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Abstract

Fast, energy-efficient, and compact manipulation of multimode optical signals is re-
quired for technologies ranging from brain imaging to quantum control, yet remains
an open goal for present-day spatial light modulators (SLMs), active metasurfaces,
and optical phased arrays. Here, we develop wavelength-scale, high-finesse photonic
crystal cavity arrays as a solution to this problem.

Specifically, we demonstrate nanosecond- and femtojoule-order spatial light mod-
ulation enabled by four key advances: (i) near-unity vertical coupling to high-finesse
microcavities through inverse design, (ii) scalable fabrication of photonic crystal cir-
cuits by optimized, 300 mm full-wafer processing, (iii) picometer-precision resonance
alignment using automated, closed-loop “holographic trimming”, and (iv) out-of-plane
cavity control via a high-speed µLED display. Combining each, our approach weds
the latest advances in incoherent and coherent optics to open a previously inac-
cessible regime of programmability: near-complete spatiotemporal control with a
>MHz modulation bandwidth per diffraction-limited mode. Simultaneously oper-
ating wavelength-scale modes near the space- and time-bandwidth limits, this work
approaches the fundamental limits of multimode optical control.

In developing this technology, we also analyze the fundamental limits of light-
matter interaction in these remarkable optical microcavities that continue to drive
modern science. Operated in reverse, our device constitutes a high-spatial-resolution
focal plane array. Surprisingly, we discover that the fundamental limits of these
sensors are ultimately dictated by refractive index variations induced by statistical
temperature fluctuations. We present the first theoretical and experimental charac-
terization of the associated thermal noise limits in wavelength-scale microcavities,
develop a new class of optical sensors operating at this fundamental limit, and ana-
lyze noise cancellation techniques to enable continued development in quantum optical
measurement, precision sensing, and low-noise integrated photonics.

Thesis Supervisor: Dirk R. Englund
Title: Associate Professor of Electrical Engineering and Computer Science
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Fair Winds and Following Seas

If you want to build a ship, don’t
drum up the men to gather wood,
divide the work and give orders.
Instead, teach them to yearn for the
vast and endless sea.

Antoine de Saint-Exupéry

The advances described in this thesis would not have been possible without the
assistance of an international collaboration of researchers built over the duration of my
graduate studies. While the extent of their efforts is innumerable, I have attempted
to recognize their contributions in footnotes throughout the following chapters.

Over the past five years, the members of the Quantum Photonics Group at MIT
have become my colleagues, friends, and mentors. Ian Christen was instrumental to
the experimental efforts detailed in this thesis; his unique ability to out-run and out-
swim me after out-smarting me in the lab pushed me towards excellence in my daily
endeavors. I was also fortunate enough to work with Cole Brabec, Sivan Trajtenberg-
Mills, Thomas Propson, and Mohamed ElKabbash as part of the lab’s “qp-slm” sub-
group that spun out of the spatial light modulation (SLM) work described in this
thesis. The other thermal noise work described here was enabled by the support and
infinite wisdom of a talented research scientist in our group: Ryan Hamerly. Aca-
demic collaborations aside, I am thankful to my office-mates over the years (Mihika
Prabhu, Cheng Peng, Valeria Saggio, and Darius Bunandar) whose positive attitudes,
joking, and encouragement helped me through challenging times. Lukas Mennel, a
visiting student, made our group the “bee’s knees” while he was here; his contagious
enthusiasm during our squash games was always worth the (seemingly inevitable)
blunt force trauma.

These lasting friendships and collaborations would not have been possible in the
first place without the Hertz Foundation — and specifically the Fantone family —
who funded my graduate experience and helped me to navigate graduate school with
a military career. The freedom afforded by the Hertz Fellowship requires an equally
flexible advisor — I was fortunate to find Professor Dirk Englund to fill that role.
Those who have worked with Dirk will often cite his relentless drive and innovative
mindset; however, beyond those characteristics, I found Dirk’s ability to trust his
group members truly remarkable. Shortly after our initial discussion on avenues
towards the “ideal” spatial light modulator, I wrote an internal research proposal to
focus my thoughts. To my amazement, Dirk suggested that we submit it as a grant
proposal. The grant was funded shortly thereafter, and Dirk allowed me to help
run the program. So beyond the technical development expected from any graduate
program, Dirk helped me to grow as a leader. Professors Isaac Chuang (a fellow
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Hertz Fellow) and Jim Fujimoto, the other members of my thesis committee, were
similarly flexible: Prof. Fujimoto let me lead lectures and develop new content as a
teaching assistant for the 6.631 graduate optics course; Prof. Chuang led me towards
challenging problems of importance and continually encouraged me to broaden the
scope of my investigations. Thank you all for showing me the “vast and endless sea”.

Outside of the lab, the eternal support of my friends and family made my long
work days a joy. From snowboarding with Matt Johnson, Josh Perozek, Wammie
Hill, and Shan McBurney-Lin to backcountry flying with my father Louis, mother
Rebecca, and two brothers Patrick and Benjamin, I always had something to look
forward too. Thank you, Mom and Dad, for teaching me to be an explorer, to take
pride in my work, and to stay positive. Finally, I would like to recognize and thank
my Naval Academy classmates and the rest of our uniformed services for “having the
watch” while I pursued this research. I look forward to rejoining you to help solve
national security’s increasingly technical challenges.
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It is a triumph more glorious, because far more useful
to mankind, than was ever won by conqueror on the
field of battle.

President James Buchanan (1858)

1
Introduction

At ten minutes-per-word [1], President Buchanan’s short message of congratulation
to Queen Victoria on the world’s first transatlantic telegraph cable would have taken
roughly four hours to transmit to the United Kingdom. By contrast, today’s inter-
national communications constitute (on average) some two hundred trillion bits-per-
second (∼200 Tbps) with a total network capacity sufficient to transmit this entire
thesis in merely a billionth of a second [2]. Yet despite the seemingly endless social,
cultural, and ideological connectivity of this interface, its physical cross section — a
collection of less than 500 undersea fiber optic cables mapped in Fig. 1-1 — is re-
markably small. The single cable highlighted in green in Fig. 1-1 (Google’s “Dunant”
cable), for example, houses only twelve pairs of optical fiber — each passing light
through a single, ∼10 µm-diameter spatial mode — but could itself support the
mean bandwidth of all international data [3]. This spatial simplicity is enabled by
temporal complexity: each fiber supports 𝒪(100) independent wavelength channels
modulated at 𝒪(100) GBps.

In principle, the high carrier frequencies 𝜔0 of optical fields (∼2𝜋 × 1014 Hz) also
enable extreme spatial density (the diffraction-limited with of a single optical mode
scales as 1/𝜔0). For example, combining the cores of every undersea optical fiber
would form a mere mm2-area glass aperture. Converting to a free-space aperture with
diffraction-limited spatial modes (or, equivalently, increasing each fiber’s numerical
aperture from ∼0.1 to unity) would further shrink this size by a factor of ∼100 to
the cross-sectional area of a single human hair 1.

But why can we not manipulate the spatial degrees-of-freedom of these optical
fields at the wavelength scale? After all, each undersea cable is terminated with a fiber

1What a fragile world it would be!
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Figure 1-1: Map of undersea fiber optic cables (blue). A single cable (green), housing
𝒪(10) pairs of optical fiber as illustrated by the inset cross-section (left), is capable of
supporting the mean bandwidth of all international data. The temporal complexity
such cables comes at the cost of spatial sparsity: while the cores of all undersea
fibers could fit through a mm2-area aperture (center cross-section), each data channel
is instead separated and manipulated by telecommunications equipment at length-
scales orders of magnitude larger than the wavelength of light (as illustrated by the
optical distribution frame at a fiber landing station). Photocredit: arsTechnica [4].

landing station (inset photograph in Fig. 1-1) as required to distribute and manipulate
the individual wavelength channels on each fiber using macroscopic (i.e. “server rack”-
scale) telecommunications equipment. The answer, in short, is a recurring tradeoff
between spatial and temporal control in optical systems. The ultimate goal of this
thesis is to improve the joint spatiotemporal control of optical fields — to combine the
high-speed modulation characteristic of modern computing and telecommunication
systems with wavelength-scale spatial control.2

2Our manuscript describing these central efforts, which spanned the five year duration of my
doctoral studies, is currently under review; a pre-print is currently available online [5].
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1.1 Spatiotemporal Control with SLMs

This quest to improve spatiotemporal control is motivated by the fundamental im-
portance of programmable optical transformations across science and engineering,
from adaptive optics in astronomy [6] and neuroscience [7, 8] to dynamic matrix
operations in machine learning [9–11] and quantum computing [12, 13]. Advances
in nanotechnology have only recently (within the past 50 years) led to the develop-
ment of wavelength-scale two-dimensional optical modulator arrays known as “spatial
light modulators" (SLMs), yet these devices have become ubiquitous in optical sci-
ence. Within the past year alone, SLMs has enabled us to engineer and measure
our surrounding physical world at length scales spanning orders-of-magnitude: from
the creation of arbitrary geometry, two-dimensional Rydberg atom lattices [13] to
volumetric three-dimensional laser printing at centimeter-scale [14], all while imag-
ing between micron-scale neural circuits [15] and the light-year-scale “cosmic abyss”3.
Despite this importance, the fast, energy-efficient, and compact manipulation of mul-
timode optical systems — the core objective of SLMs — remains an open challenge
[16, 17].

Figure 1-2a summarizes the limitations of current SLMs, which typically com-
prise a two-dimensional (2D), Λ-pitch array of tunable pixels (subscript 𝑝) emitting
at wavelength 𝜆 into the solid angle Ω𝑝 with a system (subscript 𝑠) modulation band-
width 𝜔𝑠. Given these parameters, each “spatiotemporal" degree-of-freedom (DoF)
simultaneously satisfying the minimum-uncertainty space- and time-bandwidth rela-
tions (𝛿𝐴/𝜆2 · 𝛿Ω = 1 and 𝛿𝑡 · 𝛿𝜔 = 1, respectively) can be illustrated as a real-space
voxel with area 𝜆2/Ω𝑝 and time duration 1/𝜔𝑝 for pixel bandwidth 𝜔𝑝. The optical-
delay-limited pixel bandwidth 𝜔𝑝 ≈ (∆𝜖𝑝/𝜖)𝑐𝑘 can be approximated as a function of
the pixels’ achievable permittivity swing ∆𝜖𝑝 (for the speed of light 𝑐) using first-order
perturbation theory [18] or similarly derived from linear scattering theorems [19].

Integrating over the switching interval 𝑇 = 1/𝜔𝑠 and aperture area 𝐴 then gives
the total DoF count [20] 4

𝐹 =

∫︁
𝐴,Ω𝑝

d𝐴

𝜆2
· dΩ

∫︁
𝑇,𝜔𝑝

d𝑡 · d𝜔. (1.1)

By comparison, the same switching period contains 𝑁 = 𝐴/Λ2 ≤ 𝐹 controllable
modes, each confined to the pixel area Λ2 and time window 𝑇 (shaded box in Fig. 1-
2a). Complete spatiotemporal control with 𝑁 = 𝐹 is only achieved under the follow-

3The James Webb Space Telescope (JWST), featuring a 132 degree-of-freedom adaptive optics
system, launched during the final year of this thesis. I thank JWST Senior Project Scientist and
Hertz Fellow Dr. John Mather for discussing the requirements of these systems with me.

4Note that the exact coefficient of proportionality in Eqn. 1.1 depends on the number of polar-
izations, the complex amplitude and phase controllability of each mode, and the exact definition of
distinguishability when defining the Fourier uncertainty relations. For simplicity, we have omitted
these 𝒪(1) coefficients.
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Figure 1-2: Full degree-of-freedom (DoF) spatiotemporal optical programming. A
traditional spatial light modulator (a) operating at wavenumber 𝑘 = 2𝜋/𝜆 (frequency
𝜔0) features a 2D array of Λ-pitch pixels within an aperture area 𝐴. Each pixel
radiates into the solid angle Ω𝑝 and can be switched (as depicted by the blue ↔ red
color change) over the timescale 𝑇 = 1/𝜔𝑠 (given a modulation bandwidth 𝜔𝑠) with a
large but slow fractional permittivity perturbation ∆𝜖𝑝/𝜖 (e.g. liquid crystal rotation).
The shaded volume indicates the smallest controllable near-field spatiotemporal mode.
In the far-field (right), the corresponding shaded spatiotemporal bandwidth 𝜈 =
Ω𝑠𝜔𝑠 = (𝜆/Λ)2𝜔𝑠 counts the controllable DoF per unit area and time in a single
diffraction order. Since Ω𝑠 ≪ Ω𝑝 and 𝜔𝑠 ≪ 𝜔𝑝 ∼ 𝜔0∆𝜖𝑝/𝜖, the delay-limited system
bandwidth, spatiotemporal control is limited and scattering into undesired diffraction
orders (grey ×s) reduces the achievable diffraction efficiency. Alternatively, a fully-
filled array of wavelength-scale resonant apertures (b) emitting into the solid angle Ω′

𝑝

can enhance the effect of fast (modulation frequency 𝜔′
𝑠), low-energy perturbations

∆𝜖′𝑝 ≪ 𝜖 to simultaneously achieve space- and time-bandwidth limits (C1 and C2,
respectively), yielding near-complete spatiotemporal control with 𝜈 ′ ≈ Ω′

𝑝𝜔
′
𝑝.
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ing criteria: (C1) emitters fully “fill" the near-field aperture such that Ω𝑝 matches the
field-of-view Ω𝑠 = (𝜆/Λ)2 of a single array diffraction order; and (C2) 𝜔𝑠 = 𝜔𝑝. In
the Fourier domain, the system’s “spatiotemporal bandwidth" 𝜈 = Ω𝑠𝜔𝑠 counts the
controllable DoF per unit area and time within a single far-field diffraction order. As
illustrated by the shaded pillbox in Fig. 1-2a, (C1) and (C2) are both satisfied when
𝜈 matches the accessible pixel bandwidth Ω𝑝𝜔𝑝.

Practical constraints have prevented present-day SLM technology from achiev-
ing this bound. In general, commercial devices satisfy (C1) at the expense of (C2).
Specifically, they offer excellent near-field fill-factor across megapixel-scale apertures
but require large 𝒪(𝜖), slow index perturbations. Liquid crystal SLMs, for exam-
ple, are limited to 𝜔𝑠 ∼ 2𝜋 × 103 Hz ≪ 𝜔𝑝 modulation rates by the slow rotation
of viscous, anisotropic molecules that modulate the medium’s phase delay [21, 22].
Digital micromirror-based SLMs offer moderately faster (∼105 Hz) binary amplitude
modulation by electrically displacing a mechanical reflector, but at the expense of
diffraction efficiency [23]. Mechanical phase shifters [24–28] improve this efficiency
but still require design trade-offs between pixel size, response time, and drive energy.

Recent research has focused on surmounting the speed limitations of commercial
SLMs with integrated photonic phased arrays [33, 42–44] and active metasurfaces
comprised of thermally [45–47], mechanically [27, 48], or electrically [40, 41, 49–51]
actuated elements. In most of these approaches, (C1) is not satisfied. Silicon pho-
tonics in particular has attracted significant interest due to its fabrication scalabil-
ity; however, the combination of standard routing waveguides, high-power (∼ mW/𝜋
phase shift) thermal phase shifters, and vertical grating couplers in each pixel reduces
the fill-factor of emitters, yielding Ω𝑝 ≫ (𝜆/Λ)2 [33]. Scattering into the numerous
diffraction orders within Ω𝑝 then reduces the achievable zero-order and overall diffrac-
tion efficiencies (𝜂0 and 𝜂, respectively). For this reason, 𝜂0 is a useful measure of
near-field fill.

Various workarounds, including 1D phased arrays with transverse transverse wave-
length tunability [42, 52, 53], sparse antenna arrays [32], and switched arrays [37, 54]
improve steering performance but restrict the spatiotemporal basis (i.e. limit 𝐹 ).
Alternative nanophotonics-based approaches, often limited to 1D modulation, have
their drawbacks as well: phase change materials [45–47] have slow crystallization rates
and large switching energies, while electro-optic devices [38, 40, 41, 50, 51, 55, 56], to
date, have primarily relied on large-area grating-based resonators to achieve appre-
ciable modulation.

Figure 1-3 compares the performance of these and other experimentally-demonstrated,
active, 2D SLMs as a function of spatiotemporal bandwidth’s two components: mod-
ulation bandwidth 𝜔𝑠 and field-of-view Ω𝑠. Controllability aside, the evident trade-off
between these parameters illustrates the difficulty of creating fast, compact modulator
arrays with high 𝜈. Thus, in addition to satisfying the complete control criteria (C1)
and (C2), an “ideal" SLM would: (C3) maximize 𝜈 by combining wavelength-scale
pitches (for full-field Ω𝑠 → 2𝜋 beamforming) with gigahertz (GHz)-order bandwidths
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Figure 1-3: A graphical review of previous liquid crystal- (LC) [29–31], thermal-
[32–34], micro-electro-mechanical system- (MEMS) [26, 27, 35–37], and electro-optic-
driven (EO) [38–41] SLMs reveals an observed tradeoff between modulation band-
width 𝜔𝑠 and the controllable field-of-view Ω𝑠 = 𝜆2/Λ𝑥Λ𝑦 (i.e. a single diffraction
order for Λ𝑥 × Λ𝑦 pitch pixels at wavelength 𝜆). The void of compact, high-speed
modulator arrays limits demonstrated spatiotemporal bandwidths to 𝜈 = Ω𝑠𝜔𝑠 ∼
2𝜋×105 Hz · sr. This thesis demonstrates a novel photonic crystal spatial light modu-
lator (PhC-SLM) that offers near-complete control over an order-of-magnitude larger
𝜈 that previous techniques.

𝜔𝑠 competitive with electronic processors; (C4) support femtojoule (fJ)-order switch-
ing energies as desired for information processing applications [57]; and (C5) have
scalability to state-of-the-art megapixel-scale apertures.

These criteria, summarized in Table 1.1, motivate the resonant architecture in
Fig. 1-2c. Here, (C3) and (C4) are achieved by switching a fully-filled array of
wavelength-scale resonant optical antennas with fast, fJ-order perturbations ∆𝜖𝑝/𝜖 ≪
1. Each resonator’s far-field scattering and quality factor 𝑄 can then be tuned to
achieve (C1) and (C2), respectively. Specifically, for any given ∆𝜖𝑝 (dictated by sys-
tem energy constraints, for example), the resonant quality factor 𝑄 can be adjusted
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Criteria Description PhC-SLM

C1 Space-bandwidth limited (full fill) Ω𝑠/Ω𝑝 ≈ 1

C2 Time/delay-bandwidth limited 𝜔𝑠/𝜔𝑝 > 0.1

C3 Maximize spatiotemporal bandwidth 𝜈 > MHz · sr
C4 fJ-order switching energy (𝐸switch) 𝐸switch ≈ 5 fJ
C5 Scalable foundry fabrication 300 mm wafer

Table 1.1: Design criteria for an “ideal” spatial light modulator. The performance
metrics of the PhC-SLM demonstrated in this thesis are provided for comparison.

to efficiently control each mode at the time-bandwidth limit 𝜔𝑠 = 𝜔𝑝. Surprisingly,
we also show that proper far-field engineering simultaneously enables operation at
the space-bandwidth limit Ω𝑠 = Ω𝑝 despite the complex near-field profiles charac-
teristic of confined microcavity modes. Combined, this resonant SLM architecture
enables complete, efficient control of the large spatiotemporal bandwidth supported by
its constituent pixels.

1.2 Photonic Crystals: Ideal Pixels, Poor Systems

Figure 1-4 illustrates our specific implementation of this optimal programmable sur-
face: the photonic crystal spatial light modulator (PhC-SLM) [58]. Coherent sig-
nal light is reflected off a semiconductor slab (permmitivity 𝜖) hosting a 2D array
of semiconductor PhC cavities with instantaneous resonant frequency 𝜔0 + ∆𝑚𝑛(𝑡).
A short-wavelength incoherent control plane imaged onto the cavity array controls
each resonator’s detuning ∆(𝑡) ≈ −∆𝜖(𝑡)/2𝜖 via the permmitivity change ∆𝜖𝑝(𝑡) in-
duced by photo-excited free carriers [59, 60]. We optimize the resonator bandwidth
Γ ≈ 𝜔𝑠 ≈ 2𝜋×GHz (corresponding to a quality factor 𝑄 = 𝜔0/Γ ∼ 105) to maximize
the linewidth-normalized detuning ∆/Γ without significantly attenuating the cavity’s
response at the carrier lifetime (𝜏)-limited modulation rate 𝜔𝑠 = 1/𝜏 . Under these
conditions, free carrier dispersion efficiently modulates the complex cavity reflectivity
𝑟(∆) to enable fast (> 100 MHz given a ∼ns free carrier lifetime [61]), low-energy (fJ-
order) conversion of incoherent control light into a dense array of coherent, modulated
signal modes.

This out-of-plane, all-optical switching approach is motivated by the recent de-
velopment of high-speed, record-brightness µLED displays [63, 64] integrated with
complementary metal-oxide-semiconductor (CMOS) drive electronics for consumer
displays [65, 66] and visible light communication [67, 68]. In particular, gallium
nitride µLED displays with record GHz-order modulation bandwidths [68, 69], sub-
micron pixel pitches [50], and large pixel counts [70] have been demonstrated within
the past few years. Re-purposing these displays for reconfigurable, “wireless" all-
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Figure 1-4: Overview of the resonant photonic crystal spatial light modulator (PhC-
SLM). We overcome the limitations of previous SLMs by modulating an array of
wavelength-scale, high-finesse microcavities with a high-speed incoherent µLED dis-
play. Absorbed µLED pulses control the detuning ∆ of resonant pixels — each
comprising a high-quality-factor (𝑄 > 105), small-mode-volume (𝑉 < 0.1𝜆3) silicon
PhC cavity — via free carrier dispersion, which efficiently modulates the amplitude
and phase (illustrated by the length and color of emission arrows at each cell, respec-
tively) of the pixel’s complex reflection coefficient 𝑟(∆). Despite the sub-wavelength
near-field confinement of each resonator mode (c.f. inset simulated mode profile over-
laid on a SEM micrograph of an 𝐿4/3-type cavity [62]), inverse design focuses its
far-field scattering 𝑆(𝑘⃗) into the ideal diffraction-limited field-of-view Ω𝑝 = 𝜆2/Λ𝑥Λ𝑦

for Λ𝑥×Λ𝑦 pitch pixels. The array emission (c.f. inset far-field profile) is thus limited
to the zeroth diffraction order (marked by ×s), corresponding to efficient vertical cou-
pling and near-unity “fill factor" of the radiating aperture. Combining the scattering
from each resonant “antenna" in a large-scale aperture, fabricated via optimized 300
mm wafer-scale processing (inset photograph), enables efficient, high-speed optical
beamforming.

optical cavity control eliminates the need for electronic tuning elements at each pixel.
These controls induce excess optical loss, limit pixel pitches, and even impose a fun-
damental scaling limit for single-layer architectures: as aperture area 𝐴 grows, 𝒪(𝐴)
pixel controls eventually cannot be routed through the 𝒪(

√
𝐴) perimeter [71].

Free of these constraints, we designed high-finesse, vertically-coupled microcavi-
ties offering coupling efficiencies > 90%, phase-dominant reflection spectra [34, 73],
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Figure 1-5: Characterization of integrated optical devices based on their spectral
and spatial confinement, quantified by the quality factor 𝑄 and inverse mode volume
1/𝑉 , respectively. Tradeoffs between these two figures-of-merit are weighed for var-
ious applications: precision measurement favors high-𝑄 to magnify the phase shift
𝛿𝜑 produced by a fraction length 𝛿𝐿/𝐿 or index perturbation 𝛿𝑛/𝑛; modulators and
active devices reduce 𝑉 (at the expense of 𝑄) to improve bandwidth, reduce threshold
currents 𝑖th, etc.; and nonlinear optics seeks the best possible tradeoff between 𝑄 and
𝑉 to maximize the intensity enhancement 𝐼max ∝ 𝑄/𝑉 of any input field. Combining
high-𝑄/𝑉 photonic crystal cavities — offering best-n-class and continually improving
performance for both metrics — with the scalable fabrication characteristic of tradi-
tional broadband integrated photonic circuits (such as the illustrated interferometer
mesh), unveils new applications such as photon-level (i.e. quantum) nonlinear optics.
Our beamforming application harnesses these high-𝑄/𝑉 devices for efficient, compact
switching. We note that the exact form of 𝑉 varies per application; I have listed the
Purcell mode volume — a weighted average of electric field energy density normalized
its peak value in the device, which serves as a proxy for the more fundamental local
density of states quantity [72] — based on its prevalence in the field.

and directional emission Ω𝑝 ≈ Ω𝑠 for high-efficiency beamforming (Chapter 2). Op-
timized, wafer-scale processing enables these “resonant antennas" to be fabricated in
arrays with mean quality factors ⟨𝑄⟩ > 106 and sub-nm resonant wavelength stan-
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Figure 1-6: Summary of recent developments in PhC cavity performance. Improved
fabrication (left) offers record quality factors 𝑄 > 107 in normalized mode volumes
𝑉 approaching a single cubic wavelength in the confining medium [76]. Engineering
dielectric boundary conditions shrinks 𝑉 ≪ 1 [77, 78] (for the Purcell mode volume
𝑉 ). Combining both advances in novel electro-optic (E.O.) materials such as thin-film
lithium niobate (with Pockels coefficient 𝑟 > 30 pm/V) enables efficient modulation
and control [79–82].

dard deviation (Chapter 3). Automated, parallel laser-assisted thermal oxidation
[74, 75] then trims 8× 8 cavity arrays to picometer-order uniformity [74, 75] (Chap-
ter 6), enabling high-speed spatial light modulation with fJ-order switching energies
and 𝜔𝑠 > 2𝜋 × 100 MHz (Chapter 7). Compared to the previous devices surveyed
in Fig. 1-3, our SLM offers near-complete control over an order-of-magnitude larger
spatiotemporal bandwidth.

Returning to this sections title, why do we focus on photonic crystals? Fig. 1-
2 demonstrates that the achievable system spatiotemporal bandwidth is ultimately
limited to that of its constituent pixels. Wavelength-scale PhC cavity pixels therefore
maximize 𝜈 by supporting Purcell mode volumes 𝑉 below a cubic wavelength in the
confining dielectric with tunable quality factors (up to record values 𝑄 ∼ 107 [76])
to meet design criteria (C2). Among all integrated photonic resonators, PhC cavities
offer the best-in-class combination of spectral and spatial confinement (Fig. 1-5).

For this reason, these high-𝑄/𝑉 microcavities are a backbone of physical sci-
ence: they improve sensitivity, enhance atom-photon interactions, and shape optical
modes. Ongoing theory, design, and fabrication advances (Fig. 1-6) continue to im-
prove their performance towards the requirements of “holy grail” goals in optics such
as photon-level nonlinearities. This recurring improvement, recently enabling ex-
perimental demonstrations of devices with quality factor to normalized mode volume
ratios 𝑄/𝑉 in excess of 107, led us to reconsider potential applications of these devices.
One of those investigations led to my master’s thesis on the photodetection scheme
illustrated in Fig. 1-7 [83]. There, we showed that single absorbed photons could
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lead to linewidth-order resonant frequency shifts via free-carrier-dispersion given de-
vices with 𝑄/𝑉 ∼ 108 [60]. This possibility of efficient, few-photon switching at
wavelength-scales ultimately motivated us to develop PhC cavities for beamforming
applications.

Figure 1-7: Concept for photon-level switching via free-carrier dispersion in a high-
𝑄/𝑉 microcavity [60]. Absorbed visible photons (blue) generate a permmitivity
change ∆𝜖 by photoexciting free carriers. The resulting change in resonant frequency
∆𝜔 produces a “photomultiplication” effect since the number of photons in the scat-
tered probe field can exceed that of the absorbed pump. The micrograph depicts a
thermally isolated PhC cavity for bolometry as described in Chapter 8 [84].

Unfortunately, photonic crystals are plagued with a number of problems that
prevent translation of these excellent per-pixel figures-of-merit to the system:

1. Optimizing the 𝑄 of small-𝑉 PhC cavities cancels radiative leakage, yielding
broad far-field patterns Ω𝑝 ≫ Ω𝑠 that violate (C1) and reduce coupling, effec-
tively isolating the device from external inputs

2. nm-scale fabrication fluctuations produce nm-scale resonant wavelength vari-
ations, preventing efficient simultaneous switching at a common resonant fre-
quency; (C4) is therefore restricted

3. Few-100 nm feature sizes and nm-scale wavelength variations favor serial direct
write fabrication techniques such as electron-beam lithography, negating (C5)

To date, these complications have prevented the simultaneous, coherent operation
high-𝑄 resonant systems.
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1.3 The Road Ahead

This thesis demonstrates that these problems are not fundamental. The coming chap-
ters, outlined in Fig. 1-8 will detail how we overcame each hurdle to achieve the “ideal”
SLM of Table 1.1. Along the way, our engineering pursuit also led to fundamental
scientific insight. Namely, the ability to fabricate optical microcavities near-record
finesse raised the question: how far can can we increase 𝑄/𝑉 ? The surprising re-
sults described in Chapter 4 show that, similar to well-studied macroscopic optical
cavities present in graviational wave interferometers (e.g. LIGO), microcavity perfor-
mance is fundamentally limited by thermal noise. This has immediate implications
to recently-proposed room temperature optical quantum computing proposals, which
we specifically explore. It’s not all “gloom and doom” though — Chapter 5 shows
how proper characterization of thermal noise enables novel cancellation to surmount
the demonstrated noise-volume tradeoff.

Figure 1-8: Outline of thesis chapters. Chapters 2-3 and 6-7 focus on designing,
fabricating, and controlling scalable resonant photonic crystal circuits. The more
fundamental investigations in Chapters 4-5, which describe thermal noise limits and
noise cancellation techniques in high-finesse microcavities, were motivated by the
engineering advances required to develop the PhC-SLM (background image).



Like killing a fly with an atomic bomb.
Dr. John Kolena (1947-2020)

2
Microcavity Beamforming

Abstract

We introduce an efficient inverse-design method that allowed us to discover a new
generation of optical microcavities for diffraction-limited beamforming with 10× im-
provement in directivity over existing designs. This technique avoids solves a recurring
issue with optical resonators: storing light requires emission to be eliminated, which
effectively decouples the device from free-space optical fields. Our optimized photonic
crystal cavities, however, act as resonant “optical antennas” with near perfect free-
space coupling into a diffraction-limited vertical beam. This cavity design breaks a
paradigm in nanophotonic cavities that small mode volume (𝑉 ) must come with large
beam divergence: we show that high-𝑄, small-𝑉 , and low beam divergence are all
simultaneously possible. The resulting space-bandwidth-limited emission satisfies a
key requirement for complete degree-of-freedom spatiotemporal control (criteria C1)
and enables high performance resonant beamforming.

2.1 The Bandwidth-Efficiency Trade-off

In many regards, optical microcavities constitute the “ideal” spatial light modulator
pixels described in Chapter 1. Beyond maximizing the the pixel’s accessible spa-
tiotemporal bandwidth, they are also well suited for low-power switching: any small
index change ∆𝜖 applied across the small mode volume 𝑉 can be resonantly enhanced
to yield linewidth-order frequency shifts [85]. Two-dimensional PhC cavities — which
isolate a mode by vertical index guiding and lateral Bragg reflection in a periodically
patterned dielectric slab — extend this spatial and spectral confinement to the ex-

22
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treme with sub-wavelength (i.e. normalized volume 𝑉 = 𝑉/(𝜆/𝑛)3 < 1 relative to a
cubic wavelength in the confining dielectric of refractive index 𝑛) modes supporting
quality factors in excess of 107 [76, 78]. This record experimental performance con-
tinues to evolve, and pushing both metrics towards their fundamental limits remains
an active field of research [77, 86, 87] that we will further explore in Chapters 4 and
5. Unfortunately, the near-ideal resonant characteristics of traditional PhC designs
are optimized at the expense of out-of-plane coupling, rendering them ill-suited for
beamforming applications.

Figure 2-1: Silicon 𝐿3 slab defect cavity designs (hexagonal lattice constant 𝑎 =
0.4 µm; hole radius 𝑟/𝑎 = 0.25; slab thickness 𝑡 = 220 nm) with overlaid midplane
magnetic field profile 𝐻𝑧 after 𝑄 optimization by displacing (𝛿𝑥𝑖, 𝛿𝑦𝑖) and resizing
(𝛿𝑟𝑖) the shaded holes in the 16𝑎 × 16(

√
3/2)𝑎 periodic unit cell. Hole shifts are

magnified by 3× for visualization. Design A (panel a) [88] offers 𝑄 ≈ 5 × 106 at a
resonant wavelength 𝜆0 = 1544 nm, whereas Design B (panel c) features (𝜆0, 𝑄) ≈
(1560 nm, 3×107) [89]. Both optimizations produce well-confined modes that radiate
into broad, complex far-field profiles 𝑆(𝑘⃗) (left panels of b, d, respectively), yielding
poor coupling to a and zero-order diffraction efficiency 𝜂0 ≪ 1. The state-of-the art
technique for improving directionality is to superimpose a grating perturbation (via a
hole size increase 𝛿𝑟/𝑟 at the holes outlined in green) to vertically scatter band-edge
energy at the expense of 𝑄. The resulting far-field profiles for 𝛿𝑟/𝑟 = 0.02 are shown
in the right-hand panels; the 𝑄 of both designs is reduced to ∼8× 105 for a modest
zero-order efficiency improvement.
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To illustrate this point, consider the common 𝑄-optimized “L3” PhC cavity de-
signs in Fig. 2-1 [88, 89]. Removing three holes from a hexagonal lattice confines a
defect mode in a silicon PhC slab. A few holes are then displaced by (𝛿𝑥𝑖, 𝛿𝑦𝑖) and
possibly resized by 𝛿𝑟𝑖 to minimize radiative leakage in the light cone (transverse
wavenumber 𝑘|| = |⃗𝑘| =

√︀
𝑘2
𝑥 + 𝑘2

𝑦 smaller than the resonant wavenumber 𝑘 = 2𝜋/𝜆),
thereby maximizing 𝑄. The exact displacement parameters are typically numerically
optimized in computationally expensive full-wave electromagnetics simulations (finite
difference time domain, or FDTD, for example), which ultimately limits the number
of free parameters. In contrast with the ideal fully filled array of uniform apertures in
Fig. 1-2b, the resulting unit cells house small, confined, and spatially complex modes.
The consequences of these nonidealities are immediately apparent in each mode’s far-
field intensity profile (Fig. 2-1b, d): 1) the 𝑄 optimization forces radiative leakage to
high numerical apertures (𝑘||/𝑘 ≈ 1); and 2) multiple grating orders of the array lie
within this broad emission profile since Ω𝑝 ≫ Ω𝑠. Complete spatiotemporal control
is thus impossible due to the low zero-order diffraction efficiency 𝜂0 ≪ 0.1.

Fortunately, these limitations are not fundamental: the effective scattering aper-
ture 𝐴0 = 𝜆2/Ω𝑝 of a resonant mode can extend beyond its 1/𝑒 decay area 𝐴𝑒. This
apparent space-bandwidth violation (𝐴𝑒/𝜆

2) ·Ω𝑝 = 𝐴𝑒/𝐴0 < 1 is enabled by resonant
scattering 1: permittivity perturbations further into the mode’s evanescent tail (i.e.
further from the central cavity defect) can become a dominant scattering source as 𝑄
increases. The question then becomes: how should scatterers be arranged to produce
a desired far-field emission pattern?

One intuitive (and in this case, the state-of-the-art) answer is a harmonic 2𝑎-period
grating perturbation (shown in Fig. 2-1) that “folds” energy concentrated at the band-
edge 𝑘𝑥 = 𝜋/𝑎 back to 𝑘|| = 0, yielding vertical radiation at the expense of reduced
𝑄 [92–94]. In the perturbative regime, the far-field scattering profile exactly images
the broad band-edge mode. Magnifying the perturbation thus reduces 𝑄 without
any significant directivity improvement, demonstrating the constraints imposed by a
fixed-geometry design. The right-hand panels of Fig. 2-1 show the narrowed far-field
profile produced by a 𝛿𝑟𝑖/𝑟 ≈ 0.02 grating perturbation, which balances the reduced
𝑄 ≈ 8× 105 and a modest diffraction efficiency improvement (𝜂0 < 0.2).

2.2 Inverse-Design Technique

Since the perturbative grating coupler is applied after the single-objective 𝑄 opti-
mization is complete, this approach sacrifices 𝑄 for directivity. Ideally, the near- and
far-field cavity confinement would instead be simultaneously optimized to maximize
𝑄 and 𝜂0. This open goal in integrated photonics — the ability to efficiently couple
free-space light into the high-𝑄 resonant modes of small-volume microcavities — was

1Resonant electrical antennas feature similar characteristics, leading to well-studied relationships
between antenna 𝑄 and super-directivity [90, 91].
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a recurring theme in my research group. The specific applications varied, but a com-
mon objective was to efficiently collect the Purcell-enhanced emission from quantum
(i.e. single photon) emitters into single-mode fiber, where it could then be manip-
ulated with other instruments over long distances. Unfortunately, the optimization
approaches for this objective were akin to the quote at the beginning of this chapter
from my late physics professor Dr. John Kolena. Specifically, they relied on iter-
atively optimizing FDTD simulation outputs with gradient-free algorithms [95, 96].
For me, the harrowing process of simply verifying the resonant properties of a high-𝑄
optical microcavity with a single FDTD simulation — an hours long process on our
computational cluster depending on the desired accuracy — was enough to motivate
a search for better solutions.

A review of semi-analytic methods eventually led me to the seminal work on
“guided mode expansion” (GME) [97], which effectively reduces three-dimensional
photonic crystal simulations to 2D using an optimized basis set of guided modes as
opposed to a complete basis set (plane waves, for example). The technique is inher-
ently approximate as a result, but the close correspondence between GME results
in the literature and first-principles FDTD or plane-wave-expansion simulations gave
promise for its applicability to my beamforming application. Idea turned to action
when Momchil Minkov, a photonic crystal optimization expert at Stanford, released
an open-source GME package with integrated inverse design functionality via auto-
matic differentiation [98]. Within a week of contacting Momchil, we were able to show
that: 1) GME could accurately predict the far-field profiles of PhC cavities; and 2)
that we could optimize designs to achieve the ideal directivity of the planar apertures
in Fig. 1-2b for any desired quality factor (below the maximum achievable metrics of
𝑄-only optimizations). Before fully unveiling the technique in the coming sections, I
will first review the fundamentals of GME.

2.2.1 Guided Mode Expansion for PhC Slabs

To better understand the applicability of GME, we will consider the bandstructure
(i.e. the discrete eigenfrequency spectrum of localized eigenmodes as a function of in
plane wave vector 𝑘⃗) of a 𝑡 = 0.55𝑎 nm-thick silicon (𝑛 ≈ 3.48 at the design wave-
length 𝜆 ∼ 1550 nm) slab with a hexagonal lattice of varying normalized radius 𝑟/𝑎
holes for the lattice constant 𝑎 (Fig. 2-2).2 Since the finite-thickness slab lacks vertical
translational symmetry, the modes are not purely polarized (except in the midplane
of the slab) but can instead be classified as even or odd with respect to reflection

2Despite the incomplete bandgaps supported by these “PhC slabs” — broken translational sym-
metry in the vertical direction allows modes with frequencies above the light line (𝜔 = |⃗𝑘|/𝑛clad for
a cladding index 𝑛clad and in-plane wave vector 𝑘⃗) to couple to the continuum of unbound propagat-
ing modes in free space — the feasibility of fabricating these structures has led to their widespread
adoption in resonant biosensors [99, 100], high-𝑄 optical cavities [76], efficient optical switches [101],
coupled-cavity delay lines [102], polarization converters [103], and more.
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Figure 2-2: GME-computed bandstructure — frequency of eigenmodes in normalized
units 𝑓 = 𝑎/𝜆 as a function of in plane wavevector 𝑘⃗ at points around the independent
Brillouin zone (IBZ) boundary — for a photonic crystal slab (𝑛 = 3.48) with a
hexagonal lattice of variable air holes (𝑟/𝑎 ∈ [0, 0.15, 0.25] from left to right), lattice
constant 𝑎, and normalized thickness 𝑡/𝑎 = 0.55. The parameters are chosen to
match the high-𝑄 . Only even (with respect to vertical reflection symmetry about
the slab midplane; also known as “TE-like” for low-frequency bands [18]) are computed
by restricting the GME basis set to even slab waveguide modes. The light cone is
shaded in gray. The color of each eigenmode corresponds to its associated radiative
quality factor, which is computed analytically through perturbation theory. Below the
light cone, the true guided modes have infinite quality factor, whereas the majority
of guided resonances above the light line have finite quality factor due to coupling
with continuum modes. For sufficiently large 𝑟/𝑎, an incomplete bandgap (shaded in
yellow) is present.

about the midplane bisecting the slab due to the permittivity profile’s reflection sym-
metry in that plane.3 Here, we consider only the even-symmetry modes to match the
permittivity profile symmetry of the symmetrically-clad PhC membranes of interest.

The unpatterned slab in the left-hand panel of Fig. 2-2 has continuous lateral
translational symmetry, so 𝑘⃗ is conserved. Thus, while the artificial imposition of a
reduced Brillouin zone produces states lying above the light line, all of the bound
modes are true guided modes with infinite radiative quality factor. Since this ap-
proximate bandstructure is computed using a basis set of confined waveguide modes,
these bound states are the only computed eigenmodes. This is not true in general, but
rather a feature of GME’s restricted basis set of true guided modes in an “effective” un-
patterned photonic crystal slab. For any general computational implementation, the

3The low-lying even and odd bands are “TE-like” (∼𝐻𝑧 polarized) and “TM-like” (∼𝐸𝑧 polarized),
respectively. This relationship breaks down for sufficiently high eigenfrequencies, as the emergence
of nodal planes along the vertical direction can switch the mode’s symmetry [104].
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eigenmodes 𝐻⃗(𝑟⃗) =
∑︀

𝑗 𝑎𝑗𝐻⃗𝑗(𝑟⃗) are expanded in a truncated basis set of known eigen-
modes 𝐻⃗𝑗, allowing the expansion coefficients 𝑎𝑗 to be solved as a finite-dimensional
Hermitian eigenproblem. Using an alternative plane-wave basis (i.e. the set of 𝐻⃗𝑗

computed from the uniform permittivity 𝜖(𝑟⃗) = 1 Maxwell eigenproblem), for exam-
ple, would produce bands consisting of bound states as well as unbound propagating
modes. As a result, bands above the light cone in 3D plane-wave expansion (PWE)
simulations [105] must be interpreted with great care.

The center and right panels of Fig. 2-2 illustrate the evolution of bandstructure
as the radius 𝑟 of holes in the hexagonal lattice increase. The modes of the patterned
slabs closely resemble the guided modes of the unpatterned slab with two notable
differences: 1) states above the light line become lossy guided resonances due to scat-
tering from the patterned holes (or, alternatively, due to coupling to the radiative
continuum above the light line since 𝑘⃗ is no longer conserved), and 2) the same pat-
terning effectively couples the original guided modes, leading to the observed band
splittings. This close relationship between the unpatterned and patterned modes is
the essence of guided mode expansion. In the GME formalism [98], the patterned slab
is seen as a structural perturbation of an “effective” unpatterned slab with an permit-
tivity 𝜖eff =

∫︀
Ω
𝜖(𝑟⃗) d2𝑟⃗/𝐴Ω averaged over the unit cell Ω with area 𝐴Ω. Intuitively,

the reduced effective permittivity shifts the unpatterned bands to higher frequencies,
producing bands qualitatively co-located with the center of the split bands in the
patterned bandstructure.

Whereas PWE imposes artificial periodic boundary conditions in the vertical di-
rection of a 3D unit cell, GME’s incomplete basis set of true guided modes is computed
for an arbitrary multi-layer slab structure from transfer matrix theory [98] which an-
alytically accounts for the boundary conditions between layers and effectively reduces
the problem to 2D. Finally, first-order perturbation theory can be used to calculate
the coupling between guided resonances above the light line and continuum states
of the unpatterned slab, thereby yielding the approximate radiative quality factorrs
shown for the patterned slabs in Fig. 2-2. However, these advantages of GME are
not without an associated cost: the incomplete basis set of GME fundamentally im-
plies that the technique is approximate. This is contrary to PWE, where the only
approximation is a required truncation of the complete plane-wave basis set. Despite
this main drawback, we will show that GME is an efficient, accurate method for com-
puting the frequencies, Bloch modes, and radiative quality factors of highly confined
slab PhC cavity modes. Combining these benefits of GME with inverse-design then
allows us to produce “ideal” resonant pixels for beamforming.

2.2.2 Efficient Simulation Meets Efficient Optimization

Compared to the fixed-geometry, grating-coupled cavity designs, an ideal cavity would
make use of all design parameters to maximize 𝜂0 (and thereby the effective near-
field fill factor) for any desired 𝑄. With hundreds of tunable hole parameters per
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Figure 2-3: Combining GME with inverse-design enables joint optimization of a cav-
ity’s 𝑄 and far-field scattering profile 𝑆(𝑘⃗) with respect to the position and size of
every hole in its unit cell (a). The unit cell parameters match those of Fig. 2-1.
Guided mode expansion (GME) approximates the mode’s 𝑄 and far-field profile by
sampling the losses {𝑐} at the array’s diffraction orders (white ×s) displaced by Bloch
boundary conditions 𝑘⃗𝑖 (i.e. at the colored dots in b). An objective function 𝑓 that
maximizes 𝑄, confines 𝐻⃗, and minimizes {𝑐} at any non-zero diffraction order can
then be efficiently optimized with respect to all hole parameters using reverse-mode
automatic differentiation (b). Aggregating the losses from simulations at multiple 𝑘⃗𝑖
increases the resolution of the GME-estimated far-field profile (c).

unit cell, the 2D PhC cavities under consideration are ideal candidates for this goal.
We therefore developed the simulation framework in Fig. 2-3, which combines semi-
analytic guided mode expansion (GME) simulations with automatic differentiation
to simultaneously optimize the cavity’s near- and far-field confinement using efficient
gradient-based optimization. In each iteration, GME approximates the eigenmode
of a cavity unit cell (Fig. 2-3a) using the incomplete basis set of waveguide modes
in an “effective” unpatterned slab [97], effectively transforming the 3D eigenproblem
to 2D as described in Sec. 2.2.1. Although radiative plane waves are excluded from
this basis set, we compute the loss rate 𝑐

(𝑖)
𝑚𝑛 = − Im{𝜔0|𝑘⃗𝑖,𝐺⃗𝑚𝑛

} at each reciprocal
lattice vector 𝐺𝑚𝑛 offset by the Bloch periodic boundary conditions 𝑘𝑖 using time-
dependent perturbation theory based on the overlap between the cavity mode and
the radiative continuum. Critically, we discovered that these coupling coefficients
coarsely sample and accurately approximate the cavity’s far-field emission (Fig. 2-
3b). Scanning 𝑘⃗𝑖 over the irreducible Brillouin zone of the rectangular cavity array
improves the sampling resolution (Fig. 2-3c), and an overall 𝑄 can be estimated by
averaging the total loss rates Γ(𝑖) =

∑︀
𝑚𝑛 𝑐

(𝑖)
𝑚𝑛 in each simulation.

The gradient of any arbitrary function of these GME simulation outputs can then
be efficiently computed with respect to all input parameters using reverse-mode auto-
matic differentiation. Whereas numerical gradient computation time scales with the
number of input parameters (hundreds), the cost of this backpropagation generally
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scales with the number of simulation outputs — a single scalar figure-of-merit (𝑓) in
our case. Whereas 𝑓 = 𝑄 has been the target metric for most GME-based cavity opti-
mization [62, 88] to date, here we simultaneously optimize the cavity’s approximated
far-field emission with an objective function

𝑓 =
1

𝑁

𝑁∑︁
𝑖=1

𝑐
(𝑖)
00

Γ(𝑖)
arctan

(︂
𝑄

𝑄0

)︂
|𝐸0|2 (2.1)

targeting three main goals: 1) increase 𝑄 to a design value 𝑄0; 2) force the asso-
ciated radiative loss into the zeroth diffraction order of the array for efficient verti-
cal coupling; and 3) minimize the Purcell mode volume 𝑉 by maximizing |𝐸0|, the
electric-field magnitude at the center of the unit cell.

2.3 Simulation Results

We implement the inverse design strategy in Fig. 2-11b using the open-source guided
mode expansion (GME) package Legume [98]. During each optimization step, we
aggregate the losses of the fundamental slab mode over four Bloch boundary con-
ditions 𝑘⃗𝑖 at all wave vectors 𝑔⃗𝑚𝑛 = 𝑘⃗𝑖 + 𝐺⃗𝑚𝑛 = 𝑘⃗𝑖 + 2𝜋( 𝑚

Λ𝑥
, 𝑛
Λ𝑦
) satisfying |⃗𝑔𝑚𝑛| <

𝑔max = 2.5 × 2𝜋/𝑎 given the reciprocal lattice vectors 𝐺⃗𝑚𝑛. The objective function
Eqn. 2.1 converges within tens of iterations, and the resulting design is then verified
with 𝑔max = 3 × 2𝜋/𝑎 using a 3 × 3 𝑘⃗𝑖 grid in the Brillouin zone of the rectangular
lattice of unit cells.

The resulting designs support tunable-𝑄 resonances with near-diffraction-limited
(Ω𝑝 ≈ Ω𝑠) vertical beaming comparable to the ideal planar apertures of Fig. 1-2b.
Two exemplary 𝐿3 cavity designs with different target quality factors 𝑄0 are shown in
Fig. 2-4a,d. The GME-computed far-field profiles (Fig. 2-4b,e) are provided for com-
parison to those computed using near-to-far-field transformations of FDTD-simulated
fields [106, 107] (Fig. 2-4c,f). The example design in Fig. 2-4d, for instance, main-
tains 𝑄 ≈ 8 × 105 (as with the grating-coupled designs in Fig. 2-1) but now with
a ∼5× efficiency improvement to 𝜂0 ≈ 0.8 based on the simulated far-field profile
in Fig. 2-4f. These results confirm that the perturbatively-computed GME coupling
coefficients can be used to accurately estimate a cavity’s resonant characteristics and
far-field scattering profile.

Combining this accuracy with inverse-design approach breaks the existing trade-
off between 𝑄 and directionality. The objective function (Eqn. 2.1) maximizes the
directivity

𝐷 = 4𝜋
𝑆(0)∫︀

Ω
𝑆(𝑘⃗) dΩ

(2.2)

of the emission profile 𝑆(𝑘⃗) within the light cone Ω for any desired 𝑄0. The resulting
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Figure 2-4: Directional emission from low-𝑄0 (a-c) and high-𝑄0 (d-f) inverse-designed
microcavities. Hole shifts in each Λ𝑥 × Λ𝑦 unit cell (a, d) are magnified by 2× for
visualization. The resonant wavelengths 𝜆0, quality factors 𝑄, and far-field emission
spectra 𝑆(𝑘⃗) computed from GME (b, e) are in excellent agreement with FDTD
simulations (c, f). The far-field profiles are confined within the ideal beamwidth of an
ideal Λ𝑥×Λ𝑦 uniform aperture (white dashed ellipse) and therefore primarily overlap
with a single diffraction order (illustrated by white ×s), yielding near-unity zero-order
diffraction efficiency 𝜂0.

aperture efficiency

𝜂𝑎 =
𝐷0

max𝐷
=

𝜆2

𝐴

𝑆(0)∫︀
Ω
𝑆(𝑘⃗) dΩ

=
𝐴0

𝐴
(2.3)

compares 𝐷 to the maximum directivity 4𝜋𝐴/𝜆2 of an area 𝐴 = Λ𝑥Λ𝑦 aperture at
wavelength 𝜆, and can therefore be interpreted as the fill factor of light scattered from
an effective area 𝐴0. Fig. 2-5 compares 𝜂𝑎 for grating-coupled and inverse-designed
𝐿3 cavities. For most inverse designs, 𝜂𝑎 ≈ 1 regardless of 𝑄0. Since GME assumes
periodic boundary conditions (indicative of the true array design), scattering from
neighboring unit cells enables designs with 𝜂𝑎 > 1. However, this “super-directive”
performance is undesirable since the steerable field-of-view is narrowed to Ω𝑝 < Ω𝑠.
Even near the maximum simulated 𝑄 ≈ 4 × 106, inverse-design enables near-unity



2.3. SIMULATION RESULTS 31

Figure 2-5: FDTD-computed aperture efficiency 𝜂𝑎 of vertically coupled 𝐿3 cavities
based on a grating perturbation 𝛿𝑟/𝑟 ∈ [0, 0.05] or an inverse-design target quality
factor 𝑄0 ∈ [102, 106]. Inset arrows illustrate parameter trends.

aperture efficiencies — indicating a more than an order-of-magnitude directivity im-
provement over existing designs.

2.3.1 Optimal Gaussian Coupling

To this point we have only considered the far-field intensity profile 𝑆(𝑘⃗), i.e. the
power envelope that modulates the array factor in beamsteering applications. In
other applications such as fiber coupling, the full complex amplitude emission profile
must be considered. Here, we optimize the waist diameter of an input Gaussian beam
to maximize its coupling to a localized PhC cavity mode. The far-field spatial overlap
integral between the two modes [108]

𝑂(𝑤0) = 𝑅2

∫︁∫︁
Ω

𝐸⃗𝑐(𝜃, 𝜑)× 𝐻⃗*
𝑔 (𝑤0, 𝜃, 𝜑) sin 𝜃𝑑𝜃𝑑𝜑 (2.4)

over the hemisphere Ω at distance 𝑅 yields the power coupling |𝑂(𝑤0)|2 between the
cavity mode 𝑐 and fundamental Gaussian beam 𝑔 as a function of the Gaussian waist
radius 𝑤0. We compute the cavity electric field profile 𝐸⃗𝑐(𝜃, 𝜑) by applying a near-
to-far field transformation to the FDTD-simulated cavity mode in a plane just above
and parallel to the PhC slab 4. The resulting far-field profile is finely discretized —
relative to the diffraction-limited beamwidth 𝜆/Λ ≈ 14∘ for typical cavity unit cell

4Flexcompute, Inc. Tidy3D. https://simulation.cloud

https://simulation.cloud
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Figure 2-6: Comparison of coupling between a fundamental Gaussian beam with waist
𝑤0 and two different cavity designs with maximum unit cell dimension Λ.

dimensions Λ and resonant wavelength 𝜆 — on a 1∘ grid in zenith and azimuth (𝜃
and 𝜑, respectively). For the co-polarized Gaussian mode, we instead convert the
magnetic field [109]

𝐻⃗(𝑥, 𝑦, 𝑧) =

√︂
𝜋

𝑍0

2𝑤0

𝑧 + 𝑗𝜋𝑤2
0

exp

{︂−𝑗2𝜋(𝑥2 + 𝑦2)

2(𝑧 + 𝑗𝜋𝑤2
0)

}︂[︂
𝑥̂+

(︂−𝑥𝑧 − 𝑗𝑥𝜋𝑤2
0

𝑧2 + (𝜋𝑤2
0)

2

)︂
𝑧

]︂
𝑒−𝑗2𝜋𝑧

(2.5)
derived from paraxial diffraction theory (for the free space impedance 𝑍0) to spherical
coordinates at a far-field distance 𝑅. Both modes are normalized to carry unit power∫︀
Ω
Re{𝐸⃗ × 𝐻⃗*}/2.
Fig. 2-6 compares the resulting power coupling as a function of normalized waist

2𝑤0/Λ for grating-coupled and inverse-designed cavity designs with maximum dimen-
sion Λ. In both cases, a backreflector is assumed for unidirectional emission into Ω.
Besides the increase in maximum coupling to 94% (!), the optimized waist diameter
2𝑤0 ≈ Λ indicates that the inverse-designed cavity’s effective near-field scattering
profile fully fills the design unit cell.

The power coupling |𝑂|2max to a single desired free-space mode also allows us to
compute that mode’s amplitude reflection spectrum [109]

𝑟(∆̃) =
2|𝑂|2max/𝑝− 𝑗∆̃

1 + 𝑗∆̃
(2.6)
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using temporal coupled mode theory assuming a normalized detuning ∆̃ = ∆/Γ from
the cavity resonance and 𝑝-directional emission (i.e. 𝑝 = 1 for unidirectional emission
with a backreflector or 𝑝 = 2 for symmetric emission). Fig. 2-10 plots these optimized
spectra for comparison to our prototype devices described in Sec. 2.5. Whereas the
grating-coupled cavity is undercoupled with an amplitude-dominant reflection spec-
trum, the inverse-designed cavity is phase-dominant as desired for high efficiency
beamforming. These results provide yet another metric for comparing our design
technique to existing approaches.

2.4 Why does it work?

The problem with inverse design [110] and machine learning-based design in general
[111] is that the results do not necessarily yield any physical insight. This could
certainly be argued for our design strategy, where we input a simple PhC structure
into a “black-box" optimizer and a directive, high-𝑄 cavity design comes out the
other side. These designs offer excellent performance, but leave an open question:
why does this approach work so well?5 While a rigorous analytic description remains
an open goal for future investigation, we can glean some intuition from the real- and
Fourier-space permittivity profiles in Fig. 2-7.

To first order in the permittivity perturbation profile ∆𝜖(𝑟⃗), each illustrated design
can be represented by an effective current source 𝐽 = 𝑗𝜔∆𝜖𝐸⃗. The Fourier transform
of 𝐽 — the far-field scattering profile — is therefore proportional to the Fourier-
domain convolution of ∆𝜖 and 𝐸⃗. This result is inherently approximate due to the
ill-defined product ∆𝜖𝐸⃗ at high-index boundaries [112], but suffices for our qualitative
analysis here.

The perturbative grating coupler in the top panel of Fig. 2-7, for example, is
partially composed of Fourier components at 𝑘𝑥 = ±𝜋/2𝑎. Convolving these spatial
frequencies with a band-edge mode (i.e. a mode at 𝑘𝑥 ≈ ±𝜋/𝑎) in a one-dimensional
photonic crystal (a distributed Bragg mirror stack, for example) shifts the induced
current and associated far-field scattering to 𝑘𝑥 = 0, recreating the previously intro-
duced bandfolding argument. Fig. 2-1 demonstrates the applicability of this tech-
nique to our defect cavities despite a number of complications: 1) the deviation from
a perfect sinusoidal index perturbation broadens the 𝑘𝑥 = 𝜋/𝑎 peak and therefore
the induced current distribution; 2) other harmonics (𝑘𝑦 ≈ ±

√
3/4𝑎, for example)

are present in the Fourier spectrum; and 3) the the energy spectrum of the slab
defect-type cavities is actually localized around the Brillouin zone boundary of the a
two-dimensional hexagonal lattice.

𝑄 optimization accounts for the last of these by arranging holes to minimize modal
overlap with the light cone. As illustrated by the center panel of Fig. 2-1, the resulting
index change profiles typically consist of a complex Fourier spectrum. Our inverse

5I thank Momchil Minkov and Professor Steven Johnson for insightful discussions on this question.
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Figure 2-7: Real- (left) and normalized Fourier-space (right) permittivity difference
(∆𝜖) profiles between an unoptimized 𝐿3 lattice (in an slab with permittivity 𝜖) and
a grating coupled (top), 𝑄-optimized (center, using Design B from Fig. 2-1 [89]),
and inverse-designed (bottom, using the high-𝑄0 design from Fig. 2-4) 𝐿3 cavities.
Since ∆𝜖 is real and symmetric, we only show the real portion of its discrete Fourier
transform.
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design technique, by comparison, produces localized peaks in the Fourier spectrum
located at the corners of the Brillouin zone (specifically the 𝐾 point of the irreducible
Brillouin zone). This configuration extends the 1D bandfolding argument to 2D. Once
𝑄-optimized, coupling to the closest edge of the slab’s incomplete bandgap dominates
leakage. For our cavities with normalized resonant frequency 𝑓 = 𝑎/𝜆 ≈ 0.26 nearest
to the dielectric band below the gap (c.f. Fig. 2-2), this leakage occurs at the 𝐾 point.
The co-located Fourier components of the inverse-designed permittivity profile shifts
this leakage to the Γ point at 𝑘 = 0 for efficient vertical scattering.

2.5 Experimental Verification

To experimentally validate the simulated results discussed in the previous sections, we
prototyped 𝑄-optimized, grating coupled, and inverse designed cavities at a commer-
cial electron beam lithography (EBL) foundry 6 before transitioning to the wafer-scale
foundry process described in Chapter 3.

2.5.1 Measurement Setup

The wide-field, cross-polarized microscope in Fig. 2-8 allows us to simultaneously
measure the near- and far-field reflection spectra of every cavity within a camera’s
field-of-view. A visible illumination path (not illustrated) is joined with collimated
infrared light from a tunable laser with a dichroic mirror and focused onto the back-
focal-plane (BFP) of an objective lens by lens L1. The angle-of-incidence and spot
size of the infrared beam on the sample are therefore controlled by translating L1
and varying the collimated beam diameter, respectively. In our typical wide-field
configuration, a 7.2 mm beam diameter focused to the center of a 40× objective’s
BFP yields a ∼150 µm waist-diameter, vertically-incident field that quasi-uniformly
illuminates 10× 10 PhC cavity arrays.

By orienting the input polarization at a 45∘ angle relative to the dominant cavity
polarization axis (with a half-wave plate or by physically rotating the sample), light
coupled into and reflected by the PhC cavity is polarization rotated and can be
isolated from direct, specular reflections with a polarizing beamsplitter. A kHz-
rate free-running, dual-band (visible and infrared) camera images this cross-polarized
reflection signal through the tube lens L3. For each frame collected during a laser
sweep, the wavelength is interpolated from the recorded camera and laser output
triggers and each cavity’s reflection is integrated over a fraction of pixels within its
imaged unit cell boundary. We use the resulting high-contrast reflection spectra
(across all devices within the field-of-view) to characterize device performance and
monitor the cavity trimming process.

6Applied Nanotools, Inc. https://www.appliednt.com/

https://www.appliednt.com/
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Figure 2-8: Photograph and simplified inset schematic of the cross-polarized mi-
croscopy setup used for near- and far-field characterization of photonic crystal cavity
arrays. TL: tunable infrared laser (Santec TSL-710), EOM: electro-optic amplitude
modulator; 𝜆/2: half-wave plate, PBS: polarizing beamsplitter; L1: 250 mm back-
focal-plane lens; DM: long-pass dichroic mirror; OL: objective lens (Nikon Plan Fluor
40×/0.60 NA or Nikon LU Plan 100×/0.95 NA), L2: 250 mm back-focal-plane lens;
SF: spatial filter; L3: 200 mm tube lens; v-SWIR: visible-short wave infrared camera
(Xenics Cheetah 640); DAQ: data acquisition unit (NI USB-6343); ∆𝑡: trigger delay
generator (SRS DG645).

The sample mount below the objective (OL) is temperature stabilized to within
10 mK with a Peltier plate and feedback controller. For trimming experiments, the
sample is placed in a high-pressure oxygen environment within a custom chamber
offering in-situ optical access through a glass window.

2.5.2 Far-Field Scattering Profile Measurement Technique

Inserting a lens (L2) in the collection path one focal length from the objective BFP
allows us to measure the far-field profile 𝑆(𝑘⃗) of individual or multiple cavities using
the same setup. We position an iris at the intermediate image plane — located with
a removable lens (not shown) placed before L3 — to spatially filter the emission from
desired devices. We also calibrate the BFP scale using a reflective reference grating
with known pitch. Due to the cross-polarized configuration, only a single polarization
𝑆(𝑘⃗)

⃒⃒
𝜃

is imaged for any cavity-input polarization angle difference 𝜃. The complete
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Figure 2-9: Cross-polarized back-focal-plane (BFP) imaging techniques for a grating-
coupled 𝐿3 cavity. Two orthogonally polarized far-field profiles are imaged by orient-
ing the input polarization 𝐸in at a +45∘ (a) or −45∘ (b) angle from the dominant
cavity polarization axis (dashed line in inset). The complete cavity emission profile
𝑆(𝑘⃗) can be reconstructed by summing both images (c) or approximated from a sin-
gle polarized image (d), yielding near-identical images with quantitative agreement
between the extracted 𝜂0.

cavity emission profile
𝑆(𝑘⃗) = 𝑆(𝑘⃗)

⃒⃒
𝜃
+ 𝑆(𝑘⃗)

⃒⃒
𝜃±𝜋/2

(2.7)

an therefore be reconstructed by sequentially imaging both polarizations as in Figs. 2-
9a-c for 𝜃 = 45∘. For maximum accuracy, we used this technique for the experimental
results in Fig. 2-10.

Alternatively, the specific choice 𝜃 = 45∘ allows 𝑆(𝑘⃗) to be reconstructed from a
single measurement. Due to mirror symmetry about the cavity’s principal polarization
axis 𝑦, Fig. 2-9a-b shows that 𝜎̂𝑦{𝑆(𝑘⃗)

⃒⃒
±45∘

} = 𝑆(𝑘⃗)
⃒⃒
∓45∘

for the reflection operator
𝜎̂. This alternative reconstruction

𝑆(𝑘⃗) = [1 + 𝜎̂𝑦]𝑆(𝑘⃗)
⃒⃒
±45∘

(2.8)

is demonstrated experimentally in Fig. 2-10d, yielding excellent agreement with Fig. 2-
10c. This technique simplifies high-throughput far-field measurements across cavity
arrays (Figs. 3-16 and 3-15, for example).

2.5.3 Single Cavity Characterization

Fig. 2-10a-c and Fig. 2-10d-f show the results for the grating coupled and inverse-
designed cavities, respectively. The optimal grating coupled cavities offer 𝑄 ∼ 4×105

at 𝜆 ≈ 1553 nm with a near-field resonant scattering profile well-centered on the cav-
ity defect (Fig. 2-10c, inset). The mode mismatch between this wavelength-scale PhC
mode and the wide-field input beam (Gaussian beam with ∼150 µm waist diameter
for array-level excitation) is further evidenced by the small normalized reflection am-
plitude (relative to that of the inverse designed cavities) on resonance as well as the
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broad far-field profile (Fig. 2-10b) with 𝜂0 = 0.24 in qualitative agreement with the
corresponding simulation.

Figure 2-10: Experimental comparison of existing (a-c) and inverse-designed (d-f)
PhC cavities with high-𝑄 and near-diffraction-limited vertical beaming. Superim-
posing a grating perturbation (a, outlined in green) on the 𝑄-optimized design of
Fig. 2-11a improves vertical coupling at the expense of reduced 𝑄, yielding the sim-
ulated far-field intensity profile in (b, left) with 𝜂0 = 0.18. Our measured far-field
profile (b, right), collected from a grating-coupled cavity using a cross-polarized imag-
ing setup (Fig. 2-8), confirms the broad emission relative to the array field-of-view
(dashed white line) Ω𝑠. This mismatch explains the low effective “fill factor” and poor
coupling observed in our resonant imaging (c, inset) and near-field reflection spectra
(c, blue), respectively. An input Gaussian beam (with waist matched to the unit
cell dimensions) is undercoupled and exhibits an amplitude-dominant power reflec-
tivity 𝑅 = |𝑟|2 modulation (c, green solid curve) with minimal phase variation ∆𝜑
(c, green dashed curve). Our inverse designed cavities (d) overcome these issues by
optimizing every hole in the unit cell to vertically scatter the loss associated with any
target quality factor. This technique produces “ideal” resonant SLM pixels with: 1)
near-diffraction limited simulated and measured far-field profiles (e) with 𝜂0 ∼ 1; 2)
fully-filled near-field resonant scattering (f, inset); 3) a ∼5× experimental resonance
contrast and > 94% single-sided (i.e. assuming an ideal back-reflector described in
Sec. 3.3) coupling to an input Gaussian beam with optimized waist (Sec. 2.3.1) for
phase-dominant modulation (f).
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In comparison, inverse design non-pertrubatively modifies the cavity mode (Fig. 2-
10d) to produce the near-ideal measured far-field profile in Fig. 2-10e with Ω0 ≈ Ω
and 𝜂0 = 0.98 while simultaneously increasing 𝑄 to 5.7× 105. We attribute the slight
increase in zero-order diffraction efficiency over the simulated value 𝜂0 = 0.86 to the
substrate-dependent effects described in Sec. 3.3. The fully-filled near-field resonant
scattering image in Fig. 2-10f explains the close resemblance between this measured
pattern and that of an ideal uniform aperture [90]. In addition, the narrowed emission
profile 𝑆(𝑘⃗) yields a ∼5× increase in cross-polarized reflection and the phase-dominant
simulated direct reflection spectrum in Fig. 2-10f. The latter is achieved by near-
perfect (94%) one-sided coupling to a Gaussian beam with optimized waist diameter
derived in Sec. 2.3.1.

Combined, these results break the traditional coupling–𝑄 tradeoff (offering an
order-of-magnitude improvement in the figure-of-merit 𝑄·𝜂0 for the prototype devices
in Fig. 2-10) to enable high-performance beamforming at the space-bandwidth limit.

2.6 Beamforming Comparison

Figure 2-11: Optimized holography with inverse-designed, vertically-coupled micro-
cavity arrays. Simulated trial holograms from a 64×64 array of 𝑄-optimized (Design
A in Fig. 2-1) cavities with optimized detunings have a near-zero overall diffraction
efficiency 𝜂. By comparison, inverse-designed devices (right) with high-𝑄, efficient
coupling, and directional emission enable high-performance (𝜂 ∼ 1) resonant holog-
raphy (d).

But how do these single-device performance metrics translate to beamforming?
Simply put, the narrowed emission into a solid angle Ω𝑝 ≈ Ω𝑠 (corresponding to near-
unity fill-factor of the radiating aperture) enables two features: 1) phase-dominant
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modulation via near-unity coupling to a free-space Gaussian beam (Fig. 2-6), and
2) near-unity zero-order diffraction efficiency by inhibiting emission into undesirable
diffraction orders at high numerical aperture. Combined, these features enable high
efficiency far-field steering as illustrated by Fig. 2-11.7

The left panel shows the far-field pattern formed by detuning each 𝑄-optimized
resonator in a 64 × 64 array to match a desired target image (the MIT logo). The
low 𝜂0 and non-ideal coupled amplitude-phase response of each pixel, a byproduct
of poor coupling to an input Gaussian beam, produce a distorted pattern with near-
zero overall diffraction efficiency 𝜂. An array of optimally detuned, inverse-designed
cavities, however, forms the clear far-field image in the right-hand panel with a several
order-of-magnitude improvement in overall diffraction efficiency (𝜂 = 0.83).

7I thank Cole Brabec for his work in developing algorithms to optimize diffraction efficiency in
the presence of the coupled amplitude-phase response of microcavities in various coupling regimes
(under-coupled, over-coupled, and critically-coupled). His work will be published externally, so I
will defer detailed discussion of these algorithms to those reports.



3
Foundry-Fabricated Photonic Crystals

Abstract

Through a closed-loop process of theory, semiconductor foundry fabrication, and auto-
mated testing of hundreds of thousands of devices, we developed scalable manufactur-
ing of photonic crystal systems. Our 300 mm, full-wafer foundry process is specifically
optimized for fabricating arrays ultra-high-finesse photonic crystal microcavities. The
resulting devices combine our cavity’s record directivity with a normalized quality-
to-mode-volume ratio 𝑄/𝑉 ≈ 4×106 that is among the highest demonstrated for any
optical cavity.

3.1 Motivation and Initial Attempts

Since nanometer-scale hole placement and sizing errors in typical silicon PhC cavities
translate to 𝒪(nm) resonant wavelength variations and 𝒪(106) disorder-limited 𝑄s,
electron-beam lithography (EBL) is well suited for prototyping the few-pixel devices
used in Chapter 2 to validate our inverse design strategy [113, 114]. For these same
reasons, record high-𝑄 and small-𝑉 cavities have (to date) required the state-of-the-
art resolution and accuracy characteristic of EBL [76, 78]. However, serial direct-write
techniques are impractical for manufacturing the large-scale cavity arrays desired for
our PhC-SLM. Field stitching issues and sample preparation aside, a single cm2,
megapixel-scale sample would require a full day of EBL write time alone. Modern
photolithography tools, by contrast, expose hundreds of 300 mm-diameter wafers per
hour and offer a direct avenue towards scalable fabrication. Recent studies have
therefore investigated PhC fabrication via deep ultraviolet (DUV) photolithography,

41
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Figure 3-1: Optical photograph and inset helium ion microscope (HIM) micrograph of
the initial PhC fabrication attempts via a multi-project wafer in the AIM Photonics
foundry. The dark blocks are areas of single (e.g. the inset 𝐿3 cavity showing scattered
silicon fill blocks following the oxide release process) and arrayed PhC cavities.

often focusing on long-correlation-length variability between few devices arranged
across the wafer [115, 116] or maximizing the 𝑄 of fabrication-tolerant, large volume
PhC heterostructure cavities [117, 118]. Table 3.1 summarizes the performance of
these previous fabrication attempts.

Here, we extend these initial investigations by developing a full-wafer silicon pho-
tonics fabrication process specifically optimized for large-scale, wavelength-pitch ar-
rays of high-𝑄/𝑉 PhC microcavities in the AIM Photonics foundry [125]. This work
started through a collaboration with Dr. Michael Fanto (Air Force Research Labo-
ratory’s Informatics Directorate) and Professor Stefan Preble (Rochester Institute of
Technology), who were developing an alternative low-loss process at AIM for quan-
tum photonics applications when I started graduate school in 2017. Mike was gracious
enough to let us prototype our PhC designs on the 2018 “Dr. Manhattan” run. Some
photographs of this initial run are shown in Fig. 3-1.

We unfortunately found that the default 𝐴𝐼𝑀 process yielded oblique, incomplete
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Table 3.1: Summary of foundry-fabricated silicon photonic crystal cavities. 𝑄: qual-
ity factor; 𝑉 : normalized Purcell mode volume; 𝜆: resonant wavelength; ℎ: hole
parameters (size, position, etc.); 𝜎: standard deviation.
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Figure 3-2: Focused ion beam (FIB, left) and cleaved (right) cross sections of PhC
lattices fabricated in the 𝐴𝐼𝑀 and 𝐴𝑁𝑇 foundries, respectively. For both processes,
the silicon etch was incomplete for ∼200 nm target hole diameters.

etches for the target ∼200 nm hole diameters (Fig. 3-2a)1 and resorted to the Applied
Nanotools (ANT) electron-beam (e-beam) foundry for further prototyping.2 We con-
verted the ANT process to a positive-tone resist to reduce write time and improve
etch quality, yielding the improved (but still incomplete) etches shown in Fig. 3-2.
A few subsequent process modifications eventually yielded the high-quality devices
tested in Chap. 2.

These results motivated further optimization of the 𝐴𝐼𝑀 process to fabricate
high-𝑄/𝑉 microcavity arrays at scale. Analyzing the fabrication biases and trends
(Fig. 3-3, for example) led us to identify a number of process improvements for future
runs. Based on these results, we ultimately decided to develop a dedicated, full-wafer
process optimized for the pattern densities and critical dimensions characteristic of
telecom-band (i.e. 𝜆 ∼ 1550 nm) photonic crystal circuits.

3.2 The “MONEV” Full-Wafer Process

The resulting “MONEV” process was optimized over numerous full-wafer runs between
2019 and 2021, and ultimately yielded the 300 mm PhC wafers illustrated in Fig. 3-4
comprising 𝒪(109) high-finesse cavities spread across 64 identical reticles. To briefly
summarize the scale of this endeavor, the final designs required:

• ∼85, 000 core-hours of design optimization on Massachusetts’s Green High Per-
1I thank Josh Perozek (MIT) for his assistance with focused ion beam cross-sections and for

numerous insightful fabrication discussions.
2I owe a great deal of thanks to Cameron Hovarth (ANT) and Jocelyn Westood-Bachman for

optimizing the ANT process for PhC fabrication.
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Figure 3-3: Hole biases in the default 𝐴𝐼𝑀 process. HIM metrology of fabricated
PhC cavities (inset micrograph) and lattices allowed us to compare the as-drawn and
fabricated hole dimensions a. By observing which hole sizes were undercut by a wet
release etch, we found that hole diameters larger than ∼220 nm for a lattice constant
𝑎 ∼ 0.4 µm yielded complete etches through the silicon layer.

formance Computing Center

• 30 GB of compiled .gds design files that were reduced to 400 MB compressed
.oas files for dissemination between manufacturing facilities

• 𝒪(108) holes per die and 𝒪(1011) holes per wafer, corresponding to 𝒪(104) hours
of equivalent e-beam write time3

• Photolithographically patterned feature sizes sizes down to ∼100 nm

Based on the initial fabrication described in Sec. 3.1, we determined that a cen-
tral goal was to create a complete etch through the silicon membrane with vertical
side-walls. The transmission electron microscope (TEM) cross-section in Fig. 3-5a

3Writing the reticle mask even became infeasible at this scale, as the write preparation and frac-
turing steps crashed the mask partner’s (Toppan) systems. A laser mask writer (Applied Materials
4700DP) was thus required for mask fabrication, yielding a scalable, fully lithographic PhC process.
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Figure 3-4: Full-wafer photonic crystal fabrication in an optimized 300 mm foundry
process. A wafer (inset) contains 64 complete reticles (dashed white box) each com-
prising millions of inverse-designed PhC cavities.

shows that the default fabrication process (optimized for isolated waveguides) yielded
an oblique (∼100∘), incomplete etch through the silicon device layer for the target
PhC lattice parameters. Both nonidealities erase the membrane’s vertical reflection
symmetry, leading to coupling between even- and odd- symmetry (about the slab
midplane) modes that ultimately limits the achievable 𝑄 of bandgap-confined res-
onances [126]. Extending the etch time with a reverse (positive) tone lithography
processes improved the etch angle but produced a “cupped" etch termination (Fig. 3-
5b). By contrast, our revised fabrication process achieves near-vertical 91∘ sidewall
angles with a vertical etch termination (Fig. 3-5c)4, yielding high-quality PhC lat-
tices for a range of hole diameters between the ∼100 nm critical-dimension (CD)
and 2𝑟 ≈ 𝑎 (Fig. 3-6). Using TEM cross-sectioning and automated optical metrol-

4Note the slight but insignificant over-etch of the underlying oxide, which is ultimately removed
with a subsequent wet etch as described in Sec. 3.3).
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Figure 3-5: Initial (a), intermediate (b), and final (c) false-color (blue: metal fill; red:
silicon; yellow: silicon dioxide; green: etch mask) transmission electron microscope
cross-sections show how process optimization enables a near-vertical (90∘), complete
etch through the 220 nm thin-film silicon layer of a silicon-on-insulator die, yielding
high-quality PhC lattices.

ogy as feedback over multiple 300 mm wafer runs in the AIM Photonics foundry’s
193 nm DUV water-immersion lithography line, this new process relies on a combina-
tion of dose-optimized reverse (positive) tone lithography, high-accuracy laser written
masks5, and optimized etch termination. Hole statistics were collected via scanning
electron microscopy-based metrology at each critical processing step to determine
their influence on the final pattern accuracy.

3.3 Post-Processing

Following fabrication and dicing, we post-processed individual die with a backside
silicon nitride anti-reflection coating and, as required, suspend the PhC membrane
with a timed wet etch. Both processes are optimized to minimize reflections from the
silicon substrate of the silicon-on-insultor (SOI) die.

3.3.1 SOI Woes: Stress and Reflection

Isolated slab PhC cavities feature symmetric, bi-directional emission due to vertical
reflection symmetry about the slab midplane. When placed above a reflective sub-
strate, however, interference between the (reflected) downwards and upwards emission
paths alters the cavity’s radiation pattern 𝑆(𝑘⃗) and 𝑄. Summing the direct emission
path with the multiple membrane-substrate reflections yields an approximate vertical

5Laser writing a minimum-tolerance (0.6 µm minimum specable feature size, 0.3 µm minimum
clear critical dimension (CD), 0.2 µm minimum dark CD, 25 nm 3𝜎 CD uniformity) binary chrome-
on-glass mask (Toppan) minimizes fabrication overhead while improving hole placement accuracy.
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Figure 3-6: Top-down (a) and angled (b) helium-ion microscopy photos of released
PhC lattices fabricated with the optimized AIM process. The vertical etch (Fig. 3-5c)
enables narrow (10s of nm) silicon veins for hole radii 𝑟 ≈ 𝑎/2 (b).

enhancement factor [127]

𝑆 =

⃒⃒⃒⃒
1 +

𝑡2𝑒𝑖𝑘𝑧𝑑

(1− 𝑟2𝑒2𝑖𝑘𝑧𝑑)(𝑟 − 𝑒−2𝑖𝑘𝑧𝑑)− 𝑟𝑡2𝑒2𝑖𝑘𝑧𝑑

⃒⃒⃒⃒2
(3.1)

for the Fresnel amplitude reflection and transmission coefficients 𝑟 and 𝑡, respectively,
vertical wavenumber 𝑘𝑧, and the membrane-substrate gap spacing 𝑑. The results,
analogous to the modified spontaneous emission from a quantum emitter placed above
a mirror [128], are plotted in Fig. 3-7.

Fig. 3-7 also plots the FDTD-simulated quality factor trends of an inverse-designed
𝐿3 cavity as a function of 𝑑 assuming a silicon substrate (with refractive index 𝑛 =
3.48). Since the optical thickness of the PhC slab is approximately 𝜆/2, constructive
interference at 𝑑 ≈ 𝑚𝜆/2 (𝑚 ∈ 1, 2, ...) maximizes vertical emission and minimizes
𝑄. Destructive interference at 𝑑 ≈ (2𝑚 − 1)𝜆/4 has the opposite effects, leading
to 𝑄 and vertical coupling trends that closely track the expected analytic result of
Eqn. 3.1. The corresponding variation in 𝜂0 explains the minor discrepancy between
the simulated and measured 𝑆⃗(𝑘) in Sec. 2.5 (Fig. 2-10).

We first noticed these effects when releasing large-scale (∼mm×mm) cavity arrays
(Fig. 3-8, center). Compressive stress in the SOI die buckles suspended cavity arrays
(stress in the thermal oxide layer is transferred to the suspended PhC membrane after
a sacrificial oxide release etch [129]), yielding variations in 𝑑 — and therefore cavity
reflectivity — across the membrane. The reflectivity variations (left-hand grayscale
image in Fig. 3-8, for example) are qualitatively correlated with the expected 𝑄
variation (i.e. low-reflectivity dark regions host higher-𝑄 cavities and vice versa),
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Figure 3-7: Simulated quality factor (𝑄) and analytic vertical enhancement factor (𝑆)
trends for an 𝐿3 PhC cavity (resonant wavelength 𝜆0) placed a distance 𝑑 above a
silicon back-reflector. Insets show the far-field emission pattern 𝑆(𝑘⃗) at select points.

limiting the overall uniformity of the fabricated arrays.
We explored a number of methods to resolve this issue. The first was to deposit a

thin (∼10 nm) stress-compensating layer of silicon nitride directly onto the buckled
membranes [130]. This approach was successful as illustrated by the flattened arrays
in Fig. 3-8, but degraded the cavity 𝑄 and was unable to withstand the trimming
process described in Chapter 6 (thermal annealing relaxed the high tensile stress in
the silicon nitride layer). We also fabricated previously proposed stress-engineered
support structures (Fig. 3-9) [131]; however, these devices often collapsed during the
release process leading to stiction failure.

As a final alternative, we flattened the suspended arrays by mechanically bowing
the die with a backside set pin in a custom sample mount (Fig. 3-10). This approach
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Figure 3-8: Millimeter-scale suspended PhC membranes (left) buckle when released
due to compressive stress in the thermal oxide of SOI die but can be subsequently
flattened (right) by depositing a 10 nm layer of high-tensile-stress silicon nitride. As a
result, variations in the peak resonant reflectivity (grayscale images) are suppressed.

Figure 3-9: Suspended (left) and collapsed (right) PhC cavity arrays with stress-
engineered suspension [131].
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Figure 3-10: Sample mount with set pin to flatten stress-buckled suspended mem-
branes.

flattened the membranes as desired; however, the resulting (uniform) gap spacing
𝑑 = 2 µm minimized vertical coupling at the design wavelength 𝜆0 = 1.55 µm.
We therefore added a back-side silicon nitride anti-reflection coating (ARC) on the
substrate and timed the release etch to form a front-side ARC with the remaining
oxide (Fig. 3-11). The combination of these optimized post-processing steps enabled
uniform, high-reflectivity cavities arrayed across mm-scale suspended membranes.

3.4 High-𝑄/𝑉 at Wafer-Scale

The resulting die contain single and arrayed PhC cavities with swept dimensions
to offset systematic fabrication biases. We chose 𝐿𝑚-type cavity designs — formed
by removing 𝑚 holes from the PhC lattice as demonstrated by the 𝐿3 unit cells in
Fig. 2-10 — to host tunable-volume (via variable 𝑚), high-𝑄 resonant modes with
even reflection symmetry (about the unit cell axes) as required for vertical emission
[107]. As evidenced by Fig. 3-12, the highest-performance measured devices feature
𝑄 > 106 with normalized volumes 𝑉 < 0.5. With a joint spectral- and spatial-
confinement (quantified by the figure-of-merit 𝑄/𝑉 ) ≈ 4 × 106, these devices are
among the highest-finesse optical cavities ever fabricated in a foundry process.

Our optimized foundry processing extends this exceptional single-device perfor-
mance (rivaling record EBL-fabricated devices) to large-scale cavity arrays. Com-
pared to previous PhC experiments with few waveguide-coupled devices, we devel-
oped the fully-automated measurement system described in Sec. 2.5.1 to locate and
characterize hundreds of cavities per second via parallel camera readout (Fig. 3-13a).
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Figure 3-11: Comparison of simulated (dashed) and measured (solid) silicon-on-
insulator (SOI) sample reflection before (blue) and after (green) anti-reflection opti-
mization for normal incidence at 𝜆 = 1550 nm. Measured values were calibrated with
a known reference mirror. The final layer stack of silicon (Si, 𝑛 = 3.48), oxide (SiO2,
𝑛 = 1.44), and deposited silicon nitride (SiN𝑥, 𝑛 = 1.90) is shown in the inset with
optimized layers highlighted in green.

Figure 3-12: Single-device reflection spectra of 𝐿4/3 (a) and 𝐿3 (b) cavity designs
with sub-wavelength mode volumes and 𝑄 > 106. Insets depict the hole arrangement
of inverse-designed PhC lattices with superimposed electric field profiles in the slab
midplane along the cavity’s dominant polarization axis (𝐸𝑦).
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Figure 3-13: Simultaneous measurement of high-𝑄/𝑉 cavity arrays via widefield cam-
era readout. A white-light image of any array of cavities within the camera’s field of
view (a) is processed to place integration bounds around each device (illustrated here
by red boxes co-located with the white circles denoting the center of each numbered
cavity). Processed camera frames synchronized to a tunable laser scan give reflection
spectra for each cavity, which reveal 𝐿𝑚-type cavity arrays with ⟨𝑄⟩ > 106 and sub-
nanometer wavelength standard deviation (b).

The resulting data, extracted from hundreds of thousands of devices measured across
the wafer, allow us to statistically analyze resonator performance and fabrication vari-
ability at the die, reticle, and wafer level. Fig. 3-13b, for example, shows resonant
wavelength and 𝑄 variations within 8×8 arrays of four different cavity designs. Using
camera readout of the reflected widefield excitation, each dataset is extracted from a
single wavelength scan of a tunable laser. Besides the expected positive correlation
between uniformity and mode volume [132], the data demonstrates — for the first
time, to our knowledge — the ability to fabricate sub-wavelength (𝑉 < 1) microcavity
arrays with ⟨𝑄⟩ > 106 and sub-nanometer standard deviation in resonant wavelength.

This excellent wavelength uniformity can be partially attributed to the improved
fabrication tolerance of our cavity designs, which we briefly studied using the Monte
Carlo method. Assuming hole placement and size errors (with standard deviation 𝜎ℎ)
are the dominant fabrication variability leads to a proportional wavelength standard
deviation 𝜎𝑙𝑎𝑚𝑏𝑑𝑎 and a [114] and an inverse 𝑄 standard deviation 𝜎1/𝑄 ∝ 𝜎2

ℎ. The
constants of proportionality for any cavity of interest can thus be approximated using
Monte Carlo methods: for each design, variations with Gaussian distributed error
patterns (with fixed 𝜎ℎ) are randomly generated and simulated using GME. The
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Figure 3-14: GME-simulated resonant wavelength 𝜆0, quality factor 𝑄, and aperture
efficiency 𝜂𝐴 statistics for grating-coupled (top) and inverse-designed (bottom) 𝐿3
designs given a random, Gaussian distributed hole placement and size error with
standard deviation 𝜎ℎ = 1 nm.

aggregated statistics are then fitted to extract determine each design’s fabrication
tolerance. Fig. 3-14, for example, shows that the wavelength uniformity of the inverse-
designed 𝐿3 cavity in Fig. 2-4b is reduced by 20% compared to the grating-coupled,
𝑄 optimized design in Fig. 2-1a. While these results mirror those of similar neural
network-designed heterostructure cavities [133], we note that the improvement is not
necessarily inherent: the fabrication tolerance varies by design.

Critically for beamforming, this state-of-the-art uniformity also extends to the far-
field: Figs. 3-15 and Fig. 3-16 demonstrate the far-field uniformity characteristic of
grating coupled and inverse-designed 𝐿3 cavity arrays, respectively. Averaged across
the 8× 8 arrays, the former offers a ∼3× improvement in zero-order diffraction and
aperture efficiencies (⟨𝜂0⟩ = 0.86, ⟨𝜂𝑎⟩ = 0.99).
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Figure 3-15: Imaged far-field profiles 𝑆(𝑘⃗) (over a 0.9 numerical aperture) for each
device in an 8×8 array of grating-coupled 𝐿3 PhC cavities, yielding 𝜂0 = 0.31±0.03.
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Figure 3-16: Far-field profiles (as in Fig. 3-15) for inverse-designed 𝐿3 arrays. Each
cavity in an 8×8 array emits vertically with 𝜂0 = 0.86±0.07, in quantitative agreement
with the simulated result in Fig. 2-10.



Today’s noise is tomorrow’s calibration is the future’s
Nobel prize.

Professor Wolfgang Ketterle, MIT 8.422 (2007).

4
Microcavity Thermal Noise Limits

Abstract

We present a joint theoretical and experimental analysis of thermo-refractive noise
in high quality factor (𝑄), small mode volume (𝑉 ) optical microcavities. Analogous
to well-studied stability limits imposed by Brownian motion in macroscopic Fabry-
Perot resonators, we show that microcavity thermo-refractive noise gives rise to a
mode volume-dependent maximum effective quality factor. State-of-the-art fabri-
cated microcavities are found to be within one order of magnitude of this bound.
By measuring the first thermodynamically-limited frequency noise spectra of wave-
length scale high-𝑄/𝑉 silicon photonic crystal cavities, we confirm the assumptions
of our theory, demonstrate a broadband sub-µK/

√
Hz temperature sensitivity, and

unveil a new technique for discerning sub-wavelength changes in microcavity mode
volumes. To illustrate the immediate implications of these results, we show that
thermo-refractive noise limits the optimal performance of recently-proposed room
temperature, all-optical qubits using cavity-enhanced bulk material nonlinearities.1

1This chapter was adapted from [87]. I thank Gregory Moille (NIST) and Kartik Srinivasan
(NIST) for their associated “Viewpoint” [134] in the American Physical Society’s Physics newsletter,
which provides another interesting perspective summary of the work. I also thank Mark Dykman
(MSU), Guanhao Huang (EPFL), and Tobias Kippenberg (EPFL) for their useful feedback and
discussions.
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4.1 How Good is Good?
If you tell any professional scientist or engineer that something is “good”, their answer
should always be the same: “relative to what?” This was the question that we faced
after fabricating and measuring the devices in Chapter 3. Sure, they were among
the highest-𝑄/𝑉 microcavities ever fabricated, but was that “good?” In other words,
how do today’s best optical cavities stack up against fundamental performance lim-
its? Amazed by the continual improvement of experimental microcavities, I began
investigating this question. These studies led a surprising result: energy and temper-
ature fluctuations in small volumes, a classic problem in statistical mechanics, can
significantly affect the performance of practical optical devices. This realization also
demonstrates a more general point — that pushing engineering problems towards
their fundamental limits (i.e. the goal of this thesis) can lead to surprising scien-
tific discoveries completely unrelated to the original engineering goals. I will dedicate
the next two chapters to explaining these discoveries — and their reciprocal impacts
on future technologies — before returning to the development of the PhC-SLM in
Chapter 6.

4.2 The Noise-Volume Tradeoff
Room temperature, high-quality factor (𝑄) optical cavities enable the investigation
of new physical phenomena by enhancing light-matter interaction [135], shaping elec-
tromagnetic modes [136], and modifying the vacuum photon density of states [137].
However, these advantages come with an often forgotten cost — interaction with a
thermally equilibrated confining medium inherently injects noise into the optical mode
in accordance with the fluctuation-dissipation theorem (FDT) [138]. Macroscopic res-
onators (Fig. 4-1a), such as those implemented in gravitational wave interferometers,
minimize this interaction by supporting a large mode volume 𝑉 ≫ 1 in vacuum,
where 𝑉 = 𝑉/(𝜆/𝑛)3 for the volume 𝑉 of a 𝜆-wavelength optical mode confined in
a refractive index 𝑛. The surprising realization that the sensitivity of these ∼km-
long cavities can still be limited by Brownian motion in few µm-thick mirror coatings
[139, 140] has spurred interest in low-noise mirror coatings [141], grating-based mir-
rors [142, 143], and the fundamental limits of macroscopic cavities in the presence of
thermal fluctuations [144–146].

Here, we consider the opposite case: optical microcavities (Fig. 4-1b) [85], whose
small mode volumes (𝑉 ∼ 1) have facilitated single molecule label-free sensing [147],
high-repetition rate frequency combs [148, 149] for frequency synthesis [150], spec-
troscopy [151], and astronomy [152], enhanced coupling for atom-photon interfaces
[153–155], and low-energy (down to single-photon level) nonlinear interactions [80].
These microcavity-enhanced nonlinearities even reveal new directions in physical sci-
ence [156]: experimental demonstrations of non-Hermitian phenomena [157], topo-
logical enhancement [158, 159], synchronization [160], and chaotic dynamics [161]
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Figure 4-1: Comparison of thermo-refractive noise (TRN) in macroscopic resonators
and microcavities. Mode-averaged temperature fluctuations 𝛿𝑇 in large cavities in-
duce refractive index noise 𝛿𝑛̄ (and thus pathlength changes 𝛿𝐿̄) due to the mirrors’
non-zero thermo-optic coefficient 𝛼TR = d𝑛/d𝑇 . The large mode volume 𝑉 reduces
𝛿𝑇 , yielding a narrowband resonant frequency noise spectrum 𝑆𝜔𝜔(𝜔) and an rms res-
onant frequency fluctuation 𝛿𝜔rms ≪ Γ, the cavity half-linewidth. This non-dominant
thermal noise inhomogeneously broadens the intracavity field spectrum 𝑆𝑎𝑎(𝜔). De-
creasing 𝑉 increases both the magnitude 𝛿𝜔rms and bandwidth Γ𝑇 of TRN, while
increasing the resonator quality factor 𝑄 = 𝜔0/2Γ causes both quantities to ex-
ceed Γ. TRN therefore becomes a dominant source of homogeneous broadening in
wavelength-scale high-𝑄/𝑉 microcavities, leading to thermal dephasing and reduced
resonant excitation efficiency of the cavity field 𝑎(𝑡).

are just a few recent examples. However, shrinking mode confinement towards the
near-diffraction-limited volumes offered by microcavities significantly amplifies funda-
mental temperature fluctuations ⟨𝛿𝑇 2⟩ ∝∼ 1/𝑉 [162]. These small volume temperature
fluctuations are a classic problem in statistical mechanics [163], and their exact na-
ture was heavily debated [164–166] until initial measurements were reported in the
1990s [167]. Temperature noise has since been studied in diverse contexts includ-
ing high-energy collisions [168], molecular dynamics [169], spin ensembles [170], and
state-of-the-art electron- [171] or graphene-based nanocalorimeters [172]. In optics,
the associated refractive index fluctuations, so called “thermo-refractive noise” (TRN),
have been studied extensively in fiber-based lasers and interferometers [173–176]. In
recent years, TRN has emerged as a principal source of resonant frequency noise in
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various dielectric microcavity geometries including microspheres [177], whispering-
gallery mode resonators [178, 179], ring resonators [180], and photonic crystal (PhC)
cavities [181]. TRN has also recently been shown to limit the stability of integrated
lasers [182, 183] and microcavity frequency combs [184].

To date, microcavity TRN has only been considered in a pertubative regime,
where the resulting rms resonant frequency fluctuation 𝛿𝜔rms ∝∼ 1/

√
𝑉 is much less

than the loaded cavity linewidth 2Γ = 𝜔0/𝑄. For sufficiently high 𝑄 and small 𝑉 ,
this assumption becomes invalid. Continued improvements in microcavity perfor-
mance — yielding 𝑄 > 107, 𝑉 ∼ 1 through fabrication advances [76] and 𝑄 ∼ 105,
𝑉 ∼ 10−3 using novel sub-wavelength dielectric features [78] — thus raises a simple
question: when will fundamental thermal noise limit the performance of high-𝑄/𝑉
microcavities?

Here, we answer this open question by deriving general bounds for optical micro-
cavity performance in the presence of TRN and find that current photonic crystal and
whispering gallery mode (WGM) devices are within one order of magnitude of this
bound. We verify our theory by measuring TRN as the dominant noise source in high-
𝑄/𝑉 PhC cavities and demonstrate the ability to distinguish between sub-wavelength
mode volumes (𝑉 < 1) using fundamental noise spectra. To our knowledge, these are
the first spectrally-resolved measurements of a near-diffraction-limited optical mode
operating at the thermal noise limit. We believe that our devices’ unique combination
of micron-scale spatial localization with a broadband temperature sensitivity com-
parable to state-of-the-art room-temperature optical thermometers will enable new
directions in thermal physics and non-equilibrium thermodynamics [185, 186]. As an
example of the immediate impact of our formalism, we analyze the implications for
an outstanding goal in quantum photonics: all-optical qubits using cavity-enhanced
bulk material nonlinearities [187]. Since thermal noise is found to limit the qubit
coherence, we propose and analyze coherent thermo-optic noise cancellation as one
potential avenue towards continued developments in low-noise, high-𝑄/𝑉 microcavi-
ties. Together, these results reveal the importance of thermal noise in state-of-the-art
optical resonators, inform design choices to minimize its impact on device perfor-
mance, and motivate new research directions to violate the proposed bounds.

4.3 Basic Formalism

As schematically illustrated in Fig. 4-1, fundamental stochastic temperature fluctu-
ations 𝛿𝑇 (𝑟⃗, 𝑡) within a cavity confining medium of refractive index 𝑛 and thermo-
optic coefficient 𝛼TR = d𝑛/d𝑇 drive a mode-averaged refractive index change 𝛿𝑛̄(𝑡) =
𝛼TR𝛿𝑇 (𝑡). For an optical mode completely confined in dielectric, the resulting reso-
nance shift 𝛿𝜔(𝑡) = −𝜔0𝛼TR𝛿𝑇 (𝑡)/𝑛 follows from first-order perturbation theory [18].
For now, we neglect temperature-induced deformations of the cavity, as the thermo-
elastic coefficient of common dielectrics is typically two orders of magnitude smaller
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than 𝛼TR [178]. Resonant enhancement of these mechanical effects over a narrow
bandwidth is possible; however, we are primarily interested in the broadband noise
performance.

In the presence of TRN, the steady-state rotating-frame intra-cavity field ampli-
tude is

𝑎̃(𝑡) =
√
Γ𝑠in

∫︁ 𝑡

−∞
d𝑡′𝑒−(𝑖Δ+Γ)(𝑡−𝑡′)+𝑖

∫︀ 𝑡
𝑡′ d𝑡

′′𝛿𝜔(𝑡′′) (4.1)

for a loaded amplitude decay rate Γ and critically-coupled static drive 𝑠in detuned by
∆ from the cavity resonance. The associated statistical moments can be computed
using the moment-generating properties of the characteristic functional ⟨𝑒𝑖

∫︀ 𝑡
𝑡′ 𝛿𝜔(𝑡

′′)𝑑𝑡′′⟩,
which in the case of zero-mean Gaussian noise only requires the autocorrelation
⟨𝛿𝜔(𝑡)𝛿𝜔(𝑡+ 𝜏)⟩ = (𝜔0𝛼TR/𝑛)

2⟨𝛿𝑇 (𝑡)𝛿𝑇 (𝑡+ 𝜏)⟩ [188, 189]. The latter autocorrelation
of temperature fluctuations can be computed from the heat equation

𝜕

𝜕𝑡
𝛿𝑇 (𝑟⃗, 𝑡) +𝐷𝑇∇2𝛿𝑇 (𝑟⃗, 𝑡) = 𝐹𝑇 (𝑟⃗, 𝑡) (4.2)

in a medium of thermal diffusivity 𝐷𝑇 driven by a Langevin forcing term 𝐹𝑇 (𝑟⃗, 𝑡)
which satisfies the FDT. As we will illustrate for slab PhC cavities, Eqn. 4.2 can
be solved analytically for specific geometries; however, for generality we follow the
approach of Ref. [190] and enforce a single-mode decay approximation by introducing
a phenomenological thermal decay rate

Γ𝑇 = 𝐷𝑇

∫︀ [︁
∇
(︁
𝜖(𝑟⃗)|𝐸⃗(𝑟⃗)|2

)︁]︁2
d3𝑟⃗∫︀

𝜖(𝑟⃗)2|𝐸⃗(𝑟⃗)|4d3𝑟⃗
(4.3)

evaluated for the envelope of intracavity energy density. This form of Γ𝑇 is chosen
for consistency with ⟨𝛿𝑇 2⟩ = 𝑘𝐵𝑇

2
0 /𝑐𝑉 𝑉𝑇 , the well-known statistical mechanics result

for temperature fluctuations in a volume 𝑉𝑇 of specific heat capacity 𝑐𝑉 at thermal
equilibrium with a bath temperature 𝑇0 [163]. Averaging Eqn. 4.2 over the optical
mode profile, we then find

d

d𝑡
𝛿𝑇 (𝑡) + Γ𝑇 𝛿𝑇 (𝑡) = 𝐹𝑇 (𝑡), (4.4)

leading to the solution

⟨𝛿𝜔(𝑡)𝛿𝜔(𝑡+ 𝜏)⟩ =
(︁𝜔0

𝑛
𝛼TR

)︁2 𝑘𝐵𝑇
2
0

𝑐𝑉 𝑉𝑇⏟  ⏞  
𝛿𝜔2

rms

𝑒−Γ𝑇 |𝜏 |, (4.5)
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where the thermal mode volume

𝑉𝑇 =

[︁∫︀
𝜖(𝑟⃗)|𝐸⃗(𝑟⃗)|2d3𝑟⃗

]︁2
∫︀
𝜖(𝑟⃗)2|𝐸⃗(𝑟⃗)|4d3𝑟⃗

(4.6)

is the common Kerr nonlinear mode volume found by solving Eqn. 4.2 in a homo-
geneous medium [177, 191]. For a three-dimensional mode with a Gaussian-shaped
energy density distribution, 𝑉𝑇 is larger than the standard Purcell mode volume
𝑉 =

∫︀
𝜖|𝐸⃗|2d3𝑟⃗/max{𝜖|𝐸⃗|2} by a factor of 2

√
2.

Combining Eqns. 4.1 and 4.5, we can solve for the statistical moments of the
driven cavity amplitude 𝑎̃(𝑡) as a function of the primary parameters 𝑉𝑇 and Γ𝑇 . The
results are dervied in Sec. 4.4 and discussed in Sections 4.7 and 4.8. Here, however,
we consider a simplified example of free cavity evolution, which demonstrates the
basic techniques and the cavity behavior in two limiting regimes. In this case, the
amplitude autocorrelation ⟨𝑎̃(𝑡)𝑎̃*(𝑡 + 𝜏)⟩ ∼ ⟨𝑒−𝑖

∫︀ 𝑡+𝜏
𝑡 𝛿𝜔(𝑡′)𝑑𝑡′⟩𝑒−Γ𝜏 = 𝐹 (𝜏)𝑒−Γ𝜏 can be

simplified by evaluating the dephasing function

𝐹 (𝜏) = exp

[︂
−
∫︁ 𝜏

0

𝑑𝜏 ′(𝜏 − 𝜏 ′)⟨𝛿𝜔(𝑡)𝛿𝜔(𝑡+ 𝜏)⟩
]︂

= exp

[︃(︂
𝛿𝜔rms

Γ𝑇

)︂2 (︀
1− Γ𝑇 𝜏 − 𝑒−Γ𝑇 𝜏

)︀]︃
, (4.7)

where we have implemented the previously described characteristic functional prop-
erties with the frequency noise statistics of Eqn. 4.5. For sufficiently large 𝑉𝑇 (cor-
responding to a slow Γ𝑇 ) and small 𝑄 as assumed in previous analyses, the cavity
resonance is quasistatic over the photon decay period and shifts by much less than a
cavity linewidth over time. In this perturbative limit (Fig. 4-1a), Γ𝑇 𝜏 ≪ 1 over the
cavity ringdown time. We can therefore expand 𝑒−Γ𝑇 𝜏 in Eqn. 4.7 to second order,
yielding ⟨𝑎̃(𝑡)𝑎̃*(𝑡 + 𝜏)⟩ ∼ 𝑒−Γ𝜏𝑒−𝛿𝜔2

rms𝜏
2/2. The associated lineshape, given by the

Fourier transform of ⟨𝑎̃(𝑡)𝑎̃*(𝑡 + 𝜏)⟩ via the Wiener–Khinchin theorem, is thus the
original Lorentzian with a small inhomogeneous Gaussian broadening due to TRN.
Simply put, TRN limits the cavity stability without substantially altering the intra-
cavity dynamics.

However, as the thermal mode volume 𝑉𝑇 shrinks, 𝛿𝜔rms and Γ𝑇 increase until they
eventually exceed Γ (Fig. 4-1b). In this high-𝑄/𝑉 limit, the resonant frequency 𝜔0(𝑡)
directly tracks the temperature noise over the relevant timescales (i.e. the frequency
noise in Eqn. 4.5 is effectively 𝛿-correlated), leading to a homogeneous broadening
of the resonance that dephases the intracavity field. Inserting the associated limit
Γ𝑇 𝜏 ≫ 1 into Eqn. 4.7, we find ⟨𝑎̃(𝑡)𝑎̃*(𝑡+ 𝜏)⟩ ∼ 𝑒−(Γ+𝛿𝜔2

rms/Γ𝑇 )𝜏 corresponding to the
broadened linewidth 2Γ + 2𝛿𝜔2

rms/Γ𝑇 ≈ 2𝛿𝜔2
rms/Γ𝑇 .

Our analysis focuses on the transition to this high-𝑄/𝑉 limit. Specifically, we
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derive general solutions to Eqn. 4.1 for arbitrary TRN powers and bandwidths to cal-
culate mode volume-dependent maximum “effective” cavity quality factors 𝑄eff that
describe the fundamental limits of microcavity stability and coherence. Whereas the
simple free evolution model presented in this section reveals the essential physics of
the extreme low- and high-𝑄/𝑉 cases, our latter generalized solutions are broadly ap-
plicable to any highly-confined dielectric microcavity, including, microspheres [177],
micropillars [192], ring resonators [180], microtoroids [193], PhC cavities [181], mi-
crodisks [194], vertical Fabry-Perot cavities [195], and more.

4.4 Complete Thermo-Refractive Noise Theory

While the development of ultrahigh-performance optical resonators has only recently
warranted its study within optical systems, stochastic temperature fluctuations are a
fundamental concept in thermodynamics [163]. Assuming Boltzmann statistics within
a finite volume 𝑉 with specific heat capacity 𝑐𝑉 at temperature 𝑇 , we find

⟨𝛿𝑇 2⟩ = 𝑘𝐵𝑇
2

𝑐𝑉 𝑉
. (4.8)

In optical microcavities, 𝑉 approaches diffraction limited volumes leading to temper-
ature fluctuations that significantly impact the resonance stability in materials with
a temperature-dependent refractive index.

Here, we derive the associated thermo-refractive noise (TRN) spectrum in an op-
tical microcavity under the single-mode approximation described in Sec. 4.3. Using
this approximation, the intracavity field statistics are derived. In the typical per-
turbative limit where the rms frequency fluctuation is much smaller than the loaded
cavity linewidth (𝛿𝜔rms ≪ 2Γ𝑙), we use perturbation theory to solve for the evolution
of the cavity field 𝑎(𝑡) and the associated noise spectrum 𝑆𝑎𝑎(𝑡). We also provide
general solutions for the first and second statistical moments of 𝑎(𝑡), which are used
Secs. 4.7 and 4.8 to derive “effective” quality factors in the presence of thermal noise.
The solution for 𝑆𝑎𝑎(𝑡) in the limiting case of high-𝑄 cavities — where the thermal
decay rate Γ𝑇 ≫ Γ𝑙 and the frequency noise can be assumed to be white — is also
provided. Finally, we compare the single-mode noise spectrum to that derived from a
formal solution to heat diffusion in an infinite two dimensional slab, which we found
to most accurately model the specific geometry of the photonic crystal microcavities
in our experiments.

A few notes on convention: 1) we derive two-sided angular frequency noise spectra
𝑆𝜔𝜔(𝜔), but plot one-sided frequency spectra 𝑆ff(𝑓) = 2𝑆𝜔𝜔(2𝜋𝑓)/2𝜋 = 𝑆𝜔𝜔(2𝜋𝑓)/𝜋
for experimental measurements to conform with the common conventions of the grav-
itational wave community; 2) temporal coupled mode theory decay rates Γ𝑖 are ampli-
tude decay rates; the associated quality factors are therefore defined as 𝑄𝑖 = 𝜔0/2Γ𝑖.
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4.4.1 Microcavity TRN Statistics

To first order, the change in resonant frequency under a permittivity perturbation
𝛿𝜖(𝑟⃗, 𝑡) can be expressed as

𝛿𝜔(𝑡)

𝜔0

= −1

2

∫︀
𝛿𝜖
𝛿𝜖(𝑟⃗, 𝑡)|𝐸⃗(𝑟⃗)|2d3𝑟⃗∫︀

𝜖|𝐸⃗(𝑟⃗)|2d3𝑟⃗
≈ − 1

𝑉eff

∫︀
𝛿𝑛
𝑛 𝛿𝑛(𝑟⃗, 𝑡)|𝐸⃗(𝑟⃗)|2d3𝑟⃗

max{𝜖|𝐸⃗(𝑟⃗)|2}

where we have made the approximation 𝛿𝜖 ≈ 2𝑛 𝛿𝑛 and introduced the standard
mode volume

𝑉eff =

∫︀
𝜖(𝑟⃗)|𝐸⃗(𝑟⃗)|2d3𝑟⃗

max{𝜖(𝑟⃗)|𝐸⃗(𝑟⃗)|2}
. (4.9)

The change in refractive index 𝛿𝑛(𝑟⃗, 𝑡) is directly proportional to temperature change
𝛿𝑇 (𝑟⃗, 𝑡), with the thermo-optic coefficient 𝛼𝑇𝑂 = 𝑑𝑛/𝑑𝑇 serving as the constant of
proportionality. We therefore find

𝛿𝜔(𝑡)

𝜔0

= − 1

𝑉eff

∫︀
𝛿𝑛
𝛼TO𝛿𝑇 (𝑟⃗, 𝑡)𝑛|𝐸⃗(𝑟⃗)|2d3𝑟⃗

max{𝜖|𝐸⃗(𝑟⃗)|2}
. (4.10)

Alternatively, Eqn. 4.9 can be evaluated for a uniform, mode averaged temperature
change 𝛿𝑇 (𝑡) assuming complete confinement of the mode within a homogeneous
medium. This approach yields

𝛿𝜔(𝑡)

𝜔0

= − 1

𝑛
𝛼TO𝛿𝑇 (𝑡). (4.11)

Comparing Eqns. 4.10 and 4.11, we find

𝛿𝑇 (𝑡) =
1

𝑉eff

∫︀
𝛿𝑇 (𝑟⃗, 𝑡)𝜖(𝑟⃗)|𝐸⃗(𝑟⃗)|2d3𝑟⃗

max{𝜖|𝐸⃗(𝑟⃗)|2}
. (4.12)

Eqn. 4.11 can now be solved using the mode averaged temperature change, whose
evolution is derived from the heat equation (given a thermal diffusivity 𝐷𝑇 )

𝜕𝛿𝑇 (𝑟⃗, 𝑡)

𝜕𝑡
−𝐷𝑇∇2𝛿𝑇 = 𝐹𝑇 (𝑟⃗, 𝑡) (4.13)

driven by a thermal Langevin source 𝐹𝑇 (𝑟⃗, 𝑡) with the statistics [196]

⟨𝐹𝑇 (𝑟⃗1, 𝑡1)𝐹
*
𝑇 (𝑟⃗2, 𝑡2)⟩ =

2𝐷𝑇𝑘𝐵𝑇
2
0

𝑐𝑉
𝛿(𝑡1 − 𝑡2)∇⃗𝑟⃗1 · ∇⃗𝑟⃗2 [𝛿(𝑟⃗1 − 𝑟⃗2)] (4.14)
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that satisfy the fluctuation-dissipation theorem. Averaging over the mode, we find
the approximation

d(𝛿𝑇 (𝑡))

d𝑡
+ Γ𝑇 𝛿𝑇 (𝑡) = 𝐹𝑇 (𝑡), (4.15)

where Γ𝑇 is introduced as a phenomenological thermal decay rate whose form will be
chosen later to ensure the form of ⟨𝛿𝑇 2⟩ matches the canonical result from statistical
mechanics (Eqn. 4.8). In analog with 𝛿𝑇 (𝑡), the mode averaged thermal force 𝐹𝑇 (𝑡)
is

𝐹𝑇 (𝑡) =
1

𝑉eff

∫︀
𝐹𝑇 (𝑟⃗, 𝑡)𝜖(𝑟⃗)|𝐸⃗(𝑟⃗)|2d3𝑟⃗

max{𝜖|𝐸⃗(𝑟⃗)|2}
. (4.16)

The steady-state solution of Eqn. 4.15,

𝛿𝑇 (𝑡) =

∫︁ 𝑡

−∞
𝐹 (𝑡′)𝑒−Γ𝑇 (𝑡−𝑡′)d𝑡′, (4.17)

can then be used to find the corresponding statistics of the temperature fluctuation
at equilibrium (i.e. long 𝑡):

⟨𝛿𝑇 (𝑡)𝛿𝑇 (𝑡+ 𝜏)⟩ =
∫︁ 𝑡

−∞
d𝑡′

∫︁ 𝑡+𝜏

−∞
d𝑡′′⟨𝐹𝑇 (𝑡

′)𝐹𝑇 (𝑡
′′)⟩𝑒−Γ𝑇 (𝑡−𝑡′)𝑒−Γ𝑇 (𝑡+𝜏−𝑡′′). (4.18)

The result requires the autocorrelation of 𝐹𝑇 (𝑡), which is readily evaluated using the
mode averaged form of Eqn. 4.16:

⟨𝐹𝑇 (𝑡)𝐹
*
𝑇 (𝑡+ 𝜏)⟩ = 2𝐷𝑇𝑘𝐵𝑇

2
0

𝑐𝑉 𝑉 2
eff

∫︀
d3𝑟⃗

[︁
∇⃗
(︁
𝜖(𝑟⃗)|𝐸⃗(𝑟⃗)|2

)︁]︁2
(max{𝜖|𝐸⃗(𝑟⃗)|2})2⏟  ⏞  
ℛ𝐹𝑇 𝐹𝑇

(0)

𝛿(𝜏) = ℛ𝐹𝑇𝐹𝑇
(0)𝛿(𝜏).

Inserting this result into Eqn. 4.18 along with the change of variables 𝑡′′ → 𝑡′ + 𝜏 ′

yields

⟨𝛿𝑇 (𝑡)𝛿𝑇 (𝑡+ 𝜏)⟩ ≈ ℛ𝐹𝑇𝐹𝑇
(0)

2Γ𝑇

𝑒−Γ𝑇 |𝜏 |. (4.19)

Correspondence with Eqn. 4.8 therefore requires

ℛ𝐹𝑇𝐹𝑇
(0)

2Γ𝑇

=
𝑘𝐵𝑇

2
0

𝑐𝑉 𝑉
⇒ ℛ𝐹𝑇𝐹𝑇

(0) =
2𝑘𝐵𝑇

2
0Γ𝑇

𝑐𝑉 𝑉
. (4.20)
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Comparing Eqn. 4.20 to Eqn. 4.19 then lends a calculable form of the decay rate Γ𝑇 :

Γ𝑇 = 𝐷𝑇

∫︀
d3𝑟⃗

[︁
∇⃗
(︁
𝜖(𝑟⃗)|𝐸⃗(𝑟⃗)|2

)︁]︁2
∫︀
d3𝑟⃗𝜖(𝑟⃗)2|𝐸⃗(𝑟⃗)|4

. (4.21)

Combining Eqns. 4.19, 4.20, and 4.21 with the first order perturbation theory
relationship 𝛿𝜔0(𝑡) ≈ −(𝜔0/𝑛)𝛼TO𝛿𝑇 (𝑡) lends the desired autocorrelation of the cavity
resonance frequency

⟨𝛿𝜔(𝑡)𝛿𝜔(𝑡+ 𝜏)⟩ ≈ 𝛿𝜔2
rms𝑒

−Γ𝑇 |𝜏 |, (4.22)

for the rms resonant frequency fluctuation

𝛿𝜔rms =
𝜔0𝛼TO

𝑛

√︃
𝑘𝐵𝑇 2

0

𝑐𝑉 𝑉𝑇

. (4.23)

4.4.2 Derivation of the Thermal Mode Volume

The same correspondence to Eqn. 4.8 can be used to solve for the thermal mode
volume 𝑉𝑇 [177]. For completeness, we recapitulate this derivation. In an infinite
homogeneous medium, we can solve Eqn. 4.13 using Fourier modes instead of intro-
ducing the the phenomenological parameter Γ𝑇 , yielding

𝛿𝑇 (𝜔, 𝑘⃗) =
𝐹 (𝜔, 𝑘⃗)

𝑖𝜔 +𝐷𝑇 |⃗𝑘|2
. (4.24)

Taking the temperature mode average in Eqn. 4.12 and inverse Fourier transforming
yields

𝛿𝑇 (𝑡) =
1

(2𝜋)4𝑉eff

∫︁
d3𝑟⃗

𝜖|𝐸⃗(𝑟⃗)|2
max{𝜖|𝐸⃗(𝑟⃗)|2}

∫︁
d𝜔 𝑒−𝑖𝜔𝑡

∫︁
d3𝑘⃗ 𝑒𝑖𝑘⃗·𝑟⃗

𝐹 (𝜔, 𝑘⃗)

𝑖𝜔 +𝐷𝑇 |⃗𝑘|2
. (4.25)

Using the frequency-space autocorrelation of the Langevin driving force (compare
Eqn. 4.19) [197],

⟨𝐹 (𝜔1, 𝑘⃗1)𝐹
*(𝜔2, 𝑘⃗2)⟩ = (2𝜋)4

2𝑘𝐵𝑇
2
0𝐷𝑇

𝑐𝑉
|⃗𝑘|2𝛿(𝑘⃗1 − 𝑘⃗2)𝛿(𝜔1 − 𝜔2), (4.26)

we can then solve for the autocorrelation of 𝛿𝑇 :

⟨𝛿𝑇 (𝑡)𝛿𝑇 *(𝑡+ 𝜏)⟩ = (max{𝜖|𝐸⃗(𝑟⃗)|2})−2

(2𝜋)3𝑉 2
eff

𝑘𝐵𝑇
2
0

𝑐𝑉

×
∫︁

d3𝑘⃗ 𝑒−𝐷𝑇 |⃗𝑘|2𝜏
⃒⃒⃒⃒ ∫︁

d3𝑟⃗ 𝜖(𝑟⃗)|𝐸⃗(𝑟⃗)|2𝑒𝑖𝑘⃗·𝑟⃗
⃒⃒⃒⃒2
. (4.27)
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Eqn. 4.27 must equal Eqn. 4.8 for 𝜏 = 0, which reveals the final solution for the
thermal mode volume 𝑉𝑇 :

𝑉𝑇 =
(2𝜋)3𝑉 2

eff(max{𝜖|𝐸⃗(𝑟⃗)|2})2∫︀
d3𝑘⃗

⃒⃒ ∫︀
d3𝑟⃗ 𝜖(𝑟⃗)|𝐸⃗(𝑟⃗)|2𝑒𝑖𝑘⃗·𝑟⃗

⃒⃒2 =
𝑉 2

eff(max{𝜖|𝐸⃗(𝑟⃗)|2})2∫︀
d3𝑟⃗ 𝜖(𝑟⃗)2|𝐸⃗(𝑟⃗)|4

=
𝑉 2

eff

𝑉
(2)
eff

(4.28)

where

𝑉
(2)
eff =

∫︀
d3𝑟⃗ 𝜖(𝑟⃗)2|𝐸⃗(𝑟⃗)|4
max{𝜖2|𝐸⃗|4}

. (4.29)

This result matches Gorodetsky’s original result [177] with the exception of different
normalization conditions.

4.4.3 Comparison to Multimode Decay in a 2D PhC Slab

Under the single-mode approximation derived in the preceding sections, Eqn. 4.22
implies a Lorentzian TRN spectrum

𝑆𝜔𝜔(𝜔) =
(︁𝜔0

𝑛
𝛼TO

)︁2 𝑘𝐵𝑇
2
0

𝑐𝑉 𝑉𝑇

2Γ𝑇

Γ2
𝑇 + 𝜔2

. (4.30)

As noted in Sec. 4.3, this approximate spectrum can be evaluated for any optical mi-
crocavity (photonic crystals, microtoroids, microbottles, ring resonators, micropillars,
microdisks, and so on) independent of its exact confining geometry. This allows us to
derivethe general noise limits in Sec. 4.4.4. If a particular experimental system is of
interest, we can verify the accuracy of this approximation by solving the stochastic
heat equation (Eqn. 4.13) for that particular cavity geometry. Here, since we measure
TRN in high-𝑄/𝑉eff 2D slab photonic crystal cavities (see Sec. 4.6), we demonstrate
this evaluation for a Gaussian mode confined within an infinite two dimensional slab.
The heat equation in this case lends logarithmically — as opposed to exponentially
— decaying temperature fluctuations in time.

For a slab of thickness 𝑤 lying atop the 𝑥𝑦 plane, the local temperature change
𝛿𝑇 (𝑟⃗, 𝑡) =

∑︀
𝑛 𝑇𝑛(𝑟⃗‖, 𝑡)𝜑𝑛(𝑧) can be expanded in terms of the out-of-plane eigenfunc-

tions 𝜑𝑛(𝑧) = cos(𝑛𝜋𝑧/𝑤) assuming insulating boundary conditions on the top and
bottom of the slab. The stochastic heat equation then simplifies to the form

𝜕𝑇𝑛(𝑟⃗‖, 𝑡)

𝜕𝑡
= 𝐷𝑇

[︀
∇2 − (𝑛𝜋/𝑤)2

]︀
𝑇𝑛(𝑟⃗‖, 𝑡) +

1

𝑤

∫︁
𝜑*
𝑛(𝑧)𝐹𝑇 (𝑟⃗, 𝑡)d𝑧. (4.31)

If assume a two-dimensional Gaussian mode profile

𝜖(𝑟⃗)|𝐸⃗(𝑟⃗)|2 =
{︃

1
2𝜋𝜎2 𝑒

−|𝑟⃗‖|2/2𝜎2
0 < 𝑧 < 𝑤

0 else
, (4.32)
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all 𝑛 ̸= 0 terms in the temperature expansion have zero contribution to the mode-
averaged temperature fluctuation (Eqn. 4.12) of interest, which involves the integral∫︀
𝜑𝑛(𝑧)𝑑𝑧. Eqn. 4.31 then simplifies to the two-dimensional form

𝜕𝑇 (𝑟⃗‖, 𝑡)

𝜕𝑡
= 𝐷𝑇∇2𝑇 (𝑟⃗‖, 𝑡) + 𝐹

‖
𝑇 (𝑟⃗‖, 𝑡), (4.33)

where we have dropped the 𝑛 = 0 subscript and introduced a modified fluctuation
𝐹

‖
𝑇 (𝑟⃗‖, 𝑡) with statistics

⟨𝐹 ‖*
𝑇 (𝑟⃗‖, 𝑡)𝐹

‖
𝑇 (𝑟⃗

′
‖, 𝑡

′)⟩ = 1

𝑤2

∫︁
d𝑧

∫︁
d𝑧′𝜑*

0(𝑧)𝜑0(𝑧
′)⟨𝐹 *

𝑇 (𝑟⃗, 𝑡)𝐹𝑇 (𝑟⃗
′, 𝑡′)⟩

=
1

𝑤

2𝐷𝑇𝑘𝐵𝑇
2
0

𝑐𝑉
𝛿(𝑡− 𝑡′)∇⃗𝑟⃗‖ · ∇⃗𝑟⃗′‖

𝛿(𝑟⃗‖ − 𝑟⃗′‖). (4.34)

Comparing Eqns. 4.33 and 4.34 to their three-dimensional analogs (Eqns. 4.13, 4.14),
we see that projecting onto the 𝑛 = 0 subspace reduces the finite-thickness slab to
an infinite two-dimensional problem where 𝐹𝑇 is scaled by 𝑤−1/2. We can then apply
the techniques of Sec. 4.4.2 (expansion in Fourier normal modes) to solve for the
spectrum of temperature (and therefore resonant frequency) fluctuations. Without
inverse Fourier transforming frequency, the autocorrelation of Eqn. 4.25 gives

𝑆mm
𝜔𝜔 (𝜔) = 2

(︁𝜔0

𝑛
𝛼TO

)︁2 𝑘𝐵𝑇
2
0

𝑤𝑐𝑉

∫︁
𝐷𝑇𝑘

2
‖

(𝐷𝑇𝑘2
‖)

2 + 𝜔2
|𝜖𝐸2(𝑘‖)|2d2𝑘‖

=
(︁𝜔0

𝑛
𝛼TO

)︁2 𝑘𝐵𝑇
2
0

2𝜋𝑤𝑐𝑣𝐷𝑇

∫︁ ∞

0

𝑥

𝑥2 + (𝜔𝜎2/𝐷𝑇 )2
𝑒−𝑥d𝑥⏟  ⏞  

𝐼mm(𝜔𝜎2/𝐷𝑇 )

(4.35)

with the change of variables (𝑘‖𝜎)
2 → 𝑥. Note that we treat the effect of patterned

holes in our experimental structures through a reduced thermal conductivity, and
therefore thermal diffusivity, as a function of the slab porosity (see Sec. 4.6 for further
detail). We can compare this result with the single-mode approximation, which (by
evaluating Eqns. 4.21, 4.28 for the Gaussian mode profile in Eqn. 4.32) gives the
thermal mode volume 𝑉𝑇 = 4𝜋𝑤𝜎2, decay rate Γ𝑇 = 𝐷𝑇

𝜎2 , and noise spectrum

𝑆sm
𝜔𝜔(𝜔) =

(︁𝜔0

𝑛
𝛼TO

)︁2 𝑘𝐵𝑇
2
0

2𝜋𝑤𝑐𝑣𝐷𝑇

1

1 + (𝜔𝜎2/𝐷𝑇 )2⏟  ⏞  
𝐼sm(𝜔𝜎2/𝐷𝑇 )

. (4.36)

As expected, the integral
∫︀∞
−∞ 𝑆𝜔𝜔d𝜔/2𝜋 of either spectra yields

⟨𝛿𝜔2⟩ = (𝜔0𝛼TO/𝑛)
2⟨𝛿𝑇 2⟩ = (𝜔0𝛼TO/𝑛)

2𝑘𝐵𝑇
2
0 /𝑐𝑉 𝑉𝑇
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Figure 4-2: Normalized noise spectra 𝑆𝜔𝜔(𝜔) = 𝐼(𝜔/Γ𝑇 ) for single-mode (Eqn. 4.36)
and multimode (Eqn. 4.35) TRN in an infinite slab of finite thickness.

in correspondence with Eqn. 4.8. Fig. 4-2 plots each normalized spectrum for compar-
ison along with the ratio 𝐼mm/𝐼sm. These results show that the single-mode approx-
imation undershoots at low frequency 𝜔 ≪ Γ𝑇 , slightly overshoots at intermediate
frequencies 𝜔 ∼ Γ𝑇 , and converges to the multimode spectrum at high frequencies
𝜔 ≫ Γ𝑇 . We further note that the error of the multimode spectrum increases at
low frequencies for any finite volume system: in our experiment, for example, the
multimode estimate does not account for low frequency heat transfer through the
underlying oxide around the released membrane. Thus, in the range of frequencies
of interest (i.e. near the thermal cutoff frequency Γ𝑇 = 𝐷𝑇/𝜎

2), single-mode ther-
mal decay is an appropriate simplifying assumption that allows the thermal noise
spectrum to be well-approximated irrespective of the cavity’s exact geometry.

4.4.4 Derivation of Driven Cavity Dynamics

To determine the practical impact of thermo-refractive noise on microcavity dynamics,
we now consider the case of a cavity driven by a monochromatic laser with frequency
𝜔𝐿. Intuitively, we would expect that the large (relative to the cavity linewidth), fast
(relative to the cavity decay time) stochastic deviations of the resonance frequency in
the high-𝑄/𝑉eff limit would restrict the maximum intensity in the cavity, as a narrow
linewidth laser would no longer always be on resonance with the fluctuating cavity
resonance. A mode volume-dependent maximum “effective” quality factor describing
the stored energy should result. A similar effective quality factor could be derived if
the coherence of the intracavity field — rather than the stored energy alone — is also
of interest.

To prove these suppositions, we solve the driven temporal coupled mode theory
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relation
d𝑎(𝑡)

d𝑡
= [𝑖𝜔0(𝑡)− Γ𝑙] 𝑎(𝑡) +

√︀
2Γ𝑐𝑠in(𝑡), (4.37)

for the cavity field 𝑎(𝑡), where 𝜔0(𝑡) = 𝜔0 + 𝛿𝜔(𝑡) is the instantaneous resonant
frequency, Γ𝑙 = 𝜔0/2𝑄𝑙 is the amplitude decay rate of 𝑎 corresponding to a loaded
quality factor 𝑄𝑙, and Γ𝑐 is the amplitude coupling rate of the drive field 𝑠in(𝑡) =
𝑠in𝑒

𝑖𝜔𝐿𝑡 + c.c., detuned from resonance by ∆ = 𝜔𝐿 − 𝜔0. In the presence of TRN,
𝛿𝜔(𝑡) is non-Markovian, zero-mean Gaussian noise with the autocorrelation given by
Eqn. 4.22. Solving with an integrating factor and introducing the slowly varying
cavity amplitude 𝑎̃(𝑡) = 𝑎(𝑡)𝑒−𝑖𝜔𝐿𝑡 in a reference frame co-rotating with the drive
frequency 𝜔𝐿, we find

𝑎̃(𝑡) =
√︀

2Γ𝑐𝑠in

∫︁ 𝑡

−∞
d𝑡′𝑒−(𝑖Δ+Γ𝑙)(𝑡−𝑡′)𝑒𝑖

∫︀ 𝑡
𝑡′ d𝑡

′′𝛿𝜔(𝑡′′). (4.38)

Since the steady state solution is desired, we assume that the integration starts at
𝑡 = −∞ such that the system has no “memory” of the initial conditions. Using
Eqn. 4.38, we can compute ⟨𝑎̃(𝑡)⟩ and ⟨|𝑎̃(𝑡)|2⟩, the mean cavity field amplitude and
stored energy, respectively. In certain limiting cases, the noise spectrum 𝑆𝑎𝑎(𝜔) of
the intra-cavity field can also be derived.

Cavity Spectrum in the Perturbative Limit

One of these limiting cases is the perturbative regime commonly studied in the lit-
erature for low-𝑄/𝑉eff cavities, wherein 𝛿𝜔rms ≪ Γ𝑙. In this case, 𝑎̃(𝑡) and 𝛿𝜔(𝑡) —
described by (c.f. Eqn. 4.15)

d 𝛿𝜔(𝑡)

d𝑡
= −Γ𝑇 𝛿𝜔(𝑡) + 𝛿𝜔rms

√︀
2Γ𝑇𝑊 (𝑡) (4.39)

for a Wiener process 𝑊 (𝑡) with ⟨𝑊 (𝑡)𝑊 (𝑡′)⟩ = 𝛿(𝑡− 𝑡′) — can be expanded in orders
of 𝛿𝜔rms

√
2Γ𝑇 . The zeroth- and first-order evolution equations (with subscripts 0 and

1, respectively) are

d𝑎̃0(𝑡)

d𝑡
= [𝑖(𝛿𝜔0(𝑡)−∆)− Γ𝑙]𝑎̃0(𝑡) +

√︀
2Γ𝑐𝑠in (4.40)

d𝑎̃1(𝑡)

d𝑡
= [𝑖(𝛿𝜔0(𝑡)−∆)− Γ𝑙]𝑎1(𝑡) + 𝑖𝛿𝜔1(𝑡)𝑎̃0(𝑡) (4.41)

d𝛿𝜔0(𝑡)

d𝑡
= −Γ𝑇 𝛿𝜔0(𝑡) (4.42)

d𝛿𝜔1(𝑡)

d𝑡
= −Γ𝑇 𝛿𝜔1(𝑡) + 𝛿𝜔rms

√︀
2Γ𝑇𝑊 (𝑡). (4.43)
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Solving in the frequency domain yields

𝑎̃1(𝜔) =

√
2Γ𝑐𝑠in

Γ𝑙 + 𝑖∆

𝑖𝛿𝜔rms
√
2Γ𝑇𝑊 (𝜔)

(Γ𝑇 − 𝑖𝜔)[Γ𝑙 + 𝑖(𝜔 +∆)]
, (4.44)

corresponding to the frequency spectrum

𝑆𝑎𝑎(𝜔) =
2Γ𝑐|𝑠in|2
Γ2
𝑙 +∆2

2Γ𝑇 𝛿𝜔
2
rms

(Γ2
𝑇 + 𝜔2)(Γ2

𝑙 + (𝜔 +∆)2)
. (4.45)

The intra-cavity noise spectrum can therefore be approximated as the product of two
Lorentzians with spectral widths 2Γ𝑇 and 2Γ𝑙. When Γ𝑇 ≪ Γ𝑙, which often coincides
with the perturbative limit 𝛿𝜔rms ≪ Γ𝑙 for large mode volumes (𝛿𝜔rms ∝ 𝑉

−1/2
𝑇

and Γ𝑇 ∝ 𝑉
−2/3
𝑇 for a three-dimensional Gaussian mode), the resonant frequency

fluctuations are small and occur over timescales much longer than that of intra-
cavity photon decay. TRN thus leads to a weak inhomogeneous broadening of the
resonant mode that can often be neglected for common applications of low-𝑄/𝑉eff

optical cavities. Gravitational wave interferometry [140, 197] and ultra-stable optical
frequency references [198, 199] are two notable exceptions that have led to significant
interest in perturbative TRN.

General Derivation for ⟨𝑎̃(𝑡)⟩
Our work focuses on the transition to non-perturbative TRN in high-𝑄/𝑉eff micro-
cavities, where we are interested in general solutions for the statistical moments of
Eqn. 4.38 in the presence of TRN. Specifically, ⟨𝑎̃(𝑡)⟩ provides insight into thermal
noise-induced dephasing while ⟨𝑎̃2(𝑡)⟩ lends a bound on the maximum allowable en-
ergy storage.

The expected intra-cavity field amplitude

⟨𝑎̃(𝑡)⟩ =
√︀

2Γ𝑐𝑠in

∫︁ 𝑡

−∞
d𝑡′𝑒−(𝑖Δ+Γ𝑙)(𝑡−𝑡′)⟨𝑒

∫︀ 𝑡
𝑡′ d𝑡

′′𝑖𝛿𝜔(𝑡′′)⟩ (4.46)

follows directly from Eqn. 4.38, where the average on the right-hand side has a similar
form to the characteristic functional [189]

Φ[𝑘(𝑡)] = ⟨𝑒𝑖
∫︀
𝑘(𝑡)𝑓(𝑡)d𝑡⟩ =

∫︀
𝑒𝑖

∫︀
𝑘(𝑡)𝑓(𝑡)d𝑡𝑃 [𝑓(𝑡)]𝒟𝑓(𝑡)∫︀
𝑃 [𝑓(𝑡)]𝒟𝑓(𝑡)

, (4.47)

a normalized average of 𝑒𝑖
∫︀
𝑘(𝑡)𝑓(𝑡)d𝑡 along the paths 𝑓(𝑡) with respective probabilities

𝑃 [𝑓(𝑡)]. For the special case of Gaussian noise, the moment-generating properties of
the characteristic functional allow Eqn. 4.47 to be simplified to

Φ[𝑘(𝑡)] = 𝑒𝑖
∫︀
𝑘(𝑡)𝑀(𝑡)d𝑡𝑒−1/2

∫︀
d𝑡

∫︀
d𝑡′𝑘(𝑡)𝑘(𝑡′)⟨𝑓(𝑡)𝑓(𝑡′)⟩, (4.48)
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which is characterized by two parameters only: 1) the mean path 𝑀(𝑡), and the
autocorrelation of the noise 𝑓(𝑡), ⟨𝑓(𝑡)𝑓(𝑡+ 𝑡′)⟩. Comparing Eqn. 4.46 to Eqn. 4.47,

we find 𝑘(𝑡′′) =

{︃
1 𝑡′ < 𝑡′′ < 𝑡

0 else
and 𝑓(𝑡) = 𝛿𝜔(𝑡′′). Since ⟨𝜔0(𝑡)⟩ = 0,

Φ = exp

[︂
−1

2

∫︁ 𝑡

𝑡′
d𝑡′2

∫︁ 𝑡

𝑡′
d𝑡′′2𝛿𝜔

2
rms𝑒

−Γ𝑇 |𝑡′′2−𝑡′2|
]︂

= exp

[︂
𝛿𝜔2

rms

Γ2
𝑇

(︁
1− Γ𝑇 (𝑡− 𝑡′)− 𝑒−Γ𝑇 (𝑡−𝑡′)

)︁]︂
. (4.49)

The above form, combined with the change of variable 𝜏 = (𝛿𝜔rms/Γ𝑇 )
2 𝑒−Γ𝑇 (𝑡−𝑡′),

simplifies to

⟨𝑎̃(𝑡)⟩ =
√
2Γ𝑐𝑠in

Γ𝑇

𝑒(𝛿𝜔rms/Γ𝑇 )2
(︂
𝛿𝜔rms

Γ𝑇

)︂2

⎡⎣−𝑖Δ−Γ𝑙−
𝛿𝜔2

rms
Γ𝑇

Γ𝑇

⎤⎦ ∫︁ (𝛿𝜔rms/Γ𝑇 )2

0

𝜏
𝑖Δ+Γ𝑙+

𝛿𝜔2
rms

Γ𝑇
Γ𝑇

−1
𝑒−𝜏d𝜏 ,

(4.50)
which is in the form of the lower incomplete Gamma function

𝛾𝑙(𝑠, 𝑥) =

∫︁ 𝑥

0

𝜏 𝑠−1𝑒−𝜏d𝜏 . (4.51)

The final closed-form solution is therefore

⟨𝑎̃(𝑡)⟩ =
√
2Γ𝑐𝑠in

Γ𝑇

𝑒𝑥𝑥−𝑠𝛾𝑙(𝑠, 𝑥) (4.52)

𝑥 ≡
(︂
𝛿𝜔rms

Γ𝑇

)︂2

(4.53)

𝑠 ≡ Γ𝑙 + 𝑖∆

Γ𝑇

+ 𝑥. (4.54)

To confirm this solution, we can evaluate the limiting case of 𝛿𝜔rms → 0 (𝑥 → 0),
corresponding to a noiseless thermal reservoir when 𝑇 → 0. Using the series expansion
of 𝛾𝑙(𝑠, 𝑥) in terms of 𝑠, 𝑥 and the complete Gamma function 𝛾𝑓 (𝑧), we find

⟨𝑎̃(𝑡)⟩𝑇=0 =

√
2Γ𝑐𝑠in

Γ𝑇

𝛾𝑓 (𝑠)

𝛾𝑓 (𝑠+ 1)
=

√
2Γ𝑐𝑠in

Γ𝑇

1

𝑠

⃒⃒⃒⃒
𝑥=0

=

√
2Γ𝑐𝑠in

Γ𝑙 + 𝑖∆
(4.55)

as expected from noiseless temporal coupled mode theory. Assuming critical coupling
(Γ𝑐 = Γ𝑙/2) and resonant excitation (∆ = 0), we find the “effective” quality factor

𝑄eff =
𝜔0|⟨𝑎̃(𝑡)⟩|2
2|𝑠in|2

= 𝑄𝑙

(︂
Γ𝑙

Γ𝑇

)︂2

𝑒2𝑥𝑥−2𝑠𝛾2
𝑙 (𝑠, 𝑥) (4.56)
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Figure 4-3: The complete region of integration can be divided into three sub-spaces
which yield different conditions for 𝑘(𝑡).

by analogy to the noiseless result where 𝑄 = 𝜔0|⟨𝑎̃(𝑡)⟩|2𝑇=0/2|𝑠in|2.
We will use this result in Sec. 4.8 to describe dephasing in the qubit limit of

cavity nonlinear optics. For a given mode volume, the optimum loaded quality factor
𝑄opt

𝑙 ≈ 𝜔0Γ𝑇/2𝛿𝜔
2
rms (assuming 𝛿𝜔rms ≪ Γ𝑇 , which is valid for the range of mode

volumes plotted in Fig. 4-10) maximizes the resonant cavity amplitude: lower quality
factors incur excess loss, whereas higher quality factors allow the qubit to “explore”
a larger region of the phase space, thereby reducing the integrated cavity amplitude.
Intuitively, the resulting maximum amplitude |⟨𝑎̃(𝑡)⟩| increases with increasing mode
volume due to the reduced magnitude of temperature fluctuations.

General Derivation for ⟨𝑎̃2(𝑡)⟩

Solving for ⟨𝑎̃(𝑡)2⟩ generally follows the same procedure, and reveals a limit on the
allowable intra-cavity optical energy in the presence of TRN. Starting from Eqn. 4.38,
the amplitude correlation takes the form

⟨𝑎̃(𝑡)𝑎̃*(0)⟩ = 2Γ𝑐|𝑠in|2
∫︁ 𝑡

−∞
d𝑡′𝑒−(𝑖Δ+Γ𝑙)(𝑡−𝑡′)

∫︁ 0

−∞
d𝑡′′𝑒−(𝑖Δ−Γ𝑙)𝑡

′′⟨𝑒
∫︀ 𝑡
𝑡′ 𝑖𝛿𝜔(𝑡2)d𝑡2−

∫︀ 0
𝑡′′ 𝑖𝛿𝜔(𝑡2)d𝑡2⟩.

(4.57)
Following the method of [188], the average can be expressed in the form of Eqn. 4.47,

⟨𝑒
∫︀ 𝑡
𝑡′ 𝑖𝛿𝜔(𝑡2)d𝑡2−

∫︀ 0
𝑡′′ 𝑖𝛿𝜔(𝑡2)d𝑡2⟩ = ⟨𝑒𝑖

∫︀∞
−∞ 𝑘(𝑡2)𝛿𝜔(𝑡2)d𝑡2⟩, (4.58)

by appropriately defining 𝑘(𝑡). As illustrated in Fig. 4-3, the dependence of 𝑘(𝑡2)
upon 𝑡′, 𝑡′′, and 𝑡 differs in three sectors of the region of integration. Simple diagrams
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in each of the three scenarios can be used to find a closed form for 𝑘(𝑡):

𝑘(𝑡2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

sign(𝑡′′ − 𝑡′),
𝑡′ < 0 and
min(𝑡′, 𝑡′′) ≤ 𝑡2 ≤ max(𝑡′, 𝑡′′)

1,
(𝑡′ < 0 and 0 ≤ 𝑡2 ≤ 𝑡) or
(𝑡′ > 0 and 𝑡′ ≤ 𝑡2 ≤ 𝑡)

−1, 𝑡′ > 0 & 𝑡′′ ≤ 𝑡2 ≤ 0

0, else.

(4.59)

This definition allows us to rewrite the autocorrelation as

ℛ𝑎𝑎(𝑡) = ⟨𝑎̃(𝑡)𝑎̃*(0)⟩* = 2Γ𝑐|𝑠in|2
∫︁ 𝑡

−∞
d𝑡′𝑒(𝑖Δ−Γ𝑙)(𝑡−𝑡′)

∫︁ 0

−∞
d𝑡′′𝑒(𝑖Δ+Γ𝑙)𝑡

′′

× exp

[︂
−1

2

∫︁ ∞

−∞
d𝑡′2

∫︁ ∞

−∞
d𝑡′′2𝑘(𝑡

′
2)𝑘(𝑡

′′
2)𝛿𝜔

2
rms𝑒

−Γ𝑇 |𝑡′2−𝑡′′2 |
]︂
. (4.60)

While a general solution to the full autocorrelation in Eqn. 4.60 appears intractable,
we can find ⟨|𝑎̃|2⟩ = ⟨|𝑎̃(0)|2⟩ by evaluating Eqn. 4.60 at 𝑡 = 0 (thereby eliminating
integration region #3 in Fig. 4-3), which yields

⟨|𝑎̃|2⟩ =2Γ𝑐|𝑠in|2
∫︁ 0

−∞
d𝑡′𝑒(𝑖Δ+Γ𝑙)𝑡

′
∫︁ 0

−∞
d𝑡′′𝑒(−𝑖Δ+Γ𝑙)𝑡

′′

× exp

[︃(︂
𝛿𝜔rms

Γ𝑇

)︂2 (︁
1− Γ𝑇 |𝑡′′ − 𝑡′| − 𝑒−Γ𝑇 |𝑡′′−𝑡′|

)︁]︃
. (4.61)

Note that the integral in Region 1 or Region 2 is nearly the same – exchanging 𝑡′

and 𝑡′′ in either region returns the integral for the other region, but conjugates 𝑖∆.
Therefore, we focus on evaluating Eqn. 4.61 in Region 1 (𝑡′′ > 𝑡′), and then generalize
this result to the other region by taking the complex conjugate. In Region 1, the
substitution 𝜏 = (𝛿𝜔rms/Γ𝑇 )

2 exp [−Γ𝑇 (𝑡
′′ − 𝑡′)] gives

⟨|𝑎̃(0)|2⟩1 = 2Γ𝑐|𝑠in|2
∫︁ 0

−∞
d𝑡′𝑒2Γ𝑙𝑡

′ 𝑒𝑥

Γ𝑇

𝑥−𝑠′
∫︁ 𝑥

𝑥𝑒Γ𝑇 𝑡′
𝜏 𝑠

′−1𝑒−𝜏𝑑𝜏

= 2Γ𝑐|𝑠in|2
𝑒𝑥

Γ𝑇

𝑥−𝑠′
∫︁ 0

−∞
d𝑡′𝑒2Γ𝑙𝑡

′
[︁
𝛾𝑙(𝑠

′, 𝑥)− 𝛾𝑙(𝑠
′, 𝑥𝑒Γ𝑇 𝑡′)

]︁
(4.62)

where 𝑥 = (𝛿𝜔rms/Γ𝑇 )
2 and 𝑠′ = (𝛿𝜔2

rms/Γ𝑇 − Γ𝑙 + 𝑖∆)/Γ𝑇 . The first term can be
directly evaluated, while the second can be simplified with integration by parts using
the relationship

𝜕𝛾𝑙(𝑠
′, 𝑥)

𝜕𝑥
= 𝑥𝑠′−1𝑒−𝑥. (4.63)
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With a second substitution 𝜏2 = 𝑥𝑒Γ𝑇 𝑡′ we find

⟨|𝑎̃(0)|2⟩1 = 2Γ𝑐|𝑠in|2
𝑒𝑥

Γ𝑇

𝑥−𝑠′
[︂
𝛾𝑙(𝑠

′, 𝑥)

2Γ𝑙

− 𝑥
− 2Γ𝑙

Γ𝑇

Γ𝑇

∫︁ 𝑥

0

𝜏
2Γ𝑙
Γ𝑇

−1

2 𝛾𝑙(𝑠
′, 𝜏2)d𝜏2

]︂
= 2Γ𝑐|𝑠in|2

𝑒𝑥

Γ𝑇

𝑥−𝑠′
{︂
𝛾𝑙(𝑠

′, 𝑥)

2Γ𝑙

− 𝑥
− 2Γ𝑙

Γ𝑇

Γ𝑇

(︂
Γ𝑇

2Γ𝑙

)︂
×

[︂
𝜏

2Γ𝑙
Γ𝑇
2 𝛾𝑙(𝑠

′, 𝜏2) + 𝛾𝑢(𝑠
′ +

2Γ𝑙

Γ𝑇

, 𝜏2)

]︂𝜏2=𝑥

𝜏2=0

}︂
(4.64)

where 𝛾𝑢(𝑠
′, 𝑥) is the upper incomplete Gamma function defined by

𝛾𝑢(𝑠
′, 𝑥) =

∫︁ ∞

𝑥

𝜏 𝑠
′−1𝑒−𝜏𝑑𝜏. (4.65)

Evaluating the final terms, the result simplifies nicely to

⟨|𝑎̃(0)|2⟩1 =
|𝑠in|2
Γ𝑇

(︂
Γ𝑐

Γ𝑙

)︂
𝑒𝑥𝑥

−(𝑠′+
2Γ𝑙
Γ𝑇

)
𝛾𝑙(𝑠

′ +
2Γ𝑙

Γ𝑇

, 𝑥). (4.66)

To find the complete result, we simply add the second term in Eqn. 4.61 to find

⟨|𝑎̃|2⟩ = |𝑠in|2
Γ𝑇

(︂
Γ𝑐

Γ𝑙

)︂
𝑒𝑥

[︀
𝑥−𝑠𝛾𝑙(𝑠, 𝑥) + 𝑥−𝑠*𝛾𝑙(𝑠

*, 𝑥)
]︀

(4.67)

𝑥 ≡
(︂
𝛿𝜔rms

Γ𝑇

)︂2

(4.68)

𝑠 ≡ Γ𝑙 + 𝑖∆

Γ𝑇

+ 𝑥. (4.69)

Note the similarity to Eqns. 4.52-4.54. Once again, we must ensure that our solu-
tion corresponds to the noiseless result expected when 𝛿𝜔rms → 0. Using the series
expansion of 𝛾𝑙(𝑠, 𝑥), we find

⟨|𝑎̃|2⟩𝑇=0 =
|𝑠in|2
Γ𝑇

(︂
Γ𝑐

Γ𝑙

)︂[︂
𝛾𝑓 (𝑠|𝑥=0)

𝛾𝑓 (𝑠|𝑥=0 + 1)
+

𝛾𝑓 (𝑠
*|𝑥=0)

𝛾𝑓 (𝑠*|𝑥=0 + 1)

]︂
=

|𝑠in|2
Γ𝑇

(︂
Γ𝑐

Γ𝑙

)︂[︂
Γ𝑇

Γ𝑙 + 𝑖∆
+

Γ𝑇

Γ𝑙 − 𝑖∆

]︂
⟨|𝑎̃|2⟩𝑇=0 =

2Γ𝑐|𝑠in|2
∆2 + Γ2

𝑙

(4.70)
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as expected. Similar to the solution for ⟨𝑎̃(𝑡)⟩, we define the effective quality factor

𝑄eff =
𝜔0⟨|𝑎̃|2⟩
2|𝑠in|2

=
𝜔0

2Γ𝑇

𝑒𝑥𝑥−𝑠𝛾𝑙(𝑠, 𝑥) (4.71)

for resonant excitation (∆ = 0) and critical coupling (Γ𝑐 = Γ𝑙/2).

As opposed to the non-monotonic scaling of the mean field amplitude |⟨𝑎̃(𝑡)⟩|
with 𝑄𝑙, the stored energy ⟨|𝑎̃(𝑡)|2⟩ increases monotonically with increasing 𝑄𝑙. This
is intuitively described in Sec. 4.7: continuing to increase 𝑄𝑙 decreases the cavity
linewidth until 𝑄eff is saturated by mode volume-dependent thermal noise in the
high-𝑄𝑙/𝑉eff regime. Finally, we note that the maximum energy storage (although
not necessarily the maximum intensity, which also depends on the mode volume) is
a achieved with large mode volumes due to reduced thermo-optic noise.

Cavity Spectrum in the White Noise Limit

The complete field autocorrelation in Eqn. 4.60 simplifies considerably in the high-
𝑄𝑙 limit where Γ𝑇 ≫ Γ𝑙, as the cavity resonant frequency 𝜔0(𝑡) can be assumed
to directly track the temperature noise over the relevant timescales. The frequency
noise is then effectively delta-correlated in time, and the aforementioned — albeit
tedious — “integration by regions” technique can then be similarly applied to solve
for the field noise spectrum 𝑆𝑎𝑎(𝜔). A more intuitive approach to this solution is
though adiabatic elimination of 𝜔0(𝑡)’s dynamics following the procedure in [200].
Converting the optical field and resonant frequency evolution equations (Eqns. 4.37,
4.39) into stochastic differential equations yields

d𝑎̃(𝑡) =
{︁
[𝑖(𝛿𝜔(𝑡)−∆)− Γ𝑙] 𝑎̃(𝑡) +

√︀
2Γ𝑐𝑠in

}︁
d𝑡 (4.72)

d𝛿𝜔(𝑡) = −Γ𝑇 𝛿𝜔(𝑡)d𝑡+ 𝛿𝜔rms

√︀
2Γ𝑇d𝑊 (𝑡) (4.73)

for both Itô and Stratonovich forms since the frequency noise is additive (𝛿𝜔rms
√
2Γ𝑇

is constant). In the limit Γ𝑇 → ∞, we can adiabatically eliminate the resonant
frequency dynamics, yielding a steady state value 𝛿𝜔(𝑡) =

√︀
2/Γ𝑇 𝛿𝜔rmsd𝑊 (𝑡)/d𝑡.

The cavity evolution can then be simplified to

d𝑎̃𝑆(𝑡) =
[︁
(−𝑖∆− Γ𝑙)𝑎̃𝑆(𝑡) +

√︀
2Γ𝑐𝑠in

]︁
d𝑡+

√︂
2

Γ𝑇

𝛿𝜔rms𝑎̃𝑆(𝑡)d𝑊 (𝑡) (4.74)

d𝑎̃𝐼(𝑡) =

{︂[︂
−𝑖∆−

(︂
Γ𝑙 +

𝛿𝜔2
rms

Γ𝑇

)︂]︂
𝑎̃𝐼(𝑡) +

√︀
2Γ𝑐𝑠in

}︂
d𝑡+

√︂
2

Γ𝑇

𝛿𝜔rms𝑎̃𝐼(𝑡)d𝑊 (𝑡)

(4.75)



4.5. EXPERIMENTAL TRN IN PHC CAVITIES 77

in Stratonovich and Itô forms, respectively. Applying the Itô rule (d𝑊 (𝑡))2 = d𝑡 to
the latter, we can solve for the steady-state moments

⟨𝑎̃(𝑡)⟩ =
√
2Γ𝑐𝑠in

[Γ𝑙 + 𝛿𝜔2
rms/Γ𝑇 ] + 𝑖∆

(4.76)

⟨|𝑎̃(𝑡)|2⟩ = 2Γ𝑐 (1 + 𝛿𝜔2
rms/Γ𝑇Γ𝑙) |𝑠in|2

[Γ𝑙 + 𝛿𝜔2
rms/Γ𝑇 ]

2 +∆2
(4.77)

which by comparison to Eqn. 4.55 and Eqn. 4.70 immediately reveals a thermal broad-
ening 2Γ𝑙 → 2Γ𝑙 + 2𝛿𝜔2

rms/Γ𝑇 of the microcavity linewidth. We can also derive an
equation of motion for the autocorrelation 𝑅𝑎𝑎(𝜏) = ⟨𝑎̃(𝑡)𝑎̃*(𝑡+ 𝜏)⟩,

d

d𝜏
𝑅𝑎𝑎(𝜏) =

[︂
𝑖∆−

(︂
Γ𝑙 +

𝛿𝜔2
rms

Γ𝑇

)︂]︂
𝑅𝑎𝑎(𝜏) +

√︀
2Γ𝑐𝑠in⟨𝑎̃(𝑡)⟩. (4.78)

Solving Eqn. 4.78 subject to the 𝜏 = 0 conditions of Eqn. 4.77, we find

𝑅𝑎𝑎(𝜏) =
2Γ𝑐|𝑠in|2

[Γ𝑙 + 𝛿𝜔2
rms/Γ𝑇 ]

2 +∆2

[︂
𝛿𝜔2

rms

Γ𝑇Γ𝑙

𝑒(𝑖Δ−Γ𝑙−𝛿𝜔2
rms/Γ𝑇 )𝜏 + 1

]︂
, (4.79)

corresponding to the optical noise spectrum

𝑆𝑎𝑎(𝜔) =
Γ𝑐

Γ𝑙

2𝛿𝜔2
rms|𝑠in|2/Γ𝑇

[Γ𝑙 + 𝛿𝜔2
rms/Γ𝑇 ]

2 +∆2

2(Γ𝑙 + 𝛿𝜔2
rms/Γ𝑇 )

(Γ𝑙 + 𝛿𝜔2
rms/Γ𝑇 )2 + (𝜔 +∆)2

. (4.80)

Eqn. 4.80 evaluated in the perturbative limit 𝛿𝜔rms ≪ Γ𝑙 coincides with the low-
frequency (𝜔 ≪ Γ𝑇 ) limit of the previous perturbative spectrum (Eqn. 4.45).

4.5 Experimental TRN in PhC Cavities

Combined, these general solutions characterize the evolution of a microcavity field in
the presence of TRN. We will use them shortly (in Secs. 4.7 and 4.8) to evaluate the
coherence and energy storage limits of high-𝑄/𝑉 cavities. Before pursuing these goals,
we first measured the noise spectrum of high-𝑄/𝑉 PhC cavities to experimentally
verify the fundamental assumptions of our TRN model. The single-mode thermal
decay approximation made in Eqn. 4.15 implies the decay rate of Eqn. 4.21 and the
spectral density of cavity resonant frequency in Eqn. 4.30. This result is commonly
used as a simplifying assumption for temperature fluctuations [167, 190]; however,
it is not immediately clear that the single-mode approximation holds in the case of
small mode volume optical microcavities, where the characteristic length scales of the
near diffraction-limited optical mode (∼𝜆/𝑛) can approach that of the phonon mean
free path [201]. In absence of any experimental data in the literature to verify the
assumption, we constructed an experiment to measure thermo-refractive noise in high-
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Figure 4-4: Simplified setup schematic for TRN measurements. A shot noise-limited,
balanced homodyne detector (a) is locked to the phase quadrature of the cavity re-
flection signal and records the spectrum of resonant frequency fluctuations.

𝑄𝑙/𝑉eff silicon photonic crystal cavities. The experiment also allows us to compare
measured TRN with the spectra derived from our multimode theory (Sec. 4.4.3).

As shown in Fig. 4-4, our setup uses a Mach-Zehnder interferometer to measure
the phase of a cavity reflection signal via balanced homodyne detection. A variable
beamsplitter separates the emission from an amplified tunable infrared laser into local
oscillator (LO) and cavity input paths, which are passively balanced to minimize laser
frequency noise coupling. A 𝜆/2-plate rotates the input signal polarization by 45∘
relative to the dominant cavity polarization axis such that the cavity reflection can be
isolated from any specular reflection from the sample using a polarizing beamsplitter
(PBS) [202]. The sample stage is temperature controlled to better than 10 mK
using a Peltier plate and feedback temperature controller. A balanced, shot noise-
limited photodetector measures the homodyne signal from the recombined cavity
reflection and LO, and the result is recorded on an electronic spectrum analyzer
(ESA). By actively locking to the phase quadrature of the homodyne signal with a
piezo-controlled mirror, TRN-induced cavity frequency noise is detected as frequency-
resolved voltage noise. To calibrate the spectrum, we inject a known phase noise
with an electro-optic modulator (EOM) whose modulation efficiency is measured by
sideband fitting [203]. Before discussing the results in Sec. 4.6, I will first describe
calibration procedures, review the complete experiment layout, and analyze other
possible noise sources in Sec. 4.5.

4.5.1 Complete Experimental Setup

A more detailed version of the experimental setup is provided in Fig. 4-5. The setup
consists of a typical polarized light microscope, where the signal reflected from a PhC
cavity is measured with balanced homodyne detection.

The homodyne detector is balanced by zeroing the DC component of the ho-
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Figure 4-5: Schematic of the setup built to measure TRN in photonic crystal cavities.
An amplified (PriTel PMFA) continuous wave laser (Santec TSL-710) is separated
into a local oscillator and cavity signal by a polarizing beamsplitter (PBS). The LO
line is passively path-length matched to the cavity signal using a tunable retroreflec-
tor delay line. The cavity signal is combined with a linearly polarized (LP) white
light source (LED) using a dichroic mirror (DM) and is reflected from a PhC cavity
rotated 45∘ from the incident polarization (adjustable with a half-wave plate, 𝜆/2),
which allows the cavity signal to be isolated from the specular reflection using a PBS.
A quarter-wave plate (𝜆/4) allows the specular reflection to be extracted for compar-
ison to the cavity-only reflection. The reflected illumination light is separated and
imaged onto a silicon CCD. The cavity signal can be directed with flip-mirrors to-
wards an IR camera for imaging, an IR avalanche photodetector (ThorLabs PDB410C
10 MHz InGaAs APD) to collect low-noise reflection spectra, or towards the balanced
homodyne detector. For the latter, a balanced photodetector (ThorLabs PDB480C-
AC 1.6 GHz InGaAs p-i-n Photodetector) measures the homodyne signal from the
recombined cavity reflection and local oscillator, and the result is recorded on an
electronic spectrum analyzer (ESA; Agilent N9010A EXA Signal Analyzer). The DC
signal extracted from a low-pass filter (LPF) is used as the feedback signal for a
digital PID controller which stabilizes the signal-LO phase difference by actuating a
piezo-actuated mirror. An electro-optic modulator (EOM) provides a known phase
noise which can be used to calibrate the frequency noise of the PhC cavity. The
sample stage is temperature-stabilized to ∆𝑇 < 0.01 K using a peltier plate and a
feedback temperature controller.
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modyne signal with a digital PID feedback controller connected to a piezo-actuated
mirror. In this configuration, the homodyne voltage signal

𝑣ℎ ∼ |𝑎̃LO||𝑎̃cavity|𝛿𝜑cavity(𝑡) (4.81)

for a local oscillator signal 𝑎̃LO is directly proportional to the cavity amplitude |𝑎̃cavity|
and to phase fluctuations 𝛿𝜑cavity(𝑡) resulting from the stochastic resonant frequency.
An electronic spectrum analyzer is used to measure the power spectral density 𝑆𝑣𝑣 of
this homodyne voltage signal.

4.5.2 Phase Noise Calibration

The resonant frequency noise spectral density 𝑆𝜔𝜔 can then be determined from 𝑆𝑣𝑣

using the absolute calibration technique discussed in Refs. [203, 204]. For example,
consider a Mach-Zehnder interferometer with input power 𝑃in and splitting ratio 𝜂ℎ,
which creates the in-phase local oscillator and cavity input signals

𝑎̃LO =
√︀

𝜂𝐻𝑃in 𝑎̃in =
√︀

(1− 𝜂𝐻)𝑃in. (4.82)

Assuming resonant drive (∆ = 𝜔𝐿 − 𝜔0 = 0) for a cavity with input/output power
coupling rate Γ𝑐, total loss rate Γ𝑙, and a perturbative resonant frequency noise 𝛿𝜔(𝑡),
the output cavity signal is then

𝑎̃out =
√︀
(1− 𝜂𝐻)𝑃in

2Γ𝑐 − Γ𝑙

Γ𝑙 + 𝑖𝛿𝜔(𝑡)
, (4.83)

yielding a homodyne detection voltage

𝑣ℎ(𝑡) ≈ 2𝐺𝑐|𝑎̃LO||𝑎̃out|𝛿𝜑cavity(𝑡)

≈ −2𝐺𝑐

√︀
𝜂𝐻(1− 𝜂𝐻)𝑃in

2Γ𝑐 − Γ𝑙

Γ2
𝑙

𝛿𝜔(𝑡) (4.84)

for a detector conversion gain 𝐺𝑐. The final frequency noise spectral density

𝑆𝛿𝜔
𝑣𝑣 ≈ 4𝐺2

𝑐𝜂𝐻(1− 𝜂𝐻)

(︂
2Γ𝑐 − Γ𝑙

Γ2
𝑙

)︂2

𝑃 2
in⏟  ⏞  

𝐾expt

𝑆𝜔𝜔 = 𝐾expt𝑆𝜔𝜔 (4.85)

is therefore a function of various experimental constants and cavity coupling param-
eters.

However, the value of 𝐾expt can be exactly determined by injecting a known phase
noise 𝛿𝜑(𝑡) = 𝜑𝑚(𝑉𝑝) cos(𝜔𝑚𝑡) into the interferometer with an electro-optic modulator
driven with an electrical tone with frequency 𝜔𝑚 and peak voltage 𝑉𝑝. Under the same
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experimental conditions, the local oscillator and cavity input signals are

𝑎̃LO =
√︀
𝜂𝐻𝑃in𝑒

𝑖𝜑𝑚(𝑉𝑝) cos(𝜔𝑚𝑡) (4.86)

𝑎̃in =
√︀
(1− 𝜂𝐻)𝑃in𝑒

𝑖𝜑𝑚(𝑉𝑝) cos(𝜔𝑚𝑡). (4.87)

With a small enough modulation depth 𝜑𝑚(𝑉𝑝) = 𝜋𝑉𝑝/𝑉𝜋 (and therefore a small
enough drive voltage 𝑉𝑝 relative to the half-wave voltage 𝑉𝜋), the local oscillator can
be approximated to first order as

𝑎̃LO ≈
√︀

𝜂𝐻𝑃in (1 + 𝑖𝜑𝑚(𝑉𝑝) cos(𝜔𝑚𝑡)) . (4.88)

Similarly, assuming 𝜔𝑚 ≪ Γ𝑙 (as is the case in our experiment), the cavity response
yields the output signal

𝑎̃out ≈
√︀

(1− 𝜂𝐻)𝑃in
2Γ𝑐 − Γ𝑙

Γ𝑙

[︂
1 + 𝑖𝜑𝑚(𝑉𝑝)

(︂
cos(𝜔𝑚𝑡) +

𝜔𝑚

Γ𝑙

sin(𝜔𝑚𝑡)

)︂]︂
. (4.89)

The homodyne signal

𝑣ℎ(𝑡) ≈ 2𝐺𝑐

√︀
𝜂𝐻(1− 𝜂𝐻)𝑃in

2Γ𝑐 − Γ𝑙

Γ2
𝑙

𝜔𝑚𝜑𝑚(𝑉 ) sin(𝜔𝑚𝑡) (4.90)

corresponds to a power spectral density

𝑆𝛿𝜑𝑚
𝑣𝑣 ≈ 4𝐺2

𝑐𝜂𝐻(1− 𝜂𝐻)

(︂
2Γ𝑐 − Γ𝑙

Γ2
𝑙

)︂2

𝑃 2
in⏟  ⏞  

𝐾expt

𝜔2
𝑚𝑆𝜑𝜑

⃒⃒
𝜔=𝜔𝑚

, (4.91)

which, similar to 𝑆𝛿𝜔
𝑣𝑣 , is directly proportional to 𝐾expt. 𝐾expt can therefore be elimi-

nated to yield an absolute calibration for the resonant frequency noise spectral density:

𝑆𝜔𝜔 ≈ 𝑆𝛿𝜔
𝑣𝑣

𝐾expt
≈

𝜔2
𝑚𝑆𝜑𝜑

⃒⃒
𝜔=𝜔𝑚

𝑆𝛿𝜑𝑚
𝑣𝑣

⃒⃒
𝜔=𝜔𝑚

𝑆𝛿𝜔
𝑣𝑣 . (4.92)

This result can be simplified by evaluating the phase spectral density

𝑆𝜑𝜑(𝜔) =

∫︁ ∞

−∞
𝜑2
𝑚(𝑉𝑝)⟨cos(𝜔𝑚𝑡) cos(𝜔𝑚(𝑡+ 𝜏))⟩𝑒−𝑖𝜔𝜏d𝜏

=
𝜑2
𝑚(𝑉𝑝)

2

[︂
1

2
𝛿(𝜔 − 𝜔𝑚) +

1

2
𝛿(𝜔 + 𝜔𝑚)

]︂
. (4.93)

The spectrum analyzer convolves the 𝛿-functions with the intermediate frequency
filter function 𝐹 (𝜔), which is normalized such that 𝐹 (0) = 1

ENBW [203], where the
effective noise bandwidth ENBW = 𝜂FRBW for a resolution bandwidth RBW and
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a filter shape-dependent 𝜂F ≈ 1. Therefore, the measured noise spectral density
evaluated at the modulation frequency 𝜔𝑚 becomes

𝑆𝜑𝜑(𝜔 = 𝜔𝑚) =
𝜑2
𝑚(𝑉𝑝)

4
𝐹 (𝜔) * 𝛿(𝜔 − 𝜔𝑚) =

𝜑2
𝑚(𝑉𝑝)

4 · ENBW
. (4.94)

Using this result, the calibration term in Eqn. 4.92 can be simplified to a final form

𝑆𝜔𝜔(𝜔) =
𝜔2
𝑚𝜑

2
𝑚(𝑉𝑝)

4𝜂𝐹 · RBW
𝑆𝛿𝜔
𝑣𝑣 (𝜔)

𝑆𝛿𝜑𝑚
𝑣𝑣 (𝜔𝑚)

(4.95)

that agrees with Eqn. 20 of Ref. [203].

Electo-optic Phase Modulator Calibration

Eqn. 4.95 demonstrates that the calibrated frequency noise can be readily obtained
by comparing the recorded RF power spectral density 𝑆𝛿𝜔

𝑣𝑣 (𝜔) to the calibration PSD
𝑆𝛿𝜑𝑚
𝑣𝑣 (𝜔𝑚) (which corresponds to a known phase spectral density) for a given calibra-

tion frequency 𝜔𝑚/2𝜋 and spectrum analyzer RBW. The ENBW correction factor
𝜂𝐹 is a function of various spectrum analyzer settings (see Ref. [205] for example),
and is therefore measured by comparing the noise marker amplitude (dBm/

√
Hz) to

the measured PSD divided by the RBW. This technique yields 𝜂𝐹 ≈ 1.057, which
is approximately equal to the value given in Ref. [205] assuming typical spectrum
analyzer settings.

The only remaining unknown parameter required for calibration is the peak-
voltage-dependent modulation depth 𝜑𝑚(𝑉𝑝) of the phase modulator, which can be
determined with a sideband fitting technique as shown in Fig. 4-6. An electro-optic
phase modulator (EOM) is embedded in one arm of an unbalanced Mach-Zehnder
interferometer, yielding a homodyne signal

𝑣ℎ ∝
∑︁
𝑛

𝐽𝑛(𝜑𝑚) cos(𝑛𝜔𝑚𝑡) (4.96)

for a modulation frequency 𝜔𝑚. The power spectrum observed on the spectrum
analyzer therefore consists of a periodic sequence of spectrum analyzer filter functions
𝐹 (𝜔 − 𝑛𝜔𝑚) at frequencies 𝜔𝑛 = 𝑛𝜔𝑚 with powers proportional to 𝐽2

𝑛(𝜑𝑚). Fitting
the sideband powers (relative to the 𝑛 = 1 sideband, as the 𝑛 = 0 peak is inaccessible
on the AC-coupled spectrum analyzer) via a least-squares regression yields 𝜑𝑚(𝑉𝑝)
for any peak drive voltage 𝑉𝑝. Fig. 4-6(a) illustrates the result for 𝜆 = 1550 nm and
𝑉𝑝 = 2.24 V, where the Bessel functions evaluated at 𝜑𝑚 ≈ 0.6𝜋 rad (red points)
are well fitted to the measured (blue curve) peak amplitudes. After repeating the
experiment for multiple values of 𝑉𝑝, a linear fit (Fig. 4-6(b)) gives the modulation
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Figure 4-6: Measurement of phase modulator modulation depth 𝜑𝑚(𝑉𝑝) at 𝜆 = 1550
nm. A balanced homodyne measurement is performed on the output of a Mach-
Zehnder interferometer with the electro-optic modulator (EOM) in one arm, yielding
spectra similar to that of (a). The sideband amplitudes are fitted to find the mod-
ulation depth at each peak drive voltage 𝑉𝑝, and a linear fit is applied to find the
modulation efficiency. The measured value 𝜑𝑚/𝑉𝑝 = 0.82 ± 0.01 rad/V corresponds
to a half-wave voltage 𝑉𝜋 = 3.83 V.

efficiency

𝜂mod =
𝜑𝑚

𝑉𝑝

⃒⃒⃒⃒
𝜆0=𝜆cal

= 0.82± 0.01 rad/V (4.97)

corresponding to a half-wave voltage 𝑉𝜋 = 3.75 V (roughly in line with the manufac-
turer quoted value of 3.17 V) at the calibration wavelength.

Note that the DC phase of the fiber interferometer in this experiment was allowed
to drift while the measurement was averaged on a timescale much longer than that
of the drift – a standard technique [206] which only affects the total power of the
homodyne signal, not the relative magnitude of the sidebands.

Balanced Homodyne Detector Characterization

Using the measured EOM modulation efficiency, the calibrated thermo-refractive
noise measurements in Fig. 4-8 were obtained by measuring the cavity reflection with
the stabilized homodyne detector in Fig. 4-5. We confirmed that the balanced pho-
todetection was shot noise limited (with 10 dB of shot noise clearance) for frequencies
greater than ∼100 kHz and balanced the interferometer arms to well within 1 mm –
over an order of magnitude shorter than the expected cavity delay (∼cm). This was
achieved by tuning a retroreflector-based delay line while observing pulse delays from
a picosecond fiber laser on both interferometer paths.
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4.5.3 Photonic Crystal Cavity Sample Details

The 𝐿3 and 𝐿4/3 photonic crystal cavities were fabricated by Applied Nanotools
foundry via electron-beam patterning and dry-etching of 220 nm-thick undoped silicon-
on-insulator wafers with a 2 µm-thick buried oxide layer. To suspend the devices, the
buried oxide was subsequently released via a 60 second timed wet etch in 49% hy-
drofluoric (HF) acid. The designs were adapted from Refs. [62, 88]. As shown
in Fig. 4-8, superimposed gratings were added to improve vertical coupling effi-
ciency. The gratings are formed via periodic hole radii perturbations ranging from
∆𝑟 = 0 → 0.05𝑟 at a period equal to twice the lattice constant 𝑎 (c.f. Sec. 2.1).
Although devices with quality factors as large as 400,000 were measured for small
values of ∆𝑟, the results presented in Fig. 4-8 use ∆𝑟 = 0.05𝑟, which significantly
improves collection efficiency into our fiber-coupled detector.

4.5.4 Summary of Experimental Parameters

Table 4.1 summarizes the various experimental parameters used to generate the data
and fit parameters shown in Fig. 4-8. Note that the expected thermal diffusivity is
based on thermal conductivity measurements in thin silicon films [201] and the hole
lattice porosity 𝜑 [207]. The porosity 𝜑 = 3𝜋𝑟2/(3

√
3𝑎2/2−3𝜋𝑟2) — calculated as the

ratio of hole area 3𝜋𝑟2 (assuming a hole radius 𝑟) to material area within a hexagonal
unit cell of a lattice with lattice constant 𝑎 — reduces the thin film diffusivity to
𝐷𝑇 ≈ 𝐷(1 − 𝜑)/(1 + 𝜑) [207]. This “restricted” diffusivity is used to calculate the
expected decay rates in Fig. 4-8.

4.5.5 Comparison of Other Noise Sources

Should TRN dominate the frequency noise spectrum for the experimental parameters
in Sec. 4.5.4? After all, a number of other stochastic processes can also produce reso-
nant frequency noise. Here we consider two such sources: 1) multi-photon absorption
leading to photothermal shot noise from free carrier recombination, and 2) self phase
modulation. Both noise sources evaluated at their respective nonlinear thresholds —
as an estimate of the “worst case” maximum noise levels — are found to be more than
one order of magnitude weaker than TRN. Since the cavity is measured well within
the linear regime, we find that TRN dominates both other contributions combined,
thus further confirming our experimental measurements.

Multi-Photon Absorption

Multi-photon absorption (MPA) within the resonator leads to a free carrier popu-
lation that stochastically recombines, producing random local heating analogous to
fundamental thermo-refractive noise. Considering this similarity, we can analyze the
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Parameter Symbol Value Source

Temperature 𝑇 295.68 K Measured
Si Refractive Index 𝑛Si 3.48 [208]
Si Thermo-optic Coefficient 𝛼Si

TO 1.8× 10−4 K−1 [208]
Si Specific Heat 𝑐Si

𝑉 1.64 J/cm3·K [201]
Si Thermal Conductivity 𝜅Si 70 W/m·K [201]
Si Thermal Diffusivity (thin
film) 𝐷Si 0.43 cm2/s 𝜅/𝑐𝑉

Lattice Porosity 𝜑 {0.29, 0.26} Calculated
Patterned Thermal
Diffusivity 𝐷Si

T {0.23, 0.25} cm2/s 𝐷Si(1− 𝜑)/(1 + 𝜑) [207]

Resonant Wavelength 𝜆0 {1559.3, 1551.5} nm Measured
Quality Factor 𝑄𝑙 {168,000, 163,000} Measured
Phase Modulator Efficiency 𝜂mod 0.821 rad/V Measured (1550 nm)
ESA Noise Correction Factor 𝜂𝐹 1.057 Measured
Mode Confinement Factor 𝛾Si {0.96, 0.95} Simulated
Mode Volume 𝑉eff {0.95, 0.32} Simulated
Thermal Mode Volume 𝑉𝑇 {3.92, 1.51} Simulated (Eqn. 4.28)

Table 4.1: Parameters used for calibrating the noise spectrum and computing or
fitting Γ𝑇 and 𝑉𝑇 . Independent values 𝑛 for 𝐿3 and 𝐿4/3 microcavities are listed as
{𝑛L3, 𝑛L4/3} for cavity-dependent parameters. The mode confinement factor 𝛾Si ∼ 1
confirms the validity of Eqn. 4.95, which assumes complete confinement of the mode
in silicon.

MPA photothermal shot noise by redefining the statistics of the mode averaged tem-
perature driving force 𝐹𝑇 (𝑡) in Eqn. 4.15. The mean rate of intra-cavity 𝑘-photon
absorption is [60]

⟨𝑟𝑘PA⟩ =
𝛽𝑘

𝑘ℏ𝜔0

𝐼𝑘pk𝑉𝑘PA, (4.98)

where 𝐼pk = 𝑐|𝑎̃|2/2𝑛𝑉eff is the peak intensity of the stored energy |𝑎̃|2, 𝛽𝑘 is the
𝑘-photon absorption coefficient, 𝑐 is the speed of light, and

𝑉𝑘PA =

∫︁
dielectric

|𝐸⃗(𝑟⃗)|2𝑘d3𝑟/max{|𝐸⃗(𝑟⃗)|2𝑘}. (4.99)

Note that we assume that the heating produced by the photoexcited free carriers is
local (i.e. no carrier diffusion). The variance of 𝐹𝑇 (𝑡) is then determined from the
temperature change expected from the variance of MPA events within an infinitesi-
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mally small time (a Poisson process), yielding the autocorrelation

⟨𝐹 *
𝑇,𝑘(𝑡)𝐹𝑇,𝑘(𝑡

′)⟩ = 𝑘ℏ𝜔0

𝑐2𝑉 𝑉
2
𝑇

𝛽𝑘𝐼
𝑘
pk𝑉𝑘PA𝛿(𝑡− 𝑡′). (4.100)

Following the method of Sec. 4.4.1, we arrive at the spectral density

𝑆𝑘PA
𝜔𝜔 (𝜔) =

(︁𝜔0

𝑛
𝛼TO

)︁2 𝑘ℏ𝜔0

𝑐2𝑉 𝑉
2
𝑇

𝛽𝑘𝐼
𝑘
pk𝑉𝑘PA

1

Γ2
𝑇 + 𝜔2

, (4.101)

which can be evaluated for any intra-cavity stored energy. Here, we consider 𝐼pk

at the nonlinear threshold, i.e. the peak intensity for a linewidth resonance shift
|⟨∆𝜔⟩|/2Γ𝑙 = 𝛼TO⟨∆𝑇𝑘PA⟩𝑄𝑙/𝑛 = 1. The threshold intensity can therefore be derived
from the steady state value of Eqns. 4.15, which lends the average temperature change

⟨∆𝑇𝑘PA⟩ =
𝑘ℏ𝜔0⟨𝑟𝑘PA⟩
𝑐𝑉 𝑉𝑇Γ𝑇

=
𝛽𝑘𝐼

𝑘
pk𝑉𝑘PA

𝑐𝑉 Γ𝑇𝑉𝑇

. (4.102)

Substituting this result into the spectral density equation assuming two-photon ab-
sorption as the dominant process (true for our silicon cavities driven at ∼1550 nm),
we can simplify to the final result

𝑆2PA,threshold
𝜔𝜔 (𝜔) =

𝜔2
0𝛼TO

𝑛

ℏ𝜔0

𝑄𝑙𝑐𝑉 𝑉𝑇

2Γ𝑇

Γ2
𝑇 + 𝜔2

. (4.103)

This result is plotted in Fig. 4-7 assuming the experimental parameters of our de-
vices listed in Table 4.1. Comparing with Eqn. 4.36, we find 𝑆2PA,threshold

𝜔𝜔 /𝑆TRN
𝜔𝜔 =

(𝑛/𝑄𝑙𝛼TO𝑇 )(ℏ𝜔0/𝑘𝐵𝑇 ), which accounts for the factor of ∼10 weaker maximum pho-
tothermal shot noise in our devices as shown in Fig. 4-7. We operate with an input
power much lower than the nonlinear threshold power (such that ⟨∆𝜔2PA⟩ ≪ Γ𝑙), so
the experimental photothermal shot noise is substantially weaker than the maximum
value calculated here.

Kerr Self Phase Modulation

When confined in a 𝜒(3) nonlinear material, Poissonian fluctuations of the mean intra-
cavity photon number impart self phase modulational (SPM) noise on the resonant
frequency. From first-order perturbation theory, the Kerr index change 𝛿𝑛(𝑟⃗) =

3𝜒(3)𝜖(𝑟⃗)|𝐸⃗(𝑟⃗)|2/8𝜖0𝑛3 results in a resonant frequency shift(︂
𝛿𝜔(𝑡)

𝜔0

)︂
Kerr

= − 3𝜒(3)

4𝜖0𝑛4𝑉Kerr
𝛿|𝑎̃(𝑡)|2 (4.104)

where 𝜖0 is the free space permittivity, |𝑎̃(𝑡)|2 is the stored energy, and the Kerr mode
volume 𝑉Kerr is equal to the thermal mode volume 𝑉𝑇 [209]. When driven with a
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Figure 4-7: Approximate spectrum of microcavity noise sources for the experimental
parameters in Table 4.1. Note that 𝑆

1/2
ff is plotted as a fractional stability (units

1/
√

Hz to aid comparison with cavity stabilization literature. Noises from two-photon
absorption (2PA) and self phase modulation (SPM) at their respective nonlinear
threshold powers — which approximates the maximum noise level — are still smaller
than TRN.

classical source, the intra-cavity energy autocorrelation

⟨𝛿|𝑎̃(𝑡)|2𝛿|𝑎̃(𝑡′)|2⟩ = 2Γ𝑐

Γ2
𝑙

𝑒−Γ𝑙|𝑡−𝑡′|ℏ𝜔0⟨|𝑠in|2⟩ (4.105)

can derived from temporal coupled mode theory assuming a constant pump power
⟨|𝑠in|2⟩ coupled at rate Γ𝑐 to a cavity with composite amplitude decay rate Γ𝑙. The
corresponding resonant frequency autocorrelation can then be used to compute the
noise spectral density

𝑆SPM
𝜔𝜔 (𝜔) =

(︂
3𝜒(3)

4𝜖0𝑛4𝑉𝑇

)︂2(︂
4Γ𝑐/Γ𝑙

Γ2
𝑙 + 𝜔2

)︂
ℏ𝜔3

0⟨|𝑠in|2⟩. (4.106)

Similar to the multi-photon absorption case, we evaluate this result at the non-
linear threshold ⟨∆𝜔Kerr⟩/2Γ𝑙 = 1 for a conservative estimate of the associated noise.
The final result is

𝑆SPM,threshold
𝜔𝜔 (𝜔) =

(︂
3𝜒(3)

4𝜖0𝑛4𝑉𝑇𝑄𝑙

)︂(︂
2Γ𝑙

Γ2
𝑙 + 𝜔2

)︂
ℏ𝜔3

0. (4.107)

Even at the threshold power, Fig. 4-7 shows that the SPM noise is over an order of
magnitude weaker than TRN.
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4.6 Measurement Results
Having fully described the theory and experiment in the preceding sections, we can
now get to the juicy stuff — seeing if their results match up in practice. Fig. 4-8 shows
the resulting measurements for two released (air-clad) silicon PhC cavities: the com-
mon 𝐿3 cavity [88] and the recently-proposed “𝐿4/3” cavity [62]. Fabricated cavities
yield high quality factors (up to 𝑄 ≈ 400,000 at 𝜆0 ≈ 1550 nm) with efficient vertical
coupling [92]. The variation of Purcell mode volume — 𝑉 = (0.95, 0.32) for simulated
𝐿3 and 𝐿4/3 cavities, respectively — also allows us to confirm the expected volume-
dependence of TRN. Whereas a direct reflection from the sample surface (green trace)
adds little additional noise to the LO background (blue), we observe broadband noise
from either cavity’s reflection (orange). The calibration tone is visible at 200 MHz
and we attribute the resonance at ∼15 MHz to optomechanical coupling from the
fundamental flexural mode of the suspended membrane [210]. In the corrected cavity
noise curve (red), we have subtracted the LO shot noise and accounted for attenuation
due to the finite cavity linewidth. As expected, the wavelength-scale mode volumes
yield a spectral density of resonant frequency fluctuations 𝑆ff(𝑓) with nearly two or-
ders of magnitude larger amplitude and bandwidth compared to previous results in
microspheres [177] and ring resonators [180]. The corrected 𝐿4/3 noise spectra in
Fig. 4-9 also confirm that the measurement is invariant across the range of acceptable
input powers, which is limited below by the homodyne locking stability and above by
the onset of nonlinear effects leading to excess noise.

The measured noise spectra show excellent agreement with numerical simula-
tions based on a modified version of the fluctuation-dissipation theorem for thermo-
refractive noise [211], which is further described in Chapter 5. The multimode model
derived in Sec. 4.4.3 is similarly well-fitted to the data and yields the fit parameters

{𝑉 L3
𝑇 ,ΓL3

𝑇 /2𝜋, 𝑉
L4/3
𝑇 ,Γ

L4/3
𝑇 /2𝜋} = {3.4± 0.3, 28± 1 MHz, 1.4± 0.1, 80± 3 MHz}

that compare favorably with the expected values ({3.9, 29 MHz, 1.5, 84 MHz}) from
Eqn. 4.6 (evaluated numerically from the finite element method-simulated mode pro-
files) and Eqn. 4.3. In Eqn. 4.3, we assume a two-dimensional Gaussian mode and
reduced thermal diffusivity 𝐷𝑇 = 𝐷(1−𝜑)/(1+𝜑) for the patterned slab with porosity
𝜑 compared to the unpatterned thin film diffusivity 𝐷 [201, 207]. As predicted, the
reduced mode volume of the 𝐿4/3 cavity increases the bandwidth and spectral den-
sity of thermal fluctuations. These observations thereby illustrate a new technique for
evaluating the mode volume of fabricated optical resonators using fundamental quan-
tities as opposed to complex invasive techniques, such as near-field scanning optical
microscopy [78].

As expected from the multimode thermal description in Sec. 4.4.3, the noise spec-
tra of the proposed single-mode approximation (Eqn. 4.5) underestimate the mea-
sured noise of both devices at low frequencies 𝜔 ≪ Γ𝑇 , but accurately approximate
𝑆ff in the range of frequencies of interest (near and above the cutoff frequency Γ𝑇 )
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Figure 4-8: Calibrated measurement of thermo-refractive noise (TRN) in high-𝑄/𝑉
silicon PhC cavities. The finite difference time domain (FDTD) simulated mode pro-
files, thermal mode volume 𝑉𝑇 (Eqn. 4.6), and thermal decay rate Γ𝑇 (Eqn. 4.3) of
the 𝐿3 and 𝐿4/3 devices tested are shown in the top panels. The radii of the green
holes are increased by up to 5% to form superimposed gratings which improve ver-
tical coupling efficiency (Sec. 2.1). The measured spectral density of cavity resonant
frequency and temperature noise — 𝑆ff(𝑓) and 𝑆TT(𝑓), respectively — (red) for 𝐿3
(a) and 𝐿4/3 (b) cavities are compared to noise from a specular reflection off the
sample surface, finite-element method (FEM) simulations of cavity TRN, as well as
single- and multi-mode fits. The listed multimode fit parameters agree with the pre-
dicted values in the top panels. Inset reflection spectra of each device reveal quality
factors on the order of 105, which compare favorably with the FDTD computed val-
ues (1.7 × 105 and 1.6 × 105 for the 𝐿4/3 and 𝐿3, respectively). Micrographs of the
fabricated designs are also inset.

and conserve the integrated frequency noise ⟨𝛿𝜔2
rms⟩. Our results indicate that TRN

is the dominant noise source in high-𝑄/𝑉 resonators, and validate the suitability of
a single-mode approximation to describe the spectrum of frequency fluctuations in
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Figure 4-9: Comparison of corrected 𝐿4/3 cavity frequency noise spectra at various
input powers 𝑃in normalized to the maximum value for the dataset. The rms fractional
frequency fluctuation

√︀
⟨𝛿𝜔2⟩/𝜔0 is computed from the integrated noise over the

plotted measurement bandwidth and plotted in the inset as a function of 𝑃in. No
significant power scaling or deviation from the mean value (black dashed line) is
observed, indicating that noise contributions from nonlinear effects can be neglected.

general microcavity geometries. To our knowledge, these measurements are the first
demonstration of broadband, wavelength-scale cavity readout at the thermodynamic
limit. The corresponding temperature sensitivity, 𝑆1/2

𝑇𝑇 ∼ 300 nK/
√

Hz as shown in
Fig. 4-8, is within one order of magnitude of room-temperature records set by mul-
timode WGM thermometers [212, 213]. Compared to those state-of-the-art sensors,
our PhC devices occupy six orders of magnitude less area and offer three orders of
magnitude larger bandwidth. We expect this unique combination of micron-scale
spatial resolution and broadband, thermodynamically-limited readout to enable new
directions in thermal physics.

Specific applications aside, the lengthy (over a year...) process of achieving agree-
ment between the theoretical, computational, and experimental results in Fig. 4-8
taught me about the scientific method: approaching a problem a different direction
exposes flaws in others, and ultimately leads to greater physical insight. Seeing the
three aforementioned techniques produce overlapping results in Fig. 4-8 was one of
the greatest joys and achievements of this thesis.
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4.7 Microcavity 𝑄/𝑉 Limits

After experimentally verifying the TRN model, we can now use it to estimate the
fundamental performance limits of room temperature microcavities. As described in
Section 4.3, TRN broadens the cavity linewidth to 2Γeff according to the cavity mode
volume 𝑉𝑇 and thermal decay rate Γ𝑇 . The associated quality factor 𝑄eff = 𝜔0/2Γeff

is therefore bound to a maximum value indicative of the resonance stability, which in
turn determines the fidelity of integrated optical frequency references or synthesizers
[150], the minimum resolvable resonance shift in microcavity sensors [214], and the
spectral purity of microcavity lasers [215]. We also specifically consider the quality
factor to mode volume ratio 𝑄eff/𝑉 , which is proportional to the peak intracavity
intensity and therefore of particular significance for cavity nonlinear optics [209] and
enhanced sensitivity to point-like defects [60].

The effective quality factor 𝑄eff = 𝜔0⟨|𝑎̃(𝑡)|2⟩/2|𝑠in|2 of interest in this case can
alternatively be viewed as the ratio of intracavity energy ⟨|𝑎̃(𝑡)|2⟩ to energy input per
cycle 2|𝑠in|2/𝜔0 in a resonantly excited, critically-coupled cavity. Under the same con-
ditions, solving Eqn. 4.1 for ⟨|𝑎̃(𝑡)|2⟩ subject to the noise autocorrelation of Eqn. 4.5
yields (per the derivation in Sec. 4.4.4)

𝑄eff

𝑉
=

𝜔0

2Γ𝑇𝑉
𝑒𝑥𝑥−𝑠𝛾𝑙(𝑠, 𝑥) (4.108)

where 𝛾𝑙 is the lower incomplete Gamma function, 𝑥 = (𝛿𝜔rms/Γ𝑇 )
2, and 𝑠 = Γ/Γ𝑇+𝑥.

Intuitively, decreasing the cavity linewidth 2Γ well below the broadened linewidth has
little impact: the prolonged energy storage offsets the reduced excitation rate of the
rapidly shifting resonance, leaving the intracavity energy unaltered. 𝑄eff is maximized
in this limiting case. The corresponding upper bound of Eqn. 4.108 at 𝑇 = 300 K
is plotted for various material systems in Fig. 4-10 as a function of 𝑉 assuming a
three-dimensional Gaussian-shaped mode in a homogeneous three- or two-dimensional
confining medium. In the latter case, the decay rate Γ𝑇 = 3𝜋𝐷𝑇/𝑉

2/3 decreases by a
factor of 3

√
2𝑉 1/3 to account for the restricted dimensionality of thermal diffusion.

In the joint limit (𝛿𝜔RMS, Γ) ≪ Γ𝑇 , valid for sufficiently high-𝑄, low 𝑉 cavi-
ties, Eqn. 4.108 simplifies to 𝑄max

eff = 𝜔0Γ𝑇/2𝛿𝜔
2
rms, thereby recovering the broadened

linewidth 2𝛿𝜔2
rms/Γ𝑇 derived in Section 4.3. 𝑄max

eff then scales as 𝑉 1/3 in a homoge-
neous medium, indicating that larger mode volumes reduce the integrated thermo-
optic noise, as expected. For this reason, recent ultra-high-𝑄 (𝑄 > 108) integrated
resonators have been specifically designed with 𝑉 ≫ 1 to limit TRN [194, 224]. Al-
ternatively, Fig. 4-10 illustrates the advantage of reducing 𝑉 to maximize 𝑄max

eff /𝑉 .
Further optimization of sub-wavelength cavities [78, 225] could therefore improve the
intensity enhancement achievable in room temperature devices towards the open goal
of microcavity-based quantum nonlinear optics.
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Figure 4-10: Thermal noise-limited room temperature quality factor to mode volume
ratios (𝑄max

eff /𝑉 ) for the materials considered in Sec. 4.7.1 assuming a Gaussian-shaped
mode at 𝜆0 = 1550 nm admitting thermal diffusion in two or three dimensions (dash-
dot and solid lines, respectively). These limits are compared our devices as well as
other fabricated and proposed microcavities. Insets illustrate typical confinement
geometries for the range of 𝑉 listed.

4.7.1 Comparison of TRN in Various Materials

Surprisingly, the 𝑄max
eff /𝑉 limits of several common materials in Fig. 4-10 lie within an

order of magnitude. As shown in Table 4.2, this observed invariance can be attributed
to a inverse relationship between the thermo-optic coefficient and thermal diffusivity
in common materials. Yet this relationship is not fundamental: aluminum nitride,
for example, is shown to outperform all other plotted materials by over an order of
magnitude due to its simultaneously large thermal conductivity and small thermo-
optic coefficient. This realization demonstrates the importance of material choice
when designing state-of-the-art high-𝑄/𝑉eff resonators.

4.7.2 Beyond the Projected 𝑄/𝑉 Limit

While our review of high-𝑄/𝑉 cavities (Fig. 4-10) in various materials shows that
all fabricated cavities obey the projected bounds, silicon PhC slab cavities [76] and
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Material Index
𝑛

TO coeff.
𝛼TO [K−1]

Den-
sity 𝜌
[g/cm3]

Heat
capacity 𝑐𝑉

[J/g·K]

Thermal
diffusivity 𝐷𝑇

[cm2/s]

Si 3.48 1.8× 10−4 2.32 0.7 0.8
GaAs 3.38 2.35× 10−4 5.32 0.35 0.31
InP 3.16 2× 10−4 4.81 0.31 0.37

Si3N4 1.99 2.5× 10−5 4.65 0.7 0.02
LiNbO3 2.21 3.2× 10−5 5.32 0.63 7× 10−3

AlN 2.19 3× 10−5 3.23 0.6 1.47

Table 4.2: Material properties used to calculate the thermal noise limits in Fig. 4-10.
Aluminum nitride is the only material listed with a favorable thermo-optic coefficient
and thermal diffusivity.

silica microtoroids [193] lie within an order of magnitude of the thermal noise limit.
Furthermore, various simulated devices [218–221] exceed the limit; their practical
realization will thus require low-temperature operation — where temperature fluctu-
ations and the thermo-optic coefficient are both suppressed [226] — or novel noise
suppression techniques. We introduce one candidate solution — coherent thermo-
optic noise cancellation — in the next chapter (Chapter 5).

4.8 Implications for All-Optical Qubits
These proposed thermal noise limits have practical impact for future devices. Chief
among the applications driving the pursuit for high-𝑄/𝑉 cavities is quantum infor-
mation. Within the past few years, numerous proposals [227–231] have explored the
feasibility of photonic microcavity-based quantum gates using strong photon-photon
interactions mediated by bulk material nonlinearities. Driven by recent developments
in high-𝑄/𝑉 microcavities [78, 86] and thin film nonlinear optical materials, current
experiments are approaching 1% [232] of this so called “qubit limit of cavity non-
linear optics” [187] where single photon nonlinearities outpace cavity losses. Strong
emitter-based single photon nonlinearities in high-𝑄/𝑉 cavities are also a promis-
ing route towards optically addressable qubits, but rely on precise coupling to single
atoms [233], ions [155], quantum dots [234], or defect centers [235]. We therefore
focus our analysis on emitter-free, all-optical qubits using bulk nonlinearities. These
techniques promise room temperature operation — the requisite hallmark for con-
necting distant nodes in future quantum networks [236] — by leveraging the relative
immunity of optical photons to thermal noise. While this insensitivity is granted by
Planck’s Law, we have shown here that through the thermo-refractive effect, tempera-
ture fluctuations can significantly impact light in a high-𝑄/𝑉 resonator. For coherent
processes, TRN-induced dephasing of the field amplitude 𝑎̃(𝑡) must be considered in
addition to the previously discussed stability and intracavity energy limitations in
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Section 4.7. We therefore solved for ⟨𝑎̃(𝑡)⟩ in the presence of TRN (Sec. 4.4.4). This
result corresponds to an effective quality factor 𝑄eff = 𝜔0|⟨𝑎̃(𝑡)⟩|2/2|𝑠in|2 in a resonant,
critically-coupled cavity, yielding

𝑄eff =
𝜔0

2Γeff
= 𝑄

(︂
Γ

Γ𝑇

)︂2

𝑒2𝑥𝑥−2𝑠𝛾2
𝑙 (𝑠, 𝑥) (4.109)

for the previously defined 𝑥, 𝑠. Eqn. 4.109 describes the coherence of the intracavity
field, and is synonymous with the dephasing time 𝑇 *

2 = 1/Γeff = 2𝑄eff/𝜔0 commonly
considered for quantum emitters [237].

We can compare Γeff to a nonlinear coupling rate 𝑔 between qubit basis states with
the simple figure of merit FOM = 𝑔/2Γeff, which intuitively corresponds to the number
of qubit operations that can be completed prior to decay or dephasing2. For bulk 𝜒(3)

and 𝜒(2) nonlinearities, the coupling rate 𝑔 is a function of material parameters and
mode volumes [238]. For more information, see Refs. [187, 229]. The procedure
is to first derive the classical equations of motion for fields in nonlinear oscillators
and then to quantize them, deriving the Hamiltonian and the single-photon coupling
strength. In classical cavity electrodynamics, a cavity field can be expressed as a sum
of resonant modes

𝐸(𝑥⃗, 𝑡) =
∑︁
𝜔

𝐶𝜔

(︀
𝐴𝜔(𝑡)𝐸𝜔(𝑥⃗)𝑒

−𝑖𝜔𝑡 + c.c.
)︀

(4.110)

where 𝐶𝜔 =
√︀

ℏ𝜔/2𝜖0 and ℏ, 𝜔, and 𝜖0 are Planck’s constant, the resonant frequency,
and the vacuum permittivity, respectively. The modes 𝐸𝜔 satisfy the Helmholtz
equation ∇ × (∇ × 𝐸𝜔) = (𝑛2𝜔2/𝑐2)𝐸𝜔 in a medium of refractive index 𝑛 given
the speed of light 𝑐. This is a generalized eigenvalue equation and the resulting
solutions can be orthogonalized:

∫︀
𝑛2𝐸*

𝜔′𝐸𝜔d
3𝑟⃗ = 𝑐2

∫︀
𝐵*

𝜔′𝐵𝜔d
3𝑟⃗ = 𝛿𝜔′𝜔. With this

normalization, we find that the electromagnetic energy density in the cavity is 𝑈 =∑︀
𝜔 ℏ𝜔|𝐴𝜔|2. Therefore, 𝐴𝜔 is the normalized field operator, where |𝐴𝜔|2 gives the

number of photons in the mode 𝐸𝜔.
Nonlinear interactions can be treated as perturbations because the nonlinearity

is weak on the order of a single optical cycle. The Helmholtz equation acquires a
nonlinear polarization 𝑃 = 𝜖0(𝜒

(2) : 𝐸2 + 𝜒(3) : 𝐸3 + . . .), which can be integrated to
give perturbations to the equations of motion for 𝐴𝜔 [239]:

∇× (∇× 𝐸) +
𝑛2

𝑐2
𝜕2𝐸

𝜕𝑡2
= − 1

𝑐2
𝜕2(𝑃/𝜖0)

𝜕𝑡2
(4.111)

⇒ d𝐴𝜔

d𝑡
=

𝑖𝜔

2𝐶𝜔

∫︁
𝐸𝜔(𝑥⃗)

*
[︁𝑃 (𝑥⃗, 𝑡)

𝜖0

]︁
𝜔
𝑒𝑖𝜔𝑡d3𝑟⃗ (4.112)

2I thank Ryan Hamerly for deriving the qubit figures of merit evaluated here for comparison to
TRN-limited microcavity performance
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4.8.1 Kerr (𝜒(3)) Interaction

In the 𝜒(3) case, we have a cavity with a single resonant mode 𝐸𝜔. The polarization
term due to the Kerr interaction is 𝑃 = 𝜖0𝜒

(3) : (𝐶𝜔𝐴𝜔𝐸𝜔𝑒
−𝑖𝜔𝑡 + c.c.)3. This gives

rise to the equation of motion 𝐴̇𝜔 = −𝑖𝜒|𝐴𝜔|2𝐴𝜔, where

𝜒 = −3ℏ𝜔2𝜒(3)

4𝑛4𝜖0

1

𝑉Kerr

, 𝑉Kerr ≡
(︀∫︀

𝑛2|𝐸𝜔|2d3𝑟⃗
)︀2∫︀

* 𝑛
4|𝐸𝜔|4d3𝑟⃗

, (4.113)

The integral
∫︀
(. . .)d3𝑟⃗ is taken over all space, while

∫︀
* (. . .)d

3𝑟⃗ is restricted to the non-
linear material. Quantizing the field to satisfy the commutation relations [𝐴𝜔, 𝐴

†
𝜔] = 1

this equation of motion can be generated from the Hamiltonian:

𝐻Kerr =
1

2
𝜒𝐴†

𝜔𝐴
†
𝜔𝐴𝜔𝐴𝜔 (4.114)

As an open quantum system, the field interacts with a bath through Lindblad dis-
sipation terms, in this case 𝐿 =

√
2Γ𝐴𝜔, where Γ = 𝜔/2𝑄. The figure of merit for

strong coupling is:

FOM𝜒(3) =
𝜒

2Γ
=

3𝜋ℏ𝑐
2𝑛𝜖0

𝜒(3)

𝜆4⏟  ⏞  
𝐾𝜒

𝑄

𝑉Kerr

(4.115)

In the strong coupling regime 𝑔/2Γ ≫ 1, the intensity-dependent refractive index
leads to an anharmonicity of Fock state energies that decouples the qubit basis (zero
and one photon states) from higher energy states [187].

4.8.2 Second-order (𝜒(2)) Interaction

Alternatively, bulk 𝜒(2) nonlinearities can mediate coupling between doubly resonant
first- and second-harmonic qubit basis states. The coupling rate 𝑔 = 𝜔0𝐾𝜖/𝑉

1/2
shg then

describes the frequency of Rabi oscillations between a single photon in the second-
harmonic mode and two photons at the fundamental frequency [227, 240, 241]. In
this case, we have two fields at frequencies (𝜔, 2𝜔). The polarization term is: 𝑃 =
𝜖0𝜒

(2) : (𝐶𝜔𝐴𝜔𝐸𝜔𝑒
−𝑖𝜔𝑡 + 𝐶2𝜔𝐴2𝜔𝐸2𝜔𝑒

−2𝑖𝜔𝑡 + c.c.)2. This gives rise to the following
equations:

𝐴̇2𝜔 = −1

2
𝜖𝐴2

𝜔, 𝐴̇𝜔 = 𝜖𝐴2𝜔𝐴
*
𝜔 (4.116)
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where

𝜖 =
𝜔
√︀
ℏ𝜔/𝜖0

𝑛3𝑉
1/2
shg

𝜒(2), (4.117)

𝑉shg =

(︀∫︀
𝑛2|𝐸2𝜔|2d3𝑟⃗

)︀(︀∫︀
𝑛2|𝐸𝜔|2d3𝑟⃗

)︀2⃒⃒∫︀
* 𝑛

3𝐸*
2𝜔𝐸𝜔𝐸𝜔d3𝑟⃗

⃒⃒2 (4.118)

in the case that 𝐸⃗ and 𝑃 are aligned (otherwise 𝜖 is reduced by a geometric factor).
As before, we can quantize the fields 𝐴𝜔, 𝐴2𝜔 and derive a Hamiltonian corre-

sponding to Eqs. (4.116). As an open quantum system, there will also be Lindblad
dissipation terms Γ1 = 𝜔/2𝑄1, Γ2 = 2𝜔/2𝑄2:

𝐻 = 𝜖
𝐴†

2𝜔𝐴𝜔𝐴𝜔 − 𝐴†
𝜔𝐴

†
𝜔𝐴2𝜔

2𝑖
, (4.119)

𝐿1 =
√︀
2Γ1𝐴𝜔, (4.120)

𝐿2 =
√︀
2Γ2𝐴2𝜔. (4.121)

The figure of merit for strong coupling again is expressed as a ratio of the coupling rate
𝜖 to the loss rate. Here there are two loss channels, and a common approach is to take
the geometric mean of the two (a choice motivated by the limit 𝑄2 ≪ 𝑄1, in which the
𝜒(2) interaction can be adiabatically eliminated to a 𝜒(3) one with 𝜒/Γ ∝ 𝜖2/Γ1Γ2).
Thus we set the figure of merit to be:

FOM𝜒(2) =
𝜖

2Γ̄
=

𝜖

2
√
Γ1Γ2

=

√︂
𝜋ℏ𝑐
𝑛3𝜖0

𝜒(2)

𝜆2⏟  ⏞  
𝐾𝜖

√
𝑄1𝑄2

𝑉
1/2
shg

(4.122)

Assuming an equal amplitude decay rate Γ (quality factor 𝑄) for both modes, FOM𝜒(2) ∝
𝑄/𝑉

1/2
shg and strong coupling again requires 𝑔/2Γ ≫ 1.

4.8.3 Room Temperature Silicon Qubits?

The resulting figures of merit

FOM𝜒(3) = 𝐾𝜒
𝑄eff

𝑉Kerr
FOM𝜒(2) = 𝐾𝜖

𝑄eff

𝑉
1/2
shg

(4.123)

are plotted in Fig. 4-11 for Gaussian-shaped modes in silicon assuming the parameters
listed in Table 4.3. Similar figures of merit are applicable to high-fidelity single photon
sources [238, 241]. While silicon’s centrosymmetric structure precludes an intrinsic
𝜒(2) nonlinearity, we assume the intrinsic 𝜒(3) nonlinearity can create an electric-field
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Parameter Symbol Value Source

𝜒(3) Nonlinear Index 𝑛2 1.2× 10−13 cm2/W [243, Sec. 11]
𝜒(3) FOM Constant 𝐾𝜒 8.7× 10−11 Eqn. 4.115
𝜒(2) (DC 𝐸-Field Induced) 𝜒(2) 40 pm/V [242]
𝜒(2) FOM Constant 𝐾𝜖 1.3× 10−7 Eqn. 4.122
Thermo-optic Coefficient 𝛼Si

TO 1.8× 10−4 K−1 [208]
Thermal Diffusivity 𝐷Si 0.8 cm2/s [201]

Table 4.3: Silicon material properties assumed to calculate the qubit figures of merit
at 𝜆0 = 2.3 µm and 𝑇 = 300K.

induced 𝜒(2) = 3𝜒(3)𝐸dc near the breakdown dc electric field 𝐸dc [242].

Figure 4-11: Performance of room temperature all-optical qubits using bulk 𝜒(3) (left)
or electric field-induced 𝜒(2) (right) nonlinearities in silicon microcavities as a function
of loaded cavity quality factor 𝑄 at 𝜆0 = 2.3 µm and the relevant normalized nonlinear
mode volume 𝑉 (𝑉Kerr = 𝑉𝑇 and 𝑉shg, assumed to be equal to 𝑉𝑇 , for 𝜒(3) and 𝜒(2),
respectively) . The figure of merit (FOM) — the ratio of qubit coupling rate 𝑔 to the
composite decay and thermal dephasing rate 2Γeff = 𝜔0/𝑄eff — is largest for strong
coupling (𝑔/2Γ ≫ 1) and weak dephasing (𝑄eff ≈ 𝑄). These competing characteristics
yield an optimum quality factor 𝑄 = 𝑄opt for any 𝑉 . Three dimensional thermal
diffusion in a homogeneous medium is assumed.

An ideal qubit operates well within the strong coupling regime with minimal
dephasing. In the presence of TRN, increasing 𝑄/𝑉 improves the former at the
cost of the latter, leading to the observed mode volume-dependent optimum loaded
quality factor 𝑄opt ≈ 𝜔0Γ𝑇/2𝛿𝜔

2
rms. Fig. 4-11 also illustrates a relative performance

advantage for 𝜒(2) devices in silicon, as strong coupling can be achieved at lower
quality factors. For example, the peak FOM𝜒(2) ∼ 10 is three orders of magnitude
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greater than FOM𝜒(3) assuming 𝑄 = 𝑄opt and 𝑉Kerr = 𝑉shg = 1. Although small
𝑉shg — which as illustrated in Eqn. 4.118 involves maximizing the nonlinear overlap
function between two co-localized cavity modes — is generally more difficult to achieve
than small 𝑉Kerr [244], FOM𝜒(2) ∝ 𝑉

−1/2
shg also demonstrates more favorable scaling at

larger mode volumes.

4.9 Summary & Outlook
Ultimately, understanding the fundamental stability and coherence limits of optical
microcavities relies on the proper characterization of thermo-optic noise. Towards
this end, we have presented a general theory for thermo-refractive noise in optical mi-
crocavities, discussed the resulting practical limitations on future integrated photonic
components, and highlighted design choices that optimize device performance in its
presence. We experimentally verified our model by measuring the dominant effect of
temperature fluctuations in high-𝑄/𝑉 silicon PhC cavities, which demonstrated the
viability of optical microcavities as high-spatial-resolution temperature probes oper-
ating at the fundamental thermal noise limit. Our results show that non-perturbative
TRN ultimately limits the achievable quality factor in small mode volume cavities
and that experimental devices have neared this fundamental bound. Violating the
observed tradeoff between mode volume and thermo-optic noise stands as an exciting
avenue for future investigation, and is the subject of discussion for our next chapter.



5
Beyond the Thermal Noise Limit

Abstract

This limits derived in Chapter 4 have immediate implications for an array of applica-
tions. As an example, we specifically explored optical quantum computing and showed
that microcavity thermal noise limits the coherence of recently proposed all-optical
qubits. Here, to overcome these limitations, we propose and evaluate a noise cancel-
lation technique that coherently suppresses thermally-driven frequency fluctuations,
thereby enabling continued development in quantum optics, precision sensing, and
low-noise integrated photonics. Our optimized design reduces the impact of thermal
fluctuations by over one order of magnitude at low frequencies by coherently canceling
thermo-refractive and thermo-elastic noises.

5.1 Revisiting the Noise-Volume Tradeoff
Small mode volume optical microcavities reveal new possibilities in photonics, includ-
ing chip-scale optical frequency synthesizers [150], Purcell-enhanced nanolasers with
large modulation bandwidths [245], strong atom-photon [246] and photon-phonon
[247] coupling, photon-level nonlinear interactions [80], and single molecule sensors
with high spatial selectivity [147]. In an effort to extend these applications, recent
research has focused on reducing the mode volume 𝑉 of optical cavities while main-
taining high quality factor [78, 209]. Unfortunately, decreasing 𝑉 comes with a fun-
damental cost: enhanced thermal noise from statistical temperature fluctuations.1 As

1While the integrated photonics community is quick to jump to the assumption of “shot-noise-
limited” readout, other noise sources will eventually dominate as the input power increases (i.e.
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Figure 5-1: The noise-volume tradeoff facing integrated optical resonators. In light
of the volume-dependent noise derived in Chapter 4, we see that the observed 𝑄-
𝑉 tradeoff drawn previously in Fig. 1-5 is indeed fundamental. As a result, billion
qauality-factor integrated resonators [194] and Hz-class lasers [183] are centimeter-
scale. Conversely, nanolasers [182] are inherently noisy and resonant biosensors [147]
sacrifice spatial-resolution for sensitivity.

illustrated by Fig. 5-1, which the resulting thermal broadening yields wavelength-scale
ultra-high-𝑄 resonators [194], narrow-linewidth lasers [249], and high-performance op-
tical qubits thermodynamically forbidden. Breaking this fundamental “noise-volume
tradeoff” in optical microcavities would lift our proposed 𝑄/𝑉 limits and could enable
quantum noise-limited readout of diffraction-limited optical modes, thereby unveiling
new possibilities in physics.2 A chip-scale resonator with a strain sensitivity rival-
ing that of initial 40 meter LIGO prototypes in a twelve order of magnitude smaller
form-factor would not be out of the question.

Active cavity stabilization is one candidate solution; however, the limited speed of
control loops and tuning mechanisms has restricted the noise rejection bandwidth of
previous demonstrations to few hundred Hz [212]. Passive feedback noise rejection via
photo-thermal backaction [190] — resonance detuning-dependent laser heating that
counteracts temperature fluctuations — has also been experimentally demonstrated

measurement imprecision noise decreases [248]).
2Analogous developments for gravitational wave interferometers, such as the integration of cryo-

genic, single-crystal silicon mirrors in LIGO (operated at 123K, where the silicon’s coefficient of
thermal expansion is zero), offer similar prospects [250]. I thank Evan Hall (MIT) and the MIT
LIGO team for their feedback on these proposals.
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[184], but the noise reduction scales with Γ
−1/2
𝑇 and therefore becomes ineffective for

small cavities. The requirement for large intracavity also amplifies extraneous noise
sources (such as photothermal shot noise as described in Sec. 4.5.5). Finally, neither
feedback-based technique can suppress fluctuations in the high-𝑄/𝑉 regime where
the rate of resonant frequency fluctuations exceeds that of cavity leakage.

5.2 Coherent Thermo-Optic Noise Cancellation

To overcome these limitations, we propose and analyze coherent thermo-optic (TO)
noise cancellation as an avenue towards the open goal of broadband thermal noise
suppression. This technique stems from an analogous proposal for thermal noise
reduction in mirror coatings [141, 162, 251–253]. As illustrated in Fig. 5-2, when the
uniform temperature of a thickness 𝑡 coating is raised by 𝛿𝑇 , the increase in phase
accumulation 𝛿𝜑 = 2𝜋𝑡 𝛿𝑛/𝜆 = 2𝜋𝑡 𝛼TR𝛿𝑇/𝜆 from an increase in refractive index
𝛿𝑛 can be offset by the coating expansion 𝛿𝑡 = 𝑡𝛼𝐿

TE𝛿𝑇 towards the incident beam
provided the linear coefficient of thermal expansion 𝛼𝐿

TE and 𝛼TR have the same sign.

Figure 5-2: Concept for coherent thermo-optic noise cancellation in dielectric Bragg
mirrors. A change in temperature 𝛿𝑇 leads to two effects that vary the original
reflection phase 𝜑 at equilibrium temperature 𝑇0: 1) the optical penetration depth
into the dielectric stack varies due to temperature-dependent indices of refraction; and
2) the point of reflection is modified due to thermal expansion. The factor 𝛽 accounts
for the nonuniform lateral intensity of the reflected field [254]. If the coefficients of
thermal expansion and thermo-refraction (𝛼TE and 𝛼TR, respectively) have the same
sign (as is the case for typical dielectrics), both effects can coherently cancel.

In a microcavity, this relationship is reversed. Intuitively, we expect thermo-
optic noise to be minimized when the normalized thermo-elastic (TE) frequency shift
𝛿𝜔̃TR = 𝛿𝜔TE/𝜔 = −𝛼𝐿

TE𝛿𝑇 of a freely expanding cavity equals that of the thermo-
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Figure 5-3: Baseline athermal “ladder” PhC design (adapted from [256]). The 𝑄-
optimized cavity with {𝑎, 𝑎′, 𝑤𝑜, 𝑤𝑖, 𝑤𝑠} = {647 nm, 0.914𝑎, 3𝑎, 0.85𝑤𝑜, 0} and
thickness 𝑡 = 3𝑎 is formed by quadratically tapering the lattice constant 𝑎 to 𝑎′ over
the inner twelve periods with a constant “rung” duty cycle 𝜂𝑟 = 𝑤𝑟/𝑎 = 0.4.

refractive (TR) effect, 𝛿𝜔̃TR = −𝛼TR𝛿𝑇/𝑛, leading to the athermal condition

𝛼𝐿
TE

𝛼TR
= −𝛾

𝑛
(5.1)

for the energy confinement fraction 𝛾 ∈ (0, 1] of the optical mode in the dielec-
tric. Eqn. 5.1 can be satisfied by tuning 𝛾 provided 𝛼𝐿

TE and 𝛼TR are of comparable
magnitude with opposite sign. Whereas we previously assumed |𝛼𝐿

TE/𝛼TR| ≪ 1 for
common dielectrics, these two requirements are remarkably well satisfied by a range
of polymers. Given their weak electronic effects, the thermo-refractive and thermo-
elastic coefficients are nearly entirely dictated by their temperature-dependent den-
sity, which allows the ratio of thermo-optic coefficients to be accurately approximated
by the Clausius-Mossotti relation 𝛼𝐿

TE/𝛼TR ≈ −(𝑛2+2)(𝑛2−1) [255]. In polymethyl-
methacrylate (PMMA, 𝑛 = 1.48), for example, 𝛾 = 0.83 enables steady-state athermal
operation. Upon realizing this, I was surprised to find that our group had previously
demonstrated high-𝑄/𝑉 polymer “ladder” cavity designs [256], schematically illus-
trated in Fig. 5-3, that were well-suited for TO noise cancellation.

5.3 A Fluctuation-Dissipation Theorem Perspective

But does steady-state athermal behavior imply complete broadband TO noise can-
cellation? Unfortunately the answer is no, which we will illustrate with the compu-
tational form of the FDT used to simulate TRN in Sec. 4.6 [139, 211]. As illustrated
in Fig. 5-4, the total TO resonance shift

𝛿𝜔̃TO =

∫︁
[𝑔TR(𝑟⃗) + 𝑔TE(𝑟⃗)]⏟  ⏞  

𝑔TO(𝑟⃗)

𝛿𝑇 (𝑟⃗)d3𝑟⃗, (5.2)

i.e. the spatial average of temperature fluctuations 𝛿𝑇 (𝑟⃗) weighted by 𝑔TO(𝑟⃗), is
calculated at frequency 𝜔𝑖 by driving the entropy 𝑆 (conjugate to 𝛿𝑇 ) with a harmonic,
perturbative heat source 𝛿𝑄TO(𝑟⃗, 𝑡) = 𝑇𝛿𝑆(𝑟⃗, 𝑡) = 𝑇𝑄0𝑔TO(𝑟⃗) cos(𝜔𝑖𝑡), where 𝑄0 is a
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constant of proportionality. The resulting spectrum of fluctuations,

𝑆𝜔𝜔(𝜔𝑖) =
2𝑘𝐵𝑇

𝜋𝜔2
𝑖𝑄

2
0

𝑊diss, (5.3)

at the equilibrium temperature 𝑇 is then computed from the time-averaged (⟨·⟩)
power dissipation [211]

𝑊diss =

∫︁
𝜅

𝑇
⟨[∇𝛿𝑇 (𝑟⃗, 𝑡)]2⟩d3𝑟⃗ (5.4)

due to irreversible heat flow from the resulting harmonic temperature profile 𝛿𝑇 (𝑟⃗, 𝑡)
in a material with thermal conductivity 𝜅. We obtain the functional form of the TR
and TE contributions to the composite TO weight function 𝑔TO(𝑟⃗) = 𝑔TR(𝑟⃗)+ 𝑔TE(𝑟⃗)
by placing the associated first-order perturbation theory results [18, 257] into the
form of Eqn. 5.2:

𝛿𝜔̃TR ≈
∫︁
Ω

−𝛼TR(𝑟⃗)𝑛
2|𝐸⃗(𝑟⃗)|2⏟  ⏞  

𝑔TR(𝑟⃗)

𝛿𝑇 (𝑟⃗) d3𝑟⃗ (5.5)

𝛿𝜔̃TE ≈
∫︁
𝜕Ω

− 𝛼𝐿
TEℎ(𝑟⃗)

4(𝑛2 − 1)−1

[︃
|𝐸⃗‖(𝑟⃗)|2 +

|𝐷⃗⊥(𝑟⃗)|2
𝑛2

]︃
⏟  ⏞  

𝑔TE(𝑟⃗)

𝛿𝑇 (𝑟⃗) d2𝑟⃗. (5.6)

Here, 𝐸⃗‖ (𝐷⃗⊥) is the electric (electric displacement) field parallel (perpendicular) to
the cavity boundary 𝜕Ω, ℎ(𝑟⃗) is the dielectric thickness between between neighboring
boundaries, and we assume a normalized mode

∫︀
𝑛2|𝐸⃗|2d3𝑟⃗ = 1. We also note that

Eqn. 5.6 is only valid for sufficiently low frequencies 𝜔 ≪ 𝐷𝑇/max {ℎ(𝑟⃗)}2 such that
𝛿𝑇 (𝑟⃗) is approximately uniform throughout the dielectric between neighboring bound-
aries. We therefore see that TRN is associated with an energy-density-dependent
volumetric heat source 𝛿𝑄TR(𝑟⃗) = 𝑇𝑄0𝑔TR(𝑟⃗), whereas TE noise is associated with
a surface heat source 𝛿𝑄TE(𝑟⃗) = 𝑇𝑄0𝑔TE(𝑟⃗) that depends on the field intensity and
mechanical displacement amplitude of the dielectric boundary.

To summarize, the following procedure is used to compute the thermo-optic noise
spectrum of a cavity: (1) the harmonic heat sources of Eqns. 5.5, 5.6 are injected into
the cavity at the frequency of interest 𝜔; (2) the harmonic temperature distribution is
computed via finite element simulations with a frequency-domain thermal eigensolver;
(3) the noise level (Eqn. 5.3) is calculated from the the loss associated with the
harmonic temperature distribution (Eqn. 5.4); (4) steps (1)-(3) are repeated for each
𝜔 of interest.

Given this formulation, we immediately see that the TO noise cannot be completely
canceled at all frequencies due to the spatial mismatch between the heat sources,
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Figure 5-4: Overview (left) and results (right, for the cavities designs measured in
Fig. 4-8) of finite-element fluctuation-dissipation theorem (FDT) simulations [211].
All symbols are defined in the text. In Levin’s computational form of the FDT,
a harmonic heat source 𝑞 = 𝑔𝑒𝑖𝜔𝑡 (for the weighing factor 𝑔 relating temperature
fluctuations to resonant frequency shifts — generates a harmonic temperature profile
𝛿𝑇 . The irreversible dissipation from heat transfer drives the fluctuation, which can be
computed from the temperature profile 𝛿𝑇 . Repeating this process at any frequency 𝜔
of interest yields the thermal noise curves shown on the right-hand panel. Insets show
the harmonic temperature profiles which are broad at low frequency due to thermal
diffusion but approach the optical mode shape (for the case of thermo-refractive noise,
where 𝑔 is proportional to the mode’s energy density) at high frequency.

which invariably leads to irreversible heat flow and the associated noise. However,
our analysis reveals two intuitive design principles to maximize the coherence between
anti-correlated TR and TE sources, thereby minimizing the total TO noise: I: the cav-
ity boundaries should be placed near high-intensity regions of the cavity mode to max-
imize the spatial overlap between TR and TE sources; and II: we intuitively expect
that the amplitude of the harmonic temperature profile, and thereby the TO noise,
should be minimized if the total added heat 𝑄TO =

∫︀
Ω
𝛿𝑄TR(𝑟⃗) d

3𝑟⃗+
∫︀
𝜕Ω

𝛿𝑄TE(𝑟⃗) d
2𝑟⃗

is zero. This is true away from the sources at sufficiently low frequencies, where ther-
mal diffusion effectively “masks” the exact source locations, and is actually equivalent
to the athermal condition of Eqn. 5.1.
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Figure 5-5: Evaluation of coherent thermo-optic noise cancellation with an ather-
mal polymer (PMMA) microcavity. Finite element fluctuation-dissipation simula-
tions are conducted with a 𝑄-optimized design driven by anti-correlated volumetric
and boundary heat sources corresponding to thermo-refractive (TR) and thermo-
elastic (TE) noise, respectively. The composite thermo-optic (TO) frequency noise
spectrum 𝑆ff ∝ [∇𝛿𝑇 (𝑟⃗, 𝑓)]2 is computed from the resulting harmonic tempera-
ture profiles 𝛿𝑇 (𝑟⃗) (bottom) and is bounded by the coherent (−) and incoher-
ent (+) sum of TR and TE contributions (shaded region). From left to right,
the three simulated devices have fixed endpoints, free endpoints, and fixed end-
points with a sub-wavelength center slot of width 𝑤𝑠. As visually depicted by the
reduced 𝛿𝑇 (𝑟⃗) at low frequencies, the slot geometry (with optimized parameters
{𝑎, 𝑎′, 𝑤𝑜, 𝑤𝑖, 𝑤𝑠, 𝑡, 𝜂𝑟} = {697 nm, 0.874𝑎, 3𝑎, 0.85𝑤𝑜, 10 nm, 0.8𝑎, 0.6}) provides
optimal noise cancellation. Note that temperature color scales in the bottom panels
are normalized to the fixed-end case to facilitate comparison.

5.4 Intuitive Design Rules and Optimization

Guided by these two simple principles, we optimized the coherent TO noise cancella-
tion of the PMMA ladder cavity in Fig. 5-5. Our baseline design yields 𝑄 = 3× 105,
𝑉 = 2.6, and 𝛾 = 0.75 — approximately 10% away from the athermal confinement
condition. However, the beam ends are assumed to be fixed for support, which re-
stricts lateral thermal expansion (which then primarily affects the width and thickness
of the beam, as well as the width of individual “rungs”) and leads to a dominant TR
effect as shown by the individual TR and TE noise spectra in Fig. 5-5. If both heat
sources are simultaneously simulated, the resulting TO noise resembles the coher-
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ent combination of the individual contributions, i.e. the noise amplitudes subtract
as desired. However, as depicted by the associated harmonic temperature profiles in
Fig. 5-5(b), the achievable noise reduction is modest owing to the dominant amplitude
of the TR source near the center, high-intensity region of the cavity mode.3

According to criterion II it is evident that the TE source must be amplified to
improve the noise cancellation. Freeing the cavity ends achieves this goal by enabling
isotropic expansion, but violates the criterion I: expansion along the beam length
amplifies boundary displacements and the associated TE heat source away from the
TR source maximum at the cavity center, thereby minimizing the spatial overlap
between the two heat sources. As a result, TO noise suppression is again limited
despite the nearly equal TR and TE noise contributions (center panel of Fig. 5-5).

To simultaneously co-locate the heat sources and magnify the TE effect, we instead
propose placing a thin air “slot” through the ladder rungs at the center of the cavity
as shown in the final (right-most) panel of Fig. 5-5. In the original design, expansion
along the ladder rung length displaces the side rail boundary, where the cavity field
is weak. The modified design’s narrow slot moves this displacement boundary to the
center of the beam (the “half-rungs” expand to fill the gap), where the cavity field
and TR heat source are maximized. We then thin the beam to satisfy criterion II
within 1% and re-design the cavity defect region to maximize 𝑄. The final optimized
design supports a high-𝑄/𝑉 resonance (𝑄 = 6 × 104, 𝑉 = 0.75) that suppresses
fundamental thermal noise by over an order of magnitude at low frequencies. The
temperature profiles in Fig. 5-5(e) graphically evidence this cancellation and suggest
again that the achievable suppression is limited by the imperfect coherence of the two
spatially-resolved heat sources.

This intuition-driven optimization is a first proof-of-concept demonstration of
broadband, coherent cancellation of fundamental thermodynamic fluctuations in a
microcavity. While the achievable noise reduction our trial structure is relatively
limited, the design is based on simple principles that can be readily extended to
other designs, materials, and optimization techniques. For example, the interdisci-
plinary thermo-optical design of high-𝑄/𝑉 , low-noise resonators requires structural
modifications that are well suited to recent developments in topological optimization
of subwavelength integrated photonics [225, 258, 259]. The coherent thermo-optic
cancellation scheme can also be applied other materials beyond polymers, such as
CMOS-compatible titanium dioxide (TiO2) [260] or perovskites [261] with negative
thermo-optic coefficients. Our preliminary results thus motivate an exciting new
research avenue into novel noise abatement schemes in pursuit of ultra-high-𝑄/𝑉

3At higher frequencies, the thermo-elastic and thermo-refractive noises appear to converge to a
similar amplitude; however, these high-frequency results must be interpreted with care: above ∼10
kHz, the assumption of uniform temperature between boundaries (required in Eqn. 5.6) is no longer
valid. Ideally, the thermo-elastic displacement at high frequency should be a function of the averaged
temperature between boundaries; however, this form seems incompatible with Levin’s form of the
FDT.
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500 nm 5 μm 500 nm

Figure 5-6: Helium-ion microscope pictures of a fabricated PMMA photonic crystal
nanobeam cavity, corresponding to the “fixed-end" design in Fig. 5-5.

cavities beyond our the thermal noise limit.

5.5 Outlook and Initial Experimental Progress
These proof-of-concept simulations demonstrate the feasibility of the coherent thermo-
optic cancellation scheme, which can also be applied to other materials beyond poly-
mers, such as CMOS-compatible titanium dioxide (TiO2) and perovskites with nega-
tive thermo-optic coefficients. Experimentally, we have fabricated “fixed-end” designs
(Fig. 5-6) with 𝑄 > 104 and an effective thermo-optic coefficient 𝛼eff

TO ≈ −1.1×10−4/K
(Fig. 5-7); future fabrication optimization is planned to achieve athermal operation.
Together, these preliminary results motivate an exciting new research avenue into
novel noise abatement schemes in pursuit of ultra-high-𝑄/𝑉 cavities beyond our pro-
posed thermal noise limits.

We hope that our proposal and analysis of one possible solution — coherent
thermo-optic noise cancellation — towards low-noise, high-𝑄/𝑉 integrated optical
devices further motivates this field of research. Ultimately, these advances will be
necessary to achieve the performance required for future developments in optical
quantum information processing, cavity optomechanics, precision optical sensing, and
beyond.
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Figure 5-7: Linescans of the cavity imaged in Fig. 5-6 (measured as a function of
sample mount temperature 𝑇 ) reveal a quality factor 𝑄 ∼ 10, 000 at the expected
resonant wavelength 𝜆. The resonance blue-shifts as temperature increases, indicat-
ing that thermo-refractive effects dominate as expected. An “effective” thermo-optic
coefficient d𝑛/d𝑇 can be extracted via a linear fit to the resonant wavelength as a
function of 𝑇 .



6
Cavity Array Post-Fabrication Trimming

Abstract

Having completed our investigation of thermal noise in single microcavities, we now
return to the proposed SLM application, which requires coherent operation between
multiple cavities. We therefore invented a fully automated, parallel “holographic trim-
ming” technique that aligns the resonant wavelength of microcavities with picometer
precision. Previous beamforming approaches have avoided high-quality-factor (𝑄)
resonators, as alignment to a common operating wavelength requires scalable, pre-
cise, and low-loss trimming –— an unsolved challenge. Our automated holographic
trimming method uses structured laser illumination to grow thermal oxide on selected
devices in parallel, resulting in a picometer-order wavelength uniformity between 64
wavelength-scale microcavities with a mean 𝑄 > 105. Notably, this record wavelength
uniformity corresponds to sub-atomic length-scale structural uniformity between each
device.

6.1 Fabrication Disorder

In addition to the overlapping far-field emission profiles shown in Fig. 3-16, pro-
grammable multimode interference requires each cavity to operate near a common
resonant wavelength 𝜆0. For sufficiently high-𝑄 resonators, this tolerance cannot be
solely achieved through optimized fabrication since 𝒪(nm) fabrication fluctuations
translate to 𝒪(nm) resonant wavelength variations [113, 114].

Our prototype 8 × 8 arrays of 𝐿3 cavities (chosen to optimally balance require-
ments on 𝑄, 𝑉 , directive emission, and fabrication tolerance) typically span a ∼3 nm

109
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Technique [Year] Cavity Type 𝑁
Δ𝜆p-p

0

[pm] ⟨𝑄⟩ In
situ?

Par-
allel?

“Holographic” oxidation
[2022] Si PhC 64 13 2×105 Y Y

Germanium implantation [2021] Si ring [262] 58 32 4×103 Y N
Laser-annealed cladding [2020] Si ring [263] 2 20* 2×104 Y N

Boron implantation [2019] Si ring [264] 4 15 5×103 Y N
Electron-beam irradiation [2018] Si PhC [265] 4 400 3×105 N N
Photo-electro-chemical etching

[2017] GaAs disk [266] 5 200* 2×104 Y N

Annealed cladding [2016] Si ring [267] 5 90* 3×103 Y N
Ultraviolet irradiation [2014] a-Si ring [268] 4 45 8×103 Y N

Post-fabrication etching [2013] GaAs PhC [269] 18 100* 3×104 N Y
Photochromatic thin-film [2011] GaAs PhC [270] 3 340 8×103 Y N

Anodic oxidation [2006] GaAs PhC [271] 2 100* 5×103 N N

Table 6.1: Comparison of microcavity array trimming techniques. Estimated values
are marked with a *. ∆𝜆p-p = peak-to-peak wavelength error; ⟨𝑄⟩ = mean quality
factor.

peak-to-peak wavelength variation (given 𝜎𝜆 ≈ 0.6 nm), corresponding to hundreds of
linewidths for the target 𝑄 ∼ 105. Correcting this inhomogeneity requires automated,
low-loss, and picometer-precision resonance trimming, which remains an open goal.
The previous techniques detailed in Table 6.1 — including ex-situ structural modifi-
cations [269, 271, 272], solution-immersed photoelectrochemical etching [266], or lossy
ion implantation [262, 273] — fail to simultaneously satisfy these requirements.

6.2 “Holographic” Thermal Oxidation

Of the techniques reviewed in Table 6.1, laser-assisted thermal oxidation is a notable
standout offering low-loss single-device trimming with micron-order spatial resolution
[74, 75], albeit with limited speed and controllability (to date). The basic idea is
illustrated in Fig. 6-1b-c: a focused visible laser heats a silicon slab in an oxygen
environment to a temperature near its melting point (𝑇 ≈ 1700K), causing a surface
reaction that grows oxide at the membrane’s surface. Since silicon is consumed by
the reaction, the effective structural parameters (hole radius 𝑟 and slab thickness 𝑡)
are modified and the resonant wavelength blue-shifts.1

1Even though the membrane expands during the oxidation process (the molar volume of silicon
dioxide is greater than that of silicon), the blue-shift associated with the consumption of silicon
outweighs the red-shift of oxide growth.
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Figure 6-1: Parallel, fully-automated, and low-loss microcavity “holographic trim-
ming” via structured laser oxidation. In each iteration of the trimming loop (a), a
weighted Gerchberg-Saxton algorithm distributes a visible trimming laser with power
𝑃0 to powers {𝑃𝑖} at desired cavities based on the measured resonant wavelength
𝜆𝑖 of each cavity. A few nm-thick layer of thermal oxide grows at each optical fo-
cus (photographed spots in the inset cavity array image), reducing the as-fabricated
standard deviation in hole parameters 𝜎 ∼ nm (b,c) and permanently shifting the
targeted resonances. The process is accelerated in a high-pressure (𝑃 ∼ 5 atm) oxy-
gen environment.

We implemented two solutions to address the limitations of previous thermal
oxidation-based trimming implementations: 1) accelerated oxidation in a high-pressure
oxygen chamber with in-situ characterization; and 2) “holographic” distribution of
the trimming laser to simultaneously trim multiple devices. In each iteration of the
automated trimming loop (Fig. 6-1a), the resonant wavelengths {𝜆𝑖} are measured
and a subset 𝑇 of 𝑁 devices is selected to maximize the total trimming distance
𝑁(min𝑇{𝜆𝑖} − 𝜆𝑡) to a target wavelength 𝜆𝑡.

6.2.1 High-Power Liquid Crystal SLM Setup

Each cavity in 𝑇 is then targeted by a visible laser using the SLM setup in Fig. 6-2. A
liquid crystal on silicon (LCOS) SLM actively distributes a high-power, continuous-
wave visible laser to target devices during the cavity trimming procedure. The input
laser was tunably attenuated with a motorized half-wave plate (preceding a PBS)
and subsequently expanded to overfill the LCOS aperture. The LCOS SLM was re-
imaged onto the objective BFP (as confirmed by imaging with L2 in place) using
two lenses (L4, L5) with focal lengths chosen to optimally match the imaged SLM
and objective pupil dimensions. As discussed in Sec. 6.2.2, phase retrieval-computed
holograms then evenly distribute power to an array of focused spots on the sample
when the mechanical, flip mirror shutter is opened. Photographs of the LCOS SLM
setup with watt-class power handling are shown in Fig. 6-3.
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Figure 6-2: Setup for microcavity trimming via structured laser illumination. By
adding a dichroic mirror (DM) to the characterization setup described in Sec. 2.5.1 (a),
a structured visible laser (b) can be joined with the probe beam for in situ trimming.
The same holographic distribution technique can be used with a nanosecond-class
modulated laser diode (MLD) for high-speed on-off switching experiments (Sec. 7.2).
CWTL: continuous-wave trimming laser (Coherent Verdi V18); MLD: modulated
laser diode (Hubner Cobolt or PicoLAS LDP); BE: 5× visible beam expander; LCOS:
high-power liquid crystal SLM (Santec SLM-300); L4: 300 mm; L5: 250 mm; PD:
photo-detector

Figure 6-3: Experimental trimming setup (a) featuring a liquid-cooled, high-power
LCOS SLM (b). The beam expander, SLM, and lens L4 (see Fig. 6-2) are visible in
(a); lens L5 located on the main table (visible in Fig. 2-8) after the periscope.
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6.2.2 Optical Focus Array Generation: The slm-suite Toolbox

To generate the phase masks required to evenly distribute the trimming laser to tar-
geted cavities, we developed an open-source, GPU-accelerated experimental holog-
raphy software package that implements fixed-phase, weighted Gerchberg-Saxton
(WGS) phase retrieval algorithms.2 Using camera feedback, the algorithm can gen-
erate thousands of near-diffraction-limited foci with ∼1% peak-to-peak power unifor-
mity and single-camera-pixel-order location accuracy within a few iterations (i.e. less
than a second; typically limited by the LCOS SLM refresh rate).

Features

slm-suite simplifies the creation of high-uniformity, arbitrary-geometry optical focus
arrays using various phase retrieval algorithms. The package features:

1. Automated wavefront calibration routines that measure the Fourier-plane source
amplitude and phase using a super-pixel interference technique to compensate
for aberrations along the SLM imaging train [274]

2. Various graphical processing unit (GPU)-accelerated Gerchberg-Saxton (GS)
algorithms that use the measured source constraints (1) to produce optimized
spot array phase masks [275–277]

3. Automated affine transformations between grating wave vectors applied to the
SLM and image-space coordinates (i.e. camera pixels) by projecting and de-
tecting a GS-computed spot array

4. Camera-based feedback of measured spot amplitudes at known (calibrated) lo-
cations into phase retrieval algorithms to improve the uniformity of image-space
spot arrays

5. Automated evaluation metrics to monitor diffraction efficiency, spot amplitude
and position tolerance, and spot quality.

6. Simplified hardware interface and control.

After calibration, high-uniformity optical foci can be generated at arbitrary image
plane locations specified by the user. For example, Fig. 6-4 shows a 10 × 10 spot
array with ∼1% power uniformity and sub-micron placement accuracy formed on a
10× 10 cavity array during the trimming procedure of Section 6.2.4.

2slm-suite. https://github.mit.edu/cpanuski/qp-slm. The package is currently avaliable to
MIT affiliates only; however, at the time of writing, we are completing final formatting to transition
to a fully open-source python package.

https://github.mit.edu/cpanuski/qp-slm
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Figure 6-4: Overlaid images of 10×10 cavity (grey) and trimming spot (color) arrays
demonstrating the ≪ µm placement accuracy and percent-order power uniformity of
weighted Gerchberg-Saxton phase retrieval with experimental camera feedback.

6.2.3 High-Pressure Thermal Oxidation

The holographically-targeted pixels are then laser-heated with a computed exposure
power and duration (based on the current trimming rates, resonance locations, and
other array characteristics) to grow thermal oxide at the membrane surface. For thin
oxide layers, the consumption of silicon during the reaction with ambient oxygen
permanently blueshifts the cavity resonance in proportion to the oxide thickness 𝑡SiO2

(Fig. 6-1b) [75]. Per the Deal-Grove model, the rate-limiting diffusion of oxygen
through the grown oxide increases with oxygen pressure — a well-known technique
(high-pressure thermal oxidation, or “HIPOX”) in microelectronics fabrication [278].
We therefore oxidize our samples in pure oxygen with partial pressure 𝑃O2 = 5 bar.
Fig. 6-5 shows the chamber design and setup, which enables d𝜆0/d𝑡 ≈ 0.1 nm/s
resonance trimming rates over record wavelength ranges ∆𝜆0 > 20 nm (Fig. 6-6).

After each trimming exposure, we remeasure the resonance statistics and recycle
the loop until all devices are aligned within a set tolerance about 𝜆𝑡. As we will
detail in the following section, the trimming algorithm also accounts for long-term
moisture adsorption to the membrane surface, thermal cross-talk, and trimming rate
variations.
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Figure 6-5: Custom chamber designed (a) and built (b) for high-pressure oxidation.
The chamber is mounted to the sample stages of the characterization setup (Fig. 2-
8), and optical access is provided by a 1"-diameter, 1.2 mm-thick N-BK7 precision
(𝜆/10) window. This window limits the ultimate chamber pressure to ∼10 atm (as
confirmed by accidental destructive testing).

Figure 6-6: Wavelength and quality factor trends as a function of incident visible laser
power, demonstrating accelerated trimming with increased oxygen partial pressure
𝑃O2 .
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Figure 6-7: Helium-ion micrograph of a 10 × 10 cavity array damaged during the
trimming process. Since high-speed oxidation requires operation at temperatures
approaching the melting point of silicon, precision control of the trimming laser is
required to avoid damage.

6.2.4 Parallel Trimming Algorithm

Without precision power control, timing, and resonance monitoring, the PhC cavity
arrays can easily be damaged during the holographic trimming process as shown in
Fig. 6-7. We therefore developed and implemented a control algorithm (Fig. 6-8) to
align high-𝑄 microcavities in parallel.

The main loop of the trimming process consists of device selection, hologram setup,
parallel laser oxidation, and resting intervals. The algorithm monitors two resonant
wavelengths: the instantaneous wavelength 𝜆𝑖 and the steady-state wavelength 𝜆0.
Initially 𝜆𝑖 = 𝜆0; however, focusing high-power (∼10 mW) visible light onto the cavity
(as required to sufficiently heat the PhC membrane for thermal oxidation) causes a
temporary blueshift ∆𝜆0 due to the desorption of moisture attached to hydrophilic
hydroxyl surface terminations. For any target rest wavelength 𝜆𝑡, we therefore trim
devices to an instantaneous wavelength 𝜆𝑖 = 𝜆𝑡 − ∆𝜆0 that relaxes over 𝒪(minute)
timescales to 𝜆𝑖 = 𝜆0 = 𝜆𝑡 as moisture re-adsorbs to the surface. In practice, the
stability and estimation of the “overtune” ∆𝜆0 limit the uniformity and scale of the
trimming process, respectively.
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After initializing the cavity locations, scanning the device resonances, and cal-
ibrating the SLM (Section 6.2.2), a spot array targeting every cavity (Fig. 6-4, for
example) is projected on the membrane for a short (few second) duration. Monitoring
the resonances at fixed intervals ∆𝑡 ≈ 10 s until 𝜆𝑖 stabilizes to the rest wavelength
𝜆0 gives an initial estimate ∆𝜆0 = 𝜆0 −min{𝜆𝑖} for the overtune parameter of each
cavity. We also update the target wavelength 𝜆𝑡 = min{𝜆0} and rest wavelengths be-
fore continuing the trimming procedure. To update ∆𝜆0, we periodically conduct this
same “rest loop” when 𝜆0 of each cavity is below an algorithmically chosen checkpoint
wavelength 𝜆rest.

As described in Section 6.2, a subset of 𝑁 cavities is then selected to maximize
the total possible trimming distance to 𝜆𝑡. The number of targeted cavities neigh-
boring each untargeted cavity is also limited to reduce crosstalk. A spot array is
then formed to evenly distribute the trimming laser to the selected devices. After
confirming that the location accuracy and power uniformity of the array are within
tolerance, we alternate exposure and readout intervals to grow thermal oxide with
in situ monitoring. The laser power is progressively increased to reach a desired,
wavelength-uniformity-dependent trimming rate. As evidenced by Fig. 6-6, the rate
is relatively power-independent until reaching a threshold power. We detect and
save these threshold powers for use when selecting the initial exposure power in each
trimming loop.

The trimming sub-loop continues until the estimated 𝜆0 of any targeted cavity
crosses 𝜆𝑡. New cavities are then selected, targeted, and trimmed until a rest period
is triggered. We developed a graphical interface (Fig. 2-1) to monitor the trimming
process and array uniformity. When the peak-to-peak wavelength uniformity at the
end of a rest period is below the user-defined tolerance 𝜆tol, the process is terminated.

6.3 Record-Uniformity Trimmed Microcavity Arrays

Fig. 6-10 (left) demonstrates the results of this trimming procedure applied to our pro-
totype 8×8 pixel PhC-SLM. Prior to trimming, the hyperspectral near-field reflection
image shows the large (> 200 linewidths for the mean quality factor ⟨𝑄⟩ = 1.6× 105)
resonant wavelength variation between the otherwise spatially uniform and high-fill
resonant modes. For any wavelength in this range, typically only a single device
is resonantly excited — thereby preventing simultaneous coherent operation of the
array.

Conversely, holographic trimming reduces the wavelength standard deviation and
peak-to-peak spread by > 100× to 𝜎𝜆 = 2.5 pm and ∆𝜆p-p

0 = 1.3Γ = 13 pm, respec-
tively, enabling all 64 devices to be resonantly excited at a common operating wave-
length (Fig. 6-10, right). Since 𝜎𝜆 is directly related to the corresponding hole radius
and placement variability (𝜎𝑟 and 𝜎ℎ, respectively) with an 𝒪(1) design-dependent
constant of proportionality, the thermal oxide homogenizes the effective dimensions of
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Figure 6-10: Record uniformity, high-finesse microcavity arrays. Initial and final
near-field hyperspectral reflection images (color-coded by each device’s wavelength
normalized detuning ∆/Γ) show the > 100× reduction in resonant-wavelength stan-
dard deviation to 𝜎𝜆 = 2.5 pm without affecting the mean quality factor 𝑄 > 105.
The effective dimensions of the final array (d) are thus homogenized to 𝜎′ ∼ pm
length-scales by oxidation.

each microcavity to the picometer scale. The mean quality factor and near-field reflec-
tion profile of the array remain largely unmodified throughout the process. Fig. 6-11,
a micrograph of an exemplary trimmed array, depicts variable oxide growth at each
cavity site as required to homogenize the array.

To our knowledge, these results are the first demonstration of parallel, non-volatile
microcavity trimming. The achievable scale is currently limited by environmental fac-
tors that could be overcome with stricter process control as described in Sec. 6.2.4.
Even without these improvements, the current uniformity, scale, and induced loss out-
perform the corresponding metrics of the previous techniques reviewed in Table 6.1,
paving the way towards scalable integrated photonics with high-𝑄 resonators.
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Figure 6-11: Helium-ion micrograph of a 8×8 PhC cavity array after post-fabrication
trimming to picometer-order resonant wavelength standard deviation. Bright areas
reveal regions of local oxide growth.



The two outstanding innovations of the fifth decade of
this century were the jet plane and the computer. A jet
plane can go one hundred times as fast as a man can
run. A computer can go ten thousand times as fast as
a man can compute. LIGHTNING will go ten million
times as fast.

H. H. Campaigne (NSA, ∼1958)

7
Full-DoF Spatial Light Modulation

Abstract

Ironically, the NSA’s Lightning project — seeking make a gigahertz-clock-rate elec-
tronic computer — stalled the pursuit of high-speed spatial light modulation and
display technology [279]. Half a century later, this chapter revisits that open goal.
From first-principles considerations of the “ideal” SLM, we propose and demonstrate a
high-speed control system that eliminates metal wiring. By applying emerging “mul-
timodal visible light communications” technology to control each microcavity, this
approach avoids electrical interference and scale limits (wires for every device in a 2D
array of area 𝐴 cannot always be routed through the perimeter, which scales as

√
𝐴).

We specifically show that µLED arrays, an active research topic for augmented and
virtual reality displays, enable high-speed (ns timeframe), low-power (fJ switching
energy) control over coherent optical circuits.

7.1 Static Far-Field Characterization

Once trimmed to within a linewidth, a coherent field 𝐸i(𝑟⃗, 𝑡) incident on the PhC-
SLM couples into and is reflected by each resonator, producing a paraxial far-field
output [109]

𝐸r(𝑘⃗, 𝑡) = 𝑆(𝑘⃗)
∑︁
𝑚,𝑛

𝑟{∆𝑚𝑛(𝑡)}𝐸i(𝑟⃗𝑚𝑛, 𝑡)𝑒
𝑗𝑘⃗·𝑟⃗𝑚𝑛 (7.1)

that can be dynamically controlled within the single-element scattering profile 𝑆(𝑘⃗)
by setting the detuning ∆𝑚𝑛(𝑡) (and therefore the near-field reflection coefficient
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Figure 7-1: High-efficiency scattering from a trimmed microcavity array. The far-
field intensity profiles (over the entire objective NA in the left panel, and zoomed
to the zero-order region of interest in the right panel), half-maximum beam widths,
and zero-order diffraction efficiency 𝜂0 (integrated within the dashed white box) of a
8× 8 trimmed array are provided with horizontal and vertical cross-sectional profiles
(blue traces) compared to those of an array of uniform apertures with 80% linear fill
(black, dashed).

𝑟(∆)) of each resonator. Experimentally, we measure the intensity pattern |𝐸𝑟(𝑘⃗)|2
on the back focal plane of a microscope objective above the PhC-SLM (using the
single-device characterization setup in Sec. 2.5.1) and optically program ∆𝑚𝑛(𝑡) via
photo-excited free carriers.

Without any control input (∆𝑚𝑛 ≈ 0), Fig. 7-1 shows the static far-field intensity
pattern |𝐸𝑟(𝑘⃗|2 of a widefield-illuminated (i.e. 𝐸𝑖(𝑟⃗) ≈ 𝐸𝑖) 8× 8 trimmed array with
{𝑄} = 1.85× 105 and 𝜎𝜆 = 5 pm at 𝜆 = 1562 nm. The inverse-designed cavity unit
cells minimize scattering into undesired diffraction orders, producing a high-efficiency
(𝜂0 = 0.66) zero-order beam with the expected 1.3∘ and 1.6∘ horizontal and vertical
beamwidths given the 42.0𝜆× 36.4𝜆 aperture size. The cross-sectional beam profiles
are well matched to those of uniform apertures with width 𝑤 = 0.8𝜆, suggesting an
80% effective linear fill of the array. This extracted value agrees with the observed
zero-order efficiency and the array’s physical design (each 16𝑎 × 16𝑎 cavity offering
near-unity fill was padded to 20𝑎 × 20𝑎 with unoptimized holes to prevent coupling
to adjacent cells).
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7.2 All-Optical Switching

After confirming the static performance of the array, we conducted optical switching
experiments with two sources: an incoherent µLED array and a pulsed visible laser.
Before characterizing either source, we first developed an analytic model for all-optical
switching in slab-type PhC cavities to estimate the required tuning energy.

7.2.1 Analytic Model for Slab Switching

After absorption in a semiconductor slab, a control pulse produces a refractive index
change

𝛿𝑛(𝑟⃗, 𝑡) = −𝛼𝑐𝑁(𝑟⃗, 𝑡) + 𝛼𝑡𝑇 (𝑟⃗, 𝑡) (7.2)

proportional to the photo-excited carrier density 𝑁 and induced temperature change
𝑇 through the plasma dispersion and thermo-refractive effects, respectively. The
thermo-refractive coefficient 𝛼𝑡 = d𝑛/d𝑇 and empirical free-carrier “scattering vol-
ume" 𝛼𝑐 = −d𝑛/d𝑁 are typically both positive such that the two effects counteract
one another. The evolution of 𝛿𝑇 and 𝑁 are governed by the diffusion equations

𝜕𝑁(𝑟⃗, 𝑡)

𝜕𝑡
= ∇ · (𝐷𝑐∇𝑁)− 𝑁

𝜏
+ 𝑔(𝑟⃗, 𝑡) (7.3a)

𝜕𝑇 (𝑟⃗, 𝑡)

𝜕𝑡
= ∇ · (𝐷𝑡∇𝑇 ) + 𝑞(𝑟⃗, 𝑡) (7.3b)

given the thermal diffusivity 𝐷𝑡 and assuming ambipolar diffusion of carriers with
lifetime 𝜏 and diffusivity 𝐷𝑐. Over relevant timescales 𝑡 > 𝑤2/𝐷𝑐 in a 𝑤-thick uniform
slab, vertical diffusion can be neglected to yield solutions

𝑁(𝑟⃗, 𝑡) = 𝑔(𝑟⃗, 𝑡) *𝑟⃗,𝑡 𝐺(𝑟⃗, 2𝐷𝑐𝑡)𝑒
−𝑡/𝜏 (7.4a)

𝑇 (𝑟⃗, 𝑡) = 𝑞(𝑟⃗, 𝑡) *𝑟⃗,𝑡 𝐺(𝑟⃗, 2𝐷𝑡𝑡) (7.4b)

expressed as convolutions (*) of the inhomogeneous sources 𝑔(𝑟⃗, 𝑡) and 𝑞(𝑟⃗, 𝑡) with
the two-dimensional Green’s function

𝐺(𝑟⃗, 𝜎2) =
1

2𝜋𝑤𝜎2
exp

{︂
−|𝑟⃗|2
2𝜎2

}︂
. (7.5)

All variables are considered uniform along the vertical axis; 𝑟⃗ in our notation thus
corresponds only to transverse coordinates in the slab plane. We specifically consider
solutions to Eqns. 7.4 in response to a focused, square-wave Gaussian control pulse
with beam waist 2𝜎𝑝, pulse-width 𝑇 , and pulse (photon) energy 𝐸 (𝐸0) absorbed
into the cavity with efficiency 𝜂abs. The results can be considerably simplified with
the conservative (i.e. underestimating plasma dispersion at short timescales 𝑡 ≲ 𝜏),
albeit crude, assumption of instantaneous carrier diffusion to the diffusion length
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√
𝐷𝑐𝜏 . This method decouples carrier decay and diffusion to yield the carrier density

𝑁(𝑟⃗, 𝑡) = 𝑁0(𝑡)𝐺(𝑟⃗, 2𝐷𝑐𝜏 + 𝜎2
𝑝) (7.6)

with time-dependent total population

𝑁0(𝑡) = 𝜂abs
𝜏

𝑇

𝐸

𝐸0

{︃
(1− 𝑒−𝑡/𝜏 ), 𝑡 ≤ 𝑇

𝑒−𝑡/𝜏 (𝑒𝑇/𝜏 − 1), 𝑡 > 𝑇.
(7.7)

The recombination of each carrier pair releases the bandgap energy 𝐸𝑔 back into the
slab with volumetric heat capacity 𝑐𝑣, yielding the source

𝑞(𝑟⃗, 𝑡) = −
(︂
𝜕𝑁

𝜕𝑡

)︂
decay

𝐸𝑔

𝑐𝑣
=

𝑁(𝑟⃗, 𝑡)

𝜏

𝐸𝑔

𝑐𝑣
(7.8)

that produces the temperature profile

𝑇 (𝑟⃗, 𝑡) =
𝐸𝑔

𝑐𝑣𝜏
𝑁0(𝑡) *𝑡 𝐺(𝑟⃗, 2𝐷𝑡𝑡+ 2𝐷𝑐𝜏 + 𝜎2

𝑝). (7.9)

Note that we neglect additional initial heating from above-band absorption.

Given sufficiently small |𝛿𝑛|, the resulting linewidth-normalized resonance shift

∆̃(𝑡) = ∆(𝑡)/Γ = −𝑄

∫︁
𝛿𝑛

𝑛
(𝑟⃗, 𝑡)|𝐸⃗(𝑟⃗)|2d3𝑟⃗ (7.10)

for the electric field profile 𝐸⃗(𝑟⃗) with normalization (
∫︀
|𝐸⃗(𝑟⃗)|2d3𝑟⃗ = 1) is well-

approximated by first-order perturbation theory [18]. We consider a Gaussian-shaped
mode envelope |𝐸⃗|2 = 𝐺(𝑟⃗, 𝜎0) fully-confined with uniform transverse amplitude
within the high-index slab.

Since Eqn. 7.9 must be evaluated numerically, we assume a constant temperature
change 𝑇 (𝑟⃗, 𝑡) = 𝑇 (0, 𝑡) across the mode — valid for typical experimental regimes
of interest where 𝜎0 ≪ 2𝐷𝑡𝑡 + 2𝐷𝑐𝜏 + 𝜎𝑝 — to avoid the additional integration in
Eqn. 7.10. The overlap between the optical mode and the static free carrier profile,
on the other hand, can be analytically evaluated to yield the combined result

∆̃(𝑡) =
𝛼𝑐

𝑛
𝑁0(𝑡)

𝜎2
0

2𝐷𝑐𝜏 + 𝜎2
𝑝 + 𝜎2

0

(︂
𝑄

𝑉

)︂
−𝑄

𝛼𝑡

𝑛

𝐸𝑔

𝑐𝑣𝜏
𝑁0(𝑡) *𝑡 𝐺(0, 2𝐷𝑡𝑡+ 2𝐷𝑐𝜏 + 𝜎2

𝑝) (7.11)

for the cavity mode volume 𝑉 =
∫︀
𝜖|𝐸|2d3𝑟⃗/max {𝜖|𝐸|2} = 2𝜋𝑤𝜎2

0. Since the re-
flected signal directly tracks the cavity amplitude in cross-polarization, the normalized
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Figure 7-2: Estimated normalized reflection coefficient 𝑟(𝑡) =
√︀
𝑅(𝑡)𝑒𝑗𝜑(𝑡) as a func-

tion of switching energy for the parameters in Table 7.1. Insets: same results in polar
form for comparison to the Lorentzian reflection profile 𝑟(∆) = 1/(1+ 𝑗∆) of a cavity
under cross-polarized excitation with static detuning ∆ (black dashed line).

reflectivity

𝑟(𝑡) =

∫︁ 𝑡

0

d𝑡′𝑒−Γ(𝑡−𝑡′)−𝑖
∫︀ 𝑡′
𝑡 d𝑡′′2Δ(𝑡′′) (7.12)

is finally found by numerically integrating the cavity evolution as dictated by coupled
mode theory [109] (c.f. Eqn. 4.38).

Fig. 7-2 plots the switching characteristics for the parameters in Table 7.1. Free-
carrier dispersion dominates the response for the nanosecond-order timescales of inter-
est followed by a slow (µs-order), weak (|∆̃| ≪ 1) thermal rebound. The three order-
of-magnitude timescale difference effectively decouples the two modulation mecha-
nisms. Note that the true reflection coefficient deviates from the Lorentzian response
of a quasi-static cavity due to the fast (relative to the cavity decay rate Γ) car-
rier dynamics. These results indicate that a SLM with 106 pixels operating with
𝜔𝑠 > 2𝜋 × 100 MHz could be realized with 𝒪(watt) optical control power.

7.2.2 Experimental Setup

To experimentally reconstruct the expected complex, time-varying reflection coef-
ficients, we combined the homodyne setup used for thermal noise measurements
(Fig. 4-4) with the updated wide-field characterization setup in Fig. 2-8. The re-
sulting shot-noise-limited balanced homodyne detection setup in Fig. 7-3a-b enables
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Parameter Value Source

𝑛Si 3.48 [208]
𝐸𝑔 1.12 eV [208]
𝛼𝑡 1.8× 10−4 K−1 [208]
𝑐𝑣 1.64 J/cm3·K [87]
𝐷𝑡 0.26 cm2/s [87]

𝛼𝑐 8× 10−9 µm3 [280]
(Linearized)

𝐷𝑐 19 cm2/s [61]
𝜏 1 ns [61]
𝜆0 1550 nm Assumed
𝑄 200,000 Assumed
𝑉 0.95 [87]
𝑤 220 nm Measured
2𝜎0 0.66 µm 2

√︀
𝑉/(2𝜋𝑤)

𝜆𝑝 0.53 µm Assumed
𝑇 0.5 ns Assumed
2𝜎𝑝 0.22 µm 𝜆𝑝/2

𝜂abs 0.6 FDTD

Table 7.1: Parameters used for the simulated switching results in Fig. 7-2. Pulse
parameters were selected to mimic the typical experimental conditions of Sec. 7.3.

complex reflection coefficient measurements with greater than >3 dB shot-noise clear-
ance below 1 GHz. A photograph of the updated setup is shown in Fig. 7-4.

Signal light reflected from the cavity combines with a path-length-matched (to
within ∼mm based on time-delay measurements with a picosecond-class pulsed laser)
local oscillator (LO), and both signals are coupled into a balanced detector using
anti-reflection coated fibers.1 The in-phase (𝐼(𝑡)) and quadrature (𝑄(𝑡)) components
of the cavity reflection were sequentially measured by locking to the first and sec-
ond harmonics of the balanced output in the presence of a piezo-driven LO phase
dither. The resonant, cross-polarized cavity reflection 𝑅 and phase shift 𝜑 are then
reconstructed as

𝑅 =
[𝑉𝑝 − 𝐼(𝑡)]2 +𝑄2(𝑡)

𝑉 2
𝑝

𝜑 = arctan
𝑄(𝑡)

𝑉𝑝 − 𝐼(𝑡)
(7.13)

by normalizing to the measured peak voltage swing 𝑉𝑝 of the interference signal.

1Anti-reflection coated fibers were crucial to these experiments. Without them, strong LO light
reflects from the fiber facet, reflects off the cavity, and re-couples into the fiber. The LO therefore
couples to itself in absence of a signal beam, which can be readily observed on a camera.
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Figure 7-3: Setups for homodyne switching experiments. A balanced homodyne
detector (b) is added to the previously described wide-field characterization setup
(a; also see Sec. 2.5.1) to characterize µLED- (c) or laser-driven (Fig. 6-2b) all-
optical switching. LO: local oscillator; PM: piezo mirror; BD: balanced detector
(Thorlabs PDB480C-AC); Phase Lock: TEM LaseLock; LPF: low-pass filter; CWTL:
continuous-wave trimming laser (Coherent Verdi V18); MLD: modulated laser diode
(Hubner Cobolt or PicoLAS LDP); BE: 5× visible beam expander; LCOS: high-
power liquid crystal SLM (Santec SLM-300); L4: 300 mm; L5: 250 mm; PD: photo-
detector; CL: collection lens (Zeiss Fluar 5×/0.25 NA); VBE: 0.5 × −2× variable
beam expander; DP: dove prism. Other labels are described in Fig. 2-8.

7.2.3 Incoherent Switching with a µLED Array

Originally developed for high-bandwidth visible light communication and optically
pumped laser arrays, the µLED display (Fig. 7-5) consists of a 16 × 16 array of
individually-addressable gallium nitride µLEDs with >150 MHz small-signal band-
width and ∼106 cd/m2 peak luminances (at 450 nm) flip-chip bonded to high-efficiency
CMOS drivers [67, 281].

Optimal Imaging

Using the setup in Fig. 7-3c, we imaged this 100 µm-pitch display with variable demag-
nification and rotation onto the PhC cavity array. The collection optics in Fig. 7-3c
maximize the intensity of a µLED display projected onto the PhC membrane within
the constraints of the constant radiance theorem. Assuming a Lambertian emis-
sion profile, geometric optics gives the collection efficiency 𝜂𝑐 = 𝛼2

𝑐 for an objective
lens (CL) with numerical aperture 𝛼𝑐 focused on the µLED display. The projection
efficiency 𝜂𝑝 through the projection objective (OL, with numerical aperture 𝛼𝑝) de-
pends on the relative pupil sizes of both objectives and can be similarly approximated
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Figure 7-4: Updated setup with conbined widefield readout and homodyne measure-
ment. The fiber-coupled homodyne detector is located in the top-right corner of the
setup. By tapping off signal light from the imaging path with a 90:10 beamsplitter,
the cavity reflection can be monitored on a camera while locked to the homodyne
detector. This feature significantly assists system alignment and monitoring.

from geometric optics. As illustrated in Fig. 7-6, the resulting intensity enhancement
𝜁 = 𝜂𝑐𝜂𝑝/𝑀

2 between the source and image (with magnification 𝑀) reaches a max-
imimum 𝜁max = 1

𝑀2+(1−𝛼2
𝑝)/𝛼

2
𝑝

when the CL-collimated light overfills the back aperture
of OL. The resulting design criteria,

𝛼𝑐 >

√︃
𝑀2𝛼2

𝑝

(𝑀2 − 1)𝛼2
𝑝 + 1

, (7.14)

is achieved for our imaging setup with 𝛼𝑐 = 0.25, 𝛼𝑝 = 0.95 (specifically chosen to
maximize 𝜁max), and 𝑀 ≈ 1/30. After CL, The overall magnification and rotation
are fine-tuned with a variable beam expander and Dove prism, respectively.

Under these optimum illumination conditions, digitally triggering the CMOS
drivers enables reconfigurable, binary optical addressing as illustrated by the imaged
projections of the µLED onto the PhC-SLM in Fig. 7-7.
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Figure 7-5: A high-speed µLED display developed by our collaborators at the Institute
of Photonics. The setup consists of a FPGA signal generator (left), a µLED daughter
card (center) with a packaged gallium nitride µLED array (16× 16 or 10× 40), and
a signal distribution board (background) for communication between all units.

Single-Pixel Switching

We measured the resulting pixel reflection amplitude and phase the locked, shot-
noise-limited balanced homodyne detector described in Sec. 7.2.2. Fig. 7-8 depicts
the maximum phase shift ∆𝜑 as a function of CMOS trigger duration 𝑇CMOS and
imaged pump energy density 𝐸µLED. Single-cavity switching is possible with energy
densities below 10 fJ/µm2 (corresponding to ∼100 fJ/µm2 total energy for our chosen
demagnification) and a minimum trigger duration 𝑇CMOS ≈ 5 ns. Shorter trigger
pulses produce output probe pulses with relatively constant widths 𝑇switch (due to the
µLED fall time) and insufficient energy for high-contrast switching.

7.2.4 Coherent Switching via Pulsed Laser Fan-out

Confining visible pump pulses in space and time to the silicon free-carrier diffusion
length (∼ 1µm) and lifetime (𝜏 ≈ 1 ns), respectively, would reduce the required
switching energy and maximize bandwidth bandwidth. While both metrics are achiev-
able with recent state-of-the-art µLED displays, we demonstrated the expected per-
formance enhancement with a pulsed visible (𝜆 = 515 nm) laser. Fig. 7-9a shows
that — in qualitative agreement with the analytic model of Sec 7.2.1 — 3 dB power
reflectivity changes and high-contrast phase modulation are feasible for 5 fJ pump
pulses with 𝑇switch ≈ 1 ns. The achievable modulation bandwidth is limited by two
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Figure 7-6: Ideal imaging transmission 𝑇 (solid curves) and intensity enhancement
𝑇𝑀2 (dashed curves) of a Lambertian emitter through two opposing infinity corrected
objectives as a function of demagnification 1/𝑀 . The collection objective (with nu-
merical aperture 𝜂𝑐 = 0.25 set to match experiments) serves as a tube lens for the
projection objective (numerical aperture 𝜂𝑝). In the “collection limited” regime (col-
limated light from the collection objective does not fully fill the back aperture of
the projection lens), total transmission varies as a function of 𝑀 but intensity en-
hancement is variable. We alternatively operate in the “projection limited” regime
(collected light overfills the projection lens’ back aperture) where 𝑇 ∝ 𝑀2 and the con-
stant intensity enhancement increases with 𝜂𝑝, motivating the use of a high-numerical
aperture projection lens.

Figure 7-7: Experimental photographs of µLEDs imaged onto single cavities (a) and
cavity arrays (b). The width of the demagnified µLEDs is ∼10µm and ∼3µm in (a)
and (b), respectively.
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Figure 7-8: Peak phase shift ∆𝜑 and half-maximum switching interval 𝑇switch produced
by pulses from a CMOS-integrated µLED display imaged onto the cavity array as a
function of trigger duration 𝑇CMOS and pulse energy density 𝐸µLED.

parameters: the free-carrier lifetime 𝜏 and the cavity bandwidth Γ. For full DOF
temporal modulation, the physically-limited modulation bandwidth (𝜔 = 1/𝜏 , in
this case) should exceed the limiting optical bandwidth, namely the cavity linewidth
Γ. To compare these two timescales in our devices, we measured the normalized
small-signal transfer function 𝑇 (𝜔) between a harmonic pump power (produced by
a network analyzer-driven amplitude electro-optic modulator) and the output phase-
locked homodyne response. The results in Fig. 7-9b match the expected second-order
response 𝑇 (𝜔) = 1/{[1 + (𝜔𝜏)2] [1 + (𝜔/𝜋Γ)2]} for a fitted carrier lifetime 𝜏 = 1.1 ns
(corresponding to a 150 MHz bandwidth) and the measured Γ = 1.0 GHz. Com-
plete spatiotemporal modulation therefore requires higher-𝑄 resonators; however, the
current regime of operation enables near-complete control over a larger bandwidth
𝜔𝑠 = 2𝜋 × 135 MHz ≈ 1/𝜏 , i.e. without significantly degrading the carrier-lifetime-
limited modulation bandwidth.

7.3 Nanosecond, Femtojoule Spatial Light Modula-
tion

Combining these optimized switching characteristics with the space-bandwidth-limited
vertical beaming of each resonator enables multimode programmable optics approach-
ing the fundamental limits of spatiotemporal control. We currently probe the PhC-
SLM in a wide-field, cross-polarized setup that produces amplitude-dominant Lorentzian
reflection profiles 𝑟(∆) ∝ 1/(1 + 𝑗∆) regardless of the resonator coupling regime
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Figure 7-9: (a) Complex reflectivity 𝑟 =
√
𝑅𝑒𝑗𝜑 modulation with femtojoule-order

pulse energies 𝐸laser from a focused visible laser. (b) Output probe to input visible
(pump) power transfer function 𝑇 (𝜔) fit to a second-order response function, yielding
a 𝜔𝑠 = 2𝜋 × 135 MHz bandwidth limited by the free carrier lifetime 𝜏 ≈ 1.1 ns and
cavity bandwidth Γ ≈ 1 GHz.

Figure 7-10: Near-field single-cavity reflection images measured via wide-field pump-
probe spectroscopy as a function of time delay ∆𝑡. Extinction (with µLED switching,
in this case) exceeds 10 dB at an optimal delay ∆𝑡 = 40 ns.

(cavity emission is isolated from specular reflection). For simplicity, we therefore
conducted proof-of-concept demonstrations using the PhC-SLM as an array of high-
speed binary amplitude modulators. In this modality, a nanosecond-class pulsed
visible laser is passively fanned out to the desired devices. Devices targeted by pump
light are detuned far from resonance (∆ ≫ Γ) and effectively extinguished, whereas
unactuated cavities retain their high ∆ ≈ 0 reflectivity.

We used pump-probe spectroscopy to image these few-nanosecond switching events.
Short infrared probe pulses were carved with the electro-optic amplitude modulator
(DC biased to an intensity null) in Fig. 7-3 and variably delayed to coincide with the
arrival of visible pump light at the PhC membrane, gating probe field transmission to
the IR camera. We then measured the near- and far-field reflection as a function of
the probe delay to reconstruct switching events with sub-nanosecond time resolution.
Fig 7-10 shows near-field images of a single cavity as a function of time delay and
Fig. 7-11 plots the resulting far-field intensity profiles |𝐸𝑟|2 for horizontal and vertical
on-off gratings. For a 5 ns probe pulse width, the maximum near-field extinction of
targeted cavities (7.4 dB and 9.8 dB for horizontal and vertical gratings, respectively)
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Figure 7-11: Analogous results to Fig. 7-1 for the switched array with an optically-
patterned horizontal (vertical) amplitude grating at the maximum extinction time
𝑡0+6 ns, producing ±1st-order diffraction peaks over a 10.6∘ (14.5∘) field-of-view and
diffraction efficiency 𝜂𝑥 = 0.22 (𝜂𝑦 = 0.20).

occurs within a ∼6 ns delay; i.e. just after the pump and probe pulses completely
overlap. This minimum probe pulse width is limited by the requirement for high
imaging contrast between probe pulses and leakage (due to the imperfect probe mod-
ulator extinction) given the instrument-limited trigger repetition rate (∼MHz) and
camera integration time.

As expected, light is primarily scattered into first-order diffraction peaks within
the > 10∘ 2D field-of-view of 𝑆(𝑘⃗). The illustrated cross sectional beam profiles are
again in close agreement with analytic results for a 80% filled linear array of uniform
apertures (black dashed lines). Notably, the total emitted power for the horizontal
grating in Fig. 7-11a is a factor of ∼2 larger than expected due to a corresponding
power increase in unactuated cavities during switching events. We attribute this
crosstalk to residual coupling between adjacent cavities and have scaled the associated
theory curve accordingly to facilitate pattern comparison. In both cases, the pattern
diffraction efficiencies — measured as the fraction of integrated power within the
outlined regions in Fig. 7-11 — (𝜂𝑥, 𝜂𝑦) = (0.22, 0.20) compare favorably to that of the
fitted uniform aperture array (32%). Even with sub-optimal amplitude modulation,
these experimental efficiencies exceed those of previous resonator-based experiments
due to the near-fully-filled array of our high-directivity PhC antennas [34].



7.4. PERFORMANCE COMPARISONS 135

7.4 Performance Comparisons

Table 7.2 compares the PhC-SLM demonstrated here to other actively-controlled, 2D
SLMs (Fig. 1-3).

Class
[Year] Device [Ref] 𝑁𝑥 ×𝑁𝑦 Ω𝑠 = 𝜆

Λ𝑥
× 𝜆

Λ𝑦

𝜁
[%]

𝜔𝑠/2𝜋
[Hz]

EO
[2022] PhC-SLM 8× 8 10.6∘ × 14.5∘ 64 1.4×108

EO
[2021] 𝜒(2) polymer-coated grating [41] 4× 4 0.2∘ × 0.2∘ — 5.0× 107

EO
[2019] 𝜒(3) plasmonic resonator [40] 4× 4 0.8∘ × 1.1∘ 20* 1.0× 109

EO
[2017] Bilayer guided resonators [38] 6× 6 1.3∘ × 0.3∘ 40* 2× 108

EO
[2011] 𝜒(2) polymer-coated grating [25] 4× 4 0.1∘ × 0.1∘ 18* 8.0× 105

EO
[2005] MQW micropillar modulators [39] 128× 128 1.3∘ × 1.3∘ 50 1.3× 107

Thermal
[2018] Asymmetric Fabry-Perot cavity [34] 6× 6 3.4∘ × 3.4∘ 59 1.4× 104

Thermal
[2013] Waveguided phased array [33, 282] 8× 8 9.9∘ × 9.9∘ 10* 1.1× 106

MEMS
[2019] Grating phase shifters [27] 160× 160 4.4∘ × 4.1∘ 85* 5.5× 104

MEMS
[2019] Piston mirrors [36] 960× 540 3.4∘ × 3.4∘ — 2.0× 104

MEMS
[2014] High-contrast gratings [26] 8× 8 2.7∘ × 2.7∘ 36* 5.0× 105

MEMS
[2001] Piston mirrors [35] 256× 256 2.2∘ × 2.2∘ 86 5.0× 105

LC
[2020] Plasmonic metasurface [31] 3× 3 0.3∘ × 0.3∘ — 2.5× 101

LC
[2019] “MacroSLM" [30] 1536×

1536
3.0∘ × 3.0∘ 95 6.0× 102

LC
[1994] Binary ferroelectric LC [29] 256× 256 2.2∘ × 2.2∘ 79 8.3× 103

Table 7.2: Performance comparison of selected active 2D spatial light modulators
from Fig. 1-3. Estimated fill factors 𝜁 are marked by a *.

Wavelength-steered devices and switch arrays are omitted to restrict focus to
the typical SLM architecture in Fig. 1-2. Notably, while beamsteering with PhC
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waveguides [54, 283, 284] and laser arrays [285] has recently been demonstrated, our
device is the first (to our knowledge) to feature simultaneous emission from a 2D
array of individually controllable PhC pixels.



If the theory of making Telescopes could at length be
fully brought into Practice, yet there would be certain
bounds beyond which Telescopes could not perform.
For the air through which we look upon the stars is in
perpetual Tremor.

Sir Isaac Newton, Opticks (1704).

8
Future Avenues

These proof-of-concept experiments demonstrate near-complete spatiotemporal con-
trol of a narrow-band optical field filtered in space and time by an array of wavelength-
scale, high-speed resonant modulators. While the general resonant architecture (Fig. 1-
2c) is applicable to a range of microcavity geometries and modulation schemes, the
combination of our high-𝑄, vertically-coupled PhC cavities with efficient, all-optical
free-carrier modulation achieves (C1-5) with an ultrahigh per-pixel spatiotemporal
bandwidth 𝜈 ≈ 5.6 MHz · sr. This MHz-order modulation bandwidth per aperture-
limited spatial mode corresponds to a more than ten-fold improvement over the 2D
spatial light modulators reviewed in Fig 1-2b. Our wafer-scale fabrication and par-
allel trimming offer a direct route towards scaling this performance to spectrally-
multiplexed, 𝒪(cm2) apertures for exascale interconnects beyond the reach of current
electronic systems, thus motivating the continued development of optical addressing
and control techniques.

The PhC-SLM opens the door to a number of applications and opportunities, a
few of which we are currently pursing and describe here.

High-definition, high-frame-rate holographic displays

For a desired resolution 𝑟, holographic displays require 𝒪(𝑟4) DoF per frame to recon-
struct a scalar light field with two transverse coordinates and two angular coordinates.
While “visually acceptable” frame rates and resolutions are inaccessible by today’s spa-
tial light modulators, the PhC-SLM’s large spatiotemporal bandwidth could enable
high-definition, high-speed holographic projections. For this application, one key goal
is to achieve phase-only modulation with photonic crystal cavities. Sec. 2.3.1 shows
that this objective can be achieved with an added backreflector, which enables > 90%

137
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Figure 8-1: Full-die (6 mm × 8.5 mm) membrane release and transfer. A two-hour
wet etch in concentrated hydroflouric acid releases the photonic crystal membrane
from the SOI substrate (a-d), enabling high-quality transfer to non-native substrates
such as a glass slide (e-f).

unidirectional cavity coupling to a Gaussian input. Heterogeneously integrating our
cavity arrays onto a mirrored substrate would therefore enable high-efficiency holog-
raphy (Fig. 2-11) with optimized analog detunings. Similarly, directly integrating
our cavity arrays onto a high-bandwidth µLED display would eliminate the external
imaging optics and associated design constraints (Fig. 7-7). We are currently purs-
ing numerous experimental avenues for this heteogenous integration: full membrane
transfer (Fig. 8-1), transfer printing (Fig. 8-2)1, and flip-chip integration (Fig. 8-3).

Focal plane array sensors

Operated in reverse, the PhC-SLM also constitutes a hyperspectral sensor that maps
patterned index perturbations to magnified field modulations with µm-order spa-
tial resolution, overcoming the limitations of guided-resonance sensors [287] for high-
performance, space-constrained imaging in applications from endoscopy to bolometry

1Professor Michael Strain’s group — experts in transfer printing integrated photonic circuits [286]
— performed the PhC cavity transfer illustrated here.
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Figure 8-2: Cavity-by-cavity transfer printing onto a mirrored substrate with variable
thickness target frames. Initial experiments confirm the ability to sub-select high-
uniformity devices sets and transfer to non-native substrates without modifying the
array’s resonant characteristics.

Figure 8-3: Initial phase-only device fabrication via flip chip bonding. The top oxide
cladding of the fabricated wafers is polished to the optimal 𝜆-thickness (c.f. Fig. 3-7),
covered with a 100 nm-thick gold bond layer, and thermocompression bonded to a
gold-plated silicon substrate (a). After substrate removal via back-side grinding and
XeF2 etching (b), the transferred membrane is released with a final timed wet etch.
Initial reflectivity measuremnts (c) show intensity enhancement near the released
areas at the center of each array.



140 CHAPTER 8. FUTURE AVENUES

Figure 8-4: Thermal isolation engineering to convert a photonic crystal cavity into an
optical bolometer. Pyrolized carbon absorbers are added to increase the pixel respon-
sivity (a). Eggshell-like zirconia pillars with a few-nm-thick sidewall are fabrication
(b) to thermally isolate the pixel from from the substrate (c).

[288, 289]2. Thus, we envision that combining the thermal noise-limited resonance
readout demonstrated in Chapter 4 with the wafer-scale photonic crystal fabrication
of Chapter 3 will unveil new possibilities for high-performance optically addressed sen-
sor arrays. For example, we are currently evaluating the feasibility of a microcavity-
enhanced bolometer to overcome the 1/𝑓 readout noise inherent in room temperature
vanadium oxide bolometers [290].

Our initial fabrication steps shown in Fig. 8-4 have focused on the addition of
efficient infrared absorbers as well as thermal isolation engineering to convert our
standard photonic crystal cavities into sensitive infrared detectors. Next, we will
measure the low-frequency readout noise, responsivity, and overall detectivity for
comparison to traditional electrically-mediated bolometers.

“Free-form” spatial light modulation with coupled resonators

The PhC cavities used in our PhC-SLM enable high-𝑄, diffraction-limited confine-
ment of optical modes, but require precise fabrication and trimming. Alternatively,
guided mode resonators (GMRs) provide modest quality factors, can be formed with a
defect-free PhC lattice, and are intrinsically vertically coupled [100]. Combined with
recent developments in thin film, high-Pockels-coefficient materials such as barium
titanate (BTO) and lithium niobate (LN) [291, 292], GMRs enable linewidth-order
resonances shifts with low quality factors (𝑄 ∼ 100) and are a promising solution for
low-numerical aperture spatial light modulation.

For example, our proposed implementation consists of 1D or 2D dielectric grating
patterned atop an electro-optic (EO) thin film. An underlying CMOS electrode array
patterns a spatially varying electric field, which is effectively transduced to local

2The aforementioned membrane transfer processes are particularly exciting for these applications:
for example, one could imagine transfer printing a PhC cavity array onto the end of a multimode
fiber for real-time, through-fiber imaging where refractive index perturbations are spatially encoded
in the resonance shifts of each microcavity.
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Figure 8-5: Design of an electro-optically controlled guided mode resonance based
on silicon nitride on an electro-optic thin film. The optimized reflection spectra
(a) demonstrate that linewidth-order wavelength shifts can be achieved with an in-
plane electric field |𝐸⃗| < 1 𝑉/µm (a). As illustrate by the field profiles in (b), the
large energy confinement (Γ ∼ 60%) in a high-Pockels-coefficient material (barium
titanate, 𝑟42 ∼ 900 pm/V) enables near-unity on-off modulation contrast with CMOS-
compatible voltages micron-scale pixel pitches.

optical phase shifts by a well-confined, moderate-𝑄 guided mode resonance (GMR).
The distributed GMR is intrinsically vertically coupled, features high optical power
handling (as highlighted by recent Watt-class surface emitting laser demonstrations
[293]), and can be formed with a defect-free, wafer-scale 1D or 2D grating fabricated
by interference photolithography. Motivated by these advantages, we optimized and
fabricated a simple GMR design consisting of a two-dimensional silicon nitride grating
on a uniform unpatterned layer of thin film electro-optic material (Fig. 8-5). We are
currently testing these structure.

Fig. 8-5 illustrates the feasibility of modulating the zero-order GMR reflection
using a uniformly patterned index perturbation. Due to finite lateral propagation
in waveguide mode, however, non-uniform index patterning to achieve a desired re-
flection profile is more complex [294, 295]. Assuming typical electro-optic materi-
als, dimensions, and CMOS-compatible voltages, the normalized index perturbation
𝜖 = ∆𝑛/𝑛 ∼ 10−4 indicates that significant resonant enhancement is required for
appreciable phase shifts. For the large associated quality factors 𝑄, diffraction affects
the intracavity light. The GMR no longer acts as a thin local phase plate and the
far-field profile is not directly related to the Fourier transform of the near-field con-
trol parameters. The central question is then: how many independent modes can be
controlled in this free-form planar architecture? Two simple conditions for “indepen-
dent pixels" based either the Rayleigh length or angular bandwidth associated with
the single pixel size indicate that the wavelength-normalized pixel pitch scales with√
𝑄 for a vertical resonator, lending minimum pixel sizes Λ ∼ 𝜆/

√
𝜖 ∼ 100𝜆 that
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Figure 8-6: Intuitive design and computational optimization of a coupled-resonator
SLM. An unfolded one-sided Fabry-Perot cavity (a) with tunable intracavity refractive
index — i.e. a traditional etalon with an embedded photonic crystal — can be
approximated as a thick grating (b). The far-field emission can then be optimized
with automatic differentiation (c-e). The refractive index (c) in each 5𝜆-wide pixel
is optimized (left) in an attempt to mimic a target diffraction efficiency pattern (d).
For the assumed maximum index tuning ∆𝑛/𝑛 = 10−2, the loss function (e), the
Euclidean norm of the amplitude error vector, converges within ∼100 optimization
steps.

are an order of magnitude larger than typical backplane electrode lengths Λ ∼ 10𝜆.
Controlling these “free-form” devices with inter-pixel coupling is an ongoing research
goal.

As a case study, we have considered a vertical Fabry Perot resonator in the oppo-
site “weak perturbation" regime — Λ

√
𝜖/𝜆 ≪ 1 — as a “thick" grating (Fig. 8-6). By

optimizing the intracavity index profile to achieve a desired angular emission profile,
we demonstrate the feasibility of low-NA beamsteering using a simple Fabry-Perot
resonator despite coupling between adjacent pixels. Our inverse design implementa-
tion mirrors other recent results int the literature [296].

Similar considerations are also applicable to an all-optical implementation, where
a high-speed display is imaged onto the resonator for arbitrary refractive index pat-
terning. Currently, we are working on a rigorous band theory-based model to describe
the fundamental limits of spatial light modulation in similar structures with weak,
free-form index perturbations. By reduing the PhC-SLM’s minimum pixel pitch (cur-
rently set to minimize coupling between adjacent devices), these results could enable
wide field-of-view beamforming with coupled PhC resonators.
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1 μm

Figure 8-7: Resonator trimming via laser ablation. The micrograph shows that a thin
(few-nm-thick) layer of deposited phase change material (Sb2Se3) can be removed
using the same holographic laser addressing described in Chapter 6.

.

Novel trimming techniques and experiments

In Chapter 6 we demonstrated resonance alignment to a single operating wavelength
such that individual pixels could be modulated at high-speed with a µLED display
(Chapter 7). In addition, trimming to non-zero static detuning profiles can allow
pre-programmed patterns to be steered without external control [16]. Combining
these two techniques (fast index perturbation and static resonator detunings) could
therefore enable high-speed, three-dimensional optical addressing and imaging. To
further improve the wavelength uniformity of trimmed arrays, we are also exploring
nonlinear operation wherein thermal effects between adjacent devices “lock” the array
to a slightly (red) detuned pump laser.

While the results discussed in this thesis were enabled by thermal oxidation-based
trimming, we are actively exploring other (i.e. faster3) trimming techniques. Fig. 8-
7, for example, illustrates trimming via laser ablation of a deposited phase change

3Primarily due to environmental factors such as moisture adsorption, a ∼10× 10 array currently
takes 𝒪(10) hours to align.
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material.4

High-speed programmable unitary transformations

As described in Sec. 1.1, programmable optical transformations are ubiquitous in
modern science and engineering. The PhC-SLM could therefore have applications
to universal linear optics processors [10], optical neural network accelerators (via
low-power, high-density unitary transformation of free-space optical inputs [9, 11]),
and high-speed adaptive optics for free-space compressive sensing, deep-brain neural
stimulation, and real-time scattering matrix inversion in complex media [297, 298].
Moreover, whereas we have so far considered only mode transformations, the PhC-
SLM’s high-𝑄/𝑉 resonant enhancement suggests the possibility of programming the
quantum optical excitations/fields of these modes for applications ranging from multi-
mode squeezed light generation, to multiplexed single photon sources for linear optics
quantum computing [12] or deterministic photonic logic [229, 299].

Regardless of the final applications, the results of this thesis push optical mea-
surement, sensing, and control one step closer to their current “fundamental limits”.
I opened this final chapter with Newton’s quote, though, to demonstrate that these
limits are ever evolving — an interplay of scientific insight and engineering break-
throughs. We thus hope that our investigations motivate future studies in the ongoing
quest to completely harness the remarkable complexity of optical fields.

4I thank Cosmin-Constant Popescu (MIT) and Professor Juejun Hu (MIT) for their collaboration
on these efforts.
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