the sharp null, such that the right-tail probabilities are larger

for the true randomization distribution than they are for the reference distribution. This

yields anti-conservative inference. We see in the bottom panel of Figure 3-2 that through

use of Gaussian prepivoting, asymptotic conservativeness has been restored: the true ran-

domization distribution of the prepivoted test statistic is stochastically dominated by the

reference distribution assuming the sharp null, as predicted by Theorem 1. We further see

that the cumulative distribution assuming the sharp null is converging to the distribution

function of the standard uniform (a straight line between 0 and 1), again reflecting Theorem

1. Table 3.1 further shows that the Gaussian prepivoted test and the large-sample test have

very similar rejection rates at 𝑁 = 1000, reflecting the asymptotic equivalence of the two

233



0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Studentized, Weak Null, N=1000

x

P
(X

≤
x)

True Distribution
Reference Distribution

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prepivoted, Weak Null, N=1000

x

P
(X

≤
x)

True Distribution versus Reference Distribution

Figure 3-2: True randomization distribution under the weak null (solid) versus the reference
distribution assuming the sharp null (dashed) for the studentized (top) and Gaussian prepiv-
oted (bottom) test statistics with a rerandomized design. To yield valid randomization tests
under the weak null, the solid line needs to lie above the dotted line, such that the solid line
attributes less mass in the right tail than the dotted line does

methods under the weak null.

3.8.2 A Comparison of Multivariate Tests

In each iteration 𝑏 = 1, ..., 𝐵, we draw {r𝑖(1)}𝑁𝑖=1 and {r𝑖(0)}𝑁𝑖=1 independent from one

another and 𝑖𝑖𝑑 from mean zero equicorrelated multivariate normals of dimension 𝑘 = 25

with marginal variances one. The correlation coefficients governing r𝑖(1) and r𝑖(0) are 0 and

0.95 respectively. We will have two simulation settings, one each for the sharp and weak

null:

Sharp Null : y𝑖(1) = y𝑖(0) = r𝑖(1).
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Weak Null : y𝑖(1) = r𝑖(1); y𝑖(0) = r𝑖(0) + r̄(1)− r̄(0).

In both settings, 𝑛1 = 0.2𝑁 individuals receive the treatment and 𝑛0 = 0.8𝑁 receive the

control. We consider a completely randomized design, and proceed with inference using the

reference distribution of the following test statistics under the (erroneous) assumption that

the sharp null holds:

1. Hotelling’s 𝑇 -squared, unpooled covariance

2. Hotelling’s 𝑇 -squared, pooled covariance

3. Max absolute 𝑡-statistic, unpooled standard error

For each candidate test, we proceed with the randomization distribution both of the untrans-

formed test statistic and the Gaussian prepivoted test statistic. These tests are conducted

using Monte-carlo simulation to generate the reference distributions, with 1000 draws from

Ω for each iteration 𝑏. In addition to the two types of randomization tests, we also compute a

large-sample 𝑝-value for each test which is asymptotically valid under the weak null hypoth-

esis. As a covariance estimator 𝑉 , we use the conventional unpooled covariance estimator

for
√
𝑁𝜏 . For each test, we seek to maintain the Type I error rate at or below 𝛼 = 0.05. For

the generative models reflecting the sharp and weak nulls we proceed with both 𝑁 = 300

and 𝑁 = 5000 to compare performance as 𝑁 increases. For each 𝑁 , we conduct 𝐵 = 5000

simulations.

Table 3.2 gives the estimated Type I error rates for the candidate tests. We first note

the poor performance of the large-sample tests under both the sharp and weak null with

𝑁 = 300. For instance, the large-sample 𝑝-values constructed using the unpooled, Hotelling

procedure are attained using a 𝜒2
25 distribution and have estimated Type I error rates of 0.321

under the sharp null for 𝑁 = 300, and of 0.270 under the weak null for 𝑁 = 300 despite the

desired control at 𝛼 = 0.05. By 𝑁 = 5000, the large-sample tests all have estimated Type I
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Table 3.2: Inference in completely randomized designs with multiple outcomes. The rows
describe the simulation settings, which vary between the sharp and weak nulls holding and
between small and large sample sizes. There are three sets of columns, one corresponding
to each of the three test statistics under consideration. For each set of columns, the column
labeled “FRT” represents the Fisher randomization test using that test statistic. The col-
umn labeled “Pre.” instead reflects the Fisher randomization test after applying Gaussian
prepivoting to the original test statistic. The last column, labeled “LS,” is a large-sample
test which is asymptotically valid for the weak null. The desired Type I error rate in all
settings is 𝛼 = 0.05.

Hotelling, Unpooled Hotelling, Pooled Max 𝑡-stat
FRT Pre. LS FRT Pre. LS FRT Pre. LS

𝐻𝐹 , 𝑁 = 300 0.050 0.050 0.321 0.052 0.047 0.086 0.051 0.050 0.068
𝐻𝐹 , 𝑁 = 5000 0.044 0.044 0.053 0.047 0.042 0.045 0.046 0.045 0.048
𝐻𝑁 , 𝑁 = 300 0.117 0.117 0.270 0.975 0.166 0.157 0.020 0.006 0.008
𝐻𝑁 , 𝑁 = 5000 0.003 0.003 0.003 0.951 0.005 0.005 0.021 0.005 0.005

error rates approaching the nominal level under the sharp null, and below the nominal level

under the weak null.

Naturally, all randomization tests attain (up to Monte-Carlo error) the desired Type I

error rate under the sharp null at both 𝑁 = 300 and 𝑁 = 5000, highlighting the appeal

of the randomization tests. Under the weak null, we see that the randomization test based

upon the Hotelling 𝑇 -statistic with a pooled covariance fails to control the Type I error rate

even at 𝑁 = 5000, reflecting that the test statistic is not asymptotically sharp-dominant.

While the randomization test based on the max 𝑡-statistic controls the Type I error rate

in these simulations, this is not guaranteed in general: in the supplementary materials we

conduct this simulation at 𝛼 = 0.25, where anti-conservativeness of the max 𝑡-statistic arises.

For both of these test statistics, applying Gaussian prepivoting restores guaranteed asymp-

totic conservativeness and results in test statistics whose performance closely aligns with

the large-sample tests, a reflection of Theorem 1. For the test based upon Hotelling’s 𝑇

statistic with an unpooled covariance estimator, observe that the Type I error rates for the

randomization tests with and without Gaussian prepivoting are identical in all four scenarios
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tested. As discussed in Example 2 of Section 3.5.2, this is because Gaussian prepivoting is

unnecessary for this particular test statistic: Hotelling’s 𝑇 statistic with an unpooled covari-

ance estimator is already asymptotically sharp-dominant as proven in (WD18). Applying

Gaussian prepivoting recovers an equivalent randomization test, furnishing identical 𝑝-values

for any observed outcomes y(Z) for completely randomized designs.

In the supplementary materials we provide a theoretical analysis of the statistical power of

Gaussian prepivoting and include simulations to demonstrate the power in practice. We also

provide analysis of real-world data from the Student Achievement and Retention experiment

of (ALO09).

3.9 Discussion

3.9.1 An Open Question: Multivariate One-sided Testing in Finite

Population Causal Inference

The restrictions on the function 𝑓𝜂 outlined in Condition 2 require a quasi-convex, contin-

uous function that is mirror-symmetric about the origin. This restriction results in convex,

mirror-symmetric sublevel sets for 𝑓𝜂 and facilitates the application of Anderson’s theorem,

such that dominance in the Loewner order on covariance matrices translates to the stochas-

tic dominance under the weak null. While the restrictions on 𝑓𝜂 are sensible with two-sided

alternatives, they preclude testing directional alternatives because of the mirror symme-

try condition. For instance, suppose one wanted to test the null hypothesis 𝜏𝑖 ≤ 0 for all

𝑖 = 1, .., 𝑑 versus the alternative that for at least one 𝑖 (𝑖 = 1, .., 𝑑), 𝜏𝑖 > 0. In the univariate

case, choosing 𝑇 (y(Z),Z) = 𝜏/𝑉
1/2
𝜏𝜏 does not provide a valid one-sided test for all 𝛼. That

said, it does provide a valid test for 𝛼 ≤ 0.5, such that for any reasonable value for 𝛼 to be

deployed in practice a one-sided test is possible.
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Suppose we have multivariate potential outcomes and consider the test statistic

𝑇𝑚𝑎𝑥(y(Z),Z) = max
1≤𝑖≤𝑑

𝜏𝑖/𝑉
1/2
𝜏𝜏,𝑖𝑖,

with 𝑉𝜏𝜏 satisfying Condition 4. Consider the Gaussian prepivoted test statistic𝐺𝑚𝑎𝑥(y(Z),Z).

The following is, to the best of our knowledge, an open question: is it the case that, for any

𝛼 ≤ 0.5, 𝐺𝑚𝑎𝑥 is asymptotically sharp-dominant, in that lim sup E{𝜙𝐺𝑚𝑎𝑥(𝛼)} ≤ 𝛼? Un-

der the assumptions imposed in this work, the answer would be true should the following

conjecture on Gaussian comparisons hold:

Conjecture 1. Let X = (𝑋1, ..., 𝑋𝑑), and Y = (𝑌1, ..., 𝑌𝑑) be 𝑑-dimensional multivariate

Gaussian vectors, with a common mean 𝜇 = (𝜇1, ..., 𝜇𝑑) but distinct covariances Σ𝑋 and Σ𝑌 ,

with 𝑖𝑗 entries 𝜎𝑋
𝑖𝑗 and 𝜎𝑌

𝑖𝑗 , respectively. Let 𝛾𝑋𝑖𝑗 = E{(𝑋𝑖 −𝑋𝑗)
2} and 𝛾𝑌𝑖𝑗 = E{(𝑌𝑖 − 𝑌𝑗)

2}.

Define 𝑚𝑒𝑑 (max𝑖 𝑌𝑖) as the median of max
1≤𝑖≤𝑑

𝑌𝑖, i.e. the value 𝑎 such that P
(︂
max
1≤𝑖≤𝑑

𝑌𝑖 ≤ 𝑎

)︂
=

0.5. Suppose that 𝜎𝑌
𝑖𝑖 ≥ 𝜎𝑋

𝑖𝑖 for all 𝑖 and that 𝛾𝑌𝑖𝑗 ≥ 𝛾𝑋𝑖𝑗 for all 𝑖, 𝑗. Consider any point

𝑐 ≥ 𝑚𝑒𝑑 (max𝑖 𝑌𝑖). Then,

P
(︂
max
1≤𝑖≤𝑑

𝑋𝑖 ≥ 𝑐

)︂
≤ (?) P

(︂
max
1≤𝑖≤𝑑

𝑌𝑖 ≥ 𝑐

)︂
.

The conjecture is true in the univariate case. Under the assumptions of this conjecture,

the Sudakov-Fernique inequality (AT09, Theorem 2.2.5) asserts that

E{max
1≤𝑖≤𝑑

𝑋𝑖} ≤ E{max
1≤𝑖≤𝑑

𝑌𝑖}.

Should we further assume 𝜎𝑋
𝑖𝑖 = 𝜎𝑌

𝑖𝑖 , the result holds for all points 𝑐 through Slepian’s lemma

(Sle62, Ton90, Theorem 5.1.7). Unfortunately, a refined result about tail probabilities above

the median does not appear to be available in the literature under the conditions outlined

in the conjecture. A potential path forward may be a modification of the soft-max proof of
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the Sudakov-Fernique inequality found in (Cha05).

3.9.2 Summary

In this work, we present a general framework for designing randomization tests that are

both exact for Fisher’s sharp null and are asymptotically conservative for Neyman’s weak

null in completely randomized experiments and rerandomized designs. Loosely stated, the

approach may be summarized as follows: if one has access to a large-sample test that is

asymptotically conservative under Neyman’s weak null, then a Fisher randomization test

using the 𝑝-value produced by that large-sample test will maintain asymptotic correctness

under the weak null while additionally restoring exactness should the sharp null be true. As

the Fisher randomization distribution of these 𝑝-values converges weakly in probability to a

uniform, the resulting randomization test assuming the sharp will have the same large-sample

performance under the weak null as large-sample test itself, and will further have the same

asymptotic power under local alternatives as the large-sample test. We show that Gaussian

prepivoting exactly recovers several randomization tests known to be valid under the weak

null, while providing a general approach to restore asymptotic correctness to randomization

tests for a large class of test statistics. Importantly, our framework immediately provides

valid randomization tests of the weak null hypothesis in rerandomized designs, absent from

the literature until now.
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Supplementary Material

Below we include additional information which contains theoretical results, proofs, sim-

ulation studies, further algorithmic details, discussion of statistical power and confidence

intervals, and a real-world data example. We also provide reference to an R script for imple-

menting the method proposed in this work.

3.10 Useful Lemmas

Lemma A.3. For any Borel measurable set 𝐵 ⊆ Rℓ, the centered Gaussian measure of 𝐵

is a continuous function in terms of the covariance parameter. In other words, 𝛾ℓ0,Σ(𝐵) is

a continuous function of Σ over the positive definite cone of ℓ× ℓ real matrices with metric

induced by the Frobenius norm.

Proof. Denote the space of positive definite real ℓ× ℓ matrices by 𝑆ℓ
++; this is a metric space

under the metric induced by the Frobenius norm. Consider a sequence of matrices Σ𝑁 ∈ 𝑆ℓ
++

for which Σ𝑁 → Σ. By definition for any Borel measurable set 𝐵 ⊆ Rℓ

𝛾ℓ0,Σ𝑁
(𝐵) =

∫︁
𝐵

1
√
2𝜋

ℓ

1√︀
det(Σ𝑁)

exp

(︂
−x𝑇Σ−1

𝑁 x

2

)︂
𝑑x.

The function 𝑓(𝑀) = det(𝑀)−1/2 is continuous over the positive definite cone of ℓ × ℓ

matrices. Thus, since Σ𝑁 → Σ it follows that

1
√
2𝜋

ℓ

1√︀
det(Σ𝑁)

→ 1
√
2𝜋

ℓ

1√︀
det(Σ)

. (7)
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All that remains to be examined is the limiting behavior of

∫︁
𝐵

exp

(︂
−xTΣ−1

𝑁 x

2

)︂
𝑑x.

For (𝑀,x) ∈ 𝑆ℓ
++ × Rℓ the function 𝑔(𝑀,x) = exp(−xT𝑀−1x/2) is a jointly continuous of

both x and 𝑀 . Consequently, for all x ∈ Rℓ

exp

(︂
−xTΣ−1

𝑁 x

2

)︂
→ exp

(︂
−xTΣ−1x

2

)︂
.

Since all convergent sequences are bounded there exits a positive semidefinite matrix Σ*

that is greater than or equal to (in the Loewner partial order) all Σ𝑁 . Thus, Σ−1
𝑁 ⪰ Σ−1

* for

all 𝑁 ∈ N. Consequently 𝑔(Σ𝑁 ,x) is dominated by 𝑔(Σ*,x) for all 𝑁 and all x ∈ Rℓ. Thus,

Lebesgue’s dominated convergence theorem implies that

∫︁
𝐵

exp

(︂
−xTΣ−1

𝑁 x

2

)︂
𝑑x →

∫︁
𝐵

exp

(︂
−xTΣ−1x

2

)︂
𝑑x. (8)

Combining (7) and (8) implies that for all sequences Σ𝑁 ∈ 𝑆ℓ
++ such that Σ𝑁 → Σ

𝛾ℓ0,Σ𝑁
(𝐵) → 𝛾ℓ0,Σ(𝐵). (9)

(9) establishes that 𝛾ℓ0,Σ(𝐵) is a sequentially continuous function of the parameter Σ for

all Σ ∈ 𝑆ℓ
++. Sequential continuity in a metric space is equivalent to continuity (GM07,

Theorem 5.31); so 𝛾ℓ0,Σ(𝐵) is a continuous function of the parameter Σ for all Σ ∈ 𝑆ℓ
++.
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Lemma A.4. Let a function 𝑓𝜂(·) satisfy Condition 6 and let 𝜑(·) satisfy Condition 5. Let

the matrix 𝑉 ∈ 𝑆
(𝑑+𝑘)
++ be defined blockwise as

𝑉 =

⎛⎝𝑉𝜏𝜏 𝑉𝜏𝛿

𝑉𝛿𝜏 𝑉𝛿𝛿

⎞⎠ .

Consider

ℎ(𝑉, 𝜂, 𝑥) =
𝛾
(𝑑+𝑘)
0,𝑉 {(a,b)T : 𝑓𝜂(a) ≤ 𝑥 ∧ 𝜑(b) = 1}

𝛾
(𝑘)
0,𝑉𝛿𝛿

{b : 𝜑(b) = 1}
.

The function ℎ(𝑉, 𝜂, 𝑥) is a continuous function of 𝑉 , 𝜂, and 𝑥 jointly.

Proof. Because 𝑉 is positive definite, 𝑉𝛿𝛿 must be as well. Thus, the centered Gaussian

measure 𝛾(𝑘)0,𝑉𝛿𝛿
(·) is non-singular. Furthermore, because 𝜑(·) satisfies Condition 5, the set

{b : 𝜑(b) = 1} is Borel measurable with positive Lebesgue measure. Thus, 𝛾(𝑘)0,𝑉𝛿𝛿
{b : 𝜑(b) = 1}

is positive. Moreover, Lemma A.3 establishes that 𝛾(𝑘)0,𝑉𝛿𝛿
{b : 𝜑(b) = 1} is a continuous func-

tion of 𝑉𝛿𝛿, and thus of 𝑉 .

Consider the function 𝜅 : (𝜂, 𝑥) ↦→ {(a,b)T : 𝑓𝜂(a) ≤ 𝑥 ∧ 𝜑(b) = 1}. The range of 𝜅 is

the set of Borel measurable sets in R(𝑑+𝑘). This space can be imbued with the metric1

𝑑(𝐵,𝐵′) = 𝜇(𝐵▽𝐵′)

where 𝐵▽𝐵′ is the symmetric difference of 𝐵 and 𝐵′ and 𝜇(·) is Lebesgue measure on

R(𝑑+𝑘); this is sometimes called the Fréchet–Nikodým–Aronszajn distance (CK17, Section

4). Consider sequences of 𝜂𝑁 which converge to 𝜂 and 𝑥𝑁 which converge to 𝑥. Let 𝐵𝑁

denote 𝜅(𝜂𝑁 , 𝑥𝑁); the set-theoretic limit of 𝐵𝑁 converges to 𝐵 under 𝑑(𝐵,𝐵′). This relies

upon the continuity of 𝑓𝜂(a) in 𝜂. Thus, 𝜅 is sequentially continuous in 𝜂 and 𝑥 jointly.

Sequential continuity in a metric space is equivalent to continuity (GM07, Theorem 5.31);
1Actually, 𝑑(𝐵,𝐵′) is a pseudo-metric unless one considers two sets equal if their symmetric difference is

of measure zero. We take this convention since – by absolute continuity – sets of Lebesgue measure zero are
of Gaussian measure zero as well.
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so 𝜅 is jointly continuous in 𝜂 and 𝑥.

The numerator of ℎ(𝑉, 𝜂, 𝑥) is the composition of 𝛾(𝑑+𝑘)
0,𝑉 (𝐵) with 𝜅(𝜂, 𝑥); the former is

continuous in 𝑉 by Lemma A.3 and in 𝐵 by the absolute continuity of Gaussian measure,

and the later is jointly continuous in 𝜂 and 𝑥. Thus, the numerator of ℎ(𝑉, 𝜂, 𝑥) is jointly

continuous in 𝑉 , 𝜂, and 𝑥. Since the denominator of ℎ(𝑉, 𝜂, 𝑥) is a continuous function of 𝑉

that is always positive, the function ℎ(𝑉, 𝜂, 𝑥) itself is a jointly continuous function of 𝑉 , 𝜂,

and 𝑥.

3.11 Proof Of Main Results

3.11.1 A Reminder: Assumptions and Conditions

We rely on some regularity conditions from above which we restate below for convenience.

Assumption 1. The proportion 𝑛1/𝑁 limits to 𝑝 ∈ (0, 1) as 𝑁 → ∞.

Assumption 2. All finite population means and covariances have limiting values for both

the potential outcomes and the covariates. For instance, lim𝑁→∞ ȳ(𝑧) = ȳ∞(𝑧) for 𝑧 ∈ {0, 1}

and lim𝑁→∞Σ𝑦(1) = Σ𝑦(1),∞.

Assumption 3 of Section 3.2.3 is known to be stronger than necessary for certain results.

Here we split Assumption 3 into two parts. We do this to show exactly which results can rely

upon a weaker assumption and which results seem to rely upon the stronger assumption.

Assumption 3(a). The worst-case squared distance from the average potential outcome is

𝑜(𝑁); i.e.,

lim
𝑁→∞

max
𝑧∈{0,1}

𝑗∈{1,...,𝑑}

max
𝑖∈{1,...,𝑁}

(𝑦𝑖𝑗(𝑧)− 𝑦𝑗(𝑧))
2

𝑁
= 0.

Further, the above holds for the covariates with 𝑥𝑖𝑗 replacing 𝑦𝑖𝑗(𝑧) above for 𝑗 = 1, .., 𝑘.
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Assumption 3(b). There exists some 𝐶 < ∞ for which, for all 𝑧 ∈ {0, 1}, all 𝑗 = 1, .., 𝑑

and all 𝑁 , ∑︀𝑁
𝑖=1

(︀
𝑦𝑖𝑗(𝑧)− 𝑦𝑗(𝑧)

)︀4
𝑁

< 𝐶

Further, the above holds for the covariates with 𝑥𝑖𝑗 replacing 𝑦𝑖𝑗(𝑧) above for 𝑗 = 1, .., 𝑘.

Assumption 3(b) implies Assumption 3(a) (WD18, Proposition 1). Assumption 3(b)

is made at times for mathematical convenience to simplify the analysis of certain random

distributions; though it remains an open question whether such results hold under weaker

assumptions.

Recall the ỹ(𝑍𝑖) is defined as

ỹ𝑖(𝑍𝑖) = y𝑖(𝑍𝑖)− 𝑍𝑖𝜏 ,

such that ỹ(Z) = y(Z)− Z𝜏 T. Further recall the following conditions from Section 3.2.3.

Condition 5. 𝜑 : R𝑘 ↦→ {0, 1} is an indicator function such that the set 𝑀 = {b : 𝜑(b) = 1}

is closed, convex, and mirror-symmetric about the origin (i.e., b ∈ 𝑀 ⇔ −b ∈ 𝑀) with

non-empty interior.

Condition 6. For any 𝜂 ∈ Ξ, 𝑓𝜂(·) : R𝑑 ↦→ R+ is continuous, quasi-convex, and nonnegative

with 𝑓𝜂(t) = 𝑓𝜂(−t) for all t ∈ R𝑑. Furthermore, 𝑓𝜂(t) is jointly continuous in 𝜂 and t.

Condition 7. With W,Z independent and each uniformly distributed over Ω,

𝜉(ỹ(Z),Z)
𝑝→ 𝜉; 𝜉(ỹ(Z),W)

𝑝→ 𝜉,

for some 𝜉, 𝜉 ∈ Ξ.
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Condition 8. With W,Z independent, both uniformly distributed over Ω, and for some

Δ ⪰ 0, Δ ∈ R𝑑×𝑑,

𝑉 (ỹ(Z),Z)− 𝑉
𝑝→

⎛⎝ Δ 0𝑑,𝑘

0𝑘,𝑑 0𝑘,𝑘

⎞⎠ ; 𝑉 (ỹ(Z),W)− 𝑉
𝑝→ 0(𝑑+𝑘),(𝑑+𝑘).

Oftentimes in the proofs it will implicitly be assumed that the weak null holds. For that

reason, 𝜉 and 𝑉 may be written with y(Z) as inputs rather than ỹ(Z). Let Ω𝐶𝑅𝐸 denote

the set of allowable treatment allocation vectors z for a completely randomized experiment.

Formally

Ω𝐶𝑅𝐸 =

{︃
z ∈ {0, 1}𝑁

⃒⃒⃒⃒
⃒

𝑁∑︁
𝑖=1

𝑧𝑖 = 𝑛1

}︃
.

3.11.2 A Remark on Limiting Distributions for Rerandomized De-

signs

A completely randomized experiment can be considered a rerandomized experiment for which

𝜑(·) is identically one. This trivial balance criterion satisfies Condition 5.2 When 𝜑(·) is not

vacuous, the interesting case for rerandomized designs, limiting distributions in completely

randomized designs continue to provide corresponding limiting distributions after rerandom-

ization under Condition 5.

By the finite population central limit theorem of (LD17),
√
𝑁(𝜏−𝜏 , 𝛿)T is asymptotically

distributed according to a mean-zero multivariate Gaussian distribution with covariance

2When no covariate information is collected, this statement is then vacuous, but in such a context the
comparison to a rerandomized experiment is also missing.
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matrix 𝑉 , where

𝑉 =

⎛⎝𝑉𝜏𝜏 𝑉𝜏𝛿

𝑉𝛿𝜏 𝑉𝛿𝛿

⎞⎠ ;

𝑉𝜏𝜏 = 𝑝−1Σ𝑦(1),∞ + (1− 𝑝)−1Σ𝑦(0),∞ − Σ𝜏,∞;

𝑉𝛿𝛿 = {𝑝(1− 𝑝)}−1Σ𝑥,∞;

𝑉𝜏𝛿 = 𝑝−1Σ𝑦(1)𝑥,∞ + (1− 𝑝)−1Σ𝑦(0)𝑥,∞ = 𝑉 T

𝛿𝜏 .

Conditioning according to appropriate balance holding requires that 𝑉𝛿𝛿 ≻ 0. In this

case, the conditional probability of
√
𝑁𝜏(ỹ(Z),Z) ∈ 𝐵 subject to 𝜑(

√
𝑁𝛿(x,Z)) = 1 limits

to
𝛾
(𝑑+𝑘)
0,𝑉 {(a,b)T : a ∈ 𝐵 ∧ 𝜑(b) = 1}

𝛾
(𝑘)
0,𝑉𝛿𝛿

{b : 𝜑(b) = 1}
(10)

for any Borel measurable set 𝐵.

Likewise, by Proposition1 and Lemma 4.1 of (DDCZ13), the conditional probability of
√
𝑁𝜏(ỹ(Z),W) ∈ 𝐵 subject to 𝜑(

√
𝑁𝛿(x,W)) = 1 limits to

𝛾
(𝑑+𝑘)

0,𝑉
{(a,b)T : a ∈ 𝐵 ∧ 𝜑(b) = 1}

𝛾
(𝑘)

0,𝑉𝛿𝛿
{b : 𝜑(b) = 1}

. (11)

The finite population central limit theorem of (LD17) and Proposition 1 are state-

ments about joint convergence in distribution for the scaled differences in means for the

observed outcomes and for the covariates. Passing to convergence in distribution conditional

upon 𝜑(
√
𝑁𝛿(x,Z)) = 1 or 𝜑(

√
𝑁𝛿(x,W)) = 1 described in (10) and (11) rests upon the

continuity-set argument used in the proof of Proposition A1 in (LDR18). Condition 5 guar-

antees that such arguments remain valid: in particular the set 𝑀 defined within Condition 5

is of positive Lebesgue measure. This allows results for completely randomized designs to

provide asymptotics when Ω𝐶𝑅𝐸 is replaced with Ω from a general rerandomized design.
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3.11.3 Proof of Theorem 1

Theorem 1. Suppose we have either a completely randomized design or a rerandomized

design with balance criterion 𝜑 satisfying Condition 5. Suppose 𝑇 (y(Z),Z) is of the form

𝑓𝜉(
√
𝑁𝜏 ) for some 𝑓𝜉 and 𝜉 satisfying Conditions 6 and 7. Suppose further that we employ

a covariance estimator 𝑉 satisfying Condition 8 when forming the prepivoted test statistic

𝐺(y(Z),Z). Then, under Neyman’s null 𝐻𝑁 : 𝜏 = 0 and under Assumptions 1 - 3(a),

𝐺(y(Z),Z) converges in distribution to a random variable �̃� taking values in [0, 1] satisfying

P(�̃� ≤ 𝑡) ≥ 𝑡,

for all 𝑡 ∈ [0, 1]. Furthermore, strengthening Assumption 3(a) to Assumption 3(b), the

distribution P̂𝐺(𝑡) satisfies

P̂𝐺(𝑡)
𝑝→ 𝑡

for all 𝑡 ∈ [0, 1].

Proof of Theorem 1. A completely randomized experiment can be viewed as a rerandomized

experiment for which 𝜑(b) = 1 for all b ∈ R𝑘; this 𝜑 satisfies Condition 5. As such, the

proof below proceeds with general 𝜑 satisfying Condition 5 – making no distinction between

rerandomized designs and completely randomized design.

First, we focus on the randomization distribution of the prepivoted test statistic; in other

words, we examine the limiting distribution of𝐺(y(Z),Z) under𝐻𝑁 . By the finite population

central limit theorem of (LD17) in a completely randomized design or a rerandomized design

with 𝜑 satisfying Condition 5 the
√
𝑁 -scaled difference in means,

√
𝑁(𝜏 − 𝜏 , 𝛿)𝑇 , converges

247



in distribution to 𝒩 (0, 𝑉 ) with

𝑉 =

⎛⎝𝑉𝜏𝜏 𝑉𝜏𝛿

𝑉𝛿𝜏 𝑉𝛿𝛿

⎞⎠ ;

𝑉𝜏𝜏 = 𝑝−1Σ𝑦(1),∞ + (1− 𝑝)−1Σ𝑦(0),∞ − Σ𝜏,∞;

𝑉𝛿𝛿 = {𝑝(1− 𝑝)}−1Σ𝑥,∞;

𝑉𝜏𝛿 = 𝑝−1Σ𝑦(1)𝑥,∞ + (1− 𝑝)−1Σ𝑦(0)𝑥,∞ = 𝑉 T

𝛿𝜏 .

Furthermore, by Condition 5 and Corollary A1 of (LDR18), we have that for Z instead

uniform over Ω (accounting for the rerandomized design),
√
𝑁(𝜏 −𝜏 )

𝑑→ C, where C follows

the distribution of A | 𝜑(B) = 1 for A ∈ R𝑑, B ∈ R𝑘, and (A,B)T multivariate Gaussian

with covariance 𝑉 and mean zero.

By Condition 7 𝜉(ỹ(Z),Z) 𝑝−→ 𝜉 and by Condition 8

𝑉 (ỹ(Z),Z)
𝑝−→ 𝑉 +

⎛⎝ Δ 0𝑑,𝑘

0𝑘,𝑑 0𝑘,𝑘

⎞⎠ =: ¯̄𝑉.

Leveraging Lemma A.4 and the continuous mapping theorem, under 𝐻𝑁

ℎ
(︁
𝑉 (y(Z),Z), 𝜉(y(Z),Z),

√
𝑁𝜏
)︁

𝑑−→ ℎ

⎛⎝𝑉 +

⎛⎝ Δ 0𝑑,𝑘

0𝑘,𝑑 0𝑘,𝑘

⎞⎠ , 𝜉,C

⎞⎠
where C distributed as before. Unwinding the notation of ℎ(·, ·, ·) gives that 𝐺(y(Z),Z)

converges in distribution to

𝛾
(𝑑+𝑘)

0, ¯̄𝑉
{(a,b)T : 𝑓𝜉(a) ≤ 𝑓𝜉(C) ∧ 𝜑(b) = 1}

𝛾
(𝑘)

0, ¯̄𝑉𝛿𝛿
{b : 𝜑(b) = 1}

. (12)

If we had known to plug in 𝑉 for 𝑉 , (12) would exactly amount to applying the 𝑓𝜉-
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pushforward of the Gaussian measure 𝛾(𝑑+𝑘)
0,𝑉 conditional on 𝜑(𝑏) = 1, which would result in

a uniform random variable since this is just the asymptotic probability integral transform

for 𝑇 (y(Z),Z) given that 𝜑(
√
𝑁𝛿) = 1. However, we do not know 𝑉 and instead estimate it

conservatively using a 𝑉 that satisfies Condition 8; this results in the discrepancy between

the covariance of C versus the covariance used in the Gaussian measure 𝛾(𝑑+𝑘)

0, ¯̄𝑉
in (12). Con-

sequently, (12) amounts to 𝑓𝜉-pushforward of the Gaussian measure 𝛾(𝑑+𝑘)

0, ¯̄𝑉
in the numerator

(the denominator stays the same in both cases since the bottom right block of both ¯̄𝑉 and 𝑉

is 𝑉𝛿𝛿). Since ¯̄𝑉 ⪰ 𝑉 , it follows by Lemma 1 (and Anderson’s theorem more generally) that

the numerator of (12) is no larger than the numerator of (12) with ¯̄𝑉 replaced by 𝑉 . Then,

since applying the 𝑓𝜉-pushforward of the Gaussian measure 𝛾(𝑑+𝑘)
0,𝑉 conditional on 𝜑(𝑏) = 1

results in a uniform random variable, it follows that (12) is stochastically dominated by a

uniform random variable from Lemma 2 in the text. In other words, 𝐺(y(Z),Z) converges

in distribution to a random variable �̃� taking values in [0, 1] satisfying P(�̃� ≤ 𝑡) ≥ 𝑡 for all

𝑡 ∈ [0, 1].

Now we turn our attention to the limiting value of P̂𝐺(𝑡) for any 𝑡. Relying upon

the result of Proposition 1 – which requires Assumptions 1, 2, and 3(b) – in a completely

randomized design the distribution of {
√
𝑁𝜏(ỹ(Z),W),

√
𝑁𝛿(x,W)}T | Z converges weakly

in probability to a multivariate Gaussian measure, with mean zero and covariance

𝑉 =

⎛⎝𝑉𝜏𝜏 𝑉𝜏𝛿

𝑉𝛿𝜏 𝑉𝛿𝛿

⎞⎠ .

By (DDCZ13, Lemma 4.1), this is equivalent to

⎡⎣ {
√
𝑁𝜏(ỹ(Z),W),

√
𝑁𝛿(x,W)}T

{
√
𝑁𝜏(ỹ(Z),W′),

√
𝑁𝛿(x,W′)}T

⎤⎦ 𝑑−→ {(Ã, B̃), (Ã′, B̃′)}T (13)

where Z, W, and W′ are independent and uniformly distributed over Ω𝐶𝑅𝐸 and (Ã, B̃)T
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and (Ã′, B̃′)T are independent and identically distributed multivariate Gaussians with mean

zero and covariance 𝑉 . By the conditions on 𝜑 outlined in Condition 5, we further have

that for Z, W, and W′ independently drawn from Ω (now accounting for the restrictions

imposed by rerandomization),

⎡⎣√𝑁𝜏(ỹ(Z),W)
√
𝑁𝜏(ỹ(Z),W)

⎤⎦ 𝑑−→ (D,D′), (14)

where (D,D′) are independent and identically distributed from the conditional distribution

of Ã | 𝜑(B̃) = 1.

By Conditions 7 and 8 ⎡⎢⎢⎢⎢⎢⎢⎣
𝜉(ỹ(Z),W)

𝑉 (ỹ(Z),W)

𝜉(ỹ(Z),W′)

𝑉 (ỹ(Z),W′)

⎤⎥⎥⎥⎥⎥⎥⎦
𝑝−→

⎡⎢⎢⎢⎢⎢⎢⎣
𝜉

𝑉

𝜉

𝑉

⎤⎥⎥⎥⎥⎥⎥⎦ . (15)

Moreover, (14) and (15) hold jointly. Thus, the continuous mapping theorem implies that

⎡⎣ ℎ
(︁
𝑉 (ỹ(Z),W), 𝜉(ỹ(Z),W),

√
𝑁𝜏(ỹ(Z),W)

)︁
ℎ
(︁
𝑉 (ỹ(Z),W′), 𝜉(y(Z),W′),

√
𝑁𝜏(ỹ(Z),W′)

)︁
⎤⎦

−→ 𝑑 (16)⎡⎣ℎ(︁𝑉 , 𝜉,D)︁
ℎ
(︁
𝑉 , 𝜉,D′

)︁
⎤⎦

where D and D′ are distributed as before.

Recall that under the weak null, ỹ(Z) = y(Z) and

ℎ
(︁
𝑉 (ỹ(Z),W), 𝜉(ỹ(Z),W),

√
𝑁𝜏(ỹ(Z),W)

)︁
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is precisely 𝐺(y(Z),W) as previously defined. Observe that ℎ(𝑉 , 𝜉,D) takes the form

ℎ
(︁
𝑉 , 𝜉,D

)︁
=
𝛾
(𝑑+𝑘)

0,𝑉

{︀
(a,b)T : 𝑓𝜉(a) ≤ 𝑓𝜉(D) ∧ 𝜑(b) = 1

}︀
𝛾
(𝑘)

0,𝑉𝛿𝛿
{b : 𝜑(b) = 1}

. (17)

The logic applied to (12) applies similarly to (17) except for the fact that the mismatch

in the covariance of C and 𝛾
(𝑑+𝑘)

0, ¯̄𝑉
of (12) no longer exists in (17) since D is derived from

(Ã, B̃)T ∼ 𝒩
(︁
0, 𝑉

)︁
and the Gaussian measure 𝛾(𝑑+𝑘)

0,𝑉
is applied. As remarked earlier, since

the internal covariance matches the external covariance ℎ
(︁
𝑉 , 𝜉,D

)︁
is uniformly distributed

over [0, 1]. Applying Lemma 4.1 of (DDCZ13) to (16) thus implies that P̂𝐺 converges weakly

in probability to Unif[0, 1]. In other words, P̂𝐺(𝑡)
𝑝→ 𝑡 for all 𝑡 ∈ [0, 1].

3.11.4 Theorem 2

Theorem 2 reduces to the proof of Theorem 1 by recognizing the 𝑟𝑖 and 𝑟𝑖 as potential

outcomes satisfying the required assumptions. The asymptotically vanishing factor 𝑜𝑃 (1)

in the definitions of
√
𝑁{𝜏(y(Z),Z) − 𝜏} and

√
𝑁𝜏(y(Z) − Z𝜏 T,W) plays no role in the

analysis of their limiting distributions, thereby allowing for application of the same proofs

used to show Proposition 1 and Theorem 1.

3.12 Gaussian Prepivoting After Regression Adjustment

3.12.1 Regression Adjustment in Completely Randomized Experi-

ments

In completely randomized experiments with covariate information, a common practice is to

use regression-based estimators for treatment effects to improve efficiency. Assume that 𝑘 is

fixed and smaller than 𝑁 , and let the potential outcomes be univariate. Define 𝜏𝑟𝑒𝑔(y(Z),Z)

to be the estimated coefficient on 𝑍𝑖 in an ordinary least squares regression of 𝑦𝑖(𝑍𝑖) on
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𝑍𝑖, (x𝑖 − x̄), and 𝑍𝑖(x𝑖 − x̄). (Lin13) shows that under suitable regularity conditions, 𝜏𝑟𝑒𝑔

is
√
𝑁 -consistent for 𝜏 and has an asymptotic variance that is no larger than that of 𝜏 .

Importantly, this result holds true without assuming that the linear model inspiring 𝜏𝑟𝑒𝑔 is

actually true.

Let

𝑄1 = lim
𝑁→∞

(︃
𝑁∑︁
𝑖=1

(x𝑖 − x)(x𝑖 − x)T

)︃−1(︃ 𝑁∑︁
𝑖=1

(x𝑖 − x)T(𝑦𝑖(1)− 𝑦(1))

)︃
be the limit of the OLS slopes for potential outcome under treatment regressed upon covari-

ates, and define 𝑄0 analogously for the potential outcomes under control. The population

level treatment residuals based upon the limiting slopes are then defined as

𝜀𝑖(1) = (𝑦𝑖(1)− 𝑦(1))− (x𝑖 − x)T𝑄1;

𝜀𝑖(0) = (𝑦𝑖(0)− 𝑦(0))− (x𝑖 − x)T𝑄0.

Let �̃� = 𝑝𝑄1 + (1− 𝑝)𝑄0 and further define

𝜀𝑖(1) = (𝑦𝑖(1)− 𝑦(1))− (x𝑖 − x)T�̃�; (18)

𝜀𝑖(0) = (𝑦𝑖(0)− 𝑦(0))− (x𝑖 − x)T�̃�.

Proposition A.2. Suppose Assumption 1 holds, and suppose further that Assumptions 2

and 3(b) hold for the potential outcomes and covariates. Then,

√
𝑁 {𝜏𝑟𝑒𝑔(y(Z),Z)− 𝜏} =

√
𝑁

(︃
1

𝑛1

𝑁∑︁
𝑖=1

𝑍𝑖𝜀𝑖(𝑍𝑖)−
1

𝑛0

𝑁∑︁
𝑖=1

(1− 𝑍𝑖)𝜀𝑖(𝑍𝑖)

)︃
+ 𝑜𝑝(1)

√
𝑁 {𝜏𝑟𝑒𝑔(y(Z)− Z𝜏 T,W)} =

√
𝑁

(︃
1

𝑛1

𝑁∑︁
𝑖=1

𝑊𝑖𝜀𝑖(𝑍𝑖)−
1

𝑛0

𝑁∑︁
𝑖=1

(1−𝑊𝑖)𝜀𝑖(𝑍𝑖)

)︃
+ 𝑜𝑝(1)

Let 𝜀𝑖(ỹ(Z),W) be the 𝑖th sample residual from a regression of ỹ(Z) on 𝑊𝑖, (x𝑖 − x̄),
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and 𝑊𝑖(x𝑖 − x̄). Using the sample residuals 𝜀𝑖(ỹ(Z),W) form the variance estimators

�̂�2
0(ỹ(Z),W) =

1

𝑛0 − 1

𝑁∑︁
𝑖=1

(1−𝑊𝑖)

{︃
𝜀𝑖(ỹ(Z),W)− 1

𝑛0

𝑁∑︁
𝑗=1

(1−𝑊𝑗)𝜀𝑗(ỹ(Z),W)

}︃2

�̂�2
1(ỹ(Z),W) =

1

𝑛1 − 1

𝑁∑︁
𝑖=1

𝑊𝑖

{︃
𝜀𝑖(ỹ(Z),W)− 1

𝑛1

𝑁∑︁
𝑗=1

𝑊𝑗𝜀𝑗(ỹ(Z),W)

}︃2

For the 𝜀𝑖(ỹ(Z),Z)’s form �̂�2
0(ỹ(Z),Z) and �̂�2

1(ỹ(Z),Z) analogously but replace W with

Z.

Consider the variance estimators

𝑉𝑟𝑒𝑔(ỹ(Z),Z) =
𝑁

𝑛1

�̂�2
1(ỹ(Z),Z) +

𝑁

𝑛0

�̂�2
0(ỹ(Z),Z)

𝑉𝑟𝑒𝑔(ỹ(Z),W) =
𝑁

𝑛1

�̂�2
1(ỹ(Z),W) +

𝑁

𝑛0

�̂�2
0(ỹ(Z),W).

Observe that �̂�2
𝑗 (y(Z),Z) = �̂�2

𝑗 (ỹ(Z),Z) for 𝑗 = 0, 1 regardless of whether or not the weak

null holds, but that �̂�2
𝑗 (ỹ(Z),W) ̸= �̂�2

𝑗 (y(Z),W) unless the weak null holds.

Proposition A.3. 𝑉𝑟𝑒𝑔(ỹ(Z),W) satisfies Condition 8 with 𝑉𝜏𝜏 replaced by 𝑉
(𝜀)
𝜏𝜏 and 𝑉𝜏𝜏

replaced by 𝑉 (𝜀)
𝜏𝜏 . The particular form of Δ, the degree to which 𝑉𝑟𝑒𝑔(ỹ(Z),Z) is asymptotically

conservative, is

Δ = lim
𝑁→∞

1

𝑁

𝑁∑︁
𝑖=1

(𝜏𝑖 − 𝜏 − (x𝑖 − x)T(𝑄1 −𝑄0))
2.

By Theorem 2, one may apply Gaussian prepivoting to
√
𝑁𝜏𝑟𝑒𝑔 using 𝑉𝑟𝑒𝑔 and any func-

tion 𝑓𝜉 satisfying Condition 6 and 7; for instance, take 𝑓𝜉(
√
𝑁𝜏𝑟𝑒𝑔) =

√
𝑁 |𝜏𝑟𝑒𝑔|. Note that

other asymptotically equivalent forms for 𝑉𝑟𝑒𝑔 to the one given here exist. For example,

Section 5 of (Lin13) suggests using the sandwich variance estimator corresponding to 𝜏𝑟𝑒𝑔.
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3.12.2 Proof of Proposition 2

We begin with the following Lemma:

Lemma A.5. If Assumptions 2 and 3(a) hold for the potential outcomes and covariates,

then Assumptions 2 and 3(a) hold for the collection of 𝜀𝑖(𝑧). Likewise, if Assumptions 2 and

3(b) hold for the potential outcomes and covariates, then Assumptions 2 and 3(b) hold for

the collection of 𝜀𝑖(𝑧).

Proof. For each 𝑁 , expanding by the definition of 𝜀𝑖(1) yields

𝜀(1) = 𝑁−1

𝑁∑︁
𝑖=1

((𝑦𝑖(1)− 𝑦(1))− (x𝑖 − x)T𝑄1) = 0;

Σ𝜀(1) = (𝑁 − 1)−1

𝑁∑︁
𝑖=1

(𝑦𝑖(1)− 𝑦(1)− (x𝑖 − x)T𝑄1)
2 .

By inspection, Assumption 2 holds for the collection of 𝜀𝑖(1) so long as the potential outcomes

and covariates satisfy Assumption 2. Similar proofs establish Assumption 2 for 𝜀𝑖(0), 𝜀𝑖(0),

and 𝜀𝑖(1).

Suppose that Assumption 3(a) holds for the potential outcomes and covariates. Then

lim
𝑁→∞

max
𝑧∈{0,1}

max
𝑖∈{1,...,𝑁}

(𝑦𝑖(𝑧)− 𝑦(𝑧))2

𝑁
= 0 (19)

and

lim
𝑁→∞

max
𝑗∈{1,...,𝑘}

max
𝑖∈{1,...,𝑁}

(𝑥𝑖𝑗 − �̄�𝑗)
2

𝑁
= 0.

As a consequence of the second statement,

lim
𝑁→∞

max
𝑖∈{1,...,𝑁}

∑︀𝑑
𝑗=1 (𝑥𝑖𝑗 − �̄�𝑗)

2

𝑁
= 0
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and so, by the Cauchy-Schwarz inequality,

lim
𝑁→∞

max
𝑖∈{1,...,𝑁}

(xT
𝑖 𝑄1 − x̄T𝑄1)

2

𝑁
≤ lim

𝑁→∞
max

𝑖∈{1,...,𝑁}

||𝑄1||22
∑︀𝑑

𝑗=1 (𝑥𝑖𝑗 − �̄�𝑗)
2

𝑁
= 0. (20)

Because ((𝑦𝑖(1)− 𝑦(1))− (x𝑖 − x)T𝑄1)
2 ≤ 2(𝑦𝑖(1) − 𝑦(1))2 + 2 ((x𝑖 − x)T𝑄1)

2 it follows

from (19) and (20) that Assumption 3(a) holds for the collection of 𝜀𝑖(𝑧).

Now suppose that Assumption 3(b) holds for the potential outcomes and covariates: there

exists some 𝐶 <∞ for which, for all 𝑧 ∈ {0, 1} and all 𝑁 ,

∑︀𝑁
𝑖=1

(︀
𝑦𝑖𝑗(𝑧)− 𝑦𝑗(𝑧)

)︀4
𝑁

< 𝐶 ∀𝑗 = 1, .., 𝑑

and∑︀𝑁
𝑖=1 (𝑥𝑖𝑗 − 𝑥𝑗)

4

𝑁
< 𝐶 ∀𝑗 = 1, .., 𝑘.

Modifying the argument from above to accommodate �̃� instead of 𝑄1 and applying

Hölder’s inequality gives the desired result. Specifically, Hölder’s inequality implies that

(︁
xT

𝑖 �̃�− x̄T�̃�
)︁4

≤ 𝐶𝑄||x𝑖 − x||44.

where 𝐶𝑄 is a constant that does not change with 𝑁 and depends only upon �̃�. Combining

this inequality with Assumption 3(b) on the potential outcomes then gives that Assumption

3(b) holds for the collection of 𝜀𝑖(𝑧).

We split the proof of Proposition A.2 into two: Proposition A.2(a) and Proposition A.2(b).

Proposition A.2(a).

√
𝑁 {𝜏𝑟𝑒𝑔(y(Z),Z)− 𝜏} =

√
𝑁

(︃
1

𝑛1

𝑁∑︁
𝑖=1

𝑍𝑖𝜀𝑖(𝑍𝑖)−
1

𝑛0

𝑁∑︁
𝑖=1

(1− 𝑍𝑖)𝜀𝑖(𝑍𝑖)

)︃
+ 𝑜𝑝(1)
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Proof. By Lemma A.3 of (Lin13),

𝜏𝑟𝑒𝑔(y(Z),Z)− 𝜏 =
1

𝑛1

𝑁∑︁
𝑖=1

𝑍𝑖𝜀𝑖(y(Z),Z)−
1

𝑛0

𝑁∑︁
𝑖=1

(1− 𝑍𝑖)𝜀𝑖(y(Z),Z)

where the sample residuals 𝜀𝑖(y(Z),Z) are derived from the regression of 𝑦𝑖(𝑍𝑖) on 𝑍𝑖, (x𝑖−x̄),

and 𝑍𝑖(x𝑖 − x̄). Let �̂�1(y(Z),Z) be the sample slope coefficient in the OLS regression of

𝑦𝑖(𝑍𝑖) on x𝑖 in the group of individuals for which 𝑍𝑖 = 1; similarly, let �̂�0(y(Z),Z) be the

sample slope coefficient in the population OLS regression of 𝑦𝑖(𝑍𝑖) on x𝑖 in the group of

individuals for which 𝑍𝑖 = 0 (Lin13).

Define

𝜀𝑖(1) = (𝑦𝑖(1)− 𝑦(1))− (x𝑖 − x)T�̂�1(y(Z),Z);

𝜀𝑖(0) = (𝑦𝑖(0)− 𝑦(0))− (x𝑖 − x)T�̂�0(y(Z),Z);

these are random and depend upon Z. The sample residual 𝜀𝑖(y(Z),Z) is 𝜀𝑖(𝑍𝑖).

By standard OLS theory the slope coefficient matrix �̂�1(y(Z),Z) is defined by

�̂�1(y(Z),Z) =

⎛⎝ 1

𝑛1 − 1

𝑁∑︁
𝑖=1

𝑍𝑖

(︃
x𝑖 − 𝑛−1

1

𝑁∑︁
𝑗=1

𝑍𝑗x𝑗

)︃(︃
x𝑖 − 𝑛−1

1

𝑁∑︁
𝑗=1

𝑍𝑗x𝑗

)︃𝑇
⎞⎠−1

×

(︃
1

𝑛1 − 1

𝑁∑︁
𝑖=1

𝑍𝑖

(︃
x𝑖 − 𝑛−1

1

𝑁∑︁
𝑗=1

𝑍𝑗x𝑗

)︃(︃
𝑦𝑖(𝑍𝑖)− 𝑛−1

1

𝑁∑︁
𝑗=1

𝑍𝑗𝑦(𝑍𝑗)

)︃)︃

�̂�0(y(Z),Z) is defined analogously.

By weak laws of large numbers for covariance matrices in finite populations, �̂�0(y(Z),Z)

and �̂�1(y(Z),Z) converge in probability to 𝑄0 and 𝑄1, respectively (Lin13, Lemma A.5).
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Thus,

𝜀𝑖(1)− 𝜀𝑖(1) = 𝑜𝑃 (1)

𝜀𝑖(0)− 𝜀𝑖(0) = 𝑜𝑃 (1)

From this, it follows that

√
𝑁 {𝜏𝑟𝑒𝑔(y(Z),Z)− 𝜏} =

√
𝑁

(︃
1

𝑛1

𝑁∑︁
𝑖=1

𝑍𝑖𝜀𝑖(𝑍𝑖)−
1

𝑛0

𝑁∑︁
𝑖=1

(1− 𝑍𝑖)𝜀𝑖(𝑍𝑖)

)︃
+ 𝑜𝑝(1)

This proof closely parallels the logic used in the proof for Theorem 1 of (Lin13).

Before proving the remaining component of Proposition A.2 we provide a convenient

lemma.

Consider a function 𝑔 : Ω × Ω → R. Let Z and W independently distributed uniformly

over Ω. Define two properties:

Property A. The random variable 𝑔(Z,W) | Z = z converges in probability to 𝑐 for all

conditioning sets {z}𝑁∈N except for a set of measure zero.

Property B. The random variable 𝑔(Z,W) converges in probability to 𝑐 with respect to

randomness in both Z and W.

Lemma A.6. Consider a function 𝑔 : Ω× Ω → R. For Z and W independently distributed

uniformly over Ω Property A implies Property B.
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Proof. Assume that Property A holds. Fix 𝜀 > 0; then

PW|Z (|𝑔(Z,W)− 𝑐| ≥ 𝜀 | Z) 𝑎.𝑠.−−→ 0. (21)

Consider PW,Z (|𝑔(Z,W)− 𝑐| ≥ 𝜀); by the law of total probability

PZ,W (|𝑔(Z,W)− 𝑐| ≥ 𝜀) =
∑︁
z∈Ω

PW|Z=z (|𝑔(Z,W)− 𝑐| ≥ 𝜀 | Z = z)PZ (Z = z)

= EZ

[︀
PW|Z (|𝑔(Z,W)− 𝑐| ≥ 𝜀 | Z)

]︀
Since PW|Z (|𝑔(Z,W)− 𝑐| ≥ 𝜀 | Z) 𝑎.𝑠.−−→ 0 and PW|Z (|𝑔(Z,W)− 𝑐| ≥ 𝜀 | Z) ∈ [0, 1] the

bounded convergence theorem implies that

lim
𝑁→∞

EZ

[︀
PW|Z (|𝑔(Z,W)− 𝑐| ≥ 𝜀 | Z)

]︀
= EZ [0] = 0

Thus, 𝑔(Z,W) converges in probability to 𝑐 with respect to randomness in both Z and

W.

Proposition A.2(b).

√
𝑁 {𝜏𝑟𝑒𝑔(y(Z)− Z𝜏 ,W)} =

√
𝑁

(︃
1

𝑛1

𝑁∑︁
𝑖=1

𝑊𝑖𝜀𝑖(𝑍𝑖)−
1

𝑛0

𝑁∑︁
𝑖=1

(1−𝑊𝑖)𝜀𝑖(𝑍𝑖)

)︃
+ 𝑜𝑝(1)

Proof. By definition 𝜏𝑟𝑒𝑔(y(Z) − Z𝜏 ,W) is the estimated coefficient on 𝑊𝑖 in an ordinary

least squares regression of 𝑦𝑖(𝑍𝑖)− 𝑍𝑖𝜏 on 𝑊𝑖, (x𝑖 − x̄), and 𝑊𝑖(x𝑖 − x̄).

By the same logic that gave rise to Lemma A.3 of (Lin13),

𝜏𝑟𝑒𝑔(y(Z)− Z𝜏 ,W) =
1

𝑛1

𝑁∑︁
𝑖=1

𝑊𝑖𝜀𝑖(ỹ(Z),W)− 1

𝑛0

𝑁∑︁
𝑖=1

(1−𝑊𝑖)𝜀𝑖(ỹ(Z),W)

where the sample residuals 𝜀𝑖(ỹ(Z),W) are derived from the regression of 𝑦𝑖(𝑍𝑖) − 𝑍𝑖𝜏 on
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𝑊𝑖, (x𝑖 − x̄), and 𝑊𝑖(x𝑖 − x̄). Let �̂�1(ỹ(Z),W) be the sample slope coefficient in the OLS

regression of 𝑦𝑖(𝑍𝑖) − 𝑍𝑖𝜏 on x𝑖 in the group of individuals for which 𝑊𝑖 = 1; similarly, let

�̂�0(ỹ(Z),W) be the sample slope coefficient in the OLS regression of 𝑦𝑖(𝑍𝑖)−𝑍𝑖𝜏 on x𝑖 in the

group of individuals for which 𝑊𝑖 = 0. For convenience of notation, denote 𝑁−1
∑︀𝑁

𝑖=1 𝑦𝑖(𝑍𝑖)

by 𝑦(Z).

Consequently

𝜀𝑖(ỹ(Z),W) =

⎧⎪⎨⎪⎩𝑦𝑖(𝑍𝑖)− 𝑦(Z)− (x𝑖 − x)T�̂�1(ỹ(Z),W); if 𝑊𝑖 = 1

𝑦𝑖(𝑍𝑖)− 𝑦(Z)− (x𝑖 − x)T�̂�0(ỹ(Z),W); if 𝑊𝑖 = 0.

these are random and depend upon both Z and W.

By standard OLS theory the slope coefficient matrix �̂�1(ỹ(Z),W) is

�̂�1(ỹ(Z),W) =

(︃
1

𝑛1 − 1

𝑁∑︁
𝑖=1

𝑊𝑖

(︃
x𝑖 − 𝑛−1

1

𝑁∑︁
𝑗=1

𝑊𝑗x𝑗

)︃(︃
x𝑖 − 𝑛−1

1

𝑁∑︁
𝑗=1

𝑊𝑗x𝑗

)︃T)︃−1

×(︃
1

𝑛1 − 1

𝑁∑︁
𝑖=1

𝑊𝑖

(︃
x𝑖 − 𝑛−1

1

𝑁∑︁
𝑗=1

𝑊𝑗x𝑗

)︃(︃
(𝑦𝑖(𝑍𝑖)− 𝑍𝑖𝜏)− 𝑛−1

1

𝑁∑︁
𝑗=1

𝑊𝑗 (𝑦𝑗(𝑍𝑗)− 𝑍𝑗𝜏)

)︃)︃

In Lemma A.5 of (Lin13), it is shown that the first term of �̂�1(ỹ(Z),W) converges in

probability to Σ−1
𝑥,∞. Now we turn our analysis to the second term of �̂�1(ỹ(Z),W); denote

this term by 𝑀1(ỹ(Z),W).

The centering of the potential outcomes under treatment that occurred when translating

𝑦𝑖(𝑧) to 𝑦𝑖(𝑧) does not impact Assumptions 1, 2, 3(a), and 3(b). Thus, the finite population
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strong law for second moments (WD18, Lemma A.3, Part ii) applies to the sample covariances

Σ̂𝑦(1)𝑥 =
1

𝑛1 − 1

𝑁∑︁
𝑖=1

𝑍𝑖

(︃
x𝑖 − 𝑛−1

1

𝑁∑︁
𝑗=1

𝑍𝑗x𝑗

)︃(︃
𝑦𝑖(1)− 𝑛−1

1

𝑁∑︁
𝑗=1

𝑍𝑗𝑦𝑗(1)

)︃T

Σ̂𝑦(0)𝑥 =
1

𝑛0 − 1

𝑁∑︁
𝑖=1

(1− 𝑍𝑖)

(︃
x𝑖 − 𝑛−1

0

𝑁∑︁
𝑗=1

(1− 𝑍𝑗)x𝑗

)︃
(︃
𝑦𝑖(0)− 𝑛−1

0

𝑁∑︁
𝑗=1

(1− 𝑍𝑗)𝑦𝑗(0)

)︃T

.

Since the centering of the potential outcomes under treatment that occurred when trans-

lating 𝑦𝑖(𝑧) to 𝑦𝑖(𝑧) does not impact the above covariance structure, it follows from Lemma

A.3 of (WD18) that Σ̂𝑦(1)𝑥
𝑎.𝑠.−−→ Σ𝑦(1)𝑥,∞ and Σ̂𝑦(0)𝑥

𝑎.𝑠.−−→ Σ𝑦(0)𝑥,∞ (This statement relies

upon Assumptions 1, 2, and 3(b).). Condition on a sequence of treatment allocations

{Z}𝑁∈N for the growing sequence of experiments such that Σ̂𝑦(1)𝑥 | Z → Σ𝑦(1)𝑥,∞ and

Σ̂𝑦(0)𝑥 | Z → Σ𝑦(0)𝑥,∞; this requirement is met for all Z except for a set of measure zero.

Fix the treatment allocations {Z}𝑁∈N; after this conditioning we are left with fully de-

termined “imputed potential outcomes”:

• {𝑦𝑖(𝑍𝑖)}𝑁𝑖=1 for the “imputed treatment potential outcomes”

• {𝑦𝑖(𝑍𝑖)}𝑁𝑖=1 for the “imputed control potential outcomes”

The imputed population can be envisioned as the population that an experiment would

imagine to exist if she observed outcomes 𝑦(Z) and believed that Fisher’s sharp null held.

Consider W as a treatment allocation for this imputed population. Under this interpreta-

tion 𝑀1(ỹ(Z),W) is the sample covariance between covariates and the imputed outcomes

observed under “treatment” 𝑊𝑖 = 1. Instead of working with 𝑀1(ỹ(Z),W), we first focus

attention to the underlying quantity that 𝑀1(ỹ(Z),W) seeks to estimate: the covariance be-

tween covariates and the imputed potential outcomes {𝑦𝑖(𝑍𝑖)}𝑁𝑖=1; we proceed with analysis
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based upon a fixed sequence of treatment allocations Z. This quantity is

Σ𝑖𝑚𝑝𝑢𝑡𝑒𝑑, 𝑦(1)𝑥 =
1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
𝑥𝑖 −𝑁−1

𝑁∑︁
𝑗=1

x𝑗

)︃(︃
𝑦𝑖(𝑍𝑖)−𝑁−1

𝑁∑︁
𝑗=1

𝑦𝑗(𝑍𝑗)

)︃T

=
1

𝑁 − 1

∑︁
𝑖|𝑍𝑖=1

(︃
x𝑖 −𝑁−1

𝑁∑︁
𝑗=1

x𝑗

)︃(︃
𝑦𝑖(1)−𝑁−1

𝑁∑︁
𝑗=1

𝑦𝑗(𝑍𝑗)

)︃T

+
1

𝑁 − 1

∑︁
𝑖|𝑍𝑖=0

(︃
x𝑖 −𝑁−1

𝑁∑︁
𝑗=1

x𝑗

)︃(︃
𝑦𝑖(0)−𝑁−1

𝑁∑︁
𝑗=1

𝑦𝑗(𝑍𝑗)

)︃T

.

By the strong laws for the sample means, this shares the same limit as

1

𝑁 − 1

∑︁
𝑖|𝑍𝑖=1

(︃
x𝑖 − 𝑛−1

1

𝑁∑︁
𝑗=1

𝑍𝑗x𝑗

)︃(︃
𝑦𝑖(1)− 𝑛−1

1

𝑁∑︁
𝑗=1

𝑍𝑗𝑦𝑗(1)

)︃T

+
1

𝑁 − 1

∑︁
𝑖|𝑍𝑖=0

(︃
x𝑖 − 𝑛−1

0

𝑁∑︁
𝑗=1

(1− 𝑍𝑗)x𝑗

)︃(︃
𝑦𝑖(0)− 𝑛−1

0

𝑁∑︁
𝑗=1

(1− 𝑍𝑗)𝑦𝑗(0)

)︃T

.

In turn, these two terms can be rewritten as

𝑛1 − 1

𝑁 − 1
Σ̂𝑦(1)𝑥 +

𝑛0 − 1

𝑁 − 1
Σ̂𝑦(0)𝑥

which limits to 𝑝Σ𝑦(1)𝑥,∞+(1−𝑝)Σ𝑦(0)𝑥,∞ for all Z except for a set of measure zero. Since the

centering of the potential outcomes under treatment that occurred when translating 𝑦𝑖(𝑧) to

𝑦𝑖(𝑧) does not impact Assumptions 1, 2, 3(a), and 3(b) it follows from Lemma 1 of (Lin13)

that

𝑀1(ỹ(Z),W) | Z 𝑝−→ 𝑝Σ𝑦(1)𝑥,∞ + (1− 𝑝)Σ𝑦(0)𝑥,∞

almost surely in Z; combining this with Lemma A.6 implies that

𝑀1(ỹ(Z),W)
𝑝−→ 𝑝Σ𝑦(1)𝑥,∞ + (1− 𝑝)Σ𝑦(0)𝑥,∞.
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Thus

�̂�1(y(Z),W)
𝑝−→ Σ−1

𝑥,∞
(︀
𝑝Σ𝑦(1)𝑥,∞ + (1− 𝑝)Σ𝑦(0)𝑥,∞

)︀
= �̃�.

The remainder of the proof proceeds in direct analogy with the proof used for Proposi-

tion A.2(a).

Remark 2. The utility of Lemma A.6 in the proof of Proposition A.2(b) arose from our

choice to analyze 𝑀1(ỹ(Z),W) through conditioning upon treatment allocation Z. With

this conditioning argument, Assumption 3(b) is leveraged to attain strong laws with respect

to randomness in Z; these guarantee that arguments based upon conditioning on Z = z

hold for all but a set of measure zero. An alternative approach to arrive at the statement

𝑀1(ỹ(Z),W)
𝑝−→ 𝑝Σ𝑦(1)𝑥,∞ + (1 − 𝑝)Σ𝑦(0)𝑥,∞ may be to work unconditionally: appealing to

a suitable weak law while allowing for randomness in both Z and W. With an approach of

this nature, Assumption 3(b) may be stronger than necessary.

3.12.3 Proof of Proposition 3

First we show that

𝑉𝑟𝑒𝑔(y(Z),Z)− 𝑉 (𝜀)
𝜏𝜏

𝑝→ Δ, (22)

with Δ defined in the statement of Proposition 3. From the proof of Proposition A.2(a)

𝑉𝑟𝑒𝑔(y(Z),Z) =
𝑁

𝑛1

1

𝑛1 − 1

𝑁∑︁
𝑖=1

𝑍𝑖

(︃
𝜀𝑖(1)−

1

𝑛1

𝑁∑︁
𝑗=1

𝑍𝑗𝜀𝑗(1)

)︃2

+
𝑁

𝑛0

1

𝑛0 − 1

𝑁∑︁
𝑖=1

(1− 𝑍𝑖)

(︃
𝜀𝑖(0)−

1

𝑛0

𝑁∑︁
𝑗=1

(1− 𝑍𝑗)𝜀𝑗(0)

)︃2

+ 𝑜𝑃 (1).
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Since 𝑁/𝑛1 → 𝑝−1 and 𝑁/𝑛0 → (1− 𝑝)−1 this has the same limit as 𝑁 → ∞ as

1

𝑝

1

𝑛1 − 1

𝑁∑︁
𝑖=1

𝑍𝑖

(︃
𝜀𝑖(1)−

1

𝑛1

𝑁∑︁
𝑗=1

𝑍𝑗𝜀𝑗(1)

)︃2

+
1

1− 𝑝

1

𝑛0 − 1

𝑁∑︁
𝑖=1

(1− 𝑍𝑖)

(︃
𝜀𝑖(0)−

1

𝑛0

𝑁∑︁
𝑗=1

(1− 𝑍𝑗)𝜀𝑗(0)

)︃2

.

Thus, (22) holds by the weak law of large numbers for second moments (Lin13, Lemma

A.1) and second part of Theorem 2 from (Lin13).

Next we show that

𝑉𝑟𝑒𝑔(y(Z),W)− 𝑉 (𝜀)
𝜏𝜏

𝑝→ 0. (23)

By the proof of Proposition A.2(b)

𝑉𝑟𝑒𝑔(y(Z),W) =
𝑁

𝑛1

1

𝑛1 − 1

𝑁∑︁
𝑖=1

𝑊𝑖

(︃
𝜀𝑖(𝑍𝑖)−

1

𝑛1

𝑁∑︁
𝑗=1

𝑊𝑗𝜀𝑗(𝑍𝑗)

)︃2

+
𝑁

𝑛0

1

𝑛0 − 1

𝑁∑︁
𝑖=1

(1−𝑊𝑖)

(︃
𝜀𝑖(𝑍𝑖)−

1

𝑛0

𝑁∑︁
𝑗=1

(1−𝑊𝑗)𝜀𝑗(𝑍𝑗)

)︃2

+ 𝑜𝑃 (1). (24)

By conditioning upon Z, an argument similar to that used to analyze 𝑀1(ỹ(Z),W) in the

proof of Proposition A.2(b) can then be applied to compute the probability limits of the first

two terms in (24) almost surely with respect to the conditioning variable Z. Then leveraging

Lemma A.6 yields that the probability limit is the same when considering randomness in

both Z and W. Finally, using 𝑁/𝑛1 → 𝑝−1 and 𝑁/𝑛0 → (1− 𝑝)−1 yields that

𝑉𝑟𝑒𝑔(y(Z),W)
𝑝−→ 1

𝑝
Σ𝜀(1),∞ +

1

1− 𝑝
Σ𝜀(1),∞ = 𝑉 (𝜀)

𝜏𝜏 .
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3.13 An Example For Paired Designs

Above we focus upon rerandomized experimental designs. Since a completely randomized

experiment is simply a rerandomized experiment with trivial balance criterion, the results

from above automatically apply to completely randomized experiments as well. However,

Gaussian prepivoting is not limited to just these contexts. Here we illustrate the utility of

Gaussian prepivoting for a matched-pair experimental design. Before describing the exact

details of Gaussian prepivoting for paired designs, we prove a generalization of Theorem 1

and Theorem 2.

Suppose that A(·, ·) is a function such that under the weak null 𝐻𝑁 and for some positive

definite matrices 𝑉 and 𝑉 ,⎛⎝A(y(Z),Z)
√
𝑁𝛿(x,Z)

⎞⎠ 𝑑−→ 𝒩

⎛⎝0,

⎛⎝𝑉𝐴𝐴 𝑉𝐴𝛿

𝑉𝛿𝐴 𝑉𝛿𝛿

⎞⎠⎞⎠ ; (25)

⎛⎝A(ỹ(Z),W)
√
𝑁𝛿(x,W)

⎞⎠ 𝑑−→ 𝒩

⎛⎝0,

⎛⎝𝑉𝐴𝐴 𝑉𝐴𝛿

𝑉𝛿𝐴 𝑉𝛿𝛿

⎞⎠⎞⎠ . (26)

Remark 3. With the introduction of the covariance matrices in (25) and (26) we must

modify Condition 8 slightly. It now becomes: with W,Z independent, both uniformly

distributed over Ω, and for some Δ ⪰ 0, Δ ∈ R𝑑×𝑑,

𝑉 (y(Z),Z)−

⎛⎝𝑉𝐴𝐴 𝑉𝐴𝛿

𝑉𝛿𝐴 𝑉𝛿𝛿

⎞⎠ 𝑝−→

⎛⎝ Δ 0𝑑,𝑘

0𝑘,𝑑 0𝑘,𝑘

⎞⎠ ;

𝑉 (ỹ(Z),W)−

⎛⎝𝑉𝐴𝐴 𝑉𝐴𝛿

𝑉𝛿𝐴 𝑉𝛿𝛿

⎞⎠ 𝑝−→ 0(𝑑+𝑘),(𝑑+𝑘).

Theorem A.3. Suppose that 𝑇 (y(Z),Z) = 𝑓𝜉(A(y(Z),Z)) for some 𝑓𝜂 and 𝜉 satisfying

Conditions 6 and 7 . If we employ a covariance estimator 𝑉 satisfying the revised Condition
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8 when forming the prepivoted test statistic 𝐺(y(Z),Z) then, under 𝐻𝑁 : 𝜏 = 0 and the

assumption that (25) holds, 𝐺(y(Z),Z) converges in distribution to a random variable �̃�

taking values in [0, 1] satisfying

P(�̃� ≤ 𝑡) ≥ 𝑡,

for all 𝑡 ∈ [0, 1]. Furthermore, if (26) holds, then the distribution P̂𝐺(𝑡) satisfies

P̂𝐺(𝑡)
𝑝→ 𝑡

for all 𝑡 ∈ [0, 1].

Proof. The proof of this theorem proceeds exactly as that of Theorem 1, but with
√
𝑁𝜏 (·, ·)

replaced by A(·, ·).

The structure assumed in Theorem A.3 is commonly encountered in finite population

causal inference across a host of experimental designs. Armed with Theorem A.3 we turn

to the problem of Gaussian prepivoting in paired designs. Consider a population with 𝐼

matched pairs of individuals, so that the total population size is 𝑁 = 2𝐼. Attributes of the

𝑗th unit in the 𝑖th pair are subscripted with 𝑖𝑗; e.g. potential outcomes are y𝑖𝑗(0) and y𝑖𝑗(1).

For simplicity take 𝑑 = 1, though these results are not bound to the univariate case. For a

paired design Ω = Ω𝑝𝑎𝑖𝑟 with

Ω𝑝𝑎𝑖𝑟 :=

{︃
z ∈ {0, 1}𝑁

⃒⃒⃒⃒
⃒ ∑︁

𝑗

z𝑖𝑗 = 1 ∀ 𝑖 = 1, . . . , 𝐼

}︃
.

In words, allowable treatment allocations assign one unit of each pair to treatment and the

remaining unit of the pair to control. The average observed treated-minus-control difference
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in outcomes is

𝜏𝑝𝑎𝑖𝑟(y(Z),Z) :=
1

𝐼

𝐼∑︁
𝑖=1

(︃
(2𝑍𝑖1 − 1)

(︂
𝑦𝑖1(𝑍𝑖1)− 𝑦𝑖2(𝑍𝑖2)

)︂
⏟  ⏞  

T𝑖(y(Z),Z)

)︃
,

with T𝑖(y(Z),Z) representing the treated-minus-control difference in pair 𝑖. Subject to

Conditions 1 and 2 of (Fog18) – which are the paired-design analogues of our Assumptions 2

and 3(b) – the random variable 𝜏𝑝𝑎𝑖𝑟(y(Z),Z) obeys a finite population central limit theorem.

This finite population central limit theorem for
√
𝐼 (𝜏𝑝𝑎𝑖𝑟(y(Z),Z)− 𝜏 ) can be derived from

Theorem 1 of (Fog18) by dropping the regression-assisting terms.

We estimate the variance of 𝜏𝑝𝑎𝑖𝑟(y(Z),Z) via its classical Neyman-style estimator

𝑉𝑝𝑎𝑖𝑟(y(Z),Z) :=
1

𝐼 − 1

𝐼∑︁
𝑖=1

(︁
T𝑖(y(Z),Z)− 𝜏𝑝𝑎𝑖𝑟(y(Z),Z)

)︁2
.

(Ima08) shows that 𝑉𝑝𝑎𝑖𝑟(y(Z),Z) is conservative for the variance of 𝜏𝑝𝑎𝑖𝑟(y(Z),Z). Under

standard regularity conditions (Fog20, Appendix Lemma 8) there exists a constant 𝜈2 > 0

such that
√
𝑁𝜏𝑝𝑎𝑖𝑟(ỹ(Z),W) converges in distribution to 𝒩 (0, 𝜈2) and by (Fog20, Appendix

Lemma 11)

𝑉𝑝𝑎𝑖𝑟(ỹ(Z),W) :=
1

𝐼 − 1

𝐼∑︁
𝑖=1

(︁
T𝑖(ỹ(Z),W)− 𝜏𝑝𝑎𝑖𝑟(ỹ(Z),W)

)︁2 𝑝−→ 𝜈2.

Select a function 𝑓𝜂(·) which satisfies Conditions 6 and 7, then form the prepivoted test

statistic

𝐺𝑝𝑎𝑖𝑟(y(Z),Z) = 𝛾
(1)

0,𝑉𝑝𝑎𝑖𝑟

{︁
a : 𝑓𝜉(a) ≤ 𝑓𝜉(𝜏𝑝𝑎𝑖𝑟(y(Z),Z))

}︁
.

Theorem A.3 applies to 𝐺𝑝𝑎𝑖𝑟(y(Z),Z) and so prepivoting naturally extends to paired exper-

imental designs. In fact, for paired designs there are numerous candidates for the variance
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estimator 𝑉 that extend beyond the Neyman-style estimator 𝑉𝑝𝑎𝑖𝑟; for examples, see the

regression-assisted variance estimators of (Fog18) or the pairs of pairs estimator discussed

in (AI08) and (FLKK19).

3.14 Experiments With Many Treatments

Theorems 1 and 2 are not limited to experiments with only two treatment arms (e.g. treat-

ment versus control). In this section, we show that these results extend naturally to experi-

ments with an arbitrary finite number of treatment arms. For simplicity we present notation

and results for completely randomized designs, but extensions are available to rerandomized

designs as in the two-armed case. Special cases of balance criteria for general multi-armed

rerandomized designs are discussed in (MR12, Section 5.2); for rerandomization in factorial

experiments (LDR20) and (BDR16) provide extensive literature.

Consider an experiment with 𝐴 arms. The treatment indicator for each individual, 𝑍𝑖,

now takes values in {0, . . . , 𝐴 − 1}. The potential outcomes under the various treatment

options are y𝑖(0), . . . ,y𝑖(𝐴 − 1). For convenience denote {0, . . . , 𝐴 − 1} by [𝐴 − 1]. For

fixed values 𝑛0, . . . , 𝑛𝐴−1 ∈ N which sum to 𝑁 let Ω𝐶𝑅𝐸,𝐴 be the set of treatment allocation

vectors

Ω𝐶𝑅𝐸,𝐴 :=

{︃
z ∈ [𝐴− 1]𝑁

⃒⃒⃒⃒
⃒

𝑁∑︁
𝑖=1

1{𝑧𝑖=𝑎} = 𝑛𝑎, ∀ 𝑎 ∈ [𝐴− 1]

}︃
.

Modify Assumption 1 to be that 𝑁−1𝑛𝑎 → 𝑝𝑎 with 𝑝𝑎 ∈ (0, 1) for all 𝑎. In words, no

treatment arm is asymptotically degenerate. The remaining assumptions are modified to

hold for 𝑧 ∈ [𝐴− 1] instead of just 𝑧 ∈ {0, 1}. In the multi-arm setting we redefine Fisher’s

sharp null to be

𝐻
(𝐴)
𝐹 : y𝑖(0) = y𝑖(1) = · · · = y𝑖(𝐴− 1) ∀ 𝑖 = 1, . . . , 𝑁.
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The corresponding generalization of Neyman’s weak null is

𝐻
(𝐴)
𝑁 : 𝑁−1

𝑁∑︁
𝑖=1

y𝑖(0) = 𝑁−1

𝑁∑︁
𝑖=1

y𝑖(1) = · · · = 𝑁−1

𝑁∑︁
𝑖=1

y𝑖(𝐴− 1).

See (DD18) for discussion of this generalization of the sharp and weak nulls. Further gener-

alizations of these nulls can be found in (WD18).

Denote the vector of the average observed outcome in treatment group 𝑎 by

^̄y(𝑎) = 𝑛−1
𝑎

∑︁
𝑖 : 𝑍𝑖=𝑎

y𝑖(𝑎)

and the 𝑑× 𝐴 matrix of all such averages by

^̄Y =
[︁
^̄y(0) · · · ^̄y(𝐴− 1)

]︁
.

Consider a matrix 𝐶y of dimensions 𝐴× 𝑑′ for some 𝑑′. We stipulate that this matrices

is comprised of column-wise contrasts; i.e., each column contains some non-zero element but

sums to zero. In place of 𝜏 (y(Z),Z) we now turn to the weighted treatment effect estimator

𝜏𝐶(y(Z),Z) = vec
(︁
^̄Y𝐶y

)︁
where the vec(·) operator reshapes 𝑑-by-𝑑′ matrices to (𝑑𝑑′)-length vectors by vertically

concatenating the columns. In the classical two-armed experiment 𝐶y = [−1, 1]T returns the

standard difference in means as 𝜏𝐶(y(Z),Z).

We extend the notation Σ̂𝑦(𝑎) to denote the sample variance estimator in the population

which received treatment arm 𝑎. Mimicking the argument of (WD18, Section 2.3) with

the natural extension to multivariate outcomes gives that an asymptotically conservative
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covariance estimator for
√
𝑁vec

(︁
^̄Y
)︁

is

�̂�(y(Z),Z) =
⨁︁

𝑎∈[𝐴−1]

(︂
𝑁

𝑛𝑎

Σ̂𝑦(𝑎)

)︂
,

where ⊕ denotes the direct sum of matrices, resulting in a block-diagonal matrix of dimension

𝐴𝑑 × 𝐴𝑑 with (𝑁/𝑛𝑎−1)Σ̂𝑦(𝑎−1) in the 𝑎th of 𝐴 blocks. (HS79) present numerous algebraic

properties of the Kronecker product and the vectorization operator; exploiting their equation

(6) yields

vec
(︁
^̄Y𝐶y

)︁
= (𝐶T

y ⊗ 𝐼)vec( ^̄Y)

Consequently, to produce a Neyman-style conservative covariance estimator for
√
𝑁𝜏𝐶(y(Z),Z) we form

𝑉𝐶(y(Z),Z) := (𝐶T

y ⊗ 𝐼)

⎛⎝ ⨁︁
𝑎∈[𝐴−1]

(︂
𝑁

𝑛𝑎

Σ̂𝑦(𝑎)

)︂⎞⎠ (𝐶T

y ⊗ 𝐼)T

= (𝐶T

y ⊗ 𝐼)�̂�(y(Z),Z)(𝐶T

y ⊗ 𝐼)T

Since �̂�(y(Z),Z) is an asymptotically conservative covariance estimator for
√
𝑁vec

(︁
^̄Y
)︁
, the covariance estimator 𝑉𝐶(y(Z),Z) is conservative in the flavor of Condition 8

but with the natural modifications taken to account for our focus on
√
𝑁𝜏𝐶(y(Z),Z).

An analysis of of �̂�(y(Z),W) under 𝐻(𝐴)
𝑁 in the univariate outcomes case is included in

Appendix A2 of (WD18, Appendix page 6). The extension to multivariate outcomes follows

the same reasoning, replacing scalar variance estimators with matrix-valued covariance es-

timators. Their analysis takes a perspective conditional upon Z, but our Lemma A.6 ports

their results into our unconditional framework. Furthermore, (WD18, Appendix A2) pro-

vides a detailed analysis of the asymptotic behavior of
√
𝑁(𝜏𝐶(y(Z),W) conditional upon
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Z and 𝐻
(𝐴)
𝑁 . Using Hoeffding’s Lemma – see for instance (DDCZ13, Lemma 4.1) – in an

approach mirroring that used in our proof of Theorem 1 the analysis of (WD18) provides

an unconditional understanding of
√
𝑁(𝜏𝐶(y(Z),W) under the weak null. Combining their

results gives that

𝑉𝐶(y(Z),W)− V
(︁√

𝑁(𝜏𝐶(y(Z),W)
)︁

𝑝−→ 0(𝑑𝑑′)×(𝑑𝑑′) (27)

where V
(︁√

𝑁(𝜏𝐶(y(Z),W)
)︁

denotes the variance of
√
𝑁(𝜏𝐶(y(Z),W).

These results lay the basis for applying Gaussian prepivoting to test statistics 𝑇 (y(Z),Z)

of the form 𝑓𝜉 (𝜏𝐶(y(Z),Z)) with 𝑓𝜉 satisfying Conditions 6 and 7. The prepivoted test

statistic takes its usual form

𝐺𝐶(y(Z),Z) = 𝛾
(𝑑𝑑′)

0,𝑉𝐶

{︁
a : 𝑓𝜉(a) ≤ 𝑓𝜉 (𝜏𝐶(y(Z),Z))

}︁
.

The central limit behavior of
√
𝑁𝜏𝐶(y(Z),Z) and asymptotic conservativeness of the Neyman-

style variance estimator 𝑉𝐶(y(Z),Z) apply to Theorem A.3 to show that the true distribution

R𝐺𝐶
is asymptotically stochastically dominated by the standard uniform distribution. The

central limit behavior of
√
𝑁𝜏𝐶(y(Z),W) in conjunction with (27) implies that the reference

distribution P𝐺𝐶
limits weakly in probability to the standard uniform distribution; thereby

furnishing inferences which are exact for 𝐻(𝐴)
𝐹 and asymptotically conservative for 𝐻(𝐴)

𝑁 .

The only major difference between the results for 𝐴 > 2 and 𝐴 = 2 is the use of more gen-

eral finite population central limit theorems for 𝜏𝐶(y(Z),Z) in place of those for 𝜏 (y(Z),Z);

such a central limit theorem is given by (LD17, Theorem 5). Through particular choices for

𝐶y, 𝑓𝜂, and 𝜉, we can recover the test statistic proposed in (DD18) for testing the weak null

in multi-armed trials while additionally providing an alternative fix to the usual 𝐹 -statistic

to restore asymptotic sharp-dominance. Similarly, the same reasoning can be applied to

asymptotically linear estimators (cf. Section 3.7) and the proof of Theorem 2 does not
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change substantially.

3.15 Exact And Asymptotically Valid Confidence Sets

Our results readily extend to constructing confidence intervals which are both asymptotically

conservative for the sample average treatment effect and exact if a constant treatment effect

model holds. To this end, we first describe how to test the hypotheses 𝐻𝐹,c : 𝜏𝑖 = c∀ 𝑖 =

1, . . . , 𝑁 and 𝐻𝑁,c : 𝜏 = c for any fixed c ∈ R𝑑. Define ỹc(Z) to be ỹc
𝑖 (𝑍𝑖) = y𝑖(𝑍𝑖) −

𝑍𝑖c. Then by replacing 𝜏 (y(Z),Z) and 𝜏 (ỹ(Z),W) with 𝜏 (ỹc(Z),Z) and 𝜏 (ỹc(Z),W),

respectively, in Equation 4 the test for 𝐻𝐹 and 𝐻𝑁 developed in Section 3.5 yields a single

procedure that is exact for for 𝐻𝐹,c and asymptotically conservative for 𝐻𝑁,c.

Now, first suppose that one is willing to assume a constant effect model and desires a

confidence set for the value c such that 𝜏𝑖 = c for all 𝑖 = 1, . . . , 𝑁 . Second, suppose that one

wants a confidence set for the average treatment effect without assuming a constant effect;

i.e., a confidence set for the value c for which 𝜏 = c. Fix a confidence level 1−𝛼 ∈ (0, 1) and

let 𝐶(𝑇,y(Z),Z) be the acceptance region for the test of 𝐻𝐹,c conducted at level 𝛼 based

upon the test statistic 𝑇 (·, ·) evaluated over c ∈ R𝑑.

Theorem 1 implies that randomization inference using the prepivoted test statistic 𝐺(·, ·)

yields exact tests for 𝐻𝐹,c and asymptotically valid tests for 𝐻𝑁,c. Leveraging the duality

between hypothesis testing and confidence sets (CB90, Theorem 9.2.2) implies the following

corollary of Theorem 1.

Corollary A.2. Assume that the regularity conditions of Theorem 1 hold and consider the

set 𝐶(𝐺,y(Z),Z) formed by inverting the randomization test of 𝐻𝐹,c conducted using the

prepivoted test statistic 𝐺(ỹc(Z), ·). 𝐶(𝐺,y(Z),Z) is both an asymptotically conservative

confidence set for the sample average treatment effect and an exact confidence set under the

additional assumption of constant treatment effects.
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Corollary A.2 implies that inverting hypothesis tests based on Gaussian prepivoting yields

a single confidence set with both 1−𝛼 coverage for under a constant effect model at all finite

𝑁 and also at least 1− 𝛼 asymptotic coverage for the sample average treatment effect. The

extension to generating confidence sets based upon asymptotically linear estimators of the

form 𝑇 follows similarly but rests upon Theorem 2 instead of Theorem 1. Consequently,

regression adjustment can be incorporated into the confidence set generating procedure.

3.16 Additional Simulations

3.16.1 The Generative Model

Theorem 1 and its generalizations concern the finite sample and asymptotic Type I error

rates of testing𝐻𝐹 and𝐻𝑁 . Here we provide additional simulations to highlight the potential

for anti-conservative inference in the absence of prepivoting and to investigate the statistical

power of the Fisher Randomization Test based upon prepivoted test statistics.

Our simulations proceed similarly to those of Section 3.8. For completeness, we detail

the simulation set-up here. In each iteration 𝑏 = 1, ..., 𝐵, we draw {r𝑖(1)}𝑁𝑖=1 and {r𝑖(0)}𝑁𝑖=1

independent from one another and 𝑖𝑖𝑑 from mean zero equicorrelated multivariate normals of

dimension 𝑘 = 25 with marginal variances one. The correlation coefficients governing r𝑖(1)

and r𝑖(0) are 0 and 0.95 respectively. For both our type I error and power simulations we will

have two simulation settings, one with constant treatment effects and one with heterogeneous

treatment effects:

Constant Effects : y𝑖(1)− 𝜏 = y𝑖(0) = r𝑖(1).

Heterogeneous Effects : y𝑖(1) = r𝑖(1); y𝑖(0) + 𝜏 = r𝑖(0) + r̄(1)− r̄(0).

The experimental design is that of a completely randomized experiment in which 𝑛1 = 0.2𝑁 .

We test for treatment effect using randomization inference based upon the following three
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statistics:

1. Hotelling’s 𝑇 -squared, unpooled covariance,

2. Hotelling’s 𝑇 -squared, pooled covariance,

3. Max absolute 𝑡-statistic, unpooled standard error.

3.16.2 Type I Error Rates

When 𝜏 = 0 in the constant effects simulation setting in Section 3.16.1, Fisher’s sharp null

holds; likewise taking 𝜏 = 0 under heterogeneous effects enforces Neyman’s weak null. In

these contexts, we reexamine the Type I error rate simulations of Section 3.8, but at 𝛼 = 0.25

instead of 0.05. While this value of 𝛼 is larger than typical in scientific practice, the larger

value of 𝛼 allows frequent rejections of the null hypothesis despite the inherent conservative-

ness of inference under the finite population model. We stress that the conservativeness of

these tests rests upon the finite population inference framework and not upon the mechanics

of Gaussian prepivoting: the non-identifiability of Σ𝜏,∞ forces conservativeness of any pro-

cedure which asymptotically guarantees Type I error rate control under 𝐻𝑁 . We conduct

simulations with 𝑁 = 300 and 𝑁 = 5000; for each 𝑁 , we conduct 𝐵 = 5000 simulations.

These tests are conducted using Monte-carlo simulation to generate the reference distribu-

tions, with 1000 draws from Ω𝐶𝑅𝐸 for each iteration 𝑏. Table 3.3 presents Type I error rates

under simulation with 𝜏 = 𝜏 = 0.

As observed both in Table 3.3 above and in Table 3.2, the Fisher Randomization Test

using the pooled Hotelling 𝑇 -statistic demonstrates significant anti-conservativeness under

𝐻𝑁 . Moreover, we see from Table 3.3 that at 𝛼 = 0.25 the Fisher Randomization Test using

the max 𝑡-statistic is also anti-conservative under 𝐻𝑁 , a problem that persists even when

𝑁 = 5000. As a demonstration of Theorem 1, the Fisher Randomization Tests using the

prepivoted versions of 𝑇𝑝𝑜𝑜𝑙 and 𝑇|𝑚𝑎𝑥| control the Type I error rate under Neyman’s null for
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Table 3.3: Type I error rates in completely randomized designs with multiple outcomes.
The rows describe the simulation settings, which vary between the sharp and weak nulls
holding and between small and large sample sizes. There are three sets of columns, one
corresponding to each of the three test statistics under consideration. For each set of columns,
the column labeled “FRT” represents the Fisher Randomization Test using that test statistic.
The column labeled “Pre.” instead reflects the Fisher Randomization Test after applying
Gaussian prepivoting to the original test statistic. The last column, labeled “LS,” is a large-
sample test which is asymptotically valid for the weak null. The desired Type I error rate
in all settings is 𝛼 = 0.25. For all columns 𝜏 = 𝜏 = 0.

Hotelling, Unpooled Hotelling, Pooled Max 𝑡-stat
FRT Pre. LS FRT Pre. LS FRT Pre. LS

𝐻𝐹 , 𝑁 = 300 0.244 0.244 0.630 0.251 0.249 0.365 0.254 0.252 0.300
𝐻𝐹 , 𝑁 = 5000 0.247 0.247 0.270 0.248 0.243 0.257 0.251 0.247 0.255
𝐻𝑁 , 𝑁 = 300 0.320 0.320 0.538 0.996 0.361 0.433 0.321 0.071 0.082
𝐻𝑁 , 𝑁 = 5000 0.049 0.049 0.056 0.990 0.064 0.067 0.308 0.060 0.064

large 𝑁 .

3.16.3 Power after Prepivoting

Below we provide a theoretical discussion of the power of the Fisher Randomization Test

based on 𝐺(y(Z),Z) and use simulations to highlight key aspects of its statistical power in

practice.

When prepivoting is not necessary because the test statistic being deployed is already

sharp dominant and pivotal, its use does not affect the power of the test. Suppose that

the Fisher Randomization Test using the pivotal test statistic 𝑇 (y(Z),Z) provides exact

inferences under 𝐻𝐹 and asymptotically valid inferences under 𝐻𝑁 . Examples of such test

statistics include the studentized absolute difference in means for 𝑑 = 1 and its multi-

variate analogue 𝑇𝜒2(y(Z),Z); see (WD18) for further examples. Let 𝒩𝑓𝜉,𝑉
denote the

𝑓𝜉-pushforward of the Gaussian measure 𝛾(𝑑+𝑘)

0,𝑉
. Since 𝑓𝜉 takes values in R the pushforward

measure 𝒩𝑓𝜉,𝑉
is a distribution on the real line, and so – in a slight abuse of notation – we

write its corresponding cumulative distribution function evaluated at 𝑡 ∈ R as 𝒩𝑓𝜉,𝑉
(𝑡). For
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a completely randomized experiment 𝐺(y(Z),Z) = 𝒩𝑓𝜉,𝑉
(𝑇 (y(Z),Z)). If 𝒩𝑓𝜉,𝑉

is pivotal in

the sense that its distribution does not depend upon unknown parameters requiring estima-

tion, then 𝐺(y(Z),W) is a fixed continuous non-decreasing transformation of 𝑇 (y(Z),W).

Consequently, for any fixed Z the pair (𝐺(y(Z),w), 𝑇 (y(Z),w)) has rank correlation 1 when

enumerated over w ∈ Ω and so 𝑝-values derived under P̂𝑇 exactly match those under P̂𝐺.

In this case, prepivoting has no impact upon the power of the test: a test statistic 𝑇 (y(Z),Z)

with high power under the alternative will yield 𝐺(y(Z),Z) with high power as well. An

example of such a case is 𝑇𝜒2 .

However, as demonstrated in Section 3.5, there are cases for which 𝑇 (y(Z),Z) cannot

be used for randomization inference under 𝐻𝑁 because it is not asymptotically sharp dom-

inant. Examples of this include 𝑇𝑝𝑜𝑜𝑙(y(Z),Z) and 𝑇|𝑚𝑎𝑥|(y(Z),Z). Even in these cases,

the asymptotic power of the Fisher Randomization Test using 𝐺(y(Z),Z) can be computed.

Regardless of pivotality, the test statistic 𝐺(y(Z),Z) itself is the complement of a 𝑝-value for

an asymptotically valid test of 𝐻𝑁 . In other words, 1−𝐺(y(Z),Z) can be used directly as

a 𝑝-value for testing 𝐻𝑁 with asymptotic control of the Type I error rate (simply reject 𝐻𝑁

if 1 − 𝐺(y(Z),Z) ≤ 𝛼.) The power of this large-sample test must be computed on a case-

by-case basis since it is reliant on the structure of the underlying test statistic 𝑇 (y(Z),Z).

Because the reference distribution employed by Gaussian prepivoting converges to a stan-

dard uniform even under the alternative, the asymptotic power of the randomization test

using 𝐺(y(Z),Z) converges to the power of this large-sample test of 𝐻𝑁 , with the added

benefit that the randomization test is exact for finite 𝑁 under 𝐻𝐹 . Randomization inference

after Gaussian prepivoting leverages an asymptotically valid test for 𝐻𝑁 and furnishes exact

inference for 𝐻𝐹 with no sacrifice in asymptotic power against 𝐻𝑁 . In other words, for

test statistics 𝑇 (y(Z),Z) satisfying Conditions 6 and 7 exactness under 𝐻𝐹 can be achieved

for free, with limiting power remaining equal to that of the large-sample test upon which

𝐺(y(Z),Z) is based.

Table 3.4 presents power simulations under the set-up detailed above for 𝜏 = 𝜏 = 0.05e,
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Table 3.4: Power simulations in completely randomized designs with multiple outcomes.
The rows describe the simulation settings, which vary between constant (labelled 𝐶) and
heterogeneous (labelled 𝐻) effects and between small and large sample sizes. There are three
sets of columns, one corresponding to each of the three test statistics under consideration.
For each set of columns, the column labeled “FRT” represents the Fisher Randomization Test
using that test statistic. The column labeled “Pre.” instead reflects the Fisher Randomization
Test after applying Gaussian prepivoting to the original test statistic. The last column,
labeled “LS,” is a large-sample test which is asymptotically valid for the weak null. The
desired Type I error rate in all settings is 𝛼 = 0.25. For all columns 𝜏 = 𝜏 = 0.05e where e
is the vector of all ones.

Hotelling, Unpooled Hotelling, Pooled Max 𝑡-stat
FRT Pre. LS FRT Pre. LS FRT Pre. LS

𝐶, 𝑁 = 300 0.378 0.378 0.748 0.389 0.384 0.521 0.339 0.335 0.393
𝐶, 𝑁 = 5000 1 1 1 1 1 1 0.969 0.968 0.971
𝐻, 𝑁 = 300 0.360 0.360 0.574 0.995 0.391 0.452 0.458 0.130 0.149
𝐻, 𝑁 = 5000 0.421 0.421 0.448 0.995 0.080 0.086 0.993 0.861 0.868

where e denotes the vector of all ones. Under constant effects, the power of all of the

tests is high and the Type I error rate is controlled for 𝐻𝐹 because we are using Fisher

Randomization Tests. Although the power of the Fisher Randomization Tests using 𝑇𝑝𝑜𝑜𝑙 and

𝑇|𝑚𝑎𝑥| is very high for heterogeneous effects, as observed in Table 3.3 the randomization tests

of 𝑇𝑝𝑜𝑜𝑙 and 𝑇|𝑚𝑎𝑥| do not control the Type I error rate for testing 𝐻𝑁 even asymptotically.

However, for the tests which do asymptotically control the Type I error rate under 𝐻𝑁 the

randomization test of 𝐺(y(Z),Z) has power observed to be close to that of the large-sample

test. Furthermore, the gap in power between the two diminishes as 𝑁 increases. As stated

above, this is because the critical value deployed by the randomization test of 𝐺(y(Z),Z) is

converging to 0.75 as 𝑁 increases, while the large-sample test rejects for 𝐺(y(Z),Z) ≥ 0.75.

This further highlights the asymptotic equivalence between the two approaches.

The results for the prepivoted test based upon the usual (pooled) Hotelling test yield two

interesting observations. First, the pooled test has markedly worse power than the unpooled

or max-𝑡 statistics, as the use of the pooled covariance matrix in forming the test statistics
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amounts to a choice of a suboptimal norm for constructing the test. Second, the power

actually decreases for both the prepivoted randomization test and the large-sample test when

going from 𝑁 = 300 to 𝑁 = 5000. This can be attributed to the large-sample approximation

being quite poor for the pooled test at 𝑁 = 300 in the setting under consideration. As shown

in the simulations in Section 3.8 and in Table 3.3, the Type I error rate exceeds the nominal

level when the weak null is true at 𝑁 = 300, but falls below it at 𝑁 = 5000. As 𝑁 increases

the large-sample approximation becomes better, hence restoring the conservativeness of the

test under the null. This behavior also drives the apparent reduction in power in the above

table. The power still tends to 1 for the pooled Hotelling test as 𝑁 → ∞ in the generative

model yielding this simulation study.

3.17 Gaussian Integral Formulation

Above we used the notation 𝛾(ℓ)𝜇,Σ(B) to denote the measure of a Borel-measurable set B ⊆

Rℓ under Gaussian measure with mean 𝜇 and covariance Σ. Here we provide equivalent

formulations of the example Gaussian prepivoted test statistics examined in Section 3.5, but

instead of using 𝛾(ℓ)𝜇,Σ we directly write the corresponding Gaussian integrals.

Example 5 (Absolute difference in means). Let
√
𝑁𝜏 be univariate, consider a completely

randomized design with no rerandomization, and let 𝑇𝐷𝑖𝑀(y(Z),Z) =
√
𝑁 |𝜏 |, such that

𝑓𝜂(𝑡) = |𝑡| and 𝜉 = 1. Gaussian prepivoting yields the test statistic

𝐺𝐷𝑖𝑀(y(Z),Z) = 𝛾
(1)

0,𝑉𝜏𝜏
{𝑎 : |𝑎| ≤

√
𝑁 |𝜏 |}

=
1√︀
2𝜋𝑉𝜏𝜏

∫︁ √
𝑁 |𝜏 |

−
√
𝑁 |𝜏 |

exp

(︂
−𝑎2

2𝑉𝜏𝜏

)︂
𝑑𝑎

= 1− 2Φ

(︃
−
√
𝑁 |𝜏 |√︀
𝑉𝜏𝜏

)︃
,
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where Φ(·) is the standard normal distribution function.

Example 6 (Multivariate studentization). Let
√
𝑁𝜏 now be multivariate and suppose we

have a completely randomized design; consider the test statistic

𝑇𝜒2(y(Z),Z) =
(︁√

𝑁𝜏
)︁T

𝑉 −1
𝜏𝜏

(︁√
𝑁𝜏
)︁
; (28)

𝑉𝜏𝜏 =
𝑁

𝑛1

Σ̂𝑦(1) +
𝑁

𝑛0

Σ̂𝑦(0).

For this test statistic, 𝑓𝜂(t) = tT𝜂−1t and 𝜉 = 𝑉𝜏𝜏 . Gaussian prepivoting produces

𝐺𝜒2(y(Z),Z) = 𝛾
(𝑑)

0,𝑉𝜏𝜏
{a : aT𝑉 −1

𝜏𝜏 a ≤ 𝑇𝜒2(y(Z),Z)}

=
1√︁

(2𝜋)𝑑 det(𝑉𝜏𝜏 )

∫︁
R𝑑

1{aT𝑉 −1
𝜏𝜏 a≤𝑇𝜒2 (y(Z),Z)} exp

(︃
−aT𝑉 −1

𝜏𝜏 a

2

)︃
𝑑a (29)

= 𝐹𝑑{𝑇𝜒2(y(Z),Z)},

where 𝐹𝑑(·) is the distribution function of a 𝜒2
𝑑 random variable.

Example 7 (Max absolute 𝑡-statistic). Consider again multivariate
√
𝑁𝜏 in a completely

randomized design and the test statistic

𝑇|𝑚𝑎𝑥|(y(Z),Z) = max
1≤𝑗≤𝑑

√
𝑁 |𝜏𝑗|√︁
𝑉𝜏𝜏,𝑗𝑗

,

where 𝑉𝜏𝜏,𝑗𝑗 is the 𝑗𝑗 element of 𝑉𝜏𝜏 . For this statistic, 𝑓𝜂(t) = max1≤𝑗≤𝑑 |𝑡𝑗|/𝜂𝑗, and 𝜉 =

278



(𝑉
1/2
𝜏𝜏,11, ..., 𝑉

1/2
𝜏𝜏,𝑑𝑑)

T. After Gaussian prepivoting we are left with

𝐺|𝑚𝑎𝑥|(y(Z),Z) = 𝛾
(𝑑)

0,𝑉𝜏𝜏

⎧⎨⎩a : max
1≤𝑗≤𝑑

|𝑎𝑗|√︁
𝑉𝜏𝜏,𝑗𝑗

≤ max
1≤𝑗≤𝑑

√
𝑁 |𝜏𝑗|√︁
𝑉𝜏𝜏,𝑗𝑗

⎫⎬⎭
=

1√︁
(2𝜋)𝑑 det(𝑉𝜏𝜏 )

×

∫︁
R𝑑

1{︃
max1≤𝑗≤𝑑

|𝑎𝑗 |√
𝑉𝜏𝜏,𝑗𝑗

≤𝑇|𝑚𝑎𝑥|(y(Z),Z)

}︃ exp

(︃
−aT𝑉 −1

𝜏𝜏 a

2

)︃
𝑑a.

(30)

Importantly, (29) and (30) differ only in the support of the Gaussian integral. The same

Gaussian measure is used; the difference is that the support of (29) is an ellipsoid while the

support of (30) is a hyperrectangle.

Example 8 (Rerandomization). Let
√
𝑁𝜏 be univariate and suppose we now consider a

rerandomized design with balance criterion 𝜑 satisfying Condition 1. Consider the absolute

difference in means, 𝑓𝜉(
√
𝑁𝜏) =

√
𝑁 |𝜏 |, such that 𝜉 = 1. Gaussian prepivoting yields the

test statistic

𝐺𝑅𝑒(y(Z),Z) =
𝛾
(1+𝑘)

0,𝑉

{︁
(a,b)T : |𝑎| ≤

√
𝑁 |𝜏 | ∧ 𝜑(b) = 1

}︁
𝛾
(𝑘)

0,𝑉𝛿𝛿
{b : 𝜑(b) = 1}

=

1√
(2𝜋)(𝑘+1) det(𝑉 )

∫︀
R𝑘

(︁
𝜑(b)

∫︀ √
𝑁 |𝜏 |

−
√
𝑁 |𝜏 | exp

(︁
−[𝑎bT]𝑉 −1[𝑎bT]T

2

)︁
𝑑𝑎
)︁
𝑑b

1√
(2𝜋)𝑘 det(𝑉𝛿𝛿)

∫︀
R𝑘 𝜑(b) exp

(︁
−bT𝑉 −1

𝛿𝛿 b

2

)︁
𝑑b

. (31)

Since 𝜑(·) is a boolean-valued function it directly constrains the support of the Gaussian

integrals in (31).
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3.18 Discussing Condition 2

Recall Condition 2:

Condition 2. For any 𝜂 ∈ Ξ, 𝑓𝜂(·) : R𝑑 ↦→ R+ is continuous, quasi-convex, and nonnegative

with 𝑓𝜂(t) = 𝑓𝜂(−t) for all t ∈ R𝑑. Furthermore, 𝑓𝜂(t) is jointly continuous in 𝜂 and t.

Each condition on 𝑓𝜂 plays an important role in the underlying mechanics of Gaussian

prepivoting, and each deserves some degree of attention. First, the joint continuity of 𝑓𝜂(t)

in 𝜂 and t plays a critical role in the asymptotic behavior of the test statistic 𝑇 . When

computing the asymptotic distributional behavior of 𝑇 (y(Z),Z) we leverage the central

limit theorem governing
√
𝑁𝜏 (y(Z),Z) and the continuous mapping theorem to obtain the

distributional limit of

𝑓𝜉(y(Z),Z)

(︁√
𝑁𝜏 (y(Z),Z)

)︁
.

Without the joint continuity of 𝑓𝜂(t), such a generic asymptotic result would not be feasible.

The same reasoning shows the utility of Condition 2’s joint continuity requirement when

analyzing

𝑓𝜉(y(Z),W)

(︁√
𝑁𝜏 (y(Z),W)

)︁
.

In this sense, the joint continuity assumption is of technical importance for deriving asymp-

totic distributional behavior. The quasi-convexity and mirror symmetry assumptions are of

a more fundamental nature to our results; they are inextricably linked to Anderson’s 1955

theorem for multivariate Gaussians (And55) and so they play a crucial role in guarantee-

ing the asymptotic sharp dominance of 𝐺(y(Z),Z). A quasi-convex function is a function

with convex sublevel sets; for those unfamiliar with quasi-convex functions, we suggest the

excellent review of (ADSZ10, Chapter 3). A simple example function from R𝑑 → R that is

both quasi-convex and mirror symmetric about the origin is the Euclidean norm t ↦→ ||t||.

Generalizing slightly more, if 𝑓𝜂(t) is any seminorm on R𝑑 which is jointly continuous in 𝜂

and t, then 𝑓𝜂(·) satisfies Condition 2. In fact, this is nearly a complete characterization;
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we will show that the criteria of Condition 2 stipulate that 𝑓𝜂(·) is tightly related to a semi-

norm; though 𝑓𝜂(·) need not be a seminorm itself. Our discussion centers around the case of

a completely randomized experiment, but this restriction is only for the sake of explication;

similar reasoning applies in the rerandomized case as well.

Consider a convex set 𝒰 ⊂ R𝑑; suppose that 𝒰 is balanced in the sense that 𝑐𝒰 ⊆ 𝒰 for

all scalars 𝑢 ∈ [−1, 1]. Such a set 𝒰 is necessarily mirror-symmetric about the origin, and so

Anderson’s theorem states that:

If 𝒳 ∼ 𝒩 (0, 𝑆𝒳 ) and 𝒴 ∼ 𝒩 (0, 𝑆𝒴) are non-degenerate with 𝑆𝒴 −𝑆𝒳 ⪰ 0, then

P (𝒳 ∈ 𝒰) ≥ P (𝒴 ∈ 𝒰).

Moreover, such a set 𝒰 defines a seminorm on R𝑑 via its Minkowski functional 𝜌𝒰(t) =

inf𝑘>0{t ∈ 𝑘𝒰}. In light of this, Anderson’s theorem can be rewritten as:

If 𝒳 ∼ 𝒩 (0, 𝑆𝒳 ) and 𝒴 ∼ 𝒩 (0, 𝑆𝒴) are non-degenerate with 𝑆𝒴 −𝑆𝒳 ⪰ 0, then

P (𝜌𝒰(𝒳 ) ≤ 1) ≥ P (𝜌𝒰(𝒴) ≤ 1).

Denote the preimage of a set 𝑆 under 𝑓𝜂 by 𝑓−1
𝜂 (𝑆). By quasi-convexity and symmetry

of 𝑓𝜂, the set 𝑓−1

𝜉
([−∞, 𝑇 ]) is convex and symmetric about the origin for any 𝑇 ∈ R.

Specifically, taking 𝒰 = 𝑓−1

𝜉
([−∞, 𝑇 (y(Z),Z)]) yields a random seminorm 𝜌𝒰 . Finally,

taking 𝑆𝒴 = ¯̄𝑉 and 𝑆𝒳 = 𝑉 gives exactly that the randomization distribution of the Gaussian

prepivoted test statistic 𝐺(y(Z),Z) is asymptotically dominated by the uniform distribution.

In other words, Anderson’s theorem can be rephrased to say that when 𝑆𝒴 − 𝑆𝒳 ⪰ 0 the

random variable 𝒳 is more concentrated in any semi-norm than 𝒴 ; Condition 2 is designed

exactly so that the random set 𝒰 = 𝑓−1

𝜉
([−∞, 𝑇 (y(Z),Z)]) generates a seminorm via its

Minkowski functional.
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3.19 Details Of Examples

In Section 3.5.2, we provide several examples of test statistics which are amenable to Gaussian

prepivoting. Here we provide details to verify the conditions of Theorem 1 for these examples.

Define the standard Neyman covariance estimator

𝑉 (y(z),w) =

⎡⎣ 𝑉𝜏𝜏 (y(z),w) 𝑉𝜏𝛿(y(z),w)

𝑉𝜏𝛿(y(z),w)T 𝑉𝛿𝛿(y(z),w)

⎤⎦
where

𝑉𝜏𝜏 (y(z),w) = 𝑁

(︃
Σ̂𝑦(1)(y(z),w)

𝑛1

+
Σ̂𝑦(0)(y(z),w)

𝑛0

)︃
,

Σ̂𝑦(1)(y(z),w) =
1

𝑛1 − 1

∑︁
𝑖 :𝑤𝑖=1

⎛⎝y𝑖(𝑧𝑖)−
1

𝑛1

∑︁
𝑗 :𝑤𝑗=1

y𝑗(𝑧𝑗)

⎞⎠⎛⎝y𝑖(𝑧𝑖)−
1

𝑛1

∑︁
𝑗 :𝑤𝑗=1

y𝑗(𝑧𝑗)

⎞⎠T

,

Σ̂𝑦(0)(y(z),w) =
1

𝑛0 − 1

∑︁
𝑖 :𝑤𝑖=0

⎛⎝y𝑖(𝑧𝑖)−
1

𝑛0

∑︁
𝑗 :𝑤𝑗=0

y𝑗(𝑧𝑗)

⎞⎠⎛⎝y𝑖(𝑧𝑖)−
1

𝑛0

∑︁
𝑗 :𝑤𝑗=0

y𝑗(𝑧𝑗)

⎞⎠T

.

and the other blocks are defined analogously.

Lemma A.7. The Neyman covariance estimator satisfies Condition 4

Proof. Limiting conservativeness of 𝑉 (y(Z),Z) rests upon the conservativeness of 𝑉𝜏𝜏 (y(Z),Z),

a well known fact dating back to Neyman himself in the scalar case (Ney90). The vector

version of this result is noted in (DFM19, Section 2.2) and relies upon the consistency

of the sample covariance estimators Σ̂𝑦(0)(y(Z),Z) and Σ̂𝑦(1)(y(Z),Z). The consistency of

Σ̂𝑦(0)(y(Z),Z) and Σ̂𝑦(1)(y(Z),Z) (and their related quantities for the other blocks) is a

consequence of Assumptions 1-3 and (Lin13, Appendix Lemma 1).

Verifying the second part of Condition 4 requires examining the limiting behavior of

𝑉 (y(Z),W). Such an analysis can be found in (WD18, Appendix A2); while their work
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focuses on the scalar-outcome many-treatment case, the techniques convert straightforwardly

to the vector-outcome treated-versus-control case.

Lemma A.7 establishes that the covariance estimators used for prepivoting in Section 3.5

are indeed in accordance with Condition 4. Next, we examine each example provided in

Section 3.5.2 to establish that Conditions 2 and 3 are met.

Example 9 (Absolute Difference in Means). In a completely randomized experiment, we

consider 𝑇𝐷𝑖𝑀(y(Z),Z) =
√
𝑁 |𝜏 |, with 𝑓𝜂(𝑡) = |𝑡| and 𝜉 = 1. Condition 3 is trivially satisfied

since 𝜉 is not stochastic. Condition 2 follows from the continuity, convexity, non-negativity,

and symmetry of the absolute value function.

Example 10 (Multivariate studentization). Let
√
𝑁𝜏 now be multivariate and suppose we

have a completely randomized design. We examine the statistic

𝑇𝜒2(y(Z),Z) =
(︁√

𝑁𝜏
)︁T

𝑉 −1
𝜏𝜏

(︁√
𝑁𝜏
)︁
, (32)

with 𝑉𝜏𝜏 = 𝑁
𝑛1
Σ̂𝑦(1) +

𝑁
𝑛0
Σ̂𝑦(0). For this test statistic, 𝑓𝜂(t) = tT𝜂−1t and 𝜉 = 𝑉𝜏𝜏 . Since

𝜉 matches the top-left block of the Neyman covariance estimator Lemma A.7 shows that

Condition 3 is met. Condition 2 holds because the quadratic form 𝑓𝜂(t) = tT𝜂−1t is certainly

mirror symmetric, jointly continuous and convex by standard results for quadratic forms,

and is non-negative since 𝜂 is positive definite, and so its inverse must be as well.

The analysis for 𝑇𝑝𝑜𝑜𝑙 follows similar logic, but with the added observation that

𝑉𝑃𝑜𝑜𝑙(y(Z),Z)
𝑝−→

Σ𝑦(0),∞

𝑝
+

Σ𝑦(1),∞

1− 𝑝

𝑉𝑃𝑜𝑜𝑙(y(Z),W)
𝑝−→

Σ𝑦(0),∞

𝑝
+

Σ𝑦(1),∞

1− 𝑝
.
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This follows because, under our assumptions,

Σ̂𝑦(1)(y(Z),Z)
𝑝−→ Σ𝑦(1),∞,

Σ̂𝑦(0)(y(Z),Z)
𝑝−→ Σ𝑦(0),∞

while both Σ̂𝑦(1)(y(Z),W) and Σ̂𝑦(0)(y(Z),W) converge in probability to 𝑝Σ𝑦(1),∞ + (1 −

𝑝)Σ𝑦(0),∞.

Example 11 (Max absolute 𝑡-statistic). Consider again multivariate
√
𝑁𝜏 and a completely

randomized design. The max-absolute 𝑡-statistic is

𝑇|𝑚𝑎𝑥|(y(Z),Z) = max
1≤𝑗≤𝑑

√
𝑁 |𝜏𝑗|√︁
𝑉𝜏𝜏,𝑗𝑗

,

where 𝑉𝜏𝜏,𝑗𝑗 is the 𝑗𝑗 element of 𝑉𝜏𝜏 . For this statistic, 𝑓𝜂(t) = max1≤𝑗≤𝑑 |𝑡𝑗|/𝜂𝑗, and

𝜉 = (𝑉
1/2
𝜏𝜏,11, ..., 𝑉

1/2
𝜏𝜏,𝑑𝑑)

T. Since 𝜉 is the square-root of the diagonal elements of 𝑉𝜏𝜏 , Lemma A.7

again establishes Condition 3. Certainly each coordinate projection |𝑡𝑗|/𝜂𝑗 is jointly contin-

uous in 𝜂𝑗 > 0 and 𝑡𝑗. Taking the maximum over these functions preserves continuity. The

maximum of linear functions is convex so 𝑓𝜂(t) is quasi-convex. Non-negativity and mirror

symmetry are trivial algebraic properties inherited from the coordinate-wise absolute value

function. Thus, Condition 2 holds.

Example 12 (Rerandomization). Consider a rerandomized design with balance criterion 𝜑

satisfying Condition 1 and let
√
𝑁𝜏 be univariate. Consider the absolute difference in means,

𝑓𝜉(
√
𝑁𝜏) =

√
𝑁 |𝜏 |, such that 𝜉 = 1. As before, since 𝜉 is non-stochastic Condition 3 is im-

mediate. The continuity, quasi-convexity, non-negativity, and symmetry of 𝑓𝜂 are immediate

consequences of the properties of the absolute value function. Thus, Condition 2 holds.
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3.20 A Case Study With Educational Data

We demonstrate inference using Gaussian prepivoting in a completely randomized experi-

ment. (ALO09) implemented a moderate-scale completely randomized experiment to test

the effectiveness of several strategies intended to boost academic performance. Their exper-

iment, the so-called Student Achievement and Retention (STAR) project, enrolled incoming

first-year undergraduate students – except those with high-school grade point average (GPA)

in the top 25% – in one of three treatment arms: a student support program, a financial in-

centive program, or both. Allocation to the programs was performed completely at random.

Numerous demographic features of program participants were collected; we focus specifically

on the participants’ reported genders and high-school GPAs. The primary outcomes of the

study were first-year GPA and second-year GPA. Further details on the nature of the inter-

ventions and the specific demographic features collected can be found in (ALO09). The data

collected in the STAR project is publicly available in the online supplement to (ALO09).

(ALO09) found no evidence to suggest that the program was effective at improving

educational outcomes among participants who identified as men. Lin (Lin13) used regression-

adjusted estimators to examine inference for the marginal effect of offering financial incentives

given that support services were offered; his analysis focuses on only the male participants

of the study. Lin performs several simulations under the assumption that Fisher’s sharp null

holds, but he remarks that

Chung and Romano (2011a, 2011b) discuss and extend a literature on permu-

tation tests that do remain valid asymptotically when the null hypothesis is weak-

ened. One such test is based on the permutation distribution of a heteroskedasticity-

robust 𝑡-statistic. Exploration of this approach under the Neyman model (with

and without covariate adjustment) would be valuable.

Gaussian prepivoting allows us to meet and exceed this objective: a permutation-testing

framework can be applied with asymptotic validity under 𝐻𝑁 for a wide class of statistics
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– including multivariate statistics for which studentization alone is insufficient to restore

asymptotic conservativeness. Theorem 1 guarantees finite sample exactness under 𝐻𝐹 and

asymptotic conservativeness under 𝐻𝑁 of the prepivoted test statistic 𝐺(y(Z),Z) subject to

mild conditions; moreover, Section 3.12 of the supplement extends this result to the context

of regression-adjusted estimators.

We re-analyze the data studied by (ALO09) through the lens of Gaussian prepivoting.

Instead of restricting to the univariate outcome of first-year GPA, we examine the effect of

treatment on both first-year and second-year GPA. We implement prepivoting using the test

statistics of Section 3.5:

• the Euclidean 2-norm of the difference in means, denoted 𝑇||·||2 ,

• the multivariate studentized statistics 𝑇𝜒2 and 𝑇𝑃𝑜𝑜𝑙,

• the maximum absolute 𝑡-statistic 𝑇|𝑚𝑎𝑥|.

Furthermore, we implement prepivoting in the cases above using the regression adjusted

estimator of the difference in means – regressing on high-school GPA – instead of the naïve

difference in means. In total 𝑁 = 141 male-identifying participants have complete covariate

and outcome data (high-school GPA, first and second year GPAs, respectively) and were

offered at least support services. Of these individuals, 𝑛1 = 55 were offered both support

services and financial incentives while 𝑛0 = 86 received only the offer for support services.

Table 3.5 contains 𝑝-values of the Fisher Randomization Test before and after prepiv-

oting. The 𝑝-values obtained after prepivoting provide exact inference for 𝐻𝐹 ; moreover,

the asymptotic results of Theorems 1 and 2 suggest that these 𝑝-values are likely to pro-

vide conservative inference for 𝐻𝑁 . We stress that without Gaussian prepivoting only for

𝑇𝜒2 would the Fisher Randomization Test be appropriate for Neymanian inference. The

other three base statistics of Table 3.5 can exhibit asymptotically anti-conservative infer-

ence with the Fisher Randomization Test under 𝐻𝑁 . For both 𝑇||·||2 and 𝑇𝑃𝑜𝑜𝑙 – with and
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Table 3.5: 𝑝-values of the Fisher Randomization Test with and without using Gaussian
prepivoting. The left two numerical columns use the Fisher Randomization Test directly
on the base statistic without prepivoting. The right two numerical columns apply Gaussian
prepivoting to the base statistic before using the Fisher Randomization Test. In “With
Adj." columns linear regression adjustment using high-school GPA was applied to estimate
the difference in means; “Without Adj." columns perform no regression adjustment.

No Prepivoting Prepivoting
Base Statistic Without Adj. With Adj. Without Adj. With Adj.

𝑇||·||2 0.140 0.095 0.154 0.104
𝑇𝜒2 0.159 0.126 0.159 0.126
𝑇𝑃𝑜𝑜𝑙 0.141 0.107 0.153 0.121
𝑇|𝑚𝑎𝑥| 0.181 0.129 0.174 0.122

without regression adjustment – the 𝑝-value obtained after prepivoting is no less than than

the 𝑝-value derived without first prepivoting. These increased 𝑝-values suggest that the non-

prepivoted procedures for 𝑇||·||2 and 𝑇𝑃𝑜𝑜𝑙 may have been anti-conservative. In fact, with

𝛼 = 0.1 an experimenter erroneously using the Fisher Randomization Test based upon re-

gression adjustment with 𝑇||·||2 to test 𝐻𝑁 would have rejected the null of no average effect.

Once prepivoting is applied the practitioner is asymptotically entitled to test 𝐻𝑁 with the

Fisher Randomization Test and we observe that the procedure no longer rejects 𝐻𝑁 , thereby

rectifying the potentially anti-conservative nature of the preceding result.

The code to implement our analysis is provided online to facilitate reproducibility.

3.21 Software

Code written in R that builds the figures above is available online at https://github.com/

PeterLCohen/PrepivotingCode. Furthermore, at the same location, we provide concrete

examples – also written in R code – illustrating how one might choose to implement Gaussian

prepivoting from scratch. For simplicity, we present prepivoting the absolute
√
𝑁 -scaled

difference in means for a univariate completely randomized design. In other words, we
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exactly demonstrate the implementation of Algorithm 1 for Gaussian prepivoting used in

Example 1 of Section 3.5. At the same location, we provide R code to reproduce the results

of the data analysis in Section 3.20.
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Chapter 4
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Abstract

Causal inference has traditionally divided across several schools of thought: superpopulation
inference, fixed covariate inference, and finite population inference. The work of (RBK05)
rigorously specifies a probabilistic structure for which these three models can be viewed as
a nested hierarchy defined by increasingly large conditioning events. Inference in the super-
population setting using resampling procedures has been well understood, but resampling
methods in the fixed covariate and finite population contexts remain nascent areas of re-
search. We construct a family of resampling procedures which provide asymptotically valid
inference for a wide variety of test statistics while respecting the hierarchical structure of
the three models. A natural byproduct of our analysis is a novel derivation of Neyman’s
classical variance estimator for the difference in means in completely randomized experi-
ments and two new variance estimators for the difference in means that exploit conditioning
event structure to outperform Neyman’s classical estimator in fixed covariate models and
finite population models. We illustrate the generality of our techniques through a host of
examples; and provide simulation studies to illustrate practical performance.

4.1 Introduction

Beginning with the work of Efron in the 1980s, bootstrap resampling has played a cen-

tral role in modern statistical inference. For excellent introductions to the field, we direct

the reader towards (Efr82, ST95). Initial applications of the bootstrap were primarily di-

rected towards inference for independent and identically distributed data, though quickly

the methodology branched out to accommodate data which lacks the regularity of i.i.d.

data; e.g., (Liu88, LS95, MHL16). In this paper we focus upon resampling procedures in

the context of nonparametric inference for causal parameters. Our objective is to provide

computationally efficient procedures for asymptotic hypothesis testing and confidence inter-

val formation which can be applied with minimal assumptions on the structure of the data

generating process; such results are immediately applicable to a broad variety of applied

fields ranging from biostatistics to econometrics, public policy, and many more.

Several different models exist for causal inference; these models vary in terms of which

quantities in the model are random. Superpopulation inference takes each individual to have
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potential outcomes and covariates which are random; fixed covariate inference takes only the

potential outcomes to be random; and finite population inference takes both the potential

outcomes and covariates to be fixed - with the only randomness entering the model through

the treatment allocation mechanism. Frequently these models are viewed as disparate in the

sense that inferential procedures are designed to perform well in one of the models while dis-

regarding the performance - or even validity - of the procedure in the other models. However,

these models form a natural hierarchy: superpopulation inference takes all quantities to be

random, finite population inference takes only treatment allocation to be random, and fixed

covariate inference bridges the gap between the two. The work of (RBK05) codifies a prob-

abilistic framework wherein finite population inference is viewed as a conditional sub-model

of fixed covariate inference and likewise fixed covariate inference is a conditional sub-model

of superpopulation inference. This establishes a natural hierarchy based upon condition-

ing upon progressively larger events. Ideally one would tailor their resampling algorithm

to the available structure of one’s preferred inferential framework; as a rough heuristic it

is typically held that mimicking the data generating process results in sensible resampling

algorithms (HW91). Perhaps this is most easily seen in the superpopulation setting where

observed data points are independent and identically distributed; there the natural bootstrap

algorithm resamples by drawing independent and identically distributed draws from the ob-

served empirical distributions. Adapting resampling algorithms to the fixed covariate and

finite population framework is more subtle; we provide a hierarchy of bootstrap resampling

procedures – each one building upon the last – which accord with the structure of the three

probabilistic models. Our resampling algorithms provide asymptotically valid hypothesis

tests against weak null hypotheses without ascribing to parametric or other rigid modeling

assumptions.
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4.2 Notation

We consider a population of 𝑁 total number of units; 𝑛1 receive treatment and 𝑛0 = 𝑁 −𝑛1

receive control. The 𝑖th unit has control potential outcome 𝑦𝑖(0) ∈ R𝑑, treated potential

outcome 𝑦𝑖(1) ∈ R𝑑, and features 𝑥𝑖 ∈ R𝑘. We write expectations as E [·] and variances

are written as V (·). The space of all probability measures on a set 𝑆 is ℳ(𝑆) and the

𝛿-point-mass at 𝑥 ∈ 𝑆 is written 𝛿𝑥. For 𝒳 a random variable taking in values in 𝑆 the

probability measure defining 𝒳 is ℒ(𝒳 ) which takes values in ℳ(𝑆). The Gaussian measure

with mean 𝜇 and covariance matrix Σ is written 𝛾𝜇,Σ. For a vector 𝐴 the subvector 𝐴[𝐼] is

the vector of 𝐴’s coordinates indexed by 𝑖 ∈ 𝐼. The set 𝐼0 = {1, . . . , 𝑑, 2𝑑 + 1, . . . , 2𝑑 + 𝑘}

indexes the coordinates of the control outcomes and the covariates jointly. Likewise, the set

𝐼1 = {𝑑+ 1, . . . , 2𝑑, 2𝑑+ 1, . . . , 2𝑑+ 𝑘} indexes the coordinates of the treated outcomes and

the covariates jointly. For a vector (𝑦, 𝑥) the projection operator onto the coordinates of 𝑦 is

written Π𝑦 so that Π𝑦(𝑦, 𝑥) = 𝑦. The indicator function of an event 𝐸 is written 1{𝐸}. If a

sequence of random variables 𝒳 (𝑁) converges in probability to a random variable 𝒳 , then we

write plim𝑁→∞𝒳 (𝑁) = 𝒳 . Given a multiset 𝑆 of cardinality |𝑆| < ∞ define 𝒫(𝑁,𝑆) to be

the collection of all multisets 𝑆 ′ of cardinality 𝑁 with elements drawn from 𝑆. Importantly,

𝒫(𝑁,𝑆) is defined even when 𝑁 > |𝑆|. The collection 𝒫(𝑁,𝑆) is the collection of possible

samples (with replacement) of size 𝑁 drawn from 𝑆.

One of our key results is a relationship between conservative covariance estimation and

first-order stochastic dominance. To rigorously define conservativeness for 𝑑 × 𝑑 covariance

matrices when 𝑑 ≥ 2 we turn to the Loewner partial order. Given two positive semidefinite

matrices 𝑀1 and 𝑀2: 𝑀1 is no smaller than 𝑀2 in the Loewner partial order if and only if

𝑀1 −𝑀2 is positive semidefinite; we write 𝑀1 ⪰𝑀2.

Our bootstrap consistency results utilize the bounded-Lipschitz metric. The bounded-
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Lipschitz metric between two probability measures 𝜇 and 𝜈 be defined as

𝜌𝐵𝐿(𝜇, 𝜈) := sup
𝑓∈𝐿𝑖𝑝1
||𝑓 ||∞≤1

⃒⃒⃒⃒∫︁
𝑓(𝑥)𝑑𝜇(𝑥)−

∫︁
𝑓(𝑥)𝑑𝜈(𝑥)

⃒⃒⃒⃒
.

Weak converges of measures in ℳ(R) is metrized by the bounded-Lipschitz metric (vdVW96,

Theorem 1.12.4).

4.3 Probabilistic Framework

4.3.1 A Nested Sequence of Models

We adapt the work of (RBK05) to create a nested sequence of probability spaces upon which

our analyses will proceed. Consider a probability space (Φ,ℱ , 𝑃 ) from which we form a pop-

ulation of 𝑁 individuals with potential outcome 𝑦𝑖(𝑧) = 𝒴𝑧,𝑖(𝜔) for 𝑧 ∈ {0, 1} and covariates

𝑥𝑖 = 𝒳𝑖(𝜔) for 𝒴𝑧,𝑖 : Φ → R𝑑 and 𝒳𝑖 : Φ → R𝑘 measurable functions of 𝜔 ∈ Φ.1 The genera-

tive model of the collection {(𝑦𝑖(0), 𝑦𝑖(1), 𝑥𝑖)}𝑁𝑖=1 forms our superpopulation model. We take

the (𝑦𝑖(0), 𝑦𝑖(1), 𝑥𝑖) to be independent and identically distributed.

To form the fixed covariate model, let

C = {𝜔 ∈ Φ : 𝒳 (𝜔𝑖) = x𝑖 for 𝑖 = 1, . . . , 𝑁} .

The set C is the event that the covariates of the 𝑁 individuals are given by the deterministic

values {x𝑖}𝑁𝑖=1. Let 𝑃C be the conditional probability measure derived from 𝑃 conditioned

on the event C . In the case that C is an event of 𝑃 -measure zero, we tacitly assume that

there exists a well-defined regular conditional probability measure and take 𝑃C to be this

conditional; see (CT97, Section 7.2) for more details on this technical issue. Inferences

1We take 𝑘 and 𝑑 as fixed quantities which do not grow with 𝑁 .
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under the fixed-covariate model take (Ω,ℱ , 𝑃C ) to generate the outcomes 𝑦𝑖(𝑧) = 𝒴𝑧(𝜔𝑖) for

𝑧 ∈ {0, 1} and implicitly constrain the covariates 𝑥𝑖 = 𝒳 (𝜔𝑖) = x𝑖 for 𝑖 = 1, . . . , 𝑁 . We

write the conditional distribution of (𝑦𝑖(0), 𝑦𝑖(1)) given x𝑖 as 𝑃x𝑖
.

Finally, the finite population framework takes a fully conditional viewpoint by condition-

ing upon

F = {𝜔 ∈ Φ : 𝒳 (𝜔𝑖) = x𝑖,𝒴𝑧(𝜔𝑖) = y𝑖(𝑧) for 𝑖 = 1, . . . , 𝑁 ; 𝑧 ∈ {0, 1}} .

In this case, the entire population of 𝑁 individuals is fully deterministic.

4.3.2 Population Conditional Measures and Average Treatment Ef-

fects

In the superpopulation model, the probability measure ℒ ((𝑦1(0), 𝑦1(1), 𝑥1)) encodes all of

the required information to understand the generative model of

{(𝑦𝑖(0), 𝑦𝑖(1), 𝑥𝑖)}𝑁𝑖=1 .

On the other extreme, in the finite population model the 𝑁 points in R𝑑+𝑑+𝑘 given by

{(y𝑖(0),y𝑖(1),x𝑖)}𝑁𝑖=1 contain all of the information of the model. Interpolating between

these two extremes, in the fixed covariate model, the 𝑁 points {x𝑖}𝑁𝑖=1 and the 𝑁 conditional

probability measures {𝑃x𝑖
}𝑁𝑖=1 fully dictate the structure of the model. Below, we define a

single object parameterized by a 𝑃 -measurable conditioning event S ∈ ℱ that exactly

encapsulates these notions.

Definition 3. For a measurable event S the population S -conditional measure is the uni-

form mixture over the conditional measures on R𝑑+𝑑+𝑘 induced by (𝑦𝑖(0), 𝑦𝑖(1), 𝑥𝑖) given the

event S ; when S is of 𝑃 -measure zero we assume that there exists a well-defined regular
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conditional probability measure and take this conditional (CT97, Section 7.2). Denote this

measure as 𝒫S ; formally,

𝒫S =
𝑁∑︁
𝑖=1

𝑁−1ℒ (𝑦𝑖(0), 𝑦𝑖(1), 𝑥𝑖) .

Let Δ : ℳ(R𝑑+𝑑+𝑘) → R𝑑 be the linear operator which maps a measure to the expected

difference between the second 𝑑 coordinates and the first 𝑑 coordinates; formally,

Δ(𝑀) = E
[︀
𝐴[𝐼1] − 𝐴[𝐼0]

]︀
for 𝐴 ∼𝑀.

Definition 4. The population S -average treatment effect is the expected difference between

the second and first 𝑑 coordinates under the population S -conditional measure; we denote

this 𝜏S . Formally

𝜏S = Δ(𝒫S ) =
1

𝑁

∑︁
𝑖=1

E [𝑦𝑖(1)− 𝑦𝑖(0) | S ] .

Definitions 3 and 4 provide a unified perspective upon common features of the three usual

levels of inference:

• (Superpopulation Model) When S = ∅ all of the (𝑦𝑖(0), 𝑦𝑖(1), 𝑥𝑖) are i.i.d. so the

population ∅-conditional measure is the probability measure defining (𝑦1(0), 𝑦1(1), 𝑥1).

The target of inference is the population average treatment effect,

𝜏pate = E [𝑦𝑖(1)− 𝑦𝑖(0)] = 𝜏 ∅.

• (Fixed Covariate Model) When S = C the population C -conditional measure is

the uniform mixture over the distributions of (𝑦𝑖(0), 𝑦𝑖(1),x𝑖) where (𝑦𝑖(0), 𝑦𝑖(1)) ∼ 𝑃x𝑖
;
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thus, the population C -conditional measure is

𝒫C =
1

𝑁

𝑁∑︁
𝑖=1

(𝑃x𝑖
, 𝛿x𝑖

),

where (𝑃x𝑖
, 𝛿x𝑖

) is the measure on R𝑑+𝑑+𝑘 where the first 2𝑑 coordinates are distributed

according to 𝑃x𝑖
and the final 𝑘 coordinates are deterministically x𝑖. The target of

inference is the conditional average treatment effect

𝜏cate =
1

𝑁

𝑁∑︁
𝑖=1

E [𝑦𝑖(1)− 𝑦𝑖(0) | 𝑥𝑖] = 𝜏C .

• (Finite Population Model) When S = F the points {(𝑦𝑖(0), 𝑦𝑖(1), 𝑥𝑖)}𝑁𝑖=1 are

deterministic and the population F -conditional measure is just the uniform measure

over these points; thus, the population F -conditional measure is

𝒫F =
1

𝑁

𝑁∑︁
𝑖=1

𝛿(y𝑖(0),y𝑖(1),x𝑖).

The target of inference is the sample average treatment effect

𝜏 sate =
1

𝑁

𝑁∑︁
𝑖=1

(y𝑖(1)− y𝑖(0)) = 𝜏F .

Importantly, the central objects of our interest can be represented as the image of a linear

operator applied to the population S -conditional measure. Consequently, construction of

empirical approximations to the population S -conditional measure will play crucially into

our analyses.

In each of the three models of Section 4.3.1, we define Neyman’s weak null as follows.
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Definition 5. For a 𝑃 -measurable event S , Neyman’s S -weak null is the null hypothesis

𝐻𝑁,S : 𝜏S = 0.

Consequently, Neyman’s ∅-weak null is the null 𝜏pate = 0, Neyman’s C -weak null is the null

𝜏cate = 0, and Neyman’s F -weak null is the null 𝜏 sate = 0.

Most common test statistics deployed in practice for inferences of 𝐻𝑁,S are of the form

𝑇S (y(Z)) = 𝑓𝜉

(︁√
𝑁 (𝜏(y(Z))− 𝜏S )

)︁
= 𝑓𝜉

(︁√
𝑁 (𝜏(y(Z))−Δ(𝒫S ))

)︁
, (1)

where 𝜏(y(Z)) = 𝑛−1
1

∑︀
𝑖 : 𝑍𝑖=1 𝑦𝑖(𝑍𝑖)−𝑛−1

0

∑︀
𝑖 : 𝑍𝑖=0 𝑦𝑖(𝑍𝑖) is the observed difference in means

and 𝑓𝜂 satisfies the following condition:

Condition 3. For any 𝜂 ∈ Ξ, 𝑓𝜂(·) : R𝑑 ↦→ R+ is continuous, quasi-convex, and nonnegative

with 𝑓𝜂(𝑡) = 𝑓𝜂(−𝑡) for all 𝑡 ∈ R𝑑. Furthermore, 𝑓𝜂(𝑡) is jointly continuous in 𝜂 and 𝑡.

We allow for 𝑓 to depend upon a data-dependent parameter 𝜉(y(Z)) which takes values

in some metric space Ξ. Later on we will introduce a mild regularity condition for 𝜉(·) in

order to enforce its compatibility with the resampling algorithms we develop. We include

several example test statistics that are common for applied use which satisfy Condition 3

and are compatible with the methods and further conditions which we introduce below.

Example 13 (Absolute Difference in Means). Suppose the potential outcomes are univari-

ate, then the absolute difference in means
√
𝑁 |𝜏(y(Z))− 𝜏S | satisfies Condition 3 with

𝑓𝜂(𝑡) = |𝑡| and 𝜉 = 1.

Example 14 (Multivariate Studentized Statistic). Take 𝑑 ≥ 1 and consider the multivariate
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studentized statistic

𝑇 (𝜒2)(y(Z)) =
(︁√

𝑁 (𝜏(y(Z))− 𝜏S )
)︁𝑇

𝑉 −1
𝜏𝜏

(︁√
𝑁 (𝜏(y(Z))− 𝜏S )

)︁
; (2)

𝑉𝜏𝜏 =
𝑁

𝑛1

Σ̂𝑦(1) +
𝑁

𝑛0

Σ̂𝑦(0).

with Σ̂𝑦(𝑍) the sample covariance matrix of the 𝑦(𝑧) potential outcomes. For this test statistic,

𝑓𝜂(𝑡) = 𝑡𝑇𝜂−1𝑡 and 𝜉 = 𝑉𝜏𝜏 . This test statistic benefits from numerous desirable properties

and is proposed for use in applied multivariate causal inference contexts (WD21).

Example 15 (Pooled Studentized Statistic). Again with 𝑑 ≥ 1 a practitioner may instead

consider proceeding with the more typical Hotelling 𝑇 -squared statistic based upon a pooled

covariance estimator

𝑇 (𝑃𝑜𝑜𝑙)(y(Z)) =
(︁√

𝑁 (𝜏(y(Z))− 𝜏S )
)︁𝑇 (︁

𝑉𝑃𝑜𝑜𝑙

)︁−1 (︁√
𝑁 (𝜏(y(Z))− 𝜏S )

)︁
;

𝑉𝑃𝑜𝑜𝑙 =

(︂
𝑁

𝑛0

+
𝑁

𝑛1

)︂(︃
(𝑛1 − 1)Σ̂𝑦(1) + (𝑛0 − 1)Σ̂𝑦(0)

𝑛1 + 𝑛0 − 2

)︃
.

For this test statistic, 𝑓𝜂(𝑡) = 𝑡𝑇𝜂−1𝑡 as before, but 𝜉 = 𝑉𝑃𝑜𝑜𝑙. While this test statistic lacks

the desirable properties of 𝑇 (𝜒2) detailed by (WD21) our methods below will still provide

asymptotically valid inferences for practitioners wishing to use 𝑇 (𝑃𝑜𝑜𝑙).

Example 16 (Maximum Absolute 𝑡-Statistic). As an alternative to 𝑇 (𝜒2) and 𝑇 (𝑃𝑜𝑜𝑙) one

may instead seek to extract the largest signal-to-noise ratio across each of the outcomes and

use this as evidence of treatment effect; this amounts to

𝑇 (|𝑚𝑎𝑥|)(y(Z)) = max
1≤𝑗≤𝑑

√
𝑁 |𝜏(y(Z))− 𝜏S |𝑗√︁

𝑉𝜏𝜏,𝑗𝑗

,

where 𝑉𝜏𝜏,𝑗𝑗 is the 𝑗𝑗th element of 𝑉𝜏𝜏 . For this statistic, 𝑓𝜂(𝑡) = max1≤𝑗≤𝑑 |𝑡𝑗|/𝜂𝑗, and
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𝜉 = (𝑉
1/2
𝜏𝜏,11, . . . , 𝑉

1/2
𝜏𝜏,𝑑𝑑)

𝑇 . In the univariate case, this coincides with 𝑇 (𝜒2) but its behavior

diverges sharply when 𝑑 > 1.

4.3.3 The Experimental Design

The algorithms of this paper are developed in the context of asymptotically non-degenerate

completely randomized experiments; some of the results are amenable to different exper-

imental designs with only minor modification. The set of allowable treatment allocation

vectors is Ω ⊆ {0, 1}𝑁 and we take our treatment allocation mechanism to be 𝑍 ∼ Unif(Ω).

We consider completely randomized experiments such that

Ω =

{︃
𝑧 ∈ {0, 1}𝑁 :

𝑁∑︁
𝑖=1

𝑧𝑖 = 𝑛1

}︃
.

These the completely randomized design of 𝑍 ∼ Unif(Ω) is thus the experimental design

which selects uniformly at random 𝑛1 units to receive treatment and leaves the remaining

𝑛0 = 𝑁−𝑛1 units to receive control. Generalizations to any finite number of treatment arms

is not challenging; details of the modifications required are included in (CF22, Appendix

Section E). We require that the treatment allocation is asymptotically non-degenerate; i.e.,

there exists 𝑝 ∈ (0, 1) such that lim𝑁→∞𝑁−1𝑛1 = 𝑝.

4.4 Conservative Resampling Algorithms And Error Rate

Control

In fixed covariate and finite population models first-order correct inference against 𝐻𝑁,S for

test statistics of the form (1) is impossible without further assumptions. This is fundamen-

tally due to the unidentifiability of the variability in 𝑇S (y(Z)) driven by variance in the

treatment effects 𝑦𝑖(1) − 𝑦𝑖(0), an observation which dates back to Jerzy Neyman (Ney90).
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Instead, one is forced to seek potentially conservative inference: while desiring to control the

asymptotic Type I error rate at exactly some prescribed 𝛼 ∈ (0, 1) it is generally only possi-

ble to guarantee that the Type I error rate may be less than or equal to 𝛼 in the limit. Below

we construct a general understanding resampling algorithms which may not be first-order

correct but nonetheless retain asymptotic control of the probability of false rejection.

Let 𝒜𝑇 (𝑍) denote a algorithm which takes observed units {(𝑦𝑖(𝑍𝑖), 𝑥𝑖}𝑁𝑖=1 as inputs and

generates a random variable conditional upon {(𝑦𝑖(𝑍𝑖), 𝑥𝑖}𝑁𝑖=1. We consider algorithms which

create some imputed population based upon the observations {(𝑦𝑖(𝑍𝑖), 𝑥𝑖}𝑁𝑖=1 and evaluates

some test statistic 𝑇S (·) upon this new population; as such we denote the output of 𝒜𝑇 (𝑍)

as 𝑇 *(𝑦*(𝑍)). In the remainder of our analyses we examine the conditional distribution of

𝑇 *(𝑦*(𝑍)) given {(𝑦𝑖(𝑍𝑖), 𝑥𝑖}𝑁𝑖=1 and 𝑍; through this lens one can view 𝒜𝑇 (𝑍) as constructing

a distributional estimator ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) which captures the salient features of the

inference problem at hand. In classical i.i.d. models, resampling algorithms are frequently

designed such that ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) converges weakly either almost surely or in prob-

ability to the true distribution of the test statistic at hand; frequently such analyses leverage

Glivenko-Cantelli-style results and an argument of (LR05, Theorem 15.4.1). Below we show

that such techniques are applicable for superpopulation level inference problems, but are

fundamentally impeded by the unidentifiable variance of treatment effects in fixed covari-

ate and finite population models. Instead we develop a framework based upon first-order

stochastic dominance (SS07).

Definition 6. We say that a resampling procedure 𝒜𝑇 (𝑍) which generates a distributional

estimator ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) is (strongly) consistently conservative if

𝜌𝐵𝐿 (ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) ,ℒ(𝒳 ))
𝑎.𝑠.−−→ 0

where ℒ(𝒳 ) (first-order) stochastically dominates the weak limit of ℒ (𝑇S (y(Z))) under the

null 𝐻𝑁,S .
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A strongly consistently conservative resampling algorithm automatically provides hy-

pothesis tests with guaranteed control of the probability of false rejection. Let 𝑄* denote

the quantile function of ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) so that 𝑄*(1 − 𝛼) is the (1 − 𝛼)th quantile

of ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍). Define the test 𝜙𝛼(y(Z)) for 𝛼 ∈ (0, 1) as

𝜙𝛼(y(Z)) = 1{𝑇S (y(Z))≥𝑄*(1−𝛼)}.

The test 𝜙𝛼(y(Z)) rejects the null when 𝑇S (y(Z)) exceeds the (1− 𝛼)th quantile of

ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) .

Informally stated, the probability of false rejection is controlled by strongly consistently

conservative resampling algorithms.

Theorem 1. If the data is generated according to 𝒫S , 𝒜𝑇 (𝑍) is strongly consistently con-

servative, and both ℒ(𝒳 ) and the weak limit of ℒ (𝑇S (y(Z))) under the null 𝐻𝑁,S possess

continuous and strictly increasing cumulative distribution functions then

lim
𝑁→∞

E [𝜙𝛼(y(Z)) | 𝐻𝑁,S ] ≤ 𝛼 ∀𝛼 ∈ (0, 1).

The main contribution of this paper is twofold: the construction of a generic formulation

of consistently conservative resampling procedures for roots of the form (1) and a collection

of three example resampling procedures which are tailored to the superpopulation, fixed

covariate, and finite population frameworks, respectively.
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4.5 Constructing Conservative Resampling Algorithms Via

Variance Overestimation

Although Definition 6 is quite general for test statistics in the form of (1) one can construct

a generic recipe for consistently conservative resampling algorithms. This builds upon a

fundamental result of Anderson (And55) which has a particularly clean interpretation for

multivariate Gaussian random variables (Ton90, Theorem 4.2.5).

Theorem 2 (Anderson’s Theorem). Consider two multivariate Gaussian random variables

𝒳 ∼ 𝒩 (0, 𝑆𝒳 ) and 𝒴 ∼ 𝒩 (0, 𝑆𝒴). If 𝑆𝒳 ⪯ 𝑆𝒴 in the Loewner partial order then

P (𝒳 ∈ 𝐵) ≥ P (𝒴 ∈ 𝐵)

for any convex set 𝐵 which is mirror symmetric about the origin (i.e., 𝑥 ∈ 𝐵 ⇐⇒ −𝑥 ∈ 𝐵).

Mild conditions on 𝒫S ensure that
√
𝑁 (𝜏(y(Z))− 𝜏S ) obeys a central limit theorem;

sufficient conditions are detailed explicitly in our supplementary material. The asymptotic

variance of the limit is dependent upon the data generating procedure, specifically 𝒫S ;

for now we simply write that
√
𝑁 (𝜏(y(Z))− 𝜏S )

𝑑−→ 𝒩 (0,Σ). Assuming that 𝜉(y(Z)) 𝑝−→

𝜉 it follows that the asymptotic distributional behavior of 𝑇S (y(Z)) is given by the 𝑓𝜉-

pushforward of the Gaussian measure 𝛾0,Σ. Condition 3 ensures that the preimage of the set

(∞, 𝑡] under 𝑓𝜂 is convex and mirror symmetric for any 𝑡 ∈ R≥0. Consequently, Anderson’s

theorem naturally suggests an approach for constructing consistently conservative resampling

procedures: design 𝒜𝑇 (𝑍) such that 𝜌𝐵𝐿 (ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) ,ℒ(𝒳 ))
𝑎.𝑠.−−→ 0 where ℒ(𝒳 )

is 𝑓𝜉-pushforward of the Gaussian measure 𝛾0,Σ̃ and Σ̃ ⪰ Σ.

Example 17 (Gaussian Parametric Bootstrap). Consider the absolute difference in means

statistic
√
𝑁 |𝜏(y(Z))− 𝜏S | and suppose a variance estimator 𝑉 is available such that

𝑉
𝑎.𝑠.−−→ Σ̃. Take 𝒜𝑇 (𝑍) to generate 𝑇 *(𝑦*(𝑧)) = |𝒳 (𝑁)| with 𝒳 (𝑁) an independent draw
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from 𝒩
(︁
0, 𝑉

)︁
. This procedure aligns with the concept of the parametric bootstrap (ST95,

Example 1.6). Such parametric distributional estimators play a critical role for causal infer-

ence via Gaussian prepivoting (CF22).

A detailed analysis in Section 4.14.3 of our supplementary material provides proof that

this recipe is indeed rigorously justified. The remainder of this paper is devoted to construct-

ing three resampling procedures in accordance with this program which have more desirable

properties than the simple parametric example presented above. From a practical perspec-

tive, the parametric bootstrap example proposed above fails to possess the automaticity of

Efron’s i.i.d. bootstrap; this automaticity is itself a clear driver of the pervasive use of the

Efron’s i.i.d. bootstrap in industry and applied sciences. From a theoretical perspective,

in classical models the parametric bootstrap lacks the higher-order correctness properties of

Efron’s i.i.d. bootstrap (ST95, Section 3.3), (LR05, Section 15.5).

4.6 The I.I.D. Bootstrap At The Superpopulation Level

To use a test statistic 𝑇S (y(Z)) in a test of the superpopulation weak null 𝐻𝑁,∅ it suffices to

construct a sufficiently high fidelity estimate of the null distribution of 𝑇S (y(Z)). A natural

starting point for such an objective is to estimate

ℒ ((𝑦𝑖(0), 𝑦𝑖(1), 𝑥𝑖)) .

However, in an experiment the pairs (𝑦𝑖(0), 𝑦𝑖(1)) are never observed, so the joint structure

of ℒ ((𝑦𝑖(0), 𝑦𝑖(1), 𝑥𝑖)) is inherently unidentifiable. However, one may leverage the observed

data {(𝑦𝑖(𝑍𝑖), 𝑥𝑖, 𝑍𝑖)}𝑁𝑖=1 to estimate the projections ℒ ((𝑦𝑖(0), 𝑥𝑖)) and ℒ ((𝑦𝑖(1), 𝑥𝑖)).

Given a treatment allocation vector 𝑧 ∈ Ω, the Horvitz-Thompson empirical measure is
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defined as the pair of empirical measures

𝐹𝑁(𝑧) =
(︁
𝐹 0
𝑁(𝑧), 𝐹

1
𝑁(𝑧)

)︁
=

(︃
1

𝑛0

∑︁
𝑖 : 𝑧𝑖=0

𝛿(𝑦𝑖(𝑧𝑖),𝑥𝑖),
1

𝑛1

∑︁
𝑖 : 𝑧𝑖=1

𝛿(𝑦𝑖(𝑧𝑖),𝑥𝑖)

)︃
.

The measure 𝐹 1
𝑁(𝑍) is the observed empirical joint measure of outcomes and covariates

in the group of individuals which received treatment, and 𝐹 0
𝑁(𝑍) is its control analogue.

The Horvitz-Thompson empirical measure is an attempt to form an empirical approxima-

tion to the true, but unobserved, population S -conditional measure. Although 𝐹𝑁(𝑧) only

approximates the projections of ℒ ((𝑦𝑖(0), 𝑦𝑖(1), 𝑥𝑖)) we demonstrate that it suffices for in-

ferences based upon test statistics of the form (1). At the superpopulation level this should

be unsurprising since the distribution of 𝜏(y(Z)) depends only on the marginal structure

ℒ(𝑦𝑖(0)) and ℒ(𝑦𝑖(1)). However, we show further on that resampling based upon the Horvitz-

Thompson empirical measure is conservative under fixed covariate and finite population

models despite the fact that the distribution of 𝜏(y(Z)) depends upon the joint structure of

{(𝑦𝑖(0), 𝑦𝑖(1))}𝑁𝐼=1 in these models.

Suppose that the test statistic 𝑇S (y(Z)) is the simple difference in means between the

outcomes of the treated and control groups

√
𝑁

(︃
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

𝑦𝑖(𝑍𝑖)−
1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

𝑦𝑖(𝑍𝑖)⏟  ⏞  
𝜏(y(Z))

−𝜏S

)︃
=

√
𝑁
(︁
E𝐹 1

𝑁 (𝑍) [Π𝑦(𝑦, 𝑥)]− E𝐹 0
𝑁 (𝑍) [Π𝑦(𝑦, 𝑥)]− 𝜏S

)︁
.

Writing 𝐹 0 as the projection of the distribution of (𝑦1(0), 𝑦1(1), 𝑥1) onto the coordinates

indexed by 𝐼0 and 𝐹 1 as the analogous projection onto the coordinates indexed by 𝐼1 we

can rewrite 𝜏 ∅ = E𝐹 1 [Π𝑦 (𝑦, 𝑥)] − E𝐹 0 [Π𝑦 (𝑦, 𝑥)]. Then it follows that 𝑇∅(y(Z)) relies upon

a plug-in estimator for 𝜏 ∅ where the true distributions 𝐹 0 and 𝐹 1 are replaced by their
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empirical counterparts 𝐹 0
𝑁(𝑍) and 𝐹 1

𝑁(𝑍), respectively.

To estimate the distribution of 𝑇∅(y(Z)) we follow the classical two-sample bootstrap

approach: take {(𝑦*𝑖 (0), 𝑥*𝑖 )}
𝑛0

𝑖=1

𝑖𝑖𝑑∼ 𝐹 0
𝑁 and independently take {(𝑦*𝑖 (1), 𝑥*𝑖 )}

𝑛1

𝑖=1

𝑖𝑖𝑑∼ 𝐹 1
𝑁 . Define

the bootstrapped Horvitz-Thompson measure as

(︁
𝐹 0,*
𝑁 (𝑧), 𝐹 1,*

𝑁 (𝑧)
)︁
=

(︃
1

𝑛0

∑︁
𝑖 : 𝑧𝑖=0

𝛿(𝑦*𝑖 (𝑧𝑖),𝑥*
𝑖 )
,

1

𝑛1

∑︁
𝑖 : 𝑧𝑖=1

𝛿(𝑦*𝑖 (𝑧𝑖),𝑥*
𝑖 )

)︃
. (3)

The so-called bootstrap test statistic 𝑇 *(𝑦*(𝑍)) is defined as

𝑇 *(𝑦*(𝑍)) =
√
𝑁

(︃(︁
E𝐹 1,*

𝑁 (𝑍) [Π𝑦(𝑦, 𝑥)]− E𝐹 0,*
𝑁 (𝑍) [Π𝑦(𝑦, 𝑥)]

)︁
⏟  ⏞  

Bootstrap Resampling Term

−

(︁
E𝐹 1

𝑁 (𝑍) [Π𝑦(𝑦, 𝑥)]− E𝐹 0
𝑁 (𝑍) [Π𝑦(𝑦, 𝑥)]

)︁
⏟  ⏞  

Centering by Empirical Means

)︃
. (4)

The conditional distribution of 𝑇 *(𝑦*(𝑍)) given the original data is

ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) ;

this conditional distribution is taken as an empirical proxy for ℒ (𝑇S (y(Z))), the true dis-

tribution of 𝑇S (y(Z)). The hope of bootstrap inference is that

ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) provides a sufficiently close approximation to ℒ (𝑇S (y(Z))) so that

inferences for 𝑇S (y(Z)) can be based upon the computable quantity

ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) instead of the experimentally unknowable quantity

ℒ (𝑇S (y(Z))). Indeed this is classically observed to be the case in the superpopulation

two-sample model (LR05, Section 15.4.2).

Through an application of the continuous mapping theorem the result for the difference

in means
√
𝑁𝜏 (y(Z)) can be enlarged the far wider class of test statistics of the form (1)
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where the parameter 𝜉 obeys the following condition:

Condition 4. There exists 𝜉 ∈ Ξ such that, with 𝑍 ∼ Unif(Ω),

1. 𝜉(y(Z)) 𝑝−→ 𝜉

2. 𝜉(𝑦*(𝑍)) | y(Z), 𝑍 𝑝−→ 𝜉 almost surely with respect to y(Z) and 𝑍.

For the remainder of our results we assume the test statistic 𝑇S (y(Z)) to be of the

form (1) and that Conditions 3 and 4 hold. For a test statistic of the form (1) the i.i.d.

bootstrapped test statistic is

𝑇 *(𝑦*(𝑍)) = 𝑓𝜉*

(︃
√
𝑁

(︃(︁
E𝐹 1,*

𝑁 (𝑍) [Π𝑦(𝑦, 𝑥)]− E𝐹 0,*
𝑁 (𝑍) [Π𝑦(𝑦, 𝑥)]

)︁
−

(︁
E𝐹 1

𝑁 (𝑍) [Π𝑦(𝑦, 𝑥)]− E𝐹 0
𝑁 (𝑍) [Π𝑦(𝑦, 𝑥)]

)︁)︃)︃
, (5)

where 𝜉* is the value of 𝜉 evaluated on the data {(𝑦*𝑖 (0), 𝑥*𝑖 )}
𝑛0

𝑖=1 and {(𝑦*𝑖 (1), 𝑥*𝑖 )}
𝑛1

𝑖=1.

The i.i.d. bootstrap procedure of (3) and (5) constructs the bootstrap statistic 𝑇 * (𝑦*(𝑍))

as a functional of the bootstrapped empirical processes 𝐹 0,*
𝑁 (𝑍) and 𝐹 1,*

𝑁 (𝑍). This resampling

procedure is classically popular, but it contravenes the typical advice that ones’ resampling

ought to mirror the data-generating process: notably, the i.i.d. bootstrap procedure of (3)

and (5) captures the model-based i.i.d. structure of the superpopulation data generating

process for {(𝑦𝑖(0), 𝑦𝑖(1), 𝑥𝑖)} but ignores the design-based aspect that the observed data

{(𝑦𝑖(𝑍𝑖), 𝑥𝑖)}𝑁𝑖=1 arose from a completely randomized experiment. In fact, the i.i.d. bootstrap

procedure of (3) and (5) can be viewed in the light of a design-based resampling procedure

which captures both the i.i.d. superpopulation model and the completely randomized design;

Algorithm 1 constructs this resampling procedure.

Algorithm 1 exactly enumerates the sampling distribution of the random variable con-

structed by sampling 𝑁 draws uniformly with replacement from the observed treated and
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Algorithm 1: A “pairs bootstrap”-based distributional estimator.
Input: An observed treatment allocation 𝑍 ∈ Ω.
Result: The bootstrap distributional estimator ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍).
Define

𝐶 = {(𝑦𝑖(𝑍𝑖), 𝑥𝑖) : 𝑍𝑖 = 0} ,
𝑇 = {(𝑦𝑖(𝑍𝑖), 𝑥𝑖) : 𝑍𝑖 = 1} .

for (𝐷0, 𝐷1) ∈ 𝒫(𝑁,𝐶)× 𝒫(𝑁, 𝑇 ) do
Say that

𝐷0 = {(𝑦*𝑖 (0), 𝑥*𝑖0)}𝑁𝑖=1,

𝐷1 = {(𝑦*𝑖 (1), 𝑥*𝑖1)}𝑁𝑖=1.

for 𝐵 ∈ Ω do
Generate the “bootstrap experimental observations"

{(𝑦*𝑖 (0), 𝑥*𝑖0) : 𝐵𝑖 = 0} ∪ {(𝑦*𝑖 (1), 𝑥*𝑖1) : 𝐵𝑖 = 1}.

Compute 𝑇S (·) using the bootstrap experimental observations with
centering by E𝐹 1

𝑁
[(𝑦, 𝑥)]− E𝐹 0

𝑁
[(𝑦, 𝑥)], denote this 𝑇 *

𝐷0,𝐷1,𝐵
.

end
end
return

ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) =
∑︀

𝐷0,𝐷1,𝐵
𝛿𝑇 *

𝐷0,𝐷1,𝐵⃒⃒⃒
𝒫(𝑁,𝐶)× 𝒫(𝑁, 𝑇 )× Ω

⃒⃒⃒ .

control populations, then running a completely randomized experiment on this imputed

population by selecting a new independent treatment allocation 𝐵 ∼ Unif(Ω), and finally

computing 𝑇S (·) on the “experimental data” observed under the treatment allocation 𝐵.

By exploiting the i.i.d. nature of the superpopulation model and the independence of the

treatment allocation process it follows that Algorithm 1 indeed generates the conditional

distribution of (5). However, Algorithm 1 highlights how (5) can be viewed in the light of

creating a full imputed population of 𝑁 individuals and then allocating a new treatment
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vector to this population. This insight will play crucially into our subsequent resampling

schemes.

Theorem 3. In the superpopulation model, subject to mild assumptions, the i.i.d. bootstrap

of Algorithm 1 is strongly consistent in the sense that for any test statistic of the form (1)

satisfying Conditions 3 and 4

𝜌𝐵𝐿 (ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) ,ℒ (𝑇∅(y(Z))))
𝑎.𝑠.−−→ 0.

Theorem 3 prompts the natural question: How does the i.i.d. bootstrap of (3) and (5)

behave in the fixed covariate model and the finite population model? In the superpopula-

tion model, the i.i.d. data generating process of the (𝑦𝑖(0), 𝑦𝑖(1), 𝑥𝑖) is cleanly replicated

by the i.i.d. resampling used in the formation of (3). However, the fixed covariate model

retains independence between the (𝑦𝑖(0), 𝑦𝑖(1),x𝑖) but these are no longer necessarily iden-

tically distributed; consequently, i.i.d. resampling from the Horvitz-Thompson empirical

measure 𝐹𝑁(𝑍) fails to emulate the data generating process. The finite population model

demonstrates this divergence even more starkly; there the data generating procedure inherits

randomness only though the allocation of treatment 𝑍 ∼ Unif(Ω) and i.i.d. resampling from

𝐹𝑁(𝑍) resembles nothing of the original generative model. Nevertheless, in both models

the i.i.d. bootstrap is still convergent in the sense that ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) limits in the

𝜌𝐵𝐿-metric to a fixed distribution in ℳ(R); however the limit no longer matches that of

ℒ (𝑇S (y(Z))) for S = C or F . Despite this disagreement between the limit and the truth,

the i.i.d. bootstrap remains inferentially useful.

Theorem 4. Under the fixed covariate and finite population models the i.i.d. bootstrap of (3)

and (5) is strongly consistently conservative for any test statistic of the form (1) satisfying

Conditions 3 and 4 .

Remark 1. For some intuition regarding Theorem 4 in the finite population case con-
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sider the analogous procedure in the context of survey sampling. Consider a survey con-

ducted by uniformly sampling 𝑛 units from 𝑁 individuals without replacement. Write the

empirical mean of this sample as ^̄𝑋. Under mild conditions, the i.i.d. bootstrap condi-

tional distribution for
√
𝑁 ^̄𝑋 converges almost surely in the 𝜌𝐵𝐿-metric to 𝒩 (0,Σ𝑏𝑜𝑜𝑡) while

the true distribution of
√
𝑁 ^̄𝑋 converges to 𝒩 (0,Σ) where generally Σ𝑏𝑜𝑜𝑡 ≥ Σ (MHL16).

Consequently, by Anderson’s Theorem (Ton90, Theorem 4.2.5), the i.i.d. bootstrap condi-

tional distribution for 𝑓𝜉*
(︁√

𝑁
(︁
^̄𝑋* − ^̄𝑋

)︁)︁
stochastically dominates the true distribution

of 𝑓𝜉
(︁√

𝑁
(︁
^̄𝑋 − E

[︁
^̄𝑋
]︁)︁)︁

. Thus, in the context of survey sampling the i.i.d. bootstrap is

strongly consistently conservative.

Theorem 3 reflects the ability to consistently estimate the variance of 𝜏(y(Z)) under the

superpopulation model; in fact, writing 𝑉1 as the variance of

ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) with 𝑇S (y(Z)) =
√
𝑁 (𝜏(y(Z))− 𝜏 ∅) yields a consistent variance

estimator for
√
𝑁𝜏(y(Z)) in a superpopulation. Theorem 4 reflects the fact that 𝑉1 is

conservative in a fixed covariate or finite population model.

Theorem 5. The conditional bootstrap variance estimator 𝑉1 converges in probability to

lim𝑁→∞V
(︁√

𝑁𝜏(y(Z))
)︁

under 𝒫∅. Under 𝒫C and 𝒫F the variance estimator 𝑉1 converges

in probability to a conservative limit, in the sense of the Loewner partial order, for the

variance of
√
𝑁𝜏(y(Z)) in a fixed covariate or finite population model; formally under both

𝒫C and 𝒫F

plim𝑁→∞ 𝑉1 = 𝑉1 ⪰ lim
𝑁→∞

V
(︁√

𝑁𝜏(y(Z))
)︁
.

While Theorems 3 and 4 imply that the i.i.d. bootstrap can be used for asymptotically

valid inference against 𝐻𝑁,S with S = ∅, C , or F Theorem 4 shows that there is room for

improvement in the case that S = C , or F since it may well be that the limiting behavior of

the conditional bootstrap distribution is needlessly overconservative. The same story is told

by Theorem 5: 𝑉1 is consistent in a superpopulation but there may be alternative variance
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estimators for
√
𝑁𝜏(y(Z)) which outperform 𝑉1 in fixed covariate and finite population

models.

4.7 A Residual Bootstrap At The Fixed-Covariate Level

In order to refine the results from Section 4.6 we begin by tailoring to the case of S = C

wherein we take the covariates to be fixed for each individual but allow for randomness in

the potential outcomes. As in the superpopulation case, we begin with a resampling scheme

for
√
𝑁𝜏(y(Z)). Motivated by Algorithm 1 we construct an imputed population; however, in

this case we leverage the deterministic covariates of the population C -conditional measure

to reduce the potential conservativeness of the bootstrapping procedure. We construct a

resampling method inspired by the residual bootstrap (Efr79, ST95). Relying upon only the

observed data {(𝑦𝑖(𝑍𝑖),x𝑖)}𝑁𝑖=1 we attempt to glean information of the conditional distribu-

tion 𝑃x in the population C -conditional measure. To this end we use a linear approximation

of 𝑃x, though we make no assumption that the linear model is well-specified; this reflects the

model-agnostic framework of (BBB+19, BBK+19). Even under arbitrary misspecification of

the linear model our results will hold, demonstrating a surprising robustness to the true latent

structure of the population C -conditional measure. In Section 4.9 we provide simulations

illustrating the results below where the true feature-outcome relationship is nonlinear.

Regardless of the relationship between outcomes and covariates in the population C -

conditional measure one may seek an optimal solution to the population 𝐿2-norm linear
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approximation and its empirical approximation; for 𝑧 ∈ {0, 1}

�̇�𝑧 = argmin
𝛽∈R𝑑×(𝑘+1)

𝑁∑︁
𝑖=1

E

⎡⎣⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒𝑦𝑖(𝑧)− 𝛽

⎡⎣ 1

x𝑖

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
2

2

⃒⃒⃒⃒
𝑥𝑖

⎤⎦ (6)

𝛽𝑧 = argmin
𝛽∈R𝑑×(𝑘+1)

∑︁
𝑖 : 𝑍𝑖=𝑧

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒𝑦𝑖(𝑧)− 𝛽

⎡⎣ 1

x𝑖

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
2

2

. (7)

Under mild conditions these optimization problems are strictly convex and admit closed-form

unique optimal solutions. However, when the systems are underdetermined uncountably

many solutions exist. In such cases our results proceed without major modification by

selecting a canonical representative of this class of solutions, for instance using the Moore-

Penrose pseudoinverse in place of the matrix inverses used in defining �̇�𝑧 and 𝛽𝑧 suffices; for

more details of this argument we direct the reader to (CF21, Appendix G).

After computing 𝛽𝑧 predicted potential outcomes (�̂�0(x𝑖), �̂�1(x𝑖)) are available for each

individual, regardless of the original treatment allocation 𝑍, given by

�̂�𝑧(x𝑖) = 𝛽𝑧

⎡⎣ 1

x𝑖

⎤⎦ ; (8)

the imputed outcomes �̂�𝑧(x𝑖) are the 𝐿2-optimal linear approximations of the true outcomes

given the observed outcomes y(Z) and the covariates x𝑖. For each observed outcome the im-

puted potential outcome defines a residual 𝜖𝑖(𝑍𝑖) = 𝑦𝑖(𝑍𝑖)− �̂�𝑍𝑖
(x𝑖); since the counterfactual

𝑦𝑖(1−𝑍𝑖) is never observed only one residual can be computed for each individual in accor-

dance with the assigned treatment allocation 𝑍𝑖. Consequently, one observes 𝑛𝑧 residuals

𝜖𝑖(𝑧); from these observed residuals form their Horvitz-Thompson empirical measures

𝐹𝑁(𝑧) =
(︁
𝐹 0
𝑁(𝑧), 𝐹

1
𝑁(𝑧)

)︁
=

(︃
1

𝑛0

∑︁
𝑖 : 𝑧𝑖=0

𝛿(𝜖𝑖(𝑧𝑖),𝑥𝑖),
1

𝑛1

∑︁
𝑖 : 𝑧𝑖=1

𝛿(𝜖𝑖(𝑧𝑖),𝑥𝑖)

)︃
.
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Remark 2. By the Karush-Kuhn-Tucker first order optimality conditions of ordinary least

squares regression, the sample mean of the residuals is zero in each coordinate; formally

𝑛−1
𝑧

∑︀
𝑖 : 𝑍𝑖=𝑧 𝜖𝑖(𝑧) = 0 for 𝑧 ∈ {0, 1}.

The residual bootstrap approximates the conditional distribution 𝑃x𝑖
by the distribution

of (�̂�0(x𝑖) + 𝜖*𝑖 (0), �̂�1(x𝑖) + 𝜖*𝑖 (1)) where

𝜖*𝑖 (0) = Π𝜖(0)(𝜖(0),x𝑖) with (𝜖(0),x𝑖) ∼ 𝐹 0
𝑁(𝑍),

𝜖*𝑖 (0) = Π𝜖(1)(𝜖(1),x𝑖) with (𝜖(1),x𝑖) ∼ 𝐹 1
𝑁(𝑍).

Denote the approximated conditional distribution formed in this manner as 𝑃x𝑖
. Just as

the i.i.d. bootstrapped Horvtiz-Thompson measure (3) attempted to approximate the pro-

jections of the population ∅-conditional measure one can approximate the population C -

conditional measure via
1

𝑁

𝑁∑︁
𝑖=1

(𝑃x𝑖
, 𝛿x𝑖

) ≈ 1

𝑁

𝑁∑︁
𝑖=1

(𝑃x𝑖
, 𝛿x𝑖

).

In the spirit of Algorithm 1 we use this distributional approximation to form an imputed

population and allocate new treatments over this imputed population; Algorithm 2 details

the procedure.

For 𝑧 ∈ {0, 1}, using the unobserved quantity �̇�𝑧 define

�̇�𝑧(x𝑖) = �̇�𝑧

⎡⎣ 1

x𝑖

⎤⎦ ,
�̇�𝑖(𝑧) = 𝑦𝑖(𝑧)− �̇�𝑧(x𝑖).

In the terminology of (DFM19) the systematic treatment effect variation is �̇�𝑖(1)− �̇�𝑖(0) while

the idiosyncratic treatment effect variation is �̇�𝑖(1)− �̇�𝑖(0). Algorithm 2 refines the conserva-

tiveness of the i.i.d. resampling bootstrap of Algorithm 1 by leveraging the fixed covariates
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Algorithm 2: A residual-based distributional estimator.
Input: An observed treatment allocation 𝑍 ∈ Ω.
Result: The bootstrap distributional estimator ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍).
Compute the imputed values (�̂�0(x𝑖), �̂�1(x𝑖)) according to (8) and define

𝐶 = {(𝜖𝑖(𝑍𝑖)) : 𝑍𝑖 = 0} ,
𝑇 = {(𝜖𝑖(𝑍𝑖)) : 𝑍𝑖 = 1} .

for (𝐷0, 𝐷1) ∈ 𝒫(𝑁,𝐶)× 𝒫(𝑁, 𝑇 ) do
Say that

𝐷0 = {(𝜖*𝑖 (0))}𝑁𝑖=1,

𝐷1 = {(𝜖*𝑖 (1))}𝑁𝑖=1.

for 𝐵 ∈ Ω do
Generate the “bootstrap experimental observations"

{(�̂�0(x𝑖) + 𝜖*𝑖 (0),x𝑖) : 𝐵𝑖 = 0} ∪ {(�̂�1(x𝑖) + 𝜖*𝑖 (1),x𝑖) : 𝐵𝑖 = 1}.

Compute 𝑇S (·) using the bootstrap experimental observations with
centering by 1

𝑁

∑︀𝑁
𝑖=1 (�̂�1(x𝑖)− �̂�0(x𝑖)), denote this 𝑇 *

𝐷0,𝐷1,𝐵
.

end
end
return

ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) =
∑︀

𝐷0,𝐷1,𝐵
𝛿𝑇 *

𝐷0,𝐷1,𝐵⃒⃒⃒
𝒫(𝑁,𝐶)× 𝒫(𝑁, 𝑇 )× Ω

⃒⃒⃒ .

to predict systematic treatment effect variation, �̂�1(x𝑖) − �̂�0(x𝑖), while resampling residu-

als, 𝜖𝑖(𝑍𝑖), to account for variability in treatment effects 𝑦𝑖(1) − 𝑦𝑖(0) due to idiosyncratic

variation.

Theorem 6. In the fixed covariate model, subject to mild assumptions:

1. The residual bootstrap of Algorithm 2 is strongly consistently conservative for any test

statistic of the form (1) satisfying Conditions 3 and 4 regardless of the truth of the

linear model.
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2. If the linear model is asymptotically well-specified in the sense that �̇�𝑖(1) are indeed

i.i.d. – and likewise �̇�𝑖(0) are i.i.d. – with cov (�̇�𝑖(0), �̇�𝑖(1)) = 0𝑑×𝑑, then the residual

bootstrap is also strongly consistent in the sense that

𝜌𝐵𝐿 (ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) ,ℒ (𝑇C (y(Z))))
𝑎.𝑠.−−→ 0.

The generic conservativeness of the residual bootstrap in the fixed covariate model is not

an artefact of Algorithm 2, it arises from the inherent unidenifiability of the idiosyncratic

treatment effect variation under the population C -conditional measure. This is driven by the

fact that
√
𝑁 (𝜏(y(Z))− 𝜏C ) depends upon the joint behavior of ℒ ((�̇�𝑖(0), �̇�𝑖(1))) but only

the marginals ℒ (�̇�𝑖(0)) and ℒ (�̇�𝑖(1)) are approximated by 𝐹 0
𝑁(𝑍) and 𝐹 1

𝑁(𝑍), respectively.

At first glance, Theorem 6 does not show that the residual bootstrap is a clear improve-

ment the i.i.d. bootstrap since both are generally consistently conservative under the fixed

covariate model. The residual bootstrap of Algorithm 2 is consistent – rather than consis-

tently conservative – under correct specification of the linear model with i.i.d. residuals.

Definition 7. Consider two algorithms, resampling procedure 𝐴 and resampling proce-

dure 𝐵, which produce distributional estimators

ℒ𝐴 (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) ,

ℒ𝐵 (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) ,

respectively. Resampling procedure 𝐴 is (strongly) more conservative than resampling pro-

cedure 𝐵 if there exists two random variables 𝒜 and ℬ for which

𝜌𝐵𝐿 (ℒ𝐴 (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) ,ℒ (𝒜))
𝑎.𝑠.−−→ 0

𝜌𝐵𝐿 (ℒ𝐵 (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) ,ℒ (ℬ)) 𝑎.𝑠.−−→ 0,
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and 𝒜 stochastically dominates ℬ.

Theorem 7. Under the fixed covariate model the i.i.d. bootstrap is strongly more conserva-

tive than the residual bootstrap for any test statistic of the form (1) satisfying Conditions 3

and 4 regardless of the truth of the linear model.

Theorem 7 demonstrates that, even though both the i.i.d. bootstrap and the residual

bootstrap are consistently conservative under the fixed covariate model, there remains a

preference for the residual bootstrap since it results in inferences which can be no more

conservative than the those arising from the i.i.d. bootstrap. Under a broad array of

conditions, inferences derived from the residual bootstrap will be strictly less conservative

than those derived using the i.i.d. bootstrap.

In Section 4.6 we considered the behavior of the i.i.d bootstrap in the fixed covariate

and finite population models (c.f. Theorem 4), likewise here we examine the behavior of the

residual bootstrap in the finite population model.

Theorem 8. Under the finite population model the residual bootstrap of Algorithm 2 is

strongly consistently conservative for any test statistic of the form (1) satisfying Conditions 3

and 4 regardless of the truth of the linear model.

In the same vein as Theorem 5, the variance of the conditional bootstrap distribution from

Algorithm 2 for 𝑇S (y(Z)) =
√
𝑁 (𝜏(y(Z))− 𝜏S ) with S = C or F serves as a variance

estimator for
√
𝑁𝜏(y(Z)) in a fixed covariate model or finite population model, respectively.

Denote this variance estimator 𝑉2.

Theorem 9. Under 𝒫C and 𝒫F the variance estimator 𝑉2 converges in probability to a

conservative limit, in the sense of the Loewner partial order, for the variance of
√
𝑁𝜏(y(Z))

in a fixed covariate or finite population model; formally under both 𝒫C and 𝒫F

plim𝑁→∞ 𝑉2 = 𝑉2 ⪰ lim
𝑁→∞

V
(︁√

𝑁𝜏(y(Z))
)︁
.
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Furthermore, in both the fixed covariate and finite population models 𝑉1 ⪰ 𝑉2.

4.8 An Optimal Transport Bootstrap At The Finite Pop-

ulation Level

Theorem 8 suggests that the residual bootstrap of Section 4.7 may result in conservative

inferences at the finite population level. Some of this conservativeness may be due to

inherent unidentifiablility of idiosyncratic treatment effect variation under the population

F -conditional measure. However, just as seen in Theorem 7 there may be resampling pro-

cedures which improve upon Algorithm 2 even though the resulting algorithms themselves

remain consistently conservative. The main result of this section is to construct an asymp-

totically optimal procedure which – while still consistently conservative in general – provides

an asymptotically sharp bootstrap variance estimator. For technical reasons, we take the

potential outcomes to be scalar valued, 𝑑 = 1; in Section 4.10 we discuss the rationale for

this restriction.

To begin our analysis, we examine the distributional behavior of the difference in means
√
𝑁(𝜏(y(Z)) − 𝜏F ) in a finite population. For a given collection of potential outcomes

specified by the event F define

Σ
(𝑁)
𝑧,F =

1

𝑁 − 1

∑︁
𝑖=1

(︃
y𝑖(𝑧)−

1

𝑁

∑︁
𝑗=1

y𝑗(𝑧)

)︃2

for 𝑧 ∈ {0, 1},

Σ
(𝑁)
01,F =

1

𝑁 − 1

∑︁
𝑖=1

(︃
y𝑖(0)−

1

𝑁

∑︁
𝑗=1

y𝑗(0)

)︃(︃
y𝑖(1)−

1

𝑁

∑︁
𝑗=1

y𝑗(1)

)︃
.

In (LD17) Li and Ding show that, under mild conditions,
√
𝑁(𝜏(y(Z))− 𝜏F ) converges
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weakly to a centered Gaussian random variable with variance

𝑉F :=
1− 𝑝

𝑝
Σ1,F +

𝑝

1− 𝑝
Σ0,F + 2Σ01,F ,

Σ𝑧,F = lim
𝑁→∞

Σ
(𝑁)
𝑧,F for 𝑧 ∈ {0, 1},

Σ01,F = lim
𝑁→∞

Σ
(𝑁)
01,F .

Both Σ0,F and Σ1,F can be consistently estimated in a completely randomized experi-

ment (Coc77, Theorem 2.4). Without additional model structure Σ01,F is not consistently

estimable; however, it may be bounded. A preliminary bound on Σ01,F can be achieved via

the Cauchy-Schwarz inequality (Ney90); however, (AGL14) shows that the Cauchy-Schwarz

bound is not optimal and constructs a sharp bound on Σ01,F via the celebrated Frechét-

Hoeffding copula upper bound; we denote their upper bound as 𝑉𝐴𝐺𝐿. The proof that the

𝑉𝐴𝐺𝐿 provides an asymptotically sharp upper bound on Σ01,F rests upon the work of (Tch80).

We provide an alternative construction of 𝑉𝐴𝐺𝐿 via the solution of a Wasserstein metric op-

timization problem; this rederivation provides key insight into the construction of a general

resampling algorithm for inferences under the finite population model.

4.8.1 Interplay Between Sharp Variance Estimation and the Wasser-

stein Metric

Given two probability measures 𝜇 and 𝜈 over R, the 𝑝-Wasserstein distance between 𝜇 and

𝜈 for 𝑝 ≥ 1 is defined as

𝑊𝑝 (𝜇, 𝜈) =

(︂
inf

𝛾∈𝐶(𝜇,𝜈)
E𝛾 [|𝒳 − 𝒴|𝑝]

)︂1/𝑝

,

where 𝐶(𝜇, 𝜈) denotes the collection of all probability measures on R2 which marginalize to

𝜇 and 𝜈 under the coordinate projections and (𝒳 ,𝒴) ∼ 𝛾. The set 𝐶(𝜇, 𝜈) is known as the
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set of couplings of 𝜇 and 𝜈.

In the particular case of 𝑝 = 2, 𝑊 𝑝
𝑝 reduces to

inf
𝛾∈𝐶(𝜇,𝜈)

E𝛾

[︀
|𝒳 − 𝒴|2

]︀
= inf

𝛾∈𝐶(𝜇,𝜈)
E𝛾

[︀
𝒳 2 + 𝒴2 − 2𝒳𝒴

]︀
= inf

𝛾∈𝐶(𝜇,𝜈)

(︀
E𝛾

[︀
𝒳 2
]︀
+ E𝛾

[︀
𝒴2
]︀
− 2E𝛾 [𝒳𝒴 ]

)︀
. (9)

Lemma 1. The optimization problem of (9) admits a unique optimal solution in the sense

that there exists a single 𝛾𝑜𝑝𝑡 ∈ 𝐶(𝜇, 𝜈) for which

E𝛾𝑜𝑝𝑡

[︀
|𝒳 − 𝒴|2

]︀
= inf

𝛾∈𝐶(𝜇,𝜈)
E𝛾

[︀
|𝒳 − 𝒴|2

]︀
.

The result of Lemma 1 is well-known and can be proven via the calculus of variations; we

point the interested reader to (San15, Theorem 2.9) for a specific reference which constructs

𝛾𝑜𝑝𝑡 directly, see also (BF81, Lemma 8.1). In (9) the term E𝛾 [𝒳 2] is determined only by the

marginal distribution of 𝒳 , which is 𝜇 under any choice of 𝛾 ∈ 𝐶(𝜇, 𝜈), so it is a constant

with respect to 𝛾; the same reasoning applies to E𝛾 [𝒴2]. Consequently, 𝛾𝑜𝑝𝑡 which solves (9)

also solves

inf
𝛾∈𝐶(𝜇,𝜈)

(−2)E𝛾 [𝒳𝒴 ] = sup
𝛾∈𝐶(𝜇,𝜈)

E𝛾 [𝒳𝒴 ]

Likewise, because E𝛾 [𝒳 ] and E𝛾 [𝒴 ] are constant with respect to 𝛾, the same 𝛾𝑜𝑝𝑡 solves

sup
𝛾∈𝐶(𝜇,𝜈)

E𝛾 [𝒳𝒴 ] + E𝛾 [𝒳 ]E𝛾 [𝒴 ] = sup
𝛾∈𝐶(𝜇,𝜈)

cov𝛾 (𝒳 ,𝒴) . (10)

In total, we are left with the following result.

Lemma 2. The optimal 2-Wasserstein coupling maximizes the covariance of (𝒳 ,𝒴) for

𝒳 ∼ 𝜇 and 𝒴 ∼ 𝜈.

Lemma 2 is classical; see, for instance, (San15, Section 1.7) or (PZ20, Section 1). Im-
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portantly Lemma 1 proves the existence and uniqueness of a coupling between 𝜇 and 𝜈 but

does not necessarily provide a transport map 𝜙 : R → R for which 𝜙(𝒳 )
d
= 𝒴 . Only under

stronger continuity assumptions on the support of 𝜇 and 𝜈 is such a transport map guaran-

teed to exist (San15, Theorem 2.5). An immediate consequence of Lemma 2 is that one may

construct a sharp upper bound on Σ
(𝑁)
01,F .

Lemma 3. Let (𝑦(0), 𝑦(1), 𝑥) be distributed according to the population F -conditional mea-

sure. Let 𝜇 be the marginal distribution of 𝑦(0) and 𝜈 be the distribution of 𝑦(1); then

Σ
(𝑁)
01,F ≤ 𝑁

𝑁 − 1
sup

𝛾∈𝐶(𝜇,𝜈)

cov𝛾 (𝒳 ,𝒴)

and furthermore, 𝛾𝑜𝑝𝑡 provides a probability measure on R2 which marginalizes to 𝜇 and 𝜈

achieving this upper bound. Under mild conditions laid out in (AGL14, Proposition 1):

1. lim𝑁→∞ sup𝛾∈𝐶(𝜇,𝜈) cov𝛾 (𝒳 ,𝒴) exists and is non-negative,

2. Σ01,F ≤ lim𝑁→∞ sup𝛾∈𝐶(𝜇,𝜈) cov𝛾 (𝒳 ,𝒴),

3. The sequence of measures argmax𝛾∈𝐶(𝜇,𝜈) cov𝛾 (𝒳 ,𝒴) converges weakly to a fixed mea-

sure 𝛾(∞)
𝑜𝑝𝑡 ∈ ℳ(R2) as 𝑁 → ∞.

Lemma 3 suggests a natural construction of a variance bound estimator in the spirit of

𝑉𝐴𝐺𝐿; namely, let 𝜇 be the empirically observed distribution of control outcomes and 𝜈 be the

empirically observed distribution of control outcomes and compute the maximal cov𝛾 (𝒳 ,𝒴)

over all valid couplings of 𝜇 and 𝜈. More formally, let �̂� and 𝜈 be the projections of 𝐹 0
𝑁 and
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𝐹 1
𝑁 onto their first coordinates, respectively, and define

𝑉𝑂𝑇 =
1

𝑁

(︃(︂
𝑛0

𝑛1

)︂
1

𝑛1 − 1

∑︁
𝑖 : 𝑍𝑖=1

⎛⎝y𝑖(1)−
1

𝑛1

∑︁
𝑗 : 𝑍𝑗=1

y𝑗(1)

⎞⎠2

+

(︂
𝑛1

𝑛0

)︂
1

𝑛0 − 1

∑︁
𝑖 : 𝑍𝑖=0

⎛⎝y𝑖(0)−
1

𝑛0

∑︁
𝑗 : 𝑍𝑗=0

y𝑗(0)

⎞⎠2

+

2 sup
𝛾∈𝐶(�̂�,𝜈)

cov𝛾 (𝒳 ,𝒴)

)︃
.

Theorem 10. The variance estimator 𝑉𝑂𝑇 = 𝑁−1
𝑁
𝑉𝐴𝐺𝐿.

Theorem 10 provides more than just a rederivation of 𝑉𝐴𝐺𝐿; it constructs a probability

measure on R2 which achieves the variance estimator in the sense that samples drawn from

𝛾𝑜𝑝𝑡 have covariance exactly given by 𝑉𝑂𝑇 . In Algorithm 3, we construct a resampling

algorithm based upon 𝛾𝑜𝑝𝑡.
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Algorithm 3: Sampling from the Optimal Transport Solution
Input: An observed treatment allocation 𝑍, with observed responses {y𝑖(𝑍𝑖)}𝑁𝑖=1

Result: A sampled population {y*
𝑖 (0),y

*
𝑖 (1),x𝑖}𝑁𝑖=1

Step 1: Compute the optimal coupling inf𝛾∈𝐶(�̂�,𝜈) E𝛾

[︀
|𝒳 − 𝒴|2

]︀
.

Write,

𝛾 =
∑︁

𝑖 : 𝑍𝑖=0
𝑗 : 𝑍𝑗=1

𝑝𝑖𝑗𝛿(y𝑖(0),y𝑗(1)). (11)

Step 2: Pair to Observed Treated Units

for 𝑗 such that 𝑍𝑗 = 1 do
Independently sample y

′
𝑖(0) from {y𝑖(0) : 𝑍𝑖 = 0} according to the renormalized

𝑗th row probabilities
𝑝𝑖1𝑗∑︀

𝑖 : 𝑍𝑖=0 𝑝𝑖𝑗
, . . . ,

𝑝𝑖𝑛0𝑗∑︀
𝑖 : 𝑍𝑖=0 𝑝𝑖𝑗

.

end

Step 3: Pair to Observed Control Units

for 𝑖 such that 𝑍𝑖 = 0 do
Independently sample y

′
𝑗(1) from {y𝑗(1) : 𝑍𝑗 = 1} according to the

renormalized 𝑖th column probabilities

𝑝𝑖𝑗1∑︀
𝑗 : 𝑍𝑗=1 𝑝𝑖𝑗

, . . . ,
𝑝𝑖𝑗𝑛1∑︀

𝑗 : 𝑍𝑗=1 𝑝𝑖𝑗

end

return The sample population {(y*
𝑖 (0),y

*
𝑖 (1),x𝑖)}𝑁𝑖=1 defined by

y*
𝑖 (0) =

⎧⎪⎨⎪⎩y𝑖(0) if 𝑍𝑖 = 0

y
′
𝑖(0) if 𝑍𝑖 = 1

, and y*
𝑖 (1) =

⎧⎪⎨⎪⎩y𝑖(1) if 𝑍𝑖 = 1

y
′
𝑖(1) if 𝑍𝑖 = 0

.
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Remark 3. Computing the optimal coupling 𝛾𝑜𝑝𝑡 is particularly simple in the context of uni-

variate marginals (PC19, San15). Furthermore, highly efficient open-source software exists

to provide easy implementation for computing 𝛾𝑜𝑝𝑡, e.g., (FCG+21). As a result, Algorithm 3

is computationally efficient; for ease of use we provide an implementation in python in our

supplementary materials.

Lemma 4. The sample population {y*
𝑖 (0),y

*
𝑖 (1),x𝑖}𝑁𝑖=1 produced by Algorithm 3 obeys the

following conditional marginal moment equations

E

[︃
1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (0)

⃒⃒⃒⃒
⃒𝑍
]︃
=

1

𝑛0

∑︁
𝑗 : 𝑍𝑗=0

y𝑗(0),

E

[︃
1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (1)

⃒⃒⃒⃒
⃒𝑍
]︃
=

1

𝑛1

∑︁
𝑗 : 𝑍𝑗=1

y𝑗(1),

E

⎡⎣ 1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
y*
𝑖 (0)−

1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (0)

)︃2 ⃒⃒⃒⃒
⃒𝑍
⎤⎦ =

1

𝑛0 − 1

∑︁
𝑖 : 𝑍𝑖=0

⎛⎝y𝑖(0)−
1

𝑛0

∑︁
𝑗 : 𝑍𝑗=0

y𝑗(0)

⎞⎠2

,

E

⎡⎣ 1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
y*
𝑖 (1)−

1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (1)

)︃2 ⃒⃒⃒⃒
⃒𝑍
⎤⎦ =

1

𝑛1 − 1

∑︁
𝑖 : 𝑍𝑖=1

⎛⎝y𝑖(1)−
1

𝑛1

∑︁
𝑗 : 𝑍𝑗=1

y𝑗(1)

⎞⎠2

,

Moreover, the sample population’s treated-control covariance structure is maximal

E

[︃
1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
y*
𝑖 (0)−

1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (0)

)︃(︃
y*
𝑖 (1)−

1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (1)

)︃ ⃒⃒⃒⃒
⃒𝑍
]︃
=

(︂
𝑁

𝑁 − 1

)︂(︃
sup

𝛾∈𝐶(�̂�,𝜈)

cov𝛾 (𝒳 ,𝒴)

)︃
.
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The expectations above are taken with respect to randomness in Algorithm 3 but are

conditional upon both 𝑍 and the finite population F .

Taking the limit as 𝑁 → ∞ and using a strong law of large numbers in completely

randomized experiments, e.g., (WD21, Lemma A3), Lemma 4 demonstrates that the re-

sampling procedure of Algorithm 3 produces a population {y*
𝑖 (𝑧)}𝑁𝑖=1 which asymptotically

has marginal second moments matching Σ𝑧,F for 𝑧 ∈ {0, 1} in expectation. Moreover, the

expected finite-sample covariance of the population {y*
𝑖 (0),y

*
𝑖 (1)}𝑁𝑖=1 limits to a sharp upper

bound on Σ01,F .

Remark 4. In (IM21) Imbens and Menzel propose a “causal bootstrap” procedure which

exploits the Frechét-Hoeffding upper bound to generate a bootstrap sample of 𝑁 potential

outcomes. Under continuity assumptions their proposal, particularly (IM21, Formula 3.4),

asymptotically agrees with Algorithm 3. However, if 𝒫F limits to a measure with atoms

the two procedures diverge – even asymptotically. We include a detailed analysis of the

differences between (IM21) and Algorithm 3 in the appendix.

4.8.2 Combining Regression and Optimal Transport for Finite Pop-

ulation Inference

In order to improve upon the i.i.d. residual resampling of Algorithm 2 in the finite population

model we exploit the optimal transport sampling procedure of Algorithm 3 with respect to

the residuals {𝜖𝑖(𝑍𝑖)}𝑁𝑖=1. This leverages the optimality of 𝑉𝑂𝑇 from Section 4.8.1 while

simultaneously exploiting the regression strategy of Section 4.7.

Theorem 11. In the finite population model, subject to mild assumptions, for any test

statistic of the form (1) satisfying Conditions 3 and 4:

1. The optimal-transport-based bootstrap of Algorithm 4 is strongly consistently conserva-

tive regardless of the truth of the linear model.

327



Algorithm 4: An optimal-transport-based distributional estimator.
Input: An observed treatment allocation 𝑍 ∈ Ω.
Result: The bootstrap distributional estimator ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍).
Compute the imputed values (�̂�0(x𝑖), �̂�1(x𝑖)) according to (8) and define the
residuals 𝜖𝑖(𝑍𝑖).

Define the random variable {𝜖*𝑖 (0), 𝜖*𝑖 (1),x𝑖}𝑁𝑖=1 as the output of Algorithm 3
computed on the observations {𝜖𝑖(𝑍𝑖)}𝑁𝑖=1.

Select an independent permutation 𝜋 ∼ Unif (𝒮𝑁).
For an independent draw 𝐵 ∼ Unif (Ω) generate the “bootstrap experimental
observations”{︃(︁

�̂�0(x𝑖) + 𝜖*𝜋(𝑖)(0)⏟  ⏞  
𝑦*𝑖 (0)

,x𝑖

)︁
: 𝐵𝑖 = 0

}︃
∪

{︃(︁
�̂�1(x𝑖) + 𝜖*𝜋(𝑖)(1)⏟  ⏞  

𝑦*𝑖 (1)

,x𝑖

)︁
: 𝐵𝑖 = 1

}︃
.

Compute 𝑇S (·) using the bootstrap experimental observations with centering by
1
𝑁

∑︀𝑁
𝑖=1 (𝑦

*
𝑖 (1)− 𝑦*𝑖 (0)), denote this random variable as 𝑇 *(𝑦*(𝑍)).

return
ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) .

2. If the linear model is asymptotically well specified such that the residuals (�̇�𝑖(0), �̇�𝑖(1))

after regression are indeed coupled via the comonotone coupling, then the residual boot-

strap is also strongly consistent in the sense that

𝜌𝐵𝐿 (ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) ,ℒ (𝑇F (y(Z))))
𝑎.𝑠.−−→ 0.

In line with Theorem 7 one can show that under the finite population model the residual

bootstrap of Algorithm 2 is strongly more conservative than the optimal-transport-based

bootstrap.

Just like in Theorems 5 and 9, the variance of the conditional bootstrap distribution of Al-

gorithm 4 for 𝑇F (y(Z)) =
√
𝑁 (𝜏(y(Z))− 𝜏F ) serves as a variance estimator for

√
𝑁𝜏(y(Z))

under a finite population model; denote this variance estimator 𝑉3.
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Theorem 12. Under 𝒫F the variance estimator 𝑉3 converges in probability to a conservative

limit for the variance of
√
𝑁𝜏(y(Z)) in a finite population model; formally under 𝒫F

plim𝑁→∞ 𝑉3 = 𝑉3 ≥ lim
𝑁→∞

V
(︁√

𝑁𝜏(y(Z))
)︁
.

Furthermore, in the finite population models 𝑉2 ≥ 𝑉3.

In our supplementary material we demonstrate that the limit 𝑉3 matches the sharp vari-

ance upper bound of (DFM19, Section 4.1). This can be viewed as an optimality result for

Algorithm 4 as it indeed recovers the sharpest variance bound for the difference in means

under the finite population model after accounting for linear regression adjustment.

4.9 Algorithmic Implementation And Simulations

The theoretical results of the preceding sections are center around exact computations

of the bootstrap distribution ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍); this aligns with classical literature

on resampling methods. However, in all but the smallest cases, exact computation of

ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) using Algorithms 1, 2, or 4 is infeasible due to the enormous cardinal-

ity of its support. Instead – as is typical – stochastic approximation of ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍)

via Monte Carlo sampling is performed in place of computing the exact distribution. Stan-

dard Glivenko-Cantelli-style arguments show that stochastic approximation in such a manner

allows for arbitrarily precise approximation of ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) in the supremum norm

(vdV98, Theorem 19.1). Below we highlight several key features of Algorithms 1, 2, and 4

across superpopulation, fixed covariate, and finite population models.

Simulations are based upon a noisy nonlinear model. At the superpopulation level, we

take the covariates 𝑥𝑖 = (𝑥𝑖0, 𝑥𝑖1)
𝑇 to be distributed as a bivariate centered Gaussian random
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variable with zero correlation. The potential outcomes are given by

𝑦𝑖(0) = 𝑥𝑖0 + sin(𝑥𝑖0) + 𝑎𝑖,

𝑦𝑖(1) = 𝑥𝑖1 + cos(𝑥𝑖1) + 𝑏𝑖,

where the noise terms 𝑎𝑖 and 𝑏𝑖 are independent of the covariates and are marginally given

by

𝑎𝑖 ∼ 𝒩
(︂
0,

9

16

)︂
,

𝑏𝑖 ∼

⎧⎪⎨⎪⎩− (𝑒𝑖 + 3) ; with probability1
2
,

𝑒𝑖 + 3 ; with probability1
2
,

𝑒𝑖 ∼ Exp(1).

The joint distribution of (𝑎𝑖, 𝑏𝑖) is taken to be the product of the marginal distributions.

Our simulations take 𝑍 according to a completely randomized design where 𝑛1 = ⌊𝑝𝑁⌋.

For superpopulation inference we simulate by repeatedly drawing {(𝑦𝑖(0), 𝑦𝑖(1), 𝑥𝑖)}𝑁𝑖=1 in-

dependently of one another and then drawing an independent treatment allocation vector

𝑍. For fixed covariate inference, we draw one realization of {(𝑥𝑖)}𝑁𝑖=1 and take these val-

ues as fixed for the remainder of the simulation while repeatedly drawing new outcomes

{(𝑦𝑖(0), 𝑦𝑖(1))}𝑁𝑖=1 and treatment allocations 𝑍. In our finite population simulations we draw

a single realization of {(𝑦𝑖(0), 𝑦𝑖(1), 𝑥𝑖)}𝑁𝑖=1 and leave these values fixed for the entirety of the

simulation while only drawing new treatment allocations 𝑍.

Figure 4-1 compares the bootstrap distributions formed by Algorithms 1, 2, and 4 for a

single realization of the completely randomized experiment described above where the test
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statistic is of the form (1) with 𝜂 = 1 and 𝑓𝜂 taken as Huber’s loss function

𝑓𝜂(𝑥) =

⎧⎪⎨⎪⎩
𝑥2

2
; if|𝑥| ≤ 𝜂,

𝜂
(︀
|𝑥| − 𝜂

2

)︀
; if|𝑥| > 𝜂.
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Figure 4-1: (Top-Left) Comparison of bootstrap distributions generated by Algorithm 1
(dot), Algorithm 2 (dash), and Algorithm 4 (dot-dash). (Top-Right) Comparison of the
bootstrap distribution of Algorithm 1 (dot) to the superpopulation distribution after cen-
tering to enforce 𝐻𝑁,∅ (solid). (Bottom-Left) Comparison of the bootstrap distribution of
Algorithm 2 (dashed) to the fixed covariate model distribution after centering to enforce𝐻𝑁,C

(solid). (Bottom-Right) Comparison of the bootstrap distribution of Algorithm 4 (dot-dash)
to the finite population distribution after centering to enforce 𝐻𝑁,F (solid). (Simulation
settings: 𝑁 = 1000, 𝑝 = .7, bootstrap distributions formed by 1000 Monte-Carlo samples,
true CDFs approximated by 1000 Monte-Carlo samples.)

The top-left panel of Figure 4-1 cleanly demonstrates the decreasing degree of conser-

vativeness in inferences as one ranges from Algorithm 1 to Algorithm 2 and finally to Al-
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gorithm 4; the conditional bootstrap cumulative distribution of Algorithm 1 lies uniformly

below that of Algorithm 2 which lies uniformly below that of Algorithm 4. Alternatively

phrased, the top-left panel of Figure 4-1 shows that the output of Algorithm 1 stochastically

dominates that of Algorithm 2 and that the output of Algorithm 2 stochastically dominates

that of Algorithm 4. The remaining three panels of Figure 4-1 compare the conditional

bootstrap cumulative distribution functions to the true sampling distribution of 𝑇S (y(Z)).

All three panels show that the bootstrap distribution aligns with or lies uniformly below

the true sampling distribution. Consequently bootstrap inferences in the superpopulation

model are valid under Algorithm 1 (cf. Theorem 3); likewise for the fixed covariate model

and Algorithm 2 (cf. Theorem 6) and for the finite population model and Algorithm 4 (cf.

Theorem 11).

In the top-right panel of Figure 4-1 the close agreement between the superpopulation null

distribution of 𝑇S (y(Z)) and the output of Algorithm 1 demonstrates the limiting model-

free consistency of Algorithm 1 at the superpopulation level (cf. Theorem 3). In the bottom

two panels of Figure 4-1 the gaps between the bootstrap distributions of Algorithms 2 and

4 and the fixed covariate and finite population model null distributions, respectively, are

due to the fundamental conservativeness inherent in model-agnostic inference for the fixed

covariate and finite population models (cf. Theorems 6, 8, and 11).

Figure 4-2 shows the bootstrap distributions formed by Algorithms 1, 2, and 4 for a

single realization of the completely randomized experiment described above where the test

statistic is simply the difference in means
√
𝑁 (𝜏(y(Z))− 𝜏S ). This statistic is of the form

(1) with 𝑓𝜂(𝑥) = 𝑥; although the identity function certainly fails Condition 3 this analysis

elucidates the root cause of the behavior observed in Figure 4-1.

The top-left panel of Figure 4-2 demonstrates that the bootstrap distribution generated

by Algorithm 4 is more concentrated around the origin than that of Algorithm 2 and likewise

that the bootstrap distribution generated by Algorithm 2 is more concentrated around the

origin than that of Algorithm 1. This peakedness ordering (Ton90, Definition 7.5.1) of
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Figure 4-2: (Top-Left) Comparison of bootstrap distributions generated by Algorithm 1
(dot), Algorithm 2 (dash), and Algorithm 4 (dot-dash). (Top-Right) Comparison of the
bootstrap distribution of Algorithm 1 (dot) to the superpopulation distribution after cen-
tering to enforce 𝐻𝑁,∅ (solid). (Bottom-Left) Comparison of the bootstrap distribution of
Algorithm 2 (dashed) to the fixed covariate model distribution after centering to enforce𝐻𝑁,C

(solid). (Bottom-Right) Comparison of the bootstrap distribution of Algorithm 4 (dot-dash)
to the finite population distribution after centering to enforce 𝐻𝑁,F (solid). (Simulation
settings: 𝑁 = 1000, 𝑝 = .7, bootstrap distributions formed by 5000 Monte-Carlo samples,
true CDFs approximated by 10000 Monte-Carlo samples. ).

the output of the three algorithms combined with Anderson’s theorem (And55), (Ton90,

Theorem 4.2.5) explains the stochastic dominance ordering observed in top-left panel of

Figure 4-1 and reflects the discussion in Section 4.5. Similar reasoning applied to the three

remaining panels of Figure 4-2 translates back to the corresponding panels of Figure 4-1 as

well. The cumulative distribution functions of Figure 4-2 are all approximately Gaussian,

and are guaranteed to limit to Gaussian CDFs by appropriate central limit theorems, so their
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Table 4.1: Comparison of conditional bootstrap variances to the true sampling variance of√
𝑁 (𝜏(y(Z))− 𝜏S ) in the simulations of Figure 4-2.

True Variance Bootstrap Conditional Variance
Superpopulation 51.88 52.54
Fixed Covariate 41.00 42.01

Finite Population 23.08 32.92

shapes are well described by their first two moments. By the centering in Algorithms 1, 2,

and 4 all of the bootstrap distributions are guaranteed to have mean zero; this is observed

to be true – up to Monte-Carlo noise – in the simulations undergirding Figure 4-2. Table 4.1

compares the bootstrap variance estimators of Theorems 5, 9, and 12 to the true variance of
√
𝑁(𝜏(y(Z))− 𝜏S ) in the same simulation as Figures 4-1 and 4-2. Importantly, the variance

estimators are all no less than the true sampling variances, and the variances estimators

reflect the trend that 𝑉1 ≥ 𝑉2 ≥ 𝑉3.

4.10 Discussion

We have presented a nested hierarchy of resampling procedures for causal inference which

asymptotically control the false rejection probability of Neyman’s weak null of no average

treatment effect. The resampling procedures are applicable to a wide array of test statistics,

are simple to implement, and are computationally efficient. Moreover, the algorithms are

model-free in the sense that our results hold without requiring practitioner knowledge of the

relationship between features and potential outcomes. Each of our resampling procedures

naturally suggests a variance estimator for
√
𝑁𝜏(y(Z)); these three variance estimators 𝑉1,

𝑉2, and 𝑉3 are guaranteed to be asymptotically conservative regardless of model specification

but may be consistent under proper model specification.2 Furthermore, previous variance

estimators proposed in the literature for the difference in means under certain experimen-

2The variance estimator 𝑉1 is consistent at the superpopulation level without any model specification
assumptions.
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tal designs – including completely randomized designs – may be negative in finite samples

(LDR18, Page 9160); such a property presents obvious concern for practical use. Since our

estimators 𝑉1, 𝑉2, and 𝑉3 are simply the conditional variance of the bootstrapped
√
𝑁 -scaled

difference in means they are guaranteed to be non-negative and will be positive except in

the most pathological situations.

The algorithms presented above provide substantial capabilities for inference using a wide

array of test statistics in completely randomized experiments. An interesting direction of

further research would be to apply this framework to other experimental designs. Extensions

to Bernoulli designs are likely imminently feasible; however, a more interesting program of re-

search is to explore the relationship between resampling and covariate adaptive designs such

as rerandomized designs. In a rerandomized design, the set of allowable treatment allocations

Ω ⊆ {0, 1}𝑁 is restricted to binary vectors for which the treated individuals and control indi-

viduals are sufficiently similar in terms of their aggregate features; inference in rerandomized

designs requires accounting for conditioning upon the treatment allocation yielding sufficient

covariate balance (MR12). Algorithm 1 can be modified to provide asymptotically valid in-

ference for rerandomized designs subject to general balance criteria, under the definition

of (LDR18), by rejecting bootstrap treatment allocations 𝐵 ∈ {𝑏 ∈ {0, 1}𝑁 :
∑︀

𝑖 𝑏𝑖 = 𝑛1}

which do not yield sufficient covariate balance between the covariates of the resampled treated

and control groups. This modification provides valid inference in the superpopulation, fixed

covariate, and finite population models. However, analogous modifications to Algorithms 2

and 4 must preserve the joint distributions between the treated outcomes and the covari-

ates (resp. the control outcomes and the covariates). For instance in the formulation of

Algorithm 4 the optimization problem 10 would need to include constraints on the set of

valid couplings so as to enforce that the coupling maintained the empirical joint distribu-

tions between the treated outcomes and the covariates (resp. the control outcomes and the

covariates)

The optimal transport bootstrap scheme of Algorithm 4 in Section 4.8 was restricted
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to the case of univariate potential outcomes. This contrasts with the i.i.d. resampling and

residual bootstrap algorithms of Sections 4.6 and 4.7 which are generally applicable for 𝑑 ≥ 1.

This restriction is due to a fundamental result undergirding the construction of the sharp

variance bound of (AGL14). In Section 4.8 we demonstrated that the sharpness of upper

bound of (AGL14) is a direct consequence of a variational principle: given scalar random

variables 𝒳 and 𝒴 the optimal 2-Wasserstein coupling maximizes the covariance between 𝒳

and 𝒴 . Adapting our results of Section 4.8 – or the results of (AGL14) – to 𝑑 > 1 would

require some characterization of the joint distribution of 𝒳 and 𝒴 which finds a maximal, in

the Loewner partial order, covariance matrix for random vectors 𝒳 and 𝒴 taking values in

R𝑑. Formally stated, it amounts to finding a 2𝑑× 2𝑑 positive semidefinite matrix 𝑀 so that:

1. 𝑀 is the covariance matrix of (𝒳 ,𝒴) for some coupling of 𝒳 and 𝒴 ,

2. there exists no other coupling of 𝒳 and 𝒴 for which the resulting covariance matrix,

�̃� , satisfies �̃� ⪰𝑀 .

The optimal 2-Wasserstein coupling maximizes the trace of the cross-covariance matrix be-

tween 𝒳 and 𝒴 (PZ20, Section 1), but this comes with no guarantee of the second re-

quirement for 𝑑 > 1. Instead, we suspect that a tractable way forward may be through

generalizations of the univariate quantile function given by multivariate statistical depths

(CGHH17, DS21, MS22). Such a generalization would correspond to a twofold gain: an

analogue of the variance estimator of (AGL14) to multivariate potential outcomes and a

version of Algorithm 4 applicable to multivariate potential outcomes.
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Supplementary Material

In the following appendices, we formalize a collection of regularity conditions which are

sufficient for the results in the preceding sections; these amount to – for the most part –

mild moment conditions on the potential outcomes to ensure laws of large numbers and

central limit theorems apply. We provide proofs of the results above. Furthermore, we

include a detailed analysis of the optimal-transport bootstrapping procedure of Algorithm 4

and contrast its performance with that of (IM21) in the context of limiting marginals with

atoms. Code available in python implements the methods of the paper and recreates the

simulations of Section 4.9; the code can be found at https://github.com/PeterLCohen.

4.11 Additional Notation

In order to conveniently write certain positive semidefinite matrices we write 𝑎⊗2 to mean

𝑎𝑎𝑇 . Furthermore for a positive semidefinite matrix 𝑀 we write 𝑀1/2 to be its matrix

square root; i.e., the unique positive semidefinite matrix satisfying 𝑀1/2𝑀1/2 = 𝑀 . The

inverse of 𝑀1/2, if it exists, is written 𝑀−1/2. Lastly, we write 𝒜 | ℬ 𝑑−→ 𝒞 to mean that the

random variable 𝒜 conditioned upon ℬ converges weakly to 𝒞. Often this is not true for all

realizations of ℬ, but does apply except for possibly a set of realization of probability zero.

4.12 Regularity Conditions

We begin with an assumption on the design itself which ensures nondegeneracy of the sam-

pling procedure in the limit.

Assumption A.1. As the experiment size increases the portion of treated units stabilizes to

a nondegenerate limit; formally, 𝑛1/𝑁 → 𝑝 for 𝑝 a fixed constant in (0, 1).
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4.12.1 Superpopulation Regularity Conditions

In our superpopulation model we impose two minor moment conditions:

Assumption A.2 (Superpopulation Means and Variances). The mean vector and covariance

matrix of (𝑦𝑖(0), 𝑦𝑖(1), 𝑥𝑖) exist and have finite entries. Furthermore, the covariance matrix

of (𝑦𝑖(0), 𝑦𝑖(1), 𝑥𝑖) is positive semidefinite and has non-zero diagonal entries.

Assumption A.3 (Superpopulation Bounded Fourth Moments). There exists some 𝐶 <∞

for which E [𝑦𝑖(𝑧)
4] < 𝐶 for 𝑧 = 0, 1 and E [𝑥4𝑖 ] < 𝐶.

Assumption A.2 is of fundamental importance to define many of the quantities we exam-

ine; of course, assuming finite means and a well-defined non-degenerate covariance matrix are

common and non-intrusive assumptions. Furthermore, Assumption A.2 guarantees that the

Lindeberg–Lévy central limit theorem applies for empirical means under the superpopulation

model (Dur10, Theorem 3.4.1). Typically we use Assumption A.3 to guarantee strong laws

of large numbers for empirical means and covariance matrices under 𝒫∅. Assumption A.3 is

perhaps stronger than necessary; for instance, control of the absolute 2+ 𝛿 moments for any

𝛿 > 0 may suffice for many of our results.

4.12.2 Fixed Covariate Regularity Conditions

Assumption A.4 (Fixed-Covariate Limiting Means and Variances). For 𝑧 = 0, 1 there exists

a finite limiting value 𝑦(𝑧)∞ such that lim𝑁→∞𝑁−1
∑︀𝑁

𝑖=1 E [𝑦𝑖(𝑧) | x𝑖] = 𝑦(𝑧)∞. Likewise,

lim
𝑁→∞

1

𝑁 − 1

𝑁∑︁
𝑖=1

E

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
𝑦𝑖(0)

𝑦𝑖(1)

x𝑖

⎤⎥⎥⎥⎦−𝑁−1

𝑁∑︁
𝑗=1

E

⎡⎢⎢⎢⎣
⎡⎢⎢⎢⎣
𝑦𝑗(0)

𝑦𝑗(1)

x𝑗

⎤⎥⎥⎥⎦
⃒⃒⃒⃒
⃒x𝑖

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

⊗2 ⃒⃒⃒⃒
⃒x𝑖

⎤⎥⎥⎥⎦
exists, is positive semidefinite, and has non-zero diagonal entries.
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For 𝑧 ∈ {0, 1} we define

ΣC
𝑦(𝑧) := lim

𝑁→∞

1

𝑁 − 1

𝑁∑︁
𝑖=1

E

⎡⎣(︃𝑦𝑖(𝑧)−𝑁−1

𝑁∑︁
𝑗=1

E
[︁
𝑦𝑗(𝑧)

⃒⃒⃒
x𝑗

]︁)︃⊗2 ⃒⃒⃒
x𝑖

⎤⎦ . (12)

Assumption A.5 (Fixed-Covariate Bounded Fourth Moments). There exists some 𝜀 > 1

and 𝐶 < ∞ for which, for all 𝑧 = 0, 1 and all 𝑁 , 𝑁−1
∑︀𝑁

𝑖=1 E
[︀
|𝑦𝑖(𝑧)|4+𝜀 | x𝑖

]︀
< 𝐶 and

𝑁−1
∑︀𝑁

𝑖=1 x
4
𝑖 < 𝐶.

Assumptions A.4 and A.5 mirror Assumptions A.2 and A.3 but account for the different

distributions of (𝑦𝑖(0), 𝑦𝑖(1)) ∼ 𝑃x𝑖
. In Assumption A.5 the 𝜀 term is only of technical

importance to guarantee the use of the Marcinkiewicz–Zygmund strong law of large numbers

in Lemma A.6; see (Liu88, Lemma 1) for the presentation of this strong law. It is likely not

a necessary condition.

Lemma A.5 (Lindeberg Condition). Under Assumptions A.4 and A.5, the potential out-

comes (𝑦𝑖(0), 𝑦𝑖(1)) given x𝑖 jointly satisfy the conditions of Lindeberg’s central limit theorem.

Proof. Define 𝑠2𝑁(𝑧) =
∑︀𝑁

𝑖=1V (𝑦𝑖(𝑧) | x𝑖) where V (𝑦𝑖(𝑧) | x𝑖) denotes the variance of 𝑦𝑖(𝑧)

given the covariates x𝑖. We will show that Lyapounov’s condition (LR05, Equation 11.12)

holds at 𝛿 = 2 for the potential outcomes; formally, for 𝑧 ∈ {0, 1} and 𝛿 = 2

lim
𝑁→∞

1

𝑠2+𝛿
𝑁 (𝑧)

𝑁∑︁
𝑖=1

E
[︁
|𝑦𝑖(𝑧)|2+𝛿 | x𝑖

]︁
= 0. (13)

Rewrite (13) as

lim
𝑁→∞

𝑁

𝑠2+𝛿
𝑁 (𝑧)⏟  ⏞  
Term 1

· 1
𝑁

𝑁∑︁
𝑖=1

E
[︁
|𝑦𝑖(𝑧)|2+𝛿 | x𝑖

]︁
⏟  ⏞  

Term 2

.

Term 2 is bounded above by a finite constant for all 𝑁 by Assumption A.5, so it suffices

to show that Term 1 vanishes as 𝑁 → ∞. By Assumption A.4 𝑁−1
∑︀𝑁

𝑖=1 V (𝑦𝑖 | x𝑖) limits
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to a positive constant which we denote Σ𝑦(𝑧). Consequently, 𝑁𝑠−2
𝑁 → Σ−1

𝑦(𝑧) > 0 and 𝑠2𝑁 =

Θ(𝑁). From this, it is immediate that 𝑁𝑠−(2+𝛿)
𝑁 → 0 as 𝑁 → ∞ for 𝛿 = 2. In total, this

establishes (13). Since (13) is sufficient for the Lindeberg condition (LR05, Page 427), the

result follows.

As a consequence of Lemma A.5, the Lindeberg central limit theorem (LR05, Theorem

11.2.5) applies to the empirical mean of treated (or control) units. Furthermore, Assump-

tions A.4 and A.5 are sufficient for the Kolmogorov criterion so that the strong law of large

numbers applies to both empirical means of potential outcomes and the entries of the em-

pirical covariance matrices (Fel68, Section 10.7).

4.12.3 Finite Population Regularity Conditions

Assumption A.6 (Finite Population Limiting Means and Variances). For 𝑧 = 0, 1 there

exists a limiting value 𝑦(𝑧)∞ such that lim𝑁→∞𝑁−1
∑︀𝑁

𝑖=1 y𝑖(𝑧) = 𝑦(𝑧)∞. Likewise,

lim
𝑁→∞

1

𝑁 − 1

𝑁∑︁
𝑖=1

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
y𝑖(0)

y𝑖(1)

x𝑖

⎤⎥⎥⎥⎦−𝑁−1

𝑁∑︁
𝑗=1

⎡⎢⎢⎢⎣
y𝑗(0)

y𝑗(1)

x𝑗

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

⊗2

exists, is positive semidefinite, and has non-zero diagonal entries.

For 𝑧 ∈ {0, 1} we define

ΣF
𝑦(𝑧) := lim

𝑁→∞

1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
y𝑖(𝑧)−𝑁−1

𝑁∑︁
𝑗=1

y𝑗(𝑧)

)︃⊗2

. (14)

Assumption A.7 (Finite Population Bounded Fourth Moments). There exists some 𝐶 <∞

for which, for all 𝑧 = 0, 1 and all 𝑁 , 𝑁−1
∑︀𝑁

𝑖=1 y𝑖(𝑧)
4 < 𝐶 and 𝑁−1

∑︀𝑁
𝑖=1 x

4
𝑖 < 𝐶.
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Assumptions A.6 and A.7 mirror Assumptions A.4 and A.5 but account for the determin-

istic structure of {(y𝑖(0),y𝑖(1),x𝑖)}𝑁𝑖=1 under the finite population model. Assumptions A.6

and A.7 are sufficient for finite population central limit theorems (LD17) and finite popula-

tion strong laws of large numbers for both empirical means and covariance matrices (WD21,

Lemma A3).

Lemma A.6. Consider a fixed covariate model for which Assumptions A.4 and A.5 hold.

Viewing the finite population model as a conditional submodel of the fixed covariate model

we have that Assumptions A.6 and A.7 hold for all finite population conditioning events F

up to a set of measure zero under the population C -conditional measure.

Proof. This follows from the strong law of large numbers applied to second and fourth

moments. Strictly speaking, the result for the fourth moments of the potential outcomes

relies upon applying the Marcinkiewicz–Zygmund strong law of large numbers to 𝑦𝑖(𝑧) −

E [𝑦𝑖(𝑧) | x𝑖]; see (Liu88, Lemma 1) for the presentation of this strong law.

4.13 Linear Regression In Model-Agnostic Contexts

The data generating processes specified under the superpopulation, fixed covariate, and finite

population models assign no particular known form to the functional relationship between the

potential outcomes and the covariates. Nonetheless, linear regression plays an important role

in our analyses despite making no assumptions that the linear model is well-specified. Use of

linear regression in such model agnostic contexts has been examined in the finite population

context by Lin (Lin13), Freedman (Fre08b, Fre08a), and Ding et al. (DFM19). Recent work

has also examined linear regression in concert with nonlinear imputation estimators (CF21).

We present a self-contained review of some important results from this literature in order to

standardize notation.

Define the optimal solution to the population 𝐿2-norm linear approximation and its
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empirical approximation as follows; for 𝑧 ∈ {0, 1}

�̇�𝑧 = argmin
𝛽∈R𝑑×(𝑘+1)

𝑁∑︁
𝑖=1

E

⎡⎣⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒𝑦𝑖(𝑧)− 𝛽

⎡⎣ 1

x𝑖

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
2

2

⃒⃒⃒⃒
x𝑖

⎤⎦ (15)

𝛽𝑧 = argmin
𝛽∈R𝑑×(𝑘+1)

∑︁
𝑖 : 𝑍𝑖=𝑧

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒𝑦𝑖(𝑧)− 𝛽

⎡⎣ 1

x𝑖

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
2

2

. (16)

Under mild conditions these optimization problems are strictly convex and admit closed-

form optimal solutions. However, when the systems are underdetermined uncountably many

solutions exist but our results proceed without major modification by selecting a canonical

representative of this class of solutions, for instance using the Moore-Penrose pseudoinverse

in place of the matrix inverses used in defining �̇�𝑧 and 𝛽𝑧 suffices. A detailed discussion of

the rank-deficient case can be found in the appendix of (CF21). In light of this, we proceed

as if all of the linear regressions are not rank-deficient with the knowledge that the results

hold as well when the regressions are indeed rank-deficient and that the proofs proceed by

replacing matrix inverses with Moore-Penrose pseudoinverses in natural locations.

Define the population fitted values and residuals, respectively, to be

�̇�0(x𝑖) := �̇�0

⎡⎣ 1

x𝑖

⎤⎦ , �̇�1(x𝑖) := �̇�1

⎡⎣ 1

x𝑖

⎤⎦ , (17)

�̇�𝑖(0) := 𝑦𝑖(0)− �̇�0(x𝑖), �̇�𝑖(1) := 𝑦𝑖(1)− �̇�1(x𝑖). (18)

Importantly, in the fixed covariate model the population fitted values are deterministic

while the population residuals retain stochasticity due to their dependence upon the potential

outcomes.

Remark 5. Since the residuals (�̇�𝑖(0), �̇�𝑖(1)) defined by �̇�𝑖(𝑧) = 𝑦𝑖(𝑧) − �̇�𝑧(x𝑖) are deter-

ministic translations of the potential outcomes (𝑦𝑖(0), 𝑦𝑖(1)) in the fixed-covariate model,
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Lemma A.5 immediately implies that the residuals (�̇�𝑖(0), �̇�𝑖(1)) jointly satisfy the conditions

of Lindeberg’s central limit theorem.

In the finite population model, the analogue of (15) is

�̇�𝑧 = argmin
𝛽∈R𝑑×(𝑘+1)

𝑁∑︁
𝑖=1

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒y𝑖(𝑧)− 𝛽

⎡⎣ 1

x𝑖

⎤⎦⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
2

2

; (19)

in the finite population model both the population fitted values and population residuals are

fully deterministic.

Theorem A.13. In the fixed covariate model subject to the regularity conditions Assump-

tions A.4 and A.5:

1. The ordinary least squares linear regression coefficient �̇�𝑧 defined in (15) possesses a

well-defined limit.

2. The empirical least squares coefficients 𝛽𝑧 defined in (16) are consistent in the sense

that ||𝛽𝑧 − �̇�𝑧||2 = 𝑜𝑃 (1).

In the finite population model subject to the regularity conditions Assumptions A.6 and A.7

the same results hold and – with probability one in the context of the finite population model

as a conditional submodel of the fixed covariate model – the limit of �̇�𝑧 is the same in both

models.

Proof. We begin with analysis in the fixed covariate model. Let x be the design matrix

where the 𝑖th row is x𝑇
𝑖 and 𝑦(𝑧) be the matrix where the 𝑖th row is 𝑦𝑖(𝑧)𝑇 . For 𝑍 ∈ Ω let the

submatrix of x formed by only examining the rows where 𝑍𝑖 = 𝑧 be denoted by x[𝑖 : 𝑍𝑖=𝑧]; the

analogous notation applies to 𝑦(𝑧) as well. Classical linear model theory (BBB+19) dictates
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that

�̇�𝑧 =
(︀
x𝑇x

)︀−1
x𝑇E [𝑦(𝑧) | x] ,

𝛽𝑧 =
(︀
x𝑇
[𝑖 : 𝑍𝑖=𝑧]x[𝑖 : 𝑍𝑖=𝑧]

)︀−1
x𝑇
[𝑖 : 𝑍𝑖=𝑧]𝑦(𝑧)[𝑖 : 𝑍𝑖=𝑧].

The closed-form solution for �̇�𝑧 facilitates direct computation of its limit as 𝑁 → ∞ which

is guaranteed to exist under Assumptions A.4 and A.5. The argument in the proof of

Lemma A.3 of (CF21) establishes that⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
(︂

1

𝑛𝑧

x𝑇
[𝑖 : 𝑍𝑖=𝑧]x[𝑖 : 𝑍𝑖=𝑧]

)︂−1

−
(︂

1

𝑁
x𝑇x

)︂−1
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

= 𝑜𝑃 (1)

and using the triangle inequality, Cauchy-Schwarz inequality, and the strong law of large

numbers3 in the same line of reasoning as Lemma A.3 of (CF21) and (GB20, Appendix pg.

49) to establish that⃒⃒⃒⃒⃒⃒⃒⃒
1

𝑛1

x𝑇
[𝑖 : 𝑍𝑖=𝑧]𝑦(𝑧)[𝑖 : 𝑍𝑖=𝑧] −

1

𝑁
x𝑇E [𝑦(𝑧) | x]

⃒⃒⃒⃒⃒⃒⃒⃒
2

= 𝑜𝑃 (1).

Combining the previous equations with the closed-form solutions to �̇�𝑧 and 𝛽𝑧 establishes

the consistency of the ordinary least squares coefficients in the fixed covariate model.

In the finite population model, 𝛽𝑧 is defined as before but now classical linear regression

theory dictates that

�̇�𝑧 =
(︀
x𝑇x

)︀−1
x𝑇𝑦(𝑧).

The similar reasoning to that of above again establishes �̇�𝑧 possesses a well-defined limit

under the finite population model subject to Assumptions A.6 and A.7 and the argument of

Lemma A.3 of (CF21) establishes the desired consistency of ||𝛽𝑧 − �̇�𝑧||2 = 𝑜𝑃 (1).

3More precisely, we use the finite population law of large numbers to handle terms including the x𝑖 and
Kolmogorov’s strong law of large numbers (Fel68, Section 10.7) to handle terms of the 𝑦𝑖.
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Finally, to address the last statement of the theorem we need to show that

⃒⃒⃒⃒⃒⃒(︀
x𝑇x

)︀−1
x𝑇E [𝑦(𝑧) | x]−

(︀
x𝑇x

)︀−1
x𝑇𝑦(𝑧)

⃒⃒⃒⃒⃒⃒
2
= 𝑜𝑃 (1).

By logic similar to that of above, this amounts to showing that⃒⃒⃒⃒⃒⃒⃒⃒
1

𝑁
x𝑇𝑦(𝑧)− 1

𝑁
x𝑇E [𝑦(𝑧) | x]

⃒⃒⃒⃒⃒⃒⃒⃒
2

= 𝑜𝑃 (1).

Under the Assumptions A.4 and A.5 this holds by a coordinate-wise application of Kol-

mogorov’s strong law of large numbers (Fel68, Section 10.7).

Using the linear regressions (15) and (19) in the fixed covariate and finite population

models, respectively, we obtain a decomposition of treatment effect variation in line with

that of (DFM19). We begin with a lemma characterizing the expected sample covariance

matrix under an independent – but not identically distributed – data generating procedure.

Lemma A.7. Let 𝒳1, . . . ,𝒳𝑛 be independent – but not necessarily identically distributed –

random vectors in R𝑑 where 𝒳𝑖 has ℓth entry [𝒳𝑖]ℓ. Let 𝑀(𝒳1, . . . ,𝒳𝑛) be the 𝑑 × 𝑑 matrix

with (ℓ, 𝑘)th entry

1

𝑛− 1

𝑛∑︁
𝑖=1

cov ([𝒳𝑖]ℓ , [𝒳𝑖]𝑘)−
1

𝑛(𝑛− 1)

𝑛∑︁
𝑖=1

cov ([𝒳𝑖]ℓ , [𝒳𝑖]𝑘)+

1

𝑛− 1

𝑛∑︁
𝑖=1

(︃
E [[𝒳𝑖]ℓ]−

1

𝑛

𝑛∑︁
𝑗=1

E
[︀
[𝒳𝑗]ℓ

]︀)︃(︃
E [[𝒳𝑖]𝑘]−

1

𝑛

𝑛∑︁
𝑗=1

E
[︀
[𝒳𝑗]𝑘

]︀)︃
. (20)

Then

E

⎡⎣ 1

𝑛− 1

𝑛∑︁
𝑖=1

(︃
𝒳𝑖 −

1

𝑛

𝑛∑︁
𝑗=1

𝒳𝑗

)︃⊗2
⎤⎦ =𝑀(𝒳1, . . . ,𝒳𝑛).

Proof. We examine each coordinate separately; say we are interested in the (ℓ, 𝑘)th coordi-
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nate. Consequently, we are interested in

E

[︃
1

𝑛− 1

𝑛∑︁
𝑖=1

(︃
[𝒳𝑖]ℓ −

1

𝑛

𝑛∑︁
𝑗=1

[𝒳𝑗]ℓ

)︃(︃
[𝒳𝑖]𝑘 −

1

𝑛

𝑛∑︁
𝑗=1

[𝒳𝑗]𝑘

)︃]︃
. (21)

Write 𝒜ℓ as the vector ([𝒳1]ℓ , . . . , [𝒳𝑛]ℓ)
𝑇 and ℬ𝑘 as the vector ([𝒳1]𝑘 , . . . , [𝒳𝑛]𝑘)

𝑇 . Simple

rearrangement yields that (21) is

1

𝑛− 1
E
[︀
𝒜𝑇

ℓ Λ
𝑇Λℬ𝑘

]︀
=

1

𝑛− 1
E
[︀
𝒜𝑇

ℓ Λℬ𝑘

]︀
(22)

where Λ = 𝐼𝑑×𝑑 − 𝑛−1(𝑒⊗ 𝑒) where 𝑒 is the 𝑛-length vector of all 1s and the equality holds

because Λ is symmetric and idempotent. Using the cyclic property of the trace we analyze

E
[︀
𝒜𝑇

ℓ Λℬ𝑘

]︀
:

E
[︀
𝒜𝑇

ℓ Λℬ𝑘

]︀
= E

[︀
tr
(︀
𝒜𝑇

ℓ Λℬ𝑘

)︀]︀
(since 𝒜𝑇

ℓ Λℬ𝑘 is a scalar)

= E
[︀
tr
(︀
Λℬ𝑘𝒜𝑇

ℓ

)︀]︀
(cyclic property of tr(·))

= tr
(︀
ΛE
[︀
ℬ𝑘𝒜𝑇

ℓ

]︀)︀
(linearity)

= tr
(︁
Λ
(︁
cov (𝒜ℓ,ℬ𝑘) + E [𝒜ℓ]E [ℬ𝑘]

𝑇
)︁)︁

= tr (Λcov (𝒜ℓ,ℬ𝑘)) + tr
(︁
E [𝒜ℓ] ΛE [ℬ𝑘]

𝑇
)︁

(cyclic property of tr(·))

= tr (cov (𝒜ℓ,ℬ𝑘))− 𝑛−1𝑒𝑇 cov (𝒜ℓ,ℬ𝑘) 𝑒+ E [𝒜ℓ] ΛE [ℬ𝑘]
𝑇 .

The cross-covariance matrix cov (𝒜ℓ,ℬ𝑘) is diagonal since – by assumption – the random

vectors 𝒳1, . . . ,𝒳𝑛 are independent and so cov
(︀
[𝒳𝑖]ℓ , [𝒳𝑗]𝑘

)︀
= 0 whenever 𝑖 ̸= 𝑗. Conse-
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quently, tr (cov (𝒜ℓ,ℬ𝑘)) =
∑︀𝑛

𝑖=1 cov ([𝒜ℓ]𝑖 , [ℬ𝑘]𝑖) =
∑︀𝑛

𝑖=1 cov ([𝒳𝑖]ℓ , [𝒳𝑖]𝑘). Likewise,

𝑛−1𝑒𝑇 cov (𝒜ℓ,ℬ𝑘) 𝑒 = 𝑛−1

𝑛∑︁
𝑖,𝑗=1

cov
(︁
[𝒜ℓ]𝑖 , [ℬ𝑘]𝑗

)︁
=

𝑛−1

𝑛∑︁
𝑖=1

cov ([𝒜ℓ]𝑖 , [ℬ𝑘]𝑖) = 𝑛−1

𝑛∑︁
𝑖=1

cov ([𝒳𝑖]ℓ , [𝒳𝑖]𝑘) .

In the general case we this leaves us with

1

𝑛− 1
E
[︀
𝒜𝑇

ℓ Λℬ𝑘

]︀
=

1

𝑛− 1

𝑛∑︁
𝑖=1

cov ([𝒳𝑖]ℓ , [𝒳𝑖]𝑘)−
1

𝑛(𝑛− 1)

𝑛∑︁
𝑖=1

cov ([𝒳𝑖]ℓ , [𝒳𝑖]𝑘)+

1

𝑛− 1

𝑛∑︁
𝑖=1

(︃
E [[𝒳𝑖]ℓ]−

1

𝑛

𝑛∑︁
𝑗=1

E
[︀
[𝒳𝑗]ℓ

]︀)︃(︃
E [[𝒳𝑖]𝑘]−

1

𝑛

𝑛∑︁
𝑗=1

E
[︀
[𝒳𝑗]𝑘

]︀)︃
. (23)

In the special case that ℓ = 𝑘 and we are interested in the diagonal entries of the matrix

we simplify (23) to obtain

1

𝑛− 1
E
[︀
𝒜𝑇

ℓ Λ𝒜ℓ

]︀
=

1

𝑛− 1

𝑛∑︁
𝑖=1

V ([𝒳𝑖]ℓ)−
1

𝑛(𝑛− 1)

𝑛∑︁
𝑖=1

V ([𝒳𝑖]ℓ)+

1

𝑛− 1

𝑛∑︁
𝑖=1

(︃
E [[𝒳𝑖]ℓ]−

1

𝑛

𝑛∑︁
𝑗=1

E
[︀
[𝒳𝑗]ℓ

]︀)︃2

. (24)

Importantly, (24) generalizes the expectation of the variance estimator 𝑉 2
𝑛 presented in

(LS95) to the multivariate context.

Armed with Lemma A.7 (and specifically the notation 𝑀(· · · ) of (20)) we now define
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some key quantities for the fixed covariate model:

Σ
(𝑁)
�̇�𝑧

:=
1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
�̇�𝑧(x𝑖)−

1

𝑁

𝑁∑︁
𝑗=1

�̇�𝑧(x𝑗)

)︃⊗2

,

Σ
(𝑁)
�̇�1−�̇�0

:=
1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
(�̇�1(x𝑖)− �̇�0(x𝑖))−

1

𝑁

𝑁∑︁
𝑗=1

(�̇�1(x𝑗)− �̇�0(x𝑗))

)︃⊗2

,

Σ
(𝑁)
�̇�𝑧

:=𝑀 (�̇�1(𝑧), . . . , �̇�𝑁(𝑧)) , (25)

Σ
(𝑁)
�̇�1−�̇�0

:=𝑀 (�̇�1(1)− �̇�1(0), . . . , �̇�𝑁(1)− �̇�𝑁(0)) . (26)

In the finite population model, the definition of Σ(𝑁)
�̇�𝑧

and Σ
(𝑁)
�̇�1−�̇�0

remains the same, but the

residual covariance matrices require adaptation since there is no longer stochasticity in �̇�𝑖(𝑧).

In the finite population model, define the residual covariance matrices as

𝑆
(𝑁)
�̇�𝑧

:=
1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
�̇�𝑖(𝑧)−

1

𝑁

𝑁∑︁
𝑗=1

�̇�𝑗(𝑧)

)︃⊗2

, (27)

𝑆
(𝑁)
�̇�1−�̇�0

:=
1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
(�̇�𝑖(1)− �̇�𝑖(0))−

1

𝑁

𝑁∑︁
𝑗=1

(�̇�𝑗(1)− �̇�𝑗(0))

)︃⊗2

. (28)

The limits of these covariance matrices are guaranteed to exist under Assumptions A.4

and A.5 and Assumptions A.6 and A.7, respectively. We denote their asymptotic limits by

dropping the superscripted (𝑁); for instance, Σ�̇�𝑧 := lim𝑁→∞Σ
(𝑁)
�̇�𝑧

.

Finally, define

Σ𝑓𝑖𝑡𝑡𝑒𝑑 :=
Σ�̇�1

𝑝
+

Σ�̇�0

1− 𝑝
− Σ�̇�1−�̇�0 , (29)

Σ𝑟𝑒𝑠𝑖𝑑 :=
Σ�̇�1

𝑝
+

Σ�̇�0

1− 𝑝
− Σ�̇�1−�̇�0 . (30)
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4.14 Useful Preliminary Results

4.14.1 Central Limit Theorems

Central limit theorems across the superpopulation, fixed covariate, and finite population

models form part of the theoretical backbone of our results. Some of the results are classical,

while others are novel. For the sake of completeness, we include all of the necessary results

here along with references for those whose proofs are common and thus omitted.

Theorem A.14. In a superpopulation model subject to Assumptions A.2 and A.3

√
𝑁 (𝜏 (y(Z))− 𝜏 ∅)

𝑑−→ 𝒩
(︂
0,

Σ𝑦(1)

𝑝
+

Σ𝑦(0)

1− 𝑝

)︂
,

where Σ𝑦(𝑧) = V (𝑦1(𝑧)).

Proof. Decompose
√
𝑁 (𝜏 (y(Z))− 𝜏 ∅) as

√︂
𝑁

𝑛1

√
𝑛1

(︃
1

𝑛1

𝑁∑︁
𝑖=1

𝑍𝑖𝑦𝑖(1)−
1

𝑁

𝑁∑︁
𝑖=1

E [𝑦𝑖(1)]

)︃
⏟  ⏞  

Term 1

−

√︂
𝑁

𝑛0

√
𝑛0

(︃
1

𝑛0

𝑁∑︁
𝑖=1

(1− 𝑍𝑖)𝑦𝑖(0)−
1

𝑁

𝑁∑︁
𝑖=1

E [𝑦𝑖(0)]

)︃
⏟  ⏞  

Term 0

We first focus on Term 1. By the independence between 𝑍 and 𝑦(1) under the completely

randomized design,
1

𝑛1

𝑁∑︁
𝑖=1

𝑍𝑖𝑦𝑖(1)
d
=

1

𝑛1

𝑛1∑︁
𝑖=1

𝑦′𝑖(1)

where {𝑦′1(1), . . . , 𝑦′𝑛1
(1)} are i.i.d. draws from the marginal distribution of the treated poten-

tial outcomes under the superpopulation model and d
= denotes equality in law. Consequently,
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the Lindeberg–Lévy central limit theorem (Dur10, Theorem 3.4.1) implies that

√
𝑛1

(︃
1

𝑛1

𝑁∑︁
𝑖=1

𝑍𝑖𝑦𝑖(1)−
1

𝑁

𝑁∑︁
𝑖=1

E [𝑦𝑖(1)]

)︃
𝑑−→ 𝒩

(︀
0,Σ𝑦(1)

)︀
.

Further more, under Assumption A.1
√︀
𝑁/𝑛1 → 𝑝−1/2 and so Term 1 converges in distri-

bution to 𝒩
(︀
0, 𝑝−1Σ𝑦(1)

)︀
. Analogous reasoning yields that Term 0 converges in distribution

to 𝒩
(︀
0, (1− 𝑝)−1Σ𝑦(0)

)︀
. By the independence between the treatment allocation mechanism

and the potential outcomes under a completely randomized design and the i.i.d. sampling of

potential outcomes in the superpopulation model, Term 0 and Term 1 are independent of one

another; this independence combined with the fact that the sum of independent Gaussian

random variables is itself Gaussian completes the proof.

Theorem A.15. In a fixed covariate model subject to Assumptions A.4 and A.5

√
𝑁 (𝜏 (y(Z))− 𝜏C )

𝑑−→ 𝒩
(︀
0,ΣC + ΣC

𝜏

)︀
where, using the 𝑀(· · · ) notation from (20),

ΣC := lim
𝑁→∞

𝑁

(︃
Σ

(𝑁),C
𝑦(1)

𝑛1

+
Σ

(𝑁),C
𝑦(0)

𝑛0

−
Σ

(𝑁),C
𝑦(1)−𝑦(0)

𝑁

)︃
,

Σ
(𝑁),C
𝑦(𝑧) :=𝑀 (𝑦1(𝑧), . . . , 𝑦𝑁(𝑧)) , (31)

Σ
(𝑁),C
𝑦(1)−𝑦(0) :=𝑀 (𝑦1(1)− 𝑦1(0), . . . , 𝑦𝑁(1)− 𝑦𝑁(0)) . (32)

and

ΣC
𝜏 := lim

𝑁→∞

1

𝑁 − 1

𝑁∑︁
𝑖=1

E

⎡⎣(︃𝑦𝑖(1)− 𝑦𝑖(0)−
1

𝑁

𝑁∑︁
𝑗=1

E [𝑦𝑗(1)− 𝑦𝑗(0) | x𝑗]

)︃⊗2 ⃒⃒⃒⃒
⃒x𝑖

⎤⎦ . (33)

Proof. The proof rests upon the two-phase framework of (RBK05). Specifically, we decom-
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pose
√
𝑁 (𝜏 (y(Z))− 𝜏C ) =

√
𝑁 (𝜏 (y(Z))− 𝜏F )⏟  ⏞  

Design-based Term

+
√
𝑁 (𝜏F − 𝜏C )⏟  ⏞  

Model-based Term

.

By Theorem 5.1 of (RBK05) the design-based and model-based terms are asymptotically

independent. Furthermore, by the Lindeberg central limit theorem, under Assumptions A.4

and A.5 the model-based term obeys a central limit theorem

√
𝑁 (𝜏F − 𝜏C )

𝑑−→ 𝒩
(︀
0,ΣC

𝜏

)︀
.

We examine the design-based term conditionally upon a finite population F . The variance

of the design-based term conditioned upon F is given by

Σ̂C := 𝑁

(︃
Σ̂𝑦(1)

𝑛1

+
Σ̂𝑦(0)

𝑛0

−
Σ̂𝑦(1)−𝑦(0)

𝑁

)︃

Σ̂𝑦(𝑧) :=
1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
𝑦𝑖(𝑧)−

1

𝑁

𝑁∑︁
𝑗=1

𝑦𝑗(𝑧)

)︃⊗2

Σ̂𝑦(1)−𝑦(0) :=
1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
𝑦𝑖(1)− 𝑦𝑖(0)−

1

𝑁

𝑁∑︁
𝑗=1

(𝑦𝑗(1)− 𝑦𝑗(0))

)︃⊗2

.

The quantity Σ̂C is a random variable under the fixed covariate model. Under Assump-

tions A.4 and A.5 the Marcinkiewicz–Zygmund strong law of large numbers (see (Liu88,

Lemma 1)) ensures that Σ̂C almost surely shares the same limit as E
[︁
Σ̂C | x

]︁
. By linearity

of expectation and Lemma A.7 it follows that

E
[︁
Σ̂C | x

]︁
= 𝑁

(︃
𝑀 (𝑦1(1), . . . , 𝑦𝑁(1))

𝑛1

+
𝑀 (𝑦1(0), . . . , 𝑦𝑁(0))

𝑛0

−

𝑀 (𝑦1(1)− 𝑦1(0), . . . , 𝑦𝑁(1)− 𝑦𝑁(0))

𝑁

)︃
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where the notation 𝑀(· · · ) is defined in (20).

By Lemma A.6 Assumptions A.6 and A.7 hold for all conditioning events F except for

possibly a set of measure zero under the fixed covariate model and so the finite population

central limit theorem (LD17) applies to the design based term almost surely in F

√
𝑁 (𝜏 (y(Z))− 𝜏F )

𝑑−→ 𝒩
(︀
0,ΣC

)︀
.

Finally, the two central limit theorems are combined via asymptotic independence – which

is guaranteed by (RBK05, Theorem 5.1.iii) – to yield the desired result.

Similar logic to Theorem A.15 allows for the alternative central limit theorem which rests

upon the decomposition of variance of (DFM19).

Theorem A.16. In a fixed covariate model subject to the regularity conditions Assump-

tions A.4 and A.5

√
𝑁 (𝜏 (y(Z))− 𝜏C )

𝑑−→ 𝒩
(︀
0,Σ𝑓𝑖𝑡𝑡𝑒𝑑 + ΣC

𝑟𝑒𝑠𝑖𝑑 + ΣC
𝜏

)︀
where Σ𝑓𝑖𝑡𝑡𝑒𝑑 is defined in (29), and

ΣC
𝑟𝑒𝑠𝑖𝑑 := lim

𝑁→∞
𝑁

(︃
Σ

(𝑁)
�̇�1

𝑛1

+
Σ

(𝑁)
�̇�0

𝑛0

−
Σ

(𝑁)
�̇�1−�̇�0

𝑁

)︃

where Σ
(𝑁)
�̇�𝑧

and Σ
(𝑁)
�̇�1−�̇�0

are defined in (25) and (26), respectively.

Theorem A.17. In a finite population model subject to the regularity conditions Assump-

tions A.6 and A.7 the quantity

Σ𝑟𝑒𝑠𝑖𝑑,F = lim
𝑁→∞

𝑁

(︃
𝑆
(𝑁)
�̇�1

𝑛1

+
𝑆
(𝑁)
�̇�0

𝑛0

−
𝑆
(𝑁)
�̇�1−�̇�0

𝑁

)︃
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exists and
√
𝑁 (𝜏 (y(Z))− 𝜏F )

𝑑−→ 𝒩 (0,Σ𝑓𝑖𝑡𝑡𝑒𝑑 + Σ𝑟𝑒𝑠𝑖𝑑,F ) .

An equivalent presentation of the limiting variance is

ΣF
𝑦(1)

𝑝
+

ΣF
𝑦(0)

1− 𝑝
− ΣF

𝑦(1)−𝑦(0),

ΣF
𝑦(1)−𝑦(0) := lim

𝑁→∞

1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
y𝑖(1)− y𝑖(0)−𝑁−1

𝑁∑︁
𝑗=1

(y𝑗(1)− y𝑗(0))

)︃⊗2

,

where ΣF
𝑦(𝑧) is defined in (14)

Proof. This result follows from the finite central limit theorem of (LD17) and the decompo-

sition of variance of (DFM19).

4.14.2 Consistently Conservative Distributional Estimators and Hy-

pothesis Tests

Consider two random variables 𝒳 and 𝒴 and two stochastic processes {𝒳 (𝑁)}𝑁∈N and

{𝒴(𝑁)}𝑁∈N with cumulative distribution functions 𝐹𝒳 , 𝐹𝒴 , 𝐹𝒳 (𝑁) , and 𝐹𝒴(𝑁) , respectively.

Write the quantile function of 𝒳 as 𝐹−1
𝒳 ; similarly define 𝐹−1

𝒴 , 𝐹−1
𝒳 (𝑁) , and 𝐹−1

𝒴(𝑁) .

Theorem A.18. Suppose that:

1. 𝒳 and 𝒴 are continuously distributed and their cumulative distribution functions are

strictly increasing on their support,

2. 𝒳 first-order stochastically dominates 𝒴,

3. 𝜌𝐵𝐿

(︀
𝒳 (𝑁),𝒳

)︀
→ 0 and 𝜌𝐵𝐿

(︀
𝒴(𝑁),𝒴

)︀
→ 0.
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Then for any 𝛼 ∈ (0, 1)

lim
𝑁→∞

P
(︀
𝒴(𝑁) ≥ 𝐹−1

𝒳 (𝑁)(1− 𝛼)
)︀
= P

(︀
𝒴 ≥ 𝐹−1

𝒳 (1− 𝛼)
)︀
≤ P

(︀
𝒳 ≥ 𝐹−1

𝒳 (1− 𝛼)
)︀
= 𝛼.

Proof. Recall that the bounded Lipschitz metric 𝜌𝐵𝐿 metrizes weak convergence (vdVW96,

Theorem 1.12.4). Thus, 𝒳 (𝑁) 𝑑−→ 𝒳 . By Polya’s Theorem (LR05, Theorem 11.2.9) the

cumulative distribution function of 𝒳 (𝑁) converges uniformly to the cumulative distribution

function of 𝒳 ; the proof of uniformity follows by the same argument as in the Glivenko-

Cantelli Theorem (vdV98, Theorem 19.1). Because 𝒳 is continuously distributed and its

cumulative distribution function is strictly increasing on its support it follows that 𝐹−1
𝒳 (𝑁)(1−

𝛼) → 𝐹−1
𝒳 (1− 𝛼) (LR05, Lemma 11.2.1). By definition

P
(︀
𝒴(𝑁) ≥ 𝐹−1

𝒳 (𝑁)(1− 𝛼)
)︀
= 1− 𝐹𝒴(𝑁)

(︀
𝐹−1
𝒳 (𝑁)(1− 𝛼)

)︀
+ P

(︀
𝒴(𝑁) = 𝐹−1

𝒳 (𝑁)(1− 𝛼)
)︀
.

Taking limits on both sides and using that 𝒴(𝑁) limits weakly to a continuous random

variable yields

lim
𝑁→∞

P
(︀
𝒴(𝑁) ≥ 𝐹−1

𝒳 (𝑁)(1− 𝛼)
)︀
= 1− lim

𝑁→∞
𝐹𝒴(𝑁)

(︀
𝐹−1
𝒳 (𝑁)(1− 𝛼)

)︀
.

By the uniform convergence of 𝐹𝒴(𝑁) to 𝐹𝒴 , the continuity of 𝐹𝒴 , and the pointwise conver-

gence of 𝐹−1
𝒳 (𝑁) to 𝐹−1

𝒳

1− lim
𝑁→∞

𝐹𝒴(𝑁)

(︀
𝐹−1
𝒳 (𝑁)(1− 𝛼)

)︀
= 1− 𝐹𝒴

(︀
𝐹−1
𝒳 (1− 𝛼)

)︀
= P

(︀
𝒴 ≥ 𝐹−1

𝒳 (1− 𝛼)
)︀

Because 𝒳 first-order stochastically dominates 𝒴 , for all 𝛼 ∈ (0, 1)

P
(︀
𝒴 ≥ 𝐹−1

𝒳 (1− 𝛼)
)︀
≤ P

(︀
𝒳 ≥ 𝐹−1

𝒳 (1− 𝛼)
)︀
.
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Finally, by the continuity and strict increasingness of 𝐹𝒳

P
(︀
𝒳 ≥ 𝐹−1

𝒳 (1− 𝛼)
)︀
= 𝛼.

Armed with Theorem A.18 we now prove Theorem 1.

Proof of Theorem 1. Let 𝒳 (𝑁) ∼ ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) and 𝒴(𝑁) ∼ ℒ (𝑇S (y(Z))), then –

by Definition 6 – almost surely it holds that

𝜌𝐵𝐿

(︀
𝒳 (𝑁),𝒳

)︀
→ 0,

𝜌𝐵𝐿

(︀
𝒴(𝑁),𝒴

)︀
→ 0,

and 𝒳 first-order stochastically dominates 𝒴 . By the assumptions of Theorem 1 𝒳 and 𝒴 are

continuously distributed and their cumulative distribution functions are strictly increasing

on their support. Consequently, the conditions of Theorem A.18 hold almost surely, and

thus we conclude that the probability of false rejection is indeed bounded above by 𝛼.

In the context of bootstrap hypothesis testing, Theorem A.18 implies that a strongly

consistently conservative bootstrap procedure (in the sense of Definition 6) induces almost

surely conservative inferences. Specifically, by taking ℒ
(︀
𝒳 (𝑁)

)︀
to be the conditional boot-

strap law and 𝒴(𝑁) to be the random variable of interest, Theorem A.18 demonstrates that

the probability that the random variable 𝒴(𝑁) exceeds the (1 − 𝛼)th quantile of the boot-

strap distribution is asymptotically no larger than 𝛼. In other words, a strongly consistently

conservative resampling procedure almost surely controls the Type I error rate at no greater

than the nominal level.

Remark 6. Suppose that one considers two bootstrap procedures: resampling procedure 𝐴

and resampling procedure 𝐵. By analogous reasoning to the logic of Theorem A.18, if re-
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sampling procedure 𝐴 is strongly more conservative than resampling procedure 𝐵 (in the

sense of Definition 7) then the Type I error rate of inference under resampling procedure 𝐴

is almost surely asymptotically no larger than that under resampling procedure 𝐵. When

resampling procedure 𝐵 is already strongly consistently conservative, this means that re-

sampling procedure 𝐴 may be needlessly conservative and so a practitioner ought to prefer

resampling procedure 𝐵.

4.14.3 Anderson’s Theorem: Stochastic Dominance through Con-

servative Covariance Estimation

Consider two multivariate Gaussian random vectors 𝒳 and 𝒴 distributed as

𝒳 ∼ 𝒩 (0, 𝑆𝒳 ) ,

𝒴 ∼ 𝒩 (0, 𝑆𝒴) .

Tong (Ton90, Theorem 4.2.5) presents a corollary of Anderson’s central result from

(And55):

Theorem A.19 (Anderson’s Theorem). If 𝑆𝒴 ⪯ 𝑆𝒳 in the Loewner partial order then

P (𝒴 ∈ 𝐵) ≥ P (𝒳 ∈ 𝐵)

for any convex set 𝐵 which is mirror symmetric about the origin (i.e., 𝑥 ∈ 𝐵 ⇐⇒ −𝑥 ∈ 𝐵).

For any test statistic 𝑇S (y(Z)) of the form (1) the set 𝐵𝑡 = {𝑎 ∈ R𝑑 : 𝑓𝜉(𝑎) ≤ 𝑡} is

convex and mirror symmetric about the origin by Condition 3. An immediate consequence

of this is the following corollary:

Corollary A.1. If 𝑆𝒴 ⪯ 𝑆𝒳 in the Loewner partial order and 𝑓𝜉(·) obeys Condition 3 then

P (𝑓𝜉 (𝒴) ≤ 𝑡) ≥ P (𝑓𝜉 (𝒳 ) ≤ 𝑡).
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Corollary A.1 states that if 𝑆𝒴 ⪯ 𝑆𝒳 then 𝑓𝜉 (𝒳 ) first-order stochastically dominates

𝑓𝜉 (𝒴). Corollary A.1 is a workhorse result in our subsequent analyses. By virtue of Theo-

rems A.14, A.15, and A.17, Conditions 3 and 4, and the continuous mapping theorem the

null distribution of 𝑇S (y(Z)) is the 𝑓𝜉-pushforward of the Gaussian measure with mean zero

and covariance matrix 𝑆𝒴 where the specific form of 𝑆𝒴 is determined by the asymptotic

variance of the difference in means in the particular model of interest.

Example 18. If 𝑓𝜉(𝑡) = ||𝑡||22 and we take a finite population model then the null distribution

of 𝑇F (y(Z)) is the pushforward of 𝒩 (0,Σ𝑓𝑖𝑡𝑡𝑒𝑑 + Σ𝑟𝑒𝑠𝑖𝑑,F ) under the map 𝑡 ↦→ ||𝑡||22. In the

special case that Σ𝑓𝑖𝑡𝑡𝑒𝑑 + Σ𝑟𝑒𝑠𝑖𝑑,F is the 𝑑 × 𝑑 identity matrix then the null distribution of

𝑇F (y(Z)) is the 𝜒2
𝑑 distribution.

Corollary A.1 provides a simple method for constructing conservative null distributions:

construct a random variable 𝒳 (𝑁) which converges in distribution to 𝒳 with 𝑆𝒴 ⪯ 𝑆𝒳

as 𝑁 → ∞, then the distribution of 𝑓𝜉
(︀
𝒳 (𝑁)

)︀
automatically stochastically dominates the

asymptotic null distribution of 𝑇S (y(Z))

Example 19. Consider a finite population model and suppose that we construct a random

variable 𝒳 (𝑁) which converges in distribution to 𝒳 where 𝒳 ∼ 𝒩 (0,Σ𝑓𝑖𝑡𝑡𝑒𝑑 + 𝑉 ) for

𝑉 = lim
𝑁→∞

𝑁

(︃
𝑆
(𝑁)
�̇�1

𝑛1

+
𝑆
(𝑁)
�̇�0

𝑛0

)︃
.

The difference 𝑉 − Σ𝑟𝑒𝑠𝑖𝑑,F = lim𝑁→∞ 𝑆
(𝑁)
�̇�1−�̇�0

is guaranteed to be positive semidefinite since

𝑆
(𝑁)
�̇�1−�̇�0

is positive semidefinite by construction and the positive semidefinite cone is topologi-

cally closed. Consequently, the distribution of 𝑓𝜉(𝒳 ) stochastically dominates the asymptotic

null distribution of 𝑇F (y(Z)).

Let 𝒜𝑇 (𝑍) denote a algorithm which takes observed units {(𝑦𝑖(𝑍𝑖), 𝑥𝑖)}𝑁𝑖=1 as inputs and

generates a random variable conditional upon {(𝑦𝑖(𝑍𝑖), 𝑥𝑖)}𝑁𝑖=1. In general, we consider algo-

rithms which involve using the observed units {(𝑦𝑖(𝑍𝑖), 𝑥𝑖)}𝑁𝑖=1 to form some new “imputed”
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population of 𝑁 individuals and then apply a test statistic 𝑇 (·) to this imputed population;

as such, the subscript 𝑇 provides a convenient way to keep track of this dependence on 𝑇 .

Example 20. The i.i.d. bootstrap resampling procedure presented in Algorithm 1 con-

structs an “imputed population” by i.i.d. resampling from the treated observations

{(𝑦𝑖(𝑍𝑖), 𝑥𝑖)}𝑖 : 𝑍𝑖=1 and control observations {(𝑦𝑖(𝑍𝑖), 𝑥𝑖)}𝑖 : 𝑍𝑖=0. If one chooses the test

statistic 𝑇1(y(Z)) =
√
𝑁 (𝜏(y(Z))− 𝜏 ∅) then the resampling algorithm 𝒜𝑇1(𝑍) produces the

random variable (4) conditional upon {(𝑦𝑖(𝑍𝑖), 𝑥𝑖)}𝑁𝑖=1. If instead one chooses the test statis-

tic 𝑇1(y(Z)) =
⃒⃒⃒⃒⃒⃒√

𝑁 (𝜏(y(Z))− 𝜏 ∅)
⃒⃒⃒⃒⃒⃒2

2
then the resampling algorithm 𝒜𝑇2(𝑍) produces the

random variable⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒√𝑁

(︃(︁
E𝐹 1,*

𝑁 (𝑍) [Π𝑦(𝑦, 𝑥)]− E𝐹 0,*
𝑁 (𝑍) [Π𝑦(𝑦, 𝑥)]

)︁
⏟  ⏞  

Bootstrap Resampling Term

−

(︁
E𝐹 1

𝑁 (𝑍) [Π𝑦(𝑦, 𝑥)]− E𝐹 0
𝑁 (𝑍) [Π𝑦(𝑦, 𝑥)]

)︁
⏟  ⏞  

Centering by Empirical Means

)︃⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

2

.

Theorem A.20. Suppose that:

• For 𝑇1(y(Z)) =
√
𝑁 (𝜏(y(Z))− 𝜏S ) the algorithm 𝒜𝑇1(𝑍) produces the random vari-

able 𝒳 (𝑁),

• For all conditioning events up to a set of measure zero, the random variable 𝒳 (𝑁)

conditional upon the observed units {(𝑦𝑖(𝑍𝑖), 𝑥𝑖)}𝑁𝑖=1 converges in distribution to 𝒳 ∼

𝒩 (0, 𝑆𝒳 ).

If 𝑆𝒳 ⪰ lim𝑁→∞V
(︁√

𝑁 (𝜏(y(Z))− 𝜏S )
)︁

then the algorithm 𝒜𝑇 (𝑍) is strongly consistently

conservative for any test statistic 𝑇 (·) of the form (1) subject to Conditions 3 and 4.

Proof. The result follows directly from Corollary A.1 by taking 𝒴 to be the weak limit of

𝑇S (y(Z)).
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Theorem A.20 implies that any resampling algorithm which produces a conservative boot-

strap null distribution for the difference in means is automatically consistently conservative

for any test statistic 𝑇 (·) of the form (1) subject to Conditions 3 and 4. This result facilitates

proving that a resampling algorithm is consistently conservative by reducing the problem to

only considering the behavior of the resampling algorithm in the context of the difference in

means. It even further reduces the workload of the analysis by showing that one need only

demonstrate two features of the behavior of the resampling algorithm for the difference in

means:

1. A conditional central limit theorem holds almost surely for the resampled difference in

means,

2. The resulting asymptotic variance of the conditional resampled difference in means

exceeds the true asymptotic variance of the difference in means.

By similar reasoning one can compare two resampling algorithms through an analysis

only of their behavior with the difference in means.

Theorem A.21. Consider two resampling algorithms 𝒜𝑇 (𝑍) and 𝒜′
𝑇 (𝑍) Suppose that:

• For 𝑇1(y(Z)) =
√
𝑁 (𝜏(y(Z))− 𝜏S ) the algorithm 𝒜𝑇1(𝑍) produces the random vari-

able 𝒳 (𝑁) and the algorithm 𝒜′
𝑇1
(𝑍) produces the random variable 𝒳 ′(𝑁)

• For all condition events up to a set of measure zero, the random variable 𝒳 (𝑁) con-

ditional upon the observed units {(𝑦𝑖(𝑍𝑖), 𝑥𝑖)}𝑁𝑖=1 converges in distribution to 𝒳 ∼

𝒩 (0, 𝑆𝒳 ) and likewise 𝒳 ′(𝑁) conditionally converges in distribution to 𝒳 ′ ∼ 𝒩 (0, 𝑆𝒳 ′)

If 𝑆𝒳 ⪰ 𝑆𝒳 ′ then the algorithm 𝒜𝑇 (𝑍) is strongly more conservative than 𝒜′
𝑇 (𝑍) for any

test statistic 𝑇 (·) of the form (1) subject to Conditions 3 and 4.

Theorem A.21 provides a similar tool to that of Theorem A.20: it reduces proving that one

resampling algorithm is more conservative than another to simply examining their behavior
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for the difference in means, showing conditional central limit theorems, and comparing the

resulting asymptotic variances.

4.15 Central Limit Theorems For The I.I.D. Bootstrap

With Theorems A.20 and A.21 in mind, we turn to analyzing the behavior of the boot-

strap distribution of the difference in means formed by Algorithm 1. In this section we

prove central limit theorems for the resampled difference in means under Algorithm 1 in the

superpopulation, fixed covariate, and finite population models.

Theorem A.22. Let the bootstrap conditional distribution generated by the i.i.d. resampling

procedure of Algorithm 1 applied to the difference in means 𝑇∅(y(Z)) =
√
𝑁 (𝜏(y(Z))− 𝜏 ∅) be

denoted by ℒ𝜏*,∅(𝑍). Under the superpopulation model subject to Assumptions A.2 and A.3

the random distribution ℒ𝜏*,∅(𝑍) limits weakly to the law of 𝒩
(︀
0, 𝑝−1Σ𝑦(1) + (1− 𝑝)−1Σ𝑦(0)

)︀
almost surely. Formally,

𝜌𝐵𝐿

(︂
𝐿𝑎𝑤𝜏*,∅(𝑍), 𝛾

0,
Σ𝑦(1)

𝑝
+

Σ𝑦(0)
1−𝑝

)︂
𝑎.𝑠.−−→ 0.

Proof. Algorithm 1 forms the conditional distribution of 𝑇S (y(Z)) under the following re-

sampling procedure:

1. From the observed treated units {(𝑦𝑖(𝑍𝑖), 𝑥𝑖)}𝑖 : 𝑍𝑖=1 uniformly at random select with

replacement𝑁 observations to form a resampled treated population of {(𝑦*𝑖 (1), 𝑥*𝑖1)}𝑁𝑖=1.

Analogous resampling is performed on the observed control units {(𝑦𝑖(𝑍𝑖), 𝑥𝑖)}𝑖 : 𝑍𝑖=0

to form {(𝑦*𝑖 (0), 𝑥*𝑖0)}𝑁𝑖=1.

2. Generated an independent 𝐵 ∼ Unif(Ω) to serve as a treatment allocation vector for

this new population of 𝑁 units.
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3. Take the “bootstrap treated units” to be {(𝑦*𝑖 (1), 𝑥*𝑖1) : 𝐵𝑖 = 1} and the “bootstrap

control units” to be {(𝑦*𝑖 (0), 𝑥*𝑖0) : 𝐵𝑖 = 0}.

It is easily verified by the independence of 𝐵 that this procedure is equivalent to:

1. From the observed treated units {(𝑦𝑖(𝑍𝑖), 𝑥𝑖)}𝑖 : 𝑍𝑖=1 uniformly at random select with re-

placement 𝑛1 observations to form the “bootstrap treated units” {(𝑦*𝑖 (1), 𝑥*𝑖1)}
𝑛1
𝑖=1. Sim-

ilarly from the observed control units {(𝑦𝑖(𝑍𝑖), 𝑥𝑖)}𝑖 : 𝑍𝑖=0 uniformly at random select

with replacement 𝑛0 observations to form the “bootstrap control units” {(𝑦*𝑖 (0), 𝑥*𝑖0)}
𝑛0
𝑖=1.

After this reframing it follows that Algorithm 1 is equivalent to Efron’s classical bootstrap

of i.i.d. resampling for the sample mean applied twice independently: once to form a boot-

strap null distribution for the treated mean and once to form a bootstrap null distribution

for the control mean. Applying (LR05, Theorem 15.4.5) provides yields an analysis of the

asymptotic bootstrap distribution for each of these two separate mean-estimation problems.

Finally, re-weighting the variances to account for the relative samples sizes of 𝑁 , 𝑛1, and

𝑛0 and recalling that the sum of independent Gaussian random variables is itself Gaussian

yields the desired result that

𝜌𝐵𝐿

(︂
𝐿𝑎𝑤𝜏*,∅(𝑍), 𝛾

0,
Σ𝑦(1)

𝑝
+

Σ𝑦(0)
1−𝑝

)︂
𝑎.𝑠.−−→ 0.

Remark 7. Theorem 3 follows immediately from Theorems A.14 and A.22 and the fact that

the bounded Lipschitz metric, 𝜌𝐵𝐿, metrizes weak convergence.

Theorem A.23. Let the bootstrap conditional distribution generated by the i.i.d. resampling

procedure of Algorithm 1 applied to the difference in means 𝑇C (y(Z)) =
√
𝑁 (𝜏(y(Z))− 𝜏C )

be denoted by ℒ𝜏*,C (𝑍). Under the fixed covariate model subject to Assumptions A.4 and A.5
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the random distribution ℒ𝜏*,C (𝑍) limits weakly to the law of

𝒩

(︃
0, lim

𝑁→∞
𝑁

(︃
Σ

(𝑁),C
𝑦(1)

𝑛1

+
Σ

(𝑁),C
𝑦(0)

𝑛0

)︃)︃

almost surely where Σ
(𝑁),C
𝑦(𝑧) is defined in (31), respectively. Formally,

𝜌𝐵𝐿

⎛⎝ℒ𝜏*,C (𝑍), 𝛾
0,

(︃
ΣC
𝑦(1)
𝑝

+
ΣC
𝑦(0)
1−𝑝

)︃
⎞⎠ 𝑎.𝑠.−−→ 0.

Proof. The same reframing of Algorithm 1 that was applied in the proof of Theorem A.22

applies equally well in the fixed covariate context since the reframing of Algorithm 1 as

two i.i.d. bootstrap resampling procedures is not based at all upon the underlying data

generating procedure. All that is required to complete the analysis is a suitable replacement

for Theorem 15.4.5 of (LR05) that can account for the fact that the potential outcomes are

no longer distributed identically.

Consider the subproblem of simply estimating the distribution of the sample mean in the

treated population. In the univariate case of 𝑑 = 1 it suffices to apply (LS95, Theorem 1) to

establish the 𝐿∞-metric consistency of the conditional bootstrap distribution of the empirical

mean to the true sampling distribution of the sample mean. To adapt to the multivariate

case of 𝑑 ≥ 2 one applies the Cramér–Wold device (LR05, Theorem 11.2.3) and then follows

the same line of reasoning.

Remark 8. The result of Theorem 4 pertaining to the fixed covariate model follows from

Theorems A.15 and A.23, the fact that ΣC
𝑦(1)−𝑦(0) ⪰ ΣC

𝜏 , and the fact that the bounded

Lipschitz metric, 𝜌𝐵𝐿, metrizes weak convergence.

Theorem A.24. Let the bootstrap conditional distribution generated by the i.i.d. resampling
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procedure of Algorithm 1 applied to the difference in means 𝑇F (y(Z)) =
√
𝑁 (𝜏(y(Z))− 𝜏F )

be denoted by ℒ𝜏*,F (𝑍).

Under the finite population model subject to Assumptions A.6 and A.7 the random dis-

tribution ℒ𝜏*,F (𝑍) limits weakly to the law of 𝒩
(︁
0, 𝑝−1ΣF

𝑦(1) + (1− 𝑝)−1ΣF
𝑦(0)

)︁
almost surely

where ΣF
𝑦(𝑧) is defined in (14). Formally,

𝜌𝐵𝐿

(︃
ℒ𝜏*,F (𝑍), 𝛾

0,
ΣF
𝑦(1)
𝑝

+
ΣF
𝑦(0)
1−𝑝

)︃
𝑎.𝑠.−−→ 0.

Proof. By mirroring the arguments from the proofs of Theorems A.22 and A.23 it suffices to

show a conditional central limit theorem for i.i.d. bootstrap resampling from the observed

treated units {𝑦𝑖(𝑍𝑖) : 𝑍𝑖 = 1} almost surely with respect to randomness in the treatment

allocations.

Under Assumptions A.6 and A.7 the first two sample moments obey finite population

strong laws of large numbers (WD21, Lemma A3) such that – for the treated potential

outcomes – the sample mean converges almost surely to the population mean and the sample

covariance matrix converges almost surely to the population covariance matrix. Furthermore,

Assumptions A.6 and A.7 are sufficient for the finite population central limit theorem of

(LD17) and so the assumptions of Lemma A.23 are met. This establishes that the i.i.d

bootstrapped sample mean of the treated units {𝑦𝑖(𝑍𝑖) : 𝑍𝑖 = 1} obeys a central limit

theorem almost surely with respect to randomness in the treatment allocations so that

√
𝑛1

(︃
1

𝑛1

𝑛1∑︁
𝑖=1

𝑦*𝑖 (1)−
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

𝑦𝑖(1)

)︃
| 𝑍 𝑑−→ 𝒩

(︀
0,ΣF

𝑦(1)

)︀
almost surely in 𝑍. The analogous result holds for the control quantities. Finally, since the

sum of independent Gaussians is Gaussian and 𝜌𝐵𝐿 metrizes weak convergence it follows
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that

𝜌𝐵𝐿

(︃
ℒ𝜏*,F (𝑍), 𝛾

0,
ΣF
𝑦(1)
𝑝

+
ΣF
𝑦(0)
1−𝑝

)︃
𝑎.𝑠.−−→ 0.

Remark 9. The result of Theorem 4 pertaining to the finite population model follows from

Theorems A.17 and A.24, the fact that ΣF
𝑦(1)−𝑦(0) ⪰ 0, and the fact that the bounded Lipschitz

metric, 𝜌𝐵𝐿, metrizes weak convergence.

4.16 Central Limit Theorems For The Residual Boot-

strap

In parallel with Algorithm 2 we define Algorithm 5 which uses the population regression

coefficients �̇�𝑧 to form the imputed population and the residuals instead of using the sample

regression coefficients 𝛽𝑧 as in the case of Algorithm 2. By the consistency of the em-

pirical residuals and regression coefficients to their population analogues we may analyze

Algorithm 2 by instead examining Algorithm 5; such a style of argument is familiar to the

regression-adjustment literature; see for example the proofs of (CF21), (GB20), or (Lin13).
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Algorithm 5: A population residual-based distributional estimator.
Input: An observed treatment allocation 𝑍 ∈ Ω.

Result: The bootstrap distributional estimator ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍).

Compute the imputed values �̇�0(x𝑖) and �̇�1(x𝑖) for each 𝑖 according to (17) and

define

�̇� = {(�̇�𝑖(𝑍𝑖)) : 𝑍𝑖 = 0} ,

�̇� = {(�̇�𝑖(𝑍𝑖)) : 𝑍𝑖 = 1} .

for (𝐷0, 𝐷1) ∈ 𝒫(𝑁, �̇�)× 𝒫(𝑁, �̇� ) do
Say that

𝐷0 = {(�̇�*𝑖 (0))}𝑁𝑖=1,

𝐷1 = {(�̇�*𝑖 (1))}𝑁𝑖=1.

for 𝐵 ∈ Ω do
Generate the “bootstrap experimental observations"

{(�̇�0(x𝑖) + �̇�*𝑖 (0),x𝑖) : 𝐵𝑖 = 0} ∪ {(�̇�1(x𝑖) + �̇�*𝑖 (1),x𝑖) : 𝐵𝑖 = 1}.

Compute 𝑇 (·) using the bootstrap experimental observations with centering

by
1

𝑁

𝑁∑︁
𝑖=1

(�̇�1(x𝑖)− �̇�0(x𝑖)) +

(︃
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

�̇�𝑖(1)−
1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

�̇�𝑖(0)

)︃
,

denote this 𝑇 *
𝐷0,𝐷1,𝐵

.

end

end

return

ℒ (𝑇 *(𝑦*(𝑍)) | y(Z), 𝑍) =
∑︀

𝐷0,𝐷1,𝐵
𝛿𝑇 *

𝐷0,𝐷1,𝐵⃒⃒⃒
𝒫(𝑁, �̇�)× 𝒫(𝑁, �̇� )× Ω

⃒⃒⃒ .
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Our analysis of Algorithm 5 decomposes across two separate analyses. In Algorithm 5

the bootstrap population is formed by two independent procedures:

• Forming deterministic predicted outcomes (�̇�0(x𝑖), �̇�1(x𝑖)) for each individual,

• Using i.i.d. resampling to form residuals (�̇�*𝑖 (0), �̇�
*
𝑖 (1)).

Next an independent completely randomized experiment is performed on the resampled

population formed by {(�̇�0(x𝑖) + �̇�*𝑖 (0), �̇�1(x𝑖) + �̇�*𝑖 (1))}
𝑁
𝑖=1. When examining the bootstrap

resampling for the difference in means under Algorithm 2 we can examine these two steps

separately – by their independence – and then recombine the results at the end. First we

focus on the bootstrap difference in means in only the context of the predicted outcomes

(�̇�0(x𝑖), �̇�1(x𝑖)). After doing so, we examine the bootstrap difference in means in only the

context of the i.i.d. resampled residuals (�̇�*𝑖 (0), �̇�
*
𝑖 (1)). We will show central limit theorems

for both of these quantities, which are then easily combined by leveraging independence.

Remark 10. As mentioned informally above, our results pertain to bootstrapping using the

population linear regression coefficients �̇�𝑧 instead of those that are empirically observed,

𝛽𝑧. However, by the consistency of 𝛽𝑧 for �̇�𝑧 – formally that
⃒⃒⃒⃒⃒⃒
𝛽𝑧 − �̇�𝑧

⃒⃒⃒⃒⃒⃒
2

𝑎.𝑠.−−→ 0 – the results

proven using the population regression coefficients �̇�𝑧 apply to the procedures based upon

𝛽𝑧. This is a standard proof technique in the regression adjustment literature; for instance,

see (CF21), (GB20), (LD18), and (Lin13) among others. The same logic applies to the use

of the population residuals �̇�𝑖(𝑧) instead of their empirically observed counterparts.

Lemma A.8. Consider a fixed covariate model subject to Assumptions A.4 and A.5 and let

𝐵 ∼ Unif(Ω) be draw independently. Then the random variable

√
𝑁

(︃(︃
1

𝑛1

∑︁
𝑖 : 𝐵𝑖=1

�̇�1(x𝑖)−
1

𝑛0

∑︁
𝑖 : 𝐵𝑖=0

�̇�0(x𝑖)

)︃
− 𝜏C

)︃

converges in distribution to a centered multivariate Gaussian with covariance matrix Σ𝑓𝑖𝑡𝑡𝑒𝑑.
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Proof. By the first order condition of the population linear regression (15), linearity of ex-

pectation, and the fact that E [𝐵𝑖] = 𝑛1/𝑁 it follows that

E

[︃
1

𝑛1

∑︁
𝑖 : 𝐵𝑖=1

�̇�1(x𝑖)−
1

𝑛0

∑︁
𝑖 : 𝐵𝑖=0

�̇�0(x𝑖)

]︃
= 𝜏C .

The result then follows from the finite population central limit theorem (LD17) applied

to the population {(�̇�0(x𝑖), �̇�1(x𝑖))}𝑁𝑖=1 which is justified under the regularity conditions of

Assumptions A.4 and A.5.

Lemma A.9. Consider a finite population model subject to Assumptions A.6 and A.7 and

let 𝐵 ∼ Unif(Ω) be draw independently. Then the random variable

√
𝑁

(︃(︃
1

𝑛1

∑︁
𝑖 : 𝐵𝑖=1

�̇�1(x𝑖)−
1

𝑛0

∑︁
𝑖 : 𝐵𝑖=0

�̇�0(x𝑖)

)︃
− 𝜏F

)︃

converges in distribution to a centered multivariate Gaussian with covariance matrix Σ𝑓𝑖𝑡𝑡𝑒𝑑.

Proof. The proof mirrors that of Lemma A.8 save for the fact that the first order conditions

of linear regression in (19) now imply that

E

[︃
1

𝑛1

∑︁
𝑖 : 𝐵𝑖=1

�̇�1(x𝑖)−
1

𝑛0

∑︁
𝑖 : 𝐵𝑖=0

�̇�0(x𝑖)

]︃
= 𝜏F .

Lemma A.10. Consider a fixed covariate model subject to Assumptions A.4 and A.5 and

let 𝐵 ∼ Unif(Ω) be draw independently. Then, conditional upon 𝑍 and y(Z), the random

variable

√
𝑁

(︃(︃
1

𝑛1

∑︁
𝑖 : 𝐵𝑖=1

�̇�*𝑖 (𝐵𝑖)−
1

𝑛0

∑︁
𝑖 : 𝐵𝑖=0

�̇�*𝑖 (𝐵𝑖)

)︃
−

(︃
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

�̇�𝑖(1)−
1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

�̇�𝑖(0)

)︃)︃
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converges in distribution to a centered multivariate Gaussian with covariance matrix

lim
𝑁→∞

𝑁

(︃
Σ

(𝑁)
�̇�1

𝑛1

+
Σ

(𝑁)
�̇�0

𝑛0

)︃

almost surely with respect to randomness in the conditioning random variables 𝑍 and y(Z)

(where Σ
(𝑁)
�̇�𝑧

is defined in (25)).

Proof. This result follows from applying the same reasoning of Theorem A.23 to the residuals

�̇�𝑖(𝑧) instead of the potential outcomes 𝑦𝑖(𝑧). As before, the main working component of the

result is Theorem 1 of (LS95).

Lemma A.11. Consider a finite population model subject to Assumptions A.6 and A.7 and

let 𝐵 ∼ Unif(Ω) be draw independently. Then, conditional upon 𝑍, the random variable

√
𝑁

(︃(︃
1

𝑛1

∑︁
𝑖 : 𝐵𝑖=1

�̇�*𝑖 (𝐵𝑖)−
1

𝑛0

∑︁
𝑖 : 𝐵𝑖=0

�̇�*𝑖 (𝐵𝑖)

)︃
−

(︃
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

�̇�𝑖(1)−
1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

�̇�𝑖(0)

)︃)︃

converges in distribution to a centered multivariate Gaussian with covariance matrix

𝑆
(𝑁)
�̇�1

𝑝
+
𝑆
(𝑁)
�̇�0

1− 𝑝

almost surely with respect to randomness in the conditioning random variable 𝑍.

Proof. In the finite population model, the residuals �̇�𝑖(𝑧) are deterministic. The result follows

from repeating the analysis of Theorem A.24 but applied to the finite population with po-

tential outcomes {(𝑦𝑖(0), 𝑦𝑖(1))}𝑁𝑖=1 replaced by {(�̇�𝑖(0), �̇�𝑖(1))}𝑁𝑖=1 instead. That the required

assumptions on the population {(�̇�𝑖(0), �̇�𝑖(1))}𝑁𝑖=1 hold is justified by (CF22, Appendix Sec-

tion 3).
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Remark 11. In Algorithm 2 the bootstrapped residual quantity is presented as

√
𝑁

(︃(︃
1

𝑛1

∑︁
𝑖 : 𝐵𝑖=1

𝜖*𝑖 (𝐵𝑖)−
1

𝑛0

∑︁
𝑖 : 𝐵𝑖=0

𝜖*𝑖 (𝐵𝑖)

)︃)︃
.

However, it is important to recognize that this is equivalent to

√
𝑁

(︃(︃
1

𝑛1

∑︁
𝑖 : 𝐵𝑖=1

𝜖*𝑖 (𝐵𝑖)−
1

𝑛0

∑︁
𝑖 : 𝐵𝑖=0

𝜖*𝑖 (𝐵𝑖)

)︃
−

(︃
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

𝜖𝑖(1)−
1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

𝜖𝑖(0)

)︃)︃

because the first order optimality condition of ordinary least squares linear regression ensures

that 1
𝑛𝑧

∑︀
𝑖 : 𝑍𝑖=𝑧 𝜖𝑖(𝑧) = 0 for 𝑧 ∈ {0, 1}. This observation is important in the setting of Re-

mark 10 when translating the implementation of Algorithm 2 to the context of Lemmas A.10

and A.11 where the sample residual 𝜖𝑖(𝑧) is replaced with the population residual �̇�𝑖(𝑧).

Theorem A.25. Let the bootstrap conditional distribution generated by the residual resam-

pling procedure of Algorithm 5 applied to 𝑇C (y(Z)) =
√
𝑁 (𝜏(y(Z))− 𝜏C ) be denoted by

ℒ𝜏*,C (𝑍). Under the fixed covariate model subject to Assumptions A.4 and A.5 the random

distribution ℒ𝜏*,C (𝑍) limits weakly to the distribution of

𝒩

(︃
0,Σ𝑓𝑖𝑡𝑡𝑒𝑑 + lim

𝑁→∞
𝑁

(︃
Σ

(𝑁)
�̇�1

𝑛1

+
Σ

(𝑁)
�̇�0

𝑛0

)︃
.

)︃

almost surely. Formally,

𝜌𝐵𝐿

(︃
ℒ𝜏*,C (𝑍), 𝛾

0,Σ𝑓𝑖𝑡𝑡𝑒𝑑+

(︂
Σ�̇�1
𝑝

+
Σ�̇�0
1−𝑝

)︂
)︃

𝑎.𝑠.−−→ 0.

Proof. The theorem follows by combining Lemmas A.8 and A.10, noting that the sum of

independent Gaussian random variables is itself Gaussian, and using that the bounded Lip-

schitz metric, 𝜌𝐵𝐿, metrizes weak convergence.

369



Theorem A.26. Let the bootstrap conditional distribution generated by the residual resam-

pling procedure of Algorithm 5 applied to 𝑇F (y(Z)) =
√
𝑁 (𝜏(y(Z))− 𝜏F ) be denoted by

ℒ𝜏*,F (𝑍). Under the finite population model subject to Assumptions A.6 and A.7 the ran-

dom distribution ℒ𝜏*,F (𝑍) limits weakly to the distribution of

𝒩
(︀
0,Σ𝑓𝑖𝑡𝑡𝑒𝑑 + 𝑝−1𝑆�̇�(1) + (1− 𝑝)−1𝑆�̇�(0)

)︀
almost surely. Formally,

𝜌𝐵𝐿

(︂
ℒ𝜏*,F (𝑍), 𝛾

0,Σ𝑓𝑖𝑡𝑡𝑒𝑑+
𝑆�̇�(1)

𝑝
+

𝑆�̇�(0)
1−𝑝

)︂
𝑎.𝑠.−−→ 0

where 𝑆�̇�(𝑧) is defined in (27).

Proof. The theorem follows by combining Lemmas A.9 and A.11, noting that the sum of

independent Gaussian random variables is itself Gaussian, and using that the bounded Lip-

schitz metric, 𝜌𝐵𝐿, metrizes weak convergence.

Remark 12. Theorem 6 follows from Theorems A.16 and A.25, the fact that Σ�̇�1−�̇�0 ⪰ ΣC
𝜏 ,

and the fact that the bounded Lipschitz metric, 𝜌𝐵𝐿, metrizes weak convergence. Theorem 7

follows by comparing the limiting variances of Theorems A.23 and A.25. Likewise, Theorem 8

follows from Theorems A.17 and A.26, the fact that 𝑆�̇�1−�̇�0 ⪰ 0, and the fact that the bounded

Lipschitz metric, 𝜌𝐵𝐿, metrizes weak convergence.
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4.17 Central Limit Theorems For The Optimal Transport

Bootstrap

As in our analysis of Algorithm 2, we decompose analysis of Algorithm 4 into two separate

lines of reasoning: an examination of the predicted outcomes and an examination of the

resampling of residuals according to Algorithm 3. As in Appendix Section 4.16, we exploit

independence to combine the two separate analyses together. This final step relies critically

upon the selection of an independent permutation 𝜋 and the formation of the bootstrap

population as {︃(︁
�̂�0(x𝑖) + 𝜖*𝜋(𝑖)(0)⏟  ⏞  

𝑦*𝑖 (0)

,x𝑖

)︁}︃
,

{︃(︁
�̂�1(x𝑖) + 𝜖*𝜋(𝑖)(1)⏟  ⏞  

𝑦*𝑖 (1)

,x𝑖

)︁}︃
.

Permuting the residuals by 𝜋 enforces that a completely randomized experiment simulated on

the bootstrap residuals is independent from a completely randomized experiment simulated

on the fitted values. Consistent with Remark 10, we prove results for the population residuals

and predicted values �̇�𝑖(𝑧) and �̇�𝑧(x𝑖) instead of their sample analogues. Lemma A.9, from

above, handles the distributional behaviour of the bootstrapping schema based upon the

population predicted values �̇�𝑧(x𝑖). Consequently the remaining analysis of Algorithm 4

rests upon examining the behavior of the difference in means in a completely randomized

experiment with the residuals resampled according to Algorithm 3. To ease the presentation

of our main results, we defer the proof to Appendix Sections 4.19 and 4.20. Furthermore,

in Appendix Section 4.21 we provide an analysis of a bootstrap scheme of (IM21) which

– while valid under further assumptions of marginal asymptotic continuity – may behave

pathologically when the limiting marginal distributions of the treated or control potential
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outcomes possess atoms.

We define Algorithm 6 which uses the population regression coefficients �̇�𝑧 to form the

imputed population and the residuals instead of using the sample regression coefficients 𝛽𝑧

as in the case of Algorithm 4.

Algorithm 6: An optimal-transport-based distributional estimator using popula-

tion regression coefficients.
Input: An observed treatment allocation 𝑍 ∈ Ω.

Result: The bootstrap distributional estimator ℒ (𝑇 *(�̇�*(𝑍)) | y(Z)).

Compute the imputed values �̇�0(x𝑖) and �̇�1(x𝑖) for each 𝑖 according to (17) and

define the residuals �̇�𝑖(𝑍𝑖).

Define the random variables {�̇�*𝑖 (0), �̇�*𝑖 (1),x𝑖}𝑁𝑖=1 as the output of Algorithm 3

computed on the observations {�̇�𝑖(𝑍𝑖)}𝑁𝑖=1.

Select an independent permutation 𝜋 ∼ Unif (𝒮𝑁).

For an independent draw 𝐵 ∼ Unif (Ω) generate the “bootstrap experimental

observations”{︃(︁
�̇�0(x𝑖) + �̇�*𝜋(𝑖)(0)⏟  ⏞  

�̇�*𝑖 (0)

,x𝑖

)︁
: 𝐵𝑖 = 0

}︃
∪

{︃(︁
�̇�1(x𝑖) + �̇�*𝜋(𝑖)(1)⏟  ⏞  

�̇�*𝑖 (1)

,x𝑖

)︁
: 𝐵𝑖 = 1

}︃
.

Compute 𝑇 (·) using the bootstrap experimental observations with centering by
1
𝑁

∑︀𝑁
𝑖=1 (�̇�

*
𝑖 (1)− �̇�*𝑖 (0)), denote this random variable as 𝑇 *(�̇�*(𝑍)).

return

ℒ (𝑇 *(�̇�*(𝑍)) | y(Z)) .

The following lemma examines the behavior of the difference of means in a completely ran-

domized experiment simulated upon the resampled population residuals {�̇�*𝑖 (0), �̇�*𝑖 (1),x𝑖}𝑁𝑖=1

from Algorithm 6.
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Write the finite population residual measures

𝜇 =
1

𝑁

𝑁∑︁
𝑖=1

𝛿�̇�𝑖(0) and 𝜈 =
1

𝑁

𝑁∑︁
𝑖=1

𝛿�̇�𝑖(1).

Define the finite population maximal residual variance 𝑉 𝐻
𝑟𝑒𝑠𝑖𝑑,𝑁 as

𝑉 𝐻
𝑟𝑒𝑠𝑖𝑑,𝑁 =

1

𝑁

(︃(︂
𝑛0

𝑛1

)︂
1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
�̇�𝑖(1)−

1

1

𝑁∑︁
𝑗=1

�̇�𝑗(1)

)︃2

+

(︂
𝑛1

𝑛0

)︂
1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
�̇�𝑖(0)−

1

1

𝑁∑︁
𝑗=1

�̇�𝑗(0)

)︃2

+

2 sup
𝛾∈𝐶(𝜇,𝜈)

cov𝛾 (𝒳 ,𝒴)

)︃
.

Under Assumptions A.6 and A.7 and the conditions of (AGL14, Proposition 1),

lim
𝑁→∞

𝑁𝑉 𝐻
𝑟𝑒𝑠𝑖𝑑,𝑁

exists; for notation we write 𝑉 𝐻
𝑟𝑒𝑠𝑖𝑑 = lim𝑁→∞𝑁𝑉 𝐻

𝑟𝑒𝑠𝑖𝑑,𝑁 .

Lemma A.12. Consider a finite population model with univariate potential outcomes subject

to Assumptions A.6 and A.7 and the regularity conditions of (AGL14, Propostion 1). Let

𝐵 ∼ Unif(Ω) be draw independently. Then, conditional upon 𝑍, the random variable

√
𝑁

(︃(︃
1

𝑛1

∑︁
𝑖 : 𝐵𝑖=1

�̇�*𝑖 (𝐵𝑖)−
1

𝑛0

∑︁
𝑖 : 𝐵𝑖=0

�̇�*𝑖 (𝐵𝑖)

)︃
−

(︃
1

𝑁

𝑁∑︁
𝑖=1

�̇�*𝑖 (1)−
1

𝑁

𝑁∑︁
𝑖1

�̇�*𝑖 (0)

)︃)︃

converges in distribution to a centered multivariate Gaussian with covariance matrix 𝑉 𝐻
𝑟𝑒𝑠𝑖𝑑

almost surely with respect to randomness in the conditioning random variable 𝑍.

We defer proof of Lemma A.12 to Appendix Section 4.20; the result follows from applying
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Theorem A.29 to the population formed by the residuals {�̇�𝑖(0), �̇�𝑖(1),x𝑖}𝑁𝑖=1.

Theorem A.27. Let the bootstrap conditional distribution generated by the residual resam-

pling procedure of Algorithm 6 applied to 𝑇F (y(Z)) =
√
𝑁 (𝜏(y(Z))− 𝜏F ) be denoted by

ℒ𝜏*,F (𝑍). Under the finite population model subject to Assumptions A.6 and A.7 the ran-

dom distribution ℒ𝜏*,F (𝑍) limits weakly to the law of 𝒩
(︀
0,Σ𝑓𝑖𝑡𝑡𝑒𝑑 + 𝑉 𝐻

𝑟𝑒𝑠𝑖𝑑

)︀
almost surely.

Formally

𝜌𝐵𝐿

(︁
ℒ𝜏*,F (𝑍), 𝛾0,Σ𝑓𝑖𝑡𝑡𝑒𝑑+𝑉 𝐻

𝑟𝑒𝑠𝑖𝑑

)︁
𝑎.𝑠.−−→ 0.

Proof. The result follows from combining Lemmas A.9 and A.12, noting that that sum of

independent Gaussians is itself Gaussian, and using that 𝜌𝐵𝐿 metrizes weak convergence.

Remark 13. Theorem 11 follows from Theorems A.17 and A.27. The conservativeness of

the limiting conditional bootstrap variance is a direct consequence of (AGL14, Lemma 1)

and (DFM19, Section 4.1).

4.18 Variance Estimators

The variance estimators proposed in the main text are constructed by applying the bootstrap

algorithms of Sections 4.6, 4.7, and 4.8 to the test statistic 𝑇S (y(Z)) =
√
𝑁 (𝜏(y(Z))− 𝜏S ).

We now prove that the proposed estimators are indeed consistent or asymptotically conser-

vative as stated in Theorems 5, 9, and 12.

4.18.1 A General Purpose Consistency Theorem

In general, these three theorems – under suitable regularity conditions – are all implied

by the following principle: uniform integrability translates consistent (resp. consistently

conservative) bootstrap procedures to consistent (resp. asymptotically conservative) variance

estimators. First, recall that a sequence of random variables 𝒳 (𝑁) is asymptotically uniformly
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integrable if

lim
𝑀→∞

lim
𝑁→∞

E
[︁⃒⃒
𝒳 (𝑁)

⃒⃒
1{|𝒳 (𝑁)|>𝑀}

]︁
= 0.

The following theorem – which is simply a combination of Theorem 2.20 and Example

2.21 of (vdV98) – generally dictates that asymptotic uniform integrability is sufficient for

weak convergence to imply convergence of variances.

Theorem A.28. If 𝒳 (𝑁) 𝑑−→ 𝒳 and

lim sup
𝑁→∞

E
[︁⃒⃒
𝒳 (𝑁)

⃒⃒ℓ]︁

is bounded then
{︁⃒⃒

𝒳 (𝑁)
⃒⃒ℓ′}︁

𝑁∈N
is asymptotically uniformly integrable and

E
[︁(︀
𝒳 (𝑁)

)︀ℓ′]︁→ E
[︁
𝒳 ℓ′
]︁

for all ℓ′ < ℓ.

In particular, Assumption A.3 (bounded fourth moments in the superpopulation model)

guarantees that the conditional bootstrap random variable of Algorithm 1 applied to the

difference in means 𝑇∅(y(Z)) =
√
𝑁 (𝜏(y(Z))− 𝜏 ∅) has bounded limit superior of its fourth

moment in a superpopulation model almost surely with respect to the conditioning upon the

realized observations y(Z) and treatment allocation 𝑍. Consequently, Theorem A.28 (and

the two central limit theorems of Theorem A.14 and A.22) allows us to conclude that 𝑉1 is in-

deed consistent at the superpopulation level. Similar analyses leveraging the other bounded

fourth moment assumptions (Assumptions A.5 and A.7) allow for control of the conditional

bootstrap fourth moments output by Algorithms 1 and 4, then applying Theorem A.28 and

comparing the appropriate central limit theorems from Appendix Section 4.14.1 to the boot-

strap conditional central limit theorems of Appendix Sections 4.15, 4.16, and 4.17 provides

the remainder of the results.
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In addition to the argument above based upon uniform integrability, we sketch out some

alternative arguments below which may be more intuitive but draw upon more case-by-case

analyses. However, we note that Theorem A.28 provides a powerful general-purpose tool to

prove such results under other regularity conditions or for other bootstrap schema.

4.18.2 The I.I.D. Bootstrap Variance Estimator

To prove Theorem 5 we note that the consistency of 𝑉1 at the superpopulation level (resp.

conservativeness of 𝑉1 at the fixed covariate level) reduces examining Efron’s i.i.d. bootstrap

variance estimators in the i.i.d. data generating model of (LR05, Example 15.4.2) (resp.

the independent but not identically distributed data generating model of (LS95)). The

consistency of the bootstrap variance estimator of Efron’s i.i.d. bootstrap in the i.i.d. data

generating model of (LR05, Example 15.4.2) is guaranteed by (LR05, Theorem 15.4.5) under

Assumptions A.2 and A.3. Likewise, the conservativeness of the bootstrap variance estimator

of Efron’s i.i.d. bootstrap in the independent but not identically distributed data generating

model of (LS95) is guaranteed by (LS95, Equation 2.2) under Assumptions A.4 and A.5.

In the finite population model, we note that the conservativeness of 𝑉1 reduces to the

fact that 𝑉1 is exactly Neyman’s classical variance estimator. In a finite population model

subject to Assumptions A.6 and A.7 Neyman’s variance estimator converges in probability

to 𝑝−1ΣF
𝑦(1) + (1 − 𝑝)−1ΣF

𝑦(0) which is conservative for the true variance of
√
𝑁𝜏(y(Z)); see

(AGL14, Section 2.1) for a discussion of Neyman’s work and (CF22, Lemma E) for a proof

of the required convergence in probability.

4.18.3 The Residual Bootstrap Variance Estimator

As discussed in Appendix Section 4.16 the analysis of Algorithm 1 decomposes into an

analysis of a completely randomized experiment on the population {(�̇�0(x𝑖), �̇�1(x𝑖))}𝑁𝑖=1 and

a separate analysis of the i.i.d. resampling procedure of Algorithm 1 applied to the residuals
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{(�̇�𝑖(0), �̇�𝑖(1))}𝑁𝑖=1. The arguments of Section 4.18.2 handle the component of 𝑉2 controlled

by i.i.d. resampling of residuals, so all that remains is an analysis of the component of 𝑉2

driven by a completely randomized experiment on the population {(�̇�0(x𝑖), �̇�1(x𝑖))}𝑁𝑖=1.

In both the fixed covariate and finite population model, the set {(�̇�0(x𝑖), �̇�1(x𝑖))}𝑁𝑖=1

is fully deterministic and the variance of
√
𝑁 -scaled difference in means for a completely

randomized experiment performed on this population is given by

𝑁

(︃
Σ

(𝑁)
�̇�1

𝑛1

+
Σ

(𝑁)
�̇�0

𝑛0

−
Σ

(𝑁)
�̇�1−�̇�0

𝑁

)︃

which limits, under either Assumptions A.4 and A.5 or Assumptions A.6 and A.7, to Σ𝑓𝑖𝑡𝑡𝑒𝑑

as defined in (29). This exactly characterizes the behavior of the component of 𝑉2 governed

by {(�̇�0(x𝑖), �̇�1(x𝑖))}𝑁𝑖=1 and the proof of Theorem 9 follows from combining this result with

the arguments of Section 4.18.2 analyzing the component of 𝑉2 controlled by i.i.d. resampling

of residuals.

4.18.4 The Optimal Transport Bootstrap Variance Estimator

As discussed in Appendix Section 4.17 the introduction of the independent permutation 𝜋

in Algorithm 4 (and likewise in Algorithm 6) allows one to decompose analysis of 𝑉3 into an

analysis of a completely randomized experiment on the population {(�̇�0(x𝑖), �̇�1(x𝑖))}𝑁𝑖=1 and a

separate analysis of the optimal transport-based resampling procedure of Algorithm 3 applied

to the residuals {�̇�𝑖(𝑍𝑖)}𝑁𝑖=1. The argument of Appendix Section 4.18.3 handles the component

of 𝑉3 driven by a completely randomized experiment on the population {(�̇�0(x𝑖), �̇�1(x𝑖))}𝑁𝑖=1.

Consequently, all that remains is to examine the component of 𝑉3 which is controlled by

the optimal transport-based resampling procedure of Algorithm 3 applied to the residuals

{�̇�𝑖(𝑍𝑖)}𝑁𝑖=1.

Theorem 10 and Lemma 4 assert that the variance estimator formed via the optimal
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transport sampling of Algorithm 3 matches the variance upper bound estimator of (AGL14)

up to a factor of𝑁/(𝑁−1). Consequently, the portion of 𝑉3 which is controlled by the optimal

transport-based resampling procedure of Algorithm 3 applied to the residuals {�̇�𝑖(𝑍𝑖)}𝑁𝑖=1 may

be analyzed by examining the𝑁 -scaled variance upper bound estimator of (AGL14, Equation

9) applied to the residuals {�̇�𝑖(𝑍𝑖)}𝑁𝑖=1. This is exactly the subject of (AGL14, Proposition

1) which guarantees the variance estimator converges in probability to a conservative limit.

4.19 Bootstrap Sampling From The Optimal Coupling

In a slight abuse of notation, we ignore covariates for this section and write

𝐹 0
𝑁(𝑍) =

1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

𝛿y𝑖(0)

𝐹 1
𝑁(𝑍) =

1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

𝛿y𝑖(1).

We examine sampling from the optimal coupling from the perspectives of Algorithms 3 and 4

directly on a finite population sans regression adjustment. This facilitates direct comparison

between our results and the existing literature: particularly (AGL14) and (IM21) which

do not consider regression-based frameworks. However, our analysis occurs without loss

of generality as one can simply apply the results presented below to the finite population

residuals {(�̇�𝑖(0), �̇�𝑖(1))}𝑁𝑖=1 in place of {(y𝑖(0),y𝑖(1))}𝑁𝑖=1.

The random variable underlying Algorithm 4 can be constructed as follows. Given ob-

served outcomes y(Z), form a new population via probabilistic imputation according to the
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optimal coupling 𝛾𝑜𝑝𝑡:

Control Treated

...
...

y𝑖(0) ?

? y𝑗(1)

y𝑘(0) ?
...

...

Sample−−−−−−−→
(using Alg. 3)

Control Treated

...
...

y𝑖(0) 𝑦*𝑖 (1)

𝑦*𝑗 (0) y𝑗(1)

y𝑘(0) 𝑦*𝑘(1)
...

...

and then draw a realization of the difference in means statistic from a completely randomized

experiment on this hypothetical population after centering by difference in means of the

sampled population. Denoting this random variable as 𝑇 *(𝑍,𝐵) it follows that the random

variable returned by Algorithm 4 is distributed according to the conditional distribution of

𝑇 *(𝑍,𝐵) given 𝑍, and hence also given y(Z), since – in the finite population model – y(Z)

is fully determined by 𝑍.

4.19.1 Relation to Previous Literature

In (IM21), a bootstrapping procedure related to the Frechét-Hoeffding coupling is proposed

for finite populations wherein the limiting marginals are continuous cumulative distribution

functions. We now address how this procedure relates to Algorithms 3 and 4; in particular

highlighting the differences between the behavior of resampling according to (IM21, Equation

3.4) and sampling according to Algorithm 4 when the limiting continuity assumption is

discarded.

We begin by taking a slight detour to establish some historical background. Ranging

as far back as Hoeffding, it was known that for any two random variables 𝑋 and 𝑌 with

marginal distributions 𝜇 and 𝜈, respectively, the coupling 𝛾 ∈ 𝐶(𝜇, 𝜈) which maximized the
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off-diagonal term in the covariance matrix of (𝑋, 𝑌 ) is the so-called comonotone coupling,

𝛾𝐻 (Tch80). Writing the induced cumulative distribution functions of 𝜇 and 𝜈 as 𝐹𝜇 and 𝐹𝜈 ,

respectively, the comonotone coupling is defined as the joint distribution corresponding to

the multivariate cumulative distribution function

𝐻(𝑥, 𝑦) := min {𝐹𝜇(𝑥), 𝐹𝜈(𝑦)} (34)

Section 2 of (Tch80) contains a proof of this fact; Section 2.5 of (Nel06) contains further

details. An immediate corollary of this is that the infimum in (9) is achieved, and so it may

be replaced by a min without loss of rigour (likewise, the suprema of (10) are achieved and

can be replaced with max). In (AGL14), the result that 𝐻 achieves the maximal covariance

of (𝑋, 𝑌 ) is leveraged directly to compute an asymptotically sharp variance estimator in

completely randomized experiments.

One can sample from the comonotone coupling via

(︀
𝐹−1
𝜇 (𝑈), 𝐹−1

𝜈 (𝑈)
)︀

for 𝑈 ∼ Unif(0, 1) (35)

where the quantile function 𝐹−1
𝜇 denotes the generalized inverse of 𝐹𝜇 and is defined as

𝐹−1
𝜇 (𝑝) := inf {𝑥 ∈ R : 𝑝 ≤ 𝐹𝜇(𝑥)}

and 𝐹−1
𝜈 is defined analogously; see Section 2.9 of (Nel06) for justification of this procedure

and Proposition 2.2 of (San15) for further theoretical discussion. Crucially, this sampling

procedure does not rely upon continuity (or strict monotonicity) of the cumulative distribu-

tion functions 𝐹𝜇 and 𝐹𝜈 .
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In two special cases (35) can be rewritten:

(︀
𝐹−1
𝜇 (𝐹𝜈(𝑌 )) , 𝑌

)︀
for 𝑌 ∼ 𝐹𝜈 if 𝐹𝜈 is continuous, (36)(︀

𝑋,𝐹−1
𝜈 (𝐹𝜇(𝑋))

)︀
for 𝑋 ∼ 𝐹𝜇 if 𝐹𝜇 is continuous. (37)

The immediate justification for (36) and (37) is the probability integral transform, which

relies critically upon the continuities remarked above. Equations (36) and (37) form the

intuition for the bootstrap resampling algorithm of (IM21, Equation (3.4)). Crucially, (36)

and (37) are not equivalent to (35) when 𝐹𝜈 or 𝐹𝜇, respectively, is discontinuous. This yields

an important practical consequence:

Lemma A.13. When the limiting cumulative distribution function of the potential outcomes

under control (or under treatment) is not continuous, the conditional bootstrap distribution

variance produced by the resampling procedure of Equation (3.4) in (IM21) need not align

with the variance estimator 𝑉 𝐻
𝑁 of (AGL14). In fact, the conditional bootstrap distribution

of (IM21, Equation (3.4)) may not converge to any fixed limit.

In Section 4.21.3 we construct a concrete example of Lemma A.13 in the particular case of

binary potential outcomes. Theorem A.31 rigorously analyzes the particular counterexample

to demonstrate that the conditional bootstrap distribution of (IM21, Equation (3.4)) fails

to converge to a fixed distribution, but instead converges – in a sense made precise below in

Section 4.21.4 – to a random distribution.

The proof techniques of (AGL14) do not immediately generalize to a desirable resampling

procedure. Instead, as motivated in the Section 4.8, one can view Proposition 1 of (AGL14)

through the lens of optimal transport. Suppose that one solves the optimal transport problem
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(9) for 𝜇 = 𝐹 1
𝑁(𝑍) and 𝜈 = 𝐹 0

𝑁(𝑍). Direct computation yields

inf
𝛾∈𝐶(𝐹 1

𝑁 (𝑍),𝐹 0
𝑁 (𝑍))

E𝛾

[︀
|𝑋 − 𝑌 |2

]︀
= inf

𝛾∈𝐶(𝐹 1
𝑁 (𝑍),𝐹 0

𝑁 (𝑍))

(︀
E𝛾

[︀
𝑋2
]︀
+ E𝛾

[︀
𝑌 2
]︀
− 2E𝛾 [𝑋𝑌 ]

)︀
= E𝐹 1

𝑁 (𝑍)

[︀
𝑋2
]︀
+ E𝐹 0

𝑁 (𝑍)

[︀
𝑌 2
]︀
+

inf
𝛾∈𝐶(𝐹 1

𝑁 (𝑍),𝐹 0
𝑁 (𝑍))

(−2E𝛾 [𝑋𝑌 ])

= E𝐹 1
𝑁 (𝑍)

[︀
𝑋2
]︀
+ E𝐹 0

𝑁 (𝑍)

[︀
𝑌 2
]︀
−

2 sup
𝛾∈𝐶(𝐹 1

𝑁 (𝑍),𝐹 0
𝑁 (𝑍))

E𝛾 [𝑋𝑌 ]⏟  ⏞  
�̂�𝐻

. (38)

Since the value of inf𝛾∈𝐶(𝐹 1
𝑁 (𝑍),𝐹 0

𝑁 (𝑍)) E𝛾

[︀
|𝑋 − 𝑌 |2

]︀
can easily be computed via open-

source optimization software (FCG+21) we can easily compute �̂�𝐻 from the observed data

via

�̂�𝐻 =
1

2

(︃
E𝐹 1

𝑁 (𝑍)

[︀
𝑋2
]︀
+ E𝐹 0

𝑁 (𝑍)

[︀
𝑌 2
]︀
− inf

𝛾∈𝐶(𝐹 1
𝑁 (𝑍),𝐹 0

𝑁 (𝑍))
E𝛾

[︀
|𝑋 − 𝑌 |2

]︀)︃
. (39)

Consequently, denoting the sample variance of the observed treated (resp. control) out-

comes as Σ̂1 (resp. Σ̂0) the variance upper-bound of (AGL14) can be directly rewritten

as

𝑉 𝐻
𝑁 =

1

𝑁 − 1

(︂
𝑛0

𝑛1

Σ̂1 +
𝑛1

𝑛0

Σ̂0 + 2�̂�𝐻

)︂
=

1

𝑁 − 1

(︃
𝑛0

𝑛1

Σ̂1 +
𝑛1

𝑛0

Σ̂0+(︃
E𝐹 1

𝑁 (𝑍)

[︀
𝑋2
]︀
+ E𝐹 0

𝑁 (𝑍)

[︀
𝑌 2
]︀
− inf

𝛾∈𝐶(𝐹 1
𝑁 (𝑍),𝐹 0

𝑁 (𝑍))
E𝛾

[︀
|𝑋 − 𝑌 |2

]︀)︃)︃
.

Inherently, this equation demonstrates that the formula for 𝑉 𝐻
𝑁 given by Equations (8) and
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(9) of (AGL14) essentially relies upon a closed-form solution to

inf
𝛾∈𝐶(𝐹 1

𝑁 (𝑍),𝐹 0
𝑁 (𝑍))

E𝛾

[︀
|𝑋 − 𝑌 |2

]︀
.

This suggests leveraging the optimal coupling 𝛾 ∈ 𝐶(𝐹 1
𝑁(𝑍), 𝐹

0
𝑁(𝑍)) directly to create a

resampling algorithm which recovers 𝑉 𝐻
𝑁 . This serves exactly as the motivation for Algo-

rithms 3 and 4.

4.20 Analyzing The Optimal Transport Bootstrap Dis-

tribution

4.20.1 Some Preliminary Computations

To start, we compute some simple results concerning the moments of the bootstrap distri-

bution.

1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (1) =

1

𝑁

∑︁
𝑗 : 𝑍𝑗=1

y𝑗(1) +
1

𝑁

∑︁
𝑗 : 𝑍𝑗=0

y*
𝑗 (1).

The first term on the right-hand-side is simply 𝑛1𝑁
−1𝜇(𝐹 1

𝑁(𝑍)) where 𝜇(·) is the expectation

operator (conditional upon 𝑍). We turn attention to the second term; this is a sum over the

𝑛0 individuals who received control, we start by writing it as 𝑛0𝑁
−1𝑛−1

0

∑︀
𝑗 : 𝑍𝑗=0 y

*
𝑗 (1) and

examine 𝑛−1
0

∑︀
𝑗 : 𝑍𝑗=0 y

*
𝑗 (1). Our object of interest is

E

⎡⎣𝑛−1
0

∑︁
𝑗 : 𝑍𝑗=0

y*
𝑗 (1) | 𝑍

⎤⎦
Consider the following two-stage procedure:
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1. Uniformly at random select an index from {𝑗 : 𝑍𝑗 = 0}; call this index 𝑗*

2. Draw 𝑦 as 𝑦*𝑗*(1) (in other words, sample from the 𝑗* column of the optimal 𝛾 matrix

constructed in Algorithm 3).

By the tower property of conditional expectations, the uniformity of 𝑗* over {𝑗 : 𝑍𝑗 = 0},

independence, and linearity

E [𝑦 | 𝑍] = E
[︀
E
[︀
𝑦*𝑗*(1) | 𝑗*, 𝑍

]︀
| 𝑍
]︀

=
∑︁

𝑗 : 𝑍𝑗=0

P (𝑗* = 𝑗 | 𝑍)E
[︀
𝑦*𝑗*(1) | 𝑗* = 𝑗, 𝑍

]︀
=

∑︁
𝑗 : 𝑍𝑗=0

P (𝑗* = 𝑗 | 𝑍)E
[︀
y*
𝑗 (1) | 𝑍

]︀
=

∑︁
𝑗 : 𝑍𝑗=0

1

𝑛0

E
[︀
y*
𝑗 (1) | 𝑍

]︀
= E

⎡⎣𝑛−1
0

∑︁
𝑗 : 𝑍𝑗=0

y*
𝑗 (1)

⃒⃒⃒⃒
⃒𝑍
⎤⎦ . (40)

Consequently, to understand E
[︁
𝑛−1
0

∑︀
𝑗 : 𝑍𝑗=0 y

*
𝑗 (1) | 𝑍

]︁
we only need to understand E [𝑦 | 𝑍].

The two-step process listed above produces a pair (𝑦𝑗*(0), 𝑦
*
𝑗*(1) where 𝑦𝑗*(0) ∼ 𝐹 0

𝑁(𝑍) and

𝑦*𝑗*(1) is distributed according to the conditional distribution of 𝛾𝑜𝑝𝑡 conditioned upon the

first coordinate being 𝑦𝑗*(0). Since the distribution 𝛾𝑜𝑝𝑡 is supported on finitely many points,

there are no concerns about the well-definedness of this conditional distribution. This pro-

cedure automatically generates pairs (𝑦𝑗*(0), 𝑦
*
𝑗*(1) ∼ 𝛾𝑜𝑝𝑡; passing to 𝑦 simply amounts to

ignoring the first coordinate. Consequently, E [𝑦 | 𝑍] is just the marginal distribution of 𝛾𝑜𝑝𝑡

on the second coordinate. By construction, 𝛾𝑜𝑝𝑡 marginalizes to 𝐹 1
𝑁(𝑍) in this coordinate,
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so E [𝑦 | 𝑍] = 𝜇(𝐹 1
𝑁(𝑍)). Combining this with (40) implies that

E

⎡⎣𝑛−1
0

∑︁
𝑗 : 𝑍𝑗=0

y*
𝑗 (1)

⃒⃒⃒⃒
⃒𝑍
⎤⎦ = 𝜇(𝐹 1

𝑁(𝑍)). (41)

Consequently,

E

[︃
1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (1) | 𝑍

]︃
= E

⎡⎣ 1

𝑁

∑︁
𝑗 : 𝑍𝑗=0

y𝑗(1) | 𝑍

⎤⎦+ E

⎡⎣ 1

𝑁

∑︁
𝑗 : 𝑍𝑗=0

y*
𝑗 (1)

⎤⎦
=
𝑛1

𝑁
𝜇(𝐹 1

𝑁(𝑍)) +
𝑛0

𝑁
𝜇(𝐹 1

𝑁(𝑍))

= 𝜇(𝐹 1
𝑁(𝑍)). (42)

The same reasoning implies that E
[︁

1
𝑁

∑︀𝑁
𝑗=1

(︀
y*
𝑗 (1)

)︀2 | 𝑍]︁ agrees with the second moment

of 𝐹 1
𝑁(𝑍). We are left with the following result.
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Lemma A.14. Under the sampling procedure of Algorithm 3,

E

[︃
1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (0) | 𝑍

]︃
= 𝜇(𝐹 0

𝑁(𝑍)) =
1

𝑛0

∑︁
𝑗 : 𝑍𝑗=0

y𝑗(0),

E

[︃
1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (1) | 𝑍

]︃
= 𝜇(𝐹 1

𝑁(𝑍)) =
1

𝑛1

∑︁
𝑗 : 𝑍𝑗=1

y𝑗(1),

E

⎡⎣ 1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
y*
𝑖 (0)−

1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (0)

)︃2

| 𝑍

⎤⎦ =
𝑛0

𝑛0 − 1
V
(︁
𝐹 0
𝑁(𝑍)

)︁

=
1

𝑛0 − 1

∑︁
𝑖 : 𝑍𝑖=0

⎛⎝y𝑖(0)−
1

𝑛0

∑︁
𝑗 : 𝑍𝑗=0

y𝑗(0)

⎞⎠2

,

E

⎡⎣ 1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
y*
𝑖 (1)−

1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (1)

)︃2

| 𝑍

⎤⎦ =
𝑛1

𝑛1 − 1
V
(︁
𝐹 1
𝑁(𝑍)

)︁

=
1

𝑛1 − 1

∑︁
𝑖 : 𝑍𝑖=1

⎛⎝y𝑖(1)−
1

𝑛1

∑︁
𝑗 : 𝑍𝑗=1

y𝑗(1)

⎞⎠2

.

Next we look at the “bootstrap treatment effects" y*
𝑖 (1)− y*

𝑖 (0), these are of the form

y′
𝑖(1)− y𝑖(0) if 𝑍𝑖 = 0

y𝑖(1)− y′
𝑖(0) if 𝑍𝑖 = 1.

By linearity

E

[︃
1

𝑁

𝑁∑︁
𝑖=1

(y*
𝑖 (1)− y*

𝑖 (0)) | 𝑍

]︃
= 𝜇(𝐹 1

𝑁(𝑍))− 𝜇(𝐹 0
𝑁(𝑍)),

so centering the bootstrap distribution by the observed difference in means under 𝑍 enforces

Neyman’s weak null in the bootstrap population.

We now compute the expected variance (conditional upon 𝑍) of the bootstrap treatment

386



effects

E

⎡⎣ 1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
(y*

𝑖 (1)− y*
𝑖 (0))−

1

𝑁

𝑁∑︁
𝑗=1

(y*
𝑖 (1)− y*

𝑖 (0))

)︃2
⎤⎦ .

Rewriting the inner sample variance using the identity that V (𝐴−𝐵) = V (𝐴)+V (𝐵)−

2cov (𝐴,𝐵) yields

E

⎡⎣ 1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
y*
𝑖 (1)−

1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (1)

)︃2

| 𝑍

⎤⎦+

E

⎡⎣ 1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
y*
𝑖 (0)−

1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (0)

)︃2

| 𝑍

⎤⎦−

2E

[︃
1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
y*
𝑖 (0)−

1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (0)

)︃(︃
y*
𝑖 (1)−

1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (1)

)︃
| 𝑍

]︃

The first two terms we already know how to handle thanks to Lemma A.14, this reduces it

to

𝑛1

𝑛1 − 1
V
(︁
𝐹 1
𝑁(𝑍)

)︁
+

𝑛0

𝑛0 − 1
V
(︁
𝐹 0
𝑁(𝑍)

)︁
−

2E

[︃
1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
y*
𝑖 (0)−

1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (0)

)︃(︃
y*
𝑖 (1)−

1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (1)

)︃
| 𝑍

]︃

We rearrange the final term via the identity cov (𝐴,𝐵) = E [𝐴𝐵]− E [𝐴]E [𝐵]

E

[︃
1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
y*
𝑖 (0)−

1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (0)

)︃(︃
y*
𝑖 (1)−

1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (1)

)︃
| 𝑍

]︃
=

E

[︃
1

𝑁 − 1

𝑁∑︁
𝑖=1

y*
𝑖 (0)y

*
𝑖 (1) | 𝑍

]︃
− E

[︃
1

𝑁 − 1

𝑁∑︁
𝑖=1

y*
𝑖 (0) | 𝑍

]︃
E

[︃
1

𝑁 − 1

𝑁∑︁
𝑖=1

y*
𝑖 (1) | 𝑍

]︃
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Applying Lemma A.14 again yields

E

[︃
1

𝑁 − 1

𝑁∑︁
𝑖=1

y*
𝑖 (0)y

*
𝑖 (1) | 𝑍

]︃
− E

[︃
1

𝑁 − 1

𝑁∑︁
𝑖=1

y*
𝑖 (0) | 𝑍

]︃
E

[︃
1

𝑁 − 1

𝑁∑︁
𝑖=1

y*
𝑖 (1) | 𝑍

]︃
=

E

[︃
1

𝑁 − 1

𝑁∑︁
𝑖=1

y*
𝑖 (0)y

*
𝑖 (1) | 𝑍

]︃
− 𝜇(𝐹 0

𝑁(𝑍))𝜇(𝐹
1
𝑁(𝑍)).

Finally, we examine E
[︁

1
𝑁−1

∑︀𝑁
𝑖=1 y

*
𝑖 (0)y

*
𝑖 (1) | 𝑍

]︁
by breaking up the sum over the observed

treated and control indices

E

[︃
1

𝑁 − 1

𝑁∑︁
𝑖=1

y*
𝑖 (0)y

*
𝑖 (1) | 𝑍

]︃
= E

[︃
1

𝑁 − 1

∑︁
𝑖 : 𝑍𝑖=0

y*
𝑖 (0)y

*
𝑖 (1) | 𝑍

]︃
+

E

[︃
1

𝑁 − 1

∑︁
𝑖 : 𝑍𝑖=1

y*
𝑖 (0)y

*
𝑖 (1) | 𝑍

]︃

= E

[︃
1

𝑁 − 1

∑︁
𝑖 : 𝑍𝑖=0

y𝑖(0)y
*
𝑖 (1) | 𝑍

]︃
+

E

[︃
1

𝑁 − 1

∑︁
𝑖 : 𝑍𝑖=1

y*
𝑖 (0)y𝑖(1) | 𝑍

]︃

=
𝑛0

𝑁 − 1
E

[︃
1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

y𝑖(0)y
*
𝑖 (1) | 𝑍

]︃
+

𝑛1

𝑁 − 1
E

[︃
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

y*
𝑖 (0)y𝑖(1) | 𝑍

]︃
.

We examine the first term using the same intuition that was employed in the analysis of

E
[︁

1
𝑛0

∑︀
𝑖 : 𝑍𝑖=0 y

*
𝑖 (1) | 𝑍

]︁
. Consider the following two-step procedure:

1. Uniformly at random select an index from {𝑗 : 𝑍𝑗 = 0}; call this index 𝑗*

2. Let 𝑦 = 𝑦𝑗*(0)𝑦
*
𝑗*(1).

By the tower property of conditional expectations, the uniformity of 𝑗* over {𝑗 : 𝑍𝑗 = 0},
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independence, and linearity

E [𝑦 | 𝑍] = E
[︀
E
[︀
𝑦𝑗*(0)𝑦

*
𝑗*(1) | 𝑗*, 𝑍

]︀
| 𝑍
]︀

=
∑︁

𝑗 : 𝑍𝑗=0

P (𝑗* = 𝑗 | 𝑍)E
[︀
𝑦𝑗*(0)𝑦

*
𝑗*(1) | 𝑗* = 𝑗, 𝑍

]︀
=

∑︁
𝑗 : 𝑍𝑗=0

P (𝑗* = 𝑗 | 𝑍)E
[︀
𝑦𝑗*(0)𝑦

*
𝑗*(1) | 𝑍

]︀
=

∑︁
𝑗 : 𝑍𝑗=0

1

𝑛0

E
[︀
y𝑗(0)y

*
𝑗 (1) | 𝑍

]︀
= E

⎡⎣𝑛−1
0

∑︁
𝑗 : 𝑍𝑗=0

y𝑗(0)y
*
𝑗 (1)

⃒⃒⃒⃒
⃒𝑍
⎤⎦ . (43)

Again, since the two-step procedure above generates a single draw from 𝛾𝑜𝑝𝑡 and then sets

𝑦 to be the product of the pair, E [𝑦 | 𝑍] equals E [𝐴𝐵 | 𝑍] for (𝐴,𝐵) ∼ 𝛾𝑜𝑝𝑡. Analogous

reasoning handles E
[︁

1
𝑛1

∑︀
𝑖 : 𝑍𝑖=1 y

*
𝑖 (0)y𝑖(1) | 𝑍

]︁
. In total this leaves us with

E

[︃
1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
y*
𝑖 (0)−

1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (0)

)︃(︃
y*
𝑖 (1)−

1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (1)

)︃
| 𝑍

]︃
=

𝑁

𝑁 − 1
cov (𝐴,𝐵)

for (𝐴,𝐵) ∼ 𝛾𝑜𝑝𝑡. By the optimality of 𝛾𝑜𝑝𝑡 and Lemma 2 it follows that

E

[︃
1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
y*
𝑖 (0)−

1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (0)

)︃(︃
y*
𝑖 (1)−

1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (1)

)︃
| 𝑍

]︃

coincides with 𝑁
𝑁−1

�̂�𝐻
𝑁 of (AGL14). We record this result in the following lemma.
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Lemma A.15. Under the sampling procedure of Algorithm 4,

E

⎡⎣ 1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
(y*

𝑖 (1)− y*
𝑖 (0))−

1

𝑁

𝑁∑︁
𝑗=1

(y*
𝑖 (1)− y*

𝑖 (0))

)︃2

| 𝑍

⎤⎦ =

𝑛1

𝑛1 − 1
V
(︁
𝐹 1
𝑁(𝑍)

)︁
+

𝑛0

𝑛0 − 1
V
(︁
𝐹 0
𝑁(𝑍)

)︁
− 2

𝑁

𝑁 − 1
�̂�𝐻
𝑁 .

4.20.2 The Bootstrap Distribution Conditional Variance

Overall we are interested in V (𝑇 *(𝑍,𝐵) | 𝑍), the variance of the bootstrap distribution

(conditional on 𝑍) constructed in Algorithm 4. By the law of total variance

V (𝑇 *(𝑍,𝐵) | 𝑍) = E [V (𝑇 *(𝑍,𝐵) | 𝑍, 𝑦*) | 𝑍] + V (E [𝑇 *(𝑍,𝐵) | 𝑦*, 𝑍] | 𝑍) ,

where conditioning on 𝑦* is shorthand for conditioning upon the bootstrap population

{y*
𝑖 (0),y

*
𝑖 (1)}𝑁𝑖=1 produced by Algorithm 3.

We approach the first term on the right. The conditional variance V (𝑇 *(𝑍,𝐵) | 𝑍, 𝑦*) is

given by the usual Neyman variance formula since the “potential outcomes” {y*
𝑖 (0),y

*
𝑖 (1)}𝑁𝑖=1
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are fixed by the conditioning event.4 Consequently,

V (𝑇 *(𝑍,𝐵) | 𝑍, 𝑦*) =
Σ̂𝑦*(1)

𝑛1

+
Σ̂𝑦*(0)

𝑛0

−
Σ̂𝑦*(1)−𝑦*(0)

𝑁
,

Σ̂𝑦*(0) =
1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
y*
𝑖 (0)−

1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (0)

)︃2

,

Σ̂𝑦*(1) =
1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
y*
𝑖 (1)−

1

𝑁

𝑁∑︁
𝑗=1

y*
𝑗 (1)

)︃2

,

Σ̂𝑦*(1)−𝑦*(0) =
1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
(y*

𝑖 (1)− y*
𝑖 (0))−

1

𝑁

𝑁∑︁
𝑗=1

(︀
y*
𝑖 (1)− y*

𝑗 (0)
)︀)︃2

.

By Lemmas A.14 and A.15 it follows that

E [V (𝑇 *(𝑍,𝐵) | 𝑍, 𝑦*) | 𝑍] =
V
(︁
𝐹 1
𝑁(𝑍)

)︁
𝑛1 − 1

+
V
(︁
𝐹 0
𝑁(𝑍)

)︁
𝑛0 − 1

−

𝑛1

𝑛1−1
V
(︁
𝐹 1
𝑁(𝑍)

)︁
+ 𝑛0

𝑛0−1
V
(︁
𝐹 0
𝑁(𝑍)

)︁
− 2 𝑁

𝑁−1
�̂�𝐻
𝑁

𝑁
. (44)

Now we turn to analysing the second term in the decomposition of V (𝑇 *(𝑍,𝐵) | 𝑍).

First, since E [𝐵𝑖] = 𝑛1/𝑁 , by linearity it follows that

E [𝑇 *(𝑍,𝐵) | 𝑦*, 𝑍] = 1

𝑁

𝑁∑︁
𝑖=1

y*
𝑖 (1)−

1

𝑁

𝑁∑︁
𝑖=1

y*
𝑖 (0)−

(︃
1

𝑁

𝑁∑︁
𝑖=1

y*
𝑖 (1)−

1

𝑁

𝑁∑︁
𝑖=1

y*
𝑖 (0)

)︃
= 0.

Of course, the variance of a constant is zero, so the term V (E [𝑇 *(𝑍,𝐵) | 𝑦*, 𝑍] | 𝑍) = 0.

This leaves us with:

Lemma A.16. The variance of the bootstrap distribution under Algorithm 4 (conditional

4The conditional variance V (𝑇 *(𝑍,𝐵) | 𝑍, 𝑦*) is not impacted by the bootstrap centering term
1
𝑁

∑︀𝑁
𝑖=1 y

*
𝑖 (1)− 1

𝑁

∑︀𝑁
𝑖=1 y

*
𝑖 (0) since this term is deterministic after conditioning upon 𝑍 and 𝑦*.
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upon 𝑍) is

V (𝑇 *(𝑍,𝐵) | 𝑍) =
V
(︁
𝐹 1
𝑁(𝑍)

)︁
𝑛1 − 1

+
V
(︁
𝐹 0
𝑁(𝑍)

)︁
𝑛0 − 1

−

𝑛1

𝑛1−1
V
(︁
𝐹 1
𝑁(𝑍)

)︁
+ 𝑛0

𝑛0−1
V
(︁
𝐹 0
𝑁(𝑍)

)︁
− 2 𝑁

𝑁−1
�̂�𝐻
𝑁

𝑁

=
1

𝑁

(︃
(𝑁 − 𝑛1)

𝑛1 − 1
V
(︁
𝐹 1
𝑁(𝑍)

)︁
+

(𝑁 − 𝑛0)

𝑛0 − 1
V
(︁
𝐹 0
𝑁(𝑍)

)︁
+

2
𝑁

𝑁 − 1
�̂�𝐻
𝑁

)︃
.

Recall from (AGL14, Equation 9) that the sharp variance estimator 𝑉 𝐻
𝑁 is defined as

𝑉 𝐻
𝑁 =

1

𝑁 − 1

(︂
(𝑁 − 𝑛1)

𝑛1

�̂�2(1) +
(𝑁 − 𝑛0)

𝑛0

�̂�2(0) + 2�̂�𝐻
𝑁

)︂
,

�̂�2(0) =
𝑁 − 1

𝑁(𝑛0 − 1)

∑︁
𝑖 : 𝑍𝑖=0

⎛⎝y𝑖(0)−
1

𝑛0

∑︁
𝑗 : 𝑍𝑗=0

y𝑗(0)

⎞⎠2

=
𝑁 − 1

𝑁
V
(︁
𝐹 0
𝑁(𝑍)

)︁
,

�̂�2(1) =
𝑁 − 1

𝑁(𝑛1 − 1)

∑︁
𝑖 : 𝑍𝑖=1

⎛⎝y𝑖(1)−
1

𝑛1

∑︁
𝑗 : 𝑍𝑗=1

y𝑗(1)

⎞⎠2

=
𝑁 − 1

𝑁
V
(︁
𝐹 1
𝑁(𝑍)

)︁
.

So as long as plim �̂�𝐻
𝑁 exists as some finite constant Lemma A.16 shows that

⃒⃒⃒
𝑁(𝑉 𝐻

𝑁 − V (𝑇 *(𝑍,𝐵) | 𝑍))
⃒⃒⃒
= 𝑜𝑃 (1).

4.20.3 The Bootstrap Distribution Conditional Mean

Next, we are interested in E [𝑇 *(𝑍,𝐵) | 𝑍], the mean of the bootstrap distribution (condi-

tional on 𝑍) constructed in Algorithm 4. By the tower property of conditional expectation

E [𝑇 *(𝑍,𝐵) | 𝑍] = E [E [𝑇 *(𝑍,𝐵) | 𝑦*, 𝑍] | 𝑍]

392



As noted earlier, since E [𝐵𝑖] = 𝑛1/𝑁 , by linearity it follows that

E [𝑇 *(𝑍,𝐵) | 𝑦*, 𝑍] = 1

𝑁

𝑁∑︁
𝑖=1

y*
𝑖 (1)−

1

𝑁

𝑁∑︁
𝑖=1

y*
𝑖 (0)− (︃

1

𝑁

𝑁∑︁
𝑖=1

y*
𝑖 (1)−

1

𝑁

𝑁∑︁
𝑖=1

y*
𝑖 (0)

)︃
= 0,

and so E [𝑇 *(𝑍,𝐵) | 𝑍] = 0. Thus, the bootstrap distribution is indeed centered.

4.20.4 Asymptotic Normality of the Conditional Bootstrap Distri-

bution

Given that we now have an understanding of the bootstrap distribution’s conditional mean

and variance, all that is left is to show that the bootstrap distribution is indeed asymptotically

Gaussian. First, we start by examining the bootstrap distribution conditional on both 𝑍

and 𝑦* so that the only randomness comes in the form of the bootstrap treatment allocations

𝐵.

Let ℒ(
√
𝑁𝑇 *(𝑍,𝐵) | 𝑦*, 𝑍) be the conditional law of

√
𝑁𝑇 *(𝑍,𝐵) given both 𝑍 and 𝑦*.

This is simply the distribution of

√
𝑁

(︃
1

𝑛1

𝑁∑︁
𝑖=1

𝐵𝑖y
*
𝑖 (1)−

1

𝑛0

𝑁∑︁
𝑖=1

(1−𝐵𝑖)y
*
𝑖 (0)−

(︃
1

𝑁

𝑁∑︁
𝑖=1

y*
𝑖 (1)−

1

𝑁

𝑁∑︁
𝑖=1

y*
𝑖 (0)

)︃)︃

where the y*
𝑖 (0)s and y*

𝑖 (1)s are fixed.

Lemma A.17. Under the conditions on the potential outcomes and experimental design

assumed by Proposition 1 of (AGL14), ℒ(
√
𝑁𝑇 *(𝑍,𝐵) | 𝑦*, 𝑍) converges in weakly to the
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centered Gaussian with variance

plim𝑁→∞𝑁

⎛⎝V
(︁
𝐹 1
𝑁(𝑍)

)︁
𝑛1

+
V
(︁
𝐹 0
𝑁(𝑍)

)︁
𝑛0

−
V
(︁
𝐹 1
𝑁(𝑍)

)︁
+ V

(︁
𝐹 0
𝑁(𝑍)

)︁
− 2�̂�𝐻

𝑁

𝑁

⎞⎠
almost surely with respect to randomness in 𝑦* and 𝑍.

Proof. Define the variance functional for a random variable 𝐴 as the map ℒ(𝐴) ↦→ V (𝐴);

in a slight abuse of notation, we denote this functional directly as V (ℒ(𝐴)).

Under the conditions on the potential outcomes and experimental design assumed by

Proposition 1of (AGL14), plim𝑁𝑉 𝐻
𝑁 is a finite strictly positive constant, call this constant

Σ∞. Since
⃒⃒⃒
𝑁(𝑉 𝐻

𝑁 − V (𝑇 *(𝑍,𝐵) | 𝑍))
⃒⃒⃒
= 𝑜𝑃 (1) it follows that V

(︁
ℒ(

√
𝑁𝑇 *(𝑍,𝐵) | 𝑍)

)︁
𝑝−→

Σ∞. This establishes that the quantity

plim𝑁→∞𝑁

⎛⎝V
(︁
𝐹 1
𝑁(𝑍)

)︁
𝑛1

+
V
(︁
𝐹 0
𝑁(𝑍)

)︁
𝑛0

−
V
(︁
𝐹 1
𝑁(𝑍)

)︁
+ V

(︁
𝐹 0
𝑁(𝑍)

)︁
− 2�̂�𝐻

𝑁

𝑁

⎞⎠ . (45)

is a well-defined positive constant under the conditions of the lemma. By a suitable strong law

of large numbers the conditional variance V
(︁
ℒ(

√
𝑁𝑇 *(𝑍,𝐵) | 𝑦*, 𝑍)

)︁
limits almost surely

to (45). Furthermore, as mentioned earlier, the conditional mean of 𝑇 *(𝑍,𝐵) given 𝑦* and

𝑍 is exactly zero. Consequently, the mean and variance (conditional upon 𝑦* and 𝑍) of the

bootstrap distribution scaled by
√
𝑁 match those of the desired limiting distribution.

Since the distribution of interest is the conditional distribution of

√
𝑁

(︃
1

𝑛1

𝑁∑︁
𝑖=1

𝐵𝑖y
*
𝑖 (1)−

1

𝑛0

𝑁∑︁
𝑖=1

(1−𝐵𝑖)y
*
𝑖 (0)−

(︃
1

𝑁

𝑁∑︁
𝑖=1

y*
𝑖 (1)−

1

𝑁

𝑁∑︁
𝑖=1

y*
𝑖 (0)

)︃)︃

where the y*
𝑖 (0)s and y*

𝑖 (1)s are fixed it suffices to show that the conditions of a finite

population central limit theorem are satisfied for {(y*
𝑖 (0),y

*
𝑖 (1))}

𝑁
𝑖=1 with probability tending

to one as𝑁 → ∞. The first two finite population moments of {(y*
𝑖 (0),y

*
𝑖 (1))}

𝑁
𝑖=1 (conditional
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on 𝑦*) converge almost surely to the original finite population moments, and so the conditions

of the finite population central limit theorem (LD17) are ensured asymptotically almost

surely.

Lemma A.17 demonstrates that the sampling procedure of Algorithm 4 produces the

desired distribution, but the result of Lemma A.17 conditions on both the observed treatment

allocation 𝑍 and the optimal-transport-based samples 𝑦*(0) and 𝑦*(1). For the analysis

of Algorithm 4 the object of interest is the bootstrap distribution conditioned upon the

observed treatment allocation 𝑍, but not conditioned upon the samples 𝑦*(0) and 𝑦*(1).

We use Lemma A.17 and a familiar deconditioning argument to establish the desired result,

presented below.

Theorem A.29. Under the conditions on the potential outcomes and experimental design

assumed by Lemma A.17, ℒ(
√
𝑁𝑇 *(𝑍,𝐵) | 𝑍) converges in weakly to the centered Gaussian

with variance

plim𝑁→∞𝑁

⎛⎝V
(︁
𝐹 1
𝑁(𝑍)

)︁
𝑛1

+
V
(︁
𝐹 0
𝑁(𝑍)

)︁
𝑛0

−
V
(︁
𝐹 1
𝑁(𝑍)

)︁
+ V

(︁
𝐹 0
𝑁(𝑍)

)︁
− 2�̂�𝐻

𝑁

𝑁

⎞⎠
almost surely with respect to randomness in 𝑍.

Proof. By Lemma A.17 ℒ(
√
𝑁𝑇 *(𝑍,𝐵) | 𝑦*, 𝑍) converges weakly to the Gaussian distribu-

tion with mean zero and variance

plim𝑁→∞𝑁

⎛⎝V
(︁
𝐹 1
𝑁(𝑍)

)︁
𝑛1

+
V
(︁
𝐹 0
𝑁(𝑍)

)︁
𝑛0

−
V
(︁
𝐹 1
𝑁(𝑍)

)︁
+ V

(︁
𝐹 0
𝑁(𝑍)

)︁
− 2�̂�𝐻

𝑁

𝑁

⎞⎠ .

By the forward implication of Lemma 4.1 in (DDCZ13) this implies that ℒ(
√
𝑁𝑇 *(𝑍,𝐵) | 𝑍)

converges weakly to the Gaussian distribution with mean zero and same variance. We

remark that this deconditioning argument has been applied fruitfully elsewhere, e.g., (CF22,

395



Appendix Lemma D) .

4.21 Analyzing The Procedure Of Imbens & Menzel For

Binary Outcomes

4.21.1 Set-up

Suppose we are interested in binary potential outcomes and we take a treatment allocation

𝑍 ∼ Unif(Ω𝐶𝑅𝐸) where Ω𝐶𝑅𝐸 = {𝑧 ∈ {0, 1}𝑁 :
∑︀𝑁

𝑖=1 𝑧𝑖 = 𝑛1}; say 𝑛0 = 𝑁 − 𝑛1 and

𝑛1/𝑁 → 𝑝 ∈ (0, 1). Define the random variables

𝑆0 =
∑︁

𝑖 : 𝑍𝑖=0

y𝑖(0)

𝑆1 =
∑︁

𝑖 : 𝑍𝑖=1

y𝑖(1);

these just count the number of observed 1’s in the control and treated groups, respectively.

Define the empirical cumulative distribution functions of the observed treated and control

groups as

𝐹 (𝑡) =
1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

1{y𝑖(0)≤𝑡} =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if 𝑡 < 0,

𝑛0−𝑆0

𝑛0
if 𝑡 ∈ [0, 1),

1 if 𝑡 ≥ 1.

�̂�(𝑡) =
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

1{y𝑖(1)≤𝑡} =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if 𝑡 < 0,

𝑛1−𝑆1

𝑛1
if 𝑡 ∈ [0, 1),

1 if 𝑡 ≥ 1.
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The corresponding empirical quantile functions are given by

𝐹−1(𝑝) = inf{𝑥 ∈ R : 𝐹 (𝑥) ≥ 𝑝} =

⎧⎪⎨⎪⎩0 if 𝑝 ≤ 𝑛0−𝑆0

𝑛0
,

1 if 𝑝 > 𝑛0−𝑆0

𝑛0
.

�̂�−1(𝑝) = inf{𝑥 ∈ R : �̂�(𝑥) ≥ 𝑝} =

⎧⎪⎨⎪⎩0 if 𝑝 ≤ 𝑛1−𝑆1

𝑛1
,

1 if 𝑝 > 𝑛1−𝑆1

𝑛1
.

Notice the following:

𝐹−1
(︁
�̂�(0)

)︁
= 𝐹−1

(︂
𝑛1 − 𝑆1

𝑛1

)︂
=

⎧⎪⎨⎪⎩0 if 𝑛1−𝑆1

𝑛1
≤ 𝑛0−𝑆0

𝑛0
,

1 otherwise

�̂�−1
(︁
𝐹 (0)

)︁
= �̂�−1

(︂
𝑛0 − 𝑆0

𝑛0

)︂
=

⎧⎪⎨⎪⎩0 if 𝑛1−𝑆1

𝑛1
≥ 𝑛0−𝑆0

𝑛0
,

1 otherwise

𝐹−1
(︁
�̂�(1)

)︁
= 𝐹−1(1) = 1,

�̂�−1
(︁
𝐹 (1)

)︁
= �̂�−1(1) = 1.

4.21.2 Variance Analysis

The imputation scheme of (IM21, Equation 3.4) is as follows

y*
𝑖 (0) =

⎧⎪⎨⎪⎩y𝑖(0) if 𝑍𝑖 = 0

𝐹−1
(︁
�̂�(y𝑖(1))

)︁
otherwise

y*
𝑖 (1) =

⎧⎪⎨⎪⎩y𝑖(1) if 𝑍𝑖 = 1

�̂�−1
(︁
𝐹 (y𝑖(0))

)︁
otherwise
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This results in the following three schemes. When 𝑛0−𝑆0

𝑛0
< 𝑛1−𝑆1

𝑛1

Observed treated

⎧⎪⎨⎪⎩0
imputes to−−−−−−→ 1

1
imputes to−−−−−−→ 1

Observed control

⎧⎪⎨⎪⎩0
imputes to−−−−−−→ 0

1
imputes to−−−−−−→ 1.

When 𝑛0−𝑆0

𝑛0
> 𝑛1−𝑆1

𝑛1

Observed treated

⎧⎪⎨⎪⎩0
imputes to−−−−−−→ 0

1
imputes to−−−−−−→ 1

Observed control

⎧⎪⎨⎪⎩0
imputes to−−−−−−→ 1

1
imputes to−−−−−−→ 1.

When 𝑛0−𝑆0

𝑛0
= 𝑛1−𝑆1

𝑛1

Observed treated

⎧⎪⎨⎪⎩0
imputes to−−−−−−→ 0

1
imputes to−−−−−−→ 1

Observed control

⎧⎪⎨⎪⎩0
imputes to−−−−−−→ 0

1
imputes to−−−−−−→ 1.

Consequently, when 𝑛0−𝑆0

𝑛0
< 𝑛1−𝑆1

𝑛1
the imputed population {(y*

𝑖 (0),y
*
𝑖 (1))}

𝑁
𝑖=1:

• has treated outcomes with 𝑆1 + 𝑆0 ones,

• has control outcomes with 𝑆0 + 𝑛1 ones,
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• has treatment effects which are

– +1 for 0 individuals

– −1 for 𝑛1 − 𝑆1 individuals,

– 0 for 𝑆1 + 𝑆0 + (𝑛0 − 𝑆0) = 𝑆1 + 𝑛0 individuals.

The variance of the difference in means for the imputed population (conditional upon

{(y*
𝑖 (0),y

*
𝑖 (1))}

𝑁
𝑖=1) is

𝑉< =
Σ*

1

𝑛1

+
Σ*

0

𝑛0

− Σ*
𝜏

𝑁

Σ*
1 =

(︂
𝑆1 + 𝑆0

𝑁

)︂(︂
1− 𝑆1 + 𝑆0

𝑁

)︂
Σ*

0 =

(︂
𝑆0 + 𝑛1

𝑁

)︂(︂
1− 𝑆0 + 𝑛1

𝑁

)︂
Σ*

𝜏 =

(︂
𝑛1 − 𝑆1

𝑁

)︂(︂
1− 𝑛1 − 𝑆1

𝑁

)︂
.

Similar reasoning applies when 𝑛0−𝑆0

𝑛0
> 𝑛1−𝑆1

𝑛1
; in this case the imputed population

{(y*
𝑖 (0),y

*
𝑖 (1))}

𝑁
𝑖=1:

• has treated outcomes with 𝑆1 + 𝑛0 ones,

• has control outcomes with 𝑆0 + 𝑆1 ones,

• has treatment effects which are

– +1 for 𝑛0 − 𝑆0 individuals

– −1 for 0 individuals,

– 0 for 𝑆1 + 𝑆0 + (𝑛1 − 𝑆1) = 𝑆0 + 𝑛1 individuals.
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The variance of the difference in means for the imputed population (conditional upon

{(y*
𝑖 (0),y

*
𝑖 (1))}

𝑁
𝑖=1) is

𝑉> =
Σ*

1

𝑛1

+
Σ*

0

𝑛0

− Σ*
𝜏

𝑁

Σ*
1 =

(︂
𝑆1 + 𝑛0

𝑁

)︂(︂
1− 𝑆1 + 𝑛0

𝑁

)︂
Σ*

0 =

(︂
𝑆0 + 𝑆1

𝑁

)︂(︂
1− 𝑆0 + 𝑆1

𝑁

)︂
Σ*

𝜏 =

(︂
𝑛0 − 𝑆0

𝑁

)︂(︂
1− 𝑛0 − 𝑆0

𝑁

)︂
.

Now suppose that 𝑛0−𝑆0

𝑛0
= 𝑛1−𝑆1

𝑛1
; in this case the imputed population {(y*

𝑖 (0),y
*
𝑖 (1))}

𝑁
𝑖=1:

• has treated outcomes with 𝑆1 ones,

• has control outcomes with 𝑆0 ones,

• has treatment effects which are

– +1 for 0 individuals

– −1 for 0 individuals,

– 0 for all 𝑁 individuals.

The variance of the difference in means for the imputed population (conditional upon

{(y*
𝑖 (0),y

*
𝑖 (1))}

𝑁
𝑖=1) is

𝑉= =
Σ*

1

𝑛1

+
Σ*

0

𝑛0

Σ*
1 =

(︂
𝑆1

𝑁

)︂(︂
1− 𝑆1

𝑁

)︂
Σ*

0 =

(︂
𝑆0

𝑁

)︂(︂
1− 𝑆0

𝑁

)︂
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Remark 14. In the case that 𝑛0−𝑆0

𝑛0
= 𝑛1−𝑆1

𝑛1
the Imbens & Menzel procedure imputes coun-

terfactuals exactly as one would if one simply assumed that Fisher’s sharp null held. In the

case of binary outcomes, this imputation coincides with the construction of the comonotone

coupling; see Claim 1. Consequently, 𝑉= can be immediately analyzed by porting over the

analysis of 𝑉 𝐻
𝑁 from (AGL14).

Notice that by the law of large numbers

𝑆0/𝑁 = (𝑛0/𝑁)
1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

y𝑖(0)
𝑝−→ (1− 𝑝)𝑦∞(0)

𝑆1/𝑁 = (𝑛1/𝑁)
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

y𝑖(1)
𝑝−→ 𝑝𝑦∞(1).

Consequently,

𝑁𝑉<
𝑝−→ ((1− 𝑝)𝑦∞(0) + 𝑝𝑦∞(1)) (1− (1− 𝑝)𝑦∞(0)− 𝑝𝑦∞(1))

𝑝
+

((1− 𝑝)𝑦∞(0) + 𝑝) (1− (1− 𝑝)𝑦∞(0)− 𝑝)

1− 𝑝
−

(𝑝− 𝑝𝑦∞(1)) (1− 𝑝+ 𝑝𝑦∞(1)) . (46)

and

𝑁𝑉>
𝑝−→ (𝑝𝑦∞(1) + (1− 𝑝)) (1− 𝑝𝑦∞(1)− (1− 𝑝))

𝑝
+

((1− 𝑝)𝑦∞(0) + 𝑝𝑦∞(1)) (1− (1− 𝑝)𝑦∞(0)− 𝑝𝑦∞(1))

1− 𝑝
−

((1− 𝑝)− (1− 𝑝)𝑦∞(0)) (1− (1− 𝑝) + (1− 𝑝)𝑦∞(0)) . (47)

In total, we have established the following lemma.

Lemma A.18. The conditional bootstrap variance of the Imbens & Menzel procedure for the
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√
𝑁-scaled difference in means is

𝑁𝑉< if
𝑛0 − 𝑆0

𝑛0

<
𝑛1 − 𝑆1

𝑛1

,

𝑁𝑉= if
𝑛0 − 𝑆0

𝑛0

=
𝑛1 − 𝑆1

𝑛1

,

𝑁𝑉> if
𝑛0 − 𝑆0

𝑛0

>
𝑛1 − 𝑆1

𝑛1

.

Unwinding notation yields that

𝑛0 − 𝑆0

𝑛0

− 𝑛1 − 𝑆1

𝑛1

= 1− 1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

y𝑖(0)− 1 +
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

y𝑖(1)

=
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

y𝑖(1)−
1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

y𝑖(0)⏟  ⏞  
Difference in Means

.

So,

P
(︂
𝑛0 − 𝑆0

𝑛0

− 𝑛1 − 𝑆1

𝑛1

> 0

)︂
= P

(︃
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

y𝑖(1)−
1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

y𝑖(0) > 0

)︃

= P

(︃
√
𝑁

(︃
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

y𝑖(1)−
1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

y𝑖(0)

)︃
> 0

)︃
.

Assuming that Neyman’s null is true so that 𝜏 = 0 a finite population central limit theorem

(LD17) implies that

P

(︃
√
𝑁

(︃
1

𝑛1

∑︁
𝑖 : 𝑍𝑖=1

y𝑖(1)−
1

𝑛0

∑︁
𝑖 : 𝑍𝑖=0

y𝑖(0)

)︃
> 0

)︃
→ Φ𝑉𝑁𝑒𝑦𝑚𝑎𝑛

(0) =
1

2

where Φ𝑉𝑁𝑒𝑦𝑚𝑎𝑛
denotes the cumulative distribution function for the centered Gaussian with

variance given by Neyman’s variance for the
√
𝑁 -scaled difference in means. Analogous
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reasoning implies that

P
(︂
𝑛0 − 𝑆0

𝑛0

<
𝑛1 − 𝑆1

𝑛1

)︂
→ 1

2
,

P
(︂
𝑛0 − 𝑆0

𝑛0

=
𝑛1 − 𝑆1

𝑛1

)︂
→ 0,

P
(︂
𝑛0 − 𝑆0

𝑛0

<
𝑛1 − 𝑆1

𝑛1

)︂
→ 1

2
.

Putting this all together gives us the following informal result; we make the result precise

in Theorem A.31.

Theorem A.30 (Informal). Suppose that the potential outcomes satisfy the requirements

of (LD17) to ensure central limit behaviour; then asymptotically the conditional bootstrap

variance of the Imbens & Menzel procedure for the
√
𝑁-scaled difference in means is

plim(𝑁𝑉>) with probability
1

2

plim(𝑁𝑉<) with probability
1

2
,

where the values of plim(𝑁𝑉<) and plim(𝑁𝑉>) are given by (46) and (47), respectively.

4.21.3 A Concrete Counterexample

Claim 1. For a finite populations whose potential outcomes take values in {0, 1}, satisfy

Neymans’s weak null for each 𝑁 , and obey the regularity conditions of (AGL14, Proposition

1), the variance upper-bound 𝑉 𝐻
𝑁 of (AGL14) is achieved by the permutation of the outcomes

which enforces Fisher’s sharp null.

Proof of Claim. Because the potential outcomes are binary, the distribution of the control

units, defined as 𝐹 = 1
𝑁

∑︀𝑁
𝑖=1 𝛿y𝑖(0), puts mass on just two points {0, 1}. Consequently,

𝐹 is totally determined by the number of ones in the control population: it puts mass
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1
𝑁

∑︀𝑁
𝑖=1 y𝑖(0) on 1 and 1− 1

𝑁

∑︀𝑁
𝑖=1 y𝑖(0) on 0. The same logic applies to the distribution of

treated units 𝐺 = 1
𝑁

∑︀𝑁
𝑖=1 𝛿y𝑖(1) which puts mass 1

𝑁

∑︀𝑁
𝑖=1 y𝑖(1) on 1 and 1 − 1

𝑁

∑︀𝑁
𝑖=1 y𝑖(1)

on 0. Enforcing Neyman’s null amounts to enforcing that 1
𝑁

∑︀𝑁
𝑖=1 y𝑖(0) =

1
𝑁

∑︀𝑁
𝑖=1 y𝑖(1); so

Neyman’s null implies 𝐹 = 𝐺 in the special case that the potential outcome are binary.

The variance upper-bound of 𝑉 𝐻
𝑁 of (AGL14) relies upon the solution to

max
ℎ∈ℋ

cov (𝑋, 𝑌 )

for 𝑋 ∼ 𝐹 , 𝑌 ∼ 𝐺, and ℋ the set of joint measures with marginals 𝐹 and 𝐺. This is known

to be maximized at ℎ equal to the comonotone coupling of 𝐹 and 𝐺 (Tch80). When 𝐹 = 𝐺

and their support is discrete the comonotone coupling amounts to just ranking the support

𝐹 as 𝑦(1) ≤ . . . ,≤ 𝑦(𝑁) and then forming the joint measure ℎ𝑐𝑜𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑒 = 1
𝑁

∑︀𝑁
𝑖=1 𝛿(𝑦(1),𝑦(1)).

This matches the joint measure that one would get by permuting the potential outcomes to

force Fisher’s sharp null to hold.

Remark 15. Interestingly, Claim 1 seems to have been implicitly known by Robins; see

(Rob88, Page 774). Nonetheless, the presentation of Claim 1 in terms of the Frechét-

Hoeffding copula bounds – specifically the comonotone copula – is novel.

Consider the following set of binary potential outcomes for 𝜃 ∈ (0, 1):

(y𝑖(0),y𝑖(1)) = (1, 1) for 𝑖 = 1, . . . , ⌊𝜃𝑁⌋,

(y𝑖(0),y𝑖(1)) = (0, 0) for 𝑖 = ⌊𝜃𝑁⌋+ 1, . . . , 𝑁.

Fisher’s sharp null (and consequently, Neyman’s weak null) holds for this population with

𝑦∞(0) = 𝜃 = 𝑦∞(1). Take 𝑝 ̸= .5, say 0.8, and 𝜃 = 0.7, then

plim𝑁𝑉< ≈ 0.362 & plim𝑁𝑉> ≈ 1.222.
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Consequently, the limiting bootstrap conditional variance from the procedure of Imbens

& Menzel is not constant; furthermore, both of these values are strictly smaller than the

true variance of the
√
𝑁 -scaled difference in means (which is 1.313). Moverover, for binary

outcomes satisfying Fisher’s sharp null, by Claim 1 the upper bound of (AGL14) is consistent

and matches that of (Rob88) under Fisher’s sharp null; since there is no treatment effect

heterogeneity, these two variance estimators asymptotically agree with the classical variance

estimator of Neyman. As a result, the limiting bootstrap variances of Imbens & Menzel

are both asymptotically anti-conservative with respect to the true variance as well as the

three standard variance estimators from previous literature: Neyman’s estimator and those

of (AGL14) and (Rob88). Figure 4-3 plots plim(𝑁𝑉>) and plim(𝑁𝑉<) as functions of 𝑝 and

𝑦 := 𝑦∞(0) = 𝑦∞(1) as (𝑝, 𝑦) range over (0, 1)2.

4.21.4 Bootstrap Distribution Analysis

Theorem A.30 informally examines the limiting conditional bootstrap variance of the Imbens

& Menzel procedure. We now examine the limiting conditional bootstrap distribution of the

Imbens & Menzel procedure holistically.

For this analysis we will need to be more precise in our notation than is usually necessary,

suppose that we work over a single probability space (Ω̃,P) which is constructed as the

infinite product over individual probability spaces for each experiment of size 𝑁 ; formally

(Ω̃,P) =
⨂︀

𝑁∈N(Ω̃
(𝑁),P(𝑁)). We superscript with (𝑁) to refer to quantities pertaining to the
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Figure 4-3: The two curves of plim(𝑁𝑉>) and plim(𝑁𝑉<) plotted as functions of the design
limit 𝑝 and the potential outcomes’ common mean 𝑦 := 𝑦∞(0) = 𝑦∞(1). The lines of
intersection between the two curves are plotted to highlight when plim(𝑁𝑉>) = plim(𝑁𝑉<).
These intersections are the exception and not the rule; in general plim(𝑁𝑉>) ̸= plim(𝑁𝑉<).

finite population of size 𝑁 . Define

𝒜𝑁 =

{︃
𝜔 ∈ Ω̃ :

𝑛
(𝑁)
0 − 𝑆

(𝑁)
0 (𝜔)

𝑛
(𝑁)
0

<
𝑛
(𝑁)
1 − 𝑆

(𝑁)
1 (𝜔)

𝑛
(𝑁)
1

}︃
,

ℬ𝑁 =

{︃
𝜔 ∈ Ω̃ :

𝑛
(𝑁)
0 − 𝑆

(𝑁)
0 (𝜔)

𝑛
(𝑁)
0

>
𝑛
(𝑁)
1 − 𝑆

(𝑁)
1 (𝜔)

𝑛
(𝑁)
1

}︃
,

𝒞𝑁 =

{︃
𝜔 ∈ Ω̃ :

𝑛
(𝑁)
0 − 𝑆

(𝑁)
0 (𝜔)

𝑛
(𝑁)
0

=
𝑛
(𝑁)
1 − 𝑆

(𝑁)
1 (𝜔)

𝑛
(𝑁)
1

}︃
.
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For a given 𝜔 ∈ Ω̃ take

𝐼𝒜(𝜔) = {𝑁 ∈ N : 𝜔 ∈ 𝒜𝑁} ,

𝐼ℬ(𝜔) = {𝑁 ∈ N : 𝜔 ∈ ℬ𝑁} ,

𝐼𝒞(𝜔) = {𝑁 ∈ N : 𝜔 ∈ 𝒞𝑁} ;

𝐼𝒜(𝜔) indexes the set of experiments for which 𝑛
(𝑁)
0 −𝑆

(𝑁)
0 (𝜔)

𝑛
(𝑁)
0

<
𝑛
(𝑁)
1 −𝑆

(𝑁)
1 (𝜔)

𝑛
(𝑁)
1

; 𝐼ℬ(𝜔) and 𝐼𝒞(𝜔)

have analogous interpretations.

Lemma A.19. For all 𝜔 ∈ Ω̃ except for a set of measure zero, 𝐼𝒜(𝜔) and 𝐼ℬ(𝜔) are of

infinite cardinality.

Proof. By the finite population central limit theorem argument detailed in Section 4.21.2,

P (𝒜𝑁) → 1/2 and P (ℬ𝑁) → 1/2. Since (Ω̃,P) =
⨂︀

𝑁∈N(Ω̃
(𝑁),P(𝑁)), by the second Borel-

Cantelli lemma we have that
∑︀

𝑁∈N P (𝒜𝑁) = ∞ implies that P (lim sup𝒜𝑁) = 1. Of course,

since P (𝒜𝑁) → 1/2 the tail of
∑︀

𝑁∈N P (𝒜𝑁) is non-vanishing and so
∑︀

𝑁∈N P (𝒜𝑁) = ∞.

Thus, P (lim sup𝒜𝑁) = 1; in other words, for all 𝜔 ∈ Ω̃ except for some set of measure zero

we have that 𝜔 ∈ 𝒜𝑁 infinitely often. Consequently, 𝐼𝒜(𝜔) is of infinite cardinality with

probability one. The same logic applies to the analysis of 𝐼ℬ(𝜔).

By Lemma A.19, 𝐼𝒜(𝜔) and 𝐼ℬ(𝜔) are of infinite cardinality for all 𝜔 ∈ Ω̃ except for

some set of measure zero. Fix an 𝜔 ∈ Ω̃ for which |𝐼𝒜(𝜔)| = ∞ and |𝐼ℬ(𝜔)| = ∞.

Along the subsequence 𝐼𝒜(𝜔) = {𝑁1, 𝑁2, . . .} ⊆ N we have that the imputed population

{(y*
𝑖 (0, 𝜔),y

*
𝑖 (1, 𝜔))}

𝑁
𝑖=1:

• has treated outcomes with 𝑆(𝑁𝑗)
1 (𝜔) + 𝑆

(𝑁𝑗)
0 (𝜔) ones,

• has control outcomes with 𝑆(𝑁𝑗)
0 (𝜔) + 𝑛

(𝑁𝑗)
1 ones,

• has treatment effects which are
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– +1 for 0 individuals

– −1 for 𝑛(𝑁𝑗)
1 − 𝑆

(𝑁𝑗)
1 (𝜔) individuals,

– 0 for 𝑆(𝑁𝑗)
1 (𝜔) + 𝑆

(𝑁𝑗)
0 (𝜔) + (𝑛

(𝑁𝑗)
0 − 𝑆

(𝑁𝑗)
0 (𝜔)) = 𝑆

(𝑁𝑗)
1 + 𝑛

(𝑁𝑗)
0 individuals.

The reasoning is discussed in Section 4.21.2. Since |𝐼𝒜(𝜔)| = ∞ discussions of asymptotic

quantities (e.g., strong laws, distributional limits, etc.) are well-formulated. By the strong

law of large numbers for completely randomized experiments (WD21, Lemma A.3) 𝑆0/𝑛0
𝑎.𝑠.−−→

𝑦∞(0) and 𝑆1/𝑛1
𝑎.𝑠.−−→ 𝑦∞(1), so the numeric sequence 𝑆𝑧(𝜔)/𝑛𝑧 → 𝑦∞(𝑧) for all 𝜔 except

some set of measure zero. Consequently, without loss of generality we assume that these

limits hold for the 𝜔 under our consideration. Since the sequence 𝑆𝑧(𝜔)/𝑛𝑧 limits to 𝑦∞(𝑧)

it certainly holds that along the subsequence 𝐼𝒜(𝜔)

𝑆(𝑁𝑗)
𝑧 (𝜔)/𝑛(𝑁𝑗)

𝑧 → 𝑦∞(𝑧) for 𝑧 ∈ {0, 1}.

Consequently, along the subsequence 𝐼𝒜(𝜔) the conditions of a finite central limit theorem

(e.g., (LD17, Theorem 5)) are satisfied for the sequence of imputed populations

{︁
{(y*

𝑖 (0, 𝜔),y
*
𝑖 (1, 𝜔))}

𝑁𝑗

𝑖=1

}︁
𝑁𝑗∈𝐼𝒜(𝜔)

.

For 𝐵(𝑁𝑗) ∼ Unif(Ω𝐶𝑅𝐸) independent of all other random variables we have that the

conditional bootstrap distribution of the
√
𝑁 -scaled difference in means under the Imbens

& Menzel procedure is the distribution of

𝜏 *,(𝑁𝑗)(𝐵,𝜔) =
√
𝑁 (𝑁𝑗)

⎛⎜⎝ 1

𝑛
(𝑁𝑗)
1

∑︁
𝑖 : 𝐵

(𝑁𝑗)

𝑖 =1

y*
𝑖 (1, 𝜔)−

1

𝑛
(𝑁𝑗)
0

∑︁
𝑖 : 𝐵

(𝑁𝑗)

𝑖 =0

y*
𝑖 (0, 𝜔)

⎞⎟⎠−

√
𝑁 (𝑁𝑗)

⎛⎝ 1

𝑁 (𝑁𝑗)

𝑁𝑗∑︁
𝑖=1

y*
𝑖 (1, 𝜔)− y*

𝑖 (0, 𝜔)

⎞⎠ .
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By (LD17, Theorem 5), the strong law of large numbers (WD21, Lemma A.3), Slutsky’s

Lemma, and the analysis of Section 4.21.2 for all 𝜔 except for a set of measure zero

𝜏 *,(𝑁𝑗)(𝐵(𝑁𝑗), 𝜔) converges in distribution to 𝒩 (0, 𝑉<,∞) along the subsequence 𝑁𝑗 ∈ 𝐼𝒜(𝜔)

where

𝑉<,∞ :=
((1− 𝑝)𝑦∞(0) + 𝑝𝑦∞(1)) (1− (1− 𝑝)𝑦∞(0)− 𝑝𝑦∞(1))

𝑝
+

((1− 𝑝)𝑦∞(0) + 𝑝) (1− (1− 𝑝)𝑦∞(0)− 𝑝)

1− 𝑝
−

(𝑝− 𝑝𝑦∞(1)) (1− 𝑝+ 𝑝𝑦∞(1)) .

By analogous reasoning for all 𝜔 except for a set of measure zero 𝜏 *,(𝑁𝑗)(𝐵(𝑁𝑗), 𝜔) con-

verges in distribution to 𝒩 (0, 𝑉>,∞) along the subsequence 𝑁𝑗 ∈ 𝐼ℬ(𝜔) where

𝑉>,∞ :=
(𝑝𝑦∞(1) + (1− 𝑝)) (1− 𝑝𝑦∞(1)− (1− 𝑝))

𝑝
+

((1− 𝑝)𝑦∞(0) + 𝑝𝑦∞(1)) (1− (1− 𝑝)𝑦∞(0)− 𝑝𝑦∞(1))

1− 𝑝
−

((1− 𝑝)− (1− 𝑝)𝑦∞(0)) (1− (1− 𝑝) + (1− 𝑝)𝑦∞(0)) .

We collect our results thus far into the following lemma.

Lemma A.20. Define the event ℰ∞ to be the set

{︁
𝜔 ∈ Ω̃ : |𝐼𝒜| = ∞ and |𝐼ℬ| = ∞

}︁
for which

• 𝜏 *,(𝑁𝑗)(𝐵(𝑁𝑗), 𝜔) converges in distribution to 𝒩 (0, 𝑉<,∞) along the subsequence 𝑁𝑗 ∈

𝐼𝒜(𝜔),

• 𝜏 *,(𝑁𝑗)(𝐵(𝑁𝑗), 𝜔) converges in distribution to 𝒩 (0, 𝑉>,∞) along the subsequence 𝑁𝑗 ∈

409



𝐼ℬ(𝜔).

The event ℰ∞ has probability one in the probability space (Ω̃,P) =
⨂︀

𝑁∈N(Ω̃
(𝑁),P(𝑁)).

Let the bounded-Lipschitz distance between two probability measures 𝜈𝑋 and 𝜈𝑌 be de-

fined as

𝜌𝐵𝐿(𝜈𝑋 , 𝜈𝑌 ) := sup
𝑓∈𝐿𝑖𝑝1
||𝑓 ||∞≤1

⃒⃒⃒⃒∫︁
𝑓(𝑥)𝑑𝜈𝑋(𝑥)−

∫︁
𝑓(𝑦)𝑑𝜈𝑌 (𝑦)

⃒⃒⃒⃒

where 𝐿𝑖𝑝1 is the family of functions from R to R which Lipschitz continuous with Lips-

chitz constant at most one. Detailed discussion of 𝜌𝐵𝐿 can be found in (vdVW96, Section

1.12), most importantly, 𝜌𝐵𝐿 metrizes weak convergence of separable probability measures

(vdVW96, Theorem 1.12.4).

Our interest is to characterize the convergence of the conditional bootstrap distribution

produced by the Imbens & Menzel algorithm. We shall see that – in the binary potential

outcomes case – the conditional bootstrap distribution generally fails to converge to a fixed

distribution except for very special cases. As such, we leverage tools from the theory of ran-

dom probability measures to characterize exactly the asymptotic behaviour of the conditional

bootstrap distribution produced by the Imbens & Menzel algorithm. Random probability

measures have been of substantial interest to probabilists; for two excellent references on

the general theory of random measures we point to (Cra02, Kal17). The general theory

of such measures requires care to account for topological considerations, these concerns are

substantially alleviated since we are only interested in probability measures over R which is

separable and complete under the usual Euclidean metric. We use the following definition

from (Cra02, Section 3):

Definition 8. Given a probability space (Ω̃,P) and B the collection of Borel sets of R a
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random probability measure on R is a map

𝜈 : B × Ω̃ → [0, 1]

(𝐵,𝜔) ↦→ 𝜈𝜔(𝐵)

such that

• for every 𝐵 ∈ B, the function 𝜔 ↦→ 𝜈𝜔(𝐵) is measurable,

• for all 𝜔 ∈ Ω̃ except for some set of P-measure zero, 𝐵 ↦→ 𝜈𝜔(𝐵) is a Borel probability

measure.

Theorem A.31. For binary potential outcomes satisfying Neyman’s weak null and the regu-

larity conditions of (AGL14, Proposition 1) the conditional bootstrap distribution of the
√
𝑁-

scaled difference in means generated by the procedure of (IM21) converges almost surely in the

bounded-Lipschitz metric to a random probability measure which takes the value 𝒩 (0, 𝑉<,∞)

with probability 1/2 and the value 𝒩 (0, 𝑉>,∞) with probability 1/2.

Proof. For 𝜔 ∈ Ω̃ define the random probability measure 𝜈(𝑁)
𝜔 as

𝜈(𝑁)
𝜔 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝒩 (0, 𝑉<,∞) if 𝜔 ∈ 𝒜𝑁 ,

𝒩 (0, 𝑉>,∞) if 𝜔 ∈ ℬ𝑁 ,

𝒩 (0, 𝑉=,∞) if 𝜔 ∈ 𝒞𝑁 .

Consider an 𝜔 ∈ Ω̃ such that

• 𝜔 ∈
{︁
𝜔 ∈ Ω̃ : |𝐼𝒜| = ∞ and |𝐼ℬ| = ∞

}︁
,

• 𝜏 *,(𝑁𝑗)(𝐵(𝑁𝑗), 𝜔) converges in distribution to 𝒩 (0, 𝑉<,∞) along the subsequence 𝑁𝑗 ∈

𝐼𝒜(𝜔),
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• 𝜏 *,(𝑁𝑗)(𝐵(𝑁𝑗), 𝜔) converges in distribution to 𝒩 (0, 𝑉>,∞) along the subsequence 𝑁𝑗 ∈

𝐼ℬ(𝜔).

Since, 𝜏 *,(𝑁𝑗)(𝐵(𝑁𝑗), 𝜔)
𝑑−→ 𝒩 (0, 𝑉<,∞) along the subsequence 𝑁𝑗 ∈ 𝐼𝒜(𝜔), and 𝜌𝐵𝐿

metrizes weak convergence we have that

𝜌𝐵𝐿

(︀
ℒ
(︀
𝜏 *,(𝑁𝑗)(𝐵(𝑁𝑗), 𝜔)

)︀
,𝒩 (0, 𝑉<,∞)

)︀
→ 0 along 𝑁𝑗 ∈ 𝐼𝒜(𝜔),

where ℒ
(︀
𝜏 *,(𝑁𝑗)(𝐵(𝑁𝑗), 𝜔)

)︀
denotes the law of the random variable 𝜏 *,(𝑁𝑗)(𝐵(𝑁𝑗), 𝜔). Simply

using the definition of 𝜈(𝑁𝑗)
𝜔 we rewrite the limit above as

𝜌𝐵𝐿

(︀
ℒ
(︀
𝜏 *,(𝑁𝑗)(𝐵(𝑁𝑗), 𝜔)

)︀
, 𝜈(𝑁𝑗)

𝜔

)︀
→ 0 along 𝑁𝑗 ∈ 𝐼𝒜(𝜔). (48)

Analogous reasoning yields

𝜌𝐵𝐿

(︀
ℒ
(︀
𝜏 *,(𝑁𝑗)(𝐵(𝑁𝑗), 𝜔)

)︀
, 𝜈(𝑁𝑗)

𝜔

)︀
→ 0 along 𝑁𝑗 ∈ 𝐼ℬ(𝜔). (49)

We now break the proof into two cases depending upon the cardinality of 𝐼𝒞(𝜔).

Case 1: Assume that 𝐼𝒞(𝜔) is of infinite cardinality. Then, taking limits along the

sequence 𝑁𝑗 ∈ 𝐼𝒞(𝜔) makes sense, and the reasoning used in the analysis of 𝐼𝒜(𝜔) and 𝐼ℬ(𝜔)

implies that – for all but some set of 𝜔 with measure zero – 𝜏 *,(𝑁𝑗)(𝐵(𝑁𝑗), 𝜔) converges in

distribution to 𝒩 (0, 𝑉=,∞) along the subsequence 𝑁𝑗 ∈ 𝐼𝒞(𝜔). Then,

𝜌𝐵𝐿

(︀
ℒ
(︀
𝜏 *,(𝑁𝑗)(𝐵(𝑁𝑗), 𝜔)

)︀
, 𝜈(𝑁𝑗)

𝜔

)︀
→ 0 along 𝑁𝑗 ∈ 𝐼𝒞(𝜔). (50)

Since 𝐼𝒜(𝜔), 𝐼ℬ(𝜔), and 𝐼𝒞(𝜔) partition N we use (48), (49), and (50) to conclude that

𝜌𝐵𝐿

(︀
ℒ
(︀
𝜏 *,(𝑁)(𝐵(𝑁), 𝜔)

)︀
, 𝜈(𝑁)

𝜔

)︀
→ 0 along 𝑁 ∈ N.
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Case 2: Assume that 𝐼𝒞(𝜔) is of finite cardinality. In this situation, taking limits

along the sequence 𝑁𝑗 ∈ 𝐼𝒞(𝜔) does not makes sense, so the argument from the previous

case cannot be applied here. However, since |𝐼𝒞(𝜔)| < ∞ there exists some �̃�(𝜔) for which

𝑛 ≤ �̃�(𝜔) for all 𝑛 ∈ 𝐼𝒞(𝜔). Since the limiting behaviour of 𝜌𝐵𝐿

(︁
ℒ
(︀
𝜏 *,(𝑁)(𝐵(𝑛), 𝜔)

)︀
, 𝜈

(𝑛)
𝜔

)︁
is

insensitive to the behaviour of any finite number of 𝑛 we can discard all 𝑛 ≤ �̃�(𝜔) without

changing the limit. Consequently, when |𝐼𝒞(𝜔)| < ∞, we can completely ignore 𝐼𝒞(𝜔) when

examining the asymptotic behaviour of 𝜌𝐵𝐿

(︁
ℒ
(︀
𝜏 *,(𝑁)(𝐵(𝑛), 𝜔)

)︀
, 𝜈

(𝑛)
𝜔

)︁
. Then (48) and (49)

imply that

𝜌𝐵𝐿

(︀
ℒ
(︀
𝜏 *,(𝑁)(𝐵(𝑁), 𝜔)

)︀
, 𝜈(𝑁)

𝜔

)︀
→ 0 along 𝑁 ∈ N.

Consequently, regardless of the cardinality of 𝐼𝒞(𝜔) it holds that

𝜌𝐵𝐿

(︀
ℒ
(︀
𝜏 *,(𝑁)(𝐵(𝑁), 𝜔)

)︀
, 𝜈(𝑁)

𝜔

)︀
→ 0. (51)

By Lemma A.20, the set of 𝜔 ∈ Ω̃ for which (51) holds is of probability one. The inter-

pretation of (51) is that almost surely the conditional bootstrap distribution – viewed as a

random probability measure – can be approximated arbitrarily well by a random probability

measure which takes values on the three Gaussian measures 𝒩 (0, 𝑉<,∞), 𝒩 (0, 𝑉>,∞), and

𝒩 (0, 𝑉=,∞)

By the central limit theorem, P (𝒜𝑁) → 1/2, P (ℬ𝑁) → 1/2, and P (𝒞𝑁) → 0. So 𝜈(𝑁)

– in the sense of (Kal17, Theorem 4.11) – limits in distribution in the vague topology to

the random measure which takes the value 𝒩 (0, 𝑉<,∞) with probability 1/2 and the value

𝒩 (0, 𝑉>,∞) with probability 1/2.

Since the Prohorov metric and the bounded Lipschitz metric both metrize weak conver-

gence of measures on R under the Euclidean metric (vdVW96, Theorem 1.12.4 and Page 77)

(51) establishes convergence in the Prohorov metric as well. Consequently, in the sense of
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(Kal17, Lemma 4.3) Theorem A.31 establishes that

ℒ
(︀
𝜏 *,(𝑁)(𝐵(𝑁))

)︀ 𝑤−→ 𝜈(𝑁)

almost surely.

4.22 Additional Technical Results For Finite Population

Inference

Suppose that the set {A(𝑁)
1 , . . . ,A

(𝑁)
𝑁 } forms a deterministic finite population with each

A
(𝑁)
𝑖 ∈ R𝑑. Assume that the finite populations {A(𝑁)

1 , . . . ,A
(𝑁)
𝑁 } satisfy the regularity

conditions of Assumptions A.6 and A.7. For notation we write the mean and covariance

matrix of this finite population as

A
(𝑁)

=
1

𝑁

𝑁∑︁
𝑖=1

A
(𝑁)
𝑖

V(𝑁) =
1

𝑁 − 1

𝑁∑︁
𝑖=1

(︁
A

(𝑁)
𝑖 −A

(𝑁)
)︁(︁

A
(𝑁)
𝑖 −A

(𝑁)
)︁𝑇

.

For 𝑍(𝑁) ∼ Unif(Ω) define the sample mean and covariance matrix as

a(𝑁) =
1

𝑛1

𝑁∑︁
𝑖=1

𝑍
(𝑁)
𝑖 A

(𝑁)
𝑖

V̂(𝑁) =
1

𝑛1 − 1

𝑁∑︁
𝑖=1

𝑍
(𝑁)
𝑖

(︁
A

(𝑁)
𝑖 − a(𝑁)

)︁(︁
A

(𝑁)
𝑖 − a(𝑁)

)︁𝑇
.

For a random vector 𝜒 ∈ 𝐿2(R𝑑) denote its covariance matrix by cov (𝜒).

Lemma A.21. Let 𝜔1, . . . , 𝜔𝑁 be drawn independently and uniformly from
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{A(𝑁)
1 , . . . ,A

(𝑁)
𝑁 }. If

cov
(︀
a(𝑁)

)︀−1/2
(︁
a(𝑁) −A

(𝑁)
)︁

𝑑−→ 𝒩 (0, 𝐼𝑑×𝑑) (52)

then

cov

(︃
1

𝑁

𝑁∑︁
𝑖=1

𝜔𝑖

)︃−1/2(︃
1

𝑁

𝑁∑︁
𝑖=1

𝜔𝑖 −A
(𝑁)

)︃
𝑑−→ 𝒩 (0, 𝐼𝑑×𝑑) .

Proof. We start with the univariate case (ie. 𝑑 = 1). In this case,

cov
(︀
a(𝑁)

)︀−1/2
(︁
a(𝑁) −A

(𝑁)
)︁

𝑑−→ 𝒩 (0, 𝐼𝑑×𝑑) reduces to

√
𝑁
(︁
a(𝑁) −A

(𝑁)
)︁

√︁
𝑁cov

(︀
a(𝑁)

)︀ 𝑑−→ 𝒩 (0, 𝐼𝑑×𝑑)

As noted in (LD17, Section A.1) a(𝑁) is asymptotically normal in the sense of (52) if and

only if for all 𝜀 > 0

1

𝑁 − 1

𝑁∑︁
𝑖=1

(︁
𝑆
(𝑁)
𝑖

)︁2
1{︁⃒⃒⃒

𝑆
(𝑁)
𝑖

⃒⃒⃒
>𝜀
√

𝑛1(𝑁−𝑛1)/𝑁
}︁ → 0 (53)

where 𝑆
(𝑁)
𝑖 = (A

(𝑁)
𝑖 − A

(𝑁)
)/
√
V(𝑁). Consider selecting 𝑆*

1 , . . . , 𝑆
*
𝑁 independently and

uniformly from
{︁
𝑆
(𝑁)
𝑖

}︁𝑁

𝑖=1
. The Lindeberg condition (LR05, Equation 11.11) holds for the

𝑆*
1 , . . . , 𝑆

*
𝑁 . We now detail why this claim holds. The Lindeberg condition requires that

1∑︀𝑁
𝑖=1 cov (𝑆*

𝑖 )

𝑁∑︁
𝑖=1

E

⎡⎣(𝑆*
𝑖 − E [𝑆*

𝑖 ])
2
1{︃⃒⃒⃒

𝑆*
𝑖 −E[𝑆*

𝑖 ]
⃒⃒⃒
>𝜀
√︁∑︀𝑁

𝑖=1 cov(𝑆*
𝑖 )
}︃
⎤⎦ (54)
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converges to zero. Because cov (𝑆*
𝑖 ) = 1 and E [𝑆*

𝑖 ] = 0, (54) reduces to

1

𝑁

𝑁∑︁
𝑖=1

E
[︁
(𝑆*

𝑖 )
2
1{|𝑆*

𝑖 |>𝜀
√
𝑁}
]︁
=

1

𝑁

(︁
𝑁E

[︁
(𝑆*

1)
2
1{|𝑆*

1 |>𝜀
√
𝑁}
]︁)︁

=
𝑁∑︁
𝑖=1

(︁
𝑆
(𝑁)
𝑖

)︁2
1{︁⃒⃒⃒

𝑆
(𝑁)
𝑖

⃒⃒⃒
>𝜀

√
𝑁
}︁P (︁𝑆*

1 = 𝑆
(𝑁)
𝑖

)︁
=

1

𝑁

𝑁∑︁
𝑖=1

(︁
𝑆
(𝑁)
𝑖

)︁2
1{︁⃒⃒⃒

𝑆
(𝑁)
𝑖

⃒⃒⃒
>𝜀

√
𝑁
}︁.

Since 𝑛1/𝑁 ∈ (0, 1) and 0 ≤ 𝑛1 ≤ 𝑁 ,
√︀
𝑛1(𝑁 − 𝑛1)/𝑁 ≤

√
𝑁 for all 𝑁 . Thus,

1{︁⃒⃒⃒
𝑆
(𝑁)
𝑖

⃒⃒⃒
>𝜀
√

𝑛1(𝑁−𝑛1)/𝑁
}︁ ≥ 1{︁⃒⃒⃒

𝑆
(𝑁)
𝑖

⃒⃒⃒
>𝜀

√
𝑁
}︁.

Thus,

0 ≤ lim sup
1

𝑁

𝑁∑︁
𝑖=1

(︁
𝑆
(𝑁)
𝑖

)︁2
1{︁⃒⃒⃒

𝑆
(𝑁)
𝑖

⃒⃒⃒
>𝜀

√
𝑁
}︁

≤ lim sup
1

𝑁 − 1

𝑁∑︁
𝑖=1

(︁
𝑆
(𝑁)
𝑖

)︁2
1{︁⃒⃒⃒

𝑆
(𝑁)
𝑖

⃒⃒⃒
>𝜀
√

𝑛1(𝑁−𝑛1)/𝑁
}︁ = 0

and so
1

𝑁

𝑁∑︁
𝑖=1

(︁
𝑆
(𝑁)
𝑖

)︁2
1{︁⃒⃒⃒

𝑆
(𝑁)
𝑖

⃒⃒⃒
>𝜀

√
𝑁
}︁ → 0. (55)

This confirms that (54) converges to zero, which verifies the Lindeberg condition for {𝑆*
𝑖 }𝑁𝑖=1.

With the univariate case completed, we now generalize to the multivariate case (𝑑 > 1).
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By the Cramér-Wold Device (LR05, Theorem 11.2.3),

cov
(︀
a(𝑁)

)︀−1/2
(︁
a(𝑁) −A

(𝑁)
)︁

𝑑−→ 𝒩 (0, 𝐼𝑑×𝑑)

⇕

cov
(︀
⟨v, a(𝑁)⟩

)︀−1/2
⟨
v, a(𝑁) −A

(𝑁)
⟩

𝑑−→ 𝒩 (0, 1) ∀v ∈ R𝑑. (56)

For any fixed choice of v ∈ R𝑑, (56) is a univariate statement about the asymptotic normal-

ity of the sample mean for the population {⟨v,A(𝑁)
1 ⟩, . . . , ⟨v,A(𝑁)

𝑁 ⟩}. Applying the proof

from the case of 𝑑 = 1, it follows that the sample mean of 𝑁 i.i.d. uniform samples from

{⟨v,A(𝑁)
1 ⟩, . . . , ⟨v,A(𝑁)

𝑁 ⟩} (after suitable centering and scaling) displays central limit be-

havior. Since this holds for any v ∈ R𝑑, the Cramér-Wold Device establishes asymptotic

normality in the sense of

cov

(︃
1

𝑁

𝑁∑︁
𝑖=1

𝜔𝑖

)︃−1/2(︃
1

𝑁

𝑁∑︁
𝑖=1

𝜔𝑖 −A
(𝑁)

)︃
𝑑−→ 𝒩 (0, 𝐼𝑑×𝑑) .

Lemma A.22. Assume that a(𝑁) −A
(𝑁) 𝑎.𝑠.−−→ 0 and V̂(𝑁) −V(𝑁) 𝑎.𝑠.−−→ 0𝑑×𝑑.

Given 𝑍(𝑁) define the empirical measure 𝐹 = 1
𝑛1

∑︀𝑁
𝑖=1 𝑍

(𝑁)
𝑖 𝛿

A
(𝑁)
𝑖

.

Take a*
1, . . . , a

*
n1

𝑖𝑖𝑑∼ 𝐹 and define their sample mean as

a*(𝑁)
=

1

𝑛1

𝑛1∑︁
𝑖=1

ai
*.

As in Lemma A.21, let 𝜔1, . . . , 𝜔𝑁 be drawn independently and uniformly from

{A(𝑁)
1 , . . . ,A

(𝑁)
𝑁 }. If the Lindeberg condition holds for the 𝜔𝑖 then conditional on 𝑍(𝑁)

cov
(︁
a*(𝑁)

)︁−1/2 (︁
a*(𝑁) − a(𝑁)

)︁ ⃒⃒⃒⃒⃒ 𝑍(𝑁) 𝑑−→ 𝒩 (0, 𝐼𝑑×𝑑)
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almost surely with respect to randomness in 𝑍(𝑁).

Proof. By the same logic that was used in the proof of Lemma A.21, it suffices to show the

univariate case and then rely on the Cramér-Wold device to carry through to the case of

arbitrary 𝑑. As such, fix 𝑑 = 1.

The Lindeberg condition for the a*
𝑖 | 𝑍(𝑁) is that

1∑︀𝑁
𝑖=1 cov (a*

𝑖 )

𝑁∑︁
𝑖=1

E

[︃
(a*

𝑖 − E [a*
𝑖 ])

2
1{︂⃒⃒

a*
𝑖−E[a*

𝑖 ]
⃒⃒
>𝜀
√︁∑︀𝑁

𝑖=1 cov(a*
𝑖 )
}︂
]︃

(57)

converges to 0 conditional upon 𝑍(𝑁). By assumption, E
[︀
a*
𝑖 | 𝑍(𝑁)

]︀
−A

(𝑁) → 0 for almost

all sequences of 𝑍(𝑁). Similarly, by assumption cov
(︀
a*
𝑖 | 𝑍(𝑁)

)︀
−V(𝑁) → 0𝑑×𝑑 for almost all

sequences of 𝑍(𝑁). Thus, for almost all sequences of 𝑍(𝑁), (57) conditional on 𝑍(𝑁) has the

same limit as

1∑︀𝑁
𝑖=1 V

(𝑁)

𝑁∑︁
𝑖=1

E
[︂(︁

a*
𝑖 −A

(𝑁)
)︁2
1{︁⃒⃒⃒

a*
𝑖−A

(𝑁)
⃒⃒⃒
>𝜀
√∑︀𝑁

𝑖=1 V
(𝑁)
}︁]︂

=
1

𝑁V(𝑁)
𝑁E
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a*
1 −A

(𝑁)
)︁2
1{︁⃒⃒⃒
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1−A

(𝑁)
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√
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=

1
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(𝑁)
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√
𝑁V(𝑁)

}︁P (︀a*
1 = A𝑖 | 𝑍(𝑁)

)︀
=
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𝑖=1
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V(𝑁)
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1{︂⃒⃒⃒⃒
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√

V(𝑁)
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𝑁
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1 = A𝑖 | 𝑍(𝑁)

)︀⎞⎠
≤
(︂
𝑁
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𝑖=1
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√
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√
𝑁
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⎞⎠ . (58)
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The term 𝑛−1
1 in the inequality of (58) follows from

P
(︀
a*
1 = A𝑖 | 𝑍(𝑁)

)︀
=

⎧⎪⎨⎪⎩𝑛
−1
1 ; if 𝑍(𝑁)

𝑖 = 1

0; otherwise.

Since the Lindeberg condition holds for the 𝜔𝑖 the second term of (58) converges to 0 (cf.

(55)). By assumption 𝑛1/𝑁 → 𝑝 ∈ (0, 1). Thus, (58) converges to zero; since the limit

superior of (57) is upper bounded by the limit superior of (58) and is lower bounded by zero,

it is sandwiched to zero. Thus, (57) limits to zero, thereby verifying the Lindeberg condition

for the a*
𝑖 . Since (58) holds for any realization of 𝑍(𝑁) the result holds almost surely with

respect to the conditioning variable 𝑍(𝑁).

Lemma A.23. Assume that a(𝑁) −A
(𝑁) 𝑎.𝑠.−−→ 0 and V̂(𝑁) −V(𝑁) 𝑎.𝑠.−−→ 0𝑑×𝑑.

Given 𝑍(𝑁) define the empirical measure 𝐹 = 1
𝑛1

∑︀𝑁
𝑖=1 𝑍

(𝑁)
𝑖 𝛿

A
(𝑁)
𝑖

.

Let a1
*, . . . , an1

* 𝑖𝑖𝑑∼ 𝐹 and

a*(𝑁)
=

1

𝑛1

𝑛1∑︁
𝑖=1

ai
*.

If cov
(︀
a(𝑁)

)︀−1/2
(︁
a(𝑁) −A

(𝑁)
)︁

𝑑−→ 𝒩 (0, 𝐼𝑑×𝑑) then conditional on 𝑍(𝑁)

cov
(︁
a*(𝑁)

)︁−1/2 (︁
a*(𝑁) − a(𝑁)

)︁ ⃒⃒⃒⃒⃒ 𝑍(𝑁) 𝑑−→ 𝒩 (0, 𝐼𝑑×𝑑)

almost surely with respect to randomness in 𝑍(𝑁).

Proof. The conditions assumed imply Lemma A.21. In turn, Lemma A.21 implies that

Lemma A.22 holds, which establishes the desired result.

On an informal level, the argument can be summarized as follows:
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1. The conditions required to guarantee a finite sample central limit theorem for

cov
(︀
a(𝑁)

)︀−1/2
(︁
a(𝑁) −A

(𝑁)
)︁

𝑑−→ 𝒩 (0, 𝐼𝑑×𝑑)

imply a central limit theorem for the sample mean when independently uniformly

sampling from the full finite population. Furthermore, not only does a central limit

theorem hold for the i.i.d. samples, but so too does the Lindeberg condition (see

Lemma A.21).

2. The Lindeberg condition (and resulting central limit theorem) for the sample mean

of i.i.d. samples from the full population implies that a Lindeberg condition holds

for sampling from a restricted subset of the population - specifically those for which

𝑍
(𝑁)
𝑖 = 1 (see Lemma A.22).

Remark 16. Lemma A.23 can be informally read as: if a central limit theorem holds for the

mean when sampling without replacement from a finite population, then a central limit the-

orem also holds for the mean when i.i.d. subsampling from the Horvitz-Thompson empirical

measure in the finite population model.
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